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Abstract

Today the majority of UK’s energy needs are met by fossil fuels. An energy sector that
uses 30% of this energy and generates 28% of the total emissions is domestic sector. To
reduce the emissions generated by fossil fuels UK government decided to increase the
energy coming from renewable sources by 2020. A renewable energy that can contribute
1s solar energy. Solar thermal collectors and photovoltaics are two means of

transtorming solar energy to thermal and electrical energy.

The linmited space 1n the roofs and the cost of the technologies will prevent families to
use both systems together in their roof. A hybrid energy system combine the use of two
or more alternative power sources will help to increase the system’s total efficiency. The
photovoltaic/thermal (PV/T) system is a hybrid structure that converts part of the sun’s

radiation to electricity and part to thermal energy.

This research work focuses on the production of new approaches on hybrid PV/T
systems. PV/T systems using water and air have been introduced and a literature review
conducted 1n order to identify positives and negatives of these systems. Experiments
also conducted by using water and air as heat transfer medium, and the results helped to

work as a benchmark performance to the new approaches.

These technologies were heat pipes, phase change materials and microencapsulated
phase change materials. The technologies exist for years but their use in the specific
application is new. A literature review was undertaken to provide an understanding of
these technologies and identified findings that have contributed to the design of the
systems. Experimental work was carried out incorporating these technologies in the rear
of a PV and the results indicated comparable performance with PV/T-water and PV/T-

air.



Five performance indicators were employed to help with the comparison of the systems.
These were electrical and thermal efficiency, the total energy efficiency, the primary
energy saving efficiency and the exergy efficiency. From these five indicators the
primary energy saving efficiency that shows how much fossil fuel is saved and the

exergy efficiency that could give the optimum working conditions of each system was

the most valuable ratings.

For the PV/PCM model a new simulation program was developed to help validate the
experimental work. Also an environmental and economic study was undertaken to
compare 1f the new systems could help reduce the CO, emissions and if they were

feasible to become commercial products.

Finally the conclusions gained have been presented and recommendations for future

work have been made.
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Nomenclature

A, aperture area of PV module (mz)

Cp specific heat of fluid (J/(kg K))

D diameter (m)

Dy, hydraulic diameter (m) = (4*flow area)/p
AP pressure drop

Apc.m maximum capillary force (Pa)

AT temperature difference = (Ty, — T,) (°C)
EPBT energy payback time (years) = Eiyvested/ Epv
ERF energy return factor (dimensionless) = Life Time/EPBT
EVA ethyl vinyl acrelate

E¢ primary energy saving efficiency (%)

F fin coetficient

Fr heat removal factor

F’ collector efficiency factor

FF fill factor

18 frictional resistance coetficient

G solar radiation intensity (W/m?)

G mintmum filled liquid mass (kg)

g gravitational acceleration (m/s”)

H depth of duct (m)

Hj, latent heat of vaporization (J/kg)

HP Heat Pipe

hg; convective heat transfer of fluid (W/ (m2 °C))
h¢, latent heat (J/kg)

1 current (A)

I incident solar radiation intensity (W/m?)

k thermal conductivity (W/(m K))

L length of collector

L latent heat of PCM (kJ/kg)
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length of evaporation section of heat pipe (m)
length of adiabatic section of heat pipe (m)
length ot condenser section of heat pipe (m)
merit number (W/m®)

Mach number of vapor flow (N/m?)
Microencapsulated Phase Change Material
mass flow rate (kg/s)

number of glass covers

Nusselt number

PV electrnical etficiency (%)

tfin efficiency

efficiency of conventional power (0.38)
System thermal efficiency (%)

Total PV/T system efficiency (%)

PV efficiency at reference conditions (%)
power 1In max power point (W)
atmospheric pressure (Pa)

saturation pressure (Pa)
Photovoltaic-Thermal

Phase Change Material

channel wetted perimeter = 2D + 2/ (m)
rate of useful heat gain (W)

heat flux (W/m?)

sonic limit for heat transport (W)
entrainment limit for heat transport (W)
boiling limit for heat transport (W)
viscous limit for heat transport (W)
maximum heat transport capacity (W)

heat input (W)

water vapour constant (J/kg K)

universal constant 8317 (J/kg K)
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-

H
W

Xcapsule

Greek

0

Br

Y
e
A

£
A
vl
LL
G
P
c

O

1o

(o)

collector

D

Reynolds number

radius (m)

Stefan number, 1.¢ ratio of sensible heat capacity to latent heat capacity
temperature (°C)

time (s)

heat loss coefficient (W/(m” °C))

tlow velocity (m/s)

Voltage (V)

width of collector (i)

tube spacing for tube-and-sheet collector configuration (m)

percentage concentration of capsules in slurry

absorber plate absorptance

PV cell temperature coefficient (1/°C)

solar 1rradiance coefficient for PV module
specific heat ratio

difterence

emissivity

latent heat (J/kg)

dynamic viscocity (kg/m s)

PV efficiency temperature coefficient (%/°C)
exergy efficiency

density (kg/m’)

the Stefan — Boltzmann constant = 5.6697 x 10 (W/m2 K4)
surface tension (N/m)

transmission absorption coeflicient

the transmittance-absorptance product of the photovoltaic-thermal

angle of inclination relative to horizontal (deg)
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Subscript

amb

b

ca

col

con

C O conv
cell

e

el
eft

cV

n

L orl

mp
NOCT
0C
out

PV

r or rad
ref

S or s
SC

{

cover

th

vV

ambient temperature

bottom loss coefficient

the heat transfer coefficient between cell and absorber
hybrid PV/T collector
condenser

convetion

solar cell

edge loss coefficient
electrical

effective

evaporator

glass

fluid input temperature
overall loss coetticient
liquid

PCM melt temperature ("C)
maximum power point
nominal operating cell temperature
open circuit

fluid output temperature
Photovoltaic

radiation

reference

solid

short circuit

overall heat transfer coefficient from solar cell to ambient through glass

thermal

vapor
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