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Abstract 

This thesis is a collection of four essays with main focus on testing for a unit 

root under structural change, and on the behaviour of power-enhancing unit root 

tests that have recently emerged as a solution to the well-known power deficiency 

of traditional such tests. New tests and variants of commonly applied ones are 

introduced in response to the need for reliable statistical techniques in modelling 

economic series over time. 

The first essay explores the possibility that a time series may change struc- 

ture from trend-stationarity to difference-stationarity, or vice versa as has been 

recognised by economists for several years. Taking difference-stationarity as the 

null hypothesis, tests are developed for this possibility, where neither the loca- 

tion nor direction of any possible change under the alternative hypothesis need 

be specified. Application of these tests to series on consumer price inflation in the 

G7 countries reveals evidence of a change from trend-stationarity to difference- 

stationarity in the majority of these countries. 

In the second essay we apply two elaboration principles of standard unit root 

tests in the more flexible setting of testing for a unit root against the alternative 

of stationarity around a smooth transition in linear trend. In comparison to 

the standard case, the modified tests within this context generate only moderate 

additional power, a phenomenon which appears to be related to the elaborate 

nature of the trend function under the alternative. An empirical application of 

the modified smooth transition tests to common macroeconomic time series in 

the US economy leads to stronger evidence in favour of the smooth transition 

alternative than do the unmodified tests. 

In the third essay we show that more powerful variants of commonly ap- 

plied unit root tests to panel data, seeking mean or trend reversion, are readily 

available. Moreover, power gains persist when the modifications are applied to 

bootstrap procedures that may be employed when cross-correlation of a rather 

general sort among individual panel members is suspected. That such an ap- 

proach can strongly influence inference is demonstrated through an application 
to a panel of real exchange rates against the US dollar. 

The final essay explores the behaviour of the power-enhancing unit root test 

most widely applied in the empirical literature. The principle issue is that such 



a test can have very low power for certain parameter configurations and sample 

sizes relative to conventional unit root tests. A theoretical attempt is made to 

identify these unsatisfactory cases relying on local to unity asymptotics, through 

investigation of the relative efficiencies in the case of an unknown mean. Extensive 

Monte Carlo results highlight the shortcomings of such a test under higher order 

autoregressive processes and indicate preference for its existing rivals. 
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Chapter 1 

Introduction 

The content of this thesis draws upon two important areas in econometrics, which 
have jointly and independently played an increasingly important role in the search 

of an optimal way to characterise the behaviour of economic time series, namely 

unit root testing and structural change. How macroeconomic series evolve over 

time has profound implications for economic theories purporting to explain eco- 

nomic events, for econometric modelling strategies and for forecasting accuracy. 

Thus, the need for reliable statistical techniques to characterise their behaviour 

over time becomes imperative. 

Unit root tests involve statistical techniques designed to distinguish between 

deterministic and stochastic trends in observed economic time series. Tradition- 

ally, empirical researchers have treated observed trends in macroeconomic and 

financial time series as deterministic functions of time. Under this view, current 

stochastic shocks have only a temporary effect on the long-run movement of a 

series. Consequently, long-run forecasts from such a model may be expected to 

be fairly precise as long as the trend is consistently estimated. Following the work 

of Nelson and Plosser (1982), there was a general acceptance that most macro- 

economic variables exhibited some form of stochastic nonstationarity - e. g. could 

be modelled as unit root processes. In this case, current shocks have an enduring 

effect on the evolution of the series; hence, long-run forecasts are expected to be 

quite poor. Different conclusions are thus derived based on the interpretation 

of observed trend behaviour of economic series, with a subsequent influence on 

the way in which macroeconomic theorists view the working of an economy. Sig- 

nificant contributions in this area include among others the work of Dickey and 
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Fuller (1979,1981) and Phillips and Perron (1988), the well-known Dickey-Fuller 

(DF) and Phillips-Perron (PP) unit root tests, respectively. The former are with 

no doubt the most widely employed in empirical applications and they are the 

type of tests we will concentrate on throughout this thesis. ' 

Structural change, although not given an exact definition in the literature, is 

usually interpreted as changes of regression parameters in the underlying econome- 

tric model. It is a phenomenon pervasive in economic time series relationships 

particularly when investigated over a long time span, and it can be quite per- 

ilous to ignore. Events like the great depression, oil price shocks, abrupt policy 

changes could be responsible for any parameter shifts observed in the underly- 

ing series. A structural change may affect any or all of the model parameters, 

and these cases have different implications. A large number of statistical tests 

have been developed to detect such changes dating back to the traditional Chow 

(1960) test, which involves testing the null hypothesis of parameter constancy 

against the alternative of a known break point a priori, under the assumption 

of constant variances. The earliest tests for structural breaks in the economic 

literature are for stationary variables and a single break. A number of later de- 

velopments in this area involve tests that allow for more general alternatives of 

structural change occurring at some unknown point in time, allowing also for 

non-stationary regressors and even multiple breaks. 

While the aforementioned areas have to a large extent evolved independently, 

arguments related to the restrictive nature of the linear time trend under the 

trend-stationary alternative and the adverse effect of changes in regression parame- 

ters on traditional unit root tests, have sparked intense and active research over 

the last decade in their joint investigation. Alternative, more flexible specifi- 

cations of the trend function have been proposed including structural breaks, 

Markov regime-switching and smooth transitions which have resulted in unit 

root tests under various forms of structural change, the majority linked to shifts 

in the trend function. We contribute to this strand of literature by proposing 

I The Dickey-Fuller tests involve augmenting the underlying model with lag differences to 
account for any correlation in the residuals, while the Phillips-Perron tests modify the statis- 
tics using a nonparametric approach to obtain consistent estimators. Several simulation studies 
(Schwert, 1989; DeJong et al. , 1992) have shown that the latter tests have serious size dis- 
tortions in finite samples when the data generating process has a predominance of negative 
autocorrelations in first-differences. 
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unit root tests against the alternative of structural change associated with a shift 
in the (dominant) autoregressive parameter of the underlying time series, namely 

a change in persistence. Although a number of studies are available that suggest 

the possibility of a change of this form, not much attention has been given to 

designing official tests for this purpose. 
A separate important issue regarding traditional unit roots is their well-known 

power deficiency. Research efforts in this direction have proved rewarding by 

giving rise to unit root tests characterised by improved power, the majority of 

which are modifications of Dickey-Fuller type tests. A pervasive concern in this 

thesis is how these power-enhancing unit root tests behave when adopted in 

a number of alternative settings. Specifically, we seek to investigate how two 

such modifications perform when adopted in the context of testing for a unit 

root under the flexible alternative of stationarity around a smooth transition in 

linear trend. Subsequently we explore whether these modifications in the basic 

time series case, when extended to the panel unit root testing setting, can result 

in more powerful panel data unit root tests. We also aim to highlight certain 

shortcomings related to the power-enhancing unit root test most widely employed 

in empirical applications, the GLS test proposed by Elliott et al. (1996), which 

in any case proves less powerful than the two elaborated tests we consider. 

Thus, the original contribution of this thesis lies in the development of unit 

root tests under a relatively well-documented, though under-explored in the test- 

ing literature, type of structural change related to a change in persistence. In 

addition to this, more powerful variants of commonly applied panel data unit 

root tests are introduced. Such developments are oriented towards the need for 

reliable statistical techniques in modelling economic series over time, in response 

to which we also explore the behaviour of recently emerged unit root tests in 

more flexible settings. 

The outline of this thesis is as follows. In the second chapter unit root tests are 

considered against the alternative hypothesis of structural change characterised 

by "a change in persistence". Such a term describes a change in structure of 

a time series from difference stationarity, I(1), to trend stationarity, 1(0), or 
from 1(0) to I(1). A number of studies have argued the likelihood of a switch 
in persistence for particular time series. Taking the null hypothesis to be that 
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of 1(1) throughout, Dickey-Fuller type tests are developed that are designed to 

have power against the alternative hypothesis of a switch at an unknown point in 

time, either from 1(0) to 1(1), or vice versa. Sequential estimation procedures are 

considered for this purpose. In the most general case, it is not necessary a priori 

to specify the direction of any possible switch under the alternative hypothesis. 

In all cases, a consistent estimator of any break fraction results as a by-product 

of the tests. Asymptotic properties of the test statistics are investigated both 

under the null and alternative hypotheses. We report simulation evidence on the 

performance of the tests in finite samples in terms of size robustness and power. 
An application of the tests to consumer price inflation in the G-7 countries reveals 

strong and consistent evidence of a change from 1(0) to I(1) behaviour in the 

majority of countries. 

In the third chapter we explore and assess the performance of the more pow- 

erful elaborations of unit root tests when the alternative hypothesis is that of 

stationarity around smooth transition in linear trend. Smooth transition regres- 

sion models have been employed to characterise the behaviour of a number of 

macroeconomic series. They allow for a continuum of states between two ex- 

tremes permitting a more plausible and flexible specification of the trend func- 

tion, while they include the possibility of an abrupt structural break as a special 

case. We demonstrate how the modified statistics are incorporated into the test- 

ing procedure, and obtain estimated percentiles of the limiting null distributions 

of the tests through simulation. Extensive finite sample Monte Carlo results 

show that, although power gains are not as substantial as in the standard case 

of the linear trend alternative, the use of the modified tests is worth the while 

as it signifies extra power at the minimum cost of a little more computational 

complexity. In particular, power gains are more prominent in the simpler case of 

a smooth transition in the constant term only. An empirical application based 

on US macroeconomic data suggests that the smooth transition hypothesis is an 

attractive characterisation for a further number of series when using the modified 

smooth transition tests compared to the unmodified tests. 

The fourth chapter is concerned with unit root testing in the panel data con- 
text, where a topic of increasing interest is whether or not the individual series 

are generated by unit root processes. Such a concern has been expressed in the 
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literature on purchasing power parity, where the issue of interest is the possi- 

ble mean reversion of real exchange rates. This issue can be addressed through 

an extension of commonly applied unit root tests, such as the DF test or a La- 

grange Multiplier test. We contribute to this strand of literature by showing that 

power-enhancing elaborations of unit root tests in the single time series case, 

maintain these power gains when applied in the panel data unit root testing con- 

text. In particular, modified panel unit root tests are introduced starting from 

the base case, where independence over panel data members can be assumed. 

However, it is well known that difficulties, particularly spurious rejections of the 

null hypothesis, can arise when individual panel series are generated by cross- 

sectionally correlated innovations. An important special case, which is readily 

dealt with through the subtraction of time-specific means is investigated. Re- 

ported simulation results show that, while the modified panel data unit root 

tests retain size reliability, they can produce appreciable gains in power. We 

analyse a panel of series of real exchange rates against the US dollar and employ 

the bootstrap to accommodate the heterogeneous nature of cross-section correla- 

tion found amongst the innovations generating the individual time series in the 

panel. We find through simulation that modified bootstrap tests retain the power 

gains noted in simpler cases, and, moreover, that the application of these tests 

yields appreciably stronger evidence against the unit root null hypothesis for our 

data than do the unmodified tests. 

The fifth chapter, provides a thorough investigation into the properties of the 

most widely applied, modified DF-type test based on generalised least squares 

detrending (GLS), that has emerged as a solution to the well-known power de- 

ficiency of conventional unit root tests. While a number of studies address the 

behaviour of such a test only limited detailed results are available to date, mainly 

considering ARMA type models. Given the well-known autoregressive approxi- 

mation to this class of models (Said and Dickey, 1984) and the importance of the 

autoregressive structure in characterising key economic series, we explore the re- 

liability of such a test under higher order autoregressive processes and under the 

more natural alternative of `strict stationarity'. A theoretical attempt is made to 

predict the low power that such tests appear to display relative to the DF test 

for certain parameter configurations and sample sizes, relying on local to unity 
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asymptotics. This is achieved through an investigation of the relative efficien- 

cies of the GLS and OLS estimators, in the case of an unknown mean. The 

limiting results of the derived approximate relative efficiencies predict to some 

extent this issue, through the localising parameter of the autoregressive struc- 

ture. However, Monte Carlo simulations are required to uncover the significant 

finite sample effects associated with the higher order autoregressive parameters. 
Overall, the relative efficiencies of the mean estimator appear to predict power 

well. In comparing power across alternative power-enhancing unit root tests in 

this context, preference is clearly in favour of the alternative tests that appear 

not to be affected by the shortcomings related to the GLS test, in that they 

maintain correct size and superior power in all cases. 

In the last chapter we conclude and provide some suggestions for future re- 

search. 
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Chapter 2 

Tests for a Change in Persistence 

Against the Null of Difference - 
Stationarity with Application to 

the Behaviour of Price Inflation 

2.1 Introduction 

Over the years the properties of important macroeconomic and financial time 

series such as output, inflation rates and interest rates have been subjected to 

scrutiny by numerous empirical studies, in an attempt to best characterise their 

behaviour. To this end, a number of unit root tests have been employed, which 

have arisen in response to the need for discriminating between deterministic and 

stochastic trends in observed economic time series and thus investigating whether 

the effect of current shocks is temporary or permanent respectively. The empirical 

results have led many to accept the notion that a wide variety of economic time 

series contain unit roots, and therefore, stochastic trends. 

While unit root tests have served as the basis for testing the effect/persistence 

of current shocks on the evolution of a series, the variation of the permanent 

impact of shocks to a series is linked to the phenomenon of structural change. 
Investigating the properties of economic series over a long time span it is unlikely 

that no change in structure will have occurred. Major events of some form have 
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usually taken place during the period under examination, affecting the behaviour 

of the series in one way or another. It is this observation that has motivated 

testing for structural change, which constitutes another active area of research. 

Contributions to the problem of testing for structural change have been made 

by a number of authors. Brown, Durbin and Evans (1975) test for parameter 

constancy against general alternatives, including the case of a single break, based 

on recursive residuals. Ploberger, Kramer and Kontrus (1989) propose a test 

based on successive parameter estimates rather than on recursive residuals to 

test parameter constancy. Andrews (1993) develops likelihood-ratio, Wald and 

Lagrange multiplier type tests of parameter stability against a one-time struc- 

tural change with an unknown change point, limited to nontrending regressors. 

Andrews and Ploberger (1994) extend the tests in Andrews (1993) to allow for 

stronger optimality properties. Further statistics are proposed by Hansen (1992) 

for testing constancy of the parameters against the alternative of sudden breaks 

and of a gradual change. Chu and White (1992) consider tests of a trend sta- 

tionary process against the alternative of a change in the trend function at some 

unknown point in time, while Bai and Perron (1998) estimate and test linear 

models with multiple structural changes occurring at unknown dates. 

Unit root tests and tests for structural change have both played an increas- 

ingly important role in the search for an optimal way to characterise the behaviour 

of economic series over time. Of the literature to date when combining both the 

aforementioned, it was Perron (1989,1990) and Rapporort and Reichlin (1989) 

who discovered that the usual unit root tests behave rather poorly against time 

series whose mean or trend function might have undergone important structural 

changes. They demonstrated how exogenous breaks in the series can lead to bi- 

ased results in favour of difference stationarity. Since then, a number of studies 

have emerged that endogenise the choice of the break date by making it data 

dependent, including work by Banerjee et al. (1992), Zivot and Andrews (1992), 

Perron (1997), Perron and Vogelsang (1992), Saikkonen and Lütkepohl (2002). ' 

The majority of such work addresses the effects of structural breaks related to a 

lEvidence from these studies reveals that when the date of the break is treated as unknown 
there is less compelling evidence against the unit root hypothesis. The critical values of the 
limiting test statistics are further out in the tail than those of the exogenous trend break 
statistics, thus being harder to reject the null of a unit root. 
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change in the intercept and/or slope term of the trend function, on augmented 

Dickey-Fuller (ADF) type tests. 2 To capture such changes various dummy vaxi- 

ables are typically added to the regressions, while use of sequential and recursive 

estimation methods is made to reveal the unknown break date. 3 

Further extensions in the same direction have been considered by Leybourne 

et al. (1998) who test for unit roots against the alternative of stationarity around 

a smooth transition in linear trend. Under the alternative, a smooth transition 

function controls the transition between regimes. It incorporates no change and 

an instantaneous change as limiting cases. A further form of structural change 

popularised by Hamilton (1989) and considered widely in the literature thereafter, 

involves the Markov regime-switching type. The structural model in this case 

specifies the time series process of interest as the sum of a trend function the 

parameters of which change according to an unobservable state variable that is 

specified as a Markov chain, plus an autoregressive process with a root on the unit 

circle, or possibly a stationary autoregressive process as in Lam (1990). However, 

technical difficulties still remain in the case of testing whether the linear part of 

the process does have a unit root or not and thus combining unit testing with 

this form of structural change. 

While the main interest in the literature when testing for a unit root against 

the alternative of structural change has centered around shifts in the underlying 

trend function, we concentrate in this chapter on a different type of shift, namely 

a change in persistence. By change in persistence we refer to the phenomenon 

whereby the series under investigation changes from a trend-stationary process, 

1(0), to a difference-stationary, 1(1), process or vice versa. 

The issue of structural change characterised by change in persistence has re- 

cently been addressed by Kim (2000). He maintains the null hypothesis of 1(0) 

throughout, and therefore adapts stationarity tests such as those of Kwiatkowski 

et al. (1992) and Leybourne and McCabe (1994). We take a different approach by 

adopting a null of 1(1) and using test statistics based on the forward and reverse 

2An exception is the work of Saikkonen and Lütkepohl (2002), who in testing for unit roots 
against changes in the trend function employ generalized least squares estimation rather than 
augmenting the underlying model with lagged differences. 

3The endogenous break literature has concentrated on testing the unit-root null against a 
one break alternative. Lumsdaine and Papell (1995) extend this methodology by allowing for 

a two-break alternative. 
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Dickey-Fuller statistics, as advocated in Leybourne (1995). The problem, there- 

fore, is that of testing for a unit root against the alternative of structural change 

at some unknown point, with the selection of the break point determined from 

the estimation procedure designed to fit to an observed series yt a representation 

in which the series changes from stationarity to non-stationarity or conversely. 

There are a number of studies available relating to the issue of a change in 

persistence in key macroeconomic variables. Parker (1989) studies the persistence 

of price shocks in the pre-World War I and post-World war II eras and finds that 

inflation has greater persistence in the post war period. De Long and Summers 

(1988) demonstrate the greater persistence of output in the post-WWII period. 

Ball and Cecchetti (1990) find that as trend inflation has risen over the past 

100 years, the persistence of changes in inflation has also increased, and they 

fail to reject nonsationarity for most of the countries in their sample based on 

post-War data. This corroborates the findings of Brasky (1987) that quarterly 

US inflation evolved from a white noise process in the pre-World War I years 

to a highly persistent nonstationary ARIMA process in the post-1960 period. 

Brunner and Hess (1993) find evidence based on unit root tests that inflation is 

an 1(0) process for the period from 1947-1959 and an I(1) process for 1960-1992, 

with results qualitatively similar using seasonally adjusted and non adjusted data. 

They, thus, model inflation as containing a unit root subsequent to 1960 and as 

stationary prior to this time. 

The short term interest rate is another macroeconomic variable generally 

agreed via empirical evidence as having followed a stationary, I(0), process during 

1890-1910, whilst characterised as non-stationary over the period 1920-1933. Var- 

ious studies have investigated this issue attempting to uncover the exact timing 

and speed of such a break. Different dates have been characterised as potential 

break dates depending on the dataset and method employed (see Fishe, 1991 and 

F, ishe and Wohar, 1990). Among these studies, Mankiw, Miron and Weil (1987) 

employ switching regression techniques in the case of US and UK interest rates 

and find a break in early 1915. Adopting a recursive method based on Bayesian 

learning, Kool (1995) detects a switch to nonstationarity in late 1915 for the 

UK and in late 1917 for the US, relating these dates to the start of interest rate 

targeting. Newbold et al. (2001) develop a testing procedure to model the struc- 
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tural break from an 1(0) process to an I(1) process based on the logistic function, 

with a smooth transition taking place in both the intercept and the autoregres- 

sive parameter. Using US and UK monthly and weekly nominal interest rates 

over the period 1890-1934 they cannot reject the null hypothesis, I(1), for the 

UK, while for the US data they can reject the I(1) hypothesis in favour of the 

hypothesis that a structural change occurred from 1(0) to I(1). Their best esti- 

mate is of a rapid structural change occurring in 1917. Furthermore, Hakkio and 

Rush (1991) consider the possibility of a change in persistence for the government 

budget deficit. 

Although the majority of empirical evidence indicates a change in persistence 
from an 1(0) to an I(1) process, the converse is suggested in studies like that of 

Evans and Wachtel (1993) who employ a Markov switching model in the case of 

US inflation. Their estimated Markov model that allows for a stationary AR(1) 

process in one regime and a random walk in the other suggests the possibility of 

structural change of the inflation series from a difference-stationary process back 

to level stationarity in the mid 1980's, coinciding with the collapse in oil prices. 
The rest of this chapter is organised as follows. In Section 2.2, we begin by 

analysing the case where the direction, but not the location, of any change in per- 

sistence, under the alternative hypothesis, is taken as given. Initially we consider 

the situation where we permit in the 1(0) phase stationarity around an unknown 

mean, while in the I(1) phase first differences have zero mean. In detecting a 

change from either 1(0) to 1(1), or 1(l) to 1(0) we use test statistics based on the 

minima of sequential unit root tests. In doing this we are prompted by Banerjee 

et al. (1992) - hereafter BLS - who advocated such procedures in the context of 

testing for 1(l) against the alternative of 1(0) with a change in the deterministic 

trend at an unknown time. Section 2.3 presents the limiting null distributions 

of the test statistics along with the asymptotic properties of the tests under the 

alternative hypotheses drawing on results derived in Leybourne et al. (2000). 

It also follows that, when a break does occur, the point identified by the test 

statistic (i. e. that at which a minimum occurs) is a consistent estimator of the 

true break fraction. Based on these results the development of tests against the 

most general and practically important alternative, where the direction of any 

possible change is not specified a priori is taken up in Section 2.4. In particular, 
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we show how the tests of Section 2.2 can be combined to generate what is, in 

effect, a single test against a two-sided alternative of a change in persistence in 

an unknown direction at an unknown time. In Section 2.5, Monte Carlo simu- 

lations are undertaken to investigate the finite sample performance of the tests. 

Finite sample critical values of the tests are given, while robustness of the tests 

to residual serial correlation and error processes that depart from normality are 

explored. In the case of the latter, the errors are assumed to follow Student-t and 

chi-square distributions with five and three degrees of freedom, respectively. In 

Section 2.5.4 power estimates are obtained and compared across the tests, while 

results are also reported relating to the accuracy of the break point estimation. 

Extensions of the tests involving further deterministics are briefly presented in 

Section 2.6, where a drift is permitted under the null hypothesis, and correspond- 

ingly stationarity around a linear trend is allowed in the 1(0) phase of the series 

under the alternative. Section 2.7 reports an empirical application to quarterly 

CPI inflation rate series of the G-7 countries. Section 2.8 ends the chapter with 

some concluding remarks. 

2.2 Tests For a Change in Persistence: 

Direction Specified 

Initially, we concentrate on the case where, under the null hypothesis, the data 

generating process is a driftless random walk. Under the alternative hypothesis, 

a transition is permitted, either from a stationary first order autoregression (with 

unknown mean) to a random walk, or from a random walk to a stationary first 

order autoregression. The transition point is not assumed to be known. 

Consider the following data generating process for a series of T observations 

on yt. The null is that yt is I(1) throughout 

Yt = Yt-1 + et, t=1,2, ..., T (2.1) 

where et is taken to satisfy the following assumption. 
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Assumption 2.1. et is a martingale difference sequence and satisfies E(et ý 

0-2, is (i = 3,4), and supE(Iet14+Iet-i, ... 
) _' < Co 

t 
for some y>0. 

This assumption is standard in the unit root literature, see for instance BLS 

and Stock (1994). It allows for lagged dependent regressors (e. g., autoregressive 

models) and it implies that the functional central limit theorem applies to the 
[T71 

partial sums of et, i. e. T-1"2 E et = crW (T), uniformly for TE [0,1] 

There are two alternatives. One is that yt is 1(0) changing to I(1) at time T*T 

yt =a+ Pyt-i + et, t< r*T, p<1, 

yt = Yt-i + Et, t> T*T, (2.2) 

and the other is that yt is I(1) changing to 1(0) at time T*T 

Yt = Yt-1 + et, t< T*T 

Yt = az. T + Pyt-i + et, t> 7-*T, p<1, 

a, *T - (1 - p)Yr*T" 

We denote the null Hol and the two alternatives HÖ1 and Hi°, respectively. This 

definition of H, ° ensures a "joining up" of the I(1) and 1(0) parts of the series, 

just as H0' does. This is precisely what would be achieved in a series that is 

a time-reversed variant of (2.2) with (1 - r*) in place of T*. This seems to be a 

reasonable practical requirement. Also, if it is not imposed, properties of tests 

will obviously depend on the mean of the 1(0) part of the series. 4 

2.2.1 Tests Based on the Forward Series 

We now consider the alternative hypothesis of a switch from 1(0) to I(1); that 

is, we require that, if HO" does not hold, then HÖ1 must be true. Let r denote a 

4A similar definition is used in Banerjee et al. (1992). See the footnote to Table 3 of that 
paper. 
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possible break fraction. Define 

d10e(r) - 1[t < TT] 

where 1(") is the indicator function. We estimate the regression using the full 

sample 

Dyt = ä(7-)diot(T) + ý(7-)diot(T)yt-i + Et(T) (2.3) 

t=1,2, ..., T 

and construct the corresponding t-ratio associated with O(r). We denote this by 

DFol(T). 5 Since the break fraction r is not assumed known, Dickey-Fuller t-ratios 

are computed for all possible r, and we take as a test statistic that t-ratio least 

favourable to the null hypothesis that the series is I(1) throughout; that is, the 

infimum over T of the Dickey-Fuller t-ratios. The test statistic is then 

DFdo' = inf DF i (T) 
rEA 

where A is a closed subset of (0,1). 6 Tests of this sort that are based on the full 

sample are termed "sequential" by BLS. 

Since the last (1- T)T observations are taken under both the null and alter- 

native hypotheses to be generated by an I(1) process, another possibility is to 

apply Dickey-Fuller type tests to the first TT observations, allowing r to vary. 

Tests of this sort are termed "recursive" by BLS, in which case (2.3) is estimated 

based on the first r fraction of the sample, that is t=1,2, ..., TT. The resultant 

t-statistic DFoi(r) in this case is the same as the t-statistic, denoted tDF(T), 

in BLS when there is neither a time trend nor lagged Dyt in their model, which 

is based on the same regression as in (2.3). 

5The subscript Ol in the statistic indicates that the test is for 1(0) changing to I(1), and 
the superscript f indicates that the test is based on the forward series yt. 

6This type of trimming is standard in the literature when testing for breaks in order to 
obtain well-defined limiting distributions. 
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For the generating model as specified in (2.1), the recursive procedure is inef- 

ficient, since in the ADF regression of (2.3) we use only the first r fraction of the 

sample. It should be possible to estimate the variance of the innovations et more 

efficiently using the full sample and in doing so to improve the finite sample power 

of the test. For this purpose, the analysis of this chapter restricts its attention 
? to the case of sequential testing. 

The estimated variance for the sequential test is given by 

Ü2 . r&2 + (1 
- r)&2 

where rT 

Q2 = (TT)-1 E ý2 

t=1 

which is the estimated variance corresponding to the recursive procedure, and 

T 

a2 Dyt 
t=rT+1 

If instead the alternative is Hi °, we define 

dolt(T) = 1[t > TT] 

and estimate the regression 

Ayt = &(T)dolt(T) + ý(T)dolt (T)yt-i + ýt(T) (2.4) 

t=1,2, ..., T 

over all T and construct the corresponding t-ratio associated with ý(-r). We 

'It should be noted here that neither the recursive nor the sequential procedures are con- 
structed so as to permit alternative parameters that influence persistence other than p, to 
change at time r-*T. We would suppose that in the presence of such a change, recursive tests 
would be less affected of the two, simply because they impose fewer restrictions. We leave this 
issue to be investigated in future work. 
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denote this by DFlo(T). The test statistic is then 

DF10inr = ýnf DF1ö(T) " 

2.2.2 Tests Based on the Time-Reversed Series 

As in Leybourne (1995), we define zt = yT_t+l which is the time-reversed yt series. 

Then, under Hol, zt is still I(1) throughout and under H11°, zt is 1(0) changing 

to I(1) at time (1 - T*)T , measured in reversed time. Similarly, under H01, zt is 

I(1) changing to 1(0) at time (1 - T*)T . 
This suggests we have another pair of 

tests, based on the reversed series zt. 

To test Höl against Hi° we estimate the regression 

OZt = &(r)d1ot(1 - r) + ý(r)d10t(1 - r)zt-1 +ý r) (2.5) 

t=1,2, ..., 
T 

over all T and construct the corresponding t-ratio associated with 5(-r). Denote 

this by DFIO(T). 8 The test statistic is then 

DFi0 _ inf DFio(T)" 
rEA 

Similarly, to test Hol against H°lestimate the regression 

AZt = a(T)do1t(1 - -r)+ 0(T)dOlt(l - T)zt-1 + r%t(T) (2.6) 

t=1,2, ..., T 

over all r and construct the corresponding t-ratio associated with ¢(T). We 

8Here and throughout we use the convention that subscripts on DF relate to the alternative 
hypothesis for the original series. Thus, for example, DFI0 is designed to test for a change from 
I(1) to 1(0) in yt. 
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denote this by DF 1(r). The test statistic is then 

DFöinf =inf DFöi(T). 
TEA 

Our main contribution is to combine the reversed and forward tests, as we will 

do in Section 2.4, in order to obtain consistent tests for a break in persistence, 

when neither of the two possible alternatives is excluded. 

It will also be shown in the sequel that under the alternatives H01 and H11° 

the value of r at the infimum provides a consistent estimator of the true break 

fraction r*, and therefore the above test statistics constitute a natural choice. 

2.3 Asymptotic Results 

In what follows we present the asymptotic results related to the above test sta- 

tistics, that is when the direction of a change in persistence is prespecified, as 

derived in Leybourne et al. (2000). These are essential, as they provide the basis 

for the development of tests against the more general and practical alternative of 

a change in persistence where the direction of the change is not specified a priori. 

This section is in two parts. The first part presents results related to the limit- 

ing distributions of the test statistics under the null. In the second part results 

are presented associated with the behaviour of the tests under the alternative 

hypotheses. It turns out that a particular test is consistent for the alternative 

hypothesis for which it was designed, but not for a change in persistence in the 

other direction. The theory of weak convergence and the functional central limit 

theorem are employed in obtaining such results, where = denotes weak conver- 

gence on C[0,1], the set of all real continuous functions on [0,1]. Mathematical 

proofs are provided in Appendix 2. A. 
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2.3.1 Limiting Distributions of the Test Statistics Under 

Hol' 

Theorem 2.3.1 Under Höl and Assumption 2.1, 

DFöi(T) 
N, (-r) 

Di (T) 1/2 

DFio(T) 
N2(T) 

D2 (T)1/2 

DFiö(T) 
N3(T) 

D3 (T)1/2 

DFöi(T) 
N4(T) 

D4(T)1/2 

where 

Nl(r) -2 {W(T)2 
-T} -1 W(T) 

J 
W(r)dr 

Ir 0 
Di(T) = W(r)2dr -1 T{J 

T 
W(r)dr}2 J0 

N2(T) - 
W(T)2-W21)2-(1-T) 

-11 
T{W(T)-W(1)}J 

W(r)dr 

W (r)2dr 
-11 

{J 
1 

W(r)dr}2 D2 (T) -J1T 

N3(T) _ 
W(1)2-W(2)2-(1-T) 

-1 
1T{W(1)-W(T)} I W(r)dr 

D3(T) 
f1 

W(r)2dr - {1 W(r)dr}2 + 
T{ / W(r)dr}2 

T00 

-1 
TT{ W(r)dr -T 

ýT 
W(r)dr}2 I-W( 

)2_ 

fN 4(r) 
2T -W(T) 

W(r)dr 

D4 (T) 
ý 

W(r)2dr -{ 
f1 

W(r)dr}2 +11 
T{ 

W (r)dr}2 
Jo Jo JT 

TT 
{1 W(r)dr -11T W(r)dr}2 

o JT 

0 
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and 

DFFI'nf ini 
DN 

(ý 
112 

DFlinf inf 
N2(7 

T D2 (T) ll2 

DF o, nf = inf 
N3 (7) 

T D3 (T) 1/2 

DFpi of inf 
N4 (T) 

T D4(T)1/2 

[r21 

W (r) is a standard Brownian motion and T-"2 E et = QW (T), uniformly for 
t=2 

TE [0,1] 
. 

Although it is perhaps not obvious from the above results, it can be easily 

shown that the limiting marginal null distributions of DFoi(r) and DFIO(1- T) 

are identical. This is because DFIO(1- r) is by definition the DFoi(T) test with 

yt replaced by zt. Similarly, the limiting marginal null distributions of DFIO(7) 

and DF01(1 - T) are also identical. 

To see this, from the results in Theorem 2.3.1 under Ho" we have that 

DFTio (1 
N2(1-7) 

- T) D2(1 12 - T)/ 

By defining a second Brownian motion process based on the last 1-T fraction 

of {et}, that is a-1T-1/2 ETT+1 et B(1- r) we have B(1- r) aW (1) -W (r) 

and B(1) d W(1). It follows that 

W(1- T) I B(1) - B(T) 
LT 

J W(r)dr = TB(1) - B(r)dr 
1-T 0 

ZTT 

JW (r)2dr d 7-B(1)2 +f B(r)2dr - 2B(1) J B(r)dr 
1-T 00 
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and on substituting and simplifying we find 

rT 
N2(1 -, r) a2 {B(T)2 - T} - 

TB(T) 

J B(r)dr, 
0 

D2(1 - T) dJ B(r)2dr -1 {J B(r)dr}2. (2.7) 
0To 

Hence, comparing expressions (2.7) with Nl (r) and Dl (T), one can verify 

that the marginal limiting null distributions of DFoi (r) and DFlo (1 - T) are the 

same. A similar approach establishes a parallel result for DFlo (-r) and DFol (1- 

T). It then immediately follows that the limiting marginal null distributions of 

DFÖ1'nf and DF10' must be identical, as are those of DFlo`nf and DF&1 . 

2.3.2 Behaviour of the Tests under H01 and H1° 

We now present the limiting results of the tests under H°i and H110. 

Theorem 2.3.2 Under H01 and Assumption 2.1, 

T_i/2DFoiinf -P-+ k(7-*, p) 

T-"2 DFo', > k(r*, 

DFr inf = Oß(1) 10 

where 

DF p'nf = Oß(1) 

T*1/2(P - 1) 

(1 _1P2)1/2 
<0 

and, asymptotically, DFi'nf, = DFp (T*) and DFoinf = DFol(T*). 

Hence, DF0 ̀ nf and DFoinf will both be consistent at the rate T1/2 under 
Hil, whereas DFlo'nf and DF1ýnf will not be consistent. Notice also that the 
function k(r-*, p) is monotonic decreasing in T*. Thus, in large samples at least, 

the power of the DFol`nf test should grow with increasing T*. This makes sense 
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because as T* increases, the 1(0) component constitutes a larger proportion of 

the series. Moreover, these results suggest that each of these first two tests will 

provide us with a consistent estimator of the true break fraction T*. For instance 

for DRf '°f 
, such an estimate is given by that value of T at which DFFI (r) attains 01 

its minimum. 

o It is not necessary to separately derive the behaviour of the tests under Hl 

These can be inferred directly from the above results as Hl ° is simply the mirror 

image of H01in terms of the reversed series zt, with the break at time 1- T*. 
Thus, we have the following corollary 

Corollary 2.3.1 Under H1° and Assumption 2.1. 

DF0 inf 
- OP(1) 

DFr inf =O1 

T-1/ZDFipnf ýº k(1- 7'ý ' P) 

T_1/2DF110 inf 4 k(1- T*, p) 

and, asymptotically, DFipnf = DFip(T*) and DFf 01' = DFlö(T*). 

Hence, DF IJ and DFlo'nf are consistent at the rate T1/2 under H11°, whereas 

DF0I'nf and DFo'i will not be consistent. 9 Again each of the latter two tests 

yields a consistent estimate of T-*. 

In short, it appears that each test statistic is consistent for the alternative 

against which it is designed, but not for the alternative of a break in persistence 

in the opposite direction. Moreover, the use of a test against the true alternative 
hypothesis directly leads to consistent estimation of the true break fraction. 

9Note the change from r to 1- T" in the limiting function k. 
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2.4 Pairwise Minimum Tests: Direction Not 

Specified 

The four tests analysed so far are strictly useful only if their appropriate particular 

alternative is considered. For instance, DF01'nf has power against H°1 in that it 

diverges to -oo. Hence, non-rejection can be taken as evidence in favour of Hol, 

but only if H11° is not a possibility. Once we allow the possibility that either H101 

or H1 ° may hold, as we often need to in practice, we cannot on the basis of a 

non-rejection by DFoi'nf, reliably distinguish between H11° and H011, as the test 

is Op(i) in either case. Similarly, whilst DFiönf has power against Hi°, a non- 

rejection by this test does not distinguish between Ho" and HÖ1. Furthermore, 

while DF011nf and DFlonf are Oß(1) respectively under Hi° and H°1, their actual 

limit distributions will still be highly dependent on T* and p. For instance, if Hol 

is true and r* is large and p is small, yt and zt are then series whose behaviour, 

broadly speaking, has more in common with an 1(0) process than an I(1) process. 

Thus, even though DFionf is not divergent, intuition leads us to expect that it 

will take more negative values than it would under H011; that is, it will be over- 

sized when its null critical values are consulted. We may, therefore, quite possibly 

face a situation where Hl" is true yet both DFoi'nf and DF1'0` reject the null 

hypothesis. This, of course, would be an uninformative outcome. 

Thus, once more than a single alternative hypothesis is permitted we cannot 

conduct reliable inference based on a sequence of these individual tests. A solution 

is then to consider the tests jointly. Suppose we consider the behaviour of DF011 

jointly with that of DFiönf. As we know, DFÖ1'nf (DFiönf) has power against H°i 

(Hi°), diverging to -oo, but is Oß(1) under H011 or H, ° (HÖ1). This suggests a 
"two-sided" test of H011 against the union of HÖ1 and H1 ° can be based on the 

pairwise minimum of DF01'nf and DFipnf; that is 

min(DFi"f, DFiönf). 
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These same hypotheses can also be tested using 

1Tlln(DF , 
foinf, DF'1of) 10 

p 

The following theorem establishes limiting null distributions for the min(.,. ) sta- 

tistics. 

Theorem 2.4.1 Under Hol and Assumption 2.1, 

min(DF01inf' DFlonf) = min{inf D 
(() 

12, inf 152 
()12 

} 

min(DF inf, DFpinfý min{inf 
N3(T 

inf 
N/4(T )T 

D3(T)1,2, T D4\T)1/2 

Our interest, however, centers on their behaviour under the alternatives. 

This is inferred using the results reported in the previous section. Consider the 

inf ) test. Under H0', DFOllnf diverges to -oo at the rate T1/2 min(DFoi'nf, DFr 

whilst DFiönf is O, (1). Hence, it must also be true that min(DF01inf, DF, lonf) 

diverges to -oo at the rate TO. Asymptotically, then, 

min(DF linfý DF1in)=LE linP 
- DFo (T*). 

Under Hl", DF01inf is Op(1) and DFiönf diverges to -oo at the rate T1/2. Hence, 

min(DFi'nf) DFiönf) diverges to -oo at the rate T"2 and, asymptotically, 

min(DFö info DFipnf) = DFipnf = DFio(T*). 

The min(DFc i, DFionf) test is therefore consistent at the rate T1/2 in rejecting 

Ho 1 against H01 or H110. Furthermore, with the same rate of consistency we will 

be able to select between Hil and H11° as, if at some chosen significance level, 

'0These pairings are selected, rather than say min(DF 1'°f, DFI inf), in order to combine 
statistics whose constituent elements have identical marginal limiting null distributions. It 
is then sensible to work with min(.,. ), as equal values for the constituent statistics should 
constitute approximately equal evidence in favour of the corresponding alternative hypothesis. 
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min(DF 1' 
, 
DFipnf) rejects Hpl and min(DFolinf' DF, ronf) = DFoiinf clearly the 

appropriate conditional decision rule is to reject Höl in favour of H°l. Conversely, 

if min(DFf inf DF,, rinfý rejects Hll and min(DFf inf Dý,, rioinf) _ DF+rinf we reject of 7 io o of io 
Ho 1 in favour of H1 °. For the reasons outlined in the previous section, this proce- 
dure also directly provides us with a consistent estimate of T*. These same com- 

ments apply equally to the second pairwise minimum test min(DF p'nf, DFpinf 

2.5 Monte Carlo Simulations 

To supplement the above theoretical results on the properties of the test statistics 

of interest, Monte Carlo simulations are undertaken where we explore the behav- 

iour of the asymptotically valid tests in moderate sized samples. We begin by 

approximating and tabulating the finite sample critical values of the tests. Since 

the finite sample results assume Gaussian innovations, we report next simulation 

evidence on the effect of non-normality on the size of the tests. Subsequently, 

their robustness is investigated in the presence of serial correlation in the error 

term, in which case augmented variants of the tests are employed. Finally, power 

estimates of the tests under consideration are derived and some results on the 

quality of the estimated breakpoint are reported. 

2.5.1 Finite Sample Critical Values 

The preceding analysis resulted in the following two sets of test statistics, both of 

which account for a known a priori as well as an unknown direction of a possible 

change in persistence under the alternative hypothesis 

DFO1f inf D ;" f10 inf 

DFipnf DFpinf (2.8) 

min/DFf 
inf DFrinf) min(DFf 

inf DF$11 f) 
1 O1 10 10 , O1 

We use Monte Carlo simulation to calculate the finite sample critical values of 

the test statistics under the null of a unit root, that is, under model (2.1). Here, 

and throughout, the et are generated as independent standard normal variates. 

The variance u. is fixed at unity without loss of generality, since ¢ is independent 
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of u.. To obtain samples which closely resemble stationarity under the alternative 

we generate T+ 200 observations and discard the first 200 setting y_201 = 0. 

Tables 2.1(a) and 2.1(b) provide the 10%, 5% and 1% critical values of the test 

statistics for various sample sizes T. Our simulations of the null are based on 

10,000 replications with the search parameter r traversing the interval [0.2,0.8] in 

steps of 0.01. To reduce variability between sample size comparisons we utilised 

the same set of generated data for simulations with the same T. 

As the sample size increases, the critical values of all tests give the appearance 

of converging to limits. In fact, the distributions do not change very much as T 

increases past the value of 150. The min(.,. ) tests maintain lower critical values 

than their individual counterparts, while overall the first set of statistics has 

critical values closer to zero compared to the second set. This means that not as 
large values of the test statistics are required for rejection of the unit root null 
hypothesis in the former case, as they are in the latter. 

2.5.2 Robustness of Tests to Serial Correlation 

Suppose that, instead of (2.1), yt is generated by the ARIMA(k, 1,0) process 

k 

Ayt = OiDyt-i + et 
i-i 

and that under H01 the alternative generating model is 

k 

AYt =a -I- pyt-1+ OiAyt-i -I- Et, t< T*T, p<1, 
i=1 

k 

Dyt = OiDyt-i -I- ct, t> T-*T. 
i=1 

Then, as in Dickey and Fuller (1979) (2.3) is augmented to include k lagged 

difference terms 

Dyt = ä(7-)d10t(7-) +Q(T)diot(T)yt-1 + 

k 
ýY'i(T)Dye-'i + &t(T)" 
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The other three regressions, (2.4), (2.6) and (2.5) are similarly augmented. When 

k is a fixed function of the sample size such that k --> oo and k3/T -- 0 as 
T --> oo, we appeal to results of Said and Dickey (1984) to argue that the limiting 

distributions of the test statistics in this case remain unchanged. " The limiting 

null distributions of the tests based on these augmented regressions are then the 

same as those reported in Section 2.3. The behaviour of the tests under the 

alternative hypotheses with this sort of generalisation remains also unchanged. 
This approach, however, is valid only asymptotically. 

To ensure that the null critical values are robust to more general I(1) null 
DGPs when augmented variants of the tests are employed in order to eliminate 

possible residual autocorrelation, we examine the empirical size of the tests under 

such circumstances. Table 2.2 shows the results for the case in which the null 

is generated as an ARIMA(1,1,0) model. The percentage of rejections under 

the null hypothesis of the lower tail tests at the nominal 5% level are reported 

for TE {100,200,300} and for values of the autoregressive parameter pE{ 

0.0,0.3, -0.3, -0.8}. Results indicate that the sizes are approximately correct 

for all tests with small size distortions in the downward direction occurring for 

the extreme value of p= -0.8, in which case yt closely resembles a stationary 

process. These are slightly more apparent for the second set of tests. However, 

the degree of under-rejection observed is only modest with the proportion of 

rejections increasing towards the 5% level as T increases. Such a phenomenon 

does not seem to occur for large and positive values of p, in which case the series 

is nearly an 1(2) process. Overall, the rejection probabilities under the null are 

very close to nominal size for all tests, indicating that the asymptotic results work 

well for the samples sizes reported. 

2.5.3 The Case of Non-Normal Errors 

The asymptotic properties of the tests in (2.8) do not depend on the normality 

of the disturbances, but their finite sample distributions do. Thus, while all tests 

are asymptotically valid under quite general conditions, Monte Carlo experiments 

11Maddala and Kim (1998) show that the reason behind this result is that in a regression of 
an I(1) variable on I(1) and 1(0) variables, the asymptotic distribution of the coefficient of the 
I(1) and 1(0) variables are independent. 
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with non-normal errors on Ho are needed to shed some light on the relevance of 

asymptotic theory to finite sample behaviour. To explore what happens when 

the critical values are no longer obtained under normal errors, the disturbance 

term in (2.1) is derived from drawings from the Student-t distribution with five 

degrees of freedom, t(5), and the chi-square distribution with three degrees of 

freedom, X2 (3). The t(5) distribution is symmetric but has fatter tails than the 

normal. The X2(3) distribution is fairly skewed. 

The robustness of the estimated significance levels to the choice of the error 

distribution is illustrated in Tables 2.3(a) - 2.3(d). Replacing the normal distribu- 

tion by either the t(5) or the X2 (3) distributions does not seem to have much of 

an effect on the size of the first set of tests. Using the critical values of Tables 

2.1(a) and 2.1(b), empirical sizes for the first set of tests are very close to the 

conventional 10%, 5% and 1% significance levels. For the second set of tests 

the rejection probabilities under the null rise above nominal size, with correct 

size restoring rather slowly as T increases. This phenomenon is somewhat more 

apparent in the case of the t distribution. 

Thus, robustness of the tests to the error distribution, which is known to hold 

asymptotically, extends reasonably well to moderate sample sizes for the first set 

of statistics. However, caution needs to be exercised when employing the second 

set of tests with data of small sample size that exhibit departures from normality. 

2.5.4 Power Estimates and Comparisons 

Tests should not, of course, be judged only by the degree of agreement between 

small sample significance levels and nominal values. While it is important to 

avoid tests with badly behaved significance levels, the ability of tests to detect 

inadequate specifications merits consideration. For this reason, power estimates 

are obtained and compared across the tests. 

