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Abstract

This thesis describes a theoretical and numerical studyiahigm transport
and optical effects through an array of self-assembled tpusitum dots grown in
the intrinsic region of a GaAs p-i-n junction. We present metcal simulation of
this system and compare the generated transport and elecnalscence results to
recent experimental data. The simulation first calculdteggjuantum tunnelling,
excitonic recombination, and relaxation rates within tlmsd and then uses a
stochastic model to simulate carriers entering and leawi@grray. We highlight a
number of features within the simulation, which shed lighsonilar features seen
in experimental data. In particular, we demonstrate theomamce of including
the effects of the Coulomb interactions between the carrarshis is shown be
necessary for the simulated and experimental results tomwbsely. We also
investigate a model of Auger processes which is shown toym®dp-conversion
luminescence, and study the effect of varying the locaticth@ array within the
intrinsic region.

Additionally we present a master equation approach, whielhise to describe
a correlated tunnelling regime, in which the Coulomb inteoschetween an elec-
tron and a hole forces them to tunnel alternately onto asidgt before recombi-
nation. We produce current and photon noise predictionbdtn tunnelling and
recombination limited regimes. We also investigate thiermmena for a pair of
interacting dots, and find a number of two dot configuratioisctv are able to
produce current and electroluminescence. We presentntanel photo-current

rate predictions for each case, and associated currentendrpnoise results.
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Chapter 1

| ntroduction

This thesis investigates computational and numericalcggires to modelling a
system comprising of an array of quantum dots grown with@ittrinsic region
of a p-i-n junction. We study the effects of including varsoteractions in the
model on the transport and electroluminescence (EL) cteaiatics of the sys-
tem, and compare these to recent experimental results. s&/gedsent a theoret-
ical investigation into a range of correlated tunnellinggpbmena. This chapter
introduces the important physics behind the basic systathdascribes a sample
of the recent experimental and theoretical work done inftaid.

A semiconductor quantum dot is a nanostructure which comtimemotion of
a particle in all three spatial dimensions, effectivelyliegiing the chacteristics
of an artifical atom. Quantum dots were first investigated @@eyears agol], 2],
and the ability to modify their properties with relative edsas maintained their

position at the forefront of condensed matter researchsuee. 3]



1.1. Semiconductor p-i-n junctions

1.1 Semiconductor p-i-njunctions

In an atom, when an electron feels a Coulomb force from a naclée en-
ergy spectra of the electron has discrete energy levels. eMenvif the atoms
are brought together to form a crystal, the electrons on esmm starts to feel
the attractive force of the neighbouring nuclei. This lettts outer atomic en-
ergy levels to experience a broadening effect, until evahtuve start to see the
formation of continuous energy bandd] |

The Schrodinger equation for electrons in the periodicadkof a semicon-

ductor is:

v+ U0)| () = B (11.1)

2m

Whereas the tightly bound electrons in the inner core leetsain relatively
unaffected, the electrons in the outer shell form a serie®ofinuous bands. For
Gallium Arsenide, this is occurs for the weakly bound eleesrin the 4s and 4p
shells. Each GaAs pair contributes 8 electrons into theynewined energy band,
which represents the solution of [1.1.1].

Figure 1.1.1 shows a schematic diagram showing the banctsteuforming
around an array of individual atoms.

The allowed energy levels are not continuous as for the desé&ee electron,
but are split into regions of allowed bands separated byidddn bandgaps. The
two bands we are particularly interested in when studyimgisenductor physics
are the uppermost occupied or partly occupied band, knowineagalence band,
and the band immediately above it, known as the conductiod.b@&he valence

and conduction band are separated by a bandgap as shownrenXidg.2.



1.1. Semiconductor p-i-n junctions

(Filled) Valence Band (Empty) Conduction Band
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B %®\A@ .

Figure 1.1.1: Bandstructure formation in crystalline sslid

Core Levels

Depending on the exact nature of the material, how manyrelesit donates
to the bandstructure, and the exact solution of the Schgediaquation, the va-
lence band may be either entirely or partially filled withattens. In order for the
material to be able to conduct current, the electrons neaitbale empty states
into which they may move. A material with a completely fulleaace band will
therefore have a far higher resistivity than a material oty a partially filled
valence band, as there are no empty states to provide nyobilitis is the key
difference between an insulator and a metal, as shown irefigudr.3.

At non-zero temperature however, it is possible for thetedes of certain
insulators to possess sufficient kinetic energy to be aljlenp up into the empty
conduction band, provided the band gap is small enough inpeason to the
thermal energy £ = kgT). Once in the conduction band, they are surrounded
by empty states and are therefore able to move freely ancctinduct electricity.

The electron also leaves behind a vacancy in the valence bdmch will allow
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Conduction Band

Fermi level Band Gap E

Valence Band

Figure 1.1.2: Valence and conduction bands and bandgap-érine level can be

seen mid-way between the 2 bands.

the remaining electrons to move more freely as a resulteasing the valence
band conductivity in the process. This gap is called a hold,can be understood
as the equivalent of a positively charged particle movintheopposite direction

to the bulk motion of the electrons in the valence band. Tys$esn can be seen
in figure 1.1.4.

The energy of carriers occupying the conduction and valbaoes varies with
the momentum of the carrier. In certain semiconductord) asdcGaAs, the lowest
energy point of the conduction band coincides with the pbiat 0. Semicon-
ductors with this property are known as direct semicondsctd he solution of
the Schrodinger equation in such a semiconductor leadetfmtiowing relation

between the energy and wavevector of the electron:

h?k?

E(k)=F —_—
(k) c+2m*’

(1.1.2)

wherem* is the “effective” mass of the carrier. Near the band edgebk®temi-
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INSULATOR METAL
Conduction Band Conduction Band
Completely Filled Valence Band Partially Filled Valence Band

Figure 1.1.3: The conduction and valence bands for an itsudad a metal

conductor, the electrons and holes behave as if they havitemtivee mass, often
significantly lower than the mass of an electron in free spdce

The behaviour of the holes is slightly more complex than tekaviour of
the electrons. We see three distirictk) relationships within the valence band:
known as the heavy hole band, the light hole band, and theapband. The
effective mass of the holes is dependent upon which bandadhewyccupying.
Figure 1.1.5 shows the energy-wavevector relationshigihs. The energy gap
(E,) can be seen between thevalley in the conduction band and the heavy and
light hole bands. In confined structures such as quantumttetbeavy hole band
and light hole band are spl]. In the case of InAs, the heavy hole band ground
state will shift enough to be disguised by overlapping inrgnevith the valence
band. It is therefore the light hole band which we are paldityinterested in.

The number of electrons in the conduction band, and the gporeding num-
ber of holes in the valence band, is dependant upon the tatoperand the size
of the bandgap of the semiconductor in question.

The intrinsic carrier concentration is given Bi}:[
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Figure 1.1.4: When an electron is excited into the condudiemd, a hole is left
behind in the valence band

n; = NoelPr=Ec)/ksT (1.1.3)
where the effective density of states is,

LT3/
%} (1.1.4)

N. =2
{ 2mh?
We can also calculate the Fermi energy of an intrinsic semaigotor as:

E.+ E,
Ep— ; + (3/4)kuTln(m; /m?). (1.1.5)

The Fermi energy of an intrinsic semiconductor therefaes iiery close to
the middle of the bandgap. This situation changes howewse wish to change

the distribution of electrons and holes within the mateadating an excess of
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Figure 1.1.5: The energy-wavevector relationship in @alliArsenide. Figure
taken from p]

one species or the other. We do this using a process knownpaisgddDoping
involves the addition of specific impurities to the semicactdr, which either
donate electrons to the semiconductor leading to an ele@xoess, or accept
electrons from it, leaving behind an excess of holes. Thangks the carrier
concentrations in the conduction and valence bands, arsksdhe Fermi level
to shift to either just above the valence band (for accepins)i or just below
the conduction band (for donor ions). We denote the two tygfedoping as
positive (p) doping or negative (n) doping. A diagram of rpdd and p-doped

semiconductors can be seen in figure 1.1.6.
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“n — doped” semiconductor “p — doped” semiconductor
donors

OOOOOOOOOOOOOO/
++++++++++++t++++++++

™~ Fermi Level\

acceptors

Figure 1.1.6: p doped and n doped semiconductors. The Femngy becomes
pinned to the conduction and valence band by the presente @icceptors and
donors

The new Fermi level and carrier densities are related by:

n = n;e Fr=Er)/ksT (1.1.6)

If a p-doped semiconductor and an n-doped semiconduct@riaesl or grown
in direct contact with each other, a number of things happeme Fermi level,
which is pinned to the conduction band edge in the n-dopdadmend the valence
band edge in the p-doped region, will remain aligned, leadona “bending”
of the conduction band and valence band at the point wheréthanaterials
meet. This central region is known as the depletion regiod, all the carriers
present will be swept out by the built-in electric potentialised by the presence
of the charged donors and acceptors on either side of therreghe slope of the
potential can be modified by placing a layer of undoped fistd) semiconductor
between the two doped layers. This can be done to allow usjustatie width
of the effective depletion region, and reduce the sevefith® slope in the band

edges as necessary. This is now a p-i-n junctipr} diagram of a p-i-n junction

8



1.1. Semiconductor p-i-n junctions

under zero bias is shown in figure 1.1.7.

p doped region intrinsic region n doped region

Figure 1.1.7: A p-i-n junction under zero volts. At 4.2 Keldyithe Fermi level
is pinned to the conduction and valence band edges, causiogeain the band-
structure in the intrinsic region.

As a positive or negative bias voltage is introduced acrbsgtnction, the
pseudo-Fermi levels in the contacts are shifted relativentanother, leading to
a change in the degree of the band bending. If a positive lukage is placed
across the junction with a value equal to that of the energy(fy®d2eV in GaAs),
then band bending will no longer occur. This is known as thiebfiad condition.

Figure 1.1.8 shows the p-i-n junction under a positive bfadk B2V.
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1.2 Quantum Dots

Before we deal in detail with quantum dot devices, we must tstded the un-
derlying quantum mechanical theories. The two situatioesane particularly
interested in in this system involve two distinct casesriees that are spatially
confined in all three directions in a zero-dimensional poénand completely
unconfined (free) carriers.

The solution of the Schrodinger equation for an unconfinedtsdn, able to

move in all three spatial dimensions, is given by:

(1.2.1)

w _ ei(k.r—wt) :

with energy

P2 (k3 4 Ky + k2
E = (ks + &y z). (1.2.2)
2m*

In contrast to a free carrier, a carrier may be confined betviwe potential
barriers, known as a quantum well. A quantum well is showngarg 1.2.1. The
electrons are confined to the three energy states withindfidowthe two barriers.
The number of possible states within the well is dependeonulpe width of the
well and the height of the barriers.

We begin by imagining placing an electron in an infinite sguaell, confining

it in all three dimensions. We find that the wavefunction \Wwdle the formf]:

)= sz‘n(naﬂT

T, MY,
I )sin( )sin( I ), (1.2.3)

10
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m

x2
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Free electrons E, _Free electrons

¥

Confined electrons

X

Figure 1.2.1: A diagram of the energy levels of a quantum feethed between 2
finite potential barriers with separatian

with energy levels given by:

222
R’mn2  hemeng o RPmPn?

© 8m*L2 i 8m* L2 N 8m*L?

(1.2.4)

If the barriers around the well are finite, then it is possiblethe electron to
penetrate the barrier and move through the classicallydddm region into or out
of the well. In a system such as the one illustrated in figu2ellit is necessary for
the electron approaching the well to possess the correogeibe@ occupy one of
the free quantum states within the well. The tunnelling piolity is therefore not
only dependent upon the height and width of the barriersalsat on the “energy
matching” between the approaching particle and the weliggnlevels.

In figure 1.2.2, we see an electron (1) approaching from theltdnas a non-
zero probability of being reflected by the barrier (2), og\pding it possesses the
correct energy, of penetrating both barriers and exitiregatner side (3).7]

One possible method of creating such a confining potentia take advan-

11



1.2. Quantum Dots

X

Figure 1.2.2: Tunnelling through a barrier into and out obiargtum well

tage of the different bandgaps between two otherwise glostdted semiconduc-
tors. Two such suitable materials, and the two we will be whgl are Gallium
Arsenide and Indium Arsenide. The lower bandgap of the Isasdwiches be-
tween two layers of the higher bandgap GaAs, creates a wélleirtonduction
band of the material, enabling electrons to be trapped witdnnd an equivalent
well in the valence band in which holes may be trapped. Thigigoration is
shown in figure 1.2.3.
We will see in section 1.3 how it is possible to create islaoidsAs within

a GaAs substrate. This creates a zero dimensional quanttnindehich the
electron is strongly confined in all three spatial dimensidfigure 1.2.4 shows an
example of the X, y, and z energy levels which arise in a quamtot. The energy
of a carrier confined within the dot has energy equal to theiuime confinement
energies in each spatial dimension, as shown in [1.2.4].gurdi 1.2.4, we see a
dot which is particularly tightly confined in the z directiomeaning no excited

state is present in this spatial dimension.

12
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Gallium Arsenide

y R

T Quantum Well formed

Eg,GaAs . Eg,InAs

?

Indium Arsenide

Figure 1.2.3: A quantum well formed by surrounding a layeindfs with GaAs.

)
"
L

b y 7

Figure 1.2.4: The bottom 2 energy levels in a dot for each dsium; if the dot is
more tightly confined in the z axis, it is likely that there Mok no excited states
present.

