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ABSTRACT 
Spark Ignition Engine Combustion Process Analysis 

by 

Marc WiRiam Wiseman 

Cylinder pressure analysis is widely used in the experimental 

investigation of combustion processes within gasoline engines. A pressure 

record can be processed to reveal detail of charge burning, which is a good 

indicator of combustion quality. The thesis describes the evaluation of an 

approximate technique for calculating the mass fraction of the charge that has 

burnt; a novel approach for determining heat loss to the block; the development 

of a powerful system for combustion analysis; and the investigation of the 

correlation between the crank angle location of the 50% mass burnt and 

minimum timing advance necessary to obtain the maximum engine torque. 

A detailed examination has been carried out into the uncertainties in the 

determination of the mass fraction burnt as suggested by Rassweiler and 

Withrow. A revised procedure has been developed which does not require a 

priori identification of the combustion end point, and a new approach is 

suggested to calculate the polytropic indices necessary for the pressure 

processing. This particular implementation of the analysis is able to identify late 

burning and misfiring cycles, and then take appropriate steps to ensure their 

proper analysis. The problems associated with the assumption of uniform 

pressure; alignment of the pressure changes to the volume changes; pressure 

sampling rate; clearance volume estimation; and calibrating the acquired 

pressure to absolute are also evaluated. 
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A novel method is developed to ascertain, directly from the pressure 

history, the heat loss to the cylinder block. Both experimental and simulated 

data are used to support the accuracy of the suggested heat loss evaluation, and 

the sensitivity of the method to its inputs is examined. 

The conversion of procedures for combustion analysis into a format 

suitable for undertaking high speed analysis is described. The analysis 

techniques were implemented so that the engine can be considered to be on-line 

to the analysis system. The system was entitled Quikbum. This system can 

process an unlimited number of cycles at a particular running condition, 

updating the screen every 1.5 seconds. 

The analysis system has been used to study the potentially beneficial 

correlation between the location of the 50% mass burnt and MBT. The 

correlation is examined in detail, and found to be valid except under lean fueling 

conditions, which is seen to be caused by slow flame initiation. It is suggested 

that the optimum location of the 50% mass burnt can be used as a reference 

setting for the ignition timing, and as an indicator of combustion chamber 

performance. An engine simulation was employed to verify that changes in bum 

shape account for the small variation seen in the optimum 50% bum locations at 

different operating conditions of the engine. The bum shape changes also 

account for the range of optimum locations of the 50% mass burnt encountered 

in different engines. 
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Nomenclature 

A Surface Area of the Combustion Chamber 

C Capacitance 

CP Specific Heat at Constant Pressure 

Cv Specific Heat at Constant Volume 

h Coefficient of Heat Transfer 

M Molecular Weight 

M Mass 

NU Nusselt Number 

n Polytropic Index 

p Cylinder Pressure 

APC An increment of pressure due only to combustion 

Q Heat Transfer 

Qf Chemical Energy Release by the Fuel Burning 

Qht Heat Loss to Surroundings 

QHV Lower Heating Value 

Qn Net Heat release , Qn 7- Qf - Qht. 

R Specific Gas Constant 
Resistance 

Re Reynolds number based on mean piston speed 

RO Molar Gas Constant 

T Temperature 

t Time Interval 

Internal Energy 

U Specific Internal Energy 

v Volume 
Voltage 

VP Mean Piston Speed 
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x Mass Fraction Burnt 

y Volume Fraction Burnt 

w Work Done 

7 Specific Heat Ratio. y= Cp / Cv. 

0 Crank Angle 

Od 0- 100% Bum Duration in crank angle degrees 

P Density 

0 Fuel-Air Equivalence Ratio. 

Subscripts 

b Burnt Charge Region 

cr Crevice Region of the Cylinder 

EOC The point in the cycle where combustion ends 

EVO 'ne point in the cycle where the exhaust valve opens 

f Fuel 

iA point where data is sampled 

s The point in the cycle when spark ignition occurs 

u Unburnt Charge Region 

w Cylinder Wall 

0A Particular Crank Angle 
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ADC Analogue to Digital Converter 

AFR Air Fuel Ratio 
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BIOS Basic Input Output System 
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CLK Computer Clock Pulses 

COV Coefficient of Variance 

CPAS Cylinder Pressure Analysis System 

CVH Compound Valve Head 

DEG Degrees 

EEC IV Electronic Engine Control System 

EFI Electronic Fuel Injection 

EGA Enhanced Graphics Adapter 

EOC End of Combustion 

ESC II Electronic Spark time Controller 

EVO, Exhaust Valve Open 

GPIO General Purpose Input/Output Board 

HEX Hexadecimal Number 

H. P Hewlett Packard 

IBM International Business Machines 

LC Internal Combustion (engine) 

1. C Integrated Circuit 

IMEP Indicated Mean Effective Pressure 
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10 Input/Output 

IOR Port Input/Output Read signal 

IOW Port Input/Output Write signal 

ISAM Indexed Sequential Access Method 

ITAMS Ignition Tin-ling and Measurement System 

IVC Inlet Valve Close 

MAP Manifold Absolute Pressure 

Mb Megabyte 

MBT Minimum Spark Timing Advance for Best Torque 

MEMW Memory Write 

OHC Overhead Camshaft 

PC Personal Computer 

PCTL Peripheral Control Line signal 

PFLG Peripheral Flag Line signal 

PLL Phase Lock Loop 

PMEP Pumping Loop Mean Effective Pressure 

RAM Random Access Memory 

RHS Right Hand Side 

RPM Revolutions per Minute 

SAE Society of Automotive Engineers 

S. 1 Spark Ignition 

TDC Top Dead Centre 

TTL Transistor Transistor Logic 

VCVS Voltage Controlled Voltage Source filter stage 

WMEP Work Loop Mean Effective Pressure 

WOT Wide Open Throttle 

World Wide Mapping Point (2.62 BMEP at 1500 rpm) 
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Chapter I 

Introduction 

At the present time, the combustion processes in spark ignition engines 

are not well understood theoretically, and experimental investigations are 

essential to advancing the knowledge for both fundamental and applied 

developments in the field. The analysis of pressure records is commonly used 

to investigate how the air and fuel mixture in an engine cylinder has bumt. The 

pressure data can be processed to reveal the cyclic and average variations of the 

combustion period, throughout the range of operating conditions of interest. 

The easiest combustion related parameters to obtain are peak pressure and 

indicated mean effective pressure. However, these only characterise the 

combustion event as a whole, and provide insufficient information to explain, 

for example, the cyclic variations of the combustion process. To obtain extra 

detail of the combustion process, analysis procedures have been developed 

which compute, at each crank angle, the charge mass fraction burnt. The results 

of these methods do not only indicate bum quality, but also suggest whether the 

cause of differences in the combustion rate is related to flame initiation or 

propagation. This information can then be used by automotive engineers, for 

example, to select the optimum spark timing and fueling schedules, or to 

improve the design of the combustion chamber. 

1.1 The Obiectivgs 

This thesis is concerned with improving the techniques available to 

derive combustion quality information from the cylinder pressure. 'Me aims that 

were behind the project can be listed sequentially: 
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To overcome the uncertainties and develop a method of determining 

combustion information in a manner which is suitable for the swift processing 

of many cycles of pressure data. 

(h) To produce a suitable method of ascertaining the heat loss during the 

combustion period. 

(iii) To design an advanced tool for the analysis of pressure records, which 

will aid research into the combustion of spark ignition engines. 

(iv) To apply these analysis techniques to the study of the applications of the 

50% burn location, which has recently been suggested as an indicator of 

combustion efficiency, Klimstra[l. 1]. 

1.2 Layout of the Thesis 

Chapter 2 contains a review of the published papers forming the 

background to the current work. An overview of combustion is given to 

describe the main mechanisms involved within gasoline engines. This is 

followed by a survey of the techniques used for pressure analysis, from which 

the most appropriate processing method, for the current work, can be selected. 

The last part of the chapter describes the implementation of methods used to 

determine the mass fraction burnt of the charge, which were carried out by other 

authors. 

Chapter 3 details the rigs used and the technology necessary to obtain 

valid data signals from the engine test bed. One application of these signals was 

to drive the engine's ignition timing. A board, which slotted into the expansion 

bus of an IBM XT type computer, was designed to allow each cylinder's dwell 

and spark time to be set independently. This board offers more flexibility than 

commercially available equipment, because it is fully software programmable. 

Chapter 4 describes the board hardware and software design. 

The pressure processing technique, which was originally suggested by 

Rassweiler and Withrow[l. 2], was chosen for the combustion analysis, 
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because of it's simplicity, consistency with results from thermodynamic 

approaches, and fast execution time. Chapters 5 and 6 contain the evaluation 

and developments necessary to improve the determination of mass fraction 

burnt by this method. In particular, chapter 5 considers the influences of noise 

pickup and heat transfer, and a scheme is suggested that best calculates the 

values of the polytropic indices which are necessary for the processing. Chapter 

6 considers the sensitivity of the pressure processing technique to the external 

factors of non-uniform pressure, the incorrect specification of the clearance 

volume, misaligned TDC and improper scaling of the acquired pressure to 

absolute. It was found that there was very little sensitivity to any of these 

factors, and a reliable analysis scheme could be established. The implementation 

also allowed partial burning and misfiring cycles to be identified simply, and 

appropriate measures to ensure proper analysis are described. 

Normally, to determine the heat transfer from the cylinder, a 

thermodynamic analysis coupled with a heat transfer correlation needs to be 

employed. However, a novel approach has been devised, based on an 

approximate scheme that utilises the already calculated mass fraction burnt. The 

method is quick, simple and does not require calibrating for each particular 

engine testbed, as is the case with heat transfer correlations. This facilitates 

cycle by cycle comparisons of thermal loading. The new heat transfer method is 

described in chapter 7. 

To investigate the described pressure processing scheme, a simple 

analysis system was designed for implementation on an Olivetti M24sp 

computer. This analysis system functioned by storing the acquired pressure 

records on a Winchester disk drive for subsequent analysis. The software 

included a database system, which facilitated quick retrieval of pertinent 

information from all stored data. This system was titled "CPAS" (Cylinder 

Pressure Analysis System) and is described in chapter 8. 
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Although pressure analysis was possible with CPAS, processing time 

was long and disk space limited data runs to seven sets of two hundred cycles. 

Therefore, the analysis algorithms were revised to enhance execution speed and 

then implemented on a Hewlett Packard 9000/320 series personal computer, 

operating at 16MHz. The new system, named "Quikbum" was capable of 

continuously acquiring ten cycles of data and displaying the processed results to 

the screen in under one and a half seconds. The acquired data was stored in 

dynamic memory, permitting an unlimited number of contiguous cycles to be 

analysed. The Quikbum program was designed to consist of several small 

modules, whose source code was easily accessible and could be interactively 

amended. This allowed the researcher to redirect quickly the investigation and, 

thereby, use the time of a test session more efficiently. In addition, the Hewlett 

Packard system could control the engine spark timing by using RS232 protocol 

to transfer information to the ignition control board, housed in the IBM XT. 

This allowed spark timing sweeps to be automated. Quikburn is described in 

chapter 9. 

The penultimate chapter describes the investigation of the correlation 

between the location of the 50% mass bum and optimum IMEP, using the 

Quikburn system. The chapter starts with a short literature review of 

information regarding the correlation, and is followed by a detailed investigation 

using data obtained from a production engine. The results showed that under 

stoichiometric AFR conditions and richer, a 50% bum location close to 150 

ATDC corresponded to optimum IMEP conditions. A simple computer model is 

used to demonstrate that the burning pattern itself is the cause of the dependency 

of optimum IMEP on a certain 50% bum location. This is why there is only a 

slight variation in the value of the 50% bum location at optimum IMEP at 

different operating conditions, and on different engines. Under lean fueling 

conditions the correlation was no longer valid, due to the occurrence of 

"arrested phasing". Further investigation indicated that the arrested phasing was 
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related to slow combustion initiation, and was not caused by slow flame 

propagation. The study, also, highlighted several methods of performance 

assessment made possible by the behaviour of the 50% bum location in a 

particular engine. The possibility of a similar correlation between the location of 

peak pressure and optimum IMEP was also considered. Such a correlation 

would be beneficial because it is possible to determine the location of peak 

pressure onboard a production vehicle. The information could then be used to 

maintain engine efficiency throughout the lifetime of the power unit. However, 

it was discovered that although the location of peak pressure could be used 

satisfactorily as a performance indicator under rich fueling conditions, its 

application became ambiguous at lean AFRs. Therefore, the location of the 50% 

mass burnt appears to be the only, generally applicable indicator of engine 

performance. 

The final chapter contains the conclusions drawn from all the foregoing 

work. 
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Chapter 2 

Literature Survey 

2.1 Introduction 

The current understanding of the combustion processes in spark ignition 

engines is reviewed, to illustrate the phenomena the combustion analysist 

wishes to monitor. This is followed by a review of other techniques for 

combustion diagnostics, before going on to consider methods for pressure 

analysis. In this latter section, different methods of determining charge mass 

fraction burnt are compared and the most suitable approach for this thesis is 

selected. The final section looks at the implementations of analysis procedures 

in published papers. 

2.2 The Com 

Combustion processes occurring within the cylinder of a gasoline 

engine are a complex combination of turbulent fluid mechanic and 

thermodynamic processes. The charge bum period, between spark discharge 

and the burning of the last of the reactants, can be divided into four discrete 

stages; initiation of the flame kernel by the spark discharge; the growth of this 

flame kernel to a stable flame front; the propagation of the flame front through 

the main part of the charge; and, finally, the bum up of the remaining few 

percent of the reactants. An illustrative schematic of these four stages is given in 

fig 2.1. 

2.2.1 Fla 

A flame kernel is ignited by the temperature rise between the spark plug 

electrodes, due to the passing of an electron avalanche caused by the high 

breakdown voltage of the plug. The temperature between the electrodes reaches 
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an instantaneous, local value of 40,000 K during breakdown, settling to nearer 

5000 K during the later glow and arc stages of spark discharge. These high 

temperatures not only commence the combustion, but, also, cause the kernel to 

swell due to the expansion of the hot gases, Kalghatgi[2.11. 

Prior to 1980, investigators thought that the spark energy had no effect 

on the kernel growth provided it was sufficient to create a self propagating 

flame front, Young[2.41. This is not the case, the early flame kernel growth has 

recently been shown to be enhanced by increased spark energy, because of the 

greater expansion of the hot spark channel gases, Baritaud[2.3]. In fact, 

Anderson[2.2] exploited the thermal expansion to gain a faster growing flame 

kernel, by increasing the power of the breakdown discharge. 

The growth rate of the flame kernel tends to be consistent from cycle to 

cycle, Young[2.4]. One reason for this is the energy released from the spark is 

dependent on the charge time of the ignition coil (dwell period), and is 

approximately constant. In addition, during the initial period, the enflamed 

volume will be smaller than the microscale turbulence, and therefore, will be 

relatively insensitive to the randomness of mixture motion, Winsor and 

Patterson[2.5]. Finally, it is widely accepted that initially lamina burning 

occurs, Kalghatgi[2.1]. The initial ignition site will be contained within a 

turbulent eddy, and until this eddy is consumed, combustion remains lamina, 

Keck et al[2.6]. It is not until the flame reaches the eddy perimeter that turbulent 

spreading will occur. At this point the flame growth rate approaches the fully 

turbulent level, and the significance of the expansion of the hot gases 

diminishes, Young[2.7]. 

The characterisation of the early flame development involves an arbitrary 

specification of the kernel growth period. Yamamoto[2.121, as well as others, 

use the 0- 1% mass burnt, whereas the Ford Motor Company recommend 0-2% 

mass burnt, reference [2.14]. This time for the initial burning of the charge mass 

is difficult to measure, because the low pressure changes involved will be 

7 



masked by noise pickup on the pressure signal and, also, a lag time occurs in 

sensing the pressure changes at the flame kernel. The latter point is considered 

in more detail in chapter 6. Therefore, pressure analysis is not well suited to 

studying the early growth time, and if this period is of importance then other 

methods should be employed; for example, ionization probes can be used to 

sense the arrival of the flame front at a particular location. 

2.2.2 Ke nel Growth to a Stabilized Flame Eront 

The flame kernel must reach a critical, minimum size by the time the 

spark discharge ceases. If it does not, the rate of heat release from the burning 

charge will be less than the rate of heat loss to the surroundings, causing the 

extinction of the combustion flame, Kalghatgi[2.11. The prime purpose of the 

arc and glow discharge stages is to act as a heat source to sustain the flame 

kernel during this early development. The dimensions of the minimum size are 

dependent on the balance between the heat released and heat rejected by the 

flame kernel. In some cases, heat rejection rates are insufficient to extinguish 

the flame, but, nevertheless, restrict flame development and produce longer, 

less efficient bum durations. For example, Douard[2.8] found slowest flame 

growth when the orientation of the ground electrode of the spark plug, which 

acts as a heat sink, lay within the kernel's wake. Anderson[2.2] found 

detrimental effects to the flame progress when using large electrode tips, and, 

also, when the flame propagated primarily towards the quenching surface of the 

near cylinder wall. Consistent with the latter result, are the results of 

Swords[2.9] and Matekunas[2.10], which showed that the rates of flame 

growth were greatest when the flame propagated towards the centre of the 

cylinder. 

During it's growth to the critical size, the dimensions of the flame kernel 

are of the same order as the microscales of turbulence, and the flame kernel will 

8 



be sensitive to randomness in the flow field. This stage has been attributed as 

the source of cyclic variation, Winsor[2.5]. Turbulence can also be beneficial 

because the microscales wrinkle the flame front causing an increase in surface 

area. This allows faster entrainment of unburnt fuel and promotes burning, 

Ferguson[2.15]. Evans[2.11] reports that increased microscale turbulence 

promoted kernel growth in his combustion chamber, which was specially 

designed for fast burning of the charge. However, too much turbulence can 

over stretch the flame front and increase the heat rejection rate, causing flame 

extinction. Therefore, a compromise is necessary between increased turbulence 

for fast flame growth, and reduced turbulence to lessen cyclic dispersion and 

avoid flame extinction. 

A stable flame front is normally considered established by the time 10% 

of the charge mass has bumt, references [2.14,2.30]. This bum point can be 

determined adequately by pressure processing methods, which usually treat the 

kernel formation and flame front stabilization as a single process, characterised 

by the 0-10% bum duration. 

2.2.3 PrUl2agation of the Stabilized Flame Front 

The flame front propagates at the fully turbulent velocity through the 

remaining mixture. Ferguson[2.15] illustrated the combustion mechanics using 

the analogy of ink penetrating a sheet of rotating rollers. The turbulent 

spreading of the ignition sites was modelled by the transport of the ink through 

the sheet by contact of the rotating rollers, and the eddy bum up was modelled 

by the ink soaking into the core of each roller. This model is based around 

Tabacyznski's model of turbulent entrainment[2.16], where unburnt mixture is 

engulfed by eddies on the order of the integral scale, and consumed by lamina 

burning on Taylor's microscale. This concept is often referred to as a "lamina 

flamelet model", Moss[2.17]. Results from these models show good agreement 

to experimental results. The flame diameter will be greater than the turbulence 
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microscales, and once again it will be insensitive to the random motion of the 

mixture. 

Like the growth of the flame kernel, the burning rate within this 

combustion stage is dependent upon the rate of heat rejection from the enflamed 

gases. The flame progress can be hindered such that burning continues 

throughout the power stroke, after the exhaust valve has opened. This is known 

as late or partial burning. Late burning is undesirable, since combustion 

efficiency is lowered and the hydrocarbon emissions from the exhaust increase. 

The degree of late burning can vary from cycle to cycle resulting in unstable 

engine operation. The possibility of incomplete combustion is high under lean 

AFR conditions because the flame propagation rate is slow and sensitive to heat 

rejection rates, because the heat release within the flame front is low. This 

combination of factors produces longer bum durations as the mixture strength is 

weakened, resulting in late burning occurring as the lean limit is approached. 

Quader[2.3 1] found that just beyond the lean limit, no spark timing suitable for 

proper engine running can be found, because advanced timings cannot initiate 

the combustion, and retarded timings produce late bums. 

The main propagation stage is normally characterised by the 10-90% 

burn duration, references [2.14,2.301. This duration is dependent on the 

turbulent flame speed, which will be a strong function of AFR and a weak 

function of spark timing, Houpt[2.30]. 

2.2.4 Final Burn up of Reactants 

The final reactants remaining are located close to the surface of the 

combustion chamber. The relatively cool metal will quench the flame front 

causing an increase in the time for bum up, Tabaczynski[2.161. 

The final bum stage can be characterised by the 90- 100% bum duration. 

However, this stage is not a major area of investigation and most analyses 

concentrate on the influences of burning the first 90% of the charge. 
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2.2.5 Time Taken for Combustion Stages alld Relationshila 

In the investigations for the current work, it was found that flame 

initiation, 0- 10% burnt, took around 20 0 crank angle; flame propagation, 10- 

90% burnt, around 60 0 crank angle; and the final bum up, 90-100% burnt, 

around 20 0 crank angle. These results are similar to the durations obtained by 

Young[2.7]. The fact that it only takes three times longer to bum the bulk of the 

charge than the first 10% further indicates the importance of flame initiation. 

In the visual examination of the combustion process by Gatowski and 

Heywood[2.13], it was found that the flame front radius was 10mm. by the time 

the first 1% of the charge had burnt; 30mm by the 10% burnt stage; and 60mm 

by the 50% burnt. The distance between spark plug and head periphery was 

only 70mm. These authors went on to show that volume burnt, can be related to 

the mass bumt, by: 

y= 

Pu 
Pb 

ýZ -ix+i 2.1 

Furthermore, they found that the density ratio, Pu/Pb, was approximately 

constant and equal to 4. This is empirical proof for the relationship between 

mass and volume burnt, which is almost independent of engine operating 

conditions, and is known as the "universal burning law". The universal curve is 

shown in fig 2.2, which is reproduced from reference [2.3 2]. From equation 

(2.1), it can be seen that 80% of the charge volume has burnt when only 50% 

of it's mass has burnt. Therefore, the remaining 50% of the charge occupies 
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only 20% of the combustion chamber, and is situated within 10mm of the metal 

surfaces of the head. 

2.3 Anallsing the Combustion Process 

Many different approaches have been applied to combustion analysis 

over the years. Probably the simplest method of comparing combustion rates is 

by the value of MBT (Minimum advance for Best Torque) timing. In chapter 

10, MBT is found to correspond with a 50% mass burnt location of near 100 

ATDC for a number of power units, regardless of operating conditions. 

Therefore, the more retarded the MBT timing, the faster the combustion rate. 

Although this can provide a useful qualitative comparison, it's application is 

limited and a more quantitative approach is required. 

2.3.1 lonizat 

Ionization probes offer a method of physically measuring when the 

flame front arrives at a particular position in the combustion chamber. A probe 

consists of an electrode gap with a high voltage applied across it. The voltage 

breaks down on arrival of the flame front, due to the release of free ions. 

Curry[2.19] placed 49 probes in a single combustion chamber to measure the 

burning velocities in three dimensions. 

A disadvantage associated with using ionization probes is the need for 

machining of the head to locate the probe tip in the cylinder. Also, the probe is a 

physical presence in the combustion chamber and may influence the combustion 

process by interfering with the flow field, and by acting as a heat sink. 