We examine finite sample power performance of the two sets of tests in (2.8) 

under Hl"when the data are generated according to (2.2). As all the tests are 

invariant to a under H°l, we set a=0. Power estimates are derived based on 
3000 replications, using the critical values in Tables 2.1(a) and 2.1(b). Cases in 

which all tests have power estimates close to unity are not very useful for making 

comparisons, and we therefore report results for samples of T= 100,200 and 
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300 to illustrate how the tests compare in less extreme situations. In view of 

producing more precise results we conduct our power simulations for a range of 

parameter values for the true breakpoint r* and the autoregressive parameter 

p. Tables 2.4(a)-2.4(c) give the proportion of rejections under the alternative 

hypothesis at the nominal 0.05 level for p= {0.7,0.8,0.9} and r* = {0.3,0.5,0.7}. 

The bracketed figure beneath the rejection frequency of min(DFoiinf, DFiönf) is 

the frequency with which min(DF01inf, DF. o nf) = DFo 'nf 
, conditional on the 

fact that min(DF01'°f, DFlpnf) rejects the null hypothesis and expressed as a 

proportion of the total number of replications. That is, it measures the frequency 

with which the correct decision H01 is made. The figure under the rejection 

frequency of min(DF p'nf, DFoinf) is analogously defined. A possible alternative 

test statistic to the min(.,. ) for testing that either H0lor Hilo holds, i. e when 

the direction of any possible change is not specified a priori, is that based on the 

absolute difference of the individual forward and reverse tests. We investigate the 

finite sample power behaviour of this alternative statistic, which enters the tables 

denoted I DFF'nf - DFipnf I 
and 

I DF p'nf 
- DFöi of respectively. Moreover, we 

assess the effect of a change in persistence on the power of the conventional DF 

test, the results of which are presented in the first row of entry of the power 

tables. 

We will initially restrict discussion to the results that correspond to the first 

set of statistics. From the upper section of Tables 2.4(a)-2.4(c) consistency of 

DFol'nf and min(DF01inf, DFipnf) in T, for any fixed values of T* and p, is clearly 

evident. As we would expect, for fixed T, the powers of these tests also increase 

with movements away from Hol in terms of increasing 7-*and/or decreasing p. 

Not surprisingly, the power of all the tests increases with T*, as the proportion 

of the series that is 1(0) is growing. 

As for DFiönf its inconsistency in T shows up reasonably well except in the 

case where -r* = 0.7, when convergence to a limiting distribution is rather slow. Its 

rejection rates for a fixed T, depend on T*and p. It is slightly under-sized for small 

T* and/or large p, but becomes over-sized with increasing r* and/or decreasing 

p, as we would expect given the discussion in the previous section. Thus, just as 

non-rejection by DF1'O f does not necessarily signal Hä1, a rejection need not be 

associated with Hi °. This behaviour makes inference based on the individual tests 
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DF01`nf and DFionf problematic once either alternative hypothesis is considered 

possible, as is generally the case in practice. For example, with T= 300, T* = 0.7 

and p=0.7, there is a 37% chance that both DFol'nf and DF1' will reject H0" in 

favour of their mutually inconsistent alternatives. The pairwise mimimum test is 

constructed to avoid this sort of conflict. The price is, however, a loss of power. 

It is clear that min(DF 1`nf, DF11 inf ) has lower power everywhere compared to 

DF01' f, but this is as we would expect since the latter statistic tests only for the 

single (correct) alternative hypothesis H0' instead of both alternatives and has 

null critical values that are closer to zero than the pairwise test. However, the 

conditional decision rules for selecting between H°iand H11° based on rejections by 

the pairwise test appear to work well, in that, compared to H01, H11° is generally 

chosen very infrequently. 

Turning to the performance of theJDFo' in 
- DFipnf I test, results show that 

the power estimates for such a test statistic are overall lower than those displayed 

by the min(DFoi'nf, DF1101°f) test. When the break occurs early on in the sample, 

notably for T* = 0.3, the power differences between the two tests are fairly mod- 

erate. However, for larger break fraction values these differences increase and 

become quite striking by the time Tr* reaches 0.7. In particular, for T= 100, 

T* = 0.7 and p=0.7 the power of the min(DF 1'nf, DFJ ) test is 0.679 whereas 

the (DF0'nf 
- DF10 1 test has power equal to 0.252. The Dickey-Fuller statistic, 

on the other hand, demonstrates the lowest power of all consistent tests under 

the impact of a change in persistence, although it does seem to perform better 

inf test. than the inconsistent DFr 

The second set of statistics tend to exhibit on the whole higher rejection 

frequencies compared to the first set as illustrated in the lower part of Tables 

2.4(a)-2.4(c), while qualitatively results are similar to those described above. The 

DFi 'nf - DFöi of test has power slightly closer to the min(DF o'nf 
, DFoi nf) test 

when the breakpoint occurs late in the sample, though its power performance 

continues to remain inferior. 

Results in Section 2.4 showed that the two min(.,. ) tests have different lim- 

iting null distributions, but the same large sample properties under H01. Then, 

the choice of which test to use in practice is determined by their relative fi- 

nite sample power characteristics. Tables 2.4(a)-2.4(c) imply that, on average, 
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min(DF p`' 
, DF 1) is the more powerful of the two tests, though never sub- 

stantially so. This is slightly counterintuitive as min(DF 1'nf, DF70 f) has null 

critical values which are closer to zero, yet the tests behave similarly under Hol, 

at least in large samples. Perhaps this just serves to illustrate that large sample 

behaviour can be a misleading indicator of finite sample behaviour. " 

Finally, the mean and standard deviation of the associated estimates of T* 

implicit from the various tests are reported in Tables 2.5(a)-2.5(f). The estimates 

, 
(DFf inf DFrinf) and of T* based on min(DFoff inf DFrinf) and DFf inf and min lo of lo of 

DFrl of appear consistent, although this is most easily seen for the case where 

T* = 0.7, as for smaller T* convergence is rather slow. As we may have anticipated, 

the estimates from the one-sided tests are more accurate than those from the two- 

sided tests. Estimates of T* based on DFlonf and DFlo'nf are clearly inconsistent, 

apart from when the breakpoint occurs at the midpoint in which case results 

for the latter test could be somewhat misleading. Specifically, for r* = 0.5 the 

DFlo'nf test displays estimates of T* closer to the true value than the DFöi of test. 

2.6 Extensions 

A known intercept of zero under the null as considered throughout this study 

introduces an important element of specificity, which affects the finite sample 

distributions. Since economic time series may contain deterministics such as linear 

trends, it is required that extensions are made to take them into account. We 

briefly consider the case where the null generating model (2.1) incorporates a 

non-zero drift, and the 1(0) part of the alternative contains a linear trend. 

As currently defined, all our test statistics are invariant under all the hypothe- 

ses considered to transformations of the form yt -º cl+yt for an arbitrary constant 

cl. To accomplish invariance to the transformation of the form yt --' c1 + c2t + Yt 

we augment the regression (2.3) to include a constant and time trend dummy 

12Note that it is not necessary to simulate under H, '°, as a process that is generated under 
this alternative is simply a time reversal of a series generated under Hi 1, with (1- rr`) in place 
of T-'. 
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variable 

' Yt = ä1(7) +a2(T)d10t(T) +ý(T)diot(T)t'i- ý(T)djot(T)2�t-1 +&t(T). 

The other three regressions (2.4), (2.6) and (2.5) are similarly augmented. The 

limiting null distributions of the tests based on the augmented regressions are 

different to those reported earlier when only a constant is included in the re- 

gression. Simulated critical values, using the same data-generating process as for 

the results in Tables 2.1(a) and 2.1(b), are provided in Tables 2.1(c) and 2.1(d). 

The limiting behaviour of the tests under the alternative hypotheses in this case 

remains unchanged. 

2.7 Empirical Application 

We apply our tests to inflation rates in the G-7 countries. The data source 

utilised is the seasonally adjusted quarterly Consumer Price Index from OECD 

Main Economic Indicators, covering the period from 1960: I-1999: IV, a total of 

160 observations. The inflation rate is calculated by differencing the logarithm 

of the price indices. Plots of the inflation rates are given in Figure 2.1. 

As a preliminary step, augmented Dickey-Fuller tests were carried out. 13 The 

number of lagged changes was selected through the general-to-specific data de- 

pendent method analysed in Ng and Perron (1995) where the last included lag 

is checked for significance using a two-tailed t-test at the 10% level. This data 

dependent method requires a maximal autoregressive lag length, k max. Results 

are reported in the first column of Table 2.6, for k max = 12. The Dickey-Fuller 

tests fail to reject the null hypothesis that each of the series is I(1) throughout, 

at the conventional significance levels. 14 

To test the possibility of a switch from 1(0) to I(1) or vice versa, we apply 

the test indicated as most powerful in the simulations of the previous section, 

that is min(DF o'nf 
7 
DFöinf). In the regressions underlying the individual tests, 

13A time trend is not included in the Dickey-Fuller equations as this would not be consistent 
with the behaviour of post-war inflation. 

14 We performed a robustness check by allowing a greater value for kmax. The results were 
very similar. 
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the number of lagged differences used were the same as those identified in the 

preceding augmented Dickey-Fuller regressions, while the search procedure for the 

potential breakpoint was carried out over the proportion [0.2,0.8] of the sample 

size. The empirical test results are shown in Table 2.7. Using the critical values 

of Table 2.1(b), it can be seen from column five that the min(DF p'nf , DF 1 nf) 

test rejects the null hypothesis of I(1) throughout at the 1% critical level for 

two countries, namely Canada and Rance, and is very close to rejecting at the 

same level for a third country - Japan. There is also a rejection at the 10% level 

for Italy. In all four of these cases we find that min(DF o1' , DFoinf) = DE linf, 

indicating the likelihood of a change from 1(0) to I(1). 

In addition, we may wish to examine the alternative hypotheses separately. 

These results are reported in the first four columns of Table 2.7. If the alternative 

hypothesis H°iis considered, then DFöinf obviously rejects the null for these same 
inf 

countries, though not for any additional ones. If H110 alone is considered, DF 0 

fails to reject the null for any country, which is in agreement with the outcome 

from the min(DF o'nf, DFoinf) test. 

The consistency of these results indicates not only that, contrary to the infor- 

mation provided by the usual Dickey-Fuller tests, there is strong evidence against 

the hypothesis of I(1) behaviour throughout, but that there is considerable evi- 

dence of a switch from 1(0) to 1(1) behaviour for at least the majority of the G-7 

country inflation rates. The discontinuity manifested as a change in persistence 

effect occurs around 1973 for all series. This may well be associated with the oil 

price shock of that year. 

The final two columns of Table 2.6 illustrate the results of augmented Dickey- 

Fuller tests applied to the two subsamples of these four series, identified according 

to the estimated break dates of Table 2.7. In all cases, very strong evidence of 

1(0) behaviour is found for the pre-break series, but much less strong evidence is 

present in the post-break part. This outcome supports the evidence of the above 

test results. 
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2.8 Conclusions 

This chapter contributes to the literature on unit root testing under the alterna- 
tive of structural change. Previous studies in this area have focused mainly on a 

shift in the trend function. The possibility, however, of a switch in persistence of 

particular time series has been argued over the years by a number of economists, 
both on institutional and empirical grounds. Taking difference-stationarity as 

the null hypothesis, we have developed tests designed to have power against al- 
ternatives involving such a switch. Our alternative hypothesis is therefore of a 

shift either from 1(0) to I(1) or from I(1) to 1(0), and tests are developed for 

the two cases, with the location of any possible breakpoint unspecified. If, in 

addition, the analyst does not wish to specify the direction of change, we showed 
how these two tests can be combined to test against the two-sided alternative. In 

either case, a consistent estimator of any break fraction resulted as a by-product 

of the tests. Sequential testing procedures were considered. 
Of course, it is quite possible that a series is 1(0) throughout. Although 

our tests will obviously have some power against this alternative, various power- 

enhancing modifications of the usual Dickey-Fuller test can be expected to be 

more powerful. Our aim here is not to replace such tests, but to supplement 

them with tests against a particular alternative that economists have thought to 

be plausible. 

Simulation evidence on the behaviour of the tests in moderate sized samples 

was provided. The tests were found to control well for size in most cases, except 

in the case of non-normality of the disturbances where moderate size distor- 

tions in the upward direction were encountered for the min(DF p'nf, DFoinf) test. 

From the power comparisons conducted the min(DF p'nf, DFoinf) test emerged 

as a reliable and useful procedure as did the min(DF01'nf, DFlonf) test. The 

min(DF p'nf, DFO ) test, however, proved to be slightly more powerful. An em- 

pirical application of the tests to consumer price inflation in the G-7 countries, 

uncovered quite strong and consistent evidence of a change from 1(0) to I(1) 

behaviour occurring in 1973 for the majority of these countries. 
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Appendix 2. A Mathematical Proofs 

Proof of Theorem 2.3.1. First we consider the t-ratio associated with ý(T) 

in regression (2.3) 

DFöl(T) _ 
22T (yt-1 - Yi)OYt (2.9) 

a 
{E2T (yt-i - 9i)2ý 

, rT where yl =- (TT)-1 ý1 yt and v2 r62-I-(1-r)52. It is straightforward to show 

that 

DFoi(T) = ýtDF(T). 

It has been shown in BLS that 

tDF (T) 
N1(T) 

D1 (r)1/2 

U2 QZ 

while it can be easily derived that 

22 

Therefore DF0I (T) and tDF (T) are asymptotically equivalent and hence DFFI (r) = 

D 
j(r 

2, which implies that infDFoi(r) = infD ýr() by the continuous mapping 

theorem. The same argument can be used to establish the other claims in the 

Theorem.   

Proof of Theorem 2.3.2. Let us consider the behaviour of DF01`nf under 

H01. The t-ratio associated with 0(T) in regression (2.3) is given by (2.9) and o, - 

can be written as 

T_ -rT rT 

ý2 =T Lyi + a(T)2T + O(T)2T'-1 I yi 1- 2ä(r)T Dyt 
222 

_ 
TT rT 

+2ä(T)O(T)T-1 E 
yt-i - 20(T)T-1 E 

yt-1Dyt. (2.10) 

22 

Initially, the case where 'i- < T* is examined. Here, the components in DFoi (T) 
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apart from ö involve only the yt that are stationary AR(1). So, the behaviour of 
DF01(r) is very much like that of the usual Dickey-Fuller test under the stationary 

alternative. Using the fact that 

P-1, E(Dyt) = 2v21- 
p2P ' a(r) 4 a, E(yt) =1 

or2Pa +1 a2P 
2 

z 
E(Dyt) = 0, E(yt) =1ap, E(ye-iLye) = 

0,1(P _ 
p2 

) 

it follows that 

T 

T-1EDyt - Q2(1+T* 1 -}-P), 2p 
TT 

a (T) 0(T )T -1 E 
1�t-1 4 -a 

2T 
, 

2 

1-T 
0(T)2T(rT)-1EYt 

1 
p'Q2T1-p+a2T 

2p 
rT 

P 1- 
O(T)T-1 > 

yt-10yt UZT 
1+p 

2 

Gathering together these results we have that 

P 

Then, 

T_1/2DFo (T) z 1/2 E(yt-iDyt) 
a{1 + (T' 

- T)! }1/2Var(yt)1/2 

= 
71/2(p - 1) (2.11) 

J+p 
}1 2(1- 

p2)1/2 
{1 + (r* 

- T) 

Since p<1 it follows that for r< T-* the probability limit of T-1/2DF01(7-) is 

negative. 
Then, by the Continuous Mapping Theorem (CMT) we have 

inf T-112DFoi (T) = inf T"2(P 1) 
rEA -rEA{1 + (r* 

- T) }1/2(1 
- p2)1/2 

Now because 
T1/2(P - 1) 

{1 + ýr* 
- T)f}1/2 1- p2)1/2 
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is monotonically decreasing on the interval (0, T*], the minimum occurs at T= r* 

Thus, 

T_1/2DFo inf Z k(. T*, p) 
*1/2(P - 1) 
ý1 _ p2)1/2 

and so DF01'nf directly provides us with a consistent estimator of the true break 

fraction -r*, where such an estimate is given by that value of T at which DF0I (T) 

attains its minimum. '5 Note that infT-1/ZDFoi(ýr) = T-1/2DFo'nf 

We consider now the case where r> r*. In this case, the components in 

DFoi(r) involve the lit that are stationary AR(1) and then become the random 

walk. The random walk components dominate and so the behaviour DRf 01 (T) is 

similar to that of the usual Dickey-Fuller test under the random walk null. Let 

us consider the numerator term in (2.9) scaled by T-1 

rT 
1/ T (yt-1 

-Vi)°yt 
2 

rT rT rT 
T-1 E 

yt-let - T-17+-3/2 > yt-1T-1/2 E et + OO(T-1/2) 
r*T+1 r-"T+1 r"T+1 

21 
-T*)}-ý2T 

T 
1{W(T)-W(7-*)} 

j 
W(r)dr. 

The denominator term is scaled by T-1/2 

TT TT TT 
T-2 E(yt-1 

- vl)2 = T-2 E 
yt 1- 7-1(T-3/2 

1: 
yt-1)2 + op (T- 1/2) 

2 T"T+1 T"T+l 

U2 J 
W(r)2 dr - 0,27. -1 {J W(r)dr}2. 

,r 

15A formal proof of consistency for the break fraction estimator T= arg inf DFoi(r), that is, 
rEA 

T -T" = op(1) from which it follows that T Pº r*, is based on a similar argument as in Lemma 3 

of Amemiya (1973). The author proves that when QT(w, 9T(w)) 
= supQT(w, 0) VwE f2, where 

0EA 
QT(W, 0) is a measurable function on a measurable space fl and for each wE1a continuous 
function for 0 in a compact set e, if QT(W, 0) converges to Q(0) uniformaly for all 0 in e, and 
if Q(0) has a unique maximum at Oo E O, then BT converges to 0 almost everywhere. 
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Hence, 

T¢(T) = 
{W(7-)2 - W(7-*)2 - (T 

- r*)} - T-1{W(T) - W(rr*)} f,. W(r)dr 
W(r)2dr - -r 1{ fT W(r)dr}2 

so that ¢(r) = Op(T-1). Although the details are omitted, a similar analysis 

applied to a(r) also shows that ä(T) = Or(T-1). Using these results, it then 

follows that in (2.14) 

T_ 
v2 = T-1 Ayt + Op(T-i) ý Q2(1 + T' 

p 
1+ P 2 

which delivers 

- fT I 
DFFl(T) (1 + T` 

i+ ý)-1ý2[J W (r)2dr 
- T-1{W (r)dr}z]-11a 

x [2 {W(T)2 - W(T*)2 - (T - T*)} - T-1{W(T) - W(T*)} 
ý. 

W(r)dr]. 

Hence, DF01(7-) = Op(i) for any TE (0,1). Thus, DF 1'nf(T) = OP(1) also. On 

adopting the same standardisation as in (2.11) T-112DF01(7-) - 0. 

Next, the result DFr0(7-) = Op(1) under H01 is derived. Recalling the defi- 

nition of zt = yT+l-t and further defining rat - -E'T+2-t, it can be easily shown 

that there exist constants a*, p* with Ip* I<1 and a zero mean whit noise rat such 

that 

zt = zt-i + Ilt, 

Zt = YT"T, 

t< (1- T-*)T 

t=(1-T*)T 

t> (1-T*)T. zt = a*+p*zt_i+fit, 
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Consider an arbitrary r- E (0,1) for which the t-ratio is given by 

DFio(T) _ 

E2T (Zt-1 
- zl)ýzt (2.12) 

{E2T (zt-1 
- z1)21 

where zl =- (TT)-1 ET Zt, Q2 - TUZ + (1 
- T)Q2, v2 = (TT) 

zi 
ý]t and 

Q2 . ((1 - 7-)T)-1 Et 
TT+1 

uzt . It is straightforward to show that &2 = 0ß(1). 

Firstly, the case where T< (1 - T*) is considered. In this case, DFro(T) has 

the standard Dickey-Faller limiting distribution and hence is Oß(1). In the other 

case where r> (1 - rr*), the numerator scaled by T-1, T-1 E2T (zt_1 - zl)Ozt, 

is written as follows 

(1--r')T (1-, r")T rT (1-rr")T 

T-1 E 
zt-177t - 

7* 
{T-3/2 : 

zt +T-3/2 > 
zt}{T-1/2 alt 

22 (1-r")T 2 

(1-r')T TT TT 

+T-1/2 E L. zt} + a*T-1 E zt-1 + (p* - 1)T-1 E zt 1 
2 (1--r' )T (1-r' )T 

-rT 

+T-1 ze-1711 

=O PM + {Op(1) + op(1)}Op(1) + OP(1) + Oß(1) + Op(1) 

=O (l). 

The same argument can be applied to show that T-2 {; T(z_i 
- zl)2} = Oß(1) 

which implies that DFlo(T) = Oß(1) when T> (1-T*). Hence, we have DFio(T) _ 
Op(1) for any TE (0,1). Thus, rýinf (T) = Op(1) also. 

Very similar arguments to these establish the other claims in Theorem 2.3.2. 

  

Proof of Theorem 2.3.2. From the Factional Central Limit Theo- 

rem, statistics such as DFo (r) and DFlo(T) jointly converge to NI 
2 and 

D 
(T)1 2 uniformly in r. This joint convergence result together with the fact that 

min(.,. ) is continuous in both arguments implies that min(DF 1'nf, DFionf) = 

min{inf D 1r)l 2, inf D2 
T1/21 by the Continuous Mapping Theorem. A similar re- 

sult holds for min(DF o'°f 
, 
DFöi nf)   
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Appendix 2. B Tables and Figures 

Table 2.1(a) 
Critical values of tests with constant dummies at the 10%, 5% and 1% critical levels 

T 0.10 
DFiinf 
0.05 0.01 0.10 

DFio of 
0.05 0.01 

min(DFoiinf, DFIO of ) 
0.10 0.05 0.01 

100 -3.170 -3.429 -3.993 -3.182 -3.442 -3.989 -3.426 -3.668 -4.207 
150 -3.177 -3.451 -3.995 -3.205 -3.490 -4.031 -3.459 -3.691 -4.190 
200 -3.224 -3.490 -4.034 -3.199 -3.481 -3.976 -3.472 -3.718 -4.189 
250 -3.215 -3.472 -3.959 -3.222 -3.493 -4.011 -3.466 -3.704 -4.194 
300 -3.213 -3.491 -4.031 -3.223 -3.477 -4.044 -3.468 -3.723 -4.217 
400 -3.210 -3.481 -3.998 -3.206 -3.469 -3.992 -3.462 -3.699 -4.187 
500 -3.220 -3.457 -3.980 -3.209 -3.488 -4.011 -3.457 -3.714 -4.198 

Table 2.1(b) 
Critical values of tests with constant dummies at the 10%, 5% and 1% critical levels 

T 0.10 

DF ö'°f 

0.05 0.01 0.10 

DFO of 
0.05 0.01 

min(DF p'nf, DFöi °f ) 

0.10 0.05 0.01 

100 -3.642 -3.922 -4.444 -3.633 -3.895 -4.434 -3.890 -4.135 -4.616 
150 -3.586 -3.850 -4.385 -3.586 -3.842 -4.368 -3.835 -4.075 -4.541 
200 -3.635 -3.897 -4.386 -3.618 -3.899 -4.402 -3.889 -4.125 -4.551 
250 -3.663 -3.935 -4.465 -3.649 -3.914 -4.367 -3.911 -4.141 -4.550 
300 -3.625 -3.897 -4.369 -3.608 -3.882 -4.373 -3.877 -4.116 -4.574 
400 -3.626 -3.880 -4.359 -3.613 -3.866 -4.376 -3.865 -4.085 -4.554 
500 -3.611 -3.861 -4.344 -3.633 -3.888 -4.336 -3.868 -4.089 -4.529 
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Table 2.1(c) 
Critical values of tests with trend dummies at the 1 

DFai 

T 0.10 0.05 0.01 

5% and 1% critical levels 
DFr inf 

min DFf int DFr inf 
io of io ) 

0.10 0.05 0.01 0.10 0.05 0.01 

100 -3.722 -3.984 -4.558 -3.743 -4.011 -4.586 -3.984 -4.257 -4.778 
150 -3.737 -4.017 -4.513 -3.749 -3.999 -4.551 -3.990 -4.243 -4.718 
200 -3.786 -4.040 -4.582 -3.758 -4.020 -4.541 -4.006 -4.264 -4.728 
250 -3.776 -4.043 -4.547 -3.797 -4.061 -4.574 -4.039 -4.275 -4.758 
300 -3.796 -4.058 -4.574 -3.779 -4.042 -4.549 -4.035 -4.282 -4.736 
400 -3.790 -4.047 -4.570 -3.788 -4.032 -4.523 -4.023 -4.287 -4.746 
500 -3.804 -4.071 -4.581 -3.793 -4.060 -4.518 -4.051 -4.276 -4.778 

Table 2.1(d) 
Critical values of tests with trend dummies at the 10%, 5% and 1% critical levels 

T 0.10 

DF oinf 

0.05 0.01 0.10 

DFpi of 

0.05 0.01 

I111II(DF 
ýinf 

, 
DFFlinf ) 

0.10 0.05 0.01/ 

100 -4.096 -4.357 -4.905 -4.067 -4.343 -4.865 -4.344 -4.585 -5.060 
150 -4.031 -4.275 -4.778 -4.023 -4.279 -4.777 -4.270 -4.519 -4.936 
200 -4.057 -4.301 -4.791 -4.092 -4.344 -4.827 -4.312 -4.548 -5.012 
250 -4.110 -4.367 -4.831 -4.093 -4.345 -4.820 -4.348 -4.569 -5.005 
300 -4.075 -4.318 -4.837 -4.085 -4.338 -4.830 -4.318 -4.544 -5.035 
400 -4.061 -4.301 -4.827 -4.078 -4.331 -4.846 -4.308 -4.553 -4.998 
500 -4.081 -4.318 -4.797 -4.087 -4.336 -4.830 -4.320 -4.539 -5.008 
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Table 2.2 
Empirical size of tests under Dyt = cAyt_1 +et 

Size 

0.0 0.3 0.8 -0.3 -0.8 

T= 100 

0.05 DFp 1nf 0.057 0.055 0.061 0.052 0.048 

DFIp°f 0.056 0.055 0.058 0.051 0.045 

min(DF " DFip °f) 0.058 0.058 0.061 054 0 049 0 
, . . 

DF p"'E 0.049 0.050 0.055 0.043 0.028 

DF0 i"E 0.052 0.056 0.061 0.049 0.027 
if r; min(DF 0' 

, DE °E) 0.051 0.056 0.058 0.046 0.029 

T= 200 

0.05 DFi'°E 0.052 0.051 0.045 0.044 0.034 

DFIO°E 0.052 0.048 0.049 0.049 0.039 

min(DF11' , 
DF1 °E) p 0.052 0.051 0.046 0.045 0.037 

DF p'nE 0.048 0.050 0.052 0.044 0.031 

DFoi °E 0.051 0.050 0.054 0.042 0.026 

min(DF ', DFpi °E) 0.050 0.052 0.055 0.041 0.028 

T= 300 

0.05 DFf inf 0.051 0.050 0.048 0.044 0.039 
DFip"f 0.054 0.049 0.050 0.049 0.044 

inf 
min(DF ,, DFip °f) 0.051 0.047 0.046 0.049 0.042 

DFip'"f 0.050 0.048 0.055 0.046 0.034 
DFpi"f 0.052 0.049 0.052 0.045 0.032 

inf 
min(DF (, DFoI'"f) 0.050 0.050 0.055 0.046 0.032 

Note: Nominal size 0.05. 
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Table 2.3(a) 

size of tests when Et-t(5 
DFoi DFrioinf min DFf inf DFr inf 

of io ) 

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 

100 0.104 0.061 0.018 0.107 0.061 0.019 0.121 0.072 0.022 

150 0.110 0.061 0.016 0.100 0.053 0.014 0.113 0.066 0.018 

200 0.098 0.051 0.013 0.107 0.055 0.016 0.104 0.061 0.018 
250 0.096 0.055 0.016 0.096 0.052 0.014 0.108 0.062 0.016 
300 0.103 0.055 0.014 0.097 0.051 0.012 0.105 0.060 0.014 

400 0.101 0.056 0.013 0.102 0.054 0.013 0.107 0.059 0.014 

500 0.097 0.055 0.014 0.104 0.055 0.013 0.110 0.057 0.015 

Table 2.3(b) 

Empirical size of tests when et t(5 

T 0.10 

DF 01nf 

0.05 0.01 0.10 

DF+Ölfnf 

0.05 0.01 
min(DF ýýnf, D 

0.10 0.05 

Fp'linf) 

0.01 

100 0.175 0.113 0.049 0.177 0.113 0.050 0.211 0.143 0.070 

150 0.152 0.094 0.033 0.155 0.098 0.036 0.180 0.114 0.048 

200 0.143 0.087 0.032 0.154 0.090 0.035 0.167 0.107 0.045 

250 0.141 0.084 0.028 0.146 0.088 0.037 0.166 0.105 0.047 

300 0.133 0.078 0.027 0.137 0.076 0.025 0.147 0.092 0.032 

400 0.129 0.074 0.023 0.132 0.079 0.022 0.147 0.089 0.029 

500 0.135 0.076 0.022 0.119 0.070 0.023 0.140 0.083 0.029 
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Table 2.3(c) 
irical size of tests when et" 

T 0.10 

DFpl'°` 

0.05 0.01 0.10 

DFlo°f 

0.05 0.01 
min(DFJ11 t, D 

0.10 0.05 

Fla°f ) 

0.01 

100 0.103 0.060 0.015 0.100 0.057 0.015 0.116 0.064 0.017 

150 0.105 0.055 0.014 0.093 0.048 0.014 0.103 0.059 0.017 

200 0.095 0.050 0.012 0.098 0.051 0.014 0.101 0.055 0.015 
250 0.098 0.055 0.015 0.101 0.056 0.013 0.110 0.061 0.016 

300 0.098 0.051 0.011 0.096 0.051 0.011 0.103 0.055 0.014 

400 0.104 0.050 0.010 0.100 0.053 0.013 0.103 0.052 0.013 

500 0.096 0.056 0.011 0.101 0.052 0.012 0.108 0.056 0.013 

Table 2.3(d) 

size of tests when et" 

T 0.10 

DF Omt 

0.05 0.01 0.10 

DFpi of 
0.05 0.01 

min(DF Otnt D 

0.10 0.05 

F01lnP\ 

0.011 

100 0.149 0.096 0.040 0.158 0.103 0.041 0.188 0.125 0.057 

150 0.133 0.082 0.030 0.130 0.080 0.026 0.156 0.101 0.040 

200 0.132 0.081 0.028 0.138 0.077 0.025 0.153 0.095 0.036 

250 0.131 0.076 0.024 0.135 0.078 0.030 0.150 0.093 0.038 

300 0.123 0.067 0.023 0.129 0.072 0.024 0.136 0.081 0.027 

400 0.124 0.066 0.022 0.121 0.070 0.018 0.133 0.078 0.024 

500 0.120 0.066 0.019 0.113 0.063 0.020 0.125 0.072 0.023 
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Table 2.5(a) 
Estimated means and standard deviations of the breakpoint under Hol 

T' = 0.3 
T=100 p=0.9 p=0.8 p=0.7 

T mean std mean std mean std 
DFoiinf 0.461 0.199 0.439 0.187 0.407 0.167 

DFlpnf 0.478 0.216 0.481 0.220 0.481 0.220 

min(DFoi1nf, DF1 nf) 0.468 0.192 0.461 0.191 0.423 0.173 

DFf in1 0.529 0.196 0.524 0.194 0.529 0.195 
DFöi"f 0.494 0.177 0.480 0.169 0.457 0.160 

min(DF p'nf 
, DFöi °f) 0.498 0.180 0.488 0.174 0.465 0.164 

Table 2.5(b) 

Estimated means and standard deviations of the breakpoint under Hol 

T' = 0.5 

T=100 p=0.9 p=0.8 p=0.7 
mean std mean std mean std 

DFi'°f 0.517 0.190 0.534 0.162 0.544 0.138 
DFf °f 0.451 0.225 0.426 0.233 0.402 0.233 

min(DF11'f DF1 °f) 0.492 0.192 0.516 0.173 0.528 0.149 

DF p'nf 0.537 0.193 0.532 0.199 0.528 0.208 
DFol'°f 0.554 0.175 0.577 0.155 0.581 0.132 

min(DF p'nf 
, DFg °f) 0.547 0.178 0.572 0.159 0.577 0.136 

Table 2.5(c) 

Estimated means and standard deviations of the breakpoint under Hol 

T* = 0.7 
T=100 p=0.9 p=0.8 p=0.7 

mean std mean std mean std 

D101 0.589 0.201 0.660 0.152 0.689 0.118 
DFIO°f 0.380 0.216 0.312 0.188 0.286 0.176 

inf mir DFf °f) 0 511 215 0 592 0 200 0 0 645 170 0 , . . . . . . 
DF o inf 0.513 0.215 0.493 0.227 0.464 0.239 

DF0I`°f 0.590 0.192 0.658 0.155 0.691 0.124 

min(DF p'°f 
, DF i' ) 0.565 0.198 0.633 0.174 0.673 0.147 
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Table 2.5(d) 

Estimated means and standard deviations of the breakpoint under Hol 

Tr' = 0.3 
T=200 p=0.9 p=0.8 p=0.7 

mean std mean std mean std 
D 01 

inf 0.431 0.183 0.391 0.150 0.361 0.119 

D°f C F, 0.482 0.220 0.482 0.220 0.482 0.222 

min(DFi'"f , DFip "f ) 0.455 0.187 0.407 0.159 0.372 0.130 

DF11 0.532 0.196 0.533 0.191 0.537 0.189 
DFoi "f 0.474 0.166 0.441 0.147 0.403 0.128 

inf min(DF (o 
, 
DE rlinf) 0.485 0.170 0.448 0.151 0.409 0.133 

Table 2.5(e) 

Estimated means and standard deviations of the breakpoint under Hol 

T*=0.5 
T==200 p=0.9 p=0.8 p=0.7 

T mean std mean std mean std 

DFoi'"£ 0.540 0.162 0.541 0.121 0.534 0.094 

DF1 r0 "£ 0.437 0.236 0.412 0.239 0.402 0.240 

min(DFp"£, DFip"£) 0.521 0.174 0.533 0.129 0.532 0.096 

DF ö'"£ 0.548 0.200 0.538 0.208 0.529 0.215 
DF0 "£ 0.586 0.150 0.586 0.115 0.569 0.097 

min(DF10'"£, DF01i"£) 0.579 0.155 0.584 0.118 0.570 0.097 

Table 2.5(f) 

Estimated means and standard deviations of the breakpoint under Hol 

T*=0.7 
T=200 p=0.9 p=0.8 p=0.7 

mean std mean std mean std 
DFi'"f 0.656 0.160 0.703 0.097 0.714 0.066 

DFio"f 0.332 0.205 0.274 0.172 0.259 0.158 

min(DFoi'"f , DFr "f) 0.581 0.206 0.675 0.141 0.707 0.086 

DF10i"f 0.495 0.231 0.452 0.250 0.422 0.253 

DF01'°F 0.657 0.163 0.715 0.100 0.728 0.068 
min(DF p'"f 

, DF01'"f ) 0.629 0.182 0.705 0.118 0.726 0.074 
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Table 2.6 
Augmented Dickey-Fuller tests for inflation rate series 

Country ADF: full sample pre-break post-break 
US -2.205 n/a n/a 
CANADA -1.860 -5.858*** -1.870 
JAPAN -1.333 -6.490*** -1.843 
UK -1.614 n/a n/a 
GERMANY -2.672 n/a n/a 
FRANCE -1.022 -5.724*** -1.410 
ITALY -1.407 -4.950*** -1.430 

Note: The symbols *, ** and *** imply significance at the 10%, 5% 

and 1% level respectively; n/a denotes "not applicable". Estimated 

break dates are only reported when a test statistic rejects H1' 

Table 2.7 
Persistence change tests for inflation rate series 

Country DF ä`°f break date DFpi of break date min(.,. ) break date 

us -3.406 n/a -3.488 n/a -3.488 n/a 
CAN -2.362 n/a -4.604** 1973: Q2 -4.604*** 1973: Q2 

JAPAN -3.224 n/a -4.524*** 1973: Q2 -4.524** 1973: Q2 

UK -2.966 n/a -2.947 n/a -2.966 n/a 
GER -1.915 n/a -2.825 n/a -2.825 n/a 
FR -2.904 n/a -4.786*** 1973: Q4 -4.786*** 1973: Q4 

ITALY -2.083 n/a -3.900** 1973: Q4 -3.900* 1973: Q4 

Note: The symbols *, ** and *** imply significance at the 10%, 5% and 1% level respectively 

using the critical values from Table 1(b). The number of lags is that utilised in the ADF 

tests; n/a denotes "not applicable". Estimated break dates are only reported when a test 

statistic rejects H0" 
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Chapter 3 

Unit Roots and Smooth 

Transitions Revisited: The Effect 

of Power- Enhancing 

Dickey-Fuller Type Tests 

3.1 Introduction 

Many macroeconomic variables usually appear to exhibit some tendency to in- 

crease over time, which could suggest that a linear deterministic trend be included 

in the time series model to account for this fact. Our attempt to better under- 

stand the nature of the trending mechanism(s) underlying such variables, and 

whether they are better modelled as stationary around a linear deterministic 

trend or difference stationary exhibiting some sort of stochastic trend behaviour, 

has led to the development of unit root tests and has provided the stimulus for 

research in a number of directions. 

While the presence of the deterministic trend in macroeconomic series is im- 

portant, its functional form plays an essential role in the unit root testing pro- 

cedure and is also closely related to the power and size of the unit root tests. A 

deterministic linear trend is viewed by many as too restrictive especially if the 

time period under consideration is fairly long. On this ground, a number of stud- 

ies challenge the view of the linear time trend hypothesis being the appropriate 

one for modelling the deterministic component of an economic time series and 
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propose alternative flexible specifications of the trend function. These involve 

structural breaks, smooth transitions and Markov regime-switching type behav- 

iour, as was mentioned in the previous chapter. Demonstrating the importance 

of a flexible specification for the deterministic component has justifiably been 

the issue of much investigation, particularly when one acknowledges the impor- 

tant consequences of trend misspecification, namely inconsistent estimates of the 

autoregressive parameter and unit root tests that can be misleading. 
Recently, Leybourne et al. (1998) proposed unit root tests with the alternative 

specified as stationarity around a smooth transition in linear trend. They were 

recommended as complementary to those tests which consider as alternatives 

stationarity around a simple linear trend, to be adopted when one suspects the 

possibility of a structural change in the trend function. Such a suspicion is natural 

when time series data are considered over a long time span. 
There are sometimes good reasons for feeling that the trend should be rela- 

tively smooth since it represents long run movements. One only has to consider 

that changes in economic aggregates are influenced by the behaviour of a large 

number of agents who may not act uniformly at the same time but respond to 

news that requires action with different time lags. Furthermore, smooth tran- 

sition regression models are locally linear allowing often easy interpretation. It 

is based on these arguments that such models can be legitimately regarded as 

an attractive and intuitively plausible specification and will be adopted in this 

study. 

Inherent in the two step testing procedure suggested by Leybourne et al. 
(1998) is the use of the conventional augmented Dickey-Fuller (ADF) t-test. 

Such a test has been in widespread use in practical applications, partly due to 

its computational simplicity and also because it displays the least sensitivity to 

model misspecification compared to existing competitors as shown by Schwert 

(1989). 1 However, one cannot overlook the problem of low power that such a 

test encounters against meaningful alternatives as addressed in the studies of 
Agiakoglou and Newbold (1992) and DeJong et al. (1992a) among others. To 

this end, parallel to research carried out involving unit root testing and flexible 

trend specification, a great amount of attention has been devoted in the literature 

'In particular, when the underlying process contains an MA component they maintain size 
close to nominal level for all values of the MA parameter. 
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to devising unit root tests with higher power from which a number of modified 
Dickey-Fuller (DF) type t-tests have emerged. 

The aim of this chapter is to explore and assess the performance of the power- 

enhancing DF type t-test statistics that have emerged in the literature, in the 

context of unit root testing when the alternative hypothesis is characterised by 

the more flexible specification of stationarity around a smooth transition in linear 

trend. 

The rest of this chapter is organised as follows. Section 3.2 presents a brief 

overview of the recent advances in devising more powerful elaborations of DF- 

type unit root tests. Section 3.3 attempts to give some intuition behind the 

increased power performance of the two prevailing tests, namely the weighted 

symmetric, WS, and MAX tests, relative to the conventional DF test. Section 

3.4 presents the smooth transition regression models and demonstrates how the 

WS and MAX test procedures can be incorporated into the testing of unit 

roots against smooth transition alternatives. Estimated percentiles of the limiting 

null distributions of the modified tests are obtained via simulation. In Section 

3.5 extensive Monte Carlo simulations are performed to study the power of the 

proposed tests in finite samples. An empirical application based on the Nelson- 

Plosser data is provided in Section 3.6. Section 3.7 contains some concluding 

comments. 

3.2 Recent Developments of Power-Enhancing 

Unit Root Tests: A Review 

The most widely employed tests for a unit root, developed by Dickey-Fuller 

(1979,1981) are based on the t-statistic for p=1 in the OLS regression 

yt = 1zt + pyt-i + et, t=1,2, 
..., 

T (3.1) 

where et'iid(0, a2), zt =1 or zt = (1, t) and y' is a conformable vector of unknown 

parameters. 
An asymptotically equivalent way of calculating the t-statistic is by removal 

of the trend by ordinary least squares (OLS), followed by OLS estimation of 
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(3.1) for ry =0 applied to the detrended series. Such tests extend naturally to 

their augmented counterparts, namely the ADF tests, when lagged dependent 

variables are included in (3.1) to capture possible dynamics in the error term. 

A solution to the well-known problem of low power these routinely applied 

unit root tests encounter, apart from increasing the sample size which is not 

always feasible, is the development of more powerful tests. In this direction of 

research a number of tests have been proposed. 
Elliott et al. (1996) show that no uniformly most powerful test of the unit 

root hypothesis exists and using the theory of point optimal tests as second best, 

they derive the asymptotic Gaussian power envelope for unit root tests. In doing 

so, they propose a simple modification of the standard Dickey-Fuller t-test, that 

we denote the GLS test, such that this modified test can nearly achieve the 

power envelope using generalised least squares (GLS) estimation. Specifically, 

GLS detrending is performed under persistent local alternatives p= 1+c/T for a 

particular value of c=c, attempting in this way to improve the power of unit root 

tests by efficient estimation of the trend parameters. 2 The value of cE (-oo, 0] 

is chosen by default to be such that the test achieves the power envelope at 

50% power, which corresponds to c= -7 and c= -13.5 in the demeaned and 

detrended cases, respectively. The test involves detrending by regressing [yl, 

y2 - Py1,, ... ý YT - PYT-1]1 on [zi, 22 - pz1,, ..., zT - pzT-1]' and then applying (3.1) 

to the estimated residuals yt with 'y = 0, where the initial observation is assumed 

to be fixed. The GLS test statistic is then the conventional t-statistic for testing 

p=1 against the alternative p<1 in the same regression. This approach is often 

termed the conditional case. 3 

Elliott (1999) derives the asymptotic power envelope under the assumption 

that the initial observation is drawn from its unconditional distribution. This is 

the so-called unconditional case where under the alternative the deviation from 

trend of the first observation has the same variance, a2(1 - p2)-1, as all remaining 

2Lee and Phillips (1996) quantify the efficiency gains derived from generalised least squares 
detrending. These authors prefer the term quasi-difference detrending as full generalised least 
squares detrending is not used in the detrending procedure. 

3Hwang and Schmidt (1996) proceed in the same fashion and propose essentially the same 
unit root tests. Although their aim is to maximise power, they do not base their approach on the 
theory of optimal tests but rather employ an empirically plausible value of the autoregressive 
root to perform GLS detrending and thus lack in asymptotic interpretation. Their results 
indicate that for approximately the same values of the autoregressive root that correspond to 
the value of c mentioned in the study of Elliot (1994), these tests are more powerful than the 
Dickey-Mer tests. 
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observations. The impact of the initial observation on the power of unit roots 

tests particularly in finite samples has been addressed in a number of studies in- 

ter alia Evans and Savin (1981,1984), Schmidt and Phillips (1992) and DeJong 

et al. (1992b). Under this approach the estimated residuals Pt are generated 

from the regression of [(1 -p )1/2y1, y2 - Pyi,, """, yT - PyT-i)' on [(1 - p2)1/2 Z1, 

z2 - pzl,, ..., zT - pzT-1]' and the resultant GLSu test statistic is derived as the 

corresponding t-statistic in the same manner as described above. Elliott concen- 

trates primarily on c= -10. 

An alternative deterministic trend removal procedure - recursive OLS de- 

trending - was recently proposed by So and Shan (1999) who argued that mean 

adjustment using the overall sample mean in autoregressive time series causes 

biases of the estimator of the autoregressive coefficient and other statistics, espe- 

cially when the sample size is small and the data are positively autocorrelated. 

The first step of this procedure involves OLS regression of y; on z3, j<t. The 

estimated residuals yt are then employed in regression (3.1) in the place of yt 

with ry = 0. Leybourne et al. (2003) examine the performance of the unit root 

t- statistic based on this method which they refer to as REC. Such a procedure 

has also been applied by Taylor (2002) in the case of seasonal unit roots, where 

recursive sample means are used for adjusting the seasonal means. 

Pantula et al. (1994) first employ OLS detrending to generate residuals pt. 

They then recommend a test based on weighted symmetric least squares (WSLS) 

estimation of p, through the minimization of 

T 

Q(P) =E wt(yt -p t-i)2 -4- 
t=2 

T-1 
E(1 

- wt+i)(yt - Pyt+i)2 (3.2) 

t=i 

where wt = tTl are weights. ' 

This approach exploits the time reversibility of a stationary autoregressive 

process. 5 That is, the first order autoregressive process in (3.1) with IpI <1 can 

4Pantula et al. (1994) proposed weighted symmetric least squares estimation applied to 
the detrended series, as a computationally convenient approximation to maximization of the 
Gaussian likelihood. This method of estimation assigns alternative weights to intermediate 

observations and treats the initial and terminal observations in the same manner. 
5See Corollary 2.6.1.3 in Fuller (1976). 
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be given either the forward representation 

yt = 'Y'zt + Pyt-i + et, t=1,2, ..., T 

or the backward representation 

Yt = 'f'Zt + Pyt+i + Ut, t=1,2, ..., T 

where {et} and {ut} are sequences of serially uncorrelated (0, Q2) random vari- 

ables. 
This symmetry led Park and Fuller (1995), who initially proposed WSLS, to 

consider estimators of p that minimize (3.2). The weighted symmetric estimator 

is given by 
T 
Eý t-1gt 
t=2 Pws = T-1 T 

yi + T-1 L yi 
t=2 t=1 

The pivotal t-statistic based on such an estimator, which we denote WS, is then 

T-1 T 
ws= Qws 

[Pwa - 1] [E yt 'i" Z'-1 E y2]1/2 

t=2 t=1 

where awe = (T - p)-'Q(pwe) and p= {2,3} for the cases zt =1 and zt = (1, t) 

respectively. The ordinary least squares estimator is obtained by setting wt = 1. 

