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Abstract

This thesis describes a theoretical and numerical study of quantum transport

and optical effects through an array of self-assembled InAsquantum dots grown in

the intrinsic region of a GaAs p-i-n junction. We present a numerical simulation of

this system and compare the generated transport and elecroluminescence results to

recent experimental data. The simulation first calculates the quantum tunnelling,

excitonic recombination, and relaxation rates within the dots, and then uses a

stochastic model to simulate carriers entering and leavingthe array. We highlight a

number of features within the simulation, which shed light on similar features seen

in experimental data. In particular, we demonstrate the importance of including

the effects of the Coulomb interactions between the carriers, as this is shown be

necessary for the simulated and experimental results to match closely. We also

investigate a model of Auger processes which is shown to produce up-conversion

luminescence, and study the effect of varying the location of the array within the

intrinsic region.

Additionally we present a master equation approach, which we use to describe

a correlated tunnelling regime, in which the Coulomb interaction between an elec-

tron and a hole forces them to tunnel alternately onto a single dot before recombi-

nation. We produce current and photon noise predictions forboth tunnelling and

recombination limited regimes. We also investigate this phenomena for a pair of

interacting dots, and find a number of two dot configurations which are able to

produce current and electroluminescence. We present current and photo-current

rate predictions for each case, and associated current and photon noise results.
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Chapter 1

Introduction

This thesis investigates computational and numerical approaches to modelling a

system comprising of an array of quantum dots grown within the intrinsic region

of a p-i-n junction. We study the effects of including various interactions in the

model on the transport and electroluminescence (EL) characteristics of the sys-

tem, and compare these to recent experimental results. We also present a theoret-

ical investigation into a range of correlated tunnelling phenomena. This chapter

introduces the important physics behind the basic system, and describes a sample

of the recent experimental and theoretical work done in thisfield.

A semiconductor quantum dot is a nanostructure which confines the motion of

a particle in all three spatial dimensions, effectively replicating the chacteristics

of an artifical atom. Quantum dots were first investigated over 20 years ago [1, 2],

and the ability to modify their properties with relative ease has maintained their

position at the forefront of condensed matter research eversince. [3]
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1.1. Semiconductor p-i-n junctions

1.1 Semiconductor p-i-n junctions

In an atom, when an electron feels a Coulomb force from a nucleus, the en-

ergy spectra of the electron has discrete energy levels. However, if the atoms

are brought together to form a crystal, the electrons on eachatom starts to feel

the attractive force of the neighbouring nuclei. This leadsthe outer atomic en-

ergy levels to experience a broadening effect, until eventually we start to see the

formation of continuous energy bands. [4]

The Schrodinger equation for electrons in the periodic potential of a semicon-

ductor is:

[−~
2

2m
∇2 + U(r)

]

ψ(r) = Eψ(r). (1.1.1)

Whereas the tightly bound electrons in the inner core levels remain relatively

unaffected, the electrons in the outer shell form a series ofcontinuous bands. For

Gallium Arsenide, this is occurs for the weakly bound electrons in the 4s and 4p

shells. Each GaAs pair contributes 8 electrons into the newly formed energy band,

which represents the solution of [1.1.1].

Figure 1.1.1 shows a schematic diagram showing the band structure forming

around an array of individual atoms.

The allowed energy levels are not continuous as for the case of a free electron,

but are split into regions of allowed bands separated by forbidden bandgaps. The

two bands we are particularly interested in when studying semiconductor physics

are the uppermost occupied or partly occupied band, known asthe valence band,

and the band immediately above it, known as the conduction band. The valence

and conduction band are separated by a bandgap as shown in figure 1.1.2.

2



1.1. Semiconductor p-i-n junctions

Figure 1.1.1: Bandstructure formation in crystalline solids

Depending on the exact nature of the material, how many electrons it donates

to the bandstructure, and the exact solution of the Schrodinger equation, the va-

lence band may be either entirely or partially filled with electrons. In order for the

material to be able to conduct current, the electrons need available empty states

into which they may move. A material with a completely full valence band will

therefore have a far higher resistivity than a material withonly a partially filled

valence band, as there are no empty states to provide mobility. This is the key

difference between an insulator and a metal, as shown in figure 1.1.3.

At non-zero temperature however, it is possible for the electrons of certain

insulators to possess sufficient kinetic energy to be able tojump up into the empty

conduction band, provided the band gap is small enough in comparison to the

thermal energy (E = kBT ). Once in the conduction band, they are surrounded

by empty states and are therefore able to move freely and thusconduct electricity.

The electron also leaves behind a vacancy in the valence band, which will allow

3



1.1. Semiconductor p-i-n junctions

Figure 1.1.2: Valence and conduction bands and bandgap. TheFermi level can be
seen mid-way between the 2 bands.

the remaining electrons to move more freely as a result, increasing the valence

band conductivity in the process. This gap is called a hole, and can be understood

as the equivalent of a positively charged particle moving inthe opposite direction

to the bulk motion of the electrons in the valence band. This system can be seen

in figure 1.1.4.

The energy of carriers occupying the conduction and valencebands varies with

the momentum of the carrier. In certain semiconductors, such as GaAs, the lowest

energy point of the conduction band coincides with the pointk = 0. Semicon-

ductors with this property are known as direct semiconductors. The solution of

the Schrodinger equation in such a semiconductor leads to the following relation

between the energy and wavevector of the electron:

E(k) = Ec +
~

2k2

2m∗
, (1.1.2)

wherem∗ is the “effective” mass of the carrier. Near the band edges ofthe semi-
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1.1. Semiconductor p-i-n junctions

Figure 1.1.3: The conduction and valence bands for an insulator and a metal

conductor, the electrons and holes behave as if they have an effective mass, often

significantly lower than the mass of an electron in free space[4].

The behaviour of the holes is slightly more complex than the behaviour of

the electrons. We see three distinctE(k) relationships within the valence band:

known as the heavy hole band, the light hole band, and the split-off band. The

effective mass of the holes is dependent upon which band theyare occupying.

Figure 1.1.5 shows the energy-wavevector relationship forGaAs. The energy gap

(Eg) can be seen between theΓ valley in the conduction band and the heavy and

light hole bands. In confined structures such as quantum dots, the heavy hole band

and light hole band are split[5]. In the case of InAs, the heavy hole band ground

state will shift enough to be disguised by overlapping in energy with the valence

band. It is therefore the light hole band which we are particularly interested in.

The number of electrons in the conduction band, and the corresponding num-

ber of holes in the valence band, is dependant upon the temperature and the size

of the bandgap of the semiconductor in question.

The intrinsic carrier concentration is given by [4]:
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1.1. Semiconductor p-i-n junctions

Figure 1.1.4: When an electron is excited into the conductionband, a hole is left
behind in the valence band

ni = Nce
(EF−EC)/kBT , (1.1.3)

where the effective density of states is,

Nc = 2

[

m∗kBT

2π~2

]3/2

(1.1.4)

We can also calculate the Fermi energy of an intrinsic semiconductor as:

EF =
Ec + Ev

2
+ (3/4)kBT ln(m∗

h/m
∗
e). (1.1.5)

The Fermi energy of an intrinsic semiconductor therefore lies very close to

the middle of the bandgap. This situation changes however, if we wish to change

the distribution of electrons and holes within the material, creating an excess of

6



1.1. Semiconductor p-i-n junctions

Figure 1.1.5: The energy-wavevector relationship in Gallium Arsenide. Figure
taken from [6]

one species or the other. We do this using a process known as doping. Doping

involves the addition of specific impurities to the semiconductor, which either

donate electrons to the semiconductor leading to an electron excess, or accept

electrons from it, leaving behind an excess of holes. This changes the carrier

concentrations in the conduction and valence bands, and causes the Fermi level

to shift to either just above the valence band (for acceptor ions) or just below

the conduction band (for donor ions). We denote the two typesof doping as

positive (p) doping or negative (n) doping. A diagram of n-doped and p-doped

semiconductors can be seen in figure 1.1.6.

7



1.1. Semiconductor p-i-n junctions

Figure 1.1.6: p doped and n doped semiconductors. The Fermi energy becomes
pinned to the conduction and valence band by the presence of the acceptors and
donors

The new Fermi level and carrier densities are related by:

n = nie
(EF−EFi

)/kBT . (1.1.6)

If a p-doped semiconductor and an n-doped semiconductor arejoined or grown

in direct contact with each other, a number of things happen.The Fermi level,

which is pinned to the conduction band edge in the n-doped region and the valence

band edge in the p-doped region, will remain aligned, leading to a “bending”

of the conduction band and valence band at the point where thetwo materials

meet. This central region is known as the depletion region, and all the carriers

present will be swept out by the built-in electric potentialcaused by the presence

of the charged donors and acceptors on either side of the region. The slope of the

potential can be modified by placing a layer of undoped (intrinsic) semiconductor

between the two doped layers. This can be done to allow us to adjust the width

of the effective depletion region, and reduce the severity of the slope in the band

edges as necessary. This is now a p-i-n junction[4]. A diagram of a p-i-n junction
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1.1. Semiconductor p-i-n junctions

under zero bias is shown in figure 1.1.7.

Figure 1.1.7: A p-i-n junction under zero volts. At 4.2 Kelvin, the Fermi level
is pinned to the conduction and valence band edges, causing aslope in the band-
structure in the intrinsic region.

As a positive or negative bias voltage is introduced across the junction, the

pseudo-Fermi levels in the contacts are shifted relative toone another, leading to

a change in the degree of the band bending. If a positive bias voltage is placed

across the junction with a value equal to that of the energy gap (1.52eV in GaAs),

then band bending will no longer occur. This is known as the flat band condition.

Figure 1.1.8 shows the p-i-n junction under a positive bias of 1.52V.
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1.2. Quantum Dots

1.2 Quantum Dots

Before we deal in detail with quantum dot devices, we must understand the un-

derlying quantum mechanical theories. The two situations we are particularly

interested in in this system involve two distinct cases: carriers that are spatially

confined in all three directions in a zero-dimensional potential, and completely

unconfined (free) carriers.

The solution of the Schrodinger equation for an unconfined electron, able to

move in all three spatial dimensions, is given by:

ψ = ei(k.r−ωt), (1.2.1)

with energy

E =
~

2(k2
x + k2

y + k2
z)

2m∗
. (1.2.2)

In contrast to a free carrier, a carrier may be confined between two potential

barriers, known as a quantum well. A quantum well is shown in figure 1.2.1. The

electrons are confined to the three energy states within the well by the two barriers.

The number of possible states within the well is dependent upon the width of the

well and the height of the barriers.

We begin by imagining placing an electron in an infinite square well, confining

it in all three dimensions. We find that the wavefunction willhave the form[7]:

ψ = sin(
nxπx

Lx

)sin(
nyπy

Ly

)sin(
nzπz

Lz

), (1.2.3)
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1.2. Quantum Dots

Figure 1.2.1: A diagram of the energy levels of a quantum wellformed between 2
finite potential barriers with separationw

with energy levels given by:

E =
~

2π2n2
x

8m∗L2
x

+
~

2π2n2
y

8m∗L2
y

+
~

2π2n2
z

8m∗L2
z

. (1.2.4)

If the barriers around the well are finite, then it is possiblefor the electron to

penetrate the barrier and move through the classically forbidden region into or out

of the well. In a system such as the one illustrated in figure 1.2.1, it is necessary for

the electron approaching the well to possess the correct energy to occupy one of

the free quantum states within the well. The tunnelling probability is therefore not

only dependent upon the height and width of the barriers, butalso on the “energy

matching” between the approaching particle and the well energy levels.

In figure 1.2.2, we see an electron (1) approaching from the left. It has a non-

zero probability of being reflected by the barrier (2), or, providing it possesses the

correct energy, of penetrating both barriers and exiting the other side (3). [7]

One possible method of creating such a confining potential isto take advan-
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1.2. Quantum Dots

Figure 1.2.2: Tunnelling through a barrier into and out of a quantum well

tage of the different bandgaps between two otherwise closely related semiconduc-

tors. Two such suitable materials, and the two we will be studying, are Gallium

Arsenide and Indium Arsenide. The lower bandgap of the InAs,sandwiches be-

tween two layers of the higher bandgap GaAs, creates a well inthe conduction

band of the material, enabling electrons to be trapped within, and an equivalent

well in the valence band in which holes may be trapped. This configuration is

shown in figure 1.2.3.

We will see in section 1.3 how it is possible to create islandsof InAs within

a GaAs substrate. This creates a zero dimensional quantum dot, in which the

electron is strongly confined in all three spatial dimensions. Figure 1.2.4 shows an

example of the x, y, and z energy levels which arise in a quantum dot. The energy

of a carrier confined within the dot has energy equal to the sumof the confinement

energies in each spatial dimension, as shown in [1.2.4]. In figure 1.2.4, we see a

dot which is particularly tightly confined in the z direction, meaning no excited

state is present in this spatial dimension.

12



1.2. Quantum Dots

Figure 1.2.3: A quantum well formed by surrounding a layer ofInAs with GaAs.

