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Abstract 

The separation of gas-liquid flows is a necessary part of many industrial processes. 

Thus, it has received much attention over the years with the ultimate aim of reducing 

equipment costs whilst maintaining or improving efficiency. Traditionally. the 

Petroleum Industry has relied heavily on conventional vessel separators "N: hich are 

bulky, expensive and have a high inventory. Research has indicated that a cheap 

alternative may be a simple pipe junction. It has been shown that gas-liquid flows can 

be divided at pipe junctions in such a manner that there is a partial separation of the 

phases. The result is two streams - one richer in gas than the initial feed and the other 

richer in liquid. If the phases can be separated, albeit partially, at a simple pipe 

junction then the need for a large separator is diminished. 

Within this thesis the use of a simple T-junction is considered as a continuous, 

compact, economical partial phase separator with a minimal inventory for use within 

the oil industry. The main objective was to gain a better understanding of how a gas- 

liquid flow is divided at a large diameter T-junction and how the flow split is affected 
by T-junction geometry. Firstly, the orientation of the side arm from the horizontal 

was considered with both a regular (inlet arm diameter == branch arm diameter = 

0.127m) T-junction and a reduced (branch arm to inlet diameter ratio = 0.6) T- 

junction. The side arm was placed horizontally (0'), vertically upwards (+90') and 

vertically downwards (-90') and the phase split of air-water annular and stratified 
flows were investigated. To improve the phase separation characteristics of the 

regular T-junction, inserts protruding from the side arm into the main pipe were 

considered and for the junction with a vertically downwards side arm a U-bend was 

used to reduce the fraction of gas pulled through. The experimental investigation was 

expanded to incorporate the effect of placing two regular T-junctions in series. With 

the branch arm of the first placed vertically upwards (+90'). and the second vertically 
downwards (-90') a pure gas stream and a liquid rich stream were created from the 

multi-phase inlet. Reducing the sidearm diameter of the second junction lowered the 

fraction of gas drawn off in the liquid rich stream. The physical separation distance 

the T-junctions; was found to have little effect on phase split. The interaction of the 

two junctions are interdependent and the phase split results from the two junction 
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system was found to be more complex than simply considering the results of two 

individual T-junctions. 

Being able to predict the phase split at a junction is vital if they are to be considered 

seriously within industrial settings. The case of a regular T-junction with a vertically 

downwards (-90') side arm has received little specific attention. From the linear 

nature of the phase split results it was determined that if two key points could be 

accurately predicted then the phase split results can be determined. The "onset of gas 

take off', the fraction of liquid diverted down the branch arm when the first fraction 

of gas is pulled through, was successfully related to the bubble rise velocity of the gas 

entrained in the liquid column trapped in the branch arm. The "critical gas take off', 

the fraction of gas diverted when all the liquid is drawn down the branch arm, was 
determined by relating the fluid flow to the motion of a failing particle. 
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CHAPTER 1 

Multiphase Flows 

Central to this thesis is an understanding of multiphase flow and how it behaves. The 

term "multiphase flow" can cover many different phase combinations travelling 

together within a pipeline, or piece of equipment, hence a general introduction is 

presented which concentrates on two-phase gas-liquid flow. The various different 

flow patterns that can occur in both vertical and horizontal pipelines with co-current 

gas-liquid flow have been discussed in detail. Particular attention has been applied to 

horizontal flow patterns and how these may be predicted since the inlet pipeline of the 
flow facility used during the experimental investigations is horizontal. 

The separation of gas-liquid flows is a necessary part of many industrial processes. 
Thus, it has received rnuch attention over the years with the ultimate aim of reducing 

equipment costs whilst maintaining or improving efficiency. Alternatives to the 

conventional methods have been found and one such potential is the basis of the two- 

phase gas-liquid research presented within this thesis. 

1.1 What is Multiphase Flow? 

Oil examination of many pieces of equipment within the chemical, power generation 

and hydrocarbon production industries, such as separators, reactors, heat exchangers 

and pipelines, it can be observed that they contain flows that are of more than one 

phase. The simultaneous flow through equipment of two or more phases is termed 

"multiphase flow". In many cases the two phases are vapour and liquid, for example 
in reboilers and condensers; fluidised beds and pneumatic conveying are concerned 

with solid-gas streams-, the oil industry regularly has to handle immiscible liquids. 

specifically oil and water. In many cases they actually deal with gas, oil and water all 
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flowing together and hydraulic conveying deals with solid-liquid flows. Multiphase 

flows may also occur in single phase pipelines which are subjected to a large pressure 

drop or temperature rise. 

The science of multiphase flows is complex but the industrial need to understand how 

to handle and process such streams has spurred research. Over the years many 

equations and correlations have been derived to describe as correctly as possible the 

motion and reaction of multiphase flows under various conditions. Due to their 

complex nature and the many variations of multiphase flows, two-phase gas-liquid 

flows have gained the most attention and this thesis has concentrated on such flows. 

1.2 Two-Phase Flow Patterns 

When a gas-liquid mixture flows in a pipe, the combined flow can assume different 

characteristics caused by the interface between the two phases. Some of the 

formations are clearly identifiable and others are more chaotic and difficult to 

classify. Since gas-liquid two-phase flows are commonplace throughout industry, 

various different configurations have been defined, grouping together two-phase 

flows that have the same characteristics. These relate to the distribution of the phase 

and the mechanisms dominating pressure drop and heat and mass transfer. 

Understanding and determining which of these flow regimes is present in a given 

section of pipeline is crucial as the hydrodynamics and the two-phase properties of the 

stream can vary significantly. 

The exact character of the two-phase stream depends on the relative ratios of the gas 

and liquid present and the velocities of each phase relative to one another. Pipeline 

orientation also significantly effects the flow pattern as gravity exerts a greater 
influence on the liquid phase. Obviously, the multiplicity of factors affecting the two- 

phase flow pattern can lead to many variations but they can be divided into two 
distinct groups depending on pipe orientation - horizontal and vertical. Under these 

two headings, the different ways the gas and liquid flow together can then be 
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described. Sections 1.2.1 and 1.2.2 describe the main flow patterns associated with 

vertical and horizontal gas-liquid flow respectively. 

1.2.1 Vertical Upflow in Pipes 

The flow patterns for co-current vertical upflow flow patterns are shown in Figure 

I-1. With vertical upflow gravity acts axially and the four major flow patterns have 

been described below. 
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Figure 1-1: The major flow patterns observed during two-phase vertical upflow 

Bubb4v Flow: the gas phase is uniformly distributed as non-uniformed sized bubbles 

in a continuous liquid phase. The bubbles travel with a complex motion and may be 

seen to coalesce. 

Mug Flow: most of the gas travels upwards in large bullet-shaped bubbles that have a 

similar diameter as that of the pipe. Theses bubbles are often referred to as "Taylor 
bubbles" and betxNeen them and the pipe wall a thin liquid film is seen to flow 
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downwards, as the Taylor bubble rises. In the xvake of the Taylor bubble the liquid 

often contains a dispersion of much smaller bubbles. This flow regime is sometimes 

referred to as plug flow. 

Churn Flow: at higher gas velocities the Taylor bubbles in slug flow break down and 

the motion of the liquid becomes less predictable and more oscillatory. In general the 

flow pattern is more chaotic, frothy and disordered than either slug or bubbly flow. 

This flow pattern covers a wide range of flow rates. 

Annular Flow: this flow is characterised by part of the liquid travelling as a thin film 

on the channel walls with the gas forming a continuous core along the centre of the 

pipe. The remainder of the liquid is entrained as fast moving liquid droplets within 

the gas core. These droplets may be deposited later back into the liquid film on the 

pipe walls. 

1.2.2 Horizontal Flow in Pipes 

Unlike vertical upflow, in co-current two-phase horizontal flow, gravity acts 

perpendicular to the direction of motion. This causes the two phases to be dispersed 

in a different manner, generally with the denser liquid phase flowing along the bottom 

of the pipe. The major flow patterns can be seen in Figure 1-2 and are described 

below. 

Bubblyfloii,. - this flow pattern is similar to the equivalent pattern in vertical uPflow 

and consists of gas bubbles dispersed within a liquid continuum. However, gravity 

tends to force the bubbles to accumulate at the top of the pipe except at very high 

liquid velocities when turbulence is enough to disperse the bubbles about the entire 

pipe cross section. 
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Figure 1-2: The major flow regimes observed during horizontal two-phase flow 

Stratifitedflow: here the liquid flows as a continuous layer in the lower section of the 

pipe and the gas flows above it in a separated layer. The interface may be smooth. At 

higher gas velocities waves are caused at the liquid interface and this may be 

described at stratified wavyflow. 

Slug Floir: as for vertical upflow, this is an intermittent flow pattern. The gas travels 

as large gas pockets in the upper section of the pipe separated by liquid slugs. The 

slugs may contain smaller gas bubbles. 

Annular Flow: as with the equivalent pattern in vertical flow, the liquid flows as a 

thin film on the pipe walls and the gas as a continuous core which may contain liquid 

droplets. Gravity causes the liquid film to be thicker at the bottom of the pipe but, as 

the gas velocity is increased, the film becomes circumferentially more uniform. 
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1.3 Predicting Horizontal Two-Phase Flow Patterns 

When designing a section of pipeline or piece of equipment it is necessary to know 

how the two phases are flowing together, as the different flow patterns can have 

serious design implications. For example, slug flow can cause vibration damage if a 

piece of equipment is continually hit by a slug of liquid and then a gas pocket and is 

therefore best avoided. On the other hand, the large number of dispersed gas bubbles 

within bubbly flow gives the stream a large mass transfer area and is therefore 

beneficial to induce in certain situations. 

Detecting which flow pattern is present by visual observation is very subjective. If 

clear observation is not possible then high-speed photography can be used, however, 

this technique can only be employed in limited situations. Barnea and Taitel (1985) 

describe various instrumental techniques (conductance probes, hot wire probes, y-ray 
densitonmeter) for measuring void fractions or pressure fluctuations of the two-phase 

flow. By comparison with an idealised response the flow pattern may be detected. 

The drawback of both visual and instrumental techniques for determining which flow 

pattern is present is that they cannot be used in the design stage of a process plant and 

this may lead to the formation of undesirable flow patterns. Through experimental 
investigations, it was discovered that flow patterns and their boundaries could be 

mapped onto a two-dimensional plot. These plots became known as flow pattern 

maps and can be used to predict the flow regime under specific conditions. 

Flow pattern maps are useful tools but the results are not foolproof due to the 

subjectivity of the determination of the flow pattern, especially around the transition 

boundaries, and the limited range of data used for making the maps. The pipe 
diameter and inclination, system pressures and the properties of the two fluids flowing 

together all have a great effect, further indication that one map may predict different 

results compared to the observed flow pattern and suggests that two-dimensional plots 

are not adequate enough for exact predictions of flow regimes. They have however 
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been accepted by the industry and still remain the only method of predicting tWO- 

phase flow regimes. 

One of the oldest and perhaps the most widely used, especially within the petroleum 

industry, is the flow pattern map created by Baker (1954). Based on industrially 

relevant data, the map was created by visually determining the different flow regimes. 

A later map by Eaton et al. (1967) used two-phase dimensionless correlations but for 

ease of use Mandhane et al. (1974) mapped relatively accurately a large bank of data 

from various sources using superficial gas and liquid velocities as co-ordinates. Taitel 

and Dukler (1976) used a more rigorous theoretical approach based around the 

stratified flow regime. Starting from a one dimensional momentum balance on each 

phase for stratified flow, they analysed the conditions for transition between five basic 

flow regimes - stratified, stratified-wavy, slug, annular and bubbly. They approached 

the problem by visualizing a stratified liquid and then determining the mechanism by 

which a change from stratified flow can be expected to occur, as well as the now 

pattern that can be expected to result from the change. The fact that stratified flow 

may not actually exist is not important, since it is well established that the existence of 

a specific flow pattern at specified gas and liquid flowrates is independent of how 

they arrived at that state. This methodology could also be applied to slightly inclined 

flows. From the mechanistic modelling of Taitel and Dukler a flow pattern map was 
devised that can help predict two-phase flow patterns for a wide variety of system 

conditions. Hence, using their methodology a flow pattern map was created for the 

horizontal 0.127m diameter pipe used within the current investigations. Figure 1-3 

shows the flow pattern map for the experimental facility operated at atmospheric 

pressure at various inlet air and water superficial velocities. 
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Figure 1-3: Horizontal flow pattern map for the experimental facility based on the methodology 

of Taitel and Dukler (1976) 

1.4 Separating Two-Phase Flows 

The brief introduction to two-phase gas-liquid flows in the previous sections has 

shown that they can be complex. difficult to Predict and therefore difficult to process. 
Within industrial settings, gas-liquid separators are very common since the separation 

of the phases helps prevent equipment corrosion, yield loss, damage or malfunction, 

and the transportation of single phase streams is safer, more efficient and economical. 
A vast amount of technical information is available for various designs from the 

separation of liquid droplets from a gas stream to the removal of gas and water from 

crude oil during production. 
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Traditionally, the Petroleum Industry has relied heavily on conventional 'ýýessel-týpe 

separation technology, which has changed little over the years, to separate out the 

crude oil from the multiphase mixture that is produced from the well-head. 

Traditional separators must be sized to allow adequate time for the immiscible gas, oil 

and water phases to separate by gravity and to provide sufficient volume in the gas 

space to accommodate the rise and fall in liquid level that result from production 

surges. This makes gravity separators bulky, heavy and expensive in both capital and 

operating costs. These limitations are felt most severely during off-shore 

developments, where platform costs are continually escalating as remaining oil fields 

become more inaccessible. Moreover, bulky gravity separators contain a large 

inventory of highly flammable material which the Cullen report on the Piper Alpha 

disaster recommended should be minimised. 

The growing costs of off-shore drilling, the need to exploit smaller, marginal oil fields 

and tightening safety regulations have motivated the Petroleum Industry to explore 

the development and application of alternative separator technologies. The Gas 

Liquid Cylindrical Cyclone (GLCC) represents one such example of a simple, 

compact, low-cost, small inventory separator. Davies and Watson (1979) showed that 

the easy operation and significant reduction in size, and therefore cost, of such 

separators was promising. The hesitation from industry came from the lack of 

available knowledge about optimum design and performance of GLCCs plus the 

limitation of existing mathematical models to single phase flows with a low 

concentration of the second dispersed phase. Industry may be conservative but 

research has continued to provide cheaper. safer alternatives to the bulky gravity 

separator. 

Research has indicated that a cheap alternative may be a simple pipe junction. It has 

been shown that gas-liquid flows can be divided at pipe junctions in such a manner 

that there is a partial separation of the phases. The result is two streams - one richer 

in gas than the initial feed and the other richer in liquid. If the phases can be 

separated. albeit partiafly. at a simple pipe junction then the need for a large separator 
is diminished. Within this thesis the use of a simple junction is considered as a 
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continuous, compact, economical partial phase separator with a minimal inventory for 

use within the oil industry. 

Introducing junctions and two-phase flow 

The need to separate gas-liquid flows is paramount and junctions are a necessary 

configuration in a pipe network. Together and in the right combination a simple 

solution may be found to one of industries' largest capital costs - separating gas- 
liquid flows. The following sections explore this possibility and the ideas are 

expanded on and developed in the rest of this thesis. 

There are many variations of junction that exist but the simplest is where two pipes 

meet at right angles to one another and this is termed a "T-junction". For single-phase 
flows sufficient knowledge is available allowing engineers to perform adequate 
design calculations to predict the flow split and thus design efficient downstream 

equipment. In the case of two-phase flow the number of variables is much larger and 
is complicated by the constant mixing and separating of the phases. The presence of 
dividing junctions creates further problems as either phase could pass preferentially 
into the branch. 

The division of the two-phase flow at a T-junction can be considered from two points 

of view. The first is as a simple flow divider where equal amounts of the approaching 
flow are divided between the two outlets. The second considers the junction to act as 

a partial phase separator. This is where a gas rich and a liquid rich stream are 

produced from a multiphase inlet flow. Being able to predict the behaviour of gas- 
liquid flows at junctions is a necessary part of efficient plant operation. Since the split 

of multiphase flows at T-junctions is a complex issue, relying on many more variables 
than single phase flow splitting, an in-depth study has been performed here to further 

increase our knowledge and understanding in an attempt to predict phase split 

accurateIN'. 

10 



, 
Almllohase Flows 

Without understanding such phenomena, equipment downstream of the junction can 
be over/under designed and its efficiency reduced. For example, Figure 1-4 shows the 

isometric pipe layout for an industrial plant in Kuwait*. The contents of a low 

pressure separator are fed into two storage tanks. It was soon noted both tanks had to 

cope with severe slugging conditions and that Tank I was continually full whilst Tank 

2 was under utilised. 

"atmospheric" pressure 
storage tanks allowing 

5M gas venting 

24" 

Vm 0.5m/s 24" 

Vsg 1.5m/s 

24" 
Tank 2 

Figure 1-4: Industrial separation of two-phase flow into storage tanks 

Tank I 

Both of these problems were due to the layout of the pipework. The asymmetric split 
of the flow at the T-junction was due to the difference in downstream resistances, the 
flow path to Tank I is far straighter and therefore provides an easier route to the 

storage tank. The slugging was induced within the system by having both pipelines 
ending in a riser to the storage tanks. 

This example highlights that by not understanding how the two-phase flow present is 

affiected by a simple T-junction or risers, can lead to poor equipment efficiency. 
Changing the gcometry of the pipework after the T-junction so that it was identical 
leading to both tanks solved the problem. This ensured that an even split was 
obtained and both tanks were efficiently used. The rerouting of the pipework also 

4 Case study highlighted at the BP Amoco -Multiphase Flow Course", Aberdeen, September 1999 
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avoided the need for a riser and thus the vibration problems associated with slugging 

were diminished. 

In the above example, the T-junction was used to divide the flow between the two 

storage tanks; conversely, two well-known examples of where phase separation at a 
junction has been encouraged are given by Fryar (1980) and Oranje (1983). Fryar 

was one of the first to publish a paper on the use of T-junctions as partial phase 
separators. A horizontal main pipe with a vertically downwards branch arm was used 
to separate out the liquid from a two-phase stream. The liquid exiting down the 
branch was collected in a separator type arrangement to allow any steam drawn down 

to be removed and returned to the main pipe. Oranje noted some gas stations were 
receiving large amount of condensate whilst others received none at all. By 

reproducing the results within the laboratory he managed to create some "rules of 
thumb" for predicting the phase split at T-junctions. These were, however, limited by 

strict boundary conditions but the beginnings of predicting phase split at T-junctions 

prompted further research in the area. Both authors highlight that the continuous 
separation of two-phase mixtures is dependent on how the two phases are travelling 
together in the pipe and the downstream geometry of the system. 

Having highlighted the main areas of concern when a two-phase flow approaches a 
junction, namely T-junction orientation and approaching flow pattem, the research 
presented in this thesis aims to increase knowledge in these areas in the following 

ways: 

1. by placing a T-junction in large diameter pipework to act as a partial phase 
separator 

2. using different T-junction geometries to draw off a gas or liquid rich stream 
from the approaching air-water two-phase floxv 

considering minor modifications of the junction to enhance the phase split 
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Additionally, the main objectives of this research are to: 

1. examine the viability of a simple T-junction as a partial phase separator 

2. improve phase separation by minor modifications of the T-junction 

3. improve existing knowledge on the phase split at a T-junction with a 

downwards sidearm and to predict the phase split at such junctions 

Having introduced the topic of two-phase flows and how they react at T-junctions,, the 

complexity of the problem is described in more detail in Chapter 2. The flow facility 

used and how it was modified to accommodate the different T-junction orientations is 

described within Chapter 3. Chapter 4 considers the phase split results for the various 

side arm orientations with stratified and annular flow approaching the junction. 

Chapter 5 looks at the benefits of adding inserts at the junction and Chapter 6 

considers whether two T-junctions in series improves the phase split over a single 
junction. Chapter 7 considers how the phase split at junctions may be predicted and 

presents a method for calculating the phase separation at a junction with a horizontal 

main pipe and vertically downwards side arm. All these ideas are summarised in 

Chapter 8, which provides final overview with conclusions and areas of investigation 

for future work. 
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CHAPTER 2 

T-Junctions and Two-Phase Flow 

As mentioned in Chapter 1, the division of two-phase flow at a T-junction can be 

considered from two differing viewpoints. The first considers the effects and 

problems caused to downstream equipment because of the uneven flow split that can 

occur at a T-junction. The second looks at the T-junction as a partial phase separator, 

which is the main motivation behind the research in this thesis. 

Trying to utilise the natural, uneven distribution of the phases at a T-junction, so that 

the device acts as a partial separator, is not a new idea but one that has been expanded 

on during recent years. The size of the T-junction is its main advantage over 
conventional separators. Having a much smaller footprint, compared with a gravity 
separator or a GLCC, it lends itself to be installed where space is at a premium, for 

example on an off-shore platform. Performing a crude separation at a T-junction, 

placed either on the sea bed or on the platform itself, before the flow enters the main 
separator could mean that the majority of the gas could already be drawn off thus 

reducing the separator's load. Reducing its loading would have the knock-on effect of 
minimising the area it requires on the platform and hence allowing it to be 

significantly cheaper to build and instal. A second use, where the size could play an 
important role, is in the handling of flammable fluids. T-junctions have a naturally 
low inventory making them ideal to use when handling and separating highly 
flammable fluids although caution would have to be exercised as the reduced 
inventory may be off-set by the system being more difficult to control. 
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ZI The "Simple" T-junction 

The T-junction may be the simplest coupling together of two sections of pipe but 

there are many physical factors and dominant forces that affect how the two-phase 
flow approaching the junction may be divided between the outlets. 

2.1.1 Dominant forces around a T-junction 

At a T-junction it can be considered that there are three dominate forces controlling 
the phase split: 

1. Gravity. The effect of gravitational acceleration acts predominantly on the 
liquid phase and ean either promote liquid displaeement down the braneh arm, when it 

is orientated in a downwards direction, or help reduce liquid drawn off, when the 
branch arm is vertically upwards. 

2. Inertia. The higher axial momentum flux of the liquid phase tends to force 

the liquid to continue flowing along the pipe, bypassing the entrance to the branch 

arm. This effect can be more pronounced when the diameter of the branch arm is 

smaller than the main run pipe. The liquid will pass the smaller opening quicker and 
thus have less time to be affected by any draw off effects. 

3. Pressure. Pressure drop at the T-junction when the branch arm has a 

smaller diameter is larger compared to a T-junction where all branches are the same 
diameter. For the same gas fraction intake into the smaller branch arm, the gas 

velocity increases significantly and hence, by Bernoulli, creates a larger pressure 
drop. This in turn draws liquid into the branch arm. 
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2.1.2 Associated variables with a T-junction 

The geometrical properties of the T-junction can affect the flow split as well as the 

properties of the fluid flowing in the pipe. Such parameters include the diameters of 

the inlet, run and branch arms; the inclination angles of the main pipe and side arm; 

the angle of the junction and the radius of curvature where the branch arm meets the 

main pipe. 
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Figure 2-1: A typical T-junction and the parameters associated with it 

Figure 2-1 shows there are many variables beyond the physical geometry of the T- 

junction that must be considered when trying to predict what is likely to happen for a 

given flow pattern approaching the junction. The geometry includes the angles 

associated with the junction - the angle of the main pipe form the horizontal (0); the 

angle of the branch arm from the main pipe (if P is 90' the junction is classed as a T- 

junction) and the orientation of the branch arm, whether it lies in the horizontal plane 

(ýD = 0'), vertically upwards (ýD = +90'), vertically downwards (y = -90') or at an angle 

in-between. There are eight other variables that also defme the flow split - the mass 

flowrates of the gas and liquid, Aý, 
, Aý2 and Aý3 plus the quality, x, x., x_, of 
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each arm of the junction and the two associated pressure drops, AP12and API -,. For all 

variables subscripts 1,2 and 3 denote the inlet, run and branch arms respect ive I N'. 

For a given pipeline, normally three of the above variables will be known thus leaving 

five unknown parameters, and five equations to be solved. Of the five unknown 

parameters, mass balances over the system and on either the gas or the liquid phase 

would provide two of the required equations. Energy or momentum balances for the 
branch and the run arms would provide two more and the remaining relationship is 

provided by the locus of the phase split at the junction, normally obtained by 

experimental observations. Trying to predict this equation has stimulated extensive 

research into the phase split at T-junctions. 

2.1.3 Ways of representing phase split data 

Section 2.1.2 mentioned that in order to close the T-junction problem the locus of the 

phase split at the junction must be obtained and this traditionally has been arrived at 
by experimental methods. Chapter 7 describes various methods that try to predict the 

phase split at T-junctions through mathematical models but experimental data are still 

required for verification. 

Conventionally, experimental observations used to obtain the locus of phase split have 

been plotted in one of two ways: 

fraction of inlet liquid diverted down the branch arm, L' versus G', fraction of 
inlet gas diverted down the branch arm 

00 
2. branch to inlet quality, x3 A versus M31M, , total mass flow fraction 

removed through the branch 

Both methods have their merits but within this thesis all data has been plotted using 

the first method. Using this method Figure 2-2 shows the typical phase split for 

annular flow approaching a horizontal regular T-junction. The x=y line, betNveen 

17 



Tjunctmns and Two-Pbafe Flow 

points (0,0) and (1, I), represents the line of equal flow split between the two branch 

arms of the junction. If the junctions acts as a flow divider and the locus falls along 
this line and the quality of both branch arms will be the same and identical to that of 
the inlet flow. Points lying to the left side of the x=y line indicate liquid dominated 

flow down the branch arm compared to inlet flow. Points lying to the right of the 
diagonal represent gas dominated flow within the branch arm. Complete vapour and 
liquid extraction are represented by the straight lines GI and LI respectively. 
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Figure 2-2: Phase split representation for annular flow at a horizontal regular T-Junction 

Overall, this method is particularly useful for showing at a glance the flow behaviour 

of the junction. Over the years, much effort has been put into trying to understand 

how this locus is affected by inlet flow regime, up and down stream pipe geometry, 

junction geometry and inlet quality. 
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2.2 Geometrical effects on Flow Split at a T-Junction 

Chapter I indicated the various flow patterns associated with two-phase flow and 
Figure 2-1 highlighted the many variables associated with a T-junction thus 

highlighting the difficulty of being able to predict the phase separation as such flo"-s 

pass a T-junction. The problem has therefore been tackled from many different 

perspectives over the years and many findings published. The chief distinction that 

separates areas of research is whether the main pipe is in the horizontal or vertical 

plane as this affects the two-phase flow distribution within the pipe. Most data in 

vertical T-junctions has been collected in the annular flow regime (Azzopardi and 

Whalley, 1982; Azzopardi, 1984; Charron and Whalley, 1995) since gravity acts 

evenly over the flow giving a symmetrical film thickness allowing successful 

modelling of the flow split. Other vertical flow regimes have not been studied as 

rigorously but advances have been made in attempting to predict flow split. One of 

the more comprehensive investigations of other vertical flow regimes was by Conte 

(2000) where the wide range of inlet superficial conditions fell into the slug and churn 

flow Patterns. Examination of the data. ) 
in conjunction with data from other authors, 

showed that data fell into gas and liquid dominated flow split regions that did not 

coincide with any flow pattern transitions. 

More extensive research has been carried out with the main pipe of the junction in the 

horizontal plane. Much of the research concentrates in the annular and stratified 

regimes although slug flow has been investigated due to its detrimental effects on 

equipment. Kolnes and Asheim (1990) proposed placing a T-junction with a 

vertically upwards branch arm in the main pipeline on the seabed. Their idea was to 

produce a separator that could cope with terrain induced slugs hence diminishing the 

need for expensive on-shore slug catchers. This idea was extended by Katsaounis et 

al. (1997) whose dynamic separator systems would also avoid the presence of 

slugging within multiphase pipelines. HoweN,, er, to date none of these proposed T- 
L_ 

junction separators have been installed within the field. This could be because the 

separation performance of T-Junctions is known to be so dependent on inlet flow 
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regime that as the oil field grows older the three phase oil/xN-atergas flow that passes 

through the system will change in ratio and thus alter the separation characteristics of 

the T-junction. 

Given the technical difficulties involved, oil companies tend to stick to tried and 

tested equipment. However, a break through for T-junction technology has recently 

occurred. A T-junction is now being used as a partial phase separator at BP/Amoco 

Chemicals, Hull. They were finding that only part of the liquid product from a reactor 

was flashed to vapour on passing through a valve before reaching a distillation 

column. Within the column the liquid was being carried upwards with the vapour, 

reducing the column efficiency. The standard solution would be to install a 

conventional separator, allowing the remaining liquid and vapour to be fed into 

different points of the column, not only is this expensive but time consuming and 

awkward with the plant already operational. With the present knowledge of phase 

split across T-junctions it was thought that this would provide the perfect solution for 

this type of problem. Azzopardi et aL (2001) examined the possibility and proposed 

the geometric arrangement shown in Figure 2-3. 

Liquid stream 

Two-phase inlet - -- -0ý 

Gas rich stream 

Figure 2-3: The geometric arrangement proposed, utilising a T-junction as a partial phase 
V 
separator, Azzopardi et al. (2001) 
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The two-phase flow enters the arrangement and as it passes round the first bend the 

liquid droplets, entrained within the gas, hit the far wall. The liquid falls as a film 

downwards, collecting within the U-bend, forcing the "cleaner'" gas to leaN-e down the 

branch arm of the T-junction. Thus the simple pipe arrangement, centred around a T- 

junction, acts as a partial phase separator drawing off a gas rich stream and leaving a 
liquid rich stream. This proposed geometrical arrangement has since been installed 

and found to be a fully operational with sufficient separation of the liquid from the 

vapour stream allowing the gas rich and liquid rich streams to enter more appropriate 

points in the column. Efficiency has been restored at very little cost or inconvenience 

so maybe T-junctions will be considered as a serious alternative to the conventional 

separator in the future. 

The effectiveness of the partial phase separation occurring at the T-junction 

arrangement described above may motivate other companies to apply T-junction 

technology to their problems hence there is a very real need for the continued research 

on the phase split at T-junctions. This thesis goes some way to ftirther knowledge by 

investigating the effects on phase separation at T-junctions with different physical 

geometries including side arm diameter, side arm orientation and modification of the 

junction itself. As there has been much research investigating the many aspects that 

can affect phase split at a junction only relevant literature will be cited here. A 

number of comprehensive reviews covering all aspects of T-junctions and phase 

separation have been published, notably by Lahey (1987), Muller and Reinman 

(199 1), Azzopardi and Hervieu (1994) and Azzopardi (1999). 

2.2.1 Effect of main pipe orientation 

As described briefly at the beginning of this chapter, research can be divided into two 

main groups depending on the orientation of the main pipeline - horizontal T- 

junctions and vertical T-junctions. Due to the difference in influence of gravity on the 

t, wo phases with orientation, phase separation at the junction is altered and thus they 
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are treated independently. All experimental investigations performed for this thesis 

considered the main pipeline lying horizontally. 

Several authors have, however, noted that the orientation of the main pipe seems not 

to exert a strong influence on the phase redistribution at the junction. Seeger et al. 
(1986) as well as Hwang et al. (1988) mentioned that the phase split data taken for a 
horizontal T-junction by Saba and Lahey (1984) closely follows that of Honan and 
Lahey (198 1) taken using a vertical T-junction. Several examples can also be found 

within the data amassed by the UKAEA (Harwell) laboratories. Figure 2-4 compares 

the data for four similar runs, two with the main pipe vertically and two with the main 

pipe lying horizontally. As can be seen the data in all cases shows a near identical 

split. The vertical T-junction data was published by Hewitt et al. (1990) following the 

horizontal T-junction data by Azzopardi et al. (1988). Conditions for each of the four 

cases are given in Table 2-1. 