A further approach is due to Leybourne (1995) who exploits the time re- 

versibility of stationary series in a more explicit manner. He proposes OLS esti- 

mation of (3.1) together with OLS estimation of the corresponding model for the 

reversed series, that is 

vt = b'zt + pvt_1 + 77t, t=1,2,3, ..., 
T (3.3) 

where vt = yT+i-t, t=0,1,2, ..., T+1, i. e vo = yT+i, vi = YT,..., VT = Yi, 

vT+l = yo. The Dickey-Fuller t-ratio from (3.1) is denoted DFf, while that from 
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the reverse regression is defined DFr. The statistic proposed is then the MAX 

statistic with MAX = max(DF1, DFr). Under both the null hypothesis of a unit 

root and the trend-stationary alternative, Leybourne shows that DFj and DF, 

have the same asymptotic marginal distributions for i. i. d. errors. He derives the 

critical values of the MAX test via simulation. 

Hansen (1995) argues that we rarely observe the time series yt in isolation, 

observing at least one related time-series, xt. He exploits information provided 

by these additional times series by including correlated stationary covariates in 

regression equation (3.1) and shows that large power gains can be achieved in this 

way over conventional unit root tests. He derives the asymptotic distribution of 

ordinary least squares (OLS) estimates of the largest autoregressive root and 

its t-statistic, which turns out to be a convex combination of the Dickey-Fuller 

distribution and the standard normal, the mixture depending on the correlation 

between the equation error and the regression covariates. While the power gains 

from inclusion of covariates is shown to be quite substantial, it is important to 

get the "correct" covariates, for major losses can be obtained by inclusion or 

exclusion of covariates. It is perhaps for this reason that such a test has not 

received much attention in the literature and we therefore only mention it at the 

outset. 

The asymptotic and finite sample properties of the above modified DF-type 

tests have been the subject of a number of studies. Extensive simulation results 

on the size and power of the GLS tests and standard DF-type tests are reported 

in Stock (1994), for both the conditional and unconditional cases. The superior 

power demonstrated by the GLS test relative to the DF t-test is clearly evident 

in all cases. This finding is supported by the results in Phillips and Xiao (1998), 

who compare the effects of OLS and GLS detrending procedures on Perron and 

ADF tests for the conditional case. 

Pantula et al. (1994) compare the power of a wider range of unit root test 

criteria, amongst which the GLS and the WS tests. They entertain two cases, 

that where the initial observation is drawn from a standard normal distribution 

and the unconditional case. Their results suggest that the modified tests are 

considerably more powerful than the traditional DF t-test. In particular, the WS 

test displays the highest power when the initial observation is drawn from the 

unconditional distribution while it also maintains good power in the alternative 
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case. 
Among the tests examined in Leybourne et al. (2003), the REC, WS and 

MAX tests are found to exhibit local asymptotic power close to the envelope, 

performing as well as and on a number of occasions better than the tests based 

on generalized least squares detrending. Based on their finite sample simulations, 

which include the performance of the WS and MAX tests in conjunction with 

GLS and recursive detrending, overall findings favour the WS and MAX tests 

with little to choose between the two. Alternative detrending procedures do not 

appear to provide these tests with any further power advantage. 

The finding that emerges from all the above investigations is unanimous: 

substantial power gains are achieved by employing the modified tests over conven- 

tional DF tests when testing for a unit root in the presence of a linear trend. 

Evidence, however, points to preference for the WS and MAX tests which are the 

tests we adopt in our subsequent analysis. These two tests were described above in 

the case of a first order autoregressive process with i. i. d. errors. When the errors 

are in addition serially correlated the MAX test becomes MAX = max(ADFf, 

ADFr) where (3.1) and (3.3) are augmented to include lag changes as in Said and 

Dickey (1984). Details of this approach for the case of the WS test are provided 

in Appendix 3. A. 

In view of the fact that the above two power-inducing test statistics are per- 

vasive in the remaining of this thesis, we consider it appropriate to attempt to 

gain some insight into their increased power performance relative to the DF test 

in the standard case of testing for a unit root against stationarity around a sim- 

ple linear trend, before exploring their performance within any alternative more 

complex setting. 

3.3 Insight into the Increased Power Performance 

of the MAX and WS Test Statistics 

Elliott et al. (1996) proposed the CLS test with the expectation that modified 

estimates of the deterministic function would improve the performance of the 

standard unit root t-test. 6 This implies that OLS detrending is responsible for 

6Canjels and Watson (1997) investigate the efficient extraction of deterministic trends when 
the error term follows an AR(1) process with largest root local to unity. They find that the 
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the suboptimal performance of the conventional DF tests. However, as pointed 

out by Leybourne et al. (2003) the WS and MAX statistics implicitly involve 

such detrending and are not improved by alternative detrending procedures. Fur- 

thermore, Burridge and Taylor (2000) who conduct finite sample Monte Carlo 

power investigations on the performance of the GLS and GLSu tests find that 

efficiency of the mean estimator cannot take all the credit for the power advan- 

tage that these tests enjoy over the standard DF test. In seeking a complete 

explanation to the increased power performance of these tests, they demonstrate 

that such a favourable outcome is derived from the fact that the null distributions 

of the tests are shifted toward the origin, relative to that of the DF test, to a 

greater extent than is the distribution under the alternative.? We show that the 

same effect is present in the case of the WS and MAX test statistics, providing 
further insight into their superior power performance relative to the DF t-test. 

Consider the times series process {yt}t 1 generated as 

Vt = dt + vt, 

vt = Pvt-i + Et, (3.4) 

where dt is the deterministic component satisfying either (a) dt = 0, (b) dt = it or 
(c) dt =p+, ßt and et are independently and identically distributed disturbances 

with mean zero and standard deviation a. Without loss of generality we focus on 

case (b). 

A linear reparameterization of (3.4) yields the following equation 

Yt = µ(l - P) + PYt-i + et, t=1,2, ..., T. (3.5) 

For convenience we transform (3.5) to 

yt =a+ mit-i + st, t=1,2,..., T (3.6) 

preferred estimator is the feasible Prais-Winsten GLS estimator. 
7The limit theory for the GLS test depends on the value of c which as noted earlier is 

chosen by default to be the value for which local asymptotic power is 50%. While good power 
properties are observed against alternatives close to the null for this value of c, by using the 
same value in finite samples we may not always be achieving maximum power. 
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where our interest lies in the t-statistic for the null hypothesis that p=1. 
Figure 3.1 displays Monte Carlo generated plots of the probability density 

functions of the DF, MAX, and WS t-statistics under the null and alternative 

hypotheses, where p was set to 1 and 0.85 in (3.5) respectively, for a sample size 

of T= 100. The plots were generated with et`NID(0,1) based on 50,000 repli- 

cations. Under the alternative, we generated T+ 200 observations and discarded 

the first 200 in order to obtain samples which closely resemble stationarity. It 

clearly becomes apparent from the plots that the null distributions of the MAX 

and WS test statistics are located closer to the origin relative to that of the 

DF statistic. A similar though smaller shift in magnitude is observed for the 

distributions of the tests under the alternative. 

The limiting distribution of the test statistics displays the same pattern. Un- 

der the null and as T -º oo, Park and Fuller (1995) derive the following result 

for the WS statistic 

WS 
0.5(W(1)2 - 1) - HW(1) -C+ 2H2 

(G - H2)1! 2 
(3.7) 

where 

11 
H= W(r)dr 

1 

0=J W(r)2dr 

and W (r) is standard Brownian motion. 

For the MAX test, Leybourne et al. (2003) derive the limiting null distribu- 

tion as 
MAX = max{F,, o, R,, o} (3.8) 

where 
F,, 0 = 

0.5(W(1)2 - 1) - HW(1) 
3.9 (G 

- H2)1/2 
() 

and 
-0.5(W(1)2 + 1) +HW(1) 

o (G - H2)1/2 
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It follows from (3.8) that the null asymptotic distribution of the DF statistic 

under (3.6), for p=1, is given by (3.9). 

Assumption 3.1. (i) ylis distributed with mean zero and variance o2(1- p2)-1, 
(ii) et is i. i. d. (O, QZ) and (iii) yl is uncorrelated with -t, t>2. 

We next evaluate the behaviour of the tests under the local alternative. The 

limiting distribution of the MAX test in this case when yt is generated through 

Yt = Pyt-i + et 

p= 1+T 

where cE (-oo, 0) and Assumption 3.1 holds, while furthermore the fitted model 

is that in (3.6) is given in Leybourne et al. (2003) by 

MAX max(Fo, Ro) (3.10) 

where 
- 

0.5(Jc(1)2 - 1) - HcJcF0 (1) 
(G HZ)1/2 

Ro - 
-0.5(JJ(1)2 + 1) + H,, JJ(1) 

(G, - HH)1/2 

and 
1)Zc Jc(r) = Wc(r) + (e" - 

r1 He JJ(r)dr 
0 

i 
Gc _J Jc(r)2dr. 

0 

Here, Wo(r) is an Ornstein-Uhlenbeck process defined as 

jr 
Wi(r) =c e°(r-')W (s)ds +W (r), 
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rT 

W (r) is a standard Brownian motion process defined as the limit of a-'T-1/2 E et 
t=i 

and ZZ is a random variable with mean zero and variance (-2c)-1. 

The limiting distribution of the DF test under the local alternative is then 

DF=Fo, (3.11) 

while the limiting distribution for the WS test can be directly inferred from the 

above and by using results in Elliott (1999) as 

WS 
0.5(JJ(1)2 - 1) - HJJ(1) - G, + 2HH 

(3.12) (G 
- H2)1/2 

c 

Figure 3.2 illustrates the asymptotic densities of the test statistics under both 

the null and local alternative. These were generated by simulating 50,000 repli- 

cations of the limiting functionals in (3.7), (3.8), (3.9) and (3.10), (3.11), (3.12) 

respectively, approximated by their sample moment analogues, using series of 

5,000 Gaussian white noise innovations. ' On inspecting Figure 3.2, the shift in 

the location of the distributions of the MAX and WS test statistics closer to 

the origin relative to that of the DF statistic is immediately discernable under 

the null, which is the case depicted in the upper plot. A similar though smaller 

shift is demonstrated under the alternative, as can be seen in the bottom plot. 

Thus the limiting null distribution of the test statistics exhibits a similar pattern 

to the simulated finite-sample distributions. These plots corroborate the findings 

of Leybourne et al. (2003), whereby the DF test is outperformed in terms of 

asymptotic local power by the MAX and WS tests. 

In what follows we will see that by including additional trend terms in the 

deterministic function, as with the smooth transition models, the critical values 

shift further away from the origin requiring larger values of the test statistics to 

achieve a rejection of the null. 

8For example, as T -º oo, T-1/2 Fn 
jet #- W(1), T-3/2 E Eß_1 e1 = fo W(r)dr, 

T-1 E (Et_i ej)et 2(W(1)2 -1), and so forth. 
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3.4 Testing for a Smooth Transition in Linear 

Trend Using More Powerful Dickey-Fuller 

Type Tests 

The idea of smooth transition dates back to Bacon and Watts (1971) who illus- 

trated how a locally linear equation changes from the one extreme linear para- 

meterisation to the other as a function of a continuous transition variable. It 

was then Granger and Teräsvirta (1993) and Teräsvirta (1994,1998) who pro- 

moted the family of univariate models called smooth transition autoregressive 
(STAR) models. During the last decade, such models have been employed widely 

mainly to investigate the non-linearity in the conditional mean of various macro- 

economic aggregates. Adopting these models, Teräsvirta and Anderson (1992) 

describe industrial production in a number of countries, Granger and Teräsvirta 

(1993) analyse a non-linear relationship between US GNP growth and leading 

indicators, Skalin and Teräsvirta (1999) examine Swedish business cycles, while 
Ocal and Osborn (2000) investigate non-linearities in UK consumption and in- 

dustrial production. An excellent overview of extensions of the STAR models as 

well as issues relating to their evaluation by means of out-of-sample forecasting 

and impulse response analysis can be found in van Dijk et al. (2002). 

Following Leybourne et al. (1998) we consider three parameterizations of sta- 

tionarity around a smooth transition in linear trend that give rise to the following 

regression models 
(A) yt = al + a2Ft(7, r) + Et 

(B) yt = al + bit + a2Ft(y, r) + -t 

(C) yt = al + bit + a2Ft(Y, r) + b2tFt('Y, r) + Et 

where et is a zero mean stationary process, not necessarily white noise. 

The function operating on the parameters of the above models is a transition 

function bounded by convention by zero and one. The most common adopted 

transition function in the literature is the logistic function 

F(t; y, T) = {1 + exp(-y(t - TT))}-l. (3.13) 

Such a function is continuous, monotonically increasing in t, where ry >0 con- 
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stitutes an identifying restriction. The slope parameter ry indicates how rapid 

the transition from zero to unity is as a function of t and the location parameter 

T determines where the transition occurs. If ry is small then Ft (y, T) traverses 

the interval (0,1) at a slow pace. As the value of y increases Ft (-f, r) traverses 

the interval at a more rapid pace, with the transition from zero to one becoming 

virtually instantaneous as ry approaches infinity. This is the case of an abrupt 

structural break with the shift point located at t= rT. Finally, when y=0, 

Ft (-y, r) = 0.5 for all t. The flexibility of a smooth transition model is thus evident, 

allowing for no transition, instantaneous transition and all smooth intermediate 

cases. Function (3.13) therefore assumes a continuum of states between two ex- 

tremes, which correspond to F-,,,, (-y, , r) =0 and F+,,. (ry, rr) = 1. For model A this 

implies stationarity of yt around a mean which changes from initial value al to 

final value al + a2. Similarly for model B, the difference being that a fixed slope 

term is also included, while for model C it implies stationarity of yt around an 

intercept and slope that are changing simultaneously from initial values al and 

bi to al + a2 and bi + b2 respectively. 

Different assumptions regarding the transition function F(. ) imply different 

forms of smooth transition models and so different degrees of smoothness and dif- 

ferent types of non-linearity, possibly involving nonmonotonic and non-symmetric 

transitions. Allowance can also be made for different type of transition functions 

to govern the constant and slope parameters. For practical purposes and for ease 

of exposition we confine ourselves as in Leybourne et al. (1998) to the above 

setting, since it provides a reasonably adequate understanding of the underlying 

mechanisms involved in such models. 

The unit root null hypotheses considered are stated below, from which similar 

test statistics readily follow. ' 

Ho: yt = Vt, vt = pvt-1 + et, t=1,2, ..., T. 

Hl: Model A, BorC 

H,, : yt = vt, vt =8+ Pvt-1 + et, t=1,2, ..., T. 

Hl : Model B or C 

for p=1, where vo is either a fixed constant or a random variable and et is a zero 

mean stationary process. 

9Similarity implies that the t-statistic associated with the parameter p is not affected by the 

value, under the null, of any nuisance parameter and the critical values are the same as the 

ones that would apply if the nuisance parameter(s) were set to zero. 
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Testing for a unit root in the smooth transition framework consists of a two- 

step procedure. The first step involves estimating the deterministic component by 

use of a nonlinear least squares (NLS) algorithm and computing the corresponding 

residuals. For the three models this amounts to 

(A) Et =yt-äl-ä2Ft(ry, T) 
(B) Et = Yt - äl - blt - 5,2Ft(5, T) 

(C) Et = Yt - äl - blt - ä2Ft(ry", fl - b2tFt(Y, T) 

Once the parameters of the deterministic component of the desired model 

have been estimated, the unit root hypothesis is tested using the t-statistics, 

MAX and WS, associated with p in the following augmented regression of the 

estimated residuals k 
ze = A-1 +E (cwt- j+ Vg. 

j=1 

Augmentation of the regression by the use of lagged values of the first differenced 

dependent variable accounts for the possible autocorrelation exhibited in the error 

structure et. 

The linearity in the parameters al, b1, a2 and b2 reduces the nonlinear least 

squares (NLS) estimation problem to minimising the sum of squared residuals 

with respect to just the two parameters ry and T. To see this in the case of the 

most general model, (C), consider the vector of regressors zt = zt(ry, T) = {1, t, 

Ft(,,, , r), tFt(ry, rr)}' and the vector of corresponding parameters {al, b1, a2, 

b2}'. The residual sum of squares is given by 

T 

RSS = 
1: (yt - zt)2 (3.14) 
e-i 

\-1 T 

where _ jai, b1, a2, b2}' = ztzt I >2 ztyt as in the standard multiple 
Ui 

/ t=i 
regression model. Thus, the RSS is indeed a function of the two unknown pa- 

rameters ry and r. As Leybourne, Newbold and Vougas (1998) point out, the 

linearity property in the intercept and trend terms ensures that estimated resid- 

uals, et, from all the models are invariant to the choice of starting value vo and 

models B and C are invariant to both the starting value and the drift term J. 

Given the complex nature of non-linearity involved in this context, Monte 
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Carlo simulation methods are employed in order to approximate the null distri- 

bution of the test statistics. The data generating process is specified as 

yt = vt, vt = vt-i + et, v-201 = 0, t= -200, ..., 
T 

with et being independently distributed standard normal innovations. We set 
S=0 and Q2 =1 without loss of generality due to the asymptotic invariance 

of the test statistics to these values under the null hypothesis. Sample series of 
T+ 200 were generated for yt discarding the first 200 observations to remove the 

effect of the initial conditions. By putting the initial condition that determines 

vo into the increasingly distant past as T -> oo is like making assumptions about 

vo which give it properties that are analogous to those of vt itself. 

In each experiment, for given values of TE {25,50,100,200,500} the 1%, 5% 

and 10% critical values of the null distributions of the MAX and WS statistics are 

computed as corresponding percentiles of the empirical finite sample distribution 

based on 10,000 replications. Critical values for the case of the conventional DF 

t-test are also reported for reasons of comparison and completeness. 

In terms of increased efficiency in searching for the global minimum, as many 
iterative minimization procedures may converge to a local minimum while con- 

sistency results apply to the global minimum, we perform a grid search on the 

starting values of the iterative procedure and choose those values that minimise 

the objective function among the converged values. Throughout the grid search 

y ranges from 0.05 to 5 in steps of 0.01 and T from 0.1 to 0.9 in steps of 0.01. It 

should be noted that increasing the range of -y beyond 5 leads to no information 

gain since at this stage the transition is already instantaneous. For the NLS 

estimation we employed the OPTMUM subroutine library of GAUSS 3.1. 

Tables 3.2(a)-(c) contain the approximated lower tail percent points of the 

limiting null distributions under the different forms of smooth transition, namely 

of a smooth transition in constant only excluding any trend, in constant only 

including a trend term and in both constant and trend respectively. The sub- 

scripts a, b and c are used respectively to characterise the statistics under such 

forms of transition. We observe that in all cases the critical values do not change 

significantly when increasing the sample size past the value of T= 100, after 
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which they appear to be converging rather steadily to limiting values. Another 

feature perhaps worth noting throughout these tables is that the critical values 

of the MAX and WS tests under smooth transition are shifted further towards 

the origin relative to the DF test, as in the standard case when a linear trend 

term is included under the alternative. 

3.5 Finite Sample Power Simulations 

In this section finite sample power behaviour of the modified test statistics is 

analysed. The purpose is to determine how their power is affected by detrending 

under smooth transitions. 

As a starting point we consider a stationary AR(1) data generating process 

yt = Vt, vt = Pvt-i + et, v-201 = 0, t= -200, ..., T 

for p<1 and et - iid N(0,1) random deviates. The same set of random deviates 

was used in all simulations with common sample size. In all cases, the number of 

replications was 2000 with power estimates reported and compared across tests 

using the relevant critical values in Tables 3.2(a)-3.2(c). 

Empirical powers of the smooth transition DF, MAX and WS tests for sam- 

ple sizes of T= {50,100,200} and for associated values of p= {(0.60,0.70,0.80), 

(0.70,0.80,0.90), (0.85,0.90,0.95)} are reported in Table 3.3. All tests appear to 

be consistent with power increasing rapidly when moving away from the unit root 

null. An interesting feature of the results is that power decreases monotonically 

the more complex the trend function employed in estimation and therefore the 

lowest power entries are observed in the case of a smooth transition in both the 

constant and trend term. Further results in this setting reveal similar power 

performance for the modified MAX and WS tests, however only fairly moderate 

power gains appear to be achieved with the use of these tests relative to the DF 

t-test. These are more pronounced in the smooth transition in constant only 

case io 

101n one sense, comparison of tests based on a first order autoregression with Gaussian inno- 

vations seems somewhat limited. However, it has the considerable advantage of guaranteeing 
that precisely correct critical values, those of Table 3.1 can be used. Thus, any differences found 
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We next consider simulations in which the DGP is a stationary AR(1) process 

around a smooth transition in mean 

yt = 1.0+2. OFt('y, 7-) +vt, vt = Pvt-1 +et 

where V_200 =0 and et"NID(0,1). We generated samples of size T= {50,100,20 

0} with p= {(0.50,0.60,0.70), (0.60,0.70,0.80), (0.70,0.80,0.90)} respectively. 

The values for al = 1.0 and a2 = 2.0 are chosen rather arbitrarily, while a 

variety of values are examined for both the speed of transition parameter, y, 

and the location parameter, T. Empirical powers of the 5% lower tail tests for 

this case are summarized in Table 3.4(a). To asses the impact of the magnitude 

of transition on the finite sample power properties of the tests we also present 

results for alternative values of a2 = 15.0,10.0}, which are given in Tables 3.4(b) 

and 3.4(c). 

An equivalent picture to the above emerges. The MAX and WS tests under 

all type of smooth transitions exhibit rather similar finite sample power with nei- 

ther one substantially more powerful than the other. For fixed p, power increases 

with T, reflecting the consistency of the tests. Similarly for a fixed sample size 

T, power increases the further we move away from the unit root null. The power 

advantage of the modified tests over that of the common DF test applied to the 

detrended series is quite evident, maintaining on average the value of approxi- 

mately seven percent. Looking more closely at the results, no clear cut pattern 

emerges when the magnitude of the transition is small as observed in Table 3.4(a). 

In particular, as the speed of transition ry increases and the location of the tran- 

sition shifts from the beginning of the series to the midpoint governed by the 

parameter r, empirical powers appear to alternate from higher to lower values 

and vice versa though exhibiting only very small fluctuations. 

As the magnitude of the transition increases as illustrated in Tables 3.4(b) and 

3.4(c), power entries increase in value while average power gains of the MAX,, 

and WSa tests over DFa remain at the same level. In general a rather clearer 

pattern emerges. When the transition occurs at the midpoint of the sample the 

power of the tests is higher the slower the transition, while it tends to decrease 

in rejection probabilities must correspond to power differences among the tests, rather than for 
example size distortions brought about by non-normality or the addition of further lags. 
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as the transition becomes virtually instantaneous for values of y=1 and y=5. 
When the transition is of a slow nature, that is -y = 0.10, power estimates of the 

tests reach their highest level and drop gradually thereafter reaching their lowest 

value when the transition becomes instantaneous. When the transition occurs 

fairly early in the sample, that is r=0.2, power entries are slightly more erratic, 

while a similar overall pattern can be discerned. On the whole, results indicate 

that power estimates are higher when the transition occurs midway along the 

sample rather than early on. 

Proceeding in the same fashion, we consider simulations based on the DGP 

of a stationary AR(1) process around a smooth transition in mean that involves 

a trend term 

yt = 1.0+2. OFt(y, 7-) + 1.0t+vt, vt = pvt_l +e. 

Table 3.5(a) evaluates the power performance of the 5% lower tail tests under 

the same specifications employed in the previous experiment, while Tables 3.5(b) 

and 3.5(c) evaluate the power performance for alternative transition magnitudes. 

Such tables permit comparisons across the tests and doing so indicates that in 

terms of power the MAXb and WSb tests behave once again very similar. What 

is worth noting however, is that in the presence of a trend term the power differ- 

ences among these tests and DFb are somewhat reduced compared to the smooth 

transition in mean only case. Apart from this, no other important differences are 

observed. The same results apply as above, which become more apparent the 

larger the magnitude of the transition. 

We also conducted further simulation experiments when the true model is 

characterised by a smooth transition in intercept and trend. We do not repeat 

the results for this case as they are qualitatively similar although, quantitatively, 

the power differences among the DFB and MAX, and WSG tests are further 

reduced. 
Overall, comparing the results across the figures highlights the finding that 

the less elaborate is the deterministic component of the first stage regressions, the 

more substantial are the gains in power that can be achieved in comparison with 

the DF smooth transition tests. Power differences among the tests are therefore 
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more pronounced in the case of a smooth transition in constant only compared 

to when a linear trend is incorporated in the model. This result is similar to 

the marked reduction in power associated with the estimation of additional trend 

terms in the standard DF tests. Thus, even though the critical values of the 

MAX and WS tests under smooth transition detrending are shifted closer to the 

origin relative to the corresponding DF test ones, the power differences between 

them are only modest. " This is possibly due to the more complex nature of 

the trend function. Furthermore, in the presence of structural change of a more 

abrupt nature the tests are slightly more powerful when breaks occur midway 

through the series rather than early on. 

3.6 Empirical Application 

In this section we apply the preceding test statistics to the data analysed by 

Nelson-Plosser (1982). These are US annual data ranging from 62 to 111 obser- 

vations and ending in 1970. Evidence from a number of studies analysing such 

data are to an extent unanimous in there findings that most macroeconomic time 

series are characterised by the presence of a unit root. Exceptions hold for the 

cases of unemployment and industrial production whereby the unit root hypoth- 

esis is generally rejected. Following convention, we take natural logarithms of 

each time series except for the bond yield as in Nelson and Plosser (1982). Plots 

of the data can be found in Figure 3.3. 

Since many macroeconomic variables exhibit some tendency to increase over 

time we examine the two versions of the tests that include a time trend namely, 

MAXb, WSb and MAX, 
-, 

WSc, the underlying logic being that if the hypothesis 

of stationarity around a smooth transition in linear trend is correct, we should be 

able to reject the null hypothesis using such tests. For purposes of completeness 

we also report the reverse counterparts of the MAX test denoted ADFF , ADF,, r 

respectively, along with the ADFf 
, 

ADFf tests for comparison, as well as the 

standard ADF t-statistic for the case of a model that includes a constant and 
linear trend term. 

11The same principles can be applied to tests against asymmetric smooth transition alter- 
natives, and we conjecture that since these involve a further parameter in the trend function, 

power gains are likely to be even more modest. 
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The autoregressive truncation lag k for all tests was selected using the se- 

quential (10%-level) t-tests for the significance of the coefficient on the longest 

lag, taking into account the available number of observations for each series in 

selecting k max. This resulted in fairly similar values of k chosen for the series 

across tests. Theoretical support for the adopted method as well as information 

based model selection rules such as the Akaike information criterion (AIC) and 

the Schwarz Bayesian information criterion (BIC) was provided by Hall (1994) 

for the pure AR case and by Ng and Perron (1995) for the ARMA case. Overall, 

the general-to-specific lag selection procedure has been found to control well for 

size, though it does tend to choose higher values for k compared to AIC and 
BIC, resulting in a loss of power. However, such an effect is only moderate as 

illustrated in DeJong (1992a). 12 Nelson and Plosser (1982) argue in favour of the 

use of higher order models on the grounds that leaving out relevant terms might 
bias the results, while inclusion of irrelevant ones will only reduce efficiency. 

Table 3.6 summarizes the results for each series. The tests were carried out 

using the 5% critical values in Tables 3.2(b)-(c). According to the standard 

ADF test as reported in column three, all series contain a unit root apart from 

the unemployment series for which the unit root hypothesis is rejected at the 5% 

level. 13 This result corroborates the findings of alternative empirical studies that 

have employed the Nelson-Plosser dataset. 

Of the tests based on the smooth transition alternatives, we focus initially 

on the results pertaining to the MAXb and WSb statistics that correspond to 

a smooth transition in constant only with the inclusion of a fixed trend term, 

as shown in columns four to seven. In this case, the unit root null hypothesis 

cannot be rejected for 11 out of the 14 reported series. For industrial production 

there is evidence of a 5% rejection of the unit root null using the WSb statistic. A 

rejection at the 10% level is reported for the ADFe and MAXb tests respectively, 

although the latter is very close to rejecting at the 5% level. For the real wages 

series, the WSb statistic rejects the null at the 10% level. While no rejection is 

12Stock (1994), in investigating the finite sample size and power properties of the GLS and 
GLSu unit root tests, reports results based on the Schwartz Bayesian information criterion. 
However, he acknowledges the use of the sequential testing procedure and proposes either in 
his study. Pantula et al. (1994) choose the lag order based on the Akaike Information criterion 
(AIC), modified as AIC+2 to offset the size distortions that such a procedure is known to give 
rise to when choosing a small value for the lag parameter. 

13Critical values for the standard Dickey-Fuller test were used from Table B. 6 in Hamilton 
(1994). 
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displayed by the ADF( test or the MAXb test, the latter is once again very close 

to rejecting the unit root hypothesis at the 10% level. For the common stock price 

series all three tests namely, the ADF6 , the MAXb and the WSb tests reject the 

unit root hypothesis at the 5% level. 

Turning to the second set of statistics, the case of a smooth transition in both 

the intercept and trend term, a rejection of the unit root null at the 10% level 

is only observed for the WSG test for real per capita GNP. However, the MAX, 

test is very near rejecting the null at the 10% level. The exact same outcome is 

observed for the industrial production series. For the common stock price series 

a similar picture to the earlier results emerges, that is, the MAXb and WSb 

reject at the 0.05 level, only now the ADFb displays a rejection of the unit root 

hypothesis at the 10% level. 

Typically it appears that the MAX test marginally misses out in attaining 

rejections at the same level of significance as the WS test. Such a result could be 

reflected in the slightly better power performance demonstrated by the latter at 

times as can be seen from the previous section. In any case, sharper results are 

obtained by using the more powerful MAXb, c and WSb,, test statistics relative 

to the ADFb, c tests that include either stronger rejections of the unit root null 

for certain series or additional rejections in favour of stationarity around smooth 

transition in linear trend. 

For the industrial production series and that of common stock prices, rejec- 

tions are observed for both the (b) and (c) type of smooth transition alternatives, 

the latter being the more elaborate of the two and encompassing the former. In 

view of this result, we conduct a likelihood ratio test for the significance of the 

smooth transition in the trend term. Consider model (C): 

yt = al + bit + a2Ft(y, T) + b2tFt('Y, T) + et 

and model (B): 

yt = al +bit +a2Ft(7, T) +et. 

Testing for the significance of a smooth transition in the trend term translates 

into testing the hypothesis Ho: b2 =0 versus Hl: b2 54 0. The likelihood ratio 
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statistic is given by 

LR =n ln(RSSb/RSSS) 

where RSSb and RSSC are the residual sum of squares as described in Section 

3.4 from the first step of the unit root testing procedure that corresponds to 

models (B) and (C) respectively. 14 The LR test statistic asymptotically has a X2- 

distribution with one degree of freedom. 15 For the industrial series LR = 0.002, 

which implies that we cannot reject the null at the 5% level of significance. This 

result suggests that model (B) should be used in the initial detrending of the 

series, a finding which is not surprising given the sharper results displayed by 

the WSb, MAXb and ADF6 statistics for this series. For the common stock 

price series LR = 2.886. At the 5% level of significance we cannot reject the null, 

implying that the overall outcome of a unit root versus stationarity around a 

smooth transition in linear trend should be determined by the WSb, MAXb and 

ADFf statistics for this series. However, at the 10% level there is evidence in 

favour of a smooth transition in the trend term which points to the results of the 

WS,, MAX, and ADFI statistics in determining the overall outcome. 

Finally it should be pointed out that while the unit root hypothesis is rejected 

for the unemployment series using the standard ADF t-statistic, in support of 

what is generally found in the literature, there is no evidence of a'similar rejection 

for any of the alternative tests. This result as pointed out by Leybourne et al. 

(1998) serves to illustrate the usefulness of the smooth transition unit root tests 

as complementary to existing standard tests and not as direct substitutes. 

In summary, while the majority of the macroeconomic series considered are 

found to be characterised by the presence of a unit root, employing the more 

powerful tests uncovers further evidence in favour of the alternative of stationarity 

around smooth transition in linear trend. Such an alternative appears to be an 

attractive characterisation for series such as industrial production, common stock 

prices, real per capita GNP and real wages, although the evidence is somewhat 

weaker for the latter two series. These results support the findings of Chu and 

White (1992) who reject the null of trend-stationarity against the alternative of 

14For model (B), zt = {1, t, FL(y, r)}' and the vector of corresponding parameters is _ {al, 
T 

bl, a2}'. The residual sum of squares is then RSS =E (yt - zt)2. 
t=1 

15The upper 5% and 10% critical values for the X2(1) distribution are 3.841 and 2.706 re- 
spectively. 
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a trend-shift at the 10% level for real per capita GNP and real wages, though 

they do not find evidence in favour of the trend-shift alternative in the case of 

common stock prices. Similarly, results for the industrial production series lends 

support to studies such as those of Teräsvirta and Anderson (1992) and Öcal and 

Osborn (2000) who describe industrial production based on smooth transition 

type models. 

3.7 Concluding Remarks 

In the last decade, the literature on unit root testing has witnessed the emergence 

of more powerful test statistics as a solution to the power deficiency of conven- 

tional Dickey-Fuller tests. We showed in this chapter that the substantial power 

advantage associated with two such tests, namely the MAX and the WS tests, 

when testing for a unit root against the simple trend-stationary alternative, lies 

in the shift of their null distributions toward the origin, relative to that of the 

DF test, to a greater extent than is the distribution under the alternative. We 

subsequently investigated the performance of the elaboration principles associ- 

ated with these modified Dickey-Fuller type t-tests in the context of testing for 

a unit root against the more flexible and intuitively plausible smooth transition 

alternatives. 

Extensive finite sample Monte Carlo results illustrated that the substantial 

power gains offered by the power-enhancing tests over the conventional Dickey- 

Fuller type in the standard case of stationarity around a simple linear trend 

function, are modest when adopted in the smooth transition setting. Higher 

gains in power appeared to be offset by the complexity of the smooth transition 

type of structural change characterising the trend function under the alternative. 

It is therefore not surprising that the power gains were more prominent in the 

simpler case of a smooth transition in constant only. Notwithstanding, the use of 

the modified tests is worth the while as it signifies extra power at the minimum 

cost of a little more computational complexity. Moreover, the power performance 

of the MAX and WS tests under the smooth transition alternatives was very 

similar, with neither being substantially more powerful in all cases. Greater power 

was generally achieved when the transition was of a slower nature and occurred 

earlier rather than later in the sample. 
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An application of the more powerful smooth transition tests to US macroecono- 

mic series showed stronger evidence against the unit root null for series such as in- 

dustrial production and common stock prices. Furthermore, stationarity around 

smooth transition in linear trend was found an attractive characterisation for 

two additional series, real per capita GNP and real wages. However, because 

rejecting the null hypothesis does not necessarily imply smooth transition in the 

trend function of the series, care is warranted in drawing conclusion about the 

true data generating process. 

81 



References 

Agiakoglou, C., Newbold, P., 1992. Empirical evidence on Dickey-Fuller type 

tests. Journal of Time Series Analysis, 13,471-483. 

Akaike, H., 1974. A new look at the statistical model identification. IEEE 

Transactionson Automatic Control, AC-19,716-723. 

Bacon, D. W., Watts, D. G., 1971. Estimating the transition between two 

intersecting straight lines. Biometrika, 58,525-534. 

Burridge, P., Taylor, A. M. R., 2000. On the power of GLS-type unit root tests. 

Oxford Bulletin of Economics and Statistics, 62,633-645. 

Canjels, E., Watson, M. W., 1997. Estimating deterministic trends in the 

presence of serially correlated errors. The Review of Economics and Statistics, 

184-200. 

Chu, C-S. J., White, H., 1992. A Direct Test for Changing Trend. Journal of 

Business & Economic Statistics, 10,289-300. 

DeJong, D. N., Nankervis, J. C., Savin, N. E., Whiteman, C. H., 1992a. The 

power problems of unit root tests in time series with autoregressive errors. Journal 

of Econometrics, 53,323-343. 

DeJong, D. N., Nankervis, J. C., Savin, N. E., Whiteman, C. H., 1992b. Inte- 

gration versus trend stationarity in time series. Econometrica, 60,423-433. 

Dickey, D. A., Fuller, W. A., 1979. Distribution of the estimators for autore- 

gressive time series with a unit root. Journal of the American Statistical Associ- 

ation, 74,427-431. 

Dickey, D. A., Fuller, W. A., 1981. Likelihood ratio statistics for autoregressive 

time series with a unit root. Econometrica, 49,1057-1072. 

Elliott, G., 1999. Efficient tests for a unit root when the initial observation is 

drawn from its unconditional distribution. International Economic Review, 40, 

767-783. 

Elliott, G., Rothenberg, T. J., Stock, J. H., 1996. Efficient tests for an autore- 

gressive unit root. Econometrica, 64,813-836. 

Evans, G. B. A., Savin, N. E., 1981. Testing for unit roots: 1, Econometrica, 

49,753-779. 

Evans, G. B. A., Savin, N. E., 1984. Testing for unit roots: 2, Econometrica, 

52,1241-1270. 

82 



Fuller, W. A., 1976. Introduction to statistical time series. New York: John 

Wiley. 

Granger C. W. J., Teräsvirta, T., 1993. Modelling non-linear economic rela- 

tionships, Oxford: Oxford University Press. 

Hall, A., 1994. Testing for a unit root in time series with pretest data based 

model selection. Journal of Business 0 Economic Statistics, 12,461-470. 

Hamilton, J. D., 1994. Time series analysis. Princeton University Press. 

Hansen, B. E., 1995. Rethinking the univariate approach to unit root testing: 

Using covariates to increase power. Econometric Theory, 11,1148-1172. 

Hwang, J., Schmidt, P., 1996. Alternative methods of detrending and the 

power of unit root tests. Journal of Econometrics, 71,227-248. 

Leybourne, S. J., 1995. Testing for unit roots using forward and reverse 

Dickey-Fuller Regressions. Oxford Bulletin of Economics and Statistics, 57,559- 

571. 

Leybourne, S. J., Kim, T-H., Newbold, P., 2003. Examination of some more 

powerful modifications of the Dickey-Fuller test. Forthcoming in the Journal of 

Time Series Analysis. 

Leybourne, S., Newbold, P., Vougas, D., 1998. Unit roots and smooth tran- 

sitions. Journal of Time Series Analysis, 19,83-97. 

Nelson, C. R., Plosser C. I., 1982. Trends and random walks in macroeconomic 

time series. Journal of Monetary Economics, 10,139-162. 

Ng, S., Perron, P., 1995. Unit root tests in ARMA models with data- 

dependent methods for the selection of the truncation lag. Journal of the Amer- 

ican Statistical Association, 90,268-281. 

Öcal, N., Osborn, D., 2000. Business cycle noniinearities in UK consumption 

and production. Journal of Applied Econometrics, 15,27-43. 

Pantula, S. G., Gonzalez-Farias, G., Fuller, W. A., 1994. A comparison of 

unit-root test criteria. Journal of Business & Economic Statistics, 12,449-459. 

Park, H. J., Fuller, W. A., 1995. Alternative estimators and unit root tests for 

the autoregressive process. Journal of Time Series Analysis, 16,415-429. 

Phillips, P. C. B., and Lee, C. C., 1996. Efficiency gains from quasi-differencing 

under nonstationarity. In: Robinson, P. M., Rosenblatt, M., (Eds. ). Essays in 

Memory of E. J. Hannan. New York: Springer-Verlag. 

Phillips, C. B., Xiao, Z., 1998. A primer on unit root testing. Journal of 

83 



Economic Surveys, 12,423-470. 

Said, S. E., Dickey, D. A., 1984. Testing for unit roots in autoregressive moving 

average models of unknown order. Biometrika, 71,599-608. 

Schmidt, P., Phillips, P. C. B., 1992. LM tests for a unit root in the presence 

of deterministic trends. Oxford Bulletin of Economics and Statistics, 54,257-287. 

Schwarz, G., 1978. Estimating the dimension of a model. Annals of Statistics, 

6,461-464. 

Schwert, G. W., 1989. Tests for unit roots: A Monte Carlo investigation. 

Journal of Business F4 Economic Statistics, 7,147-159. 

Skalin J., Teräsvirta, T., 1999. Another look at Swedish business cycles. 
Journal of Applied Econometrics, 14,359-378. 

So, B. S., Shin, D. W., 1999. Recursive mean adjustment in time-series infer- 

ences. Statistics and Probability Letters, 43,65-73. 

Stock, J. H., 1994. Unit roots structural breaks and trends. In: Engle, R. F., 

McFadden, D. L. (Eds. ), Handbook of Econometrics, Vol. 4. New York: North 

Holland, 2740-2841. 

Taylor, A. M. R., 2002. Regression-based unit root tests with recursive mean 

adjustment for seasonal and non-seasonal time series. Journal of Business &' 

Economic Statistics, 20,269-281. 

Teräsvirta, T., 1994. Specification, estimation and evaluation of smooth tran- 

sition autoregressive models. Journal of American Statistical Association, 89, 

208-218. 

Teräsvirta, T., 1998. Modeling economic relationships with smooth transition 

regressions. In: Ullah, A., Giles, D. E. A. (Eds. ), Handbook of applied economic 

statistics, Statistics: Textbooks and Monographs, vol. 155. New York; Basel and 
Hong Kong: Dekker, 507-552. 

Teräsvirta, T., Anderson, H. M., 1992. Characterizing Nonlinearities in Busi- 

ness Cycles using Smooth 1Yansition Autoregressive Models. Journal of Applied 

Econometrics, 7, Supplement, S119-S136. 

van Dijk, D., Teräsvirta, T., Franses, P. H., 2002. Smooth Transition Autoregre- 

ssive Models -A Survey of Recent Developments. Econometric Reviews, 21,1-47. 

84 



Appendix 3. A Derivation of the WS Test Statistic 

in the Case of Serially Correlated Errors 

Assume that the errors in (3.1) are serially correlated and that the underlying 

process is generated by 

k 
yt =a+E V)3yt-j + et, t=1,2, ..., 

T (3.15) 

j-i 

which can be written equivalently as the ADF(k - 1) regression 

yt=a+Pyt_i+ 

k-1 
E (j 0yt_j + et 

j=1 

with p= 01 + 02 + ... +'Gk, 7Po =1 and Cj = -[Vj+1 + Vj+2 + ... + Vj+kl for 

j=1,2,..., k- 1. 
k 

If all roots of'(z) =1-> Ojzi lie outside the unit circle equation then the 
j=1 

stationary autoregressive series (3.15) can also be given the forward representation 

yt =a+ pyt+l - 

k-1 
Ebj OYt+j+1 + Et 

j=1 

with {et} and {et} representing sequences of uncorrelated (0, a2) random vari- 

ables. 
In the first stage the series is demeaned and the estimated residuals yt are 

obtained. The weighted symmetric estimator of p is obtained by solving the 

following weighted least squares problem 

T k-1 2 

Q(P,; ) _E wt- yt - pt-1 E CjA t-j 
t=k+1 1=1 

T k-1 2 

-{- 
(1 

- Wt-k+l) 
(_k 

- Pyt-k+l + ýjDyt-k+j+l 

t=k+1 j=1 

where' _ {C1' (2) """+Ck-i} and wt is specified as 
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1 o, 
wt= (t-k)/(T-2k+2), 

1, 

assuming that T> 2k. 

Equivalently one could minimize 

t= 1,2,..., p 
t=p+1, p+2,..., T-k+1 

t=T-k+2, T-k+3,..., T 

T k-1 2 

wt wt - Pyt-1 -E (j0yt-j 
t=k+1 j=1 

T-k k-1 2 

+ 1- we+i) ye - Pye+i + CjDyc+i+i 

t=i j=i 

The associated t-statistic for testing the hypothesis Ho :p=1 against that of 

the alternative Hl :p<1 is WS = (p-1)/(l (p))1/2, where V(p) is the estimated 

variance of p corresponding to the first element of the estimated parameter vector 
i9 = (p, C) = (X'WX)-1X'WY. 16 Referring to Table 3.1 below the estimated 

parameter vector ý is obtained from the regression of the dependent variable 
Y, a (2T - 2k) x1 dimensional column vector, on the independent variables 
X, a (2T - 2k) xk matrix below the headings p, (1) C2,..., Ck_1, multiplied by the 

appropriate weights W, a (2T-2k) diagonal matrix. The estimated error variance 
is Q= Q(ý)/(Z' -k- 2) for a model with an intercept or &= Q(ý)/(T -k- 3) 

for a model with a linear trend. 

In particular, 
V(p) = &2 app, where app is the element (1,1) in the inverse of ö2Q(i)/&9äi9'. 
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Table 3.1 

Data arrangement for regression estimation of autoregressive parameters 

by the weighted symmetric procedure 

Weight 
(W) 

Dependent 
Variable (Y) 

P C1 C2 """ Ck-1 

Wk+1 yk+1 Pk AN Dyk-1 
""" 

Dy2 

Wk+2 yk+2 yk+1 Dyk+1 AN 
... 

