
Collaborative Decision Making in

Uncertain Environments

by Joseph Lee Baxter, BSc

Thesis submitted to The University of Nottingham,

School of Computer Science,

for the degree of Doctor of Philosophy,

May 2009

Abstract

Two major issues in the design of multi-robot systems are those of communication

and co-ordination. Communication within real world environments cannot always be

guaranteed. A multi-robot system must, therefore, be able to continue with its task

in the absence of communication between team members. Co-ordination of multiple

robots to perform a specific task involves team members being able to make decisions

as a single entity and as a member of a team. The co-ordination needs to be robust

enough to handle failures within the system and unknown phenomena within the

environment.

In this thesis, the problems of communication and co-ordination are discussed

and a new type of multi-robot system is introduced in an effort to solve the inherent

difficulties within communication and co-ordination of multi-robot systems.

The co-ordination and communication strategy is based upon the concept of shar-

ing potential field information within dynamic local groups. Each member of the

multi-robot system creates their own potential field based upon individual sensor

readings. Team members that are dynamically assigned to local groups share their

individual potential fields, in order to create a combined potential field which reduces

the effect of sensor noise. It is because of this, that team members are able to make

better decisions.

A number of experiments, both in simulation and in laboratory environments, are

presented. These experiments compare the performance of the system against a non-

sharing control and a hybrid system made up of a global path planner and a reactive

motor controller. It is demonstrated that the new system significantly outperforms

these other methods in a search type problem.

From this, it is concluded that the novel system proposed in this thesis successfully

tackled the search problem, and that it should also be possible for the system to be

applied to a number of other common multi-robot problems.

ii

Acknowledgements

I would like to take this opportunity to thank my academic supervisors, Dr. Jonathan

Garibaldi and Prof. Edmund Burke, for their support and guidance throughout my

study. I would also like to thank my industrial supervisor, Dr. Mark Norman from

Merlin Systems, for the opportunity to use the Miabot Pro. Special thanks to Patrick

Peglar and Simon Norman at Merlin Systems, for their technical support. I would

also like to express my thanks to Phil Birkin from the University of Nottingham for

his input throughout my research. This work was supported by an EPSRC industrial

CASE award, made available through the Knowledge Training Network (KTN), and

so many thanks go to Melvin Brown and all those at the Smith Institute.