More dramatic effects on phase split can be achieved, however, by reducing the 

diameter of the side arm compared to that of the main pipe or by altering the 

orientation of the side arm by a few degrees up or down from the horizontal. These 

are taken in turn and their effects on phase split are described in sections 2.2.2 and 

2.2.3 respectively. 
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Figure 2-4: Comparing the phase split of a vertical and a horizontal T-junction, 
UKAEA (Harwell) 

Table 2-1: Inlet conditions referring to the UKAEA (Harwell) data in Figure 2-4 

Data (kg/s) U Uls (kg/s) 
System Pressure 

Bar 
Vertical T-Junction - Case 1 0.0117 1.23 3.7 

Vertical T- 
- 
junction - Case 2 0.0117 1.23 4.4 

Horizontal T-Junction - Case 1 0.044 0.062 3 

Horizontal T- 
. 
junction - Case 2 0.050 0.076 
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2.2.2 Effects of altering the side arm diameter 

A significant amount of research has concentrated on altering the diameter ratio of 

main to side arm, allowing for pipe networks within industry where pipework 
diameters are not necessarily going to be the same. For T-junctiOns where all three 

arms are the same diameter the term "regular T-junction7 is often applied; those -vN-ith 

a smaller branch arm diameter are referred to as "reduced T-junctions". Differences 

in the phase split occurring at the regular and reduced junctions can be considered 
from three different view points - the differences in axial distance available for take 

off, the difference in pressure drop across the two junctions and the effect of the 

approaching flow pattern. 

1. Axial Distance Availablefor Take Off. The systematic look at the effect of 

sidearm diameter (Azzopardi, 1984; Azzopardi and Whalley, 1982) for a vertical T- 

junction concluded that there was an obvious but not always a clean cut trend of 

diameter ratio. A systematic variation with diameter ratio was observed with the 

larger the diameter ratio the greater the take off, see Figure 2-5. 

This is not unexpected, since the larger the side arm diameter the longer the axial 

distance available for gas take off. For smaller side arm diameters much of the liquid 

film that is dragged towards the side arm by the gas being removed may only arrive at 

the side wall after passing the opening of the side arm. Hence, the reduced fraction of 

liquid take off observed. 
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ri 

q> 

Figure 2-5: Effect of diameter ratio on phase split, Azzopardi (1984) 

Such qualitative results can be confirmed by looking at the results of Lahey (1987). 

Consider the geometry of a regular T-junction and a dividing 45' Y-Junction, see 
Figure 2-6. For the same main pipe to side arm diameter ratio the axial distance 

covered by the entrance to the Y-junction is 1.4 times longer than that for the regular 
T-junction. Hence, the liquid phase, which normally has a higher axial inertia than 

the vapour phase, has more time to be influenced to change direction and so be drawn 

off down the side arm. 

Figure 2-6: Dividing T- and 45" Y-junctions 

ý-5 2 

GOS take off in side arm (gis) 
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2. Pressure Drop. The division of the phases at T-junctions depends not only 

on the geometry of the junction itself but also on the pressures of the pipework in the 

two downstream legs plus that across the junction and, as already mentioned but 

explained further below, the flow regime of the approaching fluids. The outlet with 
the lower pressure, or more suction, will have a greater influence on the passing fluid 

thus more will be diverted in that direction. Although friction, fixtures and fittings all 

cause pressure drops, an additional pressure fluctuation is experienced across the 

junction itself 

The main difference between a reduced and a regular T-junction is the pressure 

redistribution around the junction. Figure 2-7 shows the pressure drops associated 

with a regular 37.6mm (W) T-junction measured by Buell et aL (1994). 
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Figure 2-7: The pressure drop at a regular T-junction, Buell ef al. (1994) 

For the same inlet conditions, a higher pressure drop is associated with the reduced T- 

junction compared with that of a regular one. This is due to the higher gas phase 

velocities encountered in the reduced branch arm for the same fraction of inlet gas 

drawn down the branch arm. Walters et al. (1998) studied the associated pressure 

drops for both a regular and reduced T-junctions with similar inlet flows. As shown 

in Figure 2-8 the pressure drop between the inlet and run arms, AP12 'IS minimal 

whether across a regular or reduced T-junction. Coii-versely. and as cxpected. the 
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pressure drop between the inlet and the branch arm, AP13 increases significantly with 
decreasing side arm ratio. 
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Figure 2-8: Pressure drop across a regular and reduced T-junction, Walters el aL (1988) 

This pressure drop can be related to the effects of Bernoulli's equation. For example, 

if the branch-to-inlet diameter ratio is 2: 1, the gas velocity in the reduced branch arm 
increases fourfold for the same fraction of gas to be diverted. This acceleration of the 

gas goes some way in overcoming the axial momentum of the liquid phase and thus it 
draws more liquid into the branch arm for the same fraction of gas drawn off which is 

often the case of the reduced T-junction. 

3. Approaching Flow Pattern. Effects of inlet superficial velocities of both 

phases have been methodically investigated in tests (Domanski et al., 1987; 

Azzopardi et al., 1988; Reimann et al., 1988; Shoham et al., 1989; Peng et al., 1998 

and Walters et al., 1998) covering a wide range of inlet flow regimes. Shoham el al. 

(1989) extended their earlier work using a regular T-junction and low liquid holdup 

flow patterns, namely stratified smooth, stratified wavy and annular flow, by 

comparison with a reduced T-junction. For the reduced T-junction, the fraction of gas 

removed increased for the same fraction of liquid drawn off. This can be related to 

the reduced axial distance of the smaller side arm available for gas and liquid take off 
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into the branch and hence the larger pull required by the gas to overcome the inertia 
forces of the liquid, especially for stratified flow. For annular flow conditions. the 
effect of the reduced side arm is diminished since centripetal forces dominate liquid 
take off as the liquid phase flows as an asymmetrical film around the pipe wall. Less 
film is directly intercepted by the reduced branch arm and so the film flowing above 
and below the branch entrance cannot be extracted without being subjected to vertical 
as well as radial forces, the result of the pressure gradient caused, as the gas phase 
accelerates through the reduced side arm may not be sufficient to draw much of this 
film with it. 

The phase split of horizontal stratified flow in a reduced T-junction may also be 

affected by the elevation difference between the bottom of the main pipe wall and the 
branch arm opening. This may also explain the reduced fraction of liquid entering the 

side arm since the liquid phase will have to "climb" up into it before being drawn off. 
However, as noted by Shoham et al. (1989), even at low inlet liquid flowrates, 

corresponding to lower liquid levels in the pipe, a larger proportion of the inlet liquid 

is drawn off than at higher inlet liquid flowrates. The lower inertia forces occurring at 
lower liquid flowrates must therefore override the significance of the "jump" into the 

raised branch arm and hence allow the liquid phase to be drawn off with ease. 
Shoham et al. (1989) extended their previous model for a regular T-junction to 

incorporate reduced side arm junctions with reasonable agreement with their data. 

The steam-water data by Peng et al. (1998) exhibited similar results. An enhanced 

phase split was observed with the reduced T-junction branch to inlet diameter ratio of 

0.33 in this case, and characterised by higher branch qualities for all flow split ratios. 

The effects of increasing inlet vapour flow rates were similar for a regular T-junction 

and are described in detail by Peng et al. (1998). 

Both Ballyk et al. (1991) and Azzopardi et al. (1988) show that for some inlet 

conditions, the effect of reducing the branch arm diameter becomes less pronounced. 

However, Walters ei al. (1998) found that with a very small side arm diameter ratio of 

0.2 the fractional liquid take off was greater than for a diameter ratio of 0.5. This was 

confined to higher values of gas take off (>0.5). Ballyk et al. (1991) compared 

diameter ratios of 1.0.82 and 0.5 using steam-water annular flow. They discovered 
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that the data obtained for the two reduced T-junction experiments were closer to each 
other than 0.82 ratio was to the regular T-junction. This was attributed to the loss of 
liquid film removal from the bottom of the pipe by direct extraction being greater for 
the initial reduction in branch to inlet ratios and this becoming less pronounced as this 
ratio was reduced. In addition, for the gas take off, as the side arm diameter is 

reduced the branching acceleration, and hence the velocity of the gas phase, must 
increase for the same fraction of gas to be removed, enhancing carry over mechanisms 
(reduced pressure drop and entrainment) off-setting the reduction in liquid film 

removal by direct extraction. Azzopardi et al. (1988) state that under certain 
circumstances gas take off may be unaffected by diameter ratio. They attributed this 

observation to a phenomenon they described as "break point" which is similar to 
"film stop" described by Azzopardi (1988) for annular flow. It was noted that the 

slope of the phase split curve sharply increased at higher gas take off, causing more 
liquid to be taken off from this point than expected. The break point was seen to 
decrease as inlet gas flowrate decreases since, for annular flow at lower gas flowrates 

the liquid film is seen to increase in depth and the thicker, slower moving film is more 
susceptible to take off. A similar finding was found with stratified flow (Azzopardi et 
al. 1990) where, beyond a critical gas take off, a sharp increase in gradient of the 

phase split curve can be seen, but this critical gas take off limit seems not to depend 

strongly on diameter ratio. A comparison was made with their data, which covered 
both annular and stratified flow regimes, with previously published models and this 

clearly highlighted, once more, the importance of considering inlet flow regime as the 

comparisons with models were restricted to those for a specific flow regime. The data 

of Shoham et al. (1987) also exhibits similar trends. 

Published data, which deals with the effect of varying the side arm diameter are listed 

in Table 2-2. From this experimental data base, it can be seen that research thus far 

has been confined to small main pipe diameters and predominantly air/water, 

steam/water low pressure systems. As our understanding of the physical actions of 

either phase at the junction slowly increases perhaps confidence 'will enable research 

to expand into broader. more industrially relevant conditions. 
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Table 2-2: Previous work where the effect of diameter ratio has been studied 

Main pipe Main pipe Diameter Flow 
Source diameter (m) orientation Ratio patterns 

studied 
0.2 

Azzopardi & Whalley (1982) 0.4 

Azzopardi (1984) 0.032 Vertical 0.6 Annular 
0.8 
1.0 

Shoham et al. (1987,1989) 0.051 Horizontal 0.5 Annular 
1.0 Stratified 

0.084 Annular 
Reimann et al. (1988) 0.05 Horizontal 0.2 Stratified 0.52 Slug 1.0 

0.333 
Azzopardi et al. (1988,1990) 0.026 Horizontal 0.667 Annular 

1.0 
0.5 Annular Ballyketal. (1991) 0.038 Horizontal 0.82 Stratified 1.0 

Buell et al. (1994) 0 038 Horizontal 
0.2 
0.5 Annular 

Waters el al. ( 199 8) . 1.0 Stratified 

Penmatch a et al. ( 1996) 0 05 Horizontal 0.5 Stratified 
Marti & Shoham (1997) . 1.0 

Peng et al. ( 1998) 0.076 Horizontal 0.333 
1.0 Stratified 

2.2.3 Effect of branch arm orientation 

Gravity forces have a strong effect on the flow split especially as the orientation of the 

branch arm is altered. More liquid is drawn into the side arm when it is inclined 

downwards. Conversely, for upward inclinations a significant amount of the inlet gas 

has to be diverted up the side arm before any of the liquid is drawn off. Once the 

liquid has started to flow up the branch arm, only a little extra gas has to be diverted 

to draw up all of the liquid. At inclinations over 30' upwards, nearly all of the gas has 

to be drawn up the side arm before any liquid flows up the branch arm. 

Most researchers who have investigated phase split at reduced diameter T-junctions 

have also investigated the effect of side arm orientation. This has helped to increase 

tý changes on the same the database of knowledoc currently available for systematic 
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experimental equipment. For ease of reference an inclination angle of 0' represents 
ail branches in the horizontal plane. Positive inclination angles indicate the branch 

arm being raised upwards to a maximum of +90', vertical1v upwards. Negat'N'e 
inclination angles represent downward movement of the branch arm to -90', 
vertically downwards. 

One of the first researchers to investigate the observations of Oranje (1983). who 
initially noted the uneven split of gas condensate at T-junctions as mentioned in 

Chapter 1, was Hong (1978). For the relatively small T-junction used in the 
investigation, as predicted, the orientation of the side arm significantly affected the 
fraction of liquid entering the branch arm. With the side arm straight up, +90', the 
liquid stream tended to split almost evenly with the gas. Moving the side arm towards 

-90' increased the fraction of liquid take off, increasing to total take off when more 
than 40% of the gas entered the side arm. Similar results were obtained by Penmatcha 

et al. (1996) who stated for their stratified-wavy system branch arm inclinations lower 

than -60' resulted in total removal of the liquid phase through the branch arm. 
Results from a reduced T-junction, used in the same experimental facility under 

similar conditions, by Marti and Shoham (1997) clearly indicate that a reduced T- 

junction significantly alters gas and liquid take off rates with less gas being drawn 

down the side arm for the same fraction of liquid take off as the side arm was rotated 
downwards. This is due to the accelerated gas velocities in the reduced T-junction 

forcing a greater proportion of the liquid phase to be drawn off its axial course and 
down the side arm. Liquid removal would become easier with increasing downward 

orientation of the branch arm, gravity forces also forcing more liquid into the branch 

arm. However, at very low gas fraction intakes, less liquid is di,,, erted for reduced T- 

junctions than for regular T-junctions as the pressure drop at the T-junction, due to 

increased gas velocity in the reduced diameter side arm, is not yet significant enough 

to compensate for the dominating axial inertia forces within the liquid phase. A 

mechanistic model was developed and expanded with relatively good agreement 

between the theoretical and experimental results. 

Seeger et al. (1986) noted the influence inlet flow pattern had on the amount of liquid 

drawn into the vertically downwards side arm of a regular T-junction. For low gas 
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take off the range over which only liquid enters the branch arm increases the more 

stratified the inlet flow pattern is. If the inlet superficial liquid 'ý'elocity is kept 

constant and the inlet gas superficial velocity is raised, as explained in Chapter 1, the 
flow pattern changes to a more homogenous type of flow where gravity has little 

influence, i. e. dispersed bubble and annular flow at high velocities. The increased 

momentum fluxes of both phases have more of a pronounced effect on phase split 
than if gas superficial velocity is kept constant and liquid superficial velocity is 
increased. 

Unlike Seeger et al. (1986), Peng et al. (1998) confined their study to increasing gas 

and liquid superficial velocities within the stratified-wavy regime. For their steam- 

water system comparisons were drawn between a regular and reduced T-junction with 

a vertically downwards (-90') side arm. The onset of vapour extraction was found to 

occur at liquid flow split ratios above 40%, compared with Marti and Shoham (1997) 

who considered their reduced T-junction to act as a phase separator at an inclination 

of -60'. Peng et al. (1998) defended their findings by considering that before the 

vapour can be extracted it must first be pulled through the layer of liquid flowing 

along the bottom of the pipe. The faster the inlet superficial vapour velocity, the 

thinner the liquid layer and the lower the flow split ratio at the onset of vapour pull 

through. 

The effect of branch orientation with annular flow was found to have a significant 

effect on phase split, as was changing the inlet quality due to its effects on film 

thickness (Peng et al., 1996; Ballyk et al., 1991). 

For upward side arm inclinations, phase separation is quite distinct due to the fact that 

both gravity and iiiertia forces in the inlet and branch are acting in the same direction. 

This means any entrained liquid drops deposited on the pipe wall will fall as a film 

back towards the junction, creating vertical churn flow with corresponding pressure 

variations at the T-junction, making this orientation particularly hard to predict and 

hence model. Even very small inclination angles. <1', (Ottens et al., 1999) have been 

found to reduce the initial fraction of liquid drawn up through the side arm. 
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A systematic investigation (Perumatcha et al., 1996- Marti and Shoham. 1997) has 

shown that a significant amount of gas has to be diverted into the branch before any 
liquid is diverted. The closer the branch arm is orientated to the vertically upwards 

position the greater the fraction of gas that has to be diverted. However. once the 
liquid is flowing into the branch arm relatively little extra gas is required before all 

the liquid is diverted down the side arm. Reducing the side arm diameter diminishes 

the fraction of gas required to divert any liquid by about 20%. It can also be noted 

that phase split become independent of inlet liquid velocities indicating that the most 
important factors in determining the fraction of liquid taken off are the gas splitting 

ratios and the inclination angle of the side arm up from the horizontal. This 

phenomenon was also noted by Seeger et al. (1986) who found that good separation 

was achieved for all inlet flow patterns with the exception of dispersed bubble flow. 

The effect of viscosity and inclination angle was investigated by Ottens et al. (1999) 

after the initial fmdings of Hong (1978). In both cases, it was shown that increasing 

liquid viscosity initially decreased the fraction of liquid taken off down the side arm 
for a constant fraction of gas diverted until around 70% of the liquid has been 

extracted. After this point, only a small increase in the fraction of gas drawn off 

causes a greater fraction of the liquid to be removed than for less viscous cases. Thus, 

care has to be taken when combining the two effects of liquid viscosity and branch 

arm inclination. 

Whilst the majority of experimentalists have worked with small diameter pipework, 

two sets of experiments have been performed on more industrial sized equipment: 

Maciaszek and Micaelli (1988) and Mudde et al. (1993). Despite their large diameter 

pipework they noted a significant effect of downstream flow regime on phase split at 

the T-junction. Downstream geometry was considered to have a strong effect as the 

findings of Azzopardi and Smith (1992) confirm. Both sets of data for the large 

diameter pipes were compared with previously published models for smaller diameter 

pipes. General trends were observed but accurate predictions were only obtained with 

the model based on mass, energy and momentum balances presented by Maciaszek 

and Micaelli (1988). 
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Table 2-3 surnmarises previous work where T-junctions with inclined branch arms 
have been studied. As can be seen, a significant amount of research has combined the 

effects of reduced side arm diameter and side arm orientation. 

Table 2-3: Previous work where the effect of orientation has been studied 

Main 

Source pipe 
diameter 

Diameter 
ratio 

Branch orientation 
Flow 

patterns 
(m) studied 

Fouda & Rhodes (1974) 0.051 0.5 +90 Annular 

Hong (1978) 0.0095 1.0 0, ±(45,90) 
Annular 
Stratified 

Whalley & Azzopardi 
(1980) 0.032 0.4 0, ±(30,60,90) Annular 

Annular 
Seeger et al. (1986) 0.05 1.0 0, ±90 Bubbly 

Slug 
Maciaszek & Memponteil 
(1986) 0.135 0.15 0, ±90 Stratified 

Katsaounis & Schultheiss Plug 

(1985) 0.203 0.40 +90 Slug 
Stratified 

1.0 
Annular Reimann et al. (1988) 

0.05 
0.52 

0 ±90 Stratified Domanski et al. (198 7) 0.2 , 
0.084 Slug 

Bal lyk et al. (199 1) 0.0256 1.0 0, -(45,90) Annular 
Peng et al. ( 1993) 
Hart ef al. (199 1) 

0.051 
0.75 

0, +(0.25,0.5) Stratified 
en s et al. ( 1999) 1.0 

Mudde et al. (1993) 0.23 0.43 +90 
Stratified 
Bubbly 

Penmatcha et al. (1996) 
0 05 

1.0 0, +(1,5,10,20,35) 
Stratified 
Stratified- 

Marti & Shoham (1997) . 0.5 -(5,10,25,40,60) wavy 
Peng et al. (1998) 0.076 0.33 0, -90 Annular 
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2.2.4 Effect of altering the physical dimensions of the T-junction 

Relatively little work has been published where the dimensions of the T-junction have 

been altered, either physically or by the addition of inserts or baffles. In both cases 

one of two objectives is aimed for: either to improve phase separation or to create a 

predictable flow divider. 

The simplest modification was experimented with by Katsaounis and Schultheiss 

(1985). They used a large diameter main pipe (203mm) with a vertically upwards 
branch arm with initial diameter of 52mm widening to 82mm (over a length of 
125mm). The effects on pressure drop of this "nose cone" were predominately 
investigated although for all flow patterns almost total separation of the gas into the 

branch arm was noted despite conventional flow split measurements not being taken. 

This modified T-junction formed the basis of the dynamic slug catcher proposed by 

Katsaounis et al. (1997). 

Baffles being placed at a T-junction have been considered (Fouda and Rhodes, 1974; 

Azzopardi and Smith, 1992) and were thought to homogenise the flow sufficiently to 

produce an adequate flow divider, rather than phase separator. Fouda and Rhodes 

(1974) performed a complete set of experiments with two-phase annular flow through 

a horizontal T-junction with a vertical side arm to study the effects of baffles and 

homogenisers on downstream qualities. The baffles used were a quarter (V413), half 

( V213) and three-quarters (3/413) of the tube diameter in height and were placed off 

centre, at the base of the T-junction as indicated in Figure 2-9. They demonstrated 

that without a baffle present the two-phase flow split unevenly between the two 

outlets. However, it was only the presence of the largest baffle that significantly 

reduced this effect. 
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Main Pipe 04 FLOW 

Figure 2-9: Baffle positions of Fouda and Rhodes (1974) 

Comparable in effectiveness to the largest baffle was an homogenising orifice placed 
downstream of the T-junction. This idea was extended by Azzopardi and Smith 

(1992) who positioned a V2D high baffle 4.713 downstream of the T-Junction. Unlike 

the orifice the baffle did not affect phase split when either annular or stratified flow 

approached the junction. A 90' bend, from the horizontal to vertically downwards, 

was also placed beyond the T-junction however; its presence only marginally 
increased the effectiveness of the phase split with stratified flow approaching the 

junction. For annular flow no difference was observed with the side arm in either the 

horizontal or vertically upwards position. 

Butterworth (1980) reported limited tests on air-water two-phase flow through a 

modified horizontal T-junction. The T-junction was 0.038 / 0.025m and the side arm 

had a piece of 0.025m o. d. / 0.022m i. d. tubing inserted into it with the end of it cut at 

an angle of 45'. The insert was made such that it could be turned thus allowing the 

orientation of the plane of the cut to be changed with respect to flow direction, see 

Figure 2-10. 

FLOW Main Pipe FLOW 10 Mlain Pipe 

Insert facing Inserl facing nr 
forwarTds Side Ann 

backwards lrrlde Arm 

Figure 2-10: Schematic diagram showing the insert positions used by Butterworth (1980) 
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Results were compared with the insert facing forwards (scooped section facing 
direction of flow), with insert facing backwards (scooped section not facing direction 

of flow) and for a non-protruding case. Only three experiments were performed in the 

annular, wavy and stratified flow regimes. 

For annular flow it was found that the forward facIng insert decreased the 
maldistribution of the phases but increased flow division, compared to the split 
without any insert present, whilst the backwards facing insert increased the phase 
separation. In contrast, in wavy flow the forwards facing insert reduced the 

maldistribution at low gas take off but had very little effect at higher gas take off. The 
backwards facing insert had little effect. As these were the only experiments 
performed they raised more questions than they answered but as a first step at 
introducing inserts to modify phase split some interesting observations were noted. 
Some of the questions posed have been investigated further for a large diameter T- 
junction and the results can be seen in Chapter 5. 

A summary of previous work where the physical dimensions of the T-junction have 

been altered can be seen in Table 2-4. 

Table 2-4: Previous work where the effect of altering the physical dimensions of the T-junction 

has been studied 

Main pipe Flow 
Source diameter T-junction modifications patterns 

(m) studied 

Fouda & Rhodes (1974) 0.051 '/4D, '/2D, '/4D baffles placed at Annular 
junction 

Butterworth (1980) 0.038 45' rotational inserts protruding Annular 
from side arm into main pipe Stratified 

Katsaounis & Schultheiss 0.203 Widening of branch arm from Plug 
Slug 

(1985) 52mm to 82mm (in 125mm) Stratified 
Azzopardi & Smith 038 0 1/2D baffle plus a 90' bend Annular 
(1992) . downstream of T-junction Stratified 
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2.2.5 T-junctions in alternative combinations 

Manifolds, or junctions close together on a main pipe, have formed the bases of a 
limited number of earlier studies (Collier, 1976; Coney, 1980). Horizontal systems 
(Collier,, 1976) were found to perform similarly to single junctions. 

) with the gas being 

preferentially diverted with an accumulation of liquid in the exit pipe furthest a"N'ay 
form the inlet. Vertical systems (Coney, 1980) behaved in a similar manner but under 
the conditions studied a plug of frothy liquid was seen to be oscillating in the main 
tube forcing liquid into the junctions adjacent to it. 

Although the installation of manifolds is routine, the use of them as small, low 

inventory, economical to produce, easy to install phase separators has not been 

investigated thoroughly. One very recent report, Bevilacqua et al. (2000) has gone 

some way to address this. 

Various "comb configurations", simple T- and Y-junctions arranged with vertical side 

arms in ascending and descending orientations have been considered. The efficiency 

of each arrangement was considered as the number of vertical branches, their height 

and the liquid capacity was altered. The good separation characteristics of vertically 

orientated side arms and the positive effect of the number of junctions led to tests to 

optimise the geometrical configuration of the comb structure, see Figure 2-11. 

3 

2 

IT 2T 3T 

3, 

Figure 2-11: T- and Y- configurations investigated by Beveilacqua ef al. (2000) 
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A comparison of the performance of the different configurations shows that the choictý 

of the best configuration is closely linked to the separation performance required by 

the system. To guarantee high values of void fraction in the combined branch arm a 

combination of T- and Y-junctions proves to be most effective. Using three T- 

junctions together reduces the overall void fraction within the main run branch. 

Management of the system also has to be considered. As downstream pressures can 

significantly alter the phase separation characteristics of a T-junction reducmg the 

pressure in the combined branch arm draws practically all the gas flow off, leaving a 

very liquid rich stream in the main pipeline, except at the highest flowrates 

investigated. 

To date, investigations have dealt with manifolds with all branch arms lying in the 

same orientation. The effect on phase split of a vertically upwards branch arm 

followed by a vertically downwards branch arm have been investigated with a large 

diameter T-junction and the results can be seen in Chapter 6. 
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CHAPTER 3 

Experimental Arrangement 

Chapters I and 2 have introduced the complexities of gas-liquid two-phase flow and 
how it is divided at a T-junction. Experimental investigations were performed which 
investigate phase split in a regular 0.127m (i. d. ) diameter T-junction and a reduced 
0.076 / 0.127m T-junction. Large diameter pipework was used to bridge the gap 
between laboratory scale experiments and the actual pipe diameters used within 
industry. Air-water flows were investigated allowing easy comparison with 

previously published data with authors who have used much smaller diameter pipes, 

see Chapters 4,5,6 and 7. 

The side arms of both the 0.127m and reduced 0.076m junctions could be positioned 
horizontally (0'), vertically upwards (+90') or vertically downwards (-90'). In 

addition, the influence of inserts at the junction, the effect of a U-bend placed on the 

down arm and the interaction of two junctions on the phase split were investigated. 

This chapter provides detailed descriptions of the apparatus used and the experimental 

procedure followed. The data resulting from all the experiments were used to 

determine the fraction of inlet gas and liquid entering the side arm. From these results 

the locus of phase split can be plotted on the G' vs L' graphs, as previously discussed 

in section 2.1.3. If this locus can be determined and then accurately predicted then the 

closure of the T-junction problem is complete. 

3.1 The Flow Facility 

The flow facility employed was a modified form of that used bý, Roberts (1995) and 

Rea (1998). It was initially configured to accommodate a 0.127m diameter T-junction 

where the side arm could be mounted either horizontally or vertically upwards. 
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Alterations were made allowing investigation of phase split at a T-junction with a 

reduced 0.076m side arm (with and without inserts) and with a vertically dowmvards 

side arm (with and without a U-bend). In addition further modification allowed two 
T-junctions placed in series at two set distances apart. A schematic flowsheet of the 

facility can be seen in Figure 3-1. 

£ 

Air sl"d Od 

Air supply 

Drai n orai n 

ci, C2 Air-water separating cyclones P2. P3 Water pumps 

Bank of rotameters for low water 
MI. M2. M3 TI Water storage tank 

flowrates 

M4 Turbine meter for large water flowrates T2 Water measuring tank on load cell 

Venturi / orifice plate meters to measure 
M5, M6 X1 Air-water mixing unit 

exiting air flowrate 

M7 Orifice plate to measure inlet air flowrate VI Butterfly \ a] \e on run arm 

PI Air blower V2 Butterfl) N al \ con branch arm 

Figure 3-1: Schematic flow diagram of the T-junction rig 
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In all experiments a centrifugal blower (P I) draws air from the laboratory. thus the air 

was at room temperature and at atmospheric pressure. The air flowrate is adjusted by 

use of an air bleed and measured further downstream by an orifice plate (M7). 

Different sized orifice plates (0.04m, 0.06m and 0.105m orifice diameter mounted in a 
0.2m diameter pipe) could be used depending on the superficial air velocity required. 
All orifice plates used within this investigation were machined to the dimensions 

detailed in BS 1042 and operated within the guidelines stated. 

Water is drawn from the large storage tank (T I), which was constantly filled by mains 

tap water, by one of two centrifugal pumps (P2, P3) and the correct water flowrate is 

attained by bypassing part of the flow which allows a full range of flowrates to be 

achieved. For smaller flowrates the water is monitored by one of three calibrated 

rotameters (MI, M2, M3). For larger flowrates a turbine meter (M4) is used. The 

water then enters the main flow pipe via a porous wall mixing unit (XI). Prior to 

being mixed with the air the water is split into three so that it can be fed uniformly 

into the mixing section. The three pipes enter the mixing unit at equally spaced 

intervals around the circumference. The air, drawn from the blower, passes around an 

inverted U-bend just before it is mixed with the water. This is to reduce the risk of 

back pressure in the rig forcing water down the air line. 

The T-junctions were placed 4m downstream of the mixer. There is a further 3.5m of 

0.127m diameter run arm pipe at the end of which is a butterfly valve. Beyond the 

valve is a 120' bend leading to a cyclone, used to separate the air and water for 

measurement. All pipework downstream of the mixer are made of clear acrylic resin 

to aid visibility of the two-phase flow. 

The air-water flow in the run arm is separated by a cyclone (C2). Either a calibrated 

venturi meter or orifice plates placed on top of the cyclone (M6) are used to measure 

the air flowrate as it is vented to the atmosphere. The venturi meter was calibrated by 

forcing all inlet air from the blower to exit N'ia the venturi. With the butterfl\, vak'c in 

the run arm (VI) initially fully open, and the butterfly valve in the branch arm (V2) 

fully closed, the pressure drops across the orifice plate in the inlet stream. and across 
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the venturi, were measured in millimetres of water. The butterfly N-alN-e (VI) was 

systematically closed and the corresponding pressure drops measured. A calibration 

chart on inlet superficial velocity against the square root of the pressure drop across 
the venturi could be constructed to calculate the air flowrate exiting through the 

venturi. The venturi was initially calibrated using the density of air at atmospheric 

conditions. However, during experimentation the air would be fully saturated but the 

calculated difference between the two air densities was found to be negligible. The 

venturi meter was used to measure air flowrates above 15M/s; below this flowrate a 

suitable choice of orifice plate was made. The flowrate of water leaving the bottom of 
the cyclone was calculated by diverting it to a weigh tank (T2) on a calibrated load 

cell. A timed discharge could then be measured. When measurement was not 

required, the water was returned to the main feed tank. The load cell had an upper 
limit of 120kg and so at high water flowrates timed weighing could only be very 

short. 

Two T-junctions have been used during this investigation. A "regular" T-junction 

with the main bore and side arm both 0.127m in diameter and a "reduced" T-junction, 

which has a main bore of 0.127m and a side arm of 0.076m. Both T-jUnctions are 

machined from an acrylic resin block with the outside machined to a square cross- 

section (0.2 x 0.2 m) to minimise refraction problems during observation. Both have 

carefully machined sharp comers to eliminate the radius of curvature as a possible 

variable in the experiments. Both T- junctions have flanges at the three ends to mate 

with the rest of the test section pipework. 

Butterfly valves (V I, V2) are used to control the pressure drops occurring in the two 

pipelines downstream of the T-junction, and hence are a way of regulating the flow 

split. Each butterfly valve has been positioned as far as possible from the T-Junction 

and just before the air-water separating units. 

Brief descriptions of the pipe arrangements for the differing geometries studied are 

given in the following sections. The diagrams presented are to aid visual conception 

and have not been drawn to scale. All major pipe lengths and diameters (0) have 

been shown. 
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Altering side arm orientation 

With the run and side arm both lying in the horizontal plane, see Figure 3-2. the 

regular and reduced T-junctions were used to investigate phase split. The centre of 

either T-junction was 4m (31D) downstream of the air-water mixing unit. The air- 

water mixture passing down the side arm is separated in a cyclone with the air being 

metered by orifice plates before being vented to the atmosphere and the water being 

diverted to the weigh tank when measurement is required. 

To cycione 

To cyclone 

5" butterfly 
valve 

0"0- 
VISO 

Figure 3-2: HorizOntal sidearm 

5" butterfly 
valve 

44 



E. %pen*mental, - I rraqemenl 

With the side arm vertically upwards (+90'), see Figure 3-3, the T-junction remains 
4m from the air-water mixing unit. Due to the fixed location of the separating 

cyclone, the vertically upwards side arm is followed by two 90' bends before the 

butterfly valve. 

