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Abstract

DEOXYRIBONUCLEIC ACID (DNA) is a long polymer consisting of two chains

of bases, in which the genetic information is stored. A base from one chain

has a corresponding base on the other chain which together form a so-called

base-pair. Molecular-dynamics simulations of a normal DNA duplex show that

breathing events – the temporary opening of one or more base-pairs – typically

occur on the microsecond time-scale. Using the molecular dynamics package

AMBER, we analyse, for different twist angles in the range 30◦-40◦, a 12 base-

pair DNA duplex solvated in a water box, which contains the ’rogue’ base diflu-

orotoluene (F) in place of a thymine base (T). This replacement makes breathing

occur on the nanosecond time-scale. The time spent simulating such large sys-

tems, as well as the variation of breathing length and frequency with helical

twist, determined us to create a simplified model, which is capable to predict

with accuracy the DNA behaviour.

Starting from a nonlinear Klein-Gordon lattice model and adding noise and

damping to our system, we obtain a new mesoscopic model of the DNA duplex,

close to that observed in experiments and all-atom MD simulations. Defects are

considered in the inter-chain interactions as well as in the along-chain interac-

tions. The system parameters are fitted to AMBER data using the maximum

likelihood method. This model enables us to discuss the role of the fluctuation-

dissipation relations in the derivation of reduced (mesoscopic) models, the dif-

ferences between the potential of mean force and the potential energies used

in Klein-Gordon lattices and how breathing can be viewed as competition be-

tween the along-chain elastic energy, the inter-chain binding energy and the

entropy term of the system’s free energy.

Using traditional analysis methods, such as principal component analysis, data
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autocorrelation, normal modes and Fourier transform, we compare the AMBER

and SDE simulations to emphasize the strength of the proposed model. In ad-

dition, the Fourier transform of the trajectory of the A-F base-pair suggests that

DNA is a self-organised system and our SDE model is also capable of preserv-

ing this behaviour. However, we reach the conclusion that the critical DNA

behaviour needs further investigations, since it might offer some information

about bubble nucleation and growth and even about DNA transcription and

replication.
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CHAPTER 1

Introduction

Nature represents a challenge for the scientific community nowadays. Natural

processes, such as the wind or the rain, natural resources, for example, coal or

oil, and living organisms present interesting phenomena which need further

investigations to be explained. Researchers all over the world study these phe-

nomena and create and analyse models of the system, which sometimes reveal

hidden features.

Applied mathematics is one of the research fields that developed over the last

few thousands years and still continues to develop. Mathematical models allow

researchers to analyse a simplified structure of a biological system and predict

its behaviour. In fact, interdisciplinary research can offer answers to several

unexplained phenomena and mathematical biology, in particular, allows the

analysis of living organisms. Such analysis might involve the appearance, the

development or even the death of the organisms, or simply explain the causes

and the conditions in which a process takes place.

The goal of mathematical biology is to analyse biological systems, using math-

ematical tools and techniques. Based on the techniques applied in biology and

medicine, mathematical biology can be classified into: biological mathematical

modelling, complex systems biology, bioinformatics and biocomputing. The

first two fields require analytical mathematical knowledge, while the latter two

also require computational resources. However, sometimes these fields overlap

and a biological application can be considered part of two or more branches of

mathematical biology.
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CHAPTER 1: INTRODUCTION

A model of a system actually consists of an algorithm or a set of equations that

are solved using analytical or numerical methods. These equations allow the

imposition of some conditions on the system’s behaviour, which influence the

mathematical solution. The conditions imposed cover a wide range of system

properties, such as equilibrium, non-equlibrium or transition properties.

Recently, many research projects focus on microscopic modelling. Existing tech-

niques are, in many cases, incapable of providing a full analysis at the mi-

croscopic level, which explains the need for the development of mathematical

models. An example of such a system is deoxyribonucleic acid (DNA) in which

most processes take place at the Ångstrom level and on a timescale smaller then

the microsecond timescale, which is inaccessible even for electron microscopes,

such as Scanning Tunnelling Microscope (STM).

1.1 DNA background

Deoxyribonucleic acid (DNA) is a nucleic acid that contains genetic instructions

for the development and functioning of living organisms. Note that viruses

contain RNA genomes instead of DNA and are not normally considered living

organisms. The main role of DNA is the long-term storage of information. The

DNA segments which carry genetic information are called genes. There are also

DNA sequences with structural purposes and those involved in regulating the

expression of genetic information, as well as many redundant and repetitive

unused sequences.

From a structural point of view, DNA is a long polymer composed of simple

units called nucleotides, which are held together by a backbone of sugars and

phosphate groups. The nucleotides composing a DNA sequence differ in their

bases, which encode the genetic information copied by cells from DNA into

RNA in order to use. These bases are of four types, from two different cate-

gories: the purines Adenine (A) and Guanine (G) – having two organic cycles

– and the pyrimidines Cytosine (C) and Thymine (T) – with only one organic

cycle. Note that nucleotides are structural units for both, DNA and RNA, and

have several purposes. Nucleotides not only participate in enzymatic reactions,

but also in cellular signalling and they can be sources of chemical energy.
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CHAPTER 1: INTRODUCTION

Watson & Crick [119] first introduced, in 1953, the molecular structure of a DNA

sequence. A DNA duplex is composed of two chains of bases. A base from

one chain has a corresponding base on the other chain which together form

a so-called base-pair. Adenine (A) forms a base-pair with Thymine (T), while

Guanine (G) pairs with Cytosine (C). The bases are linked by covalent bonds

along the chains, while the bases of each pair are linked together as follows: A-

T pairs by two hydrogen bonds and C-G pairs by three hydrogen bonds [130].

The distance between the bases of a pair is approximately 2 Å and the distance

between bases on the same strand is 3.4 Å. In addition, the double stranded

DNA is twisted around its central axis. The twist is typically 36◦ per base-pair

– see Figure 1.1.

Figure 1.1: Illustration of a 12 base-pairs DNA sequence created using AM-

BER, for a twist of 36◦.

The two strands of DNA twist around the helical axis about once every 10.5

base-pairs. However, undertwisting and overtwisting changes the DNA shape.

Topoisomerase enzymes are adding or subtracting helical twist when altering

DNA topology. The total DNA length is many times larger than the length of a

cell, hence DNA supercoil is necessary to modify its shape such that it fits into

the cell.
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CHAPTER 1: INTRODUCTION

In a cell, DNA is stored in the nucleus and in mitochondria. The nucleus of hu-

man cells is arranged into 46 chromosomes (23 pairs). From a biological point of

view, DNA is interesting as part of these chromosomes, which are composed of

DNA and proteins. Enzymes are important in DNA lifecycle, since they control

most processes involving DNA, such as breathing events, DNA replication, as

well as transcription. Most of the enzymes are proteins and represent catalysts

for chemical reactions, increasing their rate.

Breathing represents the opening of one or more base-pairs. In other words,

a breathing event means the temporary breaking of the hydrogen bonds be-

tween complementary bases. The structure formed when at least two consec-

utive base-pairs are open is called bubble. A bubble moving along the DNA

sequence is known as a travelling wave. When enzymes called helicases break

the hydrogen bonds linking the two strands of a DNA molecule, a structure

called a replication fork is created. This “Y”-shaped structure contains two

single-stranded DNA sequences, as well as a double strand, and can move

along the chain zipping or unzipping the DNA. At this point DNA replica-

tion takes places, a process through which a double-stranded DNA sequence is

multiplied, resulting two identical DNA molecules. Another enzyme, known

as DNA polymerase, adds matching nucleotides to the two single-stranded se-

quences and synthesizes the new DNA molecules.

RNA synthesis or transcription is another process controlled by enzymes, more

precisely by RNA-polymerase. This enzyme uses the genetic information in

DNA to create a messenger RNA (mRNA) sequence, which carries this ge-

netic information to cell’s ribosomes, where protein synthesis takes place. Each

mRNA molecule is constructed based on a sequence of bases along a DNA

strand.

Having this information, computer simulations of the DNA structure can be

carried out at different levels of spatial and temporal resolution [129]. In what

follows, we present some of the methods used to simulate and investigate pro-

cesses taking place at the atomic level in DNA. We focus mainly on nucleation

of open bubbles, which are at the origin of replication and transcription, and

discuss how DNA bending and twisting influence bubble formation.

4



CHAPTER 1: INTRODUCTION

1.2 DNA mathematical models

One of the techniques used to investigate DNA processes is molecular dynam-

ics (MD) simulations, using computer programs such as AMBER [142]. The

biggest inconvenience with such an approach is the time spent simulating a pro-

cess. The DNA sequence cannot be analysed alone and the solvent surrounding

the DNA molecules, which in our case is water, needs to be taken into account.

For this reason, during MD simulations a lot of time is lost analysing the sol-

vent containing many times more atoms than the DNA sequence under study,

resulting in the overall time needed for just one simulation of a few nanosec-

onds to be of weeks or months, even when several processors work in parallel.

This is why simplified dynamic models of DNA are needed.

Recently, mathematical models of processes that take place in a DNA sequence

have been developed. These models can be used to predict the behaviour of

DNA and many of them can be used to study DNA denaturation and unzip-

ping – see [68], for example, in which Kafri et al. show that the melting transi-

tion, as well as the unzipping transition, are first-order phase transitions. The

DNA molecule studied can be viewed as an alternating sequence of denatu-

rated loops and noninteracting bound segments.

Mathematical models can also be used to analyse breathing modes, which rep-

resent the starting point for DNA melting and unzipping. Such an event can be

examined at both macro and micro-scale. This means, we either observe how

the breathers move along the DNA double helix (from one breathing base-pair

to a neighbouring base-pair) or we analyse what is happening before, during

and after the opening of a single base-pair. The simplest model of DNA breath-

ing consists of an alternating sequence of 0s and 1s, each entry specifying the

state of a base-pair: 0 means the base-pair is in equlibrium state, while 1 indi-

cates the open state. Two or more consecutive entries with value 1 represent

a bubble and if this bubble travels along the sequence, then we have a travel-

ling wave. More complicated models allow a more detailed analysis of several

system properties. For example, Mendes and Laughton [83] describe a way of

simulating breathing events that occur when proteins scan a DNA sequence.
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CHAPTER 1: INTRODUCTION

1.2.1 Geometrical approaches

A geometrical model of DNA is useful, since it allows multi-directional analy-

sis. One of the first geometrical approaches, introduced by Yomosa [132], con-

siders the projection of each base-pair onto the (x, y)-plane – see Figure 1.2. The

direction of the two complementary bases B and B
′
is given by the angles θ and

θ
′
, respectively, determined by the parallel to Ox axis and the line specific to

the hydrogen bonds. One might think that θ + θ
′
= 2π, but this does not nec-

essarily hold, since the two bases are projected with small deviations from the

hydrogen axis that are included in the rotational angles.

Figure 1.2: Illustration of Yomosa’s model.

Using this representation, Yomosa defines the system’s Hamiltonian as the sum

of the rotational kinetic energy and the inter-strand and along-chain potential

energies. The kink and antikink solution of the resulting equations of motion

(which have a sine-Gordon form) correspond to the open states with positive

and negative helicities. The length of the open sequence and the associated en-

ergy are also analysed. In [133], Yomosa considers the rotational angle of each

base to be the deviation angle of the base from the imaginary line represent-

ing the hydrogen bonds. This new representation reveals four modes of sine-

Gordon solitons, describing the existence of open states in double-stranded

6
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DNA molecules. In both papers, the results obtained are compared with ex-

perimental data.

Takeno et al. propose several geometrical approaches, in which they study

the existence of topological solitons (or kinks), for example [117] and [63], the

existence of nonlinear localized modes [115]. They also propose in [116] a

three-dimensional harmonic-lattice model with some geometrical constraints.

In [117] they propose a generalised form of the dynamic plane base-rotator de-

veloped by Yomosa in [132]. Since they are not able to determine an expression

for the intra- and inter-strand potential, they use the symmetry of these poten-

tials to determine 2π topological solitons. A similar model is used in [63] to

show that, when the intra-strand interactions are much larger then the inter-

chain ones, the solitons move along the helical axis.

Zhang [138] studies soliton excitations in DNA as well. The analysis starts from

Yomosa’s plane base-rotator model, with a modified Hamiltonian that takes

into account the dipole-dipole and dipole–induced-dipole energies from his

model. In a similar way, each base-pair is depicted by conjugated arrows di-

rected inward and the angles between an arrow and the imaginary line created

by the inter-chain hydrogen bonds are measured. The solution of the equations

of motion (which form a set of coupled sine-Gordon equations) is compared to

experimental data from H-D exchange measurements.

Hennig et al. [57, 60] describe the DNA double helix structure in a Cartesian

coordinate system, where the z-axis points along the centre of the helix. The

base-pairs are situated into equally spaced planes perpendicular to the central

helix axis. They also consider the rotation of each base around the central axis

by an angle θ, different for each base. They use this model to study the initiation

of the bubble formation process associated with structural deformations of the

double helix. In [58] and [59] they focus on the energy exchange processes and

the relaxation dynamics in DNA molecules in a nonequilibrium conformation.

1.2.2 Sequence dependent models

Simple nonlinear models allow relevant modes to be analysed. Salerno [105]

suggested that sine-Gordon kinks are set in motion in certain regions of a DNA

7
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sequence that include promoters. He analyses nonlinear wave dynamics in the

T7A1 DNA promoter region using a model based on the following equations of

motion

I
d2ψi

dt2 = K(ψi+1 − 2ψi + ψi−1)−
β

2
λi sin(ψi − θi),(1.2.1)

I
d2θi

dt2 = K(θi+1 − 2θi + θi−1)−
β

2
λi sin(θi − ψi),(1.2.2)

where θi and ψi represent the deflection angles that two complementary bases

form with the imaginary line connecting them, while K is the backbone spring

constant, I is the moment of inertia of a base, β is a parameter, describing the

strength of the base-pair interaction, and λi represents the number of hydrogen

bonds involved in pairing the bases (λi = 2 or 3, depending on whether the

base-pair is A-T or C-G, respectively).

Salerno’s idea was later used by Lennholm and Hornquist [77] to perform a

genome-wide study of promoters as dynamical active regions, but they could

not prove the existence of a kink-like travelling wave distortion along the DNA

chain, since they used the same width for the active regions for all promoters

and biological systems are not that regular. In fact, their results are disproved

by a recent study of Cuenda et al. [39] who find that kinks move along inho-

mogeneous sequences in a similar way to those developed by Salerno, which

depend on the sequence under study. Moreover, they show that the behaviour

observed in Salerno’s model is not generated by promoters, but originates from

the bases at the boundary. They conclude that this simple model cannot provide

relevant information about kinks and breathers. In this way, they also disprove

the work of Bashford [14], who also analyses Salerno’s model and suggests a

relationship between planar moving breather solitons and the helical motion

of a sliding protein “particle” about a bent DNA axis. He claims that the soli-

tons he analyses are not thermally-driven, instead base-pair opening is caused

by protein-DNA interactions. He also discusses the relationship between tran-

scription and DNA sequences rich in A-T base-pairs.

Alvarez et al. [1] study breather trapping – cessation of breather propagation

through the lattice due to lattice parameters varying along the DNA double

helix – and breather transmission in a DNA chain in which all base-pairs are

identical appart from an interface across which the base-pairs dipole moments

8



CHAPTER 1: INTRODUCTION

change to the opposite direction. Even if their model is sequence-dependent,

they prove that a simple local inhomogeneity creates a mechanism for trapping

energy. Nevertheless, Rapti et al. show in [101] that the probability of the for-

mation of a bubble is regulated by the number of A-T pairs in specific regions

and the size of the bubble depends on the size of the region which is rich in

A-T pairs. This means that a DNA model studying bubbles needs to take into

account the number of A-T base-pairs.

1.2.3 One-dimensional models

Both, linear [121] and nonlinear [93] models have been created to analyse DNA

denaturation. Zandt analyzes only the transverse displacements in [135], tak-

ing into account both the elastic restoring force between neighbours on the

same strand and an intra-strand force between complementary bases. If, for

the longitudinal interactions, purely harmonic forces are considered, the non-

linear force between chains is the product of the ordinary Hook’s law harmonic

force and a term causing hard-core repulsion and large separation softening of

the force.

Even though some papers study multi-dimensional models of DNA sequences,

most DNA models reduce to an one-dimensional system by taking into account

only the transverse displacements, as Zandt did. In addition, many models

describe how the distances between the bases of each pair vary in time, in-

stead of computing the actual position of each base. Such models are also

used to emphasize the links with breather modes or solitons – see [120], for

example, in which Wattis studies the form of stationary breather modes in gen-

eralised discrete nonlinear Klein-Gordon equations, with symmetric and non-

symmetric potential energy functions. The breather solutions are obtained us-

ing an asymptotic approach that reduces the system’s equations to nonlinear

Schrodinger equations at leading order and more complex equations at higher

order. An earlier study of Schrodinger solitons in a Klein-Gordon system is pre-

sented by Remoissenet in [102], where he describes a general methodology to

study breather and envelope solitons in a quasi-1D model.

Another study of Wattis et al. [121] introduces a defect site into a linear lattice

9
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model and finds the system’s normal modes by imposing some periodic bound-

ary conditions. This last model is generalized in [122] by modelling the inter-

chain interactions through a nonlinear force-displacement relationship. More-

over, using a change of variable, the model is reduced to one degree of freedom

per base-pair. Determining the nonlinear breathing modes that appear at the

defect site of the homogeneous nonlinear system created requires an asymp-

totic approach and multiple scales in space and time.

Peyrard and Bishop [93] proposed one of the first nonlinear models, which

neglects the inhomogeneities due to the base sequence and the asymmetry of

the two strands. This model ignores the longitudinal displacements, while the

neighboring nucleotides of the same strand are connected by a harmonic po-

tential to keep the model as simple as possible. Considering a common mass m

for the bases and the same coupling constant k along each strand, they define

the system’s Hamiltonian as

H = ∑
n

1
2

m

[(
dun

dt

)2

+
(

dvn

dt

)2
]

+
1
2

k(un − un−1)2

+
1
2

k(vn − vn−1)2 + V(un − vn),

(1.2.3)

where un and vn represent the bases’ displacements from equilibrium. The non-

linearity is introduced via the Morse potential

(1.2.4) V(un − vn) = D(e−a(un−vn) − 1)2,

with D and a being the depth and the inverse width of the Morse potential.

This potential describes the bonds connecting the opposite parts of a base-pair,

which are stretched when the double helix opens locally. The analysis of the

inter-strand separation dependence on temperature suggests that energy local-

ization might initiate denaturation.

Larsen et al. show in [76] that the bubble generation in a DNA sequence can

be viewed as a mechanism in which the two strands open to allow molecule

replication, with additional proteins involved in processing or completing the

strand separation. Analysing the Peyrard-Bishop model, they reach the con-

clusion that a larger DNA twist facilitates bubble generation. Englander [46]

studies open regions that contain 10 base-pairs in a pendulum-like model and
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suggests that such extended open regions could represent thermally activated

soliton twist excitations of the double helix.

Olson analyzes normal modes at a base-pair level [78], identifying bending,

twisting and stretching modes. It can be shown that chain curvature generates

bubbles, that is, increasing curvature increases the tendency for bubble genera-

tion. Although some models determine the exact cause of breather-formation,

it is also interesting to predict the bubble-size and lifetime in a DNA sequence.

Bending of DNA cannot easily be built into Peyrard-Bishop model, since it

only considers the interactions between neighbouring pairs. However, consid-

ering bending as an inhomogeneity, as well as long range interactions for the

along-chain bonds, allows Cuevas et al. [40, 41] to show that the movement of a

breather depends on the bending of the chain. They use a mathematical model

which is similar to that of a particle moving in a potential barrier.

Using the same Peyrard-Bishop model, Peyrard and Farago [94] prove that, at

low temperature, localization is due to individual discrete breathers, while, at

high temperature, large regions are involved. Ting and Peyrard [118] transform

the equations of motion from Peyrard-Bishop model into perturbed nonlinear

Schrodinger equations, using a multiple-scale expansion. The new represen-

tation allows them to show that the perturbation induced by a transcription

enzyme is more efficient at trapping breathers than an isolated impurity. They

obtain that trapping occurs when the amplitude of the incoming breather ex-

ceeds a threshold.

Using a simillar model, based on a Morse potential for the inter-chain interac-

tions, Zdravković and Satarić [136, 137] prove that the nonlinear oscillations of

DNA nucleotides of large amplitude lead to the unzipping of the DNA chain.

Analysing the system for different values of the inverse width of the Morse po-

tential, they reach the conclusion that this parameter plays an important role in

the DNA opening.

1.2.4 Twist-opening interactions

Many of the existing DNA models suggest that base-pair opening, as well as

bubble generation and trapping are often observed in sequences in which the
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curvature is increased. In contrast with the Peyrard-Bishop model in which

the bases move only in the direction of the hydrogen bonds, Barbi, Coco and

Peyrard have developed in [11] a new model with two degrees of freedom per

base-pair, which takes into account the twist-opening interactions – see Fig-

ure 1.3. They study analytically the small amplitude dynamics, in which the

bases are allowed to move in the plane described by a radial variable rn specific

to the motion along the hydrogen bonds and an angular variable θn indicating

the base-pair twisting. As can be seen, this system is, to some extent, a simpli-

fied version of Yomosa’s model, since both bases of a pair are characterised by

the same two variables.

Figure 1.3: Illustration of Barbi-Cocco-Peyrard model.

Several papers analyse Barbi-Cocco-Peyrard model. Based on the derivation

of a generalized multiple scale expansion for vectorial lattices [33], Barbi et al.

[12] show that the small amplitude approximate solutions of the system are

spatially localized and can travel along the sequence. They also study in [13],

the static and dynamical properties of this model around its melting tempera-

ture. Cocco and Monasson [34] use the Barbi-Cocco-Peyrard model to describe

the denaturation of the chain either thermally or mechanically by applying an

external torque at the end of the DNA strands.

In another recent paper, Gaeta and Venier [50] identify the conditions for which
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solitary travelling waves exist in Barbi-Cocco-Peyrard model. They show that

simple asymptotic behaviour and physical values of system’s parameters are

not enough to satisfy wave existence conditions. In addition, they show that

this model admits only solitary waves solutions. These results are compared

with the ones from the model for DNA torsional dynamics proposed by Car-

doni et al. [21–23], which consists of a double chain of coupled pendulums. The

model actually represents a generalisation of the Yakushevich model [128], in

which the rotational and torsional degrees of freedom of the DNA sequence are

considered to play an important role for DNA transcription. The resulting com-

posite Yakushevich model, as called by the authors and first introduced in [21],

splits each nucleotide into several subunits, taking into account, for example,

the degree of flexibility and freedom of displacements that the sugar rings ex-

hibit. As presented in Figure 1.4, each DNA strand is considered to be an array

of pairs of the form(N, B).

Figure 1.4: Illustration of the composite Yakushevich model.

The base B is a single unit that attaches to the nucleotide N, which is also con-

sidered to be a single unit. The attachment point, as well as the centre of the

bases and nucleotides define the rotation angle ϕ and ϕ
′

of bases around the

bond linking them to the nucleotide. Using the hydrogen bond linking the nu-

cleotides of a base-pair we can also define, in the counterclockwise direction,
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the sugar-phosphate torsion angles θ and θ
′
. Note that the system makes sense

only if the distance between the nucleotides N and N
′

is to be greater than

2(R + r), where R is the nucleotides’ radius and r is the distance from the nu-

cleotide base attachment point to the opposite side of the base. The system’s dy-

namics are then described through the Euler-Lagrange equations derived from

a Lagrangian with five components: kinetic energy, backbone torsional poten-

tial, stacking potential, pairing potential, and helicoidal potential. Solving the

equations of motions numerically, as well as solving the associated system of

PDEs, representing the continuous version of the equations, emphasize that the

existence of solitons is independent of the detailed modelling of DNA, since the

results are similar to the ones of Yakushevich model.

Cardoni et al. [22] generalise this representation, considering the nucleotides

and the bases as pendula. The result is a system of two double pendula chains,

which in a certain limit reduce to a sine-Gordon equation that supports topolog-

ical soliton solutions, since the non-topological degrees of freedom are frozen.

Furthermore, this model is generalized in [23] to a full class of two-dimensional

field theories of sine-Gordon type, which allows one to change the speed of a

sine-Gordon solitons by modifying elastic coupling constants and kinematic

parameter values. Moreover, breaking the Lorentz symmetry of the system

does not modify important soliton properties, such as stability and existence of

conserved topological charges.

Yakushevich et al. [131] consider that a model taking into account the asym-

metry of the base-pairs is needed. In most of the models presented above, the

bases of each pair are considered to have identical structures, having the same

masses or moments of inertia, for example. They create a new model in which

the two chains of the DNA molecule are two parallel lines and the base-pairs are

equally spaced, being all the time perpendicular to the two chains. The bases

are not treated as identical structures and have different masses. However, each

base is considered a single unit and is only allowed to move around its corre-

sponding chain. Considering that one chain consists only of adenines, while

the other one only of thymines, as well as some other inhomogeneous configu-

rations, they determine three types of topological solitons that imitate localized

states with open base-pairs. They also show that the solitons can move along

the macromolecule with constant velocity and are stable with respect to ther-
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mal oscillations, which helps explain the long-range effects in a DNA macro-

molecule.

1.2.5 Stochastic models

Even with models that consider twisting and treat separately each base of a pair,

random oscillations of the base-pair displacements have been observed during

breathing events. Bubble lifetime and breathing frequency also exhibit random

fluctuations. It is possible to model this type of behaviour using stochastic pro-

cesses.

In [3], Ambjörnsson et al. show how the probability densities of bubble life-

times and of the waiting times between successive bubble events can be ob-

tained from a master equation for the joint probability distribution of the bub-

ble size and position along the sequence, for an arbitrary DNA sequence. In [2]

and [84] Metzler and Ambjörnsson use dynamic approaches, based on a (2+1)-

dimensional master equation and on a Fokker-Planck equation respectively, to

study the size fluctuations of bubbles in a DNA molecule in the presence of

single-stranded DNA binding proteins (SSBs).

Hanke and Metzler [54] study the bubble dynamics of double-stranded DNA

using a Fokker-Plank equation for the bubble’s free energy function, which al-

lows them to include microscopic interactions in a straightforward fashion. An-

other scheme, describing the temporal fluctuations of local denaturation zones

in double-stranded DNA, is proposed by Banik et al. in [10]. The scheme, used

to study measurable quantities like the bubble size autocorrelation function, is

based on a stochastic approach and is computationally efficient, easy to imple-

ment and amenable to generalization. In fact, the stochastic approaches may

represent mesoscopic models for long timescale simulations of long chains,

which are inaccessible to all-atom molecular dynamics studies.

An important problem in stochastic dynamics is that the random terms can in-

crease considerably the temperature, as well as the total energy of the system.

Lennholm and Hornquist [77] use the Nosé-Hoover thermostat as the simplest

version of such a model. This approach introduces an extra degree of freedom

into the system, which has the role of maintaining the temperature at a certain
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value. Dauxois et al. [42] reformulate Peyrard-Bishop model using the Hoover

reformulation of Nose’s method [64] and show that at low temperatures, ex-

tended waves interact nonlinearly, but the role of localised excitations grows

as temperature rises and these excitations are responsible for DNA melting.

Kalosakas and Ares in [70] study based on this model the temperature depen-

dence of the distribution of bubble lengths in DNA segments of various C-G

concentrations. In addition, this last model’s stationary behavior is studied in

[43] by Deng and Zhu. They analyse local DNA denaturation using the stochas-

tic averaging method for a quasi-Hamiltonian system, described by Zhu et al.

in [140]. Hien et al. [62] combine the pendulum model of Englander [46] with

Peyrard-Bishop model and consider both damping and driving forces in their

model. They show that the bubble’s length and the kink’s velocity depend on

system’s temperature, as well as on the along-chain coupling interactions.

Quintero et al. [100] use another stochastic approach introducing a damping

term into the system, so that energy is conserved. Such an approach relates

the damping to the temperature and the noise terms that simulate the random

events in the system. Quintero’s model allows the computation of expressions,

valid up to second order in temperature, for the average and variance of the

kink’s position and for its mean shape. Muto et al. [86] also introduce noise

and damping terms in the equations of motions to describe the system’s inter-

actions with a thermal reservoir at finite temperature. Their DNA model con-

siders the two polynucleotide strands to be springs, with the backbone bridges

described through an anharmonic Toda potential. The bases of a pair are linked

together by hydrogen bonds, which are described by a Lennard-Jones potential.

They obtain, from the equations of motion, the expressions for the transverse

and longitudinal displacements of each base, which allows the study of wave

propagation in their system. They reach the conclusion that the longitudinal

anharmonicity might be important in DNA denaturation.

Finally, Cubero et al. [38] study breather nucleation using stochastic resonance

in a nonlinear lattice. Their model consists of a quartic potential, that is, the so-

called hard φ4 lattice, and a solution is obtained by imposing periodic bound-

ary conditions. The particles from the lattice are subject to a staggered driving

force and they optimize breather formation by requiring that the average en-

ergy per particle equates to the intrinsic energy of the breather mode. They use
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this model to demonstrate that the spontaneous formation and destruction of

discrete breathers with a selected frequency are due to thermal fluctuations.

1.3 DNA modelling challenges

Taking all these aspects into account, mesoscopic DNA models can still be con-

sidered a challenge for nonlinear science, as discussed by Peyrard et al. in [96].

One challenge is the choice of the potentials describing the interactions from the

system. For inter-strand interactions Zhang et al. [139] analyse the Toda lattice

potential and the Morse potential. Using a transformation of variables and the

Morse potential they prove that a solitary wave excitation with an estimated

width of only one or two base-pairs can be obtained. Peyrard et al. [96] suggest

that the simple Morse potential is not enough to describe all the DNA effects

and proposes a more elaborate function containing a barrier for reclosing the

base-pairs.

The stacking interactions (between bases situated on the same chain) are also

important in such a complex system. Most papers consider harmonic coupling,

but in [69], [95] and [96] it is suggested that a nonlinear stacking leads to a

self-amplification process. This improved stacking potential, has the role of

weakening the along chain bonds during a breathing event. Presumably, this

lengthens breathing events, since it causes a weaker closing force. However,

a choice of along-chain and inter-chain potentials that allows breathers to be

formed in our system does not guarantee that the DNA behaviour is accurately

represented by the mathematical models, unless the mathematical simulations

are shown to be close to experimental data or all-atom molecular dynamics

simulations.

Moreover, as already discussed, base-pair asymmetry and DNA strands inho-

mogeneity are not easily incorporated in simple nonlinear models. All these

aspects, as well as the random properties that DNA sequences exhibit, influ-

ence the dynamics, hence, most of the DNA models developed are only able to

predict the DNA behaviour for some particular types of events, such as breath-

ing events.
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Base-pair opening in DNA typically occurs on the microsecond timescale [130],

which is beyond the scope of all-atom molecular dynamics simulations. How-

ever, Guckian et al. discuss in [52] the properties of a 12-mer duplex having a

thymine base (T) replaced with the ‘rogue’ base diflourotoluene (F). They reach

the conclusion that the geometry of the Watson & Crick model is not affected

by this change, but it leads to the formation of weak hydrogen bonds between

the A and F bases. More precisely, only one hydrogen bond links the adenine

(A) to the nonpolar molecule (F), weakening the inter-chain interaction at this

defect point in DNA. Several studies consider DNA sequences with such a de-

fect to be a probe for the DNA replication mechanism – see [48], for example, in

which it is suggested that conventional hydrogen bonds are not crucial for high

efficiency and fidelity in DNA synthesis. Moreover, in DNA strands which in-

corporate a defective base, DNA breathing has been observed to occur on the

nanosecond timescale, as presented in a recent study made by Cubero et al.

[37].

1.4 Overview

In what follows, we focus only on stationary breathers appearing at a defect

site of the lattice that we define. Our molecular dynamics simulations, ob-

tained using AMBER [26], revealed that the frequency, amplitude, and dura-

tion of breathing events vary with helical twist, but in a complex way. We

therefore seek a simpler model, with fewer variables, that reproduces this twist-

dependent behaviour, in which undertwisted DNA (30◦-35◦ degrees per base-

pair) display more frequent short-duration breathing events, while overtwisted

DNA (37◦-40◦ per base-pair) exhibit fewer longer-duration breathing events.

We therefore propose a mesoscopic model for this behaviour, fit it to MD data

and compare the results to all-atom AMBER simulations.

The thesis is divided into three parts. The first of them is self-contained and

presents the DNA AMBER simulations and details about the stochastic differ-

ential equations (SDE) model that we propose. The second one includes the

system analysis and a comparison between AMBER and SDE results, while the

third part contains the Appendix describing AMBER files needed to simulate
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our system, some figures sustaining the ideas presented in Part II and the pa-

pers cited along the thesis.

We start Part I by briefly presenting, in Chapter 2, the AMBER package and

how we create the input files (presented in details in the Appendix) needed

to simulate a 12-mer DNA sequence, containing a difluorotoluene (F) base in

place of a thymine (T) base. The DNA molecule is solvated in a water box

and, after performing energy minimization operations, the system is simulated

using AMBER’s component SANDER. The Chapter ends with the methodology

needed to extract the relevant information from the simulations output files.

Chapter 3 introduces a new stochastic differential equations (SDE) mesoscopic

model for double-stranded DNA useful to study individual breathers appear-

ing at the defect site of our lattice. Using a change of variables, we reduce the

model to one-dimension, considering each base as a single particle. We use an

harmonic stacking potential, while for the inter-chain interactions the expres-

sion of the potential is determined from the free energy of the breathing pair.

Based on studies of sympletic methods capable of preserving energy-like quan-

tities [19], we introduce noise and damping terms into the system. Next, we

describe the maximum likelihood estimator (MLE) method needed to fit the

unknown parameters to data obtained from AMBER simulations. In addition,

we demonstrate the need of an alternative fluctuation-dissipation relation, for

reduced mesoscopic models.

The system parameters values are derived in Chapter 4, which also includes a

discussion on how these values vary with twist angle and influence breathing.

We conclude that breathing can be viewed as competition between the along-

chain elastic energy, the inter-chain binding energy and the entropic component

of the free energy, which is due to the forcing and damping induced by the

solvent, which slows the DNA atoms and changes the dynamics of the DNA

molecule.

Next, in Chapter 5, we apply the implicit midpoint method to simulate the

breathing process of a 12 base-pair DNA sequence, using the SDE model. The

comparison with the simulations obtained using AMBER reveals that our re-

sults are close to all-atom MD simulations, which implies that system defini-

tion and parameters fitting methodology are consistent. Small differences can

19



CHAPTER 1: INTRODUCTION

be observed between the degree of randomness of the two methods, but we

conclude that the AMBER simulations, as well as the SDE simulations, are ran-

dom. Also, longer SDE simulation of 100 nanoseconds are presented for 30◦

and 38◦ twisted DNA sequences.