Figure 1.2.4: The bottom 2 energy levels in a dot for each dimension; if the dot is
more tightly confined in the z axis, it is likely that there will be no excited states
present.
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1.3. Experimental Information

Property GaAs InAs
Band Gap300L (eV) 1.42 0.35
Band Gap0K (eV) 1.52 0.42
Light Hole Effective Massme 0.082 0.026
Electron Effective Massme 0.067 0.022

Table 1.1: Material properties used in simulation

1.3 Experimental Information

A large motivation behind this work was the opportunity to work closely with an

experimental group within the department. The exact specifications of the system

we modelled were therefore specifically chosen to replicatethe actual samples

used in the experiments as closely as possible [8, 9]. The experimental sam-

ples were grown using molecular beam epitaxy (MBE) and Stransky-Krastanov

growth. This is possible on materials such as GaAs and InAs because they have a

lattice mismatch of approximately 7%. Both are III-V compounds with zinc-blend

structure and direct band-gaps. The exact properties of GaAs, InAs and AlAs can

be seen in table 1.1.

As the Indium Arsenide is deposited upon a Gallium Arsenide substrate us-

ing a standard MBE technique, initially a single layer of InAsforms, known as

the wetting layer. As more material is deposited, the straincaused by the lattice

mismatch between the two materials prevents further uniform growth and small

islands of InAs are formed. The InAs MBE is then stopped, and the system is

“capped” with a layer of GaAs. The InAs islands are now surrounded by GaAs,

effectively making them quantum dots. By growing this layer within the intrinsic

region of a p-i-n junction, the layout seen in figure 1.3.3 maybe fully realised.

Due to the process by which they have been grown, the quantum dots vary in size

14



1.3. Experimental Information

by up to 5nm laterally and 2nm vertically,with an approximately Gaussian distri-

bution. The formation and structure of the wetting layer andthe morphology of

the dots are important factors in the electronic structure and optical properties of

the final system. Work is ongoing in these areas, see work doneby Chenet al [11]

and McGeeet al [12].

Figure 1.3.1: Stranski-Krastanov growth of InAs/GaAs quantum dots. Image
taken from Gonget al (2004) [13].

The samples used in the experiments were grown in two batches. Batch A

was grown in Sheffield by Prof. Mark Hopkinson, and batch B wasgrown in

Nottingham by Prof. Mohammed Henini. Further details of thegrowth techniques

used can be found in [8]. In samples containing dots, the InAs quantum dot layer

was grown in the intrinsic region of a p-i-n junction, as shown in figure 1.3.2.

The samples were then analysed at the University of Nottingham by a group

headed by Prof. Laurence Eaves and Dr. Amalia Patane [14, 15]. The samples

were cooled using an Oxford Instuments continuous gas flow cryostat, capable

of maintaining a temperature of 3.6±0.05K, and a vacuum pressure of10−6mbar.

Magnetic field experiments were performed using a superconducting magnet ca-

pable of generating fields up to 14T.
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1.3. Experimental Information

Figure 1.3.2: InAs dots within a p-i-n junction. The dots areconfined approxi-
mately in the centre of the intrinsic region

For EL measurements, a Trias 550 series spectrometer and Si Charge Coupled

Deviced Detector were used. This system is capable of a spectral resolution of

3.8meV, and is effective at detecting photons in the range 400-950nm.

The majority of IV measurements were performed using a Keithley 2400 dig-

ital multimeter, with a current sensitivity of approximately 100pA.
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1.4 Outline of Thesis

In Chapter 2 we present the mathematical model we use to analyse the full sys-

tem which forms the basis of the computational simulation seen in Chapter 3.

First we model the quantum dots and calculate their energy levels using a quan-

tum harmonic oscillator model. We then go on to calculate theelectron and hole

tunnelling rates into the dots from the n and p contacts usinga WKB approxima-

tion, and the intradot recombination rate using Fermi’s Golden Rule. Finally we

present the full rate equations for all the processes in the system, and solve them

analytically to find a steady state solution.

Chapter 3 goes into more detail about the exact method of implementing the

model numerically. The simulation in based on a stochastic model, not dissimilar

to the Monte Carlo method. First we generate an array of 2500 dots within a p-i-n

junction and calculate all their relevant properties. We are then able to calculate

the necessary rates of carriers moving into, within and out of the dots. A stochastic

simulation is then used to find the populations of the dots, and this is then fed back

into the system to update the relevant rates.

In Chapter 4, we now aim to improve our model by including the effects of

the Coulomb interaction in the simulation, which have previously been neglected.

In Chapter 5 we analyse the model in more detail, and look at theeffect

of including some secondary interactions within the model,including studying

changes in the spatial correlation length of the fluctuations in the Coulomb field,

the inclusion of Auger processes in the model, and the effectof delayed and direct

recombination on the simulated electroluminescence of themodel.

Finally in Chapter 6 we study a particular regime seen in the results of the 2500
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1.4. Outline of Thesis

dot model involving correlated tunnelling of electrons andholes into the same

dot, and use the master equation method to derive some of the key features of the

process. We first study an isolated dot in this correlated tunnelling regime, and

then expand the model to include two dots interacting with each other. We then

use the master equation method to predict the current and current noise through a

variety of situations.
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Chapter 2

Mathematical Model

Here we present the mathematical model we use to analyse the full system which

forms the basis of the computational simulation seen in Chapter 3. First we model

the quantum dots and calculate their energy levels using a quantum harmonic

oscillator model. We then go on to calculate the electron andhole tunnelling

rates into the dots from the n and p contacts using a WKB approximation, and the

intradot recombination rate using Fermi’s Golden Rule. Finally, we present the

full rate equations for all the processes in the system, and solve them analytically

to find a steady state solution.

2.1 Quantum Dots

In section 1.2, we introduced the concept of a quantum dot formed by a small

island of Indium Arsenide surrounded by Gallium Arsenide, and explained in sec-

tion 1.3 how this could be achieved experimentally using Stranski-Krastanov epi-

taxial growth techniques. We now model these dots using a quantum harmonic os-
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2.1. Quantum Dots

cillator model (QHO), as seen in figure 2.1.1. Other models, such as an infinite or

finite square well are also valid approximations, but the division between the InAs

and the GaAs at the boundaries of the dots is not perfectly rigid, and the change

in potential on any occupying carrier can be seen as approximately parabolic. The

effect of the deposition of the “capping layer” onto the dot acts to compress the

dot on the z axis, implying a clearer potential division in this dimension. There-

fore a two dimensional QHO model with infinite hard walls in the z axis remains

the most logical and accurate of the soluble models [16, 17]. Much work has been

done on characterising the electronic structure of dots, asthis is an extremely

important basis for understanding their optical properties [12, 18, 19, 20, 21].

The Quantum Harmonic Oscillator model used assumes the quantum dots have

an approximately parabolic potential in the xy plane, with hard walls in the z axis:

V (r) =
1

2
Kr

2 + V0(z), (2.1.1)

whereK is a constant, and

V0 =











0 |z| < d/2

∞ |z| > d/2
, (2.1.2)

whered is the width of the dot along the z axis.

The general form of the wavefunction of an electron trapped in such a potential

is:
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2.1. Quantum Dots

Ψl,m,n(x, y, z) = πlxly
√

2ll!2mm!l1/2
z e

−x2

2l2x e
−y2

2l2y Hl(x/lx)Hm(y/ly)cos(nπz/lz).

(2.1.3)

[17]

Figure 2.1.1: Diagram of a the groundstate and first three excited states of a 1D
Quantum Harmonic Oscillator Model. Image taken from [22]

The electron and hole energy levels can be found in terms of the specific di-

mensions of the potential,

Elmn = (l +m+ 1)~ωc +
~

2π2n2

2m∗l2z
(2.1.4)

The ground states and first two excited states of an electron in a QHO can be
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2.1. Quantum Dots

seen in figure 2.1.2. We must also be sure to include other relevant features seen

in the experiment, such as the GaAs conduction and valence bands at 1.52eV,

and also the “wetting layer” energy level with electron holetransition energies at

1.43eV [23, 24], as discussed in section 1.3. The conduction (valence) band and

wetting layer energy levels are continuous levels: the carriers that occupy them

are not confined to the dimensions of the dots, and they are available for resonant

tunnelling at a wider value of energy levels than the dot states.

Figure 2.1.2: The energy levels included in the simulation

The dimensions of the quantum dots being modelled are distributed around a

mean height, width and depth of x=20±3nm, y=20±3nm, and z=3±0.5nm, where

we define the dot array as lying in the xy plane. The total energy of the carrier in

the dot is the sum of the energies for each dimension. The wetting layer energy

falls between the first and second excited states in the x and ydimensions, and

below the first excited state in the z dimension, which is higher than the conduction
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2.1. Quantum Dots

band and thus merges into the continuum. Therefore there is one ground state and

two excited states available for resonant tunnelling within each dot.

We also need to model the energy levels of the hole states within the InAs

dot. These are slightly different to the electron levels as the holes occupy different

sub-bands within the valence band. We need to consider the position of the light

hole, heavy hole and cut-off bands, and which ones are relevant to the simulation.

The holes occupying each sub-band will have different effective masses, which

will directly affect their ability to tunnel into the dots, and the energy levels used

[4]. This is accounted for when the hole levels are calculated.
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2.2. Quantum Tunnelling

2.2 Quantum Tunnelling

The physics of semiconductor p-i-n junctions were introduced in section 1.1, and

the concept of inserting a layer of quantum dots within the intrinsic region was

mentioned. A diagram of such an arrangement is shown in figure2.2.1.

Figure 2.2.1: p-i-n junction with a layer of dots embedded within the intrinsic
region

We see the layer of dots centrally located within the intrinsic region, and the

populations of electrons and holes occupying the “n” doped and “p” doped regions

respectively. In order to proceed, we must calculate the carrier populations from

the doping concentrations of the two respective regions. From this we can then

formulate the Fermi energy and attempt frequency at the experimental temperature

of 4.2 Kelvin.

Experimentally doping concentrations are given asNA=4 × 1018cm−3 in the
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2.2. Quantum Tunnelling

p contact andND=2 × 1018cm−3 in the n contact. From this we can calculate the

electron (nn) and holes (pp) carrier densities [4]:

nn = NDe
−EA/kBT , (2.2.1)

and

pp = NAe
−ED/kBT , (2.2.2)

whereEA andED are the acceptor and donor level energies respectively.

We can now use the Joyce-Dixon approximation [4] to calculate the Fermi

energies within the contacts:

EFn = kBT ln

(

nn

NC

)

+
nn√
8NC

, (2.2.3)

whereNC is the density of states in the GaAs conduction band. The equivalent p

contact equation is:

EFp = kBT ln

(

pp

NV

)

+
pp√
8NV

, (2.2.4)

whereNV is the density of states in the GaAs valence band.

The Fermi velocity is therefore given by:

vFn(p) =
√

2EFn(p)/m∗. (2.2.5)

From the carrier populations we can now calculate the electon (hole) attempt

frequency,fn(p), for

fn(p) = (
1

2
)nn(pp)vFn(p)ρdots, (2.2.6)
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2.2. Quantum Tunnelling

whereρdots is the proportion of the xy plane of the intrinsic region taken up by the

dots. The factor of 1/2 comes from the fraction of the carriers in the doped region

moving both towards the intrinsic region at any given moment.

We may now calculate the tunnelling rate of the carriers moving into a particu-

lar doti at resonance. We denote this rate asTi, and use the WKB approximation,

shown below:

Tin(p) = fn(p)e
−

R s
0

k(x)dx, (2.2.7)

wheresi is the distance between the contact and dot i, andki is the inverse decay

length of the carrier in the intrinsic region. [7]

In order to calculatesi andki, we must make a simple model of the section of

the intrinsic region the carriers tunnel through between the contact and the dot in

question. We do this using a triangular barrier approximation, as shown in figure

2.2.2.

We see that the potential the carrier must tunnel through is dependant upon

the bias voltage. As the voltage increases towards flat band conditions, the barrier

effectively becomes lower and narrower, leading to an exponential increase in the

tunnelling rate.

The tunnelling distance,si varies according to

si(V ) = si(0)
(EGaAs − V )

EGaAs

, (2.2.8)

whereEGaAs, the energy gap of the GaAs substrate, has a value of 1.52eV, and the
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2.2. Quantum Tunnelling

Figure 2.2.2: Model of a triangular barrier

wavevector in the barrierki varies by

ki(V ) =

√

2m∗(EGaAs − V )(si(V ) − x)

~
. (2.2.9)

This gives us a tunnelling rate of

Tin(p) = fn(p)e
−

q

8m∗3

~2 , (2.2.10)

Therefore we are able to calculate how the tunnelling rate changes with bias

voltage, and for a range of starting size dimensions. Simplyby adjusting some of

the initial parameters, we are able to calculate the effect on the rate of the system

temperature, the dot distribution density, the size of the intrinsic region, and the

position of the dot array within that region. The effect of changing bias voltage
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2.2. Quantum Tunnelling

on the p-i-n junction can be seen in figures 2.2.3, 2.2.4 and 2.2.5.