E N 

E 
- 

5" butterfly 
valve 

To cyclone 

0' , ý116' 0000 

IQ, 

�0 

Figure 3-3: Vertically upwards side arm 

5" butterfly 
valve 
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With the side arm vertically downwards (-90'), see Figure 3-4. the T-junction Nvas 

moved 0.5m downstream to accommodate the new pipework. Both the regular and 

reduced T-junctions, could be placed at the new location. The vertically doývnwards 

side arm consists of 1.6m of straight piping ending at a butterfly valve before a 90' 

bend leading to an additional separating tank. The tank is of sufficient volume to 

allow the air and water to separate with the air being metered from the top of the tank- 

using calibrated orifice plates. A sight glass on the tank was used to note the increase 

in volume over a measured time period. When the separating tank was full the 

experiments had to be stopped and the tank emptied and the main feed tank re-filled. 

To cyclone 

00, 
ooo, 

ý 

,; ý, F 
95 ýpl 

5" butterfly 
valve 

To separating 

-. -V tank 

Figure 3-4: Vertically downwards side arm without U-bend 
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3.1.2 Downwards side arm with U-bend 

For these experiments a U-bend, of 0.127m diameter pipe, was placed between the 

90' bend at the bottom of the downwards side arm and the additional separating tank, 

see Figure 3-5. The U-bend was 0.88m high and 0.4m wide and a valve at the bottom 

of the U was provided to empty water collected between each run. The air-water 

mixture was separated and measured in the separating tank as for the vertically 
downwards side arm orientation. 

To cyclone 

5" butterfly 
ý, 

o 0 
vaive 
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EE 
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El 
To separating 
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U-bend IIE 
00 00 
(6 

Figure 3-5: Vertically downwards side arm with U-bend 
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3.1.3 Two T-junctions in series 

The effects on phase separation of two T-junctions in series were investigated. The 

first T-junction was positioned 4m downstream of the air-water mixing unit with the 

side arm positioned vertically upwards. The second T-junction could either be placed 
0.5m or 1.2m downstream of the first with a vertically downwards side arm, as shown 
in Figure 3-6. Both the regular and reduced T-junctions could be placed in either 
location. The air-water flows from the three outlets (vertically upwards side arm, 

vertically downwards side arm and the horizontal run arm) were separated in either 
the cyclones or the additional separating tank and the respective flowrates measured 

as described above. 

IN 

E 

I To cyclone 

NO' q'i ICP 

sE 

To cyclone 
/SeX 

5" butterfly 
, 111A ,,, valve 41- 

5" bufferfly 
valve 

To separating 
tank 

Figure 3-6: Two T-junctions in series 
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3.1.4 The T-junctions and inserts 

Inserts were tested in both the regular and reduced T-junctions. In all cases the inserts 

were tested with the side arm in the horizontal configuration. The inserts were 
designed to be a tight fit within their respective side arms and were machined with 

walls as thin as possible so that the internal diameter of the T-junction remained 

essentially unaltered. Both inserts were manufactured from a clear plastic so that 

visual observations of the flow split occurring at either junction were not impaired. 
The protruding tip of the insert was cut to an angle of either 30' or 45'. In Figure 3-7 

the insert on the left is for the regular T-junction with the top cut to 30'; the insert on 

the right is for the reduced T-Junction and has the top cut to 45'. All 'inserts were 

made long enough so they could be fixed at different protrusion depths. 

Figure 3-7: Inserts placed in the side arm of both T-junctions 

Protrusion depths were measured from the side of the main pipe to the tip of the insert 

and were reported in the form of the fraction of the main pipe obstructed. Two 

protrusion depths were investigated. The first was a protrusion depth of V2D which 

corresponded to the tip of the insert lying halfway across the diameter of the main 

pipe (V2 x 0.127m = 0.064m) the second protrusion depth of 1/4D corresponded to the 

tip of the insert lying three-quarters of the way across the main pipe (1/4 x 0.127m 
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0.095m). At all protrusion depths, the insert could be rotated through at least 180' so 
that the effects of the scooped section facing forwards and backwards could be 

studied. Figure 3-8 shows schematically the insert positioned at a protrusion depth of 
'/2D, facing forwards and at a protrusion depth of3/4D facing backwards. 

FLOW Main Pipe FLOW 0 Main Pipe 

rds ýr 

Insert facling Insert facing 

forwards backwards 
Side Arm Side Arm 

Figure 3-8: Inserts facing forwards at protrusion depth '/2D 

and backwards at protrusion depth '/4D 

3.2 Experimental Procedurefor a Single T-junction 

The following operating procedure was followed for all experiments investigating the 

phase split at a single T-junction. 

The split characteristics of each of the geometrical arrangements shown from Figure 

3-3 to Figure 3-5 with a single T-junction were obtained by changing the relative 

resistances in the side arms and run arm by using the butterfly valves. By altering the 

valves in a methodical manner, points from (0,0) to (1,1) can be obtained and used to 

plot the locus of the fraction of inlet gas drawn off versus the fraction of inlet liquid 

drawn off down the side arm, as previously mentioned in Chapter 2. Point (0.0) refers 

to no liquid or gas entering the side arm, i. e. the side arm butterfly valve is fUlIN' 

closed and the run arm valve is fully open. The point (1.1) refers to all the inlet flo', 'ý 

being diverted down the side arm, i. e. the side arm butterfly valve is fully open and 

the run arm valve is fully closed. All butterfly valves are initially open and then 

readings taken for the run arm valves being slowlý- closed v, -Ith the side arm valve 
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fully open. The side arm valve was then slowly closed with the run arm fially open. 

A typical set of flow split results are given in the following sections for each of the 

different geometries studied. 

Prior to each set of flow split data being recorded, an air balance was performed 

across the rig. This served two purposes. The first was to check for air leaks. The 

inlet air and the air flow from the two cyclones were measured using the orifice 

plates. The second purpose of performing an air balance was to calibrate the venturi 

meters on top of the cyclones as previously described in section 3.1. The venturi 

meters were only used to measure air flowrates above 15m/s. 

3.2.1 Operation with the side arm lying horizontally (0') and vertically 

upwards (+90') 

For the side arm lying horizontally or vertically upwards results were obtained for 

each set of inlet conditions in the following manner. Firstly, air was drawn through 

the rig by turning on the blower with the air bleed fully open; correct air flow was 

obtained by selecting the appropriate orifice plate and partially closing the air bleed. 

Depending on the flow of water required, the relevant pump was selected, the smaller 

pump only being able to provide flowrates corresponding to superficial water 

velocities up to 0.1m/s, and the appropriate valve was used to adjust the water 

flowrate. Flowrates were measured by either the bank of rotarneters (for smaller 

flows) or by the turbine meter (for larger flowrates). 

Once the two-phase mixture flowed in a stable fashion through the rig, with the 

butterfly valves in both the run and side arms fully open, measurements could be 

made. A pool of water was maintained in the bottom of the cyclones to form a plug 

thus ensuring no air exited with the water. The orifice plates or the venturi meters 

measured the exiting air. Water was diverted to a weigh tank on a load cell which, as 

previously stated, had an upper limit of 120kg. At high liquid flowrates, above 

0.3 1 m/s, timed discharge could therefore last no longer than 20 seconds. Once the 
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readings at the initial open valve settings were recorded, the butterfly valve in the run 

arm was slowly closed, leaving the side arm valve open and readings were taken at 

each setting. The run arm valve was then left open whilst readings were taken as the 

butterfly valve in the side arm was slowly closed. Measurements for each butterfly 

valve setting were noted when the error in the mass balance on the water side was less 

than 5% and on the air less than 10%. These readings formed the points (0,0) to (1,1) 

on the fraction of liquid drawn off against the fraction of gas drawn off down the side 

arm graphs. Procedure is identical whether the side arm is horizontally or vertically 

upwards as both orientations use the cyclones to separate the air and water mixture 

and a typical set of results is given in Figure 3-9 for annular flow. As can be seen, the 

phases have split at the junction, with the flow down the side arm for both side arm 

orientations being typically richer in gas than liquid. These results are expanded in 

Chapter 4 where the effect on phase split with a reduced T-junction is also considered. 
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Figure 3-9: Typical flow split results for annular flow with the side arm positioned horizontally 

and vertically upwards 
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3.2.2 Operation with the inserts 

With an insert present within the T-junction, the inlet air and water superficial 

velocities were set as described in the previous section. The insert was held in 

position by the friction generated between itself and the inside pipe wall as it was 

machined to be a close fit. Flow split results were obtained in the above manner by 

altering the position of the run arm and side arm butterfly valves, the air and water 
flowrates being measured by orifice plates or the load cell respectively. Experiments 

were repeated with the insert set at the different protrusion depths (1/2D, '/4D) and fo r 
different orientations of the scooped section (facing forwards or backwards) as 

previously described in section 3.1.4. A typical set of flow split results can be seen in 

Figure 3-10 for phase split at a regular T-junction with stratified flow. As expected, 

since the side arm is lying horizontally the phase split in the side arm Is typically gas 
dominated with all points lying below the 45' diagonal. Chapter 5 is devoted to the 

effect on phase split at a horizontal T-junction with inserts present. 

1.0 

jr- Insert facmg 
forwards 

0.8 6 Insert facmg 
backwards 

C 0.6 
G 

GAS DONUNATED 
C 0.4 TAIKE OFF 0 

Of 
0.2 

0000 
-Ol 

0.0 11111 
0.0 0.2 0.4 0.6 0.8 

Fraction of gas in side arm 

Figure 3-10: Typical phase split for stratified flow with the 45" insert facing forwards and 
backwards at a protrusion depth of '/2D 
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3.2.3 Operation with the side arm vertically downwards (-900) with and without 

a U-bend 

With the downwards side arm an additional separating tank was used instead of a 

cyclone to determine the air and water flowing down the side arm. The air was 

measured using an orifice plate and the water by an increase in volume of the tank 

over a known period of time, by use of a sight glass. A complete set of results is 

again obtained by gradually closing the butterfly valve in the downwards side arm and 

then the valve in the run arm and noted when the error in the air and water mass 
balances were less than 10% and 5% respectively. A brief error analysis for a typical 

data point can be found in Appendix A and a set of results can be seen in Figure 3-11. 

Unlike all the previous results, phase split for this orientation of side arm is typically 

liquid dominated, as all points lie above the 45' diagonal representing equal split 

between the two junction outlets. Detailed discussions can be found in Chapter 4. 
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Figure 3-11: Typical phase split results for stratified flow with a the side arm positioned 

vertically downwards 
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With the U-bend on the downwards side aryn, the initial inlet flo,, vrates of the air and 
water were set and the rig was left to run for approximately 3 minutes. depending on 
water flowrate, prior to any readings being taken. This was to allow the water to 

accumulate within the U-bend at the level specific to the set inlet conditions. Flow 

split data was then recorded in the above manner and the U-bend drained before 

setting new inlet flow conditions. Typical results again show liquid dominated take 

off down the side arm and have been discussed in full within Chapter 4. 

3.3 Experimental Procedure with Two T-junctions in Series 

Two T-junctions could be placed within the rig with the centres of the junctions either 
0.5m or 1.2m apart and the air-water flow set as described for all previous geometrical 

arrangements. The side arm of the first T-junction was positioned vertically LipýNards 

and the air-water mixture drawn up this arm was separated and measured using a 

cyclone. The side arm of the second T-junction was set vertically downwards and the 

air-water mixture drawn down this arm was separated in the additional separating 
tank. The run arm ended, as in all other experiments, with a cyclone used to separate 

and measure any air-water flow left un-diverted. 

As there are now three outlets (vertically up, vertically down and run arm) each 
butterfly valve was slowly closed in turn, with the other two left fully open. This 

produced data dependant on three valve settings and turned the phase split 

phenomenon into a three dimensional problem. Figure 3-12 shows a set of results 

taken in the annular flow regime for two regular T-junctions set 1-2m apart. In order 

to plot the results on the conventional G' versus L' plots, the flow down two of the 

three side arms had to be added. As can be seen, depending which combination of 

side arms are chosen to be added together the system can produce gas or liquid 

dominated outlet streams. Further explanation can be found in Chapter 6 where t-ývo 

T-junctions in series are discussed in greater detail. 
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Figure 3-12: Phase split results annular flow with two regular T-junctions in series 

3.4 The Flow Patterns Investigated 

Three series of experiments were perforined to investigate two phase flow split at a T- 

Junction. The first investigated the effect of side arm orientation; the second explored 

the effect on phase split in the presence of inserts protruding from the side arm into 

the main pipe and diameter and the third examined the consequences of placing two 

T-junctions in series. The effect on phase split at a T-junction of each of the above 

has been studied in depth in the following chapters. 

Experiments for all geometrical arrangements were generally performed in the 

stratified and annular flow regimes. As can be seen in Figure 3-13 the visual 

observations of the flow agreed favourably with those predicted by the Taitel and 

Dukler (1976) flow pattern map for the facility, described in Chapter 2. except at high 
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Figure 3-13: Flow pattern map from predictions of Taitel and Dukler for a 0.127m diameter 

horizontal pipe compared with experimental inlet flow conditions 

liquid flowrates which were predicted to be in the slug flow regime but were observed 

to be in the stratified flow regime. 

This could be due to the distance between the inlet air-water mixing unit and the T- 

Junction being relatively short. Currently this distance is 31D but Penmatcha el al. 

(1996) claim that 600D of straight pipe is required before steady state two-phase flow 

j 
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is achieved. However, as is shown in the following chapters, the flow split data 

agrees favourably with previously published results. 

The maximum operating limits for the rig with a T-junction with a horizontal side arm 

are indicated by the dotted line. This envelope of' operation becomes significantly 

smaller as downstream resistances within the rig increase, Ibr example tile Inclusion 

of the inserts and the U-bend. This is due to the small head (0.1 bar) provided by the 

blower limiting the gas flowrate available at higher liquid flowrates. With the side 

arm vertically upwards the operational envelope was again reduced due to flooding of 

the vertical leg. This would force water back towards the air-watcr mixiiig unit and 

potentially down the air line to the blower. 

The superficial inlet flow rates with the corresponding T-junction geometries that 

were studied during the course of this investigation have been sumniarised In Table 

3-1. A complete set of tabulated data can be fiound in Appendix B. 
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Table 3-1: Summary of all experiments performed with corresponding T-junction geometry 

Regular 0.127m T-Junction 0- Reduced 0.127/0.076m T-junction 
*- Horizontal data published by Rea (1998) 

Inlet Gas 
Velocity 

(M/S) 

Inlet 
Liquid 

Velocity 
(M/S) 

Horizontal 
Side Arm 

Vertically 
Up Side 

Arm 

Vertically 
Down Side 

Arm 
Inserts U-Bend 2 Ts 

0.186 0 00 

4 
0.310 0 0 00 00 V/ 
0.434 0 00 00 
0.558 0 00 00 00 
0.0535 0 
0.186 00 

6 0.310 00 
0.434 00 
0.558 00 
0.0283 0 
0.0401 0 
0.0535 00 

8 0.186 00 
0.31 00 

0.434 00 
0.558 00 
0.0401 0 
0.0535 0 

10 0.186 0 
0.310 00 
0.434 00 

0.0283 0 00 0 0 

0.0401 0 00 0 0 

0.0535 0 00 0 0 

12 0.186 00 00 V/ 
0.310 0 00 9 0 

0.434 00 V/ 
0.558 
0.0283 0 00 

24 0.0401 0 0 

0.0535 0 00 
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3.5 Visual Observations and High Speed Camera Footage 

Both Rea (1998) and Conte (2000) demonstrated that the phenomena of film stop and 
hydraulic jumps, respectively, could occur in large diameter pipes and captured these 

phenomena on film. Both authors described these phenomena in detail. With the 

different side arm orientations studied in this investigation, film stop and hydraulic 

jumps were observed. However, more attention was applied to the physical 

phenomena occurring at the junction with a downwards side arm. With this 

orientation vortices were seen to develop within the flow and a phenomenon relating 

to pressure reversal at the junction was also observed. Both of these phenomena were 

captured on film and the video footage analysed to gain a better understanding of why 

these features develop. Section 4.3.2 in Chapter 4 explains these phenomena in 

greater detail. 

To capture these images on film a high speed video system, KODAK HS 4540, was 

used. This has the ability to record between 4,500 full and 40,500 partial frames per 

second, which are recorded directly to solid state memory and not to tape. The digital 

images can be replayed from the memory for instant viewing or for a permanent copy 

can be downloaded and recorded onto tape. 
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CHAPTER 4 

Effect of Geometry on Phase Split at a Single 

T-Junction 

The effect of geometry on phase split at a single T-junction was introduced in Chapter 

2, where published work relating to different side arm diameters, orientation and the 

affects of including baffles and inserts at the junction was reviewed. Virtually all 

preceding investigations have concentrated on the phase split at small diameter T- 

junctions. This chapter shows the effects different geometries have on phase split at a 
large diameter T-junction. The effect of inlet flowrates on branch arm orientation, 
branch arm diameter and the inclusion of U-bend down stream of the junction have 

been investigated. In all cases the use of the T-junction as a partial phase separator 
has been considered. 

This investigation builds on the research of Rea (1998) who studied stratified flow at 

a large diameter horizontal T-junction. The phase separation results published by Rea 

have been compared with the T-junction geometries studied here. The separation 

performance of the large diameter T-junction has also been compared, where 

appropriate, with available data from literature. 

The knowledge gained through the experimental investigations discussed in this 

chapter has also been considered within the subsequent chapters. Chapter 5 considers 

the placement of an insert at a T-junction with a horizontal side arm and how it alters 

the separation qualities and Chapter 6 reports on how two T-junctions placed in series 

affect the phase separation of different inlet two-phase flow patterns. Both refer to 

the separation performances discussed in this chapter for a single T-junction. 

61 



Effect of Geometij- on Phase Split at a Siqk Tjunclion 

4.1 Comparisons with Published Data 

To test the validity of the experimental data obtained using the large diameter flow 

facility with both a regular and reduced T-junction, comparisons have been drawn 

with the phase split data published by various authors. A particular difficulty in 

comparing data from different sources is finding sets with equivalent flow rates. 
Azzopardi et al. (1988) had previously suggested that to compare information from 

different system pressures, the momentum fluxes of the phases based on inlet 

superficial velocities could be used and showed that if the inlet gas and liquid 

momentum fluxes for a horizontal and a vertical T-junction were similar then the flow 

split results would lie approximately on the same line, as indicated by the data in 

Figure 2-4 in Chapter 2. Rea (1998) preformed a comprehensive study comparing 

experimental data with a wide variety of previously published material. The aim was 

to find sets of data that plotted onto the same loci in order to correlate the separation 

performance of different T-junction systems with inlet conditions. Inlet quality, void 

fraction and momentum were used as the different bases of comparison. Rea's 

thorough investigations concluded that the flow regime approaching the junction still 

has the most significant influence on the phase split. Meaningful comparisons can 

then be drawn between data of two different systems with similar void fractions or 

inlet momentums. 

The current phase split results have been compared, where appropriate, with 

published data based on inlet void fractions and the gas-liquid momentum fluxes. 

Specific attention was drawn to previous studies investigating the phase split at both 

regular and reduced T-junctions. It should be stated that, due to the number of 

methods that are available within literature for calculating void fractions, all void 

fractions quoted have been calculated using the CISE correlation, Premoli et al. 

(1970). The reader is referred to the detailed investigation by Holt (1996) for any 

further information on void fraction equations. 
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4.2 Effect of Side Arm Diameter 

In the present work the effect of branch diameter was studied using a regular. 0.127m- 

0.127m diameter T-junction and a reduced branch arm diameter, 0.127m-0.076m, T- 

junction. This gives two branch-to-inlet (D31D, ) ratios of I and 0.6. The effect of 

altering the side arm diameter on gas and liquid take off was considered for the side 

arm lying horizontally (0'), vertically upwards (+90') and vertically downwards 

(-90'). Experiments were performed predominantly with stratified flow approaching 
the junction. At higher inlet gas velocities a film was seen to flow along the top of the 

pipe and droplets were carried within the central gas core indicating annular flow, as 

predicted by the flow pattern map. 

4.2.1 Horizontal side arm (0' 

The results of the experimental investigation can be split into the two inlet flow 

patterns - stratified and annular. Previous methodical investigations (Azzopardi et 

al., 1988, Reimann et al., 1988, Shoham et al., 1989) have shown that inlet now 

regimes are significant in determining the degree of separation that occurs at the 

junction due to the different characteristics they exhibit, as described in Chapter 1. 

Figure 4-1 confirms this point; data from annular and stratified flow patterns with the 

branch arm lying horizontally (0') (denoted by the letter 'h" in the legend) can be seen 

to follow different trends. The phase split results presented below have therefore been 

classified into the two different inlet flow patterns studied and the phase split results 

for the regular and reduced T-junctions compared. 

The main difference between the regular and reduced T-junction is the pressure 

difference in the branch arm. For the same inlet conditions, a higher pressure drop 

can be measured in the reduced side arm compared to the regular T-junction. This is 

because for the same fraction of gas taken off down the reduced diameter side arm, 
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the gas velocity is faster and therefore, by Bernoulli, results in a higher pressure drop. 

For the inlet and the run arms the pressure distributions for both the regular and 

reduced T-junctions, under the same mlet flow conditions, are approximately the 

same., as previously described in Chapter 2. 
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Figure 4-1: The effects of inlet now pattern on a horizontal reduced T-junction, Ugs = 12m/s 
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Stratified Flow 

Experiments within this flow regime can fall into two categories - those with a high 

liquid but low gas inlet flowrate and those with a low liquid but high gas inlet 

flowrate. For the first set of conditions, high liquid (Ul, from 0.31 to 0.5581rds) but 

low gas (Ugs = 4m/s) inlet flowrates, the liquid layer flowing along the bottom of the 

pipe was seen to be quite a substantial depth. Rea (1998) measured the film thickness 
for various inlet conditions using conductance probes. If these results are 

extrapolated for the present inlet conditions then it can be seen that the liquid depth is 

over a third of the diameter of the inlet pipe. The presence of such a large volume of 
liquid and the low gas to liquid volume ratio means this set of data can be compared 
favourably with slug flow results, on the basis of similar void fractions. 

Slug flow is a notoriously difficult flow regime in which to take measurements due to 

the constant pressure fluctuations. Depending on whether a pocket of gas or a slug of 
liquid is passing the test point the system pressure oscillates from high to low 

respectively. This flow pattern is, however, encountered in numerous situations, from 

terrain induced slugging in industrial pipelines to unpredicted surges in production, 

which has lead to many practical studies being made. Advances by various authors 
(Kvernvold et al., 1984, Kawaji et al., 1995 and Sharma et al., 1998) have helped to 

determine the essential parameters associated with slug flow (slug length, frequency, 

velocity, holdup) and led to the development of improved empirical and mechanistic 

slug flow models. Scott et al. (1987) developed a mechanistic model for slug flow in 

large diameter pipelines, taking into account the longer development lengths required 

compared with fully developed slug flow in small diameter pipelines. 

For the flow split results for the horizontal regular T-junction taken by Rea (1998) it 

can be seen, in Figure 4-2, that as inlet superficial liquid velocity is increased then the 

fraction of liquid taken off through the side arm is reduced. This is due to the 

increased momentum of the liquid phase increasing its inertia and hence its reluctance 

to be drawn off down the side arm and the data of Hong (1978), Shoham et al. (1989) 

and Walters et al. (1998) all exhibit similar trends. It can also be seen that the 
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Figure 4-2: Phase split for stratified flow at a horizontal regular and reduced T-junctions, 
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fraction of liquid drawn off down the side arm remains independent of the fraction of 
gas diverted, until a critical gas take off value of 0.9 is reached. This could indicate 

that flow split is independent of inlet gas superficial velocities under these conditions 

- low gas, high liquid flowrates. 

The theory that inlet gas superficial velocity has little effect on the phase split within 

can be supported by the work of Buell et aL (1994). They studied the split of slug 
flow within a regular 37-6mm T-junction which was expanded by Walters ei al. 
(1998) who used reduced side arm T-junctions with D3 I D, ratios of 0.5 and 0.206. 

The data of Buell et al. (1994) with inlet conditions U_,, = 2.7n-1/s and U1, = 0.1 8m/s 

has a similar void fraction to the current data in Figure 4-2 of 0.7. For both sets of 
data similar trends for the flow split at a regular T-junction are exhibited. Figure 4-3 

clearly shows that at a constant inlet superficial liquid velocity, Uls = 0.18m/s, and 
increasing inlet superficial gas velocity the separation qualities of the Junction rernain 

unchanged. A critical gas take off of 90% still has to be reached before any dramatic 

rise in the fraction of liquid drawn off. 

For the large diameter T-junction under investigation, reducing the side arm to give a 
diameter ratio to D3 ID, =0.6, was seen to diminish the effects of inlet liqUid 

superficial velocity, as shown in Figure 4-2, where all threes phase separation curves 
have collapsed onto one line. The above observations can also be seen within the data 

of Walters et aL (1998) for D3 / D, = 0.5 and 0.206 and in the data from the extensive 

study by Reimann et al. (1988). The reduced diameter T-junction significantly 

improves the phase separation characteristics of the junction by reducing the fraction 

of liquid drawn off for a given fraction of gas diverted. The different phase separation 

ability of the two junctions is explained by Azzopardi (1984). Due to the significant 

depth of the liquid present in these experiments, on reaching the T-junction part of the 

liquid film would "fall" into the side arm where, effectively, part of the pipe wall had 

been removed. Arirachakaran (1990) described this action being similar to a body of 

water being suddenly subjected to the removal of the dam that \vas holding it in place 

and termed it "dam break" within his model on the split of slug flow at -Y-junctions. 

Obviously, for the smaller diameter side arm the axial distance over which take off is 

possible is reduced. In fact the overall area available for liquid to "fall" into the side 
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arm is three times smaller than that available with the regular T-junction. This leads 

to the significantly reduced liquid take off for similar fractions of gas diverted. 

The above theory may go someway to explain the very similar data obtained for the 

three runs with the reduced T-junction with the high liquid inlet flowrates (see Figure 

4-2). The reduction in side arm diameter would significantly reduce the time 

available for take off. The liquid flowrates are only increased by around 0.1 M/s each 

time. This means the time available for the liquid slug passing the reduced diameter 

side arm entrance to diverted is between 0.13 -0.24 seconds. This is 3/5 "" of the time 

available for the same liquid flowrates passing the larger diameter T-junction. The 

time difference of 0.1 seconds between the three different flow conditions is not large 

enough to produce a measurable difference in readings. 

For the stratified flow experiments with the low liquid (Uls less than 0.0535m/s) but 

high gas (Ugs greater than 12m/s) inlet flowrates the depth of the liquid film was seen 

to be much less,, Rea (1998) measured the film thickness to be around 0.015m. The 

significantly reduced liquid inlet superficial velocity has reduced the momentum of 

the liquid phase by a factor of a hundred, which in turn had the effect of increasing the 

fraction of liquid drawn off down the side arm for a given fraction of gas diverted. 

Increasing the gas velocity from 12 to 24m/s also increases the fraction of liquid 

removed for a given fraction of gas drawn off as the higher gas velocity helps 

overcome the liquids inertia into being taken off down the branch arm. These trends 

can be clearly seen if Figure 4-4 and Figure 4-5 are compared. 
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Reducing the side arm diameter decreases the fraction of liquid drawn down the side 
arm for the same fraction of gas as clearly shown in Figure 4-4. This improved phase 
separation occurs at the reduced diameter side arm as the low gas-liquid interface now 
has to "climb" up the wall before being diverted down the reduced diameter side arm. 
This indicates that for liquid to be drawn up the step into the side arm the inertia of 
the phase has to be overcome and this does not readily happen under these inlet 
conditions. Comparisons can be drawn with the data of Azzopardi et al. (1988) and 
Shoham et al. (1989). Figure 4-6 plainly identifies the similar trends between the 

current data and that of Azzopardi et al. (1988), both data sets with a void fraction of 
0.934. The stratified data of Buell et al. for (D31D, = 1) and the complementary data 

by Walters et al. (D 
3/D, = 0.5) also with a similar void f7action of 0.93 were also 

found to lie on the same loci as the current data. 

At higher inlet gas superficial velocities the difference between tile phase separation 

qualities of the regular and reduced T-junctions are diminished, see Figure 4-5. The 

combination of the higher gas momentum and reduced diameter side arm overrides 

the inertia forces of the liquid phase meaning the fraction of liquid being drawn off 

with Ugs = 24m/s is significantly higher, especially at low gas take off rates. than 

under stratified conditions with Ug, = 12m/s for both T-junction geometries. 

Comparisons can be drawn with the data of Reimann et al. (1988) who performed 

experiments using a regular (D, = 50mm) and reduced T-junction (D, / D, = 0.52). 

Figure 4-7 indicates that the use of the reduced T-junction does little to enhance the 

phase separation qualities of the junction with high inlet gas and low liquid flowrates. 

Both the current data and that of Reimann. et aL (1988) have a void fraction of 0.96 

and in both cases the T-junction is acting more as a flow divider than a phase splitter. 
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Annular Flow 

For annular flow, Ug, = 12ni/s, U1, == 0.3 1 m/s, the liquid phase was seen to flow as an 

asymmetric film around the pipe wall with a faster flowing gas core. When compared 

with stratified flow, see Figure 4-8, it can be suggested that the phase separation is 

increased at both the regular and reduced T-junctions. The greater reduction in liquid 

take off can be attributed to the difference in inlet flow regime. Azzopardi and 

Whalley (1982) proposed that for annular flow the majority of the liquid diverted 

down the side arm of a T-junction comes form the wall of the main pipe. This liquid 

flow has a much lower momentun-4 similar to that of the gas phase, compared to the 

entrained droplets travelling within the gas core. This allows the liquid filni to be 

easily diverted with the gas. The liquid film on the pipe walls in annular flow is much 

thinner than that available for take off with stratified flow. 
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Figure 4-8: Phase split for annular flow at a horizontal regular and reduced T-junction, 

Ugs = 12m/s 
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So although the liquid film is easily diverted, the fraction of liquid taken off down the 
side arm, with increasing gas take, is reduced for annular floNX. The plateau present in 
the separation curves for both the regular and reduced T-junctions easily identifies 
this. The easily removed liquid film has been diverted but the faster flowing droplets 
entrained in the gas core can not be separated down the side arm until over 90% of the 
inlet gas has been diverted. After this critical value the fraction of liquid drawn off 
down the side arm dramatically increases with increasing gas take off. The phase 
split results for both the regular and reduced T-junction follow similar trends ý, Nith the 
reduced junction drawing less liquid down the side arm. This is again due to the 
reduced area available for film take off, as previously described for stratified flow. 

4.2.2 Vertically upwards side arm (+90') 

Section 4.2.1 showed that using a horizontal T-Junction with a reduced diameter side 
arm could reduce the fraction of liquid drawn off. As was shown, for all approaching 
flow regimes the reduced T-junction acted as a phase separator, except when very 
high gas and low liquid inlet velocities approached the junction. However, under 
these conditions the reduced horizontal T-Junction behaved no differently to the 

regular horizontal T-junction. Therefore it can be concluded a horizontal reduce T- 
junction can improve the phase split characteristics of a junction. 

Within this section phase split results have been obtained for a regular and reduced T- 

junction with the side arm of the junction positioned vertically upwards (+go o). Flow 

split data has been collected with stratified flow approaching the junction. The 

alterations to the flow facility reduced the operating envelope so that annular floý, ý 

could not be achieved. 

Previous authors have compared the phase split characteristics of a T-junction where 

the orientation of the side arm altered from the horizontal. Such investigations have 

been summarised Table 2-22. but close inspection of tile table shows these are maink 

confined to small diameter T-junctions. Those who have investigated the phase split 
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with larger diameter pipelines were mainly interested in answering a specific problem 

rather than collecting a range of data. 

As previously stated in Chapter 2, main influences affecting the phase separation at a 

T-junction are due to gravity and the inertia of the phases. For horizontal flow a 

pressure gradient exists perpendicular to the direction of flow. If a homogeneous gas- 

liquid mixture flows into a region where a pressure gradient exists, like at a T- 

junction, then the gas phase is better able to follow the direction of the low pressure. 

due to its lower inertia, compared to the liquid phase. However, if the two phases 

have different phase velocities, as is often the case, the liquid phase may preferably 

enter the branch depending on the local values of the momentum fluxes of the phases, 

(PV2)1 and (PV2)g, around the branch inlet and the branch arm orientation. 

