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Abstract

Dendrites are the most visually striking parts of neurons. Even so many neuron

models are of point type and have no representation of space. In this thesis we

will look at a range of neuronal models with the common property that we al-

ways include spatially extended dendrites. First we generalise Abbott’s “sum-

over-trips” framework to include resonant currents. We also look at piece-wise

linear (PWL) models and extend them to incorporate spatial structure in the

form of dendrites. We look at the analytical construction of orbits for PWL

models. By using both analytical and numerical Lyapunov exponent methods

we explore phase space and in particular we look at mode-locked solutions. We

will then construct the phase response curve (PRC) for a PWL system with com-

partmentally modelled dendrites. This sets us up so we can look at the effect of

multiple PWL systems that are weakly coupled through gap junctions. We also

attach a continuous dendrite to a PWL soma and investigate how the position

of the gap junction influences network properties. After this we will present a

short overview of neuronal plasticity with a special focus on the spatial effects.

We also discuss attenuation of distal synaptic input and how this can be coun-

tered by dendritic democracy as this will become an integral part of our learn-

ing mechanisms. We will examine a number of different learning approaches

including the tempotron and spike-time dependent plasticity. Here we will

consider Poisson’s equation around a neural membrane. The membrane we

focus on has Hodgkin-Huxley dynamics so we can study action potential prop-

agation on the membrane. We present the Green’s function for the case of a

one-dimensional membrane in a two-dimensional space. This will allow us to

examine the action potential initiation and propagation in a multi-dimensional

axon.
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CHAPTER 1

Preface

The key to growth is the introduction of higher dimensions of consciousness

into our awareness.

- Lao Tzu

1.1 Motivation

The work we are presenting here falls into the category of theoretical neuro-

science. In this field researchers are trying to develop models that explain or

describe experimental observations in neuroscience. These observations range

from single cell recordings to behavioural experiments. This opens up a num-

ber of approaches for modelling the observations and also requires a number of

different skills. Among the different approaches, we find the so called “bottom

up view”. This means that the neuron is built from sub-cellular, biophysical

models and that the neuronal networks that constitute the brain are built from

connections between such detailed neurons. An excellent example of a bottom

up approach is the Blue Brain Project [1] that attempts to create a biologically ac-

curate, functional model of the brain. This naturally requires knowledge about

the anatomy of the brain, the connectivity of differrent brain areas and how

to model a single neuron and the synaptic coupling. To simulate the result-

ing system requires a huge amount of computational power which means that

expertise in hardware development and high performance computing are also

necessary.

At the other end of the spectrum we have functional models of, for example,

cortical columns [2]. This approach is more of the metaphorical level and often
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CHAPTER 1: PREFACE

makes use of ideas from computer science. These models may be biologically

motivated but the models are not based on biological processes. In between

the biologically detailed and the purely functional models we have biologi-

cal models that contains varying degrees of abstraction. An example of this

are neural field models that treat neurons as a continuous mass rather than

as discrete units [3, 4]. Neural field models are usually written in the form

of integro-differential equations and to find solutions substantial mathematical

knowledge is a must. Although the base of theoretical neuroscience is mod-

elling but we can also include statistical analysis of experimental results in the

area. This is especially true when applying new statistical tools, such as partial

directed coherence, to neuronal data [5].

With the above examples of sub-fields within theoretical neuroscience we wish

to point out what a diverse and inter-disciplinary subject we are handling here.

Theoretical neuroscience is also a relatively new area and is rapidly developing

in every aspect. As Larry Abbott points out in a recent review article, theoretical

neuroscience has undergone a rapid development during the last 20 years [6].

There is nothing that speaks against a similar development during the next 20

years.

In this thesis we will use numerical and analytical techniques to investigate the

role of dendrites in neuronal processing. The common ground for all the work

presented in this thesis is the view that dendrites and spatial extension are im-

portant and need to be considered when building a framework for understand-

ing neural dynamics and computation. We will, for example, show that the

position of a gap junction along a dendritic cable can change the synchronisa-

tion between two neurons. We will also demonstrate how certain distributions

of resonant current in a dendritic tree can influence the response of the neuron.

These are only two of many interesting examples that we discuss in this thesis.

1.2 Thesis Outline

Chapter 2

We start by describing the basic anatomy and the function of the neuron. Se-

lected aspects of neuronal modelling are also presented where we naturally

2



CHAPTER 1: PREFACE

focus on dendritic modelling and the progress that has been made up until this

day.

Chapter 3

Here we present the “sum-over-trips” formalism for passive branched den-

drites and develop this to calculate the Green’s function for a quasi-active den-

dritic tree. We further investigate the resonant properties of dendritic mem-

brane with a focus on a linear model of the Ih current. The modelling efforts

are compared with experimental recordings from a CA1 pyramidal cell. The

results in this chapter have been published earlier in [7].

Chapter 4

To perform a mathematical analysis of neuronal models we introduce piece-

wise linear models in this chapter. As the aim of the thesis is to investigate the

role of dendrites and spatial extension we extend the classically planar piece-

wise linear models to include dendritic structure. The system is then subjected

to periodic forcing and the mode locking structure of the system is investigated.

We consider both local and global forcing on the dendritic structure. The results

from this chapter are published in [8]

Chapter 5

In this chapter we combine piece-wise linear oscillator models in the weak cou-

pling limit and study synchronisation and phase locking. To do this we first de-

fine the phase response curve for a general oscillator model. We further change

the compartmental representation of the dendrites into a continuous model. We

then more closely explore the spatial effects on the synchronisation properties

using mathematical techniques.

Chapter 6

Here we explore learning and plasticity in spatially extended neurons. We focus

on single neuron learning and develop a spatially extended version of the tem-

3
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potron. We also create a direction selective neuron with the use of spike-timing

dependent plasticity. Finally we introduce the “spike-diffuse-spike” model that

represents dendritic membrane with fully non-linear, voltage gated currents. In

this framework we explore threshold learning using a supervised learning rule.

Chapter 7

As a closing chapter we explore a different approach to describe the neuron’s

membrane that moves away from the traditional cable equation model. Here

we make use of the fundamental laws of electromagnetism to develop models

of both dendrite and axon. This approach respects the fact that neural sections

are not infinitely thin and can not always be described by the cable equation.

This allows us to investigate the initiation and propagation of action potentials

in two and three dimensions. In the limit of a thin cable we are recovering the

one-dimensional cable equation. This is joint work with Giles Richardson at the

University of Southampton.

Chapter 8

Finally we summarise the results of this thesis in a discussion chapter. We also

examine the possibilities for further developments and potential future chal-

lenges in the area of dendritic modelling.

Appendix

Here we present extra material such as relevant computer code and algorithms

used for specific calculations.

4



CHAPTER 2

Background

Time is but the shadow of the world upon the background of Eternity.

- J. K. Jerome

In this chapter we will first present the anatomy and function of neurons. Spe-

cial focus will be on the function and structure of dendrites. We will also present

a short history of neuronal modelling. The focus will once again be on den-

dritic modelling but we will also present central concepts such as the Hodgkin-

Huxley model.

2.1 A Brief History of Neuroscience

The human brain has two basic building blocks: neurons and glial cells. Each

neuron is connected to other neurons through both chemical and electrical con-

nections and there are approximately 1012 neurons in the human brain. As well

as neurons there are also glial cells in the brain; these cells are actually esti-

mated to make up 90% of the brain. Traditionally glial cells are viewed as sup-

port cells for neurons although lately evidence has been presented to suggest

that glia play an important role in neural plasticity [9, 10]. A neuron consists of

three fundamental parts. These are the dendrites, the axon and the cell body or

soma. In figure 2.1 we show a schematic picture of these parts. This kind of pic-

ture is a very common sight in biology text-books, and if you search Google for

images with the keyword “neuron” the vast majority of images will be of this

type. The problem with this kind of picture is that the dendritic tree does not

appear to be a large part of the neuron. If we compare this with figure 2.2 we

5



CHAPTER 2: BACKGROUND

Figure 2.1: A schematic drawing of a generic neuron. Note that the main parts of

the neuron in this picture are the axon and the cell body (soma). Picture adapted from

http://www.epilepsyfoundation.org/about/science/images/Neuron.jpg

see that the dendrites are in fact a very large part of the neuron. The Purkinje

cell that is shown in this picture is the type of neuron with the most extensive

dendritic tree. Here we are making special note of the vast spatial extension of

the dendritic tree as this is the central concept of this thesis.

Figure 2.2: A drawing of a Purkinje cell from a cat’s cerebellum cortex done by Santiago

Ramón y Cajal. The axon is the segment denoted a. The soma is the body where the

axon ends. The rest of the neuron consist of dendrites.

Before venturing further into the modelling of dendrites we will present a short

history of neuroscience. As we discuss the breakthroughs and the people that

made them, we will simultaneously describe the possible function and role of

neurons. Neuronal morphology was first explored in the work of Santiago

6



CHAPTER 2: BACKGROUND

Ramón y Cajal and Camillo Golgi in the late 19th century. The first detailed de-

scription of dendrites was made by Golgi. He developed a revolutionary tech-

nique of silver staining [11]. Even if Golgi could identify the dendritic structure

he considered the dendrites to simply be a support organ for the neuron, that

held and distributed nutrients. Cajal looked at brain slices from cats, birds and

other animals through a microscope and produced detailed drawings of neu-

rons as can be seen in figures 2.2 and 2.3. Cajal was the first to come to the

conclusion that a neuron is an independent unit that works together with other

units to create a network. In figure 2.3 we see a part of the optic tectum of a

sparrow. We see that each neuron is individually drawn in great detail both in

the upper pyramidal cell layer and in the lower granule cell layer. By looking at

this and other drawings done by Cajal it is easy to draw the conclusion that den-

dritic structure accounts for the majority of the surface area of the neuron. We

will later elaborate on dendritic structure and what effect it has for the function

of a neuron. Cajal also proposed the idea that the neuron receives information

in the dendrites and that this information then flows through the soma where

it is directed into the axon. Cajal called this “the rule of dynamic polarisation”

[12] and he drew these conclusions purely by looking at the spatial distribution

of neurons.

In 1952 a big breakthrough in neuroscience was made as Hodgkin and Huxley

released their paper “A quantitative description of membrane current and its

application to conduction and excitation in nerve” [14]. Across the neuronal

cell membrane there is a potential jump that is maintained by different ion con-

centrations on different sides of the membrane. The resting potential of a typical

neuron is -65 mV. If the neuronal membrane is sufficiently depolarised active

ion pumps in the membrane are activated and the membrane potential is then

reversed temporarily. This reversal of membrane potential is known as an ac-

tion potential (AP). The AP will travel across the membrane and induce a trav-

elling depolarisation. This depolarisation can cause activation of ion pumps

on other parts of the membrane. Especially along the axon the density of ion

pumps is high and the action potential will travel down the axon. It was previ-

ously known that neurons fire APs [15], but Hodgkin and Huxley managed to

accurately record the AP in a giant squid axon and even create a mathematical

model of the membrane. The model included active Sodium, Potassium and

leak currents that were able to mimic the AP in the giant squid axon. See ap-

7
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Figure 2.3: Ramón y Cajal’s drawing of the optical tectum of a sparrow. We can easily

identify granule cells at the bottom of the picture and above them we see a variety of

pyramidal cells [13].

pendix 8.2 for details on the Hodgkin-Huxley dynamics. For this work Alan

Lloyd Hodgkin and Andrew Huxley received the 1963 Nobel Prize in Physi-

ology or Medicine and this is still today regarded as the basic model of how

the neuronal membrane works. The three currents identified by Hodgkin and

Huxley are not sufficient to explain all kinds of AP generation and dynamics

seen in other types of neurons, but the model is easily generalised. As new ion

channels and dynamics have been identified experimentally, modellers have

been able to introduce new terms that are all of the same general form as the

original Hodgkin-Huxley currents [16–18].

The original Hodgkin-Huxley model is four dimensional, as V and the three

gating variables are governed by differential equations. Adding further cur-

rents can give a more realistic model but it will also add to the complexity of

the model. To perform mathematical analysis of neurons there are also models

that aim to reduce the number of dimensions while still maintaining biological

significance. The oldest and also most used of these models is the integrate-and-

fire (IF) model presented by Lapicque in 1907 [19, 20]. The original IF model has

8
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the dynamics
dV(t)

dt
= −V(t)−V0

rm
+ I, (2.1.1)

where V(t) is the neuron potential, V0 is the resting potential, rm the mem-

brane resistivity and I is any injected current. In the model we also have a

threshold value, h, and when V(t) ≥ h the membrane potential is restored

so that V(t) = V0. The reaching of the threshold and resetting is mimicking

the firing of an AP in the neuron. The actual shape of the AP is not included

but we have here a one dimensional and linear description of excitable tissue

that allows mathematical analysis of the model. These low dimensional mod-

els are, however, not meaningless from a biological perspective, as IF models

and developments of these are, for example, commonly used to model audi-

tory neurons in the cochlea [21, 22]. There are also non-linear models of lower

dimensionality than the Hodkin-Huxley model that are able to give the AP in

more detail. Two specific examples that we will present in chapter 4 are the

FitzHugh-Nagumo model [23, 24] and Morris-Lecar model [25, 26]. Both of

these are planar (two-dimensional) models of excitable tissue that are widely

used in theoretical neuroscience.

Figure 2.4: The transmission of neurotransmitter from the axon terminal to a post-

synaptic membrane. Picture modified from Julien [27].

We have mentioned that the neurons are individual units that work together

with other units. We would now like to present the means available for neu-

rons to communicate with each other. As we described above, the AP will travel

down the axon and finally end up at the axon terminal, see figure 2.1. At the

axon terminal we find a chemical synapse. Here the pre-synaptic membrane, in

our case the axon, and the post-synaptic membrane are separated by approx-

imately 20 nm, a space called the synaptic cleft. In the pre-synaptic membrane

9



CHAPTER 2: BACKGROUND

there are synaptic vesicles containing neurotransmitters. When the AP arrives at

the terminal, neurotransmitter is released and diffuses across the synaptic cleft

to the post-synaptic membrane. Neurotransmitter is then absorbed by post-

synaptic receptors and a post-synaptic potential (PSP) is induced in the post-

synaptic neuron. This is a complex process and the PSP can either be caused

directly by the neurotransmitter release or via a biochemical chain. The PSP

can either be inhibitory or excitatory depending on the neurotransmitter that

is involved in the synaptic transmission. There are numerous neurotransmit-

ters but here we would like to mention the gamma-amino-butyric acid (GABA)

which is inhibitory and the glutamate which is excitatory [28, 29]. In figure 2.4

we see a drawing of an active chemical synapse. In this case the axon terminal

is connected to the dendritic membrane, which is the most common case, but

chemical synapses can be formed between an axon and any of the fundamental

parts of a neuron.

The chemical synapses are the dominant means of communication in the mam-

malian brain but it is not the only channel. There is also gap junction coupling

between neurons. The gap junction is a cluster of connexin proteins that allows

ions to flow from one neuron to another. The chemical synapses we have seen

so far are only active when the pre-synaptic neuron fires an AP but the gap

junction is always active and therefore voltage fluctuations that are too weak

to cause an AP can be communicated. Gap junctions are also normally bidi-

rectional which means that the strictness of pre/post-synaptic neurons we saw

for chemical synapses does not exist. Another speciality of gap junctions is that

they do not exclusively exist at axons. Gap junctions can exist between any of

the three fundamental parts of the neuron [30–32]. We will further consider

gap-junctions and their effects in chapter 5.

As the work in this thesis is focused on dendrites, we would also like to point

out that neurotransmitter release is not only possible at the site of chemical

synapses. In for example Purkinje cells and in the olfactory bulb magnocellular

neurons (MCNs), the peptides vasopressin and oxytocin are released from their

somato-dendritic compartment [33, 34]. These neurotransmitters then diffuse

and affect other neurons in the proximity.

As we have already stated, the brain contains approximately 1012 neurons and

for this reason there is use for coarse grained models of brain tissue. This type

of modelling is often referred to as neural field theory and has been developed
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by H. Wilson, J. Cowan, S. Amari, P. Nunez and H. Haken, for a review see [35].

In particular it is useful for the theoretical study of EEG rhythms and working

memory [36, 37]. However, we will not treat this level of description here.

2.2 Biology and Morphology of Dendrites

2.2.1 The Dendritic Tree

As we have seen in figures 2.2 and 2.3 the dendritic structure of neurons can

be up to 90 % of the total surface area of a neuron. With this fact it is natural

to start looking at the morphology of the dendritic structure. The diversity of

shape in different dendritic trees is striking. We have as extremes the selec-

tive arborization of an olfactory sensory cell and the space filling structure of

a cerebellar Purkinje cell. In between these we have a variety of sampling ar-

borizations such as the pyramidal cell in the cerebral cortex [38], see figure 2.5

for some dendritic morphologies. During the early development of the brain

the dendrites grow out from the cell body to create the dendritic structure. The

development of the dendrites is partly dependent on genetic factors and cell

lineage but is also activity guided. If the growing dendrites recieve synaptic

input and interact with glial cells, this encourages further development. The

devlopment and guidance of this growth is a complex biochemical process that

we will not go more into here. For further details see [39]. This process has also

been thoroughly studied in a theoretical context to recreate realistic dendritic

arborisations, see for example the work of Graham and van Ooyen [40, 41].

As we have seen, dendrites can often be branched in a very complicated manner

but we have no closed loops in the dendritic structure, see figure 2.5. This is

known as a tree structure, which we will now proceed to give some background

on. The tree is a structure that is used in fields other than neuroscience, such

as computer science [44] and lung mechanics [45]. In the work by van Pelt and

Schierwagen [43] the following parameters, that also can be seen in figure 2.6,

are used to characterise trees:

Order. This is how many levels the tree consists of, counted from the soma.

The branches that connect directly to the soma have order 0. The daughters of

these branches then have order 1 and so the order increases all the way to the

11
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Figure 2.5: Examples of dendritic trees. (a) Cat spinal motoneuron. (b) Locust

mesothoracic ganglion spiking interneuron. (c) Rat neocortical layer 5 pyramidal neu-

ron. (d) Cat retinal ganglion neuron. (e) Salamander retinal amacrine neuron. (f)

Human cerebellar Purkinje neuron. (g) Rat thalamic relay neuron. (h) Mouse olfac-

tory granule neuron. (i) Rat striatal spiny projection neuron. (j) Human nucleus of

Burdach neuron. (k) Fish Purkinje neuron. Modified from [42].

terminal segments.

Degree. This is the number of terminal tips that belongs to a subtree. If the

segment we are looking at is the root of the tree, then the degree is simply the

total number of terminal tips in the tree.

Asymmetry index. This is a parameter that expresses the probability that any

segment should branch asymmetrically at any of the n− 1 branch points in tree

with degree n. This can be calculated with the summation

A =
1

n− 1 ∑ Ap(ri, si), (2.2.1)

where (ri, si) is the degree of each subtree at branching point i. The partition

asymmetry, Ap, is defined as

Ap =
|r− s|

r + s− 2
for r + s > 2 and Ap(1, 1) = 0. (2.2.2)

That means that a perfectly balanced tree has A = 0 while the most asymmetric

12
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Figure 2.6: Some terminology for a arbitrary tree structure (A) is shown as well as the

degree (B) of the sub-trees and finally we have the order (C). This image is adapted from

[43].

tree has A = 1.

These values are common for all types of trees but we need a bit more informa-

tion to describe a dendritic tree. The values above only describe the connectiv-

ity of the nodes in the tree and we are equally interested in the morphology of

the edges since those represent the dendritic segments. For each segment we

need to know the length and the diameter. The diameter is often a function of

the distance from the soma, particularly for tapered dendrites [46].

One important difference between dendritic trees and the ones used in many

other cases is that a biological dendritic tree has more degrees of freedom. If

we want to analyse the effects of morphology on the electrical properties of a

neuron we can not ignore the fact that a neuron is a three dimensional structure.

A theoretical framework of how to classify three-dimensional trees is presented

by da Costa et al., [47]. Here, three families of measures that are needed to

classify and describe a three-dimensional tree structure are presented:

Differential Geometry. This family includes measures such as segment length,

curvature and orientation.

Symmetry axes. These are the measures that describe how the tree is built stored.

These measures are, for example, hierarchical representation and the number of

branches in the tree. Measures such as order and degree fit into this family.

Complexity. These are measures that describe the neuron as a whole. Examples

are fractal dimension and extension of the dendritic tree.

The appealing aspect about the work by da Costa et al. is that many other

papers that discuss morphological properties of dendrites can be said to focus

on measures that can quite easily be identified as part of this framework. In a
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follow up paper by Barbosa et al. [48] the complexity issue is further explored

with the help of Minkowski functionals that have been gathered in a framework

called Integral-Geometry Morphological Image analysis.

Ascoli [49] is discussing some differential geometry measures in his paper for

1999. Ascoli suggests that to fully describe a three-dimensional branch point

we need the following three values:

Amplitude. A number that gives the angle between the two daughter segments

after the branching.

Elevation. The branching’s tilt with respect to the parent segment.

Azimuth. The torque of the branching with respect to the parent segment.

The more detailed differential geometry of the individual segments is explored

in the work of Streekstra and van Pelt where they use Gaussian kernels to de-

scribe the centre line position and diameter of dendritic segments [50].

As dendrites are the main site for synaptic input it is natural that we would

like to have as much area as possible where contacts can be formed. On the

other hand, a large dendritic volume and a long dendritic cable are not energy

efficient, and will slow down certain types of signalling that depend on diffu-

sion. This seems to favour a compact and highly branched dendritic structure.

Indeed, by optimising dendritic volume for a given total wiring length, the den-

dritic structure of fly neurons has been successfully reconstructed [51, 52]. Not

all dendritic arborisations strictly follow this optimisation principle. Pyramidal

cells that we can see in figure 2.3 receive inputs from multiple layers in cortex,

and the dendritic tree is then shaped to accommodate this. The role of den-

dritic structure stretches beyond simply being a place where synaptic connec-

tions are made. The dendritic morphology influences the response in a way that

causal relationship between dendritic structure and firing properties in neocor-

tical neurons can be concluded. In the case of passive dendrites, different mor-

phologies mainly affect the firing frequency of neurons. If active currents in the

dendrites are considered, we also see more qualitative differences, such as the

firing patterns varying between bursting and regular patterns [53, 54]. In a sim-

ilar manner the morphology affects the back-propagation of action potentials

[55].
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2.2.2 Dendritic Spines

Figure 2.7: Three dimensional imaging of a spiny dendrite [56].

Many axo-dendritic synapses are situated on dendritic spines [29]. Especially

excitatory synapses are often placed on spines. Dendritic spines are small pro-

trusion on the dendritic cable on the 1 µm scale. The spines can come in many

shapes and variations. In general all dendrites can be classified as spiny, sparsely

spiny or smooth but even neurons with smooth dendrites usually have a few

spines. There are also a number of different shapes associated with the spines

[38]. In figure 2.7 we see a piece of spiny dendrite with mainly what are known

as simple spines. We can divide spines into simple and branched spines where

the simple spines consist of a spine neck connected to a more bulbous spine

head. As expected, the branched spines are simply two or more spine heads

connected to a common spine neck. In figure 2.7 we further see that even the

simple spines can have considerable variations in shape. The spines serve to

create biochemical microenvironments that receive input from other neurons

and compartmentalise the postsynaptic response from the dendritic cable; in

that way the spine can serve to boost the synaptic input [57, 58]. As so much

of the synaptic input is located at the spines, they are critical for dendritic in-

tegration [59]. As we have seen, the shape of the spines can vary, and with

that the electrical properties such as membrane resistance and conductance are

also different between spines. It has been shown that these variations develop
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over time and are dependent on the activation of the synapses [60, 61]. Spines

therefore play an important role in neural plasticity.

2.2.3 Active Currents in Dendrites

When we described the function of the neuron in section 2.1, the neuron had ac-

tive, voltage gated current of the type that was first described by Hodgkin and

Huxley. These currents are most common in the soma and along the axon, but

voltage dependent currents are also present in the dendrites. Theories of this

type were originally proposed by de No [62] and also by Wilfrid Rall [63, 64].

Rall is closely connected with the passive cable theory but he was actually one

of the first to examine the non-linearities in dendrites. Despite these early ex-

plorations, it was not until the early 1990’s that direct demonstrations of voltage

gated ion channels in dendritic structure were made. Through dual recordings

of the soma and dendrites of pyramidal cells by Stuart et al., it was shown that

action potentials initiated in the soma are capable of invading the dendritic tree

[65, 66]. These back propagating action potentials (BPAPs) exist to a certain de-

gree in a passive structure due to diffusion, but Stuart et al. make clear that the

measured BPAP could not be explained by this alone. Further recordings also

verified that active mechanisms amplify synaptic input [67].

In the past 15 years since these observations, numerous voltage gated chan-

nels have been identified. We have the Sodium and Potassium channels that

are used in the original Hodgkin-Huxley model. In the dendrites, the Sodium

channels can initiate non-linear effects that we know as dendritic spikes [68–

70]. Calcium and Chloride channels have also been identified, as well as other

non-specific channels [71, 72]. Among the non-specific channels, the hyper-

polarising current, h-current, is of special interest, as it has been shown to be

abundant in the distal parts of CA1 pyramidal neurons [73, 74].

In a recent review by Johnston and Narayanan [75] the following eight points

are presented to summarise the roles and observations in the field of active

dendrites.

1. Na+-dependent APs that are initiated in the soma or the axon backprop-

agate through the dendrites supported by voltage-gated channels.

2. Na+-dependent spikes can be initiated in the dendrites. These dendritic
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spikes can be of a local type but can also start off a more global phenomena

in the dendritic structure.

3. Ca2+ channels are opened by both BPAPs and local dendritic spikes. This

channel activation will produce a rise in intracellular Calcium.

4. In distal dendrites Ca2+-dependent spikes can be sustained.

5. A rise in intracellular Calcium can also be obtained by the opening of

Ca2+ channels due to synaptic input.

6. In some neurons K+ channels regulate the BPAP and play a role in the

initiations of dendritic spikes.

7. Dendritic h-channels are important in the integration of temporal patterns

and can also mediate neuronal oscillations.

8. The distribution of voltage-gated channels (together with dendritic mor-

phology) influences the type of output of a neuron for a given input [53,

54, 76].

As we will see in section 2.4 active properties also have great importance for

the plasticity of the neuron. There is, however, much more to be done when it

comes to the mechanisms and the role of active currents in dendrites. This is

true from an experimental as well as from a theoretical point of view. In the

following section we will consider some of the landmarks in dendritic mod-

elling and we will, among other things, touch on the theoretical treatment of

voltage-gated channels in dendrites.

2.3 Modeling of Dendrites

2.3.1 The Passive Cable and Rall’s Model Neuron

To begin the journey through dendritic modelling we will start with the theory

of passive dendrites. The story of cable theory and dendrites is in many ways

the story of one man, Wilfrid Rall. After Hodgkin and Huxley’s model of the

squid giant axon, the field of making electrophysiological recordings from neu-

ral tissue opened up. Among the first successes was the group of Eccles that
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made recordings from motoneurons to determine membrane properties. Eccles

included dendritic structure in a model, but the size of the structure was greatly

underestimated. In addition to this, Eccles calculations suggested that synapses

placed on the dendrites are at such great electronic distances from the soma,

that these synapses would not affect the voltage in the soma at all. In 1957, Rall

published a letter in Science that highlighted that the time-course of the volt-

age in the motoneuron was closer to that of dendrites with no soma, than to

the time-course of a soma without dendrites [77]. In 1959 Rall presented the

theory that he became most famous for, namely the cable theory for neuronal

dendrites. Cable theory had been applied to axons even before Hodgkin and

Huxley’s non-linear theory in order to examine the passive properties of the

axon [78, 79]. The electrical properties of a passive dendritic segment can be

described by the cable equation

rmcm
∂V(x, t)

∂t
=

rm

ri

∂2V(x, t)

∂x2 −V(x, t) + rm Iinj(x, t), x ∈ R, t > 0.

(2.3.1)

Here V(x, t) is the transmembrane potential, rm is the membrane resistance of

unit length times unit length (Ωcm) and cm is the membrane capacitance per

unit length (F/cm). Iinj(x, t) is an applied current density. We will also use a

and ri, that denote dendrite radius and axial resistance respectively, later. For

derivation of the cable equation see [80].
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Figure 2.8: Typical morphology of a motoneuron like those Rall [78] as well as Coombs,

Eccles and Fatt [81] made recordings from. The morphology data was taken from

http://krasnow.gmu.edu/L-Neuron/L-Neuron/database/index.html#Moto
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If we consider an infinite cable, the solution of (2.3.1) can be written as

V(x, t) =
∫ t

0
ds
∫ ∞

−∞
dyG(x− y, t− s)Iinj(y, s) +

∫ ∞

−∞
dyG(x− y, t)V(y, 0).

(2.3.2)

Now, let τ̄ = rmcm, λ =
√

2arm/ri and D = λ2/τ̄. The Green’s function for the

infinite uniform cable may be written

G(x, t) =
1√

4πDt
e−t/τ̄e−x2/(4Dt), −∞ < x < ∞, t > 0. (2.3.3)

In the original paper by Rall [78], he considers the steady state solution for the

cable equation, ∂V/∂t = 0. In table 2.1 we see the steady state solution for the

cable equation in the case that we have current injection at x = 0 in a dendritic

cable. We consider a semi-infinite cable and two cases of a finite cable for which

0 ≤ x ≤ l. The two cases of finite cable we consider are a cable with a closed

end, V(l) = 0, and open end, ∂V/∂x|x=l = 0.

Semi-infinite cable Closed end at x = l Open end at x = l

V(0) Iinjriλ Iinjriλ coth(l/λ) Iinjriλ tanh(l/λ)

V(x) V(0)e−x/λ V(0) cosh(l−x)/λ
cosh(l/λ)

V(0) sinh(l−x)/λ
sinh(l/λ)

Table 2.1: The steady state solutions of the cable equation in the case of current injection

at x = 0 for three cases of dendritic cable. We show the solution at the place of current

injection, V(0), and as a function of x.

Applying the cable equation to dendrites was without doubt very important,

but Rall also took other measures to handle dendritic geometry. As the axon

is usually less branched, at least proximal to the soma, the cable equation was

a natural application to this part of the neuron. In chapter 7 we will further

discuss the use of the cable equation in connection with axons. The dendrites,

on the other hand, are usually constructed by many short branches, so to apply

the cable equation to each of these with the correct boundary conditions would

be a very complicated task. Rall was able to derive the 3/2 power law that al-

lowed for the construction of an equivalent cylinder. To construct an equivalent

cable for a branching point in the tree, the radii of the branches, ai, must obey

a3/2
j = ∑i 6=j a3/2

i [82]. See right part of figure 2.9 for an example of a branching

point that can be collapsed to an equivalent cylinder. The resulting equivalent

cables radius, a, is determined by a = A/2πL, where A is the total surface area

of the tree and L is the total length of all the branches. The length of the equiv-

alent cable is chosen so that the electrotonic length of the cable is the same as
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Figure 2.9: Left: The compartmentalisation of the passive dendritic cable. In this fig-

ure Ra is the axial resistance of the cable, Rm is the membrane resistance, Cm is the

membrane capacitance and a is the cable radius. Right: A schematic picture of how

to create an equivalent cable of a branching node. The requirement for this is that

a3/2
1 = a3/2

2 + a3/2
3 , where ai is the radii of each branch. The radius of the equivalent

cable is a = A/2πL, where A is the total surface area of the tree and L is the total

length of all the branches, i.e. L = ∑i li.

the average electrotonic length of the whole tree. The electrotonic length of a

cable with length lk is lk/λk, where λk =
√

(rmak)/(4ri) [83]. The resistances rm

and ri are the membrane resistance and the cables axial resistance respectively,

see figure 2.9. By the equivalent cylinder approach and the cable equation, Rall

was able to make excellent predictions of the parameters in the motoneuron

membrane and thus become the first to effectively include a spatially extended

dendritic structure in a neuron model.

A more general representation of these equivalence transforms is presented by

Lindsay et al. [84]. This paper explains how an uniform Y-junction can be

mapped into an unbranched structure whose total electronic length is the same

as the total electronic length of the branched structure. Any dendritic tree can

then be seen as a system of parallel and serial Y-junctions. In [85], Reeke et al.

apply this scheme to large branched structures.

In 1964 Rall produced yet another paper that came to be a landmark in the mod-

elling of dendrites. The limitations of the equivalent cylinder model motivated

the development of the compatmental model [63]. The core idea in compart-

mental modelling is that a part of the dendritic cable is described by an electric

circuit. In the case of Rall’s original idea, this is a circuit that describes the pas-

sive properties of the membrane. In figure 2.9 we see how the dendritic cable is

approximated by a chain of these circuits coupled by resistances. This is a nat-
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ural discretisation of the dendrites, and compartmental modelling has been the

dominating paradigm in the modelling of neural structure in general and es-

pecially for dendrites. For example, widely used programs such as NEURON

and GENESIS implement compartmental modelling [86, 87].

2.3.2 Morphoelectrotonic Transform

In the previous section we spent some time considering dendritic morphology

and what effect this has on the response of neurons. We also introduced cable

theory for passive dendritic structures. Now we will discuss a measure that

connects the two fields. The morphoelectrotonic transform (MET) is used to

visualise voltage attenuation or delay of the voltage waveform in the neuronal

structure. MET was introduced by Zador et al. in 1995 [88]. Let’s look back at

equation (2.3.2). If we assume that V(x, 0) = 0 and we inject a current Ii(t) =

IA(xi, t) at a point xi in the dendritic tree. The voltage Vj(t) = V(xj, t) at any

other point xj in response to Ii(t) is

Vj(t) =
∫ ∞

−∞
Ii(s)Gij(t− s)ds = Ii(t) ∗ Gij(t), (2.3.4)

where ∗ indicates temporal convolution. Gij(t) is the Green’s function between

the points xi and xj, i.e. Gij(t) = G(xj − xi, t). By taking the Fourier transform,

ŷ( f ) =
∫ ∞

−∞
y(t)e−i f t dt, (2.3.5)

where the notation ŷ( f ) means the Fourier transform of y(t), of equation (2.3.4)

we get

V̂j( f ) = Îi( f )Ĝij( f ). (2.3.6)

The voltage attenuation between two points is

Aij( f ) =
V̂i( f )

V̂j( f )
=

Ĝii( f )

Ĝij( f )
. (2.3.7)

This expression is not additive, and that is a property that is desirable for us

as we want to visualise the attenuation. We could visualise the non-additive

measure, but in that case it is not so easy to differentiate between electronically

compact and distant regions. See the difference between the classic electrotonic

diagram and the attenuation diagram in figure 2.11. By taking the logarithm

we get

Lij = log(|Aij( f )|). (2.3.8)
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The logarithmic attenuation is then used to draw an attenogram. This is done

by taking the physical morphology of a neuron and rescaling it so that one

unit length represents an e-fold attenuation. Note that only the length of each

segment is re-scaled, the diameter and orientation are preserved. See figure 2.10

for an example of this.