Ly3 

Wk -P 
PT PT-1 APT-1 APT-2 

""" 
DyT-k-}1 

1- W2 y1 y2 -Ay3 -Dy4 -Dyk+l 

1- W3 92 93 -DY4 -AY5 " .. -Dyk+2 

1- Wn_k+1 91T-k OJT-k+l -APT-k+2 -APT-k+l """ -APT 

Note: The weighted symmetric estimator treats observations at the beginning of the 

sample period in the same way as observations at the end of the sample period. 
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Appendix 3. B Tables and Figures 

Table 3.2(a) 

Critical values for unit root tests against stationarity around a smooth transition in mean 
DFa MAX. WS, 

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 

25 -4.322 -4.775 -5.811 -4.095 -4.551 -5.580 -4.207 -4.669 -5.704 
50 -4.052 -4.405 -5.107 -3.807 -4.179 -4.870 -3.881 -4.245 -4.958 
100 -3.939 -4.262 -4.882 -3.690 -4.022 -4.661 -3.766 -4.106 -4.718 
200 -3.887 -4.187 -4.808 -3.644 -3.957 -4.600 -3.708 -4.010 -4.643 
500 -3.832 -4.177 -4.728 -3.589 -3.906 -4.489 -3.658 -3.963 -4.529 

Table 3.2(b) 

Critical values for unit root tests against stationarity around a smooth transition in constant 

only, 
fixed trend term included 

T 0.10 
DFb 
0.05 0.01 0.10 

MAXb 
0.05 0.01 0.10 

WSb 
0.05 0.01 

25 -5.174 -5.676 -6.611 -4.983 -5.492 -6.457 -5.115 -5.624 -6.595 
50 -4.742 -5.095 -5.853 -4.543 -4.902 -5.647 -4.633 -4.975 -5.735 
100 -4.560 -4.877 -5.483 -4.377 -4.680 -5.282 -4.441 -4.752 -5.351 
200 -4.465 -4.762 -5.375 -4.271 -4.581 -5.182 -4.331 -4.639 -5.235 
500 -4.414 -4.678 -5.257 -4.209 -4.504 -5.071 -4.256 -4.532 -5.115 

Table 3.2(c) 

Critical values for unit root tests against stationarity around a smooth transition in 
both the intercept and trend term simultaneously 

T 0.10 

DFB 
0.05 0.01 0.10 

MAXC 
0.05 0.01 0.10 

WSG 
0.05 0.01 

25 -5.630 -6.149 -7.243 -5.476 -5.999 -7.063 -5.596 -6.128 -7.216 
50 -5.099 -5.444 -6.165 -4.929 -5.286 -6.009 -5.026 -5.378 -6.116 
100 -4.888 -5.186 -5.860 -4.699 -5.028 -5.670 -4.774 -5.084 -5.737 
200 -4.768 -5.059 -5.670 -4.603 -4.888 -5.478 -4.660 -4.945 -5.519 
500 -4.673 -4.979 -5.453 -4.505 -4.786 -5.334 -4.561 -4.833 -5.362 
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Table 3.3 

Empirical powers of smooth transition tests for a stationary AR(1) 

generating process at the 5% nominal level 

p 0.80 
T= 50 

0.70 0.60 0.90 
T= 100 

0.80 0.70 0.95 
T= 200 

0.90 0.85 

DFa 0.110 0.226 0.423 0.111 0.393 0.821 0.108 0.393 0.789 
MAX, 0.116 0.254 0.478 0.130 0.472 0.886 0.124 0.457 0.858 

WSa 0.122 0.270 0.483 0.128 0.471 0.880 0.126 0.472 0.858 

DFb 0.090 0.179 0.315 0.102 0.293 0.636 0.100 0.284 0.635 
MAXb 0.090 0.200 0.334 0.109 0.329 0.695 0.106 0.309 0.690 

WSb 0.092 0.200 0.337 0.111 0.332 0.688 0.109 0.304 0.691 

DFc 0.081 0.155 0.272 0.088 0.275 0.588 0.093 0.238 0.573 

MAX, 0.081 0.164 0.292 0.100 0.290 0.626 0.107 0.267 0.621 

WSG 0.083 0.168 0.295 0.099 0.298 0.637 0.102 0.266 0.622 
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Table 3.4(a) 

Empirical powers of smooth transition tests for a stationary AR(1) generating process 

around a smooth transition in mean changing from 01 =1 to al + 02 =2 

ry 0.01 

T 0.5 0.2 

0.10 

0.5 0.2 

0.50 

0.5 0.2 
1.00 

0.5 0.2 
5.00 

0.5 0.2 

T= 50, p=0. 7,0.6, 0.5 

DFa 0.205 0.219 0.245 0.241 0.214 0.202 0.236 0.210 0.227 0.207 

MAX. 0.240 0.252 0.258 0.268 0.244 0.241 0.269 0.249 0.254 0.236 

WS, 0.254 0.262 0.271 0.275 0.256 0.246 0.279 0.258 0.272 0.244 

DFa 0.396 0.434 0.446 0.438 0.430 0.400 0.408 0.384 0.426 0.404 

MAX. 0.452 0.498 0.482 0.474 0.474 0.476 0.456 0.440 0.458 0.472 

WSa 0.488 0.522 0.500 0.502 0.478 0.494 0.460 0.452 0.466 0.498 

DFa 0.672 0.680 0.706 0.706 0.692 0.664 0.652 0.670 0.634 0.622 

MAX. 0.718 0.716 0.774 0.744 0.750 0.714 0.718 0.718 0.702 0.696 
WSa 0.736 0.742 0.782 0.760 0.744 0.750 0.726 0.738 0.718 0.708 

T= 100, p=0.8,0.7, 0.6 

DFa 0.397 0.397 0.403 0.393 0.406 0.400 0.391 0.384 0.418 0.366 

MAX, 0.464 0.447 0.482 0.465 0.468 0.465 0.462 0.450 0.475 0.439 

WSa 0.463 0.444 0.482 0.463 0.468 0.459 0.460 0.444 0.482 0.432 

DFa 0.832 0.832 0.804 0.822 0.802 0.826 0.818 0.788 0.796 0.782 

MAX, 0.880 0.880 0.862 0.874 0.852 0.874 0.882 0.840 0.856 0.842 

WSa 0.888 0.880 0.864 0.876 0.846 0.876 0.870 0.836 0.854 0.836 

DFa 0.978 0.990 0.980 0.980 0.972 0.976 0.976 0.984 0.986 0.982 

MAXa 0.992 0.998 0.996 0.992 0.990 0.996 0.990 0.992 0.992 0.994 

WS, 0.994 0.996 0.996 0.992 0.992 0.994 0.986 0.990 0.986 0.994 

T= 200, p=0.9,0.8, 0.7 

DFa 0.394 0.378 0.377 0.395 0.378 0.404 0.385 0.371 0.373 0.414 

MAX. 0.469 0.452 0.454 0.463 0.455 0.478 0.450 0.435 0.436 0.473 

WSa 0.482 0.465 0.456 0.472 0.475 0.478 0.459 0.445 0.452 0.486 

DFa 0.970 0.972 0.968 0.982 0.978 0.972 0.976 0.980 0.980 0.972 

MAX. 0.980 0.988 0.992 0.994 0.990 0.982 0.986 0.986 0.988 0.982 
WSa 0.986 0.990 0.996 0.994 0.988 0.984 0.986 0.986 0.982 0.976 

DFa 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

MAX. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

WS. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Note: In this and all subsequent tables of this kind values of p in descending order correspond 

to the first, second and third set of test statistics DF, MAX and IVS, respectively. 

90 



Table 3.4(b) 

Empirical powers of smooth transition tests for a stationary AR(1) generating process 

around a smooth transition in mean changing from al =1 to al + a2 =6 

ry 0.01 

T 0.5 0.2 

0.10 

0.5 0.2 

0.50 

0.5 0.2 
1.00 

0.5 0.2 
5.00 

0.5 0.2 

T= 50, p=0.7,0.6, 0.5 

DFa 0.245 0.230 0.301 0.271 0.264 0.196 0.218 0.170 0.189 0.162 

MAX.. 0.263 0.253 0.337 0.315 0.305 0.246 0.243 0.206 0.219 0.195 
WSQ 0.274 0.270 0.350 0.330 0.312 0.261 0.252 0.222 0.228 0.203 

DFa 0.448 0.422 0.496 0.430 0.454 0.368 0.420 0.370 0.364 0.288 

MAX. 0.516 0.480 0.556 0.492 0.492 0.456 0.458 0.430 0.432 0.378 

WS, 0.514 0.502 0.568 0.512 0.508 0.460 0.486 0.454 0.444 0.390 

DF0 0.670 0.708 0.698 0.712 0.696 0.650 0.726 0.608 0.608 0.532 

MAX, 0.720 0.762 0.746 0.752 0.732 0.722 0.768 0.686 0.672 0.618 

WS0 0.738 0.776 0.752 0.774 0.754 0.728 0.762 0.698 0.674 0.632 

T= 100, p=0.8,0.7, 0.6 

DFa 0.426 0.406 0.458 0.419 0.377 0.325 0.346 0.302 0.313 0.297 

MAXa 0.507 0.493 0.530 0.487 0.437 0.402 0.418 0.380 0.396 0.366 

WSa 0.505 0.489 0.526 0.488 0.441 0.409 0.418 0.388 0.392 0.375 

DFa 0.804 0.854 0.842 0.828 0.814 0.734 0.772 0.726 0.754 0.764 

MAXa 0.858 0.882 0.888 0.898 0.870 0.808 0.846 0.824 0.822 0.816 

WSa 0.856 0.872 0.894 0.884 0.858 0.816 0.842 0.830 0.816 0.810 

DFa 0.980 0.986 0.980 0.972 0.976 0.980 0.960 0.974 0.968 0.954 

MAXa 0.988 0.992 0.994 0.984 0.990 0.992 0.984 0.992 0.988 0.970 

WSa 0.986 0.992 0.994 0.984 0.986 0.992 0.982 0.994 0.988 0.968 
T= 200, p=0.9,0.8, 0.7 

DFa 0.422 0.419 0.418 0.380 0.345 0.288 0.342 0.293 0.324 0.302 

MAX. 0.490 0.487 0.479 0.442 0.417 0.376 0.404 0.366 0.400 0.378 

WSa 0.502 0.503 0.492 0.445 0.427 0.390 0.418 0.384 0.413 0.390 

DFa 0.976 0.982 0.978 0.964 0.958 0.958 0.960 0.960 0.950 0.962 
MAXa 0.988 0.988 0.986 0.974 0.982 0.974 0.992 0.978 0.978 0.978 
WSa 0.990 0.986 0.984 0.980 0.984 0.978 0.990 0.986 0.980 0.980 

DFa 1.000 1.000 1.000 0.992 1.000 1.000 1.000 1.000 1.000 1.000 
MAX. 1.000 1.000 1.000 0.992 1.000 1.000 1.000 1.000 1.000 1.000 
WSa 1.000 1.000 1.000 0.992 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 3.4(c) 

Empirical powers of smooth transition tests for a stationary AR(1) generating process 

around a smooth transition in mean changing from al =1 to al + a2 = 11 

ry 0.01 

T 0.5 0.2 

0.10 

0.5 0.2 

0.50 

0.5 0.2 
1.00 
0.5 0.2 

5.00 
0.5 0.2 

T= 50, p=0.7,0.6, 0.5 

DFa 0.237 0.245 0.302 0.274 0.271 0.214 0.197 0.166 0.143 0.125 

MAX. 0.270 0.281 0.327 0.316 0.303 0.249 0.224 0.192 0.162 0.156 

WSQ 0.282 0.293 0.344 0.333 0.308 0.263 0.233 0.203 0.171 0.166 

DFa 0.470 0.484 0.488 0.490 0.480 0.368 0.370 0.372 0.346 0.290 

MAX. 0.524 0.534 0.544 0.582 0.564 0.450 0.426 0.424 0.402 0.368 

WS, 0.552 0.552 0.584 0.588 0.572 0.476 0.436 0.440 0.414 0.368 

DFa 0.704 0.690 0.694 0.676 0.718 0.642 0.648 0.626 0.554 0.562 

MAX. 0.782 0.748 0.760 0.744 0.792 0.734 0.726 0.692 0.604 0.628 

WSa 0.786 0.762 0.780 0.754 0.798 0.746 0.740 0.712 0.612 0.644 

T= 100, p=0.8,0.7, 0.6 

DFa 0.461 0.433 0.453 0.406 0.365 0.330 0.304 0.294 0.300 0.289 

MAXa 0.528 0.505 0.533 0.479 0.429 0.412 0.372 0.368 0.356 0.368 

WS. 0.526 0.505 0.532 0.469 0.426 0.415 0.373 0.374 0.358 0.371 

DFa 0.838 0.834 0.834 0.810 0.788 0.738 0.784 0.740 0.724 0.708 

MAXa 0.910 0.886 0.890 0.876 0.852 0.832 0.848 0.804 0.804 0.812 

WSa 0.908 0.888 0.896 0.870 0.846 0.832 0.858 0.806 0.814 0.814 

DFa 0.986 0.986 0.982 0.968 0.980 0.982 0.962 0.964 0.964 0.946 

MAX, 0.994 0.998 0.994 0.986 0.986 0.990 0.970 0.976 0.982 0.972 

WS. 0.996 0.998 0.992 0.984 0.986 0.994 0.968 0.976 0.982 0.978 

T= 200, p=0.9,0.8, 0.7 

DFa 0.447 0.451 0.434 0.350 0.301 0.281 0.284 0.260 0.281 0.258 

MAX. 0.526 0.512 0.492 0.444 0.365 0.354 0.345 0.322 0.349 0.338 

WSa 0.532 0.519 0.503 0.453 0.384 0.371 0.360 0.340 0.369 0.352 

DFa 0.956 0.954 0.962 0.956 0.962 0.960 0.952 0.966 0.962 0.926 

MAXa 0.970 0.970 0.986 0.986 0.978 0.984 0.976 0.980 0.984 0.960 

WSa 0.964 0.972 0.990 0.990 0.984 0.984 0.982 0.978 0.984 0.960 

DFa 0.994 0.988 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

MAX, 0.994 0.986 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

wsa 0.994 0.984 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 3.5(a) 

Empirical powers of smooth transition tests for a stationary AR(1) generating process 

around a smooth transition in the intercept term changing from al =1 to al + 03 = 2, 
fixed trend term included 

ry 0.01 

T 0.5 0.2 

0.10 

0.5 0.2 

0.50 

0.5 0.2 
1.00 

0.5 0.2 
5.00 

0.5 0.2 

T= 50, p=0. 7,0.6, 0.5 

DFb 0.169 0.168 0.172 0.177 0.169 0.168 0.172 0.177 0.170 0.173 

MAXb 0.188 0.173 0.178 0.192 0.188 0.173 0.178 0.192 0.178 0.185 

WSb 0.192 0.179 0.181 0.195 0.192 0.179 0.181 0.195 0.176 0.188 

DFb 0.270 0.296 0.310 0.324 0.276 0.304 0.276 0.282 0.286 0.282 

MAXb 0.298 0.334 0.346 0.350 0.314 0.346 0.316 0.296 0.302 0.316 

WSb 0.308 0.340 0.352 0.354 0.320 0.362 0.320 0.298 0.308 0.314 

DFb 0.512 0.472 0.508 0.514 0.470 0.504 0.510 0.502 0.502 0.464 

MAXb 0.554 0.506 0.572 0.548 0.534 0.564 0.518 0.554 0.548 0.510 

WSb 0.572 0.526 0.572 0.546 0.530 0.552 0.514 0.562 0.552 0.508 

T= 100, p=0.8,0.7, 0.6 

DFb 0.293 0.293 0.300 0.300 0.301 0.276 0.266 0.268 0.257 0.295 

MAXb 0.329 0.325 0.333 0.338 0.337 0.323 0.310 0.305 0.294 0.327 

WSb 0.332 0.324 0.329 0.337 0.328 0.320 0.303 0.302 0.290 0.327 

DFb 0.640 0.692 0.628 0.654 0.658 0.652 0.648 0.658 0.616 0.582 

MAXb 0.718 0.710 0.684 0.696 0.692 0.710 0.686 0.710 0.668 0.648 

WSb 0.728 0.704 0.668 0.694 0.690 0.700 0.674 0.732 0.670 0.656 

DFb 0.948 0.912 0.930 0.910 0.924 0.914 0.918 0.916 0.932 0.902 

MAXb 0.972 0.930 0.948 0.956 0.948 0.952 0.936 0.932 0.968 0.948 

WSb 0.974 0.938 0.940 0.952 0.942 0.946 0.938 0.932 0.962 0.942 

T= 200, p=0.9,0.8, 0.7 

DFb 0.284 0.294 0.276 0.284 0.273 0.281 0.264 0.257 0.293 0.274 

MAXb 0.308 0.325 0.308 0.322 0.300 0.314 0.297 0.302 0.327 0.316 

WSb 0.305 0.324 0.314 0.323 0.302 0.316 0.294 0.299 0.328 0.313 

DFb 0.906 0.906 0.902 0.912 0.906 0.906 0.902 0.908 0.914 0.908 

MAXb 0.944 0.922 0.954 0.936 0.938 0.922 0.932 0.940 0.944 0.948 

WSb 0.932 0.932 0.946 0.934 0.938 0.936 0.934 0.940 0.944 0.942 

DFb 1.000 1.000 0.998 1.000 0.998 1.000 0.998 1.000 0.998 1.000 

MAXb 1.000 1.000 0.998 1.000 0.998 1.000 0.998 1.000 0.998 1.000 

WSb 1.000 1.000 0.998 1.000 0.998 1.000 1.000 1.000 0.998 1.000 
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Table 3.5(b) 

Empirical powers of smooth transition tests for a stationary AR(1) generating process 

around a smooth transition in the intercept term changing from al =1 to al + a3 = 6, 
fixed slope term included 

y 0.01 

T 0.5 0.2 

0.10 

0.5 0.2 

0.50 

0.5 0.2 

1.00 

0.5 0.2 

5.00 

0.5 0.2 

T= 50, p=0. 7,0.6, 0.5 

DFb 0.169 0.168 0.171 0.186 0.142 0.143 0.113 0.108 0.080 0.085 

MAXb 0.188 0.173 0.177 0.198 0.156 0.164 0.119 0.122 0.088 0.100 

WSb 0.192 0.180 0.178 0.197 0.157 0.165 0.124 0.127 0.089 0.101 

DFb 0.318 0.322 0.304 0.280 0.292 0.288 0.198 0.244 0.164 0.150 

MAXb 0.338 0.362 0.322 0.298 0.308 0.306 0.226 0.290 0.204 0.196 

WSb 0.348 0.374 0.324 0.302 0.312 0.314 0.240 0.306 0.206 0.202 

DFb 0.496 0.502 0.534 0.528 0.458 0.430 0.402 0.386 0.346 0.326 

MAXb 0.530 0.550 0.582 0.566 0.500 0.478 0.436 0.450 0.398 0.376 

WSb 0.560 0.562 0.590 0.584 0.500 0.486 0.456 0.464 0.400 0.402 

T= 100, p=0.8,0.7, 0.6 

DFb 0.293 0.292 0.284 0.306 0.228 0.219 0.170 0.173 0.179 0.183 

MAXb 0.329 0.325 0.318 0.351 0.253 0.257 0.201 0.212 0.203 0.217 

WSb 0.332 0.324 0.315 0.351 0.248 0.265 0.203 0.215 0.199 0.216 

DFb 0.640 0.692 0.610 0.676 0.572 0.552 0.530 0.514 0.490 0.446 

MAXb 0.718 0.708 0.680 0.710 0.616 0.616 0.578 0.578 0.546 0.512 

WSb 0.728 0.704 0.672 0.706 0.614 0.614 0.572 0.580 0.546 0.522 

DFb 0.948 0.910 0.922 0.930 0.884 0.886 0.870 0.866 0.824 0.838 

MAXb 0.972 0.930 0.948 0.956 0.920 0.924 0.894 0.888 0.880 0.888 

WSb 0.974 0.938 0.934 0.960 0.920 0.930 0.902 0.888 0.896 0.896 

T= 200, p=0.9,0.8, 0.7 

DFb 0.283 0.295 0.256 0.275 0.190 0.208 0.187 0.199 0.211 0.211 

MAXb 0.306 0.323 0.293 0.314 0.221 0.237 0.209 0.225 0.239 0.239 

WSb 0.304 0.326 0.289 0.319 0.224 0.242 0.210 0.227 0.239 0.233 

DFb 0.906 0.906 0.906 0.884 0.822 0.848 0.794 0.842 0.850 0.856 

MAXb 0.946 0.922 0.930 0.944 0.876 0.892 0.872 0.876 0.890 0.896 

WSb 0.932 0.930 0.936 0.938 0.886 0.896 0.874 0.886 0.892 0.892 

DFb 1.000 1.000 0.998 1.000 0.994 0.998 0.996 0.998 0.998 1.000 

MAXb 1.000 1.000 0.998 1.000 0.996 0.998 0.998 1.000 0.998 1.000 

WSb 1.000 1.000 0.998 1.000 0.998 0.998 0.998 0.998 0.998 1.000 
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Table 3.5(c) 

Empirical powers of smooth transition tests for a stationary AR(1) generating process 

around a smooth transition in the intercept term changing from al =1 to al + a3 = 11, 
fixed slope term included 

0.01 

T 0.5 0.2 

0.10 

0.5 0.2 

0.50 

0.5 0.2 
1.00 

0.5 0.2 
5.00 

0.5 0.2 

T= 50, p=0. 7,0.6, 0.5 

DFb 0.169 0.168 0.165 0.183 0.132 0.124 0.092 0.081 0.059 0.065 

MAXb 0.188 0.173 0.172 0.199 0.138 0.143 0.101 0.090 0.061 0.071 

WSb 0.192 0.180 0.173 0.195 0.140 0.148 0.105 0.094 0.061 0.074 

DFb 0.294 0.348 0.278 0.332 0.288 0.254 0.204 0.226 0.176 0.148 

MAXb 0.332 0.380 0.316 0.366 0.326 0.298 0.234 0.248 0.190 0.168 

WSb 0.340 0.380 0.314 0.374 0.318 0.300 0.232 0.250 0.196 0.168 

DFb 0.456 0.482 0.452 0.540 0.442 0.394 0.418 0.390 0.348 0.340 

MAXb 0.512 0.536 0.502 0.594 0.486 0.452 0.456 0.444 0.368 0.386 
WSb 0.518 0.536 0.508 0.594 0.478 0.460 0.462 0.448 0.368 0.388 

T= 100, p=0.8,0.7, 0.6 

DFb 0.294 0.292 0.271 0.297 0.196 0.185 0.144 0.132 0.130 0.134 

MAXb 0.329 0.325 0.298 0.344 0.218 0.224 0.167 0.164 0.155 0.156 

WSb 0.333 0.321 0.296 0.341 0.216 0.225 0.162 0.164 0.151 0.152 

DFb 0.640 0.696 0.594 0.652 0.556 0.506 0.496 0.492 0.442 0.398 

MAXb 0.718 0.712 0.652 0.690 0.578 0.574 0.550 0.540 0.498 0.446 

WSb 0.728 0.698 0.646 0.690 0.574 0.576 0.538 0.550 0.504 0.454 

DFb 0.948 0.914 0.910 0.922 0.880 0.872 0.854 0.864 0.790 0.802 

MAXb 0.972 0.932 0.938 0.948 0.910 0.910 0.882 0.888 0.848 0.850 

WSb 0.972 0.938 0.936 0.944 0.918 0.918 0.894 0.888 0.862 0.852 

T= 200, p=0.9,0.8, 0.7 

DFb 0.282 0.298 0.233 0.246 0.135 0.145 0.125 0.125 0.148 0.139 

MAXb 0.306 0.325 0.266 0.276 0.160 0.179 0.141 0.150 0.175 0.160 

WSb 0.305 0.327 0.260 0.281 0.160 0.180 0.143 0.156 0.179 0.165 

DFb 0.906 0.896 0.898 0.860 0.796 0.820 0.766 0.798 0.814 0.802 

MAXb 0.948 0.922 0.918 0.914 0.844 0.866 0.834 0.838 0.846 0.850 

WSb 0.932 0.928 0.922 0.908 0.856 0.864 0.834 0.848 0.860 0.850 

DFb 1.000 1.000 0.998 1.000 0.994 0.998 0.996 0.996 0.996 1.000 

MAXb 1.000 1.000 0.998 1.000 0.996 1.000 0.998 1.000 0.998 1.000 

WSb 1.000 1.000 0.998 1.000 0.996 1.000 0.998 0.998 0.998 1.000 
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Figure 3.2. Finite sample density of unit root t-tests, T= 100, AR(1) 

data. Top plot, p=1, bottom plot p=0.85. 
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Figure 3.2. Asymptotic density of unit root t-tests. Top plot p=1, 

bottom plot p=1+ c/T, where c= -15. 
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Chapter 4 

More Powerful Panel Data Unit 

Root Tests with an Application 

to Mean Reversion in Real 

Exchange Rates 

4.1 Introduction 

There is no doubt that panel data offer researchers more possibilities than purely 

cross section data or time series data, in that they are able to distinguish ef- 
fects that time series or cross section data alone cannot identify. This fact, along 

with the availability of a number of important panel data sets covering differ- 

ent individuals, industries, countries over a relatively long period has seen the 

development of various panel models with both theoretical and empirical research 

in this area receiving increased attention. Such models involve monitoring varia- 

tions in characteristics of individuals over time, and therefore allow for the better 

control of the effects of individual heterogeneity. 

A wide range of economic issues have been investigated using panel data. 

Considerable interest lies in inter-country comparisons that make use of multi- 

country macroeconomic data, in which case an appreciable time series dimension 

(T) is typically encountered as well as the existence of a large cross-section dimen- 

sion (N). While most previous panel research has focused on stationary panels, 

the feature of nonstationarity known to characterise macroeconomic data, along 
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with the very different medium to long run implications for the way in which the 

data series are expected to evolve in the presence or absence of unit roots, has 

prompted research on nonstationary panel data and unit root tests. One possi- 

ble test might be of the null hypothesis that every individual series is integrated 

of order one, against the alternative that one panel member series is stationary 

around a fixed mean or linear trend. As we subsequently note, such a concern 

has been expressed in the literature on purchasing power parity, where the issue 

of interest is the possible mean reversion of real exchange rates. 

A number of contributions have been made in the econometric literature for 

testing the unit root hypothesis within a panel data framework. Panel data unit 

root tests have been developed by, among others, Levin and Lin (1992). and Im, 

Pesaran and Shin (1997) - hereafter IPS - as extensions of standard time series 

unit root tests, such as the Dickey-Fuller test or a Lagrange Multiplier test. In 

particular, the tests put forward by the former involve a dynamic pooled model 

with fixed effects relying on the assumption of homogeneity of the autoregressive 

coefficient that indicates the presence or absence of a unit root. However, individ- 

uals may react differently to changes in explanatory variables and the individual's 

reaction may change over time giving rise to spatial heterogeneity that cannot 

be captured completely by the variable intercept. Thus, the natural generalisa- 

tion of allowing for the slope parameters of the regressors to vary across panel 

members seems a more plausible specification. Pesaran and Smith (1995) argue 

that the dynamic pooled model could be biased because of heterogeneity in the 

parameters across individual units and suggest that an average of the individual 

regressions can lead to consistent estimates of the parameters as long as N and 

T tend to infinity. Building on such an argument IPS put forward more gen- 

eral panel data unit root tests that rely on combining evidence from individual 

regressions. 

Of the empirical applications found in the literature, a large number of which 

employ the Levin and Lin (1992) and IPS tests, the issue most commonly investiga- 

ted is the validity of the long run purchasing power parity (PPP) by examining the 

mean reversion in real exchange rates, see inter alia Abuaf and Jorion (1990), 

Jorion and Sweeney (1996), Frankel and Rose (1996), MacDonald (1996), Oh 

(1996) and Wu (1996), Coakley and Fuertes (1997), Papell (1997), Higgins and 

Zakrajsek (1999), Maddala and Wu (1999) and Fleissig and Strauss (2000). Ad- 
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ditional applications that reveal the diversity of their use include investigation 

of mean reversion in inflation rates (Culver and Papell, 1997), in real wage data 

(Fleissig and Strauss, 1997 ; Lee and Wu, 2001), the convergence of per capita 

output (Fleissig and Strauss, 1999), the real interest rate parity hypothesis (Wu 

and Chen, 1998) and stock market efficiency (Boumahdi and Thomas, 1991). 

The previous chapter reviewed a number of power-enhancing unit root tests 

that have emerged in the literature as a result of the power deficiency of tradi- 

tional such tests. The modified tests were subsequently applied to the problem 

of testing for a unit root under the alternative of structural change of a smooth 

transition type. We proceed here along the same lines. Given that the most 

widely applied panel unit root tests are extensions of traditional unit root tests, 

we explore whether the two modifications, due to Pantula et al. (1994) and Ley- 

bourne (1995) in the basic time series context, maintain their power gains when 

applied to the panel data unit root testing context. To this end, we extend the 

t-bar and LM-bar panel unit root tests proposed by IPS and provide some illus- 

trative Monte Carlo evidence to assess their finite sample performance. In doing 

so, we seek to contribute to the substantial amount of simulation work necessary 

to establish systematically the role of asymptotic theory in estimates and tests 

derived from finite samples in this area, as pointed out by Banerjee (1999). 

This chapter unfolds as follows. Section 4.2 briefly reviews the most widely 

applied panel unit root tests documented in the literature. In Section 4.3, mod- 

ified panel unit root tests are introduced in the base case, where independence 

over panel data members is assumed. However, as stressed, for example, by 

O'Connell (1998) difficulties, particularly spurious rejections of the null hypoth- 

esis, can arise when individual panel series are generated by cross-sectionally 

correlated innovations. An important special case, which is readily dealt with 

through the subtraction of time-specific means, was considered by IPS, and is 

briefly discussed in Section 4.4. Section 4.5 reports results of a simulation exer- 

cise both for the case of independence across the units of the panel and allowing 

for a common time-specific component, demonstrating that, while the modified 

panel data unit root tests retain size reliability, they can produce appreciable 

gains in power. In Section 4.6, we analyse a panel of series of real exchange rates 

against the US dollar. Preliminary analysis suggests that the data generating 

process implicitly assumed in Section 4.5 provides an inadequate description of 
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the data. Accordingly, we follow Maddala and Wu (1999) in applying a bootstrap 

approach to testing. However, we consider also our modifications applied to the 

bootstrap approach, finding that the application of these tests yields apprecia- 

bly stronger evidence against the unit root null hypothesis for our data than do 

the unmodified tests. Simulation evidence in Section 4.7 reveals that the modi- 
fied bootstrap tests retain the power gains noted in simpler cases in Section 4.5. 

Conclusions are presented in Section 4.8. 

4.2 Review of Panel Data Unit Root Tests 

The econometric literature has produced a large variety of tests for unit roots in 

panel data. In this section we review the most commonly applied to date that 

consider asymptotics in both dimensions of the panel (T --> oo and N -º 00). 1,2 

They are based on the well known Dickey-Fuller type tests and differ in the 

assumptions made about the heterogeneity of the regression parameters for the 

observed units and the derived test statistics. 

While it was Quah (1992,1994)3 who initiated research in this area by consid- 

ering tests for panel data based on models without fixed effects, the first widely 

used panel unit root test was introduced by Levin and Lin (1992), hereafter LL, 

who considered more general models allowing for fixed effects and heterogeneous 

serially correlated errors. LL develop unit root tests for 

Dyzt = ai + co1yi, t-i + eit i=1, ..., N; t=1, ..., T eit-iid(O, a2) 

'Phillips and Moon (2000), on the theoretical side of the ongoing research on non-stationary 
large N and T panels, develop a limit theory that allows for sequential limits where T -º 00 
followed by N -+ oo and joint limits where N, T tend to infinity simultaneously. They also give 
a condition under which the sequential limit becomes the joint limit. Their limit distribution 
theory relies on NIT -º 0, a condition that indicates that it is most likely to be useful in 

practice when N is moderate and T is large. 
2Panel unit root tests have also been developed for fixed T and N -º oo, as in Harris and 

Tzavalis (1999), to account for the case of small T frequently observed in for example micro- 

economic panel data. As it is true that sometimes series are rather short, we are well advised 
to be concerned about the small sample properties of estimators and tests whose asymptotic 
properties depend on T -º oo. 

31n particular, Quah (1992,1994) considered testing for a unit root, that is p=1, in the 
following models 
flit = pyit-I + eit, N; t=1, ..., Te "iid(0, o 2) 

yet =a+, eyit-i + e: t, i=1, ..., 
N; t=1, ..., 

T e, i "iid(0, Q2) 
However, the limited nature of such models renders them of trivial empirical interest and they 

are therefore only mentioned at the outset. 
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where N and T are the cross-section and time series dimensions of the panel, 

respectively. The parameters ai allow for the possibility of member-specific fixed 

effects that account for heterogeneity in individual behaviour. The error term 

eit is uncorrelated with yit_,, and is initially assumed to follow an iid process. 
Such an assumption is relaxed in the sequel to allow for the possibility of serial 

correlation in the disturbances4 and heteroskedasticity, under which the limiting 

distribution of the test statistics remains unaffected. Their procedure is based on 

the estimation of the ADF test equation, 

k 

DYit = ai+WPjyi, t-1+'9ijIYi, t-j+eit 
j=1 

2==1, 
..., 

T, eit'iid (O, o 

(4.1) 

applied to each individual series, first subtracting cross sectional averages yt = 
N 

Yit from the observed data to ensure that they are asymptotically indepen- 

dent across units. The above ADF regression is equivalent to performing two 

auxiliary regressions of Dyit and yit_1 on the remaining part of equation (4.1), 

that is, 

ki 

Dyit = ä1i + L'i91ijAyi, 
t-j + eit 

j=1 

and k; 

yi, t-1 = a2i +L 1%2ij4i, t-j + V, 
t_1" 

j=1 

To control for heterogeneity across individuals the estimated innovations - eit 

and Vt_1 that arise from the above two auxiliary regressions are normilized by 

the regression standard error for equation (4.1). If the normalized residuals are 
denoted Fit and V, t_i, respectively, then the test they propose is conducted on the 

regression of the following form, which involves pooling the now homoskedastic 

disturbances eßt for all the cross-sections and time periods, where the parameter 

4Papell (1997) highlights the importance of accounting for serially correlated disturbances. 
He finds that the LL test, the critical values of which do not incorporate serial correlation in 
the disturbances, suffers from size distortions biasing the results toward rejection of the unit 
root null. 
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V is assumed to be identical for all units 

eßt = VV, t-i + cit. 

LL test the following hypothesis 

Ho: (Pi=cPa=... =GPs=P=O, i=1,..., N 

against the homogeneous alternative 

Hl : cps = cp < O, i=1, ..., 
N. 

Under the null they show that the estimator of cp in the pooled regression con- 

verges to a non-central normal distribution, where the degree of non-centrality 

depends on T. Hence, the t-statistic tp for a test of the hypothesis cp =0 adjusted 

for the mean and standard deviation of the asymptotic distribution of ip, has a 

standard normal distribution. This result is established under the assumption 

that both T and N tend to infinity, but that T increases faster than N, so that 

NIT -., 0.5 

Various extensions of the above models are considered by LL that include ho- 

mogeneous and heterogeneous deterministic trends. In such cases, the resulting 

test statistics are shown to also follow standard normal distributions asymp- 

totically. A drawback, however, of their study is the restrictive nature of the 

alternative hypothesis, which for example in the case of testing for the PPP hy- 

pothesis would mean confining the speed of convergence across countries to be 

the same. 

IPS relax the assumption of a common cp under the alternative, allowing for 

more heterogeneity of behaviour across individuals, and base their approach on 

the use of separate unit root tests for the N cross-section units. They consider 

5 Some of their results involve the assumption that -º 0 as N and T tend to infinity. 
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the following data generating process 

yet = (1 - PJµi + P=2Ji, t-1-I- Eit, i=1, ..., N; t=1, ..., T (4.2) 

where eßt, is assumed independently distributed across both groups and time 

periods with mean zero and finite heterogeneous variance Qi , thus accounting for 

heteroskedasticity in the error terms. ' The initial values, yjo, are assumed known. 

The corresponding model is 

Dyzt = ai + cO Y , t-i 
+ eßt, i=1, ..., N; t=1, ..., T (4.3) 

where they test the null hypothesis that cps is zero for all cross-sectional units 

against the alternative that some of the co 's are less then zero. Under the null, 

there is no fixed effect, while under the alternative, each fixed effect is equal to 

(1 - pjpi. The tests they propose are based on the average over the individual 

units of an ADF t-statistic, as well as a Lagrange-multiplier test statistic of the 

hypothesis that cps = 0. The ADF version of (4.2) is used to account for residual 

serial correlation across time periods. They further allow for the possibility of 

heteroskedasticity and a common time-specific component in the errors. To ac- 

count for the latter, IPS express all variables in the equation as deviations from 

their time-specific means. 

The t-bar test, t, they propose is computed as the average of the individual 

t-statistics ti, that is i= 1/N E t;. Standardized by the appropriate mean and 
i=1 

variance values, 
VN-17 - E(t; )} 

_ to (4.4) 
Var(t; ) 

t8 is shown to be distributed as a standard normal distribution under the null 

as N -º oo, where E(ti) and Var(ti) are the mean and variance respectively 

of the DF distribution. In the presence of residual serial correlation the same 

result is obtained under the assumption that both N and T tend to infinity such 

that N/T -º q, where q is a finite positive constant.? Monte Carlo techniques 

6Specification of the DGP as in (4.2) follows from considering initially the model as 
11 tt = ILi + Zit, Xit = Pixie-1 + est. 
7 Weaker assumptions are therefore required in the derivation of the asymptotics by IPS as 
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are required to estimate the mean and variance adjustment factors, which are 

tailored to the number of ADF lags and are tabulated by IPS for the various 

values of the lag order k and the sample size T. 8 In their derivations, IPS assume 

that the second moment of t= exists. They justify this assumption by extensive 

Monte Carlo studies and conjecture that the second moment of ti is finite if T>5 

when the regression includes only a constant and T>6 when a time trend is 

included. 

Using the likelihood framework associated with the DF regressions in (4.2), 

IPS also propose the LM-bar test based on the average of the Lagrange multi- 

plier (LM) statistics applied to each cross-section unit in the panel. The LM- 
N 

bar statistic for testing Vi =0 is defined as LM =N> LMi, where LMi = 
i-i 

M1M ThyiPiAYi M= -T 
/T T -1T' P= Mr 

Dys , 
; 

i, r 
jr Tl T T'ý Tý i Yi, -l(Yi, -1 rYi, -1) 

, Y, 
-1 r) 

TT = (1,1, 
..., 

1)', Yi, -1= 
(yio, Yi1, ..., YiT-1)' and Ayj = (AYils AYi2, 

..., 
DyiT)'. s 

Invoking the Lindeberg-Levy central limit theorem, IPS show that 

VNY {LM - E(LM1)} 
V ar (LMi) - LM, (4.5) 

that is, LM, follows a standard normal distribution under the null as N -º oo, 

where E(LM=) and Var(LMM) are the mean and variance of the distribution of 

the LMi statistic respectively, tabulated also in IPS for various values of k and 

T. Existence of the second moment is assured from the equation LMs = TRi 
. 

As 

Ri is the square of a correlation coefficient bounded between 0 and 1, its second 

moment exists for any finite T and therefore the second moment of LM; exists 

for finite T. As in the case of the t-bar statistic, in the presence of residual serial 

correlation, where the individual LMs statistics for finite T depend on nuisance 

parameters under the null hypothesis, T and N are both required to tend to 

infinity at similar rates such that N/T -º q, where q is a finite positive constant. 

This is needed to ensure that LM is asymptotically normally distributed in this 

opposed to the stronger, NIT -º 0, required for the asymptotic validity of the LL test. 
8While the lag order can in principle differ across individuals, most studies hold it fixed for 

expository purposes. 
9 When the disturbances eit are serially correlated, LMi = YiM 

T°., 
&Yt 

Y' where 

p, * = 11'rQ: Yip-i(Yi, -1MQ, Yi, -1)-'Yi, -1MQ, º MG, = IT - Qi(QiQi)-1Q{ and Qi = 
(TT, DYi, 

-1 , 
LYie-2 

, ..., 
Ojai, 

-k 
). 
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situation. Similar results hold for models including deterministic trends where 

IPS allow for the trend coefficients to differ across individuals. 

Lastly, it would be an oversight not to mention another method that relies on 

combining the evidence from several independent tests, proposed by Maddala and 

Wu (1999) who follow Fisher (1932). The so-called Fisher test is non-parametric 

as opposed to the parametric tests of LL and IPS, and is based on the same 

model (4.2) and null hypothesis as in IPS, namely that all individuals exhibit a 

unit root with the alternative stating that at least one is stationary. Assuming 

that there are N individual units with pi the observed p-value of the ADF test 

for the ith individual, the Fisher test involves calculating the p; values from the 

t-statistics of the N units using a simulated distribution of the t-statistic under 

the null hypothesis. These p-values are uniformly distributed random variables 

pz"U(0,1) assumed to be independent so the usual chi-square statistic is computed 

as 
-2 

logPi-X2 
DF=2N" 

The idea of combining p-values from a unit root test applied to each individual 

unit in the panel is also shared in the tests proposed by Choi (2001). He considers 

a broader range of test statistics than just the Fisher test considered by Maddala 

and -Wu 
(1999), which appear to have better finite sample size and power prop- 

erties. Such tests however, have not received much attention in the literature. 

We will concentrate on the tests of IPS, which are widely applicable and per- 

mit greater heterogeneity across panel members under the alternative hypothesis 

than the LL test. 

4.3 Motivation and Proposed Panel Data Unit 

Root Tests 

Investigations to solve the well-known power deficiency problem of traditional 

unit root tests were seen in the previous chapter to have brought to light a num- 

ber of more powerful test statistics, most of which are elaborations of standard 

Dickey-Fuller tests. Our suspicion is that since the IPS t-bar statistic is obtained 

as a linear combination of the ADF statistics of the individual time series, we 

could expect a similar pattern of increased power performance when such test 
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statistics are adopted in the panel unit root framework. To this end, we extend 

the most powerful of the modified unit root tests, namely the MAX-test of Ley- 

bourne (1995) and the weighted symmetric (WS) test of Park and Fuller (1995), 

to the panel setting. 

Let us consider the data generating process expressed as (4.2). We define a 

vector of error terms for later use; -s = (Cil, ez2, ..., eiT)'. The t-statistic is obtained 

by running 
Ayit = äi + (iyi, t-i + eit, (4.6) 

over each individual cross-section unit in the panel. Let DFf; be the t-statistic 

associated with 5j for testing cps = 0.1° Then the standard IPS t-bar statistic is 
N 

given by NE DFf;. 

Following Leybourne (1995), we now consider the reverse series of yit, that is 

zit - yi, T+i-t" The corresponding reverse regression is given by 

O, Zit = di + ýizi., t-1 + iit (4.7) 

for each i. Let DFr; be the t-statistic associated with cps for testing cps = 0. 

The subscript r indicates that the statistic is based on the reverse regressions. 

The MAX statistic for series i is then Max; = Max(DFj;, DFJ. With Max = 
N 

N-' Maxs a panel data unit root test statistic is given by 

VN{Maxi 
- E(Maxi)} 

Var(Maxi) = Max, (4.8) 

which is compared with critical values from a standard normal distribution. " 

The validity of this approach is established in the following Proposition. 12 The 

proof is outlined in Appendix 4. A. 

Proposition 4.3.1 Suppose yit are generated by (4.2) With p; = 1. Further 

10We interchange the notation of the individual t-statistic t{ with that of DFf, to comply 
with the notation of the Max test as initially introduced in chapter two. The subscript f+ 
indicates that the statistic is based on the forward regressions of (4.6). 

11The subscript s is used throughtout to denote "standardized". 
12It is referred to as a proposition, as the underlying assumption of the existence of finite 

moments for DFj; and DFrt is based on IPS's conjecture that has not been formally proved. 
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assume that the errors -it are independent and identically distributed across i= 

1,2, ..., 
N. Then the statistic (4.8) tends to the standard normal variate as N -º 

00. 

We now turn to the weighted symmetric estimator and the associated t- 

statistic, WS. As mentioned in the previous chapter both the WS and MAX sta- 

tistics exploit the time reversibility property of stationary autoregressive processes, 

namely that a stationary autoregressive series can be given either a forward or a 

backward representation. 
Consider the first-order stochastic difference equation 

Yit = a= + Psyi, t-i + ¬it, i=1, ..., N; t=1, ..., T (4.9) 

where az - (1 - pjj. The forward representation of such a series is given by 

Yit = a1 + Piyi, t+l + uit. 

The weighted symmetric estimator of the autoregressive parameter pi for each 

individual unit i follows from minimizing the following weighted sum of squares 

of the estimated 6jt and uit 

T T-1 

Q(Pi) =E wt (Pit -pi, t-i)2 + E(1- wt+i) (pit - Pipit+i)2 
t=2 t=1 

T 

where Pit = yit -T1L yit and wt = 
t- 1 
T 

t=l 
The weighted symmetric estimator is given by 

Pews = 

T 

1 it9i, t-1 t=2 
T-1 T 

,2 ,2 y g+7' 
t=2i, t t=1 

and the corresponding t-statistic is obtained by running (4.9) over each individual 
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cross-section unit in the panel 

T-1 T 

WS( ( 
i=ý; ws lpiws - 1)l y+ T_1 y )1/2 

t=2 t=1 

where Q2'ws - Q(Pzws)I(T - 2). 

For further details on the individual WS1 statistics, the reader is referred 

to chapter three where WSs is equivalent to WS without the subscript i. The 

ensuing panel data unit root statistic is obviously 

{WS - E(WS; )} 
- Var(WS2) 

WSe (4.10) 

Limiting null standard normality of this statistic can be established along lines 

just followed, as simulation evidence establishes the existence of second moments 

of WSi for precisely those sample sizes found for t; by IPS. 

Finally, a more powerful variant of the Lagrange Multiplier statistic, the latter 

originally introduced by Solo (1984), can be found. This is based on forward and 

reverse regressions, as above, which yield the statistics LM1 and LM,.;. However, 

noting that these are necessarily positive (see Schmidt and Phillips, 1992), tests 

are based on their minima Min; = Min(LM1, LM,, ). In particular, consider 

once again model (4.2) as the data generating process. For each i, the following 

two regressions are run. 

(1) Restricted regression with (pi =0 

Dyit = äi + Fit 4.11) 

(2) Auxiliary regression 

c~ t =a -I- viyt, t-i + E. (4.12) 

Then, the Langrange multiplier statistic denoted by LMf, for testing co =0 
22 
i, where Rf, is the square of the correlation coefficient from the auxiliary is TR f 
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regression (4.12). The LM-bar statistic is given by 

N 

LM- TLMf;. 
i=l 

Considering the reverse series zit, the corresponding reverse regressions are 

given as follows. 

(1) Restricted regression with (pi =0 

Ozx = äf + Fit (4.13) 

(2) Auxiliary regression 

Ezt = äa + Wizi, t-i + cat' (4.14) 

where the Lagrange multiplier statistic in this case is LMri = TR2. and RTis ; 
the square of the correlation coefficient from the auxiliary regression in (4.14). 

N 

The test statistic is then, with Min = N-1 Mini, 

{Min - E(Min; ) } 
Var(Minj = Min,. (4.15) 

The following theorem establishes the limiting standard normal null distribution 

of this statistic. The proof can be found in Appendix 4. A. 

Theorem 4.3.1 Suppose yit are generated by (4.2) with p; = 1. Under the as- 

sumption that the standardised errors ei/vs are independent and identically dis- 

tributed across i=1,2, ..., N, the statistic (4.15) tends to the standard normal 

variate as N -+ oo. 

In the case where the the null generating process incorporates a non-zero drift, 

and the alternative contains a linear trend, following Bhargava (1986) we consider 
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the model 

Yit =6+ µit -I- Xzt 

xit = Pixi, t-1 + Eit, i=1, 
..., 

N; t=1, 
..., 

T 

which can be written as 

Yit = i(1 - Pi) + Pipi + µi(' - Pit + P11Ji, t-1 + cit 

where eit are independently distributed across units and over time. By setting 

µi we obtain 

Yit = µi + I-ti(l - Pit + PiYi, t-i + Cit. (4.16) 

Specifying the data generating process as in (4.16) allows to evaluate the 

ability of the tests to reject the null hypothesis of a unit root against the trend 

stationary alternative where the rate of trend is the same under the null and 

alternative hypotheses. 

The estimated model then becomes 

1 Yit = ai + Pit + cc yi, t-i + cit. 

The preceding test statistics are calculated in exactly the same way as in the 

intercept only case, with the time trend variable included in both the forward 

(4.6) and reverse regressions (4.7) for the Max, statistic and in the restricted 

(4.11), (4.13) and auxiliary regressions (4.12), (4.14) for the Min, statistic. For 

the W S8 statistic the series yit is detrended and yat becomes ytit = yit - ai - bit. 

The limiting distribution for all statistics can be shown as above to follow the 

standard normal distribution. Similarly so for the case of serially correlated 

errors. In such an event the corresponding augmented Dickey-Fuller regressions 

are adopted with Maxi - Max(ADFfi, ADFrs) and Min{ - Min(LM! 
� LM,., ), 

where LMf;,, LM,.; are adjusted as in footnote 9. Details on the derivation of 
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the individual WSi statistic in the case of lag-supplementation can be found in 

Appendix 3. A of chapter three. The values for the mean and variance of the 

Max; , WSS, Mini, ti and LMG statistics depend on T and the lag order k and 

are computed via simulations from independent normal samples. 13 Tables 4.1(a) 

and 4.1(b) provide such values for T= 115,25,50,75,100} and k= {1,2,3,4}. 

The requirement that NIT --> q as T --+ oo and N --> oo is needed in order for 

the Max., W S8 and Min, tests to be distributed asymptotically as a standard 

normal variate. 

4.4 Allowing a Common Time-Specific 

Component 

The above results were derived under the assumption that the disturbances ei, 
in (4.2) are independent across units, which implies that the error covariance 

matrix E, is diagonal. One way of relaxing this assumption common in the panel 

literature is to allow for the presence of a single aggregate common factor which 

has an identical impact on all the individuals in the panel. We can think of the 

error term in this case consisting of a stationary time-specific common effect vt 

and an idiosyncratic random effect est. 