The advantages of the probes are cheapness and reliability. This is why, 

recently, both May[2.21] and Anderson[2.20] experimented with them in 

production engines. In these cases, the probe tips were slightly proud of the 

walls of the combustion chamber, and were used in an attempt to correlate the 

arrival time of the flame front with mixture AFR. 
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2.3.2 012fical Methods 

High speed laser and Schlieren cinematography are non-intrusive 

methods of charting flame progress across the cylinder, and have been widely 

used in research. The physics of the adsorption, reflection and refraction of the 

coherent laser beam enable estimates to be made of species concentration; flow 

turbulence; scale and mean velocity; and, even, temperature. These methods are 

well reviewed by Dyer[2.22]. The major disadvantage with many laser 

techniques is that the measuring volume is very small. For example, 

Fansler[2.23], used a cylindrical measuring volume with a diameter of 0.1 mm 

and a length of 0.5mm for flow measurements. Therefore, to build up a detailed 

picture of the flow field, many volume locations must be examined. As only 

one volume can be examined at a time, the researcher must try to reproduce 

identical conditions for many test runs. Therefore, detailed measurements of the 

combustion process are impossible because of its spatial and cyclic variational 

nature. This restricts the use of standard laser techniques, like Fansler's, to 

motored cycles only. 

Schlieren photography provides a method of observing firing cycles. In 

this application, parallel, monochromatic light is passed through the combustion 

chamber and focussed through an aperture onto the lens of a camera with a fast 

frame speed. Variations in the refractive index of the cylinder constituents, due 

to density changes, cause a similar variation in image intensity. This allows 

easy separation of the low density burnt gases from the high density, unburnt 

region. To facilitate Schheren photography of the whole combustion process the 

University of California, reference[2.24] and the Massachusetts Institute of 

Technology [2.13] have both developed engine test rigs with square pistons. 

Two side walls of the square cylinder are constructed from flat glass, allowing 

an undistorted view of the contents. Both establishments have custornised their 

own Schlieren facility: M. I. T reflect the incident light off one of the opaque 

sides of the cylinder, producing two orthogonol views of the combustion 
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chamber, Pischinger[2.25]; the University of California replaced the standard 

aperture by a three-colour bullseye stop, and each of the three colours in the 

image represents a different density gradient, Chau[2.26]. The latter system 

was further enhanced with a software image improving system, Chau[2.27]. 

The images of the flame front obtained, although two dimensional, can be fitted 

by circles, and the convection of the flame centre and the increase of the flame 

radius investigated, in order to track the combustion process. Unfortunately, 

Schlieren photography necessitates machining of the cylinder head to obtain 

optical access. Also, the internal glass surface tends to become quickly opaque 

with soot deposits, limiting operation to only a few cycles. 

2.3.3 Pressure Analysis 

One of the best non-intrusive methods for general purpose combustion 

diagnosis is pressure analysis. On the modem testbed, piezo-electric pressure 

transducers are used, either fitted flush in a custornised cylinder head, or 

housed in a specially designed spark plug, Amann[2.46]. Both methods 

produce valid pressure data, Evers[2.28]. 

Up to the middle of the 1960s, investigators like Patterson [2.47], were 

only able to calculate peak pressure, pressure rise rate and IMEP routinely. 

Although these parameters form a good basis to compare driveability and cyclic 

dispersion, they give no indication of why the combustion in one cycle differed 

from another. The advent of powerful digital processing made possible the 

routine calculation of charge mass fraction burnt, and enabled pressure 

analysists to examined the combustion process in detail. 

2.4 Methods of Determining Mass Fraction Burnt 

The variation of the mass of the burnt charge is normally presented in 

two forms, either depicting the mass burnt per crank angle, or the fraction of the 

charge mass that has burnt by a particular crank angle. The latter is an 
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accumulation (integration) of the former. Methods which determine the changes 

in the burnt mass of the mixture, from the recorded pressure history, can be 

grouped into two particular types. Thermodynamic approaches are based on 

either the conversion of heat energy to work done by the piston, or upon the 

variation of availability. The former methods are commonly referred to as First 

Law methods, and the latter Second Law methods. More approximate 

procedures are based on less rigorous, empirical rules, which assume that the 

pressure variation is some form of polytropic process. 

2.4.1 First Law Thermodynamic Methods 

The classic approach to analysing combustion is to apply the First Law 

of Thermodynamics to the closed system comprising the cylinder constituents. 

Most methods for the thermodynamic analysis of gasoline engines are zero- 

dimensional in that they offer no spatial resolution, Foster[2.29]. The 

combustion process can be considered to occur in either one or two zones. In a 

single zone procedure, no differentiation is made between burnt and unburnt 

gas properties; a mean temperature and pressure define the system state. A more 

detailed study can be accomplished by considering the burnt and unburnt gas 

regions separately. Common thermodynamic approaches use either the method 

devised by Krieger and Borman[2.32] or Benson and Whitehouse[2.36], as a 

basis. 

The Krieger and Borman formulation eliminates the need to estimate 

flame front shape. From the differential forms of continuity, the equation of 

state and the First Law, pressure records can be processed by the following 

scheme: 

First the rate of change of the temperature of the unburnt region was found 

from; 
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Finally the increase in burnt volume can be evaluated; 
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Equations (2.2) to (2.4) can be solved, at each crank interval, by 

iterating from an initial estimate of Tb from the adiabatic flame temperature and 

modifying using the differential form of the equation of state. 

The heat transfer from the unburnt and burnt regions can be found using 

one of the correlations for the heat transfer coefficient. The most widely used 

correlations are by Annand and Woschni, and their merits are described by 

Benson and Whitehouse[2.33]. These are based on (Nu) = a(Re) 
b, 

where a and 

b are constants. The value usually chosen for b is 0.8, the same as used for 

forced convective, heat transfer in turbulent pipe flow. Annand's formula uses a 

Reynolds number based on mean piston speed and includes an additional 
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radiative term. Woschni uses a Reynolds number, adjusted for combustion 

induced velocities obtained from differences between the firing and motored 

pressure histories. 

To evaluate the heat transferred from each zone, the surface temperature 

of the piston, valves and head must be known, as well as the gas temperature. 

In order to distinguish between heat transfer from the burnt and unburrit 

regions, Krieger and Borman suggest that Vb/V represents the proportion of 

the surface area of the combustion chamber that is exposed to the burnt region. 

For practical engine use, the constants in the heat transfer correlations 

must be determined for the particular rig in question. Normally, these constants 

are adjusted until the combustion analysis predicts similar quantities to 

experimental results from an energy balance between the energy supplied by the 

fuel, the work done by the piston, and the heat transferred to the exhaust and 

cooling systems, Young[2.35]. 

The mass fraction burnt is determined by time marching through from 

spark time towards EVO, using the iteration scheme. Sample results from the 

Krieger and Borman method, obtained from their original paper, are presented 

in figs 23A and 2.3B. The former figure shows the cylinder pressure profile 

and rise rate, along with the derived rate of burning. The other figure shows the 

calculated mass fraction of the total mass burnt for cycles at different 

compression ratios. 

A two zone analysis method was also suggested by Benson and 

Whitehouse[2.361. This allows tracking of concentrations of particular chemical 

species. An initial estimate of the mass burnt during a crank angle interval is 

made, and the resultant burnt gas temperature calculated from combustion 

kinetics. The correct mass burnt can then be found by iterating the procedure 

until closure of the First Law occurs to within a certain accuracy. A scheme 

based on this approach, which takes into account dissociation and heat loss, is 

described by Stone[2.371. 
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Both the Krieger and Borman, and Benson and Whitehouse methods of 

analysis need extensive specification of thermodynamic data for both the 

unburnt and burnt gas regions. These schemes are calculation intensive and 

incur a significant processing time. There is also uncertainty in the heat transfer 

correlation, because it does not take account of the finite time required for heat 

transfer, nor that the heat flux varies spatially within the combustion chamber. 

These are difficult to appraise, and the normal compromise is to model only 

mean conditions with the heat transfer coefficient, Benson and 

Whitehouse[2.33]. 

In a recent attempt to simplify the thermodynamic approach, Gatowski 

et al[2.34] developed a single zone scheme that significantly reduced calculation 

time. The benefit of using a single zone was that cylinder mass loss and 

recovery, from crevice regions, could be easily taken into account. From fig 

2AA it can be seen that during the normal range of combustion temperatures, 

up to 2500K, the specific heat capacity ratio almost linearly decreases with 

increasing temperature. Therefore letting y=a- bT, Gatowski et al showed that 

the heat release, for a perfect gas, would be given by: 

lyp T (y 
8Qf = -, 

V--. dP +V+ 8Qht - Rdm, T' + Klog 
1) 7 1)d (y - 1) -b 

2.5 

In this equation, if the direction of the mass flow, dmcr, is into the crevices, 

then TI and yI refer to the temperature and the ratio of the specific heats of the 

mixture within the cylinder. However, if the direction of the mass flow is from 

the crevices into the cylinder, then T andy refer to crevice conditions. 

As with the other thermodynamic approaches, the heat transfer to the 

surroundings, 8Qht, needs to be determined from one of the standard 
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correlations. Sample results from this method are illustrated in fig 2.4B. The 

lowest curve, Qn, is the summation of the first two terms on the right handside 

of equation (2.5). The higher curves show the effect of considering heat 

transfer and crevice interaction. The accuracy of these results is seen by the fact 

that Qf differs from the available energy of the fuel by only a few percent, 

which is typical of normal combustion inefficiency. 

The choice between the different thermodynamic methods is dependent 

upon the particular application. The Krieger and Borman method calculates 

absolute heat transfer and temperature variations, as well as the mass fraction 

bumt. The Benson and Whitehouse method requires a detailed knowledge of 

combustion kinetics, but facilitates the monitoring of the concentrations of 

pollutants. The Gatowski et al method derives only absolute heat release, but 

has the ability to allow simply for mass loss from the cylinder. 

2.4.2 Second Law Thermodynamic Methods 

An availability analysis, based upon the Second Law, has also been 

applied to the spark ignition engine. This calculates the variation of availability, 

which indicates the maximum possible energy that can be turned into useful 

work. Standard availability formulae are used, and Flynn[2.38] describes the 

application of these to the various processes inside the internal combustion 

engine. The typical variation of availability throughout the combustion period, 

taken from Patterson and Van Wylen[2.391, is shown in fig 2.5. The advantage 

of data in this form is that sources of availability destruction can be seen, and 

this highlights where improvements could be made to improve thermal 

efficiency. 

Second Law analysis is of little use unless benefit can be made of any 

savings in availability. In a standard Production engine all available energy at 

the end of combustion is lost to atmosphere, as is all heat rejected to the coolant. 

Therefore, availability analysis is most useful to power unit designers who are 
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able to make use of exhaust and coolant energy, for example via turbocharging. 

Such an analysis is best carried out during the initial design phase, rather than 

used for cyclic analysis, Foster[2.29]. 

2.4.3 Aplaroximate Methods for Combustion Analysis 

Approximate approaches are based upon less rigorous, empirical rules 

as opposed to thermodynamic laws. These methods, like the previously 

described thermodynamic analyses, are zero dimensional, but approximate 

schemes are simpler and much faster to evaluate. The approximate methods do 

not require comprehensive data of thermodynamic properties, and normally 

consist of only a single zone. However, recently AI-Himyary and Karim[2.18] 

produced a two zone method that is partly thermodynamic law and partly 

approximation. By examination of polytropic process within the combustion 

chamber, these authors showed that the temperature changes of either the 

unburnt or burnt zone were related in the following manner: 

j7(i -+, )f 2.6 
Ti 

(Ti - Tw) 
= 

Cni 
(T(i+l) - TW) Cn(i+l) 2.7 

(y- n) Where the polytropic specific heat, Cn = (1 - n) v 

Each zone is analysed separately, starting from known initial conditions. A 

value of specific heat ratio is assumed and equation (2.6) is used to predict the 

temperature at the end of a particular crank interval. Then equation (2.7) is used 

to re-estimate y. The iteration continues until the modification to the temperature 

is insignificant. The process is then repeated for the next crank interval. 

The known conditions for the unburnt region are at spark time, and 

analysis proceeds towards the end of combustion. In the case of the burnt 
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region, the known conditions are at the end of combustion and analysis 

proceeds backwards towards spark time. An added complication is that the 

initial temperature of the burnt zone must be estimated from the combustion 

chemistry and should take dissociation into account. Once the temperatures of 
both zones are calculated at each crank interval, the burnt charge mass may be 

obtained from the equation of state: 

PV =m R� T� + mb (Rb Tb - R� T�) 2.8 

This iterative, dual zone model is not as economic in computer time as 

other approximate approaches, and is unable to derive as much information as a 

true thermodynamic method. Furthermore, the authors did not substantiate their 

results. For these reasons it is better to concentrate on the other approximate 

models. 

There are three similar approximate approaches described by 

Marvin[2.40], McCuiston, Lavoie and Kauffman[2.41] and Rassweiler and 

Withrow[2.42]: 

Marvin assumed that under isochoric conditions, combustion liberating 

a particular amount of heat energy would produce a proportional increase in 

pressure. In the real engine, combustion occurs at varying volumes. Marvin 

allowed for this by a polytropic expansion to reference conditions. The scheme 

can be obtained entirely from the logarithmic indicator diagram, an illustrative 

example is seen in fig 2.6. In the figure, X, Y and Z lie on a reference line at 

constant volume, and the pressure at X is the referenced pressure for conditions 

in the cylinder at X. The pressure at X is obtained by interception, at the 

reference conditions, of a polytropic process line through X. This line should 

be parallel to the compression line at the start of combustion and parallel to the 

expansion line at the end of combustion. The mass fraction burnt from this is 

given by; 
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x- (PX - PZ) 

(py - Pz) 2.9 

The approximate method within the EDPAC system developed by 

Young and Lienesch[2-35], is an implementation of Marvin's approach. In this 

implementation a linear switch over between compression and expansion lines 

was used. 

McCuiston et al[2.41] deduced their approach from the adiabatic, 

isochoric form of the First Law: 

x 
(P V7 - P, V, 7)- 

(PEOC QOC 
- Ps Vs7) 2.10 

There is a strong similarity between the approaches of McCuiston et al 

and Marvin. In fact, if the specific heat ratio is kept constant throughout 

combustion, it can be shown that Marvin's method is identical to the other. 

Therefore any differences between the results of these methods must be due to 

the selected variation of y. 

Rassweiler and Withrow's technique[2.42] is much more widely used 

than the other approximate approaches. These authors based their method on 

two empirical rules from experiments with constant volume bombs. The final 

calculation of mass fraction burnt is similar in form to Marvin's, except that the 

pressure changes due to combustion are separated from the effects of piston 

motion, as well as being referenced to isochoric conditions. A full derivation of 

the Rassweiler and Withrow method is covered in chapter 5. 

All three approximate models are only able to determine mass fraction 

burning, however they do so in a very time efficient fashion. Of the three 

methods, the Rassweiler and Withrow version is the most established, and has 

a strong fundamental basis, because it uses a direct analogy to proven results 
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from combustion bombs. For these reasons the Rassweiler and Withrow 

method is preferred by the current author. 

Very good agreement has been observed between results from 

approximate methods and thermodynamic analysis. Published evidence is 

presented in fig 2.7. In the upper part of this figure, a comparison is shown 

between the ignition delay and main combustion durations determined by 

thermodynamic and approximate techniques. Ideally the points should fall on 

the 1: 1 line, which is plotted for reference. Although there is deviation, the 

effect is not marked. The lower part of Fig 2.7 shows all the approximate 

methods compared to the analysis procedure used by Young and 

Lienesch[2.35], which was based on the Krieger and Borman method. This 

consistency is surprising because the approximate methods appear to ignore 

heat transfer and dissociation affects. However, Stone[2.37] found that 

although the absolute magnitudes of the heat release were affected by heat 

transfer and dissociation, the mass fraction burnt was not. This was due to the 

dissociation being constant for the main bum period, and that most of the heat 

transfer occurs towards the very end of combustion. The latter point is 

commented upon in chapter 5. 

Table 2.1 is a summary of comparisons between thermodynamic and 

approximate methods of analysis. As the objective of the current work is to 

develop a system which quickly determines combustion diagnostics on a cycle 

by cycle basis, the technique suggested by Rassweiler and Withrow will be the 

most suitable. 

2.5 Iml2lementation of the Procedures for CQmbuStion Analysis 

The software implementation of the above methods has changed with 

the development of the computer technology. In the middle 1970s dedicated 

units for pressure acquisition appeared which saved the data on to tape. The 

data was analysed off-line on a mainframe at a later date, Young and 
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Lienesch[2.35]. These "post analysis" systems were enhanced by the 

development of high speed data acquisition systems, Evans[2.43]. With the 

advent of larger computer memory and faster processing speeds, personal 

computers have allowed investigators to have dedicated machines for data 

acquisition and combustion analysis, Hayes and Savage[2.441. Today most 

testbed facilities incorporate a personal computer. 

Until recently the analysis sequence was unchanged; pressure data was 

acquired, stored onto a permanent medium and later analysed. However, in the 

last year there has been a move to produce real time bum information. Knowing 

bum times whilst the rig is running is advantageous because the effect of 

changes to operating conditions can be observed at once. This allows the 

investigator to direct his experiment in the most beneficial direction. Beck, 

Hahn and Miller[2.45] have developed an instrument that calculates IMEP and 

RPM data in real time. The very latest example along these lines has been the 

development of an on-line, PC based, combustion analyser, Bain et al[2.48]. 

The latter package records the cylinder pressure history, and displays the results 

within minutes. The concept behind this system is very similar to the Quikburn 

system developed during this work. However, the end products are 

complementary, fulfilling slightly different needs. The above package is based 

on simplified assumptions and is aimed at undergraduate and postgraduate 

courses. It is a versatile combustion data logger. Whereas, Quikburn is based 

on an accepted technique for combustion analysis, and is intended to be a 

flexible research tool. The main conclusion about analysis implementation is 

that there is a demand for fast, on-line processing packages, and Quikburn is 

one system that can make a valuable contribution as a research tool. 
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Chapter 3 

Test Facilities and Signal Preparation 

3.1 Introduction 

The data presented in this thesis was acquired from four different engine 

testbeds. The variety of engine configurations produced a wide range of 

operating environments. This ensured that the developed system for pressure 

analysis would be applicable to any typical rig. All of the engine testbeds used 

were previously commissioned by investigators engaged in other projects. A 

resume of the facilities made available to the author is given in table 3.1, and 

further details may be found in the references given. 

This chapter describes the technology necessary to obtain valid data 

signals from an engine testbed. Figure, 3.1, is a schematic of a typical rig, and 

illustrates the integration of the components described below. For high speed 

data acquisition of cylinder pressure at intervals of one crank angle degree, three 

signals are required from the engine: 

(i) The cylinder pressure, represented as an analogue voltage. 

(ii) A digital TTL pulse train at a frequency of 1 crank angle degree, to 

sample the pressure data. 

(iii) A pulse once per engine revolution, which provides a reference to crank 

location. 

In addition, it is convenient to have a TTL pulse at spark time. The 

methods necessary to obtain these required signals are described below. 
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3.2 Analogue Pressure Signal 

It is common place in the engine research to use piezo-electric 

transducers for sensing pressure. With these instruments, a change in the 

pressure acting on the sensor diaphragm alters the spacing of two capacitance 

plates, creating a measurable shift in stored charge. This is converted to a 

calibrated voltage by a charge amplifier. Throughout this investigation, pairs of 

Kistler transducers, type 601A, and charge amplifiers, type 5007, were used. 

The preferred location for a pressure transducer is flush to the wall of 

the combustion chamber, where it is directly exposed to the combustion gases. 

However, the disadvantage of flush fitting is the difficulty in machining an 

access to the combustion chamber, between the cooling channels of the engine 

block. For this reason, spark plugs that house pressure transducers have 

become commercially available. When using the adapted spark plugs, resonance 

effects within the tube between transducer and spark plug cause a slight 

distortion to the measured pressure, Evers[3.51. The distortion will be common 

to all readings taken with the spark plug transducers. Provided no direct 

comparisons are made between results derived from flush fitted and spark plug 

transducers, either type of sensor installation is satisfactory for most 

applications. 

The output from the charge amplifier is a continuous, periodically 

varying voltage of mixed frequencies. Shannon's sampling theorem [3.6] states 

that the highest fully determinable frequency in the signal will be at half the 

sampling frequency. Should frequencies above this threshold be present, 

aliasing errors will occur. Filtering is the best method of removing the 

undesirable, higher frequencies. 

Fig 3.2 shows a6 pole Bessel filter for anti-aliasing, which was 

designed following the guide lines of Horrowitz and FEII[3.7]. This particular 

filter consists of three voltage controlled, voltage source filter stages. Each stage 

has a cutoff frequency around 2 kHz, which was considered to be sufficiently 
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below half the minimum sampling frequency, which is 4.8 kHz when sampling 

every degree at 800 rpm. 

Unfortunately, the production tolerances of the passive components can 

impair the filter performance, resulting in slight differences in the cutoff 

frequency and gain of each VCVS stages. This can affect the filter's response 

around the -3dB point, but the function of the filter is satisfactory at frequencies 

removed from this point, Horrowitz and HiU[3.7]. 

An alternative approach is possible with the Kistler 5007 series charge 

amplifiers These instruments allow a low pass filter to be fitted, which limits the 

upper sampling frequency. Kistler supply a 2.2 kHz filter, and this can be used 

in place of the above Bessel filter, if desired. 

As a precaution against noise pickup, a screened BNC cable was used 

between charge amplifier and computer interface. The cable between the 

transducer and charge amp was also enclosed in an earthed ferrous tube to 

suppress the pickup of spark noise onto the charge signal, from the high tension 

leads. 

No other measures for noise suppression were used to condition the 

data signals. The reasons for, and the effects of, this decision are described in 

chapter 5, where noise effects are considered in more detail. 

3.3 Di6tal SiLynals 

Digital signals from the engine are used to signal the occurrence of a 

particular event, for example spark timing, and to provide a sample trigger for 

the pressure acquisition system. The following methods were used to ensure 

best quality signals at the computer interface. 

A signal pulse, once per crank angle degree, acts both as a sample 

trigger, and an indicator of crank location. On the testbeds available to the 

author, the pulse train was generated by a Hall Effect sensor, mounted through 

the flywheel bell housing, to sense the passing of teeth on the ring gear of the 
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starter motor. This approach was used in the development of IT. AMS, which 

measures and controls the spark timing of an engine, Collings[3.8]. A phase 

lock loop circuit multiplied the 135 flywheel teeth pulses by 8/3 to give 360 

pulses a revolution. However, two problems were encountered. The first was 

the speed dependence of the required air gap between sensor and flywheel teeth. 

The optimum gap increases as engine speed'increases. The consequence of 

having the wrong air gap can be either the breaking up of some pulses, 

producing 1 or two extra pulses per revolution in an intermittent fashion, or 

teeth pulses being missed altogether. The second problem is the behaviour of 

the PLL output is uncertain when irregularities occur in the flywheel teeth 

signal. The distortions can be due to missed, or extra pulses, or even engine 

transients. The result being the common observation of fluctuations, by 1 or 

two pulses, either side of the nominal 360. 

These effects are present but not immediately evident in the operation of 

ITAMS, because ITAMS measures and sets spark timing by using a single 

signal from its own PLL. The system appears to drive at a perfectly constant 

spark timing, whereas one or two degrees spark jitter are occurring. Although 

such fluctuation could be accepted for ignition purposes, as this will have only a 

very small effect on engine performance, the fluctuation will be detrimental to 

pressure analysis. To overcome the problem, the rigs have been updated 

recently to use optical shaft encoders. These incorporate a glass disc, etched 

with 360 markings, which rotates, triggering an optical sensor. The encoders 

appear to give a clean output signal at all engine speeds. 

A marker pulse, occurring once every engine revolution, is used to align 

the captured pressure data with an absolute crank location. A common reference 

point is TDC, and alignment to the position of the marker pulse of the shaft 

encoder can be made in software. The pulse itself does not have to occur at 

TDC, because, by use of a strobe light and a timing disc located on the front 

pulley, the angular offset of the marker from TDC can be measured. Originally, 
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a single grubscrew, inserted into the front pulley and sensed by a magnetic 

pickup, was used to produce a marker pulse. This suffered from the same air 

gap problems encountered with the flywheel pickup, previously mentioned. The 

situation was rectified by employing a shaft encoder with a second channel that 

generates a marker pulse each revolution. 