Figure 2.10: An example of an attenogram. Notice how the attenuation is much higher

in the branches that do not have an injected current. This image is reproduced from

[88].

Another variant of morphoelectrotonic transform is the delay in the voltage

waveform [82]. The delay is defined as the difference between the centroids of

the voltage response at two separated points xi and xj [82, 89]. The centroid of

a voltage response at xi is defined as

ti =

∫ ∞

0 tv(x, t)dt∫ ∞

0 v(x, t)dt
. (2.3.9)

The delay is then calculated as

Pij = tj − ti. (2.3.10)

This is then used to draw a delayogram much in the same way as the attenogram.

In a delayogram one unit length represents a fixed delay time. Delayograms

and attenograms are useful for visualising how different input frequencies be-

have in an branched structure.
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Figure 2.11: An example of an attenograms and delayograms. See the text for details

about the different transforms. This image is reproduced from [88].
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In figure 2.11 we see some morphoelectrotonic transforms of a pyramidal cell

from layer 5 of cat visual cortex. Beginning from top left we see:

a. The three-dimensional anatomical reconstruction of the neuron.

b. In the middle of the top row we have the classical electrotonic transformation

where the length of each process is replaced by its electrotonic length, L = l/λ,

that is dependent on fiber geometry.

c. Top right shows a centrifugal attenogram where the current is injected into

the soma. Note that, as opposed to the classical electrotonic transformation,

here an electronically distal branch gets shorter than in the real geometry.

d. Bottom left is an attenogram where instead current is injected in each of the

dendritic terminals; this is called a centripetal attenogram. Note that the scale is

different than in c. The small insert at the side shows the centrifugal attenogram

drawn in the same scale.

e. Finally we have the somatic, centripetal delayogram with its centrifugal

counterpart.

Figure 2.11 is adapted from [88].

2.3.3 Modelling Active Currents

When we described the dendritic membrane containing voltage-gated channels

we noted that the non-linearities were not directly demonstrated until the early

1990’s by Stuart et al. [65, 66]. However the transient nature of dendritic pro-

cessing and synaptic input was known earlier, and in two papers in 1973 and

1975 Rall and Rinzel gave a mathematical formulation of these transient cur-

rents [90, 91]. These transients are detected as an overshoot or undershoot as

current is injected, see figure 2.12 for an example. Rall and Rinzel applied their

transients theory to an idealised dendritic tree, but Butz and Cowan derived

a scheme to use transients in a arbitrary geometry [92]. Further development

was made in this area when Koch and Poggio in the 1980’s showed that the

formulations used earlier to describe transients can be obtained by linearising

general non-linear currents [93, 94]. We will not go into more detail of these for-

mulations of transients and linearised currents here, as in chapter 3 we will use

these to fit experimental data. Here we will thoroughly discuss the derivation

of linearised currents and what effects they may have for dendritic process-
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ing. When we come to the history of modelling non-linearities in the dendrites

Figure 2.12: To the left we see a voltage trace with a transient overshoot as current

is injected. The circuit to the right describes the membrane dynamics that give the

transient.

we again have to credit Wilfrid Rall for his important contributions. In 1985

Miller, Rall and Rinzel published work discussing the active amplification of

synaptic input in the dendritic spines [57]. Baer and Rinzel later developed

the amplification model for synaptic input in the spines to incorporate a spatial

dimension [95]. The resulting Baer-Rinzel model makes use of a continuous

description of active currents. The dendritic spines are described by a con-

tinuous spine density along the dendrites. The most significant contribution

to the modelling of active dendrites from Rall is, however, the compartmental

model. It is straight-forward to supplement the passive circuits seen in figure

2.9 with pathways that contribute with non-linearities. This allows for detailed

reconstruction of the dendritic tree, with voltage-gated currents in the mem-

brane. With this framework, some impressive results have been produced that

are able to give an account of non-linear activities in dendritic structures. An

example of this is Jarsky et al. that investigates the activity in a reconstructed

CA1 hippocampal pyramidal cell [96]. Models of the BPAP also makes it pos-

sible to examine communication within a single neuron. As a firing event can

propagate and be detected through the entire neuron, not just the soma and

axon, this can be important for plasticity and feed-back [97, 98].
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2.3.4 Coincidence Detection

Figure 2.13: Schematic picture describing the morphology of a bipolar neuron.

The next success story of dendritic modelling we would like to get across, is

that of the importance of dendrites in coincidence detection. Mammals and

birds use sound to identify the location of both prey and predators. By using

intra-aural time differences, the sources of sounds can be located. We will con-

sider a bipolar neuron, i.e. a neuron that has a dendritic arborization that is

extended in two directions that are opposite to each other [29], see figure 2.13

for a schematic picture. The input from left and right ear will come onto the

different parts of the dendritic arborization. The idea of coincidence detection

in the auditory system was first presented by Jeffress in 1948 [99]. A paper by

Agmon-Snir et al. published in 1995 clearly demonstrated the importance of the

dendrites for coincidence detection [100]. This is demonstrated by considering

two biophysical mechanisms. The first mechanism is the spatial segregation of

inputs. This allows for non-linear integration of the input from the left and the

right ear. The other mechanism is that the opposing dendritic tuft acts as a cur-

rent sink for the input. In audition, coincidence detection is easy to interpret

from the type of input. If the sound reaches both ears at the same time, then

we have coincidence. Coincidence detection has also been shown to play an

important role in the visual system. In vivo experiments on macaque monkeys

performing a motion-detection task demonstrated that coincidence detection is

present in the middle temporal area of the visual system [101]. By consider-

ing the morphology of a pyramidal cell, Agmon-Snir et al. also suggested that
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coincidence detection is a feature in higher brain areas, i.e. areas that are fur-

ther from receiving direct sensory input. Pyramidal cells have a more complex

branching pattern than bipolar neurons where the dendrites can be divided in

a basal tree below the soma and the apical tuft above it, see figure 2.3. Co-

incidence detection in pyramidal cells is later explored by Schaefer et al. who

conclude that dendritic morphology is a critical factor for coincidence detection

[102]. Schaefer et al. do not offer any explanations as to what kind of coinci-

dences are detected by pyramidal cells, or what role they play. Other studies,

however, suggest that coincidence detection in hippocampal granule cells is in-

volved in memory recall [103]. In conclusion, we can say that a problem and

model that were presented by Jeffress in 1948 was further developed and thor-

oughly explained in 1995 by simply considering the dendritic structure of a

neuron. This is an excellent example of the importance or dendritic process-

ing and how seemingly complicated mechanisms can easily be explained by

including spatial structure. The ground breaking work of Agmon-Snir et al. has

also started a number of studies on the importance of coincidence detection in

cortex and hippocampus, but in these areas there is still much work to be done.

2.4 Plasticity and Learning

2.4.1 Machine learning

We will here introduce some of the theory and notation used in machine learn-

ing. As the field of machine learning in general and artificial neural networks

(ANNs) especially, are highly influenced by neuroscience, this is a good way

to introduce learning concepts. First of all, we will present the idea of a classi-

fication task and a learning object. The object we teach, what we will call the

learning object, can generally be a lot of things in practise, but in every case,

there is a computer program that is adapting itself over time. One of the most

successful self learning objects is TD-Gammon [104], which is a program that

plays backgammon. In the beginning the program only knew the basic rules of

the game, and it learnt by playing against itself. After 1,500,000 training games,

the program was ready to take on the backgammon grand master Bill Robertie.

The result was that man won over machine; Robertie won 21 out of 40 games.

We can easily think of a general task that we want to teach an artificial system,
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i.e. playing backgammon, reading a text, or driving a car. When we break it

down, the task is to make decisions, given certain information. We will call this

task pattern classification. For TD-Gammon the input pattern is the layout of the

playing field and the roll of the dice; based on this, the program has to make

a decision about what is the most effective next move. The term “pattern clas-

sification” makes good sense in the case of text recognition, as each letter that

is read is matched against a finite number of possible classes, i.e. the alphabet,

and then the most appropriate letter is chosen [105]. The classification method

is dependent on the type of the learning object. We will now present the first

learning object that we focus on here, namely the perceptron.

Figure 2.14: Schematic drawing of a perceptron.

The perceptron is the simplest form of an artificial neural network (ANN). It is

actually a one-layer, feed-forward ANN; see figure 2.14 for a schematic picture

of the perceptron. The concept of ANNs has been around since McCulloch and

Pitts introduced it in the 1940’s [106]. In their work McCulloch and Pitts treat a

neuron as a simple binary operator that produces 1 if the input to the neuron is

above a certain threshold, µ. This can formalised by

y = Θ(
N

∑
j=1

wjxj − µ), (2.4.1)

where Θ is Heaviside step function, xj are the inputs to the neuron and wj is

a weight that is associated with the jth input. The output, y, can then be used

as input to other neurons. The learning in ANNs is generally conducted by

updating the input weights according to the rule

wj ← wj + ∆wj, (2.4.2)

where

∆wj = λ(t− y)xj. (2.4.3)
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In the update, t is the target value for this input and λ is the learning rate. The

details of how this update is done are dependent on which learning paradigm

and type of learning rule that are chosen [107]. ANNs were inspired by the ob-

servation that the human brain is built by seemingly simple units and through

the intricate network structure is able to perform a wide range of tasks. In the

1940’s research into plasticity started to take off with the work of Donald Hebb

in the fore-front [108]. We will come back to Hebb’s theories later. ANNs also

have roles in neuroscience. They generally do not attempt to simulate a bio-

logical network of neurons but are rather used as a classifier to test the effect

of experiments. This is a task they have proved to handle very well. In this

context ANNs have been proposed as a classifier of cognitive impairment and

therapeutic effectiveness in Alzheimer’s transgenic mice [109]. ANNs take in-

put data and make a decision about which class the pattern belongs to. The

input to an ANN is, as can be seen in (2.4.1), a vector of N input values that we

call x. Each of these inputs is weighted by an element in a weight vector, w.

The equation w · x = 0 then describes a hyperplane that divides N dimensional

space into two parts. With training we want to adjust the weights so that all

patterns on each side of the hyperplane are of the same class. The perceptron

is limited in the sense that it is a linear classifier. If the patterns we wish to

classify are not separable by a hyperplane, we can introduce a multi-layered

ANN where the output from one layer becomes the input to the next layer. In

a multi-layered structure we also have the possibility to introduce feed-back

loops. By this architecture, arbitrary regions in our N dimensional space can be

separated from each other [105]. We will in chapter 6 briefly revisit the percep-

tron and generalise it to include spatial extension.

So now we have given an example of a learning object, the perceptron, and how

it classifies patterns. We also saw the learning rule for the perceptron, though

as yet we have not really considered how we can teach a system to solve a

given classification task. There are two main learning paradigms, supervised

and unsupervised learning. Supervised learning involves an external teacher

that tells the system if any adjustments are necessary. The perceptron update

rule (2.4.3) is an example of a supervised learning rule as the current output is

compared to a desired output. An example of an unsupervised learning rule is

Bayesian learning [105]. In Bayesian learning there is a space of hypothesis, H,

and a set of training data, D. An hypothesis, h, is chosen from H and then the
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most probable hypothesis is determined by taking

arg max
hǫH

P(h|D). (2.4.4)

This can be evaluated using Bayes theorem

P(h|D) =
P(D|h)P(h)

P(D)
. (2.4.5)

We will not elaborate on different learning rules. For further information on

neural networks and machine learning we would like to refer the reader to the

works of Jain et al. [107], Mitchell [105] and Bishop [110]. In chapter 6 we will

further study a few learning rules that we feel have closer connection to biology

and especially spatially extended dendrites.

2.4.2 Neural Plasticity

One of the major challenges in neuroscience is to gain deeper understanding of

how memory and learning work. Among the first and definitely most famous

people to examine learning was Ivan P. Pavlov during the end of the 19th and

beginning of the 20th century. In his famous experiments he conditioned dogs

so they started salivating at the sound of a bell. This was because the dogs learnt

that the sound of the bell was usually followed by food. Pavlov also presented

quite elaborate ideas about how sleep influences learning and which brain ar-

eas might be involved [111]. Every day new memories are created and deleted

in humans and animals. This must all be done with the greatest care because if

essential memories or skills are deleted this would have severe implications for

everyday life. These memories and skills are stored in both the network prop-

erties of different brain areas [112] as well as the intrinsic excitability of single

neurons and their synapses. All these quantities are dynamic and all changes

are collectively referred to as plasticity. The theory of Donald O. Hebb is best

summed up by his own words; "when an axon of cell A is near enough to excite

a cell B and repeatedly and persistently takes part in firing it, some growth pro-

cess or metabolic change takes place in one or both cells such that A’s efficiency,

as one of the cells firing B, is increased“ [108]. Although the theory of neural

plasticity has been developed since Hebb, the idea of activity dependence is

still a central concept in plasticity. Hebb’s activity driven plasticity has been ex-

perimentally verified by Bliss and Lømo [113] by high frequency stimulation of
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pre-synaptic neurons. The synapses between the pre and post-synaptic neuron

are strengthened by applying this stimulation protocol.

Plasticity is generally divided into intrinsic, structural, and synaptic plastic-

ity. Intrinsic plasticity is concerned with how intrinsic properties of the neuron

change. The conductance of dendrites and soma is one example of an intrin-

sic property that might change [114]. Structural plasticity is a collective term

for the growth and retraction of dendrites and axons that allows new connec-

tions between neurons. Structural plasticity is mostly prominent during the

development of the CNS and in the repair of injuries [115, 116]. Most of the

structural plasticity takes place during the development of the brain [40, 41].

Synaptic plasticity occurs when an existing synapse gets weakened or strength-

ened. This change happens through either a change in the amount or release

probability of neurotransmitter at the pre-synaptic side, or a change in the ef-

ficacy of neurotransmitter uptake at the post-synaptic side [117]. The effect of

this is that the post-synaptic potential (PSP) in response to the arrival of an AP

at the synapse will be either stronger or weaker than before. The strengthening

of synapses is called potentiation and the weakening is called depression. The

concept of synaptic plasticity is also widely used in machine learning applica-

tions as discussed in last section.

As plasticity is such a central concept in neuroscience, several other discoveries

and models are used to explain learning and changes in neurons. The dendrites

are highly involved in this for a number of reasons. When it comes to synap-

tic plasticity the dendrites become an important factor as the majority of the

synapses are located on the dendrites. As the dendrites represent such a big

part of the neuronal surface it is also natural that structural plasticity is very

dependent on the dendrites. In the mature brain, the growth and change in

shape of dendritic spines also falls into the class of structural plasticity and is

the most prominent example of this kind of plasticity [61]. Many things we

have considered so far have been applied in the field of learning. It has, for ex-

ample, been shown that the active currents of the dendrites play an important

role. When Stuart et al. [65] first measured the BPAP this was soon picked up in

the context of plasticity. The BPAP is seen as a feed-back mechanism from the

soma that invades the dendritic structure. As the main part of the synapses is

placed on the dendrites, this will indicate that the neuron has fired an AP. The

feed-back mechanism is usually seen as a way to regulate the plasticity of the
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neuron [118–120]. We also have connections between coincidence detection and

plasticity. Xu et al. [121] demonstrate this link in their paper published in 2006.

In this case the plasticity is the tool that tunes coincidence detection. Note that

in the link between BPAPs and plasticity it was the active currents that were the

mechanism that facilitated certain types of plasticity, while in the link between

coincidence detection and plasticity, it is the opposite.

This is just a short introduction to neural plasticity in which we have presented

the ideas of Hebb. Neuronal plasticity is one of the most well-studied areas

in neuroscience and there are an enormous amount of models and literature.

Plasticity also involves numerous disciplines, from physics and mathematically

driven systems close to machine learning [105] to pure biological approaches on

a molecular level [122]. In between there is naturally also work that combines

biophysical structure with computational models such as compartmental mod-

elling as we discussed in passive cable theory [123, 124]. We will not go further

into the details of different learning rules or mechanisms for plasticity here. In

chapter 6 we will present new learning rules as we apply them to a spatially

extended neuron.
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Sum-Over-Trips and Quasi-Active

Currents

Tact is the ability to tell someone to go to hell, and have them look forward

to the trip.

- Anon

In this chapter we will deal with the complexity of dendritic structure and

identify a method to calculate the response function for a branched dendritic

structure with quasi-active membrane. We will briefly review the path inte-

gral method for a passive branched structure and see how we can make use

of databases containing morphological data to build realistic models of den-

drites. We will also generalise the method to apply not only to passive den-

dritic membrane but to incorporate resonant properties. This gives us a method

to calculate the response of any stimulus at any point on an arbitrary complex

morphology without numerically integrating any partial differential equations

(PDEs). We capture enough biophysical detail in our model to examine the

possible effects of a spatially varying conductance associated with the mixed

cation current Ih. Finally we match a model of the quasi-active membrane with

experimental data from a rat CA1 hippocampal pyramidal cell.
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Figure 3.1: Two examples of trips that connect the point x on branch k with the point

y on branch m.

3.1 The Path Integral

3.1.1 Sum-Over-Trips on a Branched Structure

In section 2.3 we introduced the cable equation for a single passive dendritic

segment. We also considered two approaches to applying the cable equation to

a branched dendritic structure: the equivalent cable and compartmental mod-

elling. In this chapter we will present an alternative approach to solve the volt-

age response on a passive branched dendritic structure. We will then gener-

alise this approach so that we can consider dendritic membrane that is not just

passive but can also have voltage dependent currents. We saw that the cable

equation is solvable in closed form with the use of Green’s functions in the case

of an infinite cable. To remind us let us write down the Green’s function for the

infinite cable equation:

G∞(x, t) =
1√

4πDt
e−t/τ̄e−x2/(4Dt), −∞ < x < ∞, t > 0. (3.1.1)

What we want to do is find a formalism that allows us to calculate the response

for a branched structure with the help of Green’s functions. This is possible
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by applying the Feynman formula for the path integral [125] to our system of

branched dendritic segments. The method to calculate the Green’s function in

different finite geometries is used in electrodynamics under the term “method

of images” [126]. This approach for solving electrostatic and electrodynamical

boundary value problems is also applicable to dendritic geometries. Instead

of creating images of each dendritic segment we are considering, we travel

through the tree via different paths. The path ends as we reach an end point

or a node in the structure and a new path commences. The set of paths that

connect two different points is what we will call a trip. For an infinite dendrite

we only have one possible way to connect two points, as any path that passes

through the points towards ±∞ will never be reflected and come back. There-

fore there is only one trip in an infinite system. If we instead consider the simple

system of a finite cable we have an infinite number of trips. This is simply be-

cause at each end point of cable a new path begins and we travel back through

one or both of the points we want to connect. The trips get longer and longer as

we visit the end points of the cable more and more times but all the trips make

a contribution to the problem we are trying to solve. To get the full answer we

need to consider a sum over all the possible trips that we can make to connect

the two points in question. Just as in electrodynamics we have to consider all

the images. Therefore the name of this approach is "sum-over-trips". In the

case of a finite system this sum is infinite but we will see that the contribution

of the longer trips is low. The sum considered will have terms that are built up

using (3.1.1) and x will be the length of the trip. Hence the terms will decay

exponentially as the trips get longer.

What has just been described in words has, for the passive dendritic tree, al-

ready been formulated by Abbott et al. [127]. It is also in this work that the

term "sum-over-trips" first occurs. This approach considers a graph of finite,

connected segments each labelled i and for each segment we have 0 < x < Li,

where Li ∈ R
+ is the length of branch i. A trip is defined as a specific way of

connecting two points in the dendritic tree. This determines how the path inte-

gral is to be implemented in a general branched, passive dendritic structure. In

a later paper by Abbot [128] he defines a trip as:

• A trip starts at a point x on segment k and can travel in either direction,

but it can only change the direction at either a node or a terminal. A trip

can travel through the points x and y any number of times but it must
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begin at x on branch k and end at y on branch m. In the general case we

can have that m = k.

• When a trip reaches a node, it may pass through the node onto any seg-

ment that is connected to the node. A trip can also be reflected back along

the segment it was coming from at the node.

• When a trip reaches a terminal it is always reflected back.

See figure 3.1 for examples of trips on a simple, branched structure. Note that

we differentiate between segments and branches. A branch in the dendritic tree

extends from one branching point to another while we can divide each branch

into multiple segments. In a similar fashion we make a distinction between

branching points and nodes. A node is a point where two or more segments

are connected while a branching point has at least three segments attached to

it. Hence, all branching points are nodes but the opposite is not true. This is

to allow us to vary the properties along each branch; as an example, we might

want to capture the tapering of a long dendritic branch using a sequence of

segments with different geometries. Each trip gives a coefficient, Atrip, that is

used to construct a Green’s function. The Green’s function between two points,

x on branch i and y on branch j can then be expressed as

Gij(x, y, t) = ∑
trips

AtripG∞(Ltrip, t). (3.1.2)

In equation (3.1.2) Ltrip = Ltrip(x, y, i, j) is the length of a trip connecting the

points and Atrip are coefficients that are generated according to the following

rules:

• If x and y are on different segments we get a factor Atrip = 2pm, where pm

is given by (3.1.3), for every node that the trip passes. The segment m is

the segment the trip comes into from a previous segment k. Both m and k

are connected to the same node.

• If a trip on segment k is reflected back into k by a branching node a factor

(2pk − 1) is used.

• If the segment k is a terminal segment a factor (+1) is used if it is a closed

end and (-1) if it is an open end.

36



CHAPTER 3: SUM-OVER-TRIPS AND QUASI-ACTIVE CURRENTS

Figure 3.2: The two trips that connect two points x′ and y′ on a semi-infinite cable

0 ≤ x < ∞. The red line represents the trip with length |x′ − y′| and the blue trip has

length x′ + y′

The coefficients are given in terms of radii, ai, of the connected branches as

pm =
a3/2

m

∑i a3/2
i

, (3.1.3)

where the sum is over all segments connected to the node. The rules are orig-

inally stated in [128] for the dendritic tree with passive membrane and are de-

ducted from the path integral together with Kirchhoff’s laws, i) continuity of

potential and ii) conservation of current [82]. Setting our coordinate system so

that x = 0 in the node continuity of potential gives

Vi(0, t) = Vj(0, t), (3.1.4)

for all segments i and j connected to a common node. Conservation of current

gives

∑
j

1
rj

∂Vj

∂x

∣∣∣∣
x=0

= 0. (3.1.5)

Here rj is the axial resistance on segment j (in Ω/cm), and the sum is over all

j values corresponding to segments radiating from the node in question. At

terminal branches we have Vi(Li, t) = 0 in the case of an open end and at a

closed end ∂Vi(x, t)/∂x|x=Li
= 0.

As an illustrative example let us construct the Green’s function between two

points x′ and y′ that lie on a semi-infinite segment, 0 ≤ x < ∞. This configura-

tion gives us two different trips that connect the two points, the first trip is the

direct path with length |x′ − y′| and the second trip is the reflection from x = 0

with length x′ + y′, see figure 3.2. Using the rules stated by Abbot et al. [127]

the resulting Green’s function is G(x′, y′, t) = G∞(|x′ − y′|, t) ± G∞(x′ + y′, t).

The sign depends on whether we have an open or closed end at x = 0.
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3.2 Quasi-Active Currents

3.2.1 Resonant dendritic membranes

Although the passive properties of the dendritic membrane together with mor-

phology form the base of any dynamics in dendrites [129], voltage-gated ion

conductances are also present [68]. These active currents have even been shown

to initiate dendritic spikes, which is a highly non-linear process that takes place

both locally and globally in the dendrites [69, 70, 130–132]. Our aim is now to

extend and generalise the "sum-over-trips" formalism to be able to incorporate

voltage gated currents. As we still want to avoid any numerical integration, we

have to consider currents that play a role in a regime that can be adequately

described by linear dynamics. An example of such currents are those underly-

ing the resonant phenomena that for example have been shown to play a role

in layer V pyramidal cells from the somatosensory cortex in rats [133] through

the non-specific current Ih. Another example of the importance of subthreshold

oscillations can be seen in the hair cells from the sacculi of frogs [134], which are

seismic receptors in the frequency range 10-150 Hz. The ionic mechanism here

involves Ca2+ and a Ca2+-activated K+ current. In the case of the squid giant

axon Mauro et al. [135] have shown that a linearisation of these voltage-gated

dynamics at rest adequately describes resonant properties.

3.2.2 Linearisation of voltage-gated currents

Here we will follow the same path as Koch [93] in linearising an arbitrary

voltage-gated current to get a quasi-active LRC-circuit, see figure 3.3. Let us

start by considering a current of the form

I = I(V, w1...wN), (3.2.1)

where V is a voltage and wk are gating variables. The gating variables satisfy

the equation

τk(V)ẇk = wk,∞(V)− wk, k = 1, . . . , N, (3.2.2)

where

τk(V) =
1

αk(V) + βk(V)
, wk,∞(V) = αk(V)τk(V). (3.2.3)
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The functions αk(V) and βk(V) are specific functions for different models such

as the Hodgkin-Huxley model [82]. Let us now consider the steady state around

the point (V, w1, . . . , wN) = (Vss, w1,∞(Vss), . . . , wN,∞(Vss)). Around the steady

state we have fluctuations that give

δI =
δV

R
+

N

∑
k=1

∂I

∂wk


V=VSS

δwk, R−1 =
∂I

∂V


V=VSS

. (3.2.4)

By using equation (3.2.2) we can rewrite this as

δI =
δV

R
+

N

∑
k=1

δIk, (3.2.5)

where (
rk + Lk

d
dt

)
δIk = δV. (3.2.6)

In (3.2.6)

r−1
k = τk

∂I

∂wk

[
∂dαk

dV
− wk,∞

d(αk + βk)

dV

] 
V=VSS

, (3.2.7)

Lk = τkrk. (3.2.8)

Hence, for a small perturbation around the steady state, the current I responds

as though the resistance R is in parallel with N impedance lines. Each of these

is a resistance rk that is itself in series with an inductance Lk. In further work

Koch and Poggio [94] generalise the work of Butz and Cowan [92] to apply

quasi-active membrane to an arbitrary dendritic structure.

dendrites

soma

Figure 3.3: A caricature of a branched dendritic tree with resonant membrane. Each

segment of the tree has its own resonant dynamics described by an ‘LRC’ circuit. The

soma is regarded as a special node of the graph describing the dendritic tree.

Now consider a general current balance equation in the form

C
dV

dt
= −gL(V −VL)− I + Iinj, (3.2.9)
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where I is a voltage-gated current. The linearised equations will be

C
dV

dt
= −V

R̃
−

N

∑
k=1

Ik + Iinj,
1
R̃

= gL +
1
R

, (3.2.10)

Lk
dIk

dt
= −rk Ik + V. (3.2.11)

The steady state voltage satisfies

I(Vss, w1,∞(Vss), . . . , wN,∞(Vss)) + gL(Vss − VL) = Iinj. Introducing the Laplace

transform (with spectral parameter ω)

f (ω) =
∫ ∞

0
dte−ωt f (t), (3.2.12)

we find that V(ω) = K(ω)Iinj(ω), where

K(ω) =
∑

N
k=1 rk + ωLk

(Cω + R̃−1)(∑
N
k=1 rk + ωLk) + 1

. (3.2.13)

We identify K(ω) as the impedance of the linearised system, and note that it

is a ratio of two polynomials, with the denominator of order N + 1, and the

numerator of order N (where N is the number of gating variables). K(ω) can

also be seen as the transfer function of a feedback system, [136]. With some

simple methods from Automatic Control theory we can examine our resonant

system a bit closer [137]. Let us start by looking at the poles of the system to see

if we can draw any conclusions. The poles are obtained by solving the equation

(Cω + R̃−1)(
N

∑
k=1

rk + ωLk) + 1 = 0. (3.2.14)

From the poles, ωp, we can determine if the system is stable and whether it

has any resonant properties. For the system to be stable it is required that

Re(ωp) < 0. To get resonances, i.e. overshoots and undershoots in response

to step current injections, we must have Im(ωp) 6= 0. Let us simplify (3.2.14)

by setting N = 1, this corresponds to introducing one inductance to our system

and we get k = 1. This gives us the poles

ωp = −1
2

(
rk

Lk
+

1
CR̃

)
±
√

1
4

(
rk

Lk
+

1
CR̃

)2

−
(

1
CLk

+
rk

CLkR̃

)
. (3.2.15)

The criteria for a stable system is
(

1
CLk

+
rk

CLkR̃

)
> 0, (3.2.16)
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and we get resonances if

1
4

(
rk

Lk
+

1
CR̃

)2

−
(

1
CLk

+
rk

CLkR̃

)
< 0. (3.2.17)

If we have a quasi-active linear approximation of the fully non-linear conduc-

tance based model, the resistivity and inductance can assume negative values.

That means that we, at least theoretically, can get an unstable system according

to equation (3.2.16).

For example, the linearisation of the Hodgkin-Huxley model generates a band-

pass filter with optimal response around 67 Hz (see for example [93]).

3.2.3 Infinite Resonant Dendrite

Before we can tackle the fully branched dendrites we need to consider the infi-

nite resonant dendrite. This will give us the Green’s function that we need in

the "sum-over-trips" formulation. As a starting point we consider the standard

cable equation coupled with resonant currents. We define the dendritic voltage

as V = V(X, t), X ∈ R, t ≥ 0 and get the resonant cable equation

∂V

∂t
= −V

τ
+ D

∂2V

∂X2 −
1
C

[

∑
k

Ik − Iinj

]
,

Lk
dIk

dt
= −rk Ik + V. (3.2.18)

Here D is the cable diffusion coefficient and τ the (passive) cell membrane time

constant. After Laplace transforming (3.2.18) we obtain the ODE

−VXX + γ2(ω)V =
Iinj −∑k

Lk Ik(X,t=0)
(rk+ωLk)

+ CV(X, t = 0)

CD
, (3.2.19)

γ2(ω) =
1
D

[
1
τ

+ ω +
1
C ∑

k

1
rk + ωLk

]
, (3.2.20)

where V = V(X, ω) and Iinj = Iinj(X, ω). Introducing a re-scaled space x =

γ(ω)X gives

−Vxx + V = A, (3.2.21)

where

A(x, ω) =
1

CDγ2(ω)

[
Iinj(x/γ(ω), ω) (3.2.22)

−∑
k

Lk Ik(x/γ(ω), t = 0)

rk + ωLk
+ CV(x/γ(ω), t = 0)

]
.
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From equation (3.2.21) we can see that we need the Green’s function associated

with the operator (1− dxx) which is H∞(x) = e−|x|/2. The solution to (3.2.21)

can be written

V(x, ω) =
∫ ∞

0
dyH∞(x− y)A(y, ω). (3.2.23)

By scaling back to the original coordinates we get

V(X, ω) =
∫ ∞

0
dYG∞(X −Y, ω)I(Y, ω), (3.2.24)

where I(X, ω) = Iinj(X, ω)/C and

G∞(X, ω) =
H∞(γ(ω)X)

Dγ(ω)
=

e−γ(ω)|X|

2Dγ(ω)
. (3.2.25)

Performing the inverse Laplace transform gives

V(X, t) =
∫ t

0
ds
∫ ∞

0
dYG∞(X − Y, t− s)I(Y, s), (3.2.26)

where G∞(X, t), is the inverse Laplace transform of G∞(X, ω). As a consis-

tency check with the passive case, we consider the limit rk → ∞; in the LRC-

circuit this is equivalent to removing all inductive branches, and we recover the

passive RC-circuit. By taking this limit, we are recovering (3.1.1) which is the

Green’s function for the passive, infinite dendrite.

