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Abstract

The topic of this thesis is mesoscale mechanics analysis of textile composites. The need

for such analysis originates from the need to accurately predict structural performance

of textile composite structures, which is known to vary as a function of textile geometry

parameters.

Because of textile composites’ suitability for use in large deformation forming methods,

modelling of yarn geometries and their deformation mechanisms have seen much devel-

opments in recent years, in particular, the development of dedicated CAD modelling

tools like TexGen.

The work in this thesis was started to devise automatic mechanics modelling of textile

composite geometries, which was achieved by avoiding the generation of a mesh that

follows yarn boundaries and instead assigns properties to integration points using textile

querying implemented in TexGen.

The conceptual advantage is that in such a method any additional effects (like prestress,

initial damage or voids) can be added without adding geometric complexity. The effect

of spatial averaging on the convergence of relevant outputs is analysed and a case study

on a simple plain weave textile is presented.

Good correlation of experimental and modelled strength was found and parametric

studies on the textile geometry show that the range of strengths found in tests could be

explained by the effects of geometric variables.

More importantly, a practical automatic link between TexGen and FE analysis is im-

plemented and demonstrated to work.
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Nomenclature

b Body force

C Material stiffness matrix

u Displacement vector

Vf,dr Relative dropoff of the in-yarn volume fraction towards the side of the yarn

dδv Derivative of Lagrange shape function

ε Error measure

ff Limiting height of yarn near model bounds (flattening of yarn)

F Force vector

νij Composite ij Poisson’s ratio

δv Shape function

γ Shear deformation

τ Shear stress

γx Relative phase shift in x−direction between 2 layers of textile

γy Relative phase shift in y−direction between 2 layers of textile

K Stiffness matrix

ε Strain

σ Stress

t Traction

Vf Fibre volume fraction, percentage of composite volume taken up by fibres
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Contents

Vm Matrix volume fraction, percentage of composite volume taken up by matrix

material

Vy Yarn volume fraction, i.e. the fraction of a textile RVE that is taken up by the

yarn domain

Vy,f Intra-yarn fibre volume fraction, percentage of impregnated yarn volume taken

up by fibres

Em Young’s modulus of the matrix material

Eii Composite Young’s modulus in the ii−direction

Gij Composite shear modulus in the ij−plane

S11,Cd Delamination strength of fibre reinforced UD composite

S11,Cf Strength of fibre reinforced UD composite, based on fiber microbuckling

S11,Cr Strength of fibre reinforced UD composite, in compression loading, based on rule

of mixtures

S11,T Strength of fibre reinforced UD composite, in tension loading

S22,C Transverse strength of fibre reinforced UD composite in compression

S22,T Transverse strength of fibre reinforced UD composite in tension

Sf,T Strength of fibre in tension loading

AMR Adaptive mesh refinement

TexGen Geometric textile modelling software, based on the work of Francois Robitaille,

version 2 and 3 are written by Martin Sherburn at the University of Nottingham.

Version 3 is licensed under the GPL

API Application Programming Interface

BEM Boundary Element Method

DOF Degree Of Freedom, in displacement based

FEM Finite Element Method

fibre area Sum of the cross section area of the filaments in a yarn

FMM Fast Multipole Method, a clustering method used to improve scaling of BEM

simulations.
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Contents

height Height of the unit cell

hgap Horizontal gap between yarns within a layer of textile

NCF Non-crimp fabric

Petsc Portable, Extensible Toolkit for Scientific Computation

RVE Representative Volume Element

vgap Vertical gap between yarns within a layer of textile
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Chapter 1

Introduction

This thesis is concerned with the analysis of mechanical properties of textile composites.

Textile composites have been used as structural materials for several decades, and have

seen a rapid increase in use in the last 10 years.

Composites in general come in various classes, differing by the type of reinforcement and

binding material (matrix). Reinforcement types are continuous fibres, chopped fibres or

other particles of various materials (common fibre materials are carbon, glass or aramid),

matrix types can be plastics, metals or ceramics. Textile composites are a subclass of

continuous fibre composites, where fibres come in bundles and are woven, braided or

stitched together.

Traditionally, composites were based on unidirectional material. Mechanically (at least

for fibre direction loading) this is the best way to use such materials as it fully exploits

the anisotropic properties. However, the preimpregnated material (pre-preg) is very

fragile, and therefore hard to process correctly. Parts made out of unidirectional com-

posite generally involve a lot of manual labour which can make them costly and slow to

manufacture.

Textile composites represent a large improvement in manufacturability and multi-directional

strength which is obtained at a (small) reduction in single-direction stiffness and strength

properties. In addition, textile composites generally fail in a more gradual manner (and

absorb more energy during failure) than laminated UD composites. Because of this,

textile composites are often used in the following applications:

• Crash structures

• Top layer as impact protection for an underlying UD structure

• Doubly curved parts
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Chapter 1. Introduction

• Resin infused parts

Examples of such components were traditionally found in aerospace and defence indus-

tries, but are currently also common in automotive, sports equipment and wind energy.

Since textiles, unlike unidirectional plies of fibres, do not disintegrate when stretched,

draped or infused with resin, they are used in manufacturing processes that involve high

deformation (diaphragm forming, rubber stamping) or in resin infusion moulding.

Failure behaviour in composites is expressed in terms of failure modes or failure mech-

anisms. These terms indicate what happens inside the material when the macroscopic

material gets overloaded and begins to break. Because textile composites have intricate

internal geometry, many things can happen internally once a composite is damaged. For

instance: damage can progress along a yarn; a crack can go through the resin material

and might be stopped by a yarn; fibres can pull out or break; and yarns can split along

their length. Generally, a combination of these phenomena occurs.

Engineering structures are generally designed to withstand (or transfer) loading and are

optimised to do so with a minimal amount of material. Such optimisation puts much

emphasis on accurate knowledge of material properties as well as measures of property

variation based on the natural variation of manufacturing and environment related pa-

rameters. In current design practice this is true to such an extent that variability can

be considered as a material property in its own right since it influences safety factors

and therefore design weight and cost.

Because of this, the first reason for modelling composite mechanics at the meso-scale (i.e.

the scale of fibre bundles of yarns) is to find out how strongly the material properties

are influenced by internal variables (yarn shape, inter-yarn spacing, filament content,

filament spread etc.).

Another reason for modelling these materials in detail is that material properties are

input to FEA tools which require full sets of strength and stiffness data. Such datasets

can not be practically obtained using mechanical testing due to the following reasons:

• For some terms no practical testing methods are available, for example: through

thickness tensile strength

• When testing a piece of material longitudinally until it fails, the same piece of

material can not also be tested transversely

• Some tests are dominated by clamp/edge conditions

• Tests cannot be linked to geometric measurements of the same piece of material

because it cannot be both a microscopy and a tensile specimen

6



Chapter 1. Introduction

In summary, modelling is used to understand composite properties and their variation

as a function of manufacturing and constituent parameters. This knowledge can then

be used to optimise the manufacturing process or increase confidence in designs made

with the material.

The analysis of textile composites is commonly put as a multiscale problem, which

(since the advent of nano fillers) consists of four different length scales. These length

scales are referred to as macro (component), meso (textile), micro (fibre) and nano

(filler), where the current thesis is concerned with effects on the meso scale. However,

particular attention in the methodology is paid to the cases where there is no scale

separation1, since such cases represent particular challenges in the design of textile

composite structures (bolt and rivet connections, bondlines etc).

The thesis explores a particular combination of analysis methods that allows fully auto-

mated analysis of textile composites which is robust to varying levels of complexity in

the textile. The composite modeller uses the TexGen geometric modelling package, ba-

sic micromechanics analysis to analyse yarn properties and an empirical damage model.

The key component is the use of Adaptive Mesh Refinement to arrive at computation-

ally efficient meshes for the composite structure. This circumvents the use of conformal

mesh generators which reduce robustness of the modelling strategy.

The thesis is built up as follows:

• Literature on textile composite analysis is reviewed in Chapter 2

• The building blocks of the presented analysis method are described in Chapter 3.

• Numerical and analytical behaviour of the method are presented in Chapter 4.

This chapter focuses on convergence behaviour of the devised methods for rep-

resentative problems. It also analyses an example textile using both conformal

(tetrahedral) and AMR meshes.

• Micrographs of textile composite material are used as a basis for a parametric

textile model which is then analysed and compared to mechanical testing of speci-

mens in Chapter 5. Several single variable parametric studies are included, as well

as some relevant combinations.

• In Chapter 6 the pitfalls and limitations of the presented methods are discussed.

Conclusions are drawn regarding the use of it, and recommendations regarding

future use and development of the methods are given.

1Geometric or strain field features are not small compared to the length of the repeating textile

structure.
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Chapter 2

Literature review

In this chapter current and historical literature on the analysis of textile composites is

discussed with the aims of obtaining a broad view of the field as well as outlining the

gaps in literature that serve as the research area of this thesis.

This thesis was initiated with the particular goal of eliminating the problem of mesh

generation for mesoscale analysis of composites. Therefore the focus of this literature

review is on various representations of the mesoscale geometry and mechanics problems

of textile composites.

Other aspects, which are either used for demonstrating and validating the method (dam-

age modelling, experimental methods) or describe the context in which this work fits

(multi- and macroscale modelling of composite structures) are referenced but not dis-

cussed in detail.

It is noted here that the work in this thesis builds on the work done by Jon Crookston

which also relates to the interaction of geometric modelling of textile reinforcement and

solution of the mechanics problem. His thesis [1] and a subsequent review paper [2] con-

tain a more extensive literature review on the state of the art with regards to macroscale

damage modelling and geometric modelling in the context of forming processes.

The current work can be seen as a generalisation of the Grid Average method proposed

in the same work.

This chapter will proceed with a brief outline of the history of analysis methods, linking

the development of modelling methods with advances in materials and manufacturing.

8



Chapter 2. Literature review

2.1 Background

Analysis techniques for composites have been a topic of research since the initiation of

the theory of elasticity (which is covered by Timoshenko in [3]).

The earliest application of this theory for microscale composites was to analyse inclu-

sions of one material in another and report stress concentration factors for such basic

multiphase materials. At the macro-scale the anisotropic form of Hooke’s Law allowed

the analysis of anisotropic materials. These two capabilities of elasticity theory are

the basis on which multiscale modelling of composites is founded. These methods were

applicable to some extent to particle reinforced composites and single layers of fibre

reinforced composites.

The advent of continuous fibre reinforced composites and their performance in weight

critical structures caused a great surge in the development of modelling techniques for

these materials. Micromechanics models were expanded from elastostatics on materials

with cylindrical inclusions to include microbuckling and debonding of the fibre-matrix

interface (a host of such methods were packaged in the ICAN program developed by

NASA [4]).

Because these materials came in the form of preimpregnated layers of fibres that were

stacked to form a composite product much accuracy was gained in describing the effects

relating to interacting layers of fibres. Describing stiffness of multilayer laminates was

done using the averaging technique that is now referred to as Classical Laminate Theory

(CLT). This method is described extensively in [5] and still is the basis of many composite

design methodologies as well as the formulation of some layered elements in commercially

available finite element software packages [6–8].

However, the use of UD pre-preg based composites is still restricted to high-end applica-

tions (e.g. aerospace, defence, Formula 1), mainly because of the labour cost associated

to these materials. For applications where higher volume and lower cost are important

(automotive, naval, wind energy) other options are used which have greater ease of han-

dling (draping) and allow the use of resin infusion processes. Among these materials

are textile composites, stitched unidirectional (or non-crimp) fabrics but also chopped

or random fibre composites.

The focus in the present work is on woven or braided textile composites, non-crimp

fabrics are not explicitly covered here but could be analysed in the same manner, while

chopped or random fibre composites are not addressed.

The advantages of textile composites are not just apparent in handling of the material

but also in increased delamination and crack propagation resistance, something that
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Chapter 2. Literature review

is loosely attributed to “crack stopping mechanisms” that are added to the material

through giving it a non-trivial meso-structure.

It is this meso-structure that is the focus of the current work. The modelling difficulty

that comes with such a meso-structure is due to the following attributes:

• Yarn geometries are geometrically intricate

• Yarns have internal fibre distributions which are not necessarily trivial

• Length scales are not necessarily separable1

The level of accuracy needed in the analysis of each of the length scales in order to

obtain an accurate structural solution is an open question, the answer to which will

be different for different materials and different analyses (for example, in permeability

analysis the yarn’s internal geometry can be neglected whereas it is of key importance

in elastostatics). A schematic figure showing different levels of intricacy in modelling a

plain woven textile is given in Figure 2.1, reprinted from [9].

Figure 2.1: Stiffness analysis of orthogonal WF laminates (a) Repeating element of a

plain WF lamina. (b) Analytical approximation using CLT. (c) Microme-

chanics approach (d) finite element analysis. Figure taken from Hofstee

and Van Keulen [9]

2.2 Textile geometry modelling

Geometric descriptions of textiles were initially based on analytical functions or com-

binations of arcs and straight lines [10]. This line of work has been more extensively
1One of the basic assumptions of “classical” multiscale analysis is that the representative volume

element (RVE ) of the lower scale is sufficiently small that the gradient of the higher scale solution (in

the case of elastostatics the gradient of the displacement field) can be assumed constant
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Chapter 2. Literature review

referenced in Sherburn’s work [11] on textile geometry modelling. In the 40’s to 60’s the

formulations have become more sophisticated, both in the modelling of the yarn path,

taking into account bending of yarns, and in modelling of the the cross section, moving

from circular to elliptical and lenticular cross sections.

Some of the more advanced analytical models known to date are the models presented

by Hofstee and Van Keulen [12–14]. These models have variable cross section and

allow deformation mechanisms of yarn paths like twisting and compaction as shown in

Figure 2.2. These geometric descriptions were used in the analysis of thermoplastic

based composites, the models were geometrically advanced but used to obtain input for

analytical models rather than for 3D mesh generation.

(a) Fibre bundle configurations; (a) undulated (out-of-plane), (b) twisted, (c) with curved horizontal

midplane, (d) compacted, (e) pinched, (f) undulated (in-plane).

Figure 2.2: Fibre bundle deformation modes as modelled in the work of Hofstee and

Van Keulen (Figure reproduced from [14]).

There are some commercial programs that allow geometric textile modelling, notably

TechText CAD [15, 16] and Scotweave [17]. These packages contain comprehensive

libraries of textiles, but they are not aimed at 3D mesh generation or any other than

geometric analysis (digital prototyping) of a textile.

Mesoscale analysis requires the generation of a 3D mesh from a textile geometric model.

Whitcomb and coworkers were among the initiators of geometry descriptions designed

for use with numerical analysis (see [18–20]). Whitcomb used basic domains which had

known and scalable mesh patterns; a sequence of such patterns could be used to obtain

11



Chapter 2. Literature review

meshes for various (2D) weave patterns, resulting in FE models that are topologically

similar to the models presented in Figure 2.1(d).

Recent textile geometry formulations have moved away from a mesh basis towards a

CAD based formulation. Improvements include:

1. Interference correction of yarns to allow generation of more tightly packed and

more realistic yarn patterns.

2. Formulation of yarn cross sections that allow consistent yarns (constant fibre area),

regardless of yarn shape and surface.

3. Flexible implementation of textiles, allowing fully variable stitching patterns and

yarn cross sections.

Several textile modelling suites have been developed by different research groups, the

two most prominent and general purpose implementations known to the author at the

time of writing are WiseTex (Lomov et al, KU Leuven, see [21]) and TexGen (Long et

al, University of Nottingham, see [22]).

2.2.1 Validation and geometry measurements

There are a number of methods for obtaining 2D and 3D images of (slices of) a textile

composite. The methods that are being reviewed here are optical microscopy and micro

CT scanning.

Microscopy

Microscopy is commonly used to obtain cross section images of a cured composite ma-

terial. It has the advantage (over examining the dry textile) that any geometry changes

caused by the forming of the fabric or resin addition are present and the actual inter-

nal geometry of the material is obtained. Microscopy is used by Potluri and coworkers

[23] for plain woven composites (see Figure 2.3), with focus on the impact of forming

on the geometry (shear, compression and tension on dry textile). This work falls in a

programme of work covering shear deformation of textiles as well (see [24–27]). In [28]

microscopy is used to measure the internal geometry of non-crimp fabrics .

µCT scanning

µCT scanning is a 3D method that has gained interest recently and can be used to

obtain geometric data for dry fabrics with medium to high accuracy, a comparison of

12



Chapter 2. Literature review

Figure 2.3: Cross section micrographs from Potluri et al [23], showing a plain weave

structure in Figure a, a five-harness satin weave in Figure b and a 3D

weave in c.

this method to microscopy (analysing 3D warp-interlaced fabrics) is given by Desplentere

et al [29]. The method has also been used in conjunction with the TexGen modeller by

Sherburn [11], an example of the images obtained is given in Figure 2.4.

2.3 Mesoscale mechanics of textile composites

2.3.1 Mesh generation

Textile composites mesomechanics modelling is a field in which the geometrical modelling

and mechanics solution are very much connected. The reason for this is the fact that

yarns alternate between being in- and out of contact with each other, which results in a

geometric problem that is dominated by geometric regions with high aspect ratios.

It is likely that the shape of these local features plays a role in the stress intensity

factors they give rise to, which in turn dominates the stress level at which the onset of

damage occurs. At the same time, the presence of such highly localised and geometrically

intricate features poses a problem in numerical modelling, in particular in the generation

of meshes that allow capture of the local physics.

Broadly, this problem is addressed in the following “schools of thought”:

• The inter-yarn domains are neglected and the yarn domains are assumed to be

fully connected. An example of a mesh resulting from this method is shown in

Figure 2.1. This method is popular since it allows representation of relatively

complex textiles with relatively few elements. It is also fully robust, in fact, textile

13



Chapter 2. Literature review

(a) Chomarat 150TB µCT reconstruction

(b) Chomarat 800S4-F1 µCT reconstruction

Figure 2.4: µCT images reproduced from Sherburn’s thesis [11].

models can be made by coupling standardized meshes, without having to consider

geometry modelling.

The method was proposed by Whitcomb and coworkers who have used it to im-

plement a global-local substructuring method in [19, 20] which has been expanded

to a full multiscale mechanics model (see [18], the models on the different scales

are shown in Figure 2.5). The method was used in combination with a stiffness

degradation method based on the model proposed by Blackketter [30].

Potluri et al used the method in a series of studies with particular focus on textiles

which have undergone deformation in forming or handling, in [31] on woven textile

composites and [26] on braided preform based composite tubes.

Other uses with focus on forming are documented by Hofstee et al in [12] which

focuses on the geometry of sheared thermoplastic plain woven composites as a

preparation for analytical models as described in [9].

• Modification of the inter-yarn domains such that they can be dealt with by mesh-
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Figure 2.5: The 3D modelling strategy as used by Tang and Whitcomb et al. for

the analysis of braided composites (Figure reproduced from [18]).

generators; this can be seen in the work of Quek and Waas et al [32–36] where it

is applied to 2D braided composites.