Figure 2.2.3: p-i-n junction at zero Volts

Of course, the carriers are only able to tunnel into dots whenthe bias voltage

is such that they possess the correct energy for resonant tunnelling to occur. We

must now take into account the effect of this. The width of this resonance can

be calculated from the overlap of the dot state energies and the contact Fermi

energies at the experimental system temperature of 4.2K. The resonance function,

Rij, for energy level j and dot i, is related to the overlap in energy between the

carrier states in the contact and on the dot [25]:

Rij(V ) = AijF (E/eV )D(E)δ(E − Eij), (2.2.11)

whereF (E/eV ) is the Fermi distribution at 4.2 K and voltage V,D(E) is the
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2.2. Quantum Tunnelling

Figure 2.2.4: p-i-n junction at typical resonant bias voltage of 1.25 V

density of states in the conduction/valence band, andAij is a normalisation con-

stant, which setsRij(V ) = 1 at the exact moment of resonance. If the voltage is

adjusted away from this point, the tunnelling current fallsaway sharply on either

side.

A simple diagram showing resonant tunnelling can be seen in figure 2.2.6.

The final tunnelling current into energy level j of dot i,αij can therefore be

calculated, by combining the background tunnelling rateTi and the normalised

resonance functionRij. All the rates have a dependence on the bias voltage of the

system

αij(V ) = Ti(V )Rij(V ). (2.2.12)
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2.2. Quantum Tunnelling

Figure 2.2.5: p-i-n junction at 1.52V (flat band conditions)
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2.2. Quantum Tunnelling

Figure 2.2.6: resonant tunnelling

31



2.3. Recombination Processes

2.3 Recombination Processes

Now we have calculated the rate at which electrons and holes can tunnel from

the contacts and into the dot array, we need to calculate the rate at which they

spontaneously recombine. There are two main processes involved. Firstly, if

the dots tunnel into a excited state or a higher level such as the wetting layer

or conduction/valence band, they are able to “relax” into a lower level [26, 27],

typically the unoccupied groundstate of an individual dot,through interaction with

an LO phonon. For this process to occur, the gap in energy levels needs to be close

to an integer multiple of the GaAs LO phonon energy, which is 36meV [28].

Secondly, if there are an electron and a hole occupying the same dot, it is pos-

sible for excitonic recombination to occur, emitting a photon. This is the process

we address first.

If there is an exciton present on a dot, or spatially aligned in the wetting layer

or conduction/valence bands, there is a possibility of spontaneous radiative re-

combination. We denote this processγij, and the probability of it occuring is

calculated according to Fermi’s Golden Rule, by formulatingthe overlap integral

between the two states in question [7].

The transitionψeγ
†ψh can be found by calculating the dipole transition matrix

element between the electron and hole pair states.

Using Fermi’s Golden Rule, we can calculate the transfer ratebetween the two

states, which we can see is proportional to the overlap integral between them, in

this case the electron state,ψije and the hole state,ψijh.

γijk =
e2ω3

8πε~c3
ψije · ψijh (2.3.1)
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2.3. Recombination Processes

Figure 2.3.1: Excitonic Recombination within a dot

In section 2.1, we defined the electron groundstate wavefunction as

ψ000 == πlxlyl
1/2
z e

−x2

2l2x e
−y2

2l2y H0(x/lx)H0(y/ly)cos(πz/lz). (2.3.2)

We also know that the first electron excited state [7] looks like:

ψ010 = πlxly
√

2l1/2
z e

−x2

2l2x e
−y2

2l2y H0(x/lx)H1(y/ly)cos(πz/lz). (2.3.3)

By calculating this integral numerically, we can see that thetransition rate

for recombination of electrons and holes is considerably higher if the carriers are
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2.3. Recombination Processes

occupying equivalent states, as the overlap integral between them will necessarily

be far greater. Groundstate to groundstate and excited state to excited state transfer

therefore occurs at a considerably quicker rate than between an excited state and

a ground state.

Figure 2.3.2: Overlap integrals between energy levels

Once the exciton recombines, a photon is emitted. The energyof the photon

is equal to the difference in energies between the two statesin question. For

groundstate to groundstate recombination, the energy of the emitted photon is in

the region of 1.25eV.

Figure 2.3.3 shows the possible phonon assisted relaxationpathways within a

quantum dot. For a system with five energy levels, there are ten such pathways.
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2.3. Recombination Processes

Each relaxation processψ†
gβ

†ψx involves the emission of an LO phonon (labelled

asβ) with an energy equal to the drop in energy between the two levels involved

in the process. As seen in section 1.3, the energy of an LO phonon in GaAs is

36meV, so phonon assisted relaxation can only occur when thegap between the

states is close to an integer multiple of this energy. This includes carriers in the

conduction/valence band and wetting layer which become trapped in the dot. As

we only consider a first excited state for the x and the y wavefunction components,

selection rules preventing same parity relaxation are not applicable.

Figure 2.3.3: Phonon Assisted relaxation mechanism

We must also take into account the concept of the “phonon bottleneck” effect.

It is known that although this has a noticeable effect in intra-dot relaxation dy-

namics, it is not sufficient to reduce the intra-dot relaxation rate enough to make

the timescale comparable to the excitonic recombination rate [29]. Therefore for

the purposes of our simulation, we choose to neglect this effect.
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2.4 Full Rate Equations

We have now identified the three key processes that shape the evolution of the

system: carriers tunnelling from the contacts into the dots, which we denote as

processα, phonon assisted relaxation between states within the dot,denoted as

processβ, and excitonic recombination, denoted asγ. In order to analyse further,

we simplify the system to a four level system, with a single groundstate (g) and

excited state (x) for electrons (e) and holes (h). The population of the contact (c)

is also necessary.o denotes the occupancy of the state in question. The full rate

equations are:

doxe

dt
= αxeoce(1 − oxe

2l
) − βeoxe(1 − oge

2l
) − γxoxeoxh, (2.4.1)

doxh

dt
= αxhoch(1 − oxh

2l
) − βhoxh(1 − ogh

2l
) − γxoxeoxh, (2.4.2)

doge

dt
= αgeoce(1 − oge

2l
) + βeoxe(1 − oge

2l
) − γgogeogh, (2.4.3)

dogh

dt
= αghoch(1 − ogh

2l
) + βhoxh(1 − ogh

2l
) − γgogeogh. (2.4.4)

We can now proceed further and define a full Hamiltonian for the system. We

define the dot array to be the system of the Hamiltonian, whichinteracts with its

environment by way of the three process,α, β andγ.

We will now use an approach known as the master equation method. This

is an open systems approach to quantum mechanics, which makes it possible to

36



2.4. Full Rate Equations

Figure 2.4.1: Totality of Processes used in Model

solve complex problems by separating the system, the evolution of which we are

interested in, from the environment, the evolution of whichwe are not. We pro-

ceed by describing the problem in terms of the system, S, the “bath”, B, and the

interactions between them, I. We define Hamiltonians for each term, and isolating

the density matrix of the system,ρ(t) from the total density matrixχ(t).

The Hamiltonian can be split into the system Hamiltonian, the bath Hamilto-

nian and the interaction Hamiltonian:

Ĥtot = ĤB + ĤS + ĤI (2.4.5)

We then define:

ĤB =
∑

i,j

{

εαijα
†
ijαij + εβiβ

†
i βi + εγjγ

†
jγj

}

(2.4.6)

ĤS =
∑

i,j,k

εija
†
ijkaijk (2.4.7)
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2.4. Full Rate Equations

ĤI =
∑

i,j,k

εαija
†
ijkαijk + εβia

†
gikaxikβ

†
i + εγjaejkahjkγ

†
j . (2.4.8)

The indexi denotes electron or hole states,j denotes excited or ground states

andk denotes spin up or spin down states.a†gik andaijk are thus the Fermionic

creation and annihilation operator for the system stateijk. α†
ij andαij are the

creation and annihilation operators for the carriers in theleads,β†
i andβi are the

bosonic creation and annihilation operators for the phonons associated with the

relaxation process, andγ†j andγj are the bosonic creation and annihilation opera-

tors for the photons emitted by excitonic recombination. The factorε represents

the associated energy with each state or process.

We also define

Ĥ0 = ĤS + ĤB. (2.4.9)

If we assume that the spin up and spin down carriers operate independantly,

we are able to suppress the third index k, and are then able to compile a list of

16 system states, which can be defined in terms of which combination of the four

energy levels are occupied by a carrier, shown in figure 2.4.2.

We define the relationship betweenχ(t), the total density matrix of the system

andρ(t), the reduced density matrix to be

ρ(t) = TrB(χ(t)). (2.4.10)

We also define the initial bath density matrix to be

R(0) = TrS(χ(0)). (2.4.11)
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2.4. Full Rate Equations

system state ex eg hx hg
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

Therefore, by making the Born approximation, we are able to trace out the

unwanted parts of the ensemble. The Born approximation states that the Bath is

large enough to remain unaffected by any changes in the stateof the system, and

therefore does not evolve in time. Therefore we can use the initial bath density

matrix for the entirity of the model. We can now find a steady state solution for

the dot system itself. This can be achieved using a master equation approach[30],

where the master equation describing the evolution ofρ(t) is given by the Louiv-

ille operator:

ρ̇(t) = Lρ(t). (2.4.12)

Becauseρ(t) does not contain any off diagonal elements, we are able to simplify

this expression by taking the trace ofρ(t) and converting it into a vector. In turn,

this means that

We wish to find the matrixL, which controls the evolution of the system in
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2.4. Full Rate Equations

time. To do this, we need to use the Markov approximation, which states that the

future time evolution of the system is only dependant upon the present state of

the system and not on any previous states. This means that thebath must be large

enough to absorb any fluctuations without reflecting them back to the system. We

can now define the interaction Hamiltonian as a sum over a set of general system

and bath operators:

ĤI =
∑

i

Si ⊗Bi. (2.4.13)

Having defined the system and bath operators for each index i,we convert

them into the interaction picture using the relationship:

S = eiH0t/~Se−iH0t/~ (2.4.14)

We now calculate the bath correlation functions using the equation:

Ckl(t, t
′) = TrB[Bk(t)Bl(t

′)R0] (2.4.15)

From this point, we can derive the equation of motion forρ:

d

dt
ρ(t) = −i [HS, ρ(t)] −

∑

k

(SkDkρ(t) −Dkρ(t)Sk + ρ(t)EkSk − Skρ(t)Ek) ,

(2.4.16)

where we defineDk as

Dk = lim
t→∞

∫ t

0

dτ
∑

l

Ckl(τ)Sl(−τ) (2.4.17)
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andEk as

Ek = lim
t→∞

∫ t

0

dτ
∑

l

Clk(−τ)Sl(−τ). (2.4.18)

We therefore findL to be:



































































































X0 0 0 0 0 0 γg 0 0 γx 0 0 0 0 0 0

αhx X1 0 0 0 0 0 γg 0 0 0 0 0 0 0 0

αhg βh X2 0 0 0 0 0 0 0 0 γx 0 0 0 0

0 αhg αhx X3 0 0 0 0 0 0 0 0 0 0 0 0

αeg 0 0 0 X4 0 0 0 βe 0 0 0 0 γx 0 0

0 αeg 0 0 αhx X5 0 0 0 βe 0 0 0 0 0 0

0 0 αeg 0 αhg βh X6 0 0 0 βe 0 0 0 0 γx

0 0 0 αeg 0 αhg αhx X7 0 0 0 βe 0 0 0 0

αex 0 0 0 0 0 0 0 X8 0 0 0 0 0 γg 0

0 αex 0 0 0 0 0 0 αhx X9 0 0 0 0 0 γg

0 0 αex 0 0 0 0 0 αhg βh X10 0 0 0 0 0

0 0 0 αex 0 0 0 0 0 αhg αhx X11 0 0 0 0

0 0 0 0 αex 0 0 0 αeg 0 0 0 X12 0 0 0

0 0 0 0 0 αex 0 0 0 αeg 0 0 αhx X13 0 0

0 0 0 0 0 0 αex 0 0 0 αeg 0 αhg βh X14 0

0 0 0 0 0 0 0 αex 0 0 0 αeg 0 αhg αhx X15



































































































(2.4.19)

where we can define

Xn = −
∑

m,m6=n

Lmn (2.4.20)
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It is now straightforward to find a stationary solutionρ̇ = 0 by finding the zero

eigenvalue of the system and its associated eigenvector.

We can analyse this matrix numerically and find its corresponding eigenvalues

and eigenvectors for any values ofα, β andγ we wish. Using MatLab, we can then

find the eigenvector which corresponds to the zero eigenvalue, representing the

steady state solution. The zero eigenvector is real and unique. After normalisation

this will provide us with the probability of occupation of each state.

Obviously as the rates vary considerably in the model, the steady state solu-

tion will also vary accordingly. Figure 2.4.2 shows the variation of occupation

probability of the four energy levels with bias voltage, along with the probability

of the dot being completely empty, between 1 and 1.5V. The model assumes the

resonant condition. That is to say, the data shown is for a dotresonant at the exact

voltage in question. If resonance was not assumed, the plot would be zero at every

point other than the resonant voltage.