13



1.3. Experimental Information

Property GaAs| InAs
Band GamB00L (eV) 1.42 | 0.35
Band Gap K (eV) 152 | 0.42

Light Hole Effective Massn,. | 0.082| 0.026
Electron Effective Massn, 0.067| 0.022

Table 1.1: Material properties used in simulation

1.3 Experimental Information

A large motivation behind this work was the opportunity toriwolosely with an
experimental group within the department. The exact spatifins of the system
we modelled were therefore specifically chosen to replitda¢eactual samples
used in the experiments as closely as possiBJe]. The experimental sam-
ples were grown using molecular beam epitaxy (MBE) and SkyaKsastanov
growth. This is possible on materials such as GaAs and InAause they have a
lattice mismatch of approximately 7%. Both are 111-V compdanvith zinc-blend
structure and direct band-gaps. The exact properties osE@aAs and AlAs can
be seenin table 1.1.

As the Indium Arsenide is deposited upon a Gallium Arsenidessate us-
ing a standard MBE technique, initially a single layer of Infasms, known as
the wetting layer. As more material is deposited, the stcaimsed by the lattice
mismatch between the two materials prevents further umifgrowth and small
islands of InAs are formed. The InAs MBE is then stopped, ardstystem is
“capped” with a layer of GaAs. The InAs islands are now sunded by GaAs,
effectively making them quantum dots. By growing this layéthwm the intrinsic
region of a p-i-n junction, the layout seen in figure 1.3.3 rbayfully realised.

Due to the process by which they have been grown, the quanitswary in size

14



1.3. Experimental Information

by up to 5nm laterally and 2nm vertically,with an approxigigtGaussian distri-
bution. The formation and structure of the wetting layer #melmorphology of
the dots are important factors in the electronic structak@ptical properties of
the final system. Work is ongoing in these areas, see work lop@enet al[11]

and McGeeet al[12].

(a)

Quantum
Dot (QD)

2D-
Wetting
Layer

AV T
':_ YWVL )

Figure 1.3.1: Stranski-Krastanov growth of InAs/GaAs duandots. Image
taken from Gonget al (2004) [L3].

The samples used in the experiments were grown in two batdBatch A
was grown in Sheffield by Prof. Mark Hopkinson, and batch B waswvn in
Nottingham by Prof. Mohammed Henini. Further details ofgh@wvth techniques
used can be found ir8]. In samples containing dots, the InAs quantum dot layer
was grown in the intrinsic region of a p-i-n junction, as sihawfigure 1.3.2.

The samples were then analysed at the University of Notinghy a group
headed by Prof. Laurence Eaves and Dr. Amalia Pata#elp]. The samples
were cooled using an Oxford Instuments continuous gas flgwstat, capable
of maintaining a temperature of 3:6.05K, and a vacuum pressurelof *mbar.
Magnetic field experiments were performed using a supergdin) magnet ca-

pable of generating fields up to 14T.

15
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i
p doped region intrinsic region n doped region

: T
\F\R

layer of quantum dots
/

XY

z

.
-

Figure 1.3.2: InAs dots within a p-i-n junction. The dots aomfined approxi-
mately in the centre of the intrinsic region

For EL measurements, a Trias 550 series spectrometer ancdi&jedGoupled
Deviced Detector were used. This system is capable of arspeesolution of
3.8meV, and is effective at detecting photons in the ran@e38Dnm.

The majority of IV measurements were performed using a k&itB400 dig-

ital multimeter, with a current sensitivity of approximit@é00pA.

16



1.4. Outline of Thesis

1.4 Outlineof Thesis

In Chapter 2 we present the mathematical model we use to andilgsull sys-

tem which forms the basis of the computational simulatioensia Chapter 3.

First we model the quantum dots and calculate their enexgidaising a quan-
tum harmonic oscillator model. We then go on to calculateellretron and hole
tunnelling rates into the dots from the n and p contacts ugiWKB approxima-

tion, and the intradot recombination rate using Fermi’'sdealRule. Finally we
present the full rate equations for all the processes inytbes, and solve them
analytically to find a steady state solution.

Chapter 3 goes into more detail about the exact method of meatéing the
model numerically. The simulation in based on a stochastidet) not dissimilar
to the Monte Carlo method. First we generate an array of 25@)vdthin a p-i-n
junction and calculate all their relevant properties. Wethen able to calculate
the necessary rates of carriers moving into, within and bilteodots. A stochastic
simulation is then used to find the populations of the dotd this is then fed back
into the system to update the relevant rates.

In Chapter 4, we now aim to improve our model by including thea$ of
the Coulomb interaction in the simulation, which have praslg been neglected.

In Chapter 5 we analyse the model in more detail, and look ateffest
of including some secondary interactions within the modedluding studying
changes in the spatial correlation length of the fluctuatiorthe Coulomb field,
the inclusion of Auger processes in the model, and the effied¢layed and direct
recombination on the simulated electroluminescence ofribéel.

Finally in Chapter 6 we study a particular regime seen in theltg of the 2500
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1.4. Outline of Thesis

dot model involving correlated tunnelling of electrons dmales into the same
dot, and use the master equation method to derive some oéyhiedtures of the
process. We first study an isolated dot in this correlateddliimg regime, and
then expand the model to include two dots interacting wittheather. We then
use the master equation method to predict the current ameinturoise through a

variety of situations.
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Chapter 2

M athematical M odel

Here we present the mathematical model we use to analysaltisg$tem which
forms the basis of the computational simulation seen in @GnéptFirst we model
the quantum dots and calculate their energy levels usingaatgm harmonic
oscillator model. We then go on to calculate the electron lamié tunnelling
rates into the dots from the n and p contacts using a WKB apmabtion, and the
intradot recombination rate using Fermi’s Golden Rule. Fmae present the
full rate equations for all the processes in the system, alveé shem analytically

to find a steady state solution.

2.1 Quantum Dots

In section 1.2, we introduced the concept of a quantum dobédrby a small
island of Indium Arsenide surrounded by Gallium Arsenide] explained in sec-
tion 1.3 how this could be achieved experimentally usingi&tki-Krastanov epi-

taxial growth techniques. We now model these dots using atqoaharmonic os-
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2.1. Quantum Dots

cillator model (QHO), as seen in figure 2.1.1. Other modeishss an infinite or
finite square well are also valid approximations, but théstivm between the InAs
and the GaAs at the boundaries of the dots is not perfeciiy, rammd the change
in potential on any occupying carrier can be seen as appeigignparabolic. The
effect of the deposition of the “capping layer” onto the dotsato compress the
dot on the z axis, implying a clearer potential division irstdimension. There-
fore a two dimensional QHO model with infinite hard walls i thaxis remains
the most logical and accurate of the soluble modeés17]. Much work has been
done on characterising the electronic structure of dotghiasis an extremely
important basis for understanding their optical propsrfi®, 18, 19, 20, 21].

The Quantum Harmonic Oscillator model used assumes theuuaiots have

an approximately parabolic potential in the xy plane, wiéihdwalls in the z axis:

Vi) = %KTQ +Vh(2), (2.1.1)

whereK is a constant, and

0 |z <d/2
Vo = : (2.1.2)
oo |z| >d/2

whered is the width of the dot along the z axis.

The general form of the wavefunction of an electron trappesich a potential
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2.1. Quantum Dots

"
Uy (2,9, 2) = 7ol V2UI2mmI 2 2E e 25 Hy(x/1,)H,, (y/1,)cos(nmz/1.).

(2.1.3)
[17]

. 2
| 2
¥, ! “N H v,
III-I E L Ao X w1

w  Harmonic oscillator

wo2esicd - potential and

wavefunctions f \ ‘-PE
0

Figure 2.1.1: Diagram of a the groundstate and first thre¢ezkstates of a 1D
Quantum Harmonic Oscillator Model. Image taken fra&2g][

The electron and hole energy levels can be found in termseo$plecific di-

mensions of the potential,

h27T2’I’L2

e (2.1.4)

Epmn = (+m + 1)hw,. +

The ground states and first two excited states of an eleatrarQHO can be
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2.1. Quantum Dots

seen in figure 2.1.2. We must also be sure to include otheramtideatures seen
in the experiment, such as the GaAs conduction and valenuegshat 1.52eV,
and also the “wetting layer” energy level with electron hivnsition energies at
1.43eV R3, 24], as discussed in section 1.3. The conduction (valence] bad
wetting layer energy levels are continuous levels: thei@arthat occupy them
are not confined to the dimensions of the dots, and they arkableafor resonant
tunnelling at a wider value of energy levels than the doestat

4
E

Conduction Band

Wetting Layer %

Excited \ I’

States /

Groundstate

.
| i

Y.z

Figure 2.1.2: The energy levels included in the simulation

The dimensions of the quantum dots being modelled are loliséd around a
mean height, width and depth of x=28nm, y=2Gt3nm, and z=3-0.5nm, where
we define the dot array as lying in the xy plane. The total gnefghe carrier in
the dot is the sum of the energies for each dimension. Thengdttyer energy
falls between the first and second excited states in the x atichgnsions, and

below the first excited state in the z dimension, which is erghan the conduction
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2.1. Quantum Dots

band and thus merges into the continuum. Therefore theresigimund state and
two excited states available for resonant tunnelling wittch dot.

We also need to model the energy levels of the hole statesnvitie InAs
dot. These are slightly different to the electron levelshadtoles occupy different
sub-bands within the valence band. We need to consider siggroof the light
hole, heavy hole and cut-off bands, and which ones are r&i¢wdéhe simulation.
The holes occupying each sub-band will have different éffeanasses, which
will directly affect their ability to tunnel into the dotsnd the energy levels used

[4]. This is accounted for when the hole levels are calculated.
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2.2. Quantum Tunnelling

2.2 Quantum Tunnelling

The physics of semiconductor p-i-n junctions were intragtlim section 1.1, and
the concept of inserting a layer of quantum dots within thensic region was
mentioned. A diagram of such an arrangement is shown in fig2:4.

i
p doped region intrinsic region n doped region

: T
\F\R

layer of quantum dots
/

X,y

z

.
-

Figure 2.2.1: p-i-n junction with a layer of dots embeddedthimi the intrinsic
region

We see the layer of dots centrally located within the intamegion, and the
populations of electrons and holes occupying the “n” dopeti‘p” doped regions
respectively. In order to proceed, we must calculate theergyopulations from
the doping concentrations of the two respective regionemhihis we can then
formulate the Fermi energy and attempt frequency at thererpatal temperature
of 4.2 Kelvin.

Experimentally doping concentrations are givemas=4 x 10'¥cm =3 in the
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2.2. Quantum Tunnelling

p contact andVp=2 x 10*¥cm =3 in the n contact. From this we can calculate the

electron (nn) and holes (pp) carrier densitidls [

nn = Npe BalksT (2.2.1)

and

pp = Nye Er/ksT (2.2.2)

whereE 4, and E, are the acceptor and donor level energies respectively.
We can now use the Joyce-Dixon approximatidhtp calculate the Fermi

energies within the contacts:

nn nn
Epy = kpTin [ 220 4 20 22.3
o = ki (NC) N (2.2.3)

where N is the density of states in the GaAs conduction band. Thevalgunt p

contact equation is:

pp pp
Ep, = keTin [ 22 + : 22.4
rr pa <NV> V8Ny ( )

where Ny, is the density of states in the GaAs valence band.

The Fermi velocity is therefore given by:

VFn(p) = \/ZEFn(p)/m*. (225)

From the carrier populations we can now calculate the efefttole) attempt
frequency.f, ), for

1
Faw) = (5)0(PP)VER(p) Paots: (2.2.6)
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2.2. Quantum Tunnelling

wherep.:5 IS the proportion of the xy plane of the intrinsic region takg by the
dots. The factor of 1/2 comes from the fraction of the casrierithe doped region
moving both towards the intrinsic region at any given moment

We may now calculate the tunnelling rate of the carriers mgunto a particu-
lar doti at resonance. We denote this ratdgsand use the WKB approximation,

shown below:

Tin(p) = fnw)€~ f;k(x)d:p7 (2.2.7)

wheres; is the distance between the contact and dot i,/ans the inverse decay
length of the carrier in the intrinsic regior/][

In order to calculate; andk;, we must make a simple model of the section of
the intrinsic region the carriers tunnel through betweendabntact and the dot in
question. We do this using a triangular barrier approxiorgtas shown in figure
2.2.2.

We see that the potential the carrier must tunnel througteseddant upon
the bias voltage. As the voltage increases towards flat bamdittons, the barrier
effectively becomes lower and narrower, leading to an egpbal increase in the
tunnelling rate.

The tunnelling distance; varies according to

(EGaAs - V)

sz.(V) - Si(O) EGaAs

: (2.2.8)

whereF . 45, the energy gap of the GaAs substrate, has a value of 1.58dVha
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2.2. Quantum Tunnelling

electron tunnelling

hole tunnelling -

—

Approximately Triangular Potential

/]

Figure 2.2.2: Model of a triangular barrier

wavevector in the barriet; varies by

B Qm*(EGaAS — V)($Z<V) — x)
ki(V) = \/ - . (2.2.9)

This gives us a tunnelling rate of

_ /8mx3
T‘m(p) = fn(p)e B (2210)

Therefore we are able to calculate how the tunnelling ragagls with bias
voltage, and for a range of starting size dimensions. Sirhplsdjusting some of
the initial parameters, we are able to calculate the effie¢he rate of the system
temperature, the dot distribution density, the size of tlignsic region, and the

position of the dot array within that region. The effect ofnlging bias voltage
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2.2. Quantum Tunnelling

on the p-i-n junction can be seen in figures 2.2.3, 2.2.4 ah& 2.