Spark timing is the combustion initiation point of each cycle, and it is 

useful to be able to identify this point in any acquired set of data. This can be 

facilitated by having a digital signal go high when a spark is discharged at the 

plug gap. To produce the signal, a small section of steel tube, split in two and 

held in plastic for ease of use, is placed around the relevant high tension lead 

forming a capacitive pick-up. The pick-up is connected to the circuit of fig 3.3 

by a BNC cable. The circuit has been developed over the last couple years by 

researchers at Nottingham, and the version shown includes the final 

modifications made by the author. The spark detection circuit operates as 

follows: 

(i) Between pick-up and A-A. shown in fig 3.3. 

With no spark being discharged, the left handside of the 2700pf 

capacitor is held at ground. The right handside and, therefore, the input to the 

Schmitt trigger inverter charges to 5V. When a discharge takes place, a 

negative voltage is induced in the pick-up, the magnitude of which depends on 

the magnitudes of the resistors. The negative spike causes a temporary drop in 

voltage on the right handside of the capacitor and causes an inversion in the 

output voltage from the schmitt trigger. 

The diode just upstream of the inverter clamps the applied voltage to 

below 5V. This protects the chip from being overloaded when the negative 

spike returns to zero, which causes a positive voltage transient. The variable 

resistors are used to ensure that TIL voltage thresholds are crossed, producing 

a pulse from the inverter. 
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(ii) From A-A to B-B. 

This is a standard digital filter circuit, consisting of a high frequency 

removing, low pass filter, -3dB point at 100 kHz, and two schmitt trigger 

inverters to reshape the pulse. The action of this part of the circuit is explained 

in more detail, when digital signal conditioning is discussed later. 

At the beginning of spark time, a falling edge will be present at B-B. 

(iii) From B-B onwards. 

The rest of the circuit consists of two retriggerable monostables. The 

first is simply triggered by the falling edge, at spark time, to give a non-inverted 

pulse, of around 1/10 ms duration. The second, on the output of the new pulse 

lights a LED for almost 1/2 second. This LED should be permanently on, 

when the engine is running, indicating the circuit is functioning correctly. 

3.3.1 Digital Signal ConditionilLg, 

Signal conditioning is usually required to provide valid voltage levels at 

the computer. Normally, the rig is remote from the computer by wire length of 

at least 5 metres. To drive the pulses along this distance, digital circuits with 

open collector outputs are required at the rig end of the connecting cable, and 

load resistances at the computer end. 

Noise spikes on digital lines can cause false triggering of the logic 

circuits. The spike can be reduced to below the TTL switching threshold by 

using the digital filter circuit previously used in the spark detection circuit, 

between A-A and B-B of fig 3.3 . This consists of two Schmitt trigger inverters 

either side of a simple RC low pass filter. The first inverter restricts the noisiz 

spike amplitude to the max TTL voltage of 5V. The filter then removes the high 

frequency signal components, associated with the spike, and the second inverter 

reshapes the pulse. 
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The performance of the RC filter is important. The textbook analysis, 

Horrowitz and Hill[3.9], of this is based on the filter's response to an input 

sinusoidal voltage. For digital signals it is more relevant to consider the 

response to a step input voltage, as illustrated in fig 3.4. The current through 

the resistor equals that through the capacitor: 

Win 
- Vout) 

c dV,,,, t 
R dt 3.1 

This has the solution: 

Vout 
---: 

Vin 

ý13.2 

For a given value of RC, there is a certain delay time before the pulse 

reaches the TTL threshold (about 2AV). A noise pulse of less duration will be 

eliminated. These effects are also shown in fig 3.4. Care must be taken to 

ensure that the delay has no effect on the data acquisition. As a guide, assuming 

the time taken for the pulse to rise from ground to 5V is instantaneous, table 3.2 

shows the delay times for different values of RC , and as this time is half the 

period of the eliminated noise, the corresponding filter cutoff frequency. In 

solving noise problems, the duration of noise spikes is unknown. A trial and 

error procedure has been used to select the best values of RC for noise 

elimination and minimum delay. If the required RC value for noise suppression 

introduces a significant transmission delay, this must be allowed for within the 

software analysis. 

Another interfacing problem occurs when some electronic elements are 

triggered by the leading edges of pulses and some by the logic level of a pulse. 

For example, when a digital pulse occurs when the I degree pulse train is low. 

There will be a time difference between a circuit triggered by the digital pulse's 
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rising edge, compared to a circuit where the digital pulse is clocked in by the 

rising edge of the 1 degree pulse. Similarly, errors in synchronising particular 

events with absolute crank position can occur with level triggering if 

pulsewidths are greater than 1 crank angle degree. 

Both these problems can be overcome by the use of two D' type 

flipflops. The first synchronizes the rising edge of the signal to coincide with 

the rising edge of the 1 degree pulse train. The second flipflop causes a similar 

synchronization of the falling edge, which reduces the signal pulsewidth to that 

of the 1 degree pulse train. The connections for the flipflops are shown in fig 

3.5. This figure is a complete solution to all the afore mentioned factors, and 

has been reliably used in this work. The transformations to an applied digital 

pulse are shown in fig 3.6. 
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Chapter 4 

A Slot-in PC Board for Engine Spark and Dwell Timing 

4.1 Introduction 

Accurate spark timing control and measurement are often essential for 

engine research. Several systems have been developed to provide this facility, 

such as ITAMS[4.1], but none can provide the flexibility which was desired for 

the work reported in this thesis. This particular need was to be able to treat each 

cylinder individually and run it through a particular sequence of ignition 

timings. By running three cylinders at similar, normal operating conditions 

whilst investigating the effect of changes on the fourth, a wide range of 

conditions could be investigated. The technology was readily available to build 

this style of ignition control system, and the design of a software programmable 

board for setting and measuring the spark time and dwell period of any cylinder 

of the power unit is described here. 

4.2 The Timing Control System 

The open architecture and abundance of commercial software support of 

the IBM PC computer family makes it attractive for hosting an adaptable 

ignition control system. A hardwired board can be slotted into the expansion 

bus, and the required timing schedule achieved in software. The timing settings 

could be contained within a data file, entered via the keyboard or, even, 

supplied through RS232 communication from another computer. The last case 

was used with the Quikburn system, where spark timings are downloaded to 

the PC, during an MBT sweep (see chapters 9 and 10). 

The conventional layout for an engine ignition system is shown in the 

top part of fig 4.1. The points close and remain closed for the dwell period, 

which charges the coil. When the points re-open, the breakdown of the electric 
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field causes a voltage to be induced in the high tension side of the coil creating a 

spark at the plug electrodes. The voltage variation downstream of the points is 

shown in the middle of fig 4.1. This is essentially an inverted digital pulse of 

dwell period width, with a rising edge at spark time. Although this signal is 

easily computer generated, large currents occur during switching, and the 

computer should be protected by using the power transistor stage of an 

electronic ignition system, varieties of which are commercially available. 

Lumenition was found to be a reliable make. The bottom part of fig 4.1 shows a 

relay actuated switch between the computer driven timings and the conventional 

engine points. The relay is configured with safety in mind so that should an 

accidental break occur in the switch circuit, the ignition system reverts back to 

normal points operation. 

4.3 The Board Hardware 

To replace the ignition system points, a hardware and software solution 

was required. An Olivetti M24sp was selected to host the board, and the 

required signal lines, available in the expansion slot, are the 20 line address bus; 

port read and write; and 7 interrupts. Commercially available prototyping 

boards usually have facilities to buffer these lines and also decode the upper 17 

address lines to map the board into port memory addresses between locations 

300 - 30f hex. This area of memory is set aside for board use by IBM. Only 8 

consecutive memory locations were required for the ignition control board, and 

the relevant chip can be selected by the output of a3 to 8 line de-multiplexer, 

driven by the three lowest address lines. The addresses of the various chips lie 

from 300 hex through to 308 hex. The action at each address is tabulated in 

table 4.1. 

Data is transferred into or out of the computer under control of the IOW 

and IOR lines. 'Me timing diagrams for these are shown in fig 4.2. These are 

taken from Royer[4.2], which was used as the primary source for interfacing 
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information. The conclusions from the timing diagrams are that during a read 

cycle the data should be placed on the bus on the falling edge of the IOR, and, 

with a write cycle, data from the computer should be latched on the rising edge 

of the IOW. Whether data should be transferred is of course dependent on the 

state of the address bus, and correct operation for both cycles can normally be 

performed by ORing the chip select and the 1/0 control line. 

The functions of the board can be split into two, the controlling circuits 

and the measuring. To execute these function four signals from the engine are 

required, these are: 

10 Pulses From a shaft encoder 

TDC Also from the shaft encoder. 

Coil spark present A TTL pulse each time a cylinder is fired. 

Cylinder 1 spark A T7L pulse when cylinder 1 fires. 

The last two signals are generated by the spark detection circuitry 

described in chapter 3. In addition each signal was filtered and the pulsewidth 

modified to be the same length as the 10 pulse. The necessary methods are also 

given in chapter 3. 

The board was designed to be programmed for either polling or interrupt 

techniques. With the former, the program continually reads a status register 

waiting for certain events to happen and then acts. It is important that the 

computer does not miss an event whilst polling, because this could result in a 

delay in the desired timing. As a warning, not only does an event occurrence set 

a bit in the status register, but if the register is not read within the pulsewidth of 

the event, an overflow bit is set. The circuitry for the occur and overflow bit 

setting is shown in fig 4.3, and its timing diagram in fig 4.4. On the rising edge 

of the signal, the first flipflop is set indicating the event has occurred. If the 

register is read before the falling edge of the signal, the flipflops are cleared. 
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Otherwise, the falling edge clocks the second flipflop setting the overflow bit. 

Note that the register is latched using the MIEMW line. This ensures that data is 

latched into the register at a high frequency. 

Interrupting allows the processor to perform other tasks, but undertake a 

service routine when an event occurs. The processor is interrupted by pulsing 

one of the 7 interrupt lines high, and program flow is directed to the code 

pointed to by the address vector for the particular interrupt. Computer 

performance may be severely limited if the processor is interrupted every degree 

of crank angle. As a remedy, ten 10 pulses are counted before interruption 

occurs, causing minimal strain on the computer. 

4.3.1 The Control Corcuitry 

The board alerts the computer via the status register, or by interrupting, 

when the following events happen: ten 10 pulses have arrived; TDC marker 

pulse occurred; or when cylinder 1 has fired. To trigger the dwell start and 

spark time, the software must count the number of ten degree blocks until 

within one block of the desired timing. Then the number of degrees between 

this block and the required timing is written to the board, which creates the 

desired variation in coil voltage. The TDC pulse is used to synchronize the 

counting to absolute crank angle space, and the cylinder 1 spark pulse is used to 

establish the correct firing order in software. If this latter pulse is omitted then 

the computer will not know which cylinder it is firing in any one revolution. 

The function of the hardware is to help perform the above operations. 

The circuit is shown in fig 4.5. The top of the diagram shows the resetable, 

decade counter used to inform the computer when ten degrees have been rotated 

through. Below this are the two down counters used to initiate the voltage 

transitions. Starting at the dwell counter, the necessary value is written to the 

counter on the simultaneous occurrence of the address being valid and a port 

write cycle starting. Similarly, the counter commences counting on any write to 
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the flipflop below it. This dummy write operation sends the flipflop output 
high, which allows the I degree pulses to pass through the AND gate. When 

the down counter value goes past zero, the borrow clears and presets the 

flipflop controlling the output voltage of the board. At the same time the borrow 

clears the count enable flipflop, inhibiting the I degree pulses to the counter. 
The down counter controlling the spark time works in a similar fashion, but this 

time clearing the final flipflop. The output voltage of the board is then buffered, 

and driven along the line to the engine. After traveling the line, the pulse is 

reshaped using a Schmitt inverter and triggers the Lumenition through a 

transistor. The passive components just up stream of the transistor, raise the 

threshold base bias to four diode drops, approximately 2.8V, and smooth out 

high frequency noise. The transistor acts as an inverter and the signal at the 

Lumenition corresponds to the voltage variation downstream of the points, as 

shown in fig 4.1. 

4.3.2 The Measure Circuitry 

The circuit for the measurement of spark timing retains the number of 1 

degree pulses between TDC and each spark presence on the king lead, which is 

between the coil and distributor. The maximum possible count on a one cylinder 

engine would be 360, and therefore, a 12 bit counter is sufficient for the task. 

This counter is comprised of three 4 bit counters connected to two tristate 

buffers, one for the low byte, one for the high. This arrangement is shown in 

fig 4.6. The counter is reset every TDC, and then counts continuously 

upwards, in one degree steps. At every spark presence the value in the counter 

is latched into the tristate buffers. Simultaneously, the computer is interrupted, 

or the relevant bit in the status register is set. The tristate buffers are enabled 

during an addressed read cycle and deposit the data onto the data bus. To ensure 

correct logic levels are present on the data bus, pull up resistors are used. The 

software is then be able to interpret the read value as a spark advance. 
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4.4 The Ignition Software 

The best way of programming the board is to use the routines of a high 

level language, for example the C language, to carry out screen and file 

handling, but to control the board using 8086 assembler. This combination 

allows good control over the main functioning of the board by writing the drive 

procedures in machine code, whilst the C subroutines carry out the labour 

intensive operations. 

The measurement of spark timing is easily accomplished by just fonrdng 

the data word from the low and high bytes which store the crank degrees 

between TDC and the spark presence. This can be converted to timing advance 

by subtraction from 360 or 180, depending on when the cylinder fires 

compared to the TDC marker. Allowances can be made within the software if 

there is an offset between the marker pulse and engine TDC. 

The spark and dwell time control software is slightly more complicated, 

and a Wamier-Orr diagram (described in chapter 8) charting the program 

structure is shown in fig 4.7. To operate, the software has to use two counters. 

One holds the number of ten cycle blocks counted, and the other the number of 

the next cylinder to fire. This latter counter is usually sequential, the firing order 

is then determined from a look up table. Irrespective of whether the board is 

polled or interrupts, a set series of functions must be undertaken. 'Me required 

changes to ignition timing must be specified. The information includes which 

cylinders' settings are to be altered, whether dwell or spark period is to be 

changed, and the new values must be given. If the data is to come from a file, it 

should be loaded into memory when the program first commences. This 

eliminates possible system crashes due to file handling problems, whilst the 

board is operating. Instead data could be typed in from the keyboard. Some 

high level language functions capture keypresses by using the MSDOS interrupt 

functions. This tends to hang the computer when the board is interrupting. The 
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problem can be overcome by writing the routines for reading of keyboard 

characters in assembler, which accesses the keyboard through the low level 

BIOS functions. RS232 communication is supported by C library functions, 

and the necessary subroutine can be written entirely in C and called from the 

program in assembler. Again to avoid the possibility of causing a fatal error to 

the system, the RS232 port was polled to obtain information instead of letting it 

interrupt. 

Once the program has the timing information, it needs to determine the 

number of ten cycle blocks before the down counters need to be loaded and 

enabled, and, also, the values that need to be written to these counters. As is 

seen in fig 4.7, this can be accomplished from integer division. It should be 

noted that if the spark time is changed, the dwell start must also be reset to 

maintain the same length dwell period. 

The rest of the program covers the necessary service routines to 

incoming events. Every ten degrees the block counter is incremented. 

Depending on the individual timing requirements for each cylinder, it may be 

necessary to load and enable one of the down counters. If a fire occurs then the 

record, indicating which of the cylinders was the last to fire, needs to be 

updated. 

When a TDC pulse arrives, the number of received blocks of ten degree 

pulses is reset to zero. This enables the block counter to correspond to absolute 

crank angle space. 

Finally, when a spark presence is detected on cylinder 1, the cylinder 

firing record can be checked to ensure that it is synchronized with the firing 

order of the engine. 

The above is the general program structure, and this may be customised 

to suit particular applications. 
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4.5 The Board in Operation 

The board and software can be configured, by the user, to generate the 
desired ignition timings. For the current work, a MBT sweep was performed. 
On command from the Quikburn system, the board sets the required ignition 

timings for the sweep. Before the tests were carried out, a check was made on 

the combustion response to a step change in spark timing. The engine was run 

at the main conditions used throughout this thesis, namely 1500 rpm part load 

(WWMP) and 2000 rpm WOT attained under the management system of the 

production engine. At the former condition the timing was advanced thirty 

degrees, but at the latter step, a change of only twenty degrees was possible if 

knock was to be avoided. When timing are retarded, the cylinder pressure will 

be lower than at advanced conditions, and the block walls will be cooler. The 

first few cycles after the sudden timing step change may well produce a lower 

cylinder pressure than would normally be seen at the advanced timing, because 

of the increased heat loss to the cooler wall conditions. 'ne higher heat loss will 

quickly raise the wall temperature, and some oscillation can be expected whilst 

conditions settle. Fig 4.8 shows the variation of peak pressure before and after 

the step change in ignition timing. Although the effects are masked by cyclic 

dispersion, both plots appear to exhibit minor transient oscillation for nearly a 

hundred cycles after the change. As a hundred cycles is only a few seconds of 

engine running time, it is prudent to delay analysis for this period when taking 

results. The Quikburn system waits for ten seconds, before acquiring data, even 

though the MBT sweep only advanced the ignition timing in 1 degree steps. 
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Chapter 5 
Development of the Rassweiler and Withrow Technique 

for Determining Mass Fraction Burnt 

5.1 Introduction 

This chapter and the next deal with the appraisal and development of a 

method to calculate the variation of the burnt mass fraction of the cylinder 

contents with crank angle. This approach is based on Rassweiler and 

Withrow's pioneering work [5.1]. An appraisal of the original formulation 

necessary to produce a reliable and readily applied form of the method is given 

in this chapter. This is followed by an examination of the sensitivities and 

inaccuracies inherent within the analysis method in chapter 6. 

The evaluation of the approximate method is based upon the detail 

analysis of pressure data recorded on the test rigs described in chapter 3. The 

range of the data was chosen to ensure that the method was applicable to any 

configuration of gasoline engines. Typically, one hundred cycles of data were 

examined at each operating condition. The cycles. 'presented here, are those that 

illustrate the pertinent information from all the data taken. 

5.2 Formulation of the Method for CombUstion Analysis 

The main disadvantage of the thermodynamic analysis of engine 

combustion is the processing time required. These techniques are impractical for 

much needed cycle by cycle calculations of the bum period, and therefore fast 

methods of analyis are desirecL The Rassweiler and Withrow approach is based 

on observations from experiments with combustion bombs of constant volume. 

Namely at any instant in the combustion bomb, the fraction of the charge mass 

that has burnt is directly proportional to the fractional pressure rise. The latter is 

defined as the pressure at the particular instant divided by the final pressure 
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attained from all the mixture burning. In addition, this final pressure attained 
from the combustion of a unit mass of mixture is inversely proportional to the 

volume of the bomb. To make use of these experimental observations, 

Rassweiler and Withrow devised a procedure whereby the combustion within 

the spark ignition engine could be considered analogous to that within a 

combustion bomb, and hence, the burnt fraction of the charge deduced. The 

main difference between the combustion in bombs and engines is that part of the 

pressure attained in the engine is attributable to the motion of piston, which 

compresses or expands the mixture. Rassweiler and Withrow hypothesised that 

the measured pressure in the engine cylinder was produced by the independent 

effects of combustion and the movement of the piston. Therefore, the pressure 

increments, due only to combustion, can be found by subtracting the pressure 

induced by the piston motion from the actual cylinder pressure. Now, if all 

these increments of combustion pressure, each calculated at a different crank 

location and, hence, different volume, are referenced to a common volume, then 

analogous conditions between combustion within the engine and combustion 

within a single bomb will have been attained. Having determined the changes in 

combustion pressure, the fractional pressure rise at any crank location is 

known, and, therefore so is the mass fraction burnt. 

Rassweiler and Withrow suggested that the effects of piston motion 

could be separated from the effects of combustion by assuming that, in a short 

interval of crank angle, the measured pressure in the cylinder is obtained by the 

piston movement alone during the interval, followed by the instantaneous 

combustion of fuel at the end of the interval. Consider the processes occurring 

between discrete pressure readings (i-1) and i. The pressure changes due to 

piston motion are modelled by a polytropic process. At the start of the interval 

the measured pressure in the cylinder will be P(i-j) and, at the end of the 

interval, the pressure due only to the motion of the piston Ppi , will be given 

by: 
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ppi = P(i- I) 
V(i_ 1) I 

Vi 
I 

5.1 

To use equation(5.1), the value of the index, n, must be specified, 

which needs to model correctly the changes in pressure due to piston motion in 

the absence of combustion. The only periods in the engine cycle, when the 

correct values of n are known, are prior to spark timing and after the end of 

combustion. The correct value is not known during combustion, where it is 

actual needed. In the original paper, Rassweiler and Withrow assumed that the 

average of the indices before spark timing and after combustion would be 

representative of the required index for the combustion period. 

Equation(5.1) decouples the effects of piston motion from the measured 

pressure, and the difference between the cylinder pressure, Pi, and Ppi is 

assumed to be entirely due to the combustion occurring at volume, Vi . These 

increments in the combustion pressure can be determined throughout the 

burning period. However, to complete the analogy to combustion within a 

single bomb, these increments need to be referenced to a common volume, Vref. 

This can be achieved from the knowledge that, for a given mass of mixture, the 

pressure attained in a bomb is inversely proportional to its volume. Therefore, 

the increment in the combustion pressure at any reading, i, and referenced to the 

common volume is given by: 

APci =p . 11 Vi I (pi - P" Wref I 5.2 

These increments in the combustion pressure can be summed from 

spark time (i=O) to a particular crank angle (i=O) to determine the combustion. 

pressure attained up to that crank angle. Similarly, the summation of increments 

up to the end of combustion (i=EOC) yields the final pressure that would have 

been obtained if all the mixture had been burnt within a bomb. As was stated 
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earlier, the mass fraction burnt is directly proportional to the fractional ri in se 

combustion pressure, which is given by the division of these two summations: 

0 
1 Apci 

X0 - i=O 
EOC 
Y, Apci 
i=O 5.3 

In the original work, EOC was assumed to be reached once 

equation(5.2) calculated negative increments of combustion pressure. With the 

above information, equations(5.1) to (5.3) can be solved to determine the mass 

fraction burnt from just the pressure-volume relationship for a cycle. 

5.3 Summary and Significant Features of the Burn Information 

The procedure is illustrated in fig 5.1. Starting at point A, first the 

pressure induced by piston motion is calculated using equation (5.1) to give 

point B. The increment in combustion pressure is then given by BC, which is 

referenced to the common volume. This "saw-toothing" continues to determine 

the remaining increments of combustion pressure. These combustion pressure 

increments are then summed to give the mass fraction burnt from equation 

(5.3). 

An idealised example of the variation of the increments of combustion 

pressure and the associated mass fraction burnt is represented schematically in 

fig 5.2. 'Mere are several points worth noting about the approximate method 

suggested by Rassweiler and Withrow: 

(i) The isolation of the effects of the piston motion from the cylinder 

pressure is undertaken afresh during each interval, and the initial pressure for 

the polytropic process is the actual cylinder pressure that was measured at the 

end of the previous interval. This measured pressure contains the previous 
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movement of the piston are not related to the pressure that would be attained if 

the engine had been motored. 

(ii) Before spark time and after the end of combustion, the increments of 

combustion pressure must ideally be zero. A deviation from this ideal pinpoints 

an inaccuracy in the calculation of the polytropic process. The most likely cause 

is an error in the polytropic index, and this is considered in more detail later. 

(iii) The mass fraction burnt is the ratio of the burnt mass at a particular 

crank angle divided by the mass of all the mixture which burns during the cycle. 

Therefore the denominator of equation(5.3) must be proportional to the final 

burnt mass of the mixture. Cyclic variations in the summation of all the 

increments of combustion pressure will directly reflect the variations in the 

ability of each cycle to combust its induced charge. 