The groundstate occupancies are higher than the excited state occupancies,

which can be attributed to the asymmetric carrier relaxation between them. The

hole tunnelling rate is the limiting factor at low voltages,until it crosses the re-

combination rate at approximately 1.32V. Subsequently, wesee the hole levels

occupations probabilities increasing from zero at 1V to 0.97 at 1.5V. The switch

over of limiting factors from hole tunnelling rate to excitonic recombination rate

has an interesting effect on the electron level occupancy probabilities, which re-

mains high between 1 and 1.15V before dropping off only to peak again between

1.35 and 1.5V. This can be understood in the following manner: below 1.15V, the

hole tunnelling rate is particularly low, leading to very small numbers of holes

occupying the dot; this in turn means that virtually every electron which tunnels
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2.4. Full Rate Equations

Figure 2.4.2: Variation of level occupation probability with bias voltage

onto the dot remains there, unable to recombine. Alternately, above 1.35V, the

electron tunnelling rate approaches a factor of 10 higher than the recombinations

rate, meaning that any electron which combines is immediately replaced. This can

be seen as a switch from a “static” to a “dynamic” equilibrium. Between 1.15 and

1.35V, the three rates become comparable, and a lower equilibrium is maintained.
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Chapter 3

Implementation

This chapter goes into more detail about the exact method of implementing the

model numerically. The simulation in based on a stochastic model, not dissimilar

to the Monte Carlo method. First we generate an array of 2500 dots within a p-i-n

junction and calculate all their relevant properties. We are then able to calculate

the necessary rates of carriers moving into, within, and outof the dots. A stochas-

tic simulation is then used to find the populations of the dots, and this data is then

fed back into the system to update the relevant rates.

3.1 Calculating The Energy Levels

The energy levels of each dot are calculated using a series ofrandom numbers.

The dots are generated with an adjustable predefined mean andstandard deviation

in both dot size and dot separation, which can be adjusted to co-ordinate with the

experimental data attributed to the sample we wish to model.

The random numbers are generated using the “ran2” algorithmtaken from
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3.1. Calculating The Energy Levels

[31], with computer clock time used as a seed. ran2 has a period of1018, which

is more than sufficient for this simulation, which uses in theregion of2 × 1011

random numbers per run. It generates numbers linearly distributed between 0 and

1, which can then be adjusted to fit a Gaussian distribution where necessary.

The simulation generates five electron energy levels and fivehole energy levels

for each dot. The levels represented are the dot groundstate, with spatial quantum

numbers (1,1,1), two excited states (2,1,1) and (1,2,1), a semi-localised energy

level representing the wetting layer, and a bulk GaAs state in which the carriers

are free to move around within the array. The exact energy levels of the ground-

state, excited states are calculated according to the modelused in section 2.1,

using the randomly generated dot dimensions. As a semi-localised state, the en-

ergy of wetting layer is also dependent upon the size generated for the dot, albeit

with a smaller mean distribution centred on 1.43eV. It is assumed that the GaAs

conduction and valence band edges will not be perfectly uniform; the presence of

impurities in the system will most likely lead to small fluctuations. The energy of

the GaAs conduction and valence band states is centered at 1.52eV, with fluctua-

tions with a standard deviation of only 1meV, which are distributed independently

of the dot size. Figure 3.1.2 shows the ten energy levels generated for each dot.
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Figure 3.1.1: Distribution of electron dot energy levels generated by the simu-
lation. The values on the x axis denote the bias voltage at which the state will
become resonant during the simulation

46



3.1. Calculating The Energy Levels

1200 1250 1300 1350 1400 1450 1500
0

20

40

60

80

100

120

140

160

180

200

Dot energy levels /meV

N
o.

 o
f o

cc
ur

en
ce

s

Figure 3.1.2: Distribution of hole dot energy levels generated by the simulation.
The values on the x axis denote the bias voltage at which the state will become
resonant during the simulation
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3.2 Calculating the Rates

Having generated our energy level array, we can now adjust the bias voltage in the

simulation and fill the dots with carriers. In order to calculate the occupations of

each dot, we must first calculate the theoretical tunnellingrate,α. This is defined

as:

αij = TiRij(1 − oij/2), (3.2.1)

where T is the background tunnelling rate, R is the resonancefunction, o is the

occupation, and i and j are the dot and level index respectively. The electron and

hole tunnelling rates are calculated separately but using an identical method. The

occupation will be initially generated using the theoretical tunnelling rate and fed

back into the equation. The(1− oij/2) term is a result of Paulis Exclusion princi-

ple. Each energy level can be occupied by two carriers simultaneously, providing

they have different spins. The formula can be justified in thefollowing way: if the

level is unoccupied, all carriers in the contact are eligible to tunnel; if the level is

completely occupied, then no carriers are eligible; and if the level is occupied by

one carrier, then on average half of the carriers will possess the opposite spin and

will thus be eligible. For computational purposes, the carriers are not individually

assigned spins, so this term is necessary to create the same effect.

The ratesTi andRij, need to be calculated separately.

The background tunnelling rate,Ti, is calculated using the WKB approxima-

tion as described in section 2.2.Ti is the maximum tunnelling rate into a single

dot energy level on exact resonance. We previously definedTi as:
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3.2. Calculating the Rates

Tin(p) = fn(p)e
−2kixi , (3.2.2)

wherefn(p) is the n(p) contact attempt frequency calculated in section2.1, ki is

the wavevector associated with the tunnelling region between the contact and the

dot, andxi is the separation between the contact and the dot.

We are able to calculateki andxi using the initial parameters of the system,

which we may wish to vary in order to replicate experimental method, and a

simple triangular barrier method, which introduces a bias voltage dependence in

Tin(p). This was demonstrated in section 2.2.

Using this method, the simulation therefore produces a logarithmic plot of

Ti(V ) in figure 3.2.1.

Figure 3.2.1: Background tunnelling rateTin(p)

The figure showsTin(p)(V ) levelling off as it approaches flat band (1.52V).

49



3.2. Calculating the Rates

This is due to the fact that an increase in voltage at this point leads to a compara-

tively smaller decrease inki than at lower voltages. At this point, the background

tunnelling rate is identical for all 2500 dots.

We now need to calculate the resonance functionRij, for each level j, of each

dot i. This is calculated from the energy overlap between thethe dot level and the

energy distribution of the carriers in the contacts. The density of states within the

dot is modelled as a delta function, and the energy density ofthe carriers in the

contact can be calculated by multiplying the 3D density of states within a GaAs

conduction (valence) band by the Fermi distribution of electrons (holes) within

the available states.

The density of states in the conduction band is given by:

D(E) =
8
√

2πm∗3/2

h3

√

E − EF . (3.2.3)

The Fermi distribution of particles within these states is given by:

F (E) =
1

(e(E−EF )/kBT + 1)
. (3.2.4)

Therefore the resonance function behaves according to:

Rij = AijD(E)F (E)δ(E − Eij). (3.2.5)

We know that when the energy levels of the two are perfectly aligned,Rij is

equal to one, and we normalise the integral with the factorAij to ensure that this

is the case. Figure 3.2.2 shows the resonance function against bias voltage of a

randomly selected dot.
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Figure 3.2.2: Resonance Function for a randomly chosen dot

The groundstate, excited state, wetting layer and conduction/valence bands

are all visible. One thing of particular interest is the appearance that the hole

resonance function appears squashed up towards flat band conditions compared

to the electron resonance function, and the wetting layer and conduction/valence

band resonances are no longer aligned. This is due to the asymmetric positioning

of the dot layer within the intrinsic region.

This is also clear in figure 3.2.3, which shows the sum of the resonance func-

tions for all 2500 dots.

We now need to calculate the rates of the other two processes in the system,

the radiative recombination and non-radiative relaxationrates.

The non-radiative process allows carriers to relax from theconduction band

and wetting layer into energy levels within the dots, and also from excited states

to ground states within the same dot. This process was described in section 2.3,
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Figure 3.2.3: total resonance for all 2500 dots

and is the highest transition rate in the simulation, with a mean transition rate of

1×1015s−1. In previous experimental data, the relaxation can be seen to occur for

all relative energy differences. Therefore we make the assumption that all states

are able to relax provided there is an empty state available,without taking into

account their relative energy differences.

As with the tunnelling rate, this process must also take intoaccount Paulis

exclusion principle, because if the level to which the carrier is attempting to relax

is already occupied, the process will be dependent upon the spin of the carrier. If

the process involves a carrier in dot i relaxing from state j to state k, we proceed

by multiplying the initial rate by a factor ofoij(1 − oik/2).

The excitonic recombination rate was shown in chapter 2 to beproportional

to the overlap integral between the relevant occupied electron and hole states, and

thus this rate is calculated in the computational model for each energy level of
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each dot.

Neither of these rates have a bias voltage dependence, and therefore they need

only be calculated once at the start of the simulation. Figure 3.2.4 shows typical

recombination and relaxation rates superimposed onto the products of T and R

for all 2500 dots. This allows us to be able to compare the relative orders of

magnitude of the various processes.

Figure 3.2.4: Comparison of rates of all major processes

Here we can see that at low bias voltages, the tunnelling rates are the limiting

factor, but above approximately 1.3V, the excitonic recombination rate becomes

the limiting rate.
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3.3 Calculating the Populations

Now that we have calculated or estimated every relevant ratewithin the system,

we are in a position to run a stochastic simulation over a large number of timesteps

and over a range of bias voltages, and allow the dots to be continually filled and

emptied of carriers. For the simulation to be valid, it is important that the calcu-

lated theoretical rates are recoverable from the rates generated by the stochastic

process. In order to fill and empty the dots stochastically, we generate a large

number of random numbers, the details of which were discussed in section 3.1.

We use the random numbers generated to fill and empty the dots at each

timestep. We do this by comparing a random numberx to the product of the

relevant rate and the timestep, which we denote asX.

If x < X, the process will take place. Ifx > X, the process does not take

place.

For each of the 5 electron energy levels and 5 hole energy levels, for each

of the 2500 dots, this process is repeated to simulate the tunnelling rate into the

dots. Any carriers occupying excited states are then given the chance to relax into

states of lower energy (this is consistently the fastest process in the model), the

carriers are then given the chance to recombine in accordance with the radiative

recombination rate. For each timestep, a total of 87,500 random numbers are used

to empty and fill the levels of the 2500 dots.

The full simulation involves increasing the bias voltage from 1V to 1.52V (flat

band) in increments of 0.25mV. For each increment, the system runs through 1000

timesteps. Thus the model simulates a total of1.82 × 1011 separate processes.

The timestep is kept constant throughout the simulation at avalue of5×10−14.
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3.3. Calculating the Populations

Figure 3.3.1: Numbers of electrons and holes occupying the dot array at each
voltage

Therefore we expect to see 500 recombination events for every 1000 opportuni-

ties, and the limiting rate never has a probability of completion of greater than

50% at any voltage. At the lower voltages where the groundstate levels first be-

come resonant, the hole tunnelling rate is the limiting factor. The probability of a

hole tunnelling event at around 1.2V is approximately 10%, which is high enough

for a current to be visible over 1000 timesteps. Therefore the stochastic transport

results should be representative of the theoretical rates seen in figure 3.2.1. Figure

3.3.1 shows the number of electrons and holes occupying the dot array at each

voltage.

We can see from figure 3.2.4 that above approximately 1.3V, the excitonic

recombination process becomes the limiting rate. Therefore, above this voltage,

the carriers enter the dots at a greater rate than they are able to recombine, and a
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surplus of carriers will build up between 1.3V and flat band, as seen in figure 3.3.1.

As would be expected, the build-up of the carriers can be seento approximately

follow the contours of the relevant resonance functions.

We are now in a position to extract from the simulation a prediction of the

transport characteristics of the system. By combining the resultant electron and

hole tunnelling rates over 1000 timesteps, we can calculatea current against volt-

age plot, shown in figure 3.3.2.

Figure 3.3.2: Current vs voltage plot for transport through the dot array

We can see a general exponential increase in current, as to beexpected for a p-

i-n junction. The peak at 1.43eV is visible, caused by carriers tunnelling directly

into the wetting layer states. Most obviously though, we cansee a large increase

in tunnelling between 1.25 and 1.3eV, caused by direct tunnelling into the dot

ground and excited states.

If we measure the energy levels every time a recombination event occurs, we
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can calculate the energy of the corresponding photon. This then allows us to con-

struct a photon energy spectrum for each voltage. Figure 3.3.3 shows the number

of photons produced at each voltage, figure 3.3.4 shows the photon energy spectra

for a range of bias voltages, and in figure 3.3.5, the two values are combined into

a colour-scale plot.

Figure 3.3.3: The number of photons emitted per 1000 timesteps for each voltage

The number of photons emitted at each voltage, as shown in figure 3.3.3, is

closely related to the IV characteristics seen in figure 3.3.2. Comparing the two

plots, we can see that between 1.08 and 1.25eV and between 1.3and 1.35eV, the

carriers are able to tunnel into the dot states, but recombination does not occur.

The tunnelling current between these voltages is thereforelimited by Pauli’s ex-

clusion principle. The jump in current between 1.25 and 1.3eV is therefore caused

by the electrons and holes being able to tunnel simultaneously into the same dots

and immediately recombine. As the dots are continously emptying, Pauli’s exclu-
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sion is no longer the limiting factor, and hence the remarkable jump in current.