3.3 Branched Resonant Dendrites

3.3.1 The Resonant Tree

The natural extension of this is to combine the "sum-over-trips" formalism with

the linearised currents and define the trip rules for the resonant dendritic mem-

brane. Each finite segment, labelled i, with length Li has the dynamics

∂Vi

∂t
= −Vi

τi
+ Di

∂2Vi

∂X2 −
1
Ci

[

∑
k

Ik,i − Iinj,i

]
,

Lk,i
dIk,i

dt
= −rk,i Ik,i + Vi, 0 ≤ X ≤ Li. (3.3.1)

Note that all parameters with double indicies, for example rk,i, are associated

with the resonant pathway. Parameters with a single index are describing the
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passive membrane properties, for example ri is the axial resistance. We Laplace

transform (3.3.1) and rescale it as for the infinite cable to get

−(Vi)xx + Vi = Ai, 0 < x < Li(ω), (3.3.2)

where Li(ω) = γi(ω)Li and

γ2
i (ω) =

1
Di

[
1
τi

+ ω +
1
Ci

∑
k

1
rk,i + ωLk,i

]
, (3.3.3)

with

Ai(x, ω) =
1

CiDiγ
2
i (ω)

[
Iinj,i(x/γi(ω), ω)

−∑
k

Lk,i Ik,i(x/γi(ω), t = 0)

rk,i + ωLk,i
+ CiVi(x/γi(ω), t = 0)

]
. (3.3.4)

We may write the general solution to (3.3.2) in the form

Vi(x, ω) = ∑
j

∫ Lj(ω)

0
dyHij(x, y, ω)Aj(y, ω), (3.3.5)

where Hij(x, y, ω) satisfies

[1− dxx] Hij(x, y, ω) = δijδ(x− y). (3.3.6)

As for the passive tree the Kirchhoff’s laws must be obeyed everywhere in the

tree. As well as the voltage the object Hij(x, y, ω) must also satisfy these laws,

namely

Hkj(0, y, ω) = Hmj(0, y, ω), (3.3.7)

∑
i

zi(ω)
∂Hij(x, y, ω)

∂x

∣∣∣∣
x=0

= 0, zi(ω) =
γi(ω)

ri
. (3.3.8)

Also at an open terminal node we require

Hij(Li(ω), y, ω) = 0, (3.3.9)

and at a closed terminal node

∂Hij(x, y, ω)

∂x

∣∣∣∣
x=Li(ω)

= 0. (3.3.10)

So far we have not included any coupling between the dendrites and the soma

in any way. Indeed, neither do Abbott et al. [127, 128] in their work for the
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passive tree. As in Evans et al. [138, 139] one way to include the soma is to

treat it as an isopotential surface connected to an equivalent cylinder. We will

keep the view that the soma is equipotential and treat it as a special node in the

dendritic structure. We assume the soma have evenly distributed membrane

resistance, Rs, and capacitance, Cs. We also include resonant properties in the

soma through an inductive pathway governed by rs and Ls. The membrane

voltage in the soma Vs has to satisfy the following equations

Cs
∂Vs

∂t
= −Vs

Rs
+ ∑

j∈Γ

1
rj

∂Vj

∂Xj

∣∣∣∣∣
Xj=0

− Is, (3.3.11)

Ls
dIs

dt
= −rs Is + Vs, (3.3.12)

with Vs(t) = Vj(0, t) and j ∈ Γ, where Γ is the set that indexes all of the seg-

ments attached to the soma. In this case Hij(x, y, ω) must satisfy the further

boundary condition

∑
k∈Γ

zk(ω)
∂Hkj(x, y, ω)

∂x

∣∣∣∣
x=0
− γs(ω)Hkj(0, y, ω) = 0, (3.3.13)

where

γs(ω) = Csω +
1

Rs
+

1
rs + ωLs

. (3.3.14)

3.3.2 “Sum-Over-Trips” on a Resonant Tree

To construct the object Hij(x, y, ω) we now turn to the "sum-over-trips" formal-

ism and express the object in terms of the known response function H∞. The

indices i and j indicate dendritic segments while x and y are points on respec-

tive segment. We also have the frequency dependent parameter γk(ω), where

k indexes the segments of the dendrites. In a similar fashion as for the passive

tree we create the response function as the infinite series expansion

Hij(x, y, ω) = ∑
trips

Atrip(ω)H∞(Ltrip). (3.3.15)

An important difference from the passive case is that the trip length, Ltrip =

Ltrip(i, j, x, y, ω), that starts at point x = γi(ω)X on branch i and ends at the

point y = γj(ω)Y on branch j is now frequency dependent. Note that on in-

termediate branches between branches i and j, labelled by k say, that distances

are measured in terms of the scaled coordinates γk(ω)X, X ∈ [0,Lk]. As these
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frequency dependent trips are fundamentally different from the ones for the

passive tree, it is useful to restate the trip rules:

1. A trip may start out from γi(ω)X by travelling in either direction along

segment i, but it may subsequently change direction only at a node or

a terminal. A trip may pass through the points γi(ω)X and γj(ω)Y but

must begin at γi(ω)X on segment i and end at γj(ω)Y on segment j.

2. When a trip arrives at a node, it may pass through the node to any other

segment radiating from the node or it may reflect from the node back

along the same segment on which it entered.

3. When it reaches a terminal, a trip always reflects back, reversing its direc-

tion.

Every trip generates a term in (3.3.15) with Ltrip given by summing the lengths

of all the steps taken along the course of the trip. For example the four pri-

mary trips Ltrip(i, j, x, y, ω) on a simple dendritic tree consisting of two seg-

ments are γi(ω)(Li − X) + γj(ω)Y, γi(ω)(Li + X) + γj(ω)Y, γi(ω)(Li − X) +

γj(ω)(2Lj − Y) and γi(ω)(Li + X) + γj(ω)(2Lj − Y) respectively. Note that

all longer trips, even in a larger branched network, would consist only of con-

stant additions to these four basic lengths. Hence, Ltrip(i, j, x, y, ω) is a linear

function of ±x, as required for H∞(Ltrip) to be a solution to (3.3.6).

3.3.3 Resonant Trip Coefficients

In a similar manner as for the passive tree the trip coefficients are:

1. From any starting point Atrip(ω) = 1.

2. For every node at which the trip passes from an initial segment k to a

different segment m (m 6= k) Atrip(ω) is multiplied by a factor 2pm(ω).
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3. For every node at which the trip enters along segment k and then re-

flects off the node back along segment k Atrip(ω) is multiplied by a factor

2pk(ω)− 1.

4. For every closed (open) terminal node Atrip(ω) is multiplied by a factor

+1 (−1).

Here the frequency dependent parameters pk(ω) are given as

pk(ω) =
zk(ω)

∑m zm(ω)
, zm =

γm(ω)

rm
. (3.3.16)

For a node describing the soma this coefficient takes the modified form

pk(ω) =
zk(ω)

∑m zm(ω) + γs(ω)
. (3.3.17)

Figure 3.4: Main trips at a node.

We have to make sure that (3.3.15) satisfies the boundary condition prescribed

given the rules for trip coefficients. Let us consider figure 3.4 to check whether

Kirchhoff’s laws are satisfied at a node. Let x be the distance away from the

node along segment k. All other variables, (j, y, ω), are arbitrary. Let us first

assume that the starting point of our trips are in the node, x = 0. The sum of all

trips ending up at the point y on branch j via segment k is denoted Qkj(0, y, ω)

while the sum of trips that reaches y via segment m is denoted Qmj(0, y, ω).

Let us now move our starting point away from the node by a distance x. The

trip moving away from the node is x shorter than the trip starting in the node

and is therefore denoted Qkj(−x, y, ω). If the trip starting at x instead reflects

off the node, it is distance x longer than the trips starting in the node, and

we denote that Qkj(x, y, ω). According to the trip rules we also pick up a fac-

tor 2pk(ω)− 1 so the contribution to Hij(x, y, ω) from a reflection is (2pk(ω)−
1)Qkj(x, y, ω).

The trips that move through the node pick up a factor 2pm(ω) and compared to

the trips starting at the node they are x longer. Thus the total contribution from
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these trips is 2pm(ω)Qmj(x, y, ω). The full solution Hkj(x, y, ω) includes the

contributions from all different types of trips we have been discussing. Thus,

Hkj(x, y, ω) = Qkj(−x, y, ω) + (2pk(ω)− 1)Qkj(x, y, ω)

+ ∑
m 6=k

2pm(ω)Qmj(x, y, ω). (3.3.18)

The functions Q in this formula consist of infinite sums over trips, but we do

not need to know what they are to show that the solution Hkj(x, y, ω) satisfies

the node boundary conditions. At a node point we have

Hkj(0, y, ω) = ∑
m

2pm(ω)Qmj(0, y, ω). (3.3.19)

The sum in the last formula is over all segments radiating from the node in-

cluding branch k and, thus, it shows that the solution at the point x = 0 is

independent of k. Therefore Hkj(x, y, ω) obeys the boundary condition (3.3.7).

To prove the boundary condition (3.3.8) we use equation (3.3.18) to find that

∂Hkj(x, y, ω)

∂x

∣∣∣∣
x=0

= ∑
m

2pm(ω)
∂Qmj(x, y, ω)

∂x

∣∣∣∣
x=0

− 2
∂Qkj(x, y, ω)

∂x

∣∣∣∣
x=0

. (3.3.20)

Now we multiply this result by pk(ω) and sum over k to get

∑
k

pk(ω)
∂Hkj(x, y, ω)

∂x

∣∣∣∣∣
x=0

=

∑
m

2pm(ω)
∂Qmj(x, y, ω)

∂x

∣∣∣∣
x=0

(

∑
k

pk(ω)− 1

)
. (3.3.21)

Using the property that ∑k pk(ω) = 1 we have

∑
k

pk(ω)
∂Hkj(x, y, ω)

∂x

∣∣∣∣∣
x=0

= 0. (3.3.22)

Since pk(ω) is directly proportional to zk(ω) the solution Hkj(x, y, ω) satisfies

the boundary condition (3.3.8).

For terminal segments we can again consider (3.3.18) and realise that if the seg-

ment is terminal pm(ω) = 0. For a closed end we get pk(ω) = 1 and for an open

end it is pk(ω) = 0. Then equations (3.3.19) and (3.3.22) indicate that (3.3.9) and

(3.3.10) are obeyed at all open and closed terminal nodes.
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In the presence of the soma we have to check that the solution Hkj(x, y, ω) sat-

isfies the corresponding boundary conditions (3.3.7) and (3.3.13). The proof

that the solution satisfies the boundary condition (3.3.7) is identical to that for

a node point. To show that the boundary condition (3.3.13) is also satisfied we

use the following properties for Qkj(x, y, ω), namely

∂Qkj(x, y, ω)

∂x
= −Qkj(x, y, ω), (3.3.23)

∂Qkj(−x, y, ω)

∂x
= Qkj(x, y, ω). (3.3.24)

These properties are a direct consequence of the form of H∞(x) = e−|x|/2. We

then have that

∂Hkj(x, y, ω)

∂x

∣∣∣∣
x=0

= −∑
m

2pm(ω)Qmj(0, y, ω)

+ 2Qkj(0, y, ω). (3.3.25)

Note that, as compared to a simple node point, pk(ω) for a segment radiating

from the soma takes the modified form given by (3.3.17). By multiplying equa-

tion (3.3.25) by zk(ω) and summing over k we obtain

∑
k

zk(ω)
∂Hkj(x, y, ω)

∂x

∣∣∣∣∣
x=0

=

∑
m

2zm(ω)Qmj(0, y, ω)

(
1− ∑m zm(ω)

∑m zm(ω) + γs(ω)

)
. (3.3.26)

This gives us

∑
k

zk(ω)
∂Hkj(x, y, ω)

∂x

∣∣∣∣∣
x=0

=

γs(ω) ∑
m

2zm(ω)

∑m zm(ω) + γs(ω)
Qmj(0, y, ω). (3.3.27)

Using the equality (3.3.19) we recover the boundary condition (3.3.13).

We have now made sure that the “sum-over-trips” rules apply to a resonant

structure. The solution is however still written in Laplace-space and our last ef-

fort is to reverse back to the temporal domain. To do this we first write Vi(X, ω)

in the unscaled spatial coordinates as

∑
j

∫ Lj

0
dYHij(γi(ω)X, γj(ω)Y, ω)γj(ω)Aj(γj(ω)Y, ω). (3.3.28)
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Introducing

Gij(X, Y, ω) = Hij(γi(ω)X, γj(ω)Y, ω)/(Djγj(ω)) we have that

Vi(X, ω) = ∑
j

∫ Lj

0
dYGij(X, Y, ω)[Uj(Y, ω) + Ij(Y, ω)], (3.3.29)

where Ii(X, ω) = Iinj,i(X, ω)/Ci and

Ui(X, ω) = Vi(X, t = 0)− 1
Ci

∑
k

Lk,i Ik,i(X, t = 0)

rk,i + ωLk,i
. (3.3.30)

After taking the inverse Laplace transform of (3.3.29) we obtain

Vi(X, t) = ∑
j

[∫ Lj

0
dYGij(X, Y, t)Uj(Y, t = 0)

+
∫ t

0
ds
∫ Lj

0
dYGij(X, Y, t− s)Ij(Y, s)

]
. (3.3.31)

Hence we identify the inverse Laplace transform of Gij(X, Y, w), namely the

object Gij(X, Y, t), as the Green’s function of the resonant dendritic tree.

Note that the rules for computing Gij(X, Y, ω) require that trips start at X and

end at Y. To compute the function Gji(Y, X, ω) the reverse trips from Y to X

have to be used. If the trips are generated in reverse order the probability fac-

tors associated with crossing the nodes will be different. However, a simple

calculation shows that the result of summing over reversed as opposed to orig-

inal trips differs only by a constant factor Diri/(Djrj). This leads to the simple

reciprocity identity

Gij(X, Y, t) =
Diri

Djrj
Gji(Y, X, t). (3.3.32)

In summary the Green’s function for an arbitrary branched resonant dendritic

tree is given by the Bromwich integral (inverse Laplace transform)

1
2πi

∫ c+i∞

c−i∞
dωeωt Hij(γi(ω)X, γj(ω)Y, ω)

Djγj(ω)
. (3.3.33)

Here, γi(ω) is given by (3.3.3) and Hij(X, Y) is given by (3.3.15).

3.4 Implementation and Complexity

There are numerous types of software available that use real morphologies and

perform numerical calculations of the cable equation on branched geometries.
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Two of the most commonly used are GEneral NEural SImulation System (GEN-

ESIS) [86] and NEURON [87]. The NEURON environment has even devel-

oped to allow parallel computation [140] and is highly effective. Let us assume

that we have a tree with N segments and there is current injected at M points of

the tree. We need to include K trips between each point of injection and every

other point of the tree. In general we have the complexityO(NMK) to calculate

the impulse response for the M injection points. The main gain of “sum-over-

trips” is that once the Green’s function object is calculated we can perform the

convolution with any kind of temporal input without having to recalculate the

Green’s function. The implementation language of choice for us is C++ for the

response functions and the convolution is performed in MATLAB. As the sum

in (3.3.15) is infinite we need to truncate the sum at some point when imple-

menting this formalism. The implementation of the passive "sum-over-trips"

scheme is described in work by Cao and Abbott [141]. The conclusion is that

as few as four trips are adequate to realise experimental data. As we get such

good results with K = 4 this is not a factor in the complexity discussion. For the

case of resonant membrane we also have the complication that we will have to

construct the Green’s function for a range of frequencies and then perform an

inverse Laplace transform to get the impulse response in the time domain. The

frequency range is influenced by the magnitude of the natural frequency of the

system, this value will be more thoroughly described in following sections. In

practise the frequecy range used is 0 ≤ ω ≤ 1000.

Numerical implementation of the inverse Laplace transform can be efficiently

performed using fast Fourier transforms. We have checked the validity of this

approach by comparing code written in both C++ and MATLAB with brute force

simulations performed in NEURON [87] for a wide range of realistic neuronal

geometries. Access to realistic dendritic morphologies via internet databases

is widely available. In many of these databases the neurons are reconstructed

with the system NEUROLUCIDA (Microbrightfield, Colchester, VT) [142, 143].

Usually the morphological data is available as files that can be read by pro-

grams such as NEURON or the SWC-file format used by NEUROLUCIDA. We

however want to get the data in the neutral form of binary arrays that can be

imported into C++ or MATLAB. The data that can be found at these databases is

generally very detailed. Each branch of the tree can contain hundreds of nodes

to give an accurate description of the curvature and tapering of the branch. As
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Figure 3.5: Example of a trimmed Purkinje-cell. The morphology data was taken from

http://krasnow.gmu.edu/L-Neuron/L-Neuron/database/index.html#Purk.

a result we want to be able to trim the morphological data and, for example, just

get the coordinates where the actual branching occurs. For those purposes JAVA

code has been developed to read these types of files and to extract the informa-

tion we are seeking. See figure 3.5 for an example of reading and trimming of

a Purkinje cell, this reduces the data from containing 1362 nodes to just having

202 nodes. See Appendix B for an example of the JAVA code that converts a

NEUROLUCIDA-created SWC-file to a binary array.

3.5 Linearisation of Ih

3.5.1 Ih in neurons and models

The current we will focus our attention on is the mixed cation current Ih [16].

Subthreshold oscillatory behaviour has been shown for many neurons [144],

for example in rat sensimotor cortex [145] and CA1 pyramidal cells where sub-

threshold oscillations has been shown to be connected to associative memory

processes [112]. In rat somatosensory cortex Ih is the current associated with

these resonant properties [133] and it is generally believed that Ih plays an im-

portant role in the integration of subthreshold synaptic activity [73]. For these
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reasons we find it relevant to choose Ih as the current we linearise to further

explore the usefulness of the scheme for branched resonant dendrites that we

have developed in section 3.3. To gain insight we will study both idealised

geometries and reconstructed cells.

The model we are using for Ih is presented by Magee [73] which takes the form

Ih = gh(V −Vh) f , (3.5.1)

where f is a gating variable. The reversal potential is Vh = −16 mV and the

conductance gh = 0.09 mmho cm−2. The dynamics of the gating variable are

described by an ordinary differential equation of the type seen in (3.2.2). The

functions that appear in the gating dynamics are f∞(V) ≡ w∞(V), α f (V) =

w∞(V)/τf (V) and β f (V) = (1− w∞(V))/τf (V). Here (for temperature 27◦C)

τf (V) =
exp[0.03326(V + 80)]

0.00446(1 + exp[0.08316(V + 80)])
, (3.5.2)

w∞(V) =
1

1 + exp[(V + 92)/8]
. (3.5.3)

As a first test we compare the linearised model with the full non-linear model

on a semi-infinite cable and the result can be seen in figure 3.6. Both models are

numerically evaluated in NEURON [87] and we see a good agreement between

the two models. The linearisation is made around the local steady state at the

point of injection, curve (i) in figure 3.6, after the hyperpolarising current is

applied, i.e. V ≈ −30 mV. As we can see, we have a slightly better agreement

for curve (i) than for curve (ii) and we also capture the oscillation when the

current is applied, better than the rebound oscillation.

3.5.2 Idealised Geometries

As the Magee model (3.5.1) has only one gating variable, this is equivalent to

having an LRC-circuit with only one inductive branch, N = 1 in (3.2.13). We

find that the natural frequency for this circuit is

ω∗ =

√
CL− Cr

CL
. (3.5.4)

This means that the function G∞(X, ω) will have its maximum at ω∗ for any

given X. If the resonant properties are equally distributed across the struc-

ture the natural frequency of the whole structure is uniquely decided by (3.5.4).
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Figure 3.6: Membrane voltage of an unbranched semi-infinite resonant dendrite, at

the location of the stimulus (i) and 500 µm away from the point of stimulation (ii), in

response to the current injection of amplitude −0.3 nA and duration 400 ms. Passive

parameters of the dendrite: τ = 20 ms, D = 50000 µm2/ms and C = 1 µF/cm2.

Dashed lines: the resonant membrane is modelled by the nonlinear Ih current given

by (3.5.1). Solid lines: the resonant membrane is modelled by the ‘LRC’ circuit with

r = 13500 Ω·cm2 and L = 1150 H·cm2 (calculated using (3.2.7) and (3.2.8)).

In many neurons the Ih-conductance is not equally distributed throughout the

dendrites [74, 146, 147]. To explore how such variations in conductance affects

the resonant properties of the system as a whole we start by looking at two

semi-infinite dendrites, branch 1 and branch 2, connected by a node at X = 0.

Both branches have identical passive properties τ, D and C but different reso-

nant properties ri and Li, where i = 1, 2. These properties are chosen so that

ω∗1 = 9.11 Hz and ω∗2 = 17.75 Hz for each branch respectively. We focus on a

single point X that is located on branch 1 and then move the injection point Y

along both branches. The response functions G11(X, Y, ω) and G12(X, Y, ω) are

easily constructed and then we seek the resonant frequency for the system, Ω,

that satisfies
∂Gij(X, Y, ω)

∂ω
= 0. (3.5.5)

If we apply (3.5.5) to G12(X, Y, ω), that only consist of one term, we get the

expression

(γ′1X + γ′2Y)(r1γ2 + r2γ1) + r1γ′2 + r2γ′1 = 0, (3.5.6)

where γi = γi(Ω) and γ′i = dγi(Ω)/dω.

In a similar fashion we can get an expression for G11(X, Y, ω) although more

terms are involved. In figure 3.7 we plot the resonant frequency as a function of

injection point Y for two response points X. As we can see the natural frequency
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Figure 3.7: An idealised dendritic tree with two semi-infinite resonant branches. Ω

is the resonant frequency of the whole tree as recorded at the locations X = 250 µm

and X = 500 µm (on branch 1) as a function of the stimulus location Y. Membrane

parameters for each branch: τ1 = τ2 = 20 ms, D1 = D2 = 50000 µm2/ms, C1 =

C2 = 1 µF/cm2. The resistance and inductance of branch 1 are r1 = 27000 Ω·cm2

and L1 = 2300 H·cm2 respectively (with natural frequency ω∗1 = 9.11 Hz). For

branch 2 we have r2 = 13500 Ω·cm2 and L2 = 1150 H·cm2 respectively (with natural

frequency ω∗2 = 17.75 Hz). Examples of voltage profiles in response to a current step

for two cases marked by (•) are shown in figure 3.8.

of the response is decided by the local natural frequencies given by (3.5.4) where

the current is injected as well as the natural frequency of the surroundings.

Generally speaking, if the surroundings of the injection point have uniform

resonant properties, the natural frequency of the response function is close to

the local natural frequency at the injection point. If, on the other hand, we have

varying properties next to the injection point, in our example close to X = 0,

the natural frequency of the response is influenced by the variations.

To further explore the effects of varying conductances we study the case of three

semi-infinite dendrites connected at X = 0, see figure 3.11. We still inject cur-

rent along branch 1 and branch 2 and look at the response at a point X on

branch 1. The resonant frequency is found in a similar way as in the example

with two branches, for example the resonant frequency of G12(X, Y, ω) is found

by solving

(γ′1X + γ′2Y)(r1r3γ2 + r2r3γ1 + r1r2γ3) + r1r3γ′2 + r2r3γ′1 + r1r2γ′3 = 0. (3.5.7)

Figure 3.11a shows the case of ω∗1 = ω∗2 and we vary the resonant properties

of branch 3 while in figure 3.11b we have ω∗1 < ω∗2 . We reach the conclusion
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Figure 3.8: Examples of voltage profiles and Green’s functions on branch 1 at the

location X = 250 µm in response to the current with amplitude−0.3 nA and duration

of 400 ms injected on branch 2. A: Stimulus location is Y = 0 µm. B: Stimulus

location is Y = 500 µm. Other parameters as in Figure 3.7.

that the third branch can influence the response of the system even if we neither

inject current nor record the response in branch 3.

Till now we have considered uniform distributions of conductances along a

dendritic branch. However, it is now well known that dendritic trees can have

nonuniform membrane conductances (see for example [148]). One way to treat

spatial dependencies is to break a single branch into multiple segments, each

with a distinct yet uniform parameter set. A piecewise constant approximation

to any spatially varying parameter can then be naturally implemented on this

segmented cable. Using such an approach we now briefly turn to the obser-

vation that the conductance of Ih increases with the distance from the soma in

pyramidal neurons [74, 121, 149].

We have used a simple morphology, namely a single infinite cable, −∞ < x <

∞, with uniform diameter, membrane resistance and axial resistance. On this

cable we chose two different conductances. The first case is a constant con-

ductance, gh(x) = ḡ, and in the other case the conductance is of the form

gh(x) = ḡ(1 + x/300). From equations (3.2.7) and (3.2.8)we see that the val-

ues of the resistance and inductance are not just dependent on the conductance

but also on the voltage steady state. By running simulations of the full nonlin-
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Figure 3.9: The resistance and inductance on the cable when holding the conductance

constant, dashed lines, as well as varying conductance, solid lines.

ear model in NEURON we concluded that the steady state changes are <1 mV

for a conductance change between ḡ and 10ḡ. Hence, it is reasonable to use the

approximation

r−1
k (x) = K1gh(x),

Lk(x) = K2rk(x), (3.5.8)

where K1 and K2 are constants. The conductance is varied around the value ḡ =

0.05 mS/cm2. Data fitting to experimental data provided by Colbert gives some

typical values of rk and Lk to be rk = 27000 Ω · cm2 and Lk = 2300 mH · cm2.

These are the values used for the case of constant conductance over the whole

cable. In the case of varying conductance, the constants K1 and K2 were chosen

so that the resistance and inductance assumed these values at x = 100. In figure

3.9 we can see the values of the resistance and inductance on a part of the cable

for both constant and varying conductance. We will now examine what effect a

non-uniform Ih distribution might have on the response to current injection. In

some sense we can view this as an example of how to achieve dendritic democracy

[150] for resonant dendrites. We will in chapter 6 further discuss the role and

measures of dendritic democracy. What we mean in this case by democracy is

that we aim to equalise the time to peak for post synaptic potentials that arise

in different parts of the dendrite.

On the cable, a 50 ms current pulse with amplitude 0.3 mA was injected at

different locations and the response at x = 0 was considered. The value that is

considered is the time to peak for both cases of conductance distribution. This is
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simply the time it takes for the voltage response at x = 0 to reach it’s maximum

value. This is interesting because of coincidence detection [121]. To get a good

coincidence detection we want to have the same voltage profile over time at the

soma for two inputs that occur at the same time but on different places on the

dendritic tree. In table 3.1 we can see these times for the cases of constant and

increasing conductance. In the constant case, the time to peak is increasing with

the distance from x = 0. When we increase the conductance with distance, the

time is almost constant and even decreases slightly with distance.

Location of Time to peak, Time to peak,

input (x) gh(x) = ḡ (ms) gh(x) = ḡ(1 + x
300) (ms)

1 7.0 8.5

21 7.5 8.5

41 7.5 8.5

61 8.0 8.5

81 8.5 8.5

101 9.0 8.0

121 9.5 8.0

141 10.0 8.0

161 10.5 8.0

181 10.5 8.0
Table 3.1: The time for the response at x = 0 to reach its maximum value for a number

of input locations.

We also considered the integral

∫ T

0
V(x = 0, t) dt, (3.5.9)

where T is a time when the system has reached steady state. This integral shows

how much voltage has flown through the point x = 0 between t = 0 and t = T.

This is the strength of the input. In figure 3.10 the value of this integral is shown

as a function of the distance between x = 0 and the input. The value of the

integral is approximated with the trapezoidal rule. The trapezoidal rule has an

error that decays as O(h2), where h is the step size [151]. The data is then fit-

ted to a single exponential. The fitted exponentials are, in the case of constant

conductance, 1.2147e−0.0285x, 0 < x and the exponential for the varying con-

ductance is 1.3254e−0.0276x, 0 < x. There is a slightly slower decrease of the
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response with increasing distance in the case of increasing conductance. This

difference is quite small and the main gain of having a conductance gradient

seems to be improved coincidence detection. See chapter 6 for further discus-

sion of dendritic democracy.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3.10: The value of the integral
∫ T

0 V(x = 0, t) dt as a function of distance

from x = 0. Stars are simulated data and the dashed lines are fitted exponentials. The

red stars and line are the constant conductance case while blue represents the linear

increasing conductance.

3.5.3 A Reconstructed Cell

Now we want to apply our formalism to a reconstruction of a real neuronal ge-

ometry. Through the collaboration with Costa Colbert, University of Houston,

we have gained access to direct experimental data [7, 152]. The experimental

data consists of dual simultaneous whole-cell patch-clamp recordings of a rat

CA1 hippocampal pyramidal cell. The geometry of the cell is recorded at the

same time as the patch-clamp recordings and is saved in the .hoc file format

[87]. As discussed earlier, we have developed JAVA code that can parse this

data and convert it into binary arrays. In figure 3.12a we see the geometry of

the neuron. The data was acquired at 5 kHz and was filtered at 1 kHz with

an eight pole filter. A pulse current of amplitude −300 pA and duration 400

ms (beginning at 10 ms) was injected at the dendritic trunk. Dendritic and so-

matic recordings in response to this current injection are shown in Figure 3.12b,

where the voltages are plotted with respect to rest (at about −70 mV). We can

see overshoots around the new rest state when the current is injected and we
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believe that this is associated with Ih. Therefore we build a quasi-active model

based on the Magee model [73] that we earlier described. Using the recon-

structed data we take a uniform Ih conductance and fit the parameters r and

L to the data. The result of that can be seen in figure 3.12b where the red and

blue curves are the experimental data and the black curves are the results of the

quasi-active model.

3.6 Discussion

We have generalised the “sum-over-trips” approach developed by Abbott et al.

[127] to apply to branched dendritic trees and soma with quasi-active mem-

brane. This approach can handle any channel kinetics that are governed by

differential equations of the form (3.2.2). We have focused on Ih as it has been

shown to have an important role in subthreshold oscillations in many neurons

[73, 133]. This approach obviates the need to numerically solve PDEs, as for a

given geometry and stimulation protocol, we only need to calculate the Green’s

function once for the system. That Green’s function can then be convolved with

any kind of temporal stimulation. The fact that we calculate the Green’s func-

tion in Laplace space means we have to loop over a range of frequencies but

for a given frequency, the complexity of the algorithm collapses to the passive

case discussed in Cao and Abbott [141]. Code to parse and use reconstructed

neuronal morphology that can be found in internet databases has been devel-

oped. With access to dual potential recordings we can recover the quasi-active

properties of dendritic membrane through algorithms developed by Cox and

Griffith [153].

Among future developments we wish to examine is the handling of tapered

dendrites. The naive way to implement this is to discretise a tapered branch

into several segments with varying diameter. As the underlying PDE model for

tapered dendrites is linear [154], however, this opens up possibilities to adopt

the “sum-over-trips” formalism to this case. How to recover quasi-active prop-

erties of tapered dendrites is known through the work of Cox and Raol [46].

Another challenge would be to mimic the fully active events that occur in den-

drites [69, 70, 132]. Theoretical work in this area has suggested that these non-

linear phenomena are restricted to hot spots on the dendrites [53, 54]. Previous
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modelling studies have successfully used integrate-and-fire dynamics in such

hot spots to mimic this activity [130, 131]. This opens up possibilities to further

extend the “sum-over-trips” formalism to capture even more of the properties

that we can see in biological dendrites and make this approach even more in-

teresting for experimental neuroscientists.

60



CHAPTER 3: SUM-OVER-TRIPS AND QUASI-ACTIVE CURRENTS

0

branch 1

branch 2

branch 3

0200 200

branch 1 branch 2

2
*1

* &

5

10

15

20

25

30

10

14

18

22

      = 200 µm

A

3
* (Hz)

(Hz)

0200 200

branch 2branch 1

5

10

15

20

25

30

1
*

      = 200 µm

10

14

18

22

B

3
* (Hz)

(Hz)

2
*

Figure 3.11: An idealised dendritic tree with three semi-infinite resonant branches.

Here we plot the resonant frequency Ω of the dendritic tree as measured on branch

1 (at X = 200 µm), whilst varying both the natural frequency on branch 3 and the

point of stimulus (on either branch 1 or branch 2). Passive membrane parameters for

all three branches as in Figure 3.7. A: The resistances and inductances of branches 1

and 2 are the same and equal r = 27000 Ω·cm2 and L = 2300 H·cm2 respectively.

B: The resistance and inductance of branch 1 are r1 = 27000 Ω·cm2 and L1 = 2300

H·cm2 respectively. The resistance and inductance of branch 2 are r2 = 13500 Ω·cm2

and L2 = 1150 H·cm2 respectively. The resistance and inductance of branch 3 vary

(between 67500 Ω·cm2 and 5400 Ω·cm2 for r3 and between 5750 H·cm2 and 460

H·cm2 for L3) for both A and B.
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Figure 3.12: A: Reconstructed rat CA1 hippocampal pyramidal cell. B: An example

of dendritic (red) and somatic (blue) dual simultaneous recording (with respect to rest)

in response to the current injection at the dendrite trunk (average from 20 sweeps). A

pulse current with amplitude −300 pA is applied for a duration of 400 ms starting

from 10 ms. The other two curves in B are dendritic and somatic voltage responses

calculated from the model of the branched cell with resonant membrane. The model

cell was stimulated at the dendrite (as shown in A) with the same current used in

experimental recordings. Parameters across the tree: the specific cytoplasmic resistivity

Ra = 100 Ω·cm, C = 1 µF/cm2 and the resistance across a unit area of passive

membrane Rm = 20000 Ω·cm2. Thus τ = 20 ms and diffusion coefficients Di vary

from branch to branch. The conductance of Ih is assumed to be uniform across the cell

with the resistance and inductance of resonant membrane r = 24000 Ω·cm2 and L =

2700 H·cm2 respectively. Note that the voltage drop across the electrode’s resistance is

not fully compensated and the bridge balance is not corrected on the dendritic recording

so that we shift our model results by an appropriate value of 10 mV.
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CHAPTER 4

Piece-Wise Linear Models and

Mode-locking

I have a different way of thinking. I think synergistically. I’m not linear in

thinking, I’m not very logical.

- Imelda Marcos

In this chapter we will introduce piece-wise linear (PWL) models and extend

them to incorporate spatial structure in the form of dendrites. We look at the

analytical construction of orbits for PWL models. These are mathematically

tractable models that allow for action potential generation. To these point mod-

els we attach dendritic structure in the form of compartmental models. We

then subject this system to periodic forcing in both a point-wise and spatially

extended manner. Using both analytical and numerical Lyapunov exponent

methods we explore phase space and in particular we look at mode-locked so-

lutions. Importantly we construct the orbit for the case of periodic forcing and

show how to analyse spatiotemporal patterns. We further look at the Arnol’d

tongue structure of the periodically forced system.

4.1 Piece-Wise Linear Models

4.1.1 Mathematically Tractable Neuron Models

As we described in section 2.1 the Hodgkin-Huxley model has been reduced to

a number of lower dimensional models such as the FitzHugh-Nagumo model
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[23, 24] and Morris-Lecar model [25, 26]. These models are simple in the sense

that they have fewer dimensions but they are still non-linear in order to be

able to generate action potentials. The classical mathematically tractable neuron

model is the Integrate-and-Fire (IF) [19, 20] and modifications of it, such as leaky

and quadratic IF models [28, 155]. The IF models do not generally have any

representation of the action potential, an exception being the adaptive IF model

[156]. The piece-wise linear (PWL) models that we consider here, combine these

two desirable properties. We can analytically construct the orbit of such models

and the dynamics allow for action potential generation.

4.1.2 Specific PWL Models
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Figure 4.1: The phase plane for the McKean model has a nullcline with a piece-wise

linear cubic shape (dashed green line) corresponding to v̇ = 0 and a linear one asso-

ciated with ẇ = 0 (dotted blue line). Parameters are c = 0.1, I = 0.5,γ = 0.5, and

a = 0.25. The red line corresponds to a stable periodic orbit. To the right of the phase

plane we see the voltage trace as a function of time.

We consider planar PWL models of the form:

cv̇ = f (v)− w + I (4.1.1)

ẇ = g(v, w), (4.1.2)

where v is the somatic voltage and w is a recovery variable. The only constraints

on the functions f and g are that they have to be linear at any point in the (v, w)

phase-plane.

The first model that we will describe is the McKean model [157] that is a cari-

cature of the FitzHugh-Nagumo model’s nonlinearity f (v) = v(1− v)(v − a).
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Figure 4.2: The phase plane for the Type I piece-wise linear model with a homoclinic

bifurcation where the parameters are γ1 = 2, γ2 = 0.25, c = 0.825, I = 0.1, a = 0.25,

b = 0.5 and b∗ = 0.2. The pale blue line passing through the saddle (grey filled circle)

is the separatrix between the stable fixed point (black filled circle) and the stable limit

cycle (in red). To the right of the phase plane we see the voltage trace as a function of

time.