1.75
1.5

1.25
E/eV 1
0.75

0.5

0.25

-0.25
-0.5
-0.75

-1.25
-1.5

-1.75
-25 -20 -15 -10 -5 0 5 10 15 20 25

zZ/nm

Figure 2.2.3: p-i-n junction at zero Volts

Of course, the carriers are only able to tunnel into dots wherbias voltage
is such that they possess the correct energy for resonameltung to occur. We
must now take into account the effect of this. The width o§ ttésonance can
be calculated from the overlap of the dot state energies lamatantact Fermi
energies at the experimental system temperature of 4.2&rd3onance function,
R;;, for energy level j and dot i, is related to the overlap in ggdvetween the

carrier states in the contact and on the @3

where F'(E/eV) is the Fermi distribution at 4.2 K and voltage W,(F) is the
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2.2. Quantum Tunnelling

1.75
1.5 —

125 —

EleV 1

0.75 ¥
1.25eV

0.5

0.25

z/nm

Figure 2.2.4: p-i-n junction at typical resonant bias vodtaf 1.25 V

density of states in the conduction/valence band, 4nds a normalisation con-
stant, which set#,;(V) = 1 at the exact moment of resonance. If the voltage is
adjusted away from this point, the tunnelling current fallgay sharply on either
side.

A simple diagram showing resonant tunnelling can be seegumdi2.2.6.

The final tunnelling current into energy level j of doti,;; can therefore be
calculated, by combining the background tunnelling rAtend the normalised
resonance functio®;;. All the rates have a dependence on the bias voltage of the

system

0 (V) = Ti(V) Ry (V). (2.2.12)



2.2. Quantum Tunnelling

1.75

15
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E/eV 1

0.75 1.52eV
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0.25
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z/nm

Figure 2.2.5: p-i-n junction at 1.52V (flat band conditions)
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2.2. Quantum Tunnelling

Off resonance

|

X

no tunnelling possible (Ru_ =0)

Exact resonance

|

tunnelling allowed (R, = 1)

Figure 2.2.6: resonant tunnelling
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2.3. Recombination Processes

2.3 Recombination Processes

Now we have calculated the rate at which electrons and halegunnel from
the contacts and into the dot array, we need to calculateatieeat which they
spontaneously recombine. There are two main processekveavo Firstly, if
the dots tunnel into a excited state or a higher level suchhasvetting layer
or conduction/valence band, they are able to “relax” intowaer level 6, 27],
typically the unoccupied groundstate of an individual dlotpugh interaction with
an LO phonon. For this process to occur, the gap in energisleeeds to be close
to an integer multiple of the GaAs LO phonon energy, whichasadV [28].

Secondly, if there are an electron and a hole occupying time skot, it is pos-
sible for excitonic recombination to occur, emitting a it This is the process
we address first.

If there is an exciton present on a dot, or spatially aligmethe wetting layer
or conduction/valence bands, there is a possibility of soweous radiative re-
combination. We denote this procegs, and the probability of it occuring is
calculated according to Fermi’'s Golden Rule, by formulatimg overlap integral
between the two states in questiaf [

The transition).y4;, can be found by calculating the dipole transition matrix
element between the electron and hole pair states.

Using Fermi’s Golden Rule, we can calculate the transfertrateeen the two
states, which we can see is proportional to the overlap natégtween them, in

this case the electron staig,. and the hole state;;,.

2w’

Vijk = W@%‘e “Vijn (2.3.1)
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2.3. Recombination Processes

Figure 2.3.1: Excitonic Recombination within a dot

In section 2.1, we defined the electron groundstate wavetunas

22 —y?

Yoo == lyl 1Y% ¥ ¢ 23 Hy(x/1,) Ho(y /1, )cos(rz/1.). (2.3.2)

We also know that the first electron excited staidgoks like:

Yo10 = ﬂlmly\/iliﬂeﬁe;l? Ho(z/l,)H:(y/l,)cos(mz/l,). (2.3.3)

By calculating this integral numerically, we can see that ttla@sition rate

for recombination of electrons and holes is consideralipéi if the carriers are
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2.3. Recombination Processes

occupying equivalent states, as the overlap integral etvileem will necessarily
be far greater. Groundstate to groundstate and excitexttetakcited state transfer
therefore occurs at a considerably quicker rate than betarexcited state and

a ground state.

\

o
-

4

Overlap between
electron and hole Y
ground-states

Figure 2.3.2: Overlap integrals between energy levels

Once the exciton recombines, a photon is emitted. The erdrtie photon
is equal to the difference in energies between the two statgsiestion. For
groundstate to groundstate recombination, the energyeoéithitted photon is in
the region of 1.25eV.

Figure 2.3.3 shows the possible phonon assisted relaxadithiivays within a

guantum dot. For a system with five energy levels, there arsueh pathways.
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2.3. Recombination Processes

Each relaxation proceﬂs}ﬁwx involves the emission of an LO phonon (labelled
as(3) with an energy equal to the drop in energy between the tweldanvolved

in the process. As seen in section 1.3, the energy of an LOgghonGaAs is
36meV, so phonon assisted relaxation can only occur whegahéetween the
states is close to an integer multiple of this energy. Thituishes carriers in the
conduction/valence band and wetting layer which beconppgd in the dot. As
we only consider a first excited state for the x and the y wawetfan components,

selection rules preventing same parity relaxation are pplieable.

Figure 2.3.3: Phonon Assisted relaxation mechanism

We must also take into account the concept of the “phonoteneitk” effect.
It is known that although this has a noticeable effect inardot relaxation dy-
namics, it is not sufficient to reduce the intra-dot relaxatiate enough to make
the timescale comparable to the excitonic recombinatitn[B®]. Therefore for

the purposes of our simulation, we choose to neglect thexeff
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2.4. Full Rate Equations

2.4 Full Rate Equations

We have now identified the three key processes that shapevdhaien of the
system: carriers tunnelling from the contacts into the datsich we denote as
processy, phonon assisted relaxation between states within theddoipted as
process?, and excitonic recombination, denotedhasn order to analyse further,
we simplify the system to a four level system, with a singleudstate (g) and
excited state (x) for electrons (e) and holes (h). The pdjmmaf the contact (c)

is also necessary: denotes the occupancy of the state in question. The full rate

equations are:

doye Oge Oge
dt - ameoce(l - Q_Z) - 5@0:56(1 - 2L}) — Y2O0zeOxzxh, (241)

doxh Ozh Ogh
dt amhoch(l - 2_1) - 5}1 xh(l - g) — Y2O0zeOxzxh, (242)

doge Oge Oge

dt - ageoce<1 - E) + 6601‘6(1 - g) - Vgogeogha (243)

dOQh Ogh Ogh
dt = aghoch(l - g) + Bhoa:h(]- - g) — Yg0geOgh - (244)

We can now proceed further and define a full Hamiltonian ferdistem. We
define the dot array to be the system of the Hamiltonian, wintdracts with its
environment by way of the three process3 and-.

We will now use an approach known as the master equation mhetfbis

is an open systems approach to quantum mechanics, whichsnigkassible to

36



2.4. Full Rate Equations

T

Figure 2.4.1: Totality of Processes used in Model

solve complex problems by separating the system, the @vnlaf which we are
interested in, from the environment, the evolution of whigk are not. We pro-
ceed by describing the problem in terms of the system, S,lht", B, and the
interactions between them, I. We define Hamiltonians fohéean, and isolating
the density matrix of the system(t) from the total density matrix ().

The Hamiltonian can be split into the system Hamiltoniae, bath Hamilto-

nian and the interaction Hamiltonian:

[—A[tot - HB+ﬁS+ﬁ] (245)
We then define:
Hp = Z {5aija;‘rjaij + 8;%52@' + €7ﬂ}%‘} (2.4.6)
%,J
[‘A[S = Zgija;rjkaijk (2-4-7)
1,7,k
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2.4. Full Rate Equations

Hp = Z 5aijajjkaijk + 5Bia;ikam‘kﬁj + €~,jaejkahjw;. (2.4.8)
i7j7k

The index: denotes electron or hole statgslenotes excited or ground states
andk denotes spin up or spin down state@m anda;;;, are thus the Fermionic
creation and annihilation operator for the system state ajj ando;; are the
creation and annihilation operators for the carriers inlaalazteis,ﬁiT and; are the
bosonic creation and annihilation operators for the pherassociated with the
relaxation process, amj and-, are the bosonic creation and annihilation opera-
tors for the photons emitted by excitonic recombinatione Tdctors represents
the associated energy with each state or process.

We also define

Hy= Hg + Hp. (2.4.9)

If we assume that the spin up and spin down carriers operdepandantly,
we are able to suppress the third index k, and are then ablentpite a list of
16 system states, which can be defined in terms of which catibmof the four
energy levels are occupied by a carrier, shown in figure 2.4.2

We define the relationship betweg(Y), the total density matrix of the system

andp(t), the reduced density matrix to be

plt) = Tra(x(t). (2.4.10)
We also define the initial bath density matrix to be

R(0) = Trs(x(0)). (2.4.11)

38



2.4. Full Rate Equations

system state ex eg hx hg
0 0O 0 0 O
1 O 0 0 1
2 0O 0 1 o0
3 O 0 1 1
4 0O 1 0 O
5 0O 1 0 1
6 0O 1 1 o
7 O 1 1 1
8 1 0 0 O
9 1 0 0 1
10 1 0 1 o0
11 1 0 1 1
12 1 1 0 O
13 1 1 0 1
14 1 1 1 O
15 1 1 1 1

Therefore, by making the Born approximation, we are ableaoetrout the
unwanted parts of the ensemble. The Born approximationsstagét the Bath is
large enough to remain unaffected by any changes in thedt#te system, and
therefore does not evolve in time. Therefore we can use ihialibath density
matrix for the entirity of the model. We can now find a steadtestsolution for
the dot system itself. This can be achieved using a masteatiequapproacty0],
where the master equation describing the evolutiop(ofis given by the Louiv-
ille operator:

p(t) = Lp(t). (2.4.12)

Because(t) does not contain any off diagonal elements, we are able tpli§ym
this expression by taking the tracef) and converting it into a vector. In turn,
this means that

We wish to find the matrixC, which controls the evolution of the system in
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2.4. Full Rate Equations

time. To do this, we need to use the Markov approximationgcivistates that the
future time evolution of the system is only dependant up@ngdresent state of
the system and not on any previous states. This means thaathenust be large
enough to absorb any fluctuations without reflecting thenk bathe system. We
can now define the interaction Hamiltonian as a sum over af ggtreeral system

and bath operators:

H =) Si®B. (2.4.13)

Having defined the system and bath operators for each indeg convert

them into the interaction picture using the relationship:
S = eitlot/hge=itlot/h (2.4.14)
We now calculate the bath correlation functions using theagqn:
Cra(t,t') = Trp[Bi(t) Bi(t') Ro] (2.4.15)

From this point, we can derive the equation of motionfor

d
%P(ﬂ = —i[Hg, p(t)] = > (SkDrp(t) — Dip(t) Sk + p(t) xSk — Sp(t)Ey) |
* (2.4.16)
where we defind,, as
t
Dy = lim : dT; Cra(7)Sy(—=7) (2.4.17)
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2.4. Full Rate Equations

andE; as

t
Ek = lim dTZClk(_T)Sl(_T)~
0 !

t—o0

We therefore find_ to be:

ap, X1 0 0
apg B Xo 0

0 Oéhg (07 X3

0 0 0 Qex
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2.4. Full Rate Equations

Itis now straightforward to find a stationary solutipr= 0 by finding the zero
eigenvalue of the system and its associated eigenvector.

We can analyse this matrix numerically and find its corregpumeigenvalues
and eigenvectors for any valuesaf and~y we wish. Using MatLab, we can then
find the eigenvector which corresponds to the zero eigeayapresenting the
steady state solution. The zero eigenvector is real andigni§jfter normalisation
this will provide us with the probability of occupation ofdastate.

Obviously as the rates vary considerably in the model, thadst state solu-
tion will also vary accordingly. Figure 2.4.2 shows the &fion of occupation
probability of the four energy levels with bias voltage,raowith the probability
of the dot being completely empty, between 1 and 1.5V. Theahassumes the
resonant condition. That is to say, the data shown is for asdainant at the exact
voltage in question. If resonance was not assumed, the plaitvioe zero at every
point other than the resonant voltage.

The groundstate occupancies are higher than the excitesl ®taupancies,
which can be attributed to the asymmetric carrier relaxatietween them. The
hole tunnelling rate is the limiting factor at low voltagesitil it crosses the re-
combination rate at approximately 1.32V. Subsequentlysee the hole levels
occupations probabilities increasing from zero at 1V to/@91.5V. The switch
over of limiting factors from hole tunnelling rate to exaio recombination rate
has an interesting effect on the electron level occupanaalilities, which re-
mains high between 1 and 1.15V before dropping off only tdk@egin between
1.35 and 1.5V. This can be understood in the following manioelow 1.15V, the
hole tunnelling rate is particularly low, leading to very aimumbers of holes

occupying the dot; this in turn means that virtually evermcsion which tunnels
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Figure 2.4.2: Variation of level occupation probabilitytivbias voltage

onto the dot remains there, unable to recombine. Altempasdiove 1.35V, the
electron tunnelling rate approaches a factor of 10 highem the recombinations
rate, meaning that any electron which combines is immegiegplaced. This can
be seen as a switch from a “static” to a “dynamic” equilibriudetween 1.15 and

1.35V, the three rates become comparable, and a lower legumt is maintained.
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Chapter 3

| mplementation

This chapter goes into more detail about the exact methothpleimenting the
model numerically. The simulation in based on a stochastidet) not dissimilar
to the Monte Carlo method. First we generate an array of 25@)vdthin a p-i-n
junction and calculate all their relevant properties. Wethen able to calculate
the necessary rates of carriers moving into, within, andbtite dots. A stochas-
tic simulation is then used to find the populations of the dansl this data is then

fed back into the system to update the relevant rates.