The second part of this thesis, starts with Chapter 6, in which we introduce three

traditional methods, which can be used to analyse Hamiltonian system. We first

introduce the principal component analysis (PCA) method, which is a quanti-

tative analysis tool. Then, we discuss the data pre-processing that is sometimes

required before applying PCA and define the Mahalanobis distance, which can

be measured in the principal component space. Next, we present the data au-

tocorrelation function, which gives information about the data dependence on

the system’s initial conditions. Finally, we describe the normal modes decom-

position of Hamiltonian systems and we present a method of determining the

specific frequencies and vectors using the Fourier Transform. We end Chapter 6

by applying these analytic methods to a simple example to demonstrate how

can the properties of a system be retrieved from simulation data.

In Chapter 7 we apply the traditional methods discussed in Chapter 6 to the

DNA trajectory data, obtained using both AMBER and SDE models. After dis-

cussing the difficulties of constructing predictive models based on principal

components, we show the agreement between AMBER and SDE data in terms

of principal components, autocorrelation, and, least but not last, Fourier Trans-

form expressions.

The Discrete Fourier Transform (DFT) suggests that DNA exhibits the so-called

“self-organised criticality” (SOC) property, which is discussed in detail in Chap-

ter 8. First, we introduce basic SOC notions such as power laws, fractals, flicker

noise and cellular automaton, and next, we present several self-organised sys-

tems, which link critical behaviour to 1/ f (flicker) noise. Finally, we determine

the log-representation of DFTs characteristic to our DNA datasets and we show

they scale into power laws for both AMBER and SDE simulations and we con-

clude that DNA is a self-organised system.

We draw the conclusions of this thesis in Chapter 9, by summarising the DNA

models discussed and the results obtained during the system analysis. Finally,

the last part of the thesis contains the Appendix and References sections, in
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which files, figures, and scientific literature papers discussed in this thesis are

presented.
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DNA Simulations
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CHAPTER 2

The molecular-dynamics package

AMBER

AMBER (Assisted Model Building with Energy Refinement [142]) represents one of

the alternatives to simulate DNA molecules dynamics and investigate breath-

ing events. It includes two main parts:

1. a set of molecular mechanical force fields (atom types in the system, pa-

rameters for all of the bond lengths, angles and dihedrals);

2. a package of molecular simulation programs, also known as AmberTools.

Note that the programs from AmberTools work without AMBER, but AMBER

itself cannot be used without the tools package. Although the set of force fields

is dispensable, it is useful when we define a new molecular structure. The

predefined values of bond lengths, angles and dihedrals for different atoms

shorten the time needed to determine the structure of a DNA sequence, for ex-

ample.

The latest version available is Amber10, but for our simulations, we used Am-

ber9 [26]. The main disadvantage of this MD package is the time needed to

simulate a normal DNA duplex, since recent experiments show that breath-

ing events occur on the microsecond time-scale, while the integration time-step

used by AMBER is expressed in picoseconds and for best results it is recom-

mended to use a 0.002 ps time-step. Moreover, when the input files for AMBER
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are constructed, we need to take into account that the DNA sequence is sur-

rounded by a solvent, which in our case is a water box, typically having more

than ten times as many atoms as the DNA duplex.

2.1 The DNA sequence analysed

We analyse the breathing events that occur in a DNA duplex containing the

’rogue’ base diflourotoluene (F) in place of a thymine base (T), as proposed by

Cubero et al. in [37]. Replacing a T base with the F base, weakens the inter-chain

interaction at that point (since effectively only one bond of hydrogen links the

two bases), causing breathing to occur on the nanosecond time-scale, rather

than microsecond, which reduces the time needed to simulate the system in

order to perform a complete analysis of the breathing events by a factor of 1000.

The DNA sequence analysed contains 12 base-pairs as follows:

C T T T T G F A T C T T

G A A A A C A T A G A A

This sequence is analysed at a constant temperature of T = 293K, in the pres-

ence of a surrounding water box. The box has to be taken into account because

it influences the atoms interactions through the hydrogen bonds linking the

bases from the same DNA strand [95]. Even if the breathing events occur on

the nanosecond time-scale and the DNA sequence contains only 12 base-pairs,

which together with the sugars and phosphate groups represent 763 atoms, the

number of degrees of freedom in our system is actually very large (16682) due

to the water box. This means most of the time is spent computing information

about the solvent, even though this information is not used for our analysis,

since we focus only on the DNA bases and their dynamics.

Moreover, the computations involve complex interaction potentials and there-

fore, require several processors working in parallel and several weeks of work.

For example, for a 20 nanoseconds simulation, we needed about 10 days and

4 processors working in parallel. In order to reduce the system complexity, we
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need to create a new model that incorporates the effect of the solvent, but which

only deals with the DNA bases.

Our DNA sequence is analysed for different twist angles in the interval 30◦-40◦

per base-pair, more precisely five angles for an undertwisted DNA sequence

(30◦, 32◦, 33◦, 34◦ and 35◦), the typical twist angle of 36◦ and two angles (38◦

and 40◦) for an overtwisted DNA sequence. The way in which the twist angle

influences the structure of the DNA sequence can be observed in Figure 2.1, in

which the eight twist angles analysed are presented.

Figure 2.1: The DNA sequence under study for different twist angles in the

range 30◦-40◦.

Note that AMBER considers that the normal twist is by default about 32.5◦. In

order to avoid this inconvenience, we have constructed the DNA sequence by

considering the degree of twist at rest. Next, the twisting degree was preserved

by imposing a harmonic restraint on the atoms at the end bases. More precisely,

we have considered a constant energy (of 1 kcal mol−1 Å−2) and hence a con-

stant force acting on the end bases, in order to keep the DNA atoms close to

their initial positions. However, applying this restraint only to the end bases,

allowed the A-F pair to breathe by exploring a larger volume of space than the

other base-pairs.
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2.2 Simulating the system using AMBER

The basic MD program contained in AmberTools is called SANDER. It requires

several input files. Three of them are crucial for a MD simulation:

• a topology file (“.top”) containing the type of atoms in the system (includ-

ing the water box), in the order in which the information about each atom

is added to the output files, and the necessary force field parameters – a

description of such a file can be found in Appendix A.1;

• a coordinates file (“.crd”) containing on the first line the number of atoms

of the analysed system, on the next lines the 3D coordinates of each atom

at the initial position, in the order given by the topology file, and option-

ally this file may contain velocities and current periodic box dimensions –

see Appendix A.2 for more details;

• MD file (“.in”) representing the SANDER input file and consisting of sev-

eral namelists and control variables needed to determine the type of simu-

lations to be processed – examples of such files can be found in Appendix

A.3.

2.2.1 Creating input files

The scope of this section is not to present how to build from scratch a sys-

tem, since several tutorials are available on the official AMBER website (at the

address http://ambermd.org/tutorials), but the most important steps are ex-

plained. Note that a force field has to be specified in order to be able to use LEaP.

The direct way to specify the force field is using one of the leaprc files, containing

predefined force fields, that can be found in $AMBERHOME/dat/leap/cmd

directory. For a DNA molecule, the predefined FF99SB all-atom force field can

be used. Moreover, AMBER provides several water models – the default one is

TIP3P – that are used for residues with name WAT. The topology and coordi-

nates files are created using the LEaP command saveamberparm.

The program LEaP provides a platform for carrying out the modelling tasks.

Reading in the force field, topology and coordinates, it produces the files nec-
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essary for the MD simulation. First of all, we need to create the structure of

our 12-pairs DNA. It is possible to use an experimentally determined structure

or to create a new structure using nucgen, which allows generating canonical

A- and B- duplex geometries of nucleic acids by specifying the base-pairs of

our DNA sequence. This program produces a pdb file. Such a file usually con-

tains information about each atom in the system: an unique number identifier

needed for future references, the atom type, the name and the number of the

residue (nucleotide or water molecules, in our case) containing the atom and

the Cartesian atom coordinates. The residues from the pdb file are considered

to be connected, in the order of their listing, and separated, when a line con-

taining the reserved word TER is inserted between two residue. At the end of

the structure definition process, all this information needs to be in agreement

with the topology and coordinates files.

The pdb file produced by nucgen does not contain the hydrogen atoms or any of

the water molecules. LEaP allows reading and writing pdb files, constructing

new residues and molecules, linking together residues, creating nonbonded

complexes of molecules, solvating molecules in arbitrary solvents, modifying

internal coordinates within a molecule or generating topology files. Performing

such operations is helpful in adding new residues, like neutralizing counteri-

ons or solvents, and the result is the specification of the complete force field and

of the complete DNA sequence structure, as well as the creation of the MD sim-

ulation input files. Appendix A.4 contains an example of a pdb file containing

the final structure of a DNA sequence.

The pdb-format files are also used for visual analysis of the system and are not

involved in the actual simulation of our system. We use pdb files to obtain co-

ordinates and topology files, but the inverse operation is also possible, using

ambpdb filter, which transforms a coordinate file into a pdb file, using the infor-

mation contained in a topology file. Such operations are needed when we use a

predefined DNA structure, for example. During visual analysis, this type of file

is usually used in conjunction with a trajectory file, which is one of the possible

output files of a MD simulation.

The last step in the file preparation process is the creation of the MD input files.

Note that SANDER can also be used for energy minimization, which involves
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a structure relaxation. The coordinates file contains some initial values that do

not guarantee a minimum of the energy, which reduces the possibility of having

conflicts or atoms overlaps. The actual MD simulation is based on the integra-

tion of Newton’s equations of motion, allowing, at the same time, the structure

to cross over small potential energy barriers. SANDER also provides a mech-

anism of saving configurations during the simulation at regular intervals, as

well as adding constraints to the force field. In order to accomplish these tasks

we define several SANDER input files, which will specify the values of several

parameters, depending on the operation performed (energy minimization or

MD simulation – see Appendix A.3 for examples for both cases).

We decided to split the energy minimization into two steps: one in which only

the water box energy is minimized and another one in which all molecules,

except Carbon, are taken into account. The input file for the first minimization

step, contains the following section:

&cntrl

IMIN=1, MAXCYC=5000,

NCYC=50, DRMS=0.5,

IBELLY=1, NTB=1

&end

The variable IMIN specifies that we perform minimization, not molecular dy-

namics. MAXCYC represents the maximum number of minimization cycles. The

method of minimization will be switched from steepest descent to conjugate

gradient after NCYC cycles and the convergence criterion for the energy gradi-

ent is given by the root-mean-square of the gradient, which has to be less than

DRMS. Finally, IBELLY shows that only a subset of the atoms in the system is al-

lowed to move, and the coordinates of the rest are frozen, while NTB specifies

the periodic boundaries conditions used (in our case, the volume is considered

to be constant). After the parameters section, the residues allowed to move are

specified using RES directive followed by two lines containing the keyword END.

The second minimization input file has the same structure, but the IBELLY pa-

rameter is not needed and NTR is used instead of NTB by setting its value to be
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1, which turns on Cartesian restraints. Also instead of allowing the residues to

move, we only specify the constrained atoms, using the directive ATOM.

Next, we define several input files that are used in cascade in order to simulate

the system. The files structure contains the following namelist:

&cntrl

IREST=1, NTX=7,

NTF=2, NTB=2, SCEE=1.2, CUT=9.0,

NTR=1,

NSTLIM=500000, DT=0.002,

TEMP0=300.0, NTT=1,

NTWX=500, NTWE=500, NTWV=500

NTP=1,

NTC=2,

&end

The parameters IREST and NTX indicate that the simulation is restarted using

the output coordinates file from the previous step. Observe that for the first

MD simulation, the coordinates file is the output file of the minimization pro-

cess. NTF specifies that the bond interaction involving H atoms are ignored

and NTB value shows that constant pressure dynamics theory is used. CUT is

used to specify the nonbonded cutoff, in Angstroms, used to limit direct space

sum, while SCEE describes the electrostatic interactions. If NSTLIM represents the

number of MD steps performed and DT is the time-step in picoseconds, NTT is a

variable showing that temperature scaling is used in order to keep the system

in equilibrium – in our case the temperature is considered constant with value

TEMP0 and the weak-coupling algorithm is used for rescaling. Moreover, NTP

shows that MD with isotropic position scaling is used, while NTC indicates that

the length of bonds involving hydrogen are constrained. Information about ev-

ery NTWX, NTWE and NTWV steps will be written in the output files concerning the

trajectory, energy and velocity, respectively.

In addition, the first MD file needs to specify, in the Section &cntrl, the value

of IG (the seed for the random number generator, on which the MD starting ve-

locity is dependent). Also, some of the first MD simulations can be considered
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part of the system equilibration process. They will be shorter then a normal

simulation and a useful technique is to start simulating the system at a temper-

ature of 100K and to increase the temperature to a value around 300K, to allow

breathing events, while ensuring the DNA does not melt. Moreover, the MD

will be performed only on water or water and ions, for example, in order to

reach equilibrium more easily. Also some other sections can be included in the

input file, such as the weight change information section, which is repeatedly

read (if NMROPT>0 is specified in the &cntrl section) as a series of namelist spec-

ifications, until a namelist &wt statement is found with TYPE='END'. This section

is useful when the system temperature is changed, as previously suggested:

&wt

TYPE='TEMP0',

ISTEP1=0, ISTEP2=4999,

VALUE1=100.0, VALUE2=300.0

&end

&wt

TYPE='END'

&end

The temperature value VALUE1 is replaced with VALUE2 and the change takes

place between time-steps ISTEP1 and ISTEP2.

When all these goals are achieved, we start the actual MD simulation of the

system, during which, in our MD files, the &cntrl structure is followed by a

directive that specifies a Cartesian restraint on the four terminal base atoms:

10.0

ATOM 11 22 360 373 391 404 742 756

END

END

This section is different for the first few MD files, involved in the system equili-

bration, depending on the specific task performed. For example, we can specify

the atoms that are going to be tightly restrained in the MD equilibration simu-

lation.
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2.2.2 System simulation

Preparing the input files may require as much time as simulating the system.

Any mistake made while creating the DNA structure and the input files can

generate an error propagated in the output files of the MD simulation. In other

words, if the DNA structure does not have consistency and if the minimization

and simulation processes are not planed correctly, the analysis of the results ob-

tained is meaningless. Using the topology, coordinates and MD input files, we

can proceed with the system energy minimization and the actual DNA system

simulation.

The sequence of SANDER commands used is the following:

a) perform minimization

$AMBERHOME/exe/sander -O -i min1.in -o min1.out -inf

min1.inf -c DNA.crd -ref DNA.crd -r DNA.min1 -p DNA.top

$AMBERHOME/exe/sander -O -i min2.in -o min2.out -inf

min2.inf -c DNA.min1 -ref DNA.min1 -r DNA.min2 -p DNA.top

b) perform few equilibration and temperature changing MD simulations

$AMBERHOME/exe/sander -O -i md1.in -o md1.out -inf

md1.inf -c DNA.min2 -ref DNA.min2 -r DNA.md1 -p DNA.top

$AMBERHOME/exe/sander -O -i md2.in -o md2.out -inf

md2.inf -c DNA.md1 -ref DNA.md1 -r DNA.md2 -p DNA.top

.......

$AMBERHOME/exe/sander -O -i md10.in -o md10.out

-inf md10.inf -c DNA.md9 -ref DNA.md9 -r DNA.md10

-p DNA.top -x DNA.md10.x -e DNA.md10.ene -v DNA.md10.v
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c) perform MD simulations

$AMBERHOME/exe/sander -O -i md11.in -o md11.out

-inf md11.inf -c DNA.md10 -ref DNA.md10 -r DNA.md11

-p DNA.top -x DNA.md11.x -e DNA.md11.ene -v DNA.md11.v

$AMBERHOME/exe/sander -O -i md12.in -o md12.out

-inf md12.inf -c DNA.md11 -ref DNA.md11 -r DNA.md12

-p DNA.top -x DNA.md12.x -e DNA.md12.ene -v DNA.md12.v

.......

d) continue until the desired number of data points is obtained

The files with extension ”.x”, ”.ene” and ”.v” represent the trajectory, energy

and velocity files, respectively, while the ”.md*” represent the restarting coor-

dinates file. Also, information about the simulation in progress are obtained in

”.out” and ”.inf”, which are the log file and the summary file.

Note that the topology file is very important for this process, since it does not

modify during the minimization process or during the simulation process. In-

deed, the structure of the DNA sequence is not modified by our computation.

The measurable quantities like the system energy or atoms coordinates and ve-

locities will modify, but they will not affect the DNA structure, since the tem-

perature is considered to be constant and hence, the DNA melting point is not

reached.

Finally, after obtaining the velocities and trajectory files, we will eliminate the

information that we do not need in order to analyse the system.

2.3 Interpreting AMBER results

The files generated using AMBER contain the coordinates (x1, x2, x3) of each

atom of each base at every time step, as well as the velocity values (v1, v2, v3)
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for each atom. We only need information about the atoms from the extremities

of our bases, which is then used to compute the distance and the velocity cor-

responding to each base-pair. For example, for the A-F pair, we measure the

distance between the N1 atom of the A base and the H3 atom of the F base,

having the unique identifier number 213 and 561, respectively – see Appendix

for more details. As can be seen in Figure 2.2, the choice of the atoms between

which the distance is measured is not unique. It is possible to measure the dis-

tance between the centers of mass or geometrical centers of the two bases, but

these methods require more time and more resources. Hence, to measure the

distance between two base-pairs, choosing the two atoms between which the

distance is minimum, seems to be the most reasonable thing to do.

Figure 2.2: Illustration of the A-F base-pair.

The program ptraj contained in AmberTools is an alternative for processing co-

ordinates/trajectories. Using it, other information can be obtained, such as the

center of geometry of a group of atoms, the angle between three atoms or the

distance between two atoms. We used ptraj to strip off information about atoms

not needed for our computations.

A file designed to process such a task has the following structure:

#!/bin/sh

ptraj DNA.top << EOF

trajin DNA.md11ls.x
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trajin DNA.md12ls.x

trajin DNA.md13ls.x

trajin DNA.md14ls.x

trajin DNA.md15ls.x

trajin DNA.md16ls.x

trajin DNA.md17ls.x

trajin DNA.md18ls.x

trajin DNA.md19ls.x

trajin DNA.md20ls.x

trajout DNA.x nobox

strip @1-212,@214-560,@562-16682

EOF

The topology file is again, very important for our analysis, since it specifies

the order in which the atoms coordinates are represented in the trajectory files

and thus, offers a way of determining the coordinates needed. The commands

trajin and trajout specify the input and output files, respectively. We can have

several input files, but we have to be careful about the order in which they are

analysed, because the final result depends on the processing order. Inserting

the keyword nobox after the output file name specifies that the water box is

ignored, otherwise another three coordinates, representing the center of mass

of the water box, are added to the final trajectory file.

Next, we repeat the stripping procedure, for the velocities files. As will be ex-

plained in the next chapter, it is not enough to know the distances between

the bases of the DNA pairs, we also need their velocities, in order to obtain an

accurate fit of the parameters for the reduced model proposed.

After obtaining the trajectory and velocity values for the extremities of each

base-pair we have four arrays containing information about the position and

velocity of each base of a pair: x1 = (x1
1, x1

2, x1
3), v1 = (v1

1, v1
2, v1

3), x2 = (x2
1, x2

2, x2
3)

and v2 = (v2
1, v2

2, v2
3). In this case the displacement vector is d = x1 − x2 and

hence the distance is

(2.3.1) d =
√

(x1
1 − x2

1)2 + (x1
2 − x2

2)2 + (x1
3 − x2

3)2,
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while the velocity is v = v1 − v2 and hence the speed in the direction d̂ = d/d

is v = v · d̂, which is given by

(2.3.2) v =
(x1

1 − x2
1)(v1

1 − v2
1) + (x1

2 − x2
2)(v1

2 − v2
2) + (x1

3 − x2
3)(v1

3 − v2
3)

d
.

Next, observe that d represents the real distance between the two bases of a pair

and we are interested in how this distance evolves over in time. Hence, we need

to subtract the mean value, which we take to be a good approximation to the

equilibrium displacement, of the distance vector from each value of the vector:

this is about 2.6 Å for the A-F base-pair and 1.96 Å for all the other pairs.

Having completed all the steps presented above, we have prepared all the

files needed to analyse breathing for our 12-mer DNA sequence. The results

obtained, revealed that the frequency, amplitude, and duration of breathing

events varies with helical twist, but in a complex way that at present we do

not fully understand. More precisely, an undertwisted DNA molecule (30◦-35◦

per base-pair) displays short, but frequent breathing events, while the over-

twisted DNA sequences (37◦-40◦ per base-pair) breathing lasts longer, but is

less frequent. Therefore, we developed a reduced model, with fewer variables,

capable of reproducing this twist-dependent behaviour. We present AMBER

results in the Chapter 5, where a comparison with the proposed mesoscopic

model simulations is made.

We fit the parameters of the reduced system to AMBER data, such that it incor-

porates the water contribution to the potential energy, even thought we only

consider the bases of the DNA sequence. This coarse-grained model will re-

duce the time needed to simulate the system, as well as the resources needed

to store the information (during and after the simulation), but will also explain

breathing through the set of system parameters.

2.4 Summary

This chapter presents the steps that have to be completed to simulate a DNA

sequence using AMBER. After introducing the defective DNA sequence that we

analyse, we show how to create the DNA molecule using LEaP and the input
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files required by SANDER to simulate the system. After completing the system

energy minimization phase and the DNA simulation, we process the data into

a form that allows us to measure the oscillations from equilibrium of the bases.

Finally, the simulation results, that we discuss in detail in Chapter 5, show the

need for a reduced model to explain the breathing length and frequency twist

dependence.
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Model

The reduced model that we propose is able to reproduce the behaviour of a

DNA sequence containing an A-F base-pair. We model the DNA molecule

through a lattice consisting of two chains of bases, which contains a defect at

the middle site of the lattice. This defect is considered in both, along-chain and

inter-strands interactions, and represents the only base-pair of the sequence ex-

pected to breathe. Note that we create a model that simulates with accuracy not

only breathing events taking place at the defect site, but also the behaviour of

the neighbouring base-pairs, compared to AMBER simulations.

3.1 Preliminaries

We consider each nucleotide in the DNA strands to be a separate point mass

linked to three other bases: one in each direction along the same chain and

one on the complementary chain, as in Figure 3.1. The inter-chains bonds are

modelled by nonlinear force-displacement relationships, while the intra-chain

bounds are modelled as a linear spring with constant k as shown in [122]. Al-

though we construct a model with 4N bases – this means 2N base-pairs – which

can be viewed as a lattice of order N, we want to have a similar system as in the

microscopic case. Hence, we use N = 6 for our simulations and we consider

the lattice system to be recursive, that is base-pair -N is considered to be the

same as base-pair N.
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Figure 3.1: Illustration of the DNA model.

The energy associated with a breathing event is expressed by the following

Hamiltonian [122]

H = ∑
n

1
2

mn

(
dun

dt

)2

+
1
2

mn

(
dvn

dt

)2

+
1
2

k(u)
n+ 1

2
(un+1 − un)2+

+
1
2

k(v)
n+ 1

2
(vn+1 − vn)2 +

1
2

Vn(un − vn),

(3.1.1)

where un(t) and vn(t) denote the transverse displacements from equilibrium

of the two chains. No longitudinal displacements are taken into consideration.

Using the Hamiltonian we obtain the equations of motion

mn
d2un

dt2 = k(u)
n+ 1

2
(un+1 − un)− k(u)

n− 1
2
(un − un−1)−

1
2

Fn(un − vn),(3.1.2)

mn
d2vn

dt2 = k(v)
n+ 1

2
(vn+1 − vn)− k(v)

n− 1
2
(vn − vn−1) +

1
2

Fn(un − vn),(3.1.3)

for the atoms on each chain of the double helix, where Fn(y) = dVn
dy (y). The

model can be simplified, fully separating the equations, using the substitution

un = 1
2(xn + yn) and vn = 1

2(xn − yn) equivalent to xn = un + vn and yn =

un − vn. We also impose the condition that the spring constants in the two

chains, at the same site, are the same, that is, k(u)
n = k(v)

n = kn for all n. The

system becomes

mn
d2xn

dt2 = kn+ 1
2
(xn+1 − xn)− kn− 1

2
(xn − xn−1),(3.1.4)

mn
d2yn

dt2 = kn+ 1
2
(yn+1 − yn)− kn− 1

2
(yn − yn−1)− Fn(yn).(3.1.5)

Furthermore, we can simplify our model by considering that all bases have

approximately the same mass, as can be observed in Table 3.1. Given that a
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nucleotide is composed of a nucleobase, a five-carbon sugar, and one to three

phosphate groups, we may consider mn = m, ∀n, where m represents the aver-

age value of nucleotides masses, that is, m = 0.5098× 10−24 kg.

base mass

Adenine (A) 0.2243× 10−24 kg

Guanine (G) 0.2094× 10−24 kg

Cytosine (C) 0.1845× 10−24 kg

Thymine (T) 0.2509× 10−24 kg

Diflourotoluene (F) 0.2125× 10−24 kg

Table 3.1: Mass values for the five types of bases composing the nucleotides of

our DNA sequence.

Moreover, we analyze a particular case of this system by removing the mass

m from the equations and redefining the spring constant as follows: kn+ 1
2

=

m(k + k
′
δn,0), where δi,j is the Kronecker delta function satisfying δi,j = 0 if i 6= j

and δi,j = 1 if i = j. In addition, we consider Vn(y) = 1
2 mγny2 for n 6= 0, with

γn = γ for all n, and V0(y) = mE0(y), where E0 is the energy function for the

middle base-pair, which will be discussed later. We obtain a linear system of

differential equations for xn which can be solved analytically

d2xn

dt2 = k(xn+1 − 2xn + xn−1), ∀n with |n| > 1,(3.1.6)

d2x−1

dt2 = k̂(x0 − x−1)− k(x−1 − x−2),(3.1.7)

d2x0

dt2 = k̂(x1 − 2x0 + x−1),(3.1.8)

d2x1

dt2 = k(x2 − x1)− k̂(x1 − x0),(3.1.9)

where k̂ = k + k
′
. Similarly, for yn we have

d2yn

dt2 = k(yn+1 − 2yn + yn−1)− γyn, ∀n with |n| > 1,(3.1.10)

d2y−1

dt2 = k̂(y0 − y−1)− k(y−1 − y−2)− γy−1,(3.1.11)

d2y0

dt2 = k̂(y1 − 2y0 + y−1)−
dE0

dy
(y0),(3.1.12)

d2y1

dt2 = k(y2 − y1)− k̂(y1 − y0)− γy1.(3.1.13)
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The Hamiltonian which generates the latter system of equations is

Hy = ∑
n

[
1
2

(
dyn

dt

)2

+
1
2

k(yn+1 − yn)2 +
1
2

γy2
n

]
+ E0(y0)

−1
2

γy2
0 +

1
2
(k̂− k)

[
(y1 − y0)2 + (y0 − y−1)2

]
.

(3.1.14)

As it can be seen, except for n = 0, where our system of differential equations

in yn is nonlinear – see (3.1.12) – the inter-chains bonds are modelled by linear

force-displacements relationship with coefficient γ.

3.2 Proposed model with white noise

A more realistic model of a natural process is obtained by allowing some ran-

domness in the terms or coefficients of a differential equation [90]. Newton’s

second law of motion relates force to acceleration through a second-order dif-

ferential equation.

Øksendal [90] analyzes equations like

(3.2.1) dX/dt = b(t, Xt) + σ(t, Xt) ·Wt,

where Wt is a stochastic process that represents the noise term, which he consid-

ers to be the small ∆t limit of the discrete equation Xi+1 = Xi + b(ti, Xi)∆ti +

σ(ti, Xi)∆Bi, with Xi = X(ti) being a random variable, ∆ti = ti+1 − ti and

∆Bi = Wti ∆ti, with Bt representing the Brownian motion, which is a stochas-

tic process with stationary independent increments with mean zero and with

continuous paths [90].

To solve (3.2.1) we have to choose between the Itô and Stratanovich integrals.

The difference between the two methods is that Itô integrals are “not looking

into the future”, but if σ(t, x) is a function that does not depend on x the two

approaches are similar, as explained in [90]. In our case, σ(t, x) is function in-

dependent of x and t and we will use the Itô integral to solve our system of

equations.
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Since we are interested in preserving the energy in our system, the stochastic

differential equations used will contain parameters known as damping. Bur-

rage et al. [19] analyze the stochastic differential equation

(3.2.2) ẍ = f (x)− ηs2(x)ẋ + εs(x)ξ(t),

which describes the position of a particle subject to a deterministic forcing f (x),

related to the potential function V(x) by f (x) = −V
′
(x), and a random forcing

ξ(t) such that
〈

ξ(t)ξ(t
′
)
〉

= δ(t − t
′
). The damping term is η, while ε is the

amplitude of the random forcing. Note that the noise coefficient ε is related

to the damping coefficient η by the fluctuation-dissipation relation, which will

be introduced in Section 3.3 and discussed in details in Section 3.4. Equation

(3.2.2) can be rewritten as

dXt = Vtdt,(3.2.3)

dVt = −ηs2(Xt)Vtdt + f (Xt)dt + εs(Xt)dWt,(3.2.4)

which shows that the noise term directly influences the velocity and only indi-

rectly the displacement.

For s(x) = 1, ∀x ∈ R, numerical analysis of equations (3.2.3)–(3.2.4), given

in [19], shows that several integration methods can be used to obtain their

solution, for example the forward Euler method, Heun’s method or leapfrog

method, but the best results are obtained using the implicit midpoint method.

As already stated, we have no need to let s depend on x, so we simply take

s(x) = 1, ∀x. Hence, we use the implicit midpoint method for the numerical

simulations presented in Chapter 5.

Taking into consideration the above observations, we add noise and damping

terms in the system of equations (3.1.10)–(3.1.13) to obtain

d2yn

dt2 = k(yn+1 − 2yn + yn−1)− γyn − η
dyn

dt
+ εξn(t), ∀|n| > 1,(3.2.5)

d2y−1

dt2 = k̂(y0 − y−1)− k(y−1 − y−2)− γy−1 − η
dy−1

dt
+ εξ−1(t),(3.2.6)

d2y0

dt2 = k̂(y1 − 2y0 + y−1)−
dE0

dy
(y0)− η0

dy0

dt
+ εξ0(t),(3.2.7)

d2y1

dt2 = k(y2 − y1)− k̂(y1 − y0)− γy1 − η
dy1

dt
+ εξ1(t),(3.2.8)
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The random forcing in our system ξn(t) can be represented as a generalized

stochastic process called white noise [61], in which ξn(t) = dBn(t) and Bn(t)

is continuous in time. Since we are primarily concerned with simulations, we

work with the discrete-time version of the system, which suggests the replace-

ment of ξn by proper stochastic processes. We apply the Itô integrals theory to

solve the system of stochastic differential equations (3.2.5)-(3.2.8) and discretis-

ing we replace yn(t) with yn = yn(ti), where ti = i∆t, and hence obtain

yi
n = yi−1

n + vi−1
n ∆ti, ∀n with |n| > 1,(3.2.9)

vi
n = vi−1

n + (k(yi−1
n+1 − 2yi−1

n + yi−1
n−1)− γyi−1

n )∆ti −(3.2.10)

−ηvi−1
n ∆ti + ε∆Bi

n, ∀n with |n| > 1,

yi
−1 = yi−1

−1 + vi−1
−1 ∆ti,(3.2.11)

vi
−1 = vi−1

−1 + (k̂(yi−1
0 − yi−1

−1 )− k(yi−1
−1 − yi−1

−2 )(3.2.12)

−γyi−1
−1 )∆ti − ηvi−1

−1 ∆ti + ε∆Bi
−1,

yi
0 = yi−1

0 + vi−1
0 ∆ti,(3.2.13)

vi
0 = vi−1

0 + (k̂(yi−1
1 − 2yi−1

0 + yi−1
−1 )− dE0

dy
(yi−1

0 ))∆ti −(3.2.14)

−ηvi−1
0 ∆ti + ε∆Bi

0,

yi
1 = yi−1

1 + vi−1
1 ∆ti,(3.2.15)

vi
1 = vi−1

1 + (k(yi−1
2 − yi−1

1 )− k̂(yi−1
1 − yi−1

0 )(3.2.16)

−γyi−1
1 )∆ti − ηvi−1

1 ∆ti + ε∆Bi
1.

Here, for each time step i and each lattice site n, ∆Bi
n is an independent normally

distributed random variable with zero mean and standard deviation
√

∆ti.

3.3 Parameter fitting

The system of equations (3.2.9)-(3.2.16) contains several terms and coefficients,

namely η, ε, k, k̂, γ and the energy function E0(y0), whose values influence the

system solution. For this reason, their values have to be chosen carefully so that

our model behaves in a similar manner to the experimentally observed systems

and all-atom molecular dynamics (MD) simulations.
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The system’s temperature, T̃, is related to η and ε by a fluctuation-dissipation

relation, which is defined as ε2 = 2ηkBT̃, where kB = 1.38 × 10−23 JK−1 is

Boltzmann’s constant (see [51] for details). In our case, the temperature is T =

293 K and hence kBT̃ = 4.1× 10−21 J [121].

Note that, before introducing noise and damping in our system, we have di-

vided each equation by the mass of a nucleotide, that is, m = 0.5098× 10−24 kg.

We also consider ε = ε̃/m and η = η̃/m, which implies kBT = kBT̃/m, that is

kBT = 0.8125 Å2ps−2.

Next, we observe that the value of η is not directly fitted to AMBER data. On

the contrary, it is based on the fitted value of ε, and then η is computed using

the fluctuation-dissipation relation.

Most papers in the literature assume that all the along-chain interactions are

identical – see [76] for example – and assume that defects only influence the

coupling between the two chains (γ and E0). Our model enables us to test the

effects of defects in the along-chain interactions, for example, k = k̂ and later

results suggest, that for the diflourotoluene base k̂ < k, hence we treat k and k̂

as two distinct parameters.

Using data from AMBER simulations, it is possible to determine the form of

the force-distance relationship for the interchain separations and the associated

energy function, known as “potential” of mean force (PMF), which can be used

to determine E0(y0). The standard procedure is as follows:

• determine the minimum min and the maximum max displacements from

some reference distance between the bases of the breathing pair, for ex-

ample, for a 30◦ twisted DNA sequence we typically have min = −0.5998

Å and max = 5.1437 Å;

• split the interval [min, max] into several bins of equal size s (typically 20,

of size 0.3 Å, but possibly 6-600 of size 0.01-1 Å);

• let ftot be the total number of data points available for base-pair opening

distances;

• from the base-pair opening distances represented in the AMBER data,

count the frequency fi of each bin;
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• as a first approximation, we have that for each bin i the corresponding

value for the PMF(y0) is −kBTlog( fi/ ftot);

• use spline interpolation to determine an expression for the potential of

mean force PMF(y0), as illustrated in Figure 3.2.

Figure 3.2: Illustration of the potential of mean force PMF(y0) (Å2 ps−2) as a

function of displacement y0 (Å), for a bin size of s = 0.5 and a twist

of 30◦.