The specific dynamics of this PWL model are

f (v) =





−v, v < a/2;

v− a, a/2 < v < (1 + a)/2;

1− v, v > (1 + a)/2,

(4.1.3)

g(v, w) = v− γw. (4.1.4)

Here c > 0, γ > 0 and finally I is a constant drive to the system. The phase

plane of the McKean model can be seen in figure 4.1. A similar system is to

have f (v) = −v + Θ(v− 1), where Θ is the Heaviside step function. The latter

system has been throughly analysed by Tonnelier in a series of papers [158–

160].

Neurons are generally divided into having type I and type II firing behaviour.

The McKean-model exhibits type II firing rate behaviour which is achieved by

the system going through a Hopf bifurcation. For the firing frequency this

means that type II neurons starts off with a non-zero frequency. To get type

I behaviour we need an active soma that goes through a homoclinic bifurcation

or a saddle-node on a limit cycle [161]. This means that the firing frequency in-

creases from zero. To achieve this we will use a PWL system that inherits these

characteristics from the Morris-Lecar model [162]. To get this we have f (v) as
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Figure 4.3: The modified Type I piece-wise linear model. The shape of the v nullcline

(orange) is the same as in figure 4.2 but the w nullcline (green) has been adjusted. In-

stead of having one stable and one unstable fixed point around the left voltage threshold

we now have a ghost SNIC point. The adjusted parameters are γ1 = −1, γ2 = 0.35,

c = 0.05, I = 0.5, a = 0.25 and b = 0.25 and b∗ = 0.2. The orange line is the v

nullcline, the w nullcline is green and the orbit is shown in black. The purple lines show

the voltage thresholds at a/2, b and (1 + a)/2. The numbers in the figure indicates the

different parts µ of the orbit. To the right of the phase plane we see the voltage trace as

a function of time.

in (4.1.3) and we define g(v, w) from equation (4.1.2) as

g(v, w) =





(v− γ1w + b∗γ1 − b)/γ1, v < b

(v− γ2w + b∗γ2 − b)/γ2, v ≥ b,
(4.1.5)

where −a/2 < b∗ < (1− a)/2 and a/2 < b < (1 + a)/2. Here we take γ2 > 0,

though allow γ1 to take both positive and negative values. In figure 4.2 we

present the phase plane of a type I model. By adjusting parameters in the type

I model we can let the system undergo a bifurcation of the type saddle node on

invariant circle (SNIC), see figure 4.3 [163]. This allows us to further control the

response of the model neuron. For more discussion on how parameter choices

affect the response of the model neuron, see section 4.2.
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4.1.3 Solution of PWL models

We follow Coombes [162] when we present the solution for a general PWL

model. Let us first introduce the two-dimensional linear system

ż = Az + b, z =

[
v

w

]
, (4.1.6)

where the 2× 2 matrix A has components Aij, i, j = 1, 2, and b is constant 2× 1

input vector.The solution to this system is

z(t) = G(t)z(0) + K(t)b, G(t) = eAt, K(t) =
∫ t

0
G(s)ds. (4.1.7)

As we can see in figures 4.1 and 4.2, the first two models that we presented

have orbits that can be divided in four different parts. Let us label each part

by µ = 1 . . . 4. When we adjust the values to get the SNIC model, see figure

4.3, we will instead break the orbit into six different parts µ = 1 . . . 6. For all

three models it holds that we can, on each part, construct the solution zµ(t) =

Gµ(t)zµ(0) + Kµ(t)bµ, where we have a different Aµ and bµ at each part of the

phase space. The different Aµ will then give different Gµ(t) and Kµ(t) in the

different regions. It is convenient to introduce the voltage thresholds v1
th . . . vκ

th,

where κ = 2 for the McKean and type I model and κ = 3 for the SNIC model.

Note that the number of parts of the orbit is 2κ as each threshold is crossed

twice to create a periodic orbit, namely µ = 1 . . . 2κ.

For the McKean model we set (v1
th, v2

th) = (a/2, (1 + a)/2) and we set them to

be (v1
th, v2

th) = (b, (1 + a)/2) for the thresholds of the Type I model with homo-

clinic bifurcation. For the SNIC model we set our three voltage thresholds to be

(v1
th, v2

th, v3
th) = (a/2, b, (1 + a)/2). For these models we can parameterise a pe-

riodic orbit by choosing initial data such that z1(0) = (v1
th, w∗) (with w∗ as yet

undetermined) and zµ+1(0) = Gµ(Tµ)zµ(0) + Kµ(Tµ)bµ, for µ = 1, 2 . . . 2κ − 1.

The ‘times-of-flight’ Tµ are determined by solving threshold crossing conditions

of the form: vµ(Tµ) = vν
th, where ν indicates the bounding threshold of the re-

gion µ. A periodic solution can then be found by solving w2κ(T2κ) = w1(0),

thus yielding w∗ and the period T = ∑
2κ
µ=1 Tµ. There are also other possible

orbits when not all of the voltage thresholds are crossed, but for now we will

only consider the case of the orbit visiting all areas. In a similar way, the or-

bit might cross one or more thresholds more than two times. These orbits will,
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for the purposes of this investigation, not be considered further. We only con-

sider orbits that cross all thresholds exactly twice, in the manner seen in figures

4.1-4.3.

For the McKean model we have that A1 = A3, A2 = A4 where

A1 =

[
1/c −1/c

1 −γ

]
, A2 =

[
−1/c −1/c

1 −γ

]
, (4.1.8)

with

b1 =

[
(I − a)/c

0

]
, b2 =

[
(1 + I)/c

0

]
, b4 =

[
I/c

0

]
, (4.1.9)

and b3 = b1. For the Type I model defined by (4.1.5)

A1 =

[
1/c −1/c

1/γ2 −1

]
, A2 =

[
−1/c −1/c

1/γ2 −1

]
, A4 =

[
1/c −1/c

1/γ1 −1

]
,

(4.1.10)

with

b1 =

[
(I − a)/c

b∗ − b/γ2

]
, b2 =

[
(1 + I)/c

b∗ − b/γ2

]
, (4.1.11)

b4 =

[
(I − a)/c

b∗ − b/γ1

]
,

and A3 = A1 and b3 = b1.

Let us first look at figure 4.3 where for the SNIC model we have A4 = A2,

b4 = b2 A5 = A1 and b5 = b1. The dynamics are described by

A1 =

[
1/c −1/c

1/γ1 −1

]
, A2 =

[
1/c −1/c

1/γ2 −1

]
, (4.1.12)

A3 =

[
−1/c −1/c

1/γ2 −1

]
, A6 =

[
1/c −1/c

1/γ1 −1

]
,

and

b1 =

[
(I − a)/c

b∗ − b/γ1

]
, b2 =

[
(I − a)/c

b∗ − b/γ2

]
, (4.1.13)

b3 =

[
(1 + I)/c

b∗ − b/γ2

]
, b6 =

[
(I)/c

b∗ − b/γ1

]
.
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4.2 PWL-Soma Dynamics with Resonant Dendrites

We now have a model of an active soma that is solvable in closed form and our

next step is to attach dendritic structure to this soma. In chapter 3 we mod-

elled the dendritic cable using the cable equation that treats the dendrite as a

spatially continuous system [80]. An alternative approach is to view the tree

as a graph of connected electrical compartments [63]. The resulting system of

coupled linear ODEs is often regarded as a finite difference approximation of

the cable equation, in which the dendritic system is divided into sufficiently

small regions such that spatial variations of the electrical and physical proper-

ties within a region are negligible. We will allow the dendritic compartments to

incorporate quasi-active current of the form described in section 3.2 and create

a system of coupled dendritic compartments. For a compartmental chain with

quasi-active membrane we follow [164, 165] and write

C
dVi

dt
= −gVi + g̃ ∑

j∈nn
(Vj −Vi)− Ii + Iinj,i(t), (4.2.1)

L
dIi

dt
= −rIi + Vi, i = 1, . . . , N. (4.2.2)

These equations represent a set of N identical ’LRC’ circuits coupled by nearest-

neighbour (nn) interactions only, see section 3.2 for examples of ’LRC’ circuits.

In the voltage equation (4.2.1) C represents capacitance, g leakage conductance

or reciprocal resistance R = 1/g, g̃ the coupling conductance between neigh-

bouring compartments, Iinj,i the injected current to the ith compartment, and Ii

the current arising from quasi-active membrane. This current obeys the linear

equation (3.2.1), where L is an inductance and r a resistance. If we consider pas-

sive compartments, for example in figure 4.4, this means that we have taken the

limit r → ∞. In this example we have a dendritic chain with nearest neighbour

coupling, we can generally couple compartments in any way so we can build

branched, dendritic geometries. In general we can have any number of induc-

tive pathways, but as we can reduce these to a single inductive branch; here we

will only consider one inductive branch [166]. If not otherwise indicated, we

are considering a dendritic chain where all compartments are identical. This is

not a necessity, however, as we can freely choose unique, passive, and resonant

parameters, as well as coupling strengths for each compartment.

We can couple the dendrites to any kind of PWL model, but for clarity we

will describe the coupling between the system using the McKean model for
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the soma to describe the new system. To build a model that combines the McK-

ean soma model with the compartmental tree model, we simply add a coupling

term ĝ(V1− v) to the right hand side of (4.1.1), and a term ĝ(v−V1) to the right

hand side of (4.2.1) for i = 1. Here ĝ is the coupling conductance between the

soma and the dendrite.

Figure 4.4: The phase plane for the McKean piece-wise linear model with γ = 0.5,

c = 0.1, I = 0.5, a = 0.25. An active McKean-type soma is attached to one passive

dendritic compartment with parameters g = 0.1, C = 1 and ĝ = g̃ = 0.2. To the

left is the analytically calculated orbit and to the right is a numerical simulation of an

identical system.

Let us assume that we have a system with N dendritic compartments and a

PWL oscillator. We will then have 2N + 2 coupled ODE’s to solve. Let us first

introduce the (2N + 2)-dimensional linear system

ż = Az + b, z =
[
V1 . . . VN I1 . . . IN v w

]T
, (4.2.3)

where the (2N + 2)× (2N + 2) matrix A has components Aij, i, j = 1, 2 . . . 2N +

2, and b is constant 2N + 2× 1 input vector. The (2N + 2)× (2N + 2) matrix A

has the block form

A =




H1 H2

H3 H4

ĝ 0

0 0
...

...
0 0

ĝ 0 . . . 0
0 0 . . . 0

M




. (4.2.4)
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Here the N × N matrices Hi, i = 1, . . . , 4, are given explicitly by

H1 =




−(g + ĝ + 2g̃)/C g̃/C 0 0 . . . 0

g̃/C −(g + 2g̃)/C g̃/C 0 . . . 0

. . . . . . . . . . . . . . . 0

0 . . . 0 g̃/C −(g + 2g̃)/C g̃/C

0 0 . . . 0 g̃/C −(g + 2g̃)/C




,

(4.2.5)

H2 = −IN/C, H3 = IN/L and H4 = −rIN/L, where IN is the N × N identity

matrix. The 2× 2 matrix M takes the value M1 when v1
th < v < v2

th and M2

otherwise, where

M1 =

[
(1− ĝ)/C −1/C

1 −γ

]
, M2 =

[
−(1 + ĝ)/C −1/C

1 −γ

]
. (4.2.6)

The (2N + 2)× 1 vector b is given by

b =
[

Iinj,1 . . . Iinj,N 0 . . . 0 f
]T

, (4.2.7)

and f is a 1× 2 vector that takes the value f1 for v < v1
th, f2 for v1

th < v < v2
th

and f3 for v > v2
th:

f1 =
[

J/c 0
]

, f2 =
[
(J − a)/c 0

]
, f3 =

[
(J + 1)/c 0

]
, (4.2.8)

where J is a current injection into the soma. Note that we only allow ourself to

inject current into the voltage component of each dendritic compartment and

not into the component that is connected to the quasi-active currents. As we

want to change the dynamics in the soma we can see that only the 2× 2 matrix

M and the 1× 2 vector f will be affected. The system (4.2.3) is still piece-wise

linear and the solution can still be written on the form of (4.1.7) and the phase

plane can still be divided into distinct pieces with voltage thresholds in the

(v, w)-plane, see figure 4.5 for an example of a three dimensional orbit.

4.3 Mode-locked Solutions

4.3.1 Periodic drive

To be able to look at mode-locking in our system we must allow injection of time

dependent drive into the model neuron. To do this, we rewrite the solution for
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Figure 4.5: Orbit from McKean piece-wise linear model with γ = 0.5, c = 0.1, I =

0.5, a = 0.25 and dendritic parameters g = 0.1, C = 1 and ĝ = g̃ = 0.2. Besides the

PWL soma two dendritic compartments are attached, V1 and V2. The figure show the

three dimensional orbit in V2, v and w.

the case of constant current injection to incorporate time dependent drive so

that (4.1.7) becomes

ż = Az + b(t), z =
[
V1 . . . VN I1 . . . IN v w

]T
, (4.3.1)

where b(t) is given by one constant current injection term and one time depen-

dant term, α + β(t). These functions take the form

α =
[
0 0 . . . f

]T
, (4.3.2)

β(t) =
[

Iinj,1(t) . . . Iinj,N(t) 0 . . . 0 Iinj,2N+1(t) 0
]T

, (4.3.3)

where f is the drive associated with the currently used PWL model, see (4.2.8)

for examples of f in the McKean model. With these definitions, the general

solution of (4.3.1) can be written by matching solutions of the form

z(t) = G(t)z(0) + K(t)α + χ(t), (4.3.4)

G(t) = eAt, K(t) =
∫ t

0
G(s) ds, χ(t) =

∫ t

0
G(s)β(t − s) ds,

according to the rules for choosing M and f , namely according to where the

somatic voltage v is in comparison to the thresholds vν
th, ν = 1 . . . κ. As long as

we can get a closed expression for the convolution that gives χ(t) we can still
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get the orbit of the system analytically. The time dependent signal we will work

with here is Iinj,i(t) = Ai sin(ωt + φ), where Ai is the signal amplitude in the

ith compartment, ω is the frequency and φ is the phase of the signal. For now,

we assume that ω and φ are spatially uniform but in general we can vary them

as well if we wish. The convolution for χ(t) now takes the form

χ(t) =
1
2i

∫ t

0

[
e(A−iωI)sei(ωt+φ)− e(A+iωI)se−i(ωt+φ)

]
ds · a, (4.3.5)

where a = (A1, A2 . . . AN , 0 . . . 0)T ∈ R
(2N+2) and I is the (2N + 2)× (2N + 2)

identity matrix. The solution to 4.3.5 is

χ(t) =
1
2i

[
(e(A−iωI)t− I)(A− iωI)−1e(iωt+φ)

−(e(A+iωI)t− I)(A + iωI)−1e−(iωt+φ)
]
· a, (4.3.6)

the functions G(t) and K(t) can be constructed following Coombes [162]. As

for the two dimensional model, the times of flight Tµ are determined by solving

threshold crossing conditions of the form: vµ(Tµ) = vν
th, where ν indicates the

bounding threshold of the region µ. We choose a starting point on the orbit z∗

where all elements are unknown except that we fix v = v1
th. A periodic solution

can then be found by solving z2κ(T2κ) = z∗, thus yielding z∗ and the period

T = ∑
2κ
µ=1 Tµ.

4.3.2 Mode Locking

Neurodynamical models based on spiking neurons are playing an increasing

role in the interpretation of neurophysiological data. Neurons use a variety of

coding mechanisms to represent stimuli. The most prominent of these being

spike and rate based [82]. Importantly the precise timing of action potential

firing events that can be generated by biological neurons is thought to under-

lie several different forms of sensory processing [167, 168].The role of precisely

timed spikes has also been shown to have importance in higher brain regions

such as the cortex and neo-cortex [169–171]. To probe the nature of the neu-

ral spike code, it is natural to consider experiments whereby a single neuron

is forced with a periodic signal. In the case of the squid giant axon [172, 173],

spinal interneurons [174] and cortical pyramidal cells [175], this has been shown

to lead to so-called mode-locked responses. Briefly these characterise responses

73



CHAPTER 4: PIECE-WISE LINEAR MODELS AND MODE-LOCKING

describing p periods of oscillation per q periods of the forcing. An area in par-

ticular where neural spike timing on a millisecond time scale and mode-locking

have been linked is in the study of mechanoreceptor responses to periodic vi-

brations [176]. In some instances this periodic forcing can be thought of as em-

ulating real sensory input or input from other brain regions. An example of the

latter would be hippocampal cells driven by the theta rhythm [177, 178]. A de-

tailed mathematical framework for understanding mode-locking in point oscil-

lator models now exists, (see [179, 180] for an overview), although the extension

to spatially extended systems is still in its infancy [181]. The techniques for un-

derstanding mode-locking in point oscillators have now been applied to several

neuron models [24, 182] including variants of the popular integrate-and-fire (IF)

model such as the leaky IF model [20, 183], the IF-or-burst model [184] and the

“ghostburster" model [185]. As discussed in section 4.1 these models do not in-

corporate any AP shape. However studies on mode locking in the conductance

based Hodgkin-Huxley have been done by Aihara et al. [186], but any math-

ematical progress is typically made through numerically constructed Poincaré

maps [187]. Also the FitzHugh-Nagumo model is used as a model to exam-

ine mode locking [188, 189] but this model also lacks mathematical tractability

when considering mode locked solutions.

Mode-locking is most commonly studied in the context of the standard circle

map (see for example [190]). This map is known to support regions of parame-

ter space where the rotation number (average rotation per map iterate) takes the

value p/q, where p, q ∈ Z
+. These regions are referred to as Arnol’d tongues.

In a neural context mode-locked solutions are simply identically recurring fir-

ing patterns for which a neuron fires p APs for every q cycles of a periodic in-

jected current. Consider again for the moment the periodic orbit of the original

McKean model shown in figure 4.1, obtained for constant, rather than periodic,

current injection. This periodic orbit is naturally divided into four parts, which

we label by µ = 1, . . . , 4. For the periodic forcing of our soma-dendrite model

it is also natural to expect solutions that can be described with this form of

labelling. For clarity we shall focus only on the case of a periodic orbit with

somatic voltage components like that of figures 4.1, 4.2 and 4.3. Common for

all these figures is that the orbit crosses each threshold exactly two times and

we will fixate on this case.

Thus we study a form of 1:q mode-locked state, though we stress here that
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the ideas we present generalise to cover other more complicated p:q solutions.

On each part of the periodic solution we can construct the solution zµ(t) =

Gµ(t)zµ(0) + Kµ(t)βµ + κµ(t), where Aµ and bµ on each part of the phase space

are determined according to the rules for choosing M from {M1 . . . M2κ} and

f from { f1 . . . f2κ}. For example, in region µ = 4 in the McKean model where

v < v1
th we would choose (M, f ) = (M2, f1). We can naturally parameterise

our periodic orbit in terms of initial data z1(0) = z∗, with all components of

this vector as yet undetermined apart from the somatic voltage which is set to

v1
th. In this case

zµ+1(0) = Gµ(Tµ)zµ(0) + Kµ(Tµ)bµ + χµ(Tµ), µ = 1, 2, 3. (4.3.7)

The times of flight are determined as described earlier and z∗ is given by the

periodicity constraint. The final condition that needs to be enforced to deter-

mine a 1:q mode-locked solution is T = 2πq/ω. Hence a 1:q mode-locked state

is determined by the simultaneous solution of 2N + 2 + 2κ simultaneous non-

linear algebraic equations: 2N + 1 periodicity constraints, 2κ threshold cross-

ing conditions, and one period constraint. As seen in section 4.3.1 we can find

the function χµ(Tµ) for a sinusoidal drive to the system. The resulting system

of equations is then solved numerically in Matlab using fsolve(), for the ele-

ments of z∗ (excluding that of v which is fixed at v1
th), T1, . . . , T2κ and φ. These

2N + 2 + 2κ parameters then completely determine the shape of the orbit ac-

cording to zµ(t) = Gµ(t)zµ(0) + Kµ(t)βµ + κµ(t) and (4.3.7). When we study

mode-locking in PWL models we will use the McKean model to exemplify these

phenomena. This means that when we discuss solutions of the systems and in-

stabilities, we assume that the (v, w) phase-plane will look like that in figure

4.1.

4.3.3 Spatial Forcing

Since the soma-dendrite model is spatially extended it is natural to ask how

the periodic behaviour in each compartment varies across the chain. Indeed for

global forcing (comprising an identical signal on each compartment) one might

envisage a high degree of similarity between the dynamics of compartments

(especially for compartments in the middle of a long chain where boundary

effects are not strong). This similarity could be quantified by using an appro-

priate synchrony measure. However, of more interest is the spatial distribution
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Figure 4.6: Top left: A plot of (v, w) for a 1:3 orbit in the McKean soma-dendrite model

with N = 100 compartments and sinusoidal point forcing at i = 50 with ai = 0.1 and

ω = 5.5. The PWL model of choice here is the McKean model and the parameters are

c = 0.1, J = 0.5, γ = 0.5 and a = 0.25. The dendritic chain is passive, L = 0 and

r → ∞, and the other parameters are g = 100, ĝ = 0.5, g̃ = 5 and C = 1. Top

right: the same with global forcing. Bottom left: the corresponding phase-plot showing

a travelling wave with a decaying amplitude around the point of stimulation. Bottom

right: the corresponding phase-plot showing a standing wave.

of phases across the network. Indeed point forcing (of a single compartment)

would lend itself more to the generation of a phase gradient. Thus a more nat-

ural measure to consider is one that distinguishes between standing and trav-

elling waves. One such measure has already been introduced in [191] for the

periodically forced planar Belousov-Zhabotinsky reaction, and we adopt this

here. Defining the Fourier transform of the voltage in the dendritic compart-

ments by Vj(Ω) (j = 1, . . . , N, with spectral parameter Ω) we then sample this

signal at the frequency of forcing to obtain the filtered signal Ψjeiωt + cc with

complex amplitude Ψj = Vj(ω). A plot of the pair (Re Ψj, Im Ψj) defines a

phase-plot that can be visually inspected to determine whether the pattern in the

dendritic tree is more like a standing or travelling wave. To understand this last

statement it is informative to consider a standing wave of the form cos(kj)eiωt
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for some real wave-number k and j ∈ Z. In this case the amplitude is wholly

real and the phase-plot is simply a set of points on the real line covering the

interval [−1, 1]. For a travelling wave ei(ωt−kj) of constant amplitude the phase-

plot is a set of points on the unit circle, and for one with a decaying amplitude

(around some fixed value of j) points line up on a spiral. Thus if the phase plot

is a set of points that lie near a line passing through the origin, we shall call

it a standing wave. If the points are closer to the unit circle, we shall call it a

travelling wave of uniform amplitude, whilst if they line up on a spiral we have

a travelling wave with a decaying amplitude (which will be largest at the point

of stimulation). A plot of a 1:3 mode-locked solution constructed according the

prescription above, for both global and point forcing is shown in figure 4.6. In

the same plot we show the corresponding phase-plot, which nicely illustrates

that global forcing favours standing waves and local forcing favours travelling

waves.

4.3.4 Arnol’d Tongues
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Figure 4.7: Left: A 1:2 orbit with a Type II grazing point at v = v1
th. Here, we have a

McKean soma with N = 10 dendritic compartments, while other parameters are as in

figure 4.6. The sinusoidal drive is applied directly to the soma with amplitude ai = 0.1

and frequency ω = 3.55. Right: The solid line shows the trace of the somatic voltage

plotted against time. The dashed line shows sin(ωt).

With an increase of the coupling amplitude from zero, Arnol’d tongues in the

standard circle map typically open as a wedge, centred at points in parame-

ter space where the natural frequency of the oscillator is rational. In between

tongues quasi-periodic behaviour, emanating from irrational points on the am-
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plitude/frequency axis, are observed. The tongue borders are defined in terms

of instabilities of solutions with rational rotation number, and are thus defined

in terms of either saddle-node or period-doubling bifurcations. Since the map

in this case is given it is straightforward to calculate the tongue structure in a

two-dimensional parameter plane. In the more general setting of a periodically

forced oscillator one is first required to integrate the differential equation model

for the flow to find each iterate. The computational challenges associated with

this task are exhaustively analysed in the recent article by Schilder and Peck-

ham [192]. For the case considered here we first consider a stroboscopic map

which takes the form

z(t) 7→ z

(
t +

2πq

ω

)
. (4.3.8)

A stroboscopic map is the Poincaré map of a non autonomous flow [193]. The

stability properties of a 1:q mode-locked solution then follow from an analysis

of fixed points of this map. The linearision of this map around a 1:q state yields

the Jacobian Γ, defined by

Γ = G4(T4)G3(T3)G2(T2)G1(T1). (4.3.9)

If all the eigenvalues of Γ have modulus less than unity, then the 1:q solution is

asymptotically stable. We are thus led to the construction of the Arnol’d tongue

structure in terms of i) a saddle-node bifurcation, where det(Γ − I2N+2) = 0,

ii) a period doubling bifurcation where det(Γ + I2N+2) = 0, and iii) a Niemark-

Sacker bifurcation where det Γ = 0. However this only accounts for instabilities

of the stroboscopic map, and not those arising from the underlying flow. Since

1:q solutions have been defined in such a way that the somatic voltage crosses

each of the thresholds only twice then such solutions can be lost in grazing bifur-

cations, where a solution tangentially intersects with v1...κ
th . This can happen in

two different ways, and we are led to two distinct types of grazing bifurcation,

which we shall refer to as Type I and Type II. The condition for a Type I grazing

bifurcation can be written dv/dt|t=Tµ = 0. The condition for a Type II graze

takes the form v(T∗) = v1,2
th and dv/dt|t=T∗ = 0, for some time 0 < T∗ < Tµ.

An example of an orbit at a Type II grazing bifurcation in the McKean model is

shown in figure 4.7.

To define a tongue border in parameter space we must append the bifurcation

conditions described above to the 2N + 2 + 2κ equations defining a 1:q state. For

a border defined by an instability of the stroboscopic map or a Type I graze this
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means appending only one extra equation – thus if we leave one of the soma-

dendrite parameters as free it can be used to solve this extra equation. For a

Type II grazing bifurcation we must append two equations – one determining

the grazing time T∗ and the other again fixing the position of the bifurcation in

a parameter of the soma-dendrite model. In figure 4.8 we show a plot of the

tongue structure obtained using the approach above for both a McKean soma

with passive and quasi-active compartment models of the dendritic chain. In

both examples it can be seen that the 1:q solutions occupy a significant fraction

of the amplitude/frequency parameter space. For both global and point forc-

ing (with the same amplitude and frequency), the tongue structures are broadly

similar – though solutions within tongues do differ as described earlier, with

standing waves preferred for global forcing and travelling waves for local forc-

ing. Note that in the resonant case, the tongues can appear to close over with

increasing amplitude of forcing. However, this is due to a grazing bifurcation,

which does not necessarily lead to a change in the number of APs generated in

a cycle, but rather might just change the number of times that a threshold v1,2
th

is crossed during an orbit.
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Figure 4.8: Arnol’d tongues for 1:q mode-locked states in the McKean soma-dendrite

model of figure 4.6 with sinusoidal point forcing at i = 2 for N = 10. Left: A passive

dendrite with L = 0 and r → ∞. Right: A quasi-active dendrite with L = 100

and r = 1. Solid (dotted) lines denote saddle-node (period-doubling) bifurcations of

the stroboscopic map and dashed lines denote grazing bifurcations of the underlying

flow. Note that in the resonant case (right) the 1:q tongues (which cross each of the two

thresholds only twice) can close over with increasing amplitude of forcing.

As a confirmation of our tongue construction we performed brute force numer-

ical simulations of the full soma-dendrite dynamical system in Matlab. As a
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measure of whether we are in a mode-locked state or not we look at the vari-

ability of the period of the system. This is done using a Poincaré section at

v = v1
th. When the orbit crosses the section in the direction from left to right

in the phase-plane the ith crossing time is recorded and stored as Ti. For a 1:q

mode-locked state like that in figure 4.1 the instantaneous period Ti+1 − Ti is

constant for all i. However for other solutions this is not the case. This sug-

gests using the following measure to pick out the 1:q solutions we have studied

analytically – namely we calculate the maximal variation of the instantaneous

period, defined as max(Ti+1− Ti)−min(Ti+1− Ti), for which a 1:q state would

give zero. A plot of this measure is shown in the left part of figures 4.9 and 4.10.

Here, a warm colour does not necessarily indicate chaotic behaviour, as it could

equally well signify an aperiodic solution, a p:q mode-locked solution or even

a 1:q solution that does not cross each of the two thresholds exactly twice.

Figure 4.9: Direct numerical simulations confirm the predicted Arnol’d tongue struc-

ture for the passive dendrite model of Fig. 4.8 left. Left: The maximal variation of the

instantaneous period is colour coded so that dark blue shows 1:q mode locking (that

crosses each of the two thresholds exactly twice). Overlaid lines show the analytical

tongue borders. Right: A colour coded plot of the maximum Lyapunov exponent.

To probe further into whether the dynamics between tongues is aperiodic or

chaotic, we also calculated the Lyapunov exponents of the system using MATDS

(a MATLAB package for the study of dynamical systems) [194], which imple-

ments the algorithm in [195]. As can be seen from the overlay of our original 1:q

tongue plot with direct simulations, as shown in figures 4.9 and 4.10, there is

excellent agreement between theory and numerical experiments. As expected

higher order 2 : q + q′ orbits are found sandwiched between 1 : q and 1 : q′
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Figure 4.10: Left: Direct numerical simulations confirm the predicted Arnol’d tongue

structure for the quasi-active dendrite model of Fig. 4.8 right. Right: In contrast to a

passive dendrite model there are larger windows in parameter space capable of support-

ing chaotic behaviour.

orbits and indeed the usual ordering of p:q tongues in circle maps seems to

occur (organised according to a Farey sequence in p/q). We also find that the

quasi-active dendrite generally has larger Lyapunov exponents than the pas-

sive dendrite, and more easily lends itself to parameter values that support

chaotic motion.

We can also look a bit closer at what is happening at the bifurcations in these

Arnol’d tongues. In figure 4.7 we have already seen the orbits at a grazing

bifurcation and we will now focus on the period doubling we can see in the

case of quasi-active dendrites, figure 4.10. If we look at the left part of figure

4.10 we see a period doubling bifurcation around Ai = 0.1 . . . 0.2 and ω ≈ 4 but

the Lyapunov exponent does not indicate any chaotic behaviour in that area.

We can probe this area closer by placing a Poincaré section at v = v1
th and look

at the value of w as the orbit passes through the threshold from v < v1
th. In the

top left part of figure 4.11 we record w as we vary ω so that the bifurcation is

crossed. We see that the result is that we go from having one unique crossing

of the Poincaré section to the left of the bifurcation to having two crossings to

the right. This period doubling is, however, not a route to chaos as it does not

cascade. The orbits just to the right of the bifurcation can be seen in the lower

left part of figure 4.11 and by checking the period we come to the conclusion

that we are in a 2 : 3 locking state. This does not mean that period doubling
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Figure 4.11: Numerical investigation of period doubling bifurcations. In both cases we

look at Arnol’d tongue structure for the McKean model with quasi-active membrane

that can be seen in figure 4.10. Top left we are tracking the line Ai = 0.15, ω =

3.9 . . . 4.1 across the period doubling bifurcation. Underneath this we see the orbit for

Ai = 0.15, ω = 4.02. Top right is a period doubling taking place at Ai = 0.175,

ω = 9 . . . 9.15 and below it is the chaotic orbits at Ai = 0.175, ω = 9.

does not cascade into chaos anywhere in the parameter-space we are interested

in. Let us look at the area Ai ≈ 0.175, ω ≈ 9 where the Lyapunov exponents go

from negative to positive. In the top right part of figure 4.11 we vary ω and see

cascading period doubling, underneath we see the chaotic orbits at ω = 9.

4.4 Discussion

In this chapter we have introduced an analytically tractable model of a spa-

tially extended single neuron by coupling an active PWL soma model to a com-

partmental dendritic tree. Importantly this model inherits the ability of PWL
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models to generate realistic AP shapes and further acknowledges the known

role of dendrites in shaping neuronal output [53]. By focusing on the response

to periodic forcing we have shown that this minimal model can be directly

analysed to understand emergent behaviour and in particular the standing and

travelling waves that correspond to mode-locked states. The predicted Arnol’d

tongue structure is in excellent agreement with direct numerical simulations.

As the understanding of coupled neural networks has advanced with models of

synaptically and gap-junction coupled point neuron models we now advocate

an extension of this axo-somatic programme to networks with axo-dendritic in-

teractions. The model we have introduced here is an obvious candidate for the

basic building block of a theoretical programme. It can already be extended in

two important biological ways whilst preserving its mathematically minimal

character. Importantly, arbitrary branched structures can be treated, according

to the rules described in [196]. We also wish to treat the case of a continous

dendritic cable attached to a PWL-soma. In chapter 5 we will consider this

challenge among others.
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CHAPTER 5

Piece-Wise Linear Models and

Coupling

Worry a little every day and in a lifetime you will lose a couple of years.

If something is wrong, fix it if you can. But train yourself not to worry.

Worry never fixes anything.

- Anon

Here we will further explore the properties of active PWL models coupled with

a dendritic structure. First of all, we construct the phase response curve (PRC)

for a PWL system with compartmentally modelled dendrites. We will then

briefly examine what effect parameters, both in the soma and in the dendrites,

might have on the PRC of the system. This sets us up so we can look at the effect

of multiple PWL systems coupled through gap junctions. In particular we look

at the interaction between two weakly coupled PWL systems and the stability

of different phase-locked states. Finally we investigate if we can combine a

PWL soma to a continuous dendritic tree and use a Green’s function approach.

This allows for further investigation of the effects of the spatial location of gap

junctions.
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Figure 5.1: A schematic picture of a limit cycle X(t) with the phase θ indicated. Also

drawn in are the isochronal lines θ′, note that this is not a real dynamical system and

the isochrons are simply schematic. We also see the perturbation X(t) + δx, note that

in this caricature the perturbation is pushing the system to an isochron that will lead

to a phase retardation.