3.1 Calculating The Energy Levels

The energy levels of each dot are calculated using a seriendbm numbers.
The dots are generated with an adjustable predefined meastaartthrd deviation
in both dot size and dot separation, which can be adjusted-twdinate with the
experimental data attributed to the sample we wish to model.

The random numbers are generated using the “ran2” algoriéken from
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3.1. Calculating The Energy Levels

[31], with computer clock time used as a seed. ran2 has a perivgbfwhich
is more than sufficient for this simulation, which uses in tegion of2 x 10!
random numbers per run. It generates numbers linearlyluistd between 0 and
1, which can then be adjusted to fit a Gaussian distributioerevhecessary.

The simulation generates five electron energy levels antifileeenergy levels
for each dot. The levels represented are the dot groundstititespatial quantum
numbers (1,1,1), two excited states (2,1,1) and (1,2,1ena-Bcalised energy
level representing the wetting layer, and a bulk GaAs statghich the carriers
are free to move around within the array. The exact energidenf the ground-
state, excited states are calculated according to the mmgel in section 2.1,
using the randomly generated dot dimensions. As a semiidedastate, the en-
ergy of wetting layer is also dependent upon the size gesefat the dot, albeit
with a smaller mean distribution centred on 1.43eV. It isiassd that the GaAs
conduction and valence band edges will not be perfectlyoumf the presence of
impurities in the system will most likely lead to small fluations. The energy of
the GaAs conduction and valence band states is centereb2a\] with fluctua-
tions with a standard deviation of only 1meV, which are disited independently

of the dot size. Figure 3.1.2 shows the ten energy levelsrgetefor each dot.
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Figure 3.1.1: Distribution of electron dot energy levelaigated by the simu-
lation. The values on the x axis denote the bias voltage attwtiie state will
become resonant during the simulation
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Figure 3.1.2: Distribution of hole dot energy levels geteday the simulation.
The values on the x axis denote the bias voltage at which #te aiill become
resonant during the simulation

47



3.2. Calculating the Rates

3.2 Calculating the Rates

Having generated our energy level array, we can now adjadiitts voltage in the
simulation and fill the dots with carriers. In order to caétel the occupations of
each dot, we must first calculate the theoretical tunnelitg,«. This is defined

as:

Q5 = TiRij<1 - Oij/2)a (3.2.1)

where T is the background tunnelling rate, R is the reson&umueion, o is the
occupation, and i and j are the dot and level index respégtifde electron and
hole tunnelling rates are calculated separately but usiridentical method. The
occupation will be initially generated using the theoratitinnelling rate and fed
back into the equation. Thé — o,;/2) term is a result of Paulis Exclusion princi-
ple. Each energy level can be occupied by two carriers samatiusly, providing
they have different spins. The formula can be justified inftlewing way: if the
level is unoccupied, all carriers in the contact are elgiol tunnel; if the level is
completely occupied, then no carriers are eligible; anbeflevel is occupied by
one carrier, then on average half of the carriers will pos#i®s opposite spin and
will thus be eligible. For computational purposes, theieasrare not individually
assigned spins, so this term is necessary to create the $facte e

The ratesl; andR;;, need to be calculated separately.

The background tunnelling raté;, is calculated using the WKB approxima-
tion as described in section 2.2} is the maximum tunnelling rate into a single

dot energy level on exact resonance. We previously deflhes:
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3.2. Calculating the Rates

En(p) - fn(p)e_Qkimia (322)

where f,,,, is the n(p) contact attempt frequency calculated in se@idnk; is
the wavevector associated with the tunnelling region betwtbe contact and the
dot, andz; is the separation between the contact and the dot.

We are able to calculate andx; using the initial parameters of the system,
which we may wish to vary in order to replicate experimentatmod, and a
simple triangular barrier method, which introduces a bialtage dependence in
Tin(p)- This was demonstrated in section 2.2.

Using this method, the simulation therefore produces aritigaic plot of

T;(V) in figure 3.2.1.
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Figure 3.2.1: Background tunnelling rafg, ;)

The figure showd;,,,,) (V) levelling off as it approaches flat band (1.52V).
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3.2. Calculating the Rates

This is due to the fact that an increase in voltage at thistpeads to a compara-
tively smaller decrease iy than at lower voltages. At this point, the background
tunnelling rate is identical for all 2500 dots.

We now need to calculate the resonance funcitpn for each level j, of each
doti. This is calculated from the energy overlap betweerthibealot level and the
energy distribution of the carriers in the contacts. Thestgrof states within the
dot is modelled as a delta function, and the energy densitheotarriers in the
contact can be calculated by multiplying the 3D density afet within a GaAs
conduction (valence) band by the Fermi distribution of etats (holes) within
the available states.

The density of states in the conduction band is given by:

B 8\/§7rm*3/2

D(E) = 1

E— Ep. (3.2.3)

The Fermi distribution of particles within these statesiveqg by:

1
F(E) = (eE-Er)/ksT 1 1)’ (3.2.4)

Therefore the resonance function behaves according to:

Rij = A D(E)F(E)O(E — Ejj). (3.2.5)

We know that when the energy levels of the two are perfectynel, iz;; is
equal to one, and we normalise the integral with the fadtotto ensure that this
is the case. Figure 3.2.2 shows the resonance functionsadaas voltage of a

randomly selected dot.
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Figure 3.2.2: Resonance Function for a randomly chosen dot

The groundstate, excited state, wetting layer and conoluetlence bands
are all visible. One thing of particular interest is the ap@ce that the hole
resonance function appears squashed up towards flat baddicos compared
to the electron resonance function, and the wetting laydrcamduction/valence
band resonances are no longer aligned. This is due to thenaslyio positioning
of the dot layer within the intrinsic region.

This is also clear in figure 3.2.3, which shows the sum of tkemance func-
tions for all 2500 dots.

We now need to calculate the rates of the other two procesdés isystem,
the radiative recombination and non-radiative relaxataigs.

The non-radiative process allows carriers to relax fromadteduction band
and wetting layer into energy levels within the dots, and &lem excited states

to ground states within the same dot. This process was tescim section 2.3,
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10000
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Figure 3.2.3: total resonance for all 2500 dots

and is the highest transition rate in the simulation, witheamtransition rate of
1x 10%s~1, In previous experimental data, the relaxation can be seecdur for
all relative energy differences. Therefore we make therapsion that all states
are able to relax provided there is an empty state availabtbput taking into
account their relative energy differences.

As with the tunnelling rate, this process must also take atoount Paulis
exclusion principle, because if the level to which the @ns attempting to relax
is already occupied, the process will be dependent uporpiheo§the carrier. If
the process involves a carrier in dot i relaxing from stategtate k, we proceed
by multiplying the initial rate by a factor af;;(1 — 0;,/2).

The excitonic recombination rate was shown in chapter 2 tprbportional
to the overlap integral between the relevant occupiedrele@nd hole states, and

thus this rate is calculated in the computational model mheenergy level of
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3.2. Calculating the Rates

each dot.

Neither of these rates have a bias voltage dependence,emddte they need
only be calculated once at the start of the simulation. Egu2.4 shows typical
recombination and relaxation rates superimposed onto ribdupts of T and R
for all 2500 dots. This allows us to be able to compare thetivelarders of

magnitude of the various processes.
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Figure 3.2.4: Comparison of rates of all major processes

Here we can see that at low bias voltages, the tunnelling eatethe limiting
factor, but above approximately 1.3V, the excitonic recoration rate becomes

the limiting rate.

53



3.3. Calculating the Populations

3.3 Calculating the Populations

Now that we have calculated or estimated every relevantwalen the system,
we are in a position to run a stochastic simulation over glargnber of timesteps
and over a range of bias voltages, and allow the dots to béncaiy filled and
emptied of carriers. For the simulation to be valid, it is orant that the calcu-
lated theoretical rates are recoverable from the ratesrgiteby the stochastic
process. In order to fill and empty the dots stochastically,g&nerate a large
number of random numbers, the details of which were discussgection 3.1.

We use the random numbers generated to fill and empty the tietach
timestep. We do this by comparing a random numbeo the product of the
relevant rate and the timestep, which we denot& as

If x < X, the process will take place. #f > X, the process does not take
place.

For each of the 5 electron energy levels and 5 hole energyslefoe each
of the 2500 dots, this process is repeated to simulate thesliimg rate into the
dots. Any carriers occupying excited states are then giverthance to relax into
states of lower energy (this is consistently the fastestgs® in the model), the
carriers are then given the chance to recombine in accoedaitb the radiative
recombination rate. For each timestep, a total of 87,508a@mnumbers are used
to empty and fill the levels of the 2500 dots.

The full simulation involves increasing the bias voltagenfrlV to 1.52V (flat
band) in increments of 0.25mV. For each increment, the systi@s through 1000
timesteps. Thus the model simulates a total.82 x 10'! separate processes.

The timestep is kept constant throughout the simulatiorvatuse of5 x 10714,
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Figure 3.3.1: Numbers of electrons and holes occupying titeaday at each
voltage
Therefore we expect to see 500 recombination events foy &@)0 opportuni-
ties, and the limiting rate never has a probability of cortipteof greater than
50% at any voltage. At the lower voltages where the groutelst®els first be-
come resonant, the hole tunnelling rate is the limitingdacthe probability of a
hole tunnelling event at around 1.2V is approximately 10%ick is high enough
for a current to be visible over 1000 timesteps. Therefoeestbchastic transport
results should be representative of the theoretical rets is figure 3.2.1. Figure
3.3.1 shows the number of electrons and holes occupyingdharday at each
voltage.

We can see from figure 3.2.4 that above approximately 1.3¥etttitonic
recombination process becomes the limiting rate. Thesefalbove this voltage,

the carriers enter the dots at a greater rate than they az@¢aml#combine, and a
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3.3. Calculating the Populations

surplus of carriers will build up between 1.3V and flat barsfseen in figure 3.3.1.
As would be expected, the build-up of the carriers can be seapproximately
follow the contours of the relevant resonance functions.

We are now in a position to extract from the simulation a preain of the
transport characteristics of the system. By combining tlsaltant electron and
hole tunnelling rates over 1000 timesteps, we can calcalaterent against volt-

age plot, shown in figure 3.3.2.
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Figure 3.3.2: Current vs voltage plot for transport throughdot array

We can see a general exponential increase in current, aetgbeted for a p-
i-n junction. The peak at 1.43eV is visible, caused by cesriennelling directly
into the wetting layer states. Most obviously though, we sa@ a large increase
in tunnelling between 1.25 and 1.3eV, caused by direct tlingeinto the dot
ground and excited states.

If we measure the energy levels every time a recombinatientesccurs, we
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3.3. Calculating the Populations

can calculate the energy of the corresponding photon. Tkis allows us to con-
struct a photon energy spectrum for each voltage. Figur8 3i®ws the number
of photons produced at each voltage, figure 3.3.4 shows theplenergy spectra
for a range of bias voltages, and in figure 3.3.5, the two &#re combined into

a colour-scale plot.
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Figure 3.3.3: The number of photons emitted per 1000 tinpsdtar each voltage

The number of photons emitted at each voltage, as shown iref®3.3, is
closely related to the IV characteristics seen in figure23.8&omparing the two
plots, we can see that between 1.08 and 1.25eV and betweand B35eV, the
carriers are able to tunnel into the dot states, but reccaibm does not occur.
The tunnelling current between these voltages is therdiforeed by Pauli’'s ex-
clusion principle. The jump in current between 1.25 and\l.i8¢herefore caused
by the electrons and holes being able to tunnel simultamgous the same dots

and immediately recombine. As the dots are continously gimgt Pauli’s exclu-
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sion is no longer the limiting factor, and hence the remaekabmp in current.

Bias Voltage /mV

1050 1100 1150 1200 1250 1300 1350 1400 1450
Photon Energy /meV

Figure 3.3.4: EL colour-scale plot of photon energy agdies voltage

Figure 3.3.5 shows a colourscale plot of the electroluntieese characteris-
tics of the system between bias voltages of 1.2 and 1.52V.Albeu of features
can readily be identified. The photons emitted vary in end&gfyveen approxi-
mately 1.2 and 1.3eV, showing that they have all been emiigedroundstate to
groundstate recombination. We can see two discrete diafipes at lower bias
voltages before an block of emission begins at around 1.BB&lowest emission
line follows theeV = hf condition. This therefore corresponds to carrier tun-

nelling directly into the dot groundstates before recorabon. We see a second
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line offset from the first by a gap of between 70 and 100meVctvindicates that
carriers are tunnelling into excited states and relaxing tihne groundstate before
recombining. At higher bias voltages the wetting layer amthier excited states
come in to play, leading to several lines on top of each othed.51-1.52V we
see the carriers begin to move around the conduction andosleands before
dropping down into dot groundstates and emitting from a#l tlots simultane-
ously.

One patrticularly interesting region is the jump in intepdietween 1.25 and
1.3V. This corresponds to the previously mentioned peafkeanV¥ curve. This can
be understood by considering the effect of the asymmetraydocation within
the intrinsic region on the resonance functions of eachAiothe electron ground-
state energies are distributed around 1.28eV and the helgyetevels at around
1.22eV, it should be impossible for both levels to be resomath both species
simultaneously. However the asymmetry means that the lestenance function
is “squashed up”, as shown in figure 3.2.2. This means thah#&bias voltage
region in question, a range of smaller dots are simultarigoesonant with both
species, allowing immediate recombination, and a hugelyeased current and
photocurrent.