Figure 3.3.4: EL colour-scale plot of photon energy againstbias voltage

Figure 3.3.5 shows a colourscale plot of the electroluminescence characteris-

tics of the system between bias voltages of 1.2 and 1.52V. A number of features

can readily be identified. The photons emitted vary in energybetween approxi-

mately 1.2 and 1.3eV, showing that they have all been emittedvia groundstate to

groundstate recombination. We can see two discrete diagonal lines at lower bias

voltages before an block of emission begins at around 1.35V.The lowest emission

line follows theeV = hf condition. This therefore corresponds to carrier tun-

nelling directly into the dot groundstates before recombination. We see a second
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line offset from the first by a gap of between 70 and 100meV, which indicates that

carriers are tunnelling into excited states and relaxing into the groundstate before

recombining. At higher bias voltages the wetting layer and further excited states

come in to play, leading to several lines on top of each other.At 1.51-1.52V we

see the carriers begin to move around the conduction and valence bands before

dropping down into dot groundstates and emitting from all the dots simultane-

ously.

One particularly interesting region is the jump in intensity between 1.25 and

1.3V. This corresponds to the previously mentioned peak in the IV curve. This can

be understood by considering the effect of the asymmetric array location within

the intrinsic region on the resonance functions of each dot.As the electron ground-

state energies are distributed around 1.28eV and the hole energy levels at around

1.22eV, it should be impossible for both levels to be resonant with both species

simultaneously. However the asymmetry means that the hole resonance function

is “squashed up”, as shown in figure 3.2.2. This means that forthe bias voltage

region in question, a range of smaller dots are simultaneously resonant with both

species, allowing immediate recombination, and a hugely increased current and

photocurrent.

Now that we have extracted the necessary data from the simulation, it is appro-

priate to compare our simulated plots with the experimentaldata seen in Section

1.3. We can see that some similarities are visible between the experimental and

computational El plots. A clear “S” shape curve is visible inboth plots, but the

emission lines in the computational plots, although in approximately the correct

location, are noticeably thinner than the experimental plot. We will now attempt

to improve our model by adding in the effects of the Coulomb interaction between
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the charged carriers occupying the dots.

Figure 3.3.5: Comparison of experimental and theoretical ELcolour-scale plots
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Chapter 4

Including the Coulomb interaction

We have seen that the computational model produces predictions for transport and

electroluminescence which bear some similarities to experimental data. However,

when dealing with the resonant tunnelling of charged carriers into a small island,

the effect of the interactions between them will have a noticeable effect on the

dynamics of the system. We now aim to improve our model by including the

effects of the Coulomb interaction in the simulation, which have previously been

neglected. The effects of Coulomb interactions on the dot wavefunctions and

transport has been studied several times before in other contexts, for example

in [32, 33], and also in [34, 35]. The effects of Coulomb charging effects on

transport through quantum dots remains an area of productive research; see for

example work done by Kiesslich [36, 37, 38].

4.1 Mathematical Model

The Coulomb energy of a screened point charge is given by [5]:
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EC =
1

4πε

q

r
e−k0r, (4.1.1)

where

k0 =

√

m∗e2kF

επ~2
, (4.1.2)

and

kF = (2π2n)1/3. (4.1.3)

The force between two such point charges is therefore:

FC =
1

4πε

q2

r2
e−k0r

r̂. (4.1.4)

If two electrons are confined within a structure such as a quantum dot, they

will repel each other according to Coulomb’s law, but providing the confining po-

tential is sufficient, both remain trapped within the structure. In order to calculate

the extra separation between two electrons in our quantum harmonic oscillator

model when accounting for the Coulomb interaction, we can simply compare the

confining force pushing the particles together with the Coulomb force pushing

them apart.

1

4πε

e2

x2
e−k0x −mω2x = 0 (4.1.5)

Solving this numerically, we are able to find an average separation between

carriers in the same dot of 5.54nm, as shown in figure 4.1.1. Putting this value

back into [4.1.1], we are able to find a value for the Coulomb energy between two

electrons in a quantum dot of 12.8meV. As this is also the change in energy if a
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valence electron leaves the dot, it is valid to assume that the Coulomb energy be-

tween and electron and a hole occupying the same dot is -12.8meV. We also need

to examine the case in which a carrier is occupying the semi-localised wetting

layer state. Using the same method, we find that the average separation between

carriers in the wetting layer state is 12.5nm, giving an associated Coulomb energy

of 2.5meV.

Figure 4.1.1: Average separation between two electrons in aQHO

This is the extra energy that an electron must possess to resonantly tunnel into

a dot already occupied by a second electron. The inverse caseis also true, in

that a hole will be able to tunnel into a dot occupied by an electron with an energy
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12.8meV below resonance. The overall effect is equivalent to the dot energy levels

“shifting” by 12.8meV in oppositive directions for each carriers species. If the dot

is occupied by a hole, the electron tunnelling resonant energy drops by 12.8meV,

and the hole tunnelling resonant energy rises by the same amount. This effect is

shown in figure 4.1.2.

Figure 4.1.2: The energy levels shift in the opposite direction for each carrier
species

This Coulomb energy therefore affects the bandstructure around the quantum

dot array in a quantitive manner. The distortion around a particular dot will be

affected by the net charge on that dot, and also, to a lesser degree, on the respective

charges around its neighbouring dots.

The mean separation between two nearest neighbouring dots is dependant

upon the dot density within the array. For a typical dot density of between1010

and1011m−1, the average separation between the dots is 30-100nm, as shown in

figure 4.1.4, giving a Coulomb interaction energy of between 0.05 and 0.5meV.

This is a small energy in comparison with 12.8meV, but if several neighbouring

dots possess the same net charge, it is enough to significantly affect resonant tun-

nelling probabilities. We do not take into account neighbouring dots further away

than 100nm.
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Figure 4.1.3: Bandstructure distortion caused by the presence of a charged carrier
on the dot

As the bias voltage is increased in the simulation, the electron and hole “Fermi

seas” in the contacts creep closer towards the dot array. As they get closer, they

also feel the Coulomb force due to dot occupations. This results in a non-uniform

distance between the contacts and the dot array as the free carriers are pushed

away from and pulled towards the charged dots. For example, if an area of neigh-

bouring dots all possessed a positive charge, a “finger” would extend out of the

electron sea towards it. The reduced tunnelling distance would enable electrons to

tunnel at a greater rate, cancelling the net positive charge, and provide a negative

feedback loop within the dot system. This concept is shown infigure 4.1.5.
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Figure 4.1.4: Typical separation between neighbouring dots

Figure 4.1.5: “Fingers” extending from contacts towards dots caused by distortion
of the electric field due to the presence of carriers on the dots
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4.2 Implementation and Results

Once the dot occupations are known, the Coulomb energies are calculated, and the

energy levels and resonance functions are adjusted accordingly. All ten energy

levels within the dot must be adjusted, as all are affected bythe presence of a

carrier species. The contact sea distortion is also calculated, and the tunnelling

rate is adjusted.

The Coulomb energy affecting each dot is calculated not only from the net

charge on the dot in question, but also the net charge of its nearest eight neigh-

bours. The energy levels of the dots fluctuate as carriers tunnel onto them and

their neighbouring dots and subsequently recombine. The effect this has on the

resonance function can be seen in figure 4.2.1.

Figure 4.2.1: Resonance Function for all dots with Coulomb interaction included
in the simulation

The contact-to-dot distance also fluctuates as the Coulomb energy around the
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dots change. This leads to a change in the distance the carriers must tunnel to

get onto the dot. In effect this is a simple negative feedbackmechanism: a dot

occupied by a hole will pull the electron sea closer, whilst pushing the hole sea

further away, encouraging carriers of the opposite speciesto tunnel preferentially.

The fluctuations in the tunnelling distances can be seen in figure 4.2.2, and the

effect on the tunnelling currents can be seen in figure 4.2.3.

Figure 4.2.2: Fluctuations in tunnelling distance

We can now see what effect the inclusion of the Coulomb interaction has

upon the transport and electroluminescence properties of the system. Figure 4.2.4

shows the modified IV plot for the system. We compare this withfigure 3.3.2, the

IV plot without the Coulomb interactions included, and we seethat the effect of

the interaction has been to “smooth out” the large jump in current between 1.25

and 1.3V over a wider range of voltages.

Figure 4.2.5 shows the photon current plot, which follows the same pattern as
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Figure 4.2.3: Fluctuations in the background tunnelling rate caused by the fluctu-
ations in tunnelling distance

the transport current, with the large jump seen in the non-Coulomb case (figure

3.3.3), disappearing, to be replaced by an array of smaller peaks, as dots move in

and out of resonance as their energy levels fluctuate.

The electroluminescence characteristics can be seen in figure 4.2.7, and are

then compared with experimental results, seen in figure 4.2.8. The effect of the

inclusion of the Coulomb interaction is clear for bias voltages below 1.35V; the

two distinct lines we saw in figure 3.3.5 have been replaced bya continuum of lu-

minescence, with four diagonal lines visible underneath. The lowest line is emit-

ting at a lower voltage than that seen in the non-Coulomb case.This is caused by

the negatively charged dots pulling the hole energy levels down into resonance at

a lower bias voltage than the one at which they would normallybe resonant. The

other three lines at higher bias voltages are caused by similar effects between the
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Figure 4.2.4: IV plot with Coulomb Interaction

groundstates and excited states. Again, the large increaseat higher bias voltage is

caused by relaxation into the dots from the wetting layer andconduction/valence

bands. The colourscale plot is clearly in much better agreement with the experi-

mental data now that the Coulomb interaction has been included, suggesting that

Coulomb effects are an important consideration in modellingdot electrolumines-

cence. The near- vertical emission line on the right of the picture, at a photon

energy of approximately 1.5eV is caused by upconversion luminescence, which

will be dealt with in greater detail in chapter 5. Focussing on the rest on the plot,

we see that the remainder of the experimental colourscale plot is extremely similar

to the simulated version, and a noticeable improvement fromfigure 3.3.5.
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Figure 4.2.5: Photon Emission plot with Coulomb Interaction- the graph shows
the number of photons emitted every 1000 timesteps for each voltage
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Figure 4.2.6: EL colourscale plot with Coulomb Interaction
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Figure 4.2.7: Experimental EL colourscale plot
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Chapter 5

Analysis of Simulation

This chapter analyses the model in more detail, and looks at the effect of including

some secondary interactions within the model.

5.1 Delayed Recombination Effects

For a single QD in a p-i-n junction, we can raise the Bias Voltage so that either the

electron levels or the hole levels are aligned to the relevant junction, and resonant

tunnelling may occur. However, with the inclusion of the Coulomb Interaction be-

tween the electrons and holes tunnelling onto the dot, we seethat once one species

has tunnelled onto the dot, the energy levels will shift by anamount, U (which we

estimate for a typical dot to be approximately 13meV), and nofurther tunnelling

may take place, as the resonant condition will be lost. If we combine this with a

linear increase or decrease in bias voltage, the result is a delayed tunnelling effect,

in which each carrier is able to tunnel just once at each resonant voltage, and then

radiatively recombine once its counterpart has tunnelled on after an increase or
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decrease in current. For a typical QD, with a single ground-state and two excited

states present, just 5 photons will be emitted over the full voltage sweep, as shown

in figure 5.3.1.

Figure 5.1.1: Only a limited number of photons can be emittedvia delayed re-
combination as the voltage increases

This delayed recombination effect, in which photons are only emitted after

a change in bias voltage should show up in the computational simulation of the

system. One way to test for this effect is to introduce a parameter which removes

all the carriers from the dot at every change in voltage, and compare the results

with the normal case. This parameter is denoted as the “leakage current, but it is

not proposed that it is a real effect in the system, although it is not entirely unlikely

that carriers may escape from the dots on some timescale. Figure 5.1.2 shows the

EL characteristics of the system with and without the leakage current present.
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Figure 5.1.2: EL colour-scale plot with leakage current without Coulomb interac-
tions compared to no leakage case

We can clearly see two noticeable differences between the two plots, high-

lighting the areas where the delayed recombination is the primary mechanism of

photon emission. The two areas in question are at bias voltages 1.2-1.25V and 1.3-

1.35V. The remainder of the luminescence is thus caused by direct recombination

within the system.

Figure 5.1.3: EL colour-scale plot with leakage current with Coulomb interactions
compared to the no leakage case

We can also repeat the investigation for the case in which theCoulomb inter-

action is included. Figure 5.1.3 shows the resultant colourscale plot comparison.
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The effect here is also clear, the solid lines of direct carrier recombination elec-

troluminescence remain the same, but the emission from the gaps is noticeably

decreased, as any remaining carriers are removed before delayed recombination

can take place. This demonstrates neatly the areas of electroluminescence which

are a result of Coulomb-modified direct carrier recombination, and which are a

result of delayed recombination.

In chapter 3, we analysed the “jump” in intensity of transport and lumines-

cence between 1.25 and 1.3V, and concluded that it was causedby simultaneous

electron and hole tunnelling into the same dot, caused by theassymmetric location

of the dot array within the intrinsic region. We also saw thatthe inclusion of the

Coulomb interaction flattened out this peak. Having now isolated the effects of

delayed recombination, we can study what the effect is on thetransport character-

istics of the system for a range of symmetric and asymmetric dot configurations.