iii

iv

Contents

Contents iv

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Background and Motivation 1

1.2 Goals of this Thesis 5

1.3 Research Methodology 7

1.4 Thesis Contributions 7

1.5 Dissemination 8

1.5.1 Book Chapter 8

1.5.2 Refereed Conference Papers 8

1.5.3 Refereed Journal Papers 9

1.5.4 Presentations 9

1.6 Overview of the Thesis 9

2 Literature Review 11

2.1 Introduction 11

2.2 Problem Definitions 11

2.2.1 Path Planning 11

2.2.2 Coverage 12

2.2.3 Exploration 15

CONTENTS v

2.2.4 Foraging 15

2.2.5 Formation Control 18

2.2.6 Robot Football 19

2.2.7 Summary 20

2.3 Robotic Architectures 20

2.3.1 Reactive Systems 20

2.3.2 Deliberative Systems 30

2.3.3 Hybrid Systems 33

2.3.4 Critical Analysis of Robotic Architectures 38

2.4 Multi-robot Taxonomies 39

2.4.1 Balch 39

2.4.2 Farinelli 40

2.4.3 Dudek 43

2.4.4 Gerkey 43

2.4.5 Critical Analysis of Multi-robot Taxonomies 46

2.5 Multi-robot Systems 46

2.5.1 Unaware Systems 47

2.5.2 Aware, Not Co-ordinated Systems 48

2.5.3 Weakly Co-ordinated Systems 49

2.5.4 Strongly Co-ordinated, Strongly Centralised Systems 50

2.5.5 Strongly Co-ordinated, Weakly Centralised Systems 53

2.5.6 Strongly Co-ordinated, Distributed Systems 55

2.5.7 Critical Analysis of Multi-robot Systems 59

2.6 The Potential Field Method 61

2.6.1 Limitations of the Potential Field Method 66

2.6.2 Critical Analysis of the Potential Field Method 68

2.7 Related Work 68

2.8 Summary 71

3 Robotic Hardware and Software 73

3.1 Introduction 73

CONTENTS vi

3.2 Miabot Hardware 73

3.2.1 Base Module 73

3.2.2 Ultra-sonic Range Finders 75

3.2.3 Blob-finder 76

3.2.4 Robot Village 77

3.3 Player/Stage 81

3.3.1 Introduction 81

3.3.2 Stage Validity 83

3.3.3 Stage Miabot Model 85

3.3.4 Player Miabot Plug-in 86

3.3.5 Player Tracker Plug-in 90

3.3.6 Hybrid System: Player Configuration 91

3.4 System Architecture 93

3.5 Summary 95

4 A Potential Field Sharing Multi-robot System 98

4.1 Introduction 98

4.2 Sharing Potential Fields 98

4.2.1 Individual Potential Field 99

4.2.2 Local Group Interactions 100

4.2.3 Combined Potential Field 102

4.2.4 Optimistic and Pessimistic 104

4.2.5 Action Selection 106

4.3 Limitations of proposed potential field method 107

4.4 Place in Farinelli’s Multi-robot Taxonomy 108

4.5 Summary 110

5 Simulated Search Problems 113

5.1 Introduction 113

5.2 Simulated Environment 114

5.2.1 Noiseless Simulations 118

CONTENTS vii

5.3 Statistical Analysis 119

5.3.1 Kruskal-Wallis Rank Sum Test 119

5.3.2 Friedman Rank Sum Test 120

5.4 Single Target Search 120

5.4.1 Comparison Across Systems 122

5.4.2 Comparison Across Size 123

5.4.3 Discussion of Single Target Results 128

5.5 Multi-target Search 132

5.5.1 Comparison Across Systems 133

5.5.2 Comparison Across Size 138

5.5.3 Discussion of Multi-target Results 142

5.6 Single-target Search with Noisy Sensor Readings 142

5.6.1 Comparison Across Size 143

5.6.2 Comparison Across Noise 144

5.6.3 Discussion of Single-target with Noise Results 144

5.7 Summary 145

6 Laboratory Search Problems 147

6.1 Introduction 147

6.2 Robot Specification 147

6.3 Environment Specification 149

6.3.1 Environment Noise 149

6.4 Single Target Search 156

6.4.1 Comparison Across Systems 156

6.4.2 Comparison Across Size 160

6.4.3 Comparison Across Environments 165

6.4.4 Comparison to Simulation Results 169

6.4.5 Discussion of Single-target Results 169

6.5 Summary 170

CONTENTS viii

7 Comparison Against a Hybrid System 172

7.1 Introduction 172

7.2 The Hybrid System 173

7.2.1 The Wavefront Propagation Algorithm 175

7.3 Single Target Search 177

7.3.1 Comparison Across Systems 177

7.3.2 Comparison Across Size 182

7.3.3 Comparison Across Environments 182

7.3.4 Discussion of Single Target Results 182

7.4 Summary 184

8 Conclusions 186

8.1 Thesis Overiew 186

8.2 Major Contributions 187

8.3 Discussion of Goals Achieved 188

8.3.1 A New Multi-robot System 188

8.3.2 Shared Potential Fields 189

8.3.3 Reliance upon a priori Information 189

8.3.4 Implicit Communication 190

8.4 Limitations of the Proposed System 191

8.5 Directions of Future Research 192

8.5.1 Increase Scale of Experiments 192

8.5.2 Move to a Distributed Architecture 192

8.5.3 Further System Investigation 193

8.5.4 New Multi-Robot Tasks 195

References 198

appendices

A Detailed Results 209

A.1 Simulation 1 Target 209

CONTENTS ix

A.2 Simulation 2 Targets 214

A.3 Simulation 1 Target with Noise 219

A.4 Laboratory 1 Target 220

A.5 Hybrid System 1 Target 225

x

List of Figures

1.1 Example single-robot systems. 2

1.2 The centralised multi-robot system architecture. 4

1.3 The distributed multi-robot system architecture. 5

2.1 An example of the path planning problem. 13

2.2 An example of the coverage problem. 14

2.3 An example of a multi-robot sensor network. 14

2.4 An example of the multi-robot hunting task. 16

2.5 An example of the classic forage problem. 17

2.6 An example of the search and rescue scenario. 17

2.7 Two examples of possible multi-robot formations. 18

2.8 Robot football as a conglomeration of the basic robotic problems. . . 19

2.9 Braitenburg’s vehicle 3b. 21

2.10 An example of subsumption architecture. 22

2.11 The nerd herd. 25

2.12 Outline of the Nearness Diagram algorithm. 26

2.13 Pre-defined situations in the ND algorithm. 28

2.14 Perceive-Reason-Act Architecture. 30

2.15 Parson’s multi-robot path planner. 33

2.16 Local network collision detection. 36

2.17 Initial TSP solution to an exploration problem. 37

2.18 Taxonomy of communication and co-ordination. Figure adapted from

[41]. 42

LIST OF FIGURES xi

2.19 Example motion of an unaware system during a foraging task. 47

2.20 An example of a social potential field. 48

2.21 Example of ‘cocktail party model’ system 50

2.22 An example of an artificial potential. 52

2.23 Simmons’s robot architecture. 54

2.24 Distributed robotic search and rescue. 57

2.25 Motivational Behaviours in ALLIANCE. 58

2.26 Model of a non-holonomic robot. 63

2.27 Pathak’s bubble path planner. 64

2.28 Zavlanos’s artificial potential fields. 65

2.29 Known limitations of the potential field method. 66

2.30 Differences between ’dynamic robot networks’ and local groups. . . . 70

3.1 The Miabot Pro Base module . 74

3.2 The Miabot Pro Ultra-sonic module. 75

3.3 The Miabot Pro Blob-finder module. 76

3.4 The robot lab tracking system. 78

3.5 The Miabot blob system. 79

3.6 The Local/Global co-ordinate systems. 80

3.7 A Detail Robot Village Specification. 81

3.8 The Player/Stage architecture. 82

3.9 Stage simulation. 84

3.10 Architecture of the robotic system. 96

4.1 Flowchart of the potential field sharing system. 99

4.2 Relationship between sensor readings and potential field. 100

4.3 Example local group selection. 101

4.4 Sharing potential fields example. 103

4.5 Resultant potential fields after sharing. 105

4.6 Action Selection. 106

4.7 Known limitations of ultra-sonic sensors. 108

LIST OF FIGURES xii

4.8 Hierarchical view of the sharing potential field method’s place within

Farinelli’s taxonomy. Crossed out categories are not implemented. . . 110

4.9 Unaware multi-robot system. 111

5.1 Stage simulation: Environment 1. 114

5.2 Stage simulation: Environment 2. 115

5.3 Stage simulation: Environment 3. 116

5.4 Stage simulation: Environment 4. 117

5.5 Simulation model of a Miabot. 117

5.6 Plot of differences between ranks for environment 1 (single target). . . 124

5.7 Plot of differences between ranks for environment 2 (single target). . . 125

5.8 Plot of differences between ranks for environment 3 (single target). . . 126

5.9 Plot of differences between ranks for environment 1 (single target). . . 129

5.10 Plot of differences between ranks for environment 2 (single target). . . 130

5.11 Plot of differences between ranks for environment 3 (single target). . . 131

5.12 Plot of differences between ranks for environment 1 (multiple targets). 135

5.13 Plot of differences between ranks for environment 2 (multiple targets). 136

5.14 Plot of differences between ranks for environment 3 (multiple targets). 137

5.15 Plot of differences between ranks for environment 1 (multiple targets). 139

5.16 Plot of differences between ranks for environment 2 (multiple targets). 140

5.17 Plot of differences between ranks for environment 3 (multiple targets). 141

6.1 Merlin Miabot Pro with ultra-sonic sensor array and camera modules. 148

6.2 Overhead view the of arena. Environment 1. 150

6.3 Overhead view the of arena. Environment 2. 150

6.4 Overhead view the of arena. Environment 3. 151

6.5 Example of ultra-sonic collisions. 152

6.6 Example blob-finder data. 154

6.7 Plot of differences between ranks for environment 1. 158

6.8 Plot of differences between ranks for environment 2. 159

6.9 Plot of differences between ranks for the non-sharing system. 162

LIST OF FIGURES xiii

6.10 Plot of differences between ranks for the pessimistic system. 163

6.11 Plot of differences between ranks for the optimistic system. 164

6.12 Plot of differences between ranks for the non-sharing system. 166

6.13 Plot of differences between ranks for the pessimistic system. 167

6.14 Plot of differences between ranks for the optimistic system. 168

7.1 Generated map files for the hybrid system. 173

7.2 Example random target distribution. 174

7.3 Example path planning. Five robot case. 176

7.4 Wavefront propagation example. 177

7.5 Plot of differences between ranks for environment 1. 179

7.6 Plot of differences between ranks for environment 2. 180

7.7 Plot of differences between ranks for environment 3. 181

7.8 Plot of differences between ranks for the hybrid system. 183

8.1 The importance of a good local radius choice. 194

8.2 The sharing potential field method deployed in the robot football en-

vironment. 197

xiv

List of Tables

2.1 Nearness Diagram algorithm. Situation — Action relationships. . . . 29

2.2 Taxonomy of reward. 40

2.3 Taxonomy of task. 41

2.4 Taxonomy of Multi-agent robotics (part 1). 43

2.5 Taxonomy of Multi-agent robotics (part 2). 44

3.1 Player to Miabot command translations. 88

3.2 Miabot response translations. 89

3.3 Miabot Communication File: Where x, y and θ are the co-ordinates (in

metres) and orientation (in radians) of the robot respectively, and 0-7

are the generated forces for the eight ultra-sonic readings (the potential

field). 95

5.1 Mean completion (seconds) for each system in each environment for

2-8 robots, to 1 d.p. The standard deviation is given in brackets, to 1

d.p. 121

5.2 Significant differences between the non-sharing (R1), pessimistic (R2)

and optimistic (R3) systems (to 1 d.p.) 122

5.3 Significant differences between the numbers of robots, for the non-

sharing system. (to 1 d.p.) . 123

5.4 Significant differences between the numbers of robots, for the pes-

simistic system. (to 1 d.p) . 127

5.5 Significant differences between the numbers of robots, for the optimistic

system. (to 1 d.p.) . 127

LIST OF TABLES xv

5.6 Mean completion (seconds) for each system in each environment for

2-8 robots, to 1 d.p. The standard deviation is given in brackets, to 1

d.p. 132

5.7 Significant differences between the non-sharing (R1), pessimistic (R2)

and optimistic (R3) systems for the multi-target case (to 1 d.p.) . . . 134

5.8 Significant differences between the numbers of robots, for the non-

sharing system. For the multi-target case. (to 1 d.p.) 138

5.9 Significant differences between the numbers of agents, for the optimistic

system. For the multi-target case. (to 1 d.p) 138

5.10 Mean completion (seconds) for each system with varying levels of sen-

sor noise for 8 and 16 robots, to 1 d.p. The standard deviation is given

in brackets, to 1 d.p. 143

5.11 Kruskal-Wallis rank sum test. Differences between means, pessimistic

system, to 1 decimal place. 143

5.12 Kruskal-Wallis rank sum test. Differences between means, to 1 decimal

place. 144

6.1 Mean completion (seconds) for each system in each environment for

2-8 Miabots, to 1 d.p. The standard deviation is given in brackets, to

1 d.p. 157

6.2 Significant differences between the non-sharing (R1), pessimistic (R2)

and optimistic (R3), systems (to 1 d.p.) 160

6.3 Significant differences between the number of Miabots, for the non-

sharing system in environment 1, to 1 d.p. 161

6.4 Significant differences between the number of Miabots, for the pes-

simistic system in environment 1, to 1 d.p 161

6.5 Significant differences between the number of Miabots, for the opti-

mistic system in environment 1, to 1 d.p. 161

6.6 Significant differences between means, non-sharing system, to 1 d.p. . 165

6.7 Significant differences between means, pessimistic system, to 1 d.p. . 165

6.8 Significant differences between means, optimistic system, to 1 d.p. . . 169

LIST OF TABLES xvi

7.1 Mean completion (seconds) for the hybrid system in each environment

for 2-8 Miabots, to 1 d.p. The standard deviation is given in brackets,

to 1 d.p. 178

7.2 Significant differences between the potential field systems (non-sharing

(R1), pessimistic (R2) and optimistic (R3)) and the hybrid (R4) system

(to 1 d.p.) . 178

7.3 Significant differences between means, hybrid system, to 1 d.p. 182

A.1 Non-sharing system results for environment 1, with 1 target. 209

A.2 Non-sharing system results for environment 2, with 1 target. 210

A.3 Non-sharing system results for environment 3, with 1 target. 210

A.4 Pessimistic system results for environment 1, with 1 target. 211

A.5 Pessimistic system results for environment 2, with 1 target. 211

A.6 Pessimistic system results for environment 3, with 1 target. 212

A.7 Optimistic system results for environment 1, with 1 target. 212

A.8 Optimistic system results for environment 2, with 1 target. 213

A.9 Optimistic system results for environment 3, with 1 target. 213

A.10 Non-sharing system results for environment 1, with 2 targets. 214

A.11 Non-sharing system results for environment 2, with 2 targets. 214

A.12 Non-sharing system results for environment 3, with 2 targets. 215

A.13 Pessimistic system results for environment 1, with 2 targets. 215

A.14 Pessimistic system results for environment 2, with 2 targets. 216

A.15 Pessimistic system results for environment 3, with 2 targets. 216

A.16 Optimistic system results for environment 1, with 2 targets. 217

A.17 Optimistic system results for environment 2, with 2 targets. 217

A.18 Optimistic system results for environment 3, with 2 targets. 218

A.19 Sharing Potential Field Systems, group size 8. Varying levels of noise. 219

A.20 Sharing Potential Field Systems, group size 16. Varying levels of noise. 219

A.21 Non-sharing system results for environment 1 (cluttered). 220

A.22 Non-sharing system results for environment 2 (normal). 220

A.23 Non-sharing system results for environment 3 (sparse). 221

LIST OF TABLES xvii

A.24 Pessimistic system results for environment 1 (cluttered). 221

A.25 Pessimistic system results for environment 2 (normal). 222

A.26 Pessimistic system results for environment 3 (sparse). 222

A.27 Optimistic system results for environment 1 (cluttered). 223

A.28 Optimistic system results for environment 2 (normal). 223

A.29 Optimistic system results for environment 3 (sparse). 224

A.30 Hybrid system results for environment 1 (cluttered). 225

A.31 Hybrid system results for environment 2 (normal). 225

A.32 Hybrid system results for environment 3 (sparse). 226

1

Chapter 1

Introduction

1.1 Background and Motivation

Multi-robot systems have been an established research area for more than a decade.

Even so, compared to its parent research topic of single-robot systems, it is still a

relatively young area of interest.

Typical problems tackled by single-robot systems include Urban Search and Res-

cue (USAR) scenarios. See figure 1.1a1 for an example of a single-robot system being

deployed in the aftermath of the World Trade Centre disaster. These systems are

generally tele-operated, owing to the urgency of the task. In rescue operations, the

time taken for a robot to rescue itself from local minima could cost lives.

Mine-sweeping is another typical single-robot system task — see figure 1.1b2 for

an example of a mine sweeper robot. Most systems are remote controlled until they

reach the mine field. Once at the mine field, the system is fully autonomous. This is

usually due to the fact that the system’s definition of the world is limited to a mine

field. That is, the system has no concept of being outside a mine field. If placed

outside a mine field, the system would still attempt to find mines until told to stop

by a human operator.

The Mars “Spirit” rover, see figure 1.1c3, has been on the surface of Mars for

just over four years, and is one of the best examples of a robotic system working in

1Image from http://crasar.csee.usf.edu
2Image from http://www.bbc.co.uk
3Image from http://www.nasa.gov

1. introduction 2

an uncertain environment without the possibility of human intervention. During the

relatively small periods of communication between a controller on Earth and a rover

on Mars, the rover is given a list of objectives to complete before the next scheduled

communiqué. These objectives are carried out completely autonomously.

Unmanned Aerial Vehicles (UAVs) are used by numerous armed forces through-

out the world to perform reconnaissance duties. An example of a remote controlled

Predator UAV is shown in figure 1.1d4. During July 2005 to June 2006, the Preda-

tor UAV flew over thirty three thousand flying hours during the Iraq conflict [33].

Recently a pair of UAVs flew across parts of Antarctica, demonstrating the system’s

robustness to adverse weather conditions.

(a) (b)

(c) (d)

Figure 1.1: (a) Robotic Urban Search and Rescue. (b) Robotic Mine Sweeper. (c) Mars Exploration

Rover. (d) Predator Unmanned Aerial Vehicle.

4Image from http://www.wikipedia.com

1. introduction 3

A central issue motivating this thesis is the question of how deploying multi-robot

systems to these scenarios could improve performance. The use of a multi-robot

system for a USAR task, for example, could reduce the time needed to search a given

area. As multi-robot systems lend themselves to the use of smaller robots enabling

areas of a site previously inaccessible to become searchable.

Mine-sweeping could be more efficiently solved by a multi-robot system. Whereas

a single-robot system is limited to detecting one mine at a time, a multi-robot system,

by its very nature, can detect multiple mines.

A related issue is how a multi-robot system could perform better than what is

obviously a very robust single-robot system in the Mars rovers. The main area for

improvement is undoubtedly, numbers. Only two Mars exploration rovers are cur-

rently deployed on the entire surface of Mars (144, 798, 500km2). There have been

attempts to put more robotic systems on Mars, but the difficulty of such a task is

huge. For example, the loss of the Beagle 2 Mars robot is presumed to be due to

the failure of landing parachutes deployed during landing, perhaps due to a thinner

than expected atmosphere. By sending a multi-robot system containing hundreds

(perhaps thousands) of robots, the probability of total mission failure due to crash

landings may be reduced dramatically and, in theory, a larger area may be explored

in a shorter space of time.

In a report on the Iraqi conflict [22], the US Air-force lost 53 out of 139 Predator

UAVs (38%) at a cost of $4.5 million each. UAVs undoubtedly provide effective

surveillance, but the cost of replacing them during conflict can become astronomical.

Developing cheaper, smaller UAVs that provide surveillance of a given area in teams

could be one way of tackling the problem of spiralling costs.

Multi-robot systems bring their own problems of course: namely reliable, efficient

and effective communication and co-ordination. These problems can be generalised

to a debate between the adoption of either a centralised or distributed system. In a

centralised system all members of the multi-robot system are co-ordinated through

a single centralised controller (a remote PC or a “leader” robot). See figure 1.2a

for an example of a leader robot co-ordinating each member of the group. Solutions

are usually found at the global level and are near-optimal. That is, during a multi-

1. introduction 4

(a) (b)

Figure 1.2: (a) Centralised system — All decisions are made by a remote PC or “leader” robot. (b)

The “leader” robot fails, causing a system wide failure. Robots/agents are represented by circles.

Communication is shown by arrows.

robot exploration task, the central controller would plan collision free paths for each

robot within the system, attempting to maximise the total area covered within the

environment. The more robots within the group, the more computationally expensive

co-ordination becomes. As each member of the system is given specific tasks to

perform, the communications load between members is reduced, but this also imposes

several points of failure within the system — most notably the central controller.

However, it is also the case that if a member given a specific task fails, this has an

accumulative effect on the rest of the system’s performance. In figure 1.2b the leader

robot suffers a failure and is no longer able to co-ordinate the rest of the group. As

the other group members have no local decision making capabilities they will not be

able to complete the task.