Now that we have extracted the necessary data from the dionlé is appro-
priate to compare our simulated plots with the experimedfdizh seen in Section
1.3. We can see that some similarities are visible betweemxperimental and
computational El plots. A clear “S” shape curve is visiblébwth plots, but the
emission lines in the computational plots, although in agpnately the correct
location, are noticeably thinner than the experimental. pige will now attempt

to improve our model by adding in the effects of the Coulombriattion between
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the charged carriers occupying the dots.
ir-

45
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Figure 3.3.5: Comparison of experimental and theoreticat@bur-scale plots
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Chapter 4

| ncluding the Coulomb interaction

We have seen that the computational model produces pr@akdor transport and
electroluminescence which bear some similarities to expartal data. However,
when dealing with the resonant tunnelling of charged cexiiigto a small island,
the effect of the interactions between them will have a raiite effect on the
dynamics of the system. We now aim to improve our model byuiclg the
effects of the Coulomb interaction in the simulation, whi@vé previously been
neglected. The effects of Coulomb interactions on the dotefuactions and
transport has been studied several times before in othdéexisn for example
in [32, 33], and also in B4, 35. The effects of Coulomb charging effects on
transport through quantum dots remains an area of pro@uasearch; see for

example work done by Kiesslicl3§, 37, 38].

4.1 Mathematical Model

The Coulomb energy of a screened point charge is givelmby [
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Eo = %mge—kor, (4.1.1)
where

ko = ,/m;—jf, (4.1.2)
and

kp = (2n°n)Y/3. (4.1.3)

The force between two such point charges is therefore:

1 2
Fo=—L kg, (4.1.4)
4re r?

If two electrons are confined within a structure such as a yumamlot, they
will repel each other according to Coulomb’s law, but prorgthe confining po-
tential is sufficient, both remain trapped within the stunet In order to calculate
the extra separation between two electrons in our quantumdrac oscillator
model when accounting for the Coulomb interaction, we campblirmompare the
confining force pushing the particles together with the Caolldorce pushing

them apart.

2
1 6_ —kox

p— — mw?x =0 (4.1.5)

(&

Solving this numerically, we are able to find an average sdjoar between
carriers in the same dot of 5.54nm, as shown in figure 4.1.1tinguhis value
back into [4.1.1], we are able to find a value for the Coulombrg@nbetween two

electrons in a quantum dot of 12.8meV. As this is also the gbam energy if a

62



4.1. Mathematical Model

valence electron leaves the dot, it is valid to assume tlea€Cthulomb energy be-
tween and electron and a hole occupying the same dot is -£2.8Ve also need
to examine the case in which a carrier is occupying the seaalised wetting

layer state. Using the same method, we find that the averageat®n between

carriers in the wetting layer state is 12.5nm, giving an eissed Coulomb energy

of 2.5meV.

Figure 4.1.1: Average separation between two electronQR@

This is the extra energy that an electron must possess toasgy tunnel into
a dot already occupied by a second electron. The inverseisadso true, in

that a hole will be able to tunnel into a dot occupied by anted&cwith an energy
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12.8meV below resonance. The overall effect is equivatetite dot energy levels
“shifting” by 12.8meV in oppositive directions for each gars species. If the dot
is occupied by a hole, the electron tunnelling resonantggneémops by 12.8meV,
and the hole tunnelling resonant energy rises by the samearamohis effect is

shown in figure 4.1.2.

electron positively charged dot hole

o O @

E+dE

gt \

Figure 4.1.2: The energy levels shift in the opposite dioecfor each carrier
species

This Coulomb energy therefore affects the bandstructunenarthe quantum
dot array in a quantitive manner. The distortion around diqdar dot will be
affected by the net charge on that dot, and also, to a lesgez@leon the respective
charges around its neighbouring dots.

The mean separation between two nearest neighbouring slatspendant
upon the dot density within the array. For a typical dot dgnsf between1 (0’
and10''m~1, the average separation between the dots is 30-100nm, &s Mo
figure 4.1.4, giving a Coulomb interaction energy of betwedb@nd 0.5meV.
This is a small energy in comparison with 12.8meV, but if savaeighbouring
dots possess the same net charge, it is enough to signifiedigitt resonant tun-
nelling probabilities. We do not take into account neighiomyidots further away

than 100nm.
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A shift in energy of E_ distorts the l I:I\*_%

local bandstructure of the junction.

The distortion has a direct impact on the
distance of the electron and hole “seas”
from the dot layer

hol
o'e sea hole on dot

l

Figure 4.1.3: Bandstructure distortion caused by the poeseha charged carrier
on the dot

As the bias voltage is increased in the simulation, the ela@nd hole “Fermi
seas” in the contacts creep closer towards the dot arrayhéysget closer, they
also feel the Coulomb force due to dot occupations. This t®suh non-uniform
distance between the contacts and the dot array as the freergare pushed
away from and pulled towards the charged dots. For exanffda,area of neigh-
bouring dots all possessed a positive charge, a “finger” avemtend out of the
electron sea towards it. The reduced tunnelling distaneddvenable electrons to
tunnel at a greater rate, cancelling the net positive change provide a negative

feedback loop within the dot system. This concept is showigure 4.1.5.
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30nm

Figure 4.1.4: Typical separation between neighbouring dot
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Figure 4.1.5: “Fingers” extending from contacts towardsaaused by distortion
of the electric field due to the presence of carriers on the dot
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4.2 Implementation and Results

Once the dot occupations are known, the Coulomb energiesiardated, and the
energy levels and resonance functions are adjusted angtydiAll ten energy
levels within the dot must be adjusted, as all are affectethbypresence of a
carrier species. The contact sea distortion is also caéuliland the tunnelling
rate is adjusted.

The Coulomb energy affecting each dot is calculated not amgnfthe net
charge on the dot in question, but also the net charge of @seseeight neigh-
bours. The energy levels of the dots fluctuate as carriersetumto them and
their neighbouring dots and subsequently recombine. Tieetethis has on the

resonance function can be seen in figure 4.2.1.
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Figure 4.2.1: Resonance Function for all dots with Coulomeératttion included
in the simulation

The contact-to-dot distance also fluctuates as the Coulomygmround the
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dots change. This leads to a change in the distance thersamigst tunnel to
get onto the dot. In effect this is a simple negative feedbaekhanism: a dot
occupied by a hole will pull the electron sea closer, whilssiing the hole sea
further away, encouraging carriers of the opposite speciasinel preferentially.
The fluctuations in the tunnelling distances can be seen imdig.2.2, and the

effect on the tunnelling currents can be seen in figure 4.2.3.
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Figure 4.2.2: Fluctuations in tunnelling distance

We can now see what effect the inclusion of the Coulomb intemacas
upon the transport and electroluminescence propertigsedfytstem. Figure 4.2.4
shows the modified 1V plot for the system. We compare this Wigire 3.3.2, the
IV plot without the Coulomb interactions included, and we te# the effect of
the interaction has been to “smooth out” the large jump imenirbetween 1.25
and 1.3V over a wider range of voltages.

Figure 4.2.5 shows the photon current plot, which follonss same pattern as
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Figure 4.2.3: Fluctuations in the background tunnellirntg caused by the fluctu-
ations in tunnelling distance

the transport current, with the large jump seen in the nonk@@oloi case (figure
3.3.3), disappearing, to be replaced by an array of smatlekgqy as dots move in
and out of resonance as their energy levels fluctuate.

The electroluminescence characteristics can be seen e fig@.7, and are
then compared with experimental results, seen in figuré4.Phe effect of the
inclusion of the Coulomb interaction is clear for bias voéiadelow 1.35V, the
two distinct lines we saw in figure 3.3.5 have been replaceal dgntinuum of lu-
minescence, with four diagonal lines visible underneatie [bwest line is emit-
ting at a lower voltage than that seen in the non-Coulomb CHss.is caused by
the negatively charged dots pulling the hole energy levedgdinto resonance at
a lower bias voltage than the one at which they would norntalyesonant. The

other three lines at higher bias voltages are caused byasigffects between the
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Figure 4.2.4: IV plot with Coulomb Interaction

groundstates and excited states. Again, the large incegdsgher bias voltage is
caused by relaxation into the dots from the wetting layer@mtiuction/valence
bands. The colourscale plot is clearly in much better agesgmwith the experi-
mental data now that the Coulomb interaction has been ind|uslgygesting that
Coulomb effects are an important consideration in modeltiiogelectrolumines-
cence. The near- vertical emission line on the right of tledupe, at a photon
energy of approximately 1.5eV is caused by upconversionneastence, which
will be dealt with in greater detail in chapter 5. Focussimglze rest on the plot,
we see that the remainder of the experimental colourscalésgxtremely similar

to the simulated version, and a noticeable improvement figune 3.3.5.
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Figure 4.2.5: Photon Emission plot with Coulomb Interactidhe graph shows
the number of photons emitted every 1000 timesteps for ealthge
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Figure 4.2.6: EL colourscale plot with Coulomb Interaction
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Figure 4.2.7: Experimental EL colourscale plot
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Chapter 5

Analysis of Simulation

This chapter analyses the model in more detail, and lookeeagftect of including

some secondary interactions within the model.

5.1 Delayed Recombination Effects

For a single QD in a p-i-n junction, we can raise the Bias Vdtag that either the
electron levels or the hole levels are aligned to the relguaction, and resonant
tunnelling may occur. However, with the inclusion of the Guub Interaction be-
tween the electrons and holes tunnelling onto the dot, wésg¢ence one species
has tunnelled onto the dot, the energy levels will shift byparount, U (which we
estimate for a typical dot to be approximately 13meV), andunther tunnelling
may take place, as the resonant condition will be lost. If welgine this with a
linear increase or decrease in bias voltage, the resultetaged tunnelling effect,
in which each carrier is able to tunnel just once at each msoroltage, and then

radiatively recombine once its counterpart has tunnelle@fter an increase or
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decrease in current. For a typical QD, with a single grouatesand two excited

states present, just 5 photons will be emitted over the ithge sweep, as shown

in figure 5.3.1.
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Figure 5.1.1: Only a limited number of photons can be emitteddelayed re-
combination as the voltage increases

This delayed recombination effect, in which photons arey @mhitted after

a change in bias voltage should show up in the computatiomallation of the

system. One way to test for this effect is to introduce a patamwhich removes

all the carriers from the dot at every change in voltage, amdpare the results

with the normal case. This parameter is denoted as the ‘tgakarrent, but it is

not proposed that it is a real effect in the system, althotiginiot entirely unlikely

that carriers may escape from the dots on some timescaleregl.2 shows the

EL characteristics of the system with and without the leakagrent present.
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Figure 5.1.2: EL colour-scale plot with leakage currentwiit Coulomb interac-
tions compared to no leakage case

We can clearly see two noticeable differences between tbeptots, high-
lighting the areas where the delayed recombination is tmgny mechanism of
photon emission. The two areas in question are at bias edth@-1.25V and 1.3-
1.35V. The remainder of the luminescence is thus causedregtdecombination

within the system.

Bias Voltage /mV'
Bias Voltage /mV

1050 1100 1150 1200 1250 1300
Photon Energy /meV/

e
105 1100 115 1200 1250 1300 1350 1400 1450
Photon Energy /meV

Figure 5.1.3: EL colour-scale plot with leakage currentM@bulomb interactions
compared to the no leakage case

We can also repeat the investigation for the case in whiclCthdomb inter-

action is included. Figure 5.1.3 shows the resultant cslcale plot comparison.
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5.1. Delayed Recombination Effects

The effect here is also clear, the solid lines of direct eamecombination elec-
troluminescence remain the same, but the emission fromdpe  noticeably
decreased, as any remaining carriers are removed befagedetecombination
can take place. This demonstrates neatly the areas of@leninescence which
are a result of Coulomb-modified direct carrier recombimgt&nd which are a
result of delayed recombination.

In chapter 3, we analysed the “jump” in intensity of trangpord lumines-
cence between 1.25 and 1.3V, and concluded that it was céyssichultaneous
electron and hole tunnelling into the same dot, caused bgstgmmetric location
of the dot array within the intrinsic region. We also saw ttegt inclusion of the
Coulomb interaction flattened out this peak. Having now isalahe effects of
delayed recombination, we can study what the effect is otrémsport character-
istics of the system for a range of symmetric and asymmetricanfigurations.

The total width of the intrinsic region is 16nm, and the afiggnt studied
thus far was for the dot array to be placed offcenter, 7nm filoen contact and
9nm from the p contact. We denote the distance from the n coasal, and the
distance from the p contact is therefde— d. We now study the effects of three
different configurationsd = 5, d = 9 and the symmetric case= 8. A schematic
of the cases Al = 7 and Bd = 9 is shown in figure 5.1.4. We also define a third
configuration C for the casé= 5nm.

We compare the three asymmetric samples both without arid®@oulomb
interactions included in the simulation. Figure 5.1.5 shoke 1V curves for the
d = bnm d = Tnm andd = 9nm configurations. Both curves feature a steady in-
crease in current, punctuated by large peaks in the 1.24kdidn, which, as was

discussed in chapter 3, is caused by the simultaneous redonaelling of elec-
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5.1. Delayed Recombination Effects

I 9 nm ® . 7nm _
n
o
Configuration A 0
) 7 nm 0 9 nm _
« , « »| n

Configuration B

Figure 5.1.4: Two different dot array locations within in8ic region

trons and holes due to the asymmetic nature of the confignsatiTherefore it is
expected that the two different asymmetric configuratidrsugd exhibit peaks at
different bias voltages, as the region at which the simelais resonance occurs
is dependent upon the exact nature of the asymmetry. Forgcowafions A and
B, the peaks occurs when carriers are able to resonantly ltumtoghe ground-
states of the dots and recombine. For configuration C, we seadawower peaks
between 1.25 and 1.3V. In this case, the extreme asymmetheafonfiguration
allows for simultaneous tunnelling into the groundstates excited states of the
same dots. The carriers then relax non-radiatively intogtmindstate before
recombination.