(iv) The reference volume acts as a scaling factor on the combustion 

pressure, as A. PC is inversely proportional to Vref . However, there is no effect 

on the calculated mass fraction burnt, as Vref will appear in both numerator and 

denominator of equation (5.3). In their paper Rassweiler and Withrow suggest 

using the cylinder volume at spark time as the reference. If this practice is 

followed, the final combustion pressure obtained will be a function of spark 

timing as well as bum efficiency. The consequence is that the afore mentioned 

measure of the amount of fuel burnt will be lost. The volume at TDC was used 

as the reference volume in the work presented here. 

(V) One application of the methods of thermodynamic analysis is the 

calculation of heat energy liberation, as a route to determining the fuel burning 

rate. The equivalent mass fraction burnt, from a heat release calculation is 

expressed by: 

0 
1 AMbi QHV 

x i=O 
EOC 
1: AMbi QHV 
i=O 5.4 
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The mass fraction burnt calculated by approximate and thermodynamic 

approaches will differ if the lower heating value of the fuel changes significantly 

with crank angle. In the literature survey of chapter 2, it was seen that the 

calculations by several investigators showed that approximate methods yield 
bum histories that are almost identical to the results from thermodynamic 

analyses. Stone [5.21 attributed this good consistency to the constant 

dissociation rates during the main bum period. 

(vi) Due to the normalising of the summed pressure increments, by dividing 

by the summation of all the increments in combustion pressure, the RHS of 

equation(5.3) always attains the value of 1.0. Therefore, even if only a few 

percent of the charge mass bums by EVO, the calculated percentage of the mass 

fraction burnt will always reach 100%. Under the majority of operating 

conditions this has no significance on the combustion analysis, since a very 

high proportion of the induced charge is bumt. The two main exceptional cases 

are late (partial) burning and misfiring cycles, which are considered in detail 

later in this chapter. 

5.4 Detailed Examination of the Approximate Method 

There are several uncertainties in the approximate method. The index, n, 

and EOC both need to be specified, but Rassweiler and Withrow did not offer 

any firm guidelines on how these might be evaluated. In particular, the 

specification of the polytropic index must have a strong influence on the 

method, because it dictates the rate of heat transfer implicit to the calculations. 

The necessary procedures are further complicated by the imperfections of data 

acquisition from real engines, because noise oscillations are present in the 

measured pressure. These oscillations are caused by unavoidable pickup of 

electromagnetic radiation on the signal lines, and are also quite possibly due to 

resonance effects near the pressure transducers. In this thesis, the oscillations 

due to the unknown sources are collectively referred to as 'noise. 
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To have confidence in the method all these uncertainties must be 

addressed. The rest of this chapter examines each in turn, starting with the 
determination of the end of combustion. 

5.5 Determining the End of Combustion 

In their original method, Rassweiler and Withrow terminated the 

calculations once the combustion pressures became negative, and EOC was 

assumed to have been reached. This method of determining the end of 

combustion is not ideal. It relies on either the index being wrong, else the 

increments of combustion pressure would be zero after EOC, or a degree of 

noise pickup on the pressure record such that the increments of combustion 

pressure oscillate between positive and negative values about a zero mean. A 

search was initiated for a more physically representative method of determining 

the termination of combustion. One approach tried was based on -the 

convergence of the combustion pressure to zero after the charge had finished 

burning. When calculating the expansion index, a regression line was fitted to 

the logarithmic variations of pressure and volume, at a point just before the 

instant where the exhaust valve opened (EVO). It was assumed that the standard 

error of the fit, itself associated with oscillations in the pressure trace, was an 

adequate measure of the noise fluctuations of the increments of combustion 

pressure. EOC was assumed to be reached when these increments had settled to 

within one standard error of zero. The advantage of this method is that the limits 

for the convergence would be self compensating to the noise amplitude, through 

the standard error value. 

Three different methods of locating combustion termination are 

compared in fig 5.3. The "first-negative" method assumed combustion had 

ended as soon as a negative increment of combustion pressure was calculated. 

The "sum-negative" waited for the total of three consecutive increments to be 

negative. This was less sensitive to noise spikes than the " first- negative" 
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method. The final curve shown has been obtained using the method based upon 

the standard error. As can be seen, each method indicates a significantly 
different EOC and marked differences are exhibited in the burn history. 

Unfortunately, each method of predicting EOC is sensitive to the criterion used, 

and this casts a doubt on whether any of these methods could be used with 

confidence. Although the standard error method appears the most appropriate to 

use, on some occasions it seemed to predict excessively late EOC. 

With these uncertainties in mind, an alternative approach appeared 

necessary. In the original paper, EOC was required so that the calculations were 

stopped to avoid the, physically impossible, negative increments of combustion 

pressure. If the correct polytropic index can be found, then the increments of 

combustion pressure will be zero after the end of combustion, and the 

calculation procedure can continue right up to the end of the power stroke, i. e 

EVO. This would eliminate the need to locate EOC. Two potential problems 

associated with this are: the possibility of problems created by noise 

fluctuations; and the difficulty of identifying the correct value of polytropic 

index. 

5.6 Noise P*ckull 

The surroundings of testbeds are regions of high level, electromagnetic 

noise and the ignition system is a major source of the radiation. As a result all 

pressure records suffer from noise pickup. Calculations of mass fraction burnt 

amplify the problem, because pressure differences are utilised as opposed to 

absolute pressures. This effectively increases the noise to signal ratio. 

Therefore, although only slight ripples may be observed in the pressure trace 

itself, strong oscilations appear in the calculated increments of combustion, 

pressure, Shie and Sheng[5.3]. 

A common approach to eliminating the noise is by hardware or software 

filtering. Shie and Sheng[5.3] devised a digital filter that was capable of 
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removing noise effects, including passage resonance around the pressure 

transducer. However, such filters are time consuming to configure and need 

tuning to each particular rig. In order to preserve the general applicability of the 

current method of analysis, other forms of noise handling were considered. 

Acute noise pickup was observed in the data from the rig with the 1.61- 

CVH engine, despite attempts to suppress it. A typical variation of the 

increments of combustion pressure from this rig is shown in fig 5.4. To 

suppress the high frequency fluctuations in the data, the Savitzy-Golay[5.4] 

method of least square smoothing was employed. This method adjusts a set 

number of points to best fit a parabola. The smoothed curve produced is very 

similar to the curve that would be produced if the points were smoothed by eye. 

The greater the number of points involved the greater the smoothing effect. 

However, too large a number can obliterate detail. Trials using a range of values 

indicated that the most appropriate number of data points used in the smoothing 

was 9, and this smoothed curve is compared with the original in fig 5.5. 

An interesting feature can be seen when the curves of mass fraction 

burnt from the smoothed and unsmoothed variations of the increments of 

combustion pressure are compared as in fig 5.6. There is only a very slight 

difference, except for minor fluctuations, despite the high level of noise 

present. There are two reasons for this: 

(i) The noise pickup is of high frequency and almost constant amplitude 

over each period. Therefore, because the bum history is calculated by the 

summation of increments of combustion pressure, the value of the noise 

elements summed over each whole period will be zero. 

(ii) The effect of any noise elements, not cancelled, will be small compared 

to the total of the summation of the increments. 

Therefore, noise oscillations have a very small effect on the calculated 

mass fraction burnt and can be ignored. This means there will be no problems 

encountered by continuing the analysis calculations up to EVO. To adopt the 
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new approach, all that is now required is to estimate correctly the polytropic 
index. 

5.7 ! Lalculafing the Polytrol2ic Index 

5.7.1 Heat Transfer CUnsideratigns 

In the published data of Alkidas[5.5] it can be seen that the heat lost 

from the cylinder during combustion is approximately twenty percent of the fuel 

input energy. This must play a significant role in the rate at which the fuel 

bums, and the heat transfer implicit within the calculation scheme needs to be 

examined in detail. 

Rassweiler and Withrow assume that, during a short interval, the 

combustion process can be divided into the piston motion followed by the 

instantaneous combustion of the fuel at the end of the interval. The latter event 

essentially will be adiabatic, and the former is described as a polytropic process. 

The magnitude of the polytropic index defines the implicit heat transfer during 

the interval. For the analogy of the combustion occurring at a common volume, 

the heat transfer that would occur within a bomb must be catered for. This is not 

strictly related to the actual heat transfer within the cylinder of the engine, 

because the temperature differences across each interval of the analysis are 

reduced. The actual cylinder heat transfer is a consequence of the cylinder 

pressure and temperature, whereas the heat transfer of the Rassweiler and 

Withrow method is related to the pressures generated by the movement of the 

piston. This can be illustrated by reference back to fig 5.1. The cylinder heat 

transfer, for each interval, will be between conditions AC, CE, and EG. The 

corresponding conditions for the approximate analysis are AB, CD and EF. 

Therefore, the heat transfer within the cylinder will be greater than that implicit 

to the calculations of mass fraction burnt. 

The consequence of the above is a difficulty in assessing the correct 

magnitude of the polytropic index that should be used during each interval. 
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However, the qualitative effect of variations in the value of the polytropic index 

can be studied by considering the heat transferred during a polytropic process. 
From the First Law; 

AQ = AU + AW 5.5 

and for a perfect gas: 

AU= mCVAT - mRAT 
(7-1) 

and; 

AW = 
A(PV) 

(I - n) 5.6 

Combining these three equations, the heat transferred is given by; 

AQ nýnRAT 
IX1 - n) 5.7 

By convention Q is positive when heat is transferred to the cylinder 

gases. During the compression stroke of the spark ignition engine the induced 

fuel and air mixture will be of similar temperature to the surrounding block 

walls. Hence, the heat flow between gases and surroundings will be low and 

can occur in either direction. Therefore the compression index will not be far 

removed from the adiabatic value. 

In contrast, during the expansion, the product gases are considerably 

hotter than the cylinder, and heat flow will normally be towards the 

surroundings. Table 5.1 shows a breakdown of the sign of AQ in equation 

(5.7) for a range of index values in both the compression and expansion stages. 
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A positive heat flow, i. e heat addition, during the expansion stroke will only 

occur when combustion is taking place. 

To illustrate the effect of the index on the calculation of mass fraction 

burnt, fig 5.7 shows the results of the analysis using a range of values for the 

index, which are kept constant throughout the combustion period. The marked 

differences in the curves are caused by the use of an incorrect value for the 

index during expansion. The value of 1.3 is greater than the adiabatic, which is 

approximately 1.26, and during expansion the heat is modelled as being lost to 

the surroundings as expected. This value is very close to the correct index, 

because the mass fraction burnt drops slightly from 100% by EVO (the use of 

the correct index would maintain the mass fraction burnt at 100% through to 

EVO). 

The isothermal value of 1.0 models a process where heat is added to the 

cylinder gases from the surroundings. This reduces the calculated change in 

pressure due to the movement of the piston during the expansion. Eventually 

this change becomes less than the actual change in the measured cylinder 

pressure, and results in negative increments of combustion pressure. The effect 

on the calculation of the mass fraction burnt is a burn history which prematurely 

reaches 100% then falls rapidly. Surprisingly, this dropping off of mass 

fraction burnt is not uncommon in published papers, for example Dye[5.6]. 

The index value of 1.6 is both greater than the correct index and the 

adiabatic, therefore, excessive heat loss is implied. In this case the change in 

pressure due to the piston motion is increased and diverges from the measured 

pressure of the cylinder. The calculated increments of combustion pressure will 

be positive throughout the combustion period, and the curve of mass fraction 

burnt wrongly suggests that burning continued right up to EVO. The index 

value of 2.6 is a more severe case than the value of 1.6. Although fig 5.7 was 

exaggerated, it can be seen from the smaller range of index in fig 5.8, that a 

deviation of 0.05 from the correct value has a marked effect. 
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Fig 5.9 shows the effects on the calculated pressure due to the 

movement of the piston when the value of the polytropic index is varied 
between two extreme values, 1.0 and 1.4. The curves are almost identical until 

near peak cylinder pressure. The calculation of the mass fraction burnt up to this 

point will be less sensitive to the value of the index because any differences 

between calculated pressures of the piston motion will be small compared to the 

resultant increment of combustion pressure. In the period after peak pressure, 

which occurs towards the very end of combustion, a more marked deviation in 

the calculated pressures induced by the piston motion is seen. As this deviation 

is now large compared with the resultant increment of combustion pressure, the 

effect on the calculated mass fraction burnt can be severe. This highlights the 

importance of the values of polytropic index when combustion rates are low, 

especially at the end of combustion. The main combustion phase is not sensitive 

to the value of the index due to the dominating effect of the combustion over the 

piston motion. Provided the correct value for the index is used at the initial and 

final stages of combustion, there should be little error in the calculated bum 

history. 

5.7.2 Identifying the Correct IndeX 

A commonly used method of calculating the polytropic index is by 

fitting a regression line to the logarithmic variation of pressure and volume. The 

slope of this line is equal to the index. However, the author has found the 

regression method to be unsatisfactory, because, when used in the analysis, 

most cycles tend to show mass fraction burnt reaching 100% and then dropping 

off. This will be due to the slight inaccuracies within the calculated indices, 

caused by noise oscillation in the pressure trace. In searching for a more. 

appropriate method, it was found possible to adjust a given polytropic index to 

a value which produced little or no drop off. This adjusted value will be the 

correct index for the analysis. 
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5.7.3 Adjustment of the Polltropic Ind&I 

The adjustment technique was found by considering the relationship 
between the index, n, and the calculated increment of combustion pressure, 
APC .A value of n needs to be chosen that gives APc equal to zero before 

combustion commences, in order to set the compression index; and zero after 

the combustion period in order to set the expansion index value. Now, from 

equation (5.2); 

V(i 
- 1) n Vi APci = Pi - P(i 

-1 vi 
- 

Vref 5.8 

Taking logs and manipulating; 

log +log 1- APci 

P-t Vi I 
Tý 

ref 
log 

V(i 
- 1) 

Vi 5.9 

Normally, [Apci I(Pi (Vi/Vref)] << 1, therefore, by expanding out the 

second log term in the numerator as far as the first power gives: 

ýi vi 
pi 

109 

log Pý., v 
ref 5.10 

IF'or a particular interval in the pressure history, the pressure and volume 

values will be constant and, therefore, n is linearly related to the increment of 

combustion pressure, A. Pci, with the value decreasing for the compression 

process and increasing with the expansion due to the sign of (Vi / V(i- I)) . 
When dealing with real data, noise will cause APCi to fluctuate with 

crank location. Therefore, it is advisable to use a value of APcj averaged over a 
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small crank angle period. The relationship between n and mean APci from 

actual data is shown in fig 5.10, for the compression stroke, and fig 5.11 for 

the expansion. The experimental data of fig 5.10 shows a slight curvature of the 

n vs APci, curve, which is a consequence of [APci/(Pi (Vi/Vref)] 2 being 

ignored. 

The linear relationship is advantageous because the correct index value 

can be interpolated by calculating APci, from two initial estimates of n. This is 

further helped by knowing that the correct index will be near the adiabatic value. 
For example, the correct index can be found from trial values of 1.2 and 1.35: 

n- 1.2 
(AP 

Ci @n = 1.2) 
1.35- 1.2 (APci @n = 1.35) - 

(APci @n = 1.2) 5.11 

To ensure good accuracy in determining the index, the interpolation of 

equation(5.13) can be repeated, using refined estimates of n, until satisfactory 

convergence occurs. 

The effect of correctly adjusting the index is clearly shown in figs 5.12 

and 5.13. The former figure shows a derived curve of the increments of 

combustion pressure where the expansion index obtained from the log indicator 

diagram is too large. The increments of combustion pressure converge to a 

positive value. When the index is adjusted, fig 5.13, these increments converge 

to an oscillation around zero as expected. The curves of mass fraction burnt 

from these two conditions can be seen in fig 5.14. The bum history, where the 

indices are unadjusted, continues to EVO, whereas the case for the adjusted 

indices finishes combusting at just after 600 crank angle. 

As further evidence that the adjustment of indices produces a valid bum 

history, a check was made on the combustion endpoint. Because of the 

uncertainty of the earlier methods of computing EOC, a more physically 
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representative method was searched out. Karim, Al-Aloisi and Anson[5.7] 

recommend the use of the variation of the polytropic index calculated at one 

degree intervals. These investigators noted that EOC could be predicted by the 

convergence of these polytropic indices to a constant value during expansion 

The variation of the polytropic index for the previously mentioned cycle is 

shown in fig 5.15, and, although noise oscillations are present, the values settle 

to a constant, mean value around 600 crank angle. 

The adjustment method is preferred to the regression method because 

the adjustment acts directly on the calculated increments of combustion 

pressure, and ensures that after combustion the increments of combustion 

pressure are zero. Under ideal conditions, the polytropic indices calculated by 

both the adjustment method and regression would be identical. However, with 

noise fluctuations and possible small aberrations from the ideal polytropic 

process, adjustment is the superior method. 

Having decided to adjust the indices in this fashion, two questions arise: 

how many points should the increments of combustion pressure be averaged 

over, and at what point in the cycle should the adjustment process take place? 

The former question is answered by examination of fig 5.16. Although 

fluctuations are apparent, idle data is most susceptible to noise due to the low 

combustion level, the index appears settled after 10 points (1 point every 10). 

Before and after the combustion period, the pressure changes can be calculated 

by a single index for each process. Therefore, in answer to the latter question, 

the optimum time to adjust the indices would be at points where combustion is 

most unlikely to be occurring. Accordingly, the most appropriate location to 

adjust the compression index is just before spark time, and, for the expansion 

index, immediately prior to EVO. 

Recapping; it is possible to quickly and accurately adjust both the 

expansion and compression indices to their correct values. And, from the earlier 

heat transfer study, it Was concluded that the accuracy of these values was 
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essential at the start and end of combustion. The variation of the index value 

during the main combustion stage is not important, because combustion effects 

dominate over the piston motion effects. In the work presented here, the index 

used was the compression value until combustion was underway, and from 

then on the expansion value was used. 

Adjustment of the polytropic index provides a reliable method of 

calculating the best values to be used in the combustion analysis. This, 

combined with the earlier observation that noise oscillations have no detrimental 

effect on the calculated bum trend, means that accurate analysis can be achieved 

by starting the calculations at spark time and continuing to EVO. This removes 

the earlier necessity to determine EOC. 

5.8 Late Burning Cycles 

Under most normal conditions the adjustment method should give 

accurate results for the mass fraction burnt, but there are two common 

conditions which are problematic; when the charge is still burning after EVO, 

and when there is a complete misfire. 

A late (partial) burning cycle will have positive increments of 

combustion pressures up to EVO, and attain 100% mass burnt at this point as a 

consequence of the normalising of the summed combustion pressure 

increments. However, when the adjustment to the index value is undertaken on 

a late burning cycle, the polytropic index is given a value that produces a zero 

mean over a number of summed points. This results in a low index value that 

makes the last few increments of combustion pressure negative in order to 

compensate for the otherwise positive increments. An example of this is shown 

in fig 5.17, where the averaging of the increments is carried out over 30 0 to 

exaggerate the effect. The best remedy is to reset the obtained value of the 

polytropic index to a higher, more typical magnitude. Resetting should not 

effect the accuracy of the analysis, because, as described earlier, the calculation 
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of the mass fraction burnt is insensitive to the index value during the main bum 

stage. The index has been reset to 1.25 in fig 5.18, and the unadjusted and 

adjusted index versions of the bum history are given in fig 5.19. Evidence, to 

confirm that this is indeed a late burning cycle, is given by the non-convergence 

and low value of the instantaneous polytropic index, fig'5.20. 

It is necessary to set an arbitrary condition which will tell when it is 

appropriate to reset the index in this manner. For the adjustment to produce the 

negative increments of combustion pressure, the calculated drop in pressure due 

to the movement of the piston must be less than the drop in the measured 

pressure. From the earlier considerations of heat transfer, this would require an 

increase in the heat addition to be implied by the index value. If combustion 

rates are still moderately high at EVO, the cylinder temperature will still be 

increasing. By reference to table 5.1, the index value for late burning cycles will 

be near or less than 1, and unity is a possible threshold value that could 

distinguish between late and normal burning cycles. Fig 5.21 shows the 

variation of the index value, for a non-late burning cycle, as the interval during, 

which the adjustment is made, moves further and further away from EVO, until 

it crosses into the combustion period. The value of the index drops sharply 

when the adjustment is undertaken in the combustion zone. The effect is 

noticeable but less marked for no load due to the much reduced rate of 

combustion. The sharp drop of the index through the isothermal value suggests 

that unity is indeed suitable for distinguishing between late and normal burning 

cycles. 

To conclude, if the index drops below the isothermal value, then a late 

bum has occurred and it is necessary to reset the index to a higher value, for 

example 1.25. 
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5.9 Misfires 

A complete misfire creates an analysis problem if not identified, because 

the analysis procedures will still try to determine a mass fraction burnt for the 

cycle. The calculation scheme will succeed in this because noise and deviations 

from ideal polytropic behaviour will produce small, false bum increments. As, 

by definition, there is no burning associated with a misfire, any calculated 

combustion will be incorrect. This can invalidate the whole analysis, especially 

if the erroneous data is averaged with the data from normal burning cycles. This 

can all be avoided if misfires can be identified. Fortunately, the noise 

oscillations on the pressure records and the non-polytropic behaviour are both 

minor effects, and misfiring cycles are easy to detect because the summations of 

all the increments of combustion pressures are close to zero. Fig 5.22 shows 

the increments of combustion pressure for idle, the operating condition with the 

smallest value for the summation of all increments. In the hundred cycles 

analysed at this condition, the final combustion pressure attained, at idle, was 

always above 5.5 bar. Misfiring cycles have much smaller increments of 

combustion pressures as can be seen in fig 5.23. The summation of all 

increments for a misfire was never seen to exceed 2 bar. Therefore, by setting 

an arbitrary level for a minimum value for the summation that would constitute a 

valid fuel burning cycle, for example 4 bar, misfires can be eliminated from the 

analysis. 

The approximate method for determining mass fraction burnt has been 

developed to overcome the uncertainties surrounding the determination of both 

EOC and the correct values of polytropic index. Also, the method of analysis is 

able to diagnose, and correct for, late burning and misfiring cycles, which may 

otherwise confuse the analysis. The next chapter examines the weaknesses and 

sensitivities in its application. 
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Chapter 6 

Examination of the Inaccuracy Sources in the 
Determination of the Mass Fraction Burn 

6.1 Introduction 

There are several sources of experimental uncertainty that are common 

to all schemes for combustion analysis. These stem from the difficulty in 

acquiring precise pressure data: the pressure will not be uniform throughout the 

combustion chamber; the pressure sensed by the piezo-electric transducer is 

converted to a voltage relative to the datum of the charge amplifier, and 

therefore needs relating to absolute pressure; the pressure data from the 

transducer is not aligned to the volume changes, and requires sync hroni sation; 

the clearance volume of the cylinder can only be estimated, unless the cylinder 

head is removed; and finally, accuracy may be lost through the pressure 

sampling rate being too slow. These uncertainties, although small, may 

seriously influence the derived bum trend, and, therefore, each effect has been 

examined in more detail. 

6.2 Irreversibifity and the Non-Uniformity of Pressure 

Combustion analysis schemes, whether approximate or based on the 

Laws of Thermodynamics, assume pressure to be uniform throughout the 

cylinder. However, in reality the processes of the internal combustion engine 

are irreversible, and the properties of the reacting mixture will vary spatially 

within the cylinder. In the particular case of the approximate method of 

analysis, described in chapter 5, changes in state are assumed to be polytropic. 

For polytropic processes, these changes are expressed in terms of pressure and 

volume, and, therefore, will still apply to the system if it is irreversible. 