Figure 3.2 defines two important quantities for the potential of mean force, that

is, the breathing barrier ∆B and the energy difference ∆E between the breath-

ing and the normal states. The size s of the bins significantly influences the

expression of the energy function. The number of bins Nbin depends on s. In

fact we have Nbin = [(max−min)/s] + 1, which means that for s = 0.1 we have

Nbin = 58, while for s = 0.5 we have Nbin = 12, for example. We have tested a

wide range of bin sizes from s = 0.01 up to s = 1 to investigate the effect of s on

PMF(y0). Figure 3.3 emphasizes the difference between the small and large bin

sizes. As can be seen, there are significant changes in ∆B and ∆E values when

we vary the bin size s from a value of 0.1, as in Figure 3.3(a), to a value of 0.9,

as in Figure 3.3(b).
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Figure 3.3: Illustration of the potential of mean force PMF(y0) (Å2 ps−2) as a

function of displacement y0 (Å), for a twist of 30◦ and a bin size

of (a) s = 0.1 and (b) s = 0.9. The small circles represent the bin

points.

In Figure 3.4, we illustrate how the barrier ∆B for the base-pair breathing varies

when the bin size is changed.

Figure 3.4: Illustration of the breathing barrier ∆B (Å2 ps−2) against the bin

size (Å) – see Figure 3.2 for the definition of ∆B.
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This analysis shows that s should not take values below 0.2 or above 0.5, since

in such cases the barrier variation with bin size is too large. In addition, when s

is too large the bins are so coarse-grained that the barrier is not resolved at all,

leading to underestimates of ∆B, whereas when s is very small, there are so few

plane paths in each bin that ∆B varies wildly with s.

In what follows, the system parameters are fitted to data obtained from the

molecular dynamics (MD) package AMBER using the maximum likelihood

method.

3.3.1 The maximum likelihood method

We use the maximum likelihood method (MLE) to determine k, k̂, γ, E0(y0), ε

and implicitly η, since they are correlated by the fluctuation-dissipation rela-

tion, using data obtained during AMBER simulations. Note that the time step

in AMBER simulations is constant, thus ∆ti = ∆t, ∀i.

Taking into account that the nonlinearity of the system is generated by the

breathing pair, we will first apply MLE method for y1, which involves only

linear terms in y0, y1, v1 and y2, to obtain the parameters k, k̂, γ and ε.

From the system of equations (3.2.9)-(3.2.16), we have that the speed is normally

distributed, thus vi+1
1 ≈ N(µi+1, σ2), with

(3.3.1) µi = vi−1
1 − (ηvi−1

1 + γyi−1
1 − k(yi−1

2 − yi−1
1 ) + k̂(yi−1

1 − yi−1
0 ))∆t

and σ2 = ε2∆t. This implies that the log-likelihood is

l1(ε, k, k̂, γ) = log(L1(ε, k, k̂, γ))(3.3.2)

= −n
2

log(σ2)− 1
2σ2

n

∑
i=1

(vi
1 − µi)2

= −n
2

log(ε2∆t)− 1
2ε2∆t

n

∑
i=1

[vi
1 − vi−1

1 + (ηvi−1
1

+γyi−1
1 − k(yi−1

2 − yi−1
1 ) + k̂(yi−1

1 − yi−1
0 ))∆t]2.

After computing the parameters values for which the likelihood function is

maximum, we compute the 95% confidence intervals for them, in order to de-

termine the permitted ranges for each parameters.
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Let θ be a column vector of q parameters. We denote the information (a q× q

matrix) [56] by

(3.3.3) I(θ)ij =

(
Ex

[
− ∂2l1

∂θi∂θj
(θ)

])
,

where x is a vector of data and 1 ≤ i, j ≤ q. Then the estimate of θ using

MLE method is given by θ̂ ≈ N(θ, β), where β contains the elements of the

main diagonal of I−1(θ). Instead of I, we can use the observed information

Iobs(θ) = H(θ), where H is the Hessian matrix of l1 (3.3.2) and the variance of

θi will then be (I−1
obs(θ))ii.

Finally, the 95% confidence interval for θ̂i is

(3.3.4)
[

θ̂i − 1.96
√

(I−1
obs(θ̂))ii, θ̂i + 1.96

√
(I−1

obs(θ̂))ii

]
.

Maximizing l1, using data obtained from AMBER simulations, we determine

values of the parameters k, k̂, γ and ε of our system. Notice that maximizing

the likelihood function is equivalent to finding values of k, k̂, γ and ε, for which

the partial derivatives of the function l1 vanish, i.e.

∂l1
∂k

(θ) = 0,(3.3.5)

∂l1
∂k̂

(θ) = 0,(3.3.6)

∂l1
∂γ

(θ) = 0,(3.3.7)

∂l1
∂ε

(θ) = 0,(3.3.8)

where θ = (k, k̂, γ, ε).

Note that in some cases the parameter values might be highly correlated and we

need to compute the confidence region [111] based on the probability density

function for θ, that is,

(3.3.9) f (θ) =
1

(2π)q/2 det(Iobs)1/2
e−

1
2 (θ−θ̂)T I−1

obs(θ−θ̂),

where det(Iobs) represents the determinant of Iobs, while (θ − θ̂)T is the trans-

pose of (θ − θ̂).
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Next, we consider

(3.3.10) ρ2 = (θ − θ̂)T I−1
obs(θ − θ̂)

and for each 0 ≤ α ≤ 1 we define lα such that

(3.3.11)
∫

ρ2≤l2
α

f (θ)dθ1...dθq = 1− α.

Then, the ellipsoid defined by ρ2 ≤ l2
α represents the 100(1− α)% confidence

region. However, we will use, for our SDE simulations, parameter values close

to the center θ̂ of the ellipsoid and therefore, to simplify the parameter analysis,

we will discuss the rectangular confidence regions obtained using (3.3.4).

In what follows, we will present the results obtained for a 30◦ undertwisted

DNA, containing 12 base-pairs. First we applied the MLE method using infor-

mation taken each ∆t = 1ps and we obtained k = 0.0028, k̂ = 0.0033, γ = 0.0646

and ε = 0.5367, with negative values at the beginning of the confidence inter-

vals for k and k̂. This shows that the method used to fit our parameters is not

particularly accurate, or that we could use larger confidence intervals.

Moreover, there were significant differences between the SDE simulation and

AMBER results. At the defect site, for example, the expected breathing fre-

quency was different for the two cases. For the defect site neighbouring base-

pairs we have important differences in average displacement from equilibrium

– see Figure 3.5. Note the different scale on the vertical axis for y1(t). The cause

of the differences is the integration step: for AMBER simulation a ∆t = 2 fs time

step was used, while for the MLE method only information taken each ∆t = 1

ps was used. When the correct value of ∆t = 2 fs is used, an agreement between

AMBER and SDE simulations is achieved, as we will show in Chapter 5.

These results show that we need all the intermediary data that AMBER gen-

erates while simulating the system. We cannot store all this data because we

would need more than 8000 GB to represent 20 ns and it is impossible to achieve

this goal using existing computers and servers. Thus, we have to use only some

parts of the simulation for the MLE methods, that is, data representing 2 ns

which requires only 800 GB.

For ∆t = 2 fs, as assumed in the AMBER simulations, the MLE method applied

for l1 gives the following confidence intervals:
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Figure 3.5: Illustration of the variation of the distance (measured in Å) between

the bases of the nonbreathing pair, obtained using (a) AMBER and

(b) the proposed model, for 20ns for a 30◦ undertwisted DNA.
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• 6.3571 ≤ k ≤ 8.8856;

• 1.7848 ≤ k̂ ≤ 2.0731;

• 121.4107 ≤ γ ≤ 124.5864;

• 3.3897 ≤ ε ≤ 3.3991.

3.3.2 MLE method for E0(y0)

We can apply the MLE method for the breathing pair to obtain a more accurate

estimation of E0(y0). Note that the system we considered above had the same

noise coefficient for all base-pairs, but our computations show that y0 requires

a larger noise amplitude than for the others (y±n, with n > 0). Hence, we

introduce new parameters are ε0 and η0, where the damping coefficient value

for the breathing pair is also determined by the fluctuation-dissipation relation,

namely η0 = ε2
0/2kBT.

Taking into account our need of about 15 interpolation points to estimate E0, the

search interval belongs to R17 (taking into account k̂ and ε0). Hence, considering

k̂ to be fixed by using its value obtained from the l1 maximization reduces the

search interval on R16 and we can obtain a more accurate expression for E0(y0).

In what follows we consider k̂ = 1.9289.

From (3.2.14), we have that vi+1
0 ≈ N(µi+1, σ2), with

(3.3.12) µi = vi−1
0 − (η0vi−1

0 +
dE0

dy
(yi−1

0 )− k̂(yi−1
1 − 2yi−1

0 + yi−1
−1 ))∆t

and σ2 = ε2
0∆t. This implies that the log-likelihood is

l0(E0, ε0) = log(L0(E0, ε0))(3.3.13)

= −n
2

log(σ2)− 1
2σ2

n

∑
i=1

(vi
0 − µi)2

= −n
2

log(ε2
0∆t)− 1

2ε2
0∆t

n

∑
i=1

[vi
0 − vi−1

0 + (η0vi−1
0

+
dE0

dy
(yi−1

0 )− k̂(yi−1
1 − 2yi−1

0 + yi−1
−1 ))∆t]2.
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Note that E0 is represented as a vector of pairs (xi, yi), with x (an increasing

array) representing the bins and y the value of the free energy for each bin.

The final expression of E0(y0) is obtained using a cubic spline approximation.

During the maximization only the values of y will be modified. Due to this,

we can only compute numerically the confidence intervals, since the partial

derivatives with respect to the E0 components (needed for the Hessian matrix)

cannot be computed analytically.

Applying MLE method for l0 we obtain ε0 = 5.5160, while E0 is represented in

Figure 3.6. As we observe, the expression of E0(y0) after applying MLE method

is surprising. Figure 3.2, in which we have a representation of PMF(y0) ob-

tained from AMBER data using a bins count, suggests that the equilibrium state

is around 0Å, while the expression of E0(y0), fitted to AMBER data, suggests

that the closed state is a lower energy configuration than the open state.

Figure 3.6: Illustration of E0 function (Å2 ps−2), obtained using the MLE

method for a 30◦ undertwisted DNA.

In the SDE system, the deterministic force acting on the breathing pair has two

components:
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1. the along-chain force: k̂(y1 − 2y0 + y−1);

2. the inter-chain force: −dE0

dy
(y0).

Using bin counts of the AMBER data, we compute the so called “potential of

mean force" PMF(y0), which includes all the deterministic forces in our sys-

tem, while the MLE method considers E0(y0) to be the energy specific to the

inter-chain interactions. From (3.1.14) we have the total potential energy cor-

responding to the breathing pair being E0(y0) + 1
4 k̂((y1 − y0)2 + (y0 − y−1)2).

If we take into account the fact that the neighbouring pairs do not breath and

have only small deviations from equilibrium, we have that 〈y1〉 = 〈y−1〉 = 0,〈
y2
−1
〉
�
〈
y2

0
〉

and
〈
y2

1
〉
�
〈
y2

0
〉
, which implies that the total potential energy is

approximately E0(y0) + 1
2 k̂y2

0.

Figure 3.7: Illustration of potential energy function (Å2 ps−2) of the breathing

pair, specific to the SDE system, for a 30◦ undertwisted DNA.

Figure 3.7 shows that a graph of the total potential energy of our SDE system

is close to the potential of mean force displayed in Figure 3.2. In fact, the two

representations differ only by a constant. This means that we can approximate
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the potential of mean force of our SDE system using

(3.3.14) PMF(y0) = E0(y0) +
1
2

k̂y2
0

Even with results more accurate than in the previous case (Figure 3.5), the simu-

lation of the system using the proposed model proved that the parameters have

not been fitted correctly and no breathing or only very rare and short breathing

events were obtained. As can be observed, the breathing barrier ∆B from Fig-

ure 3.7 is very high and this could be one of the reasons for which the breathing

events are so rare.

3.3.3 Improving E0(y0) estimation

The method needs to be improved so that the central base-pair crosses the

breathing barrier more often. One of the possible methods is to approximate

E0 using smooth splines instead of simple splines.

As already mentioned, E0 is represented as an array of points (xi, yi). The spline

approximation of E0 is obtained by computing

(3.3.15) min
(E0)i

{
∑

i
(E0i − yi)2 + λ

∫ ymax

ymin

[
d2E0

dy2 (x)
]2

dx

}
,

where λ ≥ 0 and [ymin, ymax] is the domain of definition of E0. After obtaining

(E0)i we apply the spline approximation to compute E0 for the new pairs of

points (xi, E0i).

Note that for large values of λ we obtain a straight line, given by the least

squares approximation to the data, while for λ = 0 the minimum obtained is the

standard cubic spline approximation through the points (xi, yi). For 0 < λ < ∞

a curve somewhere between these two extremes is obtained. This means that

choosing the correct value of λ is an important task for this method.

In our case, we have ymin = −0.5998 and ymax = 5.1437. For λ = 0.01 we obtain

ε0 = 5.5131 and E0 is represented in Figure 3.8. The circles represent the actual

points through which the cubic spline approximation normally pases, while
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Figure 3.8: Illustration of E0 function (Å2 ps−2), obtained using the MLE

method and smooth splines (3.3.15) for a 30◦ undertwisted DNA,

using λ = 0.01. The small circles describe the values for the centres

of the bins, used to compute the smooth splines approximation.

the line shows what the smooth approximation is. Again only rare and short

breathing events could be observed, since the breathing barrier is too high.

The method uses yi for MLE application and then constructs a spline which

does not necessary pass through (xi, yi) points, only close to them. The points

through which the spline actually passes are (xi, E0i).

Another way to improve the MLE results is adding a penalty term to the l0
expression. More precisely to use

lp
0 (E0, ε0) = l0(E0, ε0)− P(3.3.16)

= −n
2

log(ε2
0∆t)− 1

2ε2
0∆t

n

∑
i=1

[vi
0 − vi−1

0

+(ηvi−1
0 +

dE0

dy
(yi−1

0 )− k̂(yi−1
1 − 2yi−1

0 + yi−1
−1 ))∆t]2

−α
∫ ymax

ymin

[
d2E0

dy2 (x)
]2

dx,
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where the penalty term is

(3.3.17) P = α
∫ ymax

ymin

[
d2E0

dy2 (x)
]2

dx,

with α ≥ 0 and [ymin, ymax] is the range of values that y0 can take. Dealing with

the same function as above, we use ymin = −0.5998 and ymax = 5.1437.

The MLE method with a penalty term is different from the previous one. The

penalty is inside the MLE function, which produces points (xi, ȳi), hence the

penalty term influences directly the MLE result. Moreover, we use a cubic

spline approximation, which passes through the points (xi, ȳi), to determine

the expression of E0(y0). In the previous case we determine first the points

(xi, yi) and then we find (E0)i, which minimizes (3.3.15).

The penalty term helps reduce the range of y parameter values explored and

depends on the value of α. We use for α a value equal to

(3.3.18) α0 =

∣∣∣∣∣ l0(E0, ε0)∫ max
min [E′′0(x)]2dx

∣∣∣∣∣ ,

while with lower values we get the final result closer to the initial guess of E0,

obtained from AMBER data using a bins count. For α � α0 the approxima-

tion is close to a straight line. Using α = 0.2413 we have ε0 = 5.5402 and E0

is represented in Figure 3.9. Again, a simulation of the resulting SDE system

shows that the breathing events are not as frequent as in the original AMBER

simulation.

Note that it is also possible to combine the MLE with penalty term method

and approximate E0(y0) using smooth spline, which helps to further decrease

the breathing barrier ∆B. But lowering the barrier did not generate longer and

more frequent breathing events, hence we conclude that one of the other pa-

rameters ε0, η0, ε, η, k, k̂ and γ is the cause of the differences between AMBER

simulation and the proposed model. The quantities ε, η, k, k̂ and γ were fitted

independently of the breathing pair, thus they can not generate the error.

The random movement of the breathing base-pair is generated by ε0. No matter

which method we used its value was around 5.5, which suggests that this pa-

rameter was fitted correctly. In conclusion the damping coefficient η0 is the one
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Figure 3.9: Illustration of E0 function (Å2 ps−2), obtained using the MLE

method with a penalty term, with α = 0.2413, for a 30◦ under-

twisted DNA.

for which a wrong value is used. This parameter was computed based on the

fluctuation-dissipation relation using the fitted value of ε0, which means that

this relation, defined in general for a particle subject to deterministic forcing,

cannot be applied in our case. We will revisit this in Section 3.4.

3.3.4 An improved potential of mean force

Figure 3.7 represents what we consider to be an approximation of the “potential

of mean force” of our SDE system, as described in Section 3.3.2. But, the inter-

chain force and the along-chain force are not the only deterministic forces in

our system. The damping term also contributes as a deterministic force to the

system, since the coefficient is constant (not stochastic), being related only to

the noise amplitude and not to the noise term itself.

Consider the simple case of a moving particle subject to both, deterministic and
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nondeterministic forces, with the equation of motion given by

(3.3.19)
d2x
dt2 = −kx− η

dx
dt

+ εξ(t).

Then the associated energy is E(x) = K(x) + U(x), where K(x) = 1
2(dx/dt)2

is the kinetic energy and U(x) is the potential energy. Using the fact that
d2x
dt2 = −∂U

∂x
, we obtain that

(3.3.20) U(x) =
1
2

kx2 + η
∫ dx

dt
dx.

If we take η � 1 and ε� 1 we can consider that E(x) = E1 fixed and then x(t)

is periodic, with (dx/dt)2 = 2E1 − kx2. Using this value for E and integrating

we obtain∫ dx
dt

dx = ±
∫ √

2E1 − kx2dx(3.3.21)

= ±
∫ [

sin−1

(
x

√
k

2E1

)
+ x

√
k

2E1

(
1− kx2

2E1

)]
E1√

k
dx

≈ x
√

2E1

(
1− kx2

12E(x)

)
,

the approximation being for small x. Since, during AMBER simulations, the

energy is preserved at E(x) ≈ 1
2 kBT, we obtain the leading order result U(x) =

1
2 kx2 + ηx

√
kBT.

Hence, an approximation of the potential of mean force in our SDE system is

actually given by

(3.3.22) PMF(y0) = E0(y0) +
1
2

k̂y2
0 +

√
kBTη0y0.

Figure 3.10 represents an approximation of the actual potential of mean force of

our SDE system (containing the damping contribution), obtained using E0(y0)

expression from Figure 3.6. This representation clarifies the reasons for which

no breathing events were obtained when simulating the SDE system: the damp-

ing term is large enough to overcome the noise term and to keep the system in

its minimum energy state at any moment.

Hence, we need either to reconstruct the system from scratch or to reconsider

the fluctuation-dissipation relation, as already suggested. Our analysis shows

that redefining the relation between the noise and damping coefficient solves

the inconsistencies between our mesoscopic model and AMBER.
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Figure 3.10: Illustration of potential energy function (Å2 ps−2) of the breath-

ing pair, including the damping contribution, specific to the SDE

system, for a 30◦ undertwisted DNA.

3.4 Fluctuation-dissipation relation

Note that each equation of the SDE system is obtained using a change of vari-

ables from two other equations (in un and vn, respectively) and that we have

added the noise and damping to the deterministic equation for yn. However,

the distance yn represents the distance between two bases moving indepen-

dently one of each other and each subject to random fluctuations. The intra-

and inter-chain potential energies describe the interactions between the bases

of the system, but the random forcing from our system should be described sep-

arately for each base. For this reason, the noise and damping should be added

to the equation of motion of each base, that is, the system in un and vn, and only

after that the change of variables to (xn, yn) can be made.

Taking into consideration the above observations, we add noise and damping

terms to (3.1.2)–(3.1.3) to obtain
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mn
d2un

dt2 = k(u)
n+ 1

2
(un+1 − un)− k(u)

n− 1
2
(un − un−1)−

1
2

Fn(un − vn)(3.4.1)

−η̃n
dun

dt
+ ε̃nξu

n(t),

mn
d2vn

dt2 = k(v)
n+ 1

2
(vn+1 − vn)− k(v)

n− 1
2
(vn − vn−1) +

1
2

Fn(un − vn)(3.4.2)

−η̃n
dvn

dt
+ ε̃nξv

n(t),

Considering xn = un + vn and yn = un − vn and k(u)
n = k(v)

n = kn for all n, the

system becomes

mn
d2xn

dt2 = kn+ 1
2
(xn+1 − xn)− kn− 1

2
(xn − xn−1)− η̃n

dxn

dt
(3.4.3)

+ε̃n(ξu
n(t) + ξv

n(t)),

mn
d2yn

dt2 = kn+ 1
2
(yn+1 − yn)− kn− 1

2
(yn − yn−1)− Fn(yn)− η̃n

dyn

dt
(3.4.4)

+ε̃n(ξu
n(t)− ξv

n(t)).

Let N(µ, σ2) be a Gaussian random variable, with mean µ and standard devia-

tion σ. Since for a random variable X with normal distribution N(0, 1) we have

fX(x) =
e−x2/2
√

2π
and P(z ≤ Z) =

∫ ∫
fXY(x, y), then when we add two random

variables (Z = X + Y), both with normal distribution N(0, 1), we have

fZ(z) =
∫ ∞

−∞
fX(x) fY(z− x)dx =

∫ ∞

−∞

1
2π

e−x2/2−(z2+x2−2zx)/2dx(3.4.5)

=
e−z2/2

2π

∫ ∞

−∞
e−x2+zxdx =

e−z2/4

2π

∫ ∞

−∞
e−x2+zx−z2/4dx

=
e−z2/4

2π

∫ ∞

−∞
e−(x−z/2)2

dx =
e−z2/4

2π

√
2π

=
e−

1
2 (z/
√

2)2

√
2π

.

The random variable obtained Z = X + Y is normal distributed Z ≈ N(0, 2) =
√

2N(0, 1).

Since for all n each of ξu
n(t) and ξv

n(t) represent an independent Wiener pro-

cesses that can be written in the discrete case as
√

∆tN(0, 1), we obtain that
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ξu
n(t)± ξv

n(t) =
√

2ξn(t). Comparing (3.4.3)-(3.4.4) with (3.4.1)-(3.4.2) we note

that the damping coefficients are identical (η̃n), but the noise coefficients are

larger in (3.4.3)-(3.4.4) than in (3.4.1)-(3.4.2). Since the fluctuation-dissipation

relation involves the noise and damping coefficients and (3.4.3)-(3.4.4) has dif-

ferent noise amplitude than (u, v) system, the (x, y) system satisfies an alterna-

tive fluctuation-dissipation relation, which will be determined later.

Taking mn = m, ∀n, kn+ 1
2

= mk, for all n, except for k 1
2

= k− 1
2

= mk̂, Vn(y) =
1
2 mγy2, for n 6= 0, and V0(y) = mE0(y), where E0 is the energy function for the

breathing base-pair, which will be discussed later, and also considering η̃n =

mηn, with ηn = η for n 6= 0, and ε̃n = mε̄n, with ε̄n = ε̄ for n 6= 0, our system in

yn becomes

d2yn

dt2 = k(yn+1 − 2yn + yn−1)− γyn − η
dyn

dt
+ ε̄
√

2ξn(t), |n| > 1,(3.4.6)

d2y−1

dt2 = k̂(y0 − y−1)− k(y−1 − y−2)− γy−1 − η
dy−1

dt
+ ε̄
√

2ξ−1(t),(3.4.7)

d2y0

dt2 = k̂(y1 − 2y0 + y−1)−
dE0

dy
(y0)− η0

dy0

dt
+ ε̄0
√

2ξ0(t),(3.4.8)

d2y1

dt2 = k(y2 − y1)− k̂(y1 − y0)− γy1 − η
dy1

dt
+ ε̄
√

2ξ1(t).(3.4.9)

Observe that the fluctuation-dissipation relation for system (3.4.1)-(3.4.2), that

is, η̃ = ε̃2/2kBT̃ implies

(3.4.10) η =
ε̄2

2kBT
,

and η0 = ε̄0
2/2kBT. The noise coefficients in this case are ε =

√
2ε̄ and

ε0 =
√

2ε̄0, and based on (3.4.10) we obtain that the alternative fluctuation-

dissipation relation is

(3.4.11) η =
ε2

4kBT
,

and η0 = ε2
0/4kBT. We observe that the fluctuation-dissipation relation (3.4.11)

for our x− y system (3.4.3)-(3.4.4) has an increased noise to damping ratio of 2

over that from (3.4.10) for u− v system (3.4.1)-(3.4.2). The reason for this is that

(3.4.1)-(3.4.2) is a coupled system of 2N differential equations, whilst each of

(3.4.3) and (3.4.4) is a closed system of just N differential equations. Yet each of

(3.4.3) and (3.4.4) contains the effects of all 2N noise terms from (3.4.1)-(3.4.2).
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Next, we have to take into account that AMBER computes at each time the

coordinates of each atom of a base-pair. The new coordinates of an atom are

influenced by the neighboring atoms. Our initial mesoscopic model consid-

ers a base as a single particle, while AMBER considers the bases as a group

of molecules linked together by several bonds. Since we try to fit our param-

eters using AMBER data, it might be possible that the new expression for the

fluctuation-dissipation relation is still wrong.

Analysing the four bases of our DNA duplex, we observe that adenine (A) as

well as thymine (T) contain 32 atoms, guanine (G) contains 33 atoms, while cy-

tosine (C) contains only 30 atoms. Hence we can say that on average each base

contains 32 atoms and the equation of motion of each base is actually obtained

from the equations of motion of the 32 atoms composing the base. Our system

parameters are fitted to data obtained using AMBER, which simulates all atoms

in a 12 base-pair DNA sequence solvated in water. For this reason, we consider

the generalised fluctuation-dissipation relation

(3.4.12) η =
ε2

CkBT
,

where C is a parameter to be determined. The four bases contain different com-

binations of Hydrogen, Carbon, Nitrogen or Oxygen atoms. Whilst the mass

of Carbon, Nitrogen and Oxygen are similar, that of Hydrogen is negligible.

Since Hydrogen represents about half of the atoms of each base, we may ex-

pect C = 64. On the other hand, we consider the distance between the bases of

a pair to be the distance between the atoms from the extremities of these bases,

which are linked to one or two atoms only. In addition, the interactions be-

tween the DNA atoms and the solvent surrounding it also influence the value

of the constant C. Indeed, MD analysis of a DNA sequence solvated in a water

box show that the box slows the DNA atoms and hence, influences the value of

the damping coefficient. Thus, we have 2 < C < 64 and a precise value of C

will be determined later.

Note that the parameter C determines the ratio of noise to damping and rep-

resents an important quantity in our system. Too much damping means no

breathing events occur, while not enough damping allows too many breathing

events to take place. One may think this value will be the same for all DNA
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twist angles. From structural point of view, the DNA sequence does not mod-

ify with the twist angles, however, interactions between atoms within a base

and interactions between the base and its surrounding water box may depend

on twist angle. This allows a breathing base to explore different volumes of

space. We model this effect by varying the parameter C with twist angle. Our

simulations show that 4.8 ≤ C ≤ 8, depending on the twist angle.

3.5 Summary

In this chapter we have introduced a new stochastic differential equation model

for a DNA duplex useful for simulating short timescale breathing events at

a defect. After presenting the nonlinear deterministic model, we derived the

stochastic version of our system, which incorporates noise and damping terms.

Next, we show how the system parameters can be fitted to data from the MD-

simulation package AMBER simulations using the Maximum Likelihood Esti-

mation (MLE) method. We also present an improved MLE method containing a

penalty term, as well as the smooth spline approximation of a discrete function,

both useful to determine a more accurate value of the inter-chains potential en-

ergy function.

We also emphasize the difference between the potential of mean force and the

various potential energies in our system, by determining an approximation for

the potential of mean force expression.

Finally, we also discuss the need of an alternative fluctuation-dissipation rela-

tion in reduced mesoscopic models. We show how the noise coefficient changes

in derivation of reduced models, influencing the fluctuation-dissipation rela-

tion. We also explain the importance of the damping term in preserving the

system energy and show its contribution to the total energy of the system as a

deterministic force.
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Analysis of Parameter Values

In this chapter, we show how data from AMBER influences the values of pa-

rameters in our SDE system, as well as an analysis of how each parameter in-

fluences the length and the frequency of the breathing events, by considering

the expression of the potential of mean force, obtained using (3.3.22).

Note that the MLE method described in Section 3.3.1 is sensitive to input data.

If the data used for parameters fitting is not representative of the behaviour of

a DNA sequence, then the parameter values obtained may not be the appro-

priate ones. In addition, considering a wider confidence interval increases the

probability of including the right result.

4.1 An example calculation

For each twist angle, several computations are needed to obtain an input data

sample for our MLE method, which is representative of DNA breathing be-

haviour. Also several steps have to be covered to obtain the parameter values,

as follows:

1. We first simulate using AMBER 20 ns of data and we keep this informa-

tion about each 1 ps. It is impossible to store 20 ns of data every 2 fs –

the timestep used for AMBER simulations – given that such simulations

would require more than 10 weeks and about 8000 GB of storage capacity.
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At this point, we are only interested in the distances between the bases

of the A-F pair. Applying the methodology described in Section 2.3 for a

simulation of a 30◦ undertwisted DNA molecule, we obtain the distances

from Figure 4.1.

Figure 4.1: Graph of the distance y0(t) in Å between bases of the breathing

pair, plotted against time measured in ps, obtained from a 20 ns

AMBER simulation for a 30◦ undertwisted DNA.

Considering that any value above 3.6 Å represents an open state of the

A-F base-pair, we can compute the percentage of time spent breathing.

Note that our results suggest to ignore the first 5 or 6 ns of each simula-

tion, since the data shows an unrepresentative initial transient. We finally

obtain an average of 26.0890% of time spent breathing.

2. Next, we perform a shorter AMBER simulation, of 2 ns, for example, and

we store information about the position and velocity of each atom every

2 fs. After computing the distances specific to A-F pair, we select a subset

of this data, which agrees in time spent breathing at the defect site with

the 20 ns AMBER simulations. For the same 30◦ undertwisted DNA se-

quence, we obtain the distances from Figure 4.2. In this particular case, the
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representative subset starts at the first data point and ends after 1.8× 106

fs, for which 25.8900% of time is spent breathing.

Figure 4.2: Graph of the distance y0(t) in Å between bases of the breathing

pair, used for fitting system parameters, plotted against time mea-

sured in fs, obtained from a 2 ns AMBER simulation for a 30◦ un-

dertwisted DNA.

Having the representative subset data, we compute the displacements

from equilibrium y−1, y0, y1 and y2 by subtracting from the base-pairs

distances their mean value. We also compute the velocities v0 and v1, all

this information being required by the MLE method.

3. Using (3.3.2) we apply MLE on y0, y1, v1 and y2 to determine ε, k, k̂ and γ.

We also determine η based on the fluctuation-dissipation relation (3.4.12).

4. Using (3.3.13) and the previously determined value of k̂, we perform MLE

on y−1, y0, v0 and y1 to determine ε0 and E0(y0), as well as η0 using the

fluctuation-dissipation relation.
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4.2 Influence of data samples on parameter values

For each twist angle we have analysed the effect of discarding 6, 7, 8, 9 and

10 ns of simulation to determine the breathing time variation. The results dis-

played in Table 4.1 show that the time spent breathing is different for different

portions of data analysed, but the way in which it varies with the twist angle is

preserved, no matter which sample interval is used. Moreover, the variation in

each row of Table 4.1 is no more than 5%, which is quite small compared to the

45% variation from the entire table.

Twist angle 14ns 13ns 12ns 11ns 10ns

30◦ 26.9500% 26.8769% 25.1583% 26.7000% 24.7600%

32◦ 45.1143% 48.5000% 48.4000% 50.7909% 46.3300%

33◦ 23.8786% 25.4385% 27.3750% 29.5273% 27.5400%

34◦ 21.7571% 23.1692% 24.9583% 21.0636% 23.0500%

35◦ 26.2500% 24.3538% 25.6500% 27.5545% 28.2600%

36◦ 40.1357% 38.0538% 37.9833% 35.7455% 37.9500%

38◦ 64.1143% 65.1462% 69.0917% 70.2636% 70.9000%

40◦ 57.0429% 55.9000% 58.0250% 63.2364% 66.9900%

Table 4.1: Time spent breathing for each angle analysed, using different num-

bers of data points. The underlined values represent the smallest

and largest percentages for a given twist angle.

For each angle, we compute the parameter values from simulation data corre-

sponding to the smallest and the largest proportion of time spent breathing (see

the underlined values from Table 4.1). In this way we obtain two confidence in-

tervals for each parameter, which we combine to give the final intervals for our

parameters.

4.2.1 Confidence intervals

In Section 2.3, we mentioned that we need to subtract the mean value from the

distance between the two bases of a pair to obtain how this distance actually
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evolves in time. For a 30◦ undertwisted DNA sequence, this implies that 〈y1〉 =

2.0178 and 〈y2〉 = 1.9718. Analysing Figure 4.2, we see that for y0 it is not

possible to obtain a correct value using the mean of the vector data and only

data between 1.3× 106 fs and 1.5× 106 fs, for example, should be used. Hence,

we obtain 〈y0〉 = 2.5778.

Subtracting the mean values for y1 and y2 from the AMBER data and applying

MLE method for l1 – see (3.3.2) for its definition – and using C = 6.5, we obtain

the confidence intervals quoted in Table 4.2.

k k̂ γ ε

[5.8837, 8.9828] [1.3050, 1.5597] [126.0255, 130.8682] [3.3871, 3.4094]

Table 4.2: Parameter values from MLE, obtained for a 30◦ undertwisted DNA,

using for each base-pair the mean value of displacements.

Figure 4.3: Graph of the distance y1(t) in Å between bases of an A-T pair, used

for fitting system parameters, plotted against time measured in fs,

obtained from a 2 ns AMBER simulation for a 30◦ undertwisted

DNA.
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Figure 4.3 shows that the equilibrium value for y1 is not its mean either. One

may think that small differences in the equilibrium values would not affect the

parameters estimates obtained from MLE. However, using 1.9750Å for the equi-

librium value of y1 and 1.9596Å for y2, we have

k k̂ γ ε

[9.2146, 12.0713] [3.4965, 3.8737] [116.0208, 121.7915] [3.3908, 3.4125]

Table 4.3: Parameter values from MLE, obtained for a 30◦ undertwisted DNA,

using equilibrium base-pairs values that are smaller than the mean

displacements.

The later values for equilibrium are obtained by considering only a part of the

AMBER data, for which the range of displacements is 0.5 Å, for example. Com-

paring Tables 4.2 and 4.3 we observe that k̂ suffers the most dramatic change of

value.