The total width of the intrinsic region is 16nm, and the alignment studied

thus far was for the dot array to be placed offcenter, 7nm fromthe n contact and

9nm from the p contact. We denote the distance from the n contact asd, and the

distance from the p contact is therefore16 − d. We now study the effects of three

different configurations:d = 5, d = 9 and the symmetric cased = 8. A schematic

of the cases Ad = 7 and Bd = 9 is shown in figure 5.1.4. We also define a third

configuration C for the cased = 5nm.

We compare the three asymmetric samples both without and with Coulomb

interactions included in the simulation. Figure 5.1.5 shows the IV curves for the

d = 5nm d = 7nm andd = 9nm configurations. Both curves feature a steady in-

crease in current, punctuated by large peaks in the 1.2-1.4Vregion, which, as was

discussed in chapter 3, is caused by the simultaneous resonant tunnelling of elec-
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Figure 5.1.4: Two different dot array locations within intrinsic region

trons and holes due to the asymmetic nature of the configurations. Therefore it is

expected that the two different asymmetric configurations should exhibit peaks at

different bias voltages, as the region at which the simultaneous resonance occurs

is dependent upon the exact nature of the asymmetry. For configurations A and

B, the peaks occurs when carriers are able to resonantly tunnel into the ground-

states of the dots and recombine. For configuration C, we see two narrower peaks

between 1.25 and 1.3V. In this case, the extreme asymmetry ofthe configuration

allows for simultaneous tunnelling into the groundstates and excited states of the

same dots. The carriers then relax non-radiatively into thegroundstate before

recombination.

Figure 5.1.6 shows the IV curves for configurations A and B, butthis time
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Figure 5.1.5: Comparison of IV plots for configurations A (d=7) and B (d=9) and
C (d=5) with no Coulomb interactions included in the simulation

with the Coulomb interactions included. We see that any significant differences

between the two curves in figure 5.1.5 have now been minimised. There are small

differences between the curves, but the distinctive features have been removed by

the feedback effects of the Coulomb interaction.

We also consider the symmetric cased = 8nm. For this case, no simultaneous

resonant tunnelling is possible, and thus we expect not to see a peak in the 1.15-

1.4v region, as seen in the asymmetric cases. In figure 5.1.7 we compare the

symmetricd = 8nm case both with and without Coulomb interactions included.

The Coulomb interactions clearly allow for a degree of simultaneous resonant

tunnelling between 1.1 and 1.4V, which would otherwise not be present. This

leads to a noticeably increased current.
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5.1. Delayed Recombination Effects

Figure 5.1.6: Comparison of IV plots for configurations A (d=7) and B (d=9) with
full Coulomb interactions included in the simulation

Figure 5.1.7: Comparison of IV plots for symmetric cased = 8nm both with and
without full Coulomb interactions included in the simulation
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5.2 Many Dot Interactions

In section 4.1, we discussed the effect of the Coulomb interaction between car-

riers on neighbouring dots on the energy levels and the tunnelling rates from the

contacts. The Coulomb interaction energy between two nearest neighbouring dots

was given as approximately 0.5meV. If several neighbouringdots had a similar

charge, the total interaction energy could approach 2 or 3meV, enough to repel

or attract the contact carrier sea by 0.5nm, making a significant distortion in the

tunnelling distance. This is shown in figure 5.2.1.

Figure 5.2.1: Neighbouring Dot Interactions

As the simulation is run, and carriers tunnel into the dots and subsequently re-

combine, the Coulomb interaction between the contacts and the dot array causes

a constant flux in the tunnelling distance. We can take snapshots of these fluctua-
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tions at a range of bias voltages, in order to be able to characterise the length scale

over which these fluctuations take place.

Figure 5.2.2: An xy plot of the dot array showing the distanceof the electron
Fermi sea from the dot. Bias Voltages: top left, 1.175V; top right, 1.375V; bottom
left, 1.425V; bottom right, 1.475V.

A series of contour diagrams showing the Coulomb interactioninduced defor-

mation of the contact sea at a range of different bias voltages is shown in figure

5.2.2. At 1.175V, several dots are occupied, and we can see fluctuations in the

Coulomb field around these points in the dot array. In extrema,a perfectly an-
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tisymmetric electron hole distribution (ie. electrons andholes alternately placed

on neighbouring dots) would have a mean fluctuation of the area occupied by an

individual dot, while a perfectly symmetric distribution,for example a completely

homogeneous dot occupation by electrons or holes, would have a fluctuation cov-

ering the entire array of 2500 dots.

We can study how the fluctuation varies between these two extreme cases as

we increase the bias voltage. At 1.174eV, we see localised fluctuations as a hand-

ful of electrons begin to occupy the dots. The mean fluctuation diameter remains

constant between 1.25 and 1.375V, before increasing dramatically to a peak at

around 1.4V, and finally decreasing again at 1.475V. This effect is shown in figure

5.2.3, where we can see a clear peak in the correlation lengthat approximately

1.4V. We can compare the changes in correlation length to thechanges in dot oc-

cupation, and the two plots are clearly related. As the tunnelling rate overtakes

the recombination rate, the carriers start to fill up the dots, and this subsequently

leads to larger Coulomb fields being generated around the array, affecting both

the energy level resonances and the distortion of the electron and hole Fermi seas.

This feedback effect in turn leads to a larger degree of fluctuation in the Coulomb

field around the dot array, and larger correlations in the electron and hole sea dis-

tortions. In chapter 6, we will see that these fluctuations are not static, but rather

are dynamic in time as carriers tunnel into the dots and recombine.
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Figure 5.2.3: Variation of Coulomb field correlation length with bias voltage
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5.3 Up Conversion Luminescence

Up Conversion Luminescence (UCL) is the emission of photons atenergies larger

than that supplied by the external energy source. It has previously been seen in

self-assembled InAs/GaAs dots. [39] Figure 5.3.1 shows an experimental EL plot

[8], which clearly shows a strong emission line on the right of the diagram, at

higher photon energies than the bias voltage provided. In this section we discuss

the process by which this UCL is being realised, and present a calculation of the

effect of magnetic field on the luminescence.

Figure 5.3.1: Evidence of UCL in experimental plots

Several processes have been suggested as possible mechanisms of UCL, in-

cluding phonon assisted processes [39], multi-photon absorption [40], and Auger

85



5.3. Up Conversion Luminescence

processes [41]. Of these suggestions, multi-photon absorption can immediately be

ruled out, as the experimental data is electroluminescence, as opposed to photolu-

minescence, as the device in question is not excited by light, and at a bias voltage

of zero Volts, no emission was detected.

The concept of phonon assisted UCL was investigated when the experiments

were performed. Increasing the temperature of the sample will increase the num-

ber of available phonons, thus indicating that if phonons are strongly involved in

the UCL mechanism, the UCL will increase at increasing temperatures. In fact

the UCL decreased, from which we may conclude that phonon assisted processes

were not the dominant mechanism.

Auger processes involve the photon emitted by an excitonic recombination

being reabsorbed by another electron or hole on that dot or a neighbouring dot.

The carrier is then excited into the GaAs conduction (valence) band, from where

it relaxes to the band edge, before either recombining excitonically, or relaxing

into another dot. In order to include this process in the fullsimulation, we first

need to calculate the overlap integral associated with the excitation process. The

proposed mechanism is shown in figure 5.3.2.

For the Auger process,the transition between the electron groundstate and con-

duction band state, represented byc†wce is stimulated by a photon of energy~ω in

the region of 1.2 to 1.4eV. The probability per unit time thatan atom in state|e〉

makes a transition to a state|w〉, stimulated by electromagnetic radiation is:

πe2

3ε~2
| 〈w| r |e〉 |2 (5.3.1)

whereε is the permittivity of GaAs,e is the electronic charge, and| 〈w| r |e〉 | is
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Figure 5.3.2: Proposed Mechanism of Auger Process

the overlap between the 2 states.

For the transition:

Vwec
†
wce, (5.3.2)

the matrix element

Vwe =

∫

drΨwΨe. (5.3.3)

We can therefore calculate the element by integration:

Vwe =

∫ 2π

0

dθ

∫ Λ/2

−Λ/2

dzcos2(πz/Λ)

∫ ∞

0

dρe−(ρ−R)2/l2weρ2/l2e (5.3.4)

whereΛ is the confinement in the z direction,lw andle are the radial confinement
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lengths for the two states, andρ andR are the locations of the two states.

We can rearrange to give:

Vwe =

∫ 2π

0

dθ

∫ Λ/2

−Λ/2

dzcos2(πz/Λ)

∫ ∞

0

dρe−R2/l2we−a2ρ2

e−bρ (5.3.5)

where

a2 =
l2e l

2
w

l2e + l2w
(5.3.6)

and

b =
−2R

l2w
(5.3.7)

Completing the integration gives:

Vwe = 2π

[

z + cos(
2πz

Λ
)

]Λ

0

√
πe−R2/l2w

2

[

e(b/2a)2

a
Erf

(

b

2a
+ aρ

)

]∞

0

(5.3.8)

=
π3/2Λ

a
e−R2/l2we(b/2a)2(1 − Erf(b/2a)) (5.3.9)

We can now include this rate in our simulation, and study the effect on the

resultant EL colour-scale plot, shown in figure 5.3.3.

We also show the experimental EL plot, which highlights the similarities be-

tween the two. The emission line athf = 1.52eV is visible in both, and continues

below theeV = hf point as UCL. The bright patch on the experimental plot at

around 1.43eV is most likely direct emission from the wetting layer. This is not

included in the simulation, and thus a corresponding brightpatch is not visible in

the numerical plot.
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Figure 5.3.3: Simulated UCL colourscale plot and spectra

One way to test the validity of the Auger mechanism theory is to study the

effect of a magnetic field on the experimental and theoretical results. lw and le

are the length scale of the wavefunctions within the dot and the conduction band.

To assess how these are affected by magnetic field, we must take into account the

magnetic confinement lengthlB, which will affect the localization of the carrier

within its potential.

The dependance oflB on field strength is given by

lB =
√

~/eB. (5.3.10)

We can see the effect of increasing magnetic field strength from 0T up to
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14T is to reduce the up-conversion luminescence strongly atrelatively low field

strengths. This can be understood by considering the confinement effect of the

magnetic field on the carrier wavefunction in the conduction/valence band, and

the resulting reduction in the overlap integral.

Figure 5.3.4: Simulated relationship of UCL current with Magnetic Field (loga-
rithmic scale)
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The results of the simulation clearly compare well with the experimental re-

sults, and offer some insight into what physical processes are likely to be occurring

in the real system. However, it is relevant to consider the number of assumptions

involved in the route from theoretical model to simulation.Had these assumptions

been different, then it is important to consider the implications that this may have

had on the results of the simulated data. Assumptions were made in the mod-

elling of the dot energy levels, the calculation of the tunnelling, relaxation, and

recombination rates, and the effect of the Coulomb interaction.

The effect of changing the energy levels of the dot would leadto a shift in

both the bias voltages at which certain features are visible, and the energy of the

photons emitted. We can see an example of these types of shifts in our study of the

effect of varying the location of the dot array within the intrinsic region in section

5.1. This also enables us to work backwards from the experiment to the theory; as

the location of key features matched up well with the simulation, this suggests that

the model used to generate the dot energy levels was appropriate. The effects of a

different set of rates would lead to a buildup of carriers at adifferent bias voltage,

and the increased or decreased relevance of Coulomb effects.In the simulated

results, the high relaxation rate combined with the low excited state to excited state

recombination rate results in zero photon emission with energies between 1.32 and

1.5eV; whereas we can see from the experimental EL plot (figure 5.3.4) that there

is evidence that such emission does exist. The effect of the Coulomb interaction on

the IV and EL plots were to remove some features not seen in experimental results,

suggesting that Coulomb interactions do play an important role in the transport of

carriers through the dots. In summation, the notable similarity between simulated

and experimental results suggests that the assumptions made in the theoretical
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modelling of the system were appropriate.
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Chapter 6

Correlated Tunnelling Regime

Analysis

In this chapter we study a particular regime seen in the results of the 2500 dot

model involving correlated tunnelling of electrons and holes into the same dot,

and use the master equation method to derive some of the key features of the

process.

6.1 Correlated Tunnelling Regime

We saw in chapter 4 that when the Coulomb interaction is included in the sim-

ulation, the simultaneously resonant condition that led tothe jump in tunnelling

and recombination phenomena in chapter 3 becomes blocked bythe Coulomb en-

ergy of the carriers. The Coulomb energy of the occupying carrier moves the dot

energy levels away from resonance and prevents further tunnelling. There is a

scenario in which the bias voltages at which the electron andhole levels becomes
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resonant are separated by approximately 12.8 meV. In this case, once the correct

bias voltage is reached a correlated tunnelling regime (CTR) will occur. First one

carrier species will resonantly tunnel onto the dot, creating a shift in the dot en-

ergy levels, then the other species will now be in resonance,and will be able to

tunnel, creating an exciton, and returning the energy levels to their original values.

Note that this can be achieved for both the spin up and spin down carriers in the

dot simultaneously, (but not independently), approximately doubling the effective

rate. The principle steps of the regime can be seen in figure 6.1.1.