Figure 5.1.6 shows the IV curves for configurations A and B, thig time
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5.1. Delayed Recombination Effects
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Figure 5.1.5: Comparison of IV plots for configurations A (dland B (d=9) and
C (d=5) with no Coulomb interactions included in the simwati

with the Coulomb interactions included. We see that any Saarit differences
between the two curves in figure 5.1.5 have now been minimiBleére are small
differences between the curves, but the distinctive featbhave been removed by
the feedback effects of the Coulomb interaction.

We also consider the symmetric case 8nm. For this case, no simultaneous
resonant tunnelling is possible, and thus we expect notd@g®eak in the 1.15-
1.4v region, as seen in the asymmetric cases. In figure 5.&.¢ompare the
symmetricd = 8nm case both with and without Coulomb interactions included.
The Coulomb interactions clearly allow for a degree of siam#tous resonant
tunnelling between 1.1 and 1.4V, which would otherwise n®tpbesent. This

leads to a noticeably increased current.
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Figure 5.1.6: Comparison of IV plots for configurations A (glarid B (d=9) with
full Coulomb interactions included in the simulation
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Figure 5.1.7: Comparison of IV plots for symmetric case 8nm both with and
without full Coulomb interactions included in the simulatio
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5.2. Many Dot Interactions

5.2 Many Dot Interactions

In section 4.1, we discussed the effect of the Coulomb interadetween car-
riers on neighbouring dots on the energy levels and the tlimgeates from the
contacts. The Coulomb interaction energy between two neaeeghbouring dots
was given as approximately 0.5meV. If several neighboudats had a similar
charge, the total interaction energy could approach 2 onN3meough to repel
or attract the contact carrier sea by 0.5nm, making a sigmiidistortion in the

tunnelling distance. This is shown in figure 5.2.1.

p contact
Q
g

Positively
Charged
Dots @

Hole

Sea - -

H
®
T

Figure 5.2.1: Neighbouring Dot Interactions

As the simulation is run, and carriers tunnel into the dotssubsequently re-
combine, the Coulomb interaction between the contacts anddharray causes

a constant flux in the tunnelling distance. We can take srpsi these fluctua-
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5.2. Many Dot Interactions

tions at a range of bias voltages, in order to be able to cteaise the length scale

over which these fluctuations take place.
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Figure 5.2.2: An xy plot of the dot array showing the distante¢he electron
Fermi sea from the dot. Bias Voltages: top left, 1.175V; tgt;j 1.375V; bottom
left, 1.425V; bottom right, 1.475V.

A series of contour diagrams showing the Coulomb interadtidnced defor-
mation of the contact sea at a range of different bias vodtagyehown in figure
5.2.2. At 1.175V, several dots are occupied, and we can seidlions in the

Coulomb field around these points in the dot array. In extreamgerfectly an-
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5.2. Many Dot Interactions

tisymmetric electron hole distribution (ie. electrons dnudes alternately placed
on neighbouring dots) would have a mean fluctuation of tha aceupied by an

individual dot, while a perfectly symmetric distributidioy example a completely
homogeneous dot occupation by electrons or holes, woulel @&wuctuation cov-

ering the entire array of 2500 dots.

We can study how the fluctuation varies between these twereeircases as
we increase the bias voltage. At 1.174eV, we see localisetlfitions as a hand-
ful of electrons begin to occupy the dots. The mean fluctnadiameter remains
constant between 1.25 and 1.375V, before increasing dieatligtto a peak at
around 1.4V, and finally decreasing again at 1.475V. Thicgfs shown in figure
5.2.3, where we can see a clear peak in the correlation lexigapproximately
1.4V. We can compare the changes in correlation length tolthages in dot oc-
cupation, and the two plots are clearly related. As the tlingerate overtakes
the recombination rate, the carriers start to fill up the dansl this subsequently
leads to larger Coulomb fields being generated around thg, affacting both
the energy level resonances and the distortion of the eleaind hole Fermi seas.
This feedback effect in turn leads to a larger degree of fatain in the Coulomb
field around the dot array, and larger correlations in theteda and hole sea dis-
tortions. In chapter 6, we will see that these fluctuatiomsrent static, but rather

are dynamic in time as carriers tunnel into the dots and réamen
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Figure 5.2.3: Variation of Coulomb field correlation lengthiwbias voltage
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5.3 Up Conversion Luminescence

Up Conversion Luminescence (UCL) is the emission of photoesatgies larger
than that supplied by the external energy source. It hasqusly been seen in
self-assembled InAs/GaAs dot89 Figure 5.3.1 shows an experimental EL plot
[8], which clearly shows a strong emission line on the righthd tiagram, at
higher photon energies than the bias voltage provided.i$nstéction we discuss
the process by which this UCL is being realised, and presealcalation of the

effect of magnetic field on the luminescence.
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Figure 5.3.1: Evidence of UCL in experimental plots

Several processes have been suggested as possible meshahidCL, in-

cluding phonon assisted processgd] [ multi-photon absorptior40], and Auger
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5.3. Up Conversion Luminescence

processed]l]. Of these suggestions, multi-photon absorption can imately be
ruled out, as the experimental data is electroluminescescepposed to photolu-
minescence, as the device in question is not excited by, kgt at a bias voltage
of zero Volts, no emission was detected.

The concept of phonon assisted UCL was investigated whemnxfieximents
were performed. Increasing the temperature of the sampllenaiease the num-
ber of available phonons, thus indicating that if phonomssairongly involved in
the UCL mechanism, the UCL will increase at increasing tentpeza. In fact
the UCL decreased, from which we may conclude that phonostadgprocesses
were not the dominant mechanism.

Auger processes involve the photon emitted by an excitcegsombination
being reabsorbed by another electron or hole on that dot eighbouring dot.
The carrier is then excited into the GaAs conduction (vad¢mand, from where
it relaxes to the band edge, before either recombining @xicidlly, or relaxing
into another dot. In order to include this process in the $uthulation, we first
need to calculate the overlap integral associated withxbigagion process. The
proposed mechanism is shown in figure 5.3.2.

For the Auger process,the transition between the electaumglstate and con-
duction band state, representeddyy. is stimulated by a photon of energy in
the region of 1.2 to 1.4eV. The probability per unit time thatatom in statér)

makes a transition to a stdte), stimulated by electromagnetic radiation is:

me? )

W| (w|rle) | (5.3.1)

wheree is the permittivity of GaAsg is the electronic charge, andw|r |e) | is
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5.3. Up Conversion Luminescence
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Step 1: The photon emitted from a recombination is absorbed by an
electron (shown above left) or hole (above right) in a neighbouring
dot, which jumps up to a higher energy level.

P
e
Step 2: The carriers then recombine from the 1 e
higher level, emitting a photon with greater //
energy than the original photon (shown right) <
b 4
Figure 5.3.2: Proposed Mechanism of Auger Process
the overlap between the 2 states.
For the transition:
Vielh ce, (5.3.2)
the matrix element
Vie = /dr\IJw\I/e. (5.3.3)

We can therefore calculate the element by integration:

AJ2 00
Vive / d@/ dzcos®( WZ/A)/ dpe= (=1 /1 P /12 (5.3.4)

A2 0

whereA is the confinement in the z directidp,andi, are the radial confinement
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5.3. Up Conversion Luminescence

lengths for the two states, apdand R are the locations of the two states.

We can rearrange to give:

AJ2 00
/ d@/ dzcos®( WZ/A)/ dpe T/l g=*0" o =br (5.3.5)

A/2 0
where
1212
2 e’w
a = m (536)
and
—2R
b= 2z (5.3.7)
Completing the integration gives:
oy 10 —R2/2, [ (b/20)? b >
Vipe = 27 [z + cos( WZ)} Ve c Erf ( + ap) (5.3.8)
AT, 2 a .
S/QA
= T DRG0/ (1 _ Erf(b/2a)) (5.3.9)

a

We can now include this rate in our simulation, and study tifieceon the
resultant EL colour-scale plot, shown in figure 5.3.3.

We also show the experimental EL plot, which highlights timeilarities be-
tween the two. The emission linefaf = 1.52¢V is visible in both, and continues
below theeV = hf point as UCL. The bright patch on the experimental plot at
around 1.43eV is most likely direct emission from the wejtiayer. This is not
included in the simulation, and thus a corresponding bpgit¢h is not visible in

the numerical plot.
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5.3. Up Conversion Luminescence
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Figure 5.3.3: Simulated UCL colourscale plot and spectra

One way to test the validity of the Auger mechanism theoryistudy the
effect of a magnetic field on the experimental and theoretesults. [, andl,
are the length scale of the wavefunctions within the dot &ledcbnduction band.
To assess how these are affected by magnetic field, we maesintakaccount the
magnetic confinement lengtla, which will affect the localization of the carrier
within its potential.

The dependance of on field strength is given by

I5 = /h/eB. (5.3.10)

We can see the effect of increasing magnetic field strengtim 0T up to
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5.3. Up Conversion Luminescence

14T is to reduce the up-conversion luminescence stronglglatively low field
strengths. This can be understood by considering the conéneeffect of the

magnetic field on the carrier wavefunction in the conductialence band, and

the resulting reduction in the overlap integral.
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Figure 5.3.4: Simulated relationship of UCL current with Matjc Field (loga-
rithmic scale)
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The results of the simulation clearly compare well with tkperimental re-
sults, and offer some insight into what physical processebkaly to be occurring
in the real system. However, it is relevant to consider thalmer of assumptions
involved in the route from theoretical model to simulatibtad these assumptions
been different, then it is important to consider the implmas that this may have
had on the results of the simulated data. Assumptions wedke nmathe mod-
elling of the dot energy levels, the calculation of the tuhng, relaxation, and
recombination rates, and the effect of the Coulomb intesacti

The effect of changing the energy levels of the dot would l@ad shift in
both the bias voltages at which certain features are visdnd the energy of the
photons emitted. We can see an example of these types & ishafir study of the
effect of varying the location of the dot array within therinsic region in section
5.1. This also enables us to work backwards from the expetitoghe theory; as
the location of key features matched up well with the simaigtthis suggests that
the model used to generate the dot energy levels was apgi@pfihe effects of a
different set of rates would lead to a buildup of carriers diff@rent bias voltage,
and the increased or decreased relevance of Coulomb effectee simulated
results, the high relaxation rate combined with the lowxtstate to excited state
recombination rate results in zero photon emission withgias between 1.32 and
1.5eV; whereas we can see from the experimental EL plot €i§u8.4) that there
is evidence that such emission does exist. The effect of téo@db interaction on
the IV and EL plots were to remove some features not seen grgmpntal results,
suggesting that Coulomb interactions do play an importdatinathe transport of
carriers through the dots. In summation, the notable siityilaetween simulated

and experimental results suggests that the assumptione mate theoretical
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5.3. Up Conversion Luminescence

modelling of the system were appropriate.
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Chapter 6

Correlated Tunnelling Regime

Analysis

In this chapter we study a particular regime seen in the tesidlthe 2500 dot
model involving correlated tunnelling of electrons anddsointo the same dot,
and use the master equation method to derive some of the kéyds of the

process.

6.1 Correlated Tunnelling Regime

We saw in chapter 4 that when the Coulomb interaction is ireduid the sim-
ulation, the simultaneously resonant condition that leth®jump in tunnelling
and recombination phenomena in chapter 3 becomes blockibe Ioulomb en-
ergy of the carriers. The Coulomb energy of the occupyingeamoves the dot
energy levels away from resonance and prevents furtheetimpn There is a

scenario in which the bias voltages at which the electronhatel levels becomes
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6.1. Correlated Tunnelling Regime

resonant are separated by approximately 12.8 meV. In tlsis, @ace the correct
bias voltage is reached a correlated tunnelling regime (CTiRpecur. First one
carrier species will resonantly tunnel onto the dot, crept shift in the dot en-
ergy levels, then the other species will now be in resonazceé,will be able to
tunnel, creating an exciton, and returning the energy $aeetheir original values.
Note that this can be achieved for both the spin up and spima@wriers in the
dot simultaneously, (but not independently), approxityadeubling the effective

rate. The principle steps of the regime can be seen in figlr#.6.

Step 1: Hole level aligned, Step 2: Coulomb energy of hole
hole tunnels onto dot. shifts both levels down by 12.8meV
1 —@— B ] _— l (I
—.—

Step 3: Electron level now aligned, | Step 4: The electron and hole

electron tunnels onto dot recombine, emitting a photon, the
levels shift back up
—O—
A0 — . — e e
—— \

\

Y

Figure 6.1.1: Correlated Tunnelling Regime Mechanism

The correlated tunnelling regime therefore results in eadke increase in the
tunnelling current through the QD, and, more importantlgigmificant current is

generated without a change in bias voltage. The electrormalalgroundstates
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6.1. Correlated Tunnelling Regime

are initially separated by 30meV. We saw in chapter 3 thatghp does not mean
that electrons and holes cannot be simultaneously resartarihe same dot, due
to the effects of the asymmetric position of the dot arrayhimithe intrinsic re-
gion. For correlated tunnelling to occur, the two energglswieed to be offset by
12.8meV. This occurs twice - once for negatively charge@,dartd once for pos-
itively charged. Once we include the subtle effects of thel@ub interactions
from neighbouring dots of course, the system becomes muck ownplicated
and difficult to predict. We find that the conditions necegdar CTR to occur
arise at two ranges of voltages, either side of the 1.25-td@\dition of simulta-
neous resonance seen in chapter 3. CTR is only seen in thiefratdots which
possess both the right offset between electron and holgererels for CTR to
occur, and have one of these levels in resonance. It is alsolge for a dot to be
pushed into or out of the regime by the energy shift causeddayréer tunnelling
onto a neighbouring dot.