As will be discussed in the next section, some values of our parameters might

not be consistent with the values obtained for other twist angles. This is due to

the expectation that if 20 tests were performed at a 5% significance level, one

would expect one error. Extending the confidence intervals can solve this prob-

lem. This can be achieved by using the Bonferroni correction, which repleces a

confidence interval of 100(1− α)% with a 100(1− α/n)% confidence interval,

where n is the number of data sets tested and α is the significance level. In our

case n = 8, since we analyse eight different twist angles, and α = 0.05, hence

the 99.375% confidence interval for θ̂i become

(4.2.1)
[

θ̂i − 2.5
√

(I−1
obs(θ̂))ii, θ̂i + 2.5

√
(I−1

obs(θ̂))ii

]
,

where θ̂ = (θ̂i) is the estimate of the vector of parameters θ and Iobs is the

observed information, as defined in Section 3.3.1.

Applying the Bonferroni correction, we replace the confidence intervals from

Table 4.3 with those displayed in Table 4.4. Comparing with the confidence

intervals from Table 4.2, we observe that the noise amplitude and the inter-

strands spring constant γ suffer only minor changes in value, but the values of

the along-chain interaction parameters k and k̂ are strongly affected.
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k k̂ γ ε

[8.8589, 12.4481] [3.4613, 3.9086] [115.5826, 122.2566] [3.3894, 3.4139]

Table 4.4: Confidence intervals for parameter values from MLE, for a 30◦ un-

dertwisted DNA, obtained using Bonferroni correction.

This situation can be easily explained, given that the noise term is not depen-

dent on displacements, the inter-chain force only depends on y1, while the forc-

ing terms related to k and k̂ depend on y1 and y2, and y0 and y1, respectively.

Hence, the last two terms are more affected by the change in the values sub-

tracted from the base-pairs distances, obtained from AMBER, than the other

two forcing terms involved in l1 maximization.

4.3 The fluctuation-dissipation relation

As already mentioned, one of the most important parameters in our system is

C = ε2/ηkBT from the fluctuation-dissipation relation (3.4.12), which varies

with twist angle. The values used for this parameter are presented in Table 4.5.

The variety of values of C is due to the water box that slows the atoms of the

DNA sequence. This event is generated by the interactions between the solvent

and DNA atoms, which are angle dependent.

Twist angle 30◦ 32◦ 33◦ 34◦ 35◦ 36◦ 38◦ 40◦

C 6.5 6 5.8 5.6 4.8 7 7.25 8

Table 4.5: Parameter C values.

One might think that the parameter C value should be fitted to the AMBER data

as the other parameters were, using MLE method. Recall how the displace-

ments and velocities were obtained in Section 2.3: we measured the distances

between the extremities atoms of the bases of each pair, while the velocities

were obtained via using (2.3.2). When C was treated as a parameter in the MLE

process, we obtained similar values for all parameters, while C was predicted
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to have a value less than 1, even though our computations from the previous

chapter show that C ≥ 2.

Moreover, AMBER uses rescaling to keep the system at a fixed temperature.

This means that some measurable quantities, for example, the velocities, are

rescaled in order to keep the average kinetic energy constant. Also, there is no

noise explicitly involved in AMBER simulations, which suggests that the MLE

method attempts to compensate the noise contribution through the damping

term.

4.4 Parameter values

After fitting the parameters via MLE, for all the twist angles, we select, inside

the confidence intervals obtained for each parameter, the values for which the

SDE simulations are close to MD results. We obtain the values listed in Table 4.6,

for which the best results are obtained when simulating the SDE system.

Twist angle k k̂ γ ε ε0

30◦ 10.6536 3.6851 120.0904 3.4074 5.6285

32◦ 9.5585 3.2132 131.0919 3.3585 5.9770

33◦ 9.5374 2.8261 135.5951 3.3429 5.3214

34◦ 9.2678 2.4625 145.6987 3.3225 5.4843

35◦ 8.1819 1.8256 149.5683 3.3471 5.6744

36◦ 7.6577 1.4307 165.4327 3.3499 5.9238

38◦ 8.1438 2.1462 139.0797 3.3511 6.8702

40◦ 19.5297 2.6341 132.0731 3.3550 6.1750

Table 4.6: Parameter values obtained using MLE on l1 and l0 – see (3.3.2) and

(3.3.13) for definitions.

As can be seen, the along-chain bonds k and k̂ become weaker as the twist an-

gle is increased from 30◦. On the other hand, the interchain bond γ becomes

stronger with twist angle, but once the DNA becomes overtwisted (twist an-

gle greater than 36◦) the along-chain bonds become stronger and the interchain
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bonds decrease. From 36◦ upwards all these trends are reversed and we see a

20.19% decrease in γ and 90% increase in k̂. Moreover, the noise coefficient ε is

almost constant, varying by only 0.2%, whilst for the A-F pair we observe small

oscillations of 15.98% in the noise coefficient ε0.

4.4.1 Noise and damping coefficients

Figure 4.4 shows that, in the case of the breathing pair, we need more noise

(higher value for the noise coefficient ε0) for the twist angles for which the DNA

sequence spends more time breathing – see Table 4.1. The ε values suggest that

the extreme twist cases (30◦ and 40◦) are slightly noisy than those closer to the

normally twisted DNA.

Figure 4.4: Illustration of the confidence intervals of system parameters ε (con-

tinuous line) and ε0 (dash line), both measured in Å ps−3/2, plotted

against the twist angle θ.

Using the fluctuation-dissipation relation (3.4.12) we can determine the values

of the damping coefficients η and η0. Table 4.7 presents the averaged values of
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damping amplitude, obtained using for ε and ε0 the values from the middle of

the confidence intervals.

Twist angle η η0

30◦ 2.1910 5.9986

32◦ 2.3086 7.3282

33◦ 2.3797 6.0089

34◦ 2.4329 6.6104

35◦ 2.8725 8.2561

36◦ 1.9735 6.1699

38◦ 1.9084 8.0127

40◦ 1.7317 5.8676

Table 4.7: Values of damping coefficients η and η0, both measured in ps−1.

The damping rate of the breathing pair η0 has a variation with twist angle of

40.7%, while for the rest of the base-pairs we observe a variation of 65.87% in η.

One might expect the two parameters to follow similar variations as the noise

coefficients (η,η0), but this does not hold, since parameter C has different values

for each twist angle and this strongly influences the final values of the damping

coefficients.

As mentioned in Sections 3.3.3 and 3.3.4, the damping term contributes to the

deterministic potential of mean force and a larger damping coefficient means

less time spent breathing, which shows that damping influences breathing du-

ration. In addition, as will be discussed later in this chapter, the damping term

also influences the breathing frequency.

4.4.2 Along-chain interactions

In Figure 4.5 we show the variation of the along-chain interactions parameters k

and k̂. For the 40◦ overtwisted DNA, the values of k are higher than the values

for the other twist angles, but the variation is very high. One explanation is

that at this extreme twist angle the bases situated on the same strand might be

strongly connected by covalent bonds.
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Figure 4.5: Illustration of the confidence intervals of system parameters k (con-

tinuous line) and k̂ (dash line), both measured in ps−2, plotted

against the twist angle θ.

In addition, both, k and k̂, follow the same path, decreasing in value from the

extreme angles (30◦ and 40◦) to the normal twist angle (36◦). Hence, the de-

fect only affects the bond’s strength, but their variation with twist angle is pre-

served.

4.4.3 Inter-chain interactions

Figure 4.6 presents the confidence intervals for the inter-chain interactions pa-

rameter γ and suggests that the most stable system is obtained for the normally

twisted DNA sequence, that is, for 36◦ of twist. A higher value of γ means

stronger interactions between the bases of a pair. This result, combined with

the opposite behaviour of the intra-strand coefficient k (Figure 4.5), show that

in an undertwisted, as well as, in an overtwisted DNA sequence the along-chain

interactions are stronger, while the inter-chain interactions are weaker than in

the case of the 36◦ twisted DNA strand.
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Figure 4.6: Illustration of the confidence intervals of system parameter γ, mea-

sured in ps−2, plotted against the twist angle θ.

Note that the parameter γ is fitted to AMBER data for an A-T base-pair (n=1).

The bases of such a pair are linked by two hydrogen bonds and the bases of

a C-G pair are linked by three hydrogen bonds, but our model does not take

into account which type of base-pairs our DNA sequence contains. Hence, us-

ing an average value between γAT and γCG solves this problem, but this means

obtaining information about the velocity and coordinates for at least another

base-pair. Alternatively, supposing that each hydrogen bond has equal contri-

bution to the interactions between the bases of a pair, we use for our simulations

γ = 5γAT/4.

Analysing Figures 4.5 and 4.6 we observe that in the case of a 34◦ undertwisted

DNA sequence, the confidence intervals for parameters k and γ are not consis-

tent with the behaviour of the other twist angles, which proves that using the

Bonferroni correction is helpful to determine correct values for our parameters.

In other words, the wider range of values obtained by using the Bonferroni

correction increases the chances to have the correct parameter value inside the

confidence interval.

74



CHAPTER 4: ANALYSIS OF PARAMETER VALUES

4.4.4 The A-F inter-base potential E0(y0)

Applying MLE for l0 (see Section 3.3.2 for definition), for a 30◦ undertwisted

DNA, using k̂ = 3.6851 and taking into account all the improvements specified

above, we obtain ε0 = 5.6285 and an expression for E0(y0) which is displayed in

Figure 4.7. This expression is even more surprising than the one from Figure 3.6.

In Figure 3.2, we show PMF(y0) obtained from AMBER data using bin counts,

which suggests that the equilibrium state is around 0 Å. Local minima at 2 Å

and 4 Å, indicate breathing states. The E0(y0) expression, graphed in Figure 4.7,

suggests that the most stable state of our system is an open state at 5 Å, since it

has a lower energy than the closed state at 0 Å.

Figure 4.7: Illustration of E0 function (Å2 ps−2), obtained using the MLE

method for a 30◦ undertwisted DNA. The small circles describe

E0(y0) values for the centres of the bins.

Considering the inter-chain contribution to the potential of mean force, we ob-

tain the expression shown in Figure 4.8, which suggests that the damping term

also contributes to the potential of mean force.

Indeed, Figure 4.9 shows that the breathing states at y0 = 2 Å and y0 = 4 Å
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Figure 4.8: Illustration of potential energy function E0(y0) + 1
2 k̂y2

0 (Å2 ps−2)

of the breathing pair, specific to the SDE system, for a 30◦ under-

twisted DNA.

Figure 4.9: Illustration of potential energy function E0(y0) + 1
2 k̂y2

0 +
√

kBTη0y0

(Å2 ps−2) of the breathing pair, including the damping contribu-

tion, specific to the SDE system, for a 30◦ undertwisted DNA.
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both have higher energy than the closed state y0 = 0 Å, and thus Figure 4.9 and

equation (3.3.22) are close to the classic “potential of mean" force of Figure 3.2.

However, as we observe, the two expressions differ by a constant.

Firstly, Figure 3.2 is obtained from a straightforward bin count of the number of

timepoints at which the displacement falls within each interval. A fairly crude

division of the interval into widths of s =0.5Å is used, and as noted in Figure 3.4

the height of the breathing barrier is dependent on the bin width, s. As s is

reduced, the accuracy will improve, and Figure 3.4 shows that the breathing

barrier height increases. Figure 4.9 shows the results of a maximum likelihood

estimate of the parameters followed by a calculation of the potential of mean

force. We observe a significantly higher potential barrier (than in Figure 3.2),

since the method of calculation takes account of the order of data points in the

sample data. The calculation can distinguish between a few long breathing

events and many short breathing events, which is impossible when using the

simpler bin-counting algorithm for estimating the PMF.

For the other angles, we obtain different expressions for the energy function

E0(y0). Figures 4.10(a)-4.16(a) represent E0(y0) the for the other seven twist an-

gles for which the DNA sequence is analysed. Some of the differences between

the expressions for E0(y0) are presented in Table 4.8.

Twist angle ∆B ∆E

30◦ 13.9853 –11.5855

32◦ 8.3315 –11.0732

33◦ 12.4900 –5.3957

34◦ 12.8309 –4.0070

35◦ 7.6100 –1.8403

36◦ 19.2640 0.6502

38◦ 13.6796 –7.1785

40◦ 14.8387 –9.3841

Table 4.8: Values of ∆B and ∆E (both measured in Å2 ps−2) corresponding to

E0(y0). See Figure 3.2 for their definition.

Here ∆B is the height of the barrier from the closed state and ∆E is the energy
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difference between the breathing (open) and normal (closed) stated. Hence,

the energy barrier from open to closed state is ∆B-∆E (see Figure 3.2 for an

illustration). The energy differences ∆B and ∆E control the frequency and the

length of breathing events, respectively, and both vary with twist in the range

30◦-40◦.

For an undertwisted DNA sequence ∆E is negative, as seen in Figures 4.10(a)-

4.13(a) and Table 4.8; for the typical twist of 36◦ its value is close to zero (see

Figure 4.14(a)), while for an overtwisted DNA sequence it decreases again –

Figures 4.15(a) and 4.16(a).

However, note that the proportion of time spent breathing is determined by ∆E

specific to the total system energy E0(y0) + 1
2 k̂y2

0 +
√

kBTη0y0 – see Table 4.9

for more details. In Figures 4.10(b)-4.16(b), we have an approximation of these

potentials for the twist angles analysed, which shows that ∆E, the damping co-

efficient η, and the along-chain spring constant k̂, all determine the percentage

of time that the A-F pair spends breathing.

Twist angle ∆B ∆E

30◦ 19.9193 6.2191

32◦ 16.6841 7.3191

33◦ 18.8165 8.3515

34◦ 19.1949 9.2904

35◦ 15.7846 12.40193

36◦ 25.8559 14.2498

38◦ 21.4337 8.9198

40◦ 20.9347 4.5738

Table 4.9: Values of ∆B and ∆E (both measured in Å2 ps−2) corresponding to

the potential of mean force PMF(y0).

On the other hand, ∆B controls the frequency at which the barrier between

open and closed states is crossed and has a different behaviour. The lower this

barrier is, the larger the number of breathing events that occur. Given that ∆B

is measured around y0 = 1 Å, the difference between the potential of mean

force PMF(y0) and the energy E0(y0) consists of two linear terms. Observe
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that ∆B varies from Table 4.8 to Table 4.9 by 6 to 8 units, which shows that the

along-chain interactions and damping contribution to PMF(y0) influence in a

small proportion, compared to the inter-strand interactions, the variation of the

breathing frequency with twist angle.

Figure 4.10: Illustration of (a) inter-chain potential (E0(y0) in Å2 ps−2) and (b)

potential of mean force (E0(y0) + 1
2 k̂y2

0 +
√

kBTη0y0 in Å2 ps−2)

plotted against A-F bond length (y0 in Å), obtained after fitting

parameters for a 32◦ undertwisted DNA.

Table 4.8 shows that ∆E has similar values for E0(y0) for the cases of 30◦ and

32◦ of twist, whilst k̂ is 12.8% higher in the first case (see Table 4.6); this is coun-

terbalanced by the differing values of ε0 and C, which imply η30◦
0 = 5.9985 and

η32◦
0 = 7.3281. This means that the total potential energy in the two cases gives

rise to similar values for ∆E, although the 32◦ undertwisted DNA breathes for

about 20% more of the simulation time – see Table 4.1. Hence, ∆B is the param-

eter which is responsible for this difference by allowing more breathing events

for a lower value, as it will be discussed in the next chapter.

Further analysis of Table 4.1 shows that the 30◦ and 33◦ undertwisted DNA se-

quences spend similar amounts of time breathing. Moreover, Table 4.8 suggests

that, for E0(y0), ∆B also has similar values in the two cases, but ∆E is 50% in-

creased for the 33◦ twist angle. This shows that the potential of mean force is

strongly influenced by the along-chain interactions and damping contribution

to potential energy. Hence, breathing can be viewed as competition between

the along-chain elastic energy and the inter-chain binding energy.
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Figure 4.11: Illustration of (a) inter-chain potential (E0(y0) in Å2 ps−2) and (b)

potential of mean force (E0(y0) + 1
2 k̂y2

0 +
√

kBTη0y0 in Å2 ps−2)

plotted against A-F bond length (y0 in Å), obtained after fitting

parameters for a 33◦ undertwisted DNA.

Comparing parameters obtained for a 34◦ twist with those for 35◦, we observe

that even small differences in breathing time, can be due to different barrier

heights of E0(y0) (see Table 4.8). A higher ∆E value, as in the case of 35◦ un-

dertwisted DNA, suggests less time breathing, but decreasing the breathing

barrier ∆B might compensate for the ∆E value, as in this case, resulting in more

frequent, but shorter, breathing events.

Figure 4.12: Illustration of (a) inter-chain potential (E0(y0) in Å2 ps−2) and (b)

potential of mean force (E0(y0) + 1
2 k̂y2

0 +
√

kBTη0y0 in Å2 ps−2)

plotted against A-F bond length (y0 in Å), obtained after fitting

parameters for a 34◦ undertwisted DNA.
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Figure 4.13: Illustration of (a) inter-chain potential (E0(y0) in Å2 ps−2) and (b)

potential of mean force (E0(y0) + 1
2 k̂y2

0 +
√

kBTη0y0 in Å2 ps−2)

plotted against A-F bond length (y0 in Å), obtained after fitting

parameters for a 35◦ undertwisted DNA.

Taking into account that, for example, η0 = 6.0089 for the 33◦ twist angle, while

for the 36◦ case we have η0 = 6.1699, the damping contribution to the potential

of mean force is broadly similar. The differences in ∆E between the two cases

(compare Figure 4.11(a) and Figure 4.14(a)) suggest that the stacking interaction

parameter k̂ plays an important role for the length of the breathing events.

Figure 4.14: Illustration of (a) inter-chain potential (E0(y0) in Å2 ps−2) and (b)

potential of mean force (E0(y0) + 1
2 k̂y2

0 +
√

kBTη0y0 in Å2 ps−2)

plotted against A-F bond length (y0 in Å), obtained after fitting

parameters for a 36◦ twisted DNA.

Indeed, the value of k̂ has the most dramatic variation: it decreases with twist
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angle until the typical twist angle (36◦) is reached and increases with overtwist.

A higher value of k̂ means higher energy in the open state and less time spent

breathing.

Figure 4.15: Illustration of (a) inter-chain potential (E0(y0) in Å2 ps−2) and (b)

potential of mean force (E0(y0) + 1
2 k̂y2

0 +
√

kBTη0y0 in Å2 ps−2)

plotted against A-F bond length (y0 in Å), obtained after fitting

parameters for a 38◦ overtwisted DNA.

Finally, the approximations of the potential of mean force, presented in Fig-

ures 4.10(b)-4.16(b), show that the damping and the harmonic inter-chain con-

tribution to the total system energy define the displacements for closed and

open states of the A-F pair. For most twist angles, these values are between -0.3

Å and 5 Å.

Note that the overtwisted DNA sequences analysed (38◦ and 40◦ twist angles)

spend more than 50% of the simulation time breathing, which sugests a lower

energy in the open state then in the closed state. But, the potential of mean force

expressions (Figures 4.15 and 4.16) suggest that we have the lowest energy in

the system when the A-F base-pair is in closed state.

Table 4.9 suggests the same, given that ∆E has positive values for all twist an-

gles. However, observe that the total energy expressions have two local minima

at 1.9Å and 3.8Å, hence two breathing states. The time spent breathing is the

sum of the time spent in each breathing state, but the A-F pair spends less time

in each open state than in the closed state, which explains the form of the po-

tential of mean force.
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Figure 4.16: Illustration of (a) inter-chain potential (E0(y0) in Å2 ps−2) and (b)

potential of mean force (E0(y0) + 1
2 k̂y2

0 +
√

kBTη0y0 in Å2 ps−2)

plotted against A-F bond length (y0 in Å), obtained after fitting

parameters for a 40◦ overtwisted DNA.

4.5 Summary

We start this chapter by showing how to simulate and interpret the data ob-

tained using AMBER in order to avoid obtaining inconsistent parameter val-

ues. We also discus the need of selecting a representative data sample and of

using the Bonferoni correction to obtain confidence intervals having a larger

probability of containing the right parameter values.

We end the chapter by presenting the values of fluctuation-dissipation constant

C, as well as the parameter values corresponding to noise and damping terms,

along-chain and inter-strands interactions, respectively, and discuss the impor-

tance of the opening-closing barrier for breathing events.
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System Solutions

To analyse the accuracy of the SDE simulations we compare the breathing fre-

quency and length with the MD simulations obtained using AMBER. The com-

parison covers a variety of twist angles, involving a DNA sequence with 12

base-pairs that contains a defect, as defined in Chapter 2.

5.1 Undertwisted DNA

Figure 5.1 presents the way in which the distance between the bases of the

breathing pair varies over time, for a 30◦ twisted strand of DNA. As suggested

in the previous chapter, by approximating the potential of mean force, we ob-

serve three different values around which this distance oscillates:

• 0 Å, which represents the equilibrium (closed or non breathing) state;

• 1.9 Å, which represents the first breathing state;

• 3.8 Å, which represents the second breathing state.

As far as we are aware, it has not yet been determined whether the two breath-

ing states have similar or different causes, i.e. it might be that one base flips

to one of the two preferred angles, or it flips out to an angle in one direction

and to a different angle in the opposite directions, or even more, the smaller

amplitude state may be due to one base flipping out and the larger amplitude
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Figure 5.1: Graph of the displacement between bases of the breathing pair (y0

in Å), plotted against time measured in ps, obtained from an AM-

BER simulation of 10 ns, for a 30◦ undertwisted DNA sequence.

Figure 5.2: Illustration of the displacement (y0 in Å) between the bases of the

breathing pair over 10 ns, obtained using the SDE model for a 30◦

undertwisted DNA sequence. The parameter values are C = 6.5,

ε = 3.4074, ε0 = 5.6285, k = 10.6536, k̂ = 3.6851, γ = 120.0904,

while for E0 the expression from Figure 4.7 was used.
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event due to both bases being displaced from their equilibrium. If their nature

is similar, then our model is close to reality. Otherwise, each event should be

treated separately and a new model which incorporates both events should be

developed, for example a model which allows motion in more than one direc-

tion. One possible explanation is that in the first breathing state only one base

of a pair is breathing, while in the second state both bases are breathing.

We simulated the system using the proposed SDE model (Figure 5.2) and ob-

tained results similar to that from AMBER (Figure 5.1). Some differences may

be observed: the AMBER data suggests that the oscillation interval is between

−0.3 and 5.7 Å (a 6 Å range), while in our case we have oscillations between

−0.3 and 4.1 Å (a 4.4 Å range). One explanation for this reduction is the param-

eter used in our SDE system, which was eliminated from our equations by re-

defining the parameters. We have considered that the entire base moves, while

in reality just a part of it moves, while the rest remains more or less in the initial

position. Moreover, our system contains only one degree of freedom for each

base-pair, while AMBER uses on average 90 degrees of freedom per base-pair.

The water box also influences the DNA dynamics during a simulation.

In addition, within the equilibrium state y0 ≈ 0 Å and the breathing state y0 ≈
2− 4 Å we note a higher clustering of displacement values in SDE system than

in AMBER. This is also due to the reduced number of degrees of freedom in

SDE system over AMBER.

Figure 5.3 contains a comparison between the AMBER and SDE systems in

terms of the binned frequency data over the 10ns simulations. In the closed

state (at y0 = 0 Å), the residence time is similar, however, we observe a reduc-

tion in the number of data points at the breathing barrier ∆B ≈ 1 Å (see Fig. 3.2

for definition) and an increased number of points for the bins corresponding to

the breathing state at y0 = 2 Å. This is counterbalanced by the residence time

at y0 = 4 Å, which is reduced in the SDE simulation compared to AMBER, and

hence the total time spent breathing is similar, that is, 28.71% of the simulation

time. Note that graphs such as Figure 5.3 depend on the width of bins chosen,

using wider bins would increase the accuracy of the results on the vertical axis

but result in a lower resolution of the detail of the closed and open states, that

is a lower resolution on the horizontal axis. Similarly, it was noted in Figure 3.4
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Figure 5.3: Illustration of the occupation of different y0 positions (Å) for the

breathing pair, obtained from the SDE and AMBER simulations us-

ing a bin size of s = 0.5, for a 30◦ undertwisted DNA sequence.

that the height of the breather barrier is dependent upon the width of the bins

used, since the small time spent near the barrier means that there is a relatively

low number of counts there and the relative errors are larger.

Comparing AMBER simulation from Figure 5.4, with the SDE simulation pre-

sented in Figure 5.5, both specific to a 32◦ undertwisted DNA sequence, we

observe that although the length and frequency of breathing events is similar,

there is an important difference between the two simulations. In AMBER simu-

lation, the A-F pair spends a significant percentage of time in the second breath-

ing state, while in the SDE system the time spent in this state is insignificant.

This difference can be explained by the reduced number of degrees of freedom,

which implicitly reduces the volume of space explored. SDE system must pass

through the lower amplitude state to get to the higher amplitude state, whereas

the extra degrees of freedom in AMBER mean that it may access the higher

breathing state without even venturing into the lower amplitude state.

Analysing the DNA sequence for the 33◦ twist angle, we observe in Figure 5.6

the same three states explored by the breathing pair. Whilst the time spent

breathing is almost the same as in the 30◦ twist angle case, the behaviour of the

DNA sequence is different: the breathing events are longer and less frequent.
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Figure 5.4: Graph of the displacement between bases of the breathing pair (y0

in Å), plotted against time measured in ps, obtained from an AM-

BER simulation of 10 ns, for a 32◦ undertwisted DNA sequence.

Figure 5.5: Illustration of the displacement (y0 in Å) between the bases of the

breathing pair over 10 ns, obtained using the SDE model for a 32◦

undertwisted DNA sequence. The parameter values are C = 6,

ε = 3.3585, ε0 = 5.9770, k = 9.5585, k̂ = 3.2132, γ = 131.0919,

while for E0 the expression from Figure 4.10(a) was used.
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Figure 5.6: Graph of the displacement between bases of the breathing pair (y0

in Å), plotted against time measured in ps, obtained from an AM-

BER simulation of 10 ns, for a 33◦ undertwisted DNA sequence.

Figure 5.7: Illustration of the displacement (y0 in Å) between the bases of the

breathing pair over 10 ns, obtained using the SDE model for a 33◦

undertwisted DNA sequence. The parameter values are C = 5.8,

ε = 3.3429, ε0 = 5.3214, k = 9.5374, k̂ = 2.8261, γ = 135.5951,

while for E0 the expression from Figure 4.11(a) was used.
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The SDE simulation, presented in Figure 5.7, emphasizes that the results ob-

tained using our SDE model agree with the MD simulations in length and fre-

quency of breathing events. In both, closed and open state, the fluctuations are

slightly smaller in the SDE model than in the full MD-AMBER simulation. This

can be again attributed to the reduction in the number of degrees of freedom as

one moves from an all-atom simulation to a mesoscopic model.

Figure 5.8: Illustration of the occupation of different y0 positions (Å) for the

breathing pair, obtained from the SDE and AMBER simulations us-

ing a bin size of s = 0.5, for a 33◦ undertwisted DNA sequence.

Figure 5.8 shows that the residence time in both open and closed states is larger

in the SDE simulation than in AMBER, but the number of barrier crossings is

higher in the case of AMBER simulation. This is due to the SDE simulation not

exhibiting some of the very short breathing events observed in the AMBER sim-

ulation. However, overall the time spent breathing during the SDE simulation

(25.74%) agrees well with the data obtained using AMBER – see Table 4.1.

The 34◦ and 35◦ undertwisted DNA sequences spend the least time in breath-

ing states. In both cases, there are notable differences between the AMBER

simulation, presented in Figure 5.9 and Figure 5.11, respectively, and the SDE

simulation, from Figure 5.10 and Figure 5.12, respectively.

For the 34◦ twist angle, the two sets of data disagree in the time spent in the

second breathing state (compare Figures 5.9 and 5.10), but agree in the range

of values of the displacements from equilibrium – between -0.3 and 5.7 Å in
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Figure 5.9: Graph of the displacement between bases of the breathing pair (y0

in Å), plotted against time measured in ps, obtained from an AM-

BER simulation of 10 ns, for a 34◦ undertwisted DNA sequence.

Figure 5.10: Illustration of the displacement (y0 in Å) between the bases of the

breathing pair over 10 ns, obtained using the SDE model for a 34◦

undertwisted DNA sequence. The parameter values are C = 5.6,

ε = 3.3225, ε0 = 5.4843, k = 9.2678, k̂ = 2.4625, γ = 145.6987,

while for E0 the expression from Figure 4.12(a) was used.

91



CHAPTER 5: SYSTEM SOLUTIONS

Figure 5.11: Graph of the displacement between bases of the breathing pair (y0

in Å), plotted against time measured in ps, obtained from an AM-

BER simulation of 10 ns, for a 35◦ undertwisted DNA sequence.

Figure 5.12: Illustration of the displacement (y0 in Å) between the bases of the

breathing pair over 10 ns, obtained using the SDE model for a 35◦

undertwisted DNA sequence. The parameter values are C = 4.8,

ε = 3.3471, ε0 = 5.6744, k = 8.1819, k̂ = 1.8256, γ = 149.5683,

while for E0 the expression from Figure 4.13(a) was used.
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both cases. Moreover, the AMBER simulation of 34◦ (Figure 5.9) contains three

breathing events lasting about 800, 200 and 400 ps, respectively, as well as sev-

eral very short breathing events. The SDE simulation (Figure 5.10) also contains

several breathing events that are very short and five breathing events lasting

on average 200 ps. This suggests that in the SDE simulation we have a higher

breathing frequency, which is due to the breathing barrier ∆B being slightly

lower.

Recall that the data was fitted to a short simulation which is representative

of our AMBER simulation in terms of the proportion of time spent breathing.

In order to obtain accurate results, the short simulations also have to agree in

frequency of breathing and time spent in each of the breathing state. Indeed,

for the 35◦ twist angle the two sets of data (shown in Figures 5.11 and 5.12) also

agree in the range of values of the displacements and even in the time spent in

the second breathing state, although they disagree in breathing frequency. The

AMBER simulation (Figure 5.11) contains eleven breathing events including a

few very short events, whilst the SDE simulation (Figure 5.12) contains many

more short and very short breathing events.

As presented in Table 4.8, ∆B = 7.6100, which is small compared to the breath-

ing barrier values specific to other twist angles. This also requires more damp-

ing in the system to reduce the number of barrier crossings, which implies a

decrease in C, as observed in Table 4.5. These two observations show once

again how sensitive the parameters are to the details of the dataset.

5.2 Normally twisted DNA

Figure 5.13 shows an AMBER simulation of a DNA sequence specific to the

typical twist of 36◦. Note that the second breathing state is not reached as often

as in the undertwisted case and most of the time spent breathing is in the first

state (smaller values of y0). In addition, we observe that the displacement from

equilibrium takes values above 6 Å, which suggests that there might exist a

third breathing state.

Analysing the SDE simulation presented in Figure 5.14, we again observe a
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Figure 5.13: Graph of the displacement between bases of the breathing pair

(y0 in Å), plotted against time measured in ps, obtained from an

AMBER simulation of 10 ns, for a 36◦ twisted DNA sequence.

Figure 5.14: Illustration of the displacement (y0 in Å) between the bases of the

breathing pair over 10 ns, obtained using the SDE model for a 36◦

twisted DNA sequence. The parameter values are C = 7, ε =

3.3499, ε0 = 5.9238, k = 7.6577, k̂ = 1.4307, γ = 165.4327, while

for E0 the expression from Figure 4.14(a) was used.

94



CHAPTER 5: SYSTEM SOLUTIONS

slight reduction in the range of values from the AMBER simulation from Fig-

ure 5.13. Moreover, the SDE simulation is more regular, the three states being

well defined, while in the AMBER simulation the degree of randomness seems

to be larger. On the other hand, the breathing length and frequency is approxi-

matively the same in both SDE and AMBER simulations.

Figure 5.14 also suggests the existence of a third open state. The breathing event

taking place between the 6th and 7th nanosecond explores both open states, but

the A-F base-pair also explores, for a very short period of time, a volume of

space outside the three states already defined (one closed and two open states).

Hence, we can redefine the possible states of the A-F base-pair, as follows:

• open state: between −0.3 and 1 Å

• first breathing state: between 1 and 3 Å

• second breathing state: between 3 and 5 Å

• third breathing state: between 5 and 7 Å

Figure 5.15: Illustration of the occupation of different y0 positions (Å) for the

breathing pair, obtained from the SDE and AMBER simulations

using a bin size of s = 0.5, for a 36◦ twisted DNA sequence.

Comparing the results presented in Figure 5.15 with the undertwisted case (Fig-

ure 5.3), we observe an increased number of data points in the second breathing
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state at y0 = 4 Å. This increase occurs in both the AMBER and the SDE systems,

though in all twist angles, there AMBER shows more time in the second breath-

ing state than the SDE system. Even though the SDE simulation has a larger

amount of data around the first breathing state, y0 = 2 Å, the percentage of

time spent in a breathing state is the same in both AMBER and SDE simula-

tions, namely 40.95%.

5.3 Overtwisted DNA

For a 38◦ overtwisted DNA sequence, the time spent breathing represents more

than 65% of the total time of a simulation, as shown in Figure 5.16, representing

the AMBER simulation specific for this angle. An important proportion of this

time is spent in the second breathing state, in contrast with the undertwisted

and normally twisted DNA sequences, for which the breathing events were

much shorter, although they were as frequent as in this case. More than that,

this simulation shows that we indeed have a new open state around 6 Å and

that long breathing events of 2 or 3 ns allow the breathing pair to explore the

third breathing state.

The SDE simulation, presented in Figure 5.17, does not explore this third breath-

ing state, but it confirms the regularity of the SDE simulations. More than that,

it emphasizes that our system also allows to explore the second open state,

when the data used for parameters fitting is representative for an AMBER sim-

ulation from all points of view.

For 38◦ of twist, Fig. 5.18 shows that more time is spent in the two breathing

states at y0 = 2 Å and y0 = 4 Åin the SDE simulation than in the AMBER data

(Fig. 5.16). Less data points are observed near the breathing barriers at y0 = 1

Å and y0 = 3 Å. Even though this implies a small reduction in breathing fre-

quency, that is, 9 breathing events in SDE simulation instead of 12 as in AMBER,

the general DNA behaviour is preserved. Compared to the undertwisted and

normally twisted DNA sequence, in both AMBER and SDE systems we have a

high residence time in the second breathing state (y0 = 4 Å).
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Figure 5.16: Graph of the displacement between bases of the breathing pair

(y0 in Å), plotted against time measured in ps, obtained from an

AMBER simulation of 10 ns, for a 38◦ overtwisted DNA sequence.

Figure 5.17: Illustration of the displacement (y0 in Å) between the bases of the

breathing pair over 10 ns, obtained using the SDE model for a 38◦

overtwisted DNA sequence. The parameter values are C = 7.25,

ε = 3.3511, ε0 = 6.8702, k = 8.1438, k̂ = 2.1462, γ = 139.0797,

while for E0 the expression from Figure 4.15(a) was used.
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Figure 5.18: Illustration of the occupation of different y0 positions (Å) for the

breathing pair, obtained from the SDE and AMBER simulations

using a bin size of s = 0.5, for a 38◦ overtwisted DNA sequence.