In a distributed system, each member controls its own actions and co-ordination is

achieved through communication between members. Figure 1.3a provides an example

of a distributed system; each individual robot is capable of making decisions, and

interactions with other group members are used to improve that decision making

process. As a consequence, if one member of the system has a failure, the rest of

the system can continue with the task. The more homogeneous the members of the

team, the more robust to failure the system will become. See figure 1.3b for an

example of a robot failure within a distributed system. As communications are not

1. introduction 5

(a) (b)

Figure 1.3: (a) Distributed system — Decisions are made by individuals. (b) One of the robots fails,

causing minimal disruption to the system. Robots/agents are represented by circles. Communication

is shown by arrows.

centralised and each robot is capable of making its own decisions, the effect of the

failure on the overall system’s performance is minimal. However, the communications

load of the system is increased. In distributed systems, solutions are usually solved

at the local level, with the global solution being solved as an emergent property of

the system. However, these solutions are usually sub-optimal. This is due to the

fact that, unlike a centralised system where a single controller agent has access to all

available information, in a distributed system each member has access to incomplete

information and hence individual robots cannot possibly achieve optimal solutions.

Solutions are said to be an emergent property of the system, as through completing

simple tasks it is possible for the system to complete a more complex task. For

example, a group of robots that have the simple task of collision avoidance, may also

solve the coverage task as an emergent property.

The task of the multi-robot system designer is to balance the need for near-optimal

solutions with robustness and communication limitations.

1.2 Goals of this Thesis

The overall aim of this thesis is to design and implement a novel multi-robot system

that is capable of performing a given task in an unknown environment. The system

1. introduction 6

was designed to encapsulate the following beneficial aspects for a multi-robot system:

robustness, scalability and fault tolerance, with the specific goals being as follows:

1. To design and implement a new type of multi-robot system that is

weakly co-ordinated at the local level, but unaware at the global level.

The co-ordination of an entire multi-robot system can be very expensive in

terms of communications bandwidth. The co-ordination of the entire system

is also not always give an increase in performance. For example, to robots in

completely different parts of environment for example would not necessarily

need to co-ordinate there tasks. As such the system introduced in this thesis

only co-ordinates robots within at the local level (the robots are within an pre-

defined distance of one another), robots not within these local groups do not

co-ordinate with the robots within them.

2. To design and implement a communication/co-ordination method

that is inexpensive in terms of computation and bandwidth.

The effectiveness of a multi-robot system is closely related to the effectiveness of

its communication/co-ordination strategy. A system that relies upon communi-

cation strategy that is slow will result in a system with a slow response to com-

munications. Similarly a system that relies on an over complex co-ordination

strategy will result in a system that is slow to respond to new stimuli.

3. To design and implement a multi-robot system that is not reliant

upon information gathered a priori .

The overall aim of the project was to implement the system in an unknown en-

vironment. Therefore, it was not possible to provide the system with knowledge

gathered a priori . This restriction is common among many real world scenarios,

such as USAR.

4. To design and implement a multi-robot system that is not reliant

upon explicit information gathered from other robots.

1. introduction 7

It is important that the individual robots have the ability to make their own

decisions, even if the robots are a part of a team. This enables the system

to become fault tolerant in regard to the loss of robots. The robustness of

the system is also improved as individual robots can react to changes in the

environment not yet detected by other robots within the system.

1.3 Research Methodology

Conducting experiments on real robots was the driving methodology of this thesis. By

developing a new multi-robot system with aim of deploying that system on real robots.

It was possible develop a system not restricted by artificial constraints, but limited

by physical constraints. For example, the system was designed with the limitations

and nuances of sensors in mind, rather than designing the system based upon generic

models of sensors. However, simulations do have their place in developing robotic

systems i.e. fast prototyping. These simulations are useful for gaining knowledge

on how a system will react in a specific environment with specific conditions. The

knowledge gained from these simulations can then be used as a starting point for

developing a system to be deployed in real robotic systems, which are designed to

work in numerous environments under numerous conditions.

As such, the low fidelity simulator Stage is used to prototype the system, which

is eventually delpoyed in the Miabot class of robot. See chapter 3 for more detail on

the simulator and the real robotic hardware.

1.4 Thesis Contributions

The three major contributions of this thesis are as follows:

1. A new type of multi-robot system, which performs no co-ordination or com-

munication at the global level, but is weakly co-ordinated at the local level, is

introduced.

2. A method of sharing information through fusing sensory information into a

1. introduction 8

potential field will be shown to be an effective method of communication and

co-ordination in a search type task.

3. It will be shown that taking a more pessimistic view in terms of sensor belief is

advantageous in cluttered environments, whilst performing a search type task.

It will also be shown that taking a more optimistic view is advantageous in

sparse environments, whilst performing a search type task.

1.5 Dissemination

The following articles have been published as a result of the research presented in

this thesis.

1.5.1 Book Chapter

• J.L. Baxter, E.K. Burke, J.M. Garibaldi & M. Norman, “Multi-Robot Search

and Rescue: A Potential Field Based Approach”, in Autonomous Robots and

Agents, series: Studies in Computational Intelligence book series, Vol. 76,

Mukhopadhyay, Subhas; Sen Gupta, Gourab (Eds.), Springer-Verlag, pp 9-16,

2007.

1.5.2 Refereed Conference Papers

• J.L. Baxter, E.K. Burke, J.M. Garibaldi & M. Norman, “Statistical Analysis

in MiroSot”, In the proceedings of the FIRA World Congress 2005, Singapore,

14th-16th December, CD-ONLY, 2005.

• J.L. Baxter, E.K. Burke, J.M. Garibaldi & M. Norman, “The Effect of Poten-

tial Field Sharing in Multi-Agent Systems”, In the proceedings of 3rd Interna-

tional Conference on Autonomous Robots and Agents (ICARA 2006), Palmer-

ston North, New Zealand, 12th-14th December, pp 33-38, 2006.

• J.L. Baxter, E.K. Burke, J.M. Garibaldi & M. Norman, “Real-world Evalua-

tion of a Novel Potential field sharing method”, In the 5th International Confer-

1. introduction 9

ence on Computational Intelligence, Robotics and Autonomous Systems (CIRAS

2008), Linz, Austria, 19th-21st June, pp 73-78, 2008.

1.5.3 Refereed Journal Papers

• J.L. Baxter, E.K. Burke, J.M. Garibaldi & M. Norman,“Shared Potential Fields

and their Place in a Multi-Robot Coordination Taxonomy”, Robotics and Au-

tonomous System, to be published, 2009.

• J.L. Baxter, E.K. Burke, J.M. Garibaldi, S. Groenemeyer & M. Norman, “Multi-

robot Co-ordination Using Shared Potential Fields”, submitted to IEEE Trans-

actions on Robotics, 2009.

1.5.4 Presentations

The following talks have focused on the work presented in this thesis.

• J.L. Baxter, “The Effect of Potential Field Sharing in Multi-Agent Systems”,

in Automated Scheduling Optimisation and Planning Research Group seminar,

University of Nottingham, Nottingham, 30th November, 2006.

• J.L. Baxter, “The Effect of Potential Field Sharing on Real Robots”, in Auto-

mated Scheduling Optimisation and Planning Research Group seminar, Univer-

sity of Nottingham, Nottingham, 1st November, 2007.

• J.L. Baxter, “Collaborative Decision Making in Uncertain Environments”, in

Knowledge Transfer Network Presentations, Smith Institute Alan Taylor Day,

St Catherine’s College, Oxford, November 26th, 2007.

1.6 Overview of the Thesis

The remainder of this thesis is split into seven chapters. Chapter 2 defines a number

of common robotic problems. It then goes on to give a detailed literature review

of robotic architectures and multi-robot systems. Several key architectures will be

1. introduction 10

discussed and critically analysed, falling into the regions of reactive, deliberative and

hybrid systems. Farinelli’s multi-robot taxonomy will be described and examples

given for each group, along with a critical analysis. The potential field method used

in numerous robotic systems will also be explained through a number of examples, and

critically analysed. Finally, robotic systems that are closely related to the potential

field sharing method described in chapter 4 will be discussed in detail.

Chapter 3 describes the robotic hardware and software architecture used through-

out the experimentation within this thesis. Detailed configurations and specifications

are given. Limitations of the hardware and software deployed are also discussed. Fi-

nally, a discussion on the current architecture of the system and the proposed future

architecture of the system ends the chapter.

Chapter 4 describes the new multi-robot system. The system will be broken down

into its sub-processes, with each being described in detail. A comparison with the

traditional potential field method, in regard to susceptibility to the known limitations,

will also be presented.

Chapters 5, 6 and 7 discuss the experiments undertaken in simulation and in the

robot laboratory. A series of simulation experiments were carried out, a one target

search problem and a two target search problem, over three different environments,

with groups of robots ranging from two to eight. A series of laboratory experiments

were also carried out. First, the one target experiment was repeated in the laboratory

setting. Then, an experiment comparing a hybrid system against the novel reactive

system was conducted. A statistical analysis of each experiment is given, demon-

strating that the new system performs better than both a non-sharing control and a

hybrid system.

Chapter 8 concludes the thesis, with a discussion on the major contibutions of the

thesis as well as a discusion on which goals were achieved. Finally the limitations of

the system proposed and possible future directions of research are discussed.

11

Chapter 2

Literature Review

2.1 Introduction

In this chapter, a number of common robotic problems tackled by the robotic systems

will be defined. The three major implementations of robotic architectures (reactive,

deliberative and hybrid) will be discussed along with Farinelli’s taxonomy of multi-

robot systems. As the system presented in this thesis is loosely based upon potential

field theory, the common approaches to the potential field method in robotics will be

described. A detailed discussion on the literature most closely related to the system

described in this thesis is also presented. A summary will conclude this chapter.

2.2 Problem Definitions

In this section, definitions for several common robotic problems that are tackled by

single and multi-robot systems are given. References to literature are given and,

where appropiate, further explanation is given in the relevant sections (sections 2.3,

2.5 and 2.6).

2.2.1 Path Planning

The oldest problem in mobile robotics is that of path planning (tackled in the litera-

ture by Leroy et al. [56], Chand et al. [71] and Parsons et al. [75]. It can be defined

as follows:

2. literature review 12

Calculating the necessary motor operations needed by a robot (or group of
robots) to travel from a start location to a target location, whilst avoiding
collisions with obstacles within the environment.

The complexity of the problem varies depending on the density of objects within

the environment; the inclusion of dynamic objects within the environment; the amount

of environment information given a priori ; and the sensory information made avail-

able to the path planner. The common method for path planning is to calculate a

near optimum solution a priori from the available environmental information. As

the robot moves along this path it is adjusted to avoid any unforeseen events such as

dynamic obstacles. An example of the path planning problem is given in figure 2.1.

Three possible paths have been calculated — the robot will attempt to follow the

path with the smallest total weight. Each arc between way-points is given a weight in

relation to its length, distance from obstacles and type of terrain. Each arc’s weight

in a path is summed.

The path planning problem is commonly the base problem of the more high level

problems described in this section.

2.2.2 Coverage

The coverage problem (tackled by Batalin et al. [9], Gazi et al. [44] and Howard et

al. [49]) can be defined as follows:

The task of controlling a robot (or group of robots) to maximise the
amount of sensory information gathered within an environment. This
can be in the form of traversing the environment, whilst guaranteeing
total area coverage. Another approach is to form a sensor net of the
environment in an effort to maximise the area covered by the net.

The complexity of the problem varies depending upon the number of robots de-

ployed, the size of the environment and the type of sensors used. The typical solution

to the first kind of coverage problem is to assign way-points in different sections of

the environment (assuming a map is given a priori). An example is given in figure

2.2. A robot attempts to traverse the environment, visiting each way-point along its

route. A typical solution to the second kind of coverage problem (sensor net) is to

2. literature review 13

Figure 2.1: A robot (R) calculates a number of possible paths to the desired target location (T).

Each path (dashed line, solid line and bold line) is made up of a number of way-points (white circles)

the cost of traversing between these way-points is related to the distance, difficulty of terrain and

density of objects (black circles) present.

make members of the robotic team actively avoid one another, thus forcing the robots

to explore more of the environment. In figure 2.3, a group of four robots attempt to

create a sensor net within the environment.

A sub-type of the coverage problem is shown in Figure 2.2, the surveillance prob-

lem (tackled by Martins-Filho et al. [59] and Oates et al. [69] in the literature). The

robot is equipped with a sensor that can detect anomalies within the environment.