This method is also used in the work of Zako et al [37] on damage analysis of

woven textile composites, which provides a qualitative comparison of the damage

predicted using the FE model and the damage seen in the tensile experiment (see

Figure 2.6). This is an example of a case where the problem does not really exist

because of the low Vf in the textile at hand.

A more general formulation for this strategy is found in the work by Lomov, Ver-

poest and coworkers, where it fits in a fully general and comprehensive modelling

framework for textile composites. It is this generality that dictates the use of a

dedicated CAD modeller (WiseTex), which is demonstrated to work well for woven

fabrics [38], multiply stitched fabrics [39] and braided fabrics [40]. The methods

have been extensively validated, most recently using optical strain measurements

[41]. Strategic papers are written laying out the geometric modelling method [42]

as well as the embedding of this method into mesoscale mechanics and computa-

tional homogenisation [43]. Of particular interest, in light of the current thesis, is

the work on use of continuum damage mechanics to represent physically realistic

crack propagation in brittle materials. This was initiated based on the finding that
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Figure 2.6: Damage predictions made by Zako et al in [37]. This fabric has

a fibre volume fraction of 22% meaning that a realistic Vf can be

modelled without any special treatment to the yarn shape to ensure

the geometry can be meshed.

CDM damage regions tend to propagate across yarns [44] whereas experimental

evidence shows that damage tends to propagate along yarns in the form of a split

or mesoscale crack (a finding reported by Lomov and Ivanov in [45]). In [46] this

problem is isolated and although an improvement was made to the CDM algo-

rithm, no satisfactory qualitative result was reached. It was suggested that CDM

is not adequate for the modelling of mesoscale cracks.

• Avoid conformal mesh generation and use structured meshes where elements have

averaged properties. Mapping of the elastic properties based on geometry is used to

represent the textile architecture. In terms of methodology this method is similar

to methods in medical science where bone marrow is scanned using Micro CT

imaging and the resulting 3D voxels are used to contruct a mesh for computational

analysis [47]. In the work of Crookston [1] this method is used focussing on 2D

weaves, where the interface between traversing yarns was modelled using layered

solid elements. The work of Gowayed and Yi [48] focusses on some of the numerical

issues arising from having mixed material elements containing strongly anisotropic

materials.

The current work is heavily based on the work by Kim and Swan [49, 50] which is

more extensively reviewed in the context of adaptive mesh refinement in section

2.3.2.

• Generation of conformal meshes for the separate domains where the yarn is sub-

sequently tied or embedded into the matrix mesh using constraint equations. The

binary model is one such method [51], where the yarns are implemented as line
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elements. Approaches where the yarns are approached as solid elements have also

been reported (for example by Zako et al [37]). Iarve et al [52] have used this

method and have found good correlation of predicted local strain predictions with

experiments.

In addition, there are a number of more far-reaching idealisations that neglect the effect

of yarn cross section shape altogether and focus on particular aspects of the textile

structure.

• The Mosaic model by Bogdanovich et al [53] which focuses (within a schematic rep-

resentation of the textile) on accurate representation of the yarn interface stresses

using Bernstein polynomial based finite elements.

• The binary model (see the work of Cox et al [51, 54]) wherein the yarns are

represented by line elements rather than separate solids.

• The method of inclusions was used by Huysmans [55] in conjunction with WiseTex

software.

These methods were devised especially to deal efficiently with the geometric problem

posed by 3D weaves, in particular, the weaving architecture and possible variations in

the weaving pattern.

All these models, and in particular the binary model can deal efficiently with textile

domains much larger than the size of a typical repetitive volume element (RVE) or unit

cell, something which is essential in investigating the effects of local fibre architecture

distortions (no periodicity can be assumed). Through being able to model these larger

domains, it overlaps in its capability with macroscale modelling.

However, in generating the schematic representations of the textile weave patterns local

parametric information within a weave pattern is lost. In particular, yarn shape, inter-

yarn domain shape, yarn path shape and in-yarn Vf distribution and their local effects

are neglected.

2.3.2 Adaptive mesh refinement

The subject of adaptive mesh refinement (AMR ) originates from the desire to obtain

the best representation of highest possible solution accuracy for a given CPU effort. The

reasoning behind it can be formulated loosely as “concentrate computational resolution

in areas where it contributes most to the solution accuracy”.
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In Figure 2.7 an example is given of a typical adaptively refined mesh. In this case the

2D Laplace equation is solved on an L-shaped cavity with Dirichlet boundary conditions.

Figure 2.7: Solution of the Laplace equation in an L-shaped cavity using AMR. Figure

obtained from example problems distributed with the LibMesh Finite

Element library [56].

Great increases in accuracy were obtained in fields like fluid mechanics and astrophysics.

To date, there are very few known applications of AMR in the analysis of textile com-

posite materials. The only known study was done by Kim and Swan [49]. This study is

quite elaborate in the analysis of the effects of the use of different refinement criteria,

as well as in ways to deal with (or avoid) the problem of “hanging nodes” (see [50]).

The rate of convergence between different refinement strategies (uniform, material bound-

ary based and error estimation based) were compared and the following conclusions were

drawn:

• Voxel/pixel based meshing has a (slightly) higher associated CPU cost than full

tetrahedral conformal meshing for the textile under consideration.

• The method can be used in a fully automatic manner.

• A constrained-selective mesh refinement scheme converges more rapidly than uni-

form refinement. The constraint refers to the mismatch in refinement level between

two adjacent elements.

• Adaptive mesh refinement schemes based on error estimators were tried and found

to converge only when starting from a sufficient refinement level.
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• There is complexity related to dealing with periodicity of RVEs that have under-

gone refinement.

• The solution can be improved when using the refined mesh as a basis for tetrahedral

mesh generation [50].

The method was presented in the context of analysing a plain woven textile geometry

with an analytical yarn path description and elliptical yarn cross section. In addition,

material properties were geometrically averaged and subsequently attributed to the en-

tire voxel in a symmetric manner.

Although the study was detailed on the numerical aspects it was based on highly ide-

alised textile structures.

2.3.3 Damage modelling in composites

Macroscale damage modelling

Modelling of damage in composites is a topic that has been approached from many angles

in literature. The approaches to damage modelling which are used in the composites

manufacturing industry are those which can be directly related to test data on the

macroscale.

The most commonly used way of predicting failure in laminate composites is the Tsai-

Wu criterion [57], which can relate a stress state to a failure envelope and as such gives

a measure of how far the local material is removed from being damaged. This is the

widest available damage measure available to composites engineers and it is available

in a multitude of commercial finite element analysis packages. For laminates consisting

of unidirectional plies, the body of experimental data available is large and a compre-

hensive comparative study of (macroscale) failure models for multiaxial in-plane loading

has been executed, this study is known as the World Wide Failure Exercise (WWFE).

The work of the WWFE has been carried out in three stages (prediction, experiments

and comparisons) and was reported between 1998 and 2004 resulting in a set of recom-

mendations to designers and researchers in the field [58].

Key models that were found to work well were the Puck [59, 60] and LaRC [61] criteria,

which can be seen as expansions of the Tsai-Wu criterion, particularly the inclusion of

models to account for microscale compressive failure modes like microbuckling.

These criteria apply to UD laminates and stitched fabrics, but are reliant on the accuracy

of the multidirectional strength data available for the laminate at hand.
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Macroscale laminate models are applicable to the current work because the yarn material

in a mesoscale RVE can be seen as a unidirectional composite in its own right.

Mesoscale damage modelling

For common high-performance woven composites damage is accumulated throughout

the composite starting with cracking of the transverse yarns along the fibres, where the

fibres are acting as a stress raiser rather than a reinforcement. Subsequently a host of

mechanisms can manifest themselves, depending on the textile structure and loading,

as well as the characteristics of the matrix material, in particular, whether it acts as a

brittle material or has plastic properties.

In solid mechanics of concrete, and also of brittle metals, failure of a solid is well rep-

resented by analysis of crack propagation, assuming that damage exists on the same

length scale as the modelled problem. In composite materials (as in plastics) this is not

generally the case, and even in the case that there is a mesoscale crack, it is likely to

coexist with a host of other damage, present on a smaller length scale.

Because it is numerically prohibitive to devise a scheme in which the smaller scale

fracture mechanics problem would have to be solved, damage mechanics in composites

generally starts out with the assumptions of continuum damage mechanics (CDM).

This approach records and analyses the effects of damage by using degraded properties

in regions where the material has been found to be damaged.

One of the earliest applications of CDM to composite materials was documented by

Blackketter et al and used to analyse plain woven textiles [30]. In that work an or-

thotropic failure criterion was used in conjunction with brittle knockdown of the stiff-

ness properties to a marginal residual value (large enough to allow the FE analysis to

progress).

Similar methods were used by a number of people for different purposes: Takeda et al

used a maximum strain criterion and degradation for prediction of progressive failure

in woven textile composites at cryogenic temperatures [62]. Whitcomb et al used the

method to investigate the effects of fibre architecture and stacking in woven composites

[19, 63].

Recent use of CDM is reported in [46] where the problem of transverse tow damage

patterns developing non-parallel to the yarns is addressed.
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2.3.4 Geometric nonlinearity

The treatment of geometric nonlinearity in the analysis of textile composites is particu-

larly important when modelling thermoplastics or any situation relating to the forming

processes of composites. This falls outside of the scope of this thesis where the glass-

polyester laminates typically fail at a strain of 2.5% in on-axis experiments and up to

12% in bias direction experiments. Carbon based composites with non-thermoplastic

matrix systems fail at lower strains. The effects of geometric nonlinearity in the range

of strains displayed in on-axis experiments would be small.

For the state of the art on thermoplastic forming modelling dealing specifically with

nonlinear analysis of highly anisotropic materials the reader is referred to the work of

Akkerman and ten Thije [64].

2.4 Multiscale modelling

The field of computational homogenisation is concerned with solving problems which

are non-trivial on multiple scales.

There are a number of studies reporting multi-scale modelling of particulate compos-

ites using AMR on the microscale, the reader is referred to the work of Zohdi et al

[65]. On the multiscale modelling of granular metals the work of Geers et al can be

examined, in particular for dealing with second order homogenisation schemes [66] (i.e.

homogenisation extended to the case where the macromaterial is in bending).

These studies have the common theme that they do not have to deal explicitly with the

presence of a meso-structure. All of these methods are based on automatic modelling of

the microscale, which in Zohdi’s case was achieved by using AMR .

A general approach to the analysis of textile composites in a full multiscale manner has

been taken in the work by Fish et al [67],[68] and [69]. Fish outlines the formulation of

the multiscale model and solves the case where all levels are represented by FE models.

FE models (especially on the meso-scale) are simplified to obtain the robustness needed

in an automated multiscale analysis. The results are presented regarding stiffness and

onset of damage which are validated using component testing.

More recently, Tang and Whitcomb have used a similar multiscale method to investigate

progressive failure of composites based on 2x2 braided mats. As is discussed in section

2.3.1 a fully robust method for analysis of mesoscale models is obtained through assum-

ing lenticular yarn shapes and full connectivity between connecting yarns (see Figure

2.5).
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2.5 Numerical aspects

Because finite element analysis of textile composites is numerically involved and com-

parisons between different models or strategies are attempted that often involve different

implementations altogether, it is appropriate to review briefly the state of FE analysis

software that is available. Although this review can by no means be exhaustive, it is

intended to help in reading the implementation sections of this thesis.

The development of finite element analysis software was initially driven in a manner

analogous to the development of composite materials, originating from the low-volume

high-performance oriented industries. From the sixties onwards (since the invention of

Fortran and microprocessors) the implementation of numerical algorithms was greatly

accelerated. Early finite element programs were developed to facilitate the design of

aircraft and automotive structures (Nastran, see [7]), nuclear facilities (Ansys, see [6])

and civil structures (Abaqus, see [8]). These were the main commercial analysis codes

and have since converged in the sense that all are now general purpose codes with ex-

tensive multiphysics capabilities as well as integrated graphical pre- and postprocessing

and more or less advanced methods for mesh generation.

Since the advent of object oriented programming languages the modular design of soft-

ware has become much easier, reducing the development cost of new software. This has

resulted in a host of new FE packages, often aimed to scale well in distributed memory

environments. Since the “traditional” finite element packages have been developed in

times where the top-spec computers were shared-memory machines it is on this aspect

that new codes can surpass them in performance on new clustered hardware. This

is generally done by building upon openly available general software components for

aspects of FE analysis such as graph partitioning (ParMETIS, see [70]), processor com-

munication (MPICH, see [71]) and sparse systems solvers (Petsc, see [72]). Examples of

extensive and general finite element libraries which are built on top of these components

are DealII [73] and LibMesh [56].

Work closely related to the topic of the current thesis is the work of Adams who used a

scalable multigrid solver to solve microscale voxel models of bone marrow comprised of

≈ 5e8DOF on several thousands of processors.

2.6 Conclusions

The literature on the topic of composite mesoscale mechanics modelling has been re-

viewed. Focus was placed on various approaches concerning the representation of yarn
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geometry inside mechanics models. It was found that there are general and robust

methods of analysis that can represent complex textile reinforcement over large (sub-

component) geometries. Such methods operate on schematised representations of the

textile ignoring the effects of local yarn geometric details.

On the other hand there are detailed modelling approaches, the most modern of which

are based on textile-oriented CAD modelling (WiseTex and TexGen). These models deal

with the textile geometry directly through use of a mesh generator, which sometimes

requires the adjustment of yarn geometry to achieve a mesheable geometry description.

The fact that textile geometries are not by definition mesheable is a problem which can

be dealt with in this manner, but the introduction of yarn-shape modifications for the

benefit of mesh algorithms is undesirable in the case where the effect of the yarn shape

is the subject of investigation.

In addition, there are some fully robust methods available for arriving at numerical

models for textile composites which don’t require modification of the yarn shape, these

models either use spatial averaging of material properties or domain superposition, both

of which work on the premiss that the meshing problems of the full RVE domain and

the yarn domains are easy to deal with compared to the matrix-only domain.

Methods based on material property averaging were reported to converge in terms of

stiffness upon mesh refinement. Such mesh refinement can be done more efficiently using

adaptive mesh refinement.

The combination of AMR and property averaging has not been used in conjunction with

fully general (CAD based) textile geometry formulations, in particular, the variation of

intra yarn fibre volume fraction has not been taken into account.

Of the cited studies on AMR and textile composites, none exploited the fact that AMR

meshes are well suited for partitioning and solution on parallel computers, which is

demonstrated in particular in fluid mechanics applications.

This thesis describes the implementation of a mesoscale finite element approach based on

AMR and TexGen in order to demonstrate that a method is obtained that a) converges

upon mesh refinement b) can deal with arbitrary textile geometry c) can operate auto-

matically, making it suitable for extensive parametric analysis and as a tool in multiscale

analysis d) allows dealing with property-affecting field variables (damage, orientation,

local fibre volume fraction) in a unified manner.

The review also touched upon damage mechanics and a damage model is implemented

in the current method, however, the damage model used in this thesis follows the a

simple simplified orthotropic maximum stress criterion for the yarns and the Bauwens

23



Chapter 2. Literature review

[74] stress criterion is used to detect onset of damage in the neat resin regions.

The choices for damage models are based predominantly on simplicity, suitability for

glassy polymers and the knowledge that only bias direction and axial tensile testing

are among the validation cases in the current study (this avoids the need to use more

complex failure criteria commonly used to predict compressive failure). In addition, the

problems pertaining to the representation of mesoscale cracks using continuum damage

mechanics methods are noted, but since a considerably less brittle matrix material is

used in the current validation cases it is deemed outside of the scope of the current work.

It is also noted that Kim and Swan [50] have suggested a hybrid approach where the

voxel-meshes are used as a basis for meshing with tri-quadratic tetrahedrons and have

shown that this increases the rate of convergence for their problems. This approach

is not used here because the approach is not seen to have any conceptual benefit for

the case where the inter-yarn region is very narrow. I.e. one would either end up with

very large aspect ratio tetrahedrons or a similar number of elements that a free mesh

generator would use to fill the space.

In general, the base method is used in this thesis, noted approaches for improvement

could be:

• H-P refinement, as opposed to H-refinement as implemented currently

• The use of a functionally graded material (polynomial interpolation of the material

properties) to describe the local material for mixed-material elements
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Methodology

In this chapter different aspects of the modelling strategy are explained in detail. It is

appropriate at this stage to look at the proposal that started this PhD project. The

project was aimed at tackling the meshing problem in textile composite analysis (as

outlined in the literature review, section 2.3) by using the Boundary Element Method

(BEM, for an introduction to the topic, see [75]) in order to represent the matrix domain.

BEM would lift the (volume) meshing limitation because the solution of a BEM problem

only requires a boundary discretisation of the domain.

The first year of the PhD work was spent evaluating a hybrid approach in which the

matrix domain was defined using BEM and the yarns using FEM. Although this work

is not formally reported (it was reported in [76]) there were a number of conclusions

drawn that lead to the design of the current modelling strategy:

• BEM, when not using Fast Multipole Method1 (FMM, see for example [77]), has

prohibitively high CPU and memory demands.

• Coupling of BEM to FEM is feasible (see for example [78]), but very hard to

optimize due to the differences in system matrices associated to the two methods

(again, not assuming FMM), BEM results in dense system matrices and FEM in

sparse or banded systems. This would be a drawback since having a standard

matrix structure means that free solver software such as Petsc [72] can be used

without further modification.

• The inclusion of an inhomogeneous continuum, such as a matrix domain containing

local damage, is very complicated in BEM (the introduction of crack surfaces by
1FMM is a hierarchical clustering method analogous to octree in graphics rendering and multigrid

in FEA, taking the influence from “far away” nodes into account in a bundled manner, rather than

directly.
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contrast is fairly straightforward, in effect, the boundaries of the crack don’t differ

conceptually from the domain boundaries).

It was decided that a BEM based solution would require too much mathematical and

algorithm development to form a feasible strategy for solving the problem at hand, and

an alternative route to solve the same problem was devised.

The use of adaptive mesh refinement was chosen as strategy since it was certain that it

would result in a robust analysis method (as was shown by Kim and Swan [50]) which

was a key requirement considering the scope of the parametric problem at hand. In

addition the application of AMR to realistic textile models would be novel, in particular

in attempting to analyse progressive failure. Besides that the following developments in

analysis software and hardware influenced the decision to use AMR:

• The multi-scale problem being solved has an analogous hierarchic structure to an

AMR grid. This suggests that AMR has the potential to bridge the scales without

the use of an explicit coupling/homogenisation step.

• AMR grids are easy to partition (since they are hierarchical), making the resulting

FE system easier to solve on distributed memory systems.

• Several high performance Finite Element software libraries are available which are

specifically written to support AMR (in particular, LibMesh [56] and Deal II [73]).

• Internal state variables such as damage, fibre volume fraction, or yarn orientation

can be dealt with independently from the element formulation (i.e. they can

be attributed to nodes, elements, or gauss points), allowing modularity of the

resulting code.