In such an event, (4.3) becomes 

Ayit = ai + Viyi, t-1 + uit, 

Uit = Vt + ¬it (4.17) 

13The mean and variance of the individual test statistics are computed using 50,000 repli- 
cations under the data generating process given by yc = yi_1 + et, yo =0 et N(0,1), 

k 

t=1,2, ..., 
T. For every replication b we estimate the model Dyt = a+Vyt_1 + Cf pyt_ f . }. Vt, 

t=k+2, k+3,..., T and obtain the Maxibl , WS; °), MinL°M+, t{°) and LM{ °l statistics for 

0. The quantities of interest are then calculated as E TS = 
#reP i°> testing ýp =q( t) ° 
#E rep 

and 
b=1 

#Tep 6 
Var(TSi) =1E (TS; 1- E(TSS))2, where TS; is the corresponding test statistic. Similarly 

°=1 

so for the case of a time trend, where a in the above regression equation is replaced by a+ ßt. In 
calculating the mean and variance of the test statistics Max;, WS;, Min{, t{ and LM{ we have 

made use of the assumption that the error terms are independent across groups, and therefore 
these values will be the same across individuals. It should also be noted that our results are 
not directly comparable with IPS as their "T" would in effect be T-k-1 in our notation. 
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where vt is generated by some stationary process whose disturbance term is inde- 

pendent of cit, and eut itself is independently distributed across time and units. 14 

The adverse effects of cross-section correlation of this type have been reported by 

O'Connell (1998), who finds that failure to control for such can lead to spurious 

rejection of the unit root null. 

The typical procedure in removing the common component vt in order to 

apply the panel unit root tests of the previous section that are valid when the 

disturbances are independent across units, involves subtracting the cross-section 

averages from the data. Then, equation (4.17) becomes 

A it = äi + cPigi, t-1-+' rift (4.18) 

NN 

where git = yet - N-' F, yjt, äi = ai - N-' F, aj and 
9=1 j=1 

NN 

ýJýe = N-1 E(v 
- co )yy, t-i + (¬it - N-1 E Ejt). (4.19) 

j=1 1=1 

Under the null of a unit root where cp; =0 Vi it follows that 

N 

izt = ctt - N-1 E -jt" 
j=1 

It is apparent from the above that the act of cross-section demeaning intro- 

duces dependence across the errors reit in the demeaning regressions (4.18) and 

thus Proposition 1 and Theorem 1 will not be applicable in this context. In 

the case however where the idiosyncratic effects, sit, are serially uncorrelated 

IPS prove that the LM-bar test is asymptotically distributed as standard normal 

under the null as N --. 00.15 In the same way, the Max� Min, and WS5 test sta- 

tistics can be shown to follow asymptotically the standard normal distribution. 

14If the variances across the units of the panel are about the same, i. e. o vf, then it 

can easily be seen that the (N x N) covariance matrix E(utut), where ut = (ult, u2t, ... 9 UNt)', 

produces after standardization a correlation matrix whose off-diagonal terms are identical. Thus 

the cross-section units are correlated to the same degree. 
15It is easy to show that for large N the off diagonal elements of the (N X N) covariance 

matrix E(77t't), where rat = (7710772t, ..., rlNt)', are zero. 
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The panel unit root tests based on the demeaned regresssions, (4.18), will be 

robust to general but common patterns of residual serial correlation across the 

groups. 16 Moreover, it should be pointed out that if countries are groupwise 

highly correlated then the removal of the global mean from each series will do 

little to reduce the amount of cross-sectional dependence that is present. 

Though restrictive in nature, cross-sectional dependence of the former type 

provides an interesting starting point for such an important issue regarding panel 

data before we follow up the more realistic case of cross-section correlation of a 

heterogeneous form. 

In the simulation study that proceeds we investigate both the case of indepen- 

dent cross-section units and that of a common time-specific effect included in the 

model of interest. In the event of the latter, any effects induced by cross-section 

demeaning are expected to be uncovered. To make earlier results operational, we 

briefly describe the procedure involved in the computation of the test statistics. 

In the first instance the ADF(k) regression is selected. In the presence of cross- 

section correlation of the type illustrated above we subtract the cross-section aver- 

ages from the data in order to remove the common component. The Max;, WSi, 

Min;, ti and LMs statistics for each group are then obtained and the group aver- 
N 

ages Max, WS , Min, t and LM are computed as Max = N-1 E Max;, WS 
NNNN 

N-1 WSi, Min = NMinLM;, N-1 E ti and LM = N'1 LMs, 
i=1 i=1 c-1 t=1 

respectively. Subsequently, the group averages are standardized using the values 

of the mean and variance of the Maxs , WS;, Mini, t; and LM; statistics pro- 

vided in Tables 4.1(a) and 4.1(b). The resulting statistics are then compared to 

the critical values of the standard normal distribution for one-sided tests. 

4.5 Some Simulation Results 

In this section we present the results of Monte Carlo simulations to judge the 

finite sample performance of the modified test statistics. Initially we investigate 

the case where the errors are independent across units, both in the presence and 

absence of serial correlation. Results then follow for the case of cross-section 

16In simulations that follow it will be seen that any effect of cross-sectional dependence across 
the error terms induced by the act of demeaning is minimal for small N. The same applies 
when allowing for somewhat different patterns of residual serial correlation across the groups. 
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correlation of the type described in the previous section. To complement the 

tabulated simulation results, empirical power graphs of the tests are presented in 

the base case where the errors are independent both across units and across time. 

The performance of the LM-bar (LM8) and t-bar (i, ) tests are reported for means 

of comparison and completeness. For all experiments we report both the size and 

the power of the test statistics for different combinations of N and T. A total 

of 5000 and 2000 iterations are used respectively in computing the empirical size 

and power of the tests, at N= 15,10,25,50,100} and T= {15,25,50,75,1001. 

Nominal size for the simulation results was set at 0.05. 

For the first set of results, where the errors are independent across units, we 

consider the following data generating process 

Yit = (1-Pi)Fp-i+piiyi, t-1+eit; eit = AiEi, t-1+eiti i=1, ..., 
Nit = 1, ..., T 

(4.20) 

where Eit is generated as a stationary process independently distributed across i= 

1, ..., 
N and eit"N(0, q2). 

The remaining parameters that control for the effects of heterogeneity across 

groups and the serial correlation of the disturbance term are generated in the 

following manner once and for all at the initial stage of the experiments and are 

held fixed throughout 

p. N(O, 1) 

)i`U(0.2,0.4) 

Qs'U(0.5,1.5) 

The null hypothesis considered involves testing 

Ho: p; =1, foralli 

against 
Hl : p; < 1, for at least one i 

While the tests permit different values for p; under the alternative, our power 

comparisons are based on pi = 0.9 V i. To obtain samples which closely resemble 

stationarity under the alternative we generate T+ 200 observations and discard 

118 



the first 200. In this case the initialization becomes unimportant and we choose 

zeros for the initial values. 

To compute the unit root test statistics we estimate the following ADF re- 

gression for each individual series 

Dyne = ati + Viy=, t-i -t' 

k 

(aj0yi, t_j + residual 
j=1 

(4.21) 

We further allow for the presence of heterogeneous trends under the alternative, 

in which case the generating process is taken to be 

yit = µi + (1 - Pi)liit + Pi2Ji, t-i + sit, i=1, ..., N; t=1, ..., T. (4.22) 

The corresponding estimated model is 

Dyit = ai +, Oct + ýoayz, t-i -I- 

k 

k (ijAyi, t_j + residual (4.23) 

For the second set of results that allow for a common time-specific component 

we consider the data generating process 

Yit = (1-Pjµi+Piyi, t-1+uit; Uit =Vt+Eit; i=1, 
..., 

N; t= 1, 
..., 

T 

(4.24) 

where vt is the common time-specific effect and ctt is the group-specific random 

component. The former is generated as the stationary process 

vt = 0.9vt_l + Wt, wt-N(0,1) 

with wt independent of ett, while the rest of the parameters are generated in 

exactly the same manner as above. The main difference is that in computing the 

unit root test statistics the following ADF regression is run for each individual 

series with cross-section averages subtracted from the data, in order to remove 
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the common time-specific effects vt. 

k 

L7= äz + waya, t-i + E_ijAyi, 
t-1 + residual (4.25) 

j=1 

N_NN 

where yzt = Yit - N-1 E yjt, at = a1- N-' E a1, (tj = (tj - N-1 E Cqj. 
j=1 j=1 q=1 

When allowing for heterogeneous trends we consider the data generating 

process 

yit = µi + (1 - Pi)µit + Piyi, t-l + uit, i=1, ..., N; t=1, ..., T (4.26) 

and the estimated model is 

A 
it = 

Cli 
'i" 

ýit + Wi9i, t-1 '+' 

k 

E_ijA gi, t_j + residual 
j=1 

(4.27) 

Tables 4.2(a) and 4.2(b) summarize the results for the case of independent 

cross-section units when fixed effects only and when deterministic trend com- 

ponents are included in the model, respectively. Similarly, the results in the 

presence of a common time-specific component are summarized in Tables 4.3(a)- 

4.3(b). The layout of the tables is the same for both cases. The size and power 

of the tests are reported as measured by the empirical frequency with which the 

null hypothesis is rejected using the nominal one sided 5% critical value of the 

standard normal distribution. 17 

To evaluate the size of the tests in the case where fixed effects only are included 

in the data generating process, we set p; =1 in (4.20) and (4.24). Similarly so for 

(4.22) and (4.26) when heterogeneous trends are included. In evaluating power, 

we set pi = 0.9 ̀ d i in the same models. Columns four and five in the tables give 

the size and power of the tests in the benchmark case where the errors, eit, are 

uncorrelated, which corresponds to setting a; =0 in (4.20), (4.24) and (4.22), 

(4.26) and k=0 in the estimated models (4.21), (4.25) and (4.23), (4.27) for the 

The upper 5% tail of the standard normal distribution is used for the LM based statistics, 

while the lower is used for the remaining tests. 
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case of a constant only and trend term, respectively. The ensuing columns report 

results in the presence of residual serial correlation for autoregressive lag lengths 

of k=1,2,3,4, in order to assess the sensitivity of the tests to overspecification. 18 

We do not report the results for k=0 as in IPS, since the findings corroborate 

what holds in the single series case namely, underspecification of the lag length 

relative to the DGP leads to very undersized tests. 

We begin by commenting on the results that correspond to the simplest case 

where the errors are independent across units and a constant only is included in 

the model as displayed in Table 4.2(a). When the errors are serially uncorrelated 

results in column four under the heading Ai =0 and k=0 show that for a 

given T and N all tests have empirical sizes reasonably close to nominal size. A 

noteworthy feature regarding the power results given in the adjacent column is 

the considerable power advantage enjoyed by the WS� Max, and Min, tests 

relative to the is and LM8 tests. In general, for fixed T and as N increases 

all tests demonstrate higher power which justifies the use of panel data. The 

power increase due to an increase in the time-series dimension is larger than the 

corresponding increase in N as found in most simulation studies of this sort that 

deal with panel data. The overall performance of t8 is superior to the LM, test 

in accordance with the results of IPS. Of the modified panel unit root tests, it 

is the WS, test that outperforms all remaining tests in terms of power with the 
Max test very close in performance. In particular, for N= 25 and T= 25, 

the power of WS, is 0.906 while, the powers of Max� T. and Min, are 0.846, 

0.519 and 0.735 respectively. The corresponding sizes are 0.054,0.056,0.055 and 

0.060. Power gains of WS. over t, are on average in the range of 25%, and are 

particularly striking for moderate values of N. 

A slightly different picture emerges when the errors are considered to be seri- 

ally correlated as follows from the results in subsequent columns of Table 4.2(a). 

When the correct model k=1 is selected, results show that in the case of small 

T or large T and small N the LM, and Min, tests tend to be slightly oversized. 

On the other hand, for small values of T and as N increases the Max, and WS, 

tests appear undersized, a phenomenon which is somewhat more discernible in 

the case of the former test. However, as T increases past the value of 25 correct 

1S We impose without loss of generality the same order of augmentation in the ADF regression 
for each group for simplicity, although this can easily be relaxed. 
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size fairly quickly restores for both tests. On the whole, results are in agreement 

with asymptotic theory's prediction that the tests should keep nominal size well 

when N is large. Increasing the number of lags in the ADF regressions produces 

mild size distortions for small T in the case of the LM based tests. However, for 

larger T adding extra lags has trivial impact on the size of the tests. 

Regarding power, once again results highlight two statistics that consistently 

outperform the remaining, namely the WS, and Max, tests. The power of the 

WS-,, 
, Max9, and Min, tests rises considerably relative to that of to and LM, 

as the cross-sectional dimension of the panel rises. In particular, for T= 25 and 

N= 25 and when the estimated model is correct the powers of WS, , Max, and 

Mina are 0.760,0.700 and 0.604 respectively, relative to that of 0.437 and 0.386 

for T, and LM,. Moreover, the test statistics suffer only a moderate reduction in 

empirical power at the five-percent level when the true lag order is overstated. 

In general, the tests have better small sample properties when both N and T 

are of comparable size allowing us to confirm the relevance in finite samples of the 

requirement N/T -+ q as N, T -º oo that underpins their asymptotic validity. 

When heterogeneous trends are included in the autoregressive models, results 

as illustrated in Table 4.2(b) appear to be qualitatively similar to the preceding 

fixed effects only case. However, once the deterministic component is elaborated 

to include a trend term there is an apparant decrease in the power of all tests, 

which is particularly noticeable for moderate values of T and N. A similar 

phenomenon is encountered with conventional unit root tests. Thus, power gains 

are now less substantial. An alternative feature worth noting is that all tests have 

almost correct size even for small T in the case of serially correlated residuals. 

Turning to the case of a common time-specific component, Tables 4.3(a) and 

4.3(b) show that a similar picture holds, qualitatively and quantitatively, as under 

the assumption of independent errors. To avoid repetition we merely point out 

the implication of such a result. The act of cross-sectional demeaning works well 

for small N. Any potential consequences induced by the non-diagonality of the 

covariance matrix of the residuals on the size and power of the tests for N as 

small as 5, appear to be trivial. 

Empirical powers of the tests for various combinations of N and T are illus- 

trated in Figure 1. They correspond to the benchmark case of no serial correlation 

present in the errors when a constant only is included in the model, complement- 
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ing the results in Table 4.2(a). 19 Consistency of the tests shows up well in the 

graphs with power increasing monotonically with p for fixed N and T. Similarly, 

for fixed p power tends to unity as N and T tend to infinity. The superior power 

performance of the W S8 test is easily observed for all values of N and T, with 

the Max, test appearing nearly as powerful. From the simulation results for al- 

ternative values of the autoregressive coefficient pi not presented here, it follows 

that in general when the power of the WS8 test is in the range of 50% the power 

of the t8 and LM8 tests is 20% lower. This result indicates a substantial gain in 

mid-range power being achieved over the IPS tests and better overall power in 

distinguishing alternatives closer to the null. 

To summarize our results, it turns out that whether in the absence or presence 

of cross-section correlation in the residuals the modified panel test statistics offer 

dramatic power gains over the standard t-bar and LM-bar tests. In particular, the 

W -S, test outperform the others in the sense that it does not present important 

size distortions and it demonstrates considerable power even when the true lag 

order is overstated. Thus, the weighted symmetric estimator as in the case of a 

single time series, when adopted in the panel framework it provides higher power 

than the t-bar test for models in which the alternative is a stationary process. 

The Max, test displays power in the same range as WS, and therefore little 

would be lost in applying one or the other, the former having the advantage that 

it is easier to compute. 

Finally, it should be noted that although the alternative hypothesis is specified 

as at least one of the autoregressive parameters pi less than one, our simulation 

study has been limited to the case where all the series are stationary under 

the alternative. Maddala and Wu (1999) and Karlsson and Löthgren (1999) 

investigate the behaviour of the LL and IPS tests when a subset of the series is 

stationary and the remainder have unit roots. The latter point out the potential 

risk for small T panels, of the whole panel being erroneously modelled as non- 

stationary due to the relatively low power of the tests even for large proportions 

of stationary series in the panel. We would expect the adoption of the above 

modified panel unit root statistics to reduce the risk involved in such a situation, 

benefiting from their increased power properties. 

19 We omit the case N=5 as no interesting power differences are discernable 
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4.6 Bootstrap Tests with Application to 

Purchasing Power Parity 

As recently noted in the literature, cross-sectional correlation of a more com- 

plicated nature than that accounted for by common time-specific components is 

often encountered in many panel data sets in macroeconomics, international eco- 

nomics and finance. 20 Maddala and Wu (1999) report substantial size distortions 

for the LL, IPS and Fisher tests in such an event and resort to bootstrap meth- 

ods to derive the empirical distribution of the unit root test statistics. Following 

these authors, we adopt the bootstrap in an application of the proposed panel 

unit root tests to real exchange rate data. 21 We anticipate the use of the more 

powerful tests to point to sharper conclusions regarding the stationarity of the 

particular time series. 

We use quarterly data extracted from the OECD Main Economic Indicators 

over the period 1973: I-1998: IV following the collapse of the fixed exchange rate 

system. 22 Nominal exchange rates and consumer prices have been selected for 

18 OECD countries namely Australia, New Zealand, Austria, Belgium, Canada, 

Denmark, Finland, France, Germany, Italy, Japan, Netherlands, Norway, Spain, 

Sweden, Switzerland, UK and the United States. All variables are measured in 

20An alternative multivariate test for unit roots has been adopted in the literature by Abuaf 

and Jorion (1990) and Taylor and Sarno (1998), which accommodates an arbitrary pattern 
of contemporaneous cross-sectional dependence. The so-called SUR test is based on systems 
estimation of autoregressive processes with each cross-section unit constituting an equation, 
forming in this way a system of seemingly unrelated regression equations 

Yit = j1t + Pcyzt-i + Eßt, i=1, ..., N; t=1, ..., T 

where E[e e; ]=n and e; =(e, l, e; 2, """, e T)" Estimates of the parameters are obtained by iterating 

the feasible GLS procedure, where in every iteration the residuals of the seperate regressions 

are used to update the elements of the covariance matrix f2. However, the estimators can be 
difficult to compute as they require matrix inversions whose orders can be quite large depending 

on the number of individual units. Therefore, it is only of value when T is large and N is small. 
Empirical applications typically limit the number of cross section units N, in order to achieve 

computational feasibility. 
21The bootstrap method to a large extent is employed to improve inferences for estimated 

models for which available asymptotic theory may be expected to be unreliable. Indeed consid- 

erable improvement over the asymptotic results is possible when the underlying statistics are 

asymptotically pivotal (see Beran, 1988). In the present context the method is appropriate as 
the distribution of the test statistics in the limit is not invariant to the covariance matrix of 
the error terms. The method rests on the idea of using a single data set in a similar to the 
Monte Carlo set up, in which the data themselves are used to approximate random quantities of 
interest in the model. For a detailed outline of the bootstrap see inter alia Efron and Tibshirani 

(1993) and Veall (1998). 
22 We investigate the period up until the introduction of the single currency (January 1, 

1999) as from then on the countries participating in the Monetary Union, a number of which 

are included in the panel we investigate, lock their currencies together at a fixed rate. 
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natural logarithms. We calculate the real exchange rate of each country relative 

to the US dollar according to si+p,, s-pi, where si is the logarithm of the nominal 

exchange rate against the US dollar, p; denotes the logarithm of the consumer 

price index in country i and pus denotes the logarithm of the consumer price 

index for the United States, obtaining in this way 17 bilateral real exchange rates 

as the variables of interest. 

A graphical inspection of the real exchange rates for several countries as shown 

in Figure 4.2 reveals a common structural break occurring around 1985.23 While 

this is the case for the majority of the countries, for expositional clarity we re- 

strict ourselves to the illustration of only a subset. As our main purpose is in 

demonstrating the superiority of the modified panel unit root tests that are not 

specifically designed to account for structural breaks, we would like to avoid 

plaguing our results with the potential adverse effects of what looks like a severe 

break. For this reason our investigation covers the period 1987: IV-1998: IV, with 

a total of 45 observations, allowing for the foreign exchange market to absorb the 

repercussions of that year's event. Thus, in the notation previously employed, 

we have N= 17 and T= 45. The null hypothesis of interest is that the gener- 

ating process for all yit, i=1,2, ..., N contain a unit autoregressive root. Since 

stationarity around any linear trend with non-zero slope would not be consistent 

with the economic content of the relative purchasing power parity hypothesis, 

our test equations include a constant but no slope term, corresponding to part 

(a) of Tables 4.1-4.3. 

We begin the analysis by fitting to each individual series ADF-style regressions 

1yit = ai + co yz, t-i +> (jj' y;, t-1 + eit (4.28) 
1=1 

where different orders k; are permitted for each series, and these were chosen 

according to the general-to-specific testing procedure at the 10% level of signif- 

icance. Table 4.4 illustrates the correlation matrix of the ADF residuals across 

countries. While the variances of the generated residuals eie appeared to differ 

23Within the history of flexible exchange rates such a date corresponds to the intervention of 
the large industrial countries (US, Japan, Germany, Fiance and UK) in the foreign exchange 

market in an attempt to bring the dollar down, which was agreed to have risen too much. This 

endeavour was subsequently achieved. 
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only negligibly, their cross correlations are far from equal. This latter finding 

is unsurprising as some subsets of the countries in the sample retained over the 

period relatively strong currency linkages, as for example some of the members 

of the European Union. 24 Thus, while cross-section correlation exists, following 

from inclusion of the common US benchmark, it appears not to be of the special 

type that can be accounted for using the procedures of Section 4.4. We employ 

instead a bootstrap approach, the steps of which are described below. 

1. Determine the order (ki) of the autoregressive process for each cross-section 

unit. For this purpose we adopt the general-to-specific approach which is es- 

sentially a recursive t-statistic procedure that tests the significance of the last 

coefficient based on the 10% value of the asymptotic normal distribution. As dis- 

cussed by Campbell and Perron (1991) and Ng and Perron (1995), this procedure 

has better size and power properties than alternative information-based model 

selection methods. 

2. Estimate the residuals from the following regression 

k; 

Ayit = (ijDyy, t-, i + sit, 
i-i 

t= ki + 2,..., T; i=1, ..., N (4.29) 

where k; is the lag order of the individual cross-section unit determined above. 25 

3. Recenter the estimated residuals et = (Ilt, ? 2t, ..., 
ENt)' from (4.29) in the 

following manner 

T 
E et, t=k+2,..., T 

t=+2 

where it = (elt, '2e, ..., 
iNt)' and k= max(ki). This ensures that the mean of the 

resulting residuals remains zero as a constant term is not included in (4.29), avoid- 

ing possible distortions of the bootstrap estimates (see Stine, 1987 and Berkowitz 

24One might for example expect more correlation for France and Germany than, for example, 
Canada and Japan. 

25We estimate the regression by least-squares as is commonly the case. Fleissig and Strauss 
(1999) adopt iterative SUR as a more efficient procedure in the presence of contemporaneous 
correlation. However, we believe that the computational burden involved in SUR estimation 
particularly when N >_ 5 will outweigh the any efficiency gains achieved, thus not making the 
use of such an approach worthwhile. 
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and Kilian, 2000). 

4. Generate bootstrap innovations ct = (el*t, c2t, ..., eNt)' by resampling with 

replacement from the empirical residuals it keeping the cross-section index fixed 

in order to maintain the correlations within each cross-section unit. This ensures 

that E* [et t= E, where E* denotes the expectation under bootstrap sampling, 

that is, the expectation relative to the empirical distribution of the estimation 

data and E is the (N x N) estimated covariance matrix of the recentered residuals, 

while E* [et ]=0. 

5. Generate the bootstrap sample yt as 

yc=Yt_i+Ut, yö=0, i=1,..., N; t=1,..., T 

with 
uit = (sjuz, 

t_j + 

3=1 

t=1, ..., T 

initialising by setting 

0*=Z, -, / 

;, uit )is-- t-aý 
s=0 

t= -(k; - 1), ..., -1,0 (4.30) 

where (ij are from the estimation results of (4.29). 26 

6. Apply the panel unit root tests of Section 4.3 to the bootstrap sample by 

estimating the model 

OJi't = ai + (C yi, t-1 ý' 
k; 

OijAy! t_j + residual 
5=1 

(4.31) 

and repeat the above steps 3-4 many times to obtain the p-values of the tests. 27 

26The bootstrap samples y, 't are generated with the unit root imposed. Basawa et al. (1991) 

show that if this is not the case the samples will not necessarily have the unit root property 
rendering the bootstrap procedure inconsistent. 

27The p-values are calculated as #(TS` > observed value of test)/B and #(TS' <_ observed 
value of test)/B for the LM based tests and the remaining tests respectively, where TS* is 

the corresponding boostrap test statistic for testing t. p =0 in (4.31) and B is the number of 
bootstrap iterations. The `observed value of the test' is the value of the test statistic from 

regression (4.28) computed for the given data series. 
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The starting values for ut in step 5 are built up from the estimated MA(oo) 

representation, ut= xP(L)eit , of the stationary AR(ki) process in equation 

(4.30). 28 To see how the estimated weights I(L) are obtained we write equation 

(4.30) in terms of lag operators as (1 - (i1L - (i2L2 - ... - (ik; Lk') it =t 

Omitting the index i for simplicity, it then follows that 

or 

(L)=, Go+, OiL+02L2+... =1/(1-CIL-(2L2-... -( ) 

(1 - (iL - 
(2L2 (kLk)(IGo + 01L + 02L2 + ... 

) =1 

Writing out explicitly the above equation leads to a recursive algorithm for gen- 

erating the MA(oo) weights zoo, 01,02,... for each individual cross section, where 

? pO = 1. To make such an exercise operational the infinite sum is truncated with 

m in equation (4.30) representing the truncation value. While there is no guide 

in the literature as to the appropriate value of m, Rayner (1990) in bootstrapping 

p-values in the stationary first-order autoregressive model, chooses m to ensure 

that the starting values are sufficiently close to their true distributions. Exper- 

imenting with various values of m, we find no significant effect of the choice of 

this parameter on the reported results. 

Furthermore, the initialisation of ut in step 5 involves generating in every 

bootstrap replication a new sample of (m + 1) bootstrap innovations et from the 

empirical residuals eit for each individual i. For every additional lag in (4.30) 

a further initial value is required decreasing the (m + 1) sample by one. As a 

result, an extra bootstrap innovation is generated each time and appended to 

the sample keeping it of a fixed size (m + 1) for any given lag and corresponding 

initial value. 
We applied the bootstrap approach to the real exchange rate data, employ- 

ing 5000 bootstrap replications, and computed p-values for the tests of the null 

hypothesis that the generating process for every series contains a unit root. The 

results are shown in Table 4.5. Row three reports the results corresponding to a 

truncation value of 30. We experimented with a number of alternative truncation 

2SAlternative methods of obtaining the initial values are mentioned in Berkowitz and Kilian 
(2000). 
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values, the results remaining virtually unchanged even for a value of 100 as seen 

in row four of the same table. Considering the number of observations available 

in our dataset, the maximum number of lags was set to km. = 4, although the 

results did not seem to be sensitive to a moderate increase in such value. Results 

indicate that by using the modified bootstrap panel unit root tests Max 
,WS 

and Min 
, the null hypothesis of a unit root in the real exchange rates for the 

set of countries investigated is strongly rejected at the 5% significance level. The 

conventional bootstrap t-bar and LM-bar tests, that ist and LM*, on the other 

hand fail to reject the null at the 5% level. 

It is tempting particularly given the results from more straightforward settings 

of Section 4.5, to conclude that the results of Table 4.5 simply reflect continued 

power advantages of the modified statistics in a bootstrap setting. In the ensuing 

section, we investigate through simulation whether the modified bootstrap tests 

do indeed possess additional power while retaining size reliability. 

4.7 Monte Carlo Results with Bootstrap 

Critical Values 

A set of Monte Carlo simulations follow in which the objects of interest are the 

bootstrap panel unit root tests. We seek to evaluate their finite sample size and 

power performance. 
The simulation experiments are based on data generated as in (4.20), that is 

Yit = Pi (Pi - 1) + Piyi, t-i + Eit (4.32) 

where cit follows an AR(1) process 

cit = Aici, 
t-1 + ett 

with µ1'N(0,1) and the AR coefficients Jai's - U(0.2,0.4). The only difference 

is that now the innovations eit are drawn from an N-dimensional multivariate 

normal distribution with mean zero and covariance matrix E, eit-N(0, E). The 
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parameter values for the (N x N) covariance matrix E= (ash) are drawn ran- 
domly, though in such a way as to ensure that E is a symmetric positive definite 

matrix so as to avoid the problem of near singularity. We briefly describe the 

procedure in generating E below. 

1. Generate an (N x N) matrix P= (pi, ), i=1, ..., N; j=1, ..., N where pij 

are drawn from the uniform distribution U(0,1). 

2. Construct from P an orthogonal matrix X= P(P'P)-1/2.29 

3. Generate a set of N eigenvalues . 1, )2, 
..., 

AN where Al =r and AN =1 

and the intermediate eigenvalues are generated from the uniform distribution 

U(r, 1). 30 

4. Create a diagonal matrix A with the eigenvalues on the diagonal. 

5. Obtain the covariance matrix E as the spectral representation E= XAX'. 31 

As before, the parameters of the data generating process were generated once 

and for all at the outset. The setup of the above experiment is designed to 

replicate the `heterogenous' residual cross-section correlation structure displayed 

by the exchange rate series as reported in the previous section. We derive the 

empirical size and power of the tests for different combinations of N and T, 

specifically N= {5,10,25} and T= {25,50} using 1000 Monte Carlo replications 

and 1000 bootstrap samples. Each bootstrap sample is generated following the 

steps as described earlier using the now simulated data as input. As in the 

previous simulations, we report the results for autoregressive lag lengths of k= 

1,2,3,4 so as to assess the sensitivity of the tests to overspecification. The lag 

order of the autoregressive process is specified a priori. 

In analyzing size we set pi =1 in (4.32), and in calculating power we set 

29The orthogonal matrix X arises as follows. We begin with the symmetric matrix PIP 

which we denote fl. Since ) is symmetric its characteristic roots are real. Providing they are 
also positive (i. e fl is a positive definite matrix) there exists a nonsingular matrix L such that 
n= LL', where L which can be considered as the "square root" of fZ is a lower triangular matrix 
with positive diagonal l elements. It follows that L-111L-1 =I and substituting L with f21/2 we 
obtain (fZ / )- SZ(SZ )- = I. Replacing ) with PIP we then get (pip) - 112pip(pip) -1/2= 
(p/p)-1/2p'P(P'P)-1/2 = I. From this last expression it readily follows that P(P'P)-I/2 

constitutes an orthogonal matrix. 
301n generating a positive definite matrix it is imperative that the corresponding eigenvalues 

be positive, while their scale is irrelevant. We therefore set AN =1 without loss of generality. 
For the parameter r we experimented with a variety of values, those close to one rendering the 
covariance matrix almost spherical, while those close to zero almost singular. In any case, the 
results were quanitatively similar and r was set to 0.1 throughout. 

31If the orthogonal matrix X is the matrix of eigenvectors, one for each eigenvalue 
Al 

9 
A2, 

..., 
AN, corresponding to the unknown matrix E then X diagonalises E, i. e. X'EX = A, 

where A is a diagonal matrix with the eigenvalues of E on the diagonal. 
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pi = 0.8 Vi. Table 4.6 reports simulation results for the bootstrap test statistics 

WS , Max , Min ,t and LM . The setup is as in Tables 4.2,4.3, except that 

the underspecified case k=0 is not included here. The correct lag specification, 

ADF(1), is taken as the most favourable situation for the tests with respect 

to dynamic specification. Results indicate that in general the bootstrap test 

statistics maintain correct size when N is small for all T. However, as N increases 

there is some tendency for the tests to be a little under-sized more so for smaller 

T, but generally confirm our findings in more straightforward cases. In most 

cases including additional lags in the model improves the size of the tests. 

When examining the power results, what stands out once again at first glance 

are the dramatic power gains offered this time by the modified bootstrap tests 

over the bootstrap t-bar and LM-bar tests. For a correctly specified model these 

are in the range of 25%. The bootstrap test based on the weighted symmetric 

estimator emerges as the most powerful of them all, albeit little there is to choose 

between this test and the Max test. The bootstrap tests are well-behaved in 

that their power tends to unity for fixed p, as N and T tend to infinity. The 

increase in power owing to the time dimension is greater than the corresponding 

increase in N. Furthermore, including additional lags in the model does not result 

in a sharp reduction in test power. In short, the modified bootstrap tests are a 

great deal more powerful than the unmodified tests. 

These results strongly support our conjecture that the stronger rejections 

obtained in Table 4.5 for the modified tests are a reflection of additional power in 

those tests. They supplement and strengthen findings in Oh (1996), Wu (1996) 

and Papell (1997). 

4.8 Conclusions 

Increasingly, panel data, often consisting of relatively short series, are available 

for analysis, and an issue of considerable interest concerns the reversion or oth- 

erwise of series to a fixed mean or trend. This issue can be addressed through 

an extension of commonly applied unit root tests, such as the Dickey-Fuller test. 

However, it has become well recognised in the basic time series context that more 

powerful modifications of commonly applied unit root tests are available. We have 

seen in this chapter that such increased power persists when two simple modifi- 
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cation principles are applied to panel data unit root tests. To this end, modified 

panel unit root tests were introduced and the resultant test statistics were shown 

to follow asymptotically a standard normal distribution as is customary in the 

panel context. 
An extensive Monte Carlo simulation study was conducted to investigate the 

small sample properties of the proposed panel unit root tests, when the residuals 

were assumed independent across units as well as in the presence of a common 

time-specific component. Results were fairly similar in both cases, qualitatively 

and quantitatively. In particular, the size of all tests appeared in general to be well 
behaved apart from the LM based tests which were found to be slightly oversized 
for small T, mainly when the true lag was overstated. In the same situation, 

the Max,, and W S8 tests appeared to be somewhat undersized for small T and 

increasing N. However, this phenomenon fairly quickly restored with increasing 

T. The most striking finding were the substantial power gains offered by the 

modified tests over the unmodified tests. In estimating autoregressive models 

with additional lags the tests were found to suffer only a moderate reduction in 

test power. 

On the whole, considering the trade-off between size and power, the WS. 

test was found to outperform the other tests in that it did not show important 

size distortions while it demonstrated considerable power even in the case when 

the lag order was overstated. Little should be lost in applying the Max, over 

the WS, test in empirical applications as their power differences are very small 

and the former has the advantage of being easier to compute. When a linear 

time trend was included in the model the power gains of the modified tests were 

less pronounced, as in the case of conventional unit root tests for a single time 

series. Nevertheless, these gains remain worthwhile as and both N and T are 

required to be sufficiently large for reliable inference to be conducted. Similar 

results followed, qualitatively and quantitatively, when a common time-specific 

component was allowed for in the model. 

As an illustration, the modified panel unit root tests were applied to the real 

exchange rates of 17 OECD countries using the bootstrap method to accom- 

modate the heterogeneous nature of cross-section correlation that appeared in 

the data. Results showed evidence against the unit root null when the modified 

panel unit root tests were employed, while the standard t-bar and LM-bar sta, - 
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tistics failed to reject the null at the 5% level. The finite sample performance 

of the bootstrap tests was investigated through simulation. The tests appeared 

moderately undersized as the number of cross-section units N increased, a phe- 

nomenon which subsided with increasing T. An interesting finding was that the 

modified tests retained the significant power gains over the standard t-bar and 

LM-bar tests demonstrated in the simpler cases. The Monte Carlo evidence on 

the modified test statistics provided further support in favour of the results de- 

rived from the empirical application, where the unit root hypothesis was found 

to be rejected for the real exchange rate series for the period under investigation. 
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Appendix 4. A Mathematical Proofs 

Proof of Proposition 4.3.1. Since ctit is assumed independent and identi- 

cally distributed with mean zero and finite heterogeneous variance a%?, DFfj is 

independent and identically distributed across i=1, ..., N. Similarly so, DFrs 

is iid across i=1, ..., N under the same assumption for czt, which implies that 

Maxi - Max(DFf;, DFr; ) is also iid. Therefore, we only need to show that 

E(Max? ) < oo in order to apply the Lindeberg-Levy CLT. If we assume that 

the second moment of DF1 exists following IPS, then it in turn implies that the 

second moment of DFrj also exists under the null hypothesis that pi = 1. This is 

because the reverse series zit is the same kind of pure random walk as yit under 

the null and DFrj is based on the same type of regression as DFf; using zit instead 

of yit. Then, we have that 

IMaxil < IDFf: I +IDF*; I 

which implies 

Max,? S (IDFi: I +IDFriI)2 

and so 
E[Maxi]< E[(I DFf: I + IDFi1)2]" 

By Minkowski's inequality 

(E[(I DF1; I+ IDF*: I)2])1/2 < (E[DFf, ])1/2 + (E[DF, 1) 1/2 

Taking squares on both sides of the above inequality 

E[(I DFl1I + I1)1 ri I)2] :5 ((E[DFI ])1/2 + E([DF, ])1/2)2 

and thus 
E(Max? ) ý ((E[DFfý])1/2 + (E[DF, ])1/2)2 < 00. 

Then the result follows from the Lindeberg-Levy CLT.   
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Proof of Theorem 4.3.1. It is shown in IPS (1997) that LMf, can be 

expressed as a function of -i/ui, which under the assumption that ei/cj is inde- 

pendent and identically distributed across i=1,2,... ' N implies that LMf; is also 

iid. In a similar manner, LMT; is iid under the same assumption, which implies 

that Mini = Min(LMf;, LMT; ) is also iid. Hence, as in the proof of Proposition 

1 we only need to show that E(ILM1,12) < 00. Since R2 is the square of a corre- 

lation coefficient bounded between 0 and 1, the second moment of LMf; = TR 2A 

exists for any finite T. By the same reasoning, it can be shown that the second 

moment of LM,, also exists for any finite T. Then, since 

Mint < LMf; + LM,, 

we have as above by using Minkowski's inequality that 

E(Min? ) < ((E[LMf, ])1/2 + (E[LMT ])1/2)2 < 00 

which completes the proof.   
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Appendix 4. B Tables and Figures 

Table 4.1(a) 

Means and variances of unit root statistics under the null hypothesis, constant only case 

k 0 1 2 3 4 

T mean var mean var mean var mean var mean var 

15 Min1 1.709 2.926 1.966 3.851 2.019 4.323 2.476 6.726 2.999 9.476 

LM; 2.731 4.351 3.121 5.541 3.367 6.733 3.977 9.478 4.717 12.857 

Maxi -1.019 0.802 -0.969 0.935 -0.753 1.031 -0.687 1.309 -0.446 1.638 

ti -1.514 0.933 -1.497 1.065 -1.358 1.219 -1.317 1.539 -1.166 2.080 

WS; -1.253 0.821 -1.297 0.895 -1.193 0.860 -1.242 0.976 -1.134 0.922 

25 Min; 1.765 3.338 1.911 3.886 1.898 4.042 2.107 4.953 2.159 5.505 

LM; 2.834 5.188 3.070 6.009 3.188 6.698 3.493 7.961 3.689 9.247 

Maxi -1.054 0.734 -1.023 0.797 -0.901 0.845 -0.874 0.918 -0.750 0.976 

ti -1.516 0.822 -1.503 0.880 -1.428 0.940 -1.408 1.010 -1.325 1.089 

WS; -1.211 0.794 -1.231 0.819 -1.163 0.817 -1.197 0.843 -1.140 0.831 

50 Min; 1.803 3.654 1.873 3.951 1.862 3.977 1.954 4.393 1.952 4.459 

LMi 2.941 5.952 3.064 6.459 3.109 6.764 3.258 7.330 3.309 7.763 

Maxi -1.073 0.690 -1.059 0.717 -1.002 0.742 -0.992 0.774 -0.936 0.795 

ti -1.526 0.754 -1.520 0.779 -1.481 0.810 -1.480 0.827 -1.435 0.866 

WS; -1.181 0.770 -1.188 0.779 -1.155 0.783 -1.166 0.797 -1.139 0.794 

75 Mint 1.827 3.806 1.872 3.980 1.856 3.986 1.920 4.258 1.915 4.273 

LMt 2.979 6.224 3.062 6.535 3.085 6.777 3.187 7.285 3.196 7.345 

Maxi -1.083 0.681 -1.073 0.697 -1.036 0.706 -1.031 0.729 -0.993 0.746 

ti -1.529 0.735 -1.526 0.747 -1.499 0.768 -1.500 0.783 -1.465 0.802 

WS; -1.172 0.769 -1.175 0.773 -1.154 0.774 -1.164 0.784 -1.139 0.790 

100 Mini 1.824 3.832 1.860 3.994 1.866 4.066 1.909 4.228 1.904 4.277 

LMG 2.988 6.424 3.052 6.733 3.092 6.927 3.162 7.196 3.179 7.321 

Maxi -1.082 0.673 -1.074 0.689 -1.052 0.703 -1.049 0.714 -1.021 0.726 

ti -1.526 0.730 -1.523 0.744 -1.510 0.760 -1.511 0.764 -1.490 0.775 

WS; -1.163 0.771 -1.166 0.777 -1.154 0.781 -1.164 0.780 -1.144 0.781 
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Table 4.1(b) 

Means and variances of unit root statistics under the null hypothesis, linear trend case 
k 0 1 2 3 4 

T mean var mean var mean var mean var mean var 

15 Min; 3.468 4.882 3.834 6.548 3.699 7.809 4.262 11.711 4.810 15.771 

LM; 4.427 5.363 4.982 7.005 5.156 8.866 5.940 12.660 6.726 17.012 

Maxi -1.785 0.808 -1.722 1.003 -1.422 1.121 -1.329 1.640 -1.008 2.675 

t; -2.163 0.883 -2.154 1.095 -1.948 1.278 -1.919 1.933 -1.735 3.500 

WSi -2.249 0.766 -2.374 0.798 -2.250 0.639 -2.308 0.668 -2.102 0.540 

25 Min; 3.689 6.090 3.927 7.219 3.837 7.740 4.118 9.576 4.058 10.723 

LM1 4.745 7.122 5.121 8.358 5.219 9.272 5.663 11.334 5.825 13.297 

Max; -1.824 0.693 -1.791 0.766 -1.639 0.810 -1.589 0.916 -1.415 0.995 

ti -2.170 0.732 -2.166 0.796 -2.059 0.843 -2.036 0.950 -1.911 1.046 

W S; -2.118 0.671 -2.191 0.670 -2.148 0.602 -2.206 0.586 -2.141 0.514 

50 Min; 3.867 7.164 3.991 7.751 3.938 8.016 4.127 8.942 4.061 9.187 

LMs 5.005 8.858 5.210 9.564 5.270 10.064 5.527 11.059 5.546 11.650 

Max; -1.849 0.617 -1.834 0.644 -1.764 0.666 -1.759 0.705 -1.682 0.726 

ti -2.173 0.637 -2.170 0.659 -2.128 0.677 -2.130 0.703 -2.070 0.729 

WS; -2.024 0.622 -2.058 0.612 -2.040 0.591 -2.086 0.586 -2.063 0.557 

75 Mini 3.947 7.731 4.030 8.132 3.995 8.220 4.095 8.681 4.059 8.897 

LM; 5.117 9.552 5.251 10.019 5.295 10.343 5.451 11.004 5.460 11.275 

Max; -1.860 0.605 -1.849 0.621 -1.806 0.629 -1.798 0.645 -1.753 0.655 

ti -2.178 0.611 -2.176 0.621 -2.150 0.629 -2.149 0.645 -2.113 0.649 

WS; -1.995 0.620 -2.017 0.612 -2.007 0.594 -2.033 0.580 -2.021 0.568 

100 Min; 3.973 8.010 4.038 8.317 4.014 8.384 4.089 8.706 4.071 8.818 

LM; 5.163 9.945 5.272 10.376 5.313 10.627 5.413 11.087 5.442 11.299 

Maxi -1.863 0.592 -1.855 0.606 -1.824 0.612 -1.818 0.623 -1.787 0.632 

ti -2.178 0.598 -2.177 0.610 -2.160 0.615 -2.155 0.628 -2.134 0.632 

WS; -1.977 0.617 -1.994 0.611 -1.990 0.595 -2.008 0.587 -2.002 0.577 
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Table 4.2(a) 

Empirical sizes and powers of panel data unit root tests at the nominal 5% level 

with no cross-section correlation, constant only case 
Ai =0 )f"U(0.2,0.4) 

k=0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

15 5 Ming 0.074 0.156 0.064 0.128 0.071 0.124 0.078 0.111 0.084 0.121 

LM, 0.062 0.103 0.062 0.093 0.063 0.096 0.064 0.091 0.077 0.099 

Max, 0.060 0.141 0.046 0.117 0.048 0.100 0.055 0.102 0.058 0.105 

7, 0.054 0.095 0.051 0.081 0.054 0.081 0.054 0.085 0.063 0.089 
W3 , 0.060 0.150 0.053 0.129 0.052 0.117 0.053 0.108 0.055 0.110 

10 7in, 0.059 0.200 0.066 0.179 0.070 0.139 0.075 0.129 0.088 0.109 

LM, 0.056 0.135 0.065 0.118 0.069 0.100 0.070 0.111 0.084 0.096 

Max, 0.050 0.219 0.045 0.168 0.040 0.132 0.050 0.132 0.049 0.106 

L 0.048 0.133 0.057 0.113 0.054 0.090 0.057 0.108 0.062 0.083 

W Sa 0.050 0.249 0.053 0.187 0.046 0.150 0.051 0.139 0.052 0.119 

25 M7n, 0.055 0.355 0.063 0.280 0.072 0.222 0.079 0.194 0.096 0.152 

LM, 0.056 0.201 0.065 0.195 0.077 0.155 0.091 0.151 0.090 0.138 

Max, 0.049 0.432 0.032 0.286 0.036 0.240 0.040 0.207 0.049 0.183 
7, 0.055 0.232 0.051 0.183 0.054 0.146 0.065 0.156 0.074 0.132 

W3, 0.053 0.490 0.039 0.338 0.042 0.294 0.046 0.231 0.048 0.211 

50 M7n, 0.058 0.560 0.060 0.402 0.071 0.300 0.083 0.269 0.111 0.219 
LM, 0.054 0.320 0.073 0.297 0.079 0.201 0.095 0.217 0.109 0.184 

Max, 0.051 0.692 0.030 0.443 0.030 0.364 0.037 0.322 0.043 0.251 
7, 0.052 0.368 0.050 0.298 0.051 0.224 0.069 0.215 0.078 0.182 
W3, 0.055 0.778 0.039 0.538 0.039 0.456 0.040 0.366 0.049 0.318 

100 Min, 0.055 0.812 0.055 0.637 0.074 0.465 0.100 0.404 0.142 0.297 

LM, 0.051 0.479 0.079 0.440 0.088 0.290 0.111 0.313 0.147 0.248 

Max, 0.050 0.927 0.017 0.677 0.017 0.565 0.031 0.482 0.037 0.390 
7, 0.053 0.583 0.048 0.446 0.054 0.317 0.069 0.321 0.079 0.266 
W3, 0.053 0.961 0.031 0.779 0.029 0.681 0.036 0.569 0.040 0.510 
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Table 4.2(a) (continued) 