The influence of gravity on phase separation is visible in two ways. Firstly, within 

the horizontal inlet the denser liquid phase preferentially flows nearer the bottom and 

the gas phase nearer the top of the pipe. Secondly, in the branch arm it can be easily 

seen that gravity forces have a strong effect on the flow split at the T-junction and 

flow reversal of one phase into the main horizontal pipe often occurs when the branch 

axis is inclined with respect to the horizontal. More liquid is diverted into the side 

arm when it is inclined downwards and conversely a significant amount of inlet gas 

has to be diverted with the side arm inclined vertically upwards before any liquid is 

drawn off. These observations hold for all main pipe diameters and are accentuated 

with reduced side arm ratios. 

By adapting the orientation of the junction, the effects of inertia and gravity may 

enhance the phase separation that already occurs at a simple horizontal T-Junction, as 

described in Section 4.2.1. Both the regular and reduced T-junctions were used to 

study the split of stratified flow approaching a T-junction with the branch arm 

inclined vertically upwards. 

As with the branch arm of the junction lying horizontally, the phase split results for 

stratified flow approaching the junction may be considered in two groups. The first 
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with low gas and high liquid flowrates approaching the junction and the second with 

high gas but low liquid inlet liquid flowrates. 

For the first set of conditions, low gas and high liquid inlet flowrates, with the side 

arm vertically upwards the phase separation abilities of both the regular and reduced 

T-junctions were found to be practically identical, see Figure 4-9. In both cases the 

limit of all gas take off was 90% and beyond this critical value less than 20% of the 

liquid was diverted. The similarity of phase split for both junctions can be attributed 

to the very high momentum of the liquid phase. 
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Figure 4-9: Phase split for stratified flow at a regular and reduced T-junction with a vertically 

upwards branch arm, Ug, = 4m/s 

Unlike the horizontally orientated junction the liquid can not "fall" into the side arm. 

With a vertically upwards side arm the liquid must be drawn up by the gas stream but 

with the very low gas velocities present. the fraction of gas drawn up the side arm has 
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insufficient velocity to overcome the inertia of the higher momentum liquid phase 
despite the water travelling close to the top of the pipe. Thus, no liquid is drawn up 

with the gas. This is a similar trend exhibited by the slug flow data of Reimann and 
Smoglie (1983) which showed that even with a very small diameter branch arm. the 

oscillatory behaviour of slug flow, i. e. gas then liquid passing under the entrance to 

the branch arm, was not indicative of a large liquid take off but the gas ývas drawn up 
the branch arm by the pressure drop across the junction. 

Considering the geometry of the two T-junctions, one with a horizontal and one with 

a vertically upwards side arm the noticeable reduction of liquid in the branch arm in 

the latter case can be explained. With the T-junction lying horizontally and the deep 

liquid film present, the liquid can "fall" into the side arm (the dam break theory 

proposed by Arirachakaran, 1990) as it passes. With the side arm vertically upwards, 

gravity is acting in the opposite direction thus the liquid cannot just fall into the side 

arm. The lighter gas phase is less affected by gravity so is drawn up the side arm. Its 

low momentum, as previously stated does not draw any of the liquid with it even in 

the smaller diameter side arm, where by Bernoulli the same fraction of gas diverted 

would flow faster. 

However, compared with the first group of data for stratified flow, data taken for the 

second group, the low liquid and high gas inlet flowrates, it can be seen that although 

there is a reduction in the fraction of liquid drawn off up the branch arm compared 

with the horizontal case, there is an increase in the fraction of liquid taken off, 

compare Figure 4-9 and Figure 4-10. This is despite the interface between the two 

phases being lower for the conditions in Figure 4-10 and hence further from the 

entrance of the branch arm. 
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Figure 4-10: Phase split for stratified flow at a regular and reduced T-junction with a vertically 
upwards branch arm, U. = 12m/s 
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Figure 4-11: Phase split for stratified flow at a regular and reduced T-junction with a vertically 
upwards branch arm, U., = 24m/s 
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Both Figure 4-10 and Figure 4-11 show that at a critical gas take off there is a rapid 
increase in the fraction of liquid drawn off. This can be attributed to the increase in 
liquid height at the junction. Azzopardi and Smith (1992) identified this phenomenon 
as a form of hydraulic jump. Unlike for the horizontal side arm (see Figure 4-4), there 
is a lack of distinction between the performance of the regular and reduced T-junction 
but this is due to the inlet flow pattern. In all cases the liquid flows as a layer along 
the bottom of the pipe. For any liquid phase to be drawn up through the branch arni 
the gas velocity must be sufficient to overcome the inertia of the liquid phase and the 

gravity forces acting in the opposite direction to the flow. Reducing the side arm 
diameter increases the gas velocity initially but downstream pressure losses , N-ould 

reduce the driving force. Thus, the fraction of liquid drawn upwards is negligible 

until a critical limit of all gas take off is reached. 

The limits of all gas take off for the vertically upwards reduced T--junction have been 

compared with the published data of Smith and Azzopardi (1990) in Table 4-1. 

Comparisons were drawn where the two phases of the new and published data had 

similar momentums. Smith and Azzopardi (1990) used a much smaller scale T- 

junction, main pipe 0.038m diameter, side arm 0.025m diameter. In both cases the 

diameter ratio of the main pipe to the side arm of 0.6. Smith and Azzopardi carried 

out their experiments at 3bara, the present data was obtained under atmospheric 

conditions. 

Table 4-1: Comparison of all gas take off limits in a vertically upwards T-junction (D3/Dj = 0.6) 

Smith and A-zzopardi (1990) Present Data 
Mass fraction Inlet Mass fraction 

Inlet conditions limit of all gas conditions limit of all gas (kg/s) take off (m/s) take off 
0.053 55 0 Gas 24 0.46 

Liquid 0.064 . Liquid 0.0535 
Gas 0.016 79 0 Gas 12 0.85 

Liquid 0.066 . Liquid 0.0535 
Gas 0.02 3 74 0 Gas 11 0.83 

Liquid 0.0 1 . Liquid 0.0283 
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These results, all taken from the stratified flow regime. Indicate that the limit of all 

gas take off is similar despite the difference in scale of the two systems. This is 

perhaps not surprising since the momentum of each of the fluids were similar so 

proportionally the same amount of gas would be required to dra"N- off the liquid. The 

limit for the present data may be higher due to the larger distance the liquid has to 

travel before being drawn off the reduced side arm, thus the slightly greater amount of 

gas taken off before liquid entrainment. The data of Pen-matcha et al. (1996) also 
indicated that the limit of all gas take off was 0.8 for inclinations over 35'. Using a 

regular T-junction they also noted that the phase split become independent of inlet 

liquid velocities, a similar trend is exhibited by the current data, with all phase 

separation curves lying together. Hence, the inclination angle of the side arm and gas 

splitting ratios are the major factors governing phase split. 

As for the horizontal T-junction, by significantly increasing the inlet gas phase 

velocity the inertia of the liquid phase can be overcome. This is highlighted in Table 

4-1 , where for both data sets doubling the inlet gas velocity halves the limit of all gas 

take off for the same inlet liquid velocity. 

4.2.3 Vertically downwards side arm (-90') 

The affects of moving the side arm of the T-junction from the horizontal to vertically 

upwards (+90') was discussed in the previous section. It was found that a T-junction 

with a vertically upwards side arm performed as a partial phase separator that could 

be relied upon with stratified flow approaching the junction to produce a gas rich 

stream in the branch arm from a multiphase inlet. The horizontal (0') T-Junction did 

not perform as well but a significant increase in the phase separation ability of the 

junction, for all approaching flow patterns, was seen if the side arm diameter was 

reduced. The final side arm orientation studied was vertically downv, -ards (-900). 

A comprehensive investigation considered stratified and annular inlet flow patterns 

approaching both the regular and reduced T-junctions, with a vertically downwards 
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side arm. A series of experiments were performed to investigate the effect of inlet gas 

and liquid superficial velocities on the phase split. Visual observations ,, N-ere noted as 

well as phase split data recorded. 

Generally, the effect of the different inlet momentum fluxes of the two phases faNours 

the gas phase to enter the branch arm, however, with verticallý- down,,. N-ards side arms. 

the effects of gravity have a much stronger influence. Under these conditions liquid is 

preferentially extracted through the branch arm as opposed to gas for the vertically 

upwards side arm. 

As with other side arm orientations research has previously been confined to smaller 

diameter pipes, both with very small diameter side arm, simulating breaks in the 

horizontal coolant pipes of nuclear reactors by Smoglie, Reimann and Miffler (1985) 

and Anderson (1987), and with larger side arm diameters, more representative of the 

junctions found within piping networks, Reimann et al. (1988), Azzopardi and 

Whalley (1982). 

A more recent study by Penmatcha et al. (1996) performed a through investigation of 

a range of angles from the horizontal, 0', to -60', downwards. As expected the more 

inclined downward the branch the more liquid is diverted and for their system 

complete separation of the liquid phase was achieved at inclinations beyond -600. 
Although no visual observations were noted within their publication a mechanistic 

model based on the momentum equations applied to the separation streamlines of the 

gas and liquid phases, originally developed by Shoham et al. (1987), showed promise 

of being able to predict phase split at a downwards T-junction although deviation of 

the model from the experimental results worsened the more vertical the side arm 

became. 

Seeger ei al. (1985) approached the phase split at a T-junction from a fairly 

unconventional point of view,, by slowly reducing the resistance within the 

downwards branch arm, rather than slowly increasing it. Initially the branch arm 

valve was closed (G31G, = 0) and the arm filled with water. A small fraction of the 

homogeneously mixed fluid at the inlet flowing over the top of the branch arm created 
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a recircultaion zone where bubbles were seen to rise up the branch arm and re-enter 

the main run arm. Similar observational results were seen at both the large diameter 

regular and reduced T-junctions at the inlet flowrates investigated \N-ithin this thesis 

when the branch arm butterfly valve was practically closed. Seeger el al. noticed a 

change at higher mass flux ratios (G31G, ý: 0.065) where the recirculation zone first 

filled with air and then the gas-liquid interface descended until the branch arm was 
filled with air except for a thin liquid film flowing down the pipe walls. This was 

similar to the flow observed down the branch arm with low side arm resistances xN-ith 
the T-junction currently being studied. 

Studying the data obtained for the downward inclined branch arm, it is immediately 

apparent that the liquid is easily diverted into the branch arm compared with either the 

horizontal or the vertically upwards case, see Figure 4-12. For all cases with a 

vertically downward orientated side arm, the phase split curves lie above the line of 

equal split indicating liquid dominated phase split. This is due to the physical 

phenomenon involved in the phase splitting process. If the dominant forces that 

control the motion of the fluid at the T-junction, namely gravity, inertia and pressure 

drop, are considered then the mechanisms involved can be understood. For 

downwards side arms the inertia and the gravity forces are effectively acting in 

opposite directions with inertia favouring the gas and gravity forces favouring the 

liquid phase to flow preferentially into the branch arm. The gravity forces acting on 

the liquid phase are generally much stronger than the effects of pressure drop across 

the T-junction but both act in favour of the liquid to be drawn down the side arm. 
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Figure 4-12: Phase split comparison of different side arm orientations, Ug. = 8m/s, U1, = 0.31 m/s 

As with the side arm lying horizontally the general observation can be made - 
increasing inlet gas superficial velocity, Ugs, at constant inlet liquid superficial 

velocity, U1, has a nominal effect on the side arm quality, see Figure 4-13. 

Conversely, increasing Ul,, whilst Ug, remains constant', dramatically increases the 

fraction of liquid drawn off down the side arm, see Figure 4-14. This is due to the 

higher momentum of the liquid phase exerting a much greater influence over the 

phase separation characteristics of the junction and dominating the any changes 
increasing the gas velocity may have on the system. The phase split occurring at the 

junction has been discussed for both stratified and annular flow approaching the 

junction. 
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Figure 4-13: Effect of U9. on phase split at a regular T-junction with a downwards side arm, 
U1, = 0.31 m/s 
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Figure 4-14: Effect of Ui, on phase split at a regular T-junction with a downwards side arm, 
Ugs = 8mIs 
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Stratified Flow 

As with the other branch arm orientations, the experiments "N-ith stratified flow 

approaching the junction can be considered in two groups. The first with high liquid, 

low gas inlet velocities approaching the junction and the second with low liquid but 

high gas inlet velocities. 

An interest has been taken with stratified flow approaching a downwards side arm due 

to the gas phase having to be extracted through the permanent liquid layer flowmig, 

along the bottom of the pipe. The comprehensive study by Penmatcha et al. (1996') 

was expanded by Marti and Shoham (1997) to investigate the affects of a reduced 
diameter T-junction and they published a model to predict the phase separation 

occurring. The extensive study by Reimann et al. (1988) also covered many inlet 

conditions and different branch to inlet diameter ratios. Within this thesis the phase 

separation occurring at a large diameter T-junction was investigated with both the 

regular and reduced T-junction with stratified flow. 

For the first set of conditions, with high liquid and low gas inlet velocities mean that 

the gas-liquid interface is relatively high so there is effectively a large liquid layer that 

the gas must be pulled through before exiting down the side arm. Typical phase split 

results for the T-junction under these conditions is shown in Figure 4-15. For both T- 

junctions, initially liquid exits through the branch arm until a critical point is reached 

and then gas is pulled through. This is the opposite trend seen previously for the 

junction with a vertically upwards side arm (+90') where a pure gas stream was 

initially drawn off until a critical gas take off was reached and beyond that point the 

liquid was drawn upwards with the exiting gas. With the downwards (-90') side arm 

orientation the fraction of liquid diverted before the onset of gas take off occurs is 

dependant on the inlet liquid superficial velocity and therefore related to the height of 

the gas-liquid interface. For all cases it can be seen that once gas pull though has 

started the data follows a linear trend resulting in total liquid take off ýý Ith 40% of the 

gas extracted. 
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Figure 4-15: Phase split for stratified flow at a regular and reduced T-junction with a vertically 
downwards side arm, Ug. = 6m/s 

For the high liquid, low gas inlet flowrate experiments it can be seen in Figure 4-15 

that reducing the side arm diameter increases fraction of liquid that can be diverted 

down the side arm before the onset of gas take off is reached. This could be related to 

the arguments previously presented where by reducing the diameter of the side arm 

the area of take off is reduced and therefore the time available of the liquid extracted 

to effect the gas stream flowing above it is reduced. The data of Penmatcha et al. 

(1996) and the complementary work of Marti and Shoham (1997) with a reduced T- 

junction can also be seen to show similar tendencies, as shown in 

Figure 4-16. Although within their high pressure system they found complete gas- 

liquid separation to occur with orientations below -60'. The data of Reimann et al. 

(1988) also exhibits the same correlation with reducing side arm diameter. 
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Figure 4-16: Comparison of current stratified flow data (Ul, = 0.186m/s) with published data, 
CISE void fraction of 0.837 

1.0 

0.8 

41 
0.6 

0.4 

L. 
ýAo 

0.2 

0 Regular T, Ugs = 4rrVs 

El Regular T, Ugs = 8ni/s 

A Regular T, Ugs = 12n-Vs 

#Reduced T, Ugs = 4riVs 

0 Reduced T, Ugs = 8rrVs 

A Reduced T, Ugs = 12n-Vs, 

0.0 iI ---- r-- 

0.0 0.2 0.4 0.6 0.8 1.0 

Fraction of gas in i ide arm 

Figure 4-17: Phase split for stratified flow at a regular and reduced T-junction with a 
downwards side arm, U1, = 0.186m/s 
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For the experiments performed with the IoNA- liquid, high gas inlet flowrates the (-, as- 
liquid interface is much lower. It was observed for flows below U1, = 0.05'1511-Ys the 
fraction of liquid drawn across the branch arm opening is insignificant and the T- 
junction could be said to perform as a partial phase separator producing a gas rich 
stream in the run arm from a multiphase inlet. 

Figure 4-17 shows the phase separation for the two T-junctions Vý-ith low liquid 
flowrates approaching the junction. With low liquid and higher gas flowrates the 

separation performance of the regular and reduced T-Junctions are very similar. This 

was also found by Reimann et al. (1988) whose data also indicates that ,, N-ith the side 
arm orientated vertically downwards any reduction in side arm diameter has a 

minimal effect on the phase split. The steam-water experiments of Peng et al. (1988) 

also confirm that reducing the side arm diameter has little effect on the phase 

separation of the junction with stratified flow with low liquid flowrates. 

With stratified flow approaching the junction several visual phenomena were seen as 
the flow passed over the T-junction. These visual observations noted during 

experimentation have been discussed within Section 4.3 and the mechanisms though 

to be occurring with stratified flow approaching the T-junction with a vertically 
downwards side arm have been discussed in further detail in Chapter 7. 

Annular Flow 

Unlike for vertical annular flow in which a uniform circumferential liquid film is 

expected, under horizontal conditions the effects of gravity can be noticed. As 

previously described, with horizontal annular flow the liquid film is forced to flow in 

an asymmetric manner around the circumference of the pipe. Due to gravitational 

forces a thicker film is noticed at the bottom of the pipe than at the top. The faster the 

inlet liquid velocity, the thicker the bottom film will be and hence more will be 

available for take off. This can be seen in the results plotted in Figure 4-18. At the 

higher inlet liquid superficial velocity the difference between the phase separation 

curves of the regular and reduced T-junction is much greater. 
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Figure 4-18: Phase split for annular flow at a regular and reduced T-junction with vertically 
downwards side arm, Ug, = 12m. /s 

This is because the film flowing along the bottom of the pipe is thicker; hence 

reducing the area of take off, by reducing the side arm diameter, causes a much 

greater difference in the fraction of liquid entrained. Peng et al. (1993) reported 

similar trends with increasing inlet quality. Within the experimental range of the 

current data only a very slight reduction in the fraction of liquid removed for low gas 
fractions taken off was noticed as inlet gas velocity increased but was not as 

pronounced as in Peng et al. 's data. 

For interest, Figure 4-19 shows the phase split data for horizontal annular flow (U, 
-,, = 

12n-L/s, U1, = 0.31 n-i/s) at a regular T-junction by Rea (1998). Plotted is the fraction of 

gas and liquid left in the run arm and not that taken off down the side arm. This 

shows that for annular flow the fraction of inlet flow taken off in the downwards side 

arm can exhibit similar features to that left in the run arm for a horizontal T-junction, 
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compare Figure 4-18 and Figure 4-19. One significant characteristic is that with a 
downwards side arm all the liquid is drawn off at gas fractions of 0.4 and above. 
With the horizontal arm at a similar gas fraction the fraction of liquid remaining In the 

run arm is initially less but remains constant as the gas fraction increases. This shows 

that knowledge of the inlet flow and the orientation of the junction is significant and 
different features of the phase slit curve may be exploited depending on the situation. 
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Figure 4-19: Phase split for annular flow at a regular horizontal T-junction, U,, = 12m/s 
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4.2.4 Downwards side arm with U-bend 

The papers by Fouda. and Rhodes (1974), Butterworth (1980) and Azzopardi and 
Smith (1992) are a few of the published works that consider altering the geometrN 

around the T-junction. As mentioned in Chapter 2 the work of Azzopardi and Smith 

(1992) investigated the split of annular and stratified flow at a reduced T-junction 

(D31D, = 0.67) with and without a 90' bend in the run arm downstream of the 

junction. The T-junction was positioned with both a horizontal and verticallý- 

upwards side arm. With annular flow approaching the junction the presence of the 

bend did not effect the phase split. This was in agreement with the findings of Fouda 

and Rhodes (1974). They found the phase split to be unaffected by the presence of 
baffles placed at the junction (see Chapter 2, Figure 2-8) , vhich were less than half the 

height of the main pipe diameter. With stratified flow, altering the downstream 

geometry had little effect on the phase split at low take off but differences were 

observed at high gas take off. The hydraulic jump was seen to forin irrespective of 

downstream geometry and the differences in downstream liquid height forced the 

changes in take off at the junction. These investigations, and that of Butterworth 

(1980), considered alterations made to the main run pipe either at the junction or just 

downstream. No investigations have been made where the geometry of the side arm 

has been altered, other than orientation from the horizontal. 

Here a U-bend has been placed on the downwards side arm between the junction and 

the separator. The aim in mind was to reduce the fraction of gas drawn off through 

the side arm by the formation of a large liquid plug in the side arm. As indicated in 

the previous section using a T-junction with a reduced diameter side arm gives an 

improved phase split when compared with the regular T-junction. Adding a U-bend 

to the reduced diameter side arm could improve this phase split further so that 

practically all the liquid could be drawn off down the side arm before an), gas 

entrainment. 
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Figure 4-20: Phase split for stratified and annular flow at a reduced T-junction with and without 
a U-bend, Ug, = 12m/s 
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Figure 4-21: Phase split for stratified flow at reduced T-junction with and without a U-bend, 
Ugs = 4m/s 
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With a U-bend positioned on the vertically downwards orientated side arm 
downstream of the junction the opposite findings to Azzopardi and Smith 0 992) were 
found to be true. Where as they found no difference in phase split at a T-Junction 

with a 90' bend in the run arm, placing a U-bend in the side arm can be seen to reduce 
liquid take off. Figure 4-20 shows the effect of the U-bend "N-ith low liquid inlet 

stratified flow and annular flow (U1, =: 0.3 1 m/s) approaching the junction at a constant 

gas velocity of l2m/s, unfortunately due to the operational limits of the rig the phase 

split results were found to reach a certain point and stop. If the phase split curves 

were extrapolated to continue the locus then the following points can be noted. As 

indicated, the presence of the U-bend has a negligible effect on the phase split with 
low inlet liquid flowrates. This could be due to the low liquid levels in the U-bend 

not forming a significant barrier quickly enough before the liquid collected is swept 
into the separator by the gas drawn off down the side arm. At higher inlet liquid 

flowrates, with the inlet flow pattern changing from stratified to annular flow, the 

presence of the U-bend does reduce the fraction of gas drawn through the side arm. 
Here the accumulation of liquid was assumed to be sufficient to form a proper barrier 

through which the gas could not pass. The same trend is observed at high liquid and 
low gas inlet flowrates as depicted in Figure 4-21. 

The presence of a U-bend on the downwards side arm has the potential to increase the 

fraction of liquid drawn off with no gas present. As with the orientation of the side 

arm the separation performance is altered by the two-phase flow pattern approaching 

the T-junction. 

As shown there is potential for the U-bend to increase the fraction of liquid drawn 

through the side arm before any gas entrainment but further in-depth investigations 

would be more conclusive. 
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4.3 Visual Observations at the T-junction with a Downwards Side Arm 

It was observed during experimentation that some very interesting ph-. "-sical 

phenomena were occurring at the T-junction as the two phases redistributed 

themselves between the two outlets. These included the formation of hN-draulic jumps 

and in some cases, especially with a vertically upwards side arm, film stop. These 

have not been discussed in detail within this thesis as both were given sTgnificant 

attention by Rea (1998) and Conte (2000). Instead, attention has been given to the 

phenomena occurring when the two phases split at a T-junction with a dowim-ards 

side arm. Here the gas phase has to be drawn through the denser liquid phase which 
is flowing along the bottom of the pipe. Phenomena as vortices, and "dips" in the 

liquid level above the junction were noted and in some cases pressure reversal at the 

T-junction produced an interesting feature as described below. The various phý, sical 

phenomena observed were a function of the inlet flow regime, diameter of the side 

arm and the fractions of both gas and liquid being diverted. 

Figure 4-22 shows the split stratified flow (Ug, = 4m/s, U1, = 0.186m/s) with a low 

liquid inlet flowrate as it passed over the regular T-junction with a downwards side 

arm. Flow is from right to left and the butterfly valves in the run and down arm were 

fully open. As with all stratified flows studied, arrow A indicates that the liquid 

"falls" into the branch arm until it nears the far side of the down pipe. As can be seen 

"fingers" of liquid, depicted by arrow B, are being drawn back up the pipe wall and 

into the run arm. At faster inlet liquid or gas flowrates these are seen to enter the run 

arm. In Chapter 7 it has been suggested that there is a stagnant gas pocket trapped in 

the branch arm that is supporting the liquid as it flows over the branch arm. 
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-10N%. 

Figure 4-22: Stratified flow (low gas-liquid interface) at the regular T-junction 

Flow 

Figure 4-23: High liquid, high gas flowrates approaching the regular T-junction 

Flow 

.......... .. 

Figure 4-24: High liquid, lo" gas floA rates approaching the T-junction 
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Increasing both the gas and liquid inlet flow rates (Ug, = lOm's. Uls == 0.558m's). see 

Figure 4-23, promotes the formation linked to pressure reversal at the T-Junction. 

This occurred at the T-junction when both the run and branch arm valN, es were open. 

The liquid was seen to initially flow down the side arm, as in Figure 4-22 but before 

reaching the far side of the junction the liquid flowing at the edge of the stream starts 

to fall rotating, like water flowing down a plughole. The top part of the liquid streani 

is seen to be pulled back up again and flows along the run arm. The feature created 

by part of the liquid falling down the side arm and part of the liquid being dragged 

back into the run arm was hollow, and could be described as a transparent banana 

being continuously peeled. 

The same feature can be seen more clearly at a lower gas flowrate, Figure 4-24 (Uss = 

4m/s, U1, = 0.558ni/s). It was also noticed that this feature was more likely to occur 

when the butterfly valve in the downwards arm is partially closed than when the 

butterfly valve in the run arm was closed. No other references could be found to 

support this feature so it could be a function of the larger diameter pipes being used 

here. 

In smaller diameter pipes vortices are more likely to form with a downwards side arm. 

However, visual observations at the reduced T-junction showed the surface of the 

liquid layer above the side arm entrance became depressed leading eventually to gas 

being pulled down into the side arm. Such observations were also noted by Reimann 

and Khan (1982). Their study of stratified flow approaching small breaks within 

various geometrical arrangements highlighted that when only a portion of the liquid 

flows down the side arm the gas-liquid interface can be considerably deflected before 

vortex-free gas pull through is observed. 

As the liquid flowrate increases and the interface level rises. then the interface above 

the junction becomes merely deflected. For the reduced diameter side arm at high 

inlet liquid flowrates, closure of the run arm valve created a large build up of liquid 

by the junction. Under these conditions the funnel-shaped interface began to oscillate 

and was intermittently sucked through, vortex-free gas pull-through. Raising the inlet 
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liquid flowrate further produced a continuous wispy vortex like formation which 

ilg 

jlý 

1; 31 

draws air into the branch arm similar to those indicated in Figure 4-25. 
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Figure 4-25: Gas pull through at a small break in a large diameter pipe, 
Reimann & Khan (1982) 

With either T-junction in place and the branch arm valve closed and thus full of water, 

similar observations to Seeger et al. (1985) were noted. Firstly, a similar recirculation 

zone was seen as the gas bubbles entrained in the side arm were seen to rise up and 

get drawn back into the branch arm. Secondly, as the valve was opened further the 

gas-liquid interface descended until it was swept out of the branch arm and the liquid 

fell as a film of the pipe walls around a gas core. 
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4.4 Conclusions 

The many different side arm orientations for a large diameter T-junction studied 

within this chapter have helped bridge the gap in understanding of phase split in small 
laboratory scale equipment and what is physically happening in large industrial 

pipelines. The aim was to modify the T-junction geometry to produce one stream 

richer in gas and the other richer in liquid compared with the two-phase inlet. Under 

these conditions the T-junction will be acting as a partial phase separator. 

The major point to note is that the flow pattern approaching the T-junction has a 

significant affect on the phase split. Thus, methods of predicting the two-phase flow 

pattern likely to occur in a given pipeline are essential to efficient plant operation. 

With all side arms lying in the horizontal plane (0'), a regular T-Junction performs as 

a phase separator (less than 20% of liquid in a gas rich stream). With the low liquid 

and high gas flowrates (stratified flow) the junction acts more of a flow divider than 

phase separator. 

In all cases introducing a reduced diameter T-junction significantly improved the 

phase separation qualities at the junction. For stratified flow with a high gas-liquid 

interface and annular flows the fraction of liquid in the gas rich stream is reduced to 

below 5%. For stratified flow the fraction of liquid was reduced but increasing the 

inlet gas superficial velocity reduced any appreciable affects. 

Rotating the side arm vertically upwards (+90') instantly improved the separation 

qualities of the T-junction. The differences in phase separation qualities of the regular 

and reduced junctions are diminished. For all flow regimes approaching the junction,, 

a virtually liquid free (generally less than 1%) gas stream was created from the two- 

phase inlet flow. The limits of all gas take off being generally above 80%. 
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Rotating the side arm vertically downwards (-90') did not produce such a gas ftee. 

liquid rich stream as described above. However industrially, a greaterfi7action of gas 

can be tolerated within a liquid rich stream, unlike fast flowing liquid droplets in a gas 

rich stream which can causea lot of damage. With this orientation of side arm it was 

stratified flow approaching the junction that provided the best liquid rich steam. with 

over 80% of the liquid being diverted with minimal gas. It was noted that with 
increasing gas flowrate the difference in phase split qualities of the regyular and 

reduced junction were reduced. 

The addition of a U-bend on the downwards branch arm was seen to improve the 

phase split at the junction with high liquid flowrates approaching. The liquid build up 
in the U-bend reduced the fraction of gas drawn the branch arm. 

For all side arm orientations and all inlet flowrates the presence of a reduced diameter 

T-junction (D31D, = 0.6) can improve the phase split qualities of the junction with no 

detrimental effect to the system, even if the junction only works as a flow splitter 

rather than as a phase separator as seen with some inlet conditions. In all the cases the 

pipeline has not significantly been altered, merely the T-junction being exploited as a 

cheap, easy to maintain partial phase separator. 
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CHAPTER 5 

Placing an Insert at a Single T-Junction 

A study of the effect of side arm orientation on the phase split at a single T-junction 

was reported in depth within Chapter 4. The orientation, the significance of reducing 
the side arm diameter, and the effect of the approaching flow pattern were 
investigated but the physical geometry of the junction remained unaltered - In all 

cases a plain sharp edged T-junction machined from a 200mm acr"Aic block was used. 
Within this chapter the effects of an insert placed at the junction on phase split are 

reported. 

T-junctions, can be considered as partial phase separators or flow dividers. Under 

certain conditions (high gas and low liquid inlet flowrates as described in Chapter 4) a 
horizontal T-junction may behave more as a flow divider than a phase separator but 

rotating the side arm from the horizontal promotes the phase separation qualities of 

the junction. In this series of experiments inserts were placed within a horizontal T- 

junction to try and enhance the phase separation qualities. Both the regular and 

reduced T-junctions were used and their effects on phase split were studied with both 

annular and stratified two-phase flow patterns approaching the junction. 

As will be described, the size of the insert was thought to have a major influence on 

the phase split and so different insert protrusion depths were studied. The shape of 

the top of the insert was also considered to play an important role in determining the 

fraction of liquid and gas diverted, so this too was rivestigated. 
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5.1 Previous work on T-junctions and Inserts 

Little work has been published where two-phase flow at T-junctions; has been studied 
in the presence of protrusions into the main run pipe and that which has been 

published is over ten years old. This could be due to the more recent trend of 
consolidating T-junction knowledge where comprehensive, methodical research has 
improved models to predict the phase split at T-junctions but the more abstract ideas 
of how to promote phase split, rather than just being able to model it, have been left 

aside after initial sparks of interest. 

As reported in Chapter 2, one such case is that of Butterworth (1980). Limited tests 

on air and water two-phase flow through a modified horizontal T-junction were 

reported using a reduced 0.038 / 0.025m T-junction with a section of tubing inserted 
into the side arm with the end of cut off at an angle of 45'. The insert was made such 
that it could be turned thus allowing the orientation of the plane of the cut to be 

changed with respect to the flow direction, see Figure 5-1 Results were compared 

with the insert facing forwards (scooped section facing the direction of flow, position 
A), with the insert facing backwards (scooped section opposing the direction of flow, 

position B) and for a non-protruding case. All arms of the T-junction lay in the 

horizontal plane. 

FLOW A Main Pipe 

Position A 

Side Arm 

FLOW 

Figure 5-1: The insert positions used by Butterworth (1980) 

Main Pine 
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Only three sets of experiments were performed by Butterworth. one in each of the 
following inlet flow regimes: annular, wavy and stratified. For each case the 

performance and the effect on phase split for the different insert positions was 
recorded. Simply, for the annular flow case, a forward facing insert decreased the 

maldistribution present when no insert is present, whilst the backwards facing insert 

increased the phase separation. In contrast, for wavy flow, the forwards facing insert 
can reduce the maldistrubution at low gas take off but had very little effect at high gas 
take off. The backwards facing insert had little effect. 