The analysis data flow in a mesomechanics analysis based on AMR is shown in Figure

3.1, where other essential components are a geometric model, a micromechanics model

and a damage model.

The present chapter is structured as follows:

• Textile geometry modelling based on TexGen is introduced in section 3.1.

• Aspects of Finite Element modelling are described from section 3.2 onwards.

– The element formulation used in FE analysis is given in section 3.2.

– Micromechanics formulae used in micro-meso homogenisation are given in

3.2.2.
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Figure 3.1: Connectivity of the different analysis modules in the program flow of an

FE analysis using AMR and a continuum damage model, in this case pre-

processing refers to the lookup of gauss point data in the textile structure.

– The details of the damage model used to describe material behaviour post

damage initiation is given in section 3.2.3.

– The adaptive mesh refinement (AMR) scheme is described in section 3.2.4.

– Various sets of boundary conditions used in the remainder of the thesis are

presented in 3.2.5.

• Closed form micromechanics equations used to efficiently describe yarn mechanics

are described in section 3.2.2.

• A parametric textile model is defined in section 3.3 which is used in the remainder

of this thesis to provide a compact parametric description of a textile composite

structure.

27



Chapter 3. Methodology

3.1 Geometric modelling of textile composites

3.1.1 TexGen

Geometric modelling of the textile is performed using the TexGen geometric modelling

package. TexGen is a development effort of the composites group at the University of

Nottingham that has been initiated by the textile compaction work of Francois Robitaille

[79] and of which Martin Sherburn has been the main developer. TexGen forms the basis

of applications in predictive modelling of resin infusion [80], heat transfer and textile

mechanics , as well as textile composite mechanics [81]. Recently the package has been

subject to a complete redesign and rewrite to improve it on the following key aspects:

• Modular design:

By pursuing a modular design it allows for easier contribution of programmers

with knowledge of only one specific aspect of textile modelling, as well as allowing

compilation of only parts of the program (e.g. leaving out the renderer on platforms

that don’t have graphics). A schematic overview of the texgen design is given in

Figure 3.2.

Figure 3.2: TexGen modules and their connection with external packages, re-

produced from the online documentation for TexGen v3 [22].

• Platform independence:

All dependencies are well maintained open source packages that are available on

at least a variety of modern linux and windows operating systems, setup is made

easy through the use of the cmake build system. The code itself is written in

standard C++.
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• Accessibility:

The textile models are accessible through the graphical user interface, through

python scripting and through the C++ API.

• Open source distribution:

The code is released under the GNU General Public License [82].

• XML based file format:

An xml format for textiles is defined that reflects the hierarchic structure in which

textiles are defined within TexGen . Use of an xml format makes it easy to parse

TexGen textile files in other applications and allows extension.

Many of the algorithms that are used to arrive at a realistically compacted textile

geometry are based on Sherburn’s work on fibre compaction, which is most extensively

documented in his thesis [11].

The modular design of TexGen and the existence of a scripting interface are key to the

current work, source contribution to the TexGen modelling package in the context of

this thesis has been the ability to allow variable fibre density across yarn cross sections

and the ability to have consistent fibre area along yarns.

In addition a number of benchmark tests and parametric (scripted) textile models have

been written (see section 3.3).

3.1.2 Yarn path representation

Within TexGen the yarn path is represented by a b-spline with an arbitrary number of

control points. The undulation pattern of the textile acts as the basis, but a number of

points can be added in between so that a path of arbitrary complexity can be described.

Figure 3.3 shows the control points displayed in a TexGen model of a plain weave.

3.1.3 Yarn cross section representation

The yarn cross section is represented in a TexGen model as a 2D polyline. This poly-

line can be obtained from a base yarn shape (elliptical or lenticular, see Figure 3.4(a)

3.4(b)), after which it can be modified (e.g. by a compaction algorithm). The polyline

representing the yarn cross section can consist of an arbitrary number of points (see

Figure 3.4(d)), and an arbitrary number of cross sections can be defined along the yarn

at parametric locations along the yarn path.

The main aspect of the yarn cross section representation is the kind of deformation it
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Figure 3.3: TexGen model showing the control points defining the yarn path splines

for a plain weave textile structure

(a) Elliptical base cross section (b) Lenticular base cross section

(c) Combined elliptical (top) and

lenticular (bottom) cross section

(d) Polyline representation of the

yarn section shown in Figure 3.4(c)

Figure 3.4: Yarn geometries

allows. There are a number of mechanisms that trigger cross section deformation in real

life, and there are a number of ways to represent this inside the geometric model.

The relevant causes of yarn deformation are:

• Yarn manufacturing

• Yarn processing into a textile (contact with the weaving/braiding machine, contact

with other yarns)

• Preforming (stacking, handling, compacting etc.)

• (Pre-) Impregnation (addition of resin to dry fibre)

• Curing (chemical and thermal shrinkage effects)
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The combination of these processes results in a yarn shape that can be monitored using

microscopy.

Since there is only geometric data of yarn geometry in the finished composite (this is

further explored in the chapter 5.2) it is hard to attribute deformations to stages in

the production process. Extensive numerical studies on the effects of forming on yarn

geometry in dry textiles have been performed by Martin Sherburn and are documented

in his PhD thesis [11]. However, even when taking dry textile deformation into account,

the effects of the remaining processes needed to arrive at the actual composite (liquid

resin infusion and curing) remain unresolved.

It is assumed here that the origin of yarn shape deformations is not important to the

mechanical properties as long as the final shape can be described to satisfactory accu-

racy. So far, in geometric models, the challenge has been to find non-intersecting yarn

descriptions that take up a sufficiently high fraction of the RVE (i.e. have a high Vy).

Since Vf = VyVyf and local strength is very strongly dependent on Vyf (the fibre volume

fraction within the yarn), the following holds for models that are normalised by Vf ;

the more realistic the value of Vy, the more realistic is the model (see section 3.2.2 on

micromechanics for a detailed analysis of this issue).

The physical reasons that in a composite Vy is higher than obtained by extruding a

constant cross section along a yarn path are the processing mechanisms mentioned

above. TexGen implements a number of mechanisms (see Figure 3.5) that are used

to modify yarn cross sections from the base shape in geometric interference correction

or compaction iterations. Note that these deformation mechanisms do not represent

restrictions of the yarn description in TexGen; rather, they are the deformation modes

taken into account in the interference correction scheme as implemented in TexGen at

the time of writing.

The methods used here to perform interference correction can be classified as geometry

based interference correction, as opposed to mechanically based methods (which require

the solution of a structural mechanics problem representing dry yarn contact).

Mechanically based interference correction is used to generate deformed textile meshes

in work by Sherburn [11] and Lomov [43], and is known to generate realistic textile

packings. The reasons that this was not pursued in this work are:

• Implementation would be cumbersome (the feedback from dry textile modelling

to a deformed TexGen textile was not implemented when the work for this thesis

was done).

• Resulting textile geometries are not conceptually more difficult to deal with in
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AMR, hence the functionality could be added at a later stage without consequences

to the solution methods.

• Robustness of this preprocessing step is unknown; in particular, not all compaction

algorithms always converge.

• The resulting deformed textile is no longer parametric, which makes interpretation

of results of parameter sensitivity data more complicated. I.e. an increase in inter-

yarn gap on the initial textile does not necessarily result in an increase of the same

parameter in the textile structure after a forming simulation.

(a) Global flattening (b) Local flattening

(c) Yarn twisting

Figure 3.5: Yarn cross section deformation mechanisms shown in local (yarn cross

section) coordinate system.

3.1.4 Fibre content modelling

Textile composites are assumed to consist of yarns which contain a fixed number of

continuous fibres along the length of the yarn. Since the yarns are modelled as a con-

tinuum this condition cannot be imposed directly but only in the average sense. This

introduces the assumptions that filaments are incompressible and do not vary signifi-

cantly in cross sectional area along their length. Additionally the manner in which fibers

are distributed within the cross section is assumed to be constant along the yarn path

(constant and quadratic distributions are used through this thesis). In Figure 3.5 yarn

deformation mechanisms are given. Since most of the deformation mechanisms affect

the cross sectional area of the yarn, the local volume fraction has to be modified to sat-

isfy the constant fibre area assumption. In the current implementation the distribution

of fibres in the bundle as well as the total fibre area per yarn (Ay) are kept constant,

meaning that the distribution is scaled such that∫ x=w/2

x=−w/2
Vf (x)h(x)dx = Ay (3.1.1)
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where w is the width of the yarn, Vf (x) is the volume fraction distribution (linear and

quadratic distributions are used), h(x) is the height of the yarn and Ay is the summed

fibre area across the cross section. The numerical implementation of this relation, con-

sidering that the cross section is represented by a polyline, is given as:

i=n−1∑
i=0

Vf,i
hi + hi+1

2
dxi = Ay (3.1.2)

The theoretical maximum local fibre content is π
2
√

3
= 0.9069 for a hexagonal packing

and π
4 = 0.7854 for a square packing, therefore any local values computed must be lower

than 0.9069 in order to be realistic2.

It can be seen in Equations 3.1.1 and 3.1.2 that only x direction dependence is taken into

account in the current work. This is due to the fact that the work is based on 2D weaves

with tows that have a high aspect ratio (slender shape). More general formulations based

on both x and y location on the cross section of the tow can be used (for example in 3D

weaves), but these are not currently implemented in TexGen.

3.1.5 Local point querying of a textile model

The key functionality of TexGen relating to this thesis is that it allows (efficient) query-

ing of the geometric model for local textile information on the aspects outlined in the

previous sections (local yarn orientation, position within the cross section, and local fi-

bre volume fraction). It is this functionality that forms the interface between geometric

and numerical analysis (an example of how this is used in practice from C++ is given

in Appendix B).

The algorithms used to do this lookup efficiently for millions (depending on the problem)

of material sampling points are based on octree partitioning of the domain.

The procedure consists of 3 steps (ignoring any algorithms for performance enhance-

ment):

1. Locate the point on the yarn path using iterative search (position found to user

set tolerance)

2. Construct interpolated cross section

3. Locate point on the cross section exactly for the cross section at hand (up to

machine precision)
2 Higher values can exist theoretically when assuming non-equally sized filament cross sections,

however, geometric analysis shows that assuming any other scenario than perfect alignment will result

in substantially lower Vf values (see [11]).
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This shows that an additional approximation is introduced when performing point

lookup within the textile, but that the level of error introduced by making it can be

set by the user. From practical experience it is gathered that using point lookup with

a tolerance that is small compared to element size (or integration point spacing) never

causes lookup runtimes to approach FE assembly or solve runtimes.

3.1.6 Summary of geometric modelling

The geometric modelling strategy employed in this thesis is designed for the following

key objectives:

• Full flexibility in modelling textile structures

• Computational efficiency in querying textile internal geometry

• Facilitating parametric textile modelling

The following approximations are used and controlled with either internal or user set-

tings:

• The yarn path is a spline, the number of control points can be adjusted.

• Yarn section circumference is approximated by a polyline, for which the number

of points can be varied.

• Yarns sections allow 1D variation of Vy,f ; this assumes yarns to have constant Vy,f
through thickness. Currently only constant, linear and quadratic variations are

implemented. The 1D variation is relative to the yarn section local x coordinate

as depicted in Figure 3.5.

• Fibre area is enforced to be constant along the yarn path, independent of yarn

deformation.

• A geometry based compaction algorithm is employed to obtain a realistic Vy, this

algorithm operates on the following variables:

– yarn control point location

– yarn section twist

– yarn section compaction.

• Geometry querying introduces a tolerance in the cross-section lookup along the

yarn.
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3.2 FEM modelling

The equations for modelling small-strain elastostatics have been implemented in C++

in order to allow the author to use the LibMesh Finite Element library for handling

mesh refinement and solution whilst allowing a direct interface with the TexGen API.

The FEM formulation given below is also used in [83] and results for single elements

have been compared with results from both ABAQUS and Calculix and shown to match

to machine precision.

3.2.1 FE formulation

In small-strain elastostatics an attempt is made to solve the equation of equilibrium:

∇ · σ + b = 0 in Ω (3.2.1)

where σ is the stress tensor, b are the bodyforces and ∇ the gradient operator. The

material behaviour is described by generalised Hooke’s law:

σ = C : ε , ε = ∇su (3.2.2)

where ε is the strain tensor, ∇s is the symmetric gradient operator and u is the dis-

placement vector.

When it is decided to solve this system using the Finite Element Method a weak form of

the equilibrium equations is constructed. This is done by multiplying by a trial function

δv and integrating.∫
Ω
∇sδv : σdΩ︸ ︷︷ ︸

internal stress

=
∫

Ω
δv · bdΩ︸ ︷︷ ︸

body forces

+
∫

Γ
δv · tdΓ︸ ︷︷ ︸

boundary tractions

∀ δv ∈ H1
E(Ω) (3.2.3)

At this point the trial function is still arbitrary. According to Galerkin’s method a

specific trial function is chosen that matches the interpolation function used for the

geometry. From this, the classical finite element formulation that is suited for numerical

solution is obtained:

Ku = F (3.2.4)

where K is the global stiffness matrix, u are the displacements and F the nodal forces.

In this system K is a banded matrix with a bandwidth dependent on the element con-

nectivity (in case of a structured hexahedral mesh with 3 DOFs per node the bandwidth

is 81).
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The stiffness matrix and forces are computed using the following relation:

K =
∫

Ω
BTDBdΩ (3.2.5)

F =
∫

Γ
NtdΓ +

∫
Ω
NbdΩ (3.2.6)

where N is the vector of Lagrange shape functions, B the matrix containing shape

function derivatives and D the material stiffness tensor, the engineering equivalent of C

as defined in the generalized Hooke’s law (Equation 3.2.2).

Hooke’s law is written for an orthotropic material in the following manner: 

σ11

σ22

σ33

σ23

σ31

σ12


=



E1(1− ν23ν23)ψ E2(ν12 + ν13ν32)ψ E3(ν13 + ν12ν23)ψ 0 0 0

E2(1− ν31ν13)ψ E3(ν23 + ν13ν21)ψ 0 0 0

E3(1− ν12ν21)ψ 0 0 0

2G23 0 0

S 2G31 0

2G12





ε11

ε22

ε33

ε23

ε31

ε12


(3.2.7)

where

ψ =
1

(1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν12ν23ν31)

where Ei are Young’s moduli of the effective yarn medium in local yarn coordinates, νij
the Poisson’s ratios and Gij the shear moduli.

This formulation is used to describe the yarn properties. In order to describe the matrix

properties the law is simplified using the knowledge that all directional properties are

equal (the material only requires an elastic modulus and Poisson’s ratio to define its

behaviour).

Since the yarn material is aligned according to the yarn path coordinates, Equation

3.2.7 describes its behaviour in an undulating coordinate system that does not coincide

with the coordinate system in which displacements are being calculated. In order to

transform this behaviour into global coordinates the following transformation is applied

to the stiffness tensor. In order to stay close to the implementation this particular
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operation is more conveniently written in terms of the full stiffness tensor.

Dijkl = RimRjnRkoRlpD
′
mnop (3.2.8)

where Dijkl and D′ijkl are the stiffness tensors in global coordinates and local coor-

dinates respectively. The transformation matrix Rij contains the direction cosines

Rij = cos(x′i, xj), where xi and x′i are the direction axes in global and local coordi-

nates.
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3.2.2 Micromechanics

The composites considered in this thesis are based on fibrous yarns which are regarded

as homogeneous solids within mesoscale mechanics models.

In this work, homogenisation of the properties of impregnated yarns is done through the

use of micromechanics models. There are a variety of different micromechanics models

available, which vary with respect to the following aspects:

• Analytical or numerical representation of the microscale geometric and structural

problem

• Assumptions regarding fibre packing order, being either square, hexagonal or ran-

dom

Because the mesoscale FE solution is much faster when using closed form expressions for

the microscale material behaviour (compared to, for example, microscale FE models) it

was decided to use the models implemented in ICAN (see Murthy and Chamis [4]).

These models were set up to analyse properties of plies of unidirectional continuous fibre

composite. They are relevant to the current models because the yarns in a textile based

composite are essentially unidirectional continuous fibre composites.

Additionally these models provide strength predictions as well as full sets of stiffness

terms. The major uncertainty arising from the use of such models is that they have not

been validated for the 3D stress states for which they are being used, but this is also

true for many numerical models. Thorough analysis of the validity of micromechanics

models is outside of the scope of the current work.

ICAN models

In this work the micromechanics models implemented in ICAN are used [4, 84] which

are reiterated here for the reader’s convenience. The coordinate system used in these

equations is given in Figure 3.6. The models are based on a hexagonal packing of

filaments.
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Figure 3.6: Local fibre coordinate system used in the formulation of ICAN models.

The 2-direction refers to second in-plane direction in UD laminates, in

this case the 2-direction holds parallel to the local x-direction in yarn

cross section coordinates (see Figure 3.5).

Elastic constants are given by the following equations:

E11 = VfEf,11 + (1− Vf )Em (3.2.9)

E22 = E33 =
Em

1−
√
Vf

(
1− Em

Ef,22

) (3.2.10)

G13 = G12 =
Gm

1−
√
Vf

(
1− Gm

Gf,12

) (3.2.11)

G23 =
Gm

1− Vf
(

1− Gm
Gf,23

) (3.2.12)

ν12 = ν13 = νm + Vf (νf,12 − νm) (3.2.13)

ν23 = Vfνf,23 + Vm

(
2νm −

ν12

E11
E22

)
(3.2.14)

These models are commonly used for the prediction of mechanical properties of unidi-

rectional composites. As such they include a set of strength predictions which correspond

to different failure mechanisms (here the delamination strength S11,Cd is reproduced as

stated in the ICAN manual, even though delamination would constitute a failure in the

12 plane or 3 direction, it is assumed to hold as a predictor of delamination based on
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fibre direction stress).

S11,T = Sf,T

(
Vf + Vm

Em
Ef,11

)
(3.2.15)

S11,Cr = Sf,C

(
Vf + Vm

Em
Ef,11

)
(3.2.16)

S11,Cd = (13S12 + Sm,C) (3.2.17)

S11,Cf =
F2Gm

1− Vf
(

1− Gm
Gf,12

) (3.2.18)

S22,T = Sm,T

(
Fc

Dn

)
(3.2.19)

S22,C =
Sm,C
Dn

(3.2.20)

S12 =

(
F1 − 1 + Gm

Gf,12

)
F2G12Sm,S

GmF1
Fc (3.2.21)

Where subscript Cr indicates the rule-of-mixtures compressive result, Cd the delami-

nation strength and Cf the fibre microbuckling strength. Fc takes the value of 1 for all

fibre types under consideration. The terms F1, F2 and Dn are defined as follows:

F1 =
√

π

4Vf
(3.2.22)

F2 = 1−

√
4Vf
πVm

(3.2.23)

Dn =
[
1−

√
Vf

(
1− Em

Ef,22

)]√
1 + ϕ(ϕ− 1) +

1
3

(ϕ− 1)2 (3.2.24)

(3.2.25)

where ϕ is defined as:

ϕ =

F1 − Em

Ef,22

»
1−
√
Vf

„
1− Em

Ef,22

«–
F1 − 1

(3.2.26)

The microbuckling results relate to buckling of a microstructural beam, supported by

an elastic medium. It can be seen as an upper bound on the buckling strength since

fibres are assumed to be straight. This is noted here but not thought to be of great

influence for the results in this thesis since the results are mainly generated for the

tension loadcases.