Finally, the 40◦ overtwisted DNA AMBER simulation illustrated in Figure 5.19

emphasizes that long breathing events are specific to overtwisted DNA se-

quences, while the short events occur in undertwisted DNA sequences. In ad-

dition, these simulations also show that spending more time breathing allows

the A-F pair to explore larger volumes of space. The pair thus spends more time

in the second open state. Compared to an undertwisted angle, overtwisted se-

quences are also able to explore a third open state for short intervals of time.

Being an extreme twist angle, one might expect a 40◦ overtwisted sequence

to spend more time breathing than the other overtwisted angle analysed, but

Figure 4.5 shows that the along-chain interactions (k,̂k) are stronger in this case

(40◦) than for 38◦. Hence, the range of motion (for a given energy) of the bases

of the breathing pair is reduced, due to the stronger covalent bonds.

Figure 5.20 shows the SDE simulation for a 40◦ overtwisted DNA sequence. In

contrast with the 38◦ twist angle, it shows that our model is also capable of

exploring a third open state (5 to 7 Å). It also confirms that the SDE simulations

are more regular than AMBER simulations.
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Figure 5.19: Graph of the displacement between bases of the breathing pair

(y0 in Å), plotted against time measured in ps, obtained from an

AMBER simulation of 10 ns, for a 40◦ overtwisted DNA sequence.

Figure 5.20: Illustration of the displacement (y0 in Å) between the bases of the

breathing pair over 10 ns, obtained using the SDE model for a 40◦

overtwisted DNA sequence. The parameter values are C = 8,

ε = 3.3550, ε0 = 6.1750, k = 19.5297, k̂ = 2.6341, γ = 132.0731,

while for E0 the expression from Figure 4.16(a) was used.
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5.4 AMBER-SDE comparison

A standard technique of checking the degree of randomness in a system is to

compare the expected value with the standard deviation of a measurable quan-

tity. In our case, the frequency of breathing events can offer such a measure to

test the randomness degree of both AMBER ans SDE simulations.

Let Ti be the time measured between the end of breathing event i and the be-

ginning of breathing event i + 1 and let T = {Ti}i=1,n be the set of such mea-

surements. Denote by E[T] = 1
n ∑n

i=n Ti the expected value of T (also known as

mean value) and by σ(T) =
√

1
n ∑n

i=n(Ti − E[T])2 the standard deviation of T.

Then,

• E[T] ≈ σ(T) implies a random process

• E[T] > σ(T) implies a regular process

• E[T] < σ(T) implies a clustered process

Figure 5.21 explains how breathing events are distributed in each of the three

cases.

Figure 5.21: Illustration of breathing events distribution for the three examples

of processes.
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Observe that for this analysis it is very important how we define a breathing

event. If we consider each barrier crossing to be such an event, then in the case

of AMBER simulations that are more noisy we risk obtaining the wrong answer.

Passing the top of the breathing barrier is not enough to consider a breathing

event takes place. We consider that breathing means reaching the local minima

of the open state. In other words, the A-F pair displacements from equilibrium

have to pass the threshold value of 1.9 Å, for which the total energy is mini-

mum during a breathing event. Moreover, breathing occurs on the nanosecond

timescale, which means that very short events, of up to 10 ps, are ignored, being

determined by the noise from our system. Hence, short breathing events can

be considered having causes other then the biological ones and can be ignored

during the randomness analysis.

Next, we have the opposite situation, when the breathing barrier is crossed

backwards, from an open state to the closed state. We consider a breathing

event does not end, unless the minimum energy point of 0 Å displacements

is reached. Also, if the time spent between two breathing events is less than

10 ps, we consider them as being just one breathing event, based on the same

considerations as in the case when short breathing is ignored.

Figure 5.19 clarifies the definition of breathing. The important events last in

order 135, 143, 203, 445, 309, 327, 2197, 1183 and 1426 ps, respectively. Between

the first two breathing events, we observe several barrier crossings, but only in

two of the cases is the value of 1.9 Å reached, these events lasting 7 and 13 ps,

respectively. According to the definition of breathing, we ignore the first one,

but take into consideration the latter. Analogously, the longest breathing event

of 2197 ps also explores the closed state, but just for 1 ps, hence is considered to

be a single event. On the other hand, the closed state is also visited for a short

period between the last two breathing events. This visit lasts more than 10 ps

and we consider it separating the two breathing events involved.

Computing the required expected values and standard deviations of AMBER

and SDE simulations, for each twist angle previously analysed, we obtain the

values given in Table 5.1. Surprising at it might seem, not all AMBER simu-

lations are random. The angles for which the overall time spent breathing is

lower and which have a lower breathing frequency (see Tables 5.2 and 5.3 for
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details) are regular, for example, the cases 33◦ and 34◦ cases, or clustered, as in

the 35◦ twist angle. The SDE simulations are all regular, except for the 33◦ twist

angle, which is clustered, as observed in Figure 5.7.

Twist angle E[TAMBER] σ(TAMBER) E[TSDE] σ(TSDE)

30◦ 347.1500 345.2123 579.1000 496.6771

32◦ 222.8636 218.9180 233.4000 199.1919

33◦ 968.4286 922.9846 909.0000 922.8703

34◦ 899.2222 745.8227 731.4444 626.4760

35◦ 566.2000 795.1886 262.3333 225.0561

36◦ 400.9286 402.4417 807.5614 670.3514

38◦ 202.7273 202.5429 331.4286 313.0313

40◦ 298.6364 292.5520 231.8571 203.7003

Table 5.1: Expected values and standard deviations of time elapsed between

two breathing events, both measured in ps.

However, note that E[T] and σ(T) have the same order of magnitude for both

AMBER and SDE simulations. We can use Pearson’s chi-square test, for exam-

ple, to test the fit of a distribution. In our case, this requires computing the

value of

(5.4.1) χ2 =
(σ(T)− E[T])2

σ(T)2 = (1− E[T]/σ(T))2.

Given that the range of values of E[T]/σ(T) is between 0.71 and 1.20 for AM-

BER simulations, while for the SDE simulations the range is 0.98 and 1.20, we

obtain that χ2 ≤ 0.1 in both cases. This suggests that all AMBER and SDE sim-

ulation are random. The small differences between the analysed simulations

might be due to the number of breathing events, which is rather small, as can

bee seen in Table 5.3.

Table 5.2 contains the average values of lengths of breathing events. We observe

that there are significant differences between the AMBER and SDE simulations,

which can be explained by the low number of breathing events sampled in the

two models – see Table 5.3.
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Twist angle E[lAMBER] E[lSDE]

30◦ 161.7500 275.0909

32◦ 237.0500 266.4500

33◦ 308.2222 226.0000

34◦ 249.8333 191.4000

35◦ 208.0000 114.2222

36◦ 217.6471 523.8750

38◦ 608.0833 872.8750

40◦ 638.1000 407.2667

Table 5.2: Average length of breathing events, measured in ps.

Note that there are also significant differences in the number of breathing events

between the two simulation methods (see Table 5.3), since the parametrisation

described earlier aimed to match the proportion of time spent breathing. Fur-

thermore, note that, there might also be differences between different AMBER

simulations of the same twist angle.

Twist angle AMBER SDE

30◦ 20 11

32◦ 19 21

33◦ 10 13

34◦ 10 10

35◦ 12 25

36◦ 15 8

38◦ 12 9

40◦ 10 15

Table 5.3: Number of breathing events specific to each sequence analysed.

For some twist angles (32◦, 33◦, 34◦ and 38◦) the number of breathing events is

similar for the two models, while for the 32◦ undertwisted DNA sequence we

have the same number of breathing events, similarly distributed in time (see

Table 5.1), but having different average length of breathing events. During the

AMBER simulation of Figure 5.4 we have a 1716 ps long breathing event, while
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during the SDE simulation from Figure 5.5 the maximum length is 966 ps.

In addition, if we take into account just the first 5 ns of the 32◦ AMBER simula-

tion, we have six breathing events, with lengths of 30, 24, 483, 1716, 195 and 241

ps, and an average of 448.1667 ps, while for the last 5 ns we have 14 breathing

events with an average length of 146.5714 ps. This not only explains the large

difference between the two models in average breathing length, for a 32◦ over-

twisted DNA sequence (see Table 5.2), but it also means that breathing length

and frequency analysis is not a criteria for our SDE model strength.

As already mentioned, in order to have most of the models’ features similar,

we aim to fit data that agrees (in time spent in each state and breathing fre-

quency) with longer AMBER simulations. In our case the representative data

selected only respects the percentage of time spent breathing. Indeed, com-

paring the time spent breathing in the sequences simulated above by the two

models (AMBER and SDE), for each twist angle, we observe small differences,

but none larger than 6% – see Table 5.4 for details. This suggests that the SDE

simulations are close to all-atom MD simulations, from breathing time point of

view. Note that the values for the AMBER simulation are not the ones from the

last column of Table 4.1, since for consistency, here we present 10 ns simulation

intervals that do not start or end during a breathing event.

Twist angle AMBER SDE

30◦ 28.71% 30.08%

32◦ 46.36% 52.01%

33◦ 29.37% 25.74%

34◦ 17.61% 19.39%

35◦ 29.57% 32.73%

36◦ 37.75% 40.95%

38◦ 72.56% 70.22%

40◦ 62.71% 68.69%

Table 5.4: Percentage of time spent breathing in the analysed AMBER and SDE

simulations.

In conclusion, the analysis of parameter values from Chapter 4 and the compar-
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ison between AMBER and SDE simulations show how important it is to select

the data which best reflects the DNA properties for each twist angle. All-atom

MD simulations based on thousands of degrees of freedom are more accurate

then reduced mesoscopic models, but the latter models allow consistent analy-

sis of different measurable quantities, when their parameter values are correctly

determined. Moreover, mesoscopic models, such as our SDE system, reduce

the time needed to simulate a DNA system and thus, are able to predict its

behaviour for longer time periods.

5.5 Long-time SDE simulation

Given the capacity of our SDE system to simulate with accuracy breathing in a

DNA sequence, we have decided to also study the long-time dynamics in our

reduced DNA model.

Figure 5.22: Illustration of the displacement (y0 in Å) between the bases of the

breathing pair over 100 ns, obtained using the SDE model for a 30◦

undertwisted DNA sequence. The parameter values are C = 6.5,

ε = 3.4074, ε0 = 5.6285, k = 10.6536, k̂ = 3.6851, γ = 120.0904,

while for E0 the expression from Figure 4.7 was used.

One might expect to obtain from this more details about the time needed to
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obtain a bubble in our DNA sequence or about the time needed to emerge the

DNA melting point. We have continued the SDE simulation of a 30◦ under-

twisted DNA from Figure 5.2 with another 100 ns, but this simulation could

not answer to any of these question. However, as can be seen in Figure 5.22 the

time spent in breathing state increased considerably compared to the previous

10 ns. More precisely, for the first 10 ns of this new simulation 31.84% of the

time is spent breathing, wich represents an increase of only 1.76%. However,

after 50 ns this percentage increases to 48.03%, while for the full simulation this

value becomes 51.01% (almost twice bigger than at the beginning of the simu-

lation). This might suggest that for longer SDE simulations we could observe a

full separation of the A and F bases. Another important observation concerns

the length of the breathing events: in Figure 5.2 we observe breathing events

of at most 1 ns, while in Figure 5.22 longer breathing events of 2 ns can be ob-

served.

Figure 5.23: Illustration of the displacement (y0 in Å) between the bases of the

breathing pair over 100 ns, obtained using the SDE model for a 38◦

overtwisted DNA sequence. The parameter values are C = 7.25,

ε = 3.3511, ε0 = 6.8702, k = 8.1438, k̂ = 2.1462, γ = 139.0797,

while for E0 the expression from Figure 4.15(a) was used.

Given that the 38◦ overtwisted DNA sequence spends more time breathing than

any of the other DNA sequences analysed, we have continued the simulation
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presented in Figure 5.17 for another 100 ns as well. The same behaviour as in

the undertwisted case was observed (see Figure 5.23), that is, the total period

spent breathing increased with time from 79.72% during the first 10 ns to an

average of 81.52% for the full 100 ns simulation, which represents an increase

of about 10% compared to the initial simulation from Figure 5.17. Moreover,

the longest breathing event in Figure 5.23 is of about 9 ns compared to the 3 ns

breathing event observed in Figure 5.17. This result also indicates that much

longer simulations could offer more information about DNA properties. The

increase in breathing length sustain the idea of bubble generation: the longer a

breathing event is, the higher the chances to obtain a bubble are.

Figure 5.24: Illustration of the displacement (y1 in Å) between the bases of

a nonbreathing pair over 100 ns, obtained using the SDE model

for a 38◦ overtwisted DNA sequence. The parameter values are

C = 7.25, ε = 3.3511, ε0 = 6.8702, k = 8.1438, k̂ = 2.1462,

γ = 139.0797, while for E0 the expression from Figure 4.15(a) was

used.

On the other hand, the small difference of only 1.80% between the time spent

breathing in the first part of the simulation presented in Figure 5.23 and the to-

tal breathing time of this simulation might suggest that due to the non-defective

bases from our DNA sequence, bubble generation, for example, might be inac-

cessible to our system, since these bases might never open. In fact, the evolution
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in time of y1(t) represented in Figure 5.24 confirms this assumption and sug-

gests that the answer to such questions might be offered by further analysis of

our SDE system.

5.6 Summary

Comparing the AMBER and the SDE simulations, we observe a reduction in

the range of values of the displacements from equilibrium specific for the A-F

base-pair. The difference is due to the reduced number of degrees of freedom in

our SDE model. Also, analysing expected value of the time spent between two

breathing events, we reach the conclusion that the SDE simulations are more

regular when compared to AMBER results, but in both case we can classify the

simulations as being random. Finally, we present the DNA dynamics in two

SDE simulations of 100 ns.
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Methods for Analysing Hamiltonian

Systems

The dynamics of Hamiltonian systems still represent a challenge for scientists.

Experiments or all-atom molecular dynamics (MD) simulations give most of the

information needed to analyse such systems, but, as discussed in Chapter 2, the

time required to generate a representative set of data is of the order of weeks

or months. Reducing the system complexity, by considering, for example, a

reduced mesoscopic model, is useful in many cases. Such simple models can be

close to MD simulations or experiments, but lose some of the system features.

For example, our SDE mesoscopic model preserves the general DNA behaviour,

but cannot offer any information about the trajectory or velocity of each atom

in the system.

There exist several methods to analyse, on one hand, how close two different

models are and, on the other hand, the properties that a system possesses. In

this chapter, we focus on some of these methods. We start with principal com-

ponent analysis (PCA), which is an analysis tool, useful for determining the

quantities in a system with high variances. Next, we describe the autocorre-

lation function, followed by the normal mode representation of Hamiltonian

systems. We also show how the normal modes and the specific frequencies

can be determined using the Fourier Transform. Finally, we consider a simple

system consisting of four particles, for which we apply the analytic methods

described herein.
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6.1 Principal Component Analysis

Principal Component Analysis (PCA) [126] is a simple way to reduce the di-

mension of complex datasets, its main goal being to reveal a simplified struc-

ture with the same properties as the initial one. This nonparametric method is

helpful for extracting relevant information from different types of datasets.

The PCA method, invented in 1901 by Karl Pearson, is used for data analy-

sis in different domains, such as microbiology, for example, as explained by

Zacharias in [134]. Yet, PCA is mostly applied in exploratory data analysis or

for constructing predictive models. Eriksson et al. [47] give an introduction

to PCA, for non-specialists in mathematics and linear algebra. They consider

that a system can be characterised through a set of observations. Each observa-

tion contains information about some measurable quantities, such as pressures,

temperatures or spatial coordinates. The multivariate data table, obtained from

these observations, is then represented using PCA as a low-dimensional space,

consisting of at least two components.

6.1.1 Data pre-treatment

First of all, the numerical range of the quantities analysed may differ. A quan-

tity with a large range has a large variance, while the ones with small ranges

have small variances. PCA tries to determine the directions with maximum

variance, hence quantities with larger variances are preferentially selected by

PCA over the others.

Let X be the set of observations, N the number of observations and M the num-

ber of quantities analysed in each observation. Hence, X can be seen as an

N ×M matrix, that is,

(6.1.1) X =



X1(t1) X2(t1) ... XM(t1)

X1(t2) X2(t2) ... XM(t2)

...

X1(tN) X2(tN) ... XM(tN)


,
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where each row is an observation, denoted by X(tn), with 1 ≤ n ≤ N and

t1 < t2 < ... < tN are equally spaced points in time. In this form, each column

of X represents data specific to one of the quantities measured.

Note that we might have different dimensions for each measurable quantity

analysed. PCA requires the computation of the covariance matrix CX (of size

M × M), which will be defined later and which involves the dot product be-

tween different columns of X. Hence, this dot product involves different quan-

tities with different dimensions. Thus, we need to apply some transformations

to our data to obtain a nondimensionalised form that allows the assumptions

considered important to be verified. System nondimensionalisation may also

give a more unbiased analysis.

Data can be scaled using several transformations, but the division of each col-

umn i of X by the standard deviation of {Xi(tn)}N
n=1 is the easiest way to solve

both requirements: diminishing predominance quantities with large variances

and system nondimensionalisation. The standard deviation of Xk is defined to

be σk =
√

1
N ∑N

i=1(Xk(ti)− 〈Xk〉)2, where 〈Xk〉 = 1
N ∑N

i=1 Xk(ti) is the mean of

the column {Xi(tn)}N
n=1. Then, the column vector 1

σk
Xk has unit variance and

applying this scaling for each column of X we obtain unit variance data. More

than that, the standard deviation has the same dimension as the quantity for

which it is defined, hence unit scaling also ensures the system becomes nondi-

mensional.

Next, we apply data centering, where the mean value of each quantity is sub-

tracted from the matrix of data. This enable us to determine the orthonormal

vectors produced by PCA, as well as the data distribution. In addition, the

mean value is needed for unit variance scaling: this transformation involves

data mean when the standard deviations of the quantities are determined. Note

that the order in which the two transformations (data centering and scaling to

unit variance) are applied does not influence the final form of the data.

6.1.2 PCA methodology

The goal of PCA is to find the directions, in an M-dimensional space, that ap-

proximate the data as closely as possible in the least squares error sense. In

112



CHAPTER 6: METHODS FOR ANALYSING HAMILTONIAN SYSTEMS

other words, if we analyse noisy data, as in the case of our DNA dynamics tra-

jectory, we are looking for a basis that allows us to rewrite the data in a way

that filters the noise without affecting the system properties.

In what follows, we consider the dataset X to be centered. Moreover, each row

of X is represented with respect to a canonical basis {b1, ..., bM}, where bi is a

column vector having all elements equal to 0, except the ith entry, which is 1.

Let B be the matrix associated to the canonical basis, more precisely, containing

on each column one of the basis elements, that is, B = IM, where IM represents

the identity matrix of order M. PCA is equivalent to finding a change of basis

from B to another orthogonal basis {v1, ..., vM}, with associated matrix V. This

change of basis is made assuming that the observed data X is a linear combi-

nation of the columns of V. Considering Y to be the data expressed in terms of

the basis V, we have

(6.1.2) X(tn) = (X1(tn) X2(tn) ... XM(tn)) =
M

∑
i=1

Yi(tn)vT
i ,

where vT
i denotes the transpose of vi.

Note that X(tn)V = (
〈
X(tn), vT

1
〉

, ...,
〈
X(tn), vT

M
〉
), where 〈a, b〉 represents the

dot product between a and b. On the other hand, assuming the columns of V

are unit vectors, the projection of X(tn) onto vT
i is

(6.1.3) prvT
i
X(tn) =< X(tn), vT

i > vT
i , ∀i = 1, M

and

(6.1.4) X(tn) =
M

∑
i=1

prvT
i
X(tn) =

M

∑
i=1

< X(tn), vT
i > vT

i ,

which, based on (6.1.2) and the orthogonality of vectors from V, implies

(6.1.5) XV = Y.

Observe that if a matrix V contains on columns the elements of a basis (not

necessarily orthogonal) that spans the same space as the canonical basis and Y

is the data representation with respect to V, then we have X(tn) = ∑M
i=1 αivT

i ,

where (α1, ..., αM) = Y(tn). Also Xj(tn) can be written as Xj(tn) = ∑M
i=1 αiVi,j.
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In other words, we obtain X(tn) = Y(tn)VT equivalent to X(tn)(VT)−1 = Y(tn),

and finally, we obtain

(6.1.6) X(VT)−1 = Y.

But, if V is an orthogonal matrix of unit vectors, then VVT = IM, which implies

V−1 = VT. Thus, for any orthonormal basis V (6.1.5) and (6.1.6) are equivalent

and imply that the matrix containing on each column the vectors of the new

orthogonal basis is the transformation matrix that maps X into Y.

In conclusion, finding the new basis means finding the transformation matrix,

based on some properties of the result Y that we want to achieve. We mentioned

that, in case of noisy data, PCA separates the noise and the deterministic data.

This task is achieved by determining the directions with the highest variance,

the rest of data being considered noise. PCA transforms a set of correlated

variables into a set of uncorrelated variables, thus we are looking for a basis V

for which YTY is a diagonal matrix.

Let CY be the covariance matrix of Y, that is

(6.1.7) CY =
1
N

YTY.

Using (6.1.5) we obtain

CY =
1
N

(XV)TXV

=
1
N

VTXTXV

= VT
(

1
N

XTX
)

V

= VTCXV,

where CX is the covariance matrix of X. Using a theorem from linear algebra

which states that a symmetric matrix is diagonalized by a matrix of its orthonor-

mal eigenvectors (see [112] for details), we can write CX = EDET, where D is

the diagonal matrix of eigenvalues of CX and E is the matrix of the correspond-

ing eigenvectors arranged on columns.

Let r ≤ M be the rank of CX. Since we suppose the data can be reconstructed by

the orthogonal directions with maximum variance, all data occupies a subspace
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of dimension r. Hence, we can complete the remaining M − r vectors, repre-

senting the null eigenvalues, in such a way that the orthogonality is preserved.

Having null variances, these M− r directions do not influence our analysis.

Selecting V = E, we have that CY = ET(EDET)E. The orthonormality of E

also implies EET = IM, hence, CY = D is a diagonal matrix. In other words,

the basis that we are looking for is the orthonormal basis of eigenvectors of

CX = 1
N XTX. In addition, the diagonal matrix D contains, on one hand the

eigenvalues of CX and on the other hand, these same values represent the vari-

ances of data in the directions of the corresponding eigenvectors.

Note that when data pre-treatment is required, instead of the covariance matrix

we actually need to compute the correlation matrix of X, that is,

(6.1.8) CRX =
1
N

X̂TX̂,

where X̂ = X−〈X〉
σX

represents the data after applying data centering and scaling.

Considering the eigenvalues in descending order, we have to decide which are

the principal components and which are the components representing noise.

The decision about how many principal components are considered can be

taken in several ways, one of them being, for example, the signal-to-noise-ratio

(SNR), as discussed in [47], which requires the ratio between the signal variance

and noise variance to be very large, that is

(6.1.9)
σ2

signal

σ2
noise

� 1,

where σ2
signal and σ2

noise represent the sums of the variances specific to the prin-

cipal components and to the rest of the orthonormal directions, respectively.

Applying PCA for Hamiltonian systems mostly involves distances and, in some

cases, velocities analysis. For such systems, the principal components actually

determine the volume of space explored by the system particles. Jackson [65]

discusses PCA method in detail and presents several PCA applications, such as

simplifications and inferential techniques, missing data recovery, or data qual-

ity improvement, for example.

Due to its wide range of applicability, PCA has been continuously developed

and several nonlinear versions of PCA have been obtained. Kramer [74] pro-

poses a nonlinear principal component analysis (NLPCA) method based on a
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feedforward neural network, which identifies and removes correlations among

system variables. Compared to PCA, NLPCA uncovers both linear and non-

linear correlations and does not restrict the character of nonlinearities from the

data analysed. Scholkopf et al. [107] use the integral operator kernel functions

to describe a nonlinear form of PCA. They determine the principal components

in high-dimensional spaces related to an input space by some nonlinear maps.

They apply this method in image processing and also discuss other kernel tech-

niques.

6.2 The Mahalanobis distance

Multivariate studies often involve distances, the most common measurement

used being the Euclidian Distance (ED). Another distance measure is proposed

by Mahalanobis [80]. He computes an expression for the distance between

two normal (Gauss-Laplacian) statistical populations, described through the P-

dimensional frequency distribution

(6.2.1) d f = ce−
1

2µ [A11(x1−µ1)2+...+APP(xP−µP)2++A12(x1−µ1)(x2−µ2)+...]dx1..dxP,

where c is a constant and µ1, ..., µP are the mean values of the population statis-

tics {x1, ..., xP}. Let σ1, ..., σP be the population standard deviations. Then µ is

the determinant of C =
(
µij
)

1≤i,j≤P, with µij = σiσjρij. Note that ρij are corre-

lation coefficients for which we have ρii = 1. Finally, Aij are the corresponding

minors of the correlation matrix C. In [80], Mahalanobis names C as “the dis-

persation matrix”.

Mahalanobis first proved in [81] that considering two populations a and b with

the same dispersations µij, but different mean values µa
i and µb

i , i = 1, ..., P,

respectively, the distance between a and b measured by a ∆2-statistic is

(6.2.2) ∆2 =
1
P

P

∑
i=1

(
µa

i − µb
i
)2

µii
,

which is generalised in [80] for P correlated variables to

(6.2.3) ∆2 =
1
P

P

∑
1≤i,j≤P

µij
(

µa
i − µb

i

) (
µa

j − µb
j

)
,
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where µij = µij/µ and µ = det(C), as already defined. The distance defined in

(6.2.3) is also known as Mahalanobis distance.

In practice, for a sample X of N data observations and n quantities represented

as multivariate vectors xi = (xi
1, ..., xi

n), with mean µ = (µ1, ..., µn) and co-

variance matrix CX, the Mahalanobis distance from µ for each observation i is

defined as

(6.2.4) DX(xi) =
√

(xi − µ) C−1
X (xi − µ)T.

Note that if the n quantities analysed are uncorrelated, CX is diagonal and

(6.2.4) becomes the normalised ED, that is

(6.2.5) DX(xi) =

√√√√√ n

∑
j=1

(
xi

j − µj

)2

σ2
j

,

where σj is the standard deviation for quantity j. Moreover, if CX = In, that

is the data has unit variance, the Mahalanobis distance equals the Euclidian

distance ED =
√

∑n
j=1

(
xi

j − µj

)2
.

Also, when using the Euclidian distance to compute the distance from an ob-

servation to the dataset center we assume the observations are spherically dis-

tributed around this center. On the other hand, PCA analysis of data usually

suggests that data distribution is rather ellipsoidal. Hence, if we want, for ex-

ample, to test if a point belongs to a data sample, we need to take into consid-

eration both the direction and the distance from the center.

In Figure 6.1 the spherical distribution obtained using the Euclidian distance

from the center O suggests that points A and B belong to the set, while C and D

are not from the dataset. However, if the dataset has an ellipsoidal distribution,

the points belonging to the set are B and C, while A and D are outside the set.

The ellipsoid best representing the samples probability distribution is estimated

using PCA, based on the covariance matrix. The Mahalanobis distance defined

in (6.2.4) divides the ED from data center by the width of the ellipsoid in the

direction of the point. This gives an accurate prediction whether an observation

does or does not belong to a dataset.
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Figure 6.1: Illustration of spherical and ellipsoidal data distribution.

Maesschalck et al. [79] compare the Mahalanobis distance and the Euclidean

distance in both the original and principal component (PC) space. They also

discuss chemometric methods based on the Mahalanobis distance, such as mul-

tivariate calibration, process control and pattern recognition. In fact, the Maha-

lanobis distance has a wide range of applications in many fields: classifica-

tion techniques, like cluster analysis, the selection of calibration samples from a

large set of measurements, development of linear regression models, by deter-

mining outliners (observations that are numerically distant from the analysed

data), as well as linear, quadratic and regularised discriminating techniques.

Note that, in the original space, several errors may appear when computing

the Mahalanobis distance, the most common one being the covariance matrix

singularity due to the so-called data multicollinearity. Analysing the system in

the reduced PC space eliminates these errors and we can easily compute the

inverse of the covariance matrix, which becomes diagonal.

Finally, the Mahalanobis distance is an example of a Bregman divergence (also

known as Bregman distance), which represents a metric not satisfying the tri-

angle inequality nor the symmetry property. Banerjee et al. [9] explain that the

Bregman distance generalises the squared Euclidean distance and is strongly

connected to exponential families of distributions through a bijection between

regular exponential families and regular Bregman divergences.
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6.3 Data autocorrelation

The data autocorrelation function represents another analytical technique re-

quiring data centering and unit variance scaling. This function allows one to

determine, for example, the presence of a periodic signal that is not visible due

to the amplitude of noise. Such goals are achieved by computing the data cor-

relation between values at different time points.

Note that for two arbitrary time steps t1 < t2 there exists τ > 0 such that

t2 = t1 + τ and then we can consider the autocorrelation function to be a lag-

function. For a random variable Xt, the autocorrelation function is

(6.3.1) RX(τ) =
E [(Xt − µX) (Xt+τ − µX)]

σ2
X

,

were µX is the mean of Xt and σX its standard deviation. It can be easily veri-

fied that this function (also called the autocovariance function) is even, that is,

RX(τ) = RX(−τ).

If X is a discrete random variable of length n, we have

(6.3.2) RX(k) =
1

(n− k)σX

n−k

∑
i=1

(Xi − µX) (Xi+k − µX) , ∀0 ≤ k < n.

The autocorrelation function has several properties. First of all, if X is a periodic

random variable, then RX is also periodic. Next, if X and Y are two uncorrelated

random variables, the autocorrelation function of X + Y is RX+Y = RX + RY.

Finally, if we rescale X to be the unit variance random vector X̂ = X−µX
σX

, then

(6.3.1) becomes

(6.3.3) RX(τ) = E
[

X̂tX̂t+τ

]
,

which, based on Chauchy-Schwarz inequality, implies that RX(τ) ≤ RX(0),

∀τ ∈ R.

Autocorrelation analysis is important because it reveals how much time we

need to simulate a system such that its behaviour is not dependent on the ini-

tial conditions. Further analysis of (6.3.3) suggests that RX(0) = 1. As τ in-

creases RX is expected to decrease uniformly until the data from X becomes

independent of the system initial conditions.
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Figure 6.2: Illustration of autocorrelation function plotted against lag value.

Figure 6.2 presents an example of such function, applied for a random vector

of size 5000. According to this expression, after 400 iterations, the information

about the initial system configuration is lost and the rest of 4600 data observa-

tions are independent of the initial system configuration.

6.4 Normal modes

As already discussed, the space explored by a dynamical system can be deter-

mined using PCA. Normal modes have similar properties with the ones of the

principal components and also allow one to determine the volume of space ex-

plored by such systems. Montaldi et al. discuss in [85] the existence of normal

modes in symmetric Hamiltonian systems. Due to its dynamical properties, a

DNA sequence can be considered a Hamiltonian system and hence it might be

possible to describe its dynamics in terms of normal modes – see [124] for more

details on the normal mode representation of nonlinear Hamiltonian systems.

We take an example to clarify how Hamiltonian systems can be represented in
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terms of normal modes. Consider n particles with masses m1, ..., mn that interact

through the Hamiltonian

(6.4.1) H(x) =
n

∑
i=1

1
2

mi

(
dxi

dt

)2

+
n

∑
i=1

1
2

ki(xi)2 + ∑
1≤i<j≤n

Li,jxixj,

where x = (x1, ..., xn).

Let Li,j = Lj,i, ∀1 ≤ i, j ≤ n, Li,i = 0, ∀i = 1, n and consider L = (Li,j)1≤i,j≤n the

associated matrix. We also define the diagonal matrices K and M having on the

diagonal (k1, ..., kn) and (m1, ..., mn), respectively. Then, our system becomes

(6.4.2) M
d2x
dt2 = −(K + L)x.

Considering u = (u1, ..., un)T, the solution of our system is a sum of terms

having the form x1(t) = u cos(ωt) or x2(t) = u sin(ωt), where u represents the

normal mode and ω its specific frequency. Having n particles in our system,

we also have n normal modes and n associated frequencies. Since d2x1
dt2 (t) =

−ω2u cos(ωt) and d2x2
dt2 (t) = −ω2u sin(ωt), (6.4.2) becomes, for both x1 and x2,

(6.4.3) ω2Mu = (K + L)u,

which is equivalent to

(6.4.4) ω2u = M−1(K + L)u

and hence, ω2 is an eigenvalue of M−1(K + L), while u is the corresponding

eigenvector. In this way, we determine the frequencies ωj and the normal

modes uj, (j = 1, ..., n), as well as the general solution x(t) of the system given

by (6.4.2), which has the form

(6.4.5) x(t) =
n

∑
j=1

[
C1

j uj cos(ωjt) + C2
j uj sin(ωjt)

]
.

Here C1
j and C2

j are the modes amplitudes that can determined by imposing

the condition that each mode has the same energy, for example, unity (Hcos
j =

H(C1
j uj cos(ωjt)) = 1 and Hsin

j = H(C1
j uj sin(ωjt)) = 1, ∀j = 1, ..., n). Let U

be the matrix containing as columns the normal mode vectors uj, j = 1, ..., n.
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Considering first X(t) = C1
j uj cos(ωjt), for some fixed j, we have that

Hcos
j =

n

∑
i=1

1
2

mi(ωj)2(C1
j )

2(Ui,j)2 sin2(ωjt)(6.4.6)

+
n

∑
i=1

1
2

ki(C1
j )

2(Ui,j)2 cos2(ωjt)

+ ∑
1≤i1<i2≤n

Li1,i2(C1
j )

2Ui1,jUi2,j cos2(ωjt)

(6.4.7)

equivalent to

Hcos
j =

(C1
j )

2

2
sin2(ωjt)

n

∑
i=1

mi(ωj)2(Ui,j)2(6.4.8)

+
(C1

j )
2

2
cos2(ωjt)

[
n

∑
i=1

ki(Ui,j)2 + 2 ∑
1≤i1<i2≤n

Li1,i2Ui1,jUi2,j

]
,

which gives

Hcos
j =

(C1
j )

2

2
sin2(ωjt)

n

∑
i=1

mi(ωj)2(Ui,j)2(6.4.9)

+
(C1

j )
2

2
cos2(ωjt)

[
n

∑
i=1

Ui,j

[
kiUi,j + ∑

1≤i1≤n,i1 6=i
Li,i1Ui1,j

]]
,

But (6.4.3) implies

(6.4.10) kiUi,j + ∑
1≤i1≤n,i1 6=i

Li,i1Ui1,j = mi(ωj)2Ui,j,

hence

Hcos
j =

(C1
j )

2

2

[(
sin2(ωjt) + cos2(ωjt)

) n

∑
i=1

mi(ωj)2(Ui,j)2

]
(6.4.11)

=
(C1

j )
2

2

n

∑
i=1

mi(ωj)2(Ui,j)2

and having unit Hamiltonian in each mode implies

(6.4.12) C1
j = ±

√
2

(ωj)2 ∑n
i=1 mi(Ui,j)2

A similar computation shows that C2
j = ±

∣∣∣C1
j

∣∣∣, supposing that Hsin
j = 1. Note

that in this case C1
j = ±C2

j , ∀j = 1, ..., n.
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6.4.1 Normal modes data variances

Let N > 1 be an integer and tk, 1 ≤ k ≤ N, an increasing sequence of times. We

define the N × n matrices X and Y (where n is the number of particles) as the

data representation in terms of the canonical basis and normal mode vectors,

respectively. Then N is actually the number of observations equally spaced

between t1 and tN and the jth column of Y is

(6.4.13) Yj =


C1

j cos(ωjt1) + C2
j sin(ωjt1)

...