We can see evidence of correlated tunnelling by studying series data from
the simulation. Figure 6.1.2 shows the tunnelling phenaneto an array of 100
dots over 100 timesteps. For dots 49, 76 and 80 in partioutasee electrons and
holes tunnelling alternatively into the dots. Due to theet of neighbouring dots
and several energy levels being close to resonance sireolialy, the tunnelling
is not perfectly alternate - ie. we occasionally see twoted&s tunnel in a row, as
the change in Coulomb energy, combined with a particular paeay of nearby
dots brings a second electron level into resonance, ratherthe expected hole

State.
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6.2. CTR in a single quantum dot
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Figure 6.1.2: Time Series showing electrons and holes tlimgpesequentially.
The figure shows the tunnelling events of 100 dots over a gerid 00 timestep.
The green squares indicate no tunnelling event, the bluarequndicate electron
tunnelling, and the orange squares indicate hole tunigellin

6.2 CTRin asinglequantum dot

In the previous section, the possibility of a dot possesirgorrect energy level
distribution for correlated tunnelling state to occur wastdssed. The regime can
be seen to occur at a particular voltage at which one carpieciss is directly
resonant with the dot energy state, whilst the complemgrgpecies was off-
resonance by an energy comparable to the Coulomb interastiergy between
two electrons occupying a dot. The probability of this regiotcurring at some

voltage between zero and flat band was discussed in the pees@ztion, and the
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6.2. CTR in a single quantum dot

existence of such a regime in a large scale model was deratettr

We are now in a position to analyse this novel system in faatgredetail.

We are able to describe the system as occupying one of thseeeté possible
states. For convenience, we decide that the p-contact issictdesonance and the
n-contact is off resonance by 12.8meV, and will become tyreesonant when
the QD is occupied by a single hole. On a qualitative leve aghalysis would be
exactly the same if the system were chosen to be the othernwap@ The three
states the system can occupy are the “down” state, whereothie dnoccupied,
the “zero” state, where the dot is occupied by a hole, and tipé State, where
the dot is occupied by an electron and a hole. There is no statee the dot is
occupied solely by an electron, as the tunnelling rate fle@mtcontact is zero for
an unoccupied dot.

The three possible states can be seen in Figure 6.1.1. Ttesrsgan be seen
to move progressively from state up to state down to state neth the possibility
of a backwards move not eliminated at this stage. Each maveleéween states
is associated with a tunnelling or recombination rate. €hases can be taken
from the rates calculated in the full 2500 QD system.

We now use two complementary methods to study the time ewalaf the
system. A small scale computer model is able to simulate #émaour of the
regime over 100,000 time-steps, from which we are able wutate the transport
and electroluminescent characteristics of the dot, asasgdleir associated noise
characteristics. We are also able to analyse the systerg th@mmaster equation
method, the details of which are explained in greater detaihapter 2 andJ0].
This will provide us with predictions that we are then ablecémpare with the

simulated data. Both of these methods have the advantagedraat not obliged
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Figure 6.2.1: Three Possible States of CTR system

to input the tunnelling and recombination rates until thet Eep, allowing us to
compare the effects of varying these rates.
The Hamiltonian for the system can separated into expres$aw the system,

the bath, and the interactions:

Htot :HS+HB+H[ (621)
where
Hg = |T) (T +¢e [1) (I (6.2.2)
Hp=Y" (glﬁQZQ e flio + aﬁ&%) (6.2.3)
Q
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6.2. CTR in a single quantum dot

Description Bath Operator Associated State Change

hole tunnels in from right contact r ‘ l> , ‘ 0>
hole tunnels out into right contact ¢t ‘ 0> _— ‘ l>
electron tunnels in from left contact [T ‘ 0> . ‘ T>
electron tunnels out into left contact ‘ T> _— ‘ 0>
exciton recombines, photon emitted Vil ‘ T> e ‘ i>
exciton forms, photon absorbed Y ‘ i> ‘ T>

Figure 6.2.2: Associations between bath and system presesgh a description
of the corresponding event

=3 (vgig 10) (1] + volo 1) (0] + woro [0) (1]
Q

T g 113 (0] + ugdh 1) (1] + ugio 1) (1] ) (6.2.4)

We now wish to analyse this system using the interactiorupgct We can

separate the Hamiltonian into a series of System and Batlatpsr

Sy = [1) (0] et (6.2.5)
Sz = 10) (1] e (6.2.6)
S = 10) (L] e (6.2.7)
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6.2. CTR in a single quantum dot

Sy =11y (0] ™
Ss=1[1) (T]e™™
Se = [1) (1] "

wheres = ¢; — ¢/, and

By = vlletert
By = vifetrt
By = vre !
Bs = v’yTeiE”t
Bg = vye "

(6.2.8)

(6.2.9)

(6.2.10)

(6.2.11)

(6.2.12)

(6.2.13)

(6.2.14)

(6.2.15)

(6.2.16)

From conservation of energy we can see that ¢, ¢, = ¢, ande, =

& — €.

We can now calculate the correlation functions using theBbe-Markov

approximation, and using the same method as was appliecapteh2, we can

define the Liouville equation:

p=Lp,

(6.2.17)

wherep is the density matrix and is the Liouville evolution operator, which can

be expressed in matrix representation as
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6.2. CTR in a single quantum dot

X Jy()(np(e) +1)  Jilep)nr(er — )
L=2n Jy(e)np(e) X Jo(e) (1 =np(ei-p)) |
Jien)(X —npley — ) Jr(e)nr(e, — pr) X3
(6.2.18)

where J is the spectral density function amg- andn g are the Fermi-Dirac and

Bose-Einstein distributions respectively. We can onceradefine
Xo== > Lun (6.2.19)

By using the relationship = 0, we can find the eigenfunctions of the evolu-
tion operator, and predict the mean current and photocttienoccupation prob-
ability of each state, and the current and photocurrententhisough the system.
We are able to generate these results for whatever tungelhid recombination
rates we wish to consider. We find the three eigenvalddey the system, and
their associated eigenvectois; andV;. The eigenvector associated with= 0
contains information about the steady state of the system.

We now need to consider the electron and hole resonant tinghedtes into
the dot, and the excitonic recombination rate. We can alssider the effect of
non-zero tunnelling rates out of the dot, and a non-zerogrhabsorption rate,
as these will have an effect on the current and photo-cuaedtthe associated
current noise.

We now wish to study the noise characteristics of this systenich give us

more detailed information about the system’s dynamics. @/t by studying
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6.2. CTR in a single quantum dot

the Fano factor of the system, defined as:

S(w)

= 2.2
2e < [ >’ (6.2.20)

where, the noise$(w), can be calculated from the relevant current or photocur-
rent operator and the system eigenvectors using the nmelgtieen in [30] and
developed in42].

The symmetrized noise spectrum for any two operat@sdb is:

[e.9]

Sw) =tlim [ dr(a(t+7),b(r))e" (6.2.21)

Using the quantum regression theory and an eigenvalue siquafd2], we

can define the noise spectra as:

% (Vrol I |Vae) (Vik| Ik [Vro) | (Vrol Ik V) (Vir| Ik | Vro)
Sw=2) Re ( (i — M) ’ (i —w) )
- (6.2.22)

wherel is the current operatol;z andV/, are the right and left eigenvectors, and
A is the associated eigenvalue. The tabulated results shelaw lvere calculated
using Matlab.

For a Poissonian distribution of photon emission, in whicé photons are
emitted independently, the Fano factor will be equal to oAeFano factor of
less than one indicates that the photons tend to be moreyesepdrated, known
assub-Poissoniamoise, and a Fano factor of greater than one indicates that th
photons tend to be emitted in bunches, knowswgser-Poissonianoise §3].

We calculate the photon noise and current noise throughysters. The pho-

ton noise is the noise distribution of the photons being tealifrom the sample.
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6.2. CTR in a single quantum dot

Fano Factors \ current noise photon noise
Limiting Factora,, oy, 0.99 0.70
Limiting Factor~y 1.47 0.85

The current noise needs a more detailed understanding. @ve tkiat the current
is related to the electrons tunnelling into the dots and tileshtunnelling out of
the dots, but there are technically two possible ways of om&@agthe noise in the
system, depending upon whether we treat the electron amrdttwhelling onto
the dot as one single event, involving a quanta of charge myofvom one con-
tact to the other, or whether we treat the two tunnelling ev@s two separate
occurences. The noise spectra of the two methodologiedwilifferent. The
current noise spectra calculated is for seeondcase, in which the two events
are treated separately. For the first case, the system wél twaly two alternating
events: a “current” event and a “photon” event, the noisetspevill necessarily
be identical. Looking at the results, we see that for the aasehich the tun-
nelling rates are the limiting factor, the current noisegpraximately Poissonian,
and the photon noise is sub-Poissonian. This can be unddra®being caused
by there being relatively large period of time during whitle tcarriers are tun-
nelling into the dots, which leads the photon emission eéeing spaced out
in time, and thus the noise is sub-Poissonian. The photoaseoni time period
is comparatively short, implying that the photon emissigarg has little effect
on the noise characteristics of the current noise. Theezartunnel almost inde-
pendantly, and thus show a Poissonian distribution. Forebembination rate
limited case, the current noise becomes super-Poissomals the photon noise
remains sub-Poissonian, although to a lesser degree sloake, the mean photon

recombination time period is the longest time scale, whigplies that the carriers
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6.2. CTR in a single quantum dot

tunnel in pairs - with two carriers tunnelling quickly, fowed by a pause as the
exciton recombines, leading to super-Poissonian noisectaistics. The pho-
ton noise moves towards a fano factor of 1, but the photonstdrenore evenly
distributed than an independant case.

Figure 6.2.3 shows the simulated noise characteristidseo$ystem.

Current Noise Photon Noise
Recombination Limited Recombination Limited
Theory: F=1.47 Theory: F=0.85

iE

Current Noise Photon Noise

Tunnelling Limited Tunnelling Limited
Theory: F=0.99

Theory: F=0.70

Figure 6.2.3: Simulated Noise Characteristics for diffétennelling rates. The
theoretical prediction for Fano factor is shown for compigespurposes
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6.3. CTR in two interacting quantum dots

6.3 CTRin two interacting quantum dots

Having fully analysed the CTR in one isolated QD, we can novettgythe theory
further to include the effects of neighbouring dots intéragwith one another and
creating new, more complicated sequential regimes. It maady been seen that
neighbouring dots are able to interact with each other wa&bulomb Interaction,
and we will now study the effects of this on a system of two QMg restrict
ourselves to analysing a system of only two QDs because trecel of finding a
system with the correct energy level alignments becomesrexgially less likely

as the number of dots required increases.

“Flat” “Off-set”
STR will occur when neighbouring dot is uncharged STR will occur when neighbouring dot is charged
I12.BmeV I 15.1mev
| —
[ —]
23meV §
“Electron Off-set” “Hole Off-set”
Hole tunnelling can occur when neighbouring dot is charged, Hole tunnelling can occur when neighbouring dot is charged,
electron tunnelling when neighbouring dot is uncharged electron tunnelling when neighbouring dot is uncharged
I 12.8 meV
15.1meV —
 I—
E— 23mev § e

Figure 6.3.1: The four possible combinationsff and E'z in the dot offset. The
effect of the dot itself being positively charged is to shiftth electron and hole
energy levels by 12.8meV. The effect of the neighbouringogatg charged shifts
the energy levels by 2.3meV. The separation between the@heand hole levels
remains constant.

The probability of a carrier resonantly tunnelling onto aidalependant upon

the energy levels being correctly aligned at that momenthéve seen in the 1QD
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6.3. CTR in two interacting quantum dots

regime that the electron and hole energy levels need to Betdfly an energy of
12.8meV (which we now denote ds,) for the system to be able to maintain a
non-zero emission rate. The secondary offset, due to thepation of a neigh-
bouring dot was calculated in chapter 2 to be approximat&yn2V (which we
call Eg). This is a sufficient offset to be able to move the dot systeanid out of
resonance.

The 2 dot system will therefore be emissive in a regime whieeeelectron
and hole energy levels of the 2 dots are some combinatioredfib offsets; the
tunnelling rate through one dot is not only dependant up®mwn occupation,
but also upon the occupation of its neighbouring dot. Figu8el shows the four
possible combinations df 4 and E' in the dot offset.

Now we have defined the 4 possible configurations that eadhidio@l dot
can be in, we need to work out the result of each of the possdstginations of

the four. Figure 6.3.2 shows the 10 possible combinatiorzsduits.

O 00 @
O 00 ©O 6

Control Case

00 00 60 6

Figure 6.3.2: The 10 possible combinations of 2 dots. E,Har@, F correpond
to the four states identified in figure 6.3.1. A non-intenagtcontrol case is also
included.
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6.3. CTR in two interacting quantum dots

In order to analyse the two dot system fully, we now use a smmgitation,
based on the system states we used in the 1 dot scenarioe BIGu8 shows the 9

possible states of the system, and the corresponding sfatash dot.