Strength behaviour as a function of local volume fraction The strength be-

haviour as a function of local volume fraction strongly influences the results in the
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present thesis. In Figure 3.7 this relation is illustrated for the quantities given in Equa-

tions 3.2.15 to 3.2.21. It can be seen that upper and lower bound values in transverse

strength can be a factor of 5 apart when varying Vf between 0.5 and 0.75 (which is a

realistic range of Vy,f to exist in a textile model).

Figure 3.7: Normalised strengths as a function of volume fraction according to the

ICAN strength models (as given in 3.2.21).

This represents the physical/geometric phenomenon of a load being transferred through

an increasingly thin resin layer, leading to a nonlinearly increasing stress intensity factor

with increasing average fibre volume fraction.

It is noted here that these models don’t represent the state of the art in composite

strength modelling, but rather a simple framework to scale damage initiation predictions

based on local fibre volume fraction. More advanced strength predictors or interpolated

composite strength values obtained from a database of experimental results could be

used in the place of these formulae.

41



Chapter 3. Methodology

3.2.3 Damage modelling

Damage modelling consists of two stages; the detection of damage initiation, and the

modification of the local material behaviour to reflect the damaged state. In the case of

textile composites the added complication is that the impregnated yarns behave like a

(sub)composite in their own right (a unidirectional composite).

Because most of the high-performance applications of composite materials involve brittle

materials the prediction of initial damage is an important capability because it represents

a conservative design limit.

Failure criteria

Section 3.2.2 lays out how directional yarn strengths are derived from constituent prop-

erties. Failure criteria provide a way to integrate single directional strengths and a

multiaxial stress state into an estimate of how far away the local material is from fail-

ing.

In this case the damage parameter D is the measure in which the relevant stress or

strain criterion is violated, for the matrix behaviour this is the Bauwens criterion (see

3.2.27, reproduced here from [85]).

D =
√

2
σyc − σyt
σyc + σyt

(σ1 + σ2 + σ3) +
[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]1/2
2
√

2
σycσyt

(σyc + σyt)
(3.2.27)

where σi the principal stresses and σyc, σyt are the yield stress in compression and tension

respectively (SC , ST in Table E.1).

The yarn damage criterion is evaluated in the yarn coordinate system. Since the yarn

is assumed to be orthotropic the 2- and 3- direction of the yarn coordinate system

are oriented arbitrarily orthogonal to the 1 direction. Here 3 damage variables are

introduced, where D1 indicates fibre direction damage, D2 is transverse shear damage

and D3 transverse damage.
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D11 =
σ11

S11,t
(3.2.28)

D12 =
−σ11

S11,c
(3.2.29)

D31 =
max(σ2, σ3)

S22,t
(3.2.30)

D32 =
−min(σ2, σ3)

S22,c
(3.2.31)

and

D1 = max(D11, D12) (3.2.32)

D2 =

√
(σ2

12 + σ2
13)

S12
(3.2.33)

D3 = max(D31, D32) (3.2.34)

where σ11 is the stress in the fibre direction, σ12, σ13 are shear stresses and σ2 and σ3

are the transverse principal stresses, i.e. rotated such that σ23 = 0 ).

A damage model for use in FE analysis

Since the use of brittle material models (step degradation of properties) as used by Black-

ketter et al. [30] was found to be unsuccessful for materials that fail in a non-brittle

fashion and absorb energy during failure, a phenomenological stiffness degradation law

is used to describe the local stiffness. This relation stems from the need to allow for

failure mechanisms such as crazing, yielding or crack propagation which make the ma-

terial macroscopically non-brittle (see Tijssens et al [86]) because the resin used in the

experiments exhibits such behaviour.

The following relation (Equation 3.2.36) is used for the stiffness of the matrix material

and for the transverse stiffnesses of the yarn material.

P =
(

1− 1
exp(−c1 ·D + c2)

)
(3.2.35)

Ed = Emax(P, 0.0001) (3.2.36)

Where P is the penalty or knockdown factor, Ed is the modulus of the damaged material,

E is the modulus of the undamaged material, constants c1 and c2 are set to c1 = 8, c2 =

13.

The behaviour of this knockdown method is shown in Figure 3.8. In order to be able to

solve elastostatics problems containing fully damaged material a minimum knockdown

of 0.001 is used.
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Figure 3.8: Stiffness knockdown factor P as a factor of damage variable D as given

in Equation 3.2.36 (matrix damage and transverse yarn damage) and

Equation 3.2.37 for longitudinal yarn damage.

This degradation law is also used to degrade the transverse and shear properties of the

yarns (i.e. it degrades the matrix properties feeding into micromechanics as a function

of D2 and D3 according to Equation 3.2.36). With respect to the fibre direction damage

parameter D1 brittle degradation is used, as described in Equation 3.2.37.

P =

{
1 , D1 <= 1

0.001 , D1 > 1
(3.2.37)

The introduction of gradual degradation according to 3.2.36 causes the model to absorb

energy. When using local stress the amount of energy absorbed in the FEA model is

related to the mesh size. In order to obtain mesh-independence of the damage behaviour

a nonlocal stress measure is introduced.
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Nonlocal stress

Mesh dependency of results is a common phenomenon in FE analysis, it is particularly

apparent in the analysis of a problem that posesses a singularity in its analytical form.

Common problems showing singular behaviour are crack propagation problems where

explicit crack tips are modelled. The singularity that is handled in the current approach

originates from using a lenticular yarn shape.

The most common circumvention of this problem is the use of a nonlocal stress measure.

A nonlocal stress measure is computed from the grid solution but is a weighted average

over a geometric domain, where the size of this domain is chosen to be independent of

mesh size.

It is used here to see if a consistent peak stress value (which dictates the load level at

which damage initiates) can be obtained at lower computational cost.

The nonlocal stress σnl(xi) is obtained from the local stresses σl(x) using a weighting

function f(x) according to Equation 3.2.38.

σnl(xi) =
∫
σl(x)f(x)dV∫
f(x)dV

f(x) =
1

1− (ϕ|x−xi|
γ )2

(3.2.38)

Where γ is the nonlocal feature size3 and ϕ a weight factor indicating the dropoff

strength of the weight function.

In the present implementation only stresses in the same material are taken into account.

For example, when looking at stress at a location within a yarn, the nonlocal stress is

computed from contributions of local stresses in the same yarn.

3In chapter 5 this feature size was set to half the tow width of a typical textile (2.8mm, it was not

varied further during the study), note that if this length is large the influence of remote contributions

have marginal weights anyway.
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3.2.4 Adaptive mesh refinement

Finite Element models of the textile are generated using Adaptive Mesh Refinement

(AMR) on a simple hexahedral mesh as opposed to using a CAD driven mesh generator,

a method resulting in similar meshes was devised by Kim and Swan [50]. The rationale

behind developing such a method is to circumvent the difficulties that arise when trying

to mesh realistic textile geometries. The touching yarns tend to generate high aspect

ratio geometries which are either unmeshable or generate such fine meshes that they

are impossible to solve on current hardware. The procedure in the current method is as

follows:

1. Generate coarse mesh (of hexahedral elements)

2. Solve

3. Estimate error for all cells

4. Refine cells with highest error

5. Back to 2 to solve the refined mesh problem

The error estimator used is a Kelly error estimator [87] which uses the sum of disconti-

nuities in computed strain over element boundaries as a measure for the discretisation

error. Without modification this results in refinement around stiffness jumps, as are

introduced by the multiphase character of the composite (see Figure 3.9).

Figure 3.9: Grid refinement (slices of a 3D mesh) following tow boundaries in a plain

weave textile geometry

To reduce implementation time the LibMesh [56] finite element library was used. This

library was selected (over similar tools like Deal.ii [73]) because it supports a wide range
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of element types. Both libraries interface to common solver libraries (like PETSc[72])

and contain implementations of various error estimators. The textile is queried for

orientation and local Vf data at each of the stages of refinement, this is implemented by

linking directly to the TexGen library.
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3.2.5 Boundary conditions

Two different approaches are taken with regards to boundary conditions.

1. In the AMR based work relating to physical experiments on small specimens sim-

ple displacement boundary conditions are used which are implemented using a

penalty method. The remaining edges are left free. The reason for doing so is pri-

marily to simplify implementation. For details on how to implement periodicity

in conjunction with AMR the reader is referred to [49]. A secondary reason for

using simple boundary conditions is that verification is performed using specimens

which are small compared to the RVE size. This means that (free) edge effects

do play a role and therefore should be present in the model. It is for this reason

that plain weave analyses are based on a full wavelength of axial yarn rather than

the smallest possible RVE, so that all potential regions of interest are contained

at least once away from the boundaries.

2. In the analyses for 2D and 3D stiffness evaluation 1st order periodic boundary

conditions are used. Section 3.2.6 describes the use of 1st order periodicity in FE

analyses with regular meshes.

In order to describe periodicity for RVEs in bending loadcases 2nd order homogenisation

is needed. This is outside the scope of the current work and the reader is referred to

[66].

3.2.6 Periodic boundary conditions

Because the unit cell models discussed here are to be used in a higher level model under

the assumption that the higher level medium is continuous, it must be ensured that the

model boundaries deform in such a way that the deformed shape remains repeatable

and continuous.

This is done by implementing so-called periodic boundary conditions. Enforcing such a

condition is done by replacing the t’th equation (relating to the t’th DOF) corresponding

to a row in the equation system

Ktiui +Ktjuj +Kttut · · · = Ft (3.2.39)

with an Equation of shape

−um + ut = λ (3.2.40)
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where ui, uj are the displacements of nodes connected by elements to ut and λ is a

forcing term that can be used to apply global longitudinal or shear deformation to the

unit cell. um typically relates to a node on the opposite face of the unit cell and the

creation of such an equation makes ut a slave DOF.

If λ = 0 it can be seen that Equation 3.2.40 results in ut = um, meaning that the

two opposite sides move in the same manner. In order to enable the representation

of load-driven experiments and periodic Poisson’s effects λ has to be a DOF rather

than a predetermined constant. When implementing periodic boundary conditions in

commercial finite element codes this is generally achieved by creating a node that is

separate from the structure and of which the DOF are used in the constraint equations

binding the opposing faces of the unit cell. The resulting general equation used to

implement periodic boundary conditions on a nodal level is:

−um + ut + uside = 0 (3.2.41)

The use of periodic boundary conditions is apparent when considering unbalanced (single

layer) textile composites. In this case the undulation pattern gives rise to periodic

wavy patterns as shown in Figure 3.10. In these cases the assumption of straight sides

constrains this motion and results in an overestimation of the stiffness. The difference

between the two scenarios becomes smaller for more layers of textile.
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(a) Periodic deformation of a plain weave based composite in tension loading

(b) Periodic deformation of a plain weave based composite in simple shear

loading

(c) Periodic deformation of a five harness satin weave based composite in tension loading

Figure 3.10: Periodic deformation (and σ11 contours) of unbalanced woven textile

based composites in tensile loading. Model built up using texgen ma-

terial sampling and uniform mesh refinement. The implementation is

given in Appendix C.
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3.2.7 Stiffness averaging

The numerical problem under consideration contains both continuous variations of local

properties (intra yarn Vy,f ) and discrete boundaries between materials (yarn-matrix

interface). In addition spatial points can have associated time (or load step) dependent

data such as damage.

Two methods for assigning averaged properties to elements spanning multiple materials

are used in this thesis:

1. In the AMR related analyses the material is associated to quadrature points, since

the method is coupled to a damage model which operates on non-averaged material

properties. It is noted here that the order of quadrature can be varied arbitrarily

and need not match the order of the element. It is also noted that single elements

used in this manner can have nonuniform properties.

2. For the purpose of numerical benchmarking an alternative implementation was

devised which follows the work of Kim and Swan more closely and uses arbitrary

subdivisions of cells to perform material sampling.

The material sampling points are distributed such that parametric coordinates are

given by Equation 3.2.42

xi =
1

2n
+
i

n
(3.2.42)

where xi the i’th location in parametric cell coordinates (in the [0, 1] range) and

n the number of points in the scheme (where i from 0 to n− 1).

Using this sampling method the inhomogeneity that can exist in the gauss point

sampling method is lost (i.e. an averaged stiffness is attributed to the whole

element). The implementation for this method is given in Appendix B.

The assumption is that an increase in the number of material sampling points will

converge the stiffness solution, where the uniform sampling method in 2D can be used

to explore how many points are need to reach a fully converged solution.
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3.3 Parametric textile modelling

The aim of the current modelling methodology is to provide a robust analysis tool that

can deal with challenging textile geometries without manual intervention.

In this thesis the main focus is on 2D weaves in general and plain woven textiles in

particular. A parameterisation of such textiles is defined that allows easy generation of

geometric models for parameter studies. The geometric variables for a few textiles are

given in Figure 3.11.

These are examples of the textiles on which variations are studied in Chapter 5. A

textile model is permissible (it can be analysed using FE) when local Vf < 0.906 and

there is no intersection between yarns. The parameters are given in Table 3.1. The

model is implemented using the TexGen python interface (see Appendix C.3).

(a)

(b) Two layer nested version of 3.11(a) (c) Five harness satin weave

Figure 3.11: Examples of textiles described using the parametric representation of a

2D weave as given in Table 3.1.
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Chapter 3. Methodology

Units Figs. 3.11(a), 3.11(b) 3.11(c) description

length mm 6 2 Unit cell length

γx λ [0,0.25] [0] Shift in undulation pattern in

x−direction

γy λ [0,0.25] [0] Shift in undulation pattern in

y−direction

hn height 0.75 0 Relative offset between layers in

thickness direction, hn < 1.0

means that the textile is nested

numlayer − {1,2} 1 Number of layers in the textile

vgap mm 0.07 0.01 Vertical gap between yarns

hgap mm 0.5 0.02 Horizontal gap between yarns

height mm 0.5 0.2 Height of the unit cell

fibre area mm2 0.35 0.04 Sum of the cross section area of

the filaments in a yarn

Vf,dr − 1 0.9 Relative dropoff of the in-yarn

volume fraction towards the side

of the yarn

ff mm 0.14 0.025 Limiting height of yarn near

model bounds (flattening of

yarn)

rot πrad [0,0] [0] Rotation of the layer

domainsize length [1,1] [2.5,2.5] Size of the domain

weavestyle “plain” “5satin” Weave style

Table 3.1: Parameterisation for 2D woven textiles, examples of which are displayed

in Figure 3.11, numbers in [] indicate values that apply to different layers,

numbers in {} apply to different models. λ indicates the weave wave length.
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Numerical results

In this chapter the behaviour of the methods presented in Chapter 3 is analysed. The

focus of the current thesis is on developing a method for automatically analysing textile

composite mesoscale problems.

The methods introduced in this thesis can produce arbitrary meshes and relate them to

arbitrary textile structures that reside in the same geometric space via the TexGen API.

The problem posed by this is choosing how to construct a mesh such that it efficiently

captures the physics of the underlying problem, the number of strategies that can be

used to do this is large, and performance is likely dependent on the problem at hand.

Since a full parametric examination of this problem does not lie within the scope of this

thesis, it is attempted to provide insight in the convergence of various global (stiffness)

and local (stress and strain) quantities as a function of the two main variables that can

be used to increase performance: mesh refinement and material sampling. Because it

conceivable that convergence of all terms in the 3D analyses can’t be achieved on current

hardware, a 2D problem is constructed that contains the same issues of aspect ratio and

locally varying fibre volume fraction. The 2D problem represents a slice of the 3D textile

and is used to gain insight in the number of DOF needed to obtain convergence in local

and global terms.

The same problem is analysed using 3D models. A larger set of problems was generated

parametrically and outputs are tabulated in Appendix E.

In addition, a tetrahedral mesh of a plain weave textile is set up and the solutions on

the tetrahedral and AMR grids are compared.

Modelled problems in this chapter represent an E-glass polyester (see Appendix E)

plain weave composite according to the baseline textile parametrically defined in Figure

3.11(a) and used in Chapter 5, Table 5.2.
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4.1 Convergence of stiffness terms

It is known from the work of Kim and Swan that uniform refinement of a structured

FE mesh results in convergence of the RVE stiffness terms. The study here is set up

to investigate at what level of mesh refinement convergence can be expected for typical

textile structure. In addition it is used to investigate whether the intra-cell material

sampling rate can be used to improve the rate of convergence.

The material sampling scheme that is used refines uniformly according to the 1D scheme

given in Equation 3.2.42. As an example the resulting 33 scheme is shown in figure 4.1.

Figure 4.1: Rendering of 33 uniform material sampling points in a hexahedron.

4.1.1 2D convergence of stiffness

In order to obtain an upper bound for the level of mesh refinement required a 2D model

is constructed that represents a 2D slice of the 3D model of a plain weave textile (see

Figure 3.11(a)). The 2D model is obtained by sampling at the plane y = 3. and assuming

strain to be 0 in the y−direction. Mesh refinement is uniform in this case.

Figure 4.2 shows the convergence of stiffnesses and Poisson’s ratio in the case of a 2D

model with 112 material sampling and fairly large inter-yarn spacing. It can be seen

here that the level of grid refinement needed to obtain converged solutions for all terms

(in 2D) is quite substantial, and corresponds to a 3D scenario of more than 1M DOF

(considering that convergence for all terms to within 1% happens at about 104 nodes,

see Figure 4.2). Figure 4.2 shows that the in-plane moduli converge rapidly, and that

the out-of-plane and shear results converge much slower. This can be easily understood

when considering that these moduli are dominated by the weak inter-yarn resin layer
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(a) 2D solution at y = 3 after 6 cycles of uniform refinement, the mesh shows ||σ||

(b) E11 and E22 (out of plane) moduli (c) Shear modulus

(d) Poisson’s ratios

Figure 4.2: Convergence of elastic property predictions for a 2D slice from a tex-

tile shown in Figure 3.11 at y = 3 with 112 sampled material property

averaging. The inset graph shows the convergence of Vf on the slice.

that is not explicitly represented until after about 6 levels of refinement.