C1
j cos(ωjtN) + C2

j sin(ωjtN)

 .

Note that we have X = YUT and hence (UT)−1 is the transformation matrix

that maps X into Y. In addition, observe that sine and cosine are uncorrelated

functions, hence if the sample of size N is large enough, we have

(6.4.14)
N

∑
k=1

cos(ωjtk)sin(ωjtk) = 0, ∀j = 1, ..., n,

as well as

(6.4.15)
N

∑
k=1

cos(ωjtk) =
N

∑
k=1

sin(ωjtk) = 0, ∀j = 1, ..., n.

Moreover, given j1 6= j2 and under the assumption that ωj1 is not a multiple of

ωj2 or viceversa, we have

(6.4.16)
N

∑
k=1

cos(ωj1tk)cos(ωj2tk) = 0,

(6.4.17)
N

∑
k=1

sin(ωj1tk)sin(ωj2tk) = 0,

and

(6.4.18)
N

∑
k=1

cos(ωj1tk)sin(ωj2tk) = 0.

Using (6.4.14)-(6.4.18) we obtain the covariance matrix of Y as the diagonal n×
n matrix

(6.4.19) CY =


S1 0 ... 0

0 S2 ... 0

...

0 0 ... Sn

 ,
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where

(6.4.20) Sj =
1
N

N

∑
k=1

[(
C1

j

)2
cos2(ωjtk) +

(
C2

j

)2
sin2(ωjtk)

]
, ∀j = 1, ..., n,

is the data variance in the direction of Uj.

Rewriting Sj we obtain

Sj =
1
N

N

∑
k=1

[(
C1

j

)2
cos2(ωjtk) +

(
C2

j

)2
(1− cos2(ωjtk))

]
(6.4.21)

=
(

C2
j

)2
+

(
C1

j

)2
−
(

C2
j

)2

N

N

∑
k=1

cos2(ωjtk).

Since

(6.4.22)
1
N

N

∑
k=1

cos2(ωjtk) +
1
N

N

∑
k=1

sin2(ωjtk) = 1

and based on (6.4.14) and (6.4.15) we have

(6.4.23)
1
N

N

∑
k=1

cos2(ωjtk)−
1
N

N

∑
k=1

sin2(ωjtk) =
1
N

N

∑
k=1

cos(2ωjtk) = 0,

we obtain

(6.4.24)
1
N

N

∑
k=1

cos2(ωjtk) =
1
N

N

∑
k=1

sin2(ωjtk) =
1
2

.

Finally, we have

(6.4.25) Sj =

(
C1

j

)2
+
(

C2
j

)2

2
.

Returning to our example, for which C1
j and C2

j are proportional to 1
ωj

(see

(6.4.12)), we have that Sj is proportional to 1
ω2

j
. Since ω1 < ω2 < ... < ωn,

we also have S1 > S2 > ... > Sn.

Thus, the normal mode data representation has two important properties: first,

the covariance matrix is diagonal and, intuitively, we may say the modes hav-

ing high data variance are specific to low frequencies. In addition, if ωj � 1,
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then Sj � 1 and the contribution of the corresponding normal mode to data

can be considered part of the noisy data component.

In conclusion, the normal mode representation is an alternative to PCA, but

there is a significant difference between the two methods: PCA determines

the directions with the highest variance, normal modes represent a frequency-

based analysis, for which the number of non-noise modes is, in general, larger

than the number of principal components. Whilst it is tempting to treat the

principal components as normal modes, with a large variance component cor-

responding to a low frequency mode, this is not necessarily the case, given that

the principal components are orthogonal, but the normal modes are not.

6.5 Fourier transform

In the previous section, we presented a method to obtain the normal modes

given the Hamiltonian of a linear system, but in practice we have to determine

the normal modes given a set of data and a priori we do not know if the data

is generated by a linear system. Since the principal components are orthogo-

nal, while the normal modes are not necessarily characterised by orthogonal

vectors, the method of PCA does not offer a direct algorithm to determine the

normal modes.

On the other hand, the Fourier transform [17] provides an algorithm to deter-

mine, given a set of data, not only the specific frequencies, but also the corre-

sponding normal modes. However, our purpose is not to present an algorithm

to obtain the Fourier Transform for a function or data vector and we only use

the Fourier transform to determine the normal modes for a given dataset. Such

predefined algorithms have already been developed – see [36], for example –

and are available as part of several mathematical software packages, such as

MATLAB.

The Fourier transform of a function, also known as the frequency domain rep-

resentation of the original function, describes the frequencies present in the

original function. The input function can be reconstructed using the inverse

Fourier transform. In other words, if f : R → C is an integrable function, then
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F : R→ C, defined as

(6.5.1) F(y) =
∫ ∞

−∞
f (x)e−2πixydx, ∀y ∈ R,

is its Fourier Transform. Note that if x represents a time coordinate, then y is a

frequency, which suggests that the Fourier transform is useful for determining

the normal mode frequencies. Applying the inverse transform, we obtain that

(6.5.2) f (x) =
1

2π

∫ ∞

−∞
F(y)e2πixydy, ∀x ∈ R

6.5.1 Discrete Fourier transform

A data sample can be viewed as a discrete representation of an event and thus,

we need the Discrete Fourier Transform (DFT), which requires a discrete input

function. Let x = (x1, ..., xN) be a vector of N complex numbers. Considering

Ωk = 2(k−1)π
N , x is transformed into y = (y1, ..., yN) using the DFT formula

(6.5.3) yk =
N−1

∑
n=0

xn+1e−Ωkni, ∀k = 1, ..., N.

Note that e−Ωk is one of the Nth roots of unity. The inverse DFT is given by

(6.5.4) xn+1 =
1

2Nπ

N

∑
k=1

ykeΩkni, ∀n = 0, ..., N − 1.

MATLAB provides the fft algorithm to compute the DFT for a data vector. The

algorithm is based on the Fast Fourier Transform (FFT) algorithm [18]. There

are several FFT algorithms, but the most wide used is Cooley-Tukey algorithm,

which reduces the computational complexity by splitting a DFT of a vector of

size N into smaller DFTs of sizes N1, N2,...,Nk such that N = N1 × N2 × ...×
Nk. This implies that the algorithm gives best results, when N is a composite

number. Moreover, the most well-known implementation of Cooley-Tukey FFT

algorithm, splits at each step the transform into two DFTs of size N/2, which

suggests that N = 2k, for some k ∈ N, is the optimal data sample size, for

accurate results.

To complete the spectrum analysis, we note that (6.5.4) determines the DFT con-

tribution for each point in x. For accurate results, it is recommended that we use
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an average transform of several DFT, obtained from different data samples, to

determine the magnitude for each frequency. It is also recommended to center

the data before computing its DFT, by subtracting the mean of the sequence

from all elements of the sequence.

6.5.2 Normal modes and the Fourier transform

Let the N × n matrix X be the centered data representation in the canonical ba-

sis for a set of observations specific to a n particles system, for the time interval

between t1 and tN. Supposing the data can be represented in terms of normal

modes, we need to determine the specific frequencies and the associated vec-

tors. Note that we expect N � n

Each row of X being an observation (x1(tk), ..., xn(tk)) , 1 ≤ k ≤ N, the sample

can be viewed as a function of time tk, which implies that the Fourier transform

can offer information about the desired frequencies. The number of observa-

tions N is assumed to be a power of 2, so that we apply the FFT algorithm to

each column of X to determine the DFT of the full dataset X.

Normal modes frequencies

Note that if the data is time dependent, that is, x = (xt1 , ..., xtN), and we write

its Fourier transform as y = (yω1 , ..., yωN), then (6.5.3) becomes

(6.5.5) yωk =
N

∑
n=1

xtn e−ωk(tn−t1)i, ∀k = 1, ..., N,

where ωk = 2(k−1)π
tN−t1

. The inverse DTF becomes

(6.5.6) xtn =
1
N

N

∑
k=1

yωk eωk(tn−t1)i, ∀n = 1, ..., N.

Suppose Yj is the DFT of column Xj of X and let Y be the matrix having as

columns these DFTs. We select based on the DFTs n frequencies (n < N) in the

system, having the highest magnitutude. Note that these n frequencies are not

necessarily represented in any column of X. Hence, for accurate results, we sum
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for each frequency ωk the contributions of all columns to get the corresponding

magnitude, that is, ∑n
j=1 Yk,j.

Let ωk1 , ωk2 , ..., ωkn be the n unit roots of order N that we are looking for. Then,

the actual frequencies of our system are obtained by the formula

(6.5.7) ωk =
2(k− 1)π

tN − t1
, k = k1, ..., kn.

Note that the DFT frequencies are equally spaced, while normal modes fre-

quencies from (6.5.7) are not necessarily equally spaced. Since we choose only

those n (with the largest yωk) out of the N DFT frequencies, a large number of

observations ensures a good approximation of the normal modes frequencies.

Normal mode vectors

Let 1 ≤ j ≤ n and k ∈ {k1, ..., kn}. We want to determine the normal mode

vector uk (with frequency ωk) based on the DFTs for the columns of X. Based on

(6.5.6), the kth entry of Yj, to which we refer by Yk,j, represents the normal mode

uk scaled contribution to the sample data. Moreover, (6.5.5) can be written as

(6.5.8) Yj,k =
N

∑
n=1

Xn,j [cos(ωk(tn − t1))− i sin(ωk(tn − t1))] ,

implying that the real part of Yk,j is specific to the cosine contribution, while the

imaginary part represents the sine contribution.

Recall the normal modes data representation from (6.4.5), which in our case

is X(tn) = ∑n
i=1
[
C1

i ui cos(ωitn) + C2
i ui sin(ωitn)

]T. Using (6.4.14)-(6.4.18) we

obtain in terms of the matrix U of normal mode vectors

Yj,k =
N

∑
n=1

[
C1

kUj,k cos(ωkt1) cos2(ωktn) + C2
kUj,k sin(ωkt1) sin2(ωktn)

]
− i

N

∑
n=1

[
−C1

kUj,k sin(ωkt1) cos2(ωktn) + C2
kUj,k cos(ωkt1) sin2(ωktn)

]
and based on (6.4.24), we conclude that

Yj,k =
N
2

Uj,k

[
C1

k cos(ωkt1) + C2
k sin(ωkt1)

]
(6.5.9)

−i
N
2

Uj,k

[
C2

k cos(ωkt1)− C1
k sin(ωkt1)

]
.
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Let v1 = (Re (Y1,k) , Re (Y2,k) , ..., Re (Yn,k))T, with Re(y) representing the real

part of y and v2 = (Im (Y1,k) , Im (Y2,k) , ..., Im (Yn,k))T, where Im(y) is the imag-

inary part of y. Given that in (6.5.9) the coefficients C1
k cos(ωkt1) + C2

k sin(ωkt1)

and C2
k cos(ωkt1) − C1

k sin(ωkt1) are independent of j, the unit vectors corre-

sponding to v1 and v2 equal ±uk. Hence, the Fourier transform also allows us

to compute the normal modes vectors.

Note that when t1 > 0 is known, (6.5.9) suggests that C1
k =

Re(Yj,k)
NUj,k

cos(ωkt1) +
Im(Yj,k)

NUj,k
sin(ωkt1) and C2

k =
Re(Yj,k)
NUj,k

sin(ωkt1)−
Im(Yj,k)

NUj,k
cos(ωkt1). This means we

have all the information necessary to simulate the system starting from t = 0.

However, if t1 is unknown, it is impossible to determine C1
k and C2

k . In this case

we define

αk(t) =
[
C1

k cos(ωkt1) + C2
k sin(ωkt1)

]
cos(ωkt)(6.5.10)

+
[
C2

k cos(ωkt1)− C1
k sin(ωkt1)

]
sin(ωkt),

for some t ≥ 0, which can be rewritten as

αk(t) = C1
k cos(ωk(t + t1)) + C2

k sin(ωk(t + t1)).(6.5.11)

Note that the coefficients from (6.5.10) are determined through (6.5.9). Further-

more, we have

(6.5.12) x(t1 + t) =
n

∑
i=1

αi(t)ui,

which allows us to predict the system behaviour without knowing the normal

modes amplitudes C1
k and C2

k . Thus, we can reconstruct the initial data using

the normal modes representation. We can also simulate new data for t > tN, as

well as new data not contained in X, for any t such that t1 < t < tN.

All in all, the Fourier transform allows one to determine the normal modes,

the specific frequencies and information about the amplitudes and phase angle

of each normal mode. This type of analysis is useful when an event under

study repeats with a certain frequency or is the result of several repeated system

events, with different frequencies.
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6.6 Numerical example

In what follows, we present an example that shows how to apply each of the

methods presented in this chapter. Starting from the Hamiltonian (6.4.1), we

determine the normal modes and the specific frequencies for a four-particle

system. Next, we simulate the system and compute the principal components

and the autocorrelation function to determine the directions with highest vari-

ance in the system and the extent to which the system remembers its initial

conditions, respectively. Finally, we try to reconstruct the normal modes and

frequencies, using FFT algorithm and DFT methodology.

6.6.1 Normal modes representation

For n = 4, m1 = 0.25, m2 = 0.65, m3 = 0.48, m4 = 0.53, k1 = 17.8, k2 = 3.3,

k3 = 14.9, k4 = 4.6, M = diag(m1, m2, m3, m4), K = diag(k1, k2, k3, k4) and

(6.6.1) L =


0 0.25 0.95 0.78

0.25 0 0.65 0.85

0.95 0.65 0 0.5

0.78 0.85 0.5 0

 ,

we obtain by solving (6.4.3) the frequencies ω1 = 2.1316, ω2 = 3.0069, ω3 =

5.5624, ω4 = 8.4541 and the following normal modes

(6.6.2) U =


0.0350 0.0309 0.0292 0.0484

0.3983 0.5284 −0.9155 −0.3399

0.0120 0.0038 0.0626 0.0594

−0.9165 −0.8484 −0.3963 −0.9374

 .

The coefficients for each mode have absolute values equal to

(6.6.3) C = (0.8957, 0.6267, 0.3203, 0.2270).

We simulate the system starting from t = 0, with ∆t = 10−3, considering C1
i =

C2
i = Ci > 0, ∀i = 1, ..., n, and using (6.4.5). The four variables of our system

are presented in Figure 6.3.
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Figure 6.3: Illustration of data obtained using normal modes representation.

Note that in the case of normal modes the data is centered, since for T � 1 we

have

(6.6.4)
∫ T

t=0
cos(ωt) =

∫ T

t=0
sin(ωt) = 0, ∀ω > 0,

Hence, in what follows we only need the standard deviation of the data to

transform it into unit variance. However, in general before scaling the data,

one should subtract the data’s mean value.

6.6.2 PCA analysis

Applying PCA without any data pre-treatment (rescaling), the principal com-

ponents and eigenvalues are

(6.6.5) V =


−0.0344 0.0308 0.3711 −0.9275

−0.4246 −0.9037 0.0550 0.0078

−0.0108 0.0646 0.9256 0.3728

0.9046 −0.4222 0.0509 −0.0272


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and λ = (1.2163, 0.1346, 0.0000, 0.0000), respectively.

Recall that the normal modes are not necessarily orthogonal, while the prin-

cipal components form an orthogonal basis. Moreover, the first normal mode

from (6.6.2) and the first principal component from (6.6.5) represent similar,

but not identical vectors (but pointing in opposite directions). Hence, scaling

the data might be helpful in obtaining a nonorthogonal set of principal com-

ponents: after applying PCA to the scaled data, we can rescale the principal

components based on the standard deviations previously determined, and so

obtain nonorthogonal principal components.

In other words, if σ = (σ1, ..., σM) are the standard deviations of the columns of

X and X̂ is the data scaled as presented in Section 6.1.1, then applying PCA we

obtain the correlation matrix Ĉ (rather than covariance matrix) and the matrix V̂

of principal components. If each column of V̂ represents a principal component

and we multiply each row by the corresponding standard deviation from σ, we

end with a non-orthogonal set of principal components. Observe that if the data

is not centered, data scaling supposes the subtraction of means of columns of X,

but rescaling does not require the addition of these means to the corresponding

rows of V̂. Indeed, if we expect to obtain the normal modes, we need to analyse

centered data. The mean for each column is then added to the expression from

(6.4.5), to obtain the final system configuration.

For our numerical example we have σ = (0.0396, 0.5738, 0.0265, 1.0097) and

applying PCA we obtain the eigenvectors matrix

(6.6.6) V̂ =


−0.5919 0.0671 −0.1946 −0.7793

−0.3992 −0.6869 0.5999 0.0943

−0.3737 0.7212 0.5441 0.2100

0.5922 0.0591 0.5533 −0.5828

 ,

with corresponding eigenvalues

(6.6.7) λ = (2.8393, 1.1597, 0.0009, 0.0000) .

As can be observed, we have the same number of principal components as for V

from (6.6.5), more precisely, two PCs. Rescaling V̂ we obtain the nonorthogonal
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principal components

(6.6.8) Ṽ =


−0.0366 0.0068 −0.0117 −0.0519

−0.3576 −0.9880 0.5256 0.0919

−0.0155 0.0482 0.0221 0.0094

0.9330 0.1468 0.8504 −0.9944

 .

Compared to (6.6.5), Ṽ contains a similar first principal component, but differs

in the other three components determined. Comparing with (6.6.2) we reach

the conclusion that this method does not determine the normal modes either.

Moreover, in both cases (with and without scaling), the first principal compo-

nent is close to the first normal mode, but not equal to it, while neither of the

second PC are like the second normal mode. The differences in principal com-

ponents are given by the method used (with or without data scaling).

Figure 6.4: Illustration of normal modes, principal components and their vari-

ances.

The deviation from the first normal mode is explained in Figure 6.4. This sim-

ple example, illustrating the first two normal modes and principal components,

suggests that the direction with the highest data variance is not necessarily the

direction of the first normal mode. Indeed, the first principal component takes
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into consideration the contribution of all normal modes and the orthogonal-

ity of the principal components ensures this data does not overlap, whilst the

variance in the direction of one normal mode may involve other normal modes

too.

6.6.3 Input data influence on principal components

It is interesting to see at this point how the principal components change if we

do not take into consideration one of the four particles, for example. Applying

PCA just for the first three particles, we obtain the following principal compo-

nents

(6.6.9) V =


−0.0426 0.7637 0.6442

−0.9991 −0.0281 −0.0328

0.0069 0.6450 −0.7642

 ,

with eigenvalues λ = (0.3295, 0.0017, 0.0000). We observe important variations

in data variance and principal components compared to (6.6.5). Scaling the data

to unit variance, we obtain

(6.6.10) Ṽ =


−0.1135 0.0016 −0.0930

−0.9921 0.9991 0.9944

−0.0532 −0.0415 0.0496

 ,

which agrees in first principal component with (6.6.8), but the other two com-

ponents point some different directions due to the orthogonality property of

principal components. The variances in each directions are also different, given

that λ = (1.8495, 1.1500, 0.0005). This difference is due to the fourth particle

whose variance contribution in the three directions is not taken into considera-

tion in this case.

This suggests that eliminating some particles from the system analysis changes

the principal components directions. However, considering the remaining par-

ticles to be equally important is more appropriate, given that, in this case, the

first principal component points in the same direction as in the case when all

system particles are considered. Hence, it makes sense to scale the data and

have equal variances for all particles.
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Finally, recall that for our SDE model we needed data each 2 fs to fit correctly

our parameters. However, for this simple system of four particles, changing

the time step from 10−3 to 10−1, for example, minor deviations from principal

components and variations in data variances were observed.

6.6.4 Trajectory and velocity in PCA

Another approach takes into account both, trajectory and velocity components.

In this case, rescaling the data to unit variance is necessary, since the dimensions

of the two quantities (displacement and velocity) are different.

Since our data has the form x(t) = ∑n
j=1

[
C1

j uj cos(ωjt) + C2
j uj sin(ωjt)

]T
, then

(6.6.11)
dx
dt

(t) =
n

∑
j=1

[
−ωjC1

j uj sin(ωjt) + ωjC2
j uj cos(ωjt)

]T
.

Then we can define the matrix Y, containing on the first n columns the trajectory

data and on the last n columns the corresponding velocities. For each 1 ≤ j ≤ n,

we also define the vectors

(6.6.12) u1
j =

 C1
j uj

ωjC2
j uj


and

(6.6.13) u2
j =

 C2
j uj

−ωjC1
j uj

 .

Then, the rows of Y have the form

(6.6.14) y(t) =
n

∑
j=1

[
u2

j cos(ωjt) + u2
j sin(ωjt)

]T
.

Let Û be the matrix containing u1
j and u2

j on columns. The new standard de-

viations for our four-particle system (needed for data scaling to unit variance)

are

(6.6.15) σ = (0.0396, 0.5738, 0.0265, 1.0097, 0.1385, 2.1584, 0.1612, 3.0587),
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while the matrix of normal mode vectors becomes

Û =



0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01

0.36 0.36 0.33 0.33 −0.29 −0.29 −0.08 −0.08

0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01

−0.82 −0.82 −0.53 −0.53 −0.13 −0.13 −0.21 −0.21

0.07 −0.07 0.06 −0.06 0.05 −0.05 0.09 −0.09

0.76 −0.76 0.99 −0.99 −1.63 1.63 −0.65 0.65

0.02 −0.02 0.01 −0.01 0.11 −0.11 0.11 −0.11

−1.75 1.75 −1.60 1.60 −0.71 0.71 −1.60 1.60


.

As can be observed, the velocities have higher variances than the displace-

ments, which is explained by the presence of an extra ωj in the velocity com-

ponents of u1
j and u2

j . Applying PCA to the new set of data, we obtain the

following eigenvalues

(6.6.16) λ = (2.8394, 2.7476, 1.2504, 1.1597, 0.0020, 0.0009, 0.0000, 0.0000).

Observe that these values come in pairs, one of them being identical to the one

specific to the trajectory component – see (6.6.7). Our results show that the extra

eigenvalue in each pair comes from the velocity component. In fact, the prin-

cipal components also split into trajectory and velocity vectors, respectively, as

follows

V =



−0.59 0.01 −0.00 0.07 −0.00 0.19 0.78 0.00

−0.40 0.01 −0.00 −0.69 0.00 −0.60 −0.09 −0.00

−0.37 0.01 0.00 0.72 0.00 −0.54 −0.21 −0.00

0.59 −0.01 0.00 0.06 0.00 −0.55 0.58 0.00

0.01 0.58 −0.24 0.00 −0.02 0.00 0.00 −0.78

−0.01 −0.23 −0.83 0.00 −0.50 −0.00 0.00 0.09

0.01 0.57 0.30 −0.00 −0.68 −0.00 −0.00 0.35

−0.01 −0.53 0.41 −0.00 −0.53 −0.00 0.00 −0.51


,

where 0.00 represents a positive value close to zero (and -0.0 represents a neg-

ative value close to zero). After rescaling and normalizing the column vectors

from V, in order to return the data to the initial scales and dimensions, we ob-
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tain

V̂ =



−0.02 0.00 0.00 0.01 0.00 0.01 0.03 0.00

−0.23 0.01 0.00 −0.39 0.00 −0.34 −0.05 0.00

−0.01 0.00 0.00 0.02 0.00 −0.01 −0.01 0.00

0.60 −0.01 −0.00 0.06 −0.01 −0.56 0.59 −0.01

0.01 0.08 −0.03 −0.00 −0.01 −0.00 −0.00 −0.11

−0.01 −0.50 −1.78 0.00 −1.09 −0.00 −0.00 0.20

0.00 0.09 0.05 −0.00 −0.11 −0.00 −0.00 0.06

−0.02 −1.63 1.27 0.00 −1.62 0.01 0.01 −1.56


.

The first principal component is close to the trajectory component of u1
j and u2

j

(they only differ by a constant), but the second principal component has noth-

ing in common with the velocity component of the two vectors, as we might

expect. Analysing the third principal component, no correspondence can be

established with the normal modes. However, the result is not surprising: tra-

jectory and velocity data are not correlated, hence, the principal components

separate into trajectory and velocity specific vectors. In addition, the velocity

data usually contains more noise then the displacement data and, thus, the re-

sults obtained have a higher computational error. In this simple case, the last

four principal components represent noisy directions, as suggested by the PCA

analysis.

Although this method does not help us obtain the normal modes, it is useful

because it shows that a completely deterministic system can be wrongly repre-

sented in the form of a noisy one, if an inappropriate method is used.

6.6.5 Autocorrelation function

Computing the autocorrelation function for the simulated data we obtain for

the four particles the expressions from Figure 6.5. Note that the data analysed

is not periodic (Figure 6.3). However, the autocorrelation functions suggest the

presence of some periodic signals. This suggests that for a noiseless system with

a reduced number of frequencies, it is possible to prove the signals existence

using data autocorrelation.
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Figure 6.5: Illustration of the autocorrelation function for the displacements

data of the four-particle system.

6.6.6 Fourier transform analysis

As already discussed, DFT is an alternative to determine the amplitudes, fre-

quencies and vectors specific to each normal mode. Computing the DFT of each

variable in the system, we obtain power spectra as shown in Figure 6.6. Taking

into account sine and cosine properties and that DFT function is represented as

a power series, we observe that the DFTs from Figure 6.6 are symmetric with

respect to the middle of the frequencies interval. Thus, for our analysis we only

use the first half of the frequency spectrum.

Using the four DFTs we obtain the following frequencies

(6.6.17) ω = (2.1322, 3.0066, 5.5607, 8.4522),

while the normal modes are the columns of the matrix

(6.6.18) V =


0.0350 0.0309 0.0292 0.0484

0.3982 0.5279 −0.9152 −0.3392

0.0120 0.0039 0.0626 0.0593

−0.9166 −0.8487 −0.3968 −0.9376


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Figure 6.6: Illustration of DFT plotted against frequency, for a four-particle

Hamiltonian system.

Also, taking into account that the simulation started at t = 0, we obtain the

following amplitudes

(6.6.19) C1 = C2 = (0.8584, 0.6216, 0.3208, 0.2273).

Finally, note that our results strongly agree with the ones from (6.6.2) and (6.6.3),

the small differences in values being generated by computational errors.

6.7 Summary

In this chapter we introduced some traditional methods that can be used to

analyse Hamiltonian systems. We applied these methods to data obtained for

a four-particle system and discussed the results obtained. We discussed how

scaling the data to unit variance influences the results obtained, as well as the

influence of input data on principal components. Next, we discussed the dif-

ferences between principal components and normal modes, as well as the data

autocorrelation. Finally, we showed how to obtain the normal modes using the

Fourier transform. All these methods are used in the next chapter to analyse
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the DNA simulations obtained using AMBER and the SDE model proposed in

Chapter 3.
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CHAPTER 7

Traditional Analysis of DNA

Dynamics

In this chapter, we use the traditional methods of PCA, data autocorrelation

and normal modes, described in Chapter 6, to investigate the DNA behaviour.

Recall that PCA is used in general as an aposteriori analysis method, but it

can also be used as a predictive method. However, developing models capable

to predict DNA trajectory at atomic level, based on PCA, can be difficult. We

discuss these difficulties starting from an example of such a model. Next, we

use PCA, data autocorrelation and normal modes method as alternatives of

comparing results obtained using both AMBER and SDE system, to emphasize

the strength of our stochastic mesoscopic model. Our analysis covers only the

trajectory data obtained from DNA simulation, using the two approaches.

7.1 PCA method

Mesoscopic models of biological systems are useful for analysing measurable

quantities like displacements from equilibrium, energy variations, force inter-

actions or pressures. To reduce the complexity of the molecular system, our

SDE model of DNA, introduced in Chapter 3, only considers the transverse dis-

placements of bases. Moreover, each base of the DNA sequence is considered

to be a separate point mass, thus it is impossible to obtain information about

individual atoms of the DNA molecule.
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For such an analysis a microscopic model is needed, which takes into considera-

tion all atoms of a DNA sequence. Such a model has to incorporate the influence

of the solvent on the system, and yet, we would like a model which reduces the

simulation time compared to an all-atom MD simulation. In Chapter 2 we pre-

sented in details the DNA sequence analysed. Only 763 out of 16682 atoms in

our system represent the DNA molecule, while the rest were water molecules.

This means that a system with 3 degrees of freedom per DNA atom (one in each

direction of the three dimensional space) and with parameters fitted to AMBER

data, preserves more of the DNA properties than the SDE model.

However, reducing by twenty times the number of degrees of freedom com-

pared to AMBER does not guarantee that the CPU time needed to simulate

large systems can be reduced to days or weeks for a few microseconds of a

DNA trajectory, as required to observe breathing events in a nondefective DNA

molecule. First of all, recall that Hydrogen atoms have negligible mass com-

pared to Carbon, Nitrogen or Oxygen atoms, hence such models contain hun-

dreds of particles with different masses. Next, the DNA atoms define six dif-

ferent atom-to-atom interactions in each base. In addition, we need to model

in a consistent manner the inter-strand interactions, based on DNA biological

properties. All these tasks can be time consuming.

Yet, a reduction in dimensional space of data representation might solve the

problem. As presented in the Chapter 6, this can be achieved using the PCA

method, by determining the directions with highest variance and considering

the other directions to be noise. Observe that the normal mode decomposition

of the DNA atoms’ displacements might also be useful. In what follows, we

discuss how one can create a predictive model for DNA trajectory, based on

PCA. However, given that PCA is mainly an a posteriori method of analysis,

we do not create a new model from scratch and we only discuss the difficulties

of analysing DNA trajectory data at atomic level.

7.1.1 PCA predictive models

When studying DNA dynamics, we are mostly interested in atoms’ displace-

ment coordinates and velocities. Since determining the directions with maxi-
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mum variances using PCA might significantly reduce the complexity of a sys-

tem, it makes sense to consider a PCA predictive model to simulate the dis-

placements from equilibrium in our DNA sequence. Supposing that the sys-

tem’s collective motion is along the principal components, we do not need to

specify the concrete along-chain and inter-strand interaction parameters. Such

techniques can be applied at both the atomic and mesoscopic levels.

A PCA-based model that allows the prediction of DNA dynamics can be con-

structed as follows:

1. We first simulate the system using AMBER (or SDE) and obtain the coor-

dinates and velocities for each atom (or base).

2. Next, we ignore the water box surrounding the DNA molecule and we

consider only the dataset Y representing the displacements from equilib-

rium and, if needed, the corresponding velocities of the DNA particles

studied. Let N be the number of particles that we analyse, that is, ei-

ther the number of DNA atoms, or the number of base-pairs, for example.

Then Y has 3N columns: one for each direction of the three-dimensional

space for the N particles.

Then, we apply PCA on Y and determine the 3N orthogonal directions

{x1, ..., x3N}, from which we select the principal components based on

the corresponding variances (eigenvalues) λ1, ..., λ3N. For consistency, if

both trajectories and velocities are analysed, we need to apply data scal-

ing before performing PCA. Let n < 3N be the number of directions

with high variances. Then, the principal components’ space is spanned

by PC = {x1, ..., xn}.

3. Assuming the DNA molecule moves along each principal component xi,

i ≤ n, according to simple harmonic motion, we can define the corre-

sponding restoring forces fi, i ≤ n. Knowing the projections of Y on xi at

any moment, we consider the restoring force fi to be proportional to the

projection divided by the specific standard deviation
√

λi, that is,

(7.1.1) fi(Y(tk)) ∝
prxiY(tk)√

λi
,
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where tk represents the point in time for which the data is analysed. In

other words, for a row vector v of size 3N, we have

(7.1.2) fi(v) ∝
prxiv√

λi
, ∀i ≤ n.

Let m1, m2, ..., mN be the masses of the analysed particles and consider the

vector m = (m1, m1, m1, m2, m2, m2, ..., mN, mN, mN). Then, the equations

of motion are defined by

(7.1.3) m. ∗ ẍ =
n

∑
i=1

fi(x),

where .∗ represents the element by element vector multiplication.

4. Based on the equation of motion and some initial displacements from

equilibrium and velocities, we can simulate the system in the space de-

termined by {x1, ..., xn}.

Note that we can also add noise and damping to (7.1.3) to obtain a more accu-

rate simulation, but this is not necessary if the signal-to-noise-ratio from (6.1.9)

is used to determine the principal components, given that the noise amplitude

in this case is negligible. In addition, an important condition needs to be sat-

isfied at each time step: the Mahalanobis distance (see (6.2.4) for definition)

computed with respect to the center of mass of our DNA sequence is supposed

to place the new observation inside the volume of space defined by the princi-

pal components and the corresponding variances. This explains the choice of

having the restoring force fi proportional to 1/
√

λi.

Recall that reducing the number of degrees of freedom might affect the prin-

cipal components directions, unless unit variance data scaling is used, as dis-

cussed in Section 6.6.3. More precisely, reducing a three-dimensional system

of 16682 particles to only 3× 763 degrees of freedom and using a PCA-based

method to predict the DNA behaviour might affect the simulations if the prin-

cipal components and their eigenvalues λi are not correctly determined.

Even though, in Section 6.6.3, using different values for the time step needed to

generate the initial datasample produces only minor changes in data variances

and principal components, a simple analysis of the noisy system represented
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by our 38◦ DNA sequence reveals the contrary. For the long simulations of 20

ns, with data obtained every 1 ps, we take into consideration only the displace-

ments from equilibrium of A-F base-pair and its two neighbours, i.e. y−1, y0

and y1. Applying PCA we obtain the following principal components

(7.1.4) V =


0.0009 0.0203 −0.9998

−0.9999 0.0120 −0.0007

−0.0120 −0.9997 −0.0203


and eigenvalues λ = (2.4894, 0.0172, 0.0102). Applying the same method for

the dataset with information about each 2 fs over 2 ns, the principal components

agree with (7.1.4) having values

(7.1.5) V =


0.0012 −0.0148 0.9999

−0.9999 −0.0139 0.0010

−0.0139 0.9998 0.0148


while the eigenvalues become λ = (3.2688, 0.0182, 0.0095), which implies a

31.3087% increase in variance for the first principal component. This suggests

that the expressions of the restoring forces fi, i ≤ n, are sensitive to input data

and similar reasoning as for SDE parameters fitting should be used.