However, the spatial variation of the properties cannot be accounted for, and the 
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assumption is made that the pressure local to the transducer is representative of 
the pressure throughout the cylinder. The changes in pressure are distributed by 

wave action, and normally the flame speed in spark ignition engines Is well 
below the sonic speed. Therefore the pressure gradients within the cylinder will 
be slight, and the assumption of uniform pressure is reasonable. Furthermore, 

these analysis methods are not used to determine absolute rates of burning, but 

are used as a basis for comparing the combustion of one engine cycle, or one 

engine condition, relative to another. Therefore it is acceptable to ignore the 

non-uniformity of pressure. The same concept is applied when calculating the 

work done by the system. The actual work done by the system is given by the 

integral of the pressure variation over the area of the piston face, Ap, as the 

piston moves in the x direction: 

fP 
dAp dx 

6.1 

The variation of pressure is again ignored and equation(6.1) is integrated, 

between two crank locations, by the trapezium rule: 

02 (Pi + Pi-l) (Vi 
- 

Vi-l) 

2 
i=Oi 6.2 

Equation (6.2) will be equivalent to equation (6.1) provided the pressure is 

uniform, and there are an infinite number of readings between 01 and 02 - 
Neither of these two criteria are realised in the actual engine, but both can be 

ignored because, again, the approximation is close to reality, and the work done 

is normally used as a basis for comparison. Good correlation is achieved 

between the indicated work, calculated from equation(6.2), and the actual work 

that is measured at the brake dynamometer. 
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Although in general the pressure is assumed uniform throughout the 

cylinder, it is important, during the early stages of combustion, to consider the 

finite time required for the pressure waves to propagate across the cylinder from 

the burning zone. A delay time will be incurred before the transducer is able to 

register the small rises in pressure in the flame kernel. In this early combustion 

stage, the kernel is confined to the small region near the spark plug electrodes 

and is surrounded by the compressed fresh charge. Normally the transducer is 

situated away from the spark plug by nearly the radius of the bore, which is 

almost 5cm for the engines used in this thesis. At spark time the temperature of 

the unburnt charge is around 500K and the delay, before the pressure changes 

in the kernel reach the transducer, will be 115 p. This is equivalent to over two 

crank degrees at 3000 rpm. Therefore, pressure analysis is not the best method 

of investigating the early growth of the flame kernel, especially at high speeds. 

As the current work investigated operating conditions at similar, low engine 

speeds, 1500rpm and 20OOrpm, the delay time was not of significance. 

6.3 Relating thr, Measured Pressure to Absolute 

The pressure measuring system of a piezo-electric transducer and a 

charge amplifier generates a voltage representing the difference between the 

sensed pressure and the charge amplifier datum. To obtain absolute pressure the 

relative pressure should be referenced to a known absolute pressure within the 

engine cycle. For example average MAP, which can be measured using a 

mercury manometer. The importance of proper referencing can be evaluated by 

an examination of the sensitivity of the polytropic indices to changes in the 

reference MAP value. For the polytropic process: 

Pvn = constant 

taking logs and differentiating: 

6.3 

62 



dP 
= dV 

p nT- 
6.4 

therefore, 

UP 
PdV 6.5 

Changing the reference pressure, will alter only the value of P, because the 

pressure differences and the volumes will be unchanged. Therefore, n is 

inversely proportional to pressure, and by taking logs and differentiating, 

equation (6.5) can be expressed in terms of the reference pressure, Pref 

dn dPref 
n Pref 6.6 

Therefore, changes in polytropic index are linearly related to the changes 

in reference pressure. The experimental variation of the polytropic indices with 

reference pressure is shown in fig 6.1. Not only do the results show good 

linearity, but table 6.1 shows that the magnitude of change in index value when 

the value of the reference pressure (MAP) is altered, is close to the prediction 

from equation (6.6). In this table, the compression index was determined 20 0 

crank angle before spark time, corresponding to 500 BTDC, and the expansion 

index was evaluated just before EVO. The behaviour of the indices with 

changes in the reference pressure explains the large range of index values that 

can be observed in pressure analysis results. 

In contrast, the value of the reference pressure has only a small effect on 

the calculated bum history, fig 6.2. This is because the previously described 

method to determine the polytropic indices produces values which are best 

suited to describe the pressure history, regardless of the reference pressure. The 
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resultant, slight variation in bum trend will be due to the non-absolute pressure 

no longer displaying true polytropic behaviour. In fig 6.2, although the 

compression index is worse effected, if negative burning is ignored, the 

difference would not be so marked. In any case fig 6.2 is an exaggeration and 

normally by referring the raw pressure data to average MAP, the calibrated 

value should be within 200 mbar of absolute. This will have negligible affect on 

calculated mass fraction bumt. 

Although the use of average MAP as a reference pressure is well 

established in research, there are different schools of thought about which part 

of the cycle to reference. Lecouna and Rodriguez[6.1] recommend that 

referencing takes place during valve overlap (-200 to 200 crank angle), whereas 

Hayes and Savage[6.2] prefer induction stroke BDC (180 0 crank angle), 

because the inlet valve is nearly fully open and the effects of piston motion are 

minimal. Fig 6.3 shows the part of an unreferenced pressure history during the 

induction period. The high rate of pressure change, from exhaust pressure to 

intake pressure during valve overlap, effectively rules out this period for 

accurate referencing. Alternatively, at BDC, pressure variation is comparatively 

small, indicating a good reference point. To eliminate any effect of pressure 

ripples, the raw pressure was averaged between BDC + 10 0 and then 

referenced to MAP. The result, shown in fig 6.4, is close to absolute, because 

the exhaust pressure at the far left of this figure is just below atmospheric. 

6.4 Aligning the Crank Angle Marker 

The pressure and crank angle data is acquired using a continuous pulse 

stream from the shaft encoder. This data must be related to absolute crank 

location before volume calculations can be made. The standard procedure for 

alignment is to use the once per revolution marker pulse to relate the crank angle 

data to engine TDC. This is accomplished by first locating engine TDC as 

accurately as possible. Lancaster et al[6.3] suggest that by taking dial gauge 
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readings either side of TDC and interpolating, TDC can be found to within 
0 0.1 . Next, a timing disc is fitted to the crankshaft pulley, and aligned to TDC. 

Finally, the once per revolution marker pulse is used to trigger a stroboscope 

and the offset of the marker pulse from TDC can be read off the timing disc. 

The offset is then used to relate the pressure variation to the volume changes in 

the analysis software. 

Errors in fitting the timing disc, and reading difficulties when using the 

stroboscopic light on a vibrating engine, suggest that the pressure variation 

could be offset by up to 0.50 crank angle from the true volume changes. The 

calculated mass fraction burnt is not affected by this, as can be seen in fig 6.5. 

It is not until the pressure is out of synchronous with the volume by 40 crank 

angle that distortions become noticeable. Results taken from the same rig will 

have common small alignment offsets and this will not affect cycle 

comparisons. More accuracy is necessary when comparing cycles from 

different testbeds, because the calculated mass fraction burnt will reflect the 

alignment errors of the the particular rig. This can be the cause of discrepancies 

between results from different rigs. 

6.5 Estimating the Clearance Volume 

The clearance volume can be deten-nined in two ways. One is to remove 

the cylinder head and measure the quantity of white spirit necessary to fill the 

combustion space. The other is to calculate the clearance volume from the 

compression ratio. The first method is not always practical, and the second can 

be inaccurate due to production tolerances in the compression ratio. Fig 6.6 

shows the effect of changing the specified clearance volume on the calculated 

mass fraction burnt. Although the bum shape does not appear to be distorted, 

for the 20% change in clearance volume from 51 cc to 63cc, a shift of nearly 40 

crank angle is seen at the 70% burnt point. Again fig 6.6 is an exaggerated 

illustration, and normally production tolerances result in only about 5% 
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variation in clearance volume. Therefore, the calculated bum history can be 

expected to be within 10 crank angle, if the clearance volume is determined 

from the compression ratio. 

6.6 Resolution of the Sampling Rate 

The sampling rate must be sufficient to record the pressure changes. 

Clark and Challen[6-41 suggest reading every 10 for petrol engines. The 

uncertainty with the approximate analysis is that erroneous increments of 

combustion pressures may arise if the sampling interval is too large, because the 

piston motion will not be totally independent of the combustion process. The 

sensitivity of the calculated mass fraction burnt to the sampling rate was 

examined and the results shown in fig 6.7. As can be seen, there is no 

substantial difference in bum history between sampling intervals of 1/3 and 3 

degrees. Therefore, the sampling rate is not critical in determining the mass 
0 fraction bumt. The convenient sampling interval to use is I, as bum durations 

and locations are normally expressed in whole degrees. 

6.7 Conclusions froin the Appraisal of the Tech * 

The assumption of uniform pressure within the combustion chamber is 

untrue, but the pressure gradients normally encountered in petrol engines are 

slight and can be ignored. A potential problem, associated with the non- 

uniformity of pressure, is the time delay for the early combustion pressure to be 

registered by the transducer. Allowances should be made for the delay when 

comparing early combustion data of cycles at high engine speeds. 

Inaccuracies in calibrating the raw measured pressure to absolute have a 

pronounced effect on the polytropic index. This explains the wide range of 

values encountered in pressure analysis. However, because index values are 

calculated that are appropriate to the ill referenced pressure, there is no marked 

effect on the calculated durations of mass fi-action burnt. 
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Alignment errors of pressure to volume are negligible up to being 20 

crank angle adrift in as far as the effect on the analysis calculations. However, 

the offset must be taken into account when comparing bum locations in data 

acquired from different testbeds. 

Incorrect calculation of the clearance volume can also be a source of 

error. Normal production tolerances in compression ratio can cause an error of 

10 crank angle in the bum duration. If a greater accuracy is necessary, the 

cylinder head should be removed and the combustion space measured using 

white spirit. 

The mass fraction burnt appears insensitive to sampling rate, and a 

reading every crank angle degree is sufficient and also convenient. 

The above points indicate that the implemented method of analysis is not 

engine specific and can be readily applied to any test facility. If the above points 

are carefully followed to ensure proper data acquisition, then the errors in bum 

duration will be limited to around 10 crank angle, which is acceptable for 

comparisons of combustion performance. 

As an example of the portability between rigs of the analysis system, 

and as a check on the calculation of mass fraction burnt, the method was used to 

analyse data from an engine operating in the cold cell at -200C. Four cycles of 

data that showed peculiar characteristics in their combustion, are presented here. 

Fig 6.8 shows the pressure histories acquired from the testbed in the cold cell. 

The results from applying the described version of the combustion analysis 

technique are identified in fig 6.9. 
0 

The pressure history of cycle 1, resembles a motoring trace up to 30 

ATDC. From then on, the pressure only drops slightly to EVO. This would 

suggest a long time for the development of the flame kernel; the flame front not 

beginning to propagate until near 300 ATDC. Once propagation starts, it 

proceeds slowly up to EVO. The calculated bum trend for cycle 1, in fig 6.9, 

corresponds exactly with this hypothesis. 
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A similar statement can be applied to cycle 2, except that the kernel 

development is slightly shorter, and the subsequent combustion rate is faster, 

producing a second higher peak pressure. After this second peak the pressure 

history begins to follow the normal expansion shape, suggesting that 

combustion finishes before EVO. Again these statements are seen to be 

calculated by the method. 

The flame kernel development is faster again in cycle 3. The main 

combustion phase appears similar to cycle 2 except there is a noticeable slowing 

in the rate of pressure rise at about 300 ATDC. The calculated bum history for 

cycle 3 agrees with the speculations made from the pressure trace, and the 

calculated main combustion phase has a longer duration than cycle 2. 

Cycle 4 is, by far, the best burning cycle. The main bum stage starts 

slightly after TDC and proceeds quickly to produce a much greater peak 

pressure than the other three cycles. Once again these points are revealed in the 

bum patterns shown in fig 6.9. 

Figs 6.8 and 6.9 prove that inferences about combustion behaviour are 

correctly calculated by the analysis procedure. Obviously the bum histories 

shown in fig 6.9 contain more information than can be qualitatively obtained 

from fig 6.8. 'I'his analysis example highlights the general applicability of the 

analysis method and its ability to calculate combustion trends. 

68 



Chapter 7 

Determination of Heat Lost During Combustion 

7.1 Introduction 

The evaluation of the heat exchange between the cylinder contents and 

their surroundings plays an important part in determining engine performance. 

The heat flow through the cylinder head and piston influences such quantities as 

block temperature, coolant load and engine warm up time. Current methods of 

calculating the gas to wall heat flux are complicated. Direct measurement has 

been attempted using a surface thermocouple, Alkidas and Myers[7.1]. This 

consists of two thermocouples, one situated on the surface of the device, and 

the other a known distance behind it. The heat flux can then be calculated from 

the two temperature readings by assuming one dimensional heat transfer occurs 

between the thermocouples. However, this technique is difficult to exploit for 

several reasons: the spatial variation of the heat flux requires the placing of 

several surface thermocouples; the presence of the thermocouple may distort the 

true flux field; and the complexity of machining the cylinder head or block to 

allow location of the thennocouPle in the correct orientation. 

An alternative approach is to perform a complete thermodynamic 

analysis, in which the heat lost to the cylinder walls is assumed to be given by: 

dQhl 
=hA (T 

dt 7.1 

Woschni[7.2] and Annand[7.3] have both derived correlations commonly used 
b for h. These take the fonn, hý aRe , which is typical of turbulent and 

convective heat transfer. The constant, a, in the correlation needs to be set to a 

value which predicts the same quantity of heat rejected to the surroundings as 
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determined by a heat balance on the test engine. This requires several iterations 

of the thermodynamic analysis before satisfactory results can be obtained, and 

the procedure must be repeated for each engine under test. 

If the instantaneous heat transfer could be calculated simply, in the same 

fashion that it is possible to use an approximate method to calculate the charge 

bum history, some of the disadvantages associated with current methods of 
determining the heat flow could be avoided. The following describes a novel 

method of achieving this by using First Law analysis to extend the interpretation 

of cylinder pressure data. The work on the heat loss scheme is on going, but the 

outline of the method, and a qualitative examination of its accuracy, is included 

in this thesis. 

7.2 The Heat Transfer Anal *, 

By expressing the First Law of Thermodynamics in terms of a 

polytropic process, the net heat transferred during a particular interval can be 

found: 

A(PV) 
7.2 

It was seen in chapter 5 that inserting the polytropic: indices, used for the 

calculation of mass fraction burnt, into equation(7.2) will only determine the 

actual cylinder heat transfer at points before and after the combustion event. 

A completely new approach is now suggested that can determine the 

heat exchange, during the whole combustion period, by using equation(7.2). 

Consider fig 7.1, this shows the measured pressure history and the "saw- 

toothing" of the computations used to determine the mass fraction burnt. In this 

figure AB is the polytropic compression of the cylinder gases by the piston 

motion, and BC would be the increment of combustion pressure from the 
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approximate analysis scheme. As explained in chapter 5, the heat transfer 
implicit to the combustion analysis is derived from the process A to B. The 

actual heat transfer within the cylinder is dependent on the process A to C. 

However, if only the measured pressure variation is considered, the process A 

to C can itself be assumed to be a polytrope, and the associated index can be 

calculated from the pressures and volumes at A and C. When this local index 

value, as opposed to the combustion analysis value, is inserted in equation 

(7.2), the actual cylinder heat exchange between A and C will be determined. 

The heat transfer determined by equation (7.2) in this manner will be the 

combination of the heat released by the fuel burning and that lost to the 

surroundings. Therefore, in principle, the heat lost (positive for transfer to the 

surroundings) can be evaluated by: 

AQht = AQf - AQn 7.3 

The heat released by combustion during each crank angle interval can be 

obtained from knowledge of the mass fraction burnt: 

AQf = Mf QHV AX 7.4 

Equations(7.2) to (7.4) can be applied in a step-wise procedure to determine the 

instantaneous heat transfer throughout the combustion period, by using local 

values of polytropic index, obtained directly from the cylinder pressure 

vanation. 

One of the necessary inputs for the heat loss analysis is the ratio of the 

specific heats, y. For a preliminary evaluation of the model, approximate data 

published in Heywood[7.41 was used to obtain y for combustion reactants and 

products at various equivalence ratios and temperatures. For simplicity the 

temperature variation was ignored and two values of y were determined at 
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particular equivalence ratios, one for the reactants and the other for the 

products. The values used are shown in table 7.1. Linear interpolation was used 

to determine y at the non- specified equivalence ratios. T'hesey values are for the 
initial, unburnt mixture, and final, completely burnt mixture. The magnitude 
during combustion would be given by: 

X CP., + (1 
- X) CP. 

X CVb + (1 
- X) CVu 7.5 

Equation(7.5) can be inconvenient, and close approximation is possible using a 

simplified variation for y. 

Yý (1 -X) Yu +X 'Yb 7.6 

Another quantity that needs to be specified is the induced mass of fuel. 

This may be calculated from the rate of fuel consumption, FC, of the engine. If 

allowances are made for mal AFR distribution by assuming the mass flow of air 

is the same to each cylinder, the fuel mass can be determined: 4, ý 

Mf = 
AFRc. mmonj (ýCj ýZý %Rcylinder 

I 7.7 

In this case, Nc is the number of cylinders in the engine, Ns is the number of 

engine cycles per second, AFRcommon is the average air-fuel ratio of all 

cylinders, and AFRcylinder is the air-fuel ratio of the cylinder under 

investigation. 

Fig 7.2 shows the typical accumulative heat transfers calculated by the 

new method. The heat released by the fuel is represented by the top curve and 

underneath is the calculated net heat transfer from the summation of equation 
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(7.2) over the combustion period. The net heat flow is positive up to about 400 

ATDC, due to the dominance of the fuel heat release. After this point, heat loss 

dominates and the accumulation of the net heat addition begins to fall. The 

lowest curve is the accumulated heat rejection from the combustion gases, and 
is accompanied by fig 7.3, which is the rate of heat loss per crank angle degree. 

The heat loss curve goes slightly negative for the first few crank angles after 

spark time, then increases slowly until just after TDC. After this point, the gas 

temperature will be rapidly increasing and produces a corresponding increase in 

the rate of heat loss. Once combustion has terminated, heat transfer from the 

combustion chamber continues due to the temperature difference between gas 

and surrounding walls, but the rate of heat loss begins to diminish as the 

combustion products expand and cool. 

7.3 Discussign 

It is difficult to verify the accuracy of this scheme to determine the heat 

lost. However, a qualitative examination of the method's results were made 

using experimental data and by alternative methods of theoretical analysis. 

Engine pressure data was obtained at two load-speed conditions: a low speed, 

part load condition (constant throttle position set at 1500 rpm, 2.62 bar BMIEP 

under the control of the production system for engine management); and a full 

load condition (2000 rpm WOT). The part load condition corresponded to 

WWMP, an American standard for test conditions, which typifies the average 

of the world's running conditions. 

The first evidence showing that the calculations for the heat flow are 

consistent with expectation is seen in the total heat lost seen in fig 7.2. 'Ilie total 

represents approximately 30% of the fuel input energy, which is in agreement 

with the anticipated value, Taylor[7.5]. In addition, consistency with published 

data can be obtained by scaling fig 7.3 into MW/m2 and comparing it to the heat 

flux values measured by Alkidas and Myers[7.1] at similar operating 
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conditions. The pattern of heat loss appears to be virtually identical, and the two 

sets of data are shown in fig 7.4. 

A further source of information to assess the analysis technique is from 

the qualitative examination of changes in heat loss that is determined when 

operating conditions are altered. From equation(7.1), if the heat transfer 

coefficient is assumed constant, the amount of heat rejected to the surroundings 

can be varied by altering either the temperature of the combustion gases, or the 

block wall temperature. The former can be effected by altering the AFR from 

lean combustion to a setting near best power, and the latter by comparing data 

taken just after engine start up, and when the engine is fully warmed up. 

Duplicate tests, to show repeatability, were carried out at four suitable 

conditions. In each case the pressure was averaged over 100 cycles and then the 

heat analysis applied. 

Fig 7.5 indicates the amount of fuel input energy and heat loss at each 

condition. In changing from 12: 1 to 16: 1 at 2000 rpm WOT, the mass of fuel 

induced will decrease, because the mass flow of air will remain constant; and 

the fuel input energy decreases. However, the decrease seen in the predicted 

heat loss far outweighs the reduction in heat liberation, and will be attributable 

to the reduction in the gas temperature, as anticipated. Similarly as expected, at 

part load, the cold engine has increased heat loss due to the lower wall 

temperature. In this case, as the engine is running at the same speed-load in 

both cold and hot states, more fuel input energy is required for the former 

condition to overcome the increased heat and frictional losses. 

Fig 7.6 shows the heat lost as a percentage of the fuel input energy. 

This is a better illustration of the variation in heat loss as operating conditions 

are changed. At full load, the heat loss drops from near 35% to around 20% 

when the AFR is made leaner-, and at part load the heat loss increases from 32% 

to nearly 40% by running the engine cold. 
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The final figure in this set, fig 7.7, shows for each of the above cases, 

the distribution of fuel input energy to the processes of work done, loss to 

coolant and loss through the exhaust. These results are also consistent with 

anticipated trends, Taylor[7.5]. 

As a method of checking the absolute accuracy of the calculated 

magnitudes of the heat loss, the First Law was again applied between spark 

time and EVO. However, this time, equilibrium conditions were assumed at 

these two cycle points, and a "textbook" analysis performed using 

thermodynamic data obtained from Heywood[7.4]. The data used is shown in 

fig 7.8, and the following set of equations were applied to derive the heat lost to 

surroundings: 

Ro 
mu and 

Rb " 
Ro 
Mb 7.8 

cv 

= CP 
7 

TS = 

TEVO " 
(PV)EVO 

m Rb 

Qf = Mf QHV 

EVO 

wfP dV 

s 

7.9 

7.10 

7.11 

7.12 

7.13 
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Equations (7.8) to (7.13) allow the heat lost during the combustion period to be 

detennined from the First Law: 

Qht -«---- Qf -W-M (Cvb Tb - Cvu Tu) 7.14 

Table 7.2 tabulates the above analysis at the four conditions shown in figs 7.4- 

7.6. At the part load condition there is good agreement between the above 

analysis and the new method's results. Agreement is not as good at 20OOrpm 

WOT, for no obvious reason. A major difficulty in drawing conclusions from 

such comparisons is the uncertainty in the accuracy of experimental data. 

Consequently, studies have been carried out to examine the accuracy of 

calculations of the heat transfer made from theoretically generated test data. 

7.4 Coml2arisons to an Engine Pressure Simulation Model 

The best method of examining the uncertainties within the above scheme 

for determining heat loss is to analyse a pressure trace generated by a simulation 

procedure. A known heat loss variation can be prescribed, and the ability of the 

calculation scheme to recover this information examined. The simulation 

procedure was formed by deriving the pressure rise during a discrete interval 

using the First Law applied to a perfect gas. 

Ap _ 
01 - 1), AQn - YP, 6'V 

v 7.15 

and the pressure after each interval is obtained from: 

Pi = P(i- 1) + AP 7.16 

To obtain the pressure history the net heat transfer during each interval is 

required: 
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AQn ---: AQf - AQht 7.17 

The cosine burning law was assumed for heat release, Ferguson[7.6]; 

ef =f 
QHV 

cos 
Oi - 0, 

- C0S7C 
0 (i - 1) - es Mf 

- -2 
Od Od 7.18 

And the Eichelberg heat loss correlation, from Benson and Whitehouse[7.7] 

was used for heat loss, because of its simplicity compared to other correlations; 

dQht 
=KA Vp(ýI)fFPT-) (T - T, ) dt 7.19 

The dimensional parameter, K, in the heat loss correlation was adjusted 

to produce the desired level of heat rejection, namely about 30% of the fuel 

input energy. 

Intrinsic within the simulation code is the data describing the 2. OL OHC 

engine dimensions, spark timing and the bum period to be used. The simulation 

required input of fuel mass and the pressure at IVC, and then stepped through 

to EVO generating the corresponding pressure history. The parameters used to 

govern the simulation are presented in table 7.3. 