Figure 6.1.1: Correlated Tunnelling Regime Mechanism

The correlated tunnelling regime therefore results in a sizeable increase in the

tunnelling current through the QD, and, more importantly, asignificant current is

generated without a change in bias voltage. The electron andhole groundstates

94



6.1. Correlated Tunnelling Regime

are initially separated by 30meV. We saw in chapter 3 that this gap does not mean

that electrons and holes cannot be simultaneously resonantinto the same dot, due

to the effects of the asymmetric position of the dot array within the intrinsic re-

gion. For correlated tunnelling to occur, the two energy levels need to be offset by

12.8meV. This occurs twice - once for negatively charged dots, and once for pos-

itively charged. Once we include the subtle effects of the Coulomb interactions

from neighbouring dots of course, the system becomes much more complicated

and difficult to predict. We find that the conditions necessary for CTR to occur

arise at two ranges of voltages, either side of the 1.25-1.3Vcondition of simulta-

neous resonance seen in chapter 3. CTR is only seen in the fraction of dots which

possess both the right offset between electron and hole energy levels for CTR to

occur, and have one of these levels in resonance. It is also possible for a dot to be

pushed into or out of the regime by the energy shift caused by acarrier tunnelling

onto a neighbouring dot.

We can see evidence of correlated tunnelling by studying time series data from

the simulation. Figure 6.1.2 shows the tunnelling phenomena into an array of 100

dots over 100 timesteps. For dots 49, 76 and 80 in particular,we see electrons and

holes tunnelling alternatively into the dots. Due to the effects of neighbouring dots

and several energy levels being close to resonance simultaneously, the tunnelling

is not perfectly alternate - ie. we occasionally see two electrons tunnel in a row, as

the change in Coulomb energy, combined with a particular occupancy of nearby

dots brings a second electron level into resonance, rather than the expected hole

state.
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6.2. CTR in a single quantum dot

Figure 6.1.2: Time Series showing electrons and holes tunnelling sequentially.
The figure shows the tunnelling events of 100 dots over a period of 100 timestep.
The green squares indicate no tunnelling event, the blue squares indicate electron
tunnelling, and the orange squares indicate hole tunnelling.

6.2 CTR in a single quantum dot

In the previous section, the possibility of a dot possessingthe correct energy level

distribution for correlated tunnelling state to occur was discussed. The regime can

be seen to occur at a particular voltage at which one carrier species is directly

resonant with the dot energy state, whilst the complementary species was off-

resonance by an energy comparable to the Coulomb interactionenergy between

two electrons occupying a dot. The probability of this regime occurring at some

voltage between zero and flat band was discussed in the previous section, and the
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existence of such a regime in a large scale model was demonstrated.

We are now in a position to analyse this novel system in far greater detail.

We are able to describe the system as occupying one of three discrete possible

states. For convenience, we decide that the p-contact is in direct resonance and the

n-contact is off resonance by 12.8meV, and will become directly resonant when

the QD is occupied by a single hole. On a qualitative level, the analysis would be

exactly the same if the system were chosen to be the other way around. The three

states the system can occupy are the “down” state, where the dot is unoccupied,

the “zero” state, where the dot is occupied by a hole, and the “up” state, where

the dot is occupied by an electron and a hole. There is no statewhere the dot is

occupied solely by an electron, as the tunnelling rate from the n contact is zero for

an unoccupied dot.

The three possible states can be seen in Figure 6.1.1. The system can be seen

to move progressively from state up to state down to state zero, with the possibility

of a backwards move not eliminated at this stage. Each movement between states

is associated with a tunnelling or recombination rate. These rates can be taken

from the rates calculated in the full 2500 QD system.

We now use two complementary methods to study the time evolution of the

system. A small scale computer model is able to simulate the behaviour of the

regime over 100,000 time-steps, from which we are able to calculate the transport

and electroluminescent characteristics of the dot, as wellas their associated noise

characteristics. We are also able to analyse the system using the master equation

method, the details of which are explained in greater detailin chapter 2 and [30].

This will provide us with predictions that we are then able tocompare with the

simulated data. Both of these methods have the advantage thatwe are not obliged
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Figure 6.2.1: Three Possible States of CTR system

to input the tunnelling and recombination rates until the last step, allowing us to

compare the effects of varying these rates.

The Hamiltonian for the system can separated into expressions for the system,

the bath, and the interactions:

Htot = HS +HB +HI (6.2.1)

where

HS = ε↑ |↑〉 〈↑| + ε↓ |↓〉 〈↓| (6.2.2)

HB =
∑

Q

(

εl l̂
†
Ql̂Q + εrr̂

†
Qr̂Q + εγ γ̂

†
Qγ̂Q

)

(6.2.3)
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Figure 6.2.2: Associations between bath and system processes, with a description
of the corresponding event

HI =
∑

Q

(

vQl̂
†
Q |0〉 〈↑| + vQl̂Q |↑〉 〈0| + wQr̂Q |0〉 〈↓|

+ wQr̂
†
Q |↓〉 〈0| + uQγ̂

†
Q |↓〉 〈↑| + uQγ̂Q |↑〉 〈↓|

)

(6.2.4)

We now wish to analyse this system using the interaction picture. We can

separate the Hamiltonian into a series of System and Bath operators:

S1 = |↑〉 〈0| eiε↑t (6.2.5)

S2 = |0〉 〈↑| e−iε↑t (6.2.6)

S3 = |0〉 〈↓| e−iε↓t (6.2.7)
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S4 = |↓〉 〈0| eiε↓t (6.2.8)

S5 = |↓〉 〈↑| e−iεt (6.2.9)

S6 = |↑〉 〈↓| eiεt (6.2.10)

whereε = ε↑ − ε↓, and

B1 = vl̂e−iεlt (6.2.11)

B2 = vl̂†eiεlt (6.2.12)

B3 = vr̂†eiεrt (6.2.13)

B4 = vr̂e−iεrt (6.2.14)

B5 = vγ̂†eiεγt (6.2.15)

B6 = vγ̂e−iεγt (6.2.16)

From conservation of energy we can see thatεl = ε↑, εr = ε↓, andεγ =

ε↑ − ε↓.

We can now calculate the correlation functions using the theBorn-Markov

approximation, and using the same method as was applied in chapter 2, we can

define the Liouville equation:

ρ̇ = Lρ, (6.2.17)

whereρ is the density matrix andL is the Liouville evolution operator, which can

be expressed in matrix representation as
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L = 2π













X1 Jγ(ε)(nB(ε) + 1) Jl(ε↑)nF (ε↑ − µl)

Jγ(ε)nB(ε) X2 Jr(ε↓)(1 − nF (ε↓−µr))

Jl(ε↑)(1 − nF (ε↑ − µl)) Jr(ε↓)nF (ε↓ − µr) X3













,

(6.2.18)

whereJ is the spectral density function andnF andnB are the Fermi-Dirac and

Bose-Einstein distributions respectively. We can once again define

Xn = −
∑

m,m6=n

Lmn. (6.2.19)

By using the relationshiṗρ = 0, we can find the eigenfunctions of the evolu-

tion operator, and predict the mean current and photocurrent, the occupation prob-

ability of each state, and the current and photocurrent noise through the system.

We are able to generate these results for whatever tunnelling and recombination

rates we wish to consider. We find the three eigenvalues,λ for the system, and

their associated eigenvectors,VR andVL. The eigenvector associated withλ = 0

contains information about the steady state of the system.

We now need to consider the electron and hole resonant tunnelling rates into

the dot, and the excitonic recombination rate. We can also consider the effect of

non-zero tunnelling rates out of the dot, and a non-zero photon absorption rate,

as these will have an effect on the current and photo-currentand the associated

current noise.

We now wish to study the noise characteristics of this system, which give us

more detailed information about the system’s dynamics. We do this by studying
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the Fano factor of the system, defined as:

F =
S(ω)

2e < I >
, (6.2.20)

where, the noise,S(ω), can be calculated from the relevant current or photocur-

rent operator and the system eigenvectors using the relation given in [30] and

developed in [42].

The symmetrized noise spectrum for any two operatorsa andb is:

S(ω) = lim
t→0

∫ ∞

−∞

dτ〈ā(t+ τ), b̄(τ)〉eiωτ (6.2.21)

Using the quantum regression theory and an eigenvalue expansion [42], we

can define the noise spectra as:

S(ω) = 2
n

∑

k=1

Re

(〈VL0| Ik |VRk〉 〈VLk| Ik |VR0〉
(iw − λk)

+
〈VL0| Ik |VRk〉 〈VLk| Ik |VR0〉

(−iw − λk)

)

(6.2.22)

whereI is the current operator,VR andVL are the right and left eigenvectors, and

λ is the associated eigenvalue. The tabulated results shown below were calculated

using Matlab.

For a Poissonian distribution of photon emission, in which the photons are

emitted independently, the Fano factor will be equal to one.A Fano factor of

less than one indicates that the photons tend to be more evenly separated, known

assub-Poissoniannoise, and a Fano factor of greater than one indicates that the

photons tend to be emitted in bunches, known assuper-Poissoniannoise [43].

We calculate the photon noise and current noise through the system. The pho-

ton noise is the noise distribution of the photons being emitted from the sample.
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Fano Factors current noise photon noise
Limiting Factorαe, αh 0.99 0.70

Limiting Factorγ 1.47 0.85

The current noise needs a more detailed understanding. We know that the current

is related to the electrons tunnelling into the dots and the holes tunnelling out of

the dots, but there are technically two possible ways of measuring the noise in the

system, depending upon whether we treat the electron and hole tunnelling onto

the dot as one single event, involving a quanta of charge moving from one con-

tact to the other, or whether we treat the two tunnelling events as two separate

occurences. The noise spectra of the two methodologies willbe different. The

current noise spectra calculated is for thesecondcase, in which the two events

are treated separately. For the first case, the system will have only two alternating

events: a “current” event and a “photon” event, the noise spectra will necessarily

be identical. Looking at the results, we see that for the casein which the tun-

nelling rates are the limiting factor, the current noise is approximately Poissonian,

and the photon noise is sub-Poissonian. This can be understood as being caused

by there being relatively large period of time during which the carriers are tun-

nelling into the dots, which leads the photon emission events being spaced out

in time, and thus the noise is sub-Poissonian. The photon emission time period

is comparatively short, implying that the photon emission event has little effect

on the noise characteristics of the current noise. The carriers tunnel almost inde-

pendantly, and thus show a Poissonian distribution. For therecombination rate

limited case, the current noise becomes super-Poissonian,whilst the photon noise

remains sub-Poissonian, although to a lesser degree. In this case, the mean photon

recombination time period is the longest time scale, which implies that the carriers
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tunnel in pairs - with two carriers tunnelling quickly, followed by a pause as the

exciton recombines, leading to super-Poissonian noise characteristics. The pho-

ton noise moves towards a fano factor of 1, but the photons arestill more evenly

distributed than an independant case.

Figure 6.2.3 shows the simulated noise characteristics of the system.

Figure 6.2.3: Simulated Noise Characteristics for different tunnelling rates. The
theoretical prediction for Fano factor is shown for comparative purposes
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6.3. CTR in two interacting quantum dots

6.3 CTR in two interacting quantum dots

Having fully analysed the CTR in one isolated QD, we can now develop the theory

further to include the effects of neighbouring dots interacting with one another and

creating new, more complicated sequential regimes. It has already been seen that

neighbouring dots are able to interact with each other via the Coulomb Interaction,

and we will now study the effects of this on a system of two QDs.We restrict

ourselves to analysing a system of only two QDs because the chances of finding a

system with the correct energy level alignments becomes exponentially less likely

as the number of dots required increases.

Figure 6.3.1: The four possible combinations ofEA andEB in the dot offset. The
effect of the dot itself being positively charged is to shiftboth electron and hole
energy levels by 12.8meV. The effect of the neighbouring dotbeing charged shifts
the energy levels by 2.3meV. The separation between the electron and hole levels
remains constant.

The probability of a carrier resonantly tunnelling onto a dot is dependant upon

the energy levels being correctly aligned at that moment. Wehave seen in the 1QD
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6.3. CTR in two interacting quantum dots

regime that the electron and hole energy levels need to be offset by an energy of

12.8meV (which we now denote asEA) for the system to be able to maintain a

non-zero emission rate. The secondary offset, due to the occupation of a neigh-

bouring dot was calculated in chapter 2 to be approximately 2.3meV (which we

callEB). This is a sufficient offset to be able to move the dot system in and out of

resonance.

The 2 dot system will therefore be emissive in a regime where the electron

and hole energy levels of the 2 dots are some combination of the two offsets; the

tunnelling rate through one dot is not only dependant upon its own occupation,

but also upon the occupation of its neighbouring dot. Figure6.3.1 shows the four

possible combinations ofEA andEB in the dot offset.

Now we have defined the 4 possible configurations that each individual dot

can be in, we need to work out the result of each of the possiblecombinations of

the four. Figure 6.3.2 shows the 10 possible combinations of2 dots.

Figure 6.3.2: The 10 possible combinations of 2 dots. E,H, O,and F correpond
to the four states identified in figure 6.3.1. A non-interacting control case is also
included.
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6.3. CTR in two interacting quantum dots

In order to analyse the two dot system fully, we now use a simple notation,

based on the system states we used in the 1 dot scenario. Figure 6.3.3 shows the 9

possible states of the system, and the corresponding statesof each dot.