However, it is impossible to apply PCA for 2 ns datasets, with data obtained

each 2 fs. The three coordinates needed for each of the 763 DNA atoms repre-

sent about 17 GB of data and processing such a large dataset is time consuming

and resources intensive and thus, impossible to be performed using the existent

technology.

Applying PCA with unit variance scaling to the same two AMBER data samples

we obtain only small differences. The principal components are

(7.1.6) V =


0.0119 0.5885 0.0008

−0.9964 0.8048 0.9965

−0.0836 0.0769 −0.0836


and

(7.1.7) V =


0.0105 −0.5879 −0.0026

−0.9971 −0.8026 −0.9972

−0.0753 −0.1012 0.0753


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respectively, while the variances are λ = (1.1446, 0.9975, 0.8579) and λ =

(1.1852, 0.9967, 0.8181), respectively, which suggests that all three components

are important for our DNA breathing events hidden among the two datasets,

with equal proportion of time spent breathing. Continuing our reasoning this

implies all atoms and PCA directions are equally important for our DNA dy-

namics. Thus, the dimension of the space explored by the DNA system can

not be reduced and our new system is not a viable alternative to existing MD

packages, like AMBER.

Summarizing our discussion, we note that if PCA without data scaling is used,

the results are sensitive to the input dataset and for a good analysis of a breath-

ing event about 17 GB of data are needed, which is inaccessible using the ex-

isting technology. Scaling the data we obtain less sensitivity of our results to

input sample and a reduction in AMBER data needed, for example, for 16 ns

with information about each 1 ps only 280 MB being required. However, in this

case all the directions determined are required to describe the principal com-

ponent space and the desired spatial dimension reduction can not be achieved.

We conclude that implemmeting a predictive model at atomic level, based on

principal components, is difficult when breathing events are studied.

7.1.2 Principal component analysis of DNA trajectories

Next, we analyse all twelve base-pairs from our 38◦ overtwisted DNA sequence.

The eigenvalues specific to the principal components obtained without data

pre-treatment are

λ = (2.5179, 0.0179, 0.0142, 0.0133, 0.0130, 0.0126,(7.1.8)

0.0118, 0.0099, 0.0089, 0.0083, 0.0080, 0.0043),

which shows that only PC1 is important for our system. This is given by

PC1 = (−0.0015, 0.0011,−0.0009,−0.0029, 0.0002,−0.0008,(7.1.9)

0.9999, 0.0124, 0.0042,−0.0002, 0.0019,−0.0025)T

and clearly highlights the breathing being about (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)T. In

other words, the A-F pair breathing amplitude makes the other base-pairs dy-

namics less important for our system, having small variances. In fact, Figure 7.1
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shows that compared to the middle site, all the other displacements from equi-

librium can be considered as small amplitude noise.

Figure 7.1: Illustration of DNA displacements from equilibrium, obtained

from an AMBER simulation, plotted against time and base-pair

number, for a 38◦ overtwisted DNA sequence.

In addition, the other directions are important only for the non-breathing base-

pairs. For example, the second component as importance is

PC2 = (−0.0082,−0.0028,−0.0211, 0.0059, 0.0219, 0.0282,(7.1.10)

0.0132,−0.9691,−0.2239,−0.0213,−0.0513, 0.0752)T,

which is specific to y1, while the third component is specific to y2, being equal

to

PC3 = (0.0075, 0.0065, 0.0523,−0.1234,−0.0332, 0.0093,(7.1.11)

−0.0017,−0.2304, 0.9520, 0.0506, 0.1373, 0.0045)T.

On the other hand, when all base-pairs are considered to be equally important,

that is, when data is scaled to unit variance, we obtain the following data vari-

ances

λ = (1.2281, 1.0862, 1.0732, 1.0443, 0.9941, 0.9887,(7.1.12)

0.9713, 0.9660, 0.9474, 0.9422, 0.9219, 0.8366)
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and the first rescaled principal component is

PC1 = (0.0091,−0.0100,−0.0026, 0.0147, 0.0016, 0.0056,(7.1.13)

−0.9946,−0.0833,−0.0432,−0.0067,−0.0196, 0.0331)T,

which is again almost equal to (0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0)T.

As can be seen, not only is the first PC different, but this result suggests that all

directions are of similar importance in our system. In other words, unit vari-

ance data implies equally important PCA components. Note that the second

component is important for most base-pairs except the breathing pair, since it

has the following entries

PC2 = (−0.4137, 0.4147, 0.0515, 0.2917, 0.2775, 0.2827,(7.1.14)

0.0600,−0.1230,−0.2668,−0.3212,−0.3380,−0.3237)T,

but the third component is equal to

PC3 = (−0.0386,−0.0886,−0.2171,−0.1756,−0.0720,−0.0139,(7.1.15)

0.9314, 0.0165,−0.0339,−0.1144,−0.1538, 0.0412)T,

which means PC3 is mostly important for the breathing pair. This explains the

importance of all directions in the system when data is scaled before applying

PCA.

Next, we compare these results with the ones obtained by applying PCA for a

SDE simulation for a 38◦ overtwisted DNA strand. The PCA results obtained

for our SDE simulation are similar with AMBER case. If data pre-treatment is

not applied, the data variances are similar with the ones from (7.1.8), that is,

λ = (2.5260, 0.0325, 0.0178, 0.0176, 0.0171, 0.0164,(7.1.16)

0.0159, 0.0156, 0.0155, 0.0150, 0.0144, 0.0007),

while the first principal component is similar to (0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0)T,

being

PC1 = (−0.0003,−0.0009, 0.0009, 0.0017, 0.0006,−0.0119,(7.1.17)

−0.9999,−0.0120,−0.0017, 0.0006,−0.0006,−0.0010)T,
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which is also similar to (7.1.9). PC1 value confirms the conclusion from Chap-

ter 5 that SDE simulations are more regular than AMBER results. Indeed, note

that PC1 from (7.1.17) has almost symmetric entries with respect to its seventh

entry and suggests that breathing influences the neighbouring pairs due to the

defect in the along-chain interactions, but does not influence the other base

pairs.

Moreover, in the SDE model we do not take into account which type of base-

pairs compose the DNA sequence and use the same value for the inter-strands

spring coefficient γ. On the other hand, AMBER simulations and base-pairs

displacements variances depend on the type of bases composing the DNA se-

quence. The first, sixth and tenth base-pairs are C-G pairs and are represented

by very small values in the principal component, which can be explained by the

three hydrogen bonds compared with the two bonds of an A-T pair and only 1

bond for A-F base-pair. Also, note that the entries of the first principal compo-

nent from (7.1.9) and (7.1.17) are different, which might be due to the different

initial conditions in the two systems. However, the direction and the amplitude

specific to each base-pair are more important for our comparison than a scaling

factor of −1. In addition, the SDE and AMBER simulation results are similar

(compare Figures 7.1 and 7.2), given that the base-pairs do not move just along

PC1, since the PC eigenvalues suggest small variations in the other directions.

Note that, as in AMBER case, the others directions are specific to non-breathing

base-pairs. For example, the second component, that is,

PC2 = (0.0203, 0.0172,−0.0030,−0.0232, 0.0617, 0.7026,(7.1.18)

−0.0170, 0.7047, 0.0617, 0.0145, 0.0191, 0.0032)T,

is again specific to y1, but also to y−1 due to the SDE system symmetry.

Results confirming SDE regularity (compared to AMBER) are also obtained

when data scaling is used with PCA. These results suggests that in such a case

all principal components have to be taken into consideration, given the close-

ness of the eigenvalues

λ = (2.0083, 1.0991, 1.0818, 1.0688, 1.0125, 0.9907,(7.1.19)

0.9695, 0.9646, 0.9503, 0.9243, 0.8871, 0.0430).
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Figure 7.2: Illustration of DNA displacements from equilibrium, obtained

from a SDE simulation, plotted against time and base-pair number,

for a 38◦ overtwisted DNA sequence.

This suggests that the first PC is dominant, which happens due to breathing,

given that it is similar to (0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0)T, more precisely,

PC1 = (−0.0081,−0.0076, 0.0028, 0.0117,−0.0213,−0.2621,(7.1.20)

−0.9278,−0.2629,−0.0249,−0.0043,−0.0080,−0.0032)T.

Even though the last principal component is noise with amplitude given by

λ = 0.0430, the last ten components are of similar importance, having variances

close to 1. Even if this result differs from (7.1.12), we still obtain that most

components are important for our system, since the SNR value – see (6.1.9)

for definition – is not large enough to ignore any of the orthogonal directions.

Next, we observe the same decrease in entry values for the C-G base-pairs in

(7.1.13), that is, first, sixth and tenth entry, but for the SDE system the rescaled

first principal component can be considered again to be symmetric.

Finally, the importance of most of the PC directions is justified, for example, by

the second component, which influences the breathing pair and equals
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PC2 = (−0.2737,−0.0644, 0.0929, 0.1436, 0.0170, 0.0431,(7.1.21)

−0.6385, 0.0336,−0.2193,−0.3800,−0.3429,−0.4131)T.

These results emphasize again the strength of our SDE model. The similar vari-

ances and principal components values of our AMBER and SDE simulations,

show that the two approaches are close one to the other.

7.2 Data autocorrelation

Similar results between AMBER and SDE simulations are obtained when com-

puting the data autocorrelation function for the A-F base-pair. Figures 7.3,

7.4 and 7.5 present a comparison between the two cases, for the three of the

eight twist angles in the range 30◦-40◦ discussed in Part I, that is, 30◦, 35◦ and

38◦, respectively. The figures for the remaining angles can be found in Ap-

pendix B.1. This comparison emphasizes that for AMBER simulations, the in-

formation about the initial system conditions is lost after at most 1 ns, while for

the SDE system only about 0.5 ns is necessary.

Figure 7.3: Illustration of autocorrelation function, for a 30◦ undertwisted

DNA, obtained using (a) AMBER model and (b) SDE model.

Moreover, the spikes from each graph might be correlated with the formation

of breathing events. Note that the SDE simulations of a 35◦ undertwisted DNA

sequence from Figure 5.12 contains many short and frequent breathing events
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Figure 7.4: Illustration of autocorrelation function, for a 35◦ undertwisted

DNA, obtained using (a) AMBER model and (b) SDE model.

Figure 7.5: Illustration of autocorrelation function, for a 38◦ overtwisted DNA,

obtained using (a) AMBER model and (b) SDE model.

and is the only simulation which can be considered inconsistent with the DNA

behaviour observed in AMBER simulations. Figure 7.4(b) is also inconsistent

when compared to the other autocorrelation functions presented here. Ob-

serve also that for the angle for which breathing represents an important pro-

portion of the simulation time, that is, the normal twist angle of 36◦ and the

overtwisting angles of 38◦ and 40◦, the number of spikes from the data auto-

correlation expression is reduced compared to the undertwisted angles. This

can be explained by the reduced number of breathing events in these simula-

tions – see Chapter 5 for more details. In addition, for the normal twisted and

overtwisted DNA the oscillations from positive to negative values in the data-

autocorrelation function are not that frequent as in the case of the undertwisted

DNA strands.
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Finally, recall that in Chapter 6 data autocorrelation is presented as a method for

determining hidden periodic signals. However, we expect the displacements

from equilibrium in our system to be a sum of several normal modes with dif-

ferent frequencies, since our DNA sequence, can be considered a Hamiltonian

system.

7.3 Normal modes

The equations of motion of each base-pair were obtained in Chapter 3 from

the system Hamiltonian described by (3.1.14). Hence, determining the normal

modes and their corresponding frequencies is the next step in our comparison

between AMBER and SDE simulations. We expect to determine similar rep-

resentations of the two systems. More precisely, we hope to find a few large

amplitude modes with low frequencies, related to DNA breathing, as well as

DNA chain bending or twisting, and possibly corresponding to the first few

principal components.

Figure 7.6: Illustration of the DFT, for a 35◦ undertwisted DNA, obtained using

AMBER.

Using the FFT algorithm to determine the DFT of y0(t) for a 35◦ undertwisted
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DNA, we obtain a surprising result. Figures 7.6 and 7.7 show that, for both AM-

BER and SDE simulations, the DFTs do not possess a few well-defined peaks.

The differences between the amplitudes of the DFT values from Figure 7.6, rep-

resenting the AMBER simulation, and Figure 7.7, representing the SDE simu-

lation, can be ignored, since the DFT expressions show a perfect agreement of

the DNA behaviour in both cases. More precisely, the DFT expressions imply

that DNA exhibits the so-called “self-organised criticality” property, that will

be discussed in next chapter.

Figure 7.7: Illustration of the DFT, for a 35◦ undertwisted DNA, obtained using

the SDE model.

Note that similar results, suggesting a self-organised DNA behaviour, are ob-

tained for seven other twist angles in the range 30◦-40◦. Details can be found in

Appendix B.2.

7.4 Summary

Constructing based on PCA a model to predict the DNA behaviour and which

considers all atoms of a DNA sequence is difficult, since the data enclosing
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representative information on breathing events and needed to obtain accurate

results can not be processed with existing technology. However, we can use

PCA to compare the AMBER and SDE simulations in terms of principal com-

ponents and to emphasize the similar behaviour of the two models, as well as

some homogeneity differences. Moreover, in both cases, PCA applied without

scaling the data suggest that only one direction is important for our analysis,

while using data scaling we obtain that all directions in the system are equally

important – an unexpected result.

The autocorrelation function also confirmed the similarities between the two

approaches. This final result was also confirmed by the form of the Fourier

Transform found for the displacements from equilibrium of the A-F base-pair,

but which does not reveal any clear breathing frequency. In the next chapter we

further investigate this property.
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Self-organized criticality

A lot of dynamical systems evolve to a steady state (equilibrium solution) or a

limit cycle. More complicated large-time attracting sets are often characterised

by strange attractors [104], which exhibit chaos. However, there are other ways

of characterising large time behaviour such as the classes found by Wolfram

[127] when studying cellular automaton. Based on an empirical study, he iden-

tifies four qualitative classes of systems, that is, spatially homogeneous sys-

tems, periodic structures, systems with chaotic aperiodic behaviour and com-

plicated localised and possibly propagating structures. In what follow, we focus

on the latter category.

Self-organized criticality (SOC) [6] is a property specific to certain dynamical

systems which have a critical point as an attractor. In physics, a critical point

specifies the conditions, such as temperature, pressure or composition, at which

a phase boundary is not valid anymore. Here, by phase we understand a state

of a system for which the physical properties of a component are uniform. In

other words, a critical point refers to a system configuration to which the system

evolves without ever approaching one fixed equilibrium state. For more details

and definitions for critical phenomena and phase transition see [44].

When analysing a large system, we aim to reduce its complexity to a few de-

grees of freedom, for which the coupling can be defined in a general manner

by obtaining some averaged behaviour over the ignored quantities and their

corresponding interactions within the system or with the surrounding environ-

ment. For dynamical systems, dimensional reduction is also called “slaving

156



CHAPTER 8: SELF-ORGANIZED CRITICALITY

principle” [53] and leads to the the study of low-dimensional attractors. This

is often a straight forward method. For example, “fast modes” at equilibrium

can be slaved to a few slowly evolving modes. However, sometimes a system

responds on both fast and slow timescales, even at large times, and we require a

new theory, such as the idea of self-organised systems, whose behaviour cannot

be explained using reduced models.

Systems having the SOC property present a spatial or temporal macroscopic

behaviour invariant when a scale factor is used. This property is called scale-

invariance [141] and suggests that we do not require exact parameter values to

characterise the critical points of a phase transition. Phase transition actually

means passing from a steady state to a non-equilibrium one. In general, the

total number of states is finite and the transitions can be characterised using a

cellular automaton structure [30].

Although there is not a well defined class of systems having SOC property, it

is typically observed in complex systems with slowly-driven non-equilibrium

behaviour, for which the causes of an event taking place in a system cannot

be explained through some parameter values. Several studies of SOC show

that scale-invariant phenomena can be determined at critical points, but not

necessarily at any critical point. There are two important categories of such

phenomena: fractals [92] and power laws [88]. The first category involves ge-

ometric shapes, which can be split into parts that are reduced-size copies of

the initial shape. The second deals with frequency dependent quantities and,

hence, is relevant for some Hamiltonian systems analysis. However, note that

self-organised systems are always at criticality, but not all critical systems are

self-organised.

Bak et al. [5] demonstrate numerically that systems with extended spatial de-

grees of freedom evolve into barely stable states and claim that SOC is the mech-

anism behind such behaviour. The attractor in their system is not dependent

on the model parameters and suggests that the so-called “flicker noise”, also

known as 1/ f noise, does not require fine tuning. In [6], they use a simple

automaton to determine the relation between critical phenomena and features

like power laws, fractals, and, last but not least, 1/ f noise. They discuss the dy-

namics of critical states, for which the power spectrum S( f ) (where f represents
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a frequency) scales with 1/ f at low frequencies. They note again that chang-

ing the value of system parameters does not affect the critical point emergence,

which implies that systems with such features present SOC behaviour.

In general, for a noisy system the power spectrum has the form S( f ) = c f−β,

where c is a constant. The noise present in the system can be classified in three

important categories as follows:

• white noise, for β = 0;

• pink noise, for β = 1;

• red noise (also known as Brownian noise), for β = 2.

However, the term “1/ f noise” is widely used to refer to any noise with a power

spectral density S( f ) ∝ f−β, with 0 < β < 2. For 1/ f noise that occurs in

nature, β is usually close to 1.

In other words, a system exhibits a self-organised behaviour if the dynamics of

the critical states scale into a power law at low frequencies, emphasizing the

presence of flicker noise. Such systems also have the scale-invariance property,

that is, the emergence of critical points is not affected by changes in system pa-

rameters values. This implies that, in general, the SOC behaviour of a system

cannot be explained only be the parameters values of a reduced model and,

thus, a more detailed analysis is needed. Recall that, for the DNA system anal-

ysed in Part I of this thesis, the parameters vary with twist angle. However,

breathing (the critical state) occurs for all twist angles analysed, hence the spec-

trum analysis could suggests a self-organised DNA behaviour.

8.1 Power laws

As already mentioned, power laws sometimes arise in frequency analysis. A

power law defines a relation between two quantities and when one of these

quantities is the frequency of an event, this relation becomes a power-law dis-

tribution, with the effect that increasing an event’s size results in decrease in
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its frequency. In most cases, these mathematical relations are defined using a

polynomial-like representation. Note that not any polynomial preserves the

scale-invariance property, only ones having the form

(8.1.1) PL(x) = cxn + o(xn),

where c and n are two real constants, while o(xn) is an asymptotic function.

Observe that such functions are indeed scale-invariant, given that

(8.1.2) PL(αx) = cαnxn + o(αnxn) = αn(cxn + o(xn)) = αnPL(x),

for some constant α.

The most common way of identifying a power law representation is the loga-

rithmic one. Applying the natural logarithm function to both sides of (8.1.1) we

obtain

(8.1.3) log(PL(x)) = n log x + log c,

which shows that the logarithmic representation of the frequency of an event is

a linear function of the log-frequency.

Note that we defined the power law in a single variable, but it is also possible

to have multi-variables power laws. Moreover, power laws are characteristic

to natural processes, and the asymptotic function o(xn) in fact represents small

deviations from the polynomial expression, possibly caused by noise or mea-

surement errors.

Finally, observe that a power law for which −2 < n < 0 is characteristic to

1/ f noise, which means that the critical points in a system can be determined

whenever the frequency spectrum has the form of a power law.

8.2 SOC examples

In the scientific literature, several systems exhibiting SOC behaviour have been

identified. Bak et al. [5, 6] study the dynamics of a damped pendulum and the

slope of a sandpile, respectively, and determine critical points in the systems.
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Avalanches in a one dimensional sandpile are also analysed by Chapman et al.

[27, 28]. They determine the distribution of energy discharges due to internal

reorganization, whose power law form shows that the system is self-organized.

Moreover, in [28] a one-dimensional avalanche sandpile algorithm is presented

for transport in a driven dissipative confinement system, which allows further

SOC analysis. However, in [29] they classify a broad range of systems that

fall under the general description of SOC and argue that some, but not all, of

the results related to the magnetosphere are suggestive of, but not sufficient to

confirm SOC behaviour.

The range of systems presenting SOC properties varies from sandpiles to bio-

logical systems and even electric current. Banerjee et al. [8], for example, study

the noise profile of a Voltage-dependent anion channel in open channel state

and the power spectrum of current indicates power law noise of 1/ f nature.

The widespread self-organized phenomena of earthquakes has also attracted

the attention of scientists. Olami, Feder and Christensen [91] developed one

of the first models of earthquakes, known as the OFC model. This cellular au-

tomaton model is based on the Gutenburg-Richter law, which represents a sta-

tistical statement expressing the relationship between the magnitude and total

number of earthquakes in a given region over a fixed time period. A power-

law relationship is observed for the number of earthquakes with energy greater

than a fixed energy E0. Caruso et al. [24, 25] use this model to investigate the

SOC properties of small-world and scale-free networks. However, the critical

behaviour of the OFC system is later analysed by Klein and Rundle [73], as well

as by Christensen [31], one of the model developers.

Bak et al. [7] investigate the distribution of waiting times between earthquakes

occurring in California and reach the conclusion that it obeys a simple unified

scaling law, valid from tens of seconds to tens of years. Weatherley et al. [123]

study the dynamics of a crack-like automaton, in which all stress is transferred

from a rupture zone to the surroundings, as well as a partial stress drop automa-

ton, in which only a proportion of the stress within a rupture zone is transferred

to the surroundings. The mean spectral density of a stress deficit field exhibits

in both cases a power-law relationship with respect to the spatial wavenumber.

Bak et al. [4] developed one of the first forest-fire models. Starting from a d-
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dimensional hypercubic lattice with Ld sites, they define a probabilistic cellular

automaton, in which a site is either a tree or an empty space. A tree starts burn-

ing only if one of its neighbours burns and after a tree is burned its site becomes

empty. Moreover, a tree grows at an empty site with probability p. Using this

model, they find that the fire-fire correlation function is a power law and for the

limit p→ 0 the fire correlation length diverges and the system becomes critical.

Drossel and Schwabl [45] improve this forest-fire model adding a tree light-

ning probability f . Given that the time scales of tree growth and burning down

of forest clusters are separated, when f → 0 the system is driven into a self-

organized critical state. They reach the conclusion that for a two-dimensional

system, the critical state assumes the maximum energy dissipation.

This example shows that separation of the timescales is present in many self-

organising systems. Fires spread on a fast timescale, but trees grow on a slow

timescale. After a large time, much empty space is created and there is a long

time before it is repopulated with trees, but eventually it will become vulner-

able to another fire. Hence, there is repetition, but not at any fixed frequency.

Rather, there is a random timing of fires and this is related to the size of fires.

Next, Sinha-Raya et al. [113] replace the stochastic ignition generated by light-

ning with a deterministic threshold for auto-ignition, but the system properties

remain unchanged. In addition, they find using this model multifractality in

the trees distribution. Another model closely related to the Drossel-Schwabl

was developed by van den Berg and Jsrai [16], by considering instantaneous

ignition of the trees. This allows them to prove that regardless of the initial

system configuration, after a time of order log(1/ f ) the density function is of

order 1/ log(1/ f ). Brouwer and van den Berg [15] developed another forest-

fire lattice model, in which tree lightning implicitly makes vacant the occupied

cluster, and study the system using the rates of a site being hit by lightning. The

self-organized critical behaviour is observed again for lightning rates close to

zero.

Pueyo [99] developed a wild-land fire model to forecast the effects of climate

change on catastrophic events. He studies the fire size statistical distribution

for weather fluctuations in a boreal forest region and predicts the fire regime in

this region, for an instance of possible climate change scenario, to have much
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larger burning surfaces than the largest fires that currently occur. Caldarelli

et al. [20] investigate the statistical properties of wild-land fires to determine

whether spread dynamics relate to a simple invasion model. Using satellite

images of three fire scars they study the fractal dimension and observe that the

burned clusters behave similarly to percolation clusters on boundaries and look

denser in their core.

Note that forest-fire approaches were adapted to study several other natural

phenomena. Consolini and De Michelis [35], for example, used a revised forest-

fire cellular automaton to study the nonlinear dynamics of the Earth’s magneto-

tail, while Rhodes and Anderson [103] define individual-based lattice epidemic

models, starting from a forest-fire automaton, to simulate the spreading of epi-

demic processes, such as measles.

On the other hand, Krink et al. [75] apply the SOC concept to control the mu-

tation at an individual level and extinction at the population level in evolu-

tionary algorithms (EA), which improves a previously introduced mass extinc-

tion model, without any additional computational costs. Maslov et al. [82]

also study SOC properties of a simple evolution model by establishing the re-

lationship between spatial fractal behavior and long-range temporal correla-

tions. They also discuss similar relationships for several other self-organized

(and non-self-organized) critical phenomena, such as directed percolation or

interface depinning.

Biological systems represent another category interesting from SOC point of

view. Kishimoto et al. [72], for example, present a critical gradient transport in

a tokamak plasma model that describes self-organized relaxed states, as well as

some of the important aspects in tokamak transport, such as Bohm diffusion,

radially increasing fluctuation energy, heat diffusivity, or intermittency of the

wave excitation. The brain is another biological system placed in the category

of self-organisation, as discussed by Werner in [125]. He states that the theory

of non-equilibrium phase transitions can serve as an informative approach for

elucidating the nature of underlying neural mechanisms.

Next, the self-organisation characteristics of proteins were studied by Phillips

[97, 98], for example, who considers that regarding proteins as archetypical ex-

amples of SOC, their complexity is simplified. Nykter et al. [89] developed an
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algorithm to assess gene expression dynamics in macrophage criticality, pro-

viding in this way a compelling evidence for this general principle of dynamics

in biological systems. This method, based on algorithmic information theory, is

validated using several networks with well-known self-organised behaviour.

A biological structure, directly involved in protein and genes related processes,

is represented by DNA, which also exhibits SOC property. Selvam [108–110]

studies the distribution of bases in a DNA sequence. Analysis of frequency dis-

tributions of bases in Drosophila DNA [108] show that the fractal fluctuations

self-organize to form an overall logarithmic spiral trajectory with the quasiperi-

odic Penrose tiling pattern, for the internal structure. In [109], the power spectra

of human DNA shows that the C-G base-pair frequency distribution exhibits

the universal inverse power law form of the statistical normal distribution for

the 24 chromosomes. Similar results are obtained in [110] about the C-G base-

pair frequency distribution in the DNA of Takifugu rubripes, which is the Puffer

fish.

Cingolani et al. [32] use DNA bases to describe a new strategy to exploit self-

assembled solid-state biomolecular materials. The biomolecular semiconduc-

tors consisting of DNA bases in this top-down approach are self-organized and

interconnected by planar metallic nanopatterns. Jan et al. [66] propose a design

and realization method to solve the constrained multi-objective problem via a

self-organizing PID (proportional, integral and derivative feedback) control de-

sign. Their algorithm is based on an idea using the structure of biological DNA

molecules to map the parameters and the structure of PID controllers into DNA

strings.

Another study made by Sotolongo-Costa et al. [114] uses irradiation of DNA

molecules with electrons and neutrons at different doses to obtain the DNA

double strand breaking. They measure the length of the resulting fragments

and reach the conclusion that the collection of fragment sizes obeys a power

law distribution. Naimark [87] discusses possible relations of structural-scaling

transitions in ensembles of localized distortion modes within the replication

and transcription phenomena. They state that the unique properties of DNA

might be explained by the inhomogeneity of DNA fluctuations and their evo-

lution into collective modes, since the localised distortion modes can be as-
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sociated with structural-scaling transitions, which represent a type of critical

phenomena. But waves are not important only in DNA. Jung et al. [67] study

noise-induced spiral waves in Astrocyte Syncytia and find a power law distri-

bution of wave sizes, reaching the conclusion that the process that creates the

waves has no preferred spatial or temporal (size or lifetime) scale.

Finally, Harris et al. [55] analyse the configurational entropy of a DNA molecule

based on the entropy estimation for a Gaussian configuration given by Schlitter

[106], which helps investigating if a steady state has been reached during a sim-

ulation. They show that the estimate of the entropy Sn depends on the number

of data points n and this relation is a power law. Moreover, they determine that

the gradient of the line characterising log(Sn) is −2/3.

In conclusion, studying in detail the SOC behaviour of DNA dynamics might

give more information about the nature of bubbles, as well as about wave for-

mation and nucleation. Indeed, from bubbles size to breathing frequency, a

whole range of measurable quantities might reveal the SOC properties in DNA.

However, we note that Frigg [49] considers that SOC cannot be a general the-

ory, like Newtonian mechanics, for example, and the gross simplifications of

the models presenting SOC behaviour cannot represent a description of the tar-

get system. Therefore, from Frigg’s point of view, SOC models can only be of

heuristic value, opening new doors for scientific research.

8.3 Fourier Transform and power law

Recall that breathing, in general, is charactherised by identifying the specific

modes, which, as discussed in Chapter 6, can be determined using the Fourier

transform. Moreover, a frequency-based analysis is useful for determining the

self-organised behaviour of a system. Thus, if the Fourier Transform, also called

power spectrum, can be written in the form of a power-law, then our system has

SOC property, which might suggest that breathing is caused by some natural

complex process.

Kertkszt and Kiss [71], for example, analyse the model proposed by Bak et al.

[6], which explains the fractality emerging spontaneously in nature and the
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flicker noise. Starting from the Fourier Transform they determine the mean

energy density spectrum of sandpile avalanches with a given size s, but given

that the avalanches do not interact, the total power density spectrum is in fact

the weighted sum of the individual contributions. Finally, they reach the con-

clusion that the values of the weights influence the noise spectrum exponent,

when certain conditions are satisfied.

Suppose that we have a data sample X for which we compute the DFT. Denote

by ω the frequency variable and by DFT(ω) the corresponding Discrete Fourier

Transform. If DFT(ω) has the form cωn as required by (8.1.1), then our system

is supposed to be self-organized. Such analysis is crucial in determining if an

event, such as DNA breathing, is caused by a judicious fit of parameters to real

data or is in some sense more generic. In our case, if SOC behaviour is observed

in both MD and SDE simulations, then this suggests that the models are robust

in their parameters values, that is, some change in their values will not affect

the critical behaviour.

The frequency-based analysis of breathing events from Chapter 7 suggests that

our DNA molecule exhibits self-organised criticality, which we shall now inves-

tigate in more detail by finding the DFTs and the form of their associated power

laws. This could be due to complex interactions taking place at atomic level in

DNA, which can not be fully explained by the parameters of the reduced SDE

model.

8.3.1 DFT power law coefficients

To determine how the DFT of the A-F base-pair dynamics, that is, y0(t) defined

in Chapter 3, depend on the frequency ω, we plot the log-frequency against

log(ω) to investigate the validity of the power law assumption, that is,

(8.3.1) log(DFT(ω)) = −β log(ω) + c,

where c ≈ log(DFT(1)) is a scaling factor.

Figures 8.1(a) and 8.2(a) illustrate the log-DFT representation obtained from

MD simulations, while Figures 8.1(b) and 8.2(b) show the results obtained by
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Figure 8.1: Illustration of the DFT, for a 34◦ undertwisted DNA, obtained using

(a) AMBER model and (b) SDE model.

Figure 8.2: Illustration of the log-DFT function, for a 40◦ overtwisted DNA,

obtained using (a) AMBER model and (b) SDE model.
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analysing SDE data, for the 34◦ and 40◦, respectively, twist angles. As can be

seen there is an excellent agreement between the two sets of data at both twist

angles analysed (see also Appendix B.3 for the rest of the twist angles). Note

that ω = 0 was not considered in our analysis, given that in this case log(ω)→
−∞.

Recall that, in general, the critical behaviour is observed for smaller frequencies,

but we also plotted the DFT values for large frequencies in our data samples.

Typically, we observe power law behaviour for −7 < log(ω) < −2, represent-

ing a range of 0.1353 in ω. Moreover, for large ω, that is, log(ω) > −2 the log-

DFT has an increased range (of about 4 units) compared to the low frequency

values.

The best fit of the slope and the intercept of the lines corresponding to each

log-DFT is obtained by minimizing the total deviation of the data from the line.

However, given the form of the log-DFTs we fitted these values by eye, consid-

ering the low frequencies more important than the large ones. The gradients of

the log-log plot of DFT versus ω are summarised in Table 8.1 and suggest the

presence of 1/ f noise in our data.

Twist angle βAMBER cAMBER βSDE cSDE

30◦ 0.725 3.1949 0.750 2.7463

32◦ 0.700 3.4574 0.725 3.1548

33◦ 0.725 3.1591 0.775 2.7920

34◦ 0.750 2.9417 0.825 2.4083

35◦ 0.750 2.8807 0.775 2.9226

36◦ 0.775 2.9626 0.825 2.4838

38◦ 0.700 3.4530 0.875 2.4566

40◦ 0.700 3.3524 0.700 3.1524

Table 8.1: Values of the gradient β and the intercept c of the log-log plot of

DFT(y0) against ω, for 10 ns of data, with information about each 1

ps obtained using the AMBER and SDE models, respectively.

If the constant c is just a scaling factor which is not relevant for our analysis,

the β values suggest an average value of 3/4 for the AMBER data (since all lie
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Figure 8.3: Illustration of the DFT, for a 30◦ undertwisted DNA, obtained from

a 100 ns SDE simulation.

Figure 8.4: Illustration of the DFT, for a 38◦ overtwisted DNA, obtained from

a 100 ns SDE simulation.

in the range (0.7, 0.775)) and 4/5 for SDE model, respectively (the latter being

more widely distributed across the interval (0.7, 0.875)). Analysing the two SDE
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simulations of 100 ns presented in Section 5.5 we observe the same behaviour

for long-time dynamics, as can be observed in Figures 8.3 and 8.4. We obtain

β = 0.725 for the 30◦ undertwisted DNA sequence and β = 0.775 for the 38◦

overtwisted DNA molecule.

Even though these values are close to 1, further analysis shows that it is pos-

sible to improve them, by analysing a more detailed layer dataset, namely, the

short 2 ns AMBER simulations, with data about each 2 fs, that were used in

Chapter 4 to fit the SDE model parameters. Indeed, Table 8.2 suggests that the

average value of β is in fact 0.93, which is much closer to 1 that the values pre-

sented in Table 8.1, the small difference being possibly generated by numerical

computational errors. The increase in β from 0.75 in Table 8.1 (where a timestep

∆t = 1 ps was used) to 0.93 in Table 8.2 (where we use a ∆t = 2 fs timestep)

suggests that we might expect β ≈ 1 when ∆t → 0. Note also the slightly

tighter clustering of data in Table 8.2 for AMBER model. Analysing a similar

dataset obtained using the SDE model, we observe the same increase in β, that

is, from an average of 0.79 in Table 8.1 to 0.91 in Table 8.2. This shows once

again that our mesoscopic model is capable of reproducing with accuracy the

DNA behaviour.