The surveillance problem can be defined as:

A robot (or group of robots) has the task of traversing an (attempting
to maximise coverage of) environment, whilst detecting anomalous sensor
readings from the environment.

Another sub-type of the coverage problem is the graze problem (tackled by Balch

et al. [6] in the literature), which be defined as:

A robot (or group of robots) has the task of traversing an (attempting
to maximise coverage of) environment, whilst performing ‘work’ at each
location it visits.

2. literature review 14

Figure 2.2: A robot (black circle) traverses an environment attempting to maximise the total area

covered. The dashed line is the desired path, the circles are the way-points. The dashed arc is the

sensory limit of the robot. The star is an anomaly within the environment.

Figure 2.3: A group of robots (black circles) form a sensor net to get the optimal coverage area for

the given amount of robots. The dashed circles are the sensory limits of the robots.

In the example in figure 2.2 the robot might be expected to spend a pre-defined

amount of time at each way-point conducting a number of sub-tasks.

2. literature review 15

2.2.3 Exploration

The exploration problem (as tackled by Parker et al. [72, 73, 74], Rekleitis et al. [80],

Simmons et al. [83] and Zlot et al. [97] in the literature) can be defined as follows:

A robot (or group of robots) has the task of traversing an environment,
whilst avoiding collisions with obstacles within the environment, gathering
information.

This problem is related to the path planning problem, as at its base level it is

simply a series of planned paths. The information gathered is typically a map of

the environment. The complexity of the problem varies according to the type and

accuracy of sensory equipment used. Typically a robot will attempt to localise itself

within the environment (assuming a partial map is given a priori) using odometry

and sensor readings. Using these sensor readings the robot will update its map of the

environment.

A noteworthy sub-type of the exploration problem is hunting (as tackled in the

literature by Cao et al. [30]). It can be defined as:

A robot (or group of robots) has the task of traversing an environment,
whilst searching for and capturing anomalous entities within the environ-
ment.

An example of the hunting problem is given in figure 2.4 where two robots attempt

to capture an anomalous entity within the environment.

2.2.4 Foraging

Another common mobile robot problem is foraging (tackled by Balch et al. [6] and

Sugawara et al. [87] in the literature). It can be defined as follows:

A robot (or group of robots) has the task of traversing an environment,
whilst avoiding collisions with other entities within the environment, col-
lecting ‘food’ and depositing it in a pre-defined location (if the environ-
ment is known a priori).

2. literature review 16

Figure 2.4: Two robots (black circles) attempt to capture an anomalous entity (star). Motion is

signified by arrows. The dashed circles are the sensory limits of the robots.

The complexity of the problem is related to the spatial positioning of the ‘food’,

the amount of co-ordination within the group of robots attempting the task and the

accuracy of the ‘food’ detecting sensor. Typically a robot will traverse an environment

randomly until a source of ‘food’ is discovered. The robot may then (depending on

the system deployed) notify other robots within the system of the location of the

‘food’. An example is given in figure 2.5. In which a group of three robots attempt

to collect ‘food’ from the environment and deposit it in a pre-defined safe location.

A noteworthy sub-type of the foraging problem is the search and rescue problem

(tackled by Jennings et al. [51, 52] in the literature). It can be defined as follows:

A robot (or group of robots) has the task of traversing an environment,
whilst avoiding collisions with other entities within the environment, and
searching for a pre-defined target, manipulating it to a pre-defined safe
location (if the environment is known a priori).

As such, the level of co-ordination in the search and rescue task is generally higher

than that in a standard foraging task, as the manipulation process is a highly coupled

one. An example is given in figure 2.6. Two robots need to co-ordinate their actions

in order to ‘rescue’ the target.

2. literature review 17

Figure 2.5: A group of robots (black squares) collect ‘food’ (white circles) and take them to a

pre-defined location (white square).

Figure 2.6: Two robots (black squares) attempt to manipulate the target (white circle) back to the

designated safe area (white square), whilst avoiding obstacles (black rectangles).

2. literature review 18

2.2.5 Formation Control

A problem which is commonly explored is formation control (tackled by Balch et al.

[7, 8], Monterio et al. [67] and Ogren et al. [70] in the literature). It can be defined

as:

A group of mobile robots attempt to traverse an environment (known or
unknown) whilst maintaining a pre-defined formation (relative positions
from one another).

The complexity of the problem increases with the number of robots involved, the

complexity of the underlying traversal problem, and the complexity of the desired

formation. Typically a ‘leader’ robot will be assigned, which has the task of traversing

the environment. The other robots will have the task of keeping in formation with

this ‘leader’ robot. Formations are kept by punishing robots for moving too far apart

or too close together. An example of the formation control problem is given in figure

2.7. One group of robots forms a column formation and the other a line formation.

Figure 2.7: Two groups of robots (white circles) attempt to traverse the environment in formation.

One group in line formation, the other in column formation.

2. literature review 19

2.2.6 Robot Football

The robot football problem, as tackled in the literature (Tews et al. [88], Veloso et

al. [92] and Werger et al. [94]), is a hybridisation of the above problems and can be

defined as:

A group of robots attempts to play a game of football (based on rules
defined by an international committee). As with real football, the aim is
to have a higher score than your opponents.

A number of different robot football leagues exist, all varying in complexity, from

systems using global tracking systems to position team members and opposition play-

ers, to systems that rely entirely upon local sensor information. Fundamentally, the

task is the same.

Teams can put the solutions of other common robotic problems to good use in

the robot football domain. These include formation control, coverage, and hunting,

all of which could be advantageous to a team’s strategy. Examples of how the above

problems could be implemented in the robot football problem are given in figure 2.8.

Figure 2.8: A conglomeration of the hunting and formation control problems. The two teams are

represented by black and white squares the ball by a black square.

2. literature review 20

2.2.7 Summary

The problems defined and discussed in this section do not form an exhaustive list.

However, they do cover the major basic problems found in robotics; generally other

problems will be sub-types of the problems defined above or variations thereof.

In the following sections, a number of different robotic systems will be described.

Each of them will naturally lend themselves to one or more of the problems defined

here. For example, the potential field methods discussed in section 2.6 lend them-

selves to the coverage and formation control problems. When designing a robotic

architecture it is important to take into account the type of problem that is being

attempted, as the wrong choice could result in a multitude of unforeseen issues in the

future. This is not to say that generic problem solving systems cannot be designed.

However, the more generalised the system, the more likely it is that the solutions ob-

tained will be sub-optimal. The task of the robotic system designer is to balance the

optimality of the solutions with the usability of the system over a number of different

tasks.

2.3 Robotic Architectures

In this section, the three major robotic architectures will be described: reactive,

deliberative and hybrid systems. A number of examples will be given for each. The

section will be concluded with a critical analysis of the three architectures.

2.3.1 Reactive Systems

In his book, Braitenburg conducted a number of thought experiments that showed

the emergence of complex behaviours from a collection of simple sensor/actuator

interactions [21]. For example, figure 2.9 shows Braitenburg’s vehicle 3b; this simple

vehicle is made up of two motors and two sensors, with the motors and sensors

cross-connected. High sensor input results in low motor output. The vehicle can be

described as an explorer, as it is attracted to regions of high sensor input but moves

on to investigate other regions. It can be argued that these set of experiments were

2. literature review 21

the foundations for the reactive robotic systems methodology [2].

Figure 2.9: Two motors and two sensors are negatively cross connected, resulting in low motor

output for high sensor input.

The most fundamental feature of reactive systems is the lack of abstract repre-

sentational knowledge about the environment the robot can acquire, or is given a

priori . In fact it is actively avoided as the process can be time consuming and in

highly dynamic environments ultimately futile. Simply put, a reactive system has

a stimulus-response relationship with the world rather than the traditional perceive-

reason-act relationship a deliberative system has with the world (as discussed in

section 2.3.2).

An early pioneer of the methodology was Rodney Brooks who developed the Sub-

sumption Architecture [23, 25, 27, 28]. The architecture involves the concept of lay-

ered levels of behaviour, with the low level “survival” behaviours at the bottom of

the hierarchy and the high level “goal” behaviours at the top. Figure 2.10 shows an

example of the behaviour levels of a robot whose goal it is to traverse an unknown

environment making some sort of observation. Each of these layers of behaviour run

in parallel; the higher level behaviours can subsume control over the lower levels but

not vice-versa. In the example, if the avoid behaviour detects an obstacle it would

subsume control over the wander behaviour and so the robot will avoid the detected

obstacle. Once the obstacle is successfully avoided, the robot defaults to the lower

2. literature review 22

level behaviour of wander. The more layers of behaviour within the architecture, the

more complex tasks the robot can perform.

Figure 2.10: The higher levels such as “avoid” subsume command over the actuators from the lower

levels such as “wander”.

A rival reactive controller to Brooks’s subsumption architecture is Arkin’s motor

schemas [1]. Arkin states that different motor behaviours (schemas) are required

for different tasks. As with Brooks’s subsumption architecture these behaviours are

relatively simple on an individual basis but when combined produce more complex

behaviours. Each of these schemas outputs a motion vector, which is multiplied by a

gain value (this indicates the relative importance of each behaviour); the vectors are

then summed. This command is then sent to the robot’s motor controller

Balch et al. [7] successfully implemented Arkin’s motor schemas in a multi-robot

formation control problem. A number of motor schemas were implemented to give

the desired behaviour of formation control:

• move to goal : Move towards a specific target location.

• avoid static obstacle Move away from a detected barrier.

• avoid robot Do not get too close to other robots.

• maintain formation Keep relative position with other robots.

2. literature review 23

Three methods for formation position determination were defined:

• Unit-centre-referenced : Each robot within the formation computed its own for-

mation position relative to the average x and y positions of all other robots

within the team.

• Leader-referenced : Each robot within the formation computed its own formation

position relative to the position of a ‘leader’ robot. The ‘leader’ robot did not

attempt to maintain formation; it was up to the other robots within the team

to maintain the formation.

• Neighbour-referenced : Each robot within the formation computed its own for-

mation position relative to another pre-defined robot.

It was found that the unit-centre-referenced approach provided the best results

[7]. However, this approach may not be applicable to some scenarios. For example, if

the ‘leader’ robot was replaced by a human leader, it would not be possible for them

to calculate the unit centre on the fly and avoid obstacles at the same time — as such

a leader-referenced approach would be more applicable. The unit-centre-referenced

approach was also communications intensive, and so it is not applicable in scenarios

where the bandwidth is limited.

Other behaviour based systems include Matarić ’s basis behaviours [61]. These

basis behaviours are control laws for locomotion to create complex group behaviours.

For example, by performing a sum of the outputs from the safe-wander, disperse,

aggregate and home behaviours, a flocking group behaviour was created. Descriptions

of the behaviours are given below:

• Safe-wander : agents move around the environment whilst avoiding collisions.

• Disperse: agents maintain an arbitrary minimum distance from one another.

• Aggregate: agents maintain an arbitrary maximum distance from one another.

• Home: agents can navigate to a predefined region of the environment.

2. literature review 24

• Flocking : agents have a structured movement that minimises interference and

protects individuals.

Both the flocking and a foraging group behaviours were implemented on a group

of mobile robots, known as the “Nerd Herd”. See figure 2.11 for a photograph of

the Nerd Herd. However, these basis behaviours could not provide provable optimal

solutions in complex domains. In [60], Matarić introduced social learning between

mobile robots, in which robots learnt how to perform a behaviour through imitation

and when to perform it through social facilitation. In essence, the robots could

perform mimicry. Descriptions of these social behaviours are given below:

• Imitation: the ability to observe and repeat behaviour.

• Social facilitation: the process of selectively expressing certain behaviours.

• Mimicry : the ability to repeat the behaviour of another robot, without under-

standing the goal.