A, =0 Ai"U(0.2,0.4) 

k =0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

25 5 77n, 0.068 0.274 0.063 0.230 0.066 0.204 0.067 0.184 0.078 0.164 

LM, 0.066 0.168 0.059 0.153 0.065 0.141 0.069 0.141 0.073 0.119 

Max, 0.051 0.279 0.041 0.231 0.040 0.202 0.045 0.172 0.042 0.157 

t, 0.052 0.153 0.045 0.139 0.049 0.120 0.052 0.113 0.049 0.098 

W S, 0.051 0.307 0.044 0.246 0.042 0.225 0.044 0.185 0.044 0.175 

10 Min, 0.058 0.399 0.066 0.344 0.070 0.285 0.064 0.245 0.071 0.198 

LM, 0.057 0.241 0.066 0.216 0.059 0.175 0.062 0.154 0.065 0.132 

Max, 0.043 0.495 0.049 0.378 0.045 0.327 0.043 0.271 0.043 0.231 

t, 0.049 0.250 0.053 0.211 0.048 0.180 0.048 0.146 0.046 0.134 

vs-, 0.046 0.538 0.051 0.410 0.052 0.364 0.045 0.297 0.044 0.257 

25 Min, 0.060 0.735 0.064 0.604 0.069 0.508 0.065 0.426 0.066 0.343 

LM, 0.062 0.441 0.076 0.386 0.075 0.294 0.081 0.261 0.079 0.198 

Max, 0.056 0.846 0.041 0.700 0.041 0.621 0.043 0.535 0.038 0.451 

t, 0.055 0.519 0.057 0.437 0.055 0.338 0.058 0.288 0.058 0.229 

W Sa 0.054 0.906 0.045 0.760 0.047 0.696 0.049 0.602 0.042 0.512 

50 0.064 0.930 0.060 0.849 0.068 0.755 0.068 0.664 0.071 0.519 

LM, 0.055 0.691 0.074 0.599 0.077 0.469 0.081 0.420 0.080 0.309 

Max, - 0.052 0.987 0.038 0.922 0.037 0.877 0.036 0.800 0.033 0.715 

t, 0.054 0.814 0.056 0.682 0.054 0.564 0.054 0.501 0.051 0.406 

WS, 0.052 0.996 0.043 0.964 0.048 0.937 0.043 0.869 0.039 0.788 

100 M7n, 0.057 0.997 0.060 0.986 0.066 0.955 0.071 0.905 0.078 0.786 

LM, 0.058 0.924 0.086 0.870 0.085 0.744 0.093 0.659 0.090 0.520 

Max, 0.050 1.000 0.027 0.998 0.029 0.992 0.026 0.971 0.021 0.938 

7, 0.058 0.978 0.057 0.938 0.053 0.855 0.056 0.789 0.053 0.662 

W3, 0.051 1.000 0.033 1.000 0.043 0.998 0.036 0.990 0.033 0.968 
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Table 4.2(a) (continued) 

Ai =0 .X U(0.2,0.4) 

k=0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

50 5 Min, 0.067 0.698 0.072 0.609 0.073 0.541 0.073 0.479 0.070 0.443 

LM, 0.066 0.428 0.064 0.363 0.066 0.297 0.065 0.271 0.063 0.243 

Max, 0.048 0.747 0.048 0.647 0.050 0.585 0.048 0.513 0.045 0.459 

7, 0.052 0.432 0.049 0.357 0.046 0.289 0.044 0.250 0.043 0.217 

W3, 0.050 0.776 0.045 0.679 0.048 0.605 0.048 0.545 0.045 0.497 

10 Min, 0.062 0.927 0.066 0.861 0.069 0.815 0.067 0.749 0.064 0.692 

LM, 0.058 0.701 0.059 0.593 0.062 0.521 0.061 0.448 0.060 0.388 

Max, 0.047 0.970 0.050 0.903 0.053 0.867 0.046 0.823 0.048 0.778 

Y. 0.046 0.758 0.046 0.640 0.049 0.562 0.048 0.477 0.046 0.416 

WS, 0.050 0.983 0.050 0.934 0.053 0.899 0.051 0.861 0.051 0.823 

25 Min, 0.064 0.999 0.068 0.998 0.067 0.990 0.065 0.973 0.064 0.943 

LM, 0.060 0.965 0.067 0.918 0.062 0.845 0.059 0.792 0.061 0.693 

Max, 0.052 1.000 0.053 1.000 0.047 0.998 0.043 0.994 0.043 0.983 

7, 0.047 0.989 0.054 0.967 0.051 0.923 0.046 0.876 0.048 0.806 

T -S, 0.055 1.000 0.049 1.000 0.049 1.000 0.046 0.998 0.046 0.993 

50 M3n, 0.053 1.000 0.055 1.000 0.058 1.000 0.058 1.000 0.059 0.999 

H. 0.058 1.000 0.061 0.997 0.063 0.988 0.057 0.976 0.062 0.932 

Max, 0.050 1.000 0.039 1.000 0.041 1.000 0.036 1.000 0.037 1.000 

7, 0.051 1.000 0.050 1.000 0.049 0.999 0.045 0.994 0.052 0.983 

W3 , 0.047 1.000 0.042 1.000 0.042 1.000 0.046 1.000 0.042 1.000 

100 Min, 0.060 1.000 0.066 1.000 0.063 1.000 0.061 1.000 0.061 1.000 

TM-, 0.055 1.000 0.071 1.000 0.069 1.000 0.064 1.000 0.072 0.999 

Max, 0.055 1.000 0.043 1.000 0.044 1.000 0.041 1.000 0.037 1.000 

7, 0.049 1.000 0.051 1.000 0.054 1.000 0.049 1.000 0.053 1.000 

Vs. 0.052 1.000 0.045 1.000 0.047 1.000 0.048 1.000 0.041 1.000 

144 



Table 4.2(a) (continued) 

Ai =0 )iU(0.2,0.4) 

k=0 k =1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

75 5 M7n, 0.071 0.947 0.070 0.903 0.071 0.872 0.069 0.827 0.069 0.783 

LM, 0.062 0.782 0.069 0.686 0.071 0.624 0.065 0.571 0.068 0.525 

Max, 0.049 0.972 0.052 0.941 0.054 0.903 0.050 0.858 0.049 0.817 

7, 0.047 0.801 0.052 0.705 0.052 0.637 0.048 0.576 0.052 0.512 

WS, 0.048 0.977 0.049 0.947 0.050 0.924 0.050 0.878 0.053 0.839 

10 Min, 0.066 0.999 0.066 0.994 0.067 0.987 0.070 0.973 0.071 0.955 

LM, 0.060 0.965 0.062 0.927 0.063 0.879 0.063 0.833 0.071 0.783 

Max, 0.054 1.000 0.048 0.999 0.049 0.995 0.050 0.989 0.050 0.978 

7, 0.050 0.985 0.048 0.955 0.052 0.917 0.049 0.880 0.055 0.825 

TVs-, 0.054 1.000 0.050 0.999 0.052 0.998 0.049 0.994 0.054 0.988 

25 Min, 0.059 1.000 0.057 1.000 0.052 1.000 0.053 1.000 0.051 1.000 

LM, 0.053 1.000 0.061 1.000 0.063 1.000 0.057 0.999 0.064 0.987 

Max, 0.050 1.000 0.038 1.000 0.042 1.000 0.039 1.000 0.039 1.000 
7, 0.041 1.000 0.049 1.000 0.047 1.000 0.041 1.000 0.047 0.999 

WS, 0.047 1.000 0.039 1.000 0.043 1.000 0.040 1.000 0.040 1.000 

50 0.064 1.000 0.064 1.000 0.063 1.000 0.062 1.000 0.057 1.000 
LM, 0.062 1.000 0.058 1.000 0.058 1.000 0.058 1.000 0.069 1.000 

Max, 0.052 1.000 0.045 1.000 0.043 1.000 0.041 1.000 0.042 1.000 

7, 0.054 1.000 0.052 1.000 0.050 1.000 0.049 1.000 0.048 1.000 
W3 0.052 1.000 0.044 1.000 0.044 1.000 0.041 1.000 0.049 1.000 

100 0.055 1.000 0.055 1.000 0.060 1.000 0.058 1.000 0.057 1.000 

LM, 0.056 1.000 0.064 1.000 0.065 1.000 0.062 1.000 0.073 1.000 

Max, 0.048 1.000 0.041 1.000 0.044 1.000 0.041 1.000 0.042 1.000 
Y. 0.056 1.000 0.052 1.000 0.054 1.000 0.049 1.000 0.057 1.000 

WS, 0.049 1.000 0.043 1.000 0.046 1.000 0.044 1.000 0.046 1.000 
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Table 4.2(a) (continued) 

Ai =0 a; "U(0.2,0.4) 
k=0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

100 5 M7n, 0.067 0.998 0.066 0.991 0.067 0.984 0.068 0.971 0.069 0.950 

LM, 0.061 0.959 0.065 0.913 0.061 0.860 0.067 0.812 0.064 0.765 

Max, 0.049 1.000 0.048 0.997 0.046 0.991 0.045 0.986 0.046 0.971 

7, 0.047 0.967 0.047 0.925 0.044 0.869 0.049 0.826 0.045 0.774 

ME, 0.047 1.000 0.046 0.995 0.046 0.993 0.044 0.984 0.047 0.972 

10 7in, 0.065 1.000 0.065 1.000 0.062 1.000 0.063 0.999 0.060 0.998 

LM, 0.061 1.000 0.062 0.995 0.059 0.987 0.058 0.977 0.062 0.957 

Max, 0.051 1.000 0.049 1.000 0.050 1.000 0.047 0.999 0.047 1.000 

t, 0.047 1.000 0.045 0.999 0.047 0.996 0.046 0.989 0.048 0.972 

WS, 0.047 1.000 0.049 1.000 0.047 1.000 0.043 1.000 0.045 1.000 

25 Min, 0.063 1.000 0.062 1.000 0.059 1.000 0.060 1.000 0.061 1.000 

LM, 0.061 1.000 0.061 1.000 0.056 1.000 0.059 1.000 0.060 1.000 

Max, 0.055 1.000 0.050 1.000 0.049 1.000 0.047 1.000 0.047 1.000 
T. 0.051 1.000 0.053 1.000 0.049 1.000 0.046 1.000 0.051 1.000 

Vs. 0.048 1.000 0.047 1.000 0.042 1.000 0.043 1.000 0.050 1.000 

50 Min, 0.062 1.000 0.060 1.000 0.054 1.000 0.053 1.000 0.055 1.000 
LM, 0.057 1.000 0.055 1.000 0.051 1.000 0.050 1.000 0.055 1.000 

Max, 0.056 1.000 0.047 1.000 0.040 1.000 0.038 1.000 0.040 1.000 
7, 0.045 1.000 0.047 1.000 0.046 1.000 0.040 1.000 0.046 1.000 
W3 , 0.055 1.000 0.048 1.000 0.046 1.000 0.041 1.000 0.046 1.000 

100 M3R, 0.062 1.000 0.059 1.000 0.047 1.000 0.047 1.000 0.046 1.000 

LM, 0.056 1.000 0.057 1.000 0.046 1.000 0.048 1.000 0.052 1.000 

Max, 0.052 1.000 0.043 1.000 0.039 1.000 0.035 1.000 0.037 1.000 

7, 0.050 1.000 0.054 1.000 0.040 1.000 0.039 1.000 0.043 1.000 

WS, 0.049 1.000 0.049 1.000 0.043 1.000 0.038 1.000 0.042 1.000 
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Figure 4.1. Empirical powers of panel data unit root tests at the nominal 5% level 

with no cross-section correlation, constant only case. 
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Table 4.2(b) 

Empirical sizes and powers of panel data unit root tests at the nominal 5% level 

with no cross-section correlation, linear ternd case 
Ai =0 Al U(0.2,0.4) 

k=0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

15 5 Min, 0.061 0.088 0.057 0.064 0.061 0.068 0.063 0.067 0.061 0.064 

I7 0.052 0.067 0.057 0.067 0.056 0.062 0.062 0.059 0.060 0.057 

Max, 0.058 0.084 0.054 0.066 0.052 0.063 0.059 0.069 0.049 0.050 

7, 0.056 0.072 0.060 0.067 0.060 0.066 0.065 0.068 0.059 0.064 

WS, 0.059 0.086 0.067 0.077 0.060 0.073 0.064 0.075 0.060 0.073 

10 99in, 0.057 0.084 0.051 0.073 0.054 0.068 0.061 0.066 0.067 0.079 

LM, 0.052 0.070 0.056 0.070 0.056 0.064 0.059 0.068 0.068 0.064 

Max, 0.056 0.082 0.050 0.069 0.047 0.059 0.051 0.061 0.044 0.056 

t, 0.052 0.074 0.064 0.074 0.058 0.064 0.063 0.071 0.060 0.065 

WS, 0.056 0.082 0.065 0.085 0.057 0.073 0.058 0.067 0.050 0.061 

25 0.055 0.098 0.045 0.075 0.049 0.059 0.061 0.074 0.070 0.076 
LM, 0.054 0.084 0.062 0.081 0.061 0.075 0.065 0.080 0.072 0.088 

Max, 0.054 0.096 0.041 0.066 0.042 0.051 0.047 0.064 0.047 0.059 

Z. 0.057 0.083 0.063 0.084 0.058 0.070 0.065 0.083 0.072 0.079 
W3 0.055 0.102 0.063 0.097 0.059 0.078 0.056 0.062 0.049 0.058 

50 Min, 0.059 0.128 0.036 0.073 0.040 0.069 0.061 0.086 0.079 0.098 

LM, 0.057 0.093 0.066 0.095 0.063 0.080 0.071 0.086 0.087 0.103 
Max, 0.055 0.131 0.030 0.061 0.035 0.066 0.046 0.066 0.047 0.062 

0.057 0.091 0.061 0.089 0.064 0.074 0.070 0.088 0.071 0.077 

W S, 0.054 0.133 0.060 0.105 0.063 0.087 0.054 0.074 0.046 0.059 

100 0.058 0.165 0.027 0.073 0.035 0.060 0.059 0.094 0.087 0.115 
LM, 0.054 0.124 0.066 0.121 0.061 0.086 0.077 0.100 0.110 0.135 

Max, 0.058 0.167 0.021 0.061 0.021 0.050 0.037 0.062 0.034 0.056 

7, 0.057 0.133 0.061 0.105 0.056 0.081 0.070 0.100 0.078 0.092 

1V3, 0.058 0.169 0.058 0.124 0.051 0.087 0.057 0.085 0.038 0.054 
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Table 4.2(b) (continued) 

Ai =0 )'U(0.2,0.4) 

k=0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

25 5 0.066 0.104 0.056 0.088 0.063 0.092 0.059 0.084 0.065 0.085 

LM, 0.062 0.088 0.061 0.075 0.063 0.075 0.059 0.075 0.067 0.064 

Max, 0.057 0.091 0.049 0.080 0.050 0.080 0.049 0.071 0.052 0.067 

t3 0.056 0.085 0.056 0.070 0.054 0.068 0.052 0.068 0.056 0.056 

W3, 0.059 0.099 0.052 0.087 0.056 0.087 0.058 0.077 0.054 0.074 

10 M3n, 0.055 0.137 0.055 0.113 0.053 0.104 0.052 0.080 0.058 0.085 

LM, 0.057 0.099 0.062 0.102 0.065 0.092 0.065 0.085 0.062 0.081 

Max, 0.051 0.133 0.048 0.108 0.042 0.087 0.042 0.069 0.046 0.070 

to 0.054 0.091 0.053 0.098 0.058 0.084 0.058 0.075 0.058 0.072 

WS8 0.052 0.143 0.057 0.121 0.051 0.103 0.049 0.083 0.051 0.068 

25 M3n, 0.056 0.205 0.052 0.152 0.046 0.108 0.050 0.114 0.053 0.095 

LM, 0.052 0.142 0.066 0.135 0.062 0.112 0.069 0.109 0.062 0.088 

Max, 0.053 0.206 0.046 0.144 0.039 0.098 0.040 0.106 0.039 0.078 

7, 0.049 0.145 0.060 0.129 0.054 0.101 0.060 0.099 0.056 0.089 

WS, 0.055 0.219 0.055 0.157 0.048 0.120 0.046 0.112 0.042 0.085 

50 M7n, 0.057 0.317 0.046 0.194 0.047 0.152 0.047 0.150 0.055 0.120 

m-, 0.057 0.194 0.066 0.174 0.064 0.132 0.066 0.132 0.067 0.104 

Max, 0.056 0.337 0.036 0.179 0.032 0.141 0.035 0.135 0.039 0.116 

t, 0.053 0.202 0.054 0.166 0.053 0.120 0.058 0.118 0.056 0.100 

W S8 0.054 0.348 0.053 0.229 0.050 0.168 0.044 0.144 0.045 0.110 

100 7in, 0.058 0.490 0.038 0.317 0.038 0.235 0.045 0.201 0.045 0.164 

m-, 0.052 0.331 0.069 0.268 0.066 0.210 0.078 0.173 0.067 0.141 

Max, 0.053 0.543 0.030 0.310 0.027 0.222 0.030 0.183 0.031 0.146 

0.050 0.345 0.059 0.261 0.053 0.203 0.064 0.166 0.053 0.138 
W Ss 0.055 0.565 0.043 0.380 0.041 0.284 0.040 0.210 0.035 0.135 
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Table 4.2(b) (continued) 

A; =0 Ai"U(0.2,0.4) 

k =0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

50 5 Mine 0.064 0.275 0.063 0.242 0.060 0.205 0.054 0.174 0.059 0.159 

LM, 0.059 0.214 0.064 0.182 0.063 0.144 0.064 0.133 0.067 0.128 

Max. 0.055 0.267 0.051 0.232 0.050 0.195 0.042 0.156 0.041 0.138 

to 0.051 0.196 0.054 0.169 0.053 0.130 0.053 0.117 0.055 0.111 

T FS. 0.055 0.278 0.051 0.239 0.051 0.207 0.043 0.169 0.046 0.150 

10 77in, 0.061 0.445 0.058 0.359 0.056 0.310 0.054 0.254 0.057 0.233 

LM, 0.056 0.302 0.059 0.248 0.057 0.192 0.057 0.170 0.058 0.161 

Max, 0.051 0.464 0.050 0.360 0.047 0.299 0.044 0.245 0.046 0.226 

7, 0.051 0.304 0.052 0.245 0.049 0.180 0.049 0.160 0.047 0.149 

W3, 0.050 0.486 0.050 0.379 0.049 0.323 0.046 0.258 0.050 0.232 

25 Mine 0.057 0.779 0.057 0.641 0.058 0.562 0.049 0.458 0.050 0.394 

LM, 0.055 0.577 0.067 0.466 0.065 0.373 0.055 0.284 0.063 0.254 

Max, 0.053 0.824 0.051 0.670 0.047 0.585 0.041 0.472 0.043 0.413 

Y. 0.052 0.613 0.059 0.487 0.056 0.378 0.050 0.300 0.059 0.257 

W3, 0.050 0.849 0.056 0.709 0.052 0.624 0.042 0.501 0.047 0.433 

50 Min, 0.052 0.964 0.047 0.885 0.050 0.819 0.041 0.703 0.042 0.641 

LM, 0.059 0.854 0.067 0.700 0.059 0.579 0.051 0.479 0.063 0.425 

Max, 0.048 0.983 0.037 0.912 0.039 0.850 0.031 0.741 0.032 0.675 

0.056 0.891 0.059 0.740 0.052 0.618 0.044 0.508 0.052 0.447 

W3, 0.047 0.989 0.044 0.935 0.047 0.880 0.035 0.770 0.036 0.695 

100 0.054 1.000 0.054 0.992 0.054 0.975 0.038 0.925 0.044 0.869 

LM, 0.059 0.989 0.069 0.938 0.060 0.854 0.050 0.752 0.066 0.663 

Max, 0.051 1.000 0.041 0.997 0.045 0.988 0.032 0.949 0.035 0.903 

7, 0.054 0.995 0.060 0.959 0.051 0.890 0.046 0.800 0.055 0.713 

WS, 0.050 1.000 0.046 0.999 0.050 0.992 0.037 0.964 0.040 0.915 
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Table 4.2(b) (continued) 

Ai =0 A U(0.2,0.4) 

k=0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

75 5 Min, 0.058 0.572 0.061 0.471 0.063 0.420 0.059 0.375 0.061 0.338 

LM, 0.059 0.414 0.066 0.350 0.063 0.313 0.059 0.265 0.059 0.229 

Max, 0.049 0.578 0.050 0.464 0.050 0.408 0.047 0.355 0.049 0.315 

t3 0.052 0.406 0.054 0.335 0.050 0.299 0.048 0.237 0.049 0.206 

W5, 0.046 0.589 0.053 0.491 0.052 0.427 0.050 0.390 0.052 0.345 

10 0.051 0.828 0.051 0.733 0.062 0.668 0.056 0.615 0.058 0.545 

LM, 0.051 0.658 0.055 0.563 0.054 0.484 0.053 0.412 0.064 0.372 

Max, 0.045 0.859 0.043 0.766 0.051 0.691 0.046 0.628 0.047 0.560 

T, 0.045 0.680 0.048 0.572 0.045 0.491 0.044 0.404 0.049 0.371 

W S, 0.047 0.878 0.048 0.784 0.050 0.712 0.048 0.661 0.048 0.575 

25 Mina 0.053 0.997 0.050 0.968 0.049 0.945 0.051 0.906 0.050 0.858 

LM, 0.058 0.957 0.060 0.897 0.054 0.812 0.060 0.742 0.060 0.679 

Max, 0.048 1.000 0.043 0.982 0.039 0.966 0.042 0.929 0.040 0.897 

0.050 0.971 0.053 0.917 0.046 0.852 0.048 0.778 0.050 0.710 

W S, 0.048 1.000 0.046 0.990 0.047 0.975 0.044 0.946 0.044 0.911 

50 0.055 1.000 0.056 1.000 0.054 1.000 0.055 0.998 0.056 0.989 
LMs 0.052 1.000 0.065 0.991 0.060 0.973 0.059 0.945 0.069 0.907 

Max, 0.052 1.000 0.047 1.000 0.044 1.000 0.045 0.999 0.048 0.994 

t, 0.049 1.000 0.057 0.996 0.052 0.985 0.049 0.961 0.057 0.931 
WS, 0.054 1.000 0.049 1.000 0.048 1.000 0.051 1.000 0.050 0.998 

100 Min, 0.051 1.000 0.045 1.000 0.048 1.000 0.048 1.000 0.047 1.000 

LM, 0.059 1.000 0.068 1.000 0.059 1.000 0.055 0.998 0.066 0.996 

Max, 0.047 1.000 0.041 1.000 0.042 1.000 0.038 1.000 0.036 1.000 
t, 0.058 1.000 0.060 1.000 0.052 1.000 0.048 0.999 0.053 0.999 
fl73', 0.045 1.000 0.040 1.000 0.042 1.000 0.039 1.000 0.039 1.000 
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Table 4.2(b) (continued) 

As =0 a; " U(0.2,0 . 4) 

k=0 k-1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

100 5 in, 0.063 0.855 0.063 0.759 0.060 0.710 0.064 0.641 0.061 0.591 

LM, 0.058 0.708 0.065 0.594 0.061 0.526 0.066 0.467 0.063 0.410 

Max, 0.053 0.872 0.049 0.777 0.051 0.715 0.050 0.644 0.048 0.583 

T. 0.047 0.711 0.054 0.587 0.047 0.517 0.051 0.446 0.048 0.387 

W S, 0.052 0.882 0.052 0.786 0.053 0.726 0.049 0.663 0.050 0.604 

10 7Uin, 0.056 0.987 0.058 0.954 0.062 0.929 0.062 0.892 0.062 0.836 

LM, 0.056 0.924 0.058 0.839 0.060 0.772 0.057 0.716 0.059 0.647 

Max, 0.049 0.992 0.052 0.965 0.051 0.943 0.052 0.907 0.050 0.856 

0.049 0.937 0.050 0.858 0.050 0.788 0.051 0.737 0.052 0.658 

W, 0.050 0.996 0.052 0.972 0.054 0.958 0.054 0.920 0.053 0.880 

25 Min, 0.053 1.000 0.061 1.000 0.059 1.000 0.057 1.000 0.056 0.998 

LM, 0.055 1.000 0.061 0.996 0.057 0.990 0.058 0.984 0.058 0.953 

Max, 0.050 1.000 0.052 1.000 0.049 1.000 0.050 1.000 0.047 0.999 

T. 0.050 1.000 0.054 0.999 0.051 0.994 0.055 0.993 0.052 0.967 

W S, 0.050 1.000 0.057 1.000 0.053 1.000 0.051 1.000 0.049 1.000 

50 797n, 0.046 1.000 0.044 1.000 0.049 1.000 0.050 1.000 0.050 1.000 
LM, 0.051 1.000 0.054 1.000 0.054 1.000 0.058 1.000 0.057 1.000 

Max, 0.046 1.000 0.042 1.000 0.043 1.000 0.042 1.000 0.042 1.000 

t, 0.048 1.000 0.049 1.000 0.047 1.000 0.047 1.000 0.051 1.000 

W3, 0.049 1.000 0.043 1.000 0.043 1.000 0.044 1.000 0.044 1.000 

100 M3n, 0.048 1.000 0.048 1.000 0.047 1.000 0.046 1.000 0.040 1.000 

LM, 0.049 1.000 0.054 1.000 0.046 1.000 0.050 1.000 0.048 1.000 

Maxa 0.048 1.000 0.038 1.000 0.037 1.000 0.038 1.000 0.034 1.000 
t, 0.048 1.000 0.047 1.000 0.039 1.000 0.045 1.000 0.046 1.000 

ý, 0.049 1.000 0.043 1.000 0.039 1.000 0.039 1.000 0.036 1.000 
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Table 4.3(a) 

Empirical sizes and powers of panel data unit root tests at the nominal 5% level 

with fixed effects included, constant only case 
A; =0 a; "U(0.2,0.4) 

k =0 k=1 k =2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

15 5 Min, 0.076 0.166 0.076 0.138 0.082 0.129 0.087 0.129 0.089 0.102 

LM, 0.069 0.118 0.088 0.126 0.077 0.108 0.081 0.107 0.085 0.092 

Max, 0.069 0.162 0.058 0.125 0.059 0.115 0.065 0.115 0.061 0.097 

7, 0.064 0.109 0.073 0.114 0.066 0.096 0.068 0.098 0.067 0.079 

WS 00.068 0.177 0.063 0.136 0.066 0.128 0.068 0.127 0.062 0.108 

10 Min, 0.064 0.214 0.069 0.176 0.080 0.158 0.083 0.142 0.093 0.126 

L, 0.066 0.136 0.074 0.130 0.073 0.111 0.078 0.117 0.087 0.105 

Max, 0.057 0.241 0.047 0.162 0.050 0.150 0.056 0.142 0.057 0.122 

7, 0.060 0.135 0.059 0.121 0.060 0.101 0.062 0.109 0.071 0.095 

W Sa 0.059 0.260 0.055 0.189 0.059 0.178 0.057 0.151 0.056 0.136 

25 Min, 0.057 0.361 0.059' 0.273 0.064 0.206 0.077 0.197 0.097 0.149 

LM, 0.055 0.195 0.069 0.207 0.071 0.151 0.074 0.155 0.094 0.141 

Max, 0.050 0.437 0.039 0.275 0.036 0.229 0.041 0.211 0.045 0.172 

t, 0.051 0.217 0.054 0.197 0.054 0.156 0.054 0.153 0.068 0.141 

WS 00.055 0.497 0.041 0.329 0.043 0.279 0.042 0.235 0.045 0.204 

50 Min, 0.062 0.541 0.057 0.406 0.068 0.312 0.087 0.273 0.113 0.202 

LMa 0.050 0.292 0.071 0.263 0.071 0.195 0.096 0.199 0.119 0.168 

Max, 0.057 0.680 0.026 0.443 0.032 0.370 0.034 0.305 0.045 0.267 

L 0.048 0.358 0.052 0.276 0.052 0.225 0.066 0.205 0.078 0.172 

WS 0.053 0.755 0.039 0.524 0.040 0.444 0.043 0.357 0.049 0.324 

100 Min, 0.060 0.815 0.063 0.646 0.076 0.479 0.102 0.416 0.143 0.299 
LMs 0.054 0.486 0.080 0.463 0.085 0.315 0.114 0.317 0.152 0.253 

Max, 0.052 0.933 0.019 0.684 0.024 0.583 0.031 0.504 0.036 0.404 

7, 0.048 0.584 0.043 0.464 0.045 0.337 0.066 0.344 0.077 0.271 
W9, 0.052 0.967 0.031 0.806 0.036 0.695 0.037 0.591 0.042 0.506 
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Table 4.3(a) (continued 

Ai =0 Ai"U(0.2,0.4) 

k=0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

25 5 7in, 0.068 0.278 0.076 0.237 0.075 0.217 0.078 0.209 0.078 0.178 

LM, 0.069 0.184 0.088 0.160 0.084 0.150 0.079 0.142 0.078 0.116 

Max, 0.062 0.293 0.063 0.226 0.060 0.221 0.062 0.191 0.060 0.171 

7, 0.061 0.171 0.075 0.146 0.068 0.132 0.064 0.125 0.061 0.100 

T FS. 0.064 0.311 0.067 0.250 0.064 0.244 0.064 0.211 0.061 0.189 

10 Min, 0.070 0.424 0.067 0.344 0.077 0.309 0.077 0.262 0.073 0.229 

LM, 0.068 0.256 0.076 0.226 0.076 0.187 0.074 0.176 0.078 0.147 

Max, 0.061 0.483 0.052 0.371 0.056 0.334 0.052 0.285 0.051 0.256 

1, 0.062 0.265 0.062 0.223 0.062 0.187 0.057 0.172 0.056 0.144 

Ts-, 0.061 0.547 0.054 0.425 0.060 0.384 0.053 0.315 0.054 0.287 

25 Min, 0.055 0.736 0.058 0.612 0.065 0.532 0.064 0.444 0.075 0.366 

LM, 0.062 0.466 0.070 0.391 0.079 0.305 0.075 0.277 0.078 0.224 

Max, 0.049 0.855 0.040 0.700 0.041 0.630 0.038 0.540 0.036 0.470 

7, 0.058 0.541 0.060 0.434 0.057 0.353 0.055 0.320 0.053 0.251 
Vs. 0.047 0.902 0.040 0.764 0.050 0.708 0.042 0.620 0.042 0.528 

50 Min, 0.058 0.943 0.058 0.853 0.064 0.766 0.071 0.680 0.075 0.559 

LM, 0.057 0.706 0.077 0.630 0.072 0.488 0.082 0.445 0.085 0.344 

Max, 0.053 0.993 0.035 0.923 0.040 0.880 0.032 0.811 0.035 0.749 

7, 0.054 0.822 0.061 0.703 0.052 0.582 0.054 0.530 0.056 0.411 
W S, 0.050 0.997 0.042 0.962 0.049 0.931 0.037 0.872 0.038 0.809 

100 M7n, 0.053 0.996 0.063 0.985 0.073 0.958 0.067 0.900 0.077 0.780 

LM, 0.057 0.918 0.094 0.873 0.088 0.723 0.092 0.670 0.099 0.503 

Max, 0.050 1.000 0.029 0.999 0.030 0.993 0.024 0.976 0.025 0.942 

1, 0.059 0.977 0.064 0.934 0.055 0.836 0.055 0.783 0.056 0.659 
WS, 0.048 1.000 0.033 1.000 0.042 0.998 0.035 0.990 0.035 0.973 

156 



Table 4.3(a) (continued 

Ai =0 )t"U(0.2,0.4) 

k =0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

50 5 0.073 0.683 0.072 0.584 0.076 0.535 0.074 0.490 0.070 0.443 

LM, 0.068 0.435 0.068 0.373 0.074 0.337 0.079 0.304 0.080 0.281 

Max, 0.058 0.728 0.059 0.618 0.061 0.566 0.057 0.509 0.058 0.474 

7, 0.057 0.444 0.059 0.364 0.062 0.327 0.063 0.296 0.064 0.268 

TS, 0.059 0.747 0.061 0.645 0.065 0.594 0.061 0.546 0.064 0.495 

10 7in, 0.068 0.908 0.071 0.838 0.074 0.783 0.073 0.727 0.073 0.671 

LM, 0.063 0.691 0.069 0.593 0.076 0.505 0.077 0.461 0.073 0.414 

Max, 0.060 0.953 0.055 0.899 0.059 0.860 0.058 0.812 0.055 0.750 

7, 0.056 0.748 0.057 0.650 0.057 0.560 0.058 0.495 0.059 0.453 

WS, 0.060 0.973 0.056 0.916 0.058 0.886 0.056 0.850 0.057 0.790 

25 0.061 0.999 0.062 0.996 0.063 0.988 0.061 0.972 0.062 0.947 

LM, 0.057 0.968 0.068 0.914 0.068 0.861 0.062 0.805 0.066 0.716 

Max, 0.054 1.000 0.047 1.000 0.046 0.997 0.043 0.993 0.046 0.982 

7, 0.054 0.986 0.055 0.960 0.055 0.930 0.048 0.880 0.055 0.824 

W3, 0.052 1.000 0.046 1.000 0.044 0.999 0.044 0.997 0.045 0.992 

50 M7n, 0.060 1.000 0.060 1.000 0.059 1.000 0.052 1.000 0.054 0.998 

LM, 0.062 1.000 0.067 0.996 0.070 0.989 0.066 0.971 0.065 0.936 

Max, 0.055 1.000 0.041 1.000 0.043 1.000 0.039 1.000 0.036 1.000 

7, 0.058 1.000 0.056 1.000 0.055 0.998 0.050 0.995 0.056 0.986 

Vs. 0.048 1.000 0.041 1.000 0.044 1.000 0.045 1.000 0.038 1.000 

100 0.061 1.000 0.057 1.000 0.062 1.000 0.062 1.000 0.062 1.000 

LM, 0.054 1.000 0.064 1.000 0.073 1.000 0.072 1.000 0.068 0.999 

Max, 0.059 1.000 0.039 1.000 0.042 1.000 0.035 1.000 0.038 1.000 

0.046 1.000 0.053 1.000 0.055 1.000 0.053 1.000 0.055 1.000 

W S, 0.055 1.000 0.041 1.000 0.047 1.000 0.044 1.000 0.041 1.000 
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Table 4.3(a) (continued 

Ai =0 .; "U(0.2,0.4) 

k =0 k=1 k=2 k=3 k =4 

TN Size Power Size Power Size Power Size Power Size Power 

75 5 793n, 0.072 0.939 0.073 0.873 0.080 0.828 0.074 0.805 0.081 0.752 

LM, 0.076 0.763 0.078 0.659 0.078 0.603 0.075 0.540 0.080 0.506 

Max, 0.063 0.962 0.061 0.911 0.068 0.875 0.061 0.838 0.064 0.788 

t, 0.063 0.780 0.063 0.665 0.063 0.610 0.062 0.541 0.063 0.504 

W3', 0.066 0.971 0.064 0.918 0.065 0.884 0.063 0.856 0.065 0.814 

10 Min, 0.069 0.999 0.074 0.993 0.074 0.984 0.069 0.974 0.074 0.952 
LM, 0.068 0.964 0.072 0.912 '0.070 0.878 0.063 0.818 0.070 0.773 

Max, 0.055 1.000 0.057 0.998 0.060 0.994 0.056 0.989 0.054 0.978 

t, 0.058 0.984 0.060 0.941 0.058 0.912 0.054 0.861 0.059 0.821 
Ts-, 0.058 1.000 0.057 0.999 0.060 0.996 0.057 0.990 0.058 0.984 

25 97n, 0.062 1.000 0.065 1.000 0.067 1.000 0.061 1.000 0.062 1.000 

LM, 0.061 1.000 0.065 1.000 0.062 0.999 0.060 0.994 0.067 0.987 

Max, 0.053 1.000 0.048 1.000 0.050 1.000 0.046 1.000 0.046 1.000 

t, 0.051 1.000 0.053 1.000 0.050 1.000 0.048 0.999 0.056 0.996 

W S8 0.052 1.000 0.047 1.000 0.043 1.000 0.046 1.000 0.044 1.000 

50 0.061 1.000 0.062 1.000 0.063 1.000 0.059 1.000 0.056 1.000 
LM, 0.064 1.000 0.066 1.000 0.069 1.000 0.061 1.000 0.071 1.000 

Max, 0.055 1.000 0.047 1.000 0.049 1.000 0.046 1.000 0.046 1.000 

t, 0.056 1.000 0.052 1.000 0.054 1.000 0.052 1.000 0.060 1.000 
WS, 0.055 1.000 0.051 1.000 0.050 1.000 0.046 1.000 0.050 1.000 

100 0.058 1.000 0.060 1.000 0.069 1.000 0.060 1.000 0.064 1.000 

LMe 0.065 1.000 0.069 1.000 0.069 1.000 0.061 1.000 0.079 1.000 
Wax, 0.050 1.000 0.042 1.000 0.048 1.000 0.042 1.000 0.044 1.000 
t, 0.058 1.000 0.054 1.000 0.059 1.000 0.053 1.000 0.065 1.000 
W Sa 0.049 1.000 0.044 1.000 0.048 1.000 0.043 1.000 0.052 1.000 
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Table 4.3(a) (continued 

As =0 \i-U(0.2,0.4) 
k=0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

100 5 Min, 0.077 0.995 0.074 0.981 0.074 0.966 0.075 0.947 0.076 0.922 

LM, 0.076 0.939 0.071 0.866 0.072 0.823 0.074 0.782 0.077 0.728 

Max. 0.066 0.998 0.060 0.989 0.062 0.980 0.059 0.964 0.062 0.944 

1, 0.065 0.949 0.063 0.885 0.059 0.833 0.065 0.801 0.062 0.739 

W3, 0.066 0.999 0.063 0.993 0.062 0.984 0.060 0.976 0.064 0.955 

10 M3R, 0.072 1.000 0.067 1.000 0.064 1.000 0.061 0.999 0.060 0.998 
LM, 0.068 0.999 0.065 0.993 0.066 0.987 0.064 0.969 0.062 0.950 

Max, 0.057 1.000 0.055 1.000 0.051 1.000 0.045 1.000 0.048 1.000 

7, 0.054 1.000 0.054 0.998 0.053 0.995 0.051 0.987 0.050 0.973 

WS 00.058 1.000 0.054 1.000 0.052 1.000 0.051 1.000 0.050 1.000 

25 M7n, 0.063 1.000 0.060 1.000 0.056 1.000 0.055 1.000 0.059 1.000 

LM, 0.063 1.000 0.067 1.000 0.058 1.000 0.060 1.000 0.066 1.000 

Max, 0.052 1.000 0.048 1.000 0.044 1.000 0.046 1.000 0.045 1.000 

t, 0.058 1.000 0.058 1.000 0.053 1.000 0.052 1.000 0.057 1.000 
W3, 0.054 1.000 0.051 1.000 0.044 1.000 0.045 1.000 0.047 1.000 

50 7in, 0.060 1.000 0.055 1.000 0.051 1.000 0.051 1.000 0.056 1.000 

LM, 0.058 1.000 0.062 1.000 0.055 1.000 0.056 1.000 0.058 1.000 

Max, 0.053 1.000 0.049 1.000 0.046 1.000 0.046 1.000 0.044 1.000 
7, 0.053 1.000 0.053 1.000 0.051 1.000 0.048 1.000 0.050 1.000 
WS, 0.057 1.000 0.051 1.000 0.048 1.000 0.046 1.000 0.049 1.000 

100 7in, 0.065 1.000 0.065 1.000 0.059 1.000 0.060 1.000 0.059 1.000 

LM, 0.059 1.000 0.065 1.000 0.054 1.000 0.052 1.000 0.056 1.000 

Max, 0.062 1.000 0.053 1.000 0.051 1.000 0.047 1.000 0.048 1.000 
t, 0.056 1.000 0.057 1.000 0.050 1.000 0.045 1.000 0.046 1.000 
W S, 0.059 1.000 0.055 1.000 0.052 1.000 0.046 1.000 0.051 1.000 
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Table 4.3(b) 

Empirical sizes and powers of panel data unit root tests at the nominal 5% level 

with fixed effects included, linear trend case 
A; =0 Ai"U(0.2,0.4) 

k=0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

15 5 0.079 0.098 0.065 0.070 0.061 0.068 0.068 0.075 0.074 0.077 

LM, 0.070 0.077 0.076 0.083 0.070 0.085 0.073 0.079 0.079 0.086 
Max, 0.075 0.095 0.058 0.064 0.056 0.060 0.062 0.068 0.053 0.052 

1, 0.069 0.076 0.073 0.087 0.069 0.082 0.073 0.079 0.068 0.066 
W3, 0.078 0.099 0.074 0.086 0.068 0.079 0.070 0.079 0.069 0.064 

10 Min, 0.060 0.091 0.058 0.057 0.059 0.059 0.070 0.067 0.069 0.082 

LM, 0.063 0.080 0.067 0.073 0.071 0.080 0.068 0.084 0.070 0.086 

Maxi 0.059 0.089 0.051 0.056 0.051 0.056 0.060 0.065 0.053 0.060 

T, 0.064 0.081 0.068 0.072 0.074 0.086 0.072 0.086 0.066 0.076 

WS, 0.066 0.095 0.069 0.083 0.064 0.071 0.069 0.071 0.059 0.064 

25 Min, 0.054 0.101 0.043 0.049 0.052 0.059 0.072 0.076 0.073 0.085 

LM, 0.056 0.092 0.065 0.070 0.066 0.077 0.067 0.075 0.080 0.091 

Max, 0.051 0.096 0.042 0.049 0.042 0.051 0.058 0.064 0.050 0.052 
t, 0.058 0.094 0.068 0.079 0.067 0.082 0.067 0.070 0.068 0.076 

ws 0.053 0.099 0.067 0.083 0.064 0.085 0.065 0.083 0.050 0.056 

50 Min 0.058 0.129 0.036 0.052 0.040 0.055 0.063 0.072 0.074 0.108 
LM 0.054 0.097 0.069 0.097 0.066 0.083 0.073 0.098 0.091 0.124 

Max 0.055 0.117 0.029 0.037 0.031 0.036 0.047 0.061 0.047 0.056 
i 0.054 0.099 0.064 0.094 0.058 0.085 0.076 0.095 0.084 0.096 
WS-� 0.059 0.125 0.063 0.114 0.059 0.095 0.057 0.086 0.044 0.047 

100 Min, 0.057 0.171 0.028 0.048 0.035 0.058 0.053 0.081 0.086 0.123 
LMe 0.053 0.126 0.069 0.102 0.061 0.094 0.076 0.111 0.108 0.153 

Max, 0.057 0.177 0.021 0.037 0.024 0.036 0.036 0.048 0.039 0.045 
7, 0.057 0.125 0.063 0.098 0.055 0.081 0.067 0.095 0.079 0.094 
W5, 0.057 0.180 0.063 0.137 0.058 0.102 0.056 0.088 0.037 0.050 
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Table 4.3(b) (continued 

Ai =0 Al U(0.2,0.4) 

k=0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

25 5 0.069 0.114 0.074 0.097 0.071 0.092 0.069 0.094 0.073 0.097 

LM3 0.067 0.105 0.085 0.098 0.079 0.104 0.079 0.098 0.076 0.089 

Max, 0.065 0.110 0.067 0.086 0.062 0.083 0.059 0.077 0.062 0.078 

7, 0.061 0.100 0.076 0.089 0.071 0.097 0.071 0.087 0.066 0.077 

T Fs-, 0.066 0.111 0.072 0.111 0.072 0.101 0.066 0.085 0.066 0.082 

10 Min, 0.073 0.148 0.059 0.088 0.058 0.091 0.060 0.088 0.069 0.093 

LM, 0.068 0.113 0.067 0.095 0.074 0.099 0.067 0.087 0.080 0.094 

Max, 0.066 0.142 0.050 0.083 0.051 0.074 0.050 0.074 0.057 0.077 

7, 0.065 0.111 0.062 0.089 0.068 0.089 0.062 0.083 0.071 0.085 

W Sa 0.068 0.145 0.058 0.113 0.061 0.106 0.058 0.091 0.060 0.084 

25 77n, 0.057 0.206 0.051 0.120 0.051 0.101 0.052 0.096 0.055 0.101 

LM, 0.054 0.147 0.068 0.130 0.065 0.114 0.063 0.106 0.068 0.099 

Max, 0.053 0.212 0.045 0.113 0.039 0.084 0.042 0.082 0.040 0.083 

7, 0.052 0.149 0.060 0.124 0.055 0.100 0.057 0.100 0.058 0.085 

T -S, 0.053 0.226 0.055 0.159 0.051 0.132 0.051 0.105 0.048 0.087 

50 Min, 0.055 0.305 0.045 0.160 0.046 0.132 0.048 0.126 0.053 0.120 

LM, 0.054 0.199 0.065 0.181 0.065 0.149 0.068 0.141 0.067 0.128 

Max, 0.054 0.333 0.039 0.141 0.036 0.115 0.035 0.102 0.039 0.097 

7, 0.053 0.207 0.060 0.171 0.057 0.135 0.058 0.129 0.056 0.114 

W Sa 0.053 0.345 0.054 0.226 0.048 0.183 0.046 0.144 0.044 0.117 

100 1VIin, 0.057 0.501 0.048 0.255 0.044 0.194 0.044 0.162 0.044 0.137 

LM, 0.050 0.331 0.078 0.280 0.071 0.209 0.071 0.176 0.069 0.154 

Max, 0.055 0.554 0.034 0.225 0.031 0.153 0.033 0.125 0.028 0.104 

t, 0.051 0.352 0.067 0.250 0.056 0.174 0.059 0.153 0.059 0.126 
W3, 0.052 0.575 0.053 0.375 0.048 0.271 0.044 0.190 0.036 0.136 
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Table 4.3(b) (continued 

Ai =0 Vt"U(0.2,0.4) 

k =0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

50 5 M77, 0.073 0.297 0.068 0.199 0.073 0.192 0.065 0.167 0.066 0.173 

LM, 0.077 0.223 0.073 0.162 0.074 0.147 0.066 0.151 0.073 0.140 

Max, 0.066 0.290 0.059 0.190 0.062 0.174 0.054 0.155 0.055 0.148 

7, 0.071 0.213 0.065 0.153 0.066 0.136 0.058 0.135 0.059 0.126 

WS 00.066 0.308 0.062 0.237 0.066 0.213 0.057 0.177 0.058 0.172 

10 0.058 0.440 0.066 0.307 0.069 0.276 0.059 0.244 0.058 0.234 

LM, 0.062 0.307 0.068 0.231 0.063 0.201 0.061 0.185 0.064 0.172 

Max, 0.055 0.452 0.058 0.302 0.056 0.272 0.052 0.236 0.049 0.223 

7, 0.057 0.305 0.061 0.226 0.058 0.189 0.054 0.175 0.054 0.162 

Vs. 0.054 0.480 0.056 0.377 0.059 0.318 0.053 0.269 0.052 0.239 

25 Min, 0.062 0.772 0.059 0.579 0.061 0.520 0.052 0.416 0.050 0.383 

LM, 0.057 0.581 0.066 0.453 0.064 0.369 0.060 0.288 0.063 0.269 

Max, 0.062 0.824 0.051 0.607 0.050 0.536 0.042 0.423 0.040 0.382 

Y. 0.054 0.614 0.062 0.469 0.057 0.365 0.054 0.297 0.054 0.262 
TVs-. 0.060 0.846 0.053 0.707 0.055 0.621 0.045 0.508 0.046 0.441 