5.1 Phase Response Curves

5.1.1 Phase Representation and Isochrones

Before we get into the discussion of what a phase response curve is and what

effect it has on a dynamical system we will first have to introduce a phase rep-

resentation of the system. Let us first consider the space R
N and assume that

we have an autonomous dynamical system given by

ẋ = f (x), x ∈ R
N . (5.1.1)

Let us further assume that the dynamical system has a limit cycle X(t) ∈ R
N

and that the period of the limit cycle is T so that X(t) = X(t + T). Assuming

that we are on the limit cycle we can now define the phase of the system as

θ = t/T + φ modulo 1, (5.1.2)

where φ is an initial phase. In this way we have reduced our N-dimensional

system so that we can describe the state it is in with a single variable, namely

the phase [180]. We see that the dynamical system we can consider in this case
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is

θ̇ =
1
T

. (5.1.3)

The phase is now uniquely determined on the limit cycle, but we want to ex-

pand this reasoning to incorporate areas off the limit cycle. Let us first assume

that we have a non-empty basin of attraction of X(t) that we will call x̂ ∈ R
N.

We can then in every part of x̂ define the isochronal coordinate θ′. Isochrones

are N − 1 dimensional hyper surfaces in R
N that have the property that all

points on the isochron will end up at the same point on the limit cycle as t→ ∞.

The concept of isochrones was first introduced by Winfree [197] and received

further mathematical attention from Guckenheimer [198]. For the isochronal

coordinate θ′ connected to the phase θ on the limit cycle, it holds that

lim
t→∞
|θ − θ′| = 0, (5.1.4)

where | · | denotes the distance. In figure 5.1 we see the isochrones as lines in

phase space that connect to the limit cycle.

5.1.2 Perturbations at the Limit Cycle

We now not only have the phase defined on the cycle, but as we have seen, all

points in x̂ lie on an isochrone that is connected to a phase on the limit cycle.

Hence, we can now consider the phase in the whole basin of attraction θ(x)

as long as x ∈ x̂. Let us imagine that we have a system that is stable upon

the limit cycle and we now introduce an instantaneous perturbation δx ∈ R
N.

This will push us to the new point X(t) + δx in phase space. We will assume

that this point is still in the basin of attraction of the limit cycle. It also means

that we can no longer uniquely determine the phase of the system with the

original phase θ but must consider the isochrone of the new point X(t) + δx

and determine what phase on the limit cycle that point is connected to. In

figure 5.1 we introduce the perturbation δx and in this drawing we end up on

an isochrone that is connected to a different phase of X(t) than the original

position.

If we consider a N-dimensional limit cycle and that we have a N-dimensional

tube surrounding the cycle, the whole of this tube is assumed to be in the basin

of attraction of the limit cycle. The radius of the tube is ǫ ≪ 1 and all the
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perturbations, δx, we consider are within the tube [199]. We can now write

θ(X(t) + δx)− θ(X(t)) =θ(X(t)) +∇Xθ(X(t))δx − θ(X(t)) +O((δx)2)

≈ ∇Xθ(X(t))δx, (5.1.5)

where ∇X is the gradient in the direction of the limit cycle. The phase on the

isochrons also obey θ̇ = 1/T and therefore we have that

d
dt

[θ(X(t) + δx)− θ(X(t))] = 0. (5.1.6)

Inserting (5.1.5) into (5.1.6) gives

d
dt
∇Xθ(X(t))δx = 0. (5.1.7)

After linearising (5.1.1) we see that

dδx

dt
= D f (X(t))δx, (5.1.8)

where D f (X(t)) is the Jacobian along the orbit. Rewriting (5.1.7) using inner

product notation gives

d
dt
〈∇Xθ(X(t)), δx〉 = 〈∇Xθ(X(t)), D f (X(t))δx〉 + 〈 d

dt
∇Xθ(X(t)), δx〉

= 〈D f T(X(t))∇X θ(X(t)), δx〉 + 〈 d
dt
∇Xθ(X(t)), δx〉

= 〈D f T(X(t))∇X θ(X(t)) +
d
dt
∇Xθ(X(t)), δx〉 = 0. (5.1.9)

Introducing Q = ∇Xθ(X(t)) we see that we obtain the adjoint equation

dQ

dt
= D(t)Q, D(t) = −D f T(X(t)), (5.1.10)

subject to the normalisation conditions∇X(0)θ · f (X) = 1/T and the periodicity

condition Q(t) = Q(t + T). The solution of (5.1.10) tells us which isochron we

end up on when an infinitesimal perturbation off the limit cycle is introduced.

By the properties of the isochrons this means we get the phase shift, ∆θ, caused

by the perturbation. In the case of a non-linear f (X) in the model equations

(5.1.1) we must evaluate (5.1.10) numerically using, for example, the adjoint

routine in XPP [200].

To make the connection to phase response curves (PRCs) let us now consider an

oscillatory system with period T; this could be, for example, a regularly firing
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neuron [201]. If we perturb the system with an excitatory input at t = 0, we will

get a temporary change of the period for the oscillator in the following cycle,

T + δt. The PRC gives information about how much an infinitesimal perturba-

tion will change the period, i.e. decide the size and sign of δt. If our oscillator

is a spiking neuron, the PRC gives how the inter-spike interval changes when

external input is applied [202]. Following this description of the PRC and the

earlier discussion of the adjoint equation, we can draw the conclusion that the

PRC and the perturbation techniques described above are closely related. It

actually follows that the PRC, denoted R(t), is related to the adjoint with the

scaling R(t) = Q(θ)T as t = [0, T) and θ = [0, 1).

5.2 PWL-systems and PRC

5.2.1 The PRC of a PWL-system

We will follow the same scheme as in chapter 4 and assume that we have a

PWL soma connected to N dendritic compartments with quasi-active currents,

and we will assume we only have one inductive branch in our LRC-circuit. The

phase space has κ thresholds determined by the somatic voltage v, and the orbit

crosses each threshold exactly twice just as we assumed earlier. This means that

the orbit consists of 2κ parts each indexed by µ. The solution on each part is still

written zµ(t) = Gµ(t)zµ(0) + Kµ(t)bµ where

Gµ(t) = eAµt, Kµ(t) =
∫ t

0
Gµ(s)ds, (5.2.1)

where Aµ is the (2N + 2)× (2N + 2) matrix with the dynamics of region µ. We

will only consider constant drive in this chapter, but as we saw earlier, we can

include periodic forcing. For details of the construction of the PWL orbit with

dendritic compartments see section 4.2.

As discussed in section 5.1.1 we can generally acquire the PRC for a system by

formulating the adjoint equation and then solving that numerically. As we have

seen we can construct the orbit in closed form for the PWL systems described

in section 4.2 and by a similar formalism we will now derive the PRC for such

systems. In the same way as we did while deriving the orbit, we will solve

equation (5.1.10) by splitting the parameter space by κ voltage thresholds and
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Figure 5.2: Left:The PRCs for a McKean piece-wise linear model with two passive den-

dritic compartments. In the upper picture, the black line is the PRC for the soma, the

blue line is for the dendritic compartment closest to the soma, and finally the red line

is for the distal compartment. The colour for respective compartments in the lower pic-

ture is matched with the upper picture. The parameters are γ = 0.5, c = 0.1, I = 0.5,

a = 0.25 and g = 0.2, see figure 4.1 for the orbit. The upper figure is the solution of the

algebraic system (5.2.6) and underneath that we see the numerical result of calculating

the PRC’s using XPP.

Right: The PRCs for a type I piece-wise linear model with two passive dendritic com-

partments. The black line is the PRC for the soma, the blue line is for the dendritic

compartment closest to the soma and finally the red line is for the distal compartment

in the upper picture. The parameters are γ1 = 2, γ2 = 0.25, c = 0.825, I = 0.15,

a = 0.25, b = 0.5, b∗ = 0.2 and g = 0.1, see figure 4.2 for the orbit. As in the case

of the McKean model, the upper picture is the analytical result, and below that we have

the PRCs produced by the ADJOINT routine in XPP.
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the PRC will then consist of 2κ pieces. We still require the orbit (and therefore

also the PRC) to cross each threshold exactly twice. Equation (5.1.10) is now

divided into Q̇µ = DµQµ where µ = 1, . . . , 2κ and Dµ = −AT
µ . The solution of

this is

Qµ(t) = GT
µ (t− Tµ)Qµ(Tµ), (5.2.2)

with Qµ = Qµ+1 for µ = 2 . . . 2κ. Note that here we are going backwards in

time having Qµ(Tµ) as initial condition and evolving until Qµ(0). The initial

state, Q2κ(T2κ) = q, is determined by considering the conditions on equation

(5.1.10). The first condition gives

(A2κz2κ(T2κ) + b2κ)
T · q = 1/T. (5.2.3)

To ensure periodicity we introduce the matrix Γ = GT
1 (T1)GT

2 (T2) · · ·GT
2κ(T2κ),

the periodicity condition is then

(Γ− I)q = 0, (5.2.4)

where I is the (2N + 2)× (2N + 2) identity matrix. The periodicity condition,

equation (5.2.4), has an infinite number of solutions so therefore equation (5.2.3)

needs to be incorporated. To do this we create the matrix

Ψ =




(Γ− I) [1]
...

(Γ− I) [2N]

(A2κz2κ(T2κ) + b2κ)
T

(Γ− I) [2N + 2]




, (5.2.5)

where the notation A [i] means the ith row of the matrix A. To finally determine

q we need to solve the system

Ψq =




0
...

0

1/T

0




, (5.2.6)

where the right hand side is a vector with (2N + 2) × 1 entries. In figure 5.2

we see the PRC’s for the McKean model and the type I model, both with two

passive dendritic compartments. As we can see, we have excellent agreement

between the numerical calculation and the solution of (5.2.6) obtained using

MATLAB.
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Figure 5.3: The orbits and nullclines for our two choices of the parameter γ1 in the

SNIC model that is described in (5.2.8). To the left we have γ1 = 500 and we can

clearly see the wedge-shape in between the two left-most parts of the nullclines. In

the right part we have γ1 = −1 and we see the tunnel between the nullclines that

the orbit travels through. The plots are done using XPP with two passive dendritic

compartments. Other parameters that are common for the dendrites are g̃ = g = 0.1

and C = 1. The parameters for type I model are c = 0.05, I = 0.4, a = 0.25,

b = 0.125, b∗ = 0.2 and γ2 = 0.35 that are all equal for the two cases.

5.2.2 Parameter Effects on the PRC

Here we want to examine the effects of different parameters in our system on

our PRC. The parameters we examine are both the active properties of a PWL

soma, as well as the quasi-active properties of the dendrites. The PWL model

we use is the SNIC model we saw in section 4.1, with the adjustment that b =

a/2, so that in this case we only need two voltage thresholds. The dynamics of

this model are governed by the choice

f (v) =





−v, v < a/2;

v− a, a/2 < v < (1 + a)/2;

1− v, v > (1 + a)/2;

(5.2.7)

g(v, w) =





(v− γ1w + b∗γ1 − b)/γ1, v < a/2;

(v− γ2w + b∗γ2 − b)/γ2, v > a/2.
(5.2.8)

The parameter we vary in this model is γ1 which is the parameter that deter-

mines the slope of the w nullcline for v < a/2; this is the leftmost part of the

phase space seen in figure 5.3. We will consider two choices of γ1, one choice

that creates a wedge-shaped area between the v and the w nullclines in the left

part of the phase space. The other case we consider is γ1 chosen so that this
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Figure 5.4: The voltage versus time plot for the two different nullcline cases. On the left

we have the voltage trace caused by the wedge-shaped nullcline given by γ1 = 500 and

I = 0.375. On the right is plotted the voltage for the tunnel-shape created by γ1 = −1

and I = 0.5. Note the difference for the voltage trace for t > 0.75, the wedge-shaped

recovery phase of the phase plane causes the orbit to slow down as it comes nearer to the

knee while to the right we see how the orbit has a constant speed as it moves between the

parallel nullclines. All other parameters for the SNIC model are the same as in figure

5.3. The parameters for the dendrites are g̃ = g = 0.1,C = 1, rk = 1 and Lk = 1 for

both left and right plot.

area has the shape of a tunnel, see figure 5.3. This leftmost part of phase space

we shall refer to from now on as the recovery phase of the system. We see how

the somatic voltage v reaches its lowest value just after crossing the v nullcline

in the area v < a/2 and then starts increasing again. In figure 5.4 we see that

this minimum value is reached at t ≈ 0.8 in both cases, and after that time the

system starts to recover up to the point where the next action potential would

be generated. Let us first consider the wedge-shaped recovery phase given

by γ1 = 500. This shape will lead to a quick recovery from the most hyper-

polarised voltage, and then the orbit will slow down when it approaches the

knee of the nullclines at v = a/2. This effect is clear in the left part of figure 5.4.

The other case we consider is γ1 = −1 when the nullclines run close and near

parallel during the recovery phase, thus creating a tunnel between the null-

clines. A tight tunnel will cause the orbit to evolve with almost constant speed

between the nullclines, see right part of figure 5.4.

As the main site for synaptic input is the dendrites, we should see what effect

dendritic parameters have on the PRC of the system. The dendritic parameter

we are tampering with, is the resonances of the dendritic compartments. We

look at the near passive case rk = 100, Lk = 1 and the considerably more res-
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Figure 5.5: The PRC for the system with wedge-shaped nullclines, to the left passive

dendrites, Lk = 1, and to the right the resonant case, Lk = 1000. All other parameters

are the same as in figure 5.3. Both cases lead to a positive bias of the PRC towards later

parts of the period.

onant case rk = 100, Lk = 1000. The main reason not to change rk is that we

do not want to change the total resistivity of the LRC circuit. What we want to

explore, is whether quasi-active currents in the dendrites can affect the overall

shape of the PRC for this system. The thought that the dendrites could have a

role in shaping the PRC is presented by Crook et al. [203], but that study only

incorporates passive dendrites. A similar study by Goldberg et al. [204] for

both the Hodgkin-Huxley soma and type I soma, this time coupled to resonant

dendrites, indicates that the dendritic PRC (dPRC) can be both shifted and fil-

tered compared to the somatic PRC. We will look at the dPRC at the dendritic

compartment closest to the soma and see what effects the resonant properties

will have.

We will first consider the setup that creates the wedge-shape of the nullclines.

In figure 5.5 we see the PRC for the wedge-shaped phase-space. To the left we

have the passive case, Lk = 1, and on the right hand side a more resonant case,

Lk = 1000. The main effect of this quite dramatic change of resonant prop-

erties, is that the difference between the maximum and minimum of the PRC

is decreased. The activation of resonances is not, however, enough to eradi-

cate the positive bias towards the end of a period, and the shape of the PRC is

only changed very slightly. As the recovery part of the orbit begins, we have a

steadily rising PRC up until the initiation of the action potential, when we see

a sharp drop off.
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Figure 5.6: The PRC for the system with tunnel-shaped nullclines, to the left passive

dendrites, Lk = 1, and to the right the resonant case, Lk = 1000. All other parameters

are the same as in figure 5.3. Here the increasing of resonances flattens out the PRC

during the recovering phase.

Moving on to the tunnel-shaped phase-space that γ1 = −1 creates, we see

the PRC’s for this case in figure 5.6; as earlier we have Lk = 1 to the left and

Lk = 1000 to the right. Let us first of all take notice that the total period for the

two choices of nullclines are similar, and the time the orbit spends in the recov-

ery phase is also equal. For the passive dendrites, left part of figure 5.6, the PRC

has a similar shape to the one seen in the wedge-shaped case. We still have a

positive bias towards the later part of the period. The bias is not as pronounced

as earlier but it is still clearly noticeable. If we now turn up the resonance we

see a clear change of the PRC, especially while in the recovery phase. Now

the bias we have seen in every case so far has completely disappeared, and the

PRC actually seems to slowly fall off during later stages of the period. Note

that the flattening we are discussing in both cases mainly considers the PRC

during the recovery phase. We always see a much lower, sometimes even neg-

ative, PRC during the different stages of the action potential. This effect on the

PRC persists for both shorter and longer periods of the orbit (not shown) ,and

that indicates that it is really the constant speed of the orbit during recovery

that allows the resonant current to flatten out the PRC. Further, we were not

able to eradicate the positive bias for any period when using the wedge-shaped

nullclines.

In conclusion, we have seen that the dendritic structure can have a signifcant
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effect on the PRC of our system. Passive properties will clearly have an effect

as they change the diffusion speed and leakage of the cable, thereby shifting

and scaling the PRC. The overall shape of the PRC seems to be an intricate play

between somatic dynamics and dendrites. In the case of the wedge-shaped do-

main, the general shape of the PRC is largly independent of the quasi-active

parameters. In other set-ups, such as the parallel nullclines, quasi-active pa-

rameters can shift the profile of the PRC. This is clearly an area that requires

further investigation by both experimental studies and modellers.

5.3 Gap Junction Coupling

5.3.1 Dendro-dendritic Gap Junctions

The PRC is an extremely useful tool when we want to analyse networks of neu-

rons. If two or more neurons are connected to each other, the fact that they

affect each other can be interpreted in terms of the perturbations we considered

in section 5.1.1. Gap junction coupling is an important communication channel

for many biological cells, for example cardiac cells [205, 206], pancreatic β-cells

[207] and neurons [30]. Lately gap junctions have also been shown to play an

important role in the cell proliferation, differentiation and apoptosis, among

other processes, in embryonic stem cells and various somatic stem cells [208].

For neurons, gap junctions are primarily located between inhibitory cells [31]

but have also been observed in excitatory systems [209]. The biological build-

ing blocks of gap junctions are a family of proteins that directly mediate ions

between cell membranes known as connexins. These proteins cluster together

on the cell membrane that then interacts over extracellular space so as to create

a gap junction. The extracellular space is of the order 35 Å and the extension

along the membrane is in the order 200 Å [32]. Classically these length scales

make gap junctions very hard to discover and verify. Techniques like elec-

tron microscopy, x-ray scattering techniques and fluorescence resonance energy

transfer (FRET) are necessary to examine gap junctions [210]. However lately

imaging techniques such as dye coupling with a gap junction-permeable dye

and Ca2+ imaging have been developed [211].

We are interested in gap junctions that connect dendrites to each other, so called
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dendro-dendritic junctions. These have been shown to be prominent in some

brain areas, for example the olivocerebellar system [212] and the olfactory bulb

[213]. The dendro-dendritic couplings in the olfactory bulb were already exam-

ined by Rall in the 1960’s [64, 214]. So far we have mainly considered the den-

drites as a post synaptic element of the neuron that use passive, quasi-active

and non-linear methods to process input. Even with active processes the role of

the dendrites has so far been to receive input from other neurons and then with

passive and active mechanisms to filter information to the soma. With dendro-

dendritic gap junctions this view is changed. Now the dendrites of neurons

function as both post and pre-synaptic elements simultaneously.

Let us now consider a case in which we have two neurons with a dendritic

structure. Further the neurons are connected via gap junctions through which

flows a current of the form

Igap = ggap(vpre − vpost), (5.3.1)

where ggap is the gap conductance and vpre/post is the current voltage of the

pre/post-synaptic neuron. Although we are concentrating on gap juctions, we

will keep refering to the neurons as pre and post synaptic. This does not in-

dicate that there are any chemical synapses present, even though that is what

is usually meant by the pre/post-synaptic formulation. The role of electrically

coupled neurons has been studied in numerous publications, among which are

the theoretical work of Lewis and Rinzel [215] and Chow and Kopell [216]. In

both these publications, electrical coupling in the weak coupling limit is anal-

ysed. The neuronal model used, is integrate and fire neurons that are analyt-

ically tractable but this model does not include the dynamics of the AP. The

AP shape is "bolted" on to the threshold to be able to get Igap during the firing

phase. Further the neurons are just point models without any dendritic com-

partments. Among the computational work it is worth pointing out the work

by Saraga et al. [217, 218]. These papers use biologically accurate models of

cells built in NEURON [87] with dendrites.

5.3.2 Phase Interaction Functions

We can generally consider M neurons such that each is coupled to each other

with gap junctions. We will further assume that the coupling is weak and that
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Figure 5.7: A schematic picture of two PWL soma’s, Vsoma, with four dendritic com-

partments attached V1, . . . , V4. A dendro-dendritic gap junction is placed between the

neurons at position m = n = 3.

all neurons are identical PWL-oscillators with period T. Each oscillator, i =

1 . . . M, can then be described by its phase θi ∈ [0, 1). The dynamics of oscillator

i are described by
dθi

dt
=

1
T

+
1
M

M

∑
j=1

gijH(θj − θi), (5.3.2)

where H(φ) is the phase interaction function and gij is strength of the coupling

between oscillator i and j. The phase interaction function is constructed by tak-

ing the temporal average of the influence on an oscillator from other oscillators,

and in the most general case we are also allowing coupling of an oscillator to

itself. All oscillators are considered to be identical, except that they might be

out of phase with each other. This phase difference, θj− θi, will from here on be

denoted φi. The temporal averaging can only be performed if all oscillators are

considered to be weakly coupled. If this is true we do the averaging as

H(φ) =
1
T

∫ T

0
Q(t/T)A(t + φT) dt. (5.3.3)

In the phase interaction function Q(t/T) is the adjoint for the PWL oscillator

that we defined in section 5.1.1 and A(t) is the input to the oscillator. What this

input is in our case, is a filtered version of voltage in the neurons connected to

the one we are currently considering.
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5.3.3 Weakly Coupled PWL oscillators

Equation (5.3.2) and (5.3.3) are general for any oscillators that are connected in

any way. We will now find the expressions for these equations in the case of

oscillators that consist of a PWL soma with a chain of dendritic compartments.

The oscillator we are considering is governed by the dynamics described in

chapter 4 and we can construct the limit cycle zi(t) for oscillator i. We will

also assume that any connection to other neurons is a gap junction through

which a current of the form seen in (5.3.1) flows. It is natural to assume that

the gap junctions are only placed in between the voltage compartments of our

PWL neuron. If we have a PWL soma with N resonant dendritic compartments

attached, the solution zi(t) is a (2N + 2) × 1 vector. In this vector we have

N = N + 1 elements that are holding the voltage components of the neuron;

specifically it is the elements (1, . . . , N, 2N + 1) of zi(t) that are holding the

voltage components. As seen in section 5.2 we can construct the adjoint Qi(t/T)

for the PWL neuron and just as in the case of the limit cycle, the adjoint is a

(2N + 2)× 1 vector withN = N + 1 elements that are connected to the voltage

components.

We will now consider a network of M PWL neurons coupled with gap junc-

tions. The gap junction conductance is defined to exist between compartments

m ∈ N and n ∈ N on neuron i and j respectively and is denoted as gmn
ij . We are

assuming that the coupling strength is constant over time, dgmn
ij /dt = 0, and

we are not allowing self coupling, so therefore we have j 6= i.

The dynamics for oscillator i can now be written as

dθi

dt
=

1
T

+
1

M− 1 ∑
j 6=i

N

∑
m=1

N

∑
n=1

gmn
ij Hmn

i (θj − θi), (5.3.4)

if no gap junction exists between two compartments then gmn
ij = 0 between

these. As seen in equation (5.3.3) the phase interaction function takes the tem-

poral average of the influence of one oscillator upon another. Compartment m

on neuron i is potentially connected to N other compartments on each of the

(M − 1) other oscillators with each connection contributing with a current of

the form we saw in (5.3.1). For compartment m on neuron i the total current

that flows in by this coupling is given by

Im
gap,i = ∑

j 6=i

N
∑
n=1

gmn
ij (zn

j − zm
i ). (5.3.5)
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Figure 5.8: An example of the function G(φ) = g(H(−φ) − H(φ)) for a type I neu-

ron with two dendritic compartments attached. In this case both the synchronous and

the anti-synchronous fixed points are unstable and we have a stable phase difference.

Parameters are cm = 1, γ1 = 2, γ2 = 0.25, I = 0.135, c = 0.825, a = 0.25, b = 0.5,

b∗ = 0.2, gl = 0.1 and gs = 0.1.

As we have already assumed that all couplings are weak and that gmn
ij is con-

stant, the phase interaction function for compartment m on neuron i takes the

form

Hm
i (φ) =

1
T

∫ T

0
∑
j 6=i

N
∑
n=1

Qm(t/T)(zn
j − zm

i ) dt. (5.3.6)

As we want to describe the phase interaction function in terms of the phase

difference between the oscillators, we introduce the Fourier series of our vectors

zi(t) and Qi(t/T) and get

zi(t) = ∑
k

zk
i e2πikt/T, Qi(t/T) = ∑

k

Qk
i e2πikt/T. (5.3.7)

From these series expansions we also get the Fourier series of the PRC for the

system as

Ri(t) = T ∑
k

Qk
i e2πikt/T. (5.3.8)

We are now left with the task of calculating the Fourier cofficients of our PWL

oscillator. This is something that we can do numerically, but the PWL formula-

tion of the oscillator allows us to find them in closed form. The first thing we

do is remind ourself that for an arbitrary PWL model with κ thresholds for the

somatic voltage, we divide the orbit and the adjoint into 2κ regions, see sections
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4.1 and 5.2. With this in hand a straightforward calculation gives

zk =
1
T

2κ

∑
µ=1

[
αk

µzµ(0) + γk
µbµ

]
e−2πikνµ‘ (5.3.9)

Qk =
1
T

2κ

∑
µ=1

βk
µQµ(Tµ)e−2πikνµ , (5.3.10)

where (ν1, ν2, . . . , ν2κ) = (0, T1, . . . , T1 + . . . + T2κ)/T and the coefficients αk
µ, βk

µ

and γk
µ are given explicitly by

αn
µ =

∫ Tµ

0
Gµ(t)e−2πint/Tdt, (5.3.11)

βn
µ =

∫ Tµ

0
GT

µ (Tµ − t)e−2πint/Tdt, (5.3.12)

γn
µ =

∫ Tµ

0
Kµ(t)e−2πint/Tdt. (5.3.13)

The matrices Gµ and Kµ are given by (5.2.1). To understand the use of this

formulation we remind ourselves that the phase is defined as θ = t/T and the

only thing that differentiates oscillator i from j is a phase difference φ. Using

this, it is now easy to evaluate the integral (5.3.6) and we get

Hm
i (φ) = ∑

j 6=i

N
∑
n=1

∑
k

Rk
mz−k

n [e−2πikφ− 1]. (5.3.14)

The phase interaction function for the system is now the vector

Hi(φ) = (H1
i (φ), . . . , HNi (φ)).

5.3.4 Synchrony, Anti-synchrony and Phase Locking

With the above formulations of the PRC for a PWL oscillator and the phase

interaction functions for weakly coupled oscillators we can start to analyse

the stability of such a system. The network we are considering is simply two

weakly coupled oscillators. Both oscillators have a PWL-soma and N dendritic

compartments, and the neurons have respective phases θ1 and θ2. As before,

the two neurons are out of phase by φ, which means we can write θ1 = θ2 + φ.

The neurons are coupled with a single gap-junction with strength gmn
ij = g. We

place the gap-junction between dendritic compartments that are in the same

position in the dendritic chain, i.e. m = n. Throughout this section we will
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Figure 5.9: The stability of the synchronous (left) and the anti-synchronous (right)

fixed points for a system of two identical neurons. Red indicates that the fixed point is

unstable and blue means that it is stable. On the x axis the position of the gap-junction

is varied and on the y axis we change the injected current in the soma. Each neu-

ron consists of one McKean soma and twenty passive dendritic compartments. Other

parameters are cm = 1, γ = 0.5, c = 0.1, a = 0.25, gl = 0.1 and gs = 0.5.

denote the position of the gap junction as ξ ∈ 1, 2, . . . , N. We look for stable

solutions, i.e. solutions where

dθ2

dt
− dθ1

dt
= 0. (5.3.15)

Putting equation (5.3.2) into equation (5.3.15) gives
[

1
T

+ gH1(θ2 − θ1)

]
−
[

1
T

+ gH2(θ1 − θ2)

]
= 0, (5.3.16)

we see that that θ1 − θ2 = φ and θ2 − θ1 = −φ. The difference between the

phase interaction functions is then denoted

g(H1(−φ)− H2(φ)) = G(φ) = 0. (5.3.17)

When we find a φ for which G(φ) = 0, that is a fixed point for our system, see

figure 5.8 for an example of G(φ). The stability of the fixed point is determined

by the sign of G′(φ); if G′(φ) < 0 we have a stable fixed point while G′(φ) > 0

shows instability [219]. From the fact that the PRCs are periodic functions we

will have fixed points for the synchronous solution, G(0) = G(1) = 0, and

the anti-synchronous solution, G(0.5) = 0. For any other value of φ for which

G(φ) = 0 we say that we have a phase-locked solution.
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Figure 5.10: The stability of the synchronous (left) and the anti-synchronous (right)

fixed points for a system of two identical neurons. Red indicates that the fixed point is

unstable and blue means that it is stable. On the x axis the position of the gap-junction

is varied and on the y axis we change the parameter c. Each neuron consists of a type

I PWL soma and 100 passive dendritic compartments. Other parameters are cm = 1,

γ1 = 2, γ2 = 0.25, I = 0.15, a = 0.25, b = 0.5, b∗ = 0.2, gl = 0.1 and gs = 0.1.

In the figures 5.9 and 5.10, we have diagrams that show the stability of the syn-

chronous and anti-synchronous solutions for the network we described above.

Figure 5.9 shows this for two McKean type oscillators with twenty passive den-

dritic compartments each. We vary the position of the gap junction along the

x-axis, ξ = m = n, and the current injected in the soma along the y-axis. Figure

5.10 shows in the same way the stability of these two types of solutions for two

type I soma with 100 dendritic compartments. In this case the position of the

gap junction, ξ, and the model parameter c, that determines the slow/fast dy-

namics of the oscillator, are varied. In neither of the cases do we see any clear

patterns emerging, and the systems seem to switch quite irregularly between

stable and unstable fixed points. We can see from these figures, however, that

there must be other fixed points away from synchrony that are stable. For ex-

ample we can study figure 5.9 along ξ = 20 we clearly see regions where both

the synchronous and anti-synchronous fixed point is unstable. To get that struc-

ture we must have at least another φ 6= 0, 0.5, 1 where G(φ) = 0. An example

of such a G(φ) that supports phase locked solutions can be seen in figure 5.8.

As our compartmental dendrite is not continuous, but rather a discrete quan-

tity, we should not be surprised by such a lack of spatial structure as we have

seen so far. We are still going to look at two weakly coupled PWL oscillators
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Figure 5.11: Solutions to G(φ) = 0 for two weakly coupled McKean oscillators with

30 dendritic compartments. A red star indicates an unstable fixed point while a blue

star means stable fixed point. In the two top plots the gap junction is placed directly on

the soma. In the lower figures the gap junction is instead on the dendritic compartment

closest to the soma. Other parameters are cm = 1, γ = 0.5, a = 0.25, gl = 0.1 and

g = 0.5.

with a chain of dendritic compartments. We choose to fix ξ = 1 for both the

McKean and Type I model and then vary continuous quantities such as I and c.

Changing I corresponds to changing the period of the oscillators. The bifurca-

tion structure of this has been studied by Chow and Kopell [216] with the differ-

ence that they looked at weakly coupled integrate and fire neurons without any

dendritic compartments. In figure 5.11 and 5.12 we see how the stability prop-

erties are changing as c and the I are varied. We can see that we generally have

smooth transitions from synchrony to anti-synchrony via phase-locked states

and vice versa. We also see that we have regions with bi-stability where both

synchrony and anti-synchrony are stable. It is also obvious that the position of

the gap junction is important. In figure 5.11 we can see how the stability proper-

ties of two coupled McKean oscillators are more or less reversed when the gap
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Figure 5.12: Solutions to G(φ) = 0 for two weakly coupled type I oscillators with 30

dendritic compartments. A red star indicates an unstable fixed point while a blue star

means stable fixed point. In the two top plots, the gap junction is placed directly on the

soma. In the lower figures the gap junction is instead on the dendritic compartment

closest to the soma. Other parameters are cm = 1, γ1 = 2, γ2 = 0.25, a = 0.25,

b = 0.5, b∗ = 0.2, gl = 0.1 and g = 0.1.

junction is placed on a dendritic compartment instead of between the somas.

This simple system of two weakly coupled PWL oscillators demonstrates that

we can have a range of different locking scenarios determined by the intrinsic

period of the oscillators. The bifurcation structure we see is predictable as we

switch back and forth between synchronous and anti-synchronous in a periodic

manner. This switch is possibly made via a series of phase-locked states and a

structure can easily be identified, see for example figure 5.12. When we instead

vary a spatial parameter, such as the position of the gap junction, there is no

longer any structure to the switching between locking states. This can be seen

in figures 5.9, 5.10 and 5.13, but we also see that the position of the gap junction

affects the locking state. To further explore this we are next going to include

continuous dendrites.
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Figure 5.13: Solutions to G(φ) = 0 for two weakly coupled McKean oscillators with

100 passive dendritic compartments. A red star indicates an unstable fixed point while

a blue star means a stable fixed point. The position of the gap junction, ξ is varied

along the x-axis. Other parameters are cm = 1, c = 0.1, γ = 0.5, a = 0.25, I = 0.5,

gl = 0.1 and gs = 0.5.

5.4 Coupling Between PWL Systems with Continu-

ous Dendrites

5.4.1 Phase Interaction Function for PWL-soma with a Semi-

infinite Dendrite

As we have seen, the location of the gap junction influences the behaviour of the

system. In figure 5.13 we see how synchronous, anti-synchronous and phase

locked solutions vary in both existence and stability as we move the gap junc-

tion away from the soma. Earlier studies by Saraga et al. [217, 218] indicate that

proximal gap junctions support synchrony while distal ones tend more towards

anti-synchrony and phase locking. In figure 5.13 we can not see a structure of

that type, in fact we can not see any organised structure at all in the switching

between different states. As seen in figures 5.11 and 5.12 the system’s behaviour

changes in a controlled, systematic way when quantities like the parameter c

and the current I are changed. When the compartments that are connected

change there is not necessarily any similarity between two compartments that

are nearest neighbours.

To see if we can have a more structured picture of this, we want to introduce a

continuous dendrite. We will still have a PWL soma but now we attach a semi-

infinite dendrite to it. In the passive cable the voltage is governed by the cable
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equation

rmcm
∂vd(ξ, t)

∂t
=

rm

ri

∂2vd(ξ, t)

∂ξ2 − vd(ξ, t) + rm IA(ξ, t). (5.4.1)

vd(ξ, t) is the transmembrane potential, rm is the membrane resistance of unit

length times unit length (Ω cm) and cm is the membrane capacitance per unit

length (F/cm). IA(ξ, t) is an applied current density. The solution to the cable

equation can be written as the temporal convolution

vd = (G ∗ IA)(t), (5.4.2)

where G(ξ, t) is the Green’s solution of (5.4.1) that we already have seen in

chapter 3.