In order to learn the behaviour of other robots, Matarić proposed three forms of

social knowledge and related reinforcement:

1. Direct reinforcement from movement towards goal.

2. Observation of other agent’s behaviour.

3. Observation of reinforcement (reward/punishment) given to other robots.

The effectiveness of the proposed forms of social knowledge varied depending on

the complexity of the rule(s) being learnt. This was expected. The high level of

difficulty of certain rules, particularly altruistic social rules, would seem to lend them

to genetic learning (a biologically inspired branch of machine learning), which would

be in-line with biological studies in which animals do not learn altruism towards their

kin but are born with it [64].

Monterio and Bicho applied a dynamical systems approach to behaviour-based

formation control. Task constraints were represented as attractors or repellers. In

2. literature review 25

Figure 2.11: Matarić’s “Nerd Herd” that she used in her social learning experimentation. Photo

taken from [61].

the initial case study three agents attempted to traverse an unknown environment,

whilst maintaining a triangle formation [67]. One of the three agents was assigned

as the “leader”, which had the task of driving from some initial position to a target

location. The other two agents had the task of maintaining the triangle formation

based upon the “leader” agent’s position. The “leader”’s behaviour was generated

by the summation of an attraction force-let (which attracted the system towards the

target direction) and a repulsion force-let (which repulsed the system away from ob-

stacles). The behaviour of the other agents was created by the same system dynamics;

the “leader” was the target. One of the agents attempted to stay to the left of the

“leader”, the other the right. In [16], they applied the research to a two robot case,

attempting to maintain column, oblique and line formations. In simulation, they

extended the number of robots up to six. In both sets of experiments, simulation

studies showed that smooth trajectories were generated which avoided collisions with

other objects within the environment.

Balch et al. [6] made some interesting observations about communication within

reactive multi-robot systems. They showed that communication improves system

performance significantly in tasks with little implicit communication — communica-

tion via changes to the environment which other robots can detect. For example, the

2. literature review 26

foraging task described in section 2.2.4. In-line with these finding they also showed

that, communication in tasks with implicit communication such as graze (discussed

in section 2.2.2), was unnecessary. They also found that complex communication

methods — the transmission of a robots current goal, gave little benefit over a basic

communication methods — the transmission of robots current state.

Minguez et al. [65, 66] introduced a reactive controller, the Nearness Diagram

(ND) algorithm, that navigated a robot to a goal location whilst avoiding obstacles.

It also actively avoided local trap situations in “U” shaped obstacles common in

potential field methods (see section 2.6.1 for more details on the limitations of the

potential field method). The algorithm was deployed on a single robot in a number of

highly cluttered and dynamic environments. In all experiments, the robot successfully

navigated the environments avoiding collisions and trap situations.

The system as shown in figure 2.12 works as follows 1:

Figure 2.12: Based upon sensory input and a target location. The robot decides what situation it

is in, and performs the related motor commands.

1. The robot collects sensory data and is given a goal location. The robot looks

for gaps within the obstacle distribution; the closest gap to the goal that is

navigable is defined as the free walk area.

1It is noteworthy to detail the system further, as the ND algorithm will be used as the reactive
controller, in the hybrid system used in chapter 7

2. literature review 27

2. Based on the available data the algorithm attempts to match the current en-

vironment situation with a number of pre-defined situations. This is achieved

through traversing a binary decision tree based on a number of criteria. One

of four criteria are activated based on the existence and position of obstacles

within the security zone of the robot. Criterion one is the safety criterion: this

is either high safety (if no obstacles exists within the security zone) or low safety

(if obstacles do exist). If the robot is in low safety, criterion two is activated

(the dangerous distribution criterion). This is in either one of two states: Low

Safety One (LS1) in which obstacles exist on one side of the security zone, and

Low Safety Two (LS2) in which obstacles exist on both sides. If the robot is in

high safety, criterion three is activated (goal within free walk area criterion). If

the goal is within the free walk area — the robot is in the High Safety Goal in

Region (HSGR) state. If not, criterion four is activated (wide/narrow walk area

criterion): this is in either one of two states, High Safety Wide Region (HSWR);

if the robot’s free walk area is wide, High Safety Narrow Region (HSNR); if the

robot’s free walk area is narrow. Examples of each situation are given in figure

2.13.

3. Each situation has a set of actions related to them that will solve the task of

avoiding obstacles whilst moving towards the goal. See table 2.1 for details.

4. Once the set of actions has been completed, this process is repeated until the

robot is at the goal.

In [31], Chaimowicz et al. implemented dynamic role assignment within a group

of co-operative mobile robots, which had the task of searching an environment for a

number of targets and moving them to a pre-defined location. In order to encourage

co-operation, each target required more than one robot to manipulate it. A number

of roles which corresponded to motor controllers were defined prior to the task:

• Exploration which involves a random search of the environment.

• Attach Lead which is activated when a robot discovers a target. The robot

broadcasts the available task and the required number of robots.

2. literature review 28

(a) (b)

(c) (d)

(e)

Figure 2.13: (a) Low safety 1 example. (b) Low safety 2 example. (c) High safety goal in region

example. (d) High safety wide region example. (e) High safety narrow region example. Figure

adapted from [65].

2. literature review 29

Table 2.1: Nearness Diagram algorithm. Situation — Action relationships.

Situation Action

LS1 Move the robot away from the obstacle, and towards the
closest gap of the free walk area.

LS2 Centre the robot between the two closest obstacles at
both sides of the gap of the free walk area. Whilst mov-
ing towards the gap.

HSGR Drive the robot towards the goal.
HSWR Moves the robot alongside the obstacle.
HSNR Drives the robot through the centre of the free walk area.

• Approach in which robots move towards a target.

• Attach in which robots are close enough to a target in order to manipulate it.

• Transport in which robots co-operate to manipulate a target to the desired

location.

Robots switch among roles in a way that is dependant upon current state and

broadcast information from the leader robots. Experiments were conducted with

twenty holonomic (this term means that the robots can move freely along their x

and y axes) robots and thirty target objects randomly distributed throughout the

environment. The number of robots needed to transport an object was also randomly

distributed between two and five robots. Positional information and communication

was presumed to be error free. The results showed that the task completion time

was related to the number of role re-allocations, with the time increasing with a

lower number of re-allocations. This was expected, as the lower the number of re-

allocations, the more likely a robot would be in an exploration role, and hence not

able to transport an object.

A newer area of research for robotic control is that of artificial immune systems.

One such system is the Dendritic Cell Algorithm (DCA) originally developed for

network security by Greensmith et al. [48], and deployed in mobile robots by Oates

et al. [69]. They implemented the DCA as the highest layer within a subsumption

architecture. The system was implemented in the security robot domain — the DCA

2. literature review 30

was used to classify objects within an environment as either normal or anomalous. For

example, a door that is open (that is normally closed) is classified as an anomalous

result. It is suggested that once an anomaly is reported, a human security guard

would be notified. Currently the system is in its infancy; it has been deployed on a

Pioneer robot (a common research robot) with the safe signal being sourced from the

laser range finder, the danger signal being sourced from the sonar array, and finally

the PAMP (or signature of abnormal behaviour) being provided by the camera. In

the set of initial experiments conducted by Oates et al., the Pioneer robot traversed an

environment classifying small pink obstacles as anomalous (as the laser range finder

did not detect them), and large pink obstacles as normal (as the laser range finder

detected them).

2.3.2 Deliberative Systems

The traditional approach to robotic control is to decompose the system into func-

tional modules as shown in figure 2.14. Typically the perceive module involves the

robot collecting sensor information to create a current state/world model. In the

reason module, the robot calculates how to get from this current state to the de-

sired state. Finally the act module involves the robot executing a number of tasks

computed in the reason module. These modules are continuously looped until a final

state/world model is reached. The efficiency of deliberative systems is reliant upon

a static environment. Dynamic environments cause delays, due to loops between the

perceive-reason modules.

Figure 2.14: Robots collect information about the environment/task, decide what to do, then per-

form the necessary motor commands.

STRIPS (STandford Research Institute Problem Solver) is a typical example of a

deliberative system [42]. STRIPS was given a problem space defined by the initial

2. literature review 31

state of the world, a set of operators (action routines e.g. push box), with precon-

ditions, post-conditions and a goal condition. STRIPS then attempted to identify

operators that reduced the differences between the present world model and the goal.

STRIPS was able to solve three general robotic tasks: turn on light switch, push

three boxes together, and go to a location in another room. If given an accurate map

of the environment and the starting locations of the three boxes, the light switch and

itself. The tasks were not implemented in the physical domain; instead the solution

was demonstrated in simulation only.

Action selection methods such as Bonet et al. looked at the problem of planning

as a real time heuristic search problem [18], in which the search space is limited and

agents move in constant time. The problem was split into discrete time intervals and

the agent made a decision at each step as to what to do next. They proposed the ASP

algorithm — a combination of a real-time A* (best-first, graph search) algorithm and

a heuristic function. Over a number of block world problems they compared it against

Kautz et al.’s SATPLAN (a combination of a stochastic search algorithm and problem

encodings based upon propositional logic [53]), and Blum et al.’s GRAPHPLAN (a

STRIPS-like planner which always returns the shortest possible partial-order plan, if

a valid plan exists [17]). The ASP algorithm performance in the simple problems was

comparable. However, in the more complex problems, the ASP algorithm performed

the best, in terms of number of steps needed to compute a solution. These solutions

were inferior to SATPLAN’s solutions, although still reasonable.

Many early deliberative systems relied upon complete information of the environ-

ment in order to construct plans. A number of approaches have been put forward for

planning with incomplete information (initial state not known, sensory information

available). Bonet et al. extended their previous work by formulating a plan with

incomplete information into a problem concerning a heuristic search in belief space

[19, 20]. The Real Time Dynamic Programming (RTDP) algorithm was proposed

which combined a real time greedy search algorithm with dynamic programming up-

dates. The RTDP produced results which were competitive with the best conformant

planners (CGP — a graphplan based planner that produces non-contingent plans

whenfaced with uncertainty [85] and CMBP — an algorithm that returns a set of all

2. literature review 32

possible conformant plans of minimal length, if such solutions exist [32]).

Etzioni et al. [40] provide an extension to STRIPS with the important assump-

tion that the information collected about the world state was correct. The SNLP

algorithm (a STRIPS-like planner [63]) was extended to allow plans to be generated

with incomplete information. The algorithm was shown to be successful in solving

problems in the UNIX domain. Petrick et al. [77] also tackled problems in the UNIX

domain (planning to achieve UNIX goals, using UNIX shell commands as primitive

actions). They used the concept of the planners knowledge state. Any actions taken

were modelled in such a way that they modified the knowledge state of the plan-

ner, not the physical state of the environment. This high level abstraction made the

system much more scalable than previous planning with incomplete information sys-

tems. As with other incomplete information systems inferential power was sacrificed

for speed.

Parsons et al. proposed a path planner for multiple mobile robots, which gave

complete collision free solutions [75]. The environment was modelled as a bounded

planar workspace. Obstacles within the environment were known a priori and were

of general polygonal shape. Robots were convex polygons. The task was to generate

paths for each robot from a staring location to a target location, avoiding collisions

with obstacles or other robots. A cell decomposition of free space was computed (this

involved computing the free space of a single robot and then computing the sub-set

of this free space that upheld an inter-robot constraint) and the resulting adjacency

graph was searched for a path.

In [56], Leroy et al. tackled the path co-ordination problem for hundreds of robots.

The path co-ordination problem can be defined as: n robots within an environment

compute independent paths, co-ordinating when necessary to avoid collisions with

one another. Again, a cell decomposition approach was applied. However, instead of

computing the exact shape of obstacles, a bounding box representation was calculated

(see figure 2.15). A classic cell decomposition approach was compared to the bounding

box approach. The bounding box approach improved the scalability of the system.

Indeed, results showed that the system could generate collision free paths for hundreds

of robots within a reasonable amount of time e.g. a 150 robot case in under 5 minutes.

2. literature review 33

(a) (b)

Figure 2.15: (a) Cell decomposition of environment. (b) Bounding box representation of environment

and generated path. Figure adapted from [56].

Chand et al.’s “book retrieval” robot [71] relied upon information given a priori .