These experiments formed only a limited investigation and raised questions as to the 

effectiveness of placing inserts at a T-junction if it is to be used as a partial phase 
separator. These questions were considered and formed the basis of the current 
investigation into phase redistribution at a large diameter T-junction. 

A more complete set of experiments were performed earlier by Fouda and Rhodes 

(1974) who studied the effects of baffles placed in a reduced 0.05 / 0.025m T- 

junction. Two-phase annular flow through a horizontal tee with a vertical side branch 

was used to study the effects of baffles and homogenisers on downstream qualities. 
Their aim was to produce an equal phase split between the branch and main pipe, 

whereas the objectives of the current research are to enhance the phase split at the 

junction. The baffles were a quarter, half and three quarters of the tube diameter in 

height and placed just at the base of the T-Junction as indicated in Figure 5-2. 

Without the baffle present there was significant maldistrbution. However, it was only 

when the largest baffle was used that the maldistribution was minimised. 

Main Pipe 041: 1 MV 

Figure 5-2: The T-junction with baffle as used by Fouda and Rhodes (1974) 
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5.2 Adding an insert at the large diameter T-junctions 

An insert was made for both the regular and reduced T-junctions as described in 
Chapter 3, section 3.1.4. The insert, for both cases, was machined as thin as possible 

so that the inside diameter of the side arm was not reduced. The inserts were able to 

slide up and down the side arm as well as rotate through 360'. This allowed both the 

protrusion depth of the insert and the direction the scooped section faced - forwards 

(with the flow) or backwards (against the flow) to be altered. 

The initial investigation by Butterworth (1980) only considered the direction the 

insert was facing to affect the phase separation occurring at the Junction. This was 

expanded on by investigating the influence of the plane of the cut at the tip of the 

insert, with respect to flow direction, on the degree of separation at the junction. Two 

angles of cut were investigated, 45' and 30', these can be visualised in Figure 3-7, 

Chapter 3. Two protrusion depths, V2D and 3/4D were studied. A protrusion depth of 

1/2D indicates that the tip of the insert protruded from the side arm to half way across 

the diameter of the main run pipe and a protrusion depth of`3/4D indicates that flow 

split data was recorded with the tip of the insert protruding three-quarters of the way 

across the main pipe. A series of experiments were performed within the annular, 

stratified-wavy flow regimes. 

5.2.1 Altering the angle of cut of the insert 

The effects on phase separation caused by the insert cut at angles of 30' and 45' at the 

two protrusion depths, 1/2D and 1/41), can be seen from Figure 5-3 to Figure 5-6. In all 

cases the regular T-junction was used with all branches 1ý11ing within the horizontal 

plane. Inlet superficial gas velocity, Ugs, was l2ni/s and superficiai liquid velocity. 

U1, was 0.3 1 m/s giving horizontal annular flow with an asymmetric liquid film. 
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Figure 5-3: Annular flow, V2D protrusion, 45" insert 
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Figure 5-4: Annular flow, 1/21) protrusion , 30' insert 
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Figure 5-5: Annular flow, /4D protrusion, 45' insert 
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Figure -IS-6: Annular flow, -1/413 protrusion, 30' insert 
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Comparing Figure 5-3 and Figure 5-4, it can be seen that reducing the angle of cut 
from 45' to 30' does little to alter the phase split properities of the T-junction. Even if 

the protrusion depth is increased from V21) to 1/41), as in Figure 5-5 and Figure 
-5-6, the 

difference in phase redistribution around the T-junction is negligible. 

Reasons why altering the angle of cut at the top of the two inserts does not show 

significantly different flow split results could be due to the profile of the insert. 'When 

the insert protrudes into the main run arm, from the side arm the profile seen by the 4 

on-coming two-phase flow is almost identical in both cases. 

A schematic representation of the insert profile that the fluids arriving at the T- 

junction encounter can be seen below in Figure 5-7. Reducing the angle of cut from 

45' to 30' does little to alter this overall profile. The two inserts were set in exactly 

the same way with the tip protruding precisely half and three-quarters of the way 

across the main pipe. For both angles of cut, the area where liquid was held up 

behind the insert and the free area for the flow to pass the insert were very similar. 

This meant there was little difference in flow split of the two inserts. The difference 

in the flow split between the two angles of cut was minimal whether the insert was 

facing forwards or backwards. 

Main pipe Side arm 

Main pipe 
Side arm 

Insert facing 
forwards 

Insert facing 
backwards 

Area where liquid was 
held up 

Free area for tlow 
to pass insert 

Figure 5-7: Profile of the insert seen by the on-coming flow in the main run arm 
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If the idea of profile area is extended further for other angles of cut, for example 
reducing it further to 15', then similar arguments could be stated. The overall profile 
would not be affected therefore the effect on phase redistribution is thought to be 

almost negligible. It was originally thought that due to the 450 insert having the 

slightly more open nature - the angle of cut removing more of the side of the insert. 

see Figure 3-7 in Chapter 3-a greater proportion of the liquid droplets entrained in 

the gas core of annular flow would be intercepted compared to the 30' insert. 
However, this was not the case and it is therefore expected that no other angle of cut 
would significantly alter phase split at the junction in the presence of an insert. 

5.2.2 Altering the protrusion depth of the insert 

Protrusion depth of the insert was investigated, primarily with the 45' insert since the 

angle of cut was deemed to have little significant effect on the phase split at the T- 

junction. A series of experiments were preformed with both annular and stratified- 

wavy two-phase inlet flow with the regular 0.127m T-junction and all branches lying 

in the horizontal plane 

Comparing Figure 5-3 and Figure 5-5, the effects of protrusion depth can be clearly 

seen for annular flow. At 3/41) the position of the insert, whether it is facing forwards 

or backwards, has more of an effect than when the insert is at a 1/21) protrusion depth. 

At 3/41) and with the insert facing backwards a greater liquid hold up behind the insert 

was seen. As the liquids builds up the gas is forced to pass between the insert and the 

wall of the main pipe, resulting in an area of low pressure, faster flowing gas around 

the tip of the insert. Once past the insert the gas has a greater area in which to expand 

into and thus a large proportion is drawn down the side arm. Under these conditions 

the T-junction and insert acted as a good partial phase separator. At 3/4D and the insert 

facing forwards the insert acts like a large scoop and diverts a large proportion of both 

the liquid and gas down the side arm. Under these conditions the T-junction and 

insert acted more like a flow divider. with nearly an equal split between the branch 
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arm and the run arm. Such effects were more exaggerated with the insert at a 

protrusion depth of3/4D, as opposed to '/2D. 

Experiments performed in the stratified-wavy flow regime, for example ýN ith inlet 

superficial gas velocity, UgS, at 24m/s and the inlet superficial liquid velocity. U1, at 
0.0535m/s, see Figure 5-8 and Figure 5-9. With the insert at a 1/2D protrusion depth. 

facing forwards, only a very slight improvement in flow split was seen in the results 

compared with no protruding insert in place. However, with the insert at V21) facing 

backwards the effect was to create more of an even flow splitter. These Nvere the 

opposite results compared to those for annular flow where at the same protrusion 
depth and the insert facing backwards, the phase separation qualities of the Junction 

were increased. Butterworth (1980) also observed similar findings for the small 
diameter T-junction, where the phase split results for annular and stratified now in the 

presence of an insert were opposite to one another. 

Under stratified-wavy flow conditions, the liquid is flowing along the bottom of the 

main pipe but does not form a very thick layer. This meant with the Insert at ! /2D 

facing forwards the liquid had to rise slightly to enter the side arm and could not just 

be scooped in. However, with the insert facing backwards, as the gas was forced 

around and over the insert the liquid also began to rise up and around the back of the 

insert. This reduced the momentum of the liquid phase allowing it to be diverted 

more easily with the gas down the side arm. 

With the insert 1/4D across the pipe there was only a narrow channel available for the 

fluids to flow around the insert. When the insert faced forwards the build up of liquid 

in front of the insert was easily forced into the side arm by the faster flowing gas. 

However, with the insert facing backwards the gas was forced to pass between the 

insert and the side wall of the main tube. As, by Bernoulli the gas would be flowing 

much faster through the constriction the liquid being dragged past the insert with it 

would therefore have a much higher momentum. This resulted in less liquid therefore 

being diverted down the side arm for the same fraction of gas taken off 
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Figure 5-8: Stratified-wavy flow, V2D 
protrusion, 45' insert 
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Figure 5-9: Stratified-wavy flow, '14D protrusion, 450 insert 

108 



Placiq an insert at ai igle Tjmm lion 

5.2.3 Insert and the reduced T-junction 

Research was also carried out using the insert within the reduced T-junction 
(D31D, =: 0.6). These experiments represent a scaled up version of the Butterworth 

(1980) runs since the original T-junction used had a similar side arm ratio 
(D, ID, = 0.65). A strict comparison between the two sets of data can not be 

performed as the test conditions of Butter-worth could not be replicated on the present 

rig. 

The reduced T-junction already acts as a good partial phase separator, as explained 

previously in Chapter 4, due to the smaller side arm diameter decreasing the area 

available for take off. It was thought that the presence of the insert in either position 

would enhance the phase split as the protrusion forms a physical boundary thus 

preventing even the slower liquid film from being extracted into the side arm. 

As can be seen from Figure 5-10 and Figure 5-11 this was not the case. The 

backwards insert has marginally increased the partial phase split properties of the 

junction at both protrusion depths. However, the opposite is true with the insert 

facing forwards. Some of the faster flowMg liquid droplets carried in the gas core 

have been captured by the insert and thus forced down the side arm. This is more 

noticeable with the insert at a V2D protrusion depth phase split as the insert may not 

interrupt the gas stream as significantly as at a 1/41) protrusion depth. As the insert is 

only 0.076m in diameter the gas stream may have flowed easily around it with little 

change in direction or momentum, thus some of the liquid droplets have been 

captured by the insert and taken off down the side arm. 
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Figure 5-10: Reduced T-junction, annular flow, V2D protrusion, 45' insert 
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Figurc'5-11: Reduced T-junction, annular flow, /4D protrusion, 45' insert 
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5.3 Conclusions 

Placing an insert within a regular T-junction had a marked effect both with annular 
and stratified flows although altering the angle of cut at the top of the insert had littic 
to no effect on the flow split properties. 

For annular flow, the insert was seen to promote the partial phase separation 
properties of the junction at both protrusion depths facing backwards. With the insert 
facing forwards the junction acts more of a flow divider than a phase splitter, with 
more liquid being taken off down the side arm 

For stratified flow, the opposite trends were seen, with the insert facing forwards at 
both protrusion depths improving the phase split qualities of the junction. With the 
insert facing backwards, again the junction acted more as a flow divider than phase 

splitter. 

Reduced T-junctions already act as good partial phase separators and placing an insert 

at the junction did little to either promote phase split or enhance equal flow split 
between the two branches. The insert facing backwards marginally improved the 

already good phase separation properties of the junction compared with the insert 
facing forwards. The trends seen were similar to those noted for a regular T-junction. 

just with less of a marked effect. 

It was also noted that the presence of the insert significantly altered the operating 

envelope of the rig. Therefore the additional pressure drop of the system with the 

insert in place would have to be taken into consideration if performance is to be 

maintained. 

Placing an insert at a T-Junction is only going to be effective if the inlet floxv regime 

is known or can be effectively predicted since the direction the insert faces in order to 

promote phase split is different for the various flow regimes. If the inlet flow regirne 
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cannot be predicted with certainty then placing an insert at a junction could have the 

opposite of the desired effect and thus have disastrous consequences on downstream 

equipment. 

The forcing of a scrubber through the pipe network to remoN-e deposits from the NN-alls 

and so clearing the system known as pigging, is also an issue to consider. With the 

inserts protruding into the main pipe, pigging that section could obviously not be 

done. Pigs could be retrieved before they reached the insert and re-entered at a more 

suitable location down stream but this scheme would only be cost effecti"'e and 

practical if the presence of the insert significantly improved the operation efficiencN, 

of the plant. 
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CHAPTER 6 

Two T-junctions in Series 

The work presented in earlier chapters considered the phase separation of gas-liquid 
flows at a single T-junction. Branch arm orientation and diameter; the effect of 
inserts and the addition of a U-bend have all been investigated with the ultimate aim 

of improving the phase separation. Within this chapter the use of two T-junctions in 

series has been considered. The initial aim of combining two T-junctions is to 

produce two essentially single phase streams with minimal intervention and cost. If 

this could be achieved without creating a complicated system then the possibilities of 

using T-junctions as partial phase separators is further increased. Plus, if the creation 

of two essentially single phase streams can be guaranteed then the reluctance to use 

novel ideas within industry may be overturned. 

Rea (1998) defmed a good split achievable with a simple T-junction as 80% by mass 

of the gas exiting with less than 20% by mass of the liquid. A tighter criterion has 

been suggested as less than 10% by volume liquid exiting with the gas and less than 

10% v/v gas in liquid. Such an approach is beyond the separation capacity of a single 

T-junction but is not deemed impossible for simple combinations of two junctions. 

Two T-Junctions were placed in series, the first with a vertically upwards (+90') side 

arm, creating a gas rich stream, and the second a vertically downwards (-90') side 

arm, to draw off the liquid. The remainder of the two-phase flow continues along the 

run arm. Movement of valves on each arm controls the phase split at each junction. 
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Only one other recent study has considered the effect of combining the phase 

separation properties of single T-junctions. The research of Bevilacqua et al. ('000) 

considered combinations of junctions where all branch arms were vertically upwards 

and their results related fractional gas (or liquid) take off against void fraction. Their 

investigations clearly show that combining junctions produces some very desirable 

effects and is worthy of serious consideration. They, however, studied the system as a 

whole whereas here the aim is to build a more complete picture by investigating 

specific system properties. 

In order to gain a complete picture of how the system performs various aspects in 

particular were studied. These included altering the separation distance of the 
junctions to identify any interacting behaviour between the two; reducing the side arm 
diameter of the downwards junction to reduce the gas fraction drawn off and the 

effects of changing downstream resistance in each branch arm. The results have been 

presented in several ways to show the overall performance of the system and how the 

phase separation is related to its two individual junctions. 

6.1 Graphical representation of the phase separation 

The experimental configuration of the rig and detailed operating procedures are given 

in Chapter 3. The separation distance of the two junctions was measured from centre 

to centre and could be set at either 0.5m or 1.2m apart. For simplicity, the system can 

be represented schematically as indicated in Figure 6-1. The first junction was 

positioned with a vertically upwards (+90') side arm and the second had a vertically 

downwards (-90') side arm. Butterfly valves located on the up, down and run arms 

were used to control the phase split at the junctions and the air-water mixture leaving 

each branch was separated and measured, as in previous experiments. 
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Figure 6-1: Schematic diagram of the two T-junction system 

The data presented in the following graphs has used the stream numbers as indicated 
above, where stream I in the multiphase inlet and streams 2,4 and 5 are the three 

system outlets. Stream 3 is the section of pipework between the two junctions and it 

could be seen as the new inlet conditions to the second T-Junction, after gas extraction 
has occurred through the first. Having two active T-junctions the system now has 

three dynamic outlets, the composition of each dependent on the position of the 
butterfly valve in each outlet. This has transposed the problem into one with three 

dimensions as, obviously, the composition of all three outlets is related. As shown in 
Chapter 2 (Figure 2-11) Bevilacqua et al. (2000) combined the outlets of all their 

junctions so their comb separator still effectively had one inlet and two outlets, thus 

avoiding this problem. Many approaches have been considered in order to find a 

suitable method of presenting the separation data; some have been considered in more 
detail within this chapter. 

As with the experiments for the single T-junction. the inlet flow rates studied fell 

within the annular and stratified flow regimes. As previously, the data from the 

stratified flow regime can be considered as high liquid, low gas inlet flows and low 
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liquid, high gas inlet flowrates. General trends were noticed within each floýv pattern 
but reported here are onlY specific examples from each case. 

Conventional Phase Separation Graphs 

A systematic data set was obtained by incrementally closing the val-V'e on the run arm. 

with the other two left fully open. The valve on the down arm was then incrementall-v 

closed, with the other two fully open and lastly the valve on the up arm incrementally 

shut, with the other two fully open. It was felt that this method of operation would 

give a good overall picture of the phase separation occurring and hox'Ný it related to 
down stream resistances. A typical set of results for the rig with two regular T- 

junctions being used, set 1.2m apart, can be seen in Figure 6-2 to Figure 6-5. Figure 

6-2 shows the phase split curve for the up arm (stream 2). The fraction of inlet gas 
(G') drawn up the 0.127m diameter branch arm has been plotted against the fraction 

of inlet liquid (L') drawn up the same branch arm. The triangular symbols represent 

the phase split as the run arm butterfly valve is closed; the diamonds represent the 

effects of closure of the down arm valve and the circular symbols correspond to 

closure of the up arm valve. Data was also taken with all three valves left open. All 

points can be seen to lie along the x-axis, indicating that this is a pure gas stream. The 

fraction of the inlet gas drawn off increases to 75% as the run arm valve is closed. 
The close proximity to each other of the points representing movement of the down 

arm valve (the diamonds) indicates that little gas is taken off down this arm and what 

is cannot be forced back through the up arm to improve its take off. Obviously 

closure of the up arm valve reduces all gas drawn off and forces it through the two 

remaining open branch arms as indicated by the low G' values of the circular points. 

Plotting the phase separation at the second T-junction with the downwards side arm. 

the data can be looked at from two points of view. The first considers the phase split 

based on the inlet two-phase flow in stream 1, see Figure 6-3. A liquid rich stream 

can be identified showing the fraction of gas entrained. A maximum is achieved with 

the run arm valve fully shut where all the liquid is being dra,, N-n off through the dw. Nn 

leg together with about 25% of the gas. This corresponds to the maximum gas 
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0 
fraction drawn off through the first T-junction being about 75% of the inlet flow. 

Increasing the run arm resistance, by closing the butterfly valve in stream 5. has the 

most dramatic overall effect with the fraction of liquid drawn down the stream 4 

significantly increasing from 70% with all valves left open to 100% as the run arm 

resistance increases. Conversely, closure of the run arm valve has little effect on the 

fraction of gas drawn off down stream 4, indicating that this is a liquid rich stream 

that is relatively unaffected by the gas flowrate. The trend of the results plotted in this 

manner closely match those for a single T-junction with a downwards side arm (as 

described in Section 4.2.3 in Chapter 4. ) 

A second way of plotting the data for the second T-junction considers the inlet being 

stream 3. The data in Figure 6-4 which takes into consideration the gas drawn off 

through the first T-junction. Using stream 3 as the inlet conditions forces the locus of 

the plot to follow a more conventional phase split curve from (0,0) to (11). Using 

this method highlights the effects of downstream resistances and the general trends 

shown in Figure 6-3. It can still be noted that increasing the resistance in the run arm 

has the greatest effect on phase split but as shown here the fraction of gas in stream 3 

diverted downwards is significantly higher than as shown in Figure 6-3 where the take 

off down this branch arm has been related to the original inlet flow. Hence, this 

method of presenting the data isolates what is occurring at the second T-junction 

rather than showing how the second T-junction is effecting the phase separation of the 

overall system. 

If the two outlets for the system are considered to be stream 2, the gas rich upwards 

arm from the first junction and stream 4, the liquid rich downwards arm of the second 

junction, then the overall phase split results could be presented as in Figure 6-5. Here 

the sum of the two outlets has been used producing a three legged plot which initially 

does little to identify the overall phase separation capabilities of the system. 

Although Figure 6-5 does not easily relate to the previous figures. a more detailed 

examination of the effects on the downstream resistances of the system can be 

achieved. Here closure of both the run and up arm butterfly valves have more of an 
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effect on the fraction of gas drawn off through the system. Complete closure of the 

up arm valve can reduce the gas take off for the system to just under 20% ývith 

roughly 80% of the liquid being diverted. The other extreme is noted "-ith the 

increased resistance in the run arm. Complete blockage of stream 5 obviously forces 

all incoming gas and liquid to exit via streams 2 and 4. 

Closure of the down arm has little effect on the gas fraction drawn off as 50% of the 

gas can be extracted with increasing liquid fractions from 0% to 75%. However, there 
is no easy way of telling in what proportions the gas and liquid separates do,. x-n each 

of the exits if the data is presented thus, only a picture of the combined streams given. 

In all the conventional plots shown above, plotting fraction of gas versus fraction of 
liquid drawn off down the side arm(s), shows the significance of altering down strearn 

resistances in each arm of the system. Clearly, the operation of the downwards side 

arm and the run arm butterfly valves has a more considerable effect than altering the 

upwards arm valve. This is because the distribution of both the gas and the liquid is 

effected rather than purely that of the gas. There is also little advantage gained by 

reducing the fraction of gas drawn up the first side arm. The liquid phase is clearly not 

being drawn up by the fraction of gas removed and the production of a pure gas 

stream from a multiphase inlet at a T-junction has been achieved. This could lead to 

the phase split results gained by altering the resistance in the upwards arm of the first 

T-junction to be deemed superfluous. If these results (the circular points) are 

removed from the previous phase split plots then the branching section of the locus 

from (0,0) to (1,1) is removed, leaving more conventional looking phase split plots. 

6.1.2 Triangular phase separation plots 

A different method of presenting the phase split occurring within the two T-junction 

system could be the use of triangular plots. Clearly, the flows measured from each of 

the three outlets are interconnected and this is a method of representing them together 

on one graph. 
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Plotting data from the same experimental conditions as above, U,, = 12m/s and U1, = 
0.31m/s, on a triangular diagram gives a different perspective on the results. t'sing 

the conventional G' versus L' plots, the gas fraction with its corresponding liquid 
fraction for each valve setting can be easily identified; with triangular diagrams the 
fraction of the inlet gas, liquid or the total drawn down each of the branches is shown 
separately. 

In Figure 6-6 the fraction of gas taken off down each arm is plotted with respect to the 

valve position. As in the previous section, the triangular points represent mox, ement 

of the run arm valve, diamond points movement of the down arm valve and circular 

points movement of the up arm valve and the spit with all valves open is shown by the 

star. This looks very similar to Figure 6-5 but here just the gas fraction leaving drawn 

down each of the three branches is considered. As can be seen, once again movement 

of the upwards arm butterfly valve forces the plot to branch off in an uncharacteristic 

way. Movement of this valve forces the gas, that would otherwise be drawn oil', to 

exit with the liquid through the other two arms. This has a detrimental effect on the 

system by reducing its phase separation qualities and therefore would not be done in 

practice. 

This method of plotting the phase separation characteristics was found to be fairly 

useful when considering the trends in the fraction of inlet gas drawn down each arm. 

The physical translation of these trends was however difficult to transpose to the 

actual two T-junction system as information on the liquid phase was lacking. 
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Figure 6-7 represents the complete phase separation of the system based on the gas 
fractions (hollow triangles) down each arm, the liquid fractions (hollow squares) 
down each arm and the overall fractions of gas and liquid (full circles) down each 

arm. Since no liquid is ever drawn off through the up arm, plotting the fraction of 
liquid removed collapses all the data points onto the origin of the up arm axis. This 

method of presenting the liquid separation characteristics of the system is therefore 

rendered futile as were the conventional G' versus L' separation plots. Plotting the 

overall fractions (gas plus liquid) of the inlet flow passing down each branch shifts the 

trend only slightly from that of the liquid fraction curve. However. since the actual 

mass of gas entering the system is significantly less than that of the liquid, for all 

experiments, this is not surprising. 

Triangular plots do not present an easy method of identifying inlet conditions leading 

to good separation within the two T-junction system. Whilst useful for identifying 

where the different phases are going, they do not produce an elegant solution. Basing 

the separation quality of the system on the fraction of gas drawn off through the 

different branches is dangerous as the liquid present is not considered. 
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6.1.3 Combining two outlets 

Considering each of the three outlets individually, unlike the work of Bevilacqua et 

al. (2000), gave an insight as to how the mlet two-phase flow interacted with the two 
T-junction system. Knowing the composition of each stream has given the system 

greater flexibility and allowed a study into the effects of combining the different 

outlets together, as can be seen in Figure 6-8. 
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Figure 6-8: The effects of combining the different outlets. Ug, = 12m/s and U1, = 0.31 m/s 

Obviously, by combining two of the outlets, the system has reverted back to one with 

an inlet and Just two outlets, which allows the use of conventional G' versus U 

separation plots. The three outlets still affect the overall shape of each curve in a way 

not previously seen on such plots. 
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Depending on the separation requirements, the different junction combinations allow 
for various separation qualities to be achieved. Combining the up and run arms 
(diamonds), see Figure 6-8, gives a very gas rich separation with gas take off having a 
fairly low effect on the fraction of liquid drawn off. Under these conditions the 

minimum inlet gas extracted is 75% and this can be achieved with no liquid intake. 

The increase in liquid follows a fairly linear trend until the down arm valve is totally 

shut forcing the liquid out of the run arm but this occurs beyond a gas take off of 
95%, still with less than 40% of the inlet liquid removed. This shows that the two T- 

junction system can achieve the 10% by volume liquid in gas separation criterion. 
The opposite extreme can be seen when combining the down and run arms (circles). 

Under these conditions all the incoming liquid is drawn off with increasing gas 
fractions. Although even if the two T-Junction system is operated with minimal gas 
being drawn through into the liquid rich stream, the tight 10% by volume gas in liquid 

is still not being met. The least extreme measured is the combination of the up and 
down arms (triangles). One interesting feature of this combination is that it can be 

looked at in two ways. If movement of the up arm valves is ignored then around 50% 

of the inlet gas can be removed with the liquid fraction increasing from 0% to 75%. 

Beyond this, the gas fraction removed increases as more liquid is drawn off. By 

ignoring movement of the down arm valve, a liquid rich stream is created with a 

minimum of 75% of the incoming liquid being removed at various gas fractions. 

Hence the fraction of gas in liquid or liquid in gas can be easily controlled using this 

combination of outlets, which could be a very desirable effect in a separation system. 

For all further discussions considering changes in the system parameters, the effects 

on the phase separation of the combined outlets has been presented. This method of 

presentation was deemed the most suitable for two reasons. Firstly, it presents a 

compact view of all the system features and how they interact with one another. 

Secondly, within an industrial setting two T-junctions mounted in series are unlikely 

to have three outlets. It is considered that two of the outlets would be coupled 

together for simplicity and to minimise piping costs. 

125 



Two Tjunt-lions in sen«es 

Since all three outlets effect the overall shape of each of the curN, -es. in all the 
following figures the effects of increasing the down stream resistance in each branch 
has been shown. The triangular symbols represent movement of the run arm valve. 
diamonds the down arm valve and circular for the run arm valve. The point 'where all 
valves are left open, indicating the simplest system available, is represented by a star. 

6.2 Using a reduced T-junction 

Section 4.2.3 in Chapter 4 indicates that the use of a reduced T-junction with a 
downwards side arm can lower the entrained fraction of gas drawn downwards with 
the liquid. This concept was carried forward to the two T-junction system to further 

enhance the phase separation. A reduced T-junction placed with the upwards side 

arm would not aid gas take off, as indicated by the results in section 4.2.2 in Chapter 

4. The presence of the reduced diameter side arm forces the same gas fraction drawn 

off to flow faster. The faster flowing gas in turn causes more of the liquid to be 

drawn upwards, thus lowering the quality of the gas rich stream previously created. 

Although this was not the case with the single T-junction, this phenomenon would 

reduce the quality of the gas rich stream created by the first T-junction. Hence, only 

the one reduced T-junction was used within the two junction system and that was with 

the downwards side arm. 

Figure 6-9 shows the effects on the gas phase separation with the reduced T-junction 

in place. Comparing the combined output from the up and run arms it can be seen 

that the fraction of gas drawn off has increased to over 90% with reduced liquid take 

off. A pure gas rich stream can be achieved, leaving less than 10% of the inlet gas 

flow exiting within a liquid rich stream. Closer inspection of Figure 6-9 shows that, 

when combining the up and run arm, closure of the up arm valve increases the liquid 

take off for a given gas fraction thus having a detrimental effect on the separation 

curve. This coincides with previous discussions on the closure of the run arm valve. 

However, for all the following graphs the effects on phase separation of all \-al"'c 

positions have been shown. 
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Figure 6-9: Effects of using a reduced diameter T-junction, U., = 12m/s, Ul, = 0.31 m/s 

Hollow symbols represent reduced T-junction used with downwards side arm, full symbols 
represent two regular T-junctions within the system 

Comparing the results of the other two liquid rich combinations show that the 

presence of the reduced T-junction has lowered gas take off within the downwards 

side arm. The combined outlet of the down and run arm shows that with 100% of the 

inlet liquid being removed, the best separation achieved was with only 10% of the 

inlet gas flow being drawn off This is a significant reduction on the fraction of gas 

drawn off by the two regular T-junction system and takes the two T-junction system 

closer to the stated 10% volume gas in liquid separation criterion. When the up and 

down arms are combined obviously the reduced gas take off through the down arm is 

almost negated by the increased gas drawn through the up arm. 
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6.3 Altering the separation distance 

The separation distance between the two junctions was changed to investigate its 

effect on the phase separation qualities of the system. The junctions could be placed 
0.5m (413) or 1.2m (IOD) apart. Unfortunately, due to the location of the floNN- facility 

the separation distances could not be any greater. 

Figure 6-10 and Figure 6-11 show the effects of T-Junction separation for annular 
flow. Figure 6-10 shows how the system reacted with two regular T-Junctions in 

place at the different separation distances and Figure 6-11 shows the effect of 

separation with the reduced T-junction placed downstream of the regular T-Junction. 

As can clearly be seen in both cases the effect is negligible for annular flow and the 

same was found for stratified flow with low liquid, high gas inlet flowrates. This 

could be due to the presence of the second T-Junction, which eliminates the 

occurrence of a hydraulic jump at the first junction, as there are no conditions under 

which the system draws liquid up the first branch arm. A second reason why the two 

T-junctions seemingly do not interact could be due to the large diameter pipes 

involved and the relatively low gas and liquid inlet flow rates. 

However, for stratified flow with high liquid, low gas inlet flowrates the effect of 

separation distance was negligible with the reduced junction placed down stream of 

the first but with the two regular junctions a variance was noted. See Figure 6-12. 
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Figure 6-12: Effect of T-junction separation distance with two regular T -junctions, U., = 4m/s, 
U1, = 0.043m/s. Hollow symbols represent separation distance 0.5m, the full symbols 1.2m 

As can be seen in Figure 6-12 
, the difference is not great but it stands out as being 

identifiable rather than negligible. Under these flow conditions, reducing the 

separation distance from 1.2m to 0.5m has generally increased the gas take off and 

reduced the fraction of liquid taken off through the downwards side arm. All other 

general trends are still observed. 

The significance of T-junction separation can not be conclusively identified from 

these findings. Here, the separation distance was fairly small so the effect the first T- 

junction has on the inlet flow regime was thought to be picked up by the second T- 

junction. For example, with annular flow it was thought that the high gas take off 

through the first junction, would cause the film flowing around the top of the pipe to 

fall and flow with the thicker bottom film, and the difference in proximity of the 

second junction would have an effect of the fi7action of liquid drawn through the 

second T-junction. Maybe this is the case but under these conditions little difference 

was observed. 
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6.4 Comparing Two T-junctions in series with a single T-junction 

The placing of two T-junctions in series aimed to improve the phase split alread-Y 
known to occur at a single T-junction. The interest was two-fold. Firsfly, it was to 
investigate if the inclusion of the second junction improved the phase separation of 
two-phase flows and secondly to discover how predictable the phase separation of the 
two T-junction system could be. 

6.4.1 Comparing the phase separation 

Placing two T-junctions in series has allowed a certain degree of control to be gained 
over the phase separation that occurs within the system. Combining different junction 

outlets means the system can produce either very gas or very liquid dominated 

streams for the same inlet flow conditions, unlike the flow split obtained with a single 
T-junction. 

The results have been compared with those of a single junction, already investigated 

in detail within Chapter 4. For comparison purposes, since the phase separation of the 

two T-junction system can be considered in one of three ways - combining the up and 

run arms, the up and down arms or the down and run arms - the combination most 

appropriate to the results of the single junction being investigated has been 

considered. 