One requirement for running the simulation is the specification of the 

crank angle interval across which each pressure rise is calculated. When there is 

no combustion or heat loss taking place, the calculation method for the heat 

loss, described earlier, becomes a simple First Law formulation, and is 

sensitive to the polytropic indices derived from the pressure history. Therefore 

when a suitable interval size is used in the simulation, the heat loss calculated by 

this method will be zero. Motored, adiabatic conditions were described within 

the simulation and the step size was varied. The heat loss calculated by the new 

method was recorded, and the results are presented in fig 7.9. As the step size 

was decreased the polytropic indices derived from the simulated pressure 
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became closer to the value of the specific heat ratio specified in the simulation, 

and the calculated heat loss approached zero. A step size of 0.01 of a crank 

angle was considered to offer satisfactory accuracy. 

By introducing combustion and heat loss into the simulation, the 

performance of the method for determining heat loss was assessed. Two 

simulated conditions for firing cycles were used: an adiabatic combustion case; 

and a case where heat loss was modelled by the Eichelberg correlation. The 

comparisons are presented in table 7.4. Good agreement between the heat loss 

determined by the new method and the simulation heat loss was seen for both 

baseline conditions. For the case of the Eichelberg heat loss, the variations of 

the calculated and simulated results virtually overlay each other, fig 7.10. This 

illustrates that the calculation scheme accurately calculates the heat lost during 

combustion. 

The next step was to examine the sensitivity of the calculation method to 

changes in the ratio of the specific heats and the fuel mass. The results are 

shown in Table 7.5. The calculated total heat loss is strongly influenced by 'y, 

and this is compounded by the data in fig 7.11, which shows that the pattern of 

heat loss also becomes skewed. An under-estimation of -f produces the worse 

distortion. Negative heat loss, corresponding to heat addition from the 

surroundings, is calculated in the earlier part of the combustion period. After 

this, the instantaneous rate of heat loss rises steadily until 4100 crank angle, 

which corresponds to EOC. A slight discontinuity in the heat loss is seen in 

both deviant curves at this point. With the over-estimate in the specific heat 

ratio, an earlier and greater peak rate of heat loss is attained. The effect on the 

predicted total heat loss is reduced because in either case, an over-estimated rate 

of heat loss on one side of the peak is counterbalanced by an underestimation on 

the other side of the peak. The conclusion from fig 7.11 is that, for credable 

calculations, it is important to determine the specific heat ratio to within 0.025 

(2%), and a slight over-estimation is preferable. Referring back to table 7.1, it 
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can be seen that the temperature variation of the product y is slight and should 

not be a source of large error. However, the reactant y does exhibit a strong 

temperature variation, which was not allowed for in the above analysis of the 

experimental data. This is the most probable cause for the earlier discrepancy 

between the calculated and the theoretical heat loss at 2000 rpm WOT. The 

loaded condition is more sensitive to inaccuracies iny because the heat rejection 

rates are greater. This variation of the reactant specific heats with temperature is 

difficult to allow for, because the fresh charge becomes heated as combustion 

proceeds. One possible solution is to find the unbumt and burnt mixture 

temperatures from the equation of state: 

TU - 
Pvu 

muRu 7.20 

Tb - 
PVb 

MbRb 7.21 

The mass fraction burnt will be known from the combustion analysis, and a 

relationship between mass burnt and volume burnt is described in equation 

(2.1) of the literature survey (chapter 2). As the gas constant is a function of 

temperature, the actual zone temperatures can be found by a simple iteration 

between temperature and R. Unfortunately, there is no obvious method of 

verifying this calculation technique, as there is no definitive heat flux 

measurement or calculation method. Work is on going to validate these 

proposals. 

The heat loss calculated by the new method is also sensitive to the fuel 

mass. This is a direct reflection of the change in fuel input energy, and produces 

an almost one to one change in the percentage of the heat lost, as seen in table 

7.5. Incorrect fuel mass can also skew the heat loss trend, fig 7.12, but the 
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effect is not as severe as seen with the specific heat ratio. Again over estimation 

produces an earlier and greater peak heat loss, and an under estimation a later 

and lower peak. The method stated for calculating the induced fuel mass, 

equation (7.7), should be accurate to within a couple of percent, and is of 

sufficient accuracy for comparison of heat loss calculated at different operating 

conditions. 

7.5 Conclusions 

The proposed method of determining the instantaneous heat lost during 

combustion does not require the time overhead of adjustment to each particular 

engine configuration as is the case with heat transfer correlations. Nor does this 

method require the wall temperatures of the combustion chamber to be defined. 

Instead the heat flows are calculated in a much simpler scheme, based on a 

polytropic version of the First Law. 

One problem is that the calculations are sensitive to the specific heat 

ratio, and y needs to be found to within an over estimate of 2%. If the specific 

heat ratio is correctly specified, the method will accurately determine the heat 

loss to the block. 

Previously, approximate methods for combustion analysis have not 

been able to calculate heat transfer rates. The development described above 

indicates it is possible to overcome this deficiency and provides an alternative to 

the more complex methods which are normally required. 

80 



Chapter 8 
The Cylinder Pressure Analysis System (C. P. A. S) 

8.1 Introduction 

The calculations for the mass ftaction burnt, described earlier, have been 

developed for applications using a personal computer. This is possible because 

of the recent technical advances in computer architecture, which provide 

increased resources of dynamic memory, fast processor speeds, and expansion 

slots for data acquisition boards. In addition, software packages are available, 

which give flexibility of programming language, data storage and retrieval, and 

data presentation. The whole analysis system can be supported on a single PC, 

in this case an Olivetti M24sp, and the resources used are given in table 8.1. 

The processing system was named CPAS (Cylinder Pressure Analysis 

System). 

The interactions of each program stage are presented as a data flow 

diagram in fig 8.1. Pressure data is captured directly from the engine at the far 

left of fig 8.1. Then, through a variety of processes, the data is analysed and 

stored in a database system for retrieval at the far right of the same figure. 

C. P. A. S is a post analysis system, in that the pressure cycles are stored on disk 

and analysed subsequently. All the figures of pressure analysis presented in 

previous chapters, except chapter 7, were generated using C. P. A. S. 

An important part of any complex system, is the user interface. This is 

the only contact the investigator has with the data. If the interface is difficult to 

use, then human errors may influence the analysis or even crash the system 

losing all the acquired data. With this is in mind, considerable time has been 

spent on providing a "user-friendly" front end for CPAS. 

The rest of this chapter describes the three components of acquisition, 

analysis and databasing -that form CPAS. 
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8.2 Data Acguisition 

Data is acquired into the personal computer via a Labmaster, 12 bit, 

lOOkHz, ADC board. Pressure is referenced to crank location on each engine 

cycle, as opposed to on each engine revolution. 'Me reference point chosen was 

induction TDC, and was obtained by halving the occurrence of the normal TDC 

marker pulse, by use of a 'D' type flipflop. The marker pulse at induction TDC 

can be maintained in hardware by clearing the flipflop with an inverted pulse 

occurring at spark time. This produces a marker pulse with a long pulsewidth, 

which is passed through a monostable to shorten the duration to 25ýts. This 

pulsewidth was chosen because the digital port is TTL level sensitive, and a 

pulse duration of less than 1 degree crank angle at 60OOrpm avoids any potential 

errors in alignment. These steps are shown in fig 8.2, along with the engine 

signals required to drive the ADC. The logic behind producing the marker pulse 

at induction TDC is given in fig 8.3. 

8.2.1 Acguisition Software 

Once the hardware is installed, the acquisition process can be driven by 

software. The algorithms for data capture are straightforward. The most 

complicated example includes a check on the alignment of the pressure to 

absolute crank angle, and is flow charted in fig 8.4. The routines can be coded 

in any programming language. Assembler, although the fastest executing, is not 

convenient for either writing file handling operations or for the design of a 

suitable user interface. The choice fell between Turbo Pascal and 'C'. Turbo 

Pascal appeared superior because when benchtested it had a higher rate of data 

transfer and, also, it permitted the use of in-line machine code. Embedded 

machine code was necessary to detect the presence of the short marker pulse at 

induction TDC pulse. The software uses a polling technique to read the data into 

the computer, and the application of Turbo Pascal and the Labmaster ADC 
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enabled a data capture rate of 30Khz. This permitted acquisition up to a 

maximum engine speed of 60OOrpm. 

With the MS-DOS operating system and the acquisition software being 

memory resident, there are about 600 kbytes of RAM available for data storage. 

Analogue pressure comprises two bytes per reading and spark data one. 

Therefore it is possible to capture 277 contiguous cycles of data before it is 

necessary to transfer the data to hard disk. 

8.2.2 Lser Interface 

The acquisition system is menu driven. One set of options allow the 

update of ADC calibration, readings per cycle and the number of cycles to be 

captured. Another main menu controls the data capture. It either enables the user 

to obtain pressure data with or without spark data, saving the information to 

file, or as another alternative to continuously present samples of pressure 

histories on the screen. 

The menus are user-friendly in use permitting only the menu selection 

characters to be entered from the keyboard, and not allowing the termination of 

the acquisition routines by mistake. 

8.3 Analysis Program 

The analysis stage of C. P. A. S reads the acquired data from disk and 

proceeds to calculate the cyclic values of the combustion diagnostics given 

below: 

Peak Pressure value and crank angle location 

Peak Rate of Pressure Rise and it's location 

Work loop Mean Effective Pressure, WMEP 

Intake loop Mean Effective Pressure, PMEP 
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Indicated Mean Effective Pressure, IMEP = WMEP + PMEP 

Spark Advance 

2%, 10%, 50%, 90% and 10 to 90% Bum Durations 

Final Combustion Pressure Attained 

Peak Rate of Combustion Pressure Rise and its Location 

Percentage of Partial Bums and Misfires 

The mean and coefficient of variance, defined as the standard deviation divided 

by the mean, of these parameters are computed to characterise the combustion 

of the particular data set. 

C. P. A. S itself does not display any results. Instead ASCII files are 

written which can be sent to the printer or imported into data plotting packages, 

for example GEM Graph. A hardcopy can then be obtained from a laser printer. 

Four files in all are created by CPAS. The first contains the analysis report, an 

example of which is presented in fig 8.5. The second file contains the frequency 

of IMEP values within the data sample. This can be used to generate a bar chart 

within GEM Graph, an example is shown in fig 8.6. The third contains the 

increments of combustion pressure and is used to construct the curves of mass 

fraction burnt previously seen. The last file contains a diagnosis of unusual 

cycles; if a cycle was a partial bum, misfire or never had a TTL spark presence 

pulse, this information is reported in the diagnosis file. 

8.3.1 Ana13: sjs Software 

The program for the analysis is too large to explain in detail in this 

thesis. Instead a general overview is given. The program is a straight forward 

interpretation of the previously described calculation scheme for mass fraction 

burnt. The function interactions, and steps to evaluate the parameters, are 

expressed in Wamier-Orr diagrams in Fig 8.8 and 8.9. Fig 8.7 is given to 

illustrate how best to interpret Warnier-Orr diagram. 

84 



The programming language 'C' was chosen to develop the analysis 

software. 'C' has the advantage of allowing small, easily readable and 

maintainable function modules to be linked together to form the otherwise 

extensive analysis program. 'C' is well supported, with libraries for graphics, 

screen handling and data communications, making it a flexible, environment for 

developing programs. 

8.3.2 User Interface 

For user guidance, the number of the cycle being analysed plus the part 

of the calculation currently being executed are displayed on the screen. The 

analysis software is self contained and the user access is through a special 

software interface. This isolates the pressure data from accidental corruption by 

the user. The inputs required from the operator are details of engine geometry, 

valve timing, MAP, the number of cycles read and the sampling rate. The user 

interface presents to the screen a list of the required data titles and input fields. 

The field values default to the most recently used data set. The user can transfer 

randomly between the data fields by use of the cursor keys. As a further 

precaution, the software does not permit letters to be written in a numerical field 

and vice versa. Only when the user is satisfied that all values are correct, will 

the interface write them to file for use by the analysis software. 

8.4 Database Proeram 

An electronic database was designed to facilitate a quick retrieval of 

relevant combustion data. The primary objective of the database was to allow 

immediate recall of all data sets conforming to one or more target parameters. 

For example, a listing of all data sets having a 10-90% bum duration of 30 0 

crank angle at an engine speed of 1500 rpm. 

Although various database programs are commercially available, for the 

flexibility that was required for C. P. A. S it was decided to create a specialised 
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database from the C-TREE routines. This is a library of ISAM functions with 

the index keys stored within a B-TREE. Such databases have powerful recall 

ability, being able to search through one million keys in 5 disk accesses. 

8.4.1 Database SoftwaEe and User Interface 

The software was split into two programs. The first simply stores and 

indexes the analysis report and information concerning the running conditions 

of the rig. For this, user interface is employed that is similar to the one used for 

the input of the data for combustion analysis. The second program allows the 

database to be searched by up to five target keys. The software locates all 

conforming records, and the information within each record extends to three 

pages. These records are displayed on the screen one page at a time. The user 

may then select whether to update a particular value, go on or back a page, or 

receive a hard copy of all the records via the printer. An example screen output 

of the search routine is presented in fig 8.10. 
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Chapter 9 
The Quikburn Analysis System - An On-line Combustion 

Analysis Facility 

9.1 Introduction 

The utility of CPAS was restricted by the 640kb of memory available, 

which allowed a maximum of 277 cycles to be acquired. The raw data was 

transferred to hard disk, which in turn could accommodate only 7 data runs in 

any one session. This acquire, then analyse approach has a large processing 

time overhead, and limited the amount of useful work that could be achieved in 

a single test session. Although this is a common processing arrangement, these 

systems do not conform to the researcher's wishes. The need is for a fast 

analysis system so that the researcher can adjust the running conditions of the 

engine and immediately observe the effect on the combustion. Operating 

conditions that produce desired combustion behaviour can be quickly obtained, 

and a volume of relevant data collected. This is a great benefit, because in the 

past the data would be taken at a point approximately where the phenomena 

occur, and only a small part, if any, of the data would be directly of use. The 

latest innovations in computer technology allow these goals to be approached. 

Even if the bum histories could be calculated and displayed in real time, 

the human eye would not be able to register the constantly changing screen. 

Instead it would be preferable to acquire and analyse a few cycles and display 

their average properties every couple of seconds. The researcher would then be 

able to observe the combustion process at a comfortable rate. This was the 

objective of the analysis system, named Quikburn, where the engine can be 

considered to be on-line to the processing system. 

The literature survey showed the latest developments to combustion 

analysis systems was to incorporated some form of processing in real time. A 
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system with fast analysis has been developed by other researchers, Bain et 

al[9.1], but it did not concentrate solely on calculating burn histories, and the 

resulting processing time was approximately 40 seconds per cycle. This system 

appeared to be aimed at university undergraduate and postgraduate teaching and 

was dedicated to the analysis of particular quantities. The aim of the system 

developed during the current work was to go much further than this. Its 

specification was that cycles were to be updated to the screen within a couple of 

seconds, and also, the system was to be as flexible in its operation as possible. 

The flexibility required that the program was written in a highly structured 

format, so that the investigator could easily modify any section to achieve 

different analysis strategies during the same engine test session. An additional 

feature, used in this thesis, was a facility for automating the sweep to locate 

MBT timing. For this, Quikburn calculated WMEP, burn durations and peak 

pressure, whilst setting the spark timing on the engine via an RS232 link with 

an Olivetti computer. The spark timing control was explained in chapter 4. 

Although the user has direct access to the analysis procedures, a professional 

working environment was maintained by communicating with the system via 

user-friendly menus and data input screens. These communication aids control 

operations such as the input of the engine geometry data, diagnostics of the 

incoming signals, and the on-line analysis itself. It is felt that the Quikburn 

system has great potential for combustion research, far exceeding the two 

applications of monitoring and MBT sweeping described here. The detailed 

description of the system is presented in this chapter. 

9.2 Hardware Resources and InterfacilIg 

Details of the computer system used to develop and implement Quikburn 

are given in table 9.1. Although the necessary data signals from the engine are 

the same as used with CPAS, the interfacing is slightly different. The Infotech 

AD200 board has no enable line to start the acquisition, nor any digital ports. 
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The consequence of the former is that referencing the acquired pressure to 

induction TDC must be done within software, and the latter requires a GPIO 

board to be used for digital input. Referencing the pressure changes to TDC can 

be accomplished in software by acquiring the analogue and digital data 

simultaneously into two arrays, and then locating the array element in which 

TDC occurred. Induction TDC, as opposed to firing TDC, then can be found by 

using a version of the algorithm used to check the alignment of the pressure 

changes previously described in chapter 8. Simultaneous acquisition of digital 

and analogue signals can be attained by sampling the GPIO and ADC at the 

same instant. This synchronization can be attained by triggering the ADC board 

from the shaft encoder, and the GPIO board from the ADC SYNCH OUT line, 

which is an echo of every trigger seen by the ADC board. In this manner, the 

acquisiton of the data at the GPIO can be enabled each time the ADC board is 

triggered. The GPIO trigger needs to conform to the protocol for full mode 

handshaking, shown in fig 9AA. The data acquisition requires a slower 

response time from the computer system than the normal peripherals used. 

Therefore, as the computer will always be ready and waiting for the next 

trigger, there is no need to check PCTL is set., Data can be latched into the 

GPIO by the rising edge of the ADC SYNCH OUT, which corresponds to a 

ready to busy transaction on the PFLG line. Both ADC and GPIO can now be 

successfully triggered by the shaft encoder 10 pulses output. The ADC trigger 

is very sensitive to noise ripples, and a worthwhile precaution is to use the 

digital filter circuit, described in chapter 3, on the trigger line. The propagation 

delay through the filter is advantageous in that it allows time for the digital data 

to settle, before sampling occurs. The circuitry for the above is shown in fig 

9.1B. 
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9.3 Ihc-Quikburn Software 

The complete analysis package was designed to be simple to use. The 

engine data is acquired, stored in dynamic memory, analysed, and displayed in 

one operation without disk access. The user interacts with the system via menus 

and the user-friendly input screens to obtain the results required. The user also 
has easy access to the program source code, and may tailor the analysis to an 

alternative specification. The data flow diagram for the Quikburn system used in 

this thesis is shown in figure 9.2A. When the program is running, the user 

communicates with the software via a menu which controls the operating 

environment. This then passes control to the part of the program responsible for 

the desired action. A task usually requires the three stages of acquisition, 

analysis and display, and in the case of an MBT sweep, RS232 communication 

with the dedicated microcomputer. By comparing this data flow diagram with 

the CPAS equivalent, fig 8.1, the simplicity of the Quikburn approach can be 

seen. 

To support easy alteration of the program, by the researcher, the 

program was coded as separate modules. Each module encapsulates a number 

of procedures necessary to accomplish a set function, for example calculate 

mass fraction burnt. The investigator may then customise the system to his 

requirements by simply changing or inserting a module. The main module 

hierarchy is shown in fig 9.2B. As can be seen, each module is highly cohesive 

in not relying on the action of other modules, and communication with the 

Quikburn system is through dedicated data variables which are globally 

accessible to all modules. Example user interactions are the rewriting of the 

display module to show only the variation of certain parameters, or the insertion 

of a module to calculate the engine heat balance from averaged pressure 

histories, using the method described in chapter 7. In fact the data shown in 

chapter 7 was obtained using Quikburn in this manner. The modular code does 

not just save the operator time in investigating particular combustion 
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phenomena, but also eases the maintenance of the program by allowing small 

parts of the code to be amended, instead of a complete rewrite of the whole 

program. 

9.3.1 The Present System 

On running Quikburn, the user is asked to confirm the engine geometry 

and configuration data, and then the main menu, shown in fig 9.3, appears. A 

particular option is selected by moving the tick, using the cursor keys, and 

pressing RETURN. Any other key presses are ignored. The system alerts the 

operator audibly, via a sequence of high or low pitched bleeps, whether or not a 

suitable key has been pressed. If the system diagnostics topic is chosen, then 

another menu appears enabling the user several more options. The first of these 

is a repeating plot of averaged pressure of which an example is shown in fig 

9.4. This is used to confirm visually that the pressure is aligned to induction 

TDC and that the correct scaling factor of volts to bar is being used. The second 

choice is a check on the incoming digital signals, and a sample display is given 

in fig 9.5. The engine speed, number of revolutions and the number of degrees 

for which each data signal was high are displayed in the top table. The engine 

speed is calculated from the time to acquire a set number of cycles and gives an 

approximate check that the sampling rate is correct. A further check on the 

sampling rate is given in the lower table, which shows the distribution of TDC 

occurrences. The final applications, under topic of system diagnostics, are two 

special screens for the input of data, which alter the parameters for the engine 

geometry and system configuration. The engine geometry screen is shown in 

fig 9.6. The user moves the box, around the values, up and down with thq 

cursors, and may type over the current value. Once return is pressed the typed 

value is checked to fall within the range shown, and if successful the value is 

accepted. Otherwise, the old value is re-displayed. A separate, lower menu, not 
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shown in the figure, allows the user to reload the original values, save the new 

values or abort the data input altogether. 

9.3.2 On-line Combustion Anal- ' 

The on-line analysis is the central theme of the Quikburn system. The 

module is comprised of the three smaller modules of acquisition, analysis and 

display. The main structure of the code is an optimised version of the 

algorithms used for CPAS, described in chapter 8. However, some novel 

approaches were used to reduce the calculation time, and it is appropriate to 

mention these in more detail. The time consuming aspect of the calculation of 

mass fraction burnt is the derivation of the increments of combustion pressure, 

which are referenced to the clearance (TDC) volume. This is because the n th 

power of a volume ratio is required. However, for a fixed interval of crank 

angle, the ratio is constant. 'nierefore, this quantity could be obtained from a 

table of volume ratios raised to a range of n powers. Similarly, time can be 

saved in all volume calculations by having the values in look up tables. Fig 9.7 

shows how by incorporating three look up tables, the calculation of the 

increments of combustion pressure can be reduced into two multiplications and 

one subtraction. 

Once the combustion pressures have been calculated, the location of the 

relevant burn times still needs to be found. As mass fraction burnt increases 

monotonically, a binary search can be used to locate the crank angle where the 

mass fraction burnt reached a given target value. The theory behind this is 

shown in fig 9.8. This search is a powerful tool in that it can locate a given 

target among N values in 1092N +I attempts. Therefore, a particular burn 

location, in an array of 128 crank angle degrees can be found in 8 attempts. 

In the same fashion the time for the IMEP calculation can be reduced by 

having a look up table of the instantaneous changes volume, divided by swept 

volume. In addition the calculation time can be halved by ignoring the effects of 
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the pumping loop. The PMEP is approximately constant from cycle to cycle, 

and the combustion effects are contained within the power loop. To distinguish 

the power loop, mean effective pressure from the IMEP and PMEP, it has been 

termed WMEP, standing for Work loop Mean Effective Pressure. The three 

quantities are related by; 

Y; wp = IMEP - PNIEP 9.1 

Also, increased savings in the processing time can be made by ensuring 

that calculations and loop operations are optimised to reduce the number of 

repetitions. 

The programming environment of the Basic language, supplied with the 

computer, was benchtested to discover the lead time required to analyse one 

cycle. The benchtest code was a series of array manipulations simulating the 

calculation of the combustion parameters. The time taken to execute this code 

will give the cycle analysis time. However, the accuracy of the computer clock 

is only O. Ols, therefore many repetitions of the code is necessary to obtain an 

accurate analysis time. Also, there is a slight processing overhead, due to the 

timing and repetition statements of the benchtest. Therefore, the benchtest was 

repeated 1000 and then 2000 times, and the difference between the two 

execution times, divided by 1000, used to predict the cycle analysis time. Table 

9.2 shows the benchtest times for several implementations of the combustion 

analysis. It was decided that the third option of evaluating bum durations; 

referencing to manifold pressure; determining peak pressure and its location; 

and WMEP instead of IMEP was the best compromise for cycle throughput. 