In fact the available routes it could take whilst moving to and from bookcases was

embedded within the environment (by utilising floor markings). The robot followed

these markings using an infrared line follower. What happened to the robot if it

lost the line was not discussed. The task of retrieving a book was divided into sub-

tasks: go to bookcase, retrieve book and bring book to loan area. Each task was

programmed as a separate behaviour (motor controls), each of which were completed

in sequence.

2.3.3 Hybrid Systems

Hybrid robotic systems aim to merge the benefits of deliberation with the robust

nature of a reactive system. It is argued that purely reactive robotic systems are not

appropriate for every possible robotic application. For example, on an assembly line

the world (from the robot’s point of view) can be modeled relatively accurately, and so

a deliberative approach would be preferred. However, purely deliberative approaches

can encounter difficulties when situated within the real (highly dynamic) world.

Arkin was one of the first to suggest the use of deliberation in conjunction with

2. literature review 34

a reactive control scheme to improve performance in robot navigation [1, 4]. The

Autonomous Robot Architecture (AuRA), also used in [7] (as discussed in section

2.3.1), takes advantage of two types of world knowledge: (1) Persistent knowledge

which is information concerning the environment given a priori that is relatively static

and (2) Transitory knowledge which is information collected dynamically as the robot

moves around the environment. This knowledge was not a prerequisite for navigation

but resulted in a more efficient and flexible navigation. It should also be noted that

this knowledge was only used when needed and only to reconfigure the reactive control

schema. A number of experiments were conducted on real robots including a docking

task in which a robot had the task of navigating a cluttered environment towards

its charge station. The robot never computed a global path; instead it continuously

reformulated its motor schema’s based upon sensory information.

Arkin et al. considered a line of sight constrained approach to multi-robot explo-

ration [3]. The line of sight constraint was a method of simulating communication

constraints that may occur in a real world application. For example, a group of mo-

bile robots exploring a building, with a high amount of metal in the structure may

not be able to rely on the traditional RF method of communication. Two types of

line of sight were defined:

• direct : in which a robot r can directly sense robot a.

• indirect : in which a robot r can directly sense robot a, which can directly sense

robot b. Therefore robot r can indirectly sense robot b.

Three navigation strategies were proposed — the first approach “anchored wan-

der” was a purely reactive system, in which one member of a team of robots acted

as the communications “anchor”. This robot did not move from its initial position

within the environment. The other robots wandered around the environments in se-

quence (only one robot was moving at any one time) until a breach of the line of

sight rule occurred, in which case the robot backtracked. The second strategy was

the “Quadrant-biased anchored wander”; in this method a limited amount of world

knowledge was given to the team of robots a priori . The environments in which ex-

periments took place were divided into quadrants; the knowledge given a priori was

2. literature review 35

the quadrant in which a target resided. Each robot within the team (apart from the

“anchor” robot) had its motion biased towards the direction of this quadrant. In the

third and final strategy, (i.e. the “informed exploration”) approach more environ-

mental knowledge was given to the team of robots a priori . The team was given a

rough estimate of the location of a target and enough map information to allow path

planning. Results showed that in a relatively simple environment knowledge was not

a necessity, with the “anchored wander” reaching 95% coverage. However, in a more

complex environment knowledge provided a significant advantage.

Clark et al. introduce the concept of dynamic networks, where robots with limited

sensing range formed local networks of robots ad hoc during a task. A centralised

planner (one per network) plotted collision free trajectories in both 2-dimensional [35]

and 3-dimensional [34] environments. See figure 2.16 for an example of two robots

forming a dynamic network in order to plot collision free paths. After the trajectories

had been plotted it was up to the individual robot’s reactive controllers to avoid any

unexpected obstacles, until a new trajectory was planned. Experiments conducted

on real robots validated the systems’ performance on groups of up to 8 robots in

environments containing 5 stationary obstacles and 5 moving obstacles.

Liu et al. proposed a hybrid architecture for a robot football team [57], where

appropriate behaviours were executed based upon estimations of applicability. For

example, the closer a robot was to the opponent’s goal the higher the applicability of

the “shoot” behaviour.

Jarvis et al. used a deliberative planner to find a solution to a Travelling Salesman

Problem (TSP) [78]. The solution was then used by robots as their optimum path

through a partially known environment. They tackled a search and rescue problem in

a disaster environment. It was assumed that some knowledge of the environment was

given a priori i.e. a blue print of the building. This knowledge was used with a proba-

bilistic model that determined the most likely areas of the environment people might

have fled to during/after the disaster e.g. under door frames during earthquakes.

These likely positions are used as vertices on the graph of the TSP. The weight of

the edges was related to the time taken to travel the distance and the difficulty of

the terrain. With this near optimum solution, robots then traversed the environment

2. literature review 36

Figure 2.16: Two robots form a local network and collision free trajectories are plotted (solid lines).

Another robot, outside of the local group plans a trajectory (non collision free). The solid circles

represent the robots’ sensor range. The dashed circle the local group radius.

trying to keep as close as possible to the pre-planned path. It was envisaged that

some type of reactive controller would be used to avoid any unexpected obstacles.

An example solution is given in figure 2.17, where each segment of the map is given a

value based upon the probability of a target being located within that segment [78].

A TSP solution is then generated that will visit each of these segments.

Martins-Filho et al. tackled the mobile robot surveillance problem [59]. Their

main concern was to provide unpredictable trajectories to a mobile robot which was

traversing a known environment. It is important to note that the trajectories were

unpredictable to an observer, but deterministic and so the robots’ supervisor knew in

advance the future positions of the robot. This is useful in situations were the super-

visor would like to know the path of the robot a priori . The trajectories were sent

to a motion control layer. No obstacle avoidance was undertaken in the experiments.

However, adding such a process would be trivial.

Buckhard et al. integrated a Belief-Desire-Intention (BDI) type architecture into

their robot football team [29]. BDI has an advantage over traditional Artificial Intel-

ligence (AI) in that reasoning can be done in real time. A snapshot of environmental

2. literature review 38

2.3.4 Critical Analysis of Robotic Architectures

As discussed in section 2.3.1, reactive systems do not take advantage of any knowl-

edge gathered a priori and avoid the use of abstract representation. It is suggested

that such techniques are time consuming and ultimately futile in highly dynamic en-

vironments, as the more complex the environment, the more computation is needed.

Although this is true to an extent, computational power has increased rapidly since

the initial conception of both deliberative and reactive systems. Reactive systems

simply react to the current state of the environment based upon recent sensor infor-

mation. As such, the efficiency of a reactive system is highly tied to the efficiency of

the sensors — more precise information about the environment leads to better action

selection; conversely poor information about the environment can lead to poor action

selection. From a solution point of view, reactive systems do not guarantee near-

optimal solutions due to their inherent lack of knowledge of the environment/task —

indeed they do not guarantee any solution. Reactive systems are generally confined

to relatively simple, non-critical tasks where knowledge of the environment is unnec-

essary and the simplicity of the task leads to cheap manufacture, e.g. the vacuum

robot, Roomba.

Deliberative systems as discussed in section 2.3.2 use information gathered a pri-

ori about the environment/task to plan a near optimal solution. Early deliberative

systems were dependant upon complete and accurate information; any unexpected

event led to either poor performance or total task failure. Techniques that incorpo-

rated the use of incomplete and inaccurate information have improved the robustness

of deliberative systems significantly. As noted, the improvement of processing power

has also allowed deliberative systems to enter more dynamic environments. However,

they still suffer from poor performance in highly dynamic environments. Similarly

to the reactive systems that rely upon efficient sensor information, deliberative sys-

tems rely upon efficient mapping and localisation techniques. Deliberative systems

are generally confined to static robots in manufacturing applications, as the “world”

can be assumed to be known and all possible eventualities can be pre-determined.

Recent robotic systems tend to use high level deliberative planners combined with

2. literature review 39

low level reactive controllers. These hybrid systems as described in section 2.3.3 at-

tempt to gain the benefits of both systems, whilst minimising their drawbacks. They

attempt to get as near optimal solutions as feasibly possible in dynamic environments.

Generally, they will stick to a near-optimal path within an environment/task unless

forced to leave it by an unexpected event, where they will attempt to reacquire the

near-optimal path as soon as possible. Hybrid systems are often deployed in situa-

tions that require highly robust controllers, but some guarantee of task completion

is required, for example, a number of security mobile robots use reactive controllers

to navigate the environment avoiding collisions. Just implementing a reactive system

would not guarantee complete coverage of a given area. Hence a deliberative planner

is used to force the robot to travel to different points within the environment.

2.4 Multi-robot Taxonomies

Section 2.3 described the architectures employed on individual robots. In this section,

a number of possible multi-robot taxonomies will be discussed. One of the taxonomies

will be used to categorise the multi-robot systems in section 2.5 as well as the new

multi-robot system presented in chapter 4. This section will conclude with a critical

analysis of the multi-robot taxonomies and an explanation on the choice of taxonomy.

2.4.1 Balch

Balch proposed taxonomies for multi-robot task and reward [5]. The research was

centred around the use of reinforcement learning techniques for training groups of

robots.

Balch’s taxonomy of reward is given in table 2.2. In this taxonomy, five salient

features were proposed. These features can be combined to describe a systems reward

structure. Reward structures differ between systems as, in certain situations, the

reinforcement function may not be the same as the performance metric. For example,

if the robots within the system do not provide enough information, via their senors,

for their performance to be evaluated accurately. As with the task taxonomy example,

a reinforcement learning technique can be classified using the reward taxonomy.

2. literature review 40

Table 2.2: Taxonomy of reward.

Feature Description

Source of reward
INTERNAL SOURCE Reward is internal based on sensor values.
EXTERNAL SOURCE Reward is generated by external agent.
COMB SOURCE Combined internal and external reward.
Relation to performance
PERFORMANCE Reward is tied directly to performance.
HEURISTIC Reward based on intuition of state value.
Time
IMMEDIATE Immediate rewards are provided.
DELAYED Reward is delayed.
Continuity
DISCRETE Reward takes on several discrete values.
CONTINUOUS Reward drawn from continuous interval.
Locality
LOCAL Individual agents receive unique rewards.
GLOBAL All agents receive identical reward signal.
COMB LOCALITY Combination of local and global.

Balch’s taxonomy of task is given in table 2.3. Six salient features of a task were

proposed. By combining these six features it is possible to classify any given problem.

For example, the foraging task as described in section 2.2.4 can be classified as:

TIME LIM (assuming a time limit is given); OBJECT BASED; RESOURCE LIM;

COMP INT; and SINGLE AGENT. A ‘Criterion’ is not chosen as, in this case, the

task was not an unlimited time task.

2.4.2 Farinelli

Farinelli et al. introduced a taxonomy based upon the level of communication and

co-ordination among robots within a team [41]. A hierarchical view of the taxonomy

is shown in figure 2.18. The first layer (top) distinguishes between co-operative and

non co-operative teams of robots. The second layer represents the level of knowledge

members of a team of robots has about one another. The third layer is concerned

with the mechanisms used for co-ordination, if any. The final layer is concerned with

the architecture communication/co-ordination of the system: that is, a centralised or

2. literature review 41

Table 2.3: Taxonomy of task.

Feature Description

Time
TIME LIM Fixed time task.
TIME MIN Minimum time task.
TIME UNLIM Unlimited time task.
SYNC Synchronisation required.
Criteria
CRIT FINITE Optimise over finite period.
CRIT AVG Average performance over all future.
CRIT DISC Discount future performance geometrically.
Subject of action
OBJECT BASED Movement/placement of objects is important.
ROBOT BASED Movement/placement of robots is important.
Resource limits
RESOURCE LIM Limited external resources.
ENERGY MIN Minimum energy task.
COMP INT Competition between team members for resources.
COMP EXT Team competes with external agents.
Group movement
CONVERGENCE Multiple robots converge.
COVERAGE Multiple robots disperse.
MOVEMENT TO Movement to a position.
MOVEMENT WHILE Movement while maintaining position.
Platform capabilities
SINGLE AGENT A single robot can perform the task.
MULTI AGENT Multiple robots are required.
DISPERSED Agents must be dispersed.
SENSOR COMPLETE Robots can sense all relevant features.
SENSOR LIM World is only partially observable.
COMM Communication amongst robots is required.

distributed architecture.