The effect of the inlet flow regime has been investigated as this was one of the most 

significant parameters to affect the phase separation and was highlighted during the 

investigations on a single T-junction. The results for one particular run within the 

annular, stratified flow regimes have been presented to aid comparison. The results 
from the stratified flow regime have again been further divided into high liquid, lov" 

gas inlet flowrates and low liquid, high gas inlet flowrates. The effect on the phase 

separation using the reduced T-junction was also considered. 
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Figure 6-13 shows schematically the different branches that have been used within the 
following graphs to compare the phase separation at a single junction with that of the 

two T-junction system. 

Figure 6-13: Schematic representation of the different outlets being compared 

Figure 6-14 to Figure 6-16 show the phase separation of a single junction compared 

with that of the two T-junction system. In all cases the regular single T-Junction was 

used with all branches being 0.127m. in diameter and for the two T-junction system 

two regular junctions were set at Im apart. As can be seen, the two T-junction system 

consistently performed a cleaner separation for all inlet flow rates. 

Both Figure 6-14 and Figure 6-15 show movement of the up arm butterfly valve has 

had a detrimental effect on the phase separation. In both cases more liquid has been 

drawn off than otherwise achievable at the lower gas take offs. This forces the 

separation curve for the two T-junction system to merge with that of the single 

junction. 
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Figure 6-14: Comparison of phase split with one and two T-junctions. Annular flow, Ult, = 12m/s 
and U1, = 0.31 m/s. 
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Figure 6-16: Comparison of phase split with one and two T-junctions. Stratified flow, U., = 8m/s 

and U1, = 0.1 86m/s 

In both cases at very high gas take off rates, above 90%, the difference in phase 

separation of the two systems is less apparent although the two T-junctions in series 

can still be seen to out perform the single junction 

The phase separation stratified flow with high liquid flowrates has been the most 

significantly increased with higher gas take off achievable with low liquid 

entrainment, as shown in Figure 6-16. With two T-junctions, a gas take off of 85% 

can be obtained with only 20% liquid entrainment, compared to only 60% gas take off 

for the same liquid entrainment with only one Junction. 

For stratified flow, two T-junctions perform near perfect phase separation. With the 

rnaJority of gas being drawn off through the upwards arm of the first junction the 

liquid has nothing to "drag" it past the opening of the downwards junction hence it is 

drawn off. The remaining faster flowing gas continues straight on down the run arm. 
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The high degree of phase separation is achievable with just a single T-junction with 
less than 15% of the liquid not being drawn off through the downwards arm. 

The effect of using a reduced T-junction was also investigated and the results for the 

various inlet flows can be seen in Figure 6-17 to Figure 6-19. With just the single T- 

junction in place the reduced diameter side arm (0.076m) was the downwards branch 

arm. For the two T-junctions in series, the reduced T-junction was placed 
downstream of the first junction and had a vertically downwards side arm. 

For both annular and high inlet liquid stratified flows the presence of the reduced 
diameter T-junction marginally increases gas take off for a given liquid take off, see 
Figure 6-17 and Figure 6-18. Again, movement of the run arm valve has had a 
detrimental effect on the phase split of the two T-junction system. For low inlet liquid 

stratified flow the converse is true, see Figure 6-19. With stratified flow, reducing the 

area available for take off has lowered the fraction of liquid drawn off down the side 

arm, forcing more to leave the exits under consideration here, especially for the case 

of the single junction. These results are as expected since, as discovered in section 
4.2.2 in Chapter 4, the presence of a reduced diameter side arm for a T-Junction with a 
downwards branch under these conditions has only a marginal effect on reducing the 

fraction of gas drawn down the branch arm for a given liquid take off. 
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Figure 6-17: Comparison of phase separation with a reduced diameter T-junction for the one 

and two T-junction systems. Ug. = 12m/s and U1, = 0.31 m/s 
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Figure 6-18: Comparison of phase separation with a reduced diameter T-junction for the one 

and two T-junction systems. U., = 4m/s and U1, = 0.434m/s 
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Figure 6-19: Comparison of phase separation with a reduced diameter T-junction for the one 

and two T-junction systems. U. = 8m/s and Ul, = 0.186m/s 
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6.4.2 Predicting the phase separation of two T-junctions 

As the research data continues to accumulate for the phase separation at a single T- 
junction, we are steadily getting closer to being able to predict the correct phase 
separation for the given set of inlet conditions. Being able to predict what is likely to 
happen within the two T-junction system is paramount if the ideas are to be embraced 
by industry. 

In the previous section the difference in phase separation performance of a single T- 
junction and two junctions in series was investigated. It was shown that the two T- 

junction system consistently out performed the single junction but can the knowledge 

we have all ready obtained through in-depth investigations of the single T-junction 

help predict the phase separation of the two T-junction system? 

The two T-junction system could be considered as two separate T-junctions, as 
indicated in Figure 6-20, the first with a vertically upwards side arm and the second 

with a vertically downwards side arm. Investigated within this section is whether the 

phase separation curves of the two single T-junctions, studied in isolation of each 

other, can be used to represent what is happening within the two T-junction system. 

ýýl m01 

Figure 6-20: Can the two T-junction system be represented by two individual T-junctions? 

The phase separation curves of a single T-junction, Nvith a vertically upwards branch 

arm, under similar inlet conditions used within the two T-Junction system can be 

I 
_3 
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compared with the gas drawn off through the first arm of the junctions in series. A 

comparison can be seen in Figure 6-21 for annular inlet conditions, Uýs = 12m/s and 

U1, = 0.31m/s. Similar findings were found in all cases, regardless of inlet flow 

regime. The presence of the second junction has eliminated liquid take off by 

reducing the presence of a hydraulic jump where as for a single junction there is a 

critical gas take off point where liquid is first drawn through the branch arm. 
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Figure 6-21: Phase separation of a single T-junction with a vertically upwards side arm 

compared with the up arm of the first T of the two in series. U,,, = 12m/s, U1, = 0.31 m/s 

The maximum fraction of gas drawn off through the up arm of the two T-junction 

system is very similar to the critical gas take off for a single junction. This was found 

to be the case for all inlet conditions. The presence of the second junction ensures 

that the stream is 100% gas but does not increase the maximum gas take off through 

such an orientated junction. 
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The varying gas fractions drawn through the up arm of the two T-junction system 

means that the inlet conditions of the downwards arm keep changing. This makes 

comparison with a single T-junction more complicated than for the first case. 

The results from two inlet flow regimes have been given in Figure 6-22 and Figure 

6-23. In both figures, the phase split for the second junction of the two T-junction 

system is represented by the triangular points and is the phase split taking into account 
the fraction of gas removed through the first junction. Due to the changing inlet 

conditions, these points can only realistically be compared with a range of inlet 

conditions to a single T-junction. As only the gas flow is effected Figure 6-22 and 
Figure 6-23 show different inlet gas flowrates for a single T-junction at a constant 

superficial inlet liquid velocity, Uls = 0.31m/s and Uis = 0.186ni/s respectively. 
Please note that the y-axis has been altered to give a better view of the trends 

observed. 

For both annular (Ug, = 12m/s, U], = 0.31m/s) and stratified (Ug, =: 12m/s, U1, = 

0.1 86m/s) flows the phase separation with two T-junctions in series show very similar 

trends to those of a single junction. For both inlet flow regimes approaching a single 

junction, for a given gas take off the fraction of liquid drawn off increases as inlet gas 

velocity is reduced. This effect is more noticeable with stratified flows when all the 

liquid is flowing along the bottom of the pipe. 

From a visual inspection of both figures, the phase separation through the down arm 

of the second junction of two in series is seen to follow more closely the phase 

separation at a single junction with the same initial inlet gas flow into the system - in 

both cases 12m/s. In other words, the phase separation at the second junction of two 

in series can be almost equated to the phase separation at a single junction without the 

consideration of the gas removed at the first junction. 

Obviously this is merely a visual trend observed from the data. A more detailed 

analysis of the two T-junction trends reveals that each individual point refers to a 

different gas inlet flow to the junction due to the differing fractions of gas drawn 

through the up arm. Bearing this in mind, the data points at lower liquid take off 
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Figure 6-22: Various phase separation curves of a single T with downwards side arm compared 
with the down arm of the second T of the two in series. 
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Figure 6-23: Various phase separation curves of a single T with downwards side arm compared 
with the down arm of the second T of the two in series. 

Stratified Flow, U., = 12m/s, U1, = 0.186m/s 
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correspond to high gas inlet flows (with little gas being drawn through the up arm) 

and those at higher liquid take off represent inlet conditions -ývith low gas flow rate,,. " 
(higher gas fractions being drawn through the up arm). Hence. the phase split data 

from a single junction at one set of inlet conditions is not goi to satisfy the range Ing 

exhibited by the data from two T-junctions in series. 

This goes on to suggest that performance of two T-junctions in series is more complex 

than just the coupling of two individual junctions. A rough guidance can be obtained 

from the separation curves of the two single junctions as to the maximum gas fraction 

that could be drawn through the first T-junction of two in series and an idea can be 

acquired of the separation trends relating to the second junction. 

142- 



Two Tjunclions in series 

6.5 Visual Observations in the Two T-junction System 

As discussed at the end of Chapter 4, the same hollow feature was seen to occur at the 

top of the downwards side arm. Vortices and dips in the liquid surface were also 

seen, as with the single junction. Since no liquid was drawn up with the gas at the 
first junction, no falling films were seen or areas of low pressure indicated. The 

inclusion of the second T-junction within the system reduced the formation of 
hydraulic jumps, as discussed by Conte (2000). 

Within these observations the butterfly valve in the run arm was completely shut, the 

butterfly valve in the down arm partially closed until the liquid started being drawn up 

the first arm of the system by the gas. This caused the liquid in the system to build 

up, as if there were a blockage. 

UP ARM 

RUN ARM 

DOWN ARM 

ýT 
w 

Figure 6-24: Schematic diagram of the two T-junction system indicating the four viewing points 

Figure 6-24 is a schematic representation of the two T-junction system. In this case 

the first is a regular T-junction and the second is a reduced junction. Four viewing 
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points were used to observe the action of the liquid and gas in the heavilY liquid 

loaded system. Views I and 2 show what is happening at the T-Junctions and views 33 

and 4 show how the phases are travelling in the down and up arms. respectively. 

View 4 

View 2 

View I 

View 3 

Figure 6-25: Video stills of the gas-liquid flows at a two T-junction system 
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Figure 6-25 shows stills taken from high speed video footage for inlet conditions U,, 

= l2ni/s, U1, = 0.31m/s. Under these conditions the hollow. peeled banana effect 

observed at the top of a junction with a downwards side arm does not occur. Instead. 

view I shows the liquid being drawn up the first T-junction creating a frothy mixture 

and an area of low pressure (on the left hand side of the picture). View 4 indicates 

that the area of low pressure extends a fair way up this branch arm as the film on the 
left hand side of the still is falling whilst the droplets entrained in the faster flowing 

gas on the right are being drawn upwards. 

For the second junction, the reduced T-junction with the downwards side arm view 2 

shows the air bubbles created at the bottom of the first junction are drawn towards the 

second junction by the liquid exiting via the partially open butterfly valve at the 

bottom of the down arm. These bubbles are seen to spiral downwards at the top of the 

junction, as if caught in a liquid vortex. They continue spiralling down the branch 

arm in an anti-clockwise fashion. 

It can be concluded from these visual observations that the lagoon created by closing 

the run arm valve may help to reduce the fraction of gas drawn down the downwards 

arn-4 just as a U-bend reduced lowed the fraction of gas in this arm for a single 

junction. The droplets entrained in the upwards branch arm were seen to eventually 

impinge on the pipe walls, probably due to the two 90' bends in this arm slowing 

down the gas flow. Thus, if this arm were long enough, or the gas flow reduced, the 

droplets could be removed leaving a pure gas stream exiting from junction I and an 

almost pure liquid stream from junction 2. The two T-junction system could operate 

more like a total phase separator under these conditions. 
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6.6 Conclusions 

The phase split occurring at two T-junctions placed in series has been thoroughly 
investigated with respect to junction separation distance, effects of using a reduced 
diameter T-junction and how down stream resistances effect phase split for different 

inlet flow regimes. 

The inclusion of the second T-junction produced a third outlet to the system. For 

plotting the fractions of inlet gas and liquid passing down each branch neither 

conventional G' versus L' phase split plots nor triangular diagrams were found to be 

totally satisfactory. 

When combining the output from two junctions conventional G' versus L' plots were 
found to provide the best solution for presenting the data. Through different arm 

combinations the phase separation of a two T-junction system can be controlled to 

give liquid rich or gas rich streams. Being able to control the downstream resistances 

added a ftirther degree of control thus allowing the system to produce a more refined 

split. 

The physical properties of the system were found to only mildly affect the phase 

separation. The separation distance of the junctions had a negligible effect on most 

inlet flowrates. Having two T-junctions within the system prevented the formation of 

a hydraulic jump hence no liquid was ever drawn up the first junction thus the small 

junction separation distances investigated here did not Produce any significant effects. 

The inclusion of a reduced diameter T-junction, downstream of the first junction, 

reduced the gas fraction drawn through the down arm of the second junction thus 

improving the phase separation of the system. 

Having a two T-Junction system has allowed greater flexibility and controllability of 

the phase split compared with a single T-junction. Knowledge of the phase separation 
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occurring at a single junction can be applied in part to the two T-Junction system 

although the systems are inherently different. As yet just the trends observed from the 

two T-junction system can be represented but specific details are not highlighted. 

It was found that the tighter phase separation criterion of less than 10% by volume of 
liquid exiting with the gas was achievable with the two T-junction system and a 

cleaner separation can be achieved than with just a single junction. However. 

reducing the volume of gas in liquid to less than 10% v/v was not achieved. 
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CHAPTER 7 

Predicting the Phase Split at a T-junction 

If T-junctions are to be used within industry as partial phase separators then it is vital 

to be able to predict how a two phase mixture will divide between the two outlets. 

Various predictive models have been published, each aiming to provide an accurate 

picture of what is happing at the T-junction. Some methods have provided simple 

solutions, based on empirical correlations whilst others are more involved and 

consider the problem in three dimensions. However, to date there is no one single 

model that can predict the phase redistribution for arbitrary inlet flow conditions and 

the various geometries which define the T-junction. Most experimental and 

theoretical studies tend to be limited to a small range of parameters, resulting in 

models which are to be applied within specific conditions. 

This chapter starts with a brief introduction to the standard approaches of modelling 

the phase split at a horizontal T-junction. Junctions with downward (-900) side arms 

have received little specific attention. There are few published models for this case 

and their predictive results are poor in comparison with those available for horizontal 

T-junctions. Through the analysis of the experimental results for a large diameter T- 

junction with a downwards side arm, given in Chapter 4, it was considered that the 

linear nature of the phase split results could provide a simple method of predicting the 

phase separation. Thus efforts in Section 7.2 are concentrated on finding a suitable 

correlation to predict the fraction of liquid where the onset of gas take off occurs, 

LI and Section 7.3 considers the critical gas fraction, G',,, -,, at which all the liquid is 

diverted down the side arm. It was hoped that the development of such an approach 

would provide a scheme that is easy to implement but provides realistic results. The 

prediction of L'onsel was found to be successfully related to the terminal rise velocity of 

a bubble through a column of liquid and the value of G cri, was considered by relating 

the movement of the liquid to that of a particle. 
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7.1 Phase Redistribution Models 

The accuracy of the predictive methods currently available for describing the phase 
maldistribution (phase split or flow division) at a T-Junction can be x-er, v poor. 
Though over the last decade, these predictive models have improved significantly. 
due to the experimental and theoretical efforts of many researchers, but there are still 
many areas of this subject we do not totally understand. 

7.1.1 The general methods for modelling two phase flow 

As indicated in previous chapters the phase redistribution at a T-junction is highly 

complex and depends on many variables - including inlet flow regime, T-junction 

geometry and the pressure drops across the junction. Over the years, three general 

approaches have been used to describe the phase maldistribution at T-junctions - 

Empirical Correlations - the fitting of mathematical equations to experimental 
data 

2. Phenomenological Analysis - using simple mathematical methods to describe 

the fluid dynamics of the process 
3. Two-fluid Numerical Simulations - highly computational models involving 

many numerical simulations to describe the flow redistribution 

Although empirical correlations are relatively easy to formulate such models are not 

widely appreciated. This is because they tend only to be valid in the range of 

conditions bounded by the experimental data and the accuracy of the predictions 

depends on the size of the data base used to create them. Thus, such correlations 

developed by Henry (198 1) and Seeger et al. (1986) have not been extended bý- other 

researchers, despite the available data base of experimental results having grown 

significantly in recent years. 
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Phenomenological models have been growing in popularity over recent years. Such 

models provide a simple and practical analysis of the complicated two phase floýN 

behaviour at a T-junction. The models are based on the assumption that the branch 

arm exerts a "zone of influence" on the two phase flow passing the inlet. As these 

models aim to apply the principles of fluid mechanics and the effects of the T-junction 

geometry they tend to be flow regime dependant and based on specific T-junction 

geometries. Some of the more developed phenomenological models have been 

adapted so they can be applied to various different T-junction configurations. 

Studies of single phase flows, particularly that of McNown (1954), have shown that 

the fluid taken off through the side arm of the junction comes from an area 

approximated by the segment of the main pipe nearest the sidearm. Azzopardi and 
Whalley (1982) extended the single phase flow theory suggested by McNown (1954) 

to two-phase flows and developed a simple geometric model for vertical annular flow. 

Within this model a single zone of influence for both the gas and the liquid was used, 

see Figure 7-1 (A). This meant the dividing streamline (used to govern the fraction of 

the inlet flow which is diverted down the side arm and that which carries on) for the 

gas and liquid followed the same path. This approach was extended by Azzopardi 

(1984), to take into account the effect of branch arm diameter using geometric 

relationships, thus broadening the potential use of this method. Shoham et al. (1987) 

took this method finiher by considering the relative momentum fluxes of the two 

phases. This resulted in the gas and liquid having different dividing streamlines and 

thus different zones of influence, Figure 7-1 (B). The boundary of each zone was still 

considered to be a vertical chord. The initial model of Shoham et al. (1987) was to 

predict the phase split at a horizontal regular T-junction but has been extended to 

account for different branch arm diameters (Penmatcha et al., 1996) and different 

branch arm inclinations (Perimatcha et al., 1996; Marti and Shoham, 1997). 
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Figure 7-1: The different zones of influence used within phenomenological models 
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However, when Ballyk and Shoukri (1990) developed a model for annular flow in a 
horizontal regular T-junction they determined the position of the gas and liquid 
dividing streamlines by plotting the path of the fluid particles using the theory of 
potential flow. This showed that the shape of the zone of influence boundaries were 
dependent on the horizontal elevation from the bottom of the pipe and did not folloý\ 

a completely planar path, Figure 7-1 (C). Peng and Shoukri (1997) developed this 
idea further to include a gravitational term allowing for branch arm orientation to be 

changed from the horizontal. 

Hwang et al. (1988) took the dividing streamline approach to predict the phase 

separation at regular horizontal Y- as well as T-junctions. The dividing streamlines 

were developed by empirical correlations but they claimed that their model was 

applicable for all inlet flow regimes and did give reasonable results. 

The growth in the art of two phase computational fluid dynamics has allowed the 

development of two-fluid numerical simulations. The analysis of annular flow by 

McCreery (1984), which was further extended by McCreery and Banerjee (1990), 

used a two-dimensional potential flow approach for the gas stream and calculated the 

liquid drop trajectories using Lagrange's dynamic equations. Lemonnier and Hervieu 

(1987) redeveloped this approach for bubbly flow where the potential flow of the 

liquid was determined and then the trajectories of the bubbles sought. These were the 

first developments of the so called "two-fluid models". The use of sophisticated 

computer codes can now numerically solve the mass, momentum and energy 

conservation laws for each phase as well as correlations for the droplets/bubbles for 

the different phases travelling in more than one dimension. Lahey and Drew (1992) 

provide a complete derivation of the two-fluid model and as Lahey (1990) indicates, 

being able to predict such chaotic two phase flow behaviour in a three dimensional 

form does have significant advantages but accurate predictions still rely the closure 

relationships i. e. on the mathematical equations used to describe the processes 

occurring, notably the interfacial behaviour of the two phases which goverris the 

transitions between different flow regimes. There is no doubt that the potential of this 

method of predicting the phase redistribution at a T-junction is significant. as the flow 
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can be visualised, providing valuable down stream infor-niation but to date fexv 
attempts have been made, and those are primarily by Lahey (1990). Issa and Oliveria 
(1994) and Adechy and Issa (1999). 

7.1.2 The distribution of the two phases 

The development of phenomenological models has allowed the distribution of the two 

phases at a junction to be described mathematically with a basis in reality. Depending 

on the authors' assumptions and how the mathematics is used to describe the pllý'sical 
reality the models can produce fairly accurate predictions. Normally, the published 
models are flow regime dependant although a few authors, Saba and Lahey (1984), 
Hwang et al. (1987) and Ma et al. (1990), have tried to produce models independent 

of inlet flow regime. The general techniques used for analysing hov. - the t"vo fluids 
flow together for modelling purposes can fall into two classes - homogenous flow and 
separated flow. If the flow is considered to be homogeneous then the mixture is 

treated as a pseudofluid that obeys the usual equations that can be written for single 

component flow meaning all of the standard methods of fluid mechanics can be 

applied. Suitable average properties are determined for the mixture's velocity, 
temperature, density and viscosity. These pseudo properties are weighted averages 

and are not necessarily the same as the properties of either phase. Differences in 

velocity, temperature and chemical potential between the phases will encourage 

momentum and heat and mass transfer. Often these processes proceed very rapidly, 

particularly when one phase is finely dispersed in the other, and it can be assumed that 

equilibrium is reached. In this case the average values of velocity, temperature and 

chemical potential are the same as the values for each component thus giving 
homogeneous equilibrium flow. The resulting equations are simple and easy to use 

making this technique attractive for quick design calculations. This was generally the 

approach taken by the early empirical correlations. 

The second approach, the separated flow model. takes into account that the two 

phases can have differing properties and different velocities. It may be developed 
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with various degrees of complexity. In the most sophisticated version. separate 
equations of continuity, momentum, and energy are written for each phase and these 
six equations are solved simultaneously, together with rate equations, which describe 
how the phases interact with each other and with the walls of the pipe. In the simplest 
version, only one parameter, such as velocity is allowed to differ for the two phases 
while conservation equations are written for the combined flow. When the number of 
variables to be determined exceeds the available number of equations, correlations or 
simplifying assumptions are introduced. 

7.1.3 Predicting the phase split with a downwards side arm 

Most previous analytical and experimental research has considered all arms of the T- 
junction to lie horizontally. Since such junctions are rarely found within industrial 

settings investigating the effects on phase split at a T-junction with an inclined branch 

arm are imperative. As discussed in Chapter 4 with the branch arm inclined vertically 

upwards (+90') a gas rich stream is drawn off and inclining the branch arm vertically 
downwards (-90') draws off a liquid rich stream. The previous sections indicate the 
different approaches used to predict the phase split at a T-junction but of the available 

published models few have been dedicated to the phase separation at a T-Junction 

with a vertically downwards side arm. Peng et al. (1993) took the empirical 

relationships developed by Seeger et al. (1986) and the more phenomenological 

model presented by Ballyk and Shoukri (1990) and compared the predicted results 

with their experimental data for a regular 26mm diameter T-junction with annular 
flow, see Figure 7-2 and Figure 7-3 respectively. 
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Figure7-2: The model of Seeger et at. (1986) compared with the data of Peng efaL (1993) 
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Figure 7-3: The model of Ballyk and Shoukri (1990) compared with the data of Peng el al. (1993) 

The empirical correlations proposed by Seeger et al. (1986) vastly under predicted the 

data for the horizontal junction and over predicted the results of the junction with a 
downwards side arm. Not even the general trends exhibited by the data were 
followed, highlighting the limitations of empirically based models. The performance 

of the model by Ballyk and Shoukri (1990) deteriorated as the side arm was rotated 

downwards from the horizontal. Their model took into account the increasing effect 

of gravity as the side arm is rotated downwards but as the results indicate the phase 

split at such junctions is governed by more complicated mechanisms than increasing 

gravitational forces, especially with the side arm vertically downwards. Peng (1994) 
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adapted the model of Ballyk and Shoukri (1990) and published a general 

phenomenological phase split model for various downward branch arm orientations, 

with both annular and stratified inlet flows approaching the junction. Although the 

model followed the trends exhibited by the experimental data more closely than that 

of Ballyk and Shoukri (1990) it was noted that ftirther knowledge of gas pull-through 

and its dependence on junction geometry and inlet flow conditions was required. 

The only other available model capable of predicting the phase split at a junction with 

a downwards side arm is that of Penmatcha et al. (1996). Developed initially to 

predict the phase split for stratified flow at a regular T-junction with a side arm 

orientated from the horizontal to vertically downwards the ideas were extended by 

Marti and Shoham (1997) for a reduced diameter side arm. In general their model, 

based initially on the dividing streamline methodology of Shoham et al. (1987). did 

exhibit the general trends of the data but over predicted liquid take off and under 

predicted gas take off 

Thus, despite our understanding of the phase split occurring at T-junctions having 

grown significantly in the last fifteen years it is clear that for accurate predictions 

further knowledge is still required. This is especially true for junctions with a 

vertically downwards side arm. The published models mentioned above have all 

extended the principles behind the existence of zones of influence and applied them to 

junction orientations from the horizontal. As highlighted by the results, in all cases 

the physical reality is not being fully described and the predictions fall short of the 

experimental data. Therefore the theoretical work presented within this chapter 

considers the physical effects on the inlet flow passing a junction with a downwards 

side arm and suggests possible mechanisms to describe the observed phase split. 

Figure 7-4 shows a typical set of phase split results for a large diameter, regular T- 

junction with a vertically downwards side arm. For all inlet conditions it was 

observed that initially a single phase liquid stream was drawn through the branch arm. 

At a critical value of the fraction of liquid drawn down the branch arm, gas is 

entrained. This point was considered to be the onset of gas take off and denoted. 

Lon. 
v, * 
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Figure 7-4: Typical phase split results with the side arm vertically downwards 
ugs = 8m/s and Ul, = 0.556mls 

Beyond this point, a two-phase stream emerges from the branch arm and this has been 

termed the region of gas pull-though. At a critical gas take off, all the liquid is 

diverted down the branch arm. This point was denoted G it. 

All the experimental data for a junction with a downwards side arm, detailed in 

Chapter 4, was seen to follow similar trends, following a linear trend from the onset 

of gas take off to the critical gas fraction where all the liquid has been diverted. It 

was considered that the linear nature of the phase split results could provide a simple 

solution to predicting the phase separation. If the onset of gas take off, and the 

point where all the liquid has been diverted down the side arm for a critical gas 

fraction, G , i,, can be found then the phase split for a specified liquid and gas fraction 
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can be determined easily. The advantages of providing a simple method of 
calculating the phase split at a downwards T-junction is that the ultimate users of thi-s 
theory would be able to implement it in the field. If the complicated mechanisms can 
be summarised in a few equations industrial designers would be able to perform 
preliminary design calculations without the need of an involved computer simulation. 
This would make T-junction separation technology more tangible and readilý- 
available. Obviously, such a theory can only be considered if there is confidence in 

the results of the equations used to summarise the phase split process and to produce 
such results knowledge of the physical processes occurring is required. In the 
following sections the two critical points highlighted, and Gc, i,. have been 

considered in detail and various methods of predicting them discussed. 

7.2 The Onset of Gas Take Off 

As shown in Figure 7-4, the onset of gas take off is the point where gas is first drawn 

out of the side arm with the exiting liquid. Previous to this point a single phase liquid 

stream has been exiting through the side arm but at the onset of gas take off the single 

phase liquid stream turns into a two-phase gas-liquid flow. The data presented by 

Reimann et al. (1988) exhibits similar trends as does the data of Penmatcha et al. 
(1996), who studied various downwards branch arm angles, although no mention was 

made of this phenomenon within their predictive model. 

The prediction of this point, the onset of gas take off was tackled from two 

points of view. Up to this point only a fraction of the inlet liquid flow has been 

diverted down the branch arm, the first approach therefore considered the gas exiting 

with the liquid to be pulled through the layer of liquid remaining in the pipeline. This 

was related to previous research into small breaks in pipelines, which have received 

significant attention due to the nuclear industry. The second idea considered what 

was happening to the flow diverted down the branch arm, rather than any phenomena 

occurring at the Junction. During experimentation the entrained gas was seen as 
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bubbles trapped in liquid column in the branch arm and so their movement was 

considered. 

7.2.1 Predictions using small break tbeory 

Research into gas being pulled through a liquid layer, as would be experienced with 

stratified flow approaching the junction, was prevalent In the early 1980's when 

nuclear reactor safety was at the forefront of two-phase flow research. Loss of 

Coolant Accidents (LOCA) caused by a small break in a horizontal coolant pipe, for 

the purposes of experimental investigations, was often regarded as a T-junction with a 

very narrow branch arm diameter. Obviously, as the coolant pipe wall could fail at 

any point around its circumference research was performed with the narrow branch 

arm of the T-junction placed at various orientations form the horizontal. Reimann and 

Khan (1982,1983) paid particular attention when this phenomenon occurred at the 

bottom of the horizontal pipe. They simulated the problem by using a T-Junction 

where the main pipe diameter was 206mm and two different side arm diameters of 

6mm and 12mm. Using air-water stratified flow conditions the onset of continuous 

gas pull through was related to the stratified liquid level height, h, and can be 

described by: 

Fr 
PL 

)0.5 

= 1.1 
h )2.5 

JOL - PG d 
Equation 7-1 

Since the Froude number, Fr = V'Igd, is dependant on the side arm (branch 3 

velocity and diameter they determined that the onset of continuous gas pull through 

can become independent of side arm diameter, d, if the break mass flowrate is 

considered instead: 

1(9, 
DL (PL - p,; »" ýh2.5 = 0.736 Equation 7-2 
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Experiments were performed in the range h1d ý! 1. Maciaszek and Micaelli (1988) 

used a similar T-junction arrangement with a large diameter main branch (0.10'22 - 
0.284m) and a very small diameter branch arm (4 - 34mm) placed horizontally, 

vertically upwards and vertically downwards. They calculated the onset of gas take 

off by considering it as a balance between the horizontal and vertical inertial forces of 
the liquid phase: 

2n 
hbge 

-K 
Q3L 

g(PL - PG)PL 
Equation 7-3 

K and n were found by experimental means for their system. K varied with the 
fraction of liquid drawn down the branch arm being close to unity for large fraction of 
liquid diverted and decreasing as the fraction of liquid in the branch arm was reduced. 
The value of n was found to be 0.2. 

hb 

44 
VL VG 

Figure 7-5: Onset of gas pull through, Maciaszek and Micaelli (1988) 
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As shown in Figure 7-5, this method of calculating the onset of gas pull through is in 

effect creating a dividing streamline where anything above the height. hhg, does not 
get drawn down the side arm. Hence, this method was applied to the large diameter 
T-junction currently under investigation and used to calculate the onset of gas take 
off, L'onset 

* The effect on the predicted value of L'onset 
can be seen in Table 7-1 for two 

arbitrary inlet conditions. Systematic empirical variation of both K and n was 
investigated. The values of K=1.1 and n=0.2 gave the best fit and were closest to 
the values quoted by Maciaszek and Micaelli (1988). 

Table 7-1: Comparison of the predicted and experimental values for the fraction of liquid drawn 
into the branch arm at the onset of gas take off, for different inlet flow conditions for the 
large diameter regular T-junction using the small break theory 

Inlet 

Conditions 
LI 

onset Experimental LI 
on. vei 

Predicted 
K n 

0.34 1.2 0.20 

0.42 IA 0.20 
Ugs= 8m/s 

0.40 
0.54 1.0 0.20 

U1, = 0.434m/s 0.79 1.1 0.22 

0.58 1.1 0.21 

0.30 1.1 0.19 

0.48 1.2 0.20 

0.60 1.1 0.20 

Ug, = 6m/s 
0.68 

0.77 1.0 0.20 

U1, = 0.3 1 m/s 1.0 1.1 0.22 

0.86 1.1 0.21 

0.41 1.1 0.19 

This method clearly indicates that there is an "onset of gas take off' for each set of 

inlet conditions and that it can be predicted, perhaps, in a manner not too dissimilar to 

the above methods described for the LOCA incidents. One major difference is that 
for LOCAs the diameter of the break was thought to be a fraction of the main pipe 

diameter but for T-junctions the diameter of the branch arm tends to be much larger as 

161 



Pre&cliq The Pbase SpAl al a Tjmnetivn 

junctions being used as partial phase separators need to separate the two phases into 

different streams and not significantly reduce the volumetric flowrate of one of the 

branches. Further enhancement of the above method would be obtained if an in-depth 

evaluation of the constants were made. The values initially used for K and n were 

taken around those suggested within the literature but a deeper investigation may 

highlight more suitable values. 