Dot 1 Dot 2 Numerical State Notation

1> Iy 1

Figure 6.3.3: The 9 possible states of the system, and thespmnding states of
each dot

Using the numerical state notation, and knowing which titeors are allowed,
we are now able to plot the possible state trajectories fo.thcombinations. We
also include a control case, that of two CT regime dots, idahtd the one anal-
ysed in section 6.2, which do not interact with each othell aFgyure 6.3.4 shows

the possible trajectories. We can clearly see that withaakWwards state evolu-
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6.3. CTR in two interacting quantum dots

tion, seven of the ten combinations are immediately blocRé&se combinations
will emit for a finite time period, but each one has an accésslstem state,
which, once occupied, the system remains trapped in intigfiniThere are three
combinations, however, which remain emissive indefinitélyese combinations

are the F-F, O-F and E-H systems.

9 OF/@\%{ FF ﬁl.@\ NI {@:®:®\4
@0 5, <€ @N5.7.® @\@/@ @ 5, ©
2, ge 2.8, 2, 8,

H @ ®,@“® @@§@ @@“z‘@

Figure 6.3.4: The possible trajectories of the system ferlit different two-dot
configurations. The solid lines denote blocked pathwayse ddntrol case is
shown in the bottom right.

We can note that for the case in which one dot remains activie Wie other
remains passive, the system will evolve diagonally on thgm@im through a three
state evolutionary cycle. We denote this as "lateral” mogemif both dots are si-

multaneously active, the system will move downwards thiothg states - we de-
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6.3. CTR in two interacting quantum dots

note this as "vertical” movement. For the comtrol sample,dfrstem will evolve
according to a random walk through the system states. Antyaiats then placed
on the system, will alter its evolution, and subsequensiynitise characteristics.
By calculating the probability of each of the infinite numbédiferent routes the
system could take to complete a evolutionary cycle, we cahaitty calculate the
expected transmission rate and noise characteristiccdAvenience, we choose

the cycle to start and finish in state 2.

Fr

@®@ @@® j

(3) () (2 A3
¥0A00%
@(D@

Figure 6.3.5: State Trajectories of FF system. We can séstdta 5 is completely
inaccessible. Other than this, the FF system is identicdld@ontrol case.

Figure 6.3.5 shows the possible state trajectories of treyBtem. We see that
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6.3. CTR in two interacting quantum dots

the only difference from the control sample is the unavdlitgtof state 5. The

overal dynamics of this system do not vary greatly from theticd sample.

OF

Figure 6.3.6: State Trajectories of OF system. We can sdestates 3 and 7
are completely inaccessible. This has the effect of sigaitig raising the prob-
ability of a one-dot 1-2-4-1 evolutionary cycle, leadingatsub-Poissonian noise
distribution

Figure 6.3.6 shows the possible state trajectories of thesy3em. We see
that states 3 and 7 are unavailable, forcing the systemdghrstate 5. This con-
figuration also means that the system will evolve laterdigguently following

the single dot evolution chain 1-2-4-1. This predicts tha dot will be consider-
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6.3. CTR in two interacting quantum dots

ably more active than its partner. The increase in lateag¢tories also suggests
that photons be emitted from this system with a smaller feegy variation than

in the control sample.

. o
20
ONOrONOONONO
(s) >(s)
Figure 6.3.7. State Trajectories of EH system. We see thekbtb pathways
force the system evolution down a vertical path, and previr kind of one-dot
evolutionary cycles prevalent in the OF configuration. Tin@eased probability

of the pathway following a 9-6-1 or 9-4-1 route leads to a st@Essonian noise
distribution

For the EH system shown in figure 6.3.7, we see that the systerains con-
fined within a vertical channel through the states. No siuigteevolution trajec-

tories are possible in this system, implying that the twasdeill move through
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6.3. CTR in two interacting quantum dots

their individual states in unison, and release photonsirs p@/e would therefore

expect to see greater bunching in this system than in theal@ase.
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6.3. CTR in two interacting quantum dots

We can analyse the four systems both numerically and theallgf applying
the master equation method to each system to find the ewoloperator, and
subsequently calculating the current and noise charatitei

We first define a Hamiltonian for each system. The Hamiltoficarthe FF,
OF and EH systems will be equivalent to the Hamiltonian ferg¢bntrol case with
the terms corresponding to the blocked interactions rechove

Using the master equation method once more, we are able tthéreyolution
operator, and solve for its eigenfunctions. To do this, wetfitst define a Hamil-
tonian for the two dot system, again separated into systath, bnd interaction
operators. We start with the control case (NI) in which a8l sitate transitions are
allowed. We are then in a position to adjust this Hamiltorfanthe other three

systems of interest by removing terms corresponding tddeld¢ransitions.

Hy = Hs+ Hg + H; + H} (6.3.1)

where
Hg = e |T1) (T1] +ep1 [d1) Ual +e2|T2) (T2| + €12 112) (12 (6.3.2)

Hy=Y" (glzy@ + &, ihig + aﬂg%) (6.3.3)
Q

Before calculating the interaction Hamiltonian, we simplihe system by
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6.3. CTR in two interacting quantum dots

switching to the numerical notation seen in figure 6.3.3.

Hp = #112) (1) + 75 [3) (1] + 11 [4) (2] + 7 [5) (21 + 7 [5) (3] +1216) (3]
+ A1) (4] 4 A |T) (4 + D IT) (5] + 12 18) (5] + A3 1) (6] + 71 [8) (6]

AT 13) (7] 2 19) (7] + A3 (2) (8] + 11 |9) (8] + A4 [4) (9] + 41 |6) (9] (6.3.4)

From this Hamiltonian, we can now repeat the procedure seincsection
6.2, and calculate bath and system operators for the 4 twoedobinations we
are interested in, from which we can calculate the Louallioperator and the
eigenfunctions of the system.

By solving for the zero eigenvalue, we can find its associaigenéunction,
which will give us the probability of occupation of each stat the system at any
given time. This is shown in figure 6.3.8. The lighter squasgsesent the states
most likely to be occupied. For the control case, all statesegually likely to
be occupied. For the FF case, state 5 is inaccessible, ancbaslg states 2 and
3 have the highest occupation probability, as their is omlg possible exit route
from these states. For the OF case, states 3 and 7 are inhtedsading to an
increase in the occupation probability of states 1 and 4ti&@EH case, all states
are accessible, but we see states 2 and 5 represent the mwsboaeevolutionary
route.

By taking these occupation predictions and accounting fertiternal emis-
sion associated with each state, we can accurately prédievierage current and
photocurrent through each of the systems. We can do thisee teparate ways:
by using the predictions above generated by the masteriequaethod, by run-

ning a computational simulation over 1 million timestepsdach configuration,
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6.3. CTR in two interacting quantum dots

Figure 6.3.8: State occupation probabilities for each efdifferent two dot con-
figurations. Clockwise from top left: NI, FF, EH, OF configuaais. The lighter
colour squares represent the state with the higher ocaupptobability at any
given time.
and finally by using a simple statistical analysis of the ntikisty routes through
the system, we can make an estimate of current and photossiemisites. The
three predictions for each configuration are shown below.

We can also make a prediction of the current and photo-cun@se through
the configurations. Our analytical method is not detailedugih to make a nu-
merical prediction, but as mentioned previously, the iase&l verticality of the

EH evolutionary route should lead to a higher Fano factad, the likely 1-2-4-1

diagonal evolution of the OF system should lead to a loweoRaator than the
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6.3. CTR in two interacting quantum dots

Photon Emission RateslInitial Prediction Simulation Master Equation
No Interaction (control 0.667 0.667 0.667
Flat-Flat 0.550 0.536 0.540
Offset-Flat 0.470 0.448 0.450
Electron-Hole 0.411 0.408 0.410

control case. The use of the numerical simulation is notls@dstough to capture
these dynamics over a large number of timesteps, but by isiytlye variation in
the number of timesteps between photon emission eventansindfigure 6.3.9,
we can see that the simulation shows excellent agreemdmnbwitanalytical pre-
dictions. We can see that the mean number of timesteps sesaa line with the
decreasing emission rates, as we move from the control satmghe more re-
stricted configurations. We can see that the FF configur&ivery similar to the
control sample, with the extra timesteps caused by theesimgiccessible state.
Also notable is the high proportion of emissions in the 3,d &rtimestep range
for the OF case, indicating a high degree of diagonal systestugon, and the
likelihood in the EH system for the photon emission eventbdceither only 1
or 2 timesteps apart, or 4+, demonstrating the verticalertlutough the system
states.

Using the eigenvectors calculated for each configuratiexipusly, and using
the same method as detailed in section 6.2, we are able to pne#etions for
the Fano factors of the four configurations. These result®spond as expected

with both the analytical predictions and the simulated ltssu

Fano Factors Master Equation Theory
No Interaction (control 0.96
Flat-Flat 0.83
Offset-Flat 0.72
Electron-Hole 1.12
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No Interaction Case

Theory: F=0.96 F-F Case

Theory: F=0.83

‘‘‘‘

£ s0

trastons

O-F Case

Theory: F=0.72 | E=H Case

Theory: F=1.12

Figure 6.3.9: Noise characteristics of the numerical satioths for each of the
different two dot configurations. The theoretical Fanodagptediction is included
for comparison

We can clearly see that the numerical and theoretical seaudt in excellent
agreement for both the one dot and two dot cases. We showetheaurent and
photon current noise chacteristics are dependant uporliaant tunnelling and
recombination rates, and also showed how the current anaploarrent noise
through a two dot system is strongly dependant upon the exertgy configura-
tions of the dots in question. We are able to study thesemsgsémalytically and
gain insight into the underlying mechanisms behind theanisrand noise charac-
teristics. Gaining a clearer understanding of the trarispat electroluminescence

chacteristics of particular quantum dot systems couldmii@tidy provide valuable
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6.3. CTR in two interacting quantum dots

insight into characterising novel quantum dot devices.
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Chapter 7

Conclusions and Future Prospects

In chapters 2-4, we have shown that it is possible to const&racimerical model
of a quantum dot array located in the intrinsic region of arpfunction which
accurately describes the associated experimental datag @amaster equation
approach, we were able to analyse the processes involvetivim lavel quantum
dot, and by inputting the relevant tunnelling, relaxatioml @&ecombination rates,
we were able to make a prediction of the level occupationgidities within the
model. We also demonstrated that it is necessary to inclatteghonon-assisted
relaxation and Coulomb interaction effects within eachvitiial dot in order for
the simulated results to match the experimental data instaetory manner. This
clearly suggests that both of these processes are an imptetdure of the sys-
tem being modelled, and explains the origins of many of th&uies visible in the
experiments. A more rigorous quantum mechanical treatroegtiantum tun-
nelling, excitonic recombination, and carrier-carrier @mob interaction could
be achieved, and may reveal several subtle features as seemnbut for this to

become necessary, the experiments would have to be cautied @ considerably
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lower temperature for any quantum correlation effects toliserved.

In chapter 5, we isolated the effects of delayed and simeittas tunnelling
current, and observed that the effect of changing the locatf the dot array
within the intrinsic region of the p-i-n junction has a direxffect on the bias
voltages at which delayed and simultaneous tunnelling rscdt¥e also note that
the inclusion of the Coulomb interaction leads to a feedbackidated regime, in
which a mixture of delayed and simultaneous tunnelling reag over the entire
range of bias voltages.

We then investigated this concept further by analysing thd@wob field fluc-
tuations around the dot array over the entire range of biages. The correlation
length of these fluctuations was shown to directly corredpaith the dot occu-
pation, indicating a series of feedback dominated fluabmatiin the tunnelling
currents. It is again worth noting that these fluctuationsehzeen treated semi-
classically. For a more detailed study of Coulomb triggerewh# sea fluctuations,
a more rigorous quantum mechanical treatment would be nedjui

We studied the process of up-conversion luminescence amqidposed Auger
mechanism. By a straightforward QM calculation, we were &blaclude basic
Auger processes in our model, and found that the results wenecellent agree-
ment with experimental data. We also calculated the effeatvarying magnetic
field on the system, and predicted a reduction in UCL at inangdselds. A fur-
ther potential development in studying UCL and the Auger pssaovould be to
simulate the system with the dot layer embedded within ayleakonant cavity.
This would lead to laser action, and a study of the photois$itz in this scenario
could potentially be interesting.

When studying the fluctuations in the Coulomb field as a funabiotime, it
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was discovered that several dots were emitting in a reginmioh electrons and
holes tunnelled into the dot’s resonant energy levelsradtety. We designated
this regime the “correlated tunnelling regime”, and stddien detail in chapter 6,

using a variety of methods. We first studied the regime footreedot case for both
tunnelling and recombination limited systems, using a misaksimulation and

master equation analysis to make predictions concernguirent and photo-
current noise though the dot.

We also analyzed a range of different two dot systems, imnvgldifferent
combinations of single dots with resonant energy offsets. ddmonstrated that
only three of the ten possible combinations would be capabt®ntinued sys-
tematic evolution, leading to current transport and phetariution. We again an-
alyzed these systems using a numerical simulation and nexgiation approach,
and derived results for mean currents and photo-currents,tizeir respective
noise characteristics. The numerical and analytical tesilowed remarkable
correspondance.

We have observed the single dot correlated tunnelling regimsimulation,
but not experimentally. It would be interesting to study exmental data to see
what possible correlated tunnelling regimes might be asiénd to ascertain how
many dots are involved. The noise measurements for cumelplaoton noise are
also generated by the simulation; noise measurementsif® ttwough a quantum

dot array are possible and would enable a further means gbaoson.
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