The coupling we consider in this case will not be strictly dendro-dendritic as

there is not a direct bidirectional communication between the dendrites. In-

stead our neurons connect directly between the soma of neuron i to the den-

drite of neuron j, see figure 5.14. This would imitate an axo-dendritic coupling

rather that a dendro-dendritic [220]. The soma of neuron i sees a perturbation

from the soma of neuron j that is filtered by the dendrites of neuron i and vice

versa. With this formulation the dendrite will simply work as a filter between

the two oscillators, and we only have to consider the PRC of the planar PWL

model of our choice. The method for deriving this is described in section 5.2

with the main difference that the (2N + 2)-dimensional system considered is

now reduced to a two-dimensional system. The dynamical system of our PWL

oscillator is still of the form described in chapter 4 and the solution z(t) is now

just a two-dimensional vector holding the somatic voltage v and the reset vari-

able w. Naturally the adjoint Q(t) is also a two-dimensional vector and just as

in the case of the compartmental model, we introduce the Fourier series for the

adjoint

Qm =
1
T

2κ

∑
µ=1

βk
µQµ(Tµ)e−2πimνµ , (5.4.3)

where βk
µ is given by (5.3.12). In equation (5.3.3) we introduced the input to

the oscillator as A(t) and later defined that as the difference g · (zj(t) − zi(t))

for the compartmental model. In the case we are currently considering, the

vector notation to describe the input is not appropriate, so we will have to find

an alternative formulation for A(t). Let us assume that the dendrites feel a

periodic spike train from the other neuron and each spike is processed by a

function η(t). What the soma finally sees is then a convolution between this
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processed input and the local processing of the spike train. Let us define F(t) =

(G ∗ η)(t), convolving F(t) with the periodic spike train gives A(t) = ∑m F(t−
mT). In the same manner as for the adjoint we introduce the Fourier series for

the input

A(t) = ∑
n

Ane2πint/T (5.4.4)

and by inverting this we find the Fourier coefficients as

An =
1
T

∫ T

0
A(t)e−2πint/T dt. (5.4.5)

As we know A(t) is a spike train, we get

An =
1
T

∫ T

0
∑
m

F(t−mT)e−2πint/Tdt, (5.4.6)

evaluating the integral gives

An =
1
T

∫ ∞

0
F(t)e−2πint/T dt ≡ 1

T
F̃(2πin). (5.4.7)

With this formulation of the adjoint and the input to the oscillator, we put this

into the integral for the phase interaction function and get

H(φ) =
1
T

∫ T

0
∑
m

Qme2πimt/T ∑
n

Ane2πin(t+φT)/Tdt. (5.4.8)

Note that we have introduced the phase (t + φT)/T in the input, as the pre-

synaptic oscillator is assumed to be φ out of phase with the one for which we

are taking the adjoint Q(t). Performing the integration gives

H(φ) = ∑
m

Rm A−me−2πimφ. (5.4.9)

Before we can proceed we need to identify the coefficients An. We identify

F̃(2πin) as the Laplace transform of F(t) with spectral parameter 2πin/T. We

now use the fact that a convolution becomes a product in Laplace space to write

F̃(λ) = G̃(λ)η̃(λ). The Laplace transform of the Green’s function for the cable

equation is

G̃(ξ, λ) =
e−γ(λ)ξ

2Dγ(λ)
. (5.4.10)

For now we consider a passive dendritic cable which gives

γ2(λ) =
1
D

[
1
τ

+ λ

]
. (5.4.11)
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Figure 5.14: A diagrammatic picture of two neurons with PWL somas and semi-

infinite dendrites coupled by gap junctions. Both gaps are situated on a distance ξ

away from the soma.

We can further find the function η̃(λ) by considering the transform of the volt-

age of the pre-synaptic oscillator. The somatic voltage is given by the first el-

ement of z(t), and we will now focus exclusively on this element. As we dis-

cussed in the compartmental case the coupling between the oscillators is exclu-

sively between the voltage components. The Laplace transform of the somatic

voltage is

η̃(λ) =
∫ T

0
v(t)e−λt dt. (5.4.12)

We introduce the series representation of v(t) = ∑k vke2πikt/T and perform the

integration to get

η̃(λ) = ∑
n

vn(e−λT − 1)
2πin

T − λ
. (5.4.13)

The coefficients vn we can calculate in the same manner as done for the adjoint.

Now we can combine (5.4.11) and (5.4.13) to construct the transform of F(t) as

F̃(λ) = G̃(λ)η̃(λ) =
e−γ(λ)ξ0

2Dγ(λ) ∑
n

vn(e−λT − 1)
2πin

T − λ
. (5.4.14)

Now we can put (5.4.14) into (5.4.9) and construct the phase interaction function

H(φ) = ∑
m

QmF̃(−2πim/T)e2πimφ . (5.4.15)

As we can see F̃(−2πim/T) is undefined for the case m = 0 and for that reason
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we calculate

HN =H(φ)− H(0) =

R0F̃(0) + ∑
n 6=0

Rn F̃(−2πin/T)e2πinφ − R0F̃(0)− ∑
n 6=0

Rn F̃(−2πin/T)

= ∑
n 6=0

Rn F̃(−2πin/T)e2πinφ − ∑
n 6=0

Rn F̃(−2πin/T). (5.4.16)

5.4.2 Stable Phase Differences for Two Weakly Coupled Neu-

rons

Figure 5.15: Stability of the anti-synchronous solution in the McKean model. In both

figures blue indicates that the anti-synchronous solution is stable and red gives that it

is unstable. In the left figure the model parameter c and the position of the gap junction

ξ are varied. To the right the drive I and ξ vary.

Just as in the compartmental model we will now consider two weakly coupled

PWL-oscillators with phases θ1 and θ2 that have the phase difference φ. This

means that θ1 = θ2 + φ. We further assume that we have a single gap-junction

as coupling with conductance gij = g. We now write G(φ) = g(HN(θ1 − θ2)−
HN(θ2 − θ1)) = g(HN(−φ) − HN(φ)). In figure 5.15 we see how this stability

changes for the synchronous solution for the McKean model and figure 5.17

shows the same for the type I model. Compared with corresponding figures for

the compartmental model, these figures show a much more systematic change

of the stability properties. As the contact point of the gap junction varies, the

stability of the synchronous state changes in an almost periodic fashion. To

get a clearer picture of these changes we have looked closer at the stability of
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Figure 5.16: Solutions to G(φ) = 0 for two weakly coupled McKean oscillators with

an semi-infinite dendritic cable. A red star indicates an unstable fixed point while a

blue star means stable fixed point. The position of the gap junction, ξ is varied along

the x axis. Other parameters are cm = 1, D = 1, τ̄ = 1, c = 0.1, γ = 0.5, a = 0.25,

I = 0.5.

the solutions to G(φ) = 0 for fixed values of I and c in figures 5.16 and 5.18.

The stability of synchrony and anti-synchrony are varying in a periodic manner

along the dendrite. Further, the bands where phase locked solutions exist are

small compared to regions of stable synchrony and anti-synchrony.

5.4.3 Future Extensions

As this model gives some insight into how the positioning of the gap influences

synchrony properties, it is desirable to extend the theory. The main drawback

is that our model does not describe a dendro-dendritic gap junction. Rather,

what we have here is an axo-dendritic gap junction [221, 222]. To achieve a

proper dendro-dendritic gap junction we need to solve the coupling between

the dendrite and soma. One possibility would be to treat the dendrite as a

spatially extended compartment, but one separate from the soma. The soma to

dendrite coupling is then mediated by a conductance, as in our compartmental

model. The general solution for (5.4.1) on a dendritic segment with length L

can be written

vd(ξ, t) =
∫ t

0
ds
∫ L

0
G(ξ −Y, t− s)A(Y, s) dY, (5.4.17)

where G(ξ, t) is the Green’s function of the operator (1 − dxx) and A(ξ, t) is

the input to the dendrite. In our case we will have A(ξ, t) = Is(t). This input is
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Figure 5.17: Stability of the anti-synchronous solution in the Type1 model. In both

figures blue indicates that the anti-synchronous solution is stable and red gives that it

is unstable. In the left figure the model parameter c and the position of the gap junction

ξ are varied. To the right the drive I and ξ vary.

confined to the position ξ = 0. Further we take the Laplace transform of vd(ξ, t)

to get

vd(ξ, ω) = G(ξ, ω)A(Y, ω). (5.4.18)

To get the Green’s function we will use the “sum-over-trips” formalism to cal-

culate the response of the dendrite for both the passive and quasi-active case

[7, 127, 128]. In general the Green’s function at point ξ with input at Y can be

constructed using “sum-over-trips” is

G(ξ − Y, ω) = ∑
j

Atrip(ω)G∞(ξ −Y, ω), (5.4.19)

where G∞(ξ − Y, ω) is the Laplace transform of the Green’s function for the

infinite cable. For details how to calculate Atrip(ω) see chapter 3. For the semi-

infinite dendrite the Green’s function is

G(ξ −Y, ω) = (2p(ω)− 1)G∞(ξ + Y, ω) + G∞(ξ −Y, ω). (5.4.20)

In our model we have our input at Y = 0 and we treat ξ = 0 as a closed end

which gives p(ω) = 1. This gives for our system

G(ξ, ω) = 2G∞(ξ, ω). (5.4.21)

The solution in the dendrite is then

vd(ξ, ω) = 2G∞(ξ, ω)Is(t) = 2G∞(ξ, ω)g(v(t) − vd(0, t)). (5.4.22)
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Figure 5.18: Solutions to G(φ) = 0 for two weakly coupled Type I oscillators with an

semi-infinite dendritic cable. A red star indicates an unstable fixed point while a blue

star means a stable fixed point. The position of the gap junction, ξ is varied along the

x axis. Other parameters are cm = 1, D = 1, τ̄ = 1, c = 0.1, γ = 0.5, a = 0.25,

I = 0.5.

We now recursively substitute vd(0, t) with the right-hand side of equation

(5.4.22) to get

vd(ξ, ω) = 2G∞(ξ, ω)g(v(t) − vd(0, t))) = 2G∞(ξ, ω)g [v(t)

−(2G∞(0, ω)g(v(t) − vd(0, t))] = 2G∞(ξ, ω)g [v(t)

−(2G∞(0, ω)g(v(t) − 2G∞(0, ω)g(v(t) − vd(0, t)))]

= {Gv ≡ G∞(ξ, ω)v(t)} = 2gGv− 4g2GvG(0, ω)

+ 8Gvg3G(0, ω)2 − 8g3G(0, ω)2G∞(ξ, ω)vd(0, ω).

For biologically plausible choices of D and τ̄, max(G(0, ω))< 1 and therefore

we have a convergent series [223].

A more realistic approach would be to derive a boundary condition between

the soma and dendrite in the same fashion that is done for the resonant soma

in chapter 3. Instead of treating the somatic end of the dendrite as a closed end,

we want to properly couple the dendrite to the soma so that Kirchhoff’s laws

are obeyed. At the somatic end we need to preserve the continuity of potential,

vs(0, t) = v(t), and the current balance, dvd(0, t)/dt = dv(t)/dt. Following the

“sum-over-trips” we arrive again at equation (5.4.20). The difference is that the

trip coefficients will now contain

p(ω) =
z(ω)

z(ω) + γs(ω)
, z(ω) =

γ(ω)

ri
, (5.4.23)
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where the passive, dendritic properties are described by

1
D

[
1
τ

+ ω

]
, (5.4.24)

[7]. The somatic properties, γs(ω), are obtained by Laplace transforming the

system (4.1.1, 4.1.2) and rearranging equation (4.1.1) so that

γs(ω)v(ω) = I(ω, γ(ω)). (5.4.25)

If we have the McKean model, γs(ω) is

γs(ω) =





cω + 1 + 1
ω+γ1

, v < a/2;

cω− 1 + 1
ω+γ1

, a/2 < v < (1 + a)/2;

cω + 1 + 1
ω+γ1

, v > (1 + a)/2,

(5.4.26)

where γ1 is equal to the parameter γ in the McKean model, see equation (4.1.4).

5.5 Discussion

As we have seen, with PWL models we can not only calculate the orbit in closed

form but also the PRC. This gives us an excellent platform to examine how dif-

ferent configurations of the system affect the PRC. We are especially interested

in what effect the dendrites have on the response of the system, as this is an

area where very little emphasis has been placed. The PWL models also give

unique possibilities for looking at the behaviour of coupled neurons. As the

PWL systems produce action potentials that have a shape, we can look at net-

works that are connected with gap junctions using mathematical techniques.

The analytical work conducted in this area earlier, usually incorporates an IF

model that lacks the action potential shape and is therefore inappropriate for

studies of gap junction coupling [19, 28, 155]. We see that our models allow for

a wide range of stable locked states through gap junction coupling. Thus far

the analysis has only been done in the weak limit, and it would be desirable

to extend this to include strong coupling. Another area where further work is

needed is in the case of continuous dendrites connected to a PWL soma through

a boundary condition such as we already have seen for the resonant soma, see

section 3.3. If the “sum-over-trips” formalism could be fully combined with a

soma containing active dynamics, we would have an incredibly powerful tool
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for examining the response of a spatially extended neuron. The main compli-

cation at this point in time is that the voltage thresholds of the PWL soma are

not directly translatable to the frequency domain where we derive our somatic

boundary conditions.
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CHAPTER 6

Learning in Spatially Extended

Single Neurons

One thing I have learned in a long life: that all our science, measured

against reality, is primitive and childlike - and yet it is the most precious

thing we have.

- A. Einstein

In this chapter we first present a short overview of neuronal plasticity with a

special focus on the spatial effects. We also discuss attenuation of distal synap-

tic input and how this can be countered by dendritic democracy, as this will

become an integral part of our learning mechanisms. We argue that spatial ex-

tension plays a central role in the storing of information. We will look at the

recently developed tempotron learning rule and expand it with spatial exten-

sion. Spike-timing dependent plasticity is a widely used scheme for synaptic

plasticity and we look into the role of space in STDP learning. We are especially

interested in findings that propose that STDP rules are not uniform throughout

the dendritic tree. Finally we present the spike-diffuse-spike model that intro-

duces non-linearities in the dendritic structure. We examine the possibilities

of viewing these non-linear elements as logical units and apply a supervised

learning algorithm to the system.
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6.1 Introduction

6.1.1 Learning Algorithms and Spatial Extension

We will start this chapter by looking back at some definitions and assumptions

already made in chapter 2. We will adapt those to a spatially extended system,

and describe a few concepts that are of further interest for us. In section 2.4

we introduced plasticity in general but we did not discuss any specific mech-

anisms. In this chapter we intend to present more details for a few ways to

achieve plasticity in neuronal models. Of the three types of plasticity (intrinsic,

structural and synaptic) we focus mainly on synaptic plasticity in this chapter.

In the classic artificial neuronal networks we described in section 2.4 the inputs

go directly into the soma without any damping or delay. Examples of learn-

ing rules for such systems can be found in the work of Xie and Seung [224] as

well as in a paper by Werfel et al. [225]. Both these papers are concerned with

gradient following learning that we will describe here in a formal manner. The

strength of the input is decided by a weight, wi, that is connected with each in-

put line i. We will have two vectors, w and x, where the first one contains all the

weights in the system and the second one holds the input pattern. The output

of the neuron, y = w · x, is compared with the desired output, d = w∗ · x. The

vector w∗ then denotes the desired weights, and they are of course not known

a priori. This is used to construct an error function

E =
1
2
|y− d|2 =

1
2
|(w−w∗) · x|2. (6.1.1)

The vector containing all weights wi is updated by

∆w = −λ∇E, (6.1.2)

where ∆w is the adjustment vector and 0 < λ < 1 is the learning rate [105].

This is an example of a gradient following learning rule. A common problem

for this kind of learning rule is for it to get stuck in local minimum, especially

in high dimensional spaces. To avoid this it is usual to introduce a stochastic

term to the weight updates as is done in Werfel et al. [225].

116



CHAPTER 6: LEARNING IN SPATIALLY EXTENDED SINGLE NEURONS

6.1.2 Dendritic Democracy

As we are studying plastic neuronal systems we will consider all our logical

units to consist of two components. The input part is simply where the input

pattern is applied, and this component will mimic dendritic structure in the

sense that it will introduce delays and filtering to the input. In general the in-

put layer does not have to be spatially extended, but when we introduce space

in the different models, it is the input layer that is affected. In a neuronal con-

text, the input layer is the representation of the synapses. As the majority of

synapses are located on the dendrites, the input layer is the natural place to

introduce space. The summation component is the part of the system where any

decision is made; this can be an integrate-and-fire unit for example, or just a

summation kernel. Compared to a biological neuron, this can be considered to

be the soma but we will generally just refer to this component as the summation

device. In biological systems the weight of each synapse is not only dependent

on the input conductance however, but also on the location of the synapse. Let

us take the case of two synapses with identical conductance and input, except

that one of the synapses is located at a greater distance from the soma than the

other. Due to the leaky nature of the dendritic membrane, the PSP detected at

the summation device from the more distal synapse will be attenuated. This

means that an input far away from the soma will have a disadvantage over a

more proximal input, even if the conductance is identical for the two synapses.

Studies show that in, for example, hippocampal pyramidal neurons, distal and

proximal synaptic input carry the same weight [226]. This effect, i.e. that dis-

tal synapses have a similar somatic PSP as proximal ones, we will call dendritic

democracy, an expression first coined by Häusser [150]. Dendritic democracy

will play an important role in the learning algorithms we consider in this chap-

ter, and we are therefore discussing here the concept of dendritic democracy.

We will model synaptic input into the input layer using the circuit seen in fig-

ure 6.1. Besides the passive RC circuit that we have earlier used as a model for

the passive membrane, see section 2.3, we also have a branch with the synaptic

input. The synaptic current is generally given by

Isyn = ∆gη(t)(V − S), (6.1.3)

where η(t) is a function that determines the shape of the PSP and S is the rever-

sal potential of the synapse.
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Figure 6.1: A compartment of passive dendritic cable that receives a synaptic input. S

is the synapse reversal potential and ∆g is the synaptic conductance [227].

If we assume that there is dendritic democracy then we would of course want to

know what mechanisms are behind the democracy. Further we want to exam-

ine the mathematical methods used to analyse dendritic democracy. The first

model we will present that attempts to explain the democratisation of synapses

is the clusteron that is proposed by Mel in his paper from 1992 [228]. The output

from a neuron with N inputs is given by

y = F(
N

∑
i=1

ai). (6.1.4)

In equation (6.1.4) ai is the input at synapse i and F is a non-linear threshold

function. This can be, for example, a sigmoid or a Heaviside step function as

earlier discussed. The difference from the classic ANN is that the input in the

clusteron is calculated as

ai = wixi( ∑
jǫDi

wjxj), (6.1.5)

where xi is the input at synapse i. The set Di = {i− r, . . . , i, . . . , i + r} includes

all the synapses in a neighbourhood of synapse i within radius r. This can help

boost distal inputs because in CA1 pyramidal cells for example the synapses are

more dense in distal dendrites [229]. The learning rule used for this system is

of a Hebbian type and roughly means that synapses that are often co-activated

with their neighbours are left undisturbed, while other connections are weak-

ened. In Mel’s paper [228] the conclusion is drawn that this leads to clusters of

active synapses that are often co-activated, while more “isolated” synapses are

silent. This gives a preference for active clusters to areas with a dense synaptic

distribution. Among the other explanations for dendritic democracy we would
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like to point out work that indicates that the synaptic density increases in the

apical tuft of pyramidal cells [217], as well as indications that the input resis-

tance is higher in the distal dendrites of Purkinje cells [51].

When we talk about democracy, it is clear that we are somehow equalising the

response of the summation device to the PSPs of synapses in different locations.

To do this we use 5 measures of the PSP: 1: the strength, V0, which is the area

of the PSP, 2) the centroid, C0 of this area, 3) width, W, of the area, 4) the peak,

vmax, is the maximum depolarisation of the PSP and 5) the peak time, t∗, is the

time of the peak [230–232]. With these measures we can choose what we mean

by dendritic democracy. We will later use this to implement democracy when

we are considering the task of learning in a spatially extended neuron. It is

important to point out that if we, for example, consider a higher conductance

as the biological mechanism behind democratisation we will equalise the peak

measure at the summation device. The timing parameters, width, centroid and

peak time will still be shifted during diffusion down a uniform, passive den-

dritic cable. To equalise these quantities, we need to consider either varying the

time-scales of the synapses or the active processes in the dendritic membrane

such as dendritic spikes or resonant currents [7, 233]. As we saw in section 3.5,

quasi-active currents can contribute to an equalisation of the peak time mea-

sure. The joint measure strength can be equalised by changing the conductance

alone as well as the peak voltage. See figure 6.2 for an example of equalising

the peak amplitude.

Although all of the work described above deals with spatial extension, in many

cases the spatial diversity is treated like a complication that needs to be worked

around. The experimental and theoretical results concerning dendritic democ-

racy are nevertheless very important, and in section 6.3 we will utilise these

results for our own gain. Aside from the filtering properties of dendrites they

also introduce a delay in the system that can be very important for the response

of the system. In this chapter we will consider spatially extended systems that

are plastic, and can therefore store information in some sense. We will consider

both systems that work under the assumption of dendritic democracy, and sys-

tems that use the diversity caused by spatial structure to improve performance.
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Figure 6.2: EPSP amplitudes at x = 0 as a function of the position of the synapses,

see figures 6.3 and 6.7 for examples of structures along which the synapses can be

placed. To the left is the case where no democracy is present. In the right picture all the

EPSPs have been equalised in the sense that vmax at the soma is independent of synapse

location.

6.2 Tempotron-like learning

6.2.1 The Tempotron

We will first consider the tempotron which is a model that is a temporal version of

the perceptron that uses a supervised learning rule to update the weights. The

tempotron was presented in a paper by Gütig in 2006 [234]. The setup of a tem-

potron resembles that of the perceptron. The difference is that the tempotron

considers the temporal structure of the inputs. The output, V(t), is calculated

as

V(t) = ∑
j

ωj ∑
ti

K(t− ti), (6.2.1)

where j are a sum over the input spike times lines and ti are a sum over the in-

puts at input line j. We choose to interpret the output as a voltage. In figure 6.3

we see the general set up of a tempotron. Note that in the classical tempotron as

suggested by Gütig [234], all input lines are connected to the summation device

without any spatial structure. The kernel, K(t − ti), is the difference between

two exponentials with decay constants τ and τs that is written

K(t) = V0

[
e−(t−ti)/τ − e−(t−ti)/τs

]
Θ(t− ti), (6.2.2)
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where Θ(t− ti) is the Heaviside function. The constant V0 normalises the kernel

so that

max
t

K(t) = 1.

This setup is then used to classify whether temporal patterns belong to the class

⊕ or⊖. A pattern that belongs to⊕ is a pattern where the voltage at some point

crosses a voltage threshold V∗ while a ⊖ pattern never crosses that threshold,

see figure 6.4.

Figure 6.3: Schematic picture of the spatial extended tempotron (SET). Each input

line ti is denoted 1, 2 . . . N and time runs along the input lines. In the case of the

classic tempotron all input lines are connected directly to the soma while in the spatially

extended tempotron, we spread them out along a dendritic cable.

The task is to find the weights, ωj, so that all the patterns are classified correctly.

This is a type of supervised learning, so we have a priori information about

whether a pattern should be ⊕ or ⊖. To derive the learning rule a cost function

is defined. The cost function quantifies the error that is made in a single trial

and is written

E± = ±(V∗ −V(tmax))Θ(±(V∗ −V(tmax))) (6.2.3)

for ⊕ and ⊖ patterns respectively. The error is the distance between the maxi-

mum voltage and the threshold. The Heaviside function, Θ(V), is included so
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that the error for a correctly classified pattern is zero. Updates to the weights

are conducted according to the gradient decent learning rule ∆ωj = −∂E±/∂ωj.

Performing the differentiation of (6.2.3) gives

∆ωj = ±λ ∑
ti<tmax

K(tmax − ti), (6.2.4)

where tmax is the time of the maximum voltage. If a ⊕ pattern is classified as ⊖
all the weights are updated as ωj = ωj + ∆ωj. For a wrongly classified ⊖ pat-

tern ∆ωj is instead subtracted. This means that input lines that received input

shortly before tmax will be more changed than lines that received input earlier.

Lines that only receive input after tmax will not be changed. One advantage

of the tempotron is that it can learn to classify many patterns compared to the

number of input lines, i.e. we can have a high load factor α. If we have N input

lines and p patterns the load factor is defined as α = p/N. The tempotron has a

upper limit on the load factor of α = 3. This number is achieved by numerical

simulations in [234]. For the perceptron the theoretical upper limit for unbiased

patterns is α = 2 [235].

Figure 6.4: Example of voltage traces from different input patterns. Solid line is a ⊕
pattern as its maximum value exceeds the voltage threshold V∗ and the dashed line is a

⊖ pattern.
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6.2.2 Spatially Extended Tempotron

The tempotron does not have any spatial extension, but this can be introduced

by simply changing the summation kernel. In the original paper, the summa-

tion kernel used is the double exponential function as seen in equation (6.2.2).

One way to mimic space would be to introduce a unique delay for each input

line so that

V(t) = ∑
j

ωj ∑
ti

K(t− (ti + ∆τj)), (6.2.5)

where ∆τj is the time it would take for excitatory post synaptic potentials (EPSP)

to travel from input line j to the soma where the summation is done. During

the dendritic cable diffusion the PSP changes shape, and that is not captured by

simply introducing delays. The dendritic delay for a passive cable is described

by the cable equation that we have already seen in chapter 2:

rmcm
∂V(x, t)

∂t
=

rm

ri

∂2V(x, t)

∂x2 −V(x, t) + rm IA(x, t). (6.2.6)

V(x, t) is the transmembrane potential, rm is the membrane resistance of unit

length times unit length (Ω cm) and cm is the membrane capacitance per unit

length (F/cm). IA(x, t) is an applied current density. We will also use d and ri,

that denote dendrite diameter and axial resistance respectively, later. Just as in

the case of the classical tempotron we will consider the input to be of the spike

train type. This means the input is written

IA(x, t) = δ(x− xj)δ(t− ti), (6.2.7)

where xj are position of the synapses, ti are the spike times and δ(t) is the Dirac

delta function.

To capture the diffusion we will use the Green’s function as summation kernel

as this is the solution to the cable equation with input of the form of (6.2.7) [80].

The voltage contribution from each input line, Vj(x, t), is calculated as

Vj(x, t) = ωj ∑
ti<t

G(x− xj, t− ti). (6.2.8)

Let us assume that the point where the summation is performed, the soma of

the spatially extended tempotron (SET), is situated at x = 0. This gives the SET

voltage as

Vj(0, t) = ∑
j

ωjV0(xj) ∑
ti<t

G(xj, t− ti), (6.2.9)
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where V0(xj) is a function that normalises the kernel at the point of summation.

This means that we are including dendritic democracy in the SET. In fact we

are equalising the peak amplitude at the summation point. To make all input

lines as important we want the maximum amplitude to be equal for all xj. To

achieve this scaling we must find the time, t∗, when G(xj, t) reaches its max-

imum. Differentiation of G(xj, t) and setting ∂G(xj, t)/∂t = 0. We then have

that

t∗(xj) = −τ

4
+

√
D2τ2 + 4Dx2

j τ

4D

need to be considered. That gives that

V0(xj) =
1

G(xj, t∗(xj))
. (6.2.10)

Following the same formalism as for the tempotron the learning rule is

∆ωj = ±λ ∑
ti<tmax

V0(xj)G(xj, tmax − ti). (6.2.11)

As mentioned earlier, one of the important parameters that allows the tem-

potron to perform well, is the decay constant τ. For the SET we get a spread of

effective decay constants. Although the local decay is the same, the PSP seen at

the point of summation, x = 0, will have different shapes depending on how

far each PSP has diffused. In figure 6.2 we have used this approach to equalise

the PSPs at the summation device.

Let us consider the simple case of just three input lines, let us call them A, B and

C. Furthermore let us activate each input line in any order at three fixed times

t1, t2 and t3 and use the notation B(t1) to indicate that input line B is activated

at time t1 as in the work by Bressloff and Taylor [227]. We now want to classify

the pattern {A(t1) B(t2) C(t3)} as a ⊕ pattern and {A(t3) B(t2) C(t1)} as a ⊖
pattern. Both the standard tempotron and the spatially extended version are

capable of doing this, but as we see in figure 6.5, the normal tempotron is more

limited in its range of decay constants τ. The spatial tempotron is clearly better

at distinguishing between these patterns for longer decay constants. The SET

converges to the right classification within a relative low number of iterations

for a wide range of values of τ. Further we see that the iterations needed for

correct classification are roughly constant in this range, but around τ ≈ 20 the

SET begins failing to correctly classify patterns. In figure 6.5 we also see that

the classical tempotron needs an increasing number of iterations for a correct
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Figure 6.5: Number of interation required to correctly classify {A(t1) B(t2) C(t3)}

as a ⊕ pattern and {A(t3) B(t2) C(t1)} as a ⊖ pattern as a function of τ. To the left

is the number of iterations required for correct classification by the normal tempotron

and to the right is the spatially extended case. In both cases the simulation is limited to

2000 iterations. In the SET case we see how the number of iterations starts to fluctuate

between correctly classifying and totally failing at τ ≈ 20. As τ goes towards 25 we

see that the classification fails more often.

classification and at τ ≈ 15 the maximum number of iterations is reached. This

indicates that the spatial extension helps the system to distinguish between in-

puts. This idea that spatial extension is beneficial was already presented by Rall

in 1964 in the same paper where he introduced compartmental modelling [63].

The fact that each input is unique, not only in the sense of the input time, but

also the shape of the input of each line is different due to the diffusion. With

this simple experiment we have demonstrated that the spatial structure has a

positive effect on the classification of patterns. We have implemented dendritic

democracy in the sense that we have equalised the peak value at our summa-

tion device, but we have not made any attempt to equalise any of the other

measures discussed in section 6.1. We will revisit some of the ideas presented

here in section 6.4 and expand upon them.
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6.3 Spike-time Dependent Plasticity and Directional

Selectivity

6.3.1 Theory

We will now move on and consider an unsupervised learning rule. One way

to facilitate both long term potentiation (LTP) and long term depression (LTD)

is to consider the timing of pre and post-synaptic action potentials. Studies

have shown that the pairing of back-propagating action potentials and synap-

tic stimulation on a microsecond timescale can lead to both potentiation and

depression of synapses [118]. This type of plasticity rule is called spike-time

dependent plasticity (STDP). STDP rules are dependent on the timing between

when a synapse receives an input from a pre-synaptic neuron, and when the

post-synaptic neuron fires. An example of a STDP rule can be found in [236]

where the weight update is decided by

∆ωj

ωj
=

{
A+e−|∆t|/τ+ if ∆t ≥ 0

A−e−|∆t|/τ− if ∆t ≤ 0,
(6.3.1)
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Figure 6.6: The STDP rule from Froemke et al. [236]. To the left is the weight update

function for proximal synapses and to the right is the same for distal synapses.

where A± is the maximum of the weight change and τ± are decay constants.

The variable ∆t is the time difference between synaptic input for synapse j and
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the firing of the neuron, see figure 6.6. Most STDP curves facilitate LTP if ∆t >

0, and give LTD otherwise, just as in figure 6.6. The idea of a spatially varying

STDP rule has been suggested by Froemke et al. and also by Cutsuridis et al.

[237]. The concept of anti-STDP is something that is discussed in the literature.

Anti-STDP is simply a STDP rule that has been reversed. One of the advantages

of this inverse version of STDP would be to create a type of synaptic democracy

[238, 239]. Synaptic democracy would in this case mean that the local PSP for a

synapse far away from the soma would on average be stronger than synapses

closer to the soma. If the PSP amplitudes are independent of the spatial location

of the synapse, then the distal synaptic input will, on average, have a weaker

effect on the neuron’s firing than the effect of synapses proximal to the soma.

Evidence, however, suggests that the somatic response is independent of the

synaptic location [51, 150, 240]. The role of anti-STDP in dendrites with active

conductances has also been explored in work by Rumsey and Abbott [241].

We would also like to point out a theoretical approach to STDP. In the paper by

Pfister et al. [242] an STDP-like learning rule is derived for a firing rate neuron

model. This is done by defining a likelihood function L. The likelihood func-

tion is then constructed so that the timing of output spikes, ti, is conditioned

by the input function, ρ(t). When L(ti|ρ(t)) is maximised, this results in an

STDP-like learning rule.

6.3.2 STDP As a Learning Algorithm for Direction Selective

Neurons

As we have seen earlier in the case of the tempotron, the spatial extension can

have clearly positive effects due to the filtering properties of the dendritic cable,

thus making each synaptic input more unique. The relatively weak effect of

distal synapses can mean, for example, that these inputs have more of a tuning

effect on the timing of the response of the neuron [217, 218]. Aside from the

dendritic democracy we have so far considered, we can also have democracy

in the sense of STDP. The spatially varying STDP rule we will consider, was

originally presented by Froemke et al. [236]. The main finding of this paper

was that the STDP curves formalised in equation (6.3.1) are not constant along

the dendrites. The dendrites can be split in two classes, distal and proximal,

and different amplitudes A± and decay constants τ±, see (6.3.1), are applied to
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Figure 6.7: The morphology we use as a base for our directional selective neuron. It is

clear here how a right→left and a left→right pattern is moving. All directed patterns

are only applied to the excitatory inputs. The soma is of integrate and fire type.

the two classes. Note that the only representation of space in the model is that

the synapses have different STDP rules. The synapses that have the STDP rule

that is connected with distal ones are just as efficient as the proximal ones and

no effective delay is introduced in signalling along the dendrite. The voltage at

each synapse is summed as

Vj(t) = ωj ∑
ti

K(t− ti), (6.3.2)

as we can see the summation is done in the same manner as for the tempotron.

The kernel in the paper is K(t) = c2te−ctΘ(t), where 1/c is a decay constant.