The value of L' using the small break theory was calculated for different inlet onset 

conditions with K=1.1 and n=0.2. The error in the predicted value of LI........ is 

shown in Figure 7-6. The systematic over and under prediction of using the 

small break theory indicates that with some modifications the theory may be extended 

to large diameter pipelines. 
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ugs = loni/s 

Ugs = gnvs 

Ugs = 6m/s 

0.1 0.2 lo, 0.4 
lo, 

Inlet superficial liquid velocity (m/s) 

0,6 

I 
Figure 7-6: The effect on the predicted value of for different inlet conditions 
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7.2.2 Predictions considering the gas-liquid flow in the branch arm 

From inspection of the experimental values of L'o, 
wi 

(tabulated in Appendix A for the 

raw data given in Appendix B) it was seen that for the same inlet gas superficial 

velocity, Ug, the fraction of liquid that has to be diverted before the onset of gas take 
off, L'onsel 

9 is reached increases as the inlet liquid superficial velocity, U1, is reduced. 

Plus,, for the same inlet liquid superficial velocities, Uls, and increasing inlet gas 

superficial velocity, Ug, the value of L'onse, remains fairly steady, especially at the 

higher Uls values, see Figure 7-7. 
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Ug s= 6riVs 
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Figure 7-7: Variation of experimental values of L with inlet gas and liquid superficial 

velocities 

This suggests that consideration has to be given to the processes occurring in the side 

arm in addition to the flow approaching the T-junction. For all experiments the phase 

redistribution at the T-Junction was controlled by the butterfly valves on the down 

stream legs of thejunction, one in the run arm and one in the branch arm (see Chapter 

3 for full geometrical details). During the experiments it was observed that the initial 

163 



Prrdicfiiý! g the Pbase Split at a Tjwnction 

fractional movement of the butterfly valve in the branch arm from the fully closed 
position (towards fully open) caused the greatest difference in the amount of gas and 
liquid drawn off down the side arm. With the valve partially closed, the liquid drawn 

off down the branch arm at the T-junction would build up behind the valve. causing a 
plug of liquid that any entrained gas would have to pass through before being 

measured downstream of the valve. 

U 

44 Uli 

Stagnant gas 
pocket 

_Falling 
liquid 

film 

0 
c) 

0 
0 080 
00c)o 0 
00 00 
,000 

U13 Ug3 

Gas bubbles 

Partially open 
butterfly valve 

Figure 7-8: Liquid build up at the butterfly valve in the downwards side arm 

The liquid drawn into the branch arm from the T-junction falls as a film down the 

pipe walls, either side of a stagnant gas pocket, as shown in Figure 7-8. With the 
butterfly valve partially closed the liquid can not drain away as fast as it is collecting, 

so a column of liquid builds up at the valve, backing up towards the T-junction. 

Within this column of liquid small gas bubbles are seen to be entrained. The stagnant 

gas pocket may act as a cushion, supporting the phase split phenomenon that is seen at 
the T-junction (described in Chapter 4 section 4.3, as a transparent banana being 

peeled). Once the valve is opened wide enough, the build up of liquid is released and 
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both the gas and liquid can be drawn simultaneously through the valve and be 

monitored further down stream. 

With the aid of Figure 7-8 it can be seen that although the air can be drawn down the 

side arm at the T-junction with the falling liquid film it has to pass through the 

column of liquid before being measured downstream of the butterfly valve. 'ýVithin 

the column of liquid many small gas bubbles can be seen, circulating With the flow. 

For any of the gas bubbles to escape with the liquid flowing through the valve their 

natural buoyancy within the liquid must be overcome. At the point where the 

terminal rise velocity of the bubble is less than or equal to the velocity of the exiting 
liquid, gas bubbles will be drawn out the side arm. 

Many papers have been published describing the dependence of the terminal rise 

velocity of a single bubble on fluid properties, bubble concentration and the influence 

of containing walls, void fraction and vibrations. Haberman and Morton (1953) 

considered the effect of terminal rise velocity for air bubbles in water as a function of 

equivalent bubble diameter. They concluded that the ten-ninal velocity remained 

fairly constant for any bubble over 0.6mm in diameter. Given that the vast majority 

of the bubbles seen in the present experiments were easily visible with the human eye 

then it can be assumed that the bubbles were larger than this critical diameter. In 

addition, any smaller gas bubbles that may have been drawn through the valve would 

have to be present in a huge concentration to produce any measurable gas flow. 

From their comprehensive study, Peebles and Garber (1953) suggested that there were 

four different ranges of conditions in which specific correlations for the terminal rise 

velocity of a bubble were applicable. The boundaries of each region are given in 

terms of the bubble Reyonolds number, Re, - 
Successive regions consider faster 

moving bubbles with the specified correlations of the terminal rise velocity taking into 

account the appropriate drag coefficient. Region I considers very slow bubble 

movement where Re. :! ý 2 and Regions 2 and 3 are defined by correlations 

considering the shape of the bubble drag coefficient curve when plotted against Re,,. 

Region 4 is distinguished from the other regions by the gas bubbles exhibiting a 

constant rising velocity, independent of the bubbles size. Both Haberman and Morton 
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(1953) and Peebles and Garber (1953) state that above a critical bubble diameter. 

0.6mm, the terminal rise velocity is constant. From the experimental observations 

previously noted the bubbles were visible with the human eye therefore for the 

situation within the T-junction it was found that the correlations associated '-vith 
'Region 4' were the most appropriate. Within this region Peebles and Garber (1953) 

have defmed the bubble rise velocity, v., as 

0.25 

1.18 g07 
PL 

Equation 7-4 

Though more complicated predictions have been presented N'ery recently for bubble 

rise velocity (Tomiyarna et al., 2001; Celata et al., 2001) their implementation 

requires in depth knowledge of the two-phase system - including a bubble distortion 

factor and aspect ratio. Within industrial settings, beyond the average system 

flowrates, such properties are not known so the above correlation provides a suitable 

method to predict bubble rise velocity. 

If the onset of gas take off is assumed to occur when the liquid flowrate through the 

valve is equal to or greater than the terminal rise velocity of the gas bubbles then it 

could be stated that the exiting liquid flowrate is equal to the calculated rise velocity. 

From an examination of the available experimental data it was seen that the Froude 

number for the liquid in the downwards branch arm: 

Fr = 
gD3 

Equation 7-5 

was related to LI onset I the fraction of liquid that is diverted down the side arm at the 

onset of gas take off. It was discovered that for all the experimental inlet superficial 

velocities that the Froude number remained constant at a value of 0.026. 

The bubble rise velocity from FquatiOn 7-4 was assumed to equal the exiting liquid 

velocity at the onset of gas take. Thus, by substitution of this calculated bubble rise 
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velocity into Equation 7-5 the Froude number was found to be 0.029. This value of 

Froude number provides a method of calculating the fraction of liquid diverted at the 

onset of gas take off for any inlet conditions. Figure 7-9 shows the variation in the 

experimental values of L'O,,,,, with those calculated by the above methods. The 

diamonds represent the calculated values using the empirical Froude number of 0.026 

and the circles represent the Froude number of 0.029 based on a bubble rise velocity. 

Obviously can not be larger than one so even the over predicted values would 

collapse back to a value of one. Therefore, Figure 7-9 indicates that L', 
aw, can be 

reasonably predicted and is related to the bubble rise velocity of the entrained bubbles 

in the column of liquid held up M the down arm. It should be stated that the higher 

the liquid inlet velocity the more accurately is predicted. 
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Figure 7-9: Calculated versus measured values of 
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Bubble rise velocity was also considered by Evans and Jameson (1995) who were 
investigating the hydrodynamics of a plunging liquid jet bubble column. They 

considered the gas drift flux of their system could be related to the terminal bubble 

rise velocity by the correlation highlighted by Wallis (1969). A similar approach was 

considered with the current data although a convergence could not be found in this 

case. 

This simple method of predicting L:, 
nsel was tested against data found in literature. 

The high pressure (5bar) air-water data of Reimann et al. (1988) approaching a 

regular 0.05m T-junction with a vertical downwards (-900) side arm could be 

reasonably predicted, see Table 7-2. Again at very low inlet liquid flowrates (Ul, = 

0.25m/s) the predicted value of L'onse, quoted in Table 7-2 differs significantly, a 

similar trend observed in predicting for the current data at a large diameter 

junction. The same method could not be applied to the data of Penmatcha et al. 
(1996), as they only considered downwards side arm angles to -60'. 

Table 7-2: Comparison of the predicted and experimental values for the fraction of liquid drawn 

into the branch arm at the onset of gas take off, Lonse, for different inlet flow conditions for the 

data of Reimann ef aL (1988) 

ugs (M/S) UIS (MIS) LI 
onse, 

Experimental L Predicted 

10 1.0 0.19 0.17 

10 0.5 0.40 0.35 

10 0.25 0.28 0.70 

5 0.5 0.39 0.35 

4 4.0 0.06 0.04 

4 2.0 0.11 0.08 

2.5 1.0 0.16 0.17 

2.5 2.0 0.10 0.08 
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In Chapter 2 the first industrial use of a T-junction as a partial phase separator Was 
highlighted. Azzopardi et al. (2001) successfully employed a T-junction to perform a 

partial phase separation of a two-phase stream to allow the fractions to enter different 

points of a distillation column, thus restoring its efficiencýl. Although the junction is 

not strictly a horizontal junction with a vertical downwards side arm, see Figure 7- 10. 

the above method for predicting knsel was considered for the industrial operating 

conditions. For this case the terminal bubble rise velocity. V. be 
, was calculated to 

0.135m/s and the downwards velocity of the liquid passing through the U-bend was 
found to be 0.09m/s. For the above theory to hold, the velocity of the liquid flowing 

through the U-bend must equal the bubble rise velocity. As can be seen the liquid 

velocity in the U-bend is lower than the bubble rise velocity indicating there is no gas 

present in the liquid only strean-4 which is deemed to be the case. So it can be stated 
that the above methodology can be applied to industrially relevant situations as well 

as data collected under laboratory conditions. 

Liquid only strearu 

Inlet 

-d 

Gas rich stream 

a- 

Figure 7-10: The industrial partial phase T-junction separator at BP/Amoco, Hull 
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7.3 The Critical Gas Fraction and Gas Pull Through 

in the previous section it was shown that the fraction of liquid diverted at the onset of 

gas take off, L'onset 
ý can be reasonably predicted by calculating the bubble rise velocity 

for the gas-liquid flow trapped in the branch arm. From the onset of gas take off, 
L'onsel 

ý the data in the region of gas pull through follows a linear trend resulting in total 

liquid removal down the side arm at a critical gas fraction, GI , It. Beyond this point 

only an increase in the fraction of gas drawn down the branch arm is observed. If the 

value of G', it can be predicted in a straightforward manner, as for L'onset, then the 

phase split at a T-junction with a downwards side arm can be easily predicted. 

Calculating the value of G crit was approached from three points of view. The first 

was through empirical manipulation of the data to gain an understanding of the 

mechanisms taking place. The second and third approaches are related. As a basic 

assumption they considered the flow across the junction to be a "particle". The forces 

acting on the particle were then considered and the predictive results obtained were 

compared with the experimental data. 

7.3.1 Empirical relationships 

Since the relationship between the fraction of liquid diverted, U and the fraction of 

gas diverted, G down the side aryn, in the gas pull through region is linear, it can be 

said that 

LI =MG +L onset 

where M is the gradient of the phase split data. 

Equation 7-6 
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It was suggested that the gradient of the phase split data, M. was related to the ratio of 
the superficial flux of the gas and liquid phases in the side arm as in Equation 7-7. 

v 
f 

'3 I, 
V12 

f 63 

Fp 

V 
Phase Split Gradient, M- IL L3 

Equation 7-7 -;; 
V2 

, 
0(; " G3 

Hence the phase split data can be described by the following equation: 

PI V2 
,3 

V v 
13 

1,3 L0G +L Equation 7-8 
,l (j 

V2 onset 
(jyl(fi 3 

This relationship was used to predict the trend of the phase split data collected in the 

present experimental investigation. Figure 7-11 shows the results for various inlet 

liquid flowrates at a constant gas velocity, Ugs =I On-t/s. The phase split results are 

reasonably determined however, for the very low inlet liquid flowrates the predicted 

value of L'onsel is over estimated resulting in a poor overall prediction. 
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Figure 7-11: Empirical phase split predictions for a large diameter regular T-junction, 

UCS =I Om/s 
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7.3.2 Considering the pressure drop across the T-junction 

As stated earlier in this chapter examination of the data leading to empirical 

correlations can provide an insight into what physical processes are occurring within a 

system but the resulting relationships often do not hold beyond the data base used to 

create them. A more powerful approach would be to employ a model based on the 

physics of the system, as with phenomenological analysis. Thus, to relate the gas pull 

through seen in the experimental data to physical phenomena an initial start was made 
by considering what was happening at the point of critical gas take off, G the point 

where all the liquid had been drawn down the branch arm, as indicated in Figure 7-12. 

All liquid drawn 4E UgI 
down side arm .4 U11 

Falhng llqwd 
film 

Partially open > butterfly valve 

U13 U93 

Figure 7-12: Downwards regular T-junction where all the liquid is drawn down the side arm 
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At this point all the liquid is drawn down the side arm for a certain gas fraction 

diverted. If the last particle of liquid to be drawn down the side arm is considered to 

be travelling at the gas-liquid interface then it is at the maximum height of the liquid, 

h, and travelling along the axes of the pipe at the interface velocity, VLH .A particle 

of gas at the interface will be at a very similar height and travelling at a -"'ery similar 

velocity. 

The following equations can be used to describe the horizontal, x, and vertical, 

motion of the liquid particle as it falls into the branch arm. The exact determination 

of these equations can be found in Appendix C. 

In the horizontal direction, the distance travelled by the particle, x, is related to the 

interface velocity, VLH by 

VLHt-- 
cl t2 

Equation 7-9 
PL 2 

The motion in the vertical, y, can be described by 

c2t 
y=-- Equation 7-10 

PL 2 

The value of the constants C, and C2 are found by considering the horizontal and 

vertical pressure drops across the junction. For simplicity the pressure drop 

correlation of Gardel (1957) was considered for the gas phase only as it passed the T- 

junction thus 

Cl = 
dP= P2 

- 
PI 

dx D3 

and 
tip 

PL9 + dy 

P- 1ý 

=PL9+ D Y2 

Equation 7-11 

Equation 7-12 
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Substituting for time, t from Equation 7-10 into Equation 7-9 giý, es the overall 
relationship for the particles horizontal and vertical motion 

ýp 
0.5 

Cl 
VLH 

rCP2 
L 

'y 
_ 

C2 
y Equation 7-13 

The point where total liquid take off has been achieved for a specific fraction of goas tl 
diverted down the side arm is reached when x in Equation 7-13 to equal D3 (0.12 7 ni) 

at y=h for the particle travelling at the interfacial velocity V Below this value the LH ' 

point of total liquid extraction has been passed and beyond this value total liquid 

extraction has not been achieved. 

From Equation 7-13 the value used for the stratified liquid height plays a critical role. 

The customary technique of calculating the stratified liquid height for given inlet 

conditions is to use methodology of Taitel and Dukler (1976). However. the 

experimental analysis of Rea (1998) showed that for the high liquid flowrates and the 

large tube diameter used in this case the methodology of Taitel and Dukler (1976) 

under predicts film thickness. 

As can be seen in Figure 7-13 for small film thicknesses the measured and calculated 

film thicknesses are identical. As film thickness increases the calculated film 

thickness is over predicted. Sufficient measurements at various inlet conditions were 

provided by Rea (1998) for an accurate value to be provided for the present 

experimental conditions. The values have been tabulated in Appendix A for 

reference. Obviously for large industrial siz ed pipelines an accurate method of 

predicting liquid height would be needed. 
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Figure 7-13: The comparison of measured film thickness to those calculated using the 

methodology of Taitel and Dukler (1976) highlighted by Rea (1998) 

Thus, using knowledge of the liquid height for specific inlet conditions the result of 
Equation 7-13 was calculated for various gas fractions diverted down the side arm. 

The sensitivity in x was found with respect to the different fractions of gas diverted 

down the side arm was found to be limited. This indicates that the calculated pressure 

drops across the junction were negligible and henceC2ý>>Cl . This further implies that 

the horizontal distance travelled by the particle is heavily dependant on the interfacial 

velocity. Although only the pressure drop for a single phase is considered and it can 

be argued that the two-phase pressure drop is considerably higher, the values 

calculated for the horizontal distance, x, were thought to be more dependant on a 

different resistive force. 
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7.3.3 Considering the drag forces 

Instead of the pressure drop across the junction, the gravitational pull and the drag 

forces acting on the "particle" can be considered as it follows the parabolic path into 
the branch arn-4 as shown previously in Figure 7-12. Barnea et al. (1985) used a 

similar process for estimating flow pattern transitions in inclined tubes. 

22 Dp T 3 PG UG 
3 dv 

-Dp PL9+CD- -=- Dp PL 6426 dt 
Equation 7-14 

The resulting equation, see in Appendix D for full working, is very similar to 
Equation 7-13, 

VLH 
r3gý 

Equation 7-15 

where 

9' =- 9+ 
3CD PG 

V2 Equation 7-16 
4 Dp PL 

G3 

Equation 7-15, indicates that the horizontal distance travelled, x, depends on the 

particle diameter, Dp and the horizontal liquid phase velocity at the interface, I'LH 
* 

The valueOf CDwas calculated as a function of the particles Reynolds number. 
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Figure 7-14: The dependence of horizontal distance travelled on particle diameter 

Uxs = lOm/s and Ul. = 0.434m/s 

The dependency on particle size can be seen in Figure 7-14. For different fractions of 

the inlet gas flow drawn down the branch arm, G, the horizontal distance travelled by 

the particle, x, was calculated as a function of particle diameter, Dp. From the 

experimental results it is known for total liquid removal (L 1) down the branch arm 

the corresponding critical gas fraction, G crit-) is 0.32, for the inlet conditions Ug, 

I Oni/s and U1, = 0.434m/s shown in Figure 7-14. This means the size of particle that 

has travelled the horizontal distance equivalent to the branch arm diameter, D3 = 

0.127m, isO. 0012m. A similar analysis was performed for all the inlet conditions and 

an average particle diameter was calculated to be 0.00 1 5m. 
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Figure 7-15: Predicted phase split knowing and G',, i, for Ugs = lOmIs, U1, = 0.434m/s 

Using 0.0015m as a standard particle diameter the critical gas take off for all liquid 

removed down the side arm, G cril, can be calculated. Figure 7-15 shows the predicted 

phase split for inlet conditions Ug, =: 10m/s and U1, = 0.434rn/s by calculating L', 
iset 

(from calculating the bubble rise velocity in the branch arm as described in Section 

7.2.2) and G crit (from Equation 7-15). By using knowledge of the physics of the 

system the predicted phase split can be justified unlike the empirical manipulations 

presented in Figure 7-11. 
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Figure 7-16: Phase split predictions for different particle diameters, 

'S 
Ugs = 6m/s and U,, = 0.556m/s 

Unfortunately, this method of predicting the phase split is heavily dependant on the 

particle diameter used within Equation 7-15. Using the average particle diameter of 
0.00 1 5m may mean for some cases the value of G j, is heavily over predicted. For 

example for inlet conditions, Ugs = 6m/s and Uls = 0.556m/s the particle diameter that 
best describes the parabolic motion and falls at the point x= D3 = 0.127m is 
0.00075m. Figure 7-16 shows the dependence on particle diameter for inlet 

conditions Ug, = 6ni/s and U1, = 0.556m/s 

predicted (1) uses particle diameter, Dp of 0.00 1m 

predicted (2) uses particle diameter, Dp of 0.00 1 5m 

predicted (3) uses particle diameter. Dp of 0.002m 

-- - -- --Z- - -- 10 

�ooo, 

; 0011 

'O', V 
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Thus the average particle diameter of 0.0015m "Al overpredict G , j, as shown and the 

most accurate prediction is given by prediction (1) where the particle diameter is 

closest to the actual required diameter. It was noted that the critical particle diameter 

was related to inlet liquid superficial velocity and the critical gas fi7action dra", -n off 

and may vary with the gas and liquid physical properties. 

7.4 Limitations of these Predictions 

This initial approach to try and predict the phase split at a large diameter T-junction 

with a vertically downwards (-90') side arm has been based on locating two key 

features of the phase split curve 

1. The onset of gas take off 
2. The critical gas fraction where all the liquid is diverted down the side arm 

The onset of gas take off, is found by determining the liquid fraction drawn 

through the side arm when the first gas is drawn through. It was seen to be reasonably 

predicted with reference to the terminal rise velocity of a single bubble through a 

column of liquid for both industrial situations and data collected under laboratory 

conditions. However,, for both the current data and for that of Reimann et al. (1988) 

this method could not predict L,,,,, 
e, 

for very low inlet liquid flowrates although it 

could be argued that industrial pipelines do not operate at such low velocities. The 

small break theory considered initially is very flow regime dependant and may only 

be considered for stratified flows. 

From the onset of gas take off the gas is pulled through the liquid layer until a critical 

, it. where all the liquid is diverted down the side arm. gas take off is reached, Gc 

leaving a pure gas stream in the run arm. This point was predicted by considering a 

particle travelling at the height of the liquid interface and at the liquid interfacial 

velocity and falls with a parabolic motion downwards. The horizontal distance the 

particle travels is calculated considering its horizontal and vertical motion and at the 
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point where the horizontal distance travelled is equal to the side arm diameter. the 

critical gas take off is calculated. 

The motion of the particle was found to be very dependent on the particle diameter 

and on the interfacial velocity. The interfacial velocity used within the prediction was 
based on the turbulent liquid-turbu lent gas assumptions of Agrawal et al. (1973) 

where they assumed the velocity profile for the turbulent liquid followed the well 

established empirical one-seventh power law. This empirical correlation was easy to 
implement and gave reasonable results, especially for the higher inlet liquid flowrates 

considered here. However, for the low liquid inlet flowrates the calculated interfacial 

velocity does not give the particle enough horizontal momentum to travel across the 

opening of the branch arm, even at very low gas fractions drawn down the branch 

arm, as can be seen by Figure 7-17. 
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Figure 7-17: Low liquid flow Ugs = 6m/s 

This means, at these low interfacial velocities, not even the smallest particle diameter 

would provide a convergence between the fraction of gas drawn down the side arm. 

G and the horizontal distance travelled across the branch arm. 
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An improvement in predicting a more accurate velocity profile may be found by 

considering the theoretical studies of horizontal stratified gas-liquid fIoxN by 

Cheremisinoff and Davis (1979) or Shoham and Taitel (1984). Although both 

correlations claim to give reasonable results they are both very involved and lead the 

proposed theory away from being a quick and easy predictive method for calculatino 
the phase split at a T-junction with a vertically downwards side arm. 

As previously mentioned the above theory is also dependant on accurate liquid height 

predictions. The methodology of Taitel and Dukler (1976) was seen to under predict 
liquid height when applied to large diameter pipes at high liquid flowrates. Within 

this investigation liquid heights could be extrapolated from the measured heights 

published by Rea (1998) and so reasonable results could be obtained. If the 

methodology of Taitel and Dukler (1976) is applied within this theory then the results 

are under predicted. Finding an accurate predictive method for stratified liquid 

heights in large diameter pipes would overcome this. 

The chosen "particle" diameter was seen to influence the results significantly. If a 

correlation could be found between a suitable diameter, the inlet liquid velocity and 

G then this would narrow the margin of error. A correlation similar to that used to 

calculate the valueOf CDmay provide the most reasonable solution. The drag co- 

efficient, CD, is calculated as a function of the inlet flowrate and the final value varies 

considerably as the flowrate increases. 
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CHAPTER 8 

Conclusions and Further Work 

8.1 Final Considerations and Conclusions 

Within the present work, knowledge of the split of two-phase gas-liquid flows at a 
large diameter T-junction has been extended in several areas. Special consideration 

was given to the geometry of the T-junction with the aim of enhancing the phase 

separation qualities of the junction in a predictable manner. This would allow the 

simple T-junction to be used with confidence as a partial phase separator. 

If the phase separation of the gas-liquid flows at a T-junction can be relied on then 

such partial phase separators require nominal maintenance, above that of general up 
keep and can therefore be placed in inaccessible sites, such as on sea beds or in 

remote geographical locations. In addition, the naturally low inventory of T-junctions 

makes them attractive phase separation alternatives where space is at a premium, for 

example on off-shore oil Platforms, or in the handling of flammable fluids where the 

storage of large volumes can have serious safely implications. 

Thus, with the above considerations in mind, attention was given to the effect of 

altering the side arm orientation of the regular 0.127m junction and the reduced 

0.127-0.076m T-Junction from the horizontal. The effects on gas and liquid take off 

were investigated with both stratified and annular flow and experimental trends were 

validated against previously published data for smaller diameter T-junctions. 

From the knowledge gained from studying the phase split at a single junction the 

effect of using an insert was considered. Detailed experimentation highlighted 

specific cases where the inclusion of a simple insert protruding from the side arm into 

the main run pipe causes the junction to act as a partial phase separator and others 
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where the junction acted as an equal flow divider between the two outlets. An 

advance on single T-junction phase separation technology was also made by placing 

two T-junctions, in series where significant improvement in the quality of the gas and 
liquid rich streams can be seen. 

Particular attention has been given to the case of a horizontal T-junction xvith a 

vertically downwards side arm and to the predictive methods of defMing the phase 

split at such a junction. The simple methods proposed have summarised the 

complicated mechanisms occurring and the results give good predictions. 

Thus, the following conclusions can be drawn from the current investigation of the 

phase split at large diameter T-junctions. 

The current air-water phase split experiments can be successfully compared 

with previously published data with similar void fractions taken in smaller 

diameter experimental facilities. 

2) The phase separation qualities of a T-junction are very dependant on the flow 

regime approaching it, even for the large diameter junctions considered in this 

work. 

3) Comparisons drawn between the regular and reduced T-junctions indicate that 

for all branch arm orientations there is no detrimental effect of using a reduced 

T-junction and in most cases it can enhance the phase separation qualities of 

the junction. 

4) By introducing a simple insert at a horizontal junction the phase split can be 

enhanced or the junction can be made to act as a flow divider. Careful 

consideration is required beefore the instalment of such a device as the results 

were found to be very flow regime dependant. 
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5) Significant improvement can be made in side arm quality through branch arm 

orientation. With a vertically upwards side arm gas take off was found to be 

similar for different operating systems with similar inlet conditions. The limit 

of all gas take off was rarely found to be below 80% of high inlet liquid 

velocities. 

6) With a downwards orientated side arm the onset of gas take off was seen to 
increase with reducing liquid inlet flowrate. This effect was diminished with 
the inclusion of a U-bend which further reduced gas take off. 

7) Two T-junctions, Placed in series reduces the possibility of a hydraulic jump 

forming within the system thus a pure gas stream can be created for all inlet 

flow conditions. By combining the output of two branch arms total liquid 

extraction can be achieved with minimal gas take off or a high gas take off 

with minimal liquid removed. 

8) The performance of two T-junctions placed in series was found to be more 

complex than the simple analysis of two single junctions. In addition, the two 

junction system was found to be more versatile and able to handle more liquid 

dominated inlet conditions with little detrimental affect to the phase split 

results. 

9) Analytical interpretation of the phase split results of a single regular junction 

with a downwards side arm indicated that the split can be predicted by 

understanding the physical behaviour of the system at two key points. By 

determining the fraction of liquid where the onset of gas take off occurs and 

fraction of gas where complete liquid extraction is expected then the linear 

nature of the results can be predicted. 

10) The onset of gas take off was found to be reasonably predicted by considering 

the bubble rise correlation of Peebles and Garber (1953). The analysis can be 

considered flow regime independent and was found to be applicable to other 
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system conditions and relevant to an industrially employed T-junction as a 

partial phase separator. 

11) To determine the fraction of gas removed for complete liquid extraction the 

predicted method presented relied on providing an accurate gas-liquid 
interfacial velocity and a realistic film thickness value for the system. For 
large diameter pipes under consideration the methodology of Taitel and Dukler 

(1976) to calculate film thickness was found to under predict. 

12) Evidence of a pressure reversal phenomena occurring at the large diameter T- 

junction with a downwards sidearm was collected. 

8.2 Future Work 

From this study of two-phase flow approaching large diameter T-junctions, 

knowledge of how junction geometry can effect the phase split has been augmented. 
However, the following recommendations for future work can be made. 

1) In order to improve phase split predictions, current methods for calculating 
film thickness and interfacial phase velocity need extending to industrially 

relevant pipe diameters. 

2) The phase split predictions presented have only been applied to the regular T- 

junction. Their application to reduced junctions needs consideration and 

verification. 

3) The inclusion of a U-bend on the downwards side arm was found to reduce the 

fraction of gas taken over. Further investigation is required to gain a better 

understanding of how best to employ such a system. Detailed investigation 

should include altering the U-bend diameter, shape and distance from the 
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junction. Limited air supply in the present im-estigation prevented such in- 
depth analysis. 

4) Pressure drop measurements across the junction should be carried out to 

complement the present data. These would be of interest for the phase split 

predictions and in determining the nature of the pressure reversal phenomena 

observed during experimentation. 

5) Although the available database has been expanded by considering more 
industrially relevant pipe diameters, consideration should be paid to the use of 

more industrially relevant fluids. Investigating the effect of fluid properties 
(density, viscosity, surface tension), temperature and system pressure on the 

phase split would be invaluable. 

6) The controllability of the two T-junction system should be further 

investigated. Over the lifetime of an oil field there will be considerable 
fluctuation in the production rates of the extracted oil and gas. This in turn 

will affect the flow pattern of the approaching fluids and it is known that the 

approaching flow pattern has a significant effect on the predicted phase split at 

a T-junction. In addition, movement of the valves on the outlet streams of the 

two T-junction system was shown to effect the quality of the flow. Thus, if 

the outlets of the two-T-junction system are to remain gas rich and liquid rich 

and the approaching flow pattern can be determined, then it would be possible 

to use the valves on the outlets as control valves and manage them in such a 

way to allow the quality of the separated streams to remain independent of the 

approaching flow pattern. 
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\ omenclalure 

Nomenclature 

A cross-sectional area of pipe m2 
CD drag coefficient 
d break diameter m 
D pipe diameter M 
Dp particle diameter M 

Fr Froude Number (V2 IgD) 

G mass flux k g/M2 S 
G fraction of inlet gas drawn down the branch arm 
G fraction of inlet gas drawn down branch arm at total liquid removal 

9 acceleration due to gravity rYI/S2 

h stratified liquid level height m 
hbg, height at the beginning of gas entrainment m 
K constant in Equation 7-3 

L fraction of inlet liquid drawn down the branch arm 

L', 
Iv(, I 

fraction of inlet liquid drawn down branch arm at the onset of gas take off 

9 

M mass flowrate kg/s 

n constant in Equation 7-3 

P pressure Pa 

P average pressure P, )/2) Pa 

Q volumetric flowrate MI/S 
Rb equivalent bubble radius m 

Reb gas bubble Reynold s number (2 p, V. Rb IPL 

t time s 

UG superficial gas velocity m/s 

U1, superficial liquid velocity M/S 

T IG gas velocity M/S 

VL liquid xelocity m/s 
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\T omenclalmre 

VLH liquid velocity at gas-liquid interface 

V., tenninal bubble rise velocity 

x distance in the horizontal plane 

Y distance in the vertical plane 

IU viscosity 

P density 

G surface tension 

Subscripts 

G gas 

L liquid 

I inlet 

2 run arm 

3 branch arm 

ni s 

M/S 
m 

m 

kwm s 

kg/m' 

N/m 
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APPENDIX A 

Error Analysis and 
Data Obtained from Experimental Results 

I Error Analysis 

Measurements for all the phase split data were only noted when the error in the air 
mass balance was within 10% and the error in the water mass balance was within 5%. 
Given below is a brief analysis for a randon-dy selected phase split result for the 

regular 0.127m diameter T-junction with a downwards side arm with both the run and 
branch arm butterfly valves left open. This point generally represents the mid-point 

of a set of results and thus was chosen. For this case, the inlet gas superficial velocity, 
Ugs, is 8m/s and the inlet liquid superficial velocity, U1, is 0.186m/s. Errors in all 

cases were kept to a minimum by taking an average of several readings before noting 
the final value. The final overall error in both the fraction of liquid diverted down the 
branch arm (L') and the fraction of gas diverted (G) were found to be 5% and 6% and 

this was found to be consistent for other randonfly selected phase split results. 