50 Min, 0.053 0.965 0.052 0.848 0.053 0.773 0.041 0.666 0.046 0.597 

LM, 0.058 0.856 0.066 0.689 0.063 0.572 0.053 0.461 0.063 0.423 

Max, 0.051 0.981 0.041 0.870 0.043 0.799 0.032 0.691 0.033 0.628 

0.055 0.887 0.060 0.716 0.054 0.596 0.046 0.489 0.052 0.435 

WE, 0.050 0.987 0.047 0.927 0.048 0.881 0.037 0.766 0.040 0.696 

100 Min, 0.054 1.000 0.051 0.983 0.055 0.962 0.036 0.896 0.043 0.852 

LM, 0.055 0.986 0.070 0.915 0.065 0.815 0.053 0.710 0.067 0.641 

Max, 0.050 1.000 0.040 0.988 0.041 0.974 0.029 0.925 0.033 0.873 

7, 0.053 0.994 0.062 0.940 0.057 0.845 0.049 0.743 0.056 0.676 
1V3, 0.051 1.000 0.046 0.997 0.049 0.989 0.033 0.956 0.040 0.924 
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Table 4.3(b) (continued 

Ai =0 \; "U(0.2,0.4) 
k =0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

75 5 0.075 0.567 0.058 0.391 0.067 0.365 0.071 0.347 0.070 0.315 

LM, 0.071 0.426 0.071 0.292 0.074 0.274 0.069 0.250 0.079 0.223 

Max, 0.066 0.573 0.050 0.391 0.056 0.364 0.059 0.335 0.059 0.307 

i, 0.064 0.419 0.062 0.284 0.064 0.257 0.058 0.234 0.067 0.204 

W3, 0.068 0.592 0.059 0.469 0.061 0.418 0.062 0.383 0.064 0.355 

10 M7n, 0.067 0.822 0.064 0.660 0.064 0.623 0.066 0.551 0.065 0.514 

LM, 0.064 0.664 0.068 0.493 0.066 0.437 0.065 0.392 0.073 0.360 

Max, 0.060 0.849 0.055 0.680 0.057 0.634 0.055 0.564 0.057 0.518 

1, 0.056 0.675 0.061 0.501 0.056 0.439 0.055 0.393 0.065 0.356 
TVs. 0.058 0.867 0.060 0.767 0.064 0.713 0.062 0.639 0.061 0.581 

25 M7n, 0.055 0.992 0.053 0.954 0.054 0.926 0.051 0.892 0.053 0.830 

LM, 0.054 0.954 0.065 0.848 0.065 0.776 0.064 0.701 0.071 0.637 

Max, 0.050 0.998 0.042 0.970 0.045 0.942 0.042 0.913 0.042 0.866 

7, 0.056 0.974 0.057 0.882 0.054 0.810 0.055 0.737 0.059 0.662 

TV-S, 0.050 1.000 0.055 0.989 0.052 0.971 0.053 0.950 0.045 0.905 

50 Mi7, 0.054 1.000 0.049 0.999 0.049 0.996 0.046 0.993 0.047 0.979 

LM, 0.056 0.999 0.070 0.984 0.064 0.958 0.063 0.937 0.066 0.896 

Max, 0.051 1.000 0.041 1.000 0.041 0.999 0.037 0.998 0.037 0.990 
7, 0.052 1.000 0.059 0.990 0.056 0.972 0.055 0.953 0.054 0.918 

1V3, 0.048 1.000 0.051 1.000 0.046 1.000 0.044 1.000 0.045 0.997 

100 Min, 0.052 1.000 0.043 1.000 0.041 1.000 0.041 1.000 0.041 1.000 

LM, 0.055 1.000 0.071 1.000 0.062 1.000 0.061 0.999 0.071 0.993 

Max, 0.051 1.000 0.033 1.000 0.032 1.000 0.028 1.000 0.031 1.000 
t, 0.053 1.000 0.060 1.000 0.049 1.000 0.051 1.000 0.057 0.997 
WS, 0.048 1.000 0.046 1.000 0.043 1.000 0.040 1.000 0.040 1.000 
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Table 4.3(b) (continued 

Ai =0 A' U(0.2,0.4) 

k=0 k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power Size Power 

100 5 Min, 0.075 0.803 0.060 0.617 0.069 0.597 0.078 0.568 0.075 0.519 

LM, 0.066 0.672 0.061 0.496 0.073 0.452 0.077 0.418 0.076 0.393 

Max, 0.068 0.818 0.054 0.631 0.061 0.594 0.066 0.564 0.065 0.516 

1, 0.059 0.676 0.055 0.487 0.063 0.447 0.065 0.412 0.064 0.379 

W3, 0.067 0.827 0.061 0.721 0.068 0.674 0.072 0.627 0.069 0.574 

10 Min, 0.059 0.981 0.051 0.899 0.059 0.877 0.061 0.839 0.061 0.786 

LM, 0.063 0.928 0.062 0.774 0.064 0.725 0.068 0.687 0.071 0.614 

Max, 0.056 0.987 0.043 0.917 0.051 0.892 0.051 0.855 0.054 0.805 

1, 0.054 0.939 0.053 0.796 0.053 0.741 0.060 0.692 0.062 0.625 

T FS-, 0.056 0.990 0.055 0.962 0.054 0.934 0.056 0.901 0.058 0.858 

25 Min, 0.056 1.000 0.053 1.000 0.051 1.000 0.053 0.998 0.049 0.990 

LM, 0.056 1.000 0.056 0.995 0.054 0.976 0.058 0.956 0.057 0.923 

Max, 0.050 1.000 0.044 1.000 0.044 1.000 0.045 1.000 0.043 0.997 

Y. 0.051 1.000 0.051 0.998 0.050 0.988 0.053 0.971 0.050 0.943 

W73, 0.053 1.000 0.053 1.000 0.050 1.000 0.051 1.000 0.050 1.000 

50 ITS 0.052 1.000 0.045 1.000 0.047 1.000 0.049 1.000 0.045 1.000 

LM. 0.048 1.000 0.058 1.000 0.053 1.000 0.058 1.000 0.058 0.995 

Max, 0.051 1.000 0.040 1.000 0.040 1.000 0.039 1.000 0.039 1.000 

t, 0.048 1.000 0.052 1.000 0.046 1.000 0.052 1.000 0.050 0.999 

W3, 0.051 1.000 0.046 1.000 0.042 1.000 0.044 1.000 0.045 1.000 

100 Min, 0.053 1.000 0.047 1.000 0.046 1.000 0.044 1.000 0.041 1.000 

LM, 0.052 1.000 0.059 1.000 0.055 1.000 0.061 1.000 0.053 1.000 

7-ax, 0.051 1.000 0.041 1.000 0.039 1.000 0.037 1.000 0.033 1.000 

7, 0.050 1.000 0.051 1.000 0.047 1.000 0.054 1.000 0.047 1.000 

W3. 0.055 1.000 0.047 1.000 0.045 1.000 0.044 1.000 0.039 1.000 
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Table 4.5 

p-values for bootstrap panel data unit root tests 

applied to 17 quarterly real exchange rates (T = 45) 
Test 

Block Size tM xa WS" LM` Min 

30 0.124 0.036 0.023 0.103 0.034 

100 0.123 0.033 0.020 0.104 0.029 

Note: Estimates are based on 5000 replications. 
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Table 4.6 

Empirical sizes and powers of bootstrap panel data unit root tests 

at the nominal 5% level 

Ps = 0.8 Vi . Xti"U(0.2,0.4) 

k=1 k=2 k=3 k=4 

TN Size Power Size Power Size Power Size Power 

25 5 Wzn 0.044 0.400 0.060 0.352 0.052 0.264 0.050 0.208 
TM--* 0.053 0.236 0.049 0.185 0.056 0.163 0.040 0.113 

Max* 0.045 0.452 0.055 0.400 0.049 0.302 0.053 0.271 
i` 0.050 0.250 0.050 0.204 0.050 0.174 0.045 0.118 
W3 0.045 0.460 0.056 0.430 0.054 0.318 0.052 0.284 

10 Man 0.055 0.691 0.046 0.558 0.052 0.467 0.043 0.351 

LM' 0.046 0.400 0.056 0.305 0.040 0.252 0.035 0.167 

Max" 0.051 0.777 0.041 0.665 0.035 0.541 0.047 0.470 
t 0.044 0.443 0.056 0.336 0.043 0.285 0.036 0.197 

WS-* 0.057 0.813 0.051 0.703 0.037 0.574 0.044 0.507 

25 Man 0.027 0.935 0.034 0.860 0.036 0.715 0.042 0.598 
M- * 0.021 0.670 0.030 0.532 0.031 0.377 0.030 0.309 
Max 0.017 0.965 0.031 0.921 0.036 0.826 0.042 0.731 
7" 0.016 0.720 0.028 0.595 0.027 0.421 0.028 0.352 

WS` 0.018 0.978 0.027 0.935 0.038 0.859 0.042 0.792 

50 5 M n1 0.053 0.922 0.049 0.861 0.051 0.789 0.057 0.722 
LM* 0.047 0.745 0.044 0.625 0.059 0.526 0.055 0.457 
Max' 0.055 0.952 0.046 0.913 0.047 0.858 0.053 0.792 
7' 0.051 0.786 0.045 0.672 0.056 0.563 0.056 0.505 
WS 0.048 0.962 0.055 0.918 0.048 0.872 0.055 0.825 

10 Man 0.044 0.998 0.049 0.993 0.037 0.969 0.040 0.941 
T m-* 0.049 0.963 0.058 0.912 0.043 0.841 0.044 0.709 

Max` 0.044 1.000 0.054 0.999 0.041 0.988 0.038 0.978 
t` 0.046 0.974 0.055 0.944 0.045 0.878 0.040 0.781 
TVs-* 0.045 1.000 0.052 0.997 0.041 0.990 0.038 0.980 

25 Min 0.036 1.000 0.037 1.000 0.042 1.000 0.046 1.000 
LMG 0.039 1.000 0.035 1.000 0.040 0.996 0.043 0.976 
Max* 0.030 1.000 0.028 1.000 0.036 1.000 0.033 1.000 
7' 0.033 1.000 0.027 1.000 0.043 0.999 0.037 0.990 
WS' 0.031 1.000 0.029 1.000 0.036 1.000 0.031 1.000 
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Chapter 5 

On the Power and Efficiency of 

Unit Root Tests Based on 

Generalised Least Squares 

Detrending 

5.1 Introduction 

Due to the well-known power deficiency of commonly applied unit root tests, 

the last decade has seen efforts being directed toward the development of tests 

with greater power. This direction of research led Elliott, Rothenberg and Stock 

(1996) - henceforth ERS - to study the asymptotic power envelope for various 

unit root tests and propose a simple modification of the ADF test such that 

the modified test, which we will refer to as the GLS test, can nearly achieve 

the power envelope. In particular, they consider the time series process {yt}'t, 
=Ol 

generated by 

yt = ziß+ut t=1,2,..., T 

Ut = put-i + Vt 

where either zt =1 or zt = (1, t),, 8 is a conformable vector of unknown parameters 

and vt is a potentially serially correlated stationary process. Based on the theory 
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of point optimal testing, they analyse the sequence of Neyman-Pearson tests of 

the unit root null hypothesis, p=1, against the local alternative of p=1+ 'ZIT 

for uo = 0, where T is the sample size and c<0 is some constant associated 

with the power envelope. In particular, c is chosen so that the tests achieve 

the Gaussian power envelope at 50 percent power, which corresponds to setting 

c= -7 in the demeaned case and c= -13.5 in the detrended case. The GLS test 

is computed in two steps. Initially Q is estimated by regressing [yl, (1 - pL)y2i 

..., 
(1 - pL)yT] onto [zi, (1 - pL)z2i ..., 

(1 - pL)zT], with the resulting estimator 

denoted by 7 
GLS. Then the local GLS-detrended series yt = lit -Z I3CLS is used 

to compute the t-statistic in the following regression 

P 

ýyt = ca 7+E5 Dyt-j + et (5.1) 

j=l 

where incorporation of the lags Dyt_j in (5.1) is to account for any potential 

dynamics present in the error term vt. 

Elliott (1999) derives the asymptotic power envelope under the more natural 

stationarity alternative where the initial observation is drawn from the uncon- 

ditional distribution with variance 1, where a2 is the variance of v=, often 

referred to as the unconditional case. Generalised least square detrending under 

the local alternative in this case, referred to as GLSu detrending, would generate 

yt as the residuals from the regression of [(1-p2)1/2y,, (1-PL)y21 
..., 

(1- pL)yT]' 

on [(1- p )1/2z1i (1- PL) Z2, ..., 
(1- pL)zT]'. The resultant unit root test is then 

the GLSu test. While Elliott experimented with a number of values for 'c, he 

finds that the preferred value both when a constant only and when a constant 

and a linear trend term are included in the model is c= -10. 

The above studies provide Monte Carlo evidence on the size and power perfor- 

mance of the modified DF tests. They report asymptotic and finite sample power 

results based on T= 100, the latter with main focus on the MA(1) specification of 

the errors vt, both when the initial observation is fixed and when it is drawn from 

the unconditional model. Use of the Bayesian information criterion (BIC) is made 

in selecting the lag length of the autoregression for estimation. Limited results 

are tabulated for the AR(1) specification of the errors vi by ERS who do not, 

however, consider the strictly stationary alternative under such a specification. 
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ERS expected the modified estimates of the trend parameters to improve the 

power performance of the standard DF tests. Evidence supporting this expec- 

tation comes from Phillips and Lee (1996) and Canjels and Watson (1997), who 

investigate the efficient extraction of deterministic trends in the case of near unit 

root non-stationary time series. They show that efficiency gains in the estimation 

of deterministic trends can be obtained by GLS detrending under the alternative 

using the unknown localizing parameter, and they quantify these gains. ' In re- 

lated work, Burridge and Taylor (2000) explore the source of the increased power 

performance of the GLS type tests relative to the DF test. They present Monte 

Carlo results on the power of the tests and the relative efficiencies of the mean 

estimators under GLS and GLSu detrending for a sample size of T= 100, when 

zt ==1 and vt follows an MA(1) process in both the fixed initial observation case 

and the unconditional case. 2 Their simulation results, reported for values of the 

MA parameter not too close to the boundary3, show that the power advantage of 

the tests based on GLS detrending cannot be solely attributable to the efficiency 

of the estimators used in constructing the test statistics as suggested by ERS. 

They find that the complete explanation lies in the shift of the null distribution 

of the GLS type tests closer to the origin, relative to that of the DF test, as 

opposed to a smaller shift of the distribution under the alternative. For later 

reference we will refer to this effect as the location effect. y 
A number of empirical studies have investigated the integration properties of 

data using the GLS univariate unit root tests of ERS, see among others Siklos and 

Granger (1997), Cheung and Lai (1998), Banerjee and Russell (2001), Cushman 

(2001), Barkoulas et al. (2002), McNown and Puttitanun (2002) and Rapach 

and Wohar (2002). Perhaps their wide use as opposed to other power-enhancing 

modifications of the Dickey-Fuller test that are available due to Park and Fuller 

(1995) and Leybourne (1995), namely the WS and MAX tests, resides in the 

unknown optimality properties of the latter as pointed out by Müller and Elliott 

(2001). This issue, however, has recently been addressed by Leybourne et al. 

'The treatment of Phillips and Lee (1996) allows for general polynomial trends, while Canjels 

and Watson (1997) study the case of a linear trend extraction. 
2They calculate the variances of the OLS, GLS and GLSu estimators as 

(X'X)'1X'nX(X'X)-1, where fZ is the variance-covariance matrix of (yl, y2, ..., vT]', (Y1, 

(1 - pL)y2, ..., 
(1 - pL)YT]' and [(1 - P2)1/2 Ui, (1 - PL)y2, .... 

(1 - PL)yT]' for aoca, aaca 

and äQt, 
s,,, respectively and Xis 1', [1,1 - p, and [(1 - 72)1/2,1-'p, 

respectively. 
3Their results are illustrated for values of the MA paramater 0 between ±0.7. 
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(2003), who find these alternative tests that explore the time reversibility of 

stationary autoregressive processes to have asymptotic local power very close to 

the envelope. Reported simulations based on finite samples clearly indicate their 

superior performance over the DF and GLS type tests, see also Pantula et al. 

(1994). 

This work differs from that of Burridge and Taylor (2000), in that they investi- 

gate the direct connection between the power performance of the GLS based tests 

and the relative efficiencies of the mean estimators by utilising exact formulas for 

the latter based on the variance-covariance matrix of an ARMA(1,1) model. In 

doing so, their aim is to disclose the source of increased power performance of 

these tests relative to the DF test. Thus, confronted with simulation evidence 

that postulates the GLS and GLSu tests as having power greater than the DF 

test with a corresponding mean estimator that is less efficient than the OLS esti- 

mator, they devote a large part of their study in exploring the location effect they 

find to be associated with such tests. On the other hand, we attempt to identify 

cases whereby the GLS test performs poorly relative to the DF test by appealing 

to -approximate theoretical results for the relative efficiencies of the mean esti- 

mator based on local to unity asymptotics. Focus is on the quality of the mean 

estimator per se, in order not to confound the efficiency issue with the location 

effect. We uncover significant finite sample effects. Burridge and Taylor hinted 

towards these, but we do a more comprehensive analysis for the AR(2) model 

and also report large sample results. We concentrate purely on the autoregressive 

structure given the importance of the latter in characterizing key economic series 

and conjecture that our results hold for higher order autoregressive models. 

For the purposes of our study we employ the values for c proposed by ERS 

(1996) and Elliott (1999) for the GLS and GLSu tests, respectively, which are 

those most often used in the literature. Accommodating changes in the value of 

c will affect the critical values of the GLS and GLSu tests, which in turn will 

affect their power performance. We briefly consider such cases towards the end 

of the chapter. 
The remainder of this chapter is organised as follows. In Section 5.2 we obtain 

simple, useful approximations to the relative efficiencies of the trend estimators, 

ß, under both GLS and GLSu detrending when ut is characterized by a stationary 

general linear process. The expressions that arise are then applied to individual 
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autoregressive models and their limiting values are calculated. While our results 

are confined to the case of a deterministic function that includes only a constant, 

they can easily be extended to allow for a trend term as well. Section 5.3 contains 

large and finite sample size and power results based on an extensive simulation 

study tailored to the case of a second order autoregressive model, where the 

relative efficiencies of the mean estimators are calculated according to the derived 

formulas in Section 5.2. Exact results of the relative efficiencies of the mean 

estimators are also tabulated in order to assess the quality of the approximation. 

Standard AR(1) model results are included for purposes of completeness. Section 

5.4 presents some concluding remarks. 

5.2 Relative efficiencies of the mean estimators 

under general linear processes 

Consider the time series {yt} generated by 

yt = a+ut, t=1,2,..., T, (5.2) 

where ut is a linear stochastic process that has the possibly infinite moving average 

representation given by 

co 

ut =E O(L)ce (5.3) 
j-o 

00 
with V (L) _E lkjL', '0(1) = Ej, 

o ci 
f 

0, Mio =1 and c being zero mean 
j=o 

white noise with variance o,, 2. It follows that E(ut) = 0. Under the additional 

assumption EjIf(< oo, the infinite sequence in (5.3) generates any stationary 
j=o 

finite-order ARMA model. 

Define 
ry; = cov(ut, ut-. i) = E(utut-3) 
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The autocovariance generating function of ut is 

00 
9. (z) _1 Yjz' _ ýf(z)(z-i) (5.4) 

and it is well known (Hamilton p. 188) that Tim [TE(UT - E(tT))2] = 
00 

. i=-00 
T 

where UT = T-1(ul + u2 + 
... UT), so that, as an approximation var( > ut) _ 

00 
t=1 

T> ryy. 
j_-00 

Then, setting z=1 in (5.4) we have 

00 

ROMI, 

and T 
var(J., ut) = TQt[b(1)]2" (5.5) 

t=l 

Also, from (5.5) and ry_j = ryj it follows that 

00 E'Yi -2 lore )]Z _ 'To] (5.6) 
j=i 

while 00 
'Yo = var(ut) = X2(1 +E ý)" (5.7) 

3=1 

After setting out the preliminaries, we consider generalized least squares es- 

timation of the mean a in (5.2). That is, a is estimated by regressing [yl, J2 - 

p-yl, y3 - P1/2,..., YT - TYT-1] on [1,1 - p, 1 - p, ..., 1 -PI, where p=1+ c/T is 

the local alternative. We denote the resultant estimator by äCLS, which can be 

written as 

-P+P )yl+ 
T-1 

(1-15)2 E yc+(1-p)YT 
^ t=2 acLS =1+ (T - 1)(1 -7i)2 
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In what follows we retain T but still appeal to some "large T results". Calculating 

the variance of äGLS we obtain 

var(aGLS) _ 

T-1 T-2 

f (P)'Yo + (1 - p)4var(E ut) + 2h(P) E 'yy + 2g(P)'YT-1 
t=2 j=1 

(5.8) 

where 

[k(P, T)]2 

f (P) = (1- P -}' T2)2 + (1- P)Z 

h(5) = L(1 -p+ p) + (1 - P)](1 P)2 

9(P) = (1 -P+ P2)(1 - P) 

k(P, T) = 1+(T- 1)(1-p)2. 

T-1 T T-2 

Assuming T sufficiently large so that var(E ut) = var(F, ut) and E ryj _ 

00 
t=2 t=1 j=1 

F, yj, the variance of a, 
LS using (5.5) and (5.6) can be approximated by 

j=1 

var(aýLS) N f(P)'ro + (1 - p)4TorE[VG(1)l + h(P)[0,2[&(1)l2 - 7ol (5.9) [k(P, T)]2 

where the last term in the numerator of (5.8) was omitted as being negligible. As 

the least squares estimator of a is simply the sample mean of yt, it follows from 

(5.5) that 
var(aoLS) = T_1oc[V)(1)]2. (5.10) 

Then, by taking the variance ratio of the mean estimators in (5.9) and (5.10) we 

obtain 

var(äCLS) ,., 
T2(1- p)4 +Th(P) +T[f(P) - h(P)j'Yo[a, 2[0(1)j2j-1 

(5.11) 
var(aOLS) [k(P, T)]2 

A similar expression can be obtained for aG,.,., in which case a is estimated 

by regressing [yi 1- P2, y2- Pyi, y3- PY2,..., YT - PyT-1] on [/1 -p, 1-p, 1 - 
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p,..., 1-p], 
T-1 

(1-7i)yl+(1-7; )2 E yt-I-(1-P)YT 
t=2 aGLSU = (1 - 'p2) + (T - 1)(1 - p)2 

The variance of aGLSu is given by 

fu(P)' Yo + (1- T)4 
T-1 T-2 

var(r, ut) + 2hu(P) > 7i + fu(P)7T-1 
t=2 

= [k (P, T)]2 
=1 (5.12) 

where 

f,, (7i) = 2(1 _7i)2 

hu(P) = 2(1 - p)3 

k (j5, T) = (1-p2)+(T-1)(1-p)2. 

Then, as above by assuming T sufficiently large we can approximate the variance 

of a, 
LS. 

by 

varýacLSu) 
fu(P)'Yo + (1 - p)4TQE[ýI'(1)j Zhu(P)[ýe[ (1))2 -'Yo] 

[ku(P, T)ý 

Taking the variance ratio of the a,,,. and aOLs estimators we obtain 

var(aGLS�) , 
T2(1- 7; )4 +Thu(P) +T[fu(P) - hu(P)]'Yo[ae(V)(1)j2j-1 

(5.13) 
var(äoLS) [k (P, T)]2 

Expressions (5.11) and (5.13) give a useful approximation to the relative effi- 

ciencies of the GLS and GLSu estimators of the mean under the general linear 

process that governs the error term of the time series lt in (5.2). For T and p 

fixed, (5.11) and (5.13) depend on the model parameters only through its final 

term. If [f (p) - h(p)] >0 and [fu(p) - hu(-p)] > 0, these variance ratios are an 
increasing function of the ratio 

, 
x(1), which from (5.7) and assuming a, 2, =1 

1+ 
throughout without loss of generality, can be written as `-, This latter 

[1+jE 011 2 
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ratio is that of the short-run to long-run variance of ut denoted by Q=V, /VI 
. 

Substituting for p=1+T in (5.11) and (5.13), we then have 

var(aCLS) , 
c2T(c2T +T2 + c2) +TQ(T + Z)T(T2 +T+ 2c2) 

var(OLS) (T2 + c2T - c2)2 
(5.14) 

and 
var(aCLSra) ß(Z2 -2+ 2TQ +2 Q) 

(5.15) 
var(OL, S) 

(-2T - 2c+ T)2 

We denote the ratios given by (5.14) and (5.15) RQLS and RCLS,,, respectively. It 

follows that 

and 

RcLS ce 
TQ + 2ZQ + O(T-1) 

(5.16) =1+ O(T-1) 

, ý, 
2TQ + 2ZQ +'c(c - 2) RGLS" - (c - 2)2 + O(T-1) (5.17) 

To render RGLS and RGLS� non divergent, we need to make Q inversely depen- 

dent on T. When Q is related to T, such that Q= O(T-1) it is easily observed 

from (5.16) and (5.17) that the limits of RcLS and RcLs will be determined 

(primarily) by the term TQ. It is also readily apparent that RcLS� will further 

depend on c asymptotically through the terms c(c - 2) and (c - 2)2, while for 

RGLS all terms involving c are asymptotically negligible. 4 Moreover, since Q>0 

we find OLS detrending is more efficient than GLS detrending - asymptotically 

at least - for any model. The same result holds for the GLSu estimator when 
TQ>2-c. 

We consider an AR(p + 1) model for ut of the form 

P 

(1- EJiM(1- PTL)ut = Ee (5.18) 
j=1 

where PT =1+T for a fixed constant c<0, so that the parameter space is a 

shrinking neighborhood of unity as the sample size grows. This parameterization 

is common in the local to unity setting see inter alia Chen and Wei (1987) and 

41n small samples RGLS will also depend on Z. This effect will become visible in graphs 
presented at a later stage. 
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Phillips (1987). Model (5.18) admits the explicit AR(p + 1) form 

p+l 

Ut =Zc jut_i +: t 
j=1 

where 
01=1+c/T 

¢1 = l+c/T+81 

O; = öj - (1 + c/T)b3-i, 
OP+, =- (1 + c/T) 8p 

p=0 

j=2,..., P P>O 

Under such a specification, V obtains the simple expression 

T2 
V= 

p. 
c2(1- E a; )2 

j=1 

It is much more difficult, however, to obtain a neat expression for V,, compelling 

us to look at a case-by-case analysis. 
For p=0, which corresponds to an AR(1) process, 

V_1 
(1-O )2 

T2 

c2 

while, 

va =1 

T2 

c(2T + c) 

Thus, 
TQ -T 2T +c 
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and 
lim RGLS =-2 c" (5.19) T-- oo 

For p=1, in which case the corresponding process is an AR(2), 

y_1 
(1 - c5i - c52)2 

_ 
T2 

c2(81 _ 1)2 

and 

_ 
1-02 Ve 

(1 + q52)[(1 - 02)2 - ý1 

T2(T + S1T + aic) 

c(j1 - 1)(2T+ c)(-T+ S1T + Sic) 

Thus, 

TQ - 
c(ö1 - 1) (T + SiT + 51c) 

-T(5 +1)(2T+c)(-T+c51T+blc) 

- 
T2c(1- 5) + O(T) 

(5.20) 2T2(öi - 1) + O(T) 

and 
TimRGLS 

2 

For p=2, the case of an AR(3) process, 

V, (1 - 01 - 02 - 03)2 

_ 
T2 

C2 (81+a2-1)2 

while 

02 + 0301 + 03 

g (01 
- 02 '+' 03 

'+' 1)(01 + 02 + 03 - 1) (0103 + 02 - +1) 
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_ 
T(82+1) c61+T 61-62+1 -c 2T+c 62 62-1 

= -T2c(2T+c)(61-62+1)(61+62-1)(62+ 1)[c(2T+c)62+Tc61+T (61+62-1) 

and 

c(al + S2 -1) JT(l + 52)[CSi + T(öi - a2 + 1)] - c(2T + c)52(52 - 1)} 
TQ -T (2T + c)(Si - b2 + 1) (62 + 1) [c(2T + c)52 +Tcbl +T2(5i + 82 -1)] 

T3c(1 + S2)(al + 62 
- 1)(6 - 

b2 +1) + O(T2) 

2T3(1 + 62)(81 + S2 -1)(61- 62 + 1) + O(T2) 
(5.21) 

from which 
lim RGLS = -2c. T-"oo 

For p=3, the expressions for V, become very messy, but still terms involving 

the b''-s cancel and we find the same result as in (5.19). Similarly so for p=4. It 

therefore turns out that these limits in the case of GLS detrending, depend only 

on c, but not on the underlying model or Z. 

Conjecture 5.2.1 Suppose yt is generated according to the AR(p + 1) model 
P 

yt = a+ut, t=1,2, ..., 
T with (1-E 5jLL)(1-pTL)ut = Et, where all the roots of 

j=1 
k 

b(z) =1E 53z' =0 lie outside the unit root circle and IpTI < 1. Furthermore, 
j=1 

if uo has properties analogous to ut itself and GLS detrending is performed under 

the local alternative p=1+ c/T , 
(c < 0), then limT-o, o RcLS = -IC c so that 

RG', >1forc<-2. 

Without plotting the limiting function for RQLS� it can easily be seen that for 

c= -30 the relative efficiency of the mean estimator is 15, but even for values 

of c closer to the null it is still well above unity. The prediction is that the GLS 

estimator of the mean will always be a less efficient estimator relative to that of 

OLS for c< -2, more so for the more negative values of c, in which case the 

GLS test will perform poorly relative to the DF test. 

We proceed in the same manner for the unconditional case. 

Forp=U, 

kl(-c)TQ + k2 1 2Tc 
(c - 2) (c - 2) (2T + c) -c 

-c+2c-c2+O(T-1) (c - 2)2+ O(T-1) 
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where 

ki =2 - (c - 2)2 

k2 (Z) =2 

and 
lim R c+2c-c2 1c (5.22) =-=- T-"oo CLSU (c - 2)2 (c 2) (c 2) 

Fore= 1, 

_1 
2cT(Sl - 1) (T + a1T + blc) 

- ki(c)TQ+1ý2(c) (c-2)ý('-2)(b1+1)(2T+c)(-T+S1T+blc) 
ýý 

_ -2T2(c+ 2c - c2)(bi - 1) + O(T) 
2T2(_2)2(8_ 1) + O(T) 

Týimý RGLSU _-(.. 
1 

2) 
[ 
ýý 

c 
2) - c] . 

For p=2, 
k1(-c)T Q+ k2 (Z) 

(C 
12) ýT 

('c 2)(2T+c)(6 
ý 

62+1)(d +1) (2T+c)62+Tc61+ 
c 

iä1+6,1 1) - Cý 
2T3(c+2-c-c2)(62+1)(61+62-1)(61-52+1)+O(T2) 

-- 2T- (-c- 2) li (62+1 (61+62-1)(61-62+1 +O T' ) 

- 'c]. Tim RCLSu =- (C 
1 

2) 
(c- 

2) 

For p=3 and likewise for p=4, the expressions for V, become quite unpleasant, 

however we end up with the same limit as in (5.22). Thus, under GLSu dctrend- 

ing the limiting value of the relative efficiency of the mean estimator depends 

further on c, but as in the GLS case it is independent of the underlying model. 

Conjecture 5.2.2 Suppose yt is generated according to the AR(p + 1) model 

yt = a+ut, t=1,2,..., T with (1- E ÖJL')(1- pTL)ut =et, where all the roots 
2_i 

k 

of J(Z) = 1- S; zl =0 lie outside the unit root circle and IPTI < 1. Furthermore, 
3=1 

if uo has properties analogous to ut itself and GLSu detrending is performed under 

the local alternative'p =1 +c/T , 
('c < 0), then limT-.. R 

SU =-I [(Z 
2) -c]. GL (Z- 
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The limiting function for RGLS� is graphed in Figure 5.1 for -30 <c< -5 and 

-15 <c< -5. It follows that for c< -15 and for all values of c considered, the 

limiting function barely increases above unity, while the maximum it reaches for 

c= -30 and c= -5 is about 1.33. The GLSu estimator of the mean is therefore 

on the whole more efficient than the OLS estimator and to the degree that the 

relative efficiencies predict power well, we expect the power of the GLSu test to 

be greater than the DF test in all cases when -30 <c< -5 and 'a = -10 as will 

be examined in the sequel. Such a test should not suffer from the shortcomings 

related to the GLS test. 

As was mentioned earlier, for [f (p) -h (-p)] >0 and [fu(p) - hu (p)] >0 the 

relative efficiencies of the mean estimators RGLS and RGLS� respectively are an 

increasing function of the short run to long run variance, Q, of the model under 

consideration. For those values of c as determined by ERS and Elliott (1999), 

it can be easily verified that these inequalities are indeed satisfied. It follows 

from (5.20) and (5.21) that Q is a function of the sample size, the localizing 

parameter c and the higher order autoregressive parameters of the model, Q= 

Q(T, C, Si2 82) .... 
). By keeping T and c fixed, the effect of the variation in the 

higher order autoregressive parameters 88, j=1,2, ... on Q and the subsequent 

impact on the relative efficiencies of the mean estimators RQLS and RcLS� would 

in principle become readily apparent. However, with Q being a complicated 

(nonlinear) function of the 8js these effects need to be quantified through a Monte 

Carlo simulation study. As the sample size increases, we would expect any effect 

of the 5s on the relative efficiencies of the mean estimators to dissipate as their 

limiting values where found above to be independent of these parameters. 

For future reference we derive next the exact expressions for the variances 

in (5.10), (5.8) and (5.12) respectively, when ut in (5.2) is generated by the 

stationary second-order autoregressive model 

Ut = q5lut-i + 02Ut-z + et (5.23) 

where et is iid(O, a, ). The variances of the mean estimators in this case are given 
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by 

var(aOLS) = Var(? 
Ll -'- 2l2 + 

... -i- UT) 

T 

= T-2{TVar(ut) + 2[(T - 1)Cov(UT7 UT-1) + (T - 2)Cov(UT, UT_2) 

-}-... +COV(uT, u1)]} 

T-1 

= T-lyo + 2T-2 (T - )7; 
j=1 

(5.24) 

T-3 

var(aGLS) _ [k(-p, T)] -2[f (P) + (1 - p)4(T - 2)]-yo + 2(1- 7j)4 E(T 
-j- 2)ryj 

j=1 
T-2 

-ý 2h(P) > "i, + 29(P)'YT-1] 
j=1 

(5.25) 

T-3 

var(äcrs,. ) _[ u(P, T)ý-2[fu(P) + (1 - 704 (T - 2)]-yo + 2(1 - p)4 E (T -j- 2)yß 
3=1 

T-2 

-I- 2hu(P) E'Yj + A(P)'YT-i} 
j=1 

(5.26) 

where the autocovariances rye, j>2 are obtained as the recursive solution to the 

second-order difference equation 

7j = 017j-1 + c52'13-2 

with 

\1 - 2)o 

1 
yo = (1 + 0z)(1 -X2)2 - 02 

'Yi =1 
012 

70 
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For 02 =0 the model in (5.23) reduces to an AR(1) with 

'Y1=q5'70, j>_1 

and 
UZ 

'to_ 
1e -P1 

By taking the relevant ratios of the variances in (5.24), (5.25) and (5.26) and 

substituting for the corresponding autocovariances we derive the exact relative 

efficiencies of the mean estimator under GLS and GLSu detrending in the case 

of either an AR(2) or AR(1) model. ' 

In the following section, we undertake an extensive Monte Carlo study to 

examine the performance of the GLS and GLSu tests under the alternative of a 

"strictly stationary process", where we make use of the above derived formulas of 

the relative efficiencies of the mean estimators. Their performance is also assessed 

relative to existing rivals, namely the WS and MAX tests. 

5.3 Monte Carlo results 

The first order autoregressive nature of the GLS detrending implicit in the GLS 

and GLSu tests, led us above to consider the model of the form 

P 

(1 - 
EajL')(1 

- PTL)ut = cc (5.27) 
j=l 

when entertaining higher order stationary autoregressions for ut in (5.2). In the 

simulation results that follow we examine the case where p=1, which corresponds 

to an AR(1) model with AR(1) errors 

Ut = PTUe-i + Vt 

va = ölet-l + ei. (5.28) 

SThe expressions for the variances in (5.24), (5.25) and (5.26) are an alternative formulation 
to those obtained in Burridge and Taylor (2000), where fl is now the variance-covariance matrix 
of an AR(2) model, see Footnote 2. 
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Alternatively (5.27) can be written in the form ut = (PT+ai)Ut-i -PTa1Ut-2+ee, 

which is easily seen to belong to the general second order stationary autoregres- 

sion given by 

Ut = Qiut-i + Q2ue-z + et (5.29) 

provided the appropriate stationarity conditions on the coefficients PT and 5 are 

satisfied. We restrict our attention to the AR(2) model, for expositional purposes. 

Consider the data generating process given by 

yt = ut; (1- 51L)(1 - PTL)ut = Et, PT =1+C7, (5.30) 

since the tests are invariant to any mean included in the yt equation, with c` 

NID(0,1). The corresponding regression equation is 

Dyc =v t-i + i9AVt-i + et (5.31) 

where yt is the local GLS or GLSu-demeaned series. The hypothesis of interest 

isHO: cp=0versus Hi: cp<0. 

We begin by inspecting the plots in Figures 5.2(a)-(e) that illustrate the simu- 

lated rejection frequencies of the DF, GLS, GLSu and WWS tests at the nominal 

0.05 level under the alternative hypothesis. ' The rejection frequencies are plot- 

ted against the second order autoregressive parameter ö1 that takes values within 

the range (-1,1). 7 Sample sizes of T= {100,200,500,1000,4000) are consid- 

ered for cE {-7, -10, -15, -20, -25, -30} based on 5000 replications. Here and 

throughout the values used for GLS and GLSu demeaning are those proposed 

by ERS and Elliott (1999), c= -7 and c= -10 respectively, unless otherwise 

stated. The lower power of the GLS test relative to the DF test for certain 

parameter configurations becomes immediately apparent from these figures, par- 

ticularly more so for smaller sample sizes. The greatest discrepcncies between 

BInitially the results for the MAX test were also included in the graphs. However, for 

expositional purposes they were omitted as they were almost identical to those pertaining to 

the WS test. For the same purpose we use two dimensional graphs keeping c fixed in each 
individual graph. 

7Note that to conform to the requirements of a covariance stationary process the parameters 
of the AR(2) model (5.29) must satisfy ß1 + ß2 < 1,0Z 

- 01 <1 and 1021<1. 
185 



the power of the two tests in finite samples are mainly observed for values in the 

negative domain of 51. In general, the power for the GLS test maintains a concave 

shape. Power decreases as Sl -+ -1 in which case yt approaches a nearly inte- 

grated seasonal model of order 2, while it decreases even further (approximating 

size) as Si --º 1, where yt approaches an 1(2) process. 

Figures 5.3(a)-(e) demonstrate the performance of the approximate relative 

efficiencies of the mean estimator under local GLS and GLSu detrending, that 

is the ratio of the variance of the GLS and GLSu mean estimator to the vari- 

ance of the OLS estimator given by (5.14) and (5.15) respectively, where Q= 

c(-1+al)(T+a1T+a1c) In the case of the AR(1) model for which 5=0 in - (1+bl)(2T+c)(-T+a1T+blc) . 
(5.30) and 19 =0 in (5.31), Q is replaced by -Z c. Inspecting these graphs in 

parallel to the power graphs in Figures 5.2(a)-(e) for the same values of T, c and 

5l, it turns out that the cases for which the GLS test performs poorly relative to 

the DF test, are indeed associated with highly inefficient mean estimates. The 

inefficiency of the GLS estimator relative to that of the OLS estimator manifests 

itself clearly in both finite and large sample sizes although it is more pronounced 

in the former case and in general for more negative values of 81. Moreover, the 

relative efficiency of the mean estimator under GLS detrending is close to its 

asymptotic value -c/2 for T= 4000 which is given in Table 5.1, apart from 

when 51 is extreme. The behaviour of the mean estimator based on GLSu de- 

trending is rather more subtle with a relative efficiency around the area of unity, 

in agreement with the asymptotic values, rising only moderately for the more 

extreme negative values of c and 51. In reporting the Monte Carlo results that 

follow we restrict our attention to a subset of the negative domain of öl, where 

the interesting cases appear to lie. 

Table 5.2 reports the rejection frequencies of the test statistics at the 5% signif- 

icance level under the null and alternative hypotheses, based on asymptotic criti- 

cal values calculated by setting 5l =0 in (5.30) for 20000 replications. The range 

of values considered for the localizing parameter c are {0, -7, -10, -15, -20, -25, 

-30} and Si E {-0.98, -0.95, -0.90, -0.85, -0.80, -0.75, -0.70, -0.65, -0.60,0. 
0}. Entries in the second column under the heading c=0 pertain to the size of the 

tests, while the remaining columns illustrate power. Values in the upper brackets 

are the approximate relative efficiencies of the mean estimator under local GLS 

and GLSu detrending. The corresponding lower bracketed values are the exact 
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relative efficiencies of the mean estimator given by the ratios of (5.25) over (5.24) 

and (5.26) over (5.24) respectively, once substituted for the appropriate autoco- 

variances. These latter values are provided as a way of assessing the quality of 

the approximate relative efficiencies. 

The size of all tests is well behaved in that empirical size is found to be 

very close to the nominal 5% level. As regards power, adjacent columns show 

that for fixed T and bl power increases for all tests the further we divert from 

the null, which reflects the consistency of the tests. The corresponding relative 

efficiencies of the mean estimators under GLS and GLSu detrending increase, 

which is not surprising since it is for alternatives closer to the unit root null 

that GLS based detrending is more efficient. The most stricking feature of the 

results is the high degree of inefficiency of the GLS detrended mean estimator 

relative to the OLS estimator which is evident for all sample sizes, although it 

is particularly discernible in finite samples and for the more negative values of 

81. Specifically, for T= 100,5 = -0.85 and c= -30, the GLS estimator 

demonstrates a variance of 22.23 times that of the OLS estimator which more 

than doubles for bl = -0.95. As the sample size increases, the effect of 81 on 

the inefficiency of the GLS estimator is mitigated. The mean estimator under 

GLSu detrending is slightly more efficient relative to the OLS estimator for 

alternatives closer to the null, while its variance is on average 1.2 times that of the 

OLS estimator for more distant alternatives. Such a phenomenon is undoubtedly 

associated with the different treatment of the initial observation implicit in the 

two detrending procedures under the `strict stationarity' of the data generating 

process considered. 

For fixed T and increasing J1, the GLS and GLSu tests exhibit an increase in 

terms of power in conjunction with improved efficiency of the corresponding mean 

estimators. This increase in power is observed for higher values of öl in absolute 

terms, for which a sharp drop in the relative efficiencies of the mean estimators 

is noted, and for small sample sizes. The power of the alternative tests based on 

OLS detrending remains practically invariant under the same circumstances. 8 

in fact, there is a slight decrease in the power of the DF statistic. This result corroborates 
the findings of DeJong et al. (1992), who examine the size and power performance of several 
conventional unit root tests in the presence of autoregressively correlated errors. The DCP 
they consider also includes a trend term in the deterministic function 

Yt =a+ bt + ut, ut =Put-i + vt, vt = avt-i + Et 
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Figures in Table 5.2 show that in total the GLS test demonstrates inferior 

power performance relative to the DF test for large negative values of c, that is 

for values of the localizing parameter c< -15, which implies that the relative 

efficiencies of the mean estimators predict powers well. In particular, the GLS 

test displays power 10 to 30 percent lower on average than the conventional 

DF test, the larger discrepancies observed for the more negative values of 31 

and smaller sample sizes. Related to such power results are the highest relative 

efficiencies of the mean estimator. To assess the quality of the approximate 

relative efficiencies under GLS and GLSu detrending, we compare them to their 

exact counterparts as displayed in the lower bracketed figures of Tables 5.2(a)-(e). 

In turns out that the approximate relative efficiencies are very close to the exact 

values with the highest divergence observed below 1.00 on average. 

When considering the theoretical limiting values of the approximate relative 

efficiencies of the mean estimator under local GLS and GLSu detrending pro- 

vided in Table 5.1 relative to the upper bracketed figures in Tables 5.2(a)-(e), it 

emerges that for T= 4000 the GLS estimator is equal to its limiting value -12, 
In general, the rate of convergence to its limiting value is slow particularly for 

the more negative values of 5l. The GLSu test on the other hand tends to follow 

rather closely its limiting value even for smaller sample sizes. 

In comparing the power performance of the DF test with the GLS based 

tests and their existing competitors, namely the DVS and MAX tests, the power 

superiority of the latter is overwhelmingly visible throughout Table 5.2, with 
little difference to choose between the two. The WS and MAX tests not only 

outperform the remaining tests, but they also maintain their power advantage 

for all combinations of c and Sl even for the very extreme values of J1. For the 

AR(1) case the findings are qualitatively similar although not as pronounced. 

Thus it appears that exploiting the time reversibility of a Gaussian stationary 

autoregressive finite order series as do these tests with implicit OLS detrending, 

is far more successful than GLS or GLSu detrending in terms of power advantage 

over the DF test. 

In summary, the above results suggest that unit root tests based on GLS 

detrending can have very low power for certain parameter values, and for some 

sample sizes, a fact that appears to be directly linked to highly inefficient mean 

which explains the more pronounced decrease in the power of the DF statistic that they find. 
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estimates. Asymptotic effects are uncovered for the localising parameter c, as 

predicted by our theoretical attempt in exploring such an issue, which appear con- 

siderably pronouced in finite samples. What is perhaps more interesting though 

are the finite sample effects related to the second order autoregressive parameter, 

81. An alternative result worth pointing out is that the GLS test performs better 

than the GLSu test in terms of power for alternatives closer to the null despite 

the higher relative efficiency of the mean estimator associated with the latter. 

Finally, diverting from our original focus on the quality of the mean estimator 

per se, we briefly present some selected graphical results on the effect of variation 

in Z. In doing so, we aim to highlight the dependence of the GLS and GLSu tests 

on the value of c used for detrending, which can affect the outcome of finite sample 

results. In Figures 5.4(a)-(d), we present power functions and the corresponding 

relative efficiencies of the GLS and GLSu mean estimators, for T= 100,200,500 

and 1000 and cE {-7, -10, -15, -20}. The results are reported for c= -20, a 

value that is representative of the overall effects underway. Results for alternative 

values of c are qualitatively similar and in conjunction with Figures 5.2 and 5.3, 

they are not difficult to predict. Varying c will change the critical values of 

the GLS and GLSu tests which in turn will affect their power, and based on 

the above results the relative efficiency of the corresponding mean estimator. 

This becomes readily apparent when studying the plots in Figures 5.4(a)-(d). In 

general, increasing the value of c in absolute terms under which local detrending 

is performed has the effect of augmenting the power of the GLS and GLSu tests 

and improving the efficiency of the mean estimator. Such an effect is particularly 

discernible for the GLS test and less so for the GLSu test. Specifically, in the case 

of the former by the time c= -20 any poor power performance demonstrated by 

the test is almost fully restored. 