Figure 6.3.3: The 9 possible states of the system, and the corresponding states of
each dot

Using the numerical state notation, and knowing which transitions are allowed,

we are now able to plot the possible state trajectories for the 10 combinations. We

also include a control case, that of two CT regime dots, identical to the one anal-

ysed in section 6.2, which do not interact with each other at all. Figure 6.3.4 shows

the possible trajectories. We can clearly see that without backwards state evolu-
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6.3. CTR in two interacting quantum dots

tion, seven of the ten combinations are immediately blocked. These combinations

will emit for a finite time period, but each one has an accessible system state,

which, once occupied, the system remains trapped in indefinitely. There are three

combinations, however, which remain emissive indefinitely. These combinations

are the F-F, O-F and E-H systems.

Figure 6.3.4: The possible trajectories of the system for the 10 different two-dot
configurations. The solid lines denote blocked pathways. The control case is
shown in the bottom right.

We can note that for the case in which one dot remains active while the other

remains passive, the system will evolve diagonally on the diagram through a three

state evolutionary cycle. We denote this as ”lateral” movement. If both dots are si-

multaneously active, the system will move downwards through the states - we de-
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6.3. CTR in two interacting quantum dots

note this as ”vertical” movement. For the comtrol sample, the system will evolve

according to a random walk through the system states. Any contraints then placed

on the system, will alter its evolution, and subsequently its noise characteristics.

By calculating the probability of each of the infinite number of different routes the

system could take to complete a evolutionary cycle, we can explicitly calculate the

expected transmission rate and noise characteristics. Forconvenience, we choose

the cycle to start and finish in state 2.

Figure 6.3.5: State Trajectories of FF system. We can see that state 5 is completely
inaccessible. Other than this, the FF system is identical tothe control case.

Figure 6.3.5 shows the possible state trajectories of the FFsystem. We see that
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6.3. CTR in two interacting quantum dots

the only difference from the control sample is the unavailability of state 5. The

overal dynamics of this system do not vary greatly from the control sample.

Figure 6.3.6: State Trajectories of OF system. We can see that states 3 and 7
are completely inaccessible. This has the effect of significantly raising the prob-
ability of a one-dot 1-2-4-1 evolutionary cycle, leading toa sub-Poissonian noise
distribution

Figure 6.3.6 shows the possible state trajectories of the OFsystem. We see

that states 3 and 7 are unavailable, forcing the system through state 5. This con-

figuration also means that the system will evolve laterally,frequently following

the single dot evolution chain 1-2-4-1. This predicts that one dot will be consider-
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6.3. CTR in two interacting quantum dots

ably more active than its partner. The increase in lateral trajectories also suggests

that photons be emitted from this system with a smaller frequency variation than

in the control sample.

Figure 6.3.7: State Trajectories of EH system. We see the blocked pathways
force the system evolution down a vertical path, and prevents the kind of one-dot
evolutionary cycles prevalent in the OF configuration. The increased probability
of the pathway following a 9-6-1 or 9-4-1 route leads to a super-Poissonian noise
distribution

For the EH system shown in figure 6.3.7, we see that the system remains con-

fined within a vertical channel through the states. No singledot evolution trajec-

tories are possible in this system, implying that the two dots will move through
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6.3. CTR in two interacting quantum dots

their individual states in unison, and release photons in pairs. We would therefore

expect to see greater bunching in this system than in the control case.
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6.3. CTR in two interacting quantum dots

We can analyse the four systems both numerically and theoretically, applying

the master equation method to each system to find the evolution operator, and

subsequently calculating the current and noise characteristics.

We first define a Hamiltonian for each system. The Hamiltonianfor the FF,

OF and EH systems will be equivalent to the Hamiltonian for the control case with

the terms corresponding to the blocked interactions removed.

Using the master equation method once more, we are able to findthe evolution

operator, and solve for its eigenfunctions. To do this, we must first define a Hamil-

tonian for the two dot system, again separated into system, bath, and interaction

operators. We start with the control case (NI) in which all the state transitions are

allowed. We are then in a position to adjust this Hamiltonianfor the other three

systems of interest by removing terms corresponding to blocked transitions.

Htot = HS +HB +HI +H†
I (6.3.1)

where

HS = ε↑1 |↑1〉 〈↑1| + ε↓1 |↓1〉 〈↓1| + ε↑2 |↑2〉 〈↑2| + ε↓2 |↓2〉 〈↓2| (6.3.2)

HB =
∑

Q

(

εl l̂
†
Ql̂Q + εrr̂

†
Qr̂Q + εγ γ̂

†
Qγ̂Q

)

(6.3.3)

Before calculating the interaction Hamiltonian, we simplify the system by
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6.3. CTR in two interacting quantum dots

switching to the numerical notation seen in figure 6.3.3.

HI = r̂†1 |2〉 〈1| + r̂†2 |3〉 〈1| + l̂1 |4〉 〈2| + r̂†2 |5〉 〈2| + r̂†1 |5〉 〈3| + l̂2 |6〉 〈3|

+ γ̂†1 |1〉 〈4| + r̂†2 |7〉 〈4| + l̂1 |7〉 〈5| + l̂2 |8〉 〈5| + γ̂†2 |1〉 〈6| + r̂†1 |8〉 〈6|

+ γ̂†1 |3〉 〈7| + l̂2 |9〉 〈7| + γ̂†2 |2〉 〈8| + l̂1 |9〉 〈8| + γ̂†2 |4〉 〈9| + γ̂†1 |6〉 〈9| (6.3.4)

From this Hamiltonian, we can now repeat the procedure set out in section

6.2, and calculate bath and system operators for the 4 two-dot combinations we

are interested in, from which we can calculate the Louivillian operator and the

eigenfunctions of the system.

By solving for the zero eigenvalue, we can find its associated eigenfunction,

which will give us the probability of occupation of each state in the system at any

given time. This is shown in figure 6.3.8. The lighter squaresrepresent the states

most likely to be occupied. For the control case, all states are equally likely to

be occupied. For the FF case, state 5 is inaccessible, and as aresult, states 2 and

3 have the highest occupation probability, as their is only one possible exit route

from these states. For the OF case, states 3 and 7 are inaccessible, leading to an

increase in the occupation probability of states 1 and 4. Forthe EH case, all states

are accessible, but we see states 2 and 5 represent the most common evolutionary

route.

By taking these occupation predictions and accounting for the external emis-

sion associated with each state, we can accurately predict the average current and

photocurrent through each of the systems. We can do this in three separate ways:

by using the predictions above generated by the master equation method, by run-

ning a computational simulation over 1 million timesteps for each configuration,
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6.3. CTR in two interacting quantum dots

Figure 6.3.8: State occupation probabilities for each of the different two dot con-
figurations. Clockwise from top left: NI, FF, EH, OF configurations. The lighter
colour squares represent the state with the higher occupation probability at any
given time.

and finally by using a simple statistical analysis of the mostlikely routes through

the system, we can make an estimate of current and photon emission rates. The

three predictions for each configuration are shown below.

We can also make a prediction of the current and photo-current noise through

the configurations. Our analytical method is not detailed enough to make a nu-

merical prediction, but as mentioned previously, the increased verticality of the

EH evolutionary route should lead to a higher Fano factor, and the likely 1-2-4-1

diagonal evolution of the OF system should lead to a lower Fano factor than the
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6.3. CTR in two interacting quantum dots

Photon Emission RatesInitial Prediction Simulation Master Equation
No Interaction (control) 0.667 0.667 0.667

Flat-Flat 0.550 0.536 0.540
Offset-Flat 0.470 0.448 0.450

Electron-Hole 0.411 0.408 0.410

control case. The use of the numerical simulation is not subtle enough to capture

these dynamics over a large number of timesteps, but by studying the variation in

the number of timesteps between photon emission events, shown in figure 6.3.9,

we can see that the simulation shows excellent agreement with our analytical pre-

dictions. We can see that the mean number of timesteps increases in line with the

decreasing emission rates, as we move from the control sample to the more re-

stricted configurations. We can see that the FF configurationis very similar to the

control sample, with the extra timesteps caused by the single inaccessible state.

Also notable is the high proportion of emissions in the 3,4 and 5 timestep range

for the OF case, indicating a high degree of diagonal system evolution, and the

likelihood in the EH system for the photon emission events tobe either only 1

or 2 timesteps apart, or 4+, demonstrating the vertical route through the system

states.

Using the eigenvectors calculated for each configuration previously, and using

the same method as detailed in section 6.2, we are able to makepredictions for

the Fano factors of the four configurations. These results correspond as expected

with both the analytical predictions and the simulated results.

Fano Factors Master Equation Theory
No Interaction (control) 0.96

Flat-Flat 0.83
Offset-Flat 0.72

Electron-Hole 1.12
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6.3. CTR in two interacting quantum dots

Figure 6.3.9: Noise characteristics of the numerical simulations for each of the
different two dot configurations. The theoretical Fano factor prediction is included
for comparison

We can clearly see that the numerical and theoretical results are in excellent

agreement for both the one dot and two dot cases. We showed howthe curent and

photon current noise chacteristics are dependant upon the relevant tunnelling and

recombination rates, and also showed how the current and photon current noise

through a two dot system is strongly dependant upon the exactenergy configura-

tions of the dots in question. We are able to study these systems analytically and

gain insight into the underlying mechanisms behind the currents and noise charac-

teristics. Gaining a clearer understanding of the transport and electroluminescence

chacteristics of particular quantum dot systems could potentially provide valuable
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insight into characterising novel quantum dot devices.
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Chapter 7

Conclusions and Future Prospects

In chapters 2-4, we have shown that it is possible to construct a numerical model

of a quantum dot array located in the intrinsic region of a p-i-n junction which

accurately describes the associated experimental data. Using a master equation

approach, we were able to analyse the processes involved in atwo level quantum

dot, and by inputting the relevant tunnelling, relaxation and recombination rates,

we were able to make a prediction of the level occupation probabilities within the

model. We also demonstrated that it is necessary to include both phonon-assisted

relaxation and Coulomb interaction effects within each individual dot in order for

the simulated results to match the experimental data in a satisfactory manner. This

clearly suggests that both of these processes are an important feature of the sys-

tem being modelled, and explains the origins of many of the features visible in the

experiments. A more rigorous quantum mechanical treatmentof quantum tun-

nelling, excitonic recombination, and carrier-carrier Coulomb interaction could

be achieved, and may reveal several subtle features as yet unseen, but for this to

become necessary, the experiments would have to be carried out at a considerably
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lower temperature for any quantum correlation effects to beobserved.

In chapter 5, we isolated the effects of delayed and simultaneous tunnelling

current, and observed that the effect of changing the location of the dot array

within the intrinsic region of the p-i-n junction has a direct effect on the bias

voltages at which delayed and simultaneous tunnelling occurs. We also note that

the inclusion of the Coulomb interaction leads to a feedback dominated regime, in

which a mixture of delayed and simultaneous tunnelling is spread over the entire

range of bias voltages.

We then investigated this concept further by analysing the Coulomb field fluc-

tuations around the dot array over the entire range of bias voltages. The correlation

length of these fluctuations was shown to directly correspond with the dot occu-

pation, indicating a series of feedback dominated fluctuations in the tunnelling

currents. It is again worth noting that these fluctuations have been treated semi-

classically. For a more detailed study of Coulomb triggered Fermi sea fluctuations,

a more rigorous quantum mechanical treatment would be required.

We studied the process of up-conversion luminescence and the proposed Auger

mechanism. By a straightforward QM calculation, we were ableto include basic

Auger processes in our model, and found that the results werein excellent agree-

ment with experimental data. We also calculated the effect of a varying magnetic

field on the system, and predicted a reduction in UCL at increasing fields. A fur-

ther potential development in studying UCL and the Auger process would be to

simulate the system with the dot layer embedded within a leaky resonant cavity.

This would lead to laser action, and a study of the photon statistics in this scenario

could potentially be interesting.

When studying the fluctuations in the Coulomb field as a functionof time, it
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was discovered that several dots were emitting in a regime inwhich electrons and

holes tunnelled into the dot’s resonant energy levels alternately. We designated

this regime the “correlated tunnelling regime”, and studied it in detail in chapter 6,

using a variety of methods. We first studied the regime for theone dot case for both

tunnelling and recombination limited systems, using a numerical simulation and

master equation analysis to make predictions concerning the current and photo-

current noise though the dot.

We also analyzed a range of different two dot systems, involving different

combinations of single dots with resonant energy offsets. We demonstrated that

only three of the ten possible combinations would be capableof continued sys-

tematic evolution, leading to current transport and photonevolution. We again an-

alyzed these systems using a numerical simulation and master equation approach,

and derived results for mean currents and photo-currents, and their respective

noise characteristics. The numerical and analytical results showed remarkable

correspondance.

We have observed the single dot correlated tunnelling regime in simulation,

but not experimentally. It would be interesting to study experimental data to see

what possible correlated tunnelling regimes might be visible, and to ascertain how

many dots are involved. The noise measurements for current and photon noise are

also generated by the simulation; noise measurements for noise through a quantum

dot array are possible and would enable a further means of comparison.
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