A brief description of each category of the taxonomy is given below:

1. Unaware: where robots act individually within a group and do not recognise

group members.

2. Aware — not co-ordinated : where robots can differentiate group members from

2. literature review 42

the environment but still work individually (typically only simple communica-

tion methods are used to avoid interference).

3. Weakly co-ordinated : where the group does not use any form of explicit co-

ordination. Instead, co-ordination is typically an emergent property of the

system.

4. Strongly co-ordinated — strongly centralised : group members rely upon a ‘leader’

robot/agent to co-ordinate tasks.

5. Strongly co-ordinated — weakly centralised : groups do not assign a ‘leader’

robot a priori , the assignment is task/environment dependant.

6. Strongly co-ordinated — distributed : group members do not rely upon any

‘leader’ robot/agent; each robot makes its own decisions.

Figure 2.18: Taxonomy of communication and co-ordination. Figure adapted from [41].

2. literature review 43

2.4.3 Dudek

Dudek et al.’s taxonomy was first proposed for swarm robotics [38] and later extended

to the more general case of multi-agent robotics [39]. The taxonomy is shown in tables

2.4 and 2.5. The original taxonomy for swarms is highlighted with an asterisk. An

example classification based upon Dudek et al.’s taxonomy of a robot football system

(as described in section 2.2.6) could be as follows: SIZE-LIM; COM-INF; TOP-ADD;

BAND-MOTION; ARR-DYN; PROC-TME; and CMP-HOM.

Table 2.4: Taxonomy of Multi-agent robotics (part 1).

Feature Description

Collective reconfigurability*
ARR-STATIC Static arrangement. The topology is fixed.
ARR-COMM Co-ordinated re-arrangement. Re-arrangement

between team members that communicate.
ARR-DYN Dynamic arrangement. The relationship of

team members can change arbitrarily.
Processing ability*
PROC-SUM Non-linear summation unit.
PROC-FSA Finite state automaton.
PROC-PDA Push-down automaton.
PROC-TME Turing machine equivalent.
Collective composition
CMP-IDENT Identical. The collective is made up of homo-

geneous robots. Both in terms of hardware and
software.

CMP-HOM Homogeneous. The collective is made up of
robots with the same hardware.

CMP-HET Heterogeneous. The collective is made up of
robots with differences in hardware.

2.4.4 Gerkey

Gerkey et al. propose a taxonomy of Multi-Robot Task Allocation (MRTA) problems

[45]. The following three axes were proposed:

• Single-task robots (ST) vs. multi-task robots (MT).

2. literature review 44

Table 2.5: Taxonomy of Multi-agent robotics (part 2).

Feature Description

Size of the collective*
SIZE-ALONE 1 robot. The minimal collective.
SIZE-PAIR 2 robots. The simplest group.
SIZE-LIM Multiple robots. The number of robots is rela-

tively small to the size of the task/environment.
SIZE-INF There is effectively an infinite number of

robots.
Communication range
COM-NONE Robots cannot communicate with other robots

directly. Indirect communication is still possi-
ble.

COM-NEAR Robots can only communicate with other
“nearby” robots.

COM-INF Robots can communicate with any other robot.
Infinite communications range.

Communication topology*
TOP-BROAD Broadcast. Robots communicate with all

robots in the collective or none.
TOP-ADD Address. Robots can communicate with arbi-

trary robots using a unique address.
TOP-TREE Tree. Robots are linked in a tree structure and

can only communicate through this hierarchy.
TOP-GRAPH Graph. Robots are linked in a graph structure.

A more general and robust form of the tree
structure.

Communication bandwidth*
BAND-INF Communication is free. The cost/overhead of

communication can be ignored.
BAND-MOTION Communication costs are of the same magni-

tude of the cost moving the robot between lo-
cations.

BAND-LOW Very high cost. Communication costs are much
higher than the cost of moving from one loca-
tion to another.

BAND-ZERO No communication. Robots are unable to sense
each other.

2. literature review 45

- ST means a robot can only perform one task at a time. MT means a robot

can perform multiple tasks at once.

• Single-robot tasks (SR) vs. multi-robots tasks (MR).

- SR means that each task requires only one robot to complete it. MR means

that some tasks may require more than one robot.

• Instantaneous assignment (IA) vs. time-executed assignment (TA).

- IA means that planning for future allocations is not possible. TA means that

planning of future allocations is possible.

These three axes allow for a possible eight combinations as given below:

• ST-SR-IA:

- Examples include Parker’s L-ALLIANCE architecture [73, 74] and Werger et

al.’s BLE [95], as discussed in section 2.5.6.

• ST-ST-TA:

- Examples include Dias et al.’s market based controller [37] and Parker’s AL-

LIANCE architecture [72], as described in section 2.5.5 and 2.5.6 respectively.

• ST-MR-IA:

- Examples include Fua et al.’s COBOS architecture [43] and Rekleitis et al.’s

[80] multi-robot localisation problem, as described in sections 2.5.5 and 2.5.6

respectively.

• ST-MR-TA:

- As an example; Jennings et al.’s [52, 51] multi-robot search and rescue problem

is a type of ST-MR-TA problem, as described in section 2.5.6.

• MT-SR-IA and MT-SR-TA:

- These types of problem are currently uncommon, as it assumes that robots can

execute multiple tasks concurrently. This requires highly accurate actuators,

which are not typically available.

2. literature review 46

• MT-MR-IA and MT-MR-TA:

- Robot football is a good example of both MT-MR-IA and MT-MR-TA prob-

lems, the difference in the robot football case being the inclusion of a ‘coach’

agent within a team to produce future task allocations. For example, CMUnited

[92] and Tews et al. [88], as described in sections 2.5.4 and 2.6 respectively.

2.4.5 Critical Analysis of Multi-robot Taxonomies

Whilst Balch’s taxonomy of task can be used to categorise a wide range of multi-

robot tasks, his taxonomy of reward is heavily reinforcement learning orientated.

By changing the parameters of the taxonomy to suit other learning methods the

taxonomy could be expanded. However, the taxonomy is of no real use to non learning

systems.

The papers by Dudek et al. and Gerkey et al. provide good generalised taxonomies

that are able to accommodate the majority (if not all) of multi-robot systems. Gerky

et al.’s taxonomy of multi-robot task allocation, as the name suggests, is centred

around the task that has to be completed (as Balch’s taxonomy of task). This is unlike

Dudek et al.’s taxonomy of multi-agent robotics and Farinelli et al.’s taxonomy of

communication and co-ordination, which are centred around the multi-robot system.

As the aim of this thesis is to present a new multi-robot system, it would seem

appropriate to use a multi-robot taxonomy centred around the multi-robot system

rather than the task. Indeed, the task to be completed was not a controlling factor

of the design of the new multi-robot system presented in chapter 4. Farinelli et al.’s

taxonomy has been chosen as the taxonomy to be used throughout the rest of this

thesis as it focuses on the communication and co-ordination aspects of the multi-

robots system, which is the research area of this thesis. The relative ease of assigning

multi-robot system to categories within the system is also attractive.

2.5 Multi-robot Systems

In this section, several multi-robot systems will be discussed. The following sections

are categorised according to Farinelli et al.’s Multi-robot taxonomy, as discussed

2. literature review 48

upon the behaviour of other agents and the position of the ball (no symbolic distinc-

tion between opponents and team members was needed).

2.5.2 Aware, Not Co-ordinated Systems

Balch et al. [8] introduced social potentials to tackle the formation control problem in

simulation. Depending on the formation, each robot had a number of local attachment

sites that other robots within the group were attracted to. See figure 2.20 for an

example of the attachment sites for a column formation. No global communication

protocol was needed — local sensors were used to detect team members and acquire

free attachment sites. This made the system highly scalable. Experiments were

conducted on groups of 1 to 8 robots. Of the four formations used (diamond, line,

column and square), the column formation produced the best performance when

traversing an obstacle field.

Figure 2.20: Attachment sites for column formation: The arrows signify the motion of the robots,

moving into formation. Figure adapted from [8].

In [9], Batalin et al. address the problem of deploying mobile sensor networks.

They used a behaviour-based architecture, as defined in section 2.3.1. In the first of

three systems described, individual robots simply moved in the direction that best

improved their coverage. In the second system, robots within a given distance of one

another formed coalitions, and decided on subsequent motions based upon relative

positions and bearings. In the third system, robots were simply repelled by other

robots within their field of view. This non co-ordinated approach outperformed the

co-ordinated approach. Both of the systems that could differentiate other robots from

obstacles within the environment outperformed the individual system.

2. literature review 49

2.5.3 Weakly Co-ordinated Systems

Howard et al. used a potential field based approach to deploy a mobile sensor network

on a single floor of a simulation of a large hospital [50]. The potential fields were

constructed so that each node within the network was repulsed by other nodes and

obstacles within the environment. The nodes were also subject to viscous friction to

ensure that the network stabilised to a static state. As a result, the algorithm solved

the coverage problem for this environment.

Gazi also implemented a potential field based approach in which he proposed the

use of ‘sliding mode control’ [90] for implementing foraging and formation control

tasks [44]. The numerical simulated examples showed that the system would form

stable swarms and form desired formations.

Cao et al. proposed a distributed control approach to multi-robot hunting, which

they termed ‘local interactions with local co-ordinate systems’ (LILCS) [30]. Each

robot within the system made its own decisions based upon its current sensor readings.

Co-operation emerged from local interactions within the system that may have been

beneficial to the task. Results showed that the system could successfully capture

evaders in three different simulated environments.

Lumelksy et al. [58] introduced the “Cocktail Party Model” for decentralised

multi-robot motion control, in an unknown environment. Robots sensed objects

within a given range, and differentiated between robots and other obstacles. At

all times, the robots knew their current position within the environment and their

target position. No explicit communication occurred between robots. Robots fol-

lowed a straight line path to their desired target until they came across an obstacle.

The robots then attempted to follow the boundary of the obstacle until they reached

their initial straight line path once more. It was shown that an increased sensor range

improved the performance of the system, as it led to robots pro-actively avoiding one

another. An example is shown in figure 2.21. In figure 2.21a, each robot has a very

limited sensing capability, and so the system is prone to inter-robot collisions. In fig-

ure 2.21b, each robot has a much improved sensing capability. The result is a reduced

amount of inter-robot collisions.

2. literature review 50

(a) (b)

Figure 2.21: a) A system with very limited sensing capability. b) A system with varied (but im-

proved) sensing capability, as shown by the bar chart. The figures are taken from [58].

2.5.4 Strongly Co-ordinated, Strongly Centralised Systems

In [67], (described in section 2.3.1), it was assumed that the “leader” agent broadcast

its position to the other agents within the system. If the other agents failed to receive

the transmission (or indeed if it was never sent), the agents would have no way of

maintaining the triangle formation.

The Champions of Robocup ’97, CMUnited [92], used a centralised interface com-

puter that was connected to the camera system, which tracked all robots on the field

and the ball. It was also connected to each client module, which calculated the ac-

tion primitives for specific robots within the team, based upon pre-game agreements

and the current world state. The interface computer transmitted these actions to

individual robots via RF.

In [49], Howard et al. tackle the coverage problem, with the added constraint of

maintaining line of sight between the robots. The real time simulation experiments

showed that the algorithm employed was practical for groups containing up to 50

robots. The line of sight constraint was used, as it was assumed that a Global

Positioning System (GPS) was not available. Robots needed to maintain their line of

2. literature review 51

sight in order to use each other as landmarks. A central algorithm cycled through the

following processes until all robots had been deployed or the environment had been

completely covered:

• Initialisation: Robots are assigned one of three states; waiting, active or de-

ployed. All robots are initially in the waiting state apart from the anchor robot

which is deployed at the start.

• Selection: Sensor data from all of the robots is combined to form a global map

of the known environment. The next deployment location is based on analysis

of this map.

• Assignment : The next waiting robot is assigned the deployment location. If

the robot is unable to reach the location, due to other robots obstructing its

path, then reassignment of the deployment locations takes place.