The Quikburn system is able to acquire, analyse and display the results from ten 

cycles of data within 1.5 seconds. 
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9.3.3 On-line NsIllay and Olaerating MUdes 

The screen update must not only be quick, but also the results must be 

easy to read. The graphics abilities of the H. P system were exploited, and the 

parameters shown in the form of analogue meters, see fig 9.9. The lines and 

text defining the screen are drawn once, when the analysis starts, and only the 

short lines indicating the parameter values are re-plotted. 

The bottom of the screen gives the current mode of the Quikburn 

analysis and also the menu to change the system operation. In the monitoring 

mode, the researcher sets the total number of cycles to be averaged, and the 

number of cycles to be acquired before the screen is updated. In fig 9.9,1000 

cycles are averaged in total, these being collected and the results displayed in 10 

cycle blocks. After the 1000 cycles are analysed, or if the operator selects the 

restart option, the whole process is repeated. 

The alternative option, mentioned earlier, is the MBT sweep. In this 

case, the operator supplies the number of cycles to be averaged at each spark 

timing plus the starting and ending spark advance, and the step size of the 

advance. Quikburn then repeats the stages of setting the timing and analysing 

the required number of cycles, until the sweep is complete. Afterwards, data 

may be transferred to disk or printer depending upon how the user tailors the 

program. 

9.4 Summary 

Quikburn is a highly flexible, combustion analysis system. It is capable 

of analysing and displaying the combustion trends of 10 cycles within 1.5 

seconds. The program code is well structured and has highly cohesive modules 

that permit the operator to simply maintain and customise the system to his own 

objectives. 
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The main form of Quikburn used for this thesis consists of a monitoring 

mode, where a set number of cycles are acquired and averaged in blocks; and a 

MBT sweep mode. In the latter mode, Quikbum takes the engine spark timing 

through a set range of advances and calculates the combustion parameters. 

Combustion analysis systems of this style are at the fore front of engine 

research, and Quikbum provides a professional and powerful tool for fast and 

user-orientatable processing; and is applicable to all areas of combustion 

research. 
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Chapter 10 
Investigation of Optimum 50% Fuel Mass Burnt 

Location 

10.1 Introduction 

Spark timing has a strong influence on the performance characteristics 

of a gasoline engine. The target settings for the ignition timing of a production 

engine are usually those which are identified by carrying out a spark timing 

sweep and measuring torque, or IMEP in the case of single cylinder 

investigations. The aim of the sweep is to locate the spark timing that gives peak 

torque at a fixed AFR and speed. Under some conditions when advancing the 

spark timing, knock occurs before the optimum timing can be reached, and the 

onset of knock is referred to as BLD (BorderLine Detonation). Knock must be 

avoided else severe damage will occur to the combustion chamber. A safety 

limit in the ignition timing is normally imposed, where the greatest timing 

advance permittable is a few degrees in retard of BLD. The dependency of the 

engine torque on the spark timing is normally weak in the vicinity of peak 

torque, and therefore as an added anti-knock precaution, the ignition setting 

chosen is slightly retarded of the optimum timing, Ferguson[ 10.14]. The 

amount of retard is subjective, normally maintaining -1% of peak torque, and is 

dependent upon the flatness of the torque-timing curve near peak torque and the 

degree of data scatter. This ignition setting is referred to as MBT (Minimum 

advance of spark timing for Best Torque) and is widely used as a calibration 

target for engine operation, and as a reference setting for performance 

comparisons. A particularly unattractive feature of using the MBT approach for 

setting the reference conditions is the absence of a priori indications of its, 

location, and, hence, the time required to locate it. 

A better solution would be to replace MBT with a combustion parameter 

which is more fundamental and easier to define. Encouragingly, as will be 
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presented later in this chapter, there is published evidence that a correlation 

exists between the crank angle location of the 50% mass burnt time and MBT. 

The variation of the location of the 50% mass burnt with spark timing is almost 
linear, as opposed to the parabolic trend of torque and spark timing. Therefore, 

If the correlation exists, MBT can be located directly by interpolations from 

calculations of the 50% mass burnt location. The MBT search could then be 

simply incorporated within a computer analysis and control system, providing 

swift, automated calibration of the data maps used in the management systems 

of production engines. 

The significance of the correlation warranted a detailed study to reveal 

its applicability to engine research and testing, and the Quikburn system was 

used for this task because it was well suited to this type of investigation. 

10.2 The Literature Evidence for a Correlation between MBT and 

the Location of the 50% Mass Burnt 

Indications that a particular location of the 50% mass burnt 

corresponded to conditions of optimum power output can be found in several 

papers: Matekunas[ 10.11 commented that MBT timing occurred for a 50% mass 

burnt location of 100 ATDC; Douard et al[10.6] found that MBT timing on their 

rig corresponded to a 50% mass burnt location of between 5- 10 0 ATDC; and 

Clark and Challen[10.5] stated that MBT occurs for a 50% mass burnt location 

of between 6-8 0 ATDC. All of these results appear to hold regardless of 

operating conditions. 

Although other researchers do not comment on the occurrence, further 

evidence can still be found: Muranaka et al[10.10] used a 50% mass burnt 

location of 100 ATDC to imply MBT timing in their engine simulation. By 

extracting the pertinent information from published curves of mass fraction 

burnt, the location of the 50% mass burnt for MBT timing of a number of test 
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facilities can be found. Ilese and the results of the above papers have been 

summarised in table 10.1. 

Of all these authors, only Klimstra[IO. 121 makes any comment on the 

potential use of the 50% mass burnt as a target to obtain the best engine 

performance. Klimstra's paper implies that the relationship between 50% mass 
burnt and MBT is universal and an easily used parameter. 

Hoppie[10.11] and Klimstra[10.12] produce similar arguments to 

explain why the optimum bum shape is centred after TDC. In the ideal Otto 

cycle, isochoric combustion at TDC is the most efficient. However, in a real 

engine cycle, combustion occurs in a finite time, and the burning that occurs 

before TDC will produce negative work. Therefore, the optimum bum shape 

must be centred about a point after TDC. Although this explains why the 

optimum position of 50% mass burnt occurs after TDC, it does not explain why 

this should be independent of engine operating conditions nor why only slight 

differences are observed between the optimum locations, of the 50% mass 

burnt, from differentrigs. Douard[10.6] proposed that the small changes in the 

optimum location of the 50% mass burnt were due to changes in gas to wall 

heat exchange, but he offered no proof. 

All the above evidence suggests strongly, but not equivocally, that there 

is a good correlation between 50% mass burnt and MBT. In addition, from 

table 10.1, the correlation appears to be almost independent of operating 

condition, but can vary between different engines. 

10.3 Experimental Investigation of the Behaviour of the 50% 

Mass Burnt Location 

10.3. lThe Operating CiIndRions 

The 2. OL OHC (EFI) engine was used for this investigation, to examine 

the two operating conditions used earlier in the thesis, namely 2000 rpm, WOT 

at non knocking AFRs, and 1500 rpm part load. The part load condition was 
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obtained by running the engine at 1500rpm, under the control of the 

management system of the production engine, and closing the throttle until the 

torque corresponded to the WWMP. The throttle was then kept constant at this 

position throughout the subsequent tests. 

The data was taken from cylinder four, counting from crankshaft pulley 

towards the bellhousing of the flywheel. Table 10.2 presents the AFR and 

spark timing spreads at MBT for the part load conditions. In all cases, the AFR 

was set for cylinder four, and, this cylinder is always leaner than the other 

three. However, as the investigation was limited to the effects on the single 

cylinder, the AFR spread was not a cause of concern. 

10.3.2 CharacteE*sing the Running Condition 

The combustion analysis at a particular test condition generates several 

hundred sets of cyclic data, but the researcher usually only wishes to record the 

information that pertains to the operating condition in general. The cycles of 

data acquired are composed of a mixture of slow and fast bums, which can 

produce several modes of combustion, Martin[ 10.4]. The calculated parameters 

could be distributed around these distinct modes, and the averaging of the 

quantities would not be an appropriate method of characterising the operating 

condition. As well as investigating this uncertainty, the number of cycles that 

are sufficient to create a true sample also needs to be determined. The 

parameters under investigation are WMEP and the location of the 50% mass 

burnt. Fig 10.1 is a plot of these two parameters for of each of the cycles in a 

sample of one hundred cycles. There is a wide distribution of both parameters, 

but cyclic dispersion obscures any trends. As no practical information can be 

obtained from this figure, the distribution of the two parameters was examined 

independently. For this, data was taken at four conditions, 12: 1 and 16: 1 AFRs 
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at part and full load. Table 10.3 summaries the variation of the parameters at 

these conditions. 

Dealing first with the 50% mass burnt location, the standard deviation is 

large at all conditions, being about 3 degrees crank angle. However, the 

distribution plots shown in fig 10.2 indicate that the bum locations are 

distributed approximately evenly around a single mode. Therefore, the sample 

average will be representative of the 50% mass burnt location for each running 

condition. In Fig 10.3 it can be seen that the average location of the 50% mass 

burnt is settled after one hundred cycles at 15.26 0 ATDC, and that considering 

more cycles has little effect, because after three hundred cycles the average is 

15.39 0 ATDC. This suggests that the 50% mass burnt location can be averaged 

after one hundred cycles to characterise the operating condition. 

The mean effective pressure distributions, fig 10.4, are not as well 

defined as the 50% mass burnt location. However, the level of variation is 

significantly smaller, being only about 5% of the mean. The distribution 

appears to be single moded and, because the variation is low, the average after a 

hundred cycles will also be sufficient to characterise the mean effective pressure 

at each operating condition. 

10.3.3 Part Load Results 

At each AFR, the spark timing was advanced in steps of one degree, 

and at each timing a hundred cycles of pressure data were acquired and 

processed. Fig 10.5 shows the results for the richer mixture AFRs at part load. 

There is slight data scatter on these plots, but WMEP can clearly be seen to pass 

through a maximum. In all cases, the optimum 50% mass burnt location occurs 

about 150 ATDC. The flatness of the YRAEP curve near its peak allows a shift 

of two or more degrees from the optimum location before there is a noticeable 

drop in torque. Retarded spark advances produce late 50% mass burnt 

locations, and an equivalent MBT timing would be associated with a location of 
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50% mass burnt about 160-170 ATDC. However at this juncture, the main 

consideration is the strength of the correlation, and further modifications, for 

example a knock safety limit, can be added at a later date. These results appear 

to confirm that a particular 50% mass burnt location does correspond to MBT, 

and the value is independent of AFR. 

The results at the leaner AFRs, fig 10.6 show an interesting trend. The 

trend at an AFR of 14: 1 appears similar to that of the richer AFRs in fig 10.5, 

but at 15: 1, the WMEP just passes through its maximum value. This restricted 

range of 50% mass burnt locations becomes smaller at 16: 1, where the 

maximum point is just reached, and at 17: 1 maximum WMEP is not reached at 

all. In the 17: 1 case, spark advances up to 45 0 B`IDC could not produce a 50% 

mass burnt location earlier than 200 ATDC. In fact these locations of mass 

burnt seem to be clustered around 210 ATDC for a range of spark timings. This 

instance where an increase in the spark advance does not produce an earlier 

50% mass burnt location was first noticed by Matekunas[ 10.1], who called this 

phenomenon "arrested phasing". 

Matekunas[10.1] found that arrested phasing could be averted if the 

swirl in the cylinder was increased. This suggests that arrested phasing is 

related to the engine's capability of combusting lean mixtures, and that it could 

be used as a measure of lean burning efficiency; arrested phasing will occur at 

the leanest AFR in the combustion chamber which is best designed for burning 

weak mixtures. Also at 17: 1 AFR in fig 10.6, the mean effective pressure is 

greatest at the earlier burn locations, and suggests that an even greater mean 

effective pressure would have been attained if the optimum location, 15 0 

ATDC, could have been reached. This also could be used as a measure of lean 

combustion performance, because the design with the location of 50% mass 

burnt closest to optimum (under arrested phasing conditions) would be the most 

efficient. 
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Arrested phasing is a consequence of the inefficiency of the combustion 

process, and it would be useful to know whether it occurs because of slow 
flame initiation, slow flame propagation or a combination of the two. Now, the 

change in the location of the 50% mass fraction bumt, A050% , is the result of 

the difference between the change in spark advance, AOs 
, and the increase in 0- 

50% bum duration, AOO-50%: 

A050% = AOs - AOo-5o% 10.1 

In equation(10.1) a positive A050% means an earlier 50% bum location; a 

positive AOs is an increase in timing advance; and an increase in AOO-50% is an 

increase in bum duration. Tberefore, the bum phasing will be arrested if A050% 

is less than or equal to zero, which implies that with arrested phasing: 

AOs AOO-50% 10.2 

The 0-50% bum duration can be split into the two periods of flame initiation, 0- 

10% mass burnt, and flame propagation, 10-50% mass burnt. Hence 

equation(10.2) can be written: 

AOs <= AOo-lo% + AOlo-5o% 10.3 

Now, the flame propagation period, 10-90% bum duration, is known to be a 

weak function of spark timing, and a strong function of AFR, Houpt and 

Andreadakis[10.3]. The variation of flame propagation with spark timing is 

seen in fig 10.7. Although there is some data dispersion, at 12: 1 the burn 

duration is virtually independent of spark timing up to 35 0 ATDC, after which 

the duration and the dispersion increase. At 17: 1, there is a decrease in duration 

up to to 350 advance, and then levels off. This is consistent with Blizzard and 
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up to to 350 advance, and then levels off. This is consistent with Blizzard and 

Keck[ 10.13], who reported that 10-90% bum duration is a minimum near MBT 

and increases with either retarded or advanced timings. Local to MBT the 

duration is approximately independent of timing changes. The duration of the 

flame propagation with AFR, for MBT timings, is shown in fig 10.8. Although 
0 

up to 15: 1 AFR the duration has only altered by 4, the variation has a 

minimum near 11: 1 AFR, and is again consistent with Blizzard and Keck's 

work [ 10.131. Now, Arrested phasing occurs at conditions unable to reach their 

optimum spark timing, and as flame propagation does not increase until MBT is 

exceeded, flame propagation cannot be the cause of arrested phasing. Tberefore 

slow flame initiation must be the cause of arrested phasing, and from 

equation(10.3) when arrested phasing occurs: 

AOs <= AOO-10% 10.4 

or, 

AOo-lo% 
AO, 10.5 

For more evidence to prove that arrested phasing results from slow flame 

initiation, equation(10.5) was applied to the data recorded at the non-arrested 

phasing AFR of 12: 1, and the arrested phasing conditions at 17: 1. Fig 10.9 

shows a plot of bum initiation period against spark advance, with the lines of 

unity slope super-imposed to illustrate the criterion necessary for arrested 

phasing to be caused by slow flame initiation. These lines are for illustration, 

and their intersection with the data points is not of relevance. The bum duration 

at 12: 1 has a slope of less than 1 for the majority of spark timings, and as was 

seen in fig 10.5, arrested phasing did not occur. The exception is towards the 
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furthest advanced timings, well in excess of MBT, where the initiation period 

increases at a greater rate. Noting back to fig 10.8. the 10-90% period is also 

increasing in this region, and implies that with advances exceeding MBT, the 

50% mass burnt locations will stop becoming earlier in the cycle. 

At 17: 1 the rate of growth of the initiation period is near or greater than 

unity for the majority of timings. Again referring back to fig 10.8, retarded 

timings produce a reduction in the propagation period, and this accounts for the 

initial advance in 50% mass burnt location seen in fig 10.6. However, at about 

320 spark advance, arrested phasing occurs because the propagation period 

becomes independent of spark timing, and the initiation period is still increasing 

at a rate exceeding the above criterion in equation 10.5. This indicates that 

arrested phasing is a flame initiation problem. If the rate of growth of the flame 

kernel could be enhanced at 17: 1, then the arrested phasing would not occur. 

This is consistent with Matekunas finding that increased swirl, which shortens 

flame initiation, eliminated the arrested phasing in his test engine. 

The spark advances and the corresponding 50% mass burnt locations 

for all the part load conditions are shown in fig 10.10, and illustrates the near 

linear variation of 50% mass burnt location with spark advance. This makes the 

50% mass burnt location preferable to MBT as a reference condition, because 

the optimum condition can be located by interpolating between values as 

opposed to searching for peak torque. Reading along the 160 ATDC line for the 

location of 50% mass burnt gives the equivalent MBT spark timings. 

10.3.4 Full Load Results 

The results from the tests at 2000 rpm WOT, are presented in fig 10.11. 

Arrested phasing occurs at 17: 1, as with the part load condition, and indicates 

that this particular rig is not efficient at any lean operating condition. In addition 

a noticeable difference in results did occur at the richer AFRs, because the 

optimum location of the'50% mass burnt has shifted to be nearer 11 0 ATDC. At 
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12: 1, the WMEP has a relatively flat response at all the burn locations, but the 

peak can be subjectively placed around 12 0 ATDC. Unfortunately knock 

restricts testing at the other AFRs at this speed-load condition, but the results 

suggest that the optimum location of 50% mass burnt is a couple of degrees 

earlier at the full load condition, than at part load. 

The literature review also showed that small differences occurred 

between the optimum 50% mass burnt at different operating conditions. No 

explanations have been put forward to explain why there is only a slight 

variation of the optimum 50% mass burnt location at different engine operating 

conditions, nor why a greater variation is then seen between different power 

units. As described earlier, the reason for the optimum location occurring after 

TDC is because the bum history needs to be centred in the expansion stroke in 

order to overcome the negative compression work. This suggests that the 

optimum location of the 50% burnt is a result of best phasing between the heat 

release of the fuel to the changes in cylinder volume. This being the case, then 

the actual optimum location of the 50% mass burnt is dependent solely on the 

bum pattern. Therefore, the variations of the optimum location of 50% mass 

bumt, observed above, is due to the different burn patterns that occur at 

different operating conditions. 

10.4 Investh! ation of the Oi3timum Location of 50% Mass Burn 

In an attempt to clarify the foregoing statements, the engine simulation, 

described in chapter 7, was developed to undertake MBT sweeps using various 

bum patterns. The simulation was run with nominal settings to represent the 

1500 rpm, part load condition. 'Men the main influences of bum duration, heat 

loss, magnitude of heat released, manifold pressure and engine dimensions 

were varied in turn. Sample WMEP vs 50% mass burnt location plots are 

shown in fig 10.12, for variations in the ratio of heat loss to fuel input energy, 
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and for changes in bum duration. The results for all the influences are given in 

table 10.4 and their effect summarised in table 10.5. 

The change in engine geometry from the 2-01, OHC to the 1.1L Valencia 

engine had no effect on the optimum 50% mass burnt location. This indicates 

that the rate of fuel burning is dominant over the volume changes in deciding the 

optimum location of the 50% mass fraction burnt. 

Increasing either the fuel input energy or the manifold pressure has only 

a small effect. Again this is not surprising because the bum shape is essentially 

unaltered by these effects. 

The heat rejection is more significant because it directly influences the 

heat energy available to produce work. The amount of heat lost at any instant is 

dependent on the gas temperature, and this temperature will be greatest when 

the combustion is centred at TDC. Therefore, the magnitude of the heat loss 

distorts the pattern of the effective heat release, and, hence, affects the optimum 

location of the 50% mass bumt. 

Burn duration also has a marked influence on the optimum burn 

location, because it directly effects the bum shape. A fast bum can release more 

energy near TDC without incurring large compression losses. The increase in 

energy release at TDC will produce a higher cylinder pressure, due to the 

smaller volume, and will produce more work done. Therefore, a fast burning 

charge will have an optimum 50% mass burnt location nearer to TDC than a 

mixture whose combustion is slow. This result is clearly shown by the model. 

In addition a fast burning mixture releases more energy per crank angle than a 

slow burning mixture, and therefore generates greater work output. This means 

that fast combustion is most efficient. The fact that the optimum location of the 

50% mass burnt becomes closer to TDC as the combustion rate increases, 

means that it is possible to use the actual value of the optimum 50% mass burnt 

location to compare the combustion efficiency of different engines; the more 

efficient engine having the optimum 50% bum location closest to TDC. 

106 



The simulation results support the suggestion that the variation of the 

optimum location of the 50% mass burnt is due to changes in the burn pattern. 
The large range of the optimum locations of the 50% mass burnt seen in 

published papers will then be attributable to the burn shape of the particular 

engine under test. The value of 100 ATDC, quoted by some researchers, would 
indicate a fast burning, efficient combustion unit. Conversely, an optimum 

location of 17 0 ATDC occurred for the rig with the square piston, where the 

combustion is slow in comparison. The optimum location will appear 

insensitive to AFR, because although the amount of heat lost drops with 

increased AFR, the bum duration will increase, and these two effects will 

partially self cancel. Differences between operating conditions can only be 

expected if the bum shape changes significantly. In the case of the 2.01- OHC 

engine the main effect in changing from 1500 rpm, part load to 2000 rpm WOT 

is the decrease in bum length from 85 0 to 600 crank angle. The above model 

was run with conditions approximately equal to the 2000 rpm WOT case. The 

result, shown at the bottom of table 10.4, indicates an optimum 50% mass 

burnt location of 12 0 ATDC as opposed to the 15.5 0 ATDC for the 1500 rpm 

part load. The predictions made using the simulation show good consistent with 

the experimental results taken at the part and full load conditions. 

The 50% mass burnt location has been seen to be a good indicator of 

combustion efficiency. It can be used to set the reference conditions for engine 

operation, or to compare the combustion performance of different power units. 

The simplicity in determining the optimum 50% mass burnt location and 

therefore the best ignition settings, makes it easy to implement in a system for 

the automated calibration of the data maps of electronic engine controllers. T'his 

would save automobile manufacturers considerable time in establishing the 

settings for their production engines. Another desirable application would be an 

ignition controller mounted onboard the vehicle, which would maintain the 
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ignition process at its optimum settings throughout the lifetime of the power 

unit. 

10.5 An Alternative Method of Determining MBT 

A disadvantage of using bum durations to optimise the ignition timing is 

that the processing required can be inhibitive. For example, at present it is 

difficult to provide the necessary processing power onboard a production 

automobile. A faster approach could be to use the peak pressure and its 

location. Fig 10.13 shows the variation of these two parameters at part load. 

The curves fall into the two regions of linear and hookback, as named by 

Matekunas[10.1]. At AFRs of 14: 1 and 15: 1, the points reside mostly in the 

linear region. Advanced spark timings just move the 16: 1 AFR curve into the 

linear region, but not so the 17: 1. Although arrested phasing is known to occur 

at 17: 1, there is nothing in figure 10.13 to predict it. 

Consider instead the relationship between location of the peak pressure 

and the location of the 50% mass burnt, fig 10.14. For richer AFRS, a good 

correlation is seen, and the location of the peak pressure could be used to 

optimise the ignition timing under these conditions. However, problems occur 

at leaner AFRS. The correlation still holds at 14: 1, but retarded spark timings at 

15: 1 and 16: 1, also produce peak pressure at locations designated as optimum, 

due to their parabolic shape. It is possible to overcome this set back by careful 

analysis, but the problem becomes more severe at 17: 1. At this AFR, the 

optimum 50% mass burnt location is never reached, but the curve does go into 

the region of peak pressure locations that normally represents optimum 

conditions. For these reasons, peak pressure location is not suitable for use in 

general procedures to optimise the ignition timing, and combustion analysis 

offers the only alternative which is universally applicable. 
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10.6 Conclus* 

The location of the 50% mass burnt is an indicator of combustion 

performance. It can be used easily to optimise the ignition settings, because it 

benefits from having a linear relationship with spark timing. It can be used in 

automated routines for the calibration of an engine management system. 

At stoichiometric and richer AFRs, the 50% mass burnt location is 

dependent on the bum history, where the faster the bum period, the greater the 

efficiency, and the closer the 50% mass burnt locations becomes to TDC. This 

suggests that the value of the optimum 50% mass bumt location is indicative of 

the combustion efficiency, and may be used to compare the designs of 

combustion chambers. 

Under lean conditions, arrested phasing occurs due to slow flame 

initiation. Both the onset of arrested phasing and the behaviour of the 50% mass 

burnt location under these conditions can be used to assess lean mixture burning 

capabilities. 