For comparison, the 3D stiffness terms converge as shown in 4.3 for the reference tex-

tile given in Table 5.2 analysed with 1 and 6 internal sampling points, these plots are

extracted from the data given in Appendix E.2.
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(a) E−moduli as a function of mesh refinement

using 13 sampling, note that E11 = E22

(b) G−moduli as a function of mesh refinement

using 13 sampling

(c) ν as a function of mesh refinement using 13

sampling

(d) E−moduli as a function of mesh refinement

using 63 sampling

(e) G−moduli as a function of mesh refinement

using 63 sampling

(f) ν as a function of mesh refinement using 63

sampling

Figure 4.3: Convergence of elastic property predictions for a 3D unit cell as shown in

Figure 3.11 using 13 and 63 sampling to obtain averaged material prop-

erties. The inset graph shows the convergence of Vf in the RVE.
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4.1.2 2D convergence of stress and strain

In addition to stiffness terms, local stress and strain values are also of importance, since

they are used as inputs to the damage model. It is known that the domains contain sharp

shapes around which stress and strain terms converge slowly if at all. When considering

the micrographs presented in Chapter 5 it can be seen that with the filament size at

hand, the element size is small compared to the microscale features (which would mean

that any substructuring or computational homogenisation approach in these regions

would remove the singularity). Because in the next chapter variable studies are done

which vary the intra-yarn fibre volume fraction Vy,f comparisons are made here between

two scenarios with different Vy,f . In Figure 4.4 the scenario of Vf,dr = 1 is presented,

showing poor convergence of both maximum stress and strain values. In both Figure

4.4 and Figure 4.5 a 2D slice is given, subject to loading in the x−direction. The slice

is taken in between traversing yarns, at the location where two lenticular shapes meet

y = 2..
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(a) max(||σ||) = 5.43, 6.72, 8.44, 10.2

(b) max(||ε||) = 0.430, 0.559, 0.698, 0.788

Figure 4.4: 2D model showing geometric singularity at a crossover point in lenticular

yarns where Vy,f is constant across the yarn at 0.7372 in all-yarn cells,

graphic showing meshes of 512,2048,8192,32768 cells (bottom coarsest,

top finest).

In Figure 4.5 the same problem is shown, where Vf,dr = 0.75, which means that Vy,f
at the yarn edges is 25% lower than in the center of the yarn. It can be seen that in

this case (as in the case where Vf,dr = 1) the peak stress doesn’t converge, but here

maximum strain (which occurs in all-matrix elements away from the yarn tip) starts to
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level off.

(a) max(||σ||) = 5.64, 6.09, 6.71, 7.5

(b) max(||ε||) = 0.563, 0.645, 0.676, 0.696

Figure 4.5: Identical model as the problem shown in Figure 4.4 but with 25% dropoff

in Vy,f .
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4.2 Comparison with conformal FE

The aim of comparing the AMR based method to a conformal meshing based method is

to quantify the penalty paid in accuracy for the added robustness in using AMR. Addi-

tionally, it is necessary to establish whether the two methods are sensitive to the same

geometric and mechanical aspects of the problem. Direct comparison is made somewhat

more difficult by the fact that the meshing algorithm modifies geometry internally, i.e.

it works to a minimum and maximum edge length which means that the resulting mesh

does not exactly overlay the “analytical” geometry formulation used in TexGen. This

can have the result that the FE program, when querying the textile model for yarn

properties, can obtain matrix properties inside a yarn element. The comparison is per-

formed using the TexGen integrated tetrahedral meshing algorithm on the same textile

structure that was analysed in section 3.3 (see Figure 3.11). The conformal mesh is

given in Figure 4.6.

Figure 4.6: Tetrahedral mesh of a single layer plain weave generated using TexGen’s

internal tet-meshing algorithm
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The stiffness convergence for the conformal tetrahedral mesh and the averaged hexahe-

dral meshes are given in Figure 4.7(a). The AMR solution was obtained twice, once with

refinement closer to uniform (refinement applied to the top 85% worst ranked elements),

once with refinement set more selective (worst 50% refined). The convergence of Vf is

given in Figure 4.7(b) since the direct lookup of Vy,f in the integration point means that

different meshes obtain different Vf values.

When looking at the strain distribution in Figure 4.8 it is seen that the sharp divides

present in Figure 4.8(b) are smoothed out in the mixed-material models in Figure 4.8.

Resulting in lower peak strain values in the averaged model.

Although the two methods converge to approximately the same Vf (within 0.2%) the

RVE stiffness differs by about 1.7%. It is assumed that this is due to the characteristics

of linear tetrahedral elements which are known to overestimate stiffness. It is also noted

that the tetrahedral mesh contains elements of very poor aspect ratio, due to the high

aspect ratio of the resin domain.

In addition, the strain peaks given in Figure 4.8(b) occur at a slightly different location

than in Figure 4.8(c) and 4.8(d).
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(a) E11 convergence upon mesh refinement

(b) Vf convergence upon mesh refinement

Figure 4.7: Stiffness and volume fraction convergence using AMR in comparison to

a conformal linear tetrahedron mesh. It is seen here that for the very

selective refinement strategy (refine top 50% error measures) Vf values

don’t fully converge, but remain in a narrow range of 0.2%.
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(a) Loading direction used in Figures

4.8(b),4.8(c),4.8(d).

(b) Average element strain ||ε|| on the midplane

of a tetrahedral mesh of 74828 linear elements

(c) Average element strain on the midplane of

a hexahedral mesh of 17732 elements

(d) Average element strain on the midplane of a

hexahedral mesh of 147940 elements

Figure 4.8: Comparison of strains in a tetrahedral mesh and hexahedral mesh, show-

ing the averaging effect of material sampling.
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4.3 Conclusions

In this chapter the behaviour of FE for typical textile composites based on both uniform

and adaptive grid refinement was studied, the following characteristics are noted:

• Both AMR and uniform mesh refinement based methods converge in modelling

macroscale stiffness terms.

• The sampling density inside the element can be used to speed up convergence of

all stiffness terms.

• Stiffness terms that are more strongly dependent on the presence of a resin layer

between the yarns converge slower.

• Local element stress and strain levels in mixed elements don’t converge for typical

lenticular yarn shapes in 2D or 3D analyses in the range of mesh refinement studied.

• The gradual transverse dropoff of the intra-yarn fibre volume fraction Vy,f has the

effect of a) dropping the stress concentration level b) making the predicted stress

level at the singularity less strongly affected by mesh refinement.

4.3.1 Damage modelling

In the convergence behaviour the performance of the damage model is not considered.

The reasons for this omission are twofold, firstly, the local stress terms are seen to

converge very slowly if at all. This means that any damage model based on local

stress values will show irregular results upon mesh refinement. Secondly, in the current

implementation multiple materials exist within a single element, stress terms can be

combined to obtain a nonlocal measure in a variety of different ways.

Due to implementation limitations the nonlocal stress measure and damage models were

not available in the 2D calculations, making it impractical to obtain convergence char-

acteristics, and impossible to obtain these values as a function of all possible influential

parameters.

In the 3D results consistency is promoted by using the same damage model, mesh size

and mesh refinement settings across all runs.
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Experiments and parametric

analysis

In Chapter 3 the design and implementation of a method suitable for parametric analysis

of textile composites was described.

In Chapter 4 the method was used to analyse selected example cases with the aim of

comparing it to other methods and showing its behaviour in terms of performance and

operation.

This chapter describes the use of the model on a physical textile composite and attempts

to relate tensile testing, microscopy data and several parametric numerical studies.

The justification for performing such an experimental study, instead of analysing the

large body of experimental data that has been published in literature, is that this allows

for extensive microscopic data to be gathered for the same plaques that were mechani-

cally tested. I.e. it ensures a full and matching set of mechanical and geometry data.

Since we are particularly interested in the effects of the internal textile geometry, a test

material was chosen for which it is relatively easy to analyse and control the internal

geometry. The textile was selected based on the following characteristics:

• Large tow dimensions:

– Easy to examine using a microscope.

– Possible to align manually during layup (control nesting).

• Relatively open weave structure:

– Inter-yarn spacing allows alignment of adjacent layers during layup.

• Simple plain weave structure:
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– Since plaques with multiple layers are made the complexity of the models

used is still substantial, in particular when taking into account relative phase

shifting of the layers.

• In addition, the same material was used in the work of Crookston [1] from which

additional validation data was obtained, this comparison is presented in Appendix

A.

The current chapter aims to present a full numerical and experimental study of a single

textile, the chapter is structured as follows:

• Experimental results from tensile experiments are presented in section 5.1.

• Microscopy samples are used to analyse the geometry of the textile reinforcement

of the tensile specimens, this is discussed in section 5.2.

• A computation model is set up in terms of textile parameters (see Figure 3.11)

according to the textile geometric variables found in section 5.2. The paramet-

ric analyses are described in section 5.3 and can be subdivided in the following

categories:

– Influence of yarn related variables, in yarn Vf distribution (section 5.3.2),

yarn flattening (section 5.3.1) and inter-yarn spacing (section 5.3.3).

– Influence of multi-layer variables like nesting and phase shifting (section 5.4).

• Conclusions are drawn in section 5.5.
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5.1 Mechanical testing

5.1.1 Specimens

The validation material used for the manufacturing of specimens was Vetrotex RT600

glass textile (with a dry areal weight of 600g/m2) combined with Reichhold Norpol

420-100 unsaturated polyester resin.

Two batches of specimens were made each with a different goal:

1. Controlled phase shifting

2. Low void content, high Vf (within the constraints posed by using less than 2 layers)

Controlled phase shifting The plaques made for controlled phase shifting were made

out of two layers of textile, hand-layed and hand wetted. Hand lay-up was performed

on a back-lit glass plate, the inter-yarn spacing allows the light to shine through and as

such allows lining up of two (or more) layers of fabric.

To get a consistent surface quality on both sides of the composite a top glass plate was

used and a vacuum was applied after wetting out the fabric. The result was a composite

of which the nesting was indeed controlled (being either fully in- or fully out of phase),

however, void content was very high (see Figure 5.1) , as was the thickness variation in

the specimens. Specimens were cut using a diamond saw with no additional mechanical

operations.

Low void content In order to make sure that void content and thickness variation

are not overshadowing the influence of the factors under investigation a second batch of

specimens was made using a RTM tool and both inlet pressure and an outlet vacuum

to drive resin infusion.

Because the thickness between different layups of a 2-layer composite can vary quite

significantly (due to nesting and compaction) a PTFE filler plate was used to allow

reduction of the mould cavity height.

The result of this method was a set of specimens with much lower void content but

with an arbitrary degree of phase shifting throughout the plaque (since the tool does

not have a backlight and layers shift when the stack is being transferred from a layup

table to the tool).

Another result of using a flexible filler material is a nonuniform thickness of the plaque.

This has an effect on the calculated specimen Vf and for each specimen the volume
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Figure 5.1: Tensile specimens made attempting to align to layers of plain weave fabric.

It can be seen that the specimens have a high void content and are poorly

wetted out.

fraction is calculated as follows:

nl · ρA
t · ρglass

(5.1.1)

Where nl is the number of layers, ρA is the areal weight of the textile, t is the laminate

thickness and ρglass is the density of glass.

In this case dogbone shaped specimens were manufactured using water jet cutting. The

guidelines in the ASTM-D3039-95 were used to manufacture the speciments. Due to

poor surface quality of these specimens (caused by the water-jet) the sides were ground

off to obtain a smooth surface, this caused the specimen dimensions (as recorded in

Table 5.1) to deviate from the nominal values specified in the standard.

There were several plaques made but only two of sufficient quality, both of which were

2-layer plaques. They are referred to in graph legends as A and B. Specimen mea-

surements are given in Table 5.1, along with the experimentally obtained moduli, these

are given as an average over the first 10 or 20 readings to give an indication of the

consistency in the initial part of the tensile test, which is assumed to show linear elastic

behaviour.
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plaque specimen t1(mm) t2(mm) w1(mm) w2(mm) Vf (-) Exx,20(MPa) Exx,10(MPa)

A 1 0.87 0.89 8.5 8.5 0.5244 24.421 24.859

A 2 0.94 0.97 8.55 8.56 0.4832 24.317 24.164

A 3 1.01 1.06 8.51 8.51 0.4459 21.979 21.919

A 4 1.08 1.14 8.6 8.59 0.4158 23.951 23.684

A 5 1.1 1.16 8.59 8.59 0.4084 21.702 21.766

A 6 1.09 1.14 8.49 8.49 0.4139 23.047 23.422

A 7 1.04 1.09 8.72 8.77 0.4333 22.595 23.598

A 8 0.98 1.04 8.59 8.53 0.4569 24.166 24.821

A 9 0.92 0.95 8.68 8.65 0.4936 25.483 25.782

A 11 0.96 0.89 8.72 8.96 0.4989 24.292 24.760

B 1 0.82 0.82 8.59 8.57 0.5628 30.670 30.793

B 2 0.85 0.89 8.51 8.5 0.5305 24.997 24.596

B 3 0.92 0.96 8.56 8.56 0.4909 26.486 26.900

B 5 0.98 1.04 8.62 8.6 0.4569 24.171 23.848

B 6 0.97 0.98 8.59 8.59 0.4733 23.593 24.437

B 7 0.99 0.95 8.65 8.64 0.4758 25.128 24.611

B 8 0.91 0.96 8.65 8.67 0.4936 28.579 28.952

B 9 0.86 0.89 8.49 8.51 0.5274 27.848 28.044

B 11 0.9 0.86 8.65 8.7 0.5244 28.635 29.192

Table 5.1: Moduli Exx,20 and Exx,10 measured as σt−σ0
εt−ε0 for t = 20 and t = 10 respec-

tively
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5.1.2 Tensile test results

Tensile tests were performed using an Instron 1195 testing machine, which was connected

to a data logging PC recording data from both the load cell and the extensometer.

The results are obtained directly from the Instron binary datafile1. Stress-strain curves

for specimen batches A and B are given in Figure 5.2. This data is used in section 5.3

in relation to modelling data, where comparisons are made with datasets of similar Vf .

1There is a specific note on using legacy binary output files to avoid rounding errors in Appendix

D.2
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(a) Stresses calculated using specimen thickness as given in Table 5.1. The moduli

calculated in 5.1 are computed from the first 10, 20 load steps.

(b) Line stress (stresses in Figure 5.2(a) multiplied by thickness), eliminating the effects

of thickness variability

Figure 5.2: Experimental data for 2 layer RT600 dogbone specimens, moulded using

RTM and outlet vacuum, it can be seen that there is substantial variation

in both the volume fraction and the initial stiffness of the specimen.
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5.2 Microscopy

Microscopy has been used to form the geometric input for textile models used in the

following sections. The material that was analysed was cut-off material of the same

plaques as the tensile specimens (see section 5.1.1).

Since the samples analysed here are not the tensile specimens themselves there is no

reason to analyse Vf or shape anomalies except in the average sense.

Hence, a method was chosen that would allow generation of a large number of yarn

shapes.

Methodology The method of obtaining yarn shapes is as follows:

1. Produce a microscopy sample out of plaque offcuts:

• Bond together a stack of offcuts.

• Cut into specimen size pieces (about 25mm).

• Cast into polyester resin.

• Cut and polish the specimen surface.

2. Calculate a bilinear focus plane using microscope stage settings and focus param-

eters in 3 points on the sample surface2.

3. Scan the surface using automatic stepping of the microscope stage.

4. Stitch images together to form a graphic image of the transverse yarns as seen in

Figure 5.3.

5. Correct light-gradient originating from using a side mounted light on the stage.

6. Draw polyline outlines around yarns, also shown in Figure 5.3.

7. Write filled outlines to graphics files, outlines as seen in Figure 5.4 and 5.5.

8. Loop over all yarn shapes and add matrix formulation of graphics file to the

weighted average.

An average yarn cross-section is obtained through this procedure which is shown in

Figure 5.6. It can be seen here that the shape is closer to lenticular than it is to

elliptical. The height-width ratio of the binary image is approximately 1 : 10, the aspect
2This is currently a standard method that is implemented in microscope stage controller software,

for this work it was implemented as a stage controller user routine
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ratio in the samples was in the range [1 : 8, 1 : 15] (disregarding all yarns for which only

partial cross sections are scanned).

Figure 5.3: Stitched micrographs of yarns in a 2-layer plaque with polyline outline

Figure 5.4: Bundle outlines as used for calculation of bundle metrics and ma-

trix content (Vmd, as defined in Equation 5.2.1). Vmd per layer (%):

25.743, 18.247, 12.190, 14.126, 18.959, 12.689 Averaged: 16.9 %

The yarn is assumed to be balanced, which makes it possible to calculate the Vmd from

only the area of the outlined yarns (the transverse yarns are assumed to have the same

area). Matrix content for a balanced weave is calculated according to

Vmd = 1− 2
Ao/Ay

(5.2.1)

where Vmd the fraction of the total domain that is made up of matrix material (not

including the resin in the yarns), Ao is the area of the composite outline, Ay is the area

of the yarn outline.

Other yarn metrics that were obtained from the micrographs are given in Figure 5.7.

5.2.1 Conclusions regarding yarn geometry

• Yarn geometry is variable within fairly wide bounds, as an example, aspect ratio

varies between 1 : 8 and 1 : 15, with an average of 1 : 10.
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Figure 5.5: Bundle outlines as used for calculation of bundle metrics and matrix con-

tent. Vmd per layer (%): 27.934, 32.328, 37.783, 36.230, 29.265, 28.028 Av-

eraged: 32.1 %

(a) Sum of all cross section displayed in grey-scale

(b) Binary image of all cross sections using a threshold level of 0.5 (where 1.0 is

indicates a pixel covered by all 105 whole cross sections shown in Figures 5.4 and

5.5)

Figure 5.6: Average cross section as obtained from bundle outlines given in Figure

5.4 and 5.5

• Average yarn geometry is fairly consistent (i.e. averaging over any larger subset

of yarn shapes results in a lenticular cross section), the lenticular base shape as

used in TexGen is a good representation of the yarn shape present in the textile.

5.2.2 Limitations

It is noted here that there are a number of limitations to the data gathering strategy

employed in this section.

• No attention is paid to combinations of yarn widths or correlation of the yarn

width to other factors such as local specimen thickness or nesting. This means

75



Chapter 5. Experiments and parametric analysis

(a) Yarn area distribution, µ = 0.91mm2, σ =

0.11mm2

(b) Yarn width distribution, µ = 3.6mm, σ =

0.22mm

(c) Yarn height distribution, µ = 0.35mm, σ =

0.04mm

(d) Yarn shape aspect ratio distribution, µ =

10.02, σ = 1.79

Figure 5.7: Yarn cross section area and cross section width are seen to be approx-

imately normally distributed. The height distribution does not fit this

pattern, which may be due to the fact that the height reading is strongly

affected by twisting of the cross section.

that it is not known from the current data whether yarns vary in width very locally

(due to some local settling mechanism) or over a longer section of the specimen

(because the specimen is being flattened).

• The shape of a yarn section has not been correlated to a location along the yarn,

predominantly because this requires interpretation of the image of the longitudinal

yarn, which is difficult to obtain with sufficient accuracy.

• All yarn section cuts are assumed to be orthogonal to the yarn path.

• Strong conformance of the yarns to longitudinal yarns can change shape in an
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anisotropic manner, which can have the effect (when averaged pixel-by-pixel as

described above) of reducing the apparent tow width (as indicated in Figure 5.8).

Figure 5.8: Pixel count in yarn domain when summing two opposite conforming

yarns, where S is the apparent tow width and W is the actual tow width.
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5.3 Parametric studies

This section describes a number of numerical parametric studies on textile structures

representative of the textile used for tensile testing in section 5.1.