Error analysis on the air mass balance 

Inict airflowrate: 

Error in reading a manometer is ±0.5mm and the average combined error in reading a 
2 J0-. 52+0.5 2 7MM. 

manometer can be given as, E= Ceý' 
+ e, 

--MM. 

For the inlet flow, average manometer reading was 221±0.7Mnffl2O. giving an inlet 

flow of 8.0 1 A. 01 m/s. 
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Outlet airflowrate: 
For run arm, average manometer reading was 228±0.7mm-H20giving a flowrate of 

6.3 7±0.0 1 m/s. 

For branch arm, average manometer reading was 152±0.7 mmH20 giving a flowrate 

of 1.91±0. Olm/s. 

Overall Mass Balance and Error in G': 

Thus, overall measured outlet air mass balance is 8.28±0.14m/s, failing within the 

10% margin stated as being acceptable for the results to be noted. 

Overall error in G', fraction of gas diverted down the branch arm is 0.231±0.014 (6% 

error). 

Error analysis on the water mass balance 

Error in reading stop clock: ±0.5 s 

Error in measuring mass flow from cyclone to weigh tank: ±0. I kg 

Error in measuring rise in height of liquid in separator tank: ±0.5mm 

Error in reading inlet turbine meter: ±I gallons per minute 

Inlet waterflourate: 
Turbine meter reading indicated 30±1 IGPM which gives a mass flowrate of 

2.35±0. Ogkg/s 

Outlet water. flowate. - 

Average mass water collected fi7om run arm in weigh tank 2.4±0.1 kg Within 128--o. 5, s 

giving a combined error in the mass flowrate of 0.0 1 8±0.001 kg/s. 

Average rise in water in separating tank from branch arm was 380±0.5mm ýN-Ithin 

128±0.5s, giving a combined error in the mass flowrate of 2.33±0.02 

A. 2- 
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Overall mass balance and Error in L'. - 
Thus, overall outlet water mass balance is 2.35±0.09 kg/s which A-hen compared to 

the inlet flowrate of 2.34±0.08 kg/s, is within the 5% margin that was acceptable for 

the results to be noted. 

Overall error in L', the fraction of water diverted down the branch arm. is 0.99±0.05 

error). 

Reference Books: 

Pentz, M. and Shott, M., (1989), "Handling Experimental Data", Editor Apraharnian, 

F., Open University Press, Milton Keynes. 

Taylor, J. R., (1997), "An Introduction to Error Analysis. The Study of Uncertainties 

in Physical Measurements", Second Edition, University Science Books, Sausalitio, 

CA. 
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A-2 Data Obtainedfrom Experimental Results 

To predict the phase split at a regular 0.127m T-junction with a vertically downwards 
(-90') side arm the following data was required. 

The following values of L'onsel 
and GI., it were determined from the experlmental data 

tabulated in Appendix B, Table B4 and have been used within Chapter 7. 

Table A-1: Values of L'onse, and G',, i, for the regular T-junction with a vertically downwards 
(-90') side arm 

ugs 

(M/S) 

uls 

S) 
L'onsei G9 crit 

0.434 0.38 0.35 
12 0.310 0.51 0.32 

0.186 0.70 0.28 
0.434 0.33 0.32 

10 0.310 0.50 0.32 
0.186 0.78 0.22 
0.556 0.31 0.42 

8 0.434 0.40 0.43 
0.186 0.87 0.23 
0.556 0.33 0.42 

6 0.434 0.42 0.35 
0.310 0.66 0.31 
0.186 0.98 0.23 

The method presented in Chapter 7 to predict the fraction of gas when all the liquid is 
diverted down the side arm, G,,, it required accurate film thickness values. These were 

extrapolated from the values measured by Rea (1998) for the current experimental 

conditions. In the figures below the solid points represent film thicknesses measured 
by Rea (1998) and the hollow points are film heights extrapolated from the 

surrounding data. 
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Figure A-1: Variation of liquid height, h with inlet liquid superficial velocity (m/s) 
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APPENDIX B 

Phase Split Data 

Air/Water phase split data with different T-junction geometries: 

Table BI: Phase split data for reduced T-junction with horizontal side arm B2 

Table 132: Phase split data for regular T-junction with vertically upwards side arm B4 

Table 133: Phase split data for reduced T-junction with vertically upwards side arm B6 

Table 134: Phase split data for regular T-junction with vertically downwards side arm B7 

Table 135: Phase split data for reduced T-junction with vertically downwards side ann BIO 

Table 136: Phase split data for horizontal T-junctions with inserts B14 

Table 137: Phase split data for regular T-junction with downwards side arm and U-bend B18 

Table B8: Phase split data for reduced T-junction with downwards side arm and U-bend B 19 

Table 139: Phase split data for two regular T-junctions in series, 1.2m apart B20 

Table BIO: Phase split data for regular and reduced T-junctions in series, 1.2m apart B23 

Table BI 1: Phase split data for two regular T-junctions in series, 0.5m apart B26 

Table B12: Phase split data for regular and reduced T-junctions in series, 0.5m apart B29 

BI 



Table Bl: Phase split data for reduced T-junction with horizontal side arm 

Eug-s (m/s) 
I 

Uls (m/s) D3/ D, Geometry G' - F 
L' 

24 0.0283 0.6 00 0.114 0.023 
0.171 0.037 
0.224 0.058 
0.319 0.128 

24 0.0401 0.6 00 0.112 0.013 
0.168 0.033 
0.205 0.051 
0.257 0.063 
0.322 0.108 
0.402 0.185 

24 0.0535 0.6 00 0.111 0.012 
0.162 0.032 
0.211 0.053 
0.289 0.077 
0.338 0.115 
0.407 0.160 

12 0.0283 0.6 00 0.204 0.000 
0.362 0.004 
0.476 0.062 
0.517 0.076 
0.615 0.138 
0.794 0.256 
0.889 0.729 

12 0.0401 0.6 00 0.250 0.000 
0.360 0.010 
0.468 0.070 
0.513 0.083 
0.619 0.147 
0.816 0.388 
0.877 0.589 
1.000 1.000 

12 0.0535 0.6 00 0.209 0.000 
0.359 0.014 
0.461 0.071 
0.514 0.101 
0.628 0.160 
0.812 0.424 
0.885 0.742 

12 0.31 0.6 00 0.232 0.018 
0.350 0.028 
0.458 0.045 
0.639 0.056 

1 0,810 0.076 
_j 
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Table Bl: continued 

ugs (M/S) Uls (M/S) D3 / D, Geometry G' Ll 

4 0.31 0.6 00 0.108 0.020 
0.465 0.025 
0.513 0.038 
0.606 0.050 
0.823 0.275 
1.000 0.542 

4 0.434 0.6 00 0.000 0.000 
0.161 0.022 
0.476 0.037 
0.537- 0.046 
0.573 0.051 
0.741 0.053 
0.825 0.320 
1.000 0.818 

4 0.558 0.6 00 0.000 0.000 
0.151 0.017 
0.507 0.028 
0.556 0.038 
0.562 0.032 
0.815 0.070 
0.869 0.391 
1.000 0.930 
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Table B2: Phase split data for regular T-junction with vertically upwards side arm 

Ugs (M/S) UIS (M/S) D3/ D, Geometry G' L' 

24 0.0283 1 +900 0.450 0.000 
0.640 0.000 
0.830 0.000 
0.940 0.020 
0.960 0.370 
0.960 0.810 

24 0.0401 1 +901, 0.450 0.000 
0.630 0.000 
0.850 0.000 
0.880 0.010 
0.980 0.470 
0.980 0.980 

24 0.0535 1 +900 0.460 0.000 
0.640 0.000 
0.830 0.000 
0.960 0.160 
0.960 0.620 
0.960 1.000 

12 0.0283 1 +900 0.520 0.000 
0.630 0.000 
0.840 0.000 
0.890 0.000 
0.930 0.020 
0.930 0.960 

12 0.0401 1 +900 0.480 0.000 
0.530 0.000 
0.630 0.000 
0.780 0.000 
0.910 0.190 
0.920 0.970 

12 0.0535 1 +900 0.480 0.000 
0.530 0.000 
0.630 0.000 
0.780 0.000 
0.910 0.190 
0.920 0.970 
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Table B2: continued 

Eugs (m/s) I US (M/S) 
I 

D3 / D, 
I 

Geometry 
I 

G' L' 
1 

8 0.31 1 +900 0.522 0.000 
0.705 0.000 
0.807 0.000 
1.000 0.128 

4 0.186 1 +900 0.502 0.000 
0.517 0.000 
0.571 0.000 
0.729 0.000 
1.000 0.316 

4 0.31 1 +900 0.538 0.000 
0.626 0.000 
0.905 0,000 
1.000 0.311 

4 0.434 1 +901, 0.539 0.000 
0.662 0.000 
0.754 0.000 
1.000 0.127 

4 0.558 1 +900 0.551 0.000 
0.714 0.0100 
0.871 0.000 
1.000 0.089 
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Table 133: Phase split data for reduced T-junction with vertically upwards side arim 

ugs (m/s) US (m/s) D3/ D, Geometry G' Ll 

24 0.0283 0.6 +900 0.070 0.000 
0.152 0.000 
0.285 0.000 
0.499 0.002 

24 0.0401 0.6 +90() 0.065 0.000 
0.155 0.000 
0.288 0.002 
0.535 0.005 

24 0.0535 0.6 +900 0.069 0.000 
0.158 0.000 
0.295 0.001 
0.494 0.002 

12 0.0283 0.6 +900 0.360 0.000 
0.475 0.000 
0.511 0.000 
0.617 0.000 
0.828 0.000 
0.914 0.223 

12 0.0401 0.6 +900 0.329 0.000 
0.466 0.000 
0.502 0.000 
0.617 0.000 
0.804 0.000 
0.861 0.339 

12 0.0535- 0.6 +900 0.328 0.000 
0.470 0.000 
0.511 0.000 
0.629 0.000 
0.851 0.000 
0.918 0.186 

4 0.434 0.6 +90'D 0.000 0.000 
0.537 0.000 
0.584 0.000 
0.724 0.000 
0.875 0.000 
1.000 0.169 

4 0.558 0.6 +900 0.000 0.000 
0.000 0.000 
0.567 0.000 
0.628 0.000 
0.870 0.000 
1.000 L. 182 

_j 
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Table B4: Phase split data for regular T-junction with vertically downwards side arm 

Ugs (m/s) US (m/s) D3 / D, Geometry G' 

12 0.186 1 -900 0.210 0.897 
0.320 0.993 
0.679 0.993 
0.194 0.923 
0.101 0.808 
0.054 0.783 
0.138 0.877 
0.111 0.860 
0.085 0.811 

12 0.31 1 -90c, 0.000 0.464 
0.084 0.638 
0.137 0.721 
0.175 0.812 
0.177 0.796 
0.311 0.956 

12 0.434 1 -900 0.029 0.408 
0.085 0.548 
0.133 0.628 
0.167 0.692 
0.280 0.882 

10 0.186 1 -901, 0.017 0.797 
0.086 0.865 
0.141 0.966 
0.185 0.983 
0.185 0.971 
0.313 0.999 

10 0.31 1 -900 0.000 0.497 
0.068 0.621 
0.110 0.722 
0.175 0.792 
0.177 0.798 
0.241 0.875 
0.321 0.955 

10 0.434 1 -900 0.023 0.374 
0.074 0.510 
0.102 0.582 
0.137 0.653 
0.166 0.679 
0.221 0.786 
0.239 0.833 
0.303 0.875 
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Table B4: continued 

ugs (M/S) 
I 

Uls (ni/s) 
I 

D3 / D, 
I 
Geome tryl G' 

I 
L' 

8 0.0283 1 -900 0.000 1.000 
0.103 1.000 
0.255 1.000 

8 0.0401 1 -900 0.253 1.000 
0.144 1.000 
0.000 1.000 

8 0.0535 1 -900 0.000 1.000 
0.142 1.000 
0.252 1.000 

8 0.136 1 -900 0.239 0.999 
0.111 0.996 
0.000 0.988 

8 0.186 1 -900 0.000 0.867 
0.099 0.913 
0.200 0.986 
0.228 0.993 
0.231 0.992 
0.326 1.000 

8 0.31 1 -901, 0.022 0.653 
0.129 0.769 
0.222 0.854 
0.225 0.852 
0.332 0.970 
0.471 1.000 

8 0.434 1 -900 0.000 0.397 
0.083 0.495 
0.125 0.551 
0.201 0.670 
0.203 0.662 
0.331 0.856 

8 0.558 1 -900 0.000 0.309 
0.122 0.493 
0.195 0.604 
0.200 0.622 
0.305 0.832 

6 0.136 1 -900 0.000 0.995 
0.140 1.000 
0.229 1.000 
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Table B4: continued 

Ugs (M/S) uls (M/S) D3 / D, Geometry G' L' 

6 0.186 1 -900 0.000 0.976 
0.152 0.998 
0.241 0.998 
0.245 1.000 

6 0.31 1 -900 0.044 0.720 
0.091 0.761 
0.206 0.840 
0.211 0.828 
0.311 0.976 
0.455 0.997 

6 0.434 1 -900 0.000 0.468 
0.028 0.481 
0.065 0.516 
0.102 0.562 
0.113 0.585 
0.179 0.741 
0.181 0.728 
0.303 0.889 
0.500 0.976 

6 0.558 1 -900 0.000 0.334 
0.072 0.431 
0.118 0.471 
0.182 0.572 
0.187 0.578 
0.309 0.829 

4 0.186 -900 0.042 1.000 
0.340 1.000 
0.455 1.000 

4 0.31 -900 0.427 1.000 
0.456 1.000 
0.531 1.000 

4 0.434 1 -900 0.068 0.561 
0.169 0.652 
0.221 0.749 
0.280 0.779 
0.381 0.842 
0.381 0.827 
0.422 0.914 
0.469 0.973 

4 0.558 1 -900 0.065 0.445 
0.113 0.515 
0.161 0.582 
0.222 0.612 
0.336 0.730 
0.409 0.877 
0.122__ L_0.925 
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Table B5: Phase split data for reduced T-junction with vertically downwards side arm 

Ugs (m/s) Uls (m/s) D3 / D, Geometry G' 

12 0.0283 0.6 -900 0.013 0.909 
0.096 0.932 
0.197 0.953 
0.216 0.958 
0.224 0.954 
0.229 0.976 
0.322 0.988 

12 0.0401 0.6 -900 0.192 0.984 
0.201 0.985 
0.227 0.990 
0.273 0.993 
0.323 0.997 
0.192 0.984 
0-000 0.812 
0.096 0.970 

12 0.0535 0.6 -900 0.000 0.740 
0.095 0.940 
0.185 0.972 
0.187 0.972 
0.199 0.978 
0.220 0.979 
0.273 0.987 
0.352 0.995 

12 0.1 o. 6 -900 0.020 0.609 
0.125 0.887 
0.222 0.937 
0.223 0.933 
0-318 0.972 
0.399 0.980 

12 0.186 0.6 -900 0.000 0.238 
0.000 0.252 
0.072 0.842 
0.074 0.860 
0.131 0.889 
0.132 0.889 
0.137 0.881 
0.146 0.894 
0.157 0.904 
0.175 0.916 
0.220 0.928 
0.276 0.95 
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Table B5: continued 

Ugs (M/S) US (M/S) D3 / D, Geometry G' L' 

12 0.31 0.6 -900 0.000 0.567 
0.045 0.663 
0.091 0.773 
0.092 0.785 
0.122 0.814 
0.139 0.822 
0.187 0.838 

12 0.434 0.6 -900 0.000 0.492 
0.039 0.580 
0.063 0.664 
0.077 0.678 
0.077 0.670 
0.101 0.736 
0.117 0.753 

10 0.0401 0.6 -900 0.136 1.000 
0.248 0.984 

10 0.0535 0.6 -900 0.016 0.914 
0.116 0.951 
0.242 0.973 
0.339 0.989 
0.419 1.000 

10 0.186 0.6 -900 0.016 0.369 
0.122 0.873 
0.184 0.890 
0.186 0.900 
0.300 0.951 

10 0.31 0.6 -900 0.017 0.225 
0.055 0.710 
0.116 0.770 
0.117 0.774 
0.240 0.871 

10 0.434 0.6 -900 0.000 0.092 
0.039 0.590 
0.100 0.705 
0.101 0.708 
0.261 0.787 

10 0.558 0.6 -900 0.050 0.463 
0.096 0.615 
0.271 0.698 
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Table B5: continued 

Ugs (m/s) Uls-(m/s) D3 / D, Geometry G' 

8 0.0535 0.6 -900 0.020 0,877 
0.130 0.958 
0.243 0.966 
0.341 0.986 

8 0.186 0.6 -900 0.020 0.879 
0.050 0.910 
0.086 0.914 
0.158 0.915 
0.160 0.926 
0.277 0.962 
0.455 0.990 

8 0.31 0.6 -900 0.010 0.213 
0.040 0.717 
0.083 0.771 
0.111 0.814 
0.241 0.889 

8 0.434 0.6 -901, 0.007 0.120 
0.035 0.549 
0.078 0.686 
0.093 0.708 
0.224 0.826 

8 0.558 0.6 -900 0.021 0.346 
0.049 0.595 
0.072 0.643 
0.083 0.655 
0.275 0.748 

6 0.0535 0.6 -900 0.000 0.919 
0.064 0.975 
0.188 0.980 
0.340 1.000 

6 0.1 0.6 -900 0.000 0.535 
0.102 0.948 
0.309 0.987 
0.483 0.997 

6 0.186 0.6 -900 0.094 0.913 
0.046 0.892 
0.015 0.245 
0.160 0.923 
0.276 0.940 
0.443 0.966 
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Table B5: continued 

Ugs (M/S) US (M/S) D3 / D, Geometry G' L' 

6 0.31 0.6 -900 0.017 0.193 
0.076 0.812 
0.109 0.848 
0.211 0.903 
0.390 0.939 

6 0.434 0.6 -900 0.022 0.291 
0.087 0.732 
0.113 0.750 
0.199 0.816 
0.369 0.879 

6 0.558 0.6 -900 0.123 0.701 
0.245 0.755 
0.354 0.796 
0.096 0.689 
0.018 0.194 

4 0.186 0.6 -90" 0.220 0.914 
0.226 0.908 
0.238 0.940 
0.275 0.935 
0.270 0.936 
0.221 0.920 
0.043 0.903 
0.152 0.911 

4 0.31 0.6 -90' 0.039 0.644 
0.069 0.856 
0.088 0.866 
0.125 0.879 
0.164 0.892 
0.208 0.901 
0.211 0.909 
0.214 0.916 
0.226 0.919 
0.236 0.927 

4 0.434 o. 6 -900 0.027 0.159 
0.101 0.745 
0.248 0.804 
0.254 0.788 
0.297 0.832 
0.434 0.890 

4 0.558 0.6 -9100 0.080 0.645 

0.104 0.670 
0.139 0.701 
0.172 0.736 
0.215 0.748 

1 0.289 0.7! 2 
_j 
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Table B6: Phase split data for horizontal T-junctions with inserts 

Ugs (M/S) UIS (M/S) D3 / D, Geometry G' L' 

24 0.0283 1 45' 0.000 0.000 
'/2 D 0.147 0.043 

for-wards 0.242 0.100 
0.261 0.143 
0.266 0.147 
0.266 0.143 
0.266 0.138 
0.298 0.170 
0.359 0.228 
0.389 0.275 
0.470 0.353 
0.566 0.483 
0.661 0.576 
0.777 0.473 
0.886 0.569 
0.959 1.000 
0.959 0.854 

24 0.0283 1 45* 0.000 0.000 
1/2 D 0.006 0.000 

backwards 0.060 0.014 
0.066 0.025 
0.141 0.074 
0.150 0.074 
0.162 0.060 
0.290 0.162 
0.528 0.345 
0.801 0.458 
0.957 0.580 
0.958 0.834 
0.95 8 1.000 

24 0.0283 1 45' 0.000 0.000 
3/4 D 0.232 0.072 

forwards 0.362 0.130 
0.426 0.208 
0.517 0.299 

0.564 0.347 
0.566 0.343 
0.583 0.369 
0.615 0.393 
0.665 0.440 
0.737 0.526 
0.833 0.584 
0.939 0.673 
1.000 1.000 
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Table B6: continued 

Ugs (m/S) Uls (m/s) D3/ D Geometry G' 

24 0.0283 1 45' 0.012 0.008 
1/4D 0.026 0.016 

backwards 0.039 0.025 
0.253 0.037 
0.581 0.059 
0.815 0.082 
0.925 0.123 
1 . 000 1.000 

24 0.0535 1 45' 0.000 0.000 
1/2D 0.124 0.064 

forwards 0.234 0.102 
0.298 0.130 
0.439 0.190 
0.503 0.229 
0.621 0.308 
0.829 0.437 
1.000 1.000 

24 0.0535 1 45' 0.067 0.027 
1/2D 0.160 0.082 

backwards 0.302 0.203 
0.463 0.418 
0.556 0.423 
0.753 0.512 
0.855 0.724 
1.000 1.000 

24 0.0535 1 45' 0.000 0.000 
1/4D 0.186 0.131 

forwards 0.433 0.255 
0.578 0.354 
0.587 0.392 
0.636 0.412 
0.669 0.447 
0.833 0.547 
0.865 0.598 
0.929 0.659 
1.000 1.000 

24 0.0535 1 45' 0.017 0.015 
3/4D 0.031 0.025 

backwards 0.226 0.051 
0.481 0.076 
0.644 0.110 
0.765 0.151 
0.876 0.246 
1.000 1.000 
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Table B6: continued 

E Ugs (m/s) ug, --s(i s, ýý 
Uls (m/s) l D3 / D, Geometry G' 

12 0.31 1 45* 0.313 0.199 
1/2D 0.519 0.226 

forwards 0.546 0.250 
0.646 0.269 
0.851 0.318 

12 0.31 1 45' 0.324 0.019 
1/2D 0.445 0.059 

backwards 0.448 0.041 
0.504 0.070 
0.621 0.108 
0.872 0.121 
1.000 1.000 

12 0.31 1 45' 0.428 0.328 
1/4D 0.483 0.372 

forwards 0.578 0.410 
0.585 0.417 
0.650 0.433 
0.753 0.499 

12 0.31 1 45' 0.329 0.021 
3/4D 0.473 0.035 

backwards 0.591 0.051 
0.765 0.168 

12 0.31 1 30' 0.306 0.236 
1/2D 0.508 0.276 

forwards 0.641 0.294 
0.782 0.349 
0.962 0.642 

12 0.31 1 30" 0.465 0.062 
1/2D 0.604 0.124 

backwards 0.833 0.222 
0.347 0.016 

12 0.31 1 30' 0.338 0.332 
3/4D 0.480 0.408 

forwards 0.563 0.439 
0.609 0.474 
0.750 0.515 
0.897 0.603 

12 0.31 1 30' 0.332 0.056 
3/4D 0.408 0.051 

backwards 0.439 0.063 
0.562 0.081 

1 0.852 0.262 
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Table 136: continued 

Ugs (M/S) UIS (M/S) D3 / D, Geometry G' L' 
1 

12 0.31 0.6 45* 0.339 0.063 
1/2D 0.477 0.074 

forwards 0.621 0.105 
0.757 0.148 
0.853 0.462 

12 0.31 0.6 45' 0.156 0.008 
1/2D 0.300 0.021 

backwards 0.442 0.027 
0.621 0.055 
0.830 0.118 
0.877 0.660 

12 0.31 0.6 45* 0.472 0.045 
3/4D 0.617 0.068 

forwards 0.720 0.162 
0.877 0.446 

12 0.31 0.6 45' 0.172 0.003 
3/4D 0.370 0.014 

backwards 0.605 0.023 
0.758 0.101 
0.877 0.478 
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Table B7: Phase split data for regular T-junction with downwards side arm and U-bend 

I 
Ugs (M/S) u: 9 uls (M/S) D3 / D, 

L 
Geometry G' LO 

1 

12 0.1 1 -900 0.000 0.841 
U-bend 0.000 0.841 

0.000 0.828 
0.000 0.000 
0.006 0.871 
0.006 0.865 
0.009 0.855 
0.009 0.855 
0.009 0.844 
0.010 0.926 
0.012 0.932 
0.078 0.985 
0.096 0.990 

12 0.1 1 -900 0.000 0.720 
U-bend 0.000 0.729 

0.000 0.567 
0.000 0.628 
0.010 0.720 
0.012 0.703 
0.013 0.719 
0.013 0.728 
0.027 0.858 

4 0.31 1 -900 0.000 0.451 
U-bend 0.033 0.929 

0.035 0.930 
0.049 0.915 
0.051 0.911 
0.055 0.920 
0.055 0.918 

4 0.558 1 -900 0.039 0.178 
U-bend 0.041 0.463 

0.058 0.504 
0.067 0.521 
0.068 0.514 
0.073 0.455 
0.077 0.443 
0.086 0.535 
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Table 138: Phase split data for reduced T-juBction with downwards side arm and U-bend 

ugs (m/s) uls (M/S) D3 / D, Geometry G' Ll 

12 0.0283 0.6 -900 0.000 0.878 
U-bend 0.000 0.823 

0.004 0.865 
0.005 0.855 
0.090 0.898 

12 0.0401 0.6 -901, 0.004 0.734 
U-bend 0.004 0.714 

0.006 0.783 
0.006 0.801 
0.093 0.973 

12 0.0535 0.6 -900 0.000 0.653 
U-bend 0.004 0.724 

0.005 0.694 
0.006 0.714 
0.007 0.717 
0.091 0.958 
0.112 0.962 

12 0.186 0.6 -900 0.000 0.416 
U-bend 0.000 0.454 

0.004 0.407 
0.006 0.472 
0.011 0.488 
0.051 0.879 

12 0.31 0.6 -900 0.000 0.208 
U-bend 0.005 0.323 

0.007 0.311 
0.010 0.362 
0.018 0.538 
0.052 0.506 

4 0.31 0.6 -900 0.031 0.669 
U-bend 0.038 0.701 

0.039 0.645 
0.042 0.658 
0.058 0.588 
0.095 0.827 
0.043 0.619 
0.013 0.226 
0.000 0.792 

4 0.558 0.6 -900 0.043 0.914 
U-bend 0.058 0.620 

0.063 0.791 
0.073 0.734 
0.074 0.544 
0.114 0.778 
0.119 0.931 
0.125 0.811 
0.130 L831 

_j 
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APPENDIX C 

Considering Single Phase Pressure Drop 

If a liquid particle is considered to be travelling across the junction at the height of the 

gas-liquid interface, h, and reacts to the junction pressure changes then 

P2 P, Liquid 
Flow 

x 

In the horizontal (x) direction 

-I- . du /]P 
PL ---= -cl 

Equation C-1 

dt A 

Hence 

cl = 
dP 

- 
P, -P, Equation C-2 

dx D, 

cl 

I 
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Since u :: = U at i=0, integrating Equation C- I gives LH 
C 

U=- Lt+ULH 

P/- 

whereULH is the gas-liquid interfacial velocity. 

In the vertical (y ) direction 

PL 
dv 

--": PL9 + 
dP 

- 
C2 

dt aý 

Since v=0 at t=0, integrating Equation C-4 gives 

C, 
V= ýt 

JOL 

Now considering 

u. 
dx 

and v= 
dy 

dt dt 

Since x=0 at t=0, integrating Equation C-3 gives 

X=U LHt - 

Cl 12 

PL 2 

and since y=0 at t=0, integrating Equation C-5 gives 

C, t2 

PL 2 

Equation C-3 

Equation C-4 

Equation C-5 

Equation C-6 

Equation C-7 

Equation C-8 

1 1) 
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Rearranging Equation C-8 for time, t 

t 
2p,, y Equation C-9 

C2 

Substituting for time, t in Equation C-7 

ýP' 
0.5 

Cl 
Equation C-10 VLH 

rCP21, 

'y C2 
y 

where vertical distance y is equal to the height of the gas-liquid interface, h and V/, 

is the gas-liquid interfacial velocity. The values of C, andC2 are dependant on the 

pressure changes across the T-junction and can be determined from the single phase 

pressure drop described below. 

4 

x 
U4 

0 P, Flow 

P3 

rp=- 

P, +-P, 

From the single phase pressure drop model of Gardel (1957), for a gas flow passing a 

T-junction the pressure drop can be calculated as follows. 

The pressure drop across the inlet and run arms can be calculated by 

II 

-P, = 
K12 G, 

where 
0 

G-- m- 
A 

with A being the cross-sectional area of the pipe 

Equation C-1 I 

Equation C-12 

C3 
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and 
0(, 

K=0.57 - 0.102 m'-0.107 M3 
12 

mm 

The pressure drop across the inlet and down arm can be calculated h\ 

G2-G2G2 PI 
- 

P3 31 
+K 13 -I 2PG 2p, 

where 

0202 

0.95 1- 
M3 

+ 
M3 

1: 13 .I& 
1+ 

ml mi 

0 
m 

+0.4 -0' 1- 
mi 

0.4l(Dý, ID, ), 
- 0.1 - 

(D31D, )2 

0 
M3 

M, 

Equation C-13 

Equation C- 14 

Equation C- 15 

Methodology for predicting the fraction of gas drawn down the side arm for compIcte 
liquid removal, G can be found in the following manner. 

If the liquid phase is neglected, for a known fraction of gas diverted doNA ii the 
0 

side arm, GM -(ý' 
MGI 

2. Thus the junction pressure drops can be calculated assuming the pressure drop 

dP P- P, 
in the vertical direction can be approximated by 

(ýI, - D112 where P is the 

average pressure at the centre of the junction 

3. The horizontal distance, x can therefore be determined from Fquation ('- 1 () 

Closure of the problem is assumed when the calculated horizontal distance x is 

equal to the branch arm diameter D3. Thus G cr,, has been determined. 

C4 
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APPENDIX D 

Considering Drag Forces 

Liquid 
FIow 

. 7, 

If a liquid particle is considered to be travelling across the junction at the height of the 

gas-liquid interface, h then the gravitational and drag forces can be considered as it 

falls into the branch arm giving 

Ir ir Dp 2 
P(; U2 Equation D-1 30 dv 

- Dp pl, 9+ cl) = Dp pl, 
6426 dt 

Which can be reduced to 

dv 
g+ 

3CI) A; U(-; Equation D-2 

dl 4DP P/ý 

Since v=0 at t =: 0, integrating Equation D-2 gives 

Equation D-3 
gt + 

3CI) A; Uo 
4DP p, 

Now if 

dy Equation D4 
df 

DI 



lll, pc, l/(/i-, - I) 

Since y=0 at t=0, integrating Equation D-3 gives 
22 

Y= g+ 
3CD P(f* " (' t 

4DP PL 2 
Equation D-5 

If the pressure drop across the junction is considered negligible and by assuming there 

is no gravitational component or resistance to movement the x in direction. then no 

forces will be acting on the particle. Therefore, the particle is not accelerating and the 

liquid interfacial velocityULHwill remain constant thus 

x 
t= 

ULH 
Equation D-6 

Substituting for time, t in Equation D-5 
I 

X- 

Equation D-7 
2 U2 

LH 

where 2 

99+ 
3CI) A; U(; 3 Equation D-8 
4DP PL 

If the particle starts at the vertical height h. then for y=h, the horizontal distance, x 

travelled by the particle can be found from Equation D-7 

r3h 

g' 
ULH 

g' 

Equation D-9 

D2 
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Equation D-9 is very similar to Equation C-15 except heavil-,. ý dependant on particle 
diameter DP 

. The fraction of gas drawn down the side arm for complete liquid 

removal, G',, it can be determined in the following manner - 

M(; 3 For a known fraction of gas removed down the sidearm G' =- 0 
Mo-I 

0Z2 
2. HenceMG3 = PG 

4 
Dý UG3 

3. A particle diameter, DP was assumed and the relevant valueOf CDcalculated 

by considering the particle Reynolds number 

4. The values obtained for UG3. CDand Dp were substituted into Equation D-9 

to determine the horizontal distance travelled, x by the particle 

Closure of the problem is assumed when the calculated horizontal distance x is 

equal to the branch arm diameter D3. Thus G j, has been determined. 

D3 