An alternative indicator of combustion performance is the location of 

peak cylinder pressure. This has a good correlation with the 50% mass burnt 

location under rich running conditions. However, the relationship becomes 

ambiguous at lean AFRs, and undermines its general applicability to the 

optimise the ignition settings. 
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Chapter 11 
Conclusions 

The literature survey indicated that there is a requirement for undertaking 

combustion processing in real time. Pressure analysis is the best non-intrusive 

approach for obtaining information concerning bum quality, and there is 

consistency between the results calculated by approximate methods and those 

based upon the Laws of Thermodynamics. Approximate procedures are more 

suited to high speed data analysis due to their simplicity and non-iterative 

calculations. 

The most popularly used approximate method for determining mass 

fraction burnt was originally suggested by Rassweiler and Withrow. This 

method was found to be insensitive to noise fluctuations on the pressure 

signals, and cycle processing can commence at spark time and continue until 

EVO without the possibility of noise corruption. This removes the necessity for 

a priori location of EOC. 

A new approach to determine the polytropic indices was developed, 

where an estimate is adjusted to the true value. This method is quicker in 

computer time than using logarithms, and it is suggested that as the adjustment 

procedure acts directly upon the calculated inrements of combustion pressure it 

will be more appropriate for the analysis than other methods of evaluating the 

polytropic index. 

The new implementation of the processing scheme is able to identify late 

burning cycles from the low value of index associated with them. By using a 

more typical value, a representative bum history can be evaluated. Misfires can 

be detected from the low total of the summed increments of combustion 

pressure, and these cycles should be excluded from cycle averaging procedures. 
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One uncertainty in combustion analysis, to which there is no realistic 

alternative, is the assumption of uniform pressure within the cylinder. Pressure 

gradients can be problematic when studying the growth of the flame kernel, and 

pressure processing techniques are not well suited to investigations of this 

period. 

Provided the marker pulse for alignment of the acquired pressure to 

crank angle is within two degrees of TDC, and the clearance volume is known 

to within +5%, the calculated mass fraction burnt will be undistorted. The 

derived bum history is also insensitive to the calibrating of the pressure, 

acquired from the charge amplifier, to absolute. However, the reference 

pressure does have a marked influence on the calculated values of the polytropic 

index, which accounts for the wide range of index values encountered in 

combustion research. 

One normal deficiency with approximate methods of combustion 

analysis is the inability to obtain information concerning the heat loss. 

However, a novel method has been devised where the heat transfer can be 

derived directly from the pressure trace. This method is rig independent and 

considerably less complex than heat transfer correlations. The method can 

swiftly calculate the thermal loading of the production engine. The predicted 

heat loss is sensitive to the specific heat ratio. For accurate results, the reactant 'Y 

needs to be determined to between 0 and +2%. Although the variation of y with 

temperature and equivalence ratio is known, it is difficult to estimate the 

temperature of the fresh charge once combustion has commenced. Work is on 

going to verify the most suitable method of calculating the appropriate specific 

heat ratio. The heat loss calculations can still be employed in its current form to 

compare the relative differences in the heat lost at different operating conditions. 
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The mass fraction burnt and the computations of heat loss were 

implemented as an on-line system of flexible techniques for the processing of 

engine pressure data. The system was named Quikburn, which was able to 

acquire ten cycles and display their combustion parameters to the screen within 

1.5s. Control of the engine spark timing was possible via RS232 

communication to another dedicated microcomputer. The Quikburn system code 

is user orientatable in order to perform an engine test session more efficiently. 

The system was developed to be transportable between different test facilities, 

and to be a powerful tool for combustion process analysis. 

The final part of the thesis examined the correlation between 50% bum 

location and MBT. At the richer AFRs, a particular value of 50% bum location 

was found to correspond to optimum efficiency. This value was almost constant 

between AFRs, and only varied slightly between loads. The optimum 50% burn 

location was found to be dependent on burn pattern, and the more efficient the 

combustion process the closer the optimum became to TDC. Therefore, the 

50% bum location can be used be used to compare the efficiency of different 

designs of combustion chamber. 

The location of the 50% mass burnt has an almost linear variation with 

spark advance, and the optimum timing conditions can be found quickly by 

interpolation. This indicates that the optimum location of the 50% mass burnt 

could be used as a calibration setting for production ignition timing, instead of 

MBT. The calibration procedure can be automated and great time savings made 

in the producing the necessary data for the electronic engine control systems. In 

the future, an onboard vehicle system could be implemented that maintains 

optimum combustion efficiency throughout the engine's lifetime. 

The optimum 50% bum location is not attainable at lean conditions. This 

is due to arrested phasing, caused by poor flame initiation. If the early kernel 

growth could be enhanced then arrested phasing will be adverted. 
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Tables 



Contributory Thermodynamic Analysis Approximate Analysis 
Factor 

Data Input Extensive: Only Pressure-Volume Data. 
Pressure-Volume Data. 
Thermodynamic Tables. 
Heat Transfer Correlation. 

Analysis Time Long. Very Short. 
Runge-Kutta Method. No Iterations. 
Iteration required at each 

step. 
Heat Transfer Heat transfer correlation Implicit in selection of 

used. Uncertainty as heat polytropic index. Not 
flux varies spartially within problematic as mass fraction 

cylinder, and coefficient burnt is not sensitive to heat 

requires adjusting to each transfer. 
test rig. Effects absolute 
heat release, but not mass 
fraction burnt. 

Output Mass Fraction Burnt. Mass Fraction Burnt only. 
Absolute Heat Release. 
Temperature Profiles. 
Emissions calculations. 

Applicability Analysis of averaged Good for comparing the 

pressure histories. Not very combustion at one operating 

useful for cycle by cycle condition to another. Ideal 

analysis. for cycle by cycle analysis. 

Table 2.1 Comparison Between Thermodynamic 
and Approximate Methods of Combustion Analysis 
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RC Delay Cutoff Frequency 
QF gs kHz 

10-7 0.0654 7645.00 

10-6 0.654 764.50 

10-5 6.54 76.45 

Table 3.2 Delay Time and Cutoff Frequency of a 
RC Filter 
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Fuel Mass, mf 1.53e-5 kg 

Lower Heating Value, QHv 44 MJ/kg 

Fuel Input Energy, mf QHV 673 J 

AFR 14: 1 

Mixture Mass, (AFR+I)mf 2.30e-4 kg 

Specific Gas Constant 287 J/kgK 

Specific Heat Ratio, 'y 1.3 

Spark Timing, Os 300 BTDC 

0- 100% Bum Duration, Od 800 

Piston Speed, Vp 3.84 m/s 

Block Temperature, Tw 600 K 

Table 7.3 Parameters for Engine Simulation 



Heat Transfer Conditions Heat Loss by Simulation Heat Loss by Model 

Qk QhI 

Adiabatic Combustion 0 0.342 

Combustion with Heat loss 217.63 217.96 

by Eichelberg Correlation 

Table 7.4 Comparison between Simulated Heat 
Transfer Conditions and those Determined by the 

Analysis Method of Chapter 7 

Error in heat loss 
expressed as a 
1)erce tage of 

Mf Qht Qht Qla 
Case Study kg J MfQHV Qht MfQHV 

Baseline 1.3 1.53e-5 217.96 1 32.4% - - 

Sensitivity to 1.2 1.53e-5 124.6 18.5% -42.8% -13.9% 

the specified ratio 1.25 1.53e-5 180.6 26.8% -17.1% -5.6% 

of specific heats 1.35 1.53e-5 244.6 36.3% 12.2% 3.9% 

1.4 1.53e-5 264.6 39.3% 121.4% 6.9% 

Changes to 1.3 1.38e-5 151.96 22.6% -30.3% -9.8% 

specified fuel mass 1.3 1.45e-5 182.76 27.2% -16.2% -5.2% 

1.3 i. 60e-5 248.76 37.0% 14.13% 4.6% 

13 1.68e-5 1293.96 143.7% 134.9% 1 11.3% 

Table 7.5 Sensitivity of the Calculated Heat Loss 
to the Inputs Necessary for the Analysis Method 
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ewlett Packard 9000/320 Series Desktop Computer and Expansion Box 
68020 processor running at 16MHz 
68821 maths co-processor 

4 Mb RAM 

20Mb Winchester disk drive 

1.44Mb 3.5 in Flexible disk drive 

HP GPIO board 

HP RS232 Communication board 

Infotech AD2000 200kHz ADC board 

Infotech Compiled Basic Operating System version 5.0 

Table 9.1 Quikburn System Hardware 

Analysis Time for 1 Cycle I 
Uncompiled (sec) Compiled (sec) 

I Spark time V; WP 
10%, 50%, 90% Burn Locations 0.3796 0.067 

2 Spark time WNIEP 
Pressure referenced to MAP 
10%, 50%, 90% Bum Locations 0.4194 0.0731 

1 Spark time WNEP 
Pressure referenced to MAP 
10%, 50%, 90% Bum Locations 
Peak pressure and Location 0.477 0.0849 

4 Spark time IMEP 
Pressure referenced to MAP 
10%, 50%, 90% Bum Locations 
Peak pressure and Location 0.978 0.1301 

Table 9.2 Basic Language Execution Times for the 
Combustion Analysis 



Reference 
10.1 

10.2 

10.3 

50% Mass Bumt Location 

100 ATDC 

100 ATDC 

Operating Conditions 
3 Intake Configurations 
All AFRs 

2 Ignition Systems 
All AFRS 

2 Engine Speeds 
2 AFRs 

All Operating Conditions 

All Operating Conditions 

0=0.9 

3 Intake Configurations 
Lean and rich AFRs 

2 Intake Configurations 
3 Ignition Systems 
All lean AFRs 

All Operating Conditions 

80 - 150 ATDC 

10.5 60 - 100 ATDC 

10.6 50 - 100 ATDC 

10.7 140 ATDC 

10.8 130 - 180 ATDC 

10.9 110 - 180 ATDC 

10.12 100 ATDC 

Table 10.1 Published Occurrences of the Optimum 
Location of 50% Mass Burnt 
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Condition Optimum Location of 50% Mass Bumt 
Degrees ATDC 

Nominal: 1500 rpm, Part Load 
2. OL OHC engine. geometry 
Od = 850; mf = 1.3 e-5 kg 15.5 
MAP = 0.5 bar; QhtlQf = 0.3 

QhdQf = 0.4 18.5 

QhdQf = 0.24 13.5 

As Od = 550 13.5 

Nominal Od = 1100 18.0 

Except MAP =1 bar 14.5 

mf = 2.0 e-5 kg 14.5 

Valencia LOL 
engine geometry 15.5 

Settings for 20OOrpm WOT 
2. OL OHC engine geometry 
Od = 600; mf = 3.54 e-5 kg 12.0 

ýL= 0.3 MAP =1 bar; QhWQ 

Table 10.4 Predicted Optimum Locations of 50% 
Mass Burnt 
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Eormation of Fla 

Combustion initiated by 
spark. Early expansion due to 
temperature rise between 
electrodes. Dependent on 
spark ignition system energy. 

Flame kemel grows and 
becomes subjected to heat loss 
and turbulence. Must reach a 
critical size before the spark 
discharge ceases else flame 
will be extinguished 

Characterised by 0- 
2% mass bumt. 
However, pressure 
changes of this order 
are too smaH to 
detect accurately. 

Charactensed by 0- 
10% mass bumt 

Turbulent propagation of Characterised by 10- 
flame front. Lamina burning 90% mass burnt. 
occurs within eddies. Majority 
of charge mass consumed in 
this stage. 

The burning of the last few 
percent of the charge is slow. 
This is due to the unburnt 
region being close to the 
cylinder walls, which quench 
the flame front. 

Characterised by 90- 
100% rhass bumt. 

Fig 2.1 The Different Stages of Combustion 
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1.0 

0.8 

0.6 

0.4 

0.2 

0 

Waukesha RDH Engine 
Speed 1830 rpm 
Fueling rate 2.3 kg/hr 
0 1.2 

Compression Ratio: 
Upper Curve 12: 1 
Lower Curve 7: 1 

0.2 0.4 0.6 0.8 1.0 

Volume Fraction Burnt 

Fig 2.2 Universal Burning Curve taken 
from Krieger and Borman[2.32]. 
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Pressure 

Rate 
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Crank Angle (Deg) 

Fig 2.3A Example Output from Analysis by Krieger 
and Borman [2.32]. Waukesha RDH engine 
operating at 1830 rpm, fueling rate of 2.4 kg/hr, and 
equivalence ratio 1.2. 
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Compression Ratio 
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7: li, 

I,; ' 

F 
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Crank Angle (Deg) 

205 

Fig 2.3B Curves of Mass Fraction Burnt obtained by 
Krieger and Borman[2.32]. Same engine operating 
conditions as above. 
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Equilibrium 
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Temperature (K) 

Fig 2.4A Variation of Specific Heat Ratio 
for the Combustion Products of a 
Hydrocarbon fuel, GH2ný from [2.34]. 

Available Energy of Fuel 
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Heat Transfer Loss 

Ricardo Hydra Engine 
2500 rpm 
0.7 bar NLAY 
Stoichiometric AFR 
MBT Timing. 
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Crank Angle (deg) 

Fig 2.4B Sample Heat Release from the 
Single Zone Analysis[2.34]. 
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OA202 5v 
2k2 22k 

_, IOK 2700pf 4k7 OA2021 

Capacitiveor 
Inductive H. T. 
Pick up 

5v 
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5v 
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TTLPulse 
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5v 

Fig 3.3 Spark Detection Circuitry 
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Fig 3.4 Effect of Filtering Digital Signals 
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1 Degree Pulse Train 

Fig 3.5 Input Signal Processing Circuitry for Noise 
Rejection and Synchronisation, with Pulsewidth 

Sizing, to I Degree Pulses 
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Signal 

1 degree pulse train: 

L 
0 

Synchronization of signal to rising edge 

of 1 degree pulse stream by the first flipflop 

Pulsewidth sizing of signal to 

width of 1 degree pulse stream 

Processed 

Signal 

TIME 

Fig 3.6Timing Diagram for Signal Processing t:: ) t-- -tý 



Convention Engine Ignition System 

DistribtAor 

Spafidý'luqs 0 
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Fig 4.1 Conventional and Computer Driven 
Ignition Layouts 

Computer or Conventional Ignition System Layout 
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2nd FLIPFLOP 

Correct event read point 
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Late event read point 

Rrst flipflop value 1 
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Fig 4.4 Timing Diagram for Event 
Occur/Ovei-flow Circuitry 
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Fig 4.6 Spark Timing Measuring Circuitry 



Input whether alteration is to spark timing or dwell period 

Input which cylinder and new value 

IF (cylinder fires BTDQ Spark Time = 360 - new advance 
Parameter ELSE Spark Time = 180 - new advance 

Input 
Routine IF (spark time to be changed) 

Spark Count = Spark Time DIV 10 

Spark Value = Spark Time MOD 10 

Dwell Time = Spark Time - dweU period 

Dwell Count = Dwell Time DIV 10 

Dwell Value = Dwell Time MOD 10 

Add I to Block Counter 

From Cylinder Counter determine which cylinder fires next 

Write Dwell Value to address 301hcx 
IF (Block Counter = Dwell Coun t) 

Dummy write to address 302hcx to enable down counter 

Every Ten 
Deg rees Write Spark Value to address 303hex 

Dummy write to address 304hex to enable down counter 

Add I to Cylinder Counter 

IF (Block Counter = Spark Count) IF(Cylinder Counter > number of engine cylinders) 
L 

Cylinder Counter 

Every TDC 
( 

Reset Block Counter to zero 

Every Spark Presence " Set Cylinder Counter to 2, as cylinder I has fired. 
observed on cylinder I 

Fiý4.7 Wamier-Orr Diagrams to Enable 
oftware Ignition Timing Control 
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G 

Increment of Combustion Pressure 
@ 3590 Crank Angle 

n P. V... - F 
E Measured Pressure 

in the Cylinder Increment of Combustion Pressure 
pI@ 3580 Crank Angle 

R P, V D 
EBC 
Sa 
Sr Increment of Combustion Pressure 
U@ 3570 Crank Angle R 
E 

n 
p. V 

A 

(i+l) i+2 Reading Nunity--r 

356 357 358 359 

Crank Angle (Deg) 

Fig 5.1 Determination of the Increments of Combustion 
Pressure From the Measured Pressure in the Cylinder 
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Measure, d 
Pressure 

if a polytropic index is 
determined between 
conditions A and C. The heat 
transfer implied will be 
represensative of the 
conditions within the cvlinder. 

coo 

A., 

A 

C 

Pressure Increment 
due to Combustion 

B 

N 
In the approximate method of 
determining mass fraction 
burnt, piston motion and 
combustion effects are 
separated. The resultant he-at 
transfer is dependent on 
conditions at A and B- 
This is not representative of 
the actual heat lost from the 
cylinder. 

356 357 

Crank Angle (deg) 

Fig 7.1 The Diffference Between Determining The 
Actual Heat Transfer Within The Cylinder Compared 

With The Heat Loss Implied In The Approximate 
Method Used To Deten-nine Mass Fraction Burnt 
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Degree Pulse Train 

TTL Spark Presence 

p 
c 

D 
A 
T 
A 
B 
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Fig 8.2 Acquisition Data Signals 

0 Type Roop Monostab4e 



Spark 
L 
0 
G 

TDC 

LTh 
Cyclic TDC formed by haMng TDC frequency. 
To ensure the Cyclic TDC corresponds to induction 

Cyclic TDC period, the flipflop generating this signal is cleared 
on the failing edge of the spar signal 

Output of Monostable 

Time 

Fig 8.3 Logic Diagram showing Generatioii of 
Induction TDC Pulse 



START 

Configure 
ADCSoard 
and 1/0 Port 

Set Cycle Counter 
to Required Number 

p 
R 
E 

fWaittorfnductlon : s 
TDC. Thlo n s 

'19 Acquire One Cycle u 
I ofData A 

E 

ZF IS 11 
NO Pressure 

< AOgned 
toTDC 

YES p 
R 
E 

Docmmnt s 
CycleCourter S 

u 
R 
E 

Is 
NO Counter 

< 

Zero 
7 

YES Sftlo chackthm PT899118 W albned IQ inductiOn 

CýOMKL I pow, 
SaveDatatoFile 

/ 

END 

Fig 8.4 Simple Flow Chart for the Acquisition of 
Engine Data 

360 

0 360 



PARAMETER 

Max pressure (bar) 
Crank position (deg) 

Max pressure dse rate 
Crank posMw (deg) 

Max comb. press. rise rate 
Crank position (deg) 

IMEP (bar) 
WMEP (bar) 
PMEP (bar) 

Spark advance 

Combustion length (deg) 

Total comb. pressure 

2% Bum duration (deg) 
10% Burn duration (deg) 
50% Bum duration (deg) 
90% Bum duration (deg) 

10-90% Bum duration (deg) 

Percentage Partial Burns 
Percentage Misfires 

MEAN cov 

36.907 9.5259 
385.120 0.7111 

1.879 30.1432 
382.99 1.4083 

1 ý988 31 W7 
382,99 1.1174 

9.355 1.8954 
9.372 1.7310 

-0.017 -1,5,5.4829 

18-030 0.0167 

72.43 1.8830 

47.43 3.9648 

14.35 
23-04 
37 Or% 
52.70 

47.43 

10.5928 
7.4520 
7.4377 
8.6872 

12.5350 

0.0000 
0.0000 

Fig 8.5 Example Output Format of Analysis Report 
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Input of Engine Geometry User-Friendly Interface and acquisition set up. 

Read Pressure and Spark 
Data from File 

Store Pressure data in P[O] 
Store Spark data in SP(Ol 

Locate spark time I Find SP[Ol =I 

Sum =0 
FOR 0=I 

Add P(01 to Sum to 190 
Scale Pressure 

to absolute Offset Sum - MAP 

FOR 00 [01 = P[O] - Offset 
to 720 

ýp 

Foreach 
Data Cycle 

5411 
I 

p[o], VAO 
WWEP vswept dO i 

190 

tegrate, using trapezium rule 

Mean 
Effective 180 1211 

Pressures 1 p(o]. dV. dO +I P[O]. OKAO 

PMEP 
VIwept 0 

dO VSwCPL 
-W 

dO 

integrate using trapezium rule 

Combustion Analysis ý" fig 8.9 

Calculate Mean and COV of each Parameter 

Output all necessarY data 

Fig 8.8 War-nier-Orr Diagram for Pressure 
Analysis Program 



COMPI = 0; COMP2 = 0; EM = 0; EXP2 =0 
Calculate Increment of Combustion Pressure, APCj 

@ spark time -0 

Index = 1.25 For 0=0 IF( Index= 1.25) Add APCj to CONIPI 
AND to 10 ELSE Add APcj to COMP2 

index = 1.35 
Calculate Increment of Combustion Pressure, A. Pci 

@ EVO -0 

IF( Index = 1.25) Add APci to EXP1 
ELSE Add APci to EXP2 

Compression Index = 1.25 _ 
(1.35 - 1.25)CONIPI 
CONE? 2 - CONT I 

Expansion Index = 1.25 - 
(1.35 - 1.25)EXPI 

EXP2 - EXPI 

Pmax = -999; Prise = -999 
Adjust Indices 

IF( P[01 > Pmax) Pmax = P[01 

Counter =0 
IF( dL 

> Prise) Prise dE 
Sum =0 dG dO 

FOR 0= Spark Time 
to EVO Select Index Valu IF(Before significant combustion) Use compression index 

ELSE Use expansion index 

Calculate increments of combustion pressure 
and store in PC[01 

Sum = Sum + PC(01 
Crise = -999 

\ýAdd 
I to Counter 

4AP, ) 

For 1=0 

IF( 
do 

> Crise) Crise do 

to Counter 
Mass Fraction Bumt, X@i PC[ij / Sum 

Fig 8.9 Warnier-Orr Diagrams for Index Adjustment 
I Analysis (bottom) (top) and Combustion I 



DATA RECORD CONFORMING TO SEARCH PARAMETERS 

Record I of I 

Run number 
Rig name 
Date 
Condition 
Speed 
Torque 
AFR 
Spark timing 
HC (FID) 
HC (NDIR) 
NO, 
Co 
Injector location 
Injector timing 
Injector pulsevAdth 
Injector frequency 
Atmospheric pressure 
Pelative humidIty 

1 
1.6L CVH EFI 
10 October 1986 
4 rpm 
2200 Nm 
60 
12 
30 BTDC 
300 ppm 
1200 ppm 
1200 ppm 
3 %Vol 
near sfandard 
10 ATDC 
30 ms 
cyclic 
1.01 bar 
11.0 % 

Choose (LI)pdate (N)ext page Qast page "ardcopy 
Your choice>> 

Fig 8.10 Sample Screen Display from Database 
search 



Input operation 

1/0 LM 
High 

LOW 

VO BUS FLG LIN-E High 
Low 

DATAINPUT 

One Transfer 
Nexl trareer 

___________ 
L. )tI 

- -_____ 

[ 
_______________________ ______ 

I I _____\ / 

LINES 

Control Clear 
PCTL Control Set 

Busy 
PFLG 

Ready i 
Peripheral puts PT 
data on input 

lines Total Peripheral 
PT Pef'Ptwal lime delay to allow -data to settle Delay 

Inteffoce 
Les 

here 

Fig 9. JA Full Mode Handshake Protocol for GPIO 

GPIO BOARD 

PFLG 

SynchOtA 

1 degree Pulses 
T, 

I rd 
ADC BOARD 

1k- r- 

Triggof in 

Computer Bus 
bý 
Pý 

Fig 9.1 B ADC and GPIO Interfacing Circuitry 



--\ 
IE "9 -0 

Spark t1me 
User Interfa(: -g Control 

ControVer 

Pressure 

NRAI 

Acquire Analyss Dsplay 

Cý 
User Anerafloo 

Fig 9.2AQuikbum Data Flow Diagram 

On-Une 
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