Twist angle βAMBER βSDE

30◦ 0.920 0.900

32◦ 0.920 0.895

33◦ 0.900 0.910

34◦ 0.940 0.920

35◦ 0.930 0.900

36◦ 0.930 0.910

38◦ 0.940 0.940

40◦ 0.950 0.905

Table 8.2: Values of the gradient β of the log-DFT function, for data obtained

using AMBER and SDE data over 2 ns, with information about each

2 fs.

Next, we analysed the nonbreathing pairs in our system, for a 38◦ overtwisted
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DNA, for both AMBER and SDE simulations. Figure 8.5 suggests that the DFTs

of y2(t) also have power law forms.

Figure 8.5: Illustration of the log-DFT function plotted for y2(t), for a 38◦

overtwisted DNA, obtained using (a) AMBER model and (b) SDE

model.

Moreover, the results from Table 8.3 show that β decreases as we move further

away from the defect site, which is due to the reduced influence of breathing

on the other base-pairs.

Base-pair βAMBER βSDE

y1(t) 0.225 0.210

y2(t) 0.180 0.135

y3(t) 0.180 0.130

y4(t) 0.180 0.130

Table 8.3: Values of the gradient β of the log-log representation of DFT(y0)

in terms of ω, for 10 ns of data, with information about each 1 ps

obtained using the AMBER and SDE models, respectively.

Observe that for the mesoscopic model we have a slightly reduction in β’s
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value, but this behaviour is preserved. However, these values were obtained

by analysing the long 10 ns simulations with data for each 1 ps. Analysing the

short 2 ns simulations, but with information about each 2 fs, we observe that β

doubles, as can be seen in Table 8.4.

Base-pair βAMBER βSDE

y1(t) 0.450 0.445

y2(t) 0.425 0.205

y3(t) 0.410 0.180

y4(t) 0.390 0.155

Table 8.4: Values of the gradient β of the log-DFT function, for data obtained

using AMBER data over 2 ns, with information about each 2 fs.

Note again that β decreases as we move to the end of the DNA sequence, but

for the SDE system the decrease happens much faster than in the case of AM-

BER data. We use in our model short range forces to describe the along-chain

interactions, while these results suggests that it might be more appropriate to

define long range interactions instead. Moreover, these results confirm once

again that decreasing the timestep ∆t takes β’s value closer to 1 and hence, it is

easier to analyse the self-organised DNA characteristics.

8.3.2 Self-organised behaviour in DNA

The DNA simulations discussed in Chapter 5 revealed that a DNA sequence

spends an important proportion of its simulation time in the closed state and

the rest of time is represented by two or three open states depending on the

degree of DNA twist. Hence, we can model a DNA molecule using a cellular

automaton in which the transitions are defined between the closed and open

states. The breathing states can be considered the critical states of our system

and act as attractors, given that they emerge after a period of time. Indeed, in

Chapter 4 we ignore the first 5 or 6 ns of AMBER simulations, since the data

shows an unrepresentative initial transient. In reality, these 5 ns represent just a

transition period from the initial conditions to the critical states – see Figure 4.1
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for more details. Hence, our DNA sequence exhibits the slowly-driven non-

equilibrium behaviour characteristic of self-organised systems.

The frequency-based analysis reveals that the DFT computed at the defect site

has the form of a power-law. Moreover, Figures 8.1 and 8.2 suggest the pres-

ence of flicker noise in our data, for both AMBER and SDE simulations. Re-

call that in Chapter 3 we mentioned that even with the wrong values for our

system parameters, very short breathing events were obtained; this confirms

the DNA scale-invariance property. In other words, small changes in SDE pa-

rameter values affect details of breathing statistics, but not its self-organised

structure. Moreover, in our SDE system, random oscillations were modelled

using white noise. However, the breathing pairs DFTs show the presence of

pink noise in our system.

One might think that the defect site is the cause of the SOC DNA behaviour.

We replaced a thymine (T) base with the difluorotoluene (F) base to weaken

the inter-chain interactions and allow breathing to occur on the nanosecond

timescale compared to a normal DNA sequence in which breathing occurs on

the microsecond timescale. But, this change does not affect the DNA structure

or behaviour, as discussed in several papers, such as [52], for example. In addi-

tion, the DFTs charactherisic for the trajectory of the nonbreathing pairs in our

system also suggest the presence of flicker noise among AMBER and SDE data,

even though the values of β from Table 8.4 are reduced to half compared to the

A-F base-pair values presented in Table 8.2.

All these results obtained using a frequency-based analysis imply that breath-

ing is not generated by a particular mode. In most papers studying DNA bub-

bles or waves, the specific modes are determined either analytically or numeri-

cally and the system is characterised based on the results obtained. Our results

show that this strategy should be revised, since it might be the wrong approach

for such studies. Recall also that in Chapter 5 we obtained that the AMBER and

SDE simulations are random, which also suggests that DNA might be consid-

ered a self-organised system.

Finally, we conclude that, given these aspects, DNA is a self-organised system,

since AMBER data shows SOC property. In addition, although the reduced

SDE model that we propose cannot fully elucidate breathing causes, it is able to
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predict with accuracy DNA behaviour, including SOC. However, studying the

SOC properties of DNA might offer some information about bubble nucleation

and growth via travelling waves, as well as about widely studied events, such

as DNA transcription and replication.

8.4 Summary

In scientific literature several cellular automaton models have been created to

study the self-organised behaviour characteristic to different systems, such as

sandpiles, earthquakes or forest-fires, for example. These models connect crit-

ical phenomena to features like power laws, fractals, and flicker noise. We

have analysed the Fourier transform of the AMBER and SDE data and we have

reached the conclusion that it scales into a power law emphasizing 1/ f noise in

our system. Hence, we conclude that DNA exhibits a self-organised behaviour,

as many other complex systems.
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Conclusions

In this thesis we have studied the dynamics of a 12-mer DNA duplex, for which

a thymine base (T) was replaced with the ’rogue’ base difluorotoluene (F) so

as to obtain breathing on the nanosecond time-scale instead of the microsec-

ond time-scale, as obtained in all-atom simulations of a nondefective DNA

molecule. The time spent simulating such systems, using MD programs, is

large due to the solvent presence, which in our case is water. For a 20 nanosec-

ond simulation, for example, we need about 2 weeks and 4 processors working

in parallel, as well as about 8000 gigabytes to store the information. However, a

simplified model can also be used to study with accuracy the DNA properties

by using less resources.

The DNA sequence was analysed for twist angles in the range 30◦-40◦ per

base-pair, which revealed that the length and frequency of the breathing events

varies with twist angle. We decided to develop a model based on a system of

stochastic ordinary differential equations, which might explain this twist de-

pendence and also reduce the simulation time, as discussed above.

Adding noise and damping to a nonlinear Klein-Gordon lattice model, we ob-

tain a new mesoscopic model of the DNA duplex, with a defect at the middle

site of the lattice. Previously, it has been thought that breathing events were

caused by inhomogeneities in the inter-strand interactions. However, our re-

sults show that there is, in addition, a significant change in the along-chain in-

teractions, which contributes to the breathing. Thus, we consider the defect in

both along-chain and inter-strand interactions. The system parameters were
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fitted to AMBER data using the maximum likelihood method. The fitting pro-

cess revealed several interesting features of our system. First of all, the noise

and damping coefficients are related to the system’s temperature through the

classic fluctuation-dissipation relation from (3.4.10). However, our N equations

of motion are obtained using a change of variables form 2N other equations.

In such transformations the damping coefficient is left invariant, but the noise

terms are added or subtracted, changing the fluctuation-dissipation relation-

ship. Moreover, we reduce each base (containing on average 32 atoms) to one

point mass. This simplification requires the use of an alternative fluctuation-

dissipation relation (the one defined in (3.4.12)), which takes all these aspects

into consideration, as well as the solvent interactions with the DNA atoms.

Next, the MLE method, which we use to derive parameter values of reduced

model from AMBER data, is sensitive to input data. We first tried to obtained

the parameter values using AMBER data over 20 ns, with information about

each 1 ps. We were able to obtain only rare and short breathing events, even

when MLE with a penalty term or smooth splines representation of E0(y0) (see

(3.2.14) for definition) were used. However, the timestep used in AMBER sim-

ulation is ∆t = 2 fs. Due to the large storage capacity required to store informa-

tion each 2 fs, we selected for each twist angle a 2 ns simulation representative

of our data in terms of the breathing length and frequency. Applying MLE to

these datasets we obtained improved parameter values for our system, which

allowed us to simulate breathing events with good accuracy.

Our analysis of parameter values revealed that, for an undertwisted DNA se-

quence, the along-chain bonds become weaker and the inter-chain bonds be-

come stronger, as the twist angle is increased from 30◦ to 35◦. At 36◦ we have

the weakest and strongest, respectively, of the two types of interactions. As

DNA is overtwisted, this behaviour is reversed, that is, the along-chain bonds

decrease with twist angle, while the inter-strand bonds become stronger as we

approach 40◦. For the noise coefficient of the nonbreathing base-pairs we only

observe small fluctuations, whilst for the variation of the noise coefficient spe-

cific to the A-F pair we observe a dependence on the time spent breathing – see

Figure 4.4 and Table 4.1.

The height of the breathing barrier ∆B and the energy difference between open
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and closed states ∆E, that characterise E0(y0) – see Table 4.8 for details – are re-

sponsible of the breathing frequency and length, respectively. However, breath-

ing can be considered as a competition between the along-chain elastic energy,

the inter-chain binding energy and the system’s entropy term, which in our case

is the damping term. Hence, the the length and frequency of breathing events

is given by the potential of mean force, whose expression can be approximated

via (3.3.22). The variation of breathing is interesting: at 34◦-35◦ breathing events

are relatively rare, whilst for undertwisted DNA plasmids we observe an in-

crease in the breathing frequency, due to a reduction in the energy difference

∆E (see Table 4.8). For overtwisted plasmids there is again a reduction in ∆E,

but also a decrease in ∆B and an increase in the fluctuation-dissipation param-

eter C (see Table 4.5), hence less damping. This leads to a larger residence time

in the breathing state, thus longer breathing events.

Next, we compare the SDE simulations to data obtained from AMBER and we

observe that the DNA behaviour predicted by our mesoscopic model is close

to that observed in experiments and all-atom MD simulations. This underlines

the capability of the SDE system to simulate breathing events with reasonably

good accuracy. We classify breathing by the mean µ and standard deviation σ of

the time spent in the closed state by our DNA molecule between two breathing

events: if µ ≈ σ we refer to it as ‘random’, while for µ > σ and µ < σ we refer to

it as ‘regular’ and ‘clustered’, respectively. The long timescale analysis reveals

that SDE simulations are more regular than the AMBER simulations. However,

the statistical tests show that both AMBER and SDE simulations are ‘random’.

In addition, a slight reduction in the amplitude of fluctuations in the reduced

SDE model is observed, when compared with AMBER data. This is due to the

massively reduced number of degrees of freedom in our SDE system. Also, the

analysis of long time dynamics using the SDE system revealed the increase with

time of the percentage of breathing in a simulation.

We also used traditional methods to compare the simulations obtained using

the two methods. Principal component analysis (PCA) is a tool that allows

one to filter the noise from data and determine those directions with high data

variances. The AMBER and SDE datasets have similar properties in terms of

principal components, and PCA also confirms the small difference in the de-

gree of randomness between the SDE and AMBER simulations. Next, comput-
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ing the data autocorrelation function we observed that the data is correlated

with the system’s initial conditions for about 0.5 ns in the SDE system and for

at most 1 ns in the AMBER system. Finally, we tried to determine the nor-

mal modes vectors and their corresponding frequencies based on the discrete

Fourier transform. However, in both cases, rather than exhibiting a few spikes

corresponding to collective oscillations, the Fourier transform exhibits a power

law behavior, suggesting that DNA might be a self-organised system.

Analysing in detail the log-log representation of the DFTs for AMBER, we note

the presence of 1/ f noise in our system. Even though we introduced white

noise in our SDE system as a random forcing term, we end up with pink noise as

the output y0(t), since the DFTs for the A-F base pair are proportional to 1/ωβ,

where ω is the frequency and β has values close to, but bellow 1, as presented in

Table 8.2. Analysing the DFTs for the nonbreathing pairs of our DNA molecule,

we observe a decrease in β to an average value of 0.4. In general, when 0 < β <

2 it is considered that 1/ f noise is present into our system. This confirms the

self-organised DNA behaviour and also reduces the doubts that the defect site

might actually be the cause of the SOC features observed.

Thus, the proposed SDE model is capable not only of predicting the DNA

behaviour, but it also preserves most of the system properties, such as self-

organisation. The importance of the fluctuation-dissipation relation in reduced

models is also discussed by considering both deterministic and random forces

in our system, in which the energy is conserved on the long timescale via a

balance between damping and stochastic forcing terms. We conclude that our

mesoscopic model allows us to study breathing events in detail and, in addi-

tion, it is also useful to analyse how the along-chain and inter-chain interactions

vary with helical twist. Finally, the SDE model is helpful in illustrating the self-

organised behaviour of DNA.

In conclusion, many complex systems, such as DNA, need to be analysed in de-

tail in order to determine all their hidden features. A reduced model sometimes

uncovers some of the system’s properties, but, as in our case, might not give a

clear explanation about their origins. However, the answers we are looking for

might be found by studying in more detail the SOC properties of DNA.

Given that the SDE simulations are close to the AMBER results and that the
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DNA properties are preserved by the reduced system, the work presented in

this thesis can be extended by analysing long SDE simulations of hundreds of

nanoseconds. Based on these simulations we could analyse in more detail other

characteristics of the breathing events, as well as their length and frequency. For

example, we could analyse the number of breathing events having the length

greater that a given length L0 and investigate how this varies with L0. An-

other quantity worth analysing is the distribution of the time intervals between

breathing events. In this way, we hope to obtain a power law form of the corre-

sponding functions, which might further confirm self-organising behaviour in

the DNA molecule. On the other hand, the analysis might show that at larger

scales the self-organisation properties cease. Note that we require long simu-

lation, since the datasets that we have analysed contain only tens of breathing

events, which is insufficient for an accurate analysis of these distributions.

It would also be interesting to analyse bubble length and their preferred forma-

tion sites in a DNA sequence. Note that our model cannot be used to perform

such a task and one should take care when trying to construct a new model,

since a bubble supposes several defect sites and the along-chain interactions

between two such sites might differ to the ones we determined. In addition,

the inter-chain potentials might also be different and we might expect to have

larger damping coefficients to preserve the total energy in our system.

Finally, note that our SDE model contains an important restriction, that is, all

base-pairs in our DNA sequence are characterised by the same twist angle.

Over a short DNA molecule of only twelve base-pairs, this should be a rea-

sonably accurate approximation. However, it will be less accurate over a DNA

duplex of hundreds of bases. One can improve the mesoscopic model by con-

sidering an extra degree of freedom for each base-pair, representing the local

twist angle. In addition, considering longer range interactions in our system

might also improve the model as suggested in Chapter 8. In Section 7.1.1 we

discuss the difficulties of using an approach based on a PCA-based predictive

models. However, similar techniques, which allow one to predict the behaviour

of all atoms in a DNA molecule, might also be useful. Note that we could

reduce the complexity in all these models by incorporating the solvent effect

through some parameters and by ignoring the water molecules when we sim-

ulate the system using the new approach. Moreover, increasing the number of
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degrees of freedom means more accurate results. In conclusion, such general

models might take us closer to the real DNA behaviour.
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APPENDIX A

Details of Amber Simulations

In what follows, we describe the files needed to simulate the DNA sequence

using AMBER (as described in Chapter 2), that is, topology and coordinates

files, SANDER input files, as well as pdb files.

A.1 Amber topology files

AMBER topology files contain information about atom types and several flag

values, as defined in the topology file specific to the 30◦ twist angle:

%VERSION VERSION_STAMP = V0001.000

%DATE = 04/23/07 15:16:53

%FLAG TITLE

%FORMAT(20a4)

%FLAG POINTERS

%FORMAT(10I8)

16682 20 ..... 0

%FLAG ATOM_NAME

%FORMAT(20a4)

H5T O5' C5' ... (bases atoms) ... H2'2O3' H3T Na+ ...

... Na+ O H1 H2 ... O H1 H2
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%FLAG CHARGE

%FORMAT(5E16.8)

8.05790106E+00 -1.15128491E+01 ... 7.59869910E+00

%FLAG MASS

%FORMAT(5E16.8)

1.00800000E+00 1.60000000E+01 ... 1.00800000E+00

%FLAG ATOM_TYPE_INDEX

%FORMAT(10I8)

1 2 3 4 4 ... 1 1

%FLAG NONBONDED_PARM_INDEX

%FORMAT(10I8)

1 2 4 7 11 ... -1 210

%FLAG RESIDUE_LABEL

%FORMAT(20a4)

DC5 DT DT DT DT DG F DA DT DC DT DT3 DA5

DA DG DA DT DA DC DA DA DA DA DG3 Na+ ...

... Na+ WAT ... WAT

%FLAG RESIDUE_POINTER

%FORMAT(10I8)

1 29 61 93 125 ... 16677 16680

%FLAG BOND_FORCE_CONSTANT

%FORMAT(5E16.8)

2.30000000E+02 3.40000000E+02 ... 5.53000000E+02

%FLAG BOND_EQUIL_VALUE

%FORMAT(5E16.8)

1.61000000E+00 1.09000000E+00 ... 1.51360000E+00

%FLAG ANGLE_FORCE_CONSTANT

%FORMAT(5E16.8)
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1.00000000E+02 4.50000000E+01 ... 5.50000000E+01

%FLAG ANGLE_EQUIL_VALUE

%FORMAT(5E16.8)

1.88897066E+00 1.79070858E+00 ... 1.89368305E+00

%FLAG DIHEDRAL_FORCE_CONSTANT

%FORMAT(5E16.8)

1.85181000E-01 1.25653100E+00 ... 1.10000000E+00

%FLAG DIHEDRAL_PERIODICITY

%FORMAT(5E16.8)

1.00000000E+00 2.00000000E+00 ... 2.00000000E+00

%FLAG DIHEDRAL_PHASE

%FORMAT(5E16.8)

5.54929070E-01 6.14285649E+00 ... 3.14159400E+00

%FLAG SOLTY

%FORMAT(5E16.8)

0.00000000E+00 0.00000000E+00 ... 0.00000000E+00

%FLAG LENNARD_JONES_ACOEF

%FORMAT(5E16.8)

0.00000000E+00 0.00000000E+00 5.81803229E+05 ...

... 0.00000000E+00 0.00000000E+00 0.00000000E+00

%FLAG LENNARD_JONES_BCOEF

%FORMAT(5E16.8)

0.00000000E+00 0.00000000E+00 6.99746810E+02 ...

... 0.00000000E+00 0.00000000E+00 0.00000000E+00

%FLAG BONDS_INC_HYDROGEN

%FORMAT(10I8)

72 75 2 72 78 ... 2196 1

%FLAG ANGLES_INC_HYDROGEN
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%FORMAT(10I8)

75 72 78 3 69 ... -2229 49

%FLAG DIHEDRALS_WITHOUT_HYDROGEN

%FORMAT(10I8)

81 84 93 96 1 ... 16682 0

%FLAG HBOND_ACOEF

%FORMAT(5E16.8)

0.00000000E+00

%FLAG HBOND_BCOEF

%FORMAT(5E16.8)

0.00000000E+00

%FLAG HBCUT

%FORMAT(5E16.8)

0.00000000E+00

%FLAG AMBER_ATOM_TYPE

%FORMAT(20a4)

HO OH CI H1 H1 CT ... OW HW HW OW HW HW

%FLAG TREE_CHAIN_CLASSIFICATION

%FORMAT(20a4)

M M M E E M ... BLA BLA BLA

%FLAG JOIN_ARRAY

%FORMAT(10I8)

0 0 0 0 0 ... 0 0

%FLAG IROTAT

%FORMAT(10I8)

0 0 0 0 0 ... 0 0

%FLAG SOLVENT_POINTERS

%FORMAT(3I8)
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46 5323 25

%FLAG ATOMS_PER_MOLECULE

%FORMAT(10I8)

380 383 1 1 1 ... 3 3

%FLAG BOX_DIMENSIONS

%FORMAT(5E16.8)

1.09471219E+02 6.30285105E+01 ... 6.30285105E+01

%FLAG RADIUS_SET

%FORMAT(1a80)

modified Bondi radii (mbondi)

%FLAG RADII

%FORMAT(5E16.8)

8.00000000E-01 1.50000000E+00 ... 8.00000000E-01

%FLAG SCREEN

%FORMAT(5E16.8)

8.50000000E-01 8.50000000E-01 ... 8.50000000E-01

Comparing with the pdb file from Appendix A.4, we observe that the informa-

tion from the two files agree.

A.2 Amber coordinates files

The coordinates files contain information about the initial position each atom

in the three-dimensional space. The first line indicates the number of atoms de-

scribed. The coordinates file specific to the 30◦ twist angle is defined as follows:

16682

26.2037475 46.5614036 46.8884444

25.7511594 45.0593591 47.1714946
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25.4457442 44.6675612 48.5339170

24.3743302 44.7683058 48.7113050

.....

26.3507133 36.4888215 -1.4859173

30.8987473 32.8987150 2.0372416

31.7618935 32.5423955 2.2475740

30.3252884 32.5601045 2.7247820

Comparing this file with the one from Appendix A.4, we observe that the coor-

dinates are the same with the ones described in the pbd file. This information is

not redundant as one may think, since the pbd file is not involved in the simu-

lation process.

A.3 SANDER input files

SANDER input files contain one or several namelists and control variables that

determine the type of simulations to be processed. An example of an energy

minimization input file is the following:

Minimization of water atoms

&cntrl

imin=1, maxcyc=5000, ncyc=50,

drms=0.5, ibelly=1, ntb=1x

&end

Residues that are going to move in the minimization

RES 25 534

END

END

The MD simulation files specify more or less the same parameters:
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100ps MD with cartesian restrain on

the four terminal bases atoms only

&cntrl

irest=1, ntx=7, ntf=2,

ntb=2, scee=1.2, cut=9.0,

ntr=1, nstlim=500000, dt=0.002,

ntwx=500, ntwe=500, ntwv=500

ntp=1, ntc=2,

&end

Cartesian restrain on the four terminal bases

10.0

ATOM 11 22 360 373 391 404 742 756

END

END

A.4 Amber pdb files

The pbd files obtained after creating the DNA sequence to be analysed contain

on each line a description of the system atoms, except the lines containing re-

served words, such as REMARK, TER, and END, and eight corresponding columns

describing:

1. the type of the residue analysed (ATOM in our case)

2. the unique identification number of each atom

3. atom type

4. type of the base containing the atom

5. the residue (in our case is a base) number containing the atom

6. the position of each atom in the three-dimensional space

For a 30◦ twist angle, the pdb file contains the following information:
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REMARK

ATOM 1 H5T DC5 1 26.204 46.561 46.888

.....

(continue defining C base atoms)

.....

ATOM 28 O3* DC5 1 27.725 41.647 48.695

ATOM 29 P DT 2 28.764 41.460 47.383

.....

(continue defining T base atoms)

.....

ATOM 60 O3* DT 2 28.076 36.066 47.793

ATOM 61 P DT 3 29.327 35.799 46.700

.....

(continue defining T base atoms)

.....

ATOM 92 O3* DT 3 26.878 31.146 45.258

ATOM 93 P DT 4 28.234 30.675 44.380

.....

(continue defining T base atoms)

.....
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ATOM 124 O3* DT 4 24.947 27.782 41.131

ATOM 125 P DT 5 26.275 27.039 40.409

.....

(continue defining T base atoms)

.....

ATOM 156 O3* DT 5 23.298 26.455 35.878

ATOM 157 P DG 6 24.467 25.445 35.210

.....

(continue defining G base atoms)

.....

ATOM 189 O3* DG 6 22.864 27.101 30.269

ATOM 190 P F 7 23.792 25.902 29.539

ATOM 191 O1P F 7 22.690 25.456 28.663

ATOM 192 O2P F 7 24.807 24.872 29.875

ATOM 193 O5* F 7 24.515 27.172 28.904

ATOM 194 C5* F 7 23.800 28.432 28.860

ATOM 195 1H5* F 7 24.053 29.027 29.739

ATOM 196 2H5* F 7 22.726 28.245 28.847

ATOM 197 C4* F 7 24.186 29.196 27.615

ATOM 198 H4* F 7 23.473 30.005 27.457

ATOM 199 O4* F 7 25.460 29.873 27.857

ATOM 200 C1* F 7 26.495 29.212 27.155

ATOM 201 H1* F 7 26.876 30.062 26.589

ATOM 202 C1 F 7 27.580 28.907 28.125

ATOM 203 C6 F 7 27.504 27.802 28.937

ATOM 204 H6 F 7 26.607 27.166 28.898

ATOM 205 C5 F 7 28.487 27.517 29.813

ATOM 206 C5M F 7 28.451 26.328 30.726

ATOM 207 1H5M F 7 27.407 25.935 30.830
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ATOM 208 2H5M F 7 28.823 26.607 31.745

ATOM 209 3H5M F 7 29.100 25.510 30.321

ATOM 210 C4 F 7 29.643 28.372 29.932

ATOM 211 F4 F 7 30.585 28.187 30.712

ATOM 212 C3 F 7 29.633 29.454 29.083

ATOM 213 H3 F 7 30.403 30.110 29.091

ATOM 214 C2 F 7 28.651 29.775 28.168

ATOM 215 F2 F 7 28.730 30.758 27.453

ATOM 216 C3* F 7 24.434 28.365 26.359

ATOM 217 H3* F 7 23.821 27.464 26.314

ATOM 218 C2* F 7 25.896 27.976 26.494

ATOM 219 1H2* F 7 26.184 27.342 25.654

ATOM 220 2H2* F 7 26.045 27.433 27.427

ATOM 221 O3* F 7 24.259 29.125 25.166

ATOM 222 P DA 8 24.924 27.861 24.274

.....

(continue defining A base atoms)

.....

ATOM 253 O3* DA 8 27.600 31.564 21.299

ATOM 254 P DT 9 28.054 30.381 20.191

.....

(continue defining T base atoms)

.....

ATOM 285 O3* DT 9 32.491 33.343 19.066

ATOM 286 P DC 10 32.840 32.364 17.742

.....

(continue defining C base atoms)
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.....

ATOM 315 O3* DC 10 38.115 33.567 18.425

ATOM 316 P DT 11 38.492 32.858 16.945

.....

(continue defining T base atoms)

.....

ATOM 347 O3* DT 11 43.458 31.752 18.910

ATOM 348 P DT3 12 43.993 31.311 17.376

.....

(continue defining T base atoms)

.....

ATOM 380 H3T DT3 12 48.361 27.715 18.279

TER

ATOM 381 H5T DA5 13 36.760 14.588 16.857

.....

(continue defining A base atoms)

.....

ATOM 410 O3* DA5 13 39.637 14.919 21.477

ATOM 411 P DA 14 38.275 15.442 22.317

.....

(continue defining A base atoms)
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.....

ATOM 442 O3* DA 14 41.584 18.106 25.735

ATOM 443 P DG 15 40.301 18.407 26.783

.....

(continue defining G base atoms)

.....

ATOM 475 O3* DG 15 42.890 22.915 28.427

ATOM 476 P DA 16 41.801 23.107 29.697

.....

(continue defining A base atoms)

.....

ATOM 507 O3* DA 16 42.708 28.478 29.471

ATOM 508 P DT 17 41.878 28.705 30.917

.....

(continue defining T base atoms)

.....

ATOM 539 O3* DT 17 40.594 33.727 29.225

ATOM 540 P DA 18 40.015 34.120 30.756

ATOM 541 O1P DA 18 40.758 35.395 30.805

ATOM 542 O2P DA 18 39.716 33.492 32.065

ATOM 543 O5* DA 18 38.659 34.311 29.936

ATOM 544 C5* DA 18 38.734 34.535 28.507

ATOM 545 1H5* DA 18 38.634 33.583 27.982
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ATOM 546 2H5* DA 18 39.693 34.989 28.255

ATOM 547 C4* DA 18 37.619 35.459 28.075

ATOM 548 H4* DA 18 37.825 35.821 27.069

ATOM 549 O4* DA 18 36.390 34.676 27.938

ATOM 550 C1* DA 18 35.519 34.961 29.015

ATOM 551 H1* DA 18 34.565 35.381 28.697

ATOM 552 N9 DA 18 35.124 33.666 29.634

ATOM 553 C8 DA 18 35.815 32.917 30.548

ATOM 554 H8 DA 18 36.752 33.276 30.949

ATOM 555 N7 DA 18 35.204 31.825 30.895

ATOM 556 C5 DA 18 34.026 31.862 30.171

ATOM 557 C6 DA 18 32.930 30.976 30.091

ATOM 558 N6 DA 18 32.856 29.836 30.799

ATOM 559 1H6 DA 18 32.046 29.242 30.707

ATOM 560 2H6 DA 18 33.611 29.578 31.426

ATOM 561 N1 DA 18 31.926 31.308 29.267

ATOM 562 C2 DA 18 32.010 32.439 28.573

ATOM 563 H2 DA 18 31.206 32.721 27.909

ATOM 564 N3 DA 18 32.971 33.339 28.553

ATOM 565 C4 DA 18 33.962 32.978 29.388

ATOM 566 C3* DA 18 37.248 36.576 29.048

ATOM 567 H3* DA 18 38.097 36.931 29.634

ATOM 568 C2* DA 18 36.244 35.902 29.969

ATOM 569 1H2* DA 18 36.648 35.860 30.982

ATOM 570 2H2* DA 18 35.314 36.471 29.973

ATOM 571 O3* DA 18 36.620 37.675 28.393

ATOM 572 P DC 19 36.218 38.325 29.893

.....

(continue defining C base atoms)

.....

ATOM 601 O3* DC 19 31.353 39.686 27.841

ATOM 602 P DA 20 31.010 40.613 29.202
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.....

(continue defining A base atoms)

.....

ATOM 633 O3* DA 20 25.713 39.639 28.351

ATOM 634 P DA 21 25.292 40.789 29.506

.....

(continue defining A base atoms)

.....

ATOM 665 O3* DA 21 20.715 37.971 30.426

ATOM 666 P DA 22 20.100 39.230 31.359

.....

(continue defining A base atoms)

.....

ATOM 697 O3* DA 22 17.203 35.549 34.151

ATOM 698 P DA 23 16.329 36.774 34.908

.....

(continue defining A base atoms)

.....

ATOM 729 O3* DA 23 15.625 33.443 39.166

ATOM 730 P DG3 24 14.499 34.498 39.837

.....
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(continue defining G base atoms)

.....

ATOM 763 H3T DG3 24 14.603 33.436 45.466

TER

ATOM 764 Na+ Na+ 25 34.357 33.630 24.034

TER

.....

(continue defining Na+ molecules)

.....

TER

ATOM 785 Na+ Na+ 46 44.059 18.914 31.800

TER

ATOM 786 O WAT 47 27.312 29.344 63.734

ATOM 787 H1 WAT 47 26.661 29.929 63.347

ATOM 788 H2 WAT 47 28.107 29.875 63.793

TER

.....

(continue defining water molecules)

.....

TER

ATOM 16680 O WAT 5345 30.899 32.899 2.037

ATOM 16681 H1 WAT 5345 31.762 32.542 2.248

ATOM 16682 H2 WAT 5345 30.325 32.560 2.725

TER

END
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Data plots for the full range of twist

angles

In what follows, we present the data autocorrelation functions, the Fourier

transforms and their log-representation for the twist angles not shown in Part II.

B.1 Data autocorrelation figures

Figures B.1-B.5 present a comparison between the autocorrelation functions for

AMBER and SDE data, specific to the A-F base-pair. A detailed discussion on

this comparison is made in Section 7.2.

Figure B.1: Illustration of autocorrelation function, for a 32◦ undertwisted

DNA, obtained using (a) AMBER model and (b) SDE model.
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Figure B.2: Illustration of autocorrelation function, for a 33◦ undertwisted

DNA, obtained using (a) AMBER model and (b) SDE model.

Figure B.3: Illustration of autocorrelation function, for a 34◦ undertwisted

DNA, obtained using (a) AMBER model and (b) SDE model.

Figure B.4: Illustration of autocorrelation function, for a 36◦ twisted DNA, ob-

tained using (a) AMBER model and (b) SDE model.
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Figure B.5: Illustration of autocorrelation function, for a 40◦ overtwisted DNA,

obtained using (a) AMBER model and (b) SDE model.

B.2 Discrete Fourier Transform figures

Figures B.6-B.12 present a comparison between the DFT of AMBER and SDE

data, specific to the A-F base-pair, discussed in Section 7.3.

Figure B.6: Illustration of the DFT, for a 30◦ undertwisted DNA, obtained us-

ing (a) AMBER model and (b) SDE model.
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Figure B.7: Illustration of the DFT, for a 32◦ undertwisted DNA, obtained us-

ing (a) AMBER model and (b) SDE model.

Figure B.8: Illustration of the DFT, for a 33◦ undertwisted DNA, obtained us-

ing (a) AMBER model and (b) SDE model.
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Figure B.9: Illustration of the DFT, for a 34◦ undertwisted DNA, obtained us-

ing (a) AMBER model and (b) SDE model.

Figure B.10: Illustration of the DFT, for a 36◦ twisted DNA, obtained using (a)

AMBER model and (b) SDE model.
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Figure B.11: Illustration of the DFT, for a 38◦ overtwisted DNA, obtained using

(a) AMBER model and (b) SDE model.

Figure B.12: Illustration of the DFT, for a 40◦ overtwisted DNA, obtained using

(a) AMBER model and (b) SDE model.
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B.3 Log-DFT figures

The expression of the DFTs from the figures presented in Appendix B.2 suggest

that DNA might exhibit a self-organised behaviour, which is further analysed

in Chapter 8. Figures B.13-B.18 illustrate a comparison between the log-DFT of

AMBER and SDE data, specific to the A-F base-pair. This comparison is dis-

cussed in detail in Section 8.3.1, where we investigate the self-organised DNA

behaviour obseved in both AMBER and SDE simulations, as well as the coeffi-

cients emphesizing the power law form of the DFTs.

Figure B.13: Illustration of the log-DFT function, for a 30◦ undertwisted DNA,

obtained using (a) AMBER model and (b) SDE model.
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Figure B.14: Illustration of the log-DFT function, for a 32◦ undertwisted DNA,

obtained using (a) AMBER model and (b) SDE model.

Figure B.15: Illustration of the log-DFT function, for a 33◦ undertwisted DNA,

obtained using (a) AMBER model and (b) SDE model.
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Figure B.16: Illustration of the log-DFT function, for a 35◦ undertwisted DNA,

obtained using (a) AMBER model and (b) SDE model.

Figure B.17: Illustration of the log-DFT function, for a 36◦ twisted DNA, ob-

tained using (a) AMBER model and (b) SDE model.
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Figure B.18: Illustration of the log-DFT function, for a 38◦ overtwisted DNA,

obtained using (a) AMBER model and (b) SDE model.
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