From the section describing the optical measurements and analysis of the samples there

are a number of variables that warrant particular attention.

• Yarn properties

– Horizontal inter-yarn spacing

– Vertical inter-yarn spacing

– Internal yarn fibre volume fraction distribution Vy,f (this was also noted by

Lomov et al in [43] as an important factor)

– Flattening of the yarn where the yarn is touching the tool surface

• Multilayer properties

– Nesting

– Phase shifting of adjacent layers

The parametric studies are presented to see to what extent predicted 2D stress concen-

tration factors have an effect on the 3D mechanical response.

In practice the yarn input variables have an influence on what damage mechanism is

triggered first, and propagation of damage occurs subsequently. Plain weave textiles

are interesting in this perspective since different modes can potentially appear first

(depending on the geometric variables). This is shown in Figure 5.9 where the transverse

yarn damage variable is given at 0.9 times damage initiation loading, showing both the

crossover and the middle of the yarn as potential initiation points.
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Figure 5.9: Transverse yarn damage plot for a single layer plain weave based compos-

ite in tension

Models in this section are described in terms of the parametric model introduced in

section 3.3, Table 3.1. The parameter set used in this chapter is defined as a baseline

with alterations, the baseline table is given in Table 5.2, the alterations are given in the

section at hand. The baseline variable table was formed such that an expansion to two

layers leads to yarn aspect ratios is the range observed in section 5.2.

length 8

γx [0,0.25]

γy [0,0.25]

hn 1

numlayer 1

vgap 0.02

hgap 0.2

height 0.5

fibre area 0.42

Vf,dr 1.0

ff 0.1

rotate [0,0]

domainsize [1,1]

weavestyle plain

Table 5.2: Geometric parameter set used for baseline single layer textile, variations

discussed in this chapter are single or dual parameter alterations of this

set. Parameter declarations are given in Table 3.1.
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Computations Through this section the solver parameters are kept constant in an

attempt to keep modelling variables from influencing the relative outcome of simulations.

The models are solved using 5 levels of refinement with a base mesh of [4, 4, 1] cells for

a single layer textile and [4, 4, 2] cells for the nesting cases, where the first 3 levels are

uniform refinement. At each refinement step the elements within the highest 85% error

estimate readings are flagged for refinement. A maximum refinement level mismatch of

1 level is allowed, if the mesh does not satisfy this condition the coarse elements are

refined.

The nonlocal feature size is set to 2.8mm. A 23 gaussian integration rule is used using

8-node hexahedral elements using linear Lagrange shape functions.

In Petsc the solver settings -ksp_type bcgs -pc_type sor are used (biconjucate gradi-

ent solver using successive overrelaxation as preconditioner) with a error norm cutoff of

1e−6. This was found to converge in all cases and to run faster than gmres (generalised

minimum residual) in the cases considered.

Using these settings runtime for a single linear static analysis (or damage step) was

about 5-10mins on a single AMD opteron 2.2 GHz core.
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5.3.1 Flattening of yarns

When manufacturing textile composite parts using solid tools the preform conforms

to the tool surface, resulting in local compression of the dry yarns. The deformation

induced in the preform is complex and would require analysis with the appropriate dry

fibre material models to predict, which is outside the scope of this work (refer to [11] for

more information regarding dry textile modelling). Here, this mechanism is taken into

account using two assumptions:

• The yarn cross section area is reduced by the overlap area between the tool and

the undeformed yarn (see Figures 5.10(a) and 5.10(b)).

• The change in global Vf caused by reducing the yarn cross-sectional area is taken

up by the average yarn Vy,f such that the fibre area is constant along the yarn.

Implementation is done in TexGen by defining a parameter ff which is defined as the

maximum height of a yarn measured from its centreline, at the section where the undu-

lation reaches the RVE surface (see Figure 5.10).

(a) Unflattened case, ff = hy (b) Flattened case, here ff = 0.5hy

(c) Flattened yarn micrograph outline (sample from Figure 5.4)

Figure 5.10: Model representation of a yarn compressed by a tool surface, ↑ indicates

the ff parameter used to indicate yarn flattening

Modification of the yarn cross section in this manner reduces the cross sectional area of

the yarn and raises Vy,f in that section.

Local increases in Vy,f are linked to both stiffness and strength through micromechanics

(in this case in the form of the ICAN micromechanics models as described in section

3.2.2), it locally increases the stress level in sections of the yarn close to the tool surface

(stiffness effect) and locally decreases strength in the same areas (strength effect).
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When looking at the relation of strength to Vf as represented in Figure 3.7 it is expected

that the strength effect will have a bigger impact. Whether or not this will result in a

qualitative change in the damage progression sequence (start damage onset in a different

position) in representative materials is the topic of the analysis in this section.

Three extreme cases are analysed, relating to high, medium and low values of ff .

The effects of ff on the geometry of a single layer (which is affected on both top and

bottom surface) is shown in Figure 5.11. It can be seen that the flattening affects both

the actual Vf as well as the location in the model where peak Vf is reached.

(a) ff = 0.07

(b) ff = 0.09

(c) ff = 0.11

Figure 5.11: Vf plotted on the 2D grid for three levels of flattening ff =

0.07, 0.09, 0.11, a quadratically distributed 15% sideways dropoff in Vy,f
is assumed (Vf,dr = 0.85)

When monitoring the transverse stress in the off-axis yarns (see Figure 5.12) it can be

seen that an increase in σxx of about 45% exists for ff = 0.11 to ff = 0.07. Figure

5.11 shows that in this location the fibre density Vy,f is also higher, leading to lower

transverse strength. The combination of these two factors would suggest a significantly

lower damage initiation load for the flattened composite than for the unflattened case.

When looking at Figure 5.13 it can be seen that damage initiates at about 15% lower

stress (see Figure 5.13(b)) in the flattened case. The fact that the effect is not very

pronounced is most probably due to a much lower bending effect in the 3D 2-layer unit

cell than in the 2D slice.
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(a) ff = 0.07

(b) ff = 0.09

(c) ff = 0.11

Figure 5.12: σxx plotted on the 2D grid for ff = 0.07, 0.09, 0.11, the colour scale is

adjusted to the σxx range that occurs in the transverse yarn, loading

parallel to x−axis

Conclusions

In this section the effect of flattening of yarns, as happens in compressed preforms where

rigid tooling surfaces are used, is investigated.

It is seen that using the current damage model this effect can account for a 15% change

in strength, as well as a 13% variation in stiffness. The change in stiffness corresponds

directly with the change in volume fraction. The strength variation is dominated by

the assumption that local yarn volume fraction Vy,f increases upon yarn compression,

which lowers the transverse strength.

The measure in which Vy,f drops off towards the side of the yarn is approached in this

section by taking a 15% as maximum and 0% as minimum (higher values have been

reported in literature, but this would lead to unrealistically high Vy,f values in the

middle of the yarn in the current model). No attempt was made to perform proper

statistical analysis of Vy,f dropoff on the specimens obtained. However, point checks

of the micrographs show that it is present. Inspection of micrographs also shows that

there is merit in investigating the effects of through yarn-thickness changes in Vy,f , see

Figure 5.14.
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(a) Stress strain curve for yarns with ff = 0.06, 0.1 in a 2-layer nested textile along

with experimental results of specimens spanning the same Vf range

(b) Close-up showing the damage steps for the stress strain curve given in Figure

5.13(a)

Figure 5.13: The effect of flattening of yarns in 3D analysis. Computed Vf values

are given, the higher Vf in the flattened case is due to the fact that

the same fibre area yarns are inserted in a smaller RVE. Experimental

curves for specimens (see Table 5.1) with similar Vf values are inserted

from Figure 5.2.
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(a)

(b)

Figure 5.14: Micrographs showing near optimally dense stacking of fibres adjacent to

a longitudinal yarn and increasingly loose stacking towards the free edge

of the yarn
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5.3.2 Yarn internal Vf distribution

Assumptions regarding internal Vf distribution of yarns can have a large impact on the

predicted stress distribution in the textile geometry as well as affecting the local strength

of a composite. The intra-yarn volume fraction Vy,f is coupled to the stiffness and

strength through micromechanics and, in the case of strength predictions, the relation

is increasingly strong towards higher values of Vy,f , as was illustrated in Figure 3.7.

This phenomenon has been reported earlier by Koissin, Ivanov and Lomov [44]. It can

be seen in Figure 5.15 that the current specimens also show a different Vy,f nearer the

side of the yarn than in the center.

Figure 5.15: Micrograph of a tow cross section where inter-fibre spacing increases

towards the tow end (i.e. Vy,f drops off)

Because of the difficulty associated with systematic image analysis of such pictures,

as well as the high picture resolution needed to obtain accurate results, the problem

is handled by assuming a range (from 0% dropoff to 15% dropoff) and evaluating the

effect this has on mechanical properties.

Damage initiation: The effects of different Vf distribution on the stress distribution

is illustrated in 2D in Figure 5.16, which takes a slice from the textile model shown in

Figure 5.16(a). The slice shows the point where the sides of transverse yarns meet as

they cross over. It can be seen here that peak stress is distributed more evenly in the

case of a larger Vf,dr. Coupled with higher local strength (since lower local Vf ) this

would lead to the prediction that, dependent on the assumed Vy,f distribution, damage

could initiate first in the middle of the transverse yarns (Vf,dr higher) or in the transverse

yarns at the crossover.
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(a) Textile geometry, analysis is done on the inter-

section of the geometry with the plane y = 2

(b) 0% dropoff

(c) 15% dropoff (d) 30% dropoff

Figure 5.16: 2D plane strain analysis of crossover geometries with different Vf dis-

tribution. The colour scale is adjusted to the stress range present in

the yarn. It can be seen that the stress concentration factor is greatly

lowered by having a sideways dropoff in Vf within the yarn. Loading

direction parallel to the x−axis.

3D analysis of the composite confirms this effect (see Figure 5.18) but it is less pro-

nounced than in the 2D analysis.

The point of damage initiation (see Figure 5.18) is seen to lie on the location indicated in

Figure 5.16 as a concentration in transverse yarn stress (the point “connection” between

two yarns).

Discussion This section shows that the effect of intra-yarn fibre volume fraction Vy,f
has a strong effect on predicted damage initiation and a significant effect on tensile

strength.

This result shows in 3D failure analysis but originates from the combination of increas-

ing local Vy,f and the corresponding decrease in transverse strength. The decrease in

transverse strength is based on stress concentration factors occurring in arrangements of

cylindrical fibres with uniform inter-fibre spacing. As can be seen from the micrographs

(Figures 5.14 and 5.15), this simplification is not quite representative of actual fibre

arrangements.

In particular, it is observed that randomness in fibre arrangement is more likely to occur

in more loosely stacked fibres, and that such randomness will also have a detrimental

effect on transverse strength (since it will result in smaller minimum gap size between
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(a) Vf,dr = 0% shows a 5% decrease in strength compared to Vf,dr = 15%

(b) Vf,dr = 0% relates to 50% earlier onset of damage

Figure 5.17: Effects of Vf dropoff on the stress strain response
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(a) Vf,dr = 15%

(b) Vf,dr = 0%

Figure 5.18: Integration point damage (transverse tow damage mechanism) given for

Vf,dr = 0.85, 1.0. Both plots show damage variable D ranging from 0

to 1 (first loadstep). It can be seen that in the Vf,dr = 15% case the

area of high failure index is wider and the middle of the yarn is closer

to initial damage.

the fibres, resulting in higher stress concentration factors).

No attempt has been made to incorporate the effect of higher randomness in loosely

stacked fibres on mechanical properties into the simulations. Should this be done it

could take the form of an addition to the micromechanics models.
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5.3.3 Inter-yarn spacing

The inter-yarn spacing can be seen to have significant effect on the intensity of the stress

concentration that dominates damage initiation in transverse yarns (interfering with the

effect of Vf distribution as shown in section 5.3.2).

2D results are given for three values of gh in Figure 5.19. The stress concentration

factor seen in the 2D analysis is about 15% (increase in stress for the sharper yarns),

relating to the same grid size and material sampling rate, as well as the same Vf,dr (this

is explicitly noted since in section 4.1.2 it is concluded that the stress level is strongly

mesh size dependent).

(a) gh = 0.1

(b) gh = 0.5

(c) gh = 1.0

Figure 5.19: Stress concentration reduction as a function of increased inter-yarn spac-

ing. σ11 is given for loading parallel to the x−axis.

3D analysis for the same textile (see Figure 5.20) shows that the sharper yarn shape

gains about 6% in strength for a 12% increase in volume fraction.
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(a) Strength marginally higher in the low gh scenario

(b) Initial damage occurs at the same stress level for gh = 0.1, 0.5

Figure 5.20: Two values of gh analysed in 3D axial tension, the models are normalised

by maximum Vy,f . For this reason there is a significant difference in Vf .

The damage initiation point as well as failure are predicted at practically

the same stress level.
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5.4 Nesting and phase shifting

Nesting is the phenomenon that occurs when surface undulations of two layers inter-

lock and the stack thickness becomes thinner than the summation of thicknesses of the

individual layers. The degree to which this can occur is dependent on the phase shift

between the two layers which is denoted by γ = [γx, γy] being the phase shift in x and y

direction respectively (given in terms of λ which is the undulation length in the textile

at hand). In Figure 5.21 three configurations with different phase shifts are given.

From geometric inspection of textiles it follows that “simpler” textiles (such as plain

weaves) have more scope for nesting than satin or twill woven textiles.

The effect that is illustrated in the results from a plane strain analysis presented in

Figure 5.22, where stress (σxx) contours are given for two levels of nesting.

(a) γx, γy = 0, 0 (b) γx, γy = 0.25, 0.25

(c) γx, γy = 0.5, 0

Figure 5.21: Nested plain weave textile in 3 different relative layer configurations as

given through the phase shift variables γx, γy as given in Table 3.1.

5.4.1 Bending effects

Bending effects related to nesting work in two ways:

1. Nesting affects the thickness of multilayer laminates which affects the bending

stiffness

2. Waviness in yarns underlying the nesting can be synchronous or mirrored in adja-

cent layers. In the case of mirroring the out-of plane terms of two deforming layers
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(a) 30% dropoff, no nesting (b) 0% dropoff, no nesting

(c) 30% dropoff, half nesting (d) 0% dropoff, half nesting

(e) 30% dropoff, full nesting (f) 0% dropoff, full nesting

Figure 5.22: σ11 contours at a slice taken from geometry at y = 1.5, it can be seen that

local stress intensity in the bundles rises as layers get closer together.

The loading is applied parallel to the x−axis.

work cancel each other out, while in the synchronous case the resulting composite

will be wavy (locally bent). This phenomenon was also observed by Ishikawa and

Chou [88].

Bending effects diminish for larger stacks of textile layers; however, since the experiments

related to this thesis were performed using 2-layer specimens, the effects are present.

Table 5.3 gives the results of a factorial study on the relative strength of Vf,dr and hn

(see Table 3.1), showing that the case of a 2-layer textile the effect of Vf,dr is expected

to be far stronger than the effect of hn.
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(a) Nested configuration showing about 10% higher tensile strength for

15% higher Vf

(b) Stiffness gain (17%) is approximately proportional to the gain in Vf

Figure 5.23: Difference between fully nested and unnested 2-layer composite, experi-

mental data covering the same Vf range shown alongside. It is seen that

nesting increases the Vf without increasing Vy,f . The difference stiffness

and failure stress both coincide with the increase in Vf .
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5.5 Conclusions

This chapter describes an attempt to match up experimental, geometric and computa-

tional results for one textile.

Since full statistical evaluation of such data is not within the scope of this thesis the

goal of this study has been qualitative and can be summarised as follows:

Given a geometric variation of the textile structure as obtained through microscopy,

does the model produce stiffness and strength predictions in a range similar to the exper-

imental scatter? Parametric studies were done using the AMR based method devised

and demonstrated in Chapters 3 and 4. In addition the phenomena were qualitatively

analysed using 2D models.

• Within the constraints of the study presented (fixed level of refinement etc.) the

computational results follow the test results closely.

• The variation of properties in the computational studies results in all cases in the

expected qualitative change (as predicted from doing 2D analysis on key “slices”

of the textile) in response with regards to strength and stiffness. I.e. 2D analysis

indicates that higher values of Vf,dr should result in higher strength values of the

composite, 3D damage analysis replicates this.

• The point of damage initiation predicted by the model varies by too large a factor

to accurately represent the material in testing. From the numerical studies in

Chapter 4 it is shown that converged stress values cannot be obtained in 3D for

the geometries under consideration. It appears that the use of a nonlocal stress

measure does not solve this problem.
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Chapter 6

Discussion and conclusions

6.1 Discussion

The research described in this thesis was set up to overcome or rather avoid a bottleneck

in mesoscale mechanics modelling of textile composites. As indicated in the literature

review there are a host of methods available to solve textile composites mechanics prob-

lems, some aimed at efficiently solving complex textiles over larger domains (Mosaic

and Binary models), others aiming to obtain a good qualitative match with observed

damage propagation (direct solution combined with conformal meshing of the full tex-

tile structure). The latter type of models tends to rely on automatic mesh generators

(as found in commercial FE preprocessors) to obtain meshes that represent the textile

structure.

The problem addressed in this thesis originates from the fact that for realistic textile

geometries (i.e. textiles with realistically high Vf ) such meshes are hard to obtain, and

impossible to obtain in an automatic off-line manner without introducing artificial mod-

ifications to the textile geometry. Automatic modelling is deemed essential in parameter

studies, stochastic analysis as well as multiscale modelling. Robust methods have been

reported (AMR and Domain Superposition based) but not in conjunction with geomet-

rically realistic and general textile models and damage models. This thesis describes

implementation of an AMR based method in such a manner that the resulting system

is fully automatic and could (computer hardware permitting) converge to arbitrary ac-

curacy. This has been demonstrated on a parametrically defined single- and multilayer

textile and satisfactory agreement between modelling and experiment has been achieved

in predicting strength of a woven composite, loaded in the fibre direction. It was seen

that although the stiffness behaviour of an RVE converges the local stress terms don’t

converge within reasonable computational cost, in particular when the problem con-
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tains mixed-material elements (which is invariably the case). This was dealt with by

introducing a nonlocal stress measure which was used as input to the damage model.

If left “untreated”, for realistic yarn and matrix strength values, transverse yarn damage

occurs prematurely in elements that contain integration points of both yarn and matrix

type. It can therefore be concluded that a reasonable solution of the RVE can only

be reached when the yarn has load-bearing capability after damage initiation, and that

damage detection readings in such points cannot be trusted. It is left for later work to

investigate whether a satisfactory treatment can be formulated for this issue.

When observing textile modelling methods in a more general sense, it can be seen

that assumptions have to be made in a number of stages between obtaining key textile

parameters and generating a numerical solution of the mechanical response. This is

shown schematically in Figure 6.1.

Textile properties

yarn geometry

phase shifting

nesting

. . .

Constituent properties

stiffness

strength

. . .