Just as in the case with the tempotron, we want to introduce space into this

model. We do this by using an infinite dendritic cable in which the voltage

is governed by the cable equation (6.2.6). The synapses are considered to be

equally spaced along the dendrite. As mentioned earlier, the STDP rule in the

work by Froemke et al. [236] is also dependent on space, but only two or four

spatial compartments are considered. In the case of four STDP compartments,

the two situated at medium distance use an STDP rule that is just the interpo-

lation between the rules of the proximal and distal synapses. We will use the

same approach and determine A± and τ± as an interpolation between the val-

ues of the most proximal and the most distal synapse. The boundary synapses

get their values from the values for the proximal and distal synapses in Froemke

et al. [236]. The task is to train a neuron to become directional selective. Direc-
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tional selective cells responds to a stimulus that is presented in a specific spa-

tiotemporal pattern, while they are non-responsive for other patterns. These

types of cells have been shown to exist in different parts of the visual system

of mammals, for example in the retina and V1 area [243, 244]. Direction selec-

tivity in the visual system means that a neuron responds strongly when visual

stimuli moving in a certain direction are presented, but the response is different

when stimuli moving in another manner are presented. If we consider the case

of directional selective cells in the retina, we can make the direct connection be-

tween the spatial extension of the neuron and the moving stimulus [245]. The

experiments we will conduct will be similar to the setup in the paper by Mo et

al. [246]. To get a measure of the response from the system, an integrate and

fire soma is placed at x = 0 [247]. The voltage in the dendrite is denoted V(x, t)

and the somatic voltage is U(t). The somatic voltage is governed by the leaky

integrate and fire dynamics

dU(t)

dt
= −U(t)−U0

rm
+

V(0, t)

rs
, (6.3.3)

where rs is the input resistance between dendrite and soma and rm is the leak-

resistance of the soma [28]. When the voltage reaches a threshold, µ, a spike is

fired and the voltage is reset to the reset voltage U0. The way the neuron will

distinguish between patterns is through the number of spikes emitted during

the presentation of the pattern. We will try to train our neuron so that it pro-

duces a high number of spikes if a preferred pattern is presented and a low

number, if possible zero, of spikes otherwise.

In the first setup we use 100 excitatory synapses situated equidistantly between

x = 1 and x = 101, see figure 6.7. Note that so far we have only implemented

the excitatory inputs, the inhibitory will be considered later. The dendritic volt-

age at the soma is calculated as

V(0, t) = ∑
j

ωj ∑
ti

G(xj, t− ti). (6.3.4)

In this case we do not include any dendritic democracy.

Through the leaky properties of the dendritic cable, EPSPs far away from the

soma are strongly attenuated, see figure 6.2, and the probability for one of these

synapses to initiate a spiking event is low, compared with the probability for

the proximal synapses. The patterns we will present are a random pattern,
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Figure 6.8: Weights, ωj, for the neuron with no synaptic democracy. The top two pic-

tures show the initial weight distribution and the distribution after the neuron has been

trained to a pattern with no spatial structure. Bottom left picture shows the weights

when the neuron is trained on a pattern moving left to right, i.e. away from the soma.

For the resulting spiking see the text and table 6.1

a left→right pattern and a right→left pattern. The random pattern is a spa-

tiotemporal pattern where the input time to each synapse is drawn from a uni-

form distribution on the interval (0, Tmax). The left→right pattern is a spatially

ordered pattern that moves from the soma towards the end of the dendrite.

This is achieved by letting a synapse that is closer to the soma receive input be-

fore any synapse that is further away from the soma. Let us assume that i < j,

then the firing times for these two inputs are organised so that ti < tj for all

input lines xi and xj. The right→left pattern is naturally spatially organised

opposite to the left→right pattern. As a measure of the response of the pre-

ferred and null directions, we look at the number of spikes produced during

the interval (0, Tmax). Training is performed in the manner that the preferred

pattern is presented to the system 100 times. The resulting weight distribution

should be such that the response to the presented pattern is reinforced. We

have three patterns that we would like to consider – the preferred pattern, the
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Figure 6.9: Weights, ωj, for the neuron with synaptic democracy. The top two pic-

tures show the initial weight distribution and the distribution after the neuron has been

trained to a pattern with no spatial structure. Bottom left picture shows the weights

when the neuron is trained on a pattern moving left to right, i.e. away from the soma.

For the resulting spiking see the text and table 6.1

null pattern (moving in the opposite direction of the preferred pattern) and a

random pattern where all input times ti are drawn from a uniform distribution

on the interval (0, Tmax). To ensure that the weight distribution that the train-

ing produces is stable, we present 100 more patterns after training. For each of

these 100 presentations, we randomly chose one of the three patterns we have

available. We then present the three patterns and record the number of spikes

produced by the IF soma. In figure 6.8 we see the resulting weight distribu-

tions from this, when we do not have any synaptic democracy. In table 6.1 we

see the number of spikes from the learnt weight distributions as our three test

patterns are presented to them. If the non-democratised model is trained on

the pattern moving away from the soma, we see that the neuron becomes quite

good at distinguishing this direction from the opposite, or null, direction. The

preferred direction gives 18 spikes while the null direction only gives 11 spikes.

However the random pattern gives 16 spikes which is uncomfortably close to
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the spike count of the preferred direction. If we instead train this system on

the pattern moving towards the soma the result is even worse. The resulting

weight distribution gives 19 spikes for all of the presented patterns. Let us now

Trained direction left→right right→left

Direction Pref. Null Rand. Pref. Null Rand.

No democratisation 18 11 16 19 19 19

Democratisation 26 20 26 21 7 19

Inhibition 14 8 10 17 13 14

Inhibition and

Democratisation 20 6 13 22 10 0

Table 6.1: The number of spikes generated by the integrate and fire soma after 100

training runs on either a left→right or a right→left pattern. We consider the trained

pattern to be the preferred (pref.) direction and the opposite the null direction. To have

a good directional selective neuron the presentation of a random (rand.) pattern should

be clearly distinguishable from the preferred pattern. The numbers presented are from

a single run, but they are representative over a number of realisations.

introduce synaptic democracy and see if that will help us construct a directional

selective neuron. To achieve democratisation we rewrite equation (6.3.4) as

V(0, t) = ∑
j

ωjV0(xj) ∑
ti

G(xj, t− ti), (6.3.5)

where V0(xj) is defined in the same way as in (6.2.10). On the right hand side of

figures 6.8 and 6.9 we see the resulting weight distributions. There is no clear

difference in the resulting weight distribution between the two cases. When we

drive the democratised system with a random pattern, the distal synapses still

tend to depression due to the shape of the STDP rule we are using, see figure

6.6. In the distal synapses the LTD part of the curve has a considerably longer

decay time than the LTP part, see figure 6.6.

Another effect that can be seen in table 6.1, is that with democratisation, the

right→left training gives a clear difference compared to the null pattern. This

means a democratic dendrite has solved one of the problems encountered in

the undemocratic system. Also the left→right gives a satisfactory difference

between preferred and null patterns. We are still not able to clearly distinguishe

between the preferred direction and a random pattern. It is true that it can be
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Figure 6.10: Weights, ωj, for the neuron with inhibitory synapses and no synaptic

democracy. The top left picture shows the static weight distribution for the inhibitory

synapses. Top right we have the distribution after the neuron haa been trained to a

pattern with no spatial structure. Bottom left picture shows the weights when the

neuron is trained on a pattern moving left to right, i.e. away from the soma. For the

resulting spiking see the text and table 6.1

useful to have a system that distinguishes a specific pattern from others by

being less responsive to that pattern. We can even say that this is a direction

selective neuron as there is a directional pattern that stands out from others,

namely the null pattern. This was, however, not the task we set out to perform.

We want a neuron that is more responsive to a certain direction than to others.

Another problem is, as we can see in table 6.1, that the null direction of the

left→right trained system produces almost the same number of spikes as the

response to the preferred direction in the right→left trained neuron. Assume

that we have two neurons, one is trained to have right→left as its preferred

direction and the other is preferring left→right. That means that if we present

a right→left pattern to the two direction neurons, we can not determine which

of the neurons is trained for this pattern, as the response is almost identical.
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Figure 6.11: Weights, ωj, for the neuron with inhibitory synapses and synaptic

democracy. The top left picture shows the static weight distribution for the inhibitory

synapses. Top right we have the distribution after the neuron has been trained to a pat-

tern with no spatial structure. Bottom left picture shows the weights when the neuron

is trained on a pattern moving left to right, i.e. away from the soma. For the resulting

spiking see the text and table 6.1

In several publications, the importance of having inhibitory inputs during STDP

is stressed [246, 248]. Especially in the paper by Mo et al. [246] describe the

importance of inhibition while learning direction selectivity. Therefore it is in-

teresting for us to introduce some inhibition to our system to see if we can

improve the performance. The setup is that we add 50 inhibitory synapses and

spread those out between x = 1 and x = 101 just as the excitatory synapses are,

see figure 6.7. The inhibitory synapses are not plastic but stay at their initial

state, see figures 6.10 and 6.11. The inhibitory input times are drawn from a

uniform distribution on the interval (0, Tmax). This means that there is no di-

rectionality or any plasticity in the inhibitory inputs. Let us now look at the

case of no synaptic democratisation and input inhibition. This system success-

fully distinguishes between the trained pattern and the null pattern as well as

random patterns, see table 6.1. The problem we discussed above, that the re-
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sponse of presenting a left→right pattern to two differently trained neurons

the responses will be indistinguishable from each other still persists. In a fi-

nal effort to complete our task, we combine democratisation with inhibition.

As we can see from table 6.1 this model is able to be more responsive to the

trained direction than to any other input. The problem we have discussed for

two differently trained neurons is also solved. One slight problem persists, as

the right→left trained neuron fires zero spikes for the random pattern, while

it fires 10 for the null pattern. In figures 6.10 and 6.11 we can see that in this

case, the effect of democratisation on weight distributions is quite clear. When

training the undemocratic system, figure 6.10, with a right→left pattern, there

is no clear pattern for the weights. In the democratic neuron, figure 6.11, the

pattern is clear. We have, however, solved the task of getting a neuron to be

more responsive to a certain direction.

6.4 Learning in Active Dendrites

6.4.1 The Spike-Diffuse-Spike Framework

Figure 6.12: The dendritic cable with dendritic spines. Besides the dendritic structure

we also see the electrical circuits that represent both the passive cable and the spine head

IF dynamics.

In chapter 3 we discussed linear voltage gated currents that are present in den-

drites [7] but we noted that dendrites also incorporate non-linear currents that,

for example, cause dendritic spikes [68–70]. Non-linearities in the dendrites
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are interesting from the perspective of learning, as described in the work of

Poirazi et al. [249, 250]. This work proposes the idea that the dendrites, or more

correctly, regions of the dendrites, work as logical elements and therefore are

capable of a much higher storage capacity than a linear system. The dendritic

tree of a pyramidal neuron is even considered to act as a two layer neural net-

work. For these reasons, we are now interested in a model that incorporates

dendritic non-linearities as a basic building block of learning. Non-linearities

are further an excellent way of achieving dendritic democracy, especially as

dendritic spikes in CA1 pyramidal neurons are initiated in the most distal parts

of the dendritic tree [96].

We consider a case where the dendrite is covered by discrete active regions

that we can consider to be hot-spots where non-linear ionic currents are present

[251]. Work on dendrites with active spines was pioneered by Baer and Rinzel

[95] who showed that travelling wave solutions are possible in spiny dendrites.

As spines are physically separated from each other and the only means of com-

munication available is the dendritic cable [252], it is highly possible that this is

in reality a saltatory wave. However, Baer and Rinzel did not consider spines to

be discrete units, but rather treated spine density as a continuous function. This

idea of a saltatory wave has been developed by Coombes et al. in a number of

papers and the result is the “spike-diffuse-spike” (SDS) model [130, 131, 253–

256] that utilises integrate-and-fire (IF) dynamics in the dendritic spines and

couples the spines via a passive cable.

Figure 6.13: A single saltatory wave started at the left end of a dendritic cable and

travelling to the right. The dendritic cable has 20 evenly spaced spines.

In the SDS model we have to consider two different types of voltages, the volt-
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age in the dendritic cable denoted V(x, t) and the voltage in the spines, U(t).

The voltage in the cable is, as we have seen before, governed by the cable equa-

tion, in this case however, it takes the form

rmcm
∂V(x, t)

∂t
=

rm

ri

∂2V(x, t)

∂x2 −V(x, t) + rm IA(x, t) + rmρ(x)Isp. (6.4.1)

Here we are considering an infinite dendritic cable, −∞ < x < ∞, and t > 0.

All constants are the same as in (6.2.6) but here we have the extra term with

the spine distribution function ρ(x) = ∑
N
n=1 δ(x− xn), where δ(x) is the Dirac

delta-function and xn, n = 1, 2, . . . , N are the discrete points where the spines

are located. The other factor in this term Isp = (V̂ −V)/r is the current injected

into the cable when the spine fires a dendritic spike, r is the spine head resis-

tance. Each spine generates a sequence of action potentials denoted V̂(xn, t) =

∑m η(t− Tm
n ) where Tm

n , m ∈ Z is the time of the mth firing in the nth spine. The

function η(t) is a general action potential shape often taken to be a rectangular

pulse. The IF dynamics of the nth spine are given by

Ĉ
∂Un

∂t
= −Un

r̂
+

Vn −Un

r
− Ĉh ∑

m

δ(t− Tm
n )

︸ ︷︷ ︸
Reset

, (6.4.2)

where Vn = V(xn, t) denotes the voltage in the cable at point of the spine. The

parameters Ĉ and r̂ give the capacitance and resistance of the spine head mem-

brane, see figure 6.12. The firing times of the spines, Tm
n , are given by the IF

dynamics, that when the spine voltage reaches a threshold, h, the voltage is re-

set to zero. We also introduce a refractory time, τR, at the spines. This means

that the spine is not allowed to fire during the time Tm
n < t ≤ Tm

n + τR, where Tm
n

is the time of the last firing event. Without a refractory time the spines would

fire almost instantly as after the previous event the dendritic cable below the

spine is excited.

The solution of equation (6.4.1) is

V(x, t) =
Dra

r

N

∑
k=1

∫ t

0
ds G(x− xk, t− s)

[
V̂(xk, s)−V(xk, s)

]
, (6.4.3)

where D = λ2/τ is the diffusion coefficient of the dendritic cable, τ = rmcm

is the membrane time constant, λ =
√

arm/4ri is the electronic space constant

and ra = 4ri/πa2 is the intracellular resistance per unit length of the cable. The

function G(x, t) is the Green’s function for the dendritic cable that we have seen
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in chapter 3. In this case we are considering a passive cable, but in general we

can use the resonant Green’s function if we so wish. The solution has a Dyson

like form [164] and by repeated substitution of (6.4.3) into itself we obtain a

Neumann series. In front of each term in the series we get increasing powers

of Λ = Dra/r. For biophysically realistic values of these parameters we get

0.01 ≤ Λ ≤ 0.3 and thus we can say that the series is convergent, and we will in

fact only use the first term of the series as our solution [130]. The solution now

takes the form

V(x, t) = Λ ∑
k,m

H(x− xk, t− Tm
k ), max

k,m
{Tm

k } ≤ t ≤ Tl
j , (6.4.4)

where H(x, t) =
∫ t

0 G(x, t− s)η(s) ds. The equation holds for all times between

the latest firing event maxk,m{Tm
k } and the next firing event Tl

j from any of

the spines. The indices m and k keep track of all the previous firing events,

including the latest, from all the spines. We want to be able to find a closed

expression for H(x, t) and therefore we assume that the action potential shape is

simply a square pulse with strength η0 and duration τs, η(t) = η0Θ(t)Θ(τs − t)

[130, 164]. The solution is given by H(x, t) = Aǫ(x, t −min(t, τs)) − Aǫ(x, t)

where

Aǫ(x, t) =
η0

4

√
1

ǫD

{
exp

(
−|x|

√
ǫ

D

)
erfc

(
− |x|√

4Dt
+
√

ǫt

)

+ exp
(
|x|
√

ǫ

D

)
erfc

( |x|√
4Dt

+
√

ǫt

)}
, (6.4.5)

and ǫ = 1/τ.

To find the next firing time Tl
j we integrate equation (6.4.2) and solve the thresh-

old condition for the IF dynamics, which we can write in integrated form as

Un(t) =
Dra

Ĉr2 ∑
k,m

Ĥ(xn − xk, t− Tm
k )− h ∑

m

eǫ0(t−Tm
n ) (6.4.6)

where

Ĥ(x, t) =
∫ t

0
eǫ0(t−s)H(x, s) ds, (6.4.7)

and ǫ0 = (1/r̂ + 1/r)/Ĉ. In the case of ǫ > ǫ0 we have

Ĥ(x, t) =
Aǫ(0, t)(eǫ0(t−min(t,τs)) − eǫ0t)− Â(x, t−min(t, τs))− Â(x, t)

ǫ0

(6.4.8)
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where

Â(x, t) = e−ǫ0t [Aǫ−ǫ0(x, 0)− Aǫ(x, 0)− Aǫ−ǫ0(x, t)] + Aǫ(x, t). (6.4.9)

In Timofeeva et al. [130] this framework for the infinite cable is compared with

the Baer-Rinzel model and the numerical solution of a spiny dendrite and is

shown to compare very well.

In this section we will only consider the case of an infinite dendrite, but we

would like to point out that we can easily modify this scheme to handle a finite,

branched geometry [131]. For a finite structure we make use of the “sum-over-

trips” formalism that we presented in chapter 3. The difference is that we now

have Hij(x, t) =
∫ t

0 Gij(x, y, t)η(s) ds where the new Green’s function is created

according to the trip rules we discussed in section 3.1. As earlier mentioned

we can generally consider either a passive or a resonant membrane but in this

section we stick to the choice of a passive cable.

6.4.2 Threshold Learning in the SDS Framework
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Figure 6.14: Left: A space-time plot of the voltage in a dendritic cable with 20 evenly

spaced spines. Each spine receives input at a random time between t = (1, 50). The

thresholds are varied so that max(V(193, t)) ≥ 1.2. Right: The voltage vs. time at

xS = 193 where we have the summation device of the system. This system is trained to

classify the random input pattern as a ⊖-pattern in the sense of tempotron learning.

We have now presented a formulation not just for a passive or resonant den-

dritic structure, but also for one that includes discrete non-linearities. Further-

more we can interpret these non-linearities as logical units in the same way as
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the dendritic tree can be seen as a multi-layer neural network [249, 257]. We will

now consider dendritic spines as logical units in their own right [57, 258]. In

considering this, it is not far-fetched to implement a learning algorithm where

the spines play the role of logical units in a neural network. As further mo-

tivation, it has been shown that morphology of the dendritic spine can play a

central role in LTP [59, 60]. As we have no direct morphology in our model

of the spine, we must find an appropriate parameter as the learning variable.

The threshold for activation is a parameter that has been previously studied both

experimentally [259–261] and theroetically [262]. For these reasons, we choose

the thresholds of the spines, h, in the SDS framework as the learning variable.

The system we will look at is an infinite dendritic cable with N spines equally

distributed along a portion of the dendrite. The summation device is placed at

the Nth spine at a position that we denote xS. At the summation device, we

track the dendritic voltage, vd(t, xS), and record the maximum. The maximum

voltage is then compared to a voltage threshold, V∗. Note that although V∗ is

called a threshold, it has nothing to do with the thresholds in the spines. Fur-

thermore this threshold is not connected to any dynamics of the neuron, but is

an arbitrarily chosen limit that we use to classify our patterns just as in the case

of the tempotron.

We use a reinforcement style learning algorithm for adapting the thresholds.

The learning algorithm is also inspired by the tempotron learning algorithm

that we presented in section 6.2. This is in a sense a development of the spa-

tially extended tempotron (SET) that we have earlier described. The patterns

we want to classify are random spatio-temporal patterns. The input to the sys-

tem is done at the spines by adding an instantaneous effect to the IF voltage in

the spine as

Ui(t) = Ui(t) + uδ(t− τi). (6.4.10)

Note that we here do not add any biophysical voltage to the system but we are

simply adjusting the time of firing for spines. The voltage we are recording is

the cable voltage V. Neither V or the spine head voltage V̂ receive any direct

synaptic input. Each spine will get one injection at time τi where this time is

drawn from a uniform distribution. As in the case of the tempotron, we will

adjust the thresholds depending on whether the pattern is classified correctly

or not. Each spatio-temporal pattern, denoted P, is either classified as ⊕ or

⊖. Just as for the tempotron a ⊕ pattern has maxt vd(t, xS) ≥ V∗ and a ⊖ has
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maxt vd(t, xS) < V∗. As this is a supervised learning rule, we have the desired

result of the voltage trace, i.e. if the maximum voltage of P should be greater

or smaller than V∗. If a pattern is wrongly classified, the threshold for spine i is

adjusted according to

hi =

{
hi + ∆hΘ(tmax − τi) if P ∈ ⊖
hi − ∆hΘ(tmax − τi) if P ∈ ⊕,

(6.4.11)

and if the pattern is correctly classified, no adjustment is done. The update ∆h is

a constant adjustment, and is not weighted as the adjustment for the tempotron

was. However, note that only the spines that have already received the input at

the time the voltage reaches its maximum tmax are adjusted. An important point

is that if we want to increase the maximum voltage, we lower the thresholds so

in that way, we make the spines more likely to fire. This is in contrast to, for

example, the tempotron where we increase the weights to achieve a higher vmax.
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Figure 6.15: Left: A space-time plot of the voltage in a dendritic cable with 20 evenly

spaced spines. Each spine receives input at a random time between t = (1, 50). The

thresholds are varied so that max(V(193, t)) ≥ 1.2. Right: The voltage vs. time at

xS = 193 where we have the summation device of the system. This system is trained to

classify the random input pattern as a ⊕-pattern in the sense of tempotron learning.

In figures 6.14, 6.15 and 6.16 we see both the space-time plot of the voltage in

the cable and the plot of the voltage trace at the summation device. Figure

6.16 shows the random input pattern that is wrongly classified as a ⊕-pattern

and we then see the pattern when the thresholds have been trained to correctly
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classify the pattern. In figures 6.14 and 6.15 we see other examples of patterns

that have been trained to be classified as ⊖ and ⊕ respectively.

6.5 Discussion

In this chapter we have studied spatially extended systems capable of plastic

behaviour. The study of these systems led us into a discussion of dendritic

democracy and the effects of dendritic filtering. In section 6.1 we discussed

experimental results that indicate that dendritic democracy is present in for ex-

ample hippocampal pyramidal neurons [226]. We further discussed a number

of works that suggest explanations for dendritic democracy [51, 150, 229, 240].

There is also a body of theoretical work that explores the equalisation of PSPs

[230–232]. Already in chapter 3 we saw that we can achieve dendritic democ-

racy in the sense of equalising the time to peak of the PSPs by including reso-

nant currents in the dendrites. Dendritic democracy has been used throughout

this chapter and we found that the democracy is pivotal in, for example, the

training of a direction selective neuron.

We have included or extended the spatial representation in a couple of already

established models. The tempotron [234] is the first model we generalised. The

learning algorithm in that case is a supervised algorithm and we introduce

democracy in the sense that we equalise vmax at the summation device. We

reach the conclusion that the spatial extension gives a more stable classifica-

tion of patterns as parameters of the model are varied. The second model is an

STDP model [236] that has a rudimentary representation of space. We extend

that spatial representation with the help of the cable equation, and we attempt

to create a direction selective neuron with this set-up. We see that in this case,

dendritic democracy is absolutely necessary to achieve our goals. As we show,

democracy is in this case necessary, but not sufficient. To create a truly direc-

tion selective neuron we also need to include inhibition. In short, here we have

presented what we can do when taking established learning rules and altering

them slightly to make them more biologically relevant. In no way would we

want to make the statement that our spatial extention is enough to truthfully

represent a biological neuron, but we would like to say that it is a step in that

direction. It is easy to imagine a multitude of improvements that could take
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the spatially extended learning models we have looked at here and make them

more biologically relevant. Among these would be to include a more realis-

tic soma model and attaching branched dendrites. This opens the possibility to

study the role of the back-propagating action potential (BPAP) [97, 98, 102, 263].

The BPAP has been closely linked with different types of synaptic plasticity, for

example, as a marker for the STDP rule [264, 265].

For the last of the spatially extended learning models, we took a slightly differ-

ent approach. We have the SDS framework, which is a spatially extended model

that also incoporates non-linear effects. The non-linearities are of IF type, and

are located at dendritic spines placed at discrete spots along the dendritic ca-

ble. The active spines support saltatory wave solutions, and these waves can be

seen as a form of dendritic democracy, as distal synapses can start such waves.

It is not, however, an equalisation of the measured time to peak, as the wave

has a finite speed. With this as a base, we apply a learning rule to the sys-

tem with the purpose of solving a certain task. We choose a classification task

similar to that of the tempotron learning. The learning rule applied is a super-

vised algorithm that affects the firing thresholds of the IF dynamics that govern

the voltage in the spines. With this formulation, we are successful in fulfilling

the task that we set out to perform. We have not done any strict analysis, or

even numerical experiments to examine the storage capacity of this approach,

i.e. how many different patterns the SDS neuron can correctly classify. Doing

a theoretical analysis of the storage capacity and trying to find an implementa-

tion of this is a natural extension of the work that has been done so far. In this

chapter we have not used the resonances we described and utilised in earlier

chapters. This would be another improvement to all the spatial representations

of the plastic systems we have discussed.
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Figure 6.16: To the left we have the response in an SDS system when a random pattern

is applied. In the upper picture, we have the space-time plot of the voltage in the dendrite

and below we see the voltage vs time at the summation device. All firing thresholds for

the spines are set to the same value hi = 0.5. The voltage threshold for classification is

set to V∗ = 1.2 and we can see the pattern is classified as a ⊕ pattern. To the right,

the same input pattern after training of the firing thresholds so that the pattern is now

classified as ⊖
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Beyond the Cable Equation

I rather think the cinema will die. Look at the energy being exerted to

revive it – yesterday it was color, today three dimensions. I don’t give

it forty years more. Witness the decline of conversation. Only the Irish

have remained incomparable conversationalists, maybe because technical

progress has passed them by.

- O. Wells

Here we will look at Poisson’s equation around a neural membrane. The mem-

brane we focus on has Hodgkin-Huxley dynamics, so we can study action po-

tential propagation on the membrane. We present the Green’s function for the

case of a one-dimensional membrane in a two-dimensional space. When we

solve the problem for the potential across the membrane, we encounter a sin-

gularity that has to be handled. Once this is solved we will look at a model

of a two-dimensional axon and take the asymptotes of the model to recapture

the cable equation. We will see that as we increase the separation between the

membranes we go from simple action potential propagation to more complex

patterns. Finally we will compare the speed of the action potential propagation

in the two-dimensional with the cable equation. This is joint work with Giles

Richardson at the University of Southampton that presented the problem and

the accompanying Green’s function for us.
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7.1 Stepping Away From One-dimensionality

So far in this work we have considered a number of aspects of dendrites. The

fact that dendrites are not static but rather objects that change over time has

been highlighted both in section 2.4 and in chapter 6. As a mantra throughout

the chapters we have stated that spatial extension and variety is there, and it

makes a difference. We have modified and further developed Abbott’s “sum-

over-trips”-formalism to handle a multitude of more realistic biological features

for dendritic modelling [7, 128, 131]. We have looked at the fact that aside from

the passive properties of the dendritic membrane, there are voltage sensitive

resonances that we have modelled successfully. This allows us to consider ta-

pered and branching geometries as well as include quasi-active currents in the

earlier passive formulation. We have in this context discussed the amazing and

very diverse arborisation of dendrites. To incorporate the possibility of den-

dritic spikes we introduced integrate and fire units at discrete positions of the

dendrite to represent the spiking activity seen in biological dendrites [266]. In

chapter 5 we considered the effect of passive and resonant dendrites on the re-

sponse of an oscillatory system through the phase response curve. We have also

argued that spatial extension is a positive thing when we treat the neuron as a

unit for information storage. In many ways the aim of this work has been to

try to stress the importance of considering spatially extended dendrites. Clas-

sically dendrites have been seen as a passive element that mainly exist to filter

the input to the more “exciting” parts of the neuron, the soma and the axon.

We, among a growing group of neuroscientists, would like not only to point

out the importance of dendrites, but also to stress the rich non-linear dynamics

that occur in this part of the neuron.

However much we have stressed the different aspects of the dendrites, we have

always focused our attention on one dimensional models of cable segments.

Each dendritic segment, no matter how small, has so far been treated as either

a piece of cable or an equivalent circuit. In the same way, all somas we have

modelled have been treated as points or at least isopotential surfaces. Axons

have hardly been mentioned but they are traditionally also modelled with the

cable equation [17]. The main difference from dendritic modelling is that the

non-linear currents are absolutely essential for the model [14]. As discussed in

section 2.1 the neural membrane has on either side of the membrane a voltage
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across due to different ion concentrations. Like all other things in our physical

world, the neuron and all its parts are a three-dimensional structure, so we

will in this chapter consider it as such. The system we will look at is actually

closer to the squid giant axon than the dendrites we have looked at so far. We

will consider action potential propagation on a cell membrane with Hodgkin-

Huxley like currents.

In this chapter we are going to formulate the equations for Poisson’s equation

around a cell membrane. Then we create a model of a two-dimensional axon

by putting two one-dimensional membranes in the plane. With this model

we can examine AP propagation and see how the geometry of an axon af-

fects this propagation. We also reduce the model by taking the asymptotes

of the two-dimensional model and deriving the one-dimensional model. We

can then make comparisons between the speed of the AP propagation in the

two-dimensional and one-dimensional model.

7.2 From Ion Concentrations to Poisson’s Equation

Figure 7.1: The two dimensional Green’s problem.

All the currents we so far encountered have been of the form I = I(V, w1...wN)

where V is a voltage and wk are gating variables. The gating variables satisfy
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differential equations of the form

τk(V)ẇk = wk,∞(V)− wk, k = 1, . . . , N, (7.2.1)

where

τk(V) =
1

αk(V) + βk(V)
, wk,∞(V) = αk(V)τk(V). (7.2.2)

All of these currents are caused by ions travelling across the cell membrane.

Some currents are directly associated with a certain type of ion such as sodium

and potassium currents, while others, like Ih, are of non-specific origin [16, 28].

Let us consider a membrane that divides space into outside and inside and a

non-specific type of ion on both sides. On the outside we have a certain con-

centration of these ions [Cout] and on the inside we have the concentration [Cin].

The concentrations on each side are determined by the Nernst equation

[Cout] = [Cin] ezE/VT , (7.2.3)

where z is the charge of the ion, VT = kBT/q and E is the equilibrium potential

of the ions [82]. We here use the Bolzmann constant kB, T is the temperature

of the system and q is the number of ions. In the case of non-equilibrium these

concentrations are described by the Nernst-Plank equation on both sides of the

membrane.

∂ [C]

∂t
+∇ · Fn = 0 where Fn = −Dc(∇ [C] +

F

RT
[C]∇φ), (7.2.4)

(7.2.5)

where F is Faraday’s constant, R is the universal gas constant, T is the tem-

perature and Dc is the diffusivity of the ion we are currently considering [80].

In the Nernst-Plank equation we also have the electric potential φ that follows

Poisson’s equation

∇ · (ǫ0ǫ∇φ) = −ρ, (7.2.6)

where ǫ0 is the permittivity of free space, ǫ the permittivity of the considered

medium and ρ is a charge density. In our case the charge density would be the

sum of all ion concentrations.

The geometry we are considering is a membrane dividing space into an out-

side part and an inside. The membrane has thickness 2α and at each side of the

membrane we have a thin Debye layer. The Debye layer is a region close to a

dielectric surface, in this case our cell membrane, where ions of one charge are
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predominant [267, 268]. We will, however, change perspective and look away

from the parts very close to the membrane. By matching asymptotics over the

Debye layer, intermediate layer and outer layer we arrive at a formulation for

the outer problem with the assumption of a vanishing thickness of the mem-

brane and the Debye layer [269].

To formulate the problem, let us denote the inside of the cell membrane as Ω

and the outside Ωc. The membrane that is separating Ω from Ωc is infinitesi-

mally thin. On the membrane we have active Sodium and Potassium currents,

INa and IK. Over the membrane (and the Debeye layer) we have a discontinuity

in the potential that we denote Φ. The problem then takes the form

∇2φ = 0 in Ω and Ωc, (7.2.7)

σin
∂φ

∂n

∣∣∣∣
Γ−

= σout
∂φ

∂n

∣∣∣∣
Γ+

, (7.2.8)

[φ]Γ
+

Γ− = Φ, (7.2.9)

C
∂Φ

∂t
= INa + IL + IK − σin

∂φ

∂n

∣∣∣∣
Γ−

, (7.2.10)

the notation Γ− (Γ+) indicates that we are approaching the membrane from

the inside (outside). The two parameters σout and σin describes the diffusion

through the membrane in each direction and n is the outward pointing normal

to the membrane. The capacitance of the membrane is denoted C. To ensure the

problem is well-formulated, we also need a far-field condition for the potential

as

φ→ 0 as |x| → ∞. (7.2.11)

The active currents take the standard for Hodgkin-Huxley

INa = gNam3h(V − ENa), (7.2.12)

IK = gKn4(V − EK, (7.2.13)

IL = gL(V − EL), (7.2.14)

where m, n and h are the gating variables that evolve according to (7.2.1) [82].

For details on the channel kinetics see appendix 8.2.
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7.3 Reducing the Outer Problem

7.3.1 Connections to Fluid Dynamics

Now that we have formulated the system (7.2.7)-(7.2.10) we naturally want to

find an effective way of solving the problem. The problem includes non-linear

effects as well as a jump discontinuity in the potential. These kind of problems

are regularly encountered in fluid dynamics and especially in the case of multi

phase flow. In these kind of problems a bubble in a fluid is usually considered

and this leads to discontinuities in quantities such as pressure, density and vis-

cosity. To handle these problems, a multitude of numerical techniques have

been developed [270–272]. In these numerical schemes, methods to track the

boundary at which the discontinuity occurs are used. We will not have to do

this here as we assume that the cell membrane is at a spatially fixed position.

Poisson’s equation often serves as a test bed for these kind of methods. The

pressure in the incompressible Navier-Stokes equations are a form of Poisson’s

equation [273]. The solution is usually acquired by numerical schemes but we

want to use analytical methods to solve our problem.