5.4 Concluding remarks 

This study provided a further investigation into the behaviour of the GLS and 

GLSu tests in light of their widespread use in empirical applications, particularly 

of the former. We entertained solely the case where the initial observation is 

drawn from its unconditional distribution as a more realistic alternative. The 

principle issue was that the unit root test based on GLS detrending can have very 
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low power for some models and parameter values, and for some sample sizes. A 

theoretical attempt was made, relying on local to unity asymptotics, to identify 

such "unsatisfactory behaviour" through the investigation of variance ratios, in 

the case of an unknown mean. To this end, approximate results were derived for 

the relative efficiencies of the mean estimator under a general linear process for the 

error term which appeared to take the form of simple expressions. To obtain their 

limiting values an autoregressive structure was considered for the error term. The 

limiting function of the relative efficiency of the mean estimator based on GLS 

detrending showed that for large negative values of the localising parameter c, the 

GLS estimator will be an inferior estimator relative to the OLS estimator. To 

the extent that such a result is associated with lower power it would be expected 

that the GLS test demonstrates on occasion lower power compared to the DF 

test, which involves OLS detrending. The GLSu test on the other hand did not 

suffer from such shortcomings. Overall, asymptotics revealed that for both tests 

the underlying model will not affect the relative performance of the test. We 

can always select a value for c that will make GLS perform unfavourably. We 

conjectured that such results carries over to higher order autoregressive models. 
Monte Carlo results on the size and power properties of the tests were pre- 

sented tailored to a second order autoregressive model. The approximate relative 

efficiencies of the mean estimator appeared to predict powers well, demonstat- 

ing at the same time good quality when compared to their exact counterparts. 

Findings highlighted the low rejection probabilities of the GLS test for certain 

parameter configurations, which were associated with higher inefficiency of the 

GLS mean estimator relative to the OLS estimator. While such a finding was 

moderately evident in large sample sizes, it was particularly pronounced in fi- 

nite samples where higher power differences of the conventional DF test over the 

GLS test were noted mainly for the more negative values of second order autore- 

gressive parameter Si. Contrary to the asymptotic and finite effects displayed 

by the localising parameter c, the second order autoregressive parameter 61 was 

found to exhibit only finite effects which were more prominent for the GLS test. 

Related to this phenomenon was the finding that the relative efficiency of the 

mean estimator under GLS detrending converged to its limiting value at a slower 

rate for the more negative values of al. On the other hand, the relative efficiency 

of the GLSu detrended mean estimator was more in line with its limiting value 
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even in small samples. 
The above results raise some doubts regarding the reliability of the GLS 

test as a more powerful unit root test in empirical applications. On the contrary 

they provide a compelling argument in favour of alternative power-enhancing 

unit root tests, namely the WS and MAX tests. These latter tests appeared 

to be more robust maintaining power superiority over all tests for all parameter 

configurations and all sample sizes. 
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Table 5.1 

Theoretical limits of the relative efficiencies of the mean 
estimators under GLS and GLSu demeaning 

c -7 -10 -15 -20 -25 -30 
lim ROLS 3.5 5 7.5 10 12.5 15 

T-"oo 
lim RGLSu 0.881 0.903 0.938 0.972 1.007 1.042 

THE 
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Table 5.2(a) 

Size and power of the tests of the I(1) null at the nominal 5% level, T= 100 

61 

C 

0 -7 -10 -15 -20 -25 -30 

-0.98 WS 0.056 0.311 0.530 0.839 0.971 0.997 1.000 

MAX 0.054 0.303 0.513 0.834 0.968 0.997 1.000 

DF 0.051 0.193 0.333 0.638 0.877 0.973 0.998 

GLS 0.054 0.183(6.928) 0.263(13.28) 0.360(29.31) 0.407(53.11) 0.429(85.94) 0.443(129.3) 

(7.890) (14.40) (30.58) (54.25) (86.52) (128.6) 

GLSu 0.045 0.189(1.077) 0.320(1.284) 0.599(1.807) 0.822(2.584) 0.930(3.654) 0.962(5.068) 

(1.091) (1.274) (1.738) (2.421) (3.352) (4.566) 

-0.95 WS 0.055 0.312 0.531 0.839 0.971 0.996 1.000 

MAX 0.054 0.304 0.513 0.835 0.967 0.998 1.000 

DF 0.051 0.194 0.336 0.640 0.877 0.973 0.998 

GLS 0.048 0.234(3.799) 0.344(6.690) 0.482(13.68) 0.551(23.75) 0.594(37.40) 0.614(55.21) 

(4.381) (7.366) (14.53) (24.75) (38.51) (56.32) 

GLSu 0.049 0.212(0.975) 0.358(1.069) 0.658(1.297) 0.879(1.626) 0.971(2.071) 0.993(2.652) 

(0.999) (1.089) (1.316) (1.646) (2.091) (2.668) 

-0.90 WS 0.055 0.311 0.535 0.840 0.970 0.996 1.000 

MAX 0.054 0.304 0.512 0.837 0.967 0.997 1.000 

DF 0.053 0.195 0.335 0.637 0.877 0.972 0.998 

GLS 0.048 0.264(2.755) 0.405(4.492) 0.572(8.460) 0.671(13.95) 0.717(21.20) 0.750(30.49) 

(3.174) (4.945) (8.993) (14.57) (21.89) (31.23) 

GLSu 0.049 0.222(0.941) 0.372(0.998) 0.687(1.127) 0.901(1.306) 0.980(1.543) 0.998(1.846) 

(0.960) (1.011) (1.138) (1.317) (1.555) (1.858) 

-0.85 WS 0.056 0.311 0.535 0.839 0.970 0.995 1.000 

MAX 0.056 0.303 0.516 0.837 0.966 0.997 1.000 

DF 0.053 0.195 0.336 0.635 0.874 0.972 0.998 

GLS 0.047 0.277(2.406) 0.430(3.757) 0.622(6.716) 0.736(10.68) 0.783(15.79) 0.816(22.23) 
(2.769) (4.135) (7.139) (11.15) (16.31) (22.79) 

GLSu 0.052 0.224(0.929) 0.376(0.974) 0.695(1.070) 0.902(1.199) 0.982(1.366) 0.998(1.576) 

(0.946) (0.984) (1.077) (1.206) (1.373) (1.583) 

-0.80 WS 0.055 0.311 0.536 0.838 0.969 0.995 1.000 

MAX 0.056 0.303 0.519 0.833 0.966 0.997 1.000 

DF 0.053 0.194 0.334 0.633 0.872 0.071 0.098 

GLS 0.050 0.284(2.231) 0.447(3.388) 0.655(5.840) 0.765(9.031) 0.820(13.07) 0.856(18.08) 

(2.566) (3.727) (6.208) (9.433) (13.51) (18.55) 

GLSu 0.053 0.225(0.924) 0.378(0.962) 0.695(1.042) 0.904(1.146) 0.982(1.277) 0.098(1.4.11) 

(0.940) (0.971) (1.047) (1.150) (1.281) (1.445) 

Note: The results in this and all subsequent tables are based on the data-generating 

process ye = ue, (1- 51L)(1- PTL)ue = Ct, PT =1+f The corresponding regres- 
sion equation is Aye =S t-i +i9Aye-i +et, where ye is the demeaned series. The 

entries for 81 = 0.0 are based on 0=0. Values in the upper and lower parentheses 
denote the approximated and exact relative efficiencies of the mean estimators, 
respectively. 
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Table 5.2(a) (continued) 

bl 

C 

0 -7 -10 -15 -20 -25 -30 

-0.75 WS 0.054 0.311 0.537 0.836 0.967 0.995 1.000 

MAX 0.056 0.303 0.521 0.832 0.964 0.997 1.000 

DF 0.054 0.194 0.332 0.631 0.870 0.970 0.998 

GLS 0.050 0.287(2.125) 0.457(3.165) 0.672(5.311) 0.789(8.038) 0.846(11.43) 0.881(15.58) 

(2.444) (3.481) (5.645) (8.396) (11.81) (15.98) 

GLSu 0.053 0.225(0.920) 0.380(0.954) 0.698(1.024) 0.904(1.113) 0.981(1.224) 0.998(1.359) 
(0.936) (0.963) (1.029) (1.116) (1.226) (1.361) 

-0.70 WS 0.054 0.308 0.534 0.835 0.966 0.995 0.999 

MAX 0.056 0.303 0.519 0.829 0.962 0.997 1.000 

DF 0.053 0.194 0.332 0.628 0.868 0.968 0.997 

GLS 0.050 0.288(2.054) 0.463(3.015) 0.681(4.955) 0.804(7.370) 0.866(10.32) 0.901(13.90) 

(2.361) (3.316) (5.266) (7.698) (10.67) (14.26) 

GLSu 0.053 0.224(0.918) 0.378(0.949) 0.699(1.013) 0.902(1.091) 0.981(1.188) 0.998(1.304) 

(0.933) (0.958) (1.016) (1.093) (1.189) (1.305) 

-0.65 WS 0.054 0.309 0.533 0.833 0.964 0.994 0.999 

MAX 0.055 0.302 0.518 0.826 0.961 0.997 1.000 

DF 0.053 0.194 0.331 0.629 0.866 0.967 0.996 

GLS 0.050 0.291(2.002) 0.465(2.907) 0.689(4.698) 0.815(6.887) 0.877(9.527) 0.913(12.68) 

(2.301) (3.196) (4.993) (7.194) (9.848) (13.01) 

GLSu 0.052 0.224(0.916) 0.379(0.946) 0.696(1.004) 0.900(1.076) 0.980(1.162) 0.998(1.265) 

(0.931) (0.954) (1.007) (1.077) (1.162) (1.264) 

-0.60 WS 0.055 0.307 0.531 0.829 0.961 0.995 0.999 

MAX 0.055 0.301 0.517 0.823 0.959 0.997 1.000 

DF 0.053 0.194 0.329 0.630 0.864 0.966 0.990 

GLS 0.051 0.293(1.963) 0.468(2.824) 0.695(4.503) 0.824(6.520) 0.885(8.922) 0.919(11.76) 
(2.256) (3.105) (4.785) (6.811) (9.223) (12.07) 

GLSu 0.053 0.222(0.915) 0.380(0.943) 0.692(0.998) 0.898(1.064) 0.979(1.142) 0.997(1.235) 

(0.930) (0.951) (1.001) (1.064) (1.142) (1.23.1) 

0.0 WS 0.054 0.310 0.532 0.843 0.974 0.996 1.000 

MAX 0.055 0.307 0.523 0.840 0.972 0.998 1.000 

DF 0.051 0.198 0.344 0.652 0.886 0.976 0.098 

GLS 0.052 0.306(1.769) 0.424(2.418) 0.761(3.545) 0.901(4.735) 0.954(5.993) 0.079(7.325) 

(2.032) (2.657) (3.767) (4.948) (6.200) (7.527) 

GLSu 0.052 0.231(0.909) 0.403(0.930) 0.720(0.967) 0.919(1.005) 0.991(1.046) 0.099(1.090) 

(0.922) (0.936) (0.968) (1.004) (1.043) (1.086) 
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Table 5.2(b) 

Size and power of the tests of the I(1) null at the nominal 5% level, T= 200 

61 

C 

0 -7 -10 -15 -20 -25 -30 

-0.98 WS 0.054 0.333 0.554 0.841 0.972 0.997 1.000 

MAX 0.054 0.323 0.531 0.833 0.970 0.998 1.000 

DF 0.050 0.197 0.336 0.635 0.865 0.971 0.996 

GLS 0.047 0.227(6.137) 0.308(11.15) 0.411(23.03) 0.468(39.63) 0.498(61.31) 0.514(88.47) 

(7.124) (12.33) (24.57) (41.52) (63.53) (90.99) 

GLSu 0.046 0.205(0.979) 0.353(1.091) 0.644(1.355) 0.862(1.724) 0.963(2.206) 0.988(2.810) 
(1.014) (1.121) (1.384) (1.753) (2.233) (2.833) 

-0.95 WS 0.054 0.332 0.556 0.841 0.971 0.997 1.000 

MAX 0.054 0.322 0.531 0.833 0.970 0.998 1.000 

DF 0.051 0.197 0.335 0.635 0.865 0.970 0.996 

GLS 0.048 0.267(3.839) 0.387(6.383) 0.523(12.03) 0.601(19.56) 0.646(29.12) 0.672(40.85) 

(4.458) (7.066) (12.85) (20.53) (30.22) (42.10) 

GLSu 0.048 0.217(0.928) 0.376(0.985) 0.681(1.111) 0.893(1.278) 0.979(1.490) 0.997(1.751) 

(0.956) (1.007) (1.131) (1.299) (1.513) (1.776) 

-0.90 WS 0.052 0.332 0.554 0.841 0.971 0.997 1.000 

MAX 0.054 0.323 0.531 0.833 0.970 0.997 1.000 

DF 0.050 0.197 0.336 0.634 0.862 0.969 0.996 

GLS 0.051 0.287(3.072) 0.424(4.794) 0.601(8.364) 0.694(12.87) 0.751(18.37) 0.787(24.95) 

(3.566) (5.306) (8.932) (13.50) (19.08) (25.73) 

GLSu 0.051 0.221(0.911) 0.385(0.950) 0.693(1.029) 0.900(1.129) 0.983(1.251) 0.997(1.398) 

(0.936) (0.968) (1.043) (1.143) (1.265) (1.412) 

-0.85 WS 0.053 0.332 0.554 0.841 0.971 0.996 1.000 

MAX 0.055 0.323 0.531 0.833 0.969 0.097 1.000 

DF 0.049 0.197 0.334 0.633 0.861 0.968 0.995 

GLS 0.052 0.296(2.816) 0.437(4.262) 0.631(7.138) 0.740(10.63) 0.796(14.78) 0.834(19.64) 

(3.268) (4.718) (7.622) (11.15) (15.35) (20.25) 

GLSu 0.050 0.226(0.906) 0.388(0.938) 0.694(1.002) 0.902(1.079) 0.984(1.172) 0.997(1.280) 

(0.930) (0.955) (1.014) (1.090) (1.182) (1.290) 

-0.80 WS 0.052 0.331 0.554 0.840 0.970 0.996 1.000 

MAX 0.055 0.321 0.532 0.833 0.068 0.997 1.000 

DF 0.050 0.197 0.333 0.633 0.860 0.067 0.095 
GLS 0.051 0.298(2.687) 0.448(3.996) 0.650(6.521) 0.765(9.505) 0.826(12.98) 0.865(16.97) 

(3.118) (4.422) (6.964) (9.973) (13.48) (17.50) 

GLSu 0.050 0.227(0.903) 0.389(0.932) 0.695(0.988) 0.900(1.054) 0.984(1.132) 0.098(1.220) 

(0.926) (0.948) (1.000) (1.064) (1.141) (1.229) 
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Table 5.2(b) (continued) 

c 

bl 0 -7 -10 -15 -20 -25 -30 

-0.75 WS 0.054 0.332 0.554 0.839 0.970 0.996 1.000 

MAX 0.056 0.322 0.531 0.833 0.968 0.997 1.000 

DF 0.050 0.197 0.332 0.630 0.860 0.968 0.995 

GLS 0.050 0.300(2.609) 0.455(3.834) 0.664(6.149) 0.778(8.825) 0.845(11.89) 0.884(15.36) 

(3.028) (4.243) (6.566) (9.260) (12.34) (15.84) 

GLSu 0.051 0.227(0.901) 0.389(0.928) 0.694(0.980) 0.900(1.039) 0.984(1.107) 0.998(1.185) 

(0.924) (0.944) (0.991) (1.048) (1.115) (1.192) 

-0.70 WS 0.054 0.332 0.551 0.837 0.969 0.996 1.000 

MAX 0.057 0.321 0.530 0.831 0.968 0.997 1.000 

DF 0.050 0.198 0.335 0.630 0.859 0.967 0.993 

GLS 0.051 0.303(2.557) 0.466(3.726) 0.670(5.899) 0.792(8.369) 0.858(11.16) 0.896(14.28) 

(2.967) (4.123) (6.299) (8.781) (11.58) (14.72) 

GLSu 0.050 0.227(0.900) 0.389(0.926) 0.692(0.974) 0.899(1.029) 0.983(1.091) 0.997(1.160) 

(0.923) (0.942) (0.985) (1.038) (1.099) (1.167) 

-0.65 WS 0.053 0.333 0.550 0.837 0.969 0.995 1.000 

MAX 0.056 0.322 0.527 0.829 0.967 0.997 1.000 

DF 0.050 0.196 0.333 0.629 0.857 0.966 0.995 

GLS 0.051 0.303(2.519) 0.467(3.648) 0.671(5.718) 0.796(8.039) 0.863(10.63) 0.907(13.50) 

(2.923) (4.036) (6.106) (8.435) (11.03) (13.92) 

GLSu 0.050 0.227(0.899) 0.389(0.924) 0.692(0.970) 0.899(1.022) 0.982(1.079) 0.998(1.143) 

(0.922) (0.940) (0.981) (1.030) (1.086) (1.149) 

-0.60 WS 0.054 0.332 0.549 0.837 0.968 0.995 1.000 

MAX 0.056 0.320 0.527 0.829 0.967 0.997 1.000 

DF 0.050 0.196 0.335 0.626 0.855 0.066 0.995 

GLS 0.051 0.303(2.490) 0.471(3.588) 0.672(5.580) 0.801(7.787) 0.868(10.22) 0.911(12.90) 

(2.889) (3.970) (5.959) (8.171) (10.62) (13.30) 

GLSu 0.051 0.227(0.898) 0.390(0.923) 0.692(0.967) 0.898(1.016) 0.981(1.070) 0.998(1.130) 

(0.921) (0.938) (0.977) (1.024) (1.077) (1.136) 

0.0 WS 0.052 0.333 0.554 0.848 0.970 0.997 1.000 

MAX 0.055 0.322 0.534 0.837 0.972 0.998 1.000 

DF 0.051 0.205 0.338 0.638 0.870 0.972 0.090 

GLS 0.051 0.303(2.347) 0.483(3.292) 0.713(4.900) 0.839(6.550) 0.911(8.244) 0.950(9.98-1) 

(3.199) (3.643) (5.232) (6.873) (8.562) (10.30) 

GLSu 0.051 0.235(0.895) 0.397(0.916) 0.710(0.952) 0.893(0.989) 0.086(1.026) 0.998(1.065) 

(0.918) (0.931) (0.961) (0.995) (1.031) (1.069) 
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Table 5.2(c) 

Size and power of the tests of the I(1) null at the nominal 5% level, T= 500 

81 

C 

0 -7 -10 -15 -20 -25 -30 

-0.98 WS 0.055 0.302 0.517 0.832 0.964 0.997 1.000 

MAX 0.055 0.298 0.506 0.827 0.964 0.997 1.000 

DF 0.051 0.196 0.335 0.630 0.867 0.968 0.997 

GLS 0.056 0.243(4.918) 0.360(8.240) 0.492(15.50) 0.568(24.96) 0.611(36.69) 0.640(50.76) 

(5.729) (9.144) (16.58) (26.24) (38.17) (52.45) 

GLSu 0.051 0.221(0.921) 0.375(0.977) 0.676(1.101) 0.892(1.261) 0.980(1.460) 0.998(1.699) 

(0.954) (1.005) (1.126) (1.287) (1.488) (1.730) 

-0.95 WS 0.054 0.301 0.518 0.832 0.963 0.997 1.000 

MAX 0.054 0.299 0.506 0.827 0.963 0.997 1.000 

DF 0.052 0.196 0.336 0.630 0.866 0.968 0.997 

GLS 0.054 0.267(3.715) 0.405(5.769) 0.573(9.880) 0.670(14.87) 0.730(20.77) 0.768(27.60) 

(4.327) (6.402) (10.57) (15.64) (21.61) (28.52) 

GLSu 0.052 0.229(0.900) 0.387(0.935) 0.690(1.005) 0.904(1.090) 0.983(1.190) 0.999(1.306) 

(0.930) (0.958) (1.024) (1.107) (1.207) (1.323) 

-0.90 WS 0.054 0.301 0.517 0.831 0.962 0.997 1.000 

MAX 0.054 0.300 0.506 0.826 0.964 0.998 1.000 

DF 0.052 0.195 0.336 0.634 0.869 0.967 0.997 

GLS 0.051 0.278(3.314) 0.428(4.945) 0.624(8.006) 0.732(11.51) 0.794(15.46) 0.837(19.87) 

(3.859) (5.487) (8.567) (12.10) (16.08) (20.53) 

GLSu 0.053 0.231(0.894) 0.389(0.921) 0.694(0.973) 0.908(1.033) 0.984(1.100) 0.099(1.175) 

(0.922) (0.943) (0.990) (1.047) (1.113) (1.188) 

-0.85 WS 0.054 0.300 0.517 0.833 0.962 0.997 1.000 

MAX 0.054 0.298 0.507 0.827 0.962 0.997 1.000 

DF 0.051 0.195 0.335 0.634 0.868 0.966 0.997 

GLS 0.051 0.278(3.179) 0.437(4.669) 0.641(7.379) 0.755(10.38) 0.819(13.68) 0.860(17.29) 

(3.703) (5.181) (7.897) (10.91) (14.23) (17.86) 

GLSu 0.053 0.231(0.891) 0.389(0.917) 0.694(0.963) 0.908(1.014) 0.983(1.070) 0.999(1.131) 

(0.920) (0.937) (0.978) (1.027) (1.082) (1.142) 

-0.80 WS 0.053 0.300 0.518 0.832 0.963 0.997 1.000 

MAX 0.054 0.299 0.508 0.826 0.062 0.997 1.000 

DF 0.051 0.195 0.335 0.633 0.868 0.966 0.997 

GLS 0.051 0.278(3.112) 0.444(4.531) 0.650(7.064) 0.766(9.815) 0.830(12.79) 0.876(15.99) 

(3.624) (5.027) (7.560) (10.32) (13.31) (16.52) 

GLSu 0.053 0.231(0.890) 0.389(0.914) 0.696(0.957) 0.909(1.00.1) 0.983(1.055) 0.098(1.109) 

(0.918) (0.935) (0.972) (1.017) (1.066) (1.120) 
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Table 5.2(c) (continued) 

81 

c 

0 -7 -10 -15 -20 -25 -30 

-0.75 WS 0.053 0.300 0.516 0.831 0.962 0.997 1.000 

MAX 0.054 0.298 0.508 0.826 0.962 0.997 1.000 

DF 0.052 0.195 0.335 0.635 0.866 0.965 0.997 

CLS 0.052 0.279(3.071) 0.445(4.447) 0.656(6.874) 0.773(9.473) 0.836(12.25) 0.882(15.20) 

(3.577) (4.935) (7.357) (9.960) (12.74) (15.71) 

GLSu 0.053 0.231(0.890) 0.390(0.913) 0.696(0.954) 0.909(0.998) 0.983(1.045) 0.998(1.096) 
(0.918) (0.933) (0.969) (1.011) (1.056) (1.106) 

-0.70 WS 0.053 0.301 0.514 0.830 0.963 0.997 1.000 

MAX 0.054 0.297 0.507 0.825 0.962 0.997 1.000 

DF 0.052 0.195 0.335 0.633 0.864 0.965 0.997 

GLS 0.052 0.279(3.044) 0.448(4.391) 0.658(6.746) 0.774(9.243) 0.841(11.89) 0.888(14.68) 

(3.545) (4.872) (7.220) (9.719) (12.37) (15.17) 

GLSu 0.053 0.232(0.889) 0.390(0.912) 0.694(0.952) 0.909(0.994) 0.983(1.039) 0.998(1.087) 

(0.917) (0.932) (0.967) (1.007) (1.050) (1.097) 

-0.65 WS 0.052 0.301 0.515 0.831 0.962 0.997 1.000 

MAX 0.054 0.297 0.507 0.824 0.961 0.997 1.000 

DF 0.052 0.194 0.334 0.631 0.864 0.964 0.996 

GLS 0.052 0.280(3.024) 0.450(4.350) 0.662(6.654) 0.775(9.077) 0.846(11.62) 0.891(14.30) 

(3.522) (4.827) (7.121) (9.544) (12.09) (14.77) 

GLSu 0.054 0.231(0.889) 0.388(0.911) 0.693(0.950) 0.908(0.992) 0.982(1.035) 0.999(1.080) 

(0.917) (0.931) (0.965) (1.004) (1.045) (1.090) 

-0.60 WS 0.054 0.299 0.515 0.831 0.962 0.997 1.000 

MAX 0.054 0.296 0.506 0.824 0.961 0.997 1.000 

DF 0.052 0.193 0.333 0.630 0.864 0.964 0.996 

GLS 0.052 0.281(0.871) 0.450(4.319) 0.663(6.584) 0.779(8.951) 0.850(11.42) 0.895(14.01) 

(0.912) (4.793) (7.045) (9.411) (11.89) (14.47) 

GLSu 0.054 0.232(0.888) 0.389(0.911) 0.692(0.949) 0.907(0.989) 0.980(1.031) 0.998(1.075) 

(0.916) (0.931) (0.964) (1.001) (1.042) (1.085) 

0.0 WS 0.054 0.303 0.519 0.833 0.964 0.997 1.000 

MAX 0.054 0.299 0.510 0.827 0.965 0.997 1.000 

DF 0.053 0.193 0.336 0.632 0.867 0.968 0.098 
GLS 0.055 0.282(2.934) 0.457(4.165) 0.676(6.234) 0.798(8.324) 0.870(10.44) 0.912(12.57) 

(3.417) (4.622) (6.671) (8.752) (10.86) (12.99) 

GLSu 0.055 0.232(0.887) 0.392(0.908) 0.701(0.943) 0.911(0.979) 0.985(1.015) 0.099(1.051) 
(0.915) (0.928) (0.957) (0.990) (1.024) (1.060) 
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Table 5.2(d) 

Size and power of the tests of the I(1) null at the nominal 5% level, T= 1000 

51 

C 

0 -7 -10 -15 -20 -25 -30 

-0.98 WS 0.052 0.331 0.537 0.842 0.976 0.997 1.000 

MAX 0.053 0.317 0.520 0.825 0.969 0.997 1.000 

DF 0.047 0.177 0.318 0.609 0.856 0.966 0.996 

GLS 0.048 0.250(4.289) 0.376(6.791) 0.544(11.89) 0.628(18.15) 0.687(25.61) 0.722(34.27) 

(0.500) (7.541) (12.73) (19.10) (26.66) (35.43) 

GLSu 0.047 0.213(0.901) 0.373(0.940) 0.677(1.018) 0.895(1.115) 0.982(1.230) 0.998(1.363) 
(0.934) (0.965) (1.040) (1.135) (1.250) (1.384) 

-0.95 WS 0.053 0.331 0.537 0.841 0.976 0.997 1.000 

MAX 0.052 0.317 0.519 0.825 0.968 0.998 1.000 

DF 0.047 0.177 0.317 0.609 0.856 0.966 0.995 

GLS 0.047 0.262(3.625) 0.398(5.432) 0.596(8.814) 0.701(12.66) 0.772(16.99) 0.815(21.79) 

(4.226) (6.032) (9.438) (13.32) (17.69) (22.53) 

GLSu 0.048 0.217(0.891) 0.379(0.919) 0.684(0.971) 0.898(1.030) 0.983(1.097) 0.998(1.171) 

(0.922) (0.942) (0.989) (1.046) (1.112) (1.185) 

-0.90 WS 0.053 0.330 0.538 0.841 0.975 0.997 1.000 

MAX 0.052 0.317 0.520 0.825 0.968 0.997 1.000 

DF 0.047 0.177 0.317 0.608 0.855 0.966 0.995 

GLS 0.048 0.270(3.404) 0.411(4.979) 0.620(7.789) 0.736(10.83) 0.814(14.11) 0.864(17.63) 

(3.968) (5.529) (8.340) (11.40) (14.69) (18.23) 

GLSu 0.047 0.216(0.888) 0.381(0.912) 0.686(0.955) 0.898(1.002) 0.983(1.053) 0.998(1.107) 

(0.918) (0.934) (0.972) (1.017) (1.066) (1.119) 

-0.85 WS 0.052 0.331 0.539 0.842 0.975 0.997 1.000 

MAX 0.052 0.316 0.520 0.825 0.968 0.997 1.000 

DF 0.048 0.176 0.317 0.608 0.854 0.966 0.096 

GLS 0.048 0.275(3.330) 0.420(4.828) 0.628(7.446) 0.746(10.22) 0.824(13.15) 0.874(16.24) 

(3.882) (5.361) (7.973) (10.75) (13.69) (16.79) 

GLSu 0.047 0.218(0.887) 0.382(0.910) 0.688(0.950) 0.898(0.993) 0.983(1.038) 0.998(1.085) 

(0.916) (0.932) (0.966) (1.007) (1.050) (1.097) 

-0.80 WS 0.052 0.330 0.539 0.841 0.974 0.998 1.000 

MAX 0.053 0.316 0.521 0.826 0.968 0.997 1.000 
DF 0.048 0.176 0.317 0.605 0.853 0.965 0.996 

GLS 0.048 0.276(3.293) 0.425(4.752) 0.633(7.274) 0.751(9.912) 0.831(12.67) 0.881(15.54) 

(3.838) (5.276) (7.789) (10.43) (13.19) (16.07) 

GLSu 0.047 0.219(0.886) 0.383(0.909) 0.689(0.947) 0.899(0.088) 0.983(1.030) 0.997(1.075) 

(0.916) (0.930) (0.964) (1.002) (1.0.13) (1.086) 
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Table 5.2(d) (continued) 

c 

61 0 -7 -10 -15 -20 -25 -30 

-0.75 WS 0.052 0.332 0.539 0.842 0.974 0.998 1.000 

MAX 0.053 0.316 0.522 0.826 0.968 0.997 1.000 

DF 0.047 0.176 0.317 0.605 0.853 0.965 0.996 

GLS 0.048 0.277(3.270) 0.428(4.706) 0.638(7.170) 0.757(9.726) 0.835(12.38) 0.887(15.12) 

(3.812) (5.225) (7.678) (10.23) (12.88) (15.63) 

GLSu 0.047 0.218(0.886) 0.383(0.908) 0.689(0.946) 0.900(0.985) 0.983(1.026) 0.997(1.068) 

(0.915) (0.930) (0.962) (0.999) (1.038) (1.079) 

-0.70 WS 0.052 0.332 0.539 0.842 0.974 0.998 1.000 

MAX 0.053 0.315 0.522 0.826 0.968 0.997 1.000 

DF 0.047 0.175 0.317 0.605 0.854 0.965 0.996 

GLS 0.048 0.277(3.255) 0.429(4.675) 0.640(7.100) 0.761(9.601) 0.840(12.18) 0.889(14.83) 

(3.795) (5.191) (7.603) (10.10) (12.68) (15.34) 

GLSu 0.047 0.219(0.886) 0.383(0.907) 0.688(0.945) 0.900(0.983) 0.982(1.023) 0.997(1.064) 

(0.915) (0.929) (0.961) (0.997) (1.035) (1.075) 

-0.65 WS 0.052 0.331 0.540 0.842 0.974 0.998 1.000 

MAX 0.052 0.314 0.521 0.825 0.968 0.997 1.000 

DF 0.047 0.175 0.317 0.607 0.855 0.965 0.995 

GLS 0.048 0.277(3.244) 0.428(4.652) 0.641(7.049) 0.762(9.511) 0.841(12.04) 0.890(14.63) 

(3.782) (5.166) (7.549) (10.01) (12.53) (15.12) 

GLSu 0.047 0.218(0.885) 0.384(0.907) 0.687(0.944) 0.900(0.982) 0.982(1.021) 0.997(1.061) 

(0.915) (0.929) (0.960) (0.995) (1.033) (1.071) 

-0.60 WS 0.052 0.331 0.540 0.841 0.974 0.997 1.000 

MAX 0.052 0.314 0.521 0.826 0.968 0.996 1.000 

DF 0.047 0.176 0.317 0.606 0.854 0.965 0.995 

GLS 0.048 0.276(3.236) 0.429(4.635) 0.641(7.011) 0.761(9.442) 0.843(11.93) 0.891(14.47) 

(3.772) (5.147) (7.508) (9.933) (12.42) (14.06) 

GLSu 0.047 0.218(0.885) 0.384(0.907) 0.686(0.943) 0.899(0.981) 0.982(1.019) 0.998(1.058) 

(0.915) (0.928) (0.959) (0.994) (1.031) (1.069) 

0.0 WS 0.052 0.328 0.537 0.841 0.976 0.997 1.000 

MAX 0.051 0.314 0.520 0.825 0.969 0.997 1.000 

DF 0.048 0.180 0.320 0.609 0.856 0.960 0.096 

GLS 0.051 0.281(3.195) 0.437(4.551) 0.648(6.819) 0.775(9.100) 0.855(11.39) 0.903(13.70) 

(3.724) (5.053) (7.302) (9.574) (11.86) (14.16) 

GLSu 0.049 0.219(0.885) 0.384(0.905) 0.691(0.940) 0.900(0.975) 0.981(1.011) 0.098(1.046) 

(0.914) (0.927) (0.956) (0.989) (1.022) (1.057) 

213 



Table 5.2(e) 

Size and power of the tests of the 1(1) null at the nominal 5% level, T= 4000 

61 

c 

0 -7 -10 -15 -20 -25 -30 

-0.98 WS 0.053 0.347 0.542 0.840 0.969 0.997 1.000 

MAX 0.053 0.331 0.529 0.831 0.968 0.997 0.999 

DF 0.052 0.196 0.333 0.628 0.865 0.971 0.996 

GLS 0.056 0.322(3.714) 0.454(5.484) 0.636(8.679) 0.747(12.18) 0.806(15.99) 0.847(20.11) 

(4.332) (6.093) (9.297) (12.82) (16.66) (20.80) 

GLSu 0.051 0.237(0.887) 0.393(0.912) 0.701(0.958) 0.914(1.008) 0.983(1.062) 0.998(1.121) 

(0.918) (0.936) (0.976) (1.024) (1.077) (1.135) 

-0.95 WS 0.053 0.347 0.543 0.841 0.969 0.997 1.000 

MAX 0.052 0.331 0.529 0.832 0.968 0.997 0.999 

DF 0.051 0.196 0.333 0.628 0.866 0.971 0.996 

GLS 0.056 0.332(3.535) 0.468(5.118) 0.660(7.855) 0.772(10.71) 0.831(13.70) 0.877(16.80) 

(4.123) (5.686) (8.415) (11.28) (14.27) (17.38) 

GLSu 0.052 0.237(0.884) 0.394(0.907) 0.701(0.946) 0.914(0.987) 0.984(1.029) 0.998(1.073) 

(0.915) (0.930) (0.963) (1.002) (1.043) (1.086) 

-0.90 WS 0.054 0.347 0.542 0.841 0.969 0.997 1.000 

MAX 0.052 0.331 0.528 0.832 0.968 0.997 0.999 

DF 0.052 0.196 0.333 0.627 0.866 0.971 0.996 

GLS 0.056 0.338(3.476) 0.480(4.996) 0.667(7.580) 0.782(10.23) 0.846(12.93) 0.885(15.70) 

(4.054) (5.551) (8.120) (10.76) (13.47) (16.24) 

GLSu 0.051 0.238(0.883) 0.394(0.905) 0.702(0.942) 0.915(0.980) 0.983(1.018) 0.998(1.058) 

(0.914) (0.928) (0.959) (0.994) (1.031) (1.070) 

-0.85 WS 0.054 0.347 0.542 0.840 0.969 0.997 1.000 

MAX 0.052 0.330 0.528 0.832 0.968 0.097 0.999 

DF 0.051 0.196 0.333 0.627 0.865 0.971 0.996 

GLS 0.055 0.335(3.456) 0.485(4.956) 0.672(7.488) 0.783(10.06) 0.8.18(12.68) 0.887(15.33) 

(4.030) (5.505) (8.022) (10.59) (13.20) (15.86) 

GLSu 0.050 0.238(0.883) 0.394(0.905) 0.702(0.941) 0.915(0.977) 0.984(1.015) 0.998(1.052) 

(0.914) (0.927) (0.958) (0.992) (1.027) (1.064) 

-0.80 WS 0.054 0.347 0.543 0.840 0.969 0.997 1.000 

MAX 0.052 0.331 0.528 0.832 0.968 0.997 0.999 

DF 0.051 0.196 0.333 0.628 0.866 0.971 0.996 

GLS 0.056 0.338(3.445) 0.487(4.935) 0.672(7.442) 0.784(9.979) 0.848(12.55) 0.889(15.15) 

(4.019) (5.483) (7.972) (10.50) (13.07) (15.67) 

GLSu 0.051 0.238(0.883) 0.394(0.904) 0.702(0.940) 0.916(0.976) 0.08,1(1.013) 0.098(1.050) 

(0.914) (0.927) (0.957) (0.991) (1.026) (1.062) 
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Table 5.2(e) (continued) 

61 

C 

0 -7 -10 -15 -20 -25 -30 

-0.75 WS 0.054 0.349 0.543 0.841 0.969 0.997 1.000 

MAX 0.053 0.331 0.527 0.832 0.967 0.997 0.999 

DF 0.051 0.196 0.333 0.628 0.866 0.971 0.996 

GLS 0.056 0.337(3.439) 0.487(4.923) 0.672(7.414) 0.784(9.929) 0.848(12.47) 0.891(15.03) 

(4.011) (5.469) (7.942) (10.45) (12.99) (15.55) 

GLSu 0.051 0.238(0.883) 0.394(0.904) 0.702(0.940) 0.916(0.975) 0.984(1.012) 0.998(1.048) 

(0.914) (0.927) (0.957) (0.990) (1.024) (1.060) 

-0.70 WS 0.053 0.349 0.544 0.841 0.969 0.997 1.000 

MAX 0.052 0.331 0.527 0.832 0.967 0.997 0.999 

DF 0.051 0.196 0.333 0.628 0.867 0.970 0.996 

GLS 0.056 0.336(3.435) 0.488(4.914) 0.674(7.395) 0.784(9.896) 0.850(12.42) 0.893(14.96) 

(4.007) (5.460) (7.922) (10.42) (12.93) (15.47) 

GLSu 0.051 0.238(0.883) 0.394(0.904) 0.701(0.939) 0.916(0.975) 0.984(1.011) 0.998(1.047) 

(0.914) (0.927) (0.956) (0.989) (1.024) (1.059) 

-0.65 WS 0.053 0.349 0.544 0.841 0.970 0.997 1.000 

MAX 0.052 0.331 0.527 0.832 0.967 0.997 0.999 

DF 0.051 0.197 0.333 0.629 0.867 0.970 0.995 

GLS 0.056 0.336(3.432) 0.487(4.908) 0.673(7.382) 0.786(9.872) 0.852(12.38) 0.895(14.90) 

(4.003) (5.453) (7.908) (10.39) (12.89) (15.42) 

GLSu 0.051 0.238(0.883) 0.395(0.904) 0.702(0.939) 0.916(0.975) 0.984(1.010) 0.998(1.046) 

(0.914) (0.927) (0.956) (0.989) (1.023) (1.058) 

-0.60 WS 0.053 0.349 0.545 0.842 0.970 0.997 1.000 

MAX 0.052 0.332 0.526 0.831 0.967 0.997 0.999 

DF 0.051 0.197 0.333 0.628 0.867 0.970 0.995 

GLS 0.056 0.336(3.430) 0.485(4.904) 0.673(7.371) 0.785(9.853) 0.852(12.35) 0.894(14.86) 

(4.001) (5.448) (7.897) (10.37) (12.86) (15.37) 

GLSu 0.051 0.237(0.883) 0.395(0.904) 0.702(0.939) 0.916(0.974) 0.984(1.010) 0.998(1.0.16) 
(0.913) (0.927) (0.956) (0.989) (1.023) (1.057) 

0.0 WS 0.054 0.347 0.543 0.842 0.970 0.997 1.000 

MAX 0.053 0.331 0.529 0.831 0.967 0.997 0.099 

DF 0.052 0.197 0.334 0.627 0.867 0.971 0.996 
GLS 0.054 0.339(3.419) 0.491(4.881) 0.676(7.320) 0.784(9.762) 0.853(12.21) 0.897(14.66) 

(3.988) (5.422) (7.842) (10.27) (12.71) (15.16) 

GLSu 0.051 0.239(0.883) 0.395(0.903) 0.701(0.938) 0.915(0.973) 0.08.1(1.008) 0.998(1.0.13) 
(0.913) (0.926) (0.955) (0.987) (1.021) (1.031) 
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Figure 5.4(a). Power functions of unit root tests and relative efficiencies of 

the mean estimator for the GLS and GLSu tests, c= -20 and T= 100. 
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Figure 5.4(b). Power functions of unit root tests and relative efficiencies of 

the mean estimator for the GLS and GLSu tests, c= -20 and T= 200. 
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Figure 5.4(c). Power functions of unit root tests and relative efficiencies of 

the mean estimator for the GLS and GLSu tests, c= -20 and T= 500. 
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Figure 5.4(d). Power functions of unit root tests and relative efficiencies of 

the mean estimator for the GLS and GLSu tests, c= -20 and T= 1000. 
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Chapter 6 

Concluding Remarks and 

Suggestions for Future Research 

This thesis has focused primarily on testing the unit root hypothesis under the 

phenomenon of structural change and on exploring the behaviour, in alternative 

settings, of power-enhancing elaborations of commonly applied unit root tests. 

The latter have emerged as a solution to the well-known problem of low power 
that traditional unit root tests encounter. 

Its main contribution lies in the development of reliable statistical techniques 

in response to the need for optimally characterising the behaviour of economic 

series over time which has important implications for forecasting and policy pur- 

poses. In particular, unit root tests were developed designed to have power 

against alternatives involving a shift in persistence. The likelihood of such a shift 

that refers to a change in structure of a time series from difference stationarity, 
1(1), to trend stationarity, 1(0), or from 1(0) to 1(1) has been argued by a number 

of studies. In the most general case, it was not necessary a priori to specify the lo- 

cation or direction of any possible switch under the alternative hypothesis, while 

consistency of the estimated breakpoint directly followed. Base on simulation 

evidence the tests appear to perform well in terms of size and power, although 

some caution was recommended in their use in the case of non-normal errors. 
Applying the tests to data on consumer price inflation in the G-7 countries un- 

covered quite strong and consistent evidence of a change from trend-stationarity 
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to difference-stationarity occurring in 1973 for the majority of these countries. 
An alternative type of structural change related to the trend function was 

next revisited, that of a smooth transition type. Given the restrictive nature of 

the linear trend alternative when testing for a unit root in the standard case, 

the allowance for a more flexible and intuitive plausible specification of the trend 

function warrants considerable attention. The aim was to examine whether the 

additional power generated by the recently emerged unit root tests in the standard 

case, persists when adopted in this context. In short, the results suggested that 

it does although the power advantage of the modified smooth transition tests 

showed up as moderate compared to the standard case. This finding appeared to 

be linked to the elaborate nature of the trend function in this setting. Application 

of the modified smooth transition tests to common US macroeconomic series 

resulted in stronger evidence in favour of stationarity around a smooth transition 

in linear trend. 

The power-enhancing unit root tests in the univariate case were subsequently 

adopted in the panel setting, where extensions of commonly applied unit root 

tests have increasingly been employed to tackle issues such as the reversion or 

otherwise of series to a fixed mean or trend. Such an undertaking led to the devel- 

opment of modified panel data unit root tests that were found to enjoy the same 

power advantage as the power-inducing tests in the univariate case, both when 
independence across the units of the panel was assumed and when allowing for a 

common time-specific component. A panel of series of real exchange rates against 
the US dollar was analysed, where the bootstrap method was employed to accom- 

modate the heterogeneous nature of cross-section correlation found amongst the 

innovations generating the individual time series in the panel. Simulation results 

showed that modified bootstrap tests retain the power gains noted in simpler 

cases, while the application of these tests yielded appreciably stronger evidence 

against the unit root null hypothesis for our data than did the unmodified tests. 

Overall, evidence suggested the value of the Max and WUS modifications to the 

IPS tests. Considerable additional power can be achieved while retaining size 

reliability. 
Finally, the behaviour of the commonly applied GLS power-enhancing unit 

root test was explored under higher order autoregressive processes, the main 
issue being the low rejection probabilities observed for this test relative to the 
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Dickey-Fuller test for certain parameter configurations. A theoretical attempt 

was made to identify this `unsatisfactory behaviour' of the GLS test, through 

investigation of the relative efficiencies of the mean estimator, by appealing to 

local to unity asymptotics. In doing so, simple approximate expressions were 

obtained for the relative efficiencies under general linear processes which proved 

fairly precise when compared to exact results. The asymptotic findings showed 

dependence of the relative efficiencies on the localizing parameter only and not 

on the underlying model. An extensive simulation study tailored to the AR(2) 

model both in finite and large samples confirmed the asymptotic predictions 

while also highlighted the finite sample effects of the second order autoregressive 

parameter. Comparisons of power across alternative power-enhancing unit root 

tests in this setting, highlighted the superior and robust performance of the MAX 

and WS tests, that did not appear to share any of the shortcomings associated 

with the GLS test. These results raise doubts regarding the use of the GLS test 

in practical applications, particularly if one also considers the dependence of such 

a test on the value of the localising parameter employed in detrending. 

Constructing tests designed to have power against a specific type of structural 

change known to characterise key economic variables, understanding and evalu- 

ating the behaviour of newly existent tests in more flexible settings, introducing 

more powerful and reliable test statistics in conducting inference, being aware of 

any shortcomings associated with tests widely applied in the empirical literature; 

altogether, these were the main issues addressed in this thesis which are of great 

importance for optimally characterising the behaviour of economic series over 

time and ultimately for more accurate econometric modelling and policy design. 

It is hoped that the results will appear useful and provide stimulus for further 

research. 
Regarding issues on the agenda for future research, it would be interesting 

to extend the tests for a change in persistence proposed in the second chapter 

to accommodate explosive "phases" as a way of testing for rational bubbles in 

the stock market. Such an extension would follow the work of Hall et al. (1999) 

who generalize the standard ADF testing strategy to allow for the possibility 

of Markov regime-switching where the regime is employed to make the root of 

an autoregression move between a unit-root and an explosive root in detecting 

periodically collapsing bubbles. Furthermore, another important issue that was 
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briefly mentioned at the outset is the extension of the results to allow for changes 

affecting simultaneously alternative parameters of the model. 
The test statistics introduced in chapter four are only valid in the absence 

of long-run relationships that tie the units of the panel together. Given however 

the near unit root behavior of many economic series the existence of such rela- 
tionships is very likely. Recently, Banerjee et al. (2001) have demonstrated that 

in the presence of cross-unit cointegrating relationships quite serious spurious 

rejections occur, rendering existing tests substantially oversized. A challenging 
task would therefore be to augment the analysis of chapter four to account for 

cross-section common stochastic trends. The explicit introduction of cross sec- 
tional dependence when working with common driving trends across the units of 
the panel would mean dealing with both cross-sectional dependence and common 
trends simultaneously. 

Finally, an alternative issue of interest would be to explore the sensitivity of 
the modified panel data unit root tests to structural breaks and develop further 

methodology to incorporate such a feature. A first step in this direction was made 
by Silvestre et al. (2001), who in common with the traditional tests designed for 

the unidimensional case found the panel unit root test proposed by Harris and 
Tzavalis (1999) to perform poorly when there is a structural break in the time 

series under the alternative. They proceed by extending such a panel unit root 
test to account for the existence of a level shift at an unknown time in the 
deterministic part of the series. ' In an application to Spanish unemployment 
they show how the hypothesis of (perfect) hysteresis is rejected in favour of the 

alternative of the natural unemployment rate, when the possibility of a change 
in the latter is considered. 

Similarly, Im and Lee (1999) extend the LM-bar statistic to take account of 
the possibility of a structural break. They conclude that their proposed LMD 

test loses little power by controlling for spurious structural breaks when they do 

not exist, and thus suggest controlling for breaks even when their presence is only 

suspected. Such a finding is based on the asymptotic invariance of the individual 

LM test to the location of the breakpoint. 

1Their analysis allows for only one structural break to affect all the time series at the same 
date and therefore accommodates panels that are subjected to similar shocks. Asymptotics 
are carried out assuming T is fixed and N -º oo. 
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