→

→

Geometric model

path variables

section model

geometric tolerance

. . .

Micromechanics

stacking

iso stress/strain

. . .

→

→

Numerical model

element size

element order

interface model

. . .

Damage model

initiation

degradation

. . .

→

↗

Solver

load/time steps

element order

solver tolerance

. . .

Figure 6.1: Physical and numerical parameters and assumptions which relate to the

outcome of textile composites mechanics analyses.

The current method, in the scheme presented in Figure 6.1 puts emphasis on geometric

accuracy and trails the detailed conformal meshing based methods such as the approach

taken by Lomov et al [43] in accuracy of the analysis of local stresses in the RVE. How-

ever, also in the cases for which direct (conformal) geometric models can be constructed,

tradeoffs of this type are made.

In the opinion of the author the current method’s capability to generate large num-

bers of datasets automatically, in combination with TexGen features with regards to

automatically constructing textile geometries would allow for a more systematic way of

datamining the “design space” of textile variables and potentially decoupling the nu-

merical and other modelling influences from the physical ones which are the object of

study.
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6.2 Conclusions

6.2.1 Modelling methodology

The current method is dependent on local (element) averaging of material properties

to deal with all field variables that affect local stiffness (material type, Vy,f and yarn

orientation). The following can be concluded about the behaviour of such mixed-material

elements in simulations:

1. Accuracy of the global RVE stiffness response can be improved efficiently by in-

creasing the number of intra-element material sampling points (efficient because

the lookup of properties is fast, scales linearly, and does not affect the FE solver

time).

2. The local stiffness response inside the RVE can also be improved by increasing

the number of intra-element material sampling points. As a result, the strain

distribution in the RVE improves.

3. The stress distribution in elements which contain stiffness contributions from mul-

tiple materials does not converge as a function of either mesh refinement or intra-

element material sampling. This holds for both the averaged case (sum stiffnesses

and assign single D matrix to the element) and the gauss point case. There are a

number of factors contributing to this:

- The presence of a geometric singularity (sharp corner) in lenticular yarn

shapes, this problem has been examined in literature (for FE analysis a region

containing a crack tip) by using a nonlocal stress measure. This approach

has been taken here as well.

- A fairly arbitrary distribution of matrix/yarn material inside the cell, de-

pending on the location, mesh refinement level and geometric parameters of

the textile.

6.3 Recommendations for future work

• Additional validation and numerical testing of the nonlocal stress measure used

to avoid problems relating to poor convergence of local stress terms. Although

the damage model produced a reliable response based on nonlocal stress results

when comparing to a small set of experiments (see Chapter 5), its performance as
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a function of mesh refinement, geometric aspect ratio and resin-fibre stiffness ratio

are unknown.

• Formulate and implement strain or energy based failure criteria for mixed-material

elements. Possibly operating on nonlocal measures, possibly resolving geometric

singularity issues by including microscale data (which does not have this singular-

ity).

• The use of the current method in a nested manner, with the option of expanding

the yarn into filaments for the cases where filaments are relatively large compared

to other geometric features, meaning that it would not be valid to assume treat

tows as homogeneous entities (such information could come from the filament

modelling tool described by Sherburn in his thesis [11]).

• Performance optimisation of the current method, with particular focus on:

– The effect of the treatment of boundary conditions on convergence in iterative

solvers.

– The use of AMG solvers.

– The parallelisation of all aspects of the textile analysis, not just the matrix

solution but also matrix assembly and material querying, in addition to for-

mulating distributed memory versions of integration point data structures.

• Postprocessing of large numbers of complex datasets has not been a focal point

in the current work, in particular the inclusion of simulation results in stochas-

tic macroscale material parameters would be key to bringing the outcome of the

current research into composite design practice.

• Explore the practical use of the current method as a substructuring method on

matrix failure dominated cases and general geometries.

As an example a notched specimen sample was analysed using a non-conformal

tetrahedral mesh (see Figure 6.2). Although it is clear from earlier conclusions that

the stress solution in this problem cannot be converged, the strain distribution

(Figure 6.2(b)) looks good qualitatively as does the evolution of matrix damage

(excluding the damage initiated in the corners of the modelled cutout).

This shows that if a theoretically sound “treatment” of damage in mixed-material

elements were devised, this would open up a large class of problems for analysis

(any volume in which a textile geometry and a volume mesh can be defined, with

no connectivity requirement between the two).
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(a) Notched tensile specimen geometry and

schematic drawing of the model and applied load-

ing.

(b) Tetrahedral mesh showing the strain distribu-

tion along with the underlying TexGen textile ge-

ometry

(c) (d) (e)

(f) (g) (h)

Figure 6.2: Example analysis where an 8-layer RT600 textile oriented in the

bias direction is shown along with predicted evolution of the matrix

damage variable D, only the gauss points in which D > 1 (damage

is initiated) are shown.

6.4 Outlook

At the time of writing this thesis, composites are well established structural materials

of which very large quantities are processed each year by the aerospace, automotive and

the wind energy industry. In these industries it is commonplace to perform extensive
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analysis and optimisation before first series production takes place.

This situation exists because the finite element simulation of laminate structures has

gone from a specialist to a routine activity.

What this leads to is expansion of the overall simulation capability in a number of

directions:

• Higher fidelity analysis

– Additional physics (nonlinear, multiphysics etc)

– Increased resolution

– Multiscale modelling

• Increasingly wide optimisation scopes in design problems

• Stochastic modelling

All of these activities are aimed at reducing uncertainty in design, therefore allowing the

designer to get closer to the limit, i.e. reduce the safety margin and still be confident of

a well-performing design.

Such models have material data as a basis, which, in the case of textile composites, is

effectively meso-scale data. This means that higher confidence in material data quickly

results in improved designs of composite structures (i.e. lower cost of energy, higher

vehicle safety etc).

It is in this light that fully automatic approaches to textile modelling can be seen to

have value, since very large databases of textile properties can be generated allowing

the use of statistical tools to discover interactions that may not be apparent and remove

effects that are not intended.
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Appendix A

Additional validation

In addition to the cases described in Chapter 5, validation analyses were also performed

against a set of bias direction tensile test cases documented in the PhD work of Jonathan

Crookston (see [1]).

This work is documented here rather than in Chapter 5 because no related geometric

analysis was performed. In addition, tensile specimens were cut from 8-layer plaques, so

any effects caused by out-of-plane bending in the cases considered in Chapter 5 would

not be present in the experiments shown here.

These cases are documented in [89] and [90], where it was seen that the behaviour can be

described with the same damage model but that the results are sensitive to the number

of layers modelled (size of the RVE) and slight variations in the material degradation

settings. The smallest RVE considered is shown in Figure A.1.
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Appendix A. Additional validation

(a) Bias direction loading (b) AMR mesh

(c) Strain distribution (d) Stress strain curve for various damage variable

settings

Figure A.1: RT600 textile loaded in the bias direction experiments and modelling.

It is shown that the result in this case is particularly sensitive to the

variables in the damage model with regards to the load-bearing capability

of the matrix material after initial damage. Reproduced from [91].

The damage variable D is tracked for the various loading stages, this is shown in Figure

A.2 from a top view perspective (this is why the damage pattern is not symmetric).
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Appendix A. Additional validation

(a) Initial damage (b) (c)

(d) (e) (f)

(g) Final failure

Figure A.2: Damage variable D normalised so that red indicates fully damaged ma-

terial.
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Appendix B

Querying textile models using the

TexGen API

Modelling methods described in this thesis are dependent on efficient interrogation of

textiles for local properties such as yarn orientation and Vy,f . This is done through the

TexGen API which can be accessed from C++.

An example is given here where a grid of mpoints3 points is generated for each cell and

added to a point list for querying in TexGen through the GetPointInformation call.

Note that any code examples given here use the LibMesh API for the handling of meshes.

Not all code is reprinted here, only key components of the mechanical analysis tool and

textile composite preprocessing tool are printed.

po in t s . r e s i z e ( mesh . n a c t i v e e l e m ()∗mpoints∗mpoints∗mpoints ) ;

MeshBase : : e l e m e n t i t e r a t o r e l = mesh . a c t i v e e l e m e n t s b e g i n ( ) ;

MeshBase : : e l e m e n t i t e r a t o r e l end = mesh . a c t i v e e l ement s end ( ) ;

for ( ; e l != e l end ; e l ++){

Elem∗ elem = (∗ e l ) ;

for (unsigned int j =0; j<mpoints;++j ){

for (unsigned int k=0;k<mpoints;++k ){

for (unsigned int l =0; l<mpoints;++ l ){

const Node nd0 = (∗ elem−>get node ( 0 ) ) ;
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const Node nd6 = (∗ elem−>get node ( 6 ) ) ;

f loat mp = ( f loat ) mpoints ;

po in t s [ i ++] = TexGen : :XYZ(

nd0 (0 ) + ( 1 . / ( 2 . ∗mp)+(1.0/mp)∗ j )∗ ( nd6(0)−nd0 ( 0 ) ) ,

nd0 (1 ) + ( 1 . / ( 2 . ∗mp)+(1.0/mp)∗k )∗ ( nd6(1)−nd0 ( 1 ) ) ,

nd0 (2 ) + ( 1 . / ( 2 . ∗mp)+(1.0/mp)∗ l )∗ ( nd6(2)−nd0 ( 2 ) )

) ;

}

}

}

}

t e x t i l e−>GetPointInformation ( points , p o i n t i n f o ) ;

A test running this algorithm on a plain weave textile shows that scaling of CPU time

with the number of points looked up is linear (see Figure B.1).
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Figure B.1: CPU time needed for lookup of npoints points in a plain weave textile.

The graph shows linear scaling, the test was run on one core of a AMD64

athlon 2.2 Ghz dual core machine. The meshes used are 13 to 163 with

material sampling 113.
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Appendix C

Analysis of textile composites in

Abaqus/CalculiX

In this appendix the usage of CalculiX (the input format of which is compatible with

Abaqus) is described for elastostatic analysis of textile composites using non-conformal

meshing (for information on CalculiX, refer to [83]). What has been developed is a

basic preprocessor that can produce a structured mesh with locally averaged properties

for each element according to the local textile structure. This method is used for the

2D and 3D analyses in Chapter 4 and 5. The reason for the use of Abaqus/CalculiX

is the wide range of phenomena for which there are adequate models implemented in

these packages. This drastically shortens the development time if models like plasticity,

thermal-mechanical coupling are needed.

The input format for Abaqus is described in the Abaqus User Manual [8], this section

is about generation of grid averaged FE models.

In Appendix B it is shown how textile models can be interrogated inside C++ programs,

this data is used .

C.1 Property averaging

This is used to produce FE input decks for uniform meshes. The code shown in Listing

C.2 shows material property averaging implemented on all terms of the rotated material

stiffness matrix D, which is written to Abaqus in the following format:

*MATERIAL,NAME=5

*ELASTIC,TYPE=ANISOTROPIC

91.4953,5.08156,10.6616,5.08439,5.55388,10.6617,0,0
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0,3.44129,0.420121,-0.00249254,0.00691614,0,3.44417,0

0,0,0.00469318,0,2.55389

*EXPANSION,TYPE=ANISO

0.000376759,0.000428713,0.000428711,0,-2.73873e-07,0

Listing C.1: Program listing showing property averaging for mpoint3 sized stencil.

for (unsigned int j =0; j<n po in t s ;++ j ){

unsigned int nid = n po in t s ∗ i e l em+j ;

int mate r i a l = p o i n t i n f o [ nid ] . iYarnIndex ;

const double vf = p o i n t i n f o [ nid ] . dVolumeFraction ;

tangent = p o i n t i n f o [ nid ] . YarnTangent ;

DenseVector<Real> D point ( 2 1 ) ;

D point . ze ro ( ) ;

DenseMatrix<Real> alph ( 3 , 3 ) ;

alph . ze ro ( ) ;

double alpha [ 3 ] ;

i f ( mate r i a l==−1){

double e [ 3 ] , g [ 3 ] , nu [ 3 ] ;

for (unsigned int k=0;k<3;++k ){

e [ k ] = Ematrix ;

g [ k ] = Ematrix /(2∗(1+ numatrix ) ) ;

nu [ k ] = numatrix ;

}

micromech−>ge t matr ix the rma l expans ion ( alpha ) ;
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for (unsigned int k=0;k<3;++k ) alph (k , k ) = alpha [ k ] ;

f i l l s t o r a g e ( D point , e , g , nu ) ;

} else {

i s m a t r i x = fa l se ;

e l em vf += vf ;

TexGen : :XYZ y , z ;

make carth se t ( tangent , y , z ) ;

double e [ 3 ] , g [ 3 ] , nu [ 3 ] ;

micromech−>s e t f i b r e v o l u m e f r a c t i o n ( v f ) ;

micromech−>g e t e l a s t i c m o d u l i ( e , g , nu ) ;

micromech−>ge t the rma l expans ion ( alpha ) ;

DenseVector<Real> d f u l l ( 2 1 ) ;

d f u l l . z e ro ( ) ;

double unrot [ 3 ] [ 3 ] [ 3 ] [ 3 ] ;

f i l l s t o r a g e ( d f u l l , e , g , nu ) ;

f i l l t e n s o r ( unrot , d f u l l ) ;

DenseMatrix<Real> R( 3 , 3 ) ;

for (unsigned int k=0;k<3;++k ) alph (k , k ) = alpha [ k ] ;

// g e t r o t a t i o n matrix

for (unsigned int k=0;k<3;++k ){

R(k , 0 ) = tangent [ k ] ;
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R(k , 1 ) = y [ k ] ;

R(k , 2 ) = z [ k ] ;

}

alph . l e f t m u l t i p l y (R) ;

alph . r i g h t m u l t i p l y t r a n s p o s e (R) ;

// g e t transformed D matrix

for (unsigned int i =0; i<21;++ i ){
// t h i s i s taken from C a l c u l i x code ,

// s i n c e we are t r y i n g to w r i t e

// ccx input i t i s good to a l r e a d y

// have the a p p r o p r i a t e ord er in g in use

const unsigned int j 1 = t l [ i ] [ 0 ] ;

const unsigned int j 2 = t l [ i ] [ 1 ] ;

const unsigned int j 3 = t l [ i ] [ 2 ] ;

const unsigned int j 4 = t l [ i ] [ 3 ] ;

for (unsigned int j =0; j<3;++j )

for (unsigned int k=0;k<3;++k )

for (unsigned int l =0; l<3;++ l )

for (unsigned int m=0;m<3;++m)

D point ( i )+=R( j1 , j )∗R( j2 , k )∗R( j3 , l )∗R( j4 ,m)∗
unrot [ j ] [ k ] [ l ] [m] ;

}

}

D. add ( 1 . / ( f loat ) n po ints , D point ) ;

Alpha . add ( 1 . / ( f loat ) n po ints , alph ) ;

120



Appendix C. Analysis of textile composites in Abaqus/CalculiX

}
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C.2 Periodic boundary conditions

Here an algorithm is given that formulates periodic boundary conditions for textiles

bounded by rectangular domains. The method returns the *EQUATION terms that are

used in the Calculix input deck.

Listing C.2: Program listing showing property averaging for mpoint3 sized stencil.

struct eqn{

int bot ;

int top ;

int d ;

} ;

bool compare eqn ( eqn f i r s t , eqn second ){

return f i r s t . bot< second . bot ;

}

std : : s t r i n g g e t p e r i o d i c b c s (Mesh& mesh , CTexti le ∗ t e x t i l e ){

TexGen : :XYZ bot , top ;

// g e t the domain l i m i t s

std : : s t r i ng s t r eam perbcs ;

const CDomain∗ domain = t e x t i l e−>GetDomain ( ) ;

( ( CDomainPlanes ∗) domain)−>GetBoxLimits ( bot , top ) ;

BoundaryMesh bounds ( 3 ) ;

mesh . boundary info−>sync ( bounds ) ;

s td : : vector<eqn> ceqns ;

for (unsigned int d i r =0; d ir<3;++d i r ){
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std : : vector<Node> nd0 , nd1 ;

for (unsigned int i =0; i<mesh . n nodes ();++ i ){

Node& nd = mesh . node ( i ) ;

i f (nd( d i r )<bot [ d i r ]+TOL){

nd0 . push back (nd ) ;

} else i f (nd( d i r )>top [ d i r ]−TOL){

nd1 . push back (nd ) ;

}

}

s o r t ( nd0 . begin ( ) , nd0 . end ( ) ) ;

s o r t ( nd1 . begin ( ) , nd1 . end ( ) ) ;

// we want to add the equat ion top = bot +d or bot−top+d=0

for (unsigned int i =0; i<nd0 . s i z e ();++ i ){

eqn a ;

a . bot = nd0 [ i ] . id ()+1;

a . top = nd1 [ i ] . id ()+1;

a . d = mesh . n nodes ()+ d i r +1;

ceqns . push back ( a ) ;

}

}

s o r t ( ceqns . begin ( ) , ceqns . end ( ) , compare eqn ) ;
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for (unsigned int i =0; i<ceqns . s i z e ();++ i ){

for (unsigned int k=1;k<=3;++k ){

i f ( i>0 && ceqns [ i ] . bot != ceqns [ i −1] . bot ){

perbcs<<”∗EQUATION\n3”<<std : : endl ;

perbcs<<ceqns [ i ] . bot<<” , ”<<k<<” ,1 , ”<<ceqns [ i ] . top

<<” , ”<<k<<” ,−1 ,”<<ceqns [ i ] . d<<” , ”<<k<<” ,1 ” <<std : : endl ;

}

}

}

return perbcs . s t r ( ) ;

}
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C.3 Implementation of a parametric textile model using

TexGen

The concept of the parametric textile model is described in 3.3, here the implementation

using the TexGen python interface is given.