• Execution: Robots make their way to their deployment location. Robots move

sequentially in order to maintain line of sight.

Simmons et al. [83] described a technique for co-ordinating heterogeneous robots

during an exploration and mapping task. Two problems were considered; creating

a single consistent map of the environment, and how to explore the environment in

order to create the map in the most effective manner. Each problem was tackled in a

similar way. Each robot created its own local map using a laser range finder. A cen-

tral mapper pooled all of the local maps together to create a single global map. Local

mappers helped to reduce errors in the global map through localisation techniques.

The central mapper also reduced errors in the global map by iteratively combining lo-

cal maps. The major assumption was that each robot’s calculation of its own position

and pose relative to one another, was accurate, and that the communications method

had a high bandwidth. During exploration, each robot constructed a bid, describing

the expected gain and cost of exploration. A central planner pooled these bids and

attempted to assign tasks whilst maximising the global utilisation. During experi-

mentation the system was deployed on three environments (office-like, random and

2. literature review 52

obstacle free). In the office-like environment, two robots significantly outperformed

one robot, whilst the increase in performance between three robots and two robots

was insignificant. In the random environment, groups of three robots significantly

outperformed groups of two robots. In the obstacle free environment, the three robot

groups performed the worst. From these results, a relationship between obstacle fre-

quency and group size can be observed with obstacles helping to limit inter-robot

interference.

In [70], Ögren et al. tackled the problem of vehicle formation control using artificial

potentials and virtual leaders. The artificial potentials defined the interaction forces

among neighbouring vehicles, virtual leaders and nearby vehicles. Virtual leaders were

used to herd the vehicles into the desired formations and towards the goal location.

An example of virtual leaders forcing a formation of vehicles to rotate is given in

figure 2.22.

(a) (b)

Figure 2.22: Squares represent vehicles, grey circles are virtual leaders. a) Initial position and

orientation. b) Position and orientation after a 90o rotation. Dotted and dashed circles represent

the region of effect for each element within the environment. The figures are adapted from [70].

2. literature review 53

2.5.5 Strongly Co-ordinated, Weakly Centralised Systems

Reif et al. [79] tackled the problem of controlling Very Large Scale Robotic (VLSR)

systems. They introduce the concept of social potential fields, where the motion of

individual robots was related to the resultant force imposed by other components in

the system (robots and obstacles). They defined three types of robots in their system:

• Leader robots which were not affected by the force laws of the system and whose

motion was either pre-planned or human controlled.

• Landmark robots were static and not affected by the force laws of the system.

They imposed forces on other robots in the system, and so could be used to

designate areas of interest/non-interest.

• Ordinary robots which were autonomous and their motion was a result of the

force laws of the system.

Simulations of the system completing a guard task (similar to the hunting problem

described in section 2.2) and a mine-sweeping task (similar in concept to the graze

problem described in section 2.2) were conducted.

In [84], Simmons et al., described an approach to co-ordinate three heterogeneous

robots in order to solve an assembly problem. Each individual robot’s architecture

was made up of three layers: a planner, that solved high level goals; an executive

that sequenced and monitored tasks; and a behavioural layer which interfaced with

sensors and actuators to provide low level command e.g. obstacle avoidance. Each

of these layers interacted with those above and below it. In the multi-robot situation

each layer could interact with the corresponding layer of another robot. See figure

2.23 for an example of two robots’ architectures co-ordinating at individual layers. By

enabling the planner layers to interact, global resource utilisation could be improved.

This was done by the robots bidding to become the leader of the group. This leader

robot negotiated with other robots to form teams and assign tasks to them, as well

as monitoring progress and adapting the plan if new needs arised. The robots could

also negotiate with other (non leader) robots in order to carry out an assigned task.

2. literature review 54

Figure 2.23: Each layer can interact with neighbouring layers, and corresponding layers on other

robots. Figure adapted from [84].

Dias et al. [37] introduced a market-based controller with opportunistic leaders.

Market-based controllers for multi-robot systems were first introduced by Stentz et

al. [86]; they were based upon the “free market” system from economics. Robots

bid and negotiate to carry out tasks. Both co-operation and competition are utilised,

to gain the maximum net profit for the “market”, whilst also maximising individual

robot’s personal profits. Dias et al. extend this work from single-party, single-task

negotiations to multi-party, multi-task negotiations — this enabled the groups to es-

cape local minima in the solution space. Leaders were used within groups to provide

better solutions (leaders had access to global state information). A distributed trav-

elling salesman problem was attempted in simulation. The problem was defined as

follows:

A group of robots, with different starting locations, in a known environ-

2. literature review 55

ment, had the task of visiting a number of pre-defined locations within
the environment, whilst attempting to minimise the time taken for each
location to be visited.

Each robot was given a map of the environment a priori and, based on this map,

each robot could assess the individual cost of visiting each location. Individual robots

bidded to visit each location, whilst trying to maximise their revenue and minimise

their costs. The architecture was shown to significantly improve the team solution

through a series of ‘city-for-revenue’ deals between pairs of robots.

Fua et al. tackled the problem of multi-robot task allocation (with limited com-

munications range), and, in doing so, introduced the ‘Co-operative Back-off Adaptive

Scheme’ (COBOS) [43]. Initially, each robot started assuming it could solve all tasks.

During the experimentation, tasks were generated by a central planner at random,

making a priori planning impossible. This was an attempt to mimic a dynamic

environment. Information about the tasks and robots was broadcast among robots

within communications range. If a robot left communications range, the information

held about it i.e. state of task being attempted, was stored and only changed once

the robot re-entered communications range. Hence, it was unknown whether or not

a robot outside communications range had completed a task or had failed. Robots

learnt through “experience” whether or not they could perform a task in that they

back-off from a task if they estimated the time it would take them to complete the

task was longer than the group computed average time. Each task had a number

of requirements associated with it. For example, a robot without a gripper would

not attempt a task that had the requirement “manipulate object” associated with it.

Experiments were conducted under simulation which verified the effectiveness of the

proposed scheme.

2.5.6 Strongly Co-ordinated, Distributed Systems

Zlot et al. [97] used a market-based approach to solve a multi-robot exploration prob-

lem. Unlike the weakly centralised approach by Dias et al. [37], their approach was

entirely distributed i.e. no leader robots were used. Price information was used as a

means of low bandwidth communication. The system was deployed on three different

2. literature review 56

environments: a large indoor open space; an outdoor area with a limited number of

static obstacles; and an indoor area with numerous static and dynamic obstacles. Ne-

gotiation based strategies were shown to significantly outperform a greedy algorithm

based system and a no communication based system in each environment.

In [80], Rekleitis et al. tackled the two robot case of the multi-robot exploration

problem. Each robot used the relative position of its team mate (each robot had a

robot tracker sensor, that observed and reported the relative pose of the robot) to

update its own estimation of position. This helped to reduce the effect of errors abun-

dant in dead reckoning. To ensure that line of sight between the team members was

maintained at all times, the robots moved in sequence (at most one robot was moving

at any one time). Experiments in both simulation and on real robots validated the

hypothesis that joint exploration and localisation can lead to more robust modeling

than odometry alone, due to the reduced error.

In [95], Werger et al. continued their previous investigation into port-arbitrated

behaviour [93], the abstractions and techniques which Brooks implemented in his Be-

haviour Language [26], and used to good effect in [62]. They introduced the Broad-

cast of Local Eligibility (BLE) approach to heterogeneous multi-robot co-ordination.

During a task, an individual determines its eligibility to perform a sub-task; this was

compared with the best eligibility calculated by other members of the group. The

robot with the best eligibility claimed the sub-task and hence inhibited the related

behaviours of other members of the group. If the robot completing the sub-task failed,

it was freed and was immediately available to be claimed by another robot. No ex-

plicit negotiation or recognition took place. Experiments were conducted comparing

the BLE system against a standard local subsumption system, a local greedy system

(the behaviour with the highest evaluation function controls the robot) and random

controller (only the random wander behaviour was implemented). Each system had

the task of navigating an environment in an attempt to track a number of targets

(similar to the surveillance problem described in section 2.2). Results showed that

the BLE significantly outperformed all other systems in this scenario.

Jennings et al. presented an algorithm for distributed robotic search and rescue,

in both the two robot case [52] and the three robot case [51]. As is shown in figure

2. literature review 57

2.24, the problem was split into two sub-problems. At first the robots “search” for the

target: i.e. the robots move around the environment in a random fashion until they

found an object. In the second sub-problem, the robots “rescue” the target. This

problem is only activated once an object is found. The robot that discovered the

object transmitted a broadcast message, giving its current position. All other robots

in the system made their way to the broadcasting robot. Once two robots were

at the object they would attempt to manipulate the object to a pre-specified goal

location. No explicit transmission of messages or internal states occurred between

robots. Instead, each robot could make remote procedure calls on other robots in

their team. Robots could retire from a task if they detected a fault i.e. low battery,

in which case the robot that was left would attempt to find a substitute robot, by

explicitly requesting a new team member.

(a) (b)

(c) (d)

Figure 2.24: Three robots (circles) are required to rescue the target (rectangle). (a) Robots search

the environment (S). (b) One robot finds the target and broadcasts (B) a message for assistance to

the other robots. (c) Robots make their way to the target location (T). (d) Robots manipulate the

target (M) to the desired location. Dashed line represents inter-robot communication. Dotted lines

represent desired paths of the robots.

2. literature review 58

Parker introduced ALLIANCE, a fault tolerant architecture for multiple heteroge-

neous mobile robots in [72, 74]. The architecture was an extension of the behaviour-

based systems described previously in section 2.3.1. A number of high-level behaviour

sets compete to perform tasks. The concept of motivational behaviours was intro-

duced as a mechanism to choose between these high-level behaviours. Each motiva-

tional behaviour had a number of inputs and one output, as shown in figure 2.25.

The output was the activation level of the corresponding behavioural set, which was

activated once a pre-defined threshold was passed. All the other behavioural sets in

the system were inhibited. The inputs ranged from sensory readings to inter-robot

communication (broadcasting of state information). Internal motivations were also a

factor on the output. Impatience was used, to encourage individual robots to perform

a task that had not been undertaken by any other robot. However, a robot had the

ability to override the inhibitory signal from another robot, if a task assigned to that

other robot was not being completed to a certain level, i.e. the robot had stalled.

Conversely, robots also monitored their own progress. If they did not think they were

completing a task to the required level, they would give up and attempt a different

task. The system was deployed on a mock hazardous waste cleanup task (similar to

the forage problem discussed in section 2.2). The system was observed to perform as

designed.

Figure 2.25: The behavioural sets are activated depending upon feedback, communication and state

inputs.

2. literature review 59

L-ALLIANCE [72, 73] is a further extension to the behaviour-based approach.

The system improved upon the efficiency of the robotic team’s performance in the

waste disposal task, whilst maintaining the team’s fault tolerance. This was achieved

by each robot assigning a metric to how well it could complete a task and how well

other robots could complete their current tasks. The metric that was calculated

was the mean completion time of the last five tasks. Knowing when robots should

become impatient with the performance of teammates or themselves was a major

issue in terms of performance. Three strategies were implemented; the first only

required the robots to use their own performance measures. The second required the

robots to compare their performance against the best robot they knew of within the

group. The third strategy required robots to use the performance measures of other

robots within the group. In the first strategy, better robots took over the tasks of

worse robots only after the worse robot had decided to give up the task after a “fair”

attempt. In the second strategy, the better robots took over tasks from worse robots;

these worse robots gave up performing a task once a better robot was available. In

the final strategy, tasks were completed on a first come, fist served basis. With better

robots only taking over a task once the current robot decided it was going to fail.

Three methods of choosing which idle task to complete next were also investigated,

these were: longest first; shortest first; and random selection. Simulation experiments

were conducted with varying numbers of robots, degrees of robot heterogeneity, and

tasks. The longest task first approach was quickly dismissed as it led to robots with

the worst ability attempting tasks. The second strategy (let the best robot win)

was the most successful strategy throughout the experiments, apart from the cases

where the robots are only mildly heterogeneous, and do not assign progress when

carrying out a task, and the shortest idle task is attempted first, in which case the