7.3.2 Green’s Functions

First let us assume that the diffusion through the membrane is equal in both

directions, this means that σout = σin. We have an infinite two dimensional

space, −∞ < x, y < ∞, and we place the membrane at y = 0. This means that

the normal to the membrane is n = (0, 1). On both sides of the membrane the

Green’s function obeys the Laplace equation ∇2G = 0 and over the membrane

we have a jump [G]y=0 = δ(x − ξ), −∞ < ξ < ∞, but we have no jump in

the derivative [Gy]y=0 = 0. In figure 7.2 we see a sketch of this problem. The

well-known solution to this is [274]

G(x, y) =
y

2π((x− ξ)2 + y2)
. (7.3.1)

If we instead want to consider the problem for the potential φ for the same

geometry as in figure 7.2 we have that∇2φ = 0 on both sides of the membrane.

As σout = σin the derivative is continuous and therefore we get [φy]y=0 = 0. We

will also retrieve the jump condition, (7.2.9), so that [φ]y=0 = Φ(x). We can now
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Figure 7.2: The two dimensional Green’s problem defining the Green’s function.

construct the solution for the potential by convolving the jump function with

the Green’s function as

φ(x, y) =
∫ ∞

−∞

y

2π((x − ξ)2 + y2)
Φ(ξ) dξ. (7.3.2)

As we can see in (7.2.10) we are not actually interested in the potential φ, but

the derivative in the normal direction. In this case we get

∂φ

∂y
=
∫ ∞

−∞

(x− ξ)2 − y2

2π((x− ξ)2 + y2)2 Φ(ξ) dξ =
∫ ∞

−∞
Gy(x, y, ξ)Φ(ξ) dξ. (7.3.3)

At the membrane we have y = 0 so we can consider

∂φ

∂y

∣∣∣∣
y=0

=
∫ ∞

−∞

Φ(ξ)

2π(x− ξ)2 dξ. (7.3.4)

We have a problem as this integral is undefined at x = ξ. Let us consider a

sheet that lies at distance δ from y = 0, i.e. y = δ where δ ≪ 1. We can now

split up the integral (7.3.3) into

∂φ

∂y
=
∫ x−ǫ

−∞
Gy(x, y, ξ)Φ(ξ) dξ +

∫ x+ǫ

x−ǫ
Gy(x, y, ξ)Φ(ξ) dξ

+
∫ ∞

x+ǫ
Gy(x, y, ξ)Φ(ξ) dξ ≡ I1 + I2 + I3, (7.3.5)
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where 0 < δ ≪ ǫ ≪ 1. As δ → 0 the integrals I1 and I3 are well-behaved

as can be seen in (7.3.4) but we need to further examine I2. Let us make the

substitution u = ξ − x which gives Φ(ξ) = Φ(x + u). As 0 ≤ |u| ≤ ǫ ≪ 1

when we are considering I2 we can Taylor expand Φ(x + u) around x and get

I2 =
∫ ǫ

−ǫ

(
Φ(x) + u

dΦ(x)

dx
+

u2

2
d2Φ(x)

dx2 + . . .
)

u2 − δ2

2π(u2 + δ2)2 du. (7.3.6)

We further substitute u = δw and get

I2 =
Φ(x)

2πδ

∫ ǫ/δ

−ǫ/δ

w2 − 1
(w2 + 1)2 dw +

δ

4π

d2Φ(x)

dx2

∫ ǫ/δ

−ǫ/δ

w2(w2 − 1)

(w2 + 1)2 dw

+
δ3

48π

d4Φ(x)

dx4

∫ ǫ/δ

−ǫ/δ

w4(w2 − 1)

(w2 + 1)2 dw + . . . (7.3.7)

By evaluating the integrals and taking the limit δ→ 0 we get

∫ ǫ/δ

−ǫ/δ

w2 − 1
(w2 + 1)2 dw = −2δ

ǫ
∫ ǫ/δ

−ǫ/δ

w2(w2 − 1)

(w2 + 1)2 dw =
2ǫ

δ
∫ ǫ/δ

−ǫ/δ

w4(w2 − 1)

(w2 + 1)2 dw =
2ǫ3

3δ3 (7.3.8)

and we get

I2 = −Φ(x)

πǫ
+

ǫ

2π

d2Φ(x)

dx2 +
ǫ3

72π

d4Φ(x)

dx4 + . . . (7.3.9)

We can now write the integral (7.3.4) as

∂φ

∂y

∣∣∣∣
y=0

=
∫ x−ǫ

−∞

Φ(ξ)

2π(x− ξ)2 dξ +
∫ ∞

x+ǫ

Φ(ξ)

2π(x− ξ)2 dξ

− Φ(x)

πǫ
+

ǫ

2π

d2Φ(x)

dx2 +
ǫ3

72π

d4Φ(x)

dx4 + . . . , (7.3.10)

We have now analytically reduced the system (7.2.7)-(7.2.10) to just having to

solve

C
∂Φ

∂t
= INa + IK + IL − σin

∂φ

∂n

∣∣∣∣
Γ−

, (7.3.11)

where the last term is determined by (7.3.10). This still includes the non-linear

Sodium and Potassium currents and a need to evaluate the integral (7.3.10).
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Figure 7.3: The geometry of the two-dimensional model. We have the two membranes

at ±ζ that limits the region that we are considering to be the inside, Ω. Note that the

normals to each membrane are pointing in different directions.

7.4 Asymptotes of the Two-Dimensional Model

7.4.1 A Two-dimensional Cable

With the description above we can describe a cell membrane as a one dimen-

sional line and the spread of potential across it. So the point of this whole

chapter was to not describe the dendrites and axons as one-dimensional struc-

tures which might seem a bit contradictory. Well, the first step we will take is to

describe the cell membrane as a one-dimensional structure and the actual axon

in two dimensions. We will have our two-dimensional axon as a region in the

(x, y)-plane that is bounded in the y-direction by two membranes, see figure

7.3. Over the whole domain we have a potential φ = φ(x, y, t).

We have two lines, representing the cell membranes, each at y = ±ζ and on

each line we define the local voltage Φi, where i = {1, 2}, i = 1 and i = 2

corresponds to a lower line at y = −ζ and an upper line at y = −ζ. The

voltage jump Φi at each line is determined by choosing Φ1,2 = φ(x,±ζ). The
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membranes have the dynamics

C1
∂Φ1

∂t
= INa + IK + IL − σin,1

∂φ

∂y

∣∣∣∣
−ζ−

+ σin,2
∂φ

∂y

∣∣∣∣
ζ−

(7.4.1)

C2
∂Φ2

∂t
= INa + IK + IL − σin,2

∂φ

∂y

∣∣∣∣
ζ−

+ σin,1
∂φ

∂y

∣∣∣∣
−ζ−

. (7.4.2)

Following the previous rules ±ζ− indicates that we are approaching the mem-

branes from the inside of the region, i.e. from y = 0.

7.4.2 Reduction to the Cable Equation

The problem described above can be evaluated numerically, but to be able to get

a comparative problem we need to do some more analysis. We will consider the

asymptotes as ζ is very small. For a small separation between the membranes

we will assume that we have symmetry around y = 0 in the problem so we can

write

∂φ

∂y

∣∣∣∣
y=0

= 0 and
∂φ

∂y

∣∣∣∣
y=−ζ

= −∂φ

∂y

∣∣∣∣
y=ζ

. (7.4.3)

The symmetry allows us to consider only one membrane subjected to the con-

ditions above. We will restate the problem for the membrane at y = ζ under

the assumption that σ = σout = σin. Over the whole domain we have

∂2φ

∂x2 +
∂2φ

∂y2 = 0. (7.4.4)

The jump conditions for the potential and its derivative at the membrane are

[φ]
ζ+

ζ− =Φ, (7.4.5)

∂φ

∂y

∣∣∣∣
y=ζ−

= −∂φ

∂y

∣∣∣∣
y=ζ−

, (7.4.6)

where the notation ζ− means that we are approaching the membrane from the

negative y-direction, i.e from below, and ζ+ indicate an approach from above,

see figure 7.3. We denote the sum ofSodium, Potassium and leak currents in

equation (7.3.11) as I(Φ). This term is general and allows us to include any

kind of currents we would like to consider in the membrane. This will give us

C
∂Φ

∂t
= I(Φ)− σ

∂φ

∂y

∣∣∣∣
ζ

, (7.4.7)
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where Φ = Φ2, C = C2 and σ = σin,2. The far-field condition in the positive y

direction persists

φ→ 0 as y→ ∞. (7.4.8)

We rescale the coordinates according to

ρ =
√

ζx, Y = ζy. (7.4.9)

Equations (7.4.3)-(7.4.7) then take the form

∂2φ

∂ρ2 +
1
ζ

∂2φ

∂Y2 = 0, (7.4.10)

[φ]1
+

1− = Φ, (7.4.11)

∂φ

∂Y

∣∣∣∣
Y=1−

= − ∂φ

∂Y

∣∣∣∣
Y=1+

,
∂φ

∂Y

∣∣∣∣
Y=0

= 0, (7.4.12)

C
∂Φ

∂t
= I(Φ)− σ

1
ζ

∂φ

∂Y

∣∣∣∣
1

. (7.4.13)

We look for an asymptotic solution of the form

φ =φ0 + ζφ1 + . . . (7.4.14)

Φ =Φ0 + ζΦ1 + . . . (7.4.15)

and by substitution of this into (7.4.10)-(7.4.13) gives at O(1/ζ)

∂2φ0

∂Y2 = 0, (7.4.16)

[φ0]
1+

1− = Φ0, (7.4.17)

∂φ0

∂Y

∣∣∣∣
Y=1−

= −∂φ0

∂Y

∣∣∣∣
Y=1+

,
∂φ0

∂Y

∣∣∣∣
Y=0

= 0. (7.4.18)

The solution to this system is

φ0 =

{
0 if Y ∈ Ωc

Φ0 if Y ∈ Ω,
(7.4.19)

note that the solution on the inside, Ω, is constant in the Y direction but it is not

necessarily constant in the ρ direction. Moving on to O(1) gives

∂2φ0

∂ρ2 +
∂2φ1

∂Y2 = 0, (7.4.20)

[φ1]
1+

1− = Φ1, (7.4.21)

∂φ1

∂Y

∣∣∣∣
Y=1−

= −∂φ1

∂Y

∣∣∣∣
Y=1+

,
∂φ1

∂Y

∣∣∣∣
Y=0

= 0. (7.4.22)
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We are now just considering the inside region and by looking at the solution for

φ0 in Ω we can rewrite (7.4.20) as

∂2φ1

∂Y2 = −Φ0,ρρ. (7.4.23)

Together with the boundary conditions we can integrate to get

∂φ1

∂Y
= −Φ0,ρρY. (7.4.24)

Putting (7.4.14), (7.4.15) and (7.4.24) into (7.4.13) and taking leading order terms

gives the new membrane dynamics

C
∂Φ0

∂t
= I(Φ0) + σΦ0,ρρ (7.4.25)

By rescaling back to the (x, y) coordinates we get

C
∂Φ0

∂t
= I(Φ0) + σζΦ0,xx . (7.4.26)

It is easy to identify the cable equation above as we have seen it many times

before.

7.5 Numerical Solution of the Two Dimensional Prob-

lem

We can now numerically solve the problem for the geometry described in pic-

ture 7.3 by numerically evaluating (7.4.2). The numerical scheme we are using

is the Adams-Bashfourth second order predictor-corrector method, see Appendix

C [151, 275]. For big distances, ζ > 1, we have very weak interaction between

the lines by solving Poisson’s equation at each boundary, and this is not enough

to initiate any action potentials at y = ζ. For small distances, ζ < 0.05, the line

at y = ζ will fire an action potential shortly after the initiation at y = −ζ. The

action potentials will then interact and settle so that they travel together down

each line at an equal position and speed, see figure 7.4. At the distance ζ = 0.1

we will have complex spiking behaviour between the two lines. The action po-

tential on the lower line is not enough to directly initiate action potentials at

the upper line, but after some propagation time, action potentials start forming

on the upper line. For this parameter choice, the action potential on the upper
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Figure 7.4: To the left we have the system for ζ = 0.05, the upper plot being y = ζ and

the lower y = −ζ. Action potentials are initiated in the vicinity of x = 0 where the

stimulation is applied at the line situated at y = −ζ. The arrows indicate the direction

in which each peak is travelling. To the right we have increased the distance of the lines

to ζ = 0.1. We no longer have a simple propagation of action potentials.

membrane is formed around x = ±1, as the area around x = 0 is not in its

refractory state, we get four peaks travelling in different directions at y = ζ.

On the right hand side of figure 7.4 we see a snap-shot of this phenomenon. As

time increases the complex interaction between the lines continues. In all sim-

ulations we have σ = 0.5. This nicely illustrates the breakdown of propagating

action potentials and it is the most obvious example of when the cable equa-

tion is not a good description of the dynamics. The cable equation we have in

(7.4.26) will give simple action potential propagation for all choices of ζ.

Figure 7.5: The speed as a function of membrane separation for the two dimensional

model (solid line) and the cable equation (dashed line).
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So we have now shown a clear case of when the cable equation is not a good

approximation of the two dimensional axon we are considering. To see how

accurate the cable equation is, we will measure the propagation speed of the

action potentials in the two models. In figure 7.5 we see the result of this com-

parison. We see that for ζ < 0.05 we have an acceptable agreement but as we

increase ζ the speeds of the two models are clearly diverging. Just as in the pre-

vious example, we only inject current at one membrane and in this case we fail

to initiate an action potential on the other membrane for ζ > 0.125 so therefore

we finish the comparison at that point.

7.6 Future Extensions

The two dimensional model we have presented nicely demonstrates that this

is a valid approach. As real neurons are not two-dimensional, it would not be

accurate to claim that what we have presented so far is a more realistic model

than the cable equation. It does however highlight some issues that are left un-

touched by the cable equation. The one-dimensional approach assumes perfect

rotational symmetry around the tube that is the axon. This symmetry is not

only for the geometry but the voltage at any one time is also assumed to be

equal all around the cylinder. In our two dimensional model we can address

this by simply injecting current into one of the membranes that is separating the

inner region from the outer. We see that for a small membrane separation the

voltages synchronise quickly and the symmetry assumed by the cable equation

is achieved. For larger separation we start getting more complex propagation

patterns that might not be identical on both membranes. At a large enough

separation we simply fail to induce an action potential on the membrane where

we do not inject current. We can also see that the speed of the action poten-

tial propagation diverges between the cable equation and our two dimensional

model as the separation increases.

The most natural extension is to add a third dimension to our problem. This

will allow us to study how the action potential forms and propagates on a three

dimensional structure. We can still consider the case in which we do not have

a perfect symmetry. The natural geometry to consider is of course a cylinder.

On this kind of structure we can expect to see initiation of action potentials by
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the same mechanism as we saw in the case of two membranes; but we will also

have diffusion on the cylinder so that the failure of initiation seen earlier should

not occur. We can, however, expect more complex propagation patterns such as

spiral waves.
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CHAPTER 8

Discussion

Never let the future disturb you. You will meet it, if you have to, with the

same weapons of reason which today arm you against the present.

- Marcus Aurelius

8.1 Conclusions

In this thesis we have focused on the role and importance of spatially extended

dendrites. As we discussed in chapter 2 this was first highlighted by Wilfred

Rall in 1957 [77]. The geometry of the dendritic structure has also been proved

to have a big influence on the firing properties of neurons [53]. As the dendrites

are the main site for synaptic connections, they also have an important role in

neuronal plasticity. In this context the active currents in the dendrites play a

crucial role as they support BPAPs [65, 118–120]. The spatial distribution of

synaptic connections is also important. It has futher been suggested that distal

gap junctions play a central role in network dynamics [217, 218]. With all these

properties as a starting point, we have created theoretical models that take re-

alistic dendritic structures into account. The work by Koch and Poggio [93, 94]

that linearises voltage dependent currents in dendrites was greatly beneficial

to us while generalising Abbott’s “sum-over-trips” rule [127, 128]. By doing

this we successfully modelled subthreshold oscillations recorded in hippocam-

pal CA1 pyramidal neurons. The recordings were performed by Costa Colbert

from the University of Houston. With the “sum-over-trips” approach we do not

need to numerically solve any partial differential equations to get the dynamics

of a realistically branched dendritic tree.
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In the “sum-over-trips” framework we treated the soma as an iso-potential sur-

face with resonant currents. To get a soma that has non-linear characteristics

and is capable of producing action potentials, we considered piece-wise linear

(PWL) models. Aside from the reasons already mentioned, PWL models are

analytically solvable and we can therefore produce orbits without having to nu-

merically evolve dynamical models. We have presented a number of different

PWL models that are capable of both type I and type II firing behaviour. The

PWL somas were spatially extended by attaching a compartmental dendritic

chain that could be either a passive structure or have resonant currents. In this

model we successfully analysed the effects of spatial forcing and mode locking.

We further looked at the Arnol’d tongue structure of both the passive and reso-

nant system. Comparison with numerically calculated Lyapunov exponents of

the system confirmed the usefulness of our analytical approach.

The ability to analytically construct the orbit of PWL models also meant we

could construct the full PRC. We examined the effects of resonant currents on

the PRC and saw that, given the right PWL set-up, resonances can strongly af-

fect the PRC. We also used the PRC to study a system of PWL neurons that are

weakly coupled by dendro-dendritic gap junctions. We derived the phase inter-

action function for this case and investigated how certain parameters affected

the synchrony of the system. Besides synchrony and anti-synchrony we found

both bi-stable and phase locked regions. One of the properties we wished to

investigate was how the location of gap junctions affect synchronisation prop-

erties. To do this we developed a continuous dendrite model attached to a

PWL soma. This modelled an axo-dendritic gap junction rather than dendro-

dendritic but we were now able to demonstrate how the system switched be-

tween synchrony and anti-synchrony as the position of the gap junction was

varied.

We also investigated the role of spatial extension in learning systems and neural

plasticity. This work gave us reason to discuss the concept of dendritic democ-

racy. We used dendritic democracy throughout the modelling of learning sys-

tems and in some cases we saw that it was critical to achieve the desired task.

We extended the tempotron to include spatial extension and showed that this

was beneficial, for correctly classifying patterns over a larger ranger of synapse

decay constants compared to the classical tempotron. Dendritic democracy

combined with inhibitory input proved to be of great importance in solving the
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task of creating a direction selective neuron using spike-time dependent plas-

ticity (STDP). As a last learning system we presented the spike-diffuse-spike

(SDS) framework and applied a supervised learning algorithm to this system.

The SDS framework introduces non-linearities in the dendritic structure in the

form of discrete integrate-and-fire (IF) units placed on the dendritic cable. The

learning in this system was affecting the firing thresholds of the IF units and

with this method we were able to perform certain pattern classification tasks.

We finally discussed the three-dimensional nature of neurons. As we wanted to

study AP propagation, this was a model of an axon rather than a dendrite. The

axon was, in this case, not considered as a cable but as a membrane dividing

space. We presented the Green’s function for the case where a one-dimensional

membrane divided a two-dimensional space. When we calculated the poten-

tial on the membrane we encountered a singularity that had to be treated.

After solving this problem we modelled a two-dimensional axon by placing

two one-dimensional membranes in the two-dimensional space. We then took

the asymptotes of the model and through that we recovered the standard one-

dimensional cable equation. We made comparisons between the propagation

speed of the AP on the two-dimensional axon and the cable equation. With

this method, we could point out the short-comings of the cable equation for

describing axons of larger diameters.

8.2 Future Work

The main task we see in the future is to develop and combine the models

and frameworks we have presented in this thesis. We would especially like

to keep working on the dendro-dendritic gap junction coupling. As we have

already see in chapter 4 and 5 recent progress in developing minimal models

of excitable tissue capable of generating accurate AP shapes has been made by

Coombes [162]. The progress has been made using PWL planar models. PWL

models with compartmental dendritic structure and their mode locking proper-

ties have also been examined by Svensson and Coombes [8]. Moreover, efficient

analytical and computational tools for treating arbitrarily branched dendritic

structures with passive and quasi-active membrane as well as with nonlinear

“hot-spots” have been partially developed in [7, 130]. By combining these two
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approaches we will achieve a minimal model of an active soma coupled to a

branched dendritic tree that can be used to probe the behaviour of networks

of gap junction coupled neurons - once a model of the gap junction itself is

developed.

From a biological perspective, it is important to emphasise that gaps are dy-

namic and are in fact influenced by the voltage across the membrane, and as

such can be described by ohmic models with time and state dependent con-

ductances, as in [276]. Moreover, the potentiation of gap junction coupling

by cannabinoids has recently been reported [277], and as such a gap junction

model should be sufficiently general as to allow coupling to neuromodulators.

We want to develop a mathematical framework based around the theory of gap

junctions, PWL models and “sum-over-trips”. This could be used to study the

interaction of neural cells through electrical synapses using combined electro-

physiological, anatomical and molecular approaches [278]. The main aims of

this kind of study would be i) to introduce a theoretical framework for study-

ing network dynamics of electrically coupled spatially extended neurons, ii) to

develop a computationally efficient numerical scheme for evolving the dynam-

ics of neural cell responses for both isolated neurons and neural networks, iii)

to explore the role of location and strength of the gap junctions on different pat-

terns of network activity, and iv) develop a community resource, in the form of

a web-based software tool, for building dynamical models from existing static

databases of neuronal morphologies.

In the area of learning, we will further pursue the theoretical construction of

STDP rules. With this approach we hope to be able to model anti-STDP. We

would also like to include resonant currents and possibly PWL somas in all the

presented models. This would be an interesting adaptation especially in the

case of the tempotron as we have seen how the Green’s function for resonant

dendrites is frequency dependent.

The two-dimensional axon model we presented in chapter 7 has a very natural

extension, namely creating the three-dimensional model. This extension would

also involve adapting the Green’s approach for a cylindrical geometry. By do-

ing this we can examine complex AP propagation behaviour such as helical

waves.
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Hodgkin-Huxley Dynamics

The description we use here is taken from the book “Theoretical Neuroscience:

Computational and Mathematical Modeling of Neural Systems” by Dayan and

Abbott [82]. All gating variables have the dynamics

τk(V)ẇk = wk,∞(V)− wk, k = 1, . . . , N, (A.0.1)

where

τk(V) =
1

αk(V) + βk(V)
, wk,∞(V) = αk(V)τk(V). (A.0.2)

In all expressions above k indicates the gate.

A.1 Sodium

The current is given by

INa = gNam3h(V − ENa), (A.1.1)

where gNa = 1.2 mS/mm2 and ENa = 50 mV. The rate functions in (A.0.2) are

αm =
0.1(V + 40)

1− e−0.1(V+40)
, βm = 4e−0.0556(V+65) (A.1.2)

αh = 0.07e−0.05(V+65), βh =
1

1 + e−0.1(V+35)
. (A.1.3)

A.2 Potassium

The expression for the sodium current is

IK = gKn4(V − EK), (A.2.1)
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where gK = 0.36 mS/mm2 and ENa = −77 mV. The rate functions in (A.0.2) are

αn =
0.1(V + 55)

1− e−0.1(V+55)
, βn = 0.125e−0.0125(V+65). (A.2.2)

A.3 Leak Current

The leak current is mainly due to the diffusion of Chloride ions and is not de-

pendent on any gating variables [28]. The dynamics of the current are

IL = gL(V − EL), (A.3.1)

where gL = 0.003 mS/mm2 and ENa = −54.387 mV.
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Java Code to Read SWC-files

This Java code takes a .swc file that contains a dendritic morphology. The code

is reading the file, rearranging the coordinates of the nodes and saving them as

binary arrays that can be imported into Matlab or C++.

import java.io.*;

import java.util.*;

public class Read_swc{

public Read_swc() throws IOException{

try{

in = new BufferedInputStream(

new FileInputStream(filename));

}

catch(FileNotFoundException e){

System.out.println("The error " + e +" occured");

}

char first = Mio.getChar(in);

do{

Mio.getLine(in);

first = Mio.getChar(in);

}

while(first == ’#’);

Mio.getWord(in);
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double xtemp = Mio.getDouble(in);

double ytemp = Mio.getDouble(in);

double ztemp = Mio.getDouble(in);

Xu[0] = xtemp;

Yu[0] = ytemp;

Zu[0] = ztemp;

System.out.println(Xu[0]);

double dia = Mio.getDouble(in);

diameter[0] = dia;

int ptemp = Mio.getInt(in);

par[0] = ptemp;

int k = 1;

while(k < nodes){

Mio.getWord(in);

Mio.getWord(in);

xtemp = Mio.getDouble(in);

ytemp = Mio.getDouble(in);

ztemp = Mio.getDouble(in);

Xu[k] = xtemp;

Yu[k] = ytemp;

Zu[k] = ztemp;

dia = Mio.getDouble(in);

diameter[k] = dia;

ptemp = Mio.getInt(in);

par[k] = ptemp;

++k;

} // end while

Mio.close(in);

try

{

write(Xu,"X.bin");

write(Yu,"Y.bin");

write(Zu,"Z.bin");
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write(par,"parents.bin");

write(diameter,"diameter.bin");

}

catch(Exception e)

{

throw new IOException(e.getMessage());

}

} // end default constructor

public static void write(

double[] array, String filename) throws IOException {

// the size of the array

int[] size = {array.length};

int temp;

long value;

// create a stream to the file, overwriting any existing file

// and creating the necessary directories

BufferedOutputStream file = getStream(filename);

// write the number of array dimensions to the file

temp = size.length;

for(int i = 0; i < 4; i++) {

file.write((byte)(temp & 0xff));

temp >>= 8;

} // end for

// write the array dimensions to the file

for(int i = 0; i < size.length; i++) {
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temp = size[i];

for(int j = 0; j < 4; j++) {

file.write((byte)(temp & 0xff));

temp >>= 8;

} // end for

} // end for

// write the array to the file

for(int i = 0; i < array.length; i++) {

// get the 64-bit long representation of the double

value = Double.doubleToLongBits(array[i]);

// write the 64-bit long to the stream

for(int n = 0; n < 8; n++) {

file.write((byte)(value & 0xff));

value >>= 8;

} // end for

} // end for

file.close();

} // end write method

public static void write(

int[] array, String filename) throws IOException {

// the size of the array

int[] size = {array.length};

int temp;

long value;

// create a stream to the file, overwriting any existing file
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// and creating the necessary directories

BufferedOutputStream file = getStream(filename);

// write the number of array dimensions to the file

temp = size.length;

for(int i = 0; i < 4; i++) {

file.write((byte)(temp & 0xff));

temp >>= 8;

}

// write the array dimensions to the file

for(int i = 0; i < size.length; i++) {

temp = size[i];

for(int j = 0; j < 4; j++) {

file.write((byte)(temp & 0xff));

temp >>= 8;

} // end for

} // end for

// write the array to the file

for(int i = 0; i < array.length; i++) {

// get the 64-bit long representation of the double

value = Double.doubleToLongBits(array[i]);

// write the 64-bit long to the stream

for(int n = 0; n < 8; n++) {

file.write((byte)(value & 0xff));

value >>= 8;

} // end for
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} // end for

file.close();

} // end write method

public static BufferedOutputStream getStream(

String filename) throws IOException {

File file = new File(filename);

// create the necessary directories

if (file.getParentFile() != null)

file.getParentFile().mkdirs();

// return a stream to the file

return (new BufferedOutputStream(new FileOutputStream(filename)));

} // end getStrem()

public static void main(String args[]) {

try{

new Read_swc();

}

catch(Exception e){

System.out.println("The error " + e +" occured");

}

} // end main()

//The file we are reading is entered here!

private static String filename = "cb27a.swc";

//The of number of nodes in the file.

private static int nodes = 1845; // Enter number of nodes here!

private BufferedInputStream in;

private static int[] par = new int[nodes];

private static double[] Xu = new double[nodes];

private static double[] Yu = new double[nodes];

private static double[] Zu = new double[nodes];
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private static double[] diameter = new double[nodes];

} // end class Read_swc
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Matlab-code to Solve Orbits for

PWL-systems

This Matlab-code solves the flight times for a McKean-soma with a chain of res-

onant dendritic compartments. The first file, GAMMA_EIG.M, set up the system

and call the matlab-function fsolve(). We also give guesses for times of flight

and the values of the orbit at the starting point, see chapter 4 and especially

figure 4.1. We are further investigating the bifurcation behaviour and creat-

ing Arnol’d tongues. For that reason, we loop over amplitude for a sinusoidal

drive.

In the second file, FLIGHTTIMES_SIN.M, we take the guessed values and eval-

uate our system. The parameters are then adjusted to find the correct setting

for periodicity, mode locking and bifurcations. This optimisation is done by the

Matlab built in function fsolve(). In this case we are looking for 1:1 locked so-

lution with a saddle-node bifurcation. The conditions for a grazing bifurcation

are commented.

GAMMA_EIG.M

function [E,T] = gamma_eig

global gs gl cm gamma a DC I2 AMP mu rk Lk

% Number of dendritic compartments

DC=2;
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% Properties of the dendritic compartments

gl=0.1*ones(DC,1); % leak conductance

gs=0.1*ones(DC,1); % conductance of compartment coupling

cm=ones(DC,1); % membrane capacitence

rk=1000*ones(DC,1);% resistance in the resonant pathway

Lk=1*ones(DC,1); % inductance

% PWL-soma parameters

mu=0.825;

gamma=0.5;

a=0.25;

om_guess=1.6; % Frequency guess

% Initial geuss to fsolve(),

% [dendritic voltage, resonant currents,

% w*, frequency, phase, time of grazing, T1, T2, T3, T4]

guess= [0.01*ones(1,2*DC) 0.3 om_guess(k) pi/2 1

0.30 0.9 0.26 1.97];

options=[’MaxFunEvals’, 5000];

ind=1;

% looping over amplitudes

for AMP=0.0:0.005:0.2

[T(ind,:), z, flags]=fsolve(@flighttimes_sin,guess);

guess = T(ind,:); % set the guess for the next

% amplitude to the solution of

% the current.

end

save Ftimes T
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FLIGHTTIMES_SIN.M

function T = flighttimes_sin(t)

global gs gl mu cm gamma a DC AMP om

% Drive to the model neuron

I1=0*ones(DC,1); % drive in the dendritic compatments

I2=0.5; % somatic drive

om=t(2*DC+2); % frequency

phi=t(2*DC+3); % phase

% Drive to the McKean-model

b4=[(I1./cm); zeros(DC,1); I2/mu; 0];

b13=[(I1./cm); zeros(DC,1); (I2-a)/mu; 0];

b2=[(I1./cm); zeros(DC,1); (I2+1)/mu; 0];

% Time of grazing in region 2

tg=t(2*DC+4);

% Time dependent drive (dendrites+soma)

bsin=[(I1./cm); zeros(DC,1); 0; 0];

for ii=1:DC

bsin(ii)=real(AMP/mu*exp(j*2*pi/DC*ii));

end

TT=sum(t(end-3:end)); % Period

% Calculating the values at each threshold crossing

% given the current times of flight

V1=G13(t(end-3))*[t(1:2*DC)’; a/2; t(2*DC+1)]+K13(t(end-3))*b13

+K13_sin(t(end-3),om,phi,0)*bsin;

V2=G24(t(end-2))*V1+K24(t(end-2))*b2

+K24_sin(t(end-2),om,phi,t(end-3))*bsin;

V3=G13(t(end-1))*V2+K13(t(end-1))*b13
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+K13_sin(t(end-1),om,phi,(t(end-3)+t(end-2)))*bsin;

V4=G24(t(end))*V3+K24(t(end))*b4

+K24_sin(t(end),om,phi,(t(end-3)+t(end-2)+t(end-1)))*bsin;

% Calculating the time of grazing

Vg=G24(tg)*V3+K24(tg)*b4

+K24_sin(tg,om,phi,(t(end-3)+t(end-2)+t(end-1)))*bsin;

Vgp=G24p(tg)*V3+K24p(tg)*b4

+K24_sin_p(tg,om,phi,(t(end-3)+t(end-2)+t(end-1)))*bsin;

% Jacobian

Gamma=G24(t(end))*G13(t(end-1))*G24(t(end-2))*G13(t(end-3));

T=[(V4(1:2*DC)’-t(1:2*DC))’;%periodicity in dendrites

V4(end)-t(2*DC+1); %periodicity in w

V1(end-1)-(1+a)/2; %first threshold crossing should be at (1+a)/2

V2(end-1)-(1+a)/2; %second threshold crossing should be at (1+a)/2

V3(end-1)-a/2; %third threshold crossing should be at a/2

V4(end-1)-a/2; %fourth threshold crossing should be at a/2

TT-1*(2*pi)/om; %mode-locking constraint

%Vg(end-1)-a/2; %looking for grazing bifurcation

%Vgp(end-1)] %-------------""----------------

det(Gamma-eye(size(Gamma)))]%looking for saddle-node bifurcation
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Second order Adams-Bashfourth

Predictor Method

Assume we have a differential equation of the form

y(t)′ = f (y(t)), y(t) ∈ R
N, (D.0.1)

where the function f (y(t)) is non-linear. We wish to numerically evaluate this

equation by a second order method where yk = y(tk). We discretise time with

timestep h so that if t0 = 0 then tk = k · h. We know, or at least suspect the sys-

tem to be stiff, i.e. the magnitude of the eigenvalues connected to the problem

above have a very big variation. Therefore we wish to use an implicit numer-

ical scheme, but the non-linearities in the problem restrict us to a predictor-

corrector method. This class of methods utilises an explicit scheme of sth order

that produces a predicted value ŷ. The predicted value is then fed into an im-

plicit method. The implicit method is usually also of sth order but this is not

necessary. Having a higher order implicit method would be inefficient as the

order is then limited by the explicit method. The implicit method is then iter-

ated until a stopping criteria is reached [151].

The method we will describe here is a second order predictor-corrector. We

assume that we have two initial values for the system, let us denote these as y0

and y1. If for example only an initial value is given, y0, the second value can

be acquired by using a first order scheme. The predictor method we use is a

second order explicit method

ŷ = yk +
h

2
(3 f (yk)− f (yk−1)). (D.0.2)
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The corrector step is given by

yk+1 = yk +
h

2
( f (ŷ) + f (yk)), (D.0.3)

after the corrector step we look at the correction C = ‖yk+1 − ŷ‖. If C > ǫ,

where ǫ is a chosen error tolerance, we set ŷ = yk+1 and repeat the correction

until the correction is smaller than the error tolerance.
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