The input argument for the textile generation is a parameter structure written as follows

(no representative values):

tex param = {
’ l ength ’ : 4 . 05 , \
’ he ight ’ : 0 . 5 , \
’ vgap ’ : 0 . 02 ,\
’ hgap ’ : 0 . 1 ,\
’ f i b r e a r e a ’ : 0 . 25 ,\
’ v f d r o p o f f ’ : 0 . 85 ,\
’ numlayer ’ : 2 ,\
’ r e l z o f f s e t ’ : 0 . 87 ,\
’ x gamma ’ : 0 . 25 ,\
’ y gamma ’ : 0 . 25 ,\
’ f l a t v a l u e ’ : 0 . 19 ,\
’ r o t a t e ’ : [ 0 , 0 ] , \
’ domains ize ’ : [ 0 . 8 , 0 . 8 ] , \
’ weavesty le ’ : ’ p l a i n ’ }

The last lines of the textile generator show that only textiles without interference are

returned. This is done because in that case properties looked up in a point inside the

overlapping region will be dependent on the yarn ordering, and hence result in spurious

output (like E11 6= E22 for a balanced weave).

def make t ex t i l e ( t pa r ) :

l ength = t par [ ’ l ength ’ ]

he ight = t par [ ’ he ight ’ ]

r o t = t par [ ’ r o t a t e ’ ]

s t y l e = t par [ ’ weavesty le ’ ]

i f s t y l e==’ p l a i n ’ :

weave pattern = [ [ 0 , 0 ] , [ 1 , 1 ] ]
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e l i f s t y l e==’ 5 s a t i n ’ :

weave pattern = [ [ 0 , 0 ] , [ 1 , 2 ] , [ 2 , 4 ] , [ 3 , 1 ] , [ 4 , 3 ] ]

else :

sys . e x i t ( ’ no v a l i d weave s t y l e s p e c i f i e d ’ )

tex = CTextileWeave2D ( l en ( weave pattern ) ,

l en ( weave pattern ) , l ength ∗0 . 5 , he ight )

tex . SetGapSize ( t pa r [ ’ vgap ’ ] ) ;

for i in weave pattern :

tex . SwapPosition ( i [ 0 ] , i [ 1 ] ) ;

tex . SetYarnWidths ( l ength ∗.5− t pa r [ ’ hgap ’ ] ) ;

tex . SetYarnHeights ( he ight ∗ . 5 −0 .01) ;

f d i s t = CFibreDistribution1DQuad ( t pa r [ ’ v f d r o p o f f ’ ] )

yarns = tex . GetYarns ( )

addyarns = [ ]

y s i z e = len ( yarns )

z o f f s e t = 0

# i t e r a t e over the number o f added l a y e r s

for i in range ( t pa r [ ’ numlayer ’ ]−1) :

# compute how f a r to t r a n s l a t e the yarns

z o f f s e t += he ight ∗ t pa r [ ’ r e l z o f f s e t ’ ]

t rans = XYZ( t par [ ’x gamma ’ ] [ i +1]∗ l ength ,

t pa r [ ’y gamma ’ ] [ i +1]∗ l ength ,

z o f f s e t ) ;
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tex2 = CTextileWeave2D ( tex )

tex2 . Trans late ( t rans )

tex2 . Rotate (WXYZ( rot [ i +1]∗PI , 0 , 0 ) )

addyarns . append ( tex2 . GetYarns ( ) )

i f i == t par [ ’ numlayer ’ ]−2:

tex2 . FlattenYarns ( t pa r [ ’ f l a t v a l u e ’ ] , 1 ) ;

# now f l a t t e n the bottom l a y e r

i f t pa r [ ’ numlayer ’ ]==1:

tex . FlattenYarns ( t pa r [ ’ f l a t v a l u e ’ ] , 0 )

else :

tex . FlattenYarns ( t pa r [ ’ f l a t v a l u e ’ ] ,−1)

print t pa r [ ’x gamma ’ ] [ 0 ] , t pa r [ ’y gamma ’ ] [ 0 ]

t rans = XYZ( t par [ ’x gamma ’ ] [ 0 ] ∗ l ength ,

t pa r [ ’y gamma ’ ] [ 0 ] ∗ l ength ,

0 ) ;

tex . Trans late ( t rans )

tex . Rotate (WXYZ( rot [ 0 ] ∗ PI , 0 , 0 ) )

# then add yarns from the o th er l a y e r s

for i in addyarns :

for j in range ( l en ( i ) ) :

yarns . append ( i [ j ] )

# loop over a l l t he o l d and new ( t r a n s l a t e d ) yarns to a s s i g n a f i b r e

# d i s t r i b u t i o n

nyarns = [ ]
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for yarn in yarns :

yarn . As s i gnF ib r eD i s t r i bu t i on ( f d i s t )

yarn . SetFibreArea ( t pa r [ ’ f i b r e a r e a ’ ]∗1 e−6)

yarn . SetReso lut ion ( t pa r [ ’ s e c t i o n r e s o l u t i o n ’ ] )

nyarns . append ( yarn )

tex . DeleteYarns ( )

for i in nyarns :

tex . AddYarn( i )

z f l a t = ( t pa r [ ’ he ight ’ ]/4− t pa r [ ’ f l a t v a l u e ’ ] )−0.5∗ t pa r [ ’ vgap ’ ]

tex . Trans late (XYZ(0 ,0 ,− z f l a t ) )

bot = XYZ(0 , 0 , 0 )

top = XYZ( length ∗ t pa r [ ’ domains ize ’ ] [ 0 ] ,

l ength ∗ t pa r [ ’ domains ize ’ ] [ 1 ] ,

he ight ∗(1+( t pa r [ ’ numlayer ’ ]−1)∗ t pa r [ ’ r e l z o f f s e t ’ ])−2∗ z f l a t )

domain=CDomainPlanes ( bot , top )

tex . AssignDomain ( domain )

np = tex . D e t e c t I n t e r f e r e n c e ( )

i f np>0:

print ’ t e x t i l e geometry conta in s i n t e r f e r e n c e ’

return 1

else :
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return tex
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Testing

It is noticed that the Instron machine used to perform tensile tests as used in Chapter 5

has a cycle of high-low stress measurement which results in a noisy signal when looking

at the derivative of the stress strain curve.

This is shown in Figure D.1, where the tangent modulus is computed over 1, 2, 4 and

8 samples. The local modulus dσ
dε is shown to reduce from early in the stress strain

domain. This corresponds to the global modulus σi−σ0
εi−ε0 as seen in Figure D.2.
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(a)
σi−σi−1
εi−εi−1

(b)
σi−σi−2
εi−εi−2

(c)
σi−σi−4
εi−εi−4

(d)
σi−σi−8
εi−εi−8

Figure D.1: Different measures of dσ
dε throughout the experiments, the max, min and

average values are for the specimens given in Table 5.1.
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Figure D.2: Average, maximum and minimum elastic modulus as obtained from spec-

imens as given in Table 5.1.
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D.1 Extensometer slippage

In tensile testing an extensometer is used to record specimen elongation up to 2% strain.

There are some cases where the outputs from the extensometer show sharp reverse

steps (see Figure D.3) occurring generally between ε > 0.015 to the cutout strain of

the extensometer ε = 0.02. This is attributed to slippage of the extensometer on the

specimen.

A simple correction algorithm is applied, essentially assuming the previous strain step

to hold during the “slipped” strain increment. This is implemented in the data reader

described in D.2.

Figure D.3: Negative strain steps attributed to extensometer slippage, only occurs

for ε > 0.015
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D.2 Analysis of tensile testing data from Instron

This section documents the use of legacy instron binary datafiles. The tensile testing

machine has an accompanying set of software that converts binary data into ASCII

but this software was written with such focus on preserving disc space that values are

rounded off quite severely.

The dataset reader is given here for convenience.

#! / usr / b in /env python

from pylab import ∗
import Numeric as N

import array

import os

th i ck width = {\
’A1 ’ : ( . 8 7 , . 8 9 , 8 . 5 , 8 . 5 ) , \
’B9 ’ : ( 0 . 8 6 , 0 . 8 9 , 8 . 4 9 , 8 . 5 1 ) , \
’A8 ’ : ( 0 . 9 8 , 1 . 0 4 , 8 . 5 9 , 8 . 5 3 ) , \
’B1 ’ : ( 0 . 8 2 , 0 . 8 2 , 8 . 5 9 , 8 . 5 7 ) , \
’B3 ’ : ( 0 . 9 2 , 0 . 9 6 , 8 . 5 6 , 8 . 5 6 ) , \
’B11 ’ : ( 0 . 9 , 0 . 8 6 , 8 . 6 5 , 8 . 7 ) , \
’A11 ’ : ( 0 . 9 6 , 0 . 8 9 , 8 . 7 2 , 8 . 9 6 ) , \
’A4 ’ : ( 1 . 0 8 , 1 . 1 4 , 8 . 6 , 8 . 5 9 ) , \
’A7 ’ : ( 1 . 0 4 , 1 . 0 9 , 8 . 7 2 , 8 . 7 7 ) , \
’B5 ’ : ( 0 . 9 8 , 1 . 0 4 , 8 . 6 2 , 8 . 6 ) , \
’B8 ’ : ( 0 . 9 1 , 0 . 9 6 , 8 . 6 5 , 8 . 6 7 ) , \
’A9 ’ : ( 0 . 9 2 , 0 . 9 5 , 8 . 6 8 , 8 . 6 5 ) , \
’B7 ’ : ( 0 . 9 9 , 0 . 9 5 , 8 . 6 5 , 8 . 6 4 ) , \
’A5 ’ : ( 1 . 1 , 1 . 1 6 , 8 . 5 9 , 8 . 5 9 ) , \
’A6 ’ : ( 1 . 0 9 , 1 . 1 4 , 8 . 4 9 , 8 . 4 9 ) , \
’B2 ’ : ( 0 . 8 5 , 0 . 8 9 , 8 . 5 1 , 8 . 5 0 ) , \
’B6 ’ : ( 0 . 9 7 , 0 . 9 8 , 8 . 5 9 , 8 . 5 9 ) , \
’A2 ’ : ( 0 . 9 4 , 0 . 9 7 , 8 . 5 5 , 8 . 5 6 ) , \
’A3 ’ : ( 1 . 0 1 , 1 . 0 6 , 8 . 5 1 , 8 . 5 1 ) , \
’L5 ’ : ( 1 . 4 7 , 1 . 4 , 1 0 . 1 7 5 , 1 0 . 1 7 ) \
, ’ L14 ’ : ( 1 . 4 9 , 1 . 5 4 , 1 0 . 1 5 , 1 0 . 1 1 ) \
, ’ S8 ’ : ( 1 . 2 3 , 1 . 2 2 5 , 1 0 . 1 7 , 1 0 . 0 1 ) \
, ’ L17 ’ : ( 1 . 5 4 , 1 . 5 1 , 1 0 . 1 3 , 1 0 . 1 ) \
, ’L9 ’ : ( 1 . 2 9 , 1 . 3 , 1 0 . 1 , 1 0 . 0 2 ) \
, ’ S18 ’ : ( 1 . 1 4 , 1 . 1 5 5 , 1 0 . 1 3 5 , 1 0 . 1 5 ) \
, ’ L20 ’ : ( 1 . 3 1 , 1 . 3 1 , 1 0 . 0 5 , 1 0 . 1 9 ) \
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, ’ S13 ’ : ( 1 . 2 7 , 1 . 2 1 , 1 0 . 1 5 , 1 0 . 0 2 ) \
, ’L6 ’ : ( 1 . 4 0 5 , 1 . 3 8 , 1 0 . 1 3 , 1 0 . 1 6 ) \
, ’ S1 ’ : ( 1 . 1 6 , 1 . 2 , 1 0 . 4 4 , 1 0 . 1 2 ) \
, ’ S3 ’ : ( 1 . 2 1 , 1 . 2 6 , 1 0 . 1 3 , 1 0 . 1 3 ) \
, ’L4 ’ : ( 1 . 4 2 , 1 . 3 8 5 , 1 0 . 1 5 , 1 0 . 1 8 ) \
, ’ S2 ’ : ( 1 . 2 3 , 1 . 2 1 , 1 0 . 1 3 , 1 0 . 1 4 ) \
, ’ L12 ’ : ( 1 . 4 4 , 1 . 4 5 , 1 0 . 1 7 , 1 0 . 1 6 5 ) \
, ’ S4 ’ : ( 1 . 1 8 , 1 . 2 1 , 1 0 . 0 5 , 1 0 . 1 5 ) \
, ’ S20 ’ : ( 1 . 2 4 , 1 . 2 5 5 , 1 0 . 1 3 , 1 0 . 0 4 ) \
, ’ S14 ’ : ( 1 . 2 3 5 , 1 . 1 4 , 1 0 . 1 4 , 1 0 . 2 ) \
, ’ Z1 ’ : ( 1 . 2 6 , 1 . 2 5 , 1 0 . 1 6 , 1 0 . 1 6 ) }

keys = th i ck width . keys ( )

keys . s o r t ( )

for i in keys :

l i n e = i [0 ]+ ’ & ’+i [ 1 : ]

for j in range ( 4 ) :

l i n e += ’ & ’+s t r ( th i ck width [ i ] [ j ] )

print l i n e , ’ \\\\ ’

gauge l ength = 0.05

area = 0.01 ∗ 0 .0014

r h o g l a s s = 2600

n laye r = 2

a r e a l d e n s i t y = 600

dd i r = os . getenv ( ”HOME”)+”/svn/temp/ exper iments / data /”

def g e t p l o t d a t a ( i n s t r o n s t r a i n s w i t c h c o r r e c t i o n=False ,\
c o r r e c t n e g s t r a i n=False , l i n e s t r e s s=False ) :

f i l e s ={ddi r+’ S1 .MRD’ : [ ’L5 ’ , ’ L14 ’ , ’ S8 ’ , ’ L17 ’ , ’L9 ’ , ’P12 ’ ] ,\
ddi r+’ S2 .MRD’ : [ ’ S18 ’ , ’ L20 ’ , ’ S13 ’ , ’L6 ’ , ’ S1 ’ , ’ S3 ’ , ’L4 ’ , ’ S2 ’ , ’P12 ’ , ’P12 ’ ] ,\
ddi r+’ S3 .MRD’ : [ ’ L12 ’ , ’ S4 ’ , ’ S20 ’ , ’ S14 ’ , ’P14 ’ , ’ P1243 ’ ] , \
ddi r+’ S4 .MRD’ : [ ’A1 ’ , ’B9 ’ , ’A8 ’ , ’B1 ’ , ’B3 ’ , ’B11 ’ , ’A11 ’ , ’A4 ’ , ’A7 ’ ] ,\
ddi r+’ S5 .MRD’ : [ ’B5 ’ , ’B8 ’ , ’A9 ’ , ’B7 ’ , ’A5 ’ , ’A6 ’ , ’B2 ’ , ’B6 ’ , ’A2 ’ , ’A3 ’ ] ,\
ddi r+’VALIDATE.MRD’ : [ ’Z1 ’ , ’P12 ’ ]}

a l l d a t a = {}
r e s = {}
for f i l e in f i l e s :

data = [ [ ] ]

count = 0

a l l l i n e = ’ ’

for l i n e in open ( f i l e , ’ rb ’ ) :
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a l l l i n e += l i n e

b inva lue s = array . array ( ’ f ’ )

b inva lue s . f r omst r ing ( a l l l i n e )

s t a r t s = [ ]

# t h i s b i t i s based on the f i n d i n g t h a t a

# s e t o f data i s a lways preceded

# by e x a c t l y 12 zeros , so we check i f

# the number i t s e l f i s zero , then i f

# the ones around are and around t h o s e aren ’ t ,

# then we record where the

# b l o c k i s in the s t a r t s [ ] array

for i in range ( l en ( b inva lue s ) ) :

i f b inva lue s [ i ] ==0.0:

try :

i f b inva lue s [ i −1] != 0 .0 and b inva lue s [ i +12] != 0 . 0 :

count = 0

for j in range ( 1 2 ) :

count += ( b inva lue s [ i+j ]==0.0)

i f count ==12:

s t a r t s . append ( i +12)

except :

print ” out o f range ”

x , y = [ ] , [ ]

n l a b e l = 0

for i in range ( l en ( s t a r t s ) ) :

x = [ b inva lue s [ j ] for j in range ( s t a r t s [ i ] , \
max( s t a r t s [ ( i +1)%len ( s t a r t s ) ] , \
l en ( b inva lue s ) ) , 2 ) ]

y = [ b inva lue s [ j +1] for j in range ( s t a r t s [ i ] ,\
max( s t a r t s [ ( i +1)%len ( s t a r t s ) ] , \
l en ( b inva lue s ) ) , 2 ) ]

count = 0

for j in range ( l en ( x ) ) :

i f abs ( x [ j ])>3 or abs ( y [ j ])>1 e5 :

count = j

break

i f ( j>10 and x [ j ]<x [ j −1]−0.002):

count = j

break

i f count >200: # i f a s e r i o u s number o f samples p r e s e n t in the s e t

xcor = 0

xnew = [ ]
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for j in range ( l en ( x ) ) :

i f j >0:

i f c o r r e c t n e g s t r a i n :

# i f t h e r e i s a n e g a t i v e s t r a i n jump

i f x [ j ]<x [ j −1] :

# s h i f t the next s t r a i n s

xcor += x [ j−1]−x [ j ]

xnew . append ( x [ j ]+ xcor )

# i n s e r t d a t a s e t s wi th o r i g i n at [ 0 , 0 ]

spec = f i l e s [ f i l e ] [ n l a b e l ]

# conver t from in che s to meters

x = [ j ∗0.0254/ gauge l ength for j in xnew ]

i f i n s t r o n s t r a i n s w i t c h c o r r e c t i o n :

for k in range ( l en ( x ) ) :

i f x [ k ] >0 .02 :

x [ k ] = x [ k−1]+(x [300]−x [ 1 5 0 ] ) / 1 5 0

try :

width = average ( th i ck width [ spec ] [ 2 : 4 ] )

t h i c k n e s s = average ( th i ck width [ spec ] [ 0 : 2 ] )

i f l i n e s t r e s s :

area = width

else :

area = width∗ t h i c k n e s s

v f = ( n laye r ∗ a r e a l d e n s i t y )/ ( t h i c k n e s s ∗ r h o g l a s s )

except :

area = 1 e12

vf = 0

y = [ j ∗4.448222/ area ∗1e−3 for j in y ]

dt = ( [ k−x [ 0 ] for k in x [ 0 : count ] ] , \
[ j−y [ 0 ] for j in y [ 0 : count ] ] )

r e s [ f i l e s [ f i l e ] [ n l a b e l ]+ ’ ’+f i l e ] = ( dt , v f )

n l a b e l+=1

return r e s
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Tabulated 2D and 3D stiffness

data

E.1 Constituent data

Material data for various fibres and resins. The specimens described in Chapter 5 are

made using Vetrotex RT600, consisting of E-glass fibres (see Table E.1). The matrix

material was Reichhold Norpol 420-100 resin, used with Akzo-Nobel NL49P 1% cobalt

accelerator. The curing process was initiated using Butanox M50 catalyst.

HTA T300 E-glass MTM44-1 polylite

E1 (GPa) 238 231 73 3.3 3.7

E2 (GPa) 28 14.5 73

nu12 (-) 0.23 0.23 0.22 0.38 0.26

nu23 (-) 0.3 0.3 0.22

St (GPa) 2 0.07

Sc (GPa) 2 0.07

Table E.1: Constituent property table

E.2 3D stiffness data

3D stiffness data is generated using methodology described in appendix C. Tables are

generated to show behaviour of stiffness terms as a function of textile architecture (see

Figure E.1), mesh anisotropy (see Table E.5), constituent properties and inter-yarn

spacing (see Table E.3 where results for larger spacing are listed).
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(a) Baseline plain weave, relates to Table E.2 (b) Plain weave with large inter-yarn spacing, re-

lates to Table E.3

(c) Five harness satin weave, relates to Table E.4

Figure E.1: Textiles used for the generation of 3D stiffness data tables.
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Appendix E. Tabulated 2D and 3D stiffness data
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Appendix E. Tabulated 2D and 3D stiffness data
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Appendix E. Tabulated 2D and 3D stiffness data
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Appendix E. Tabulated 2D and 3D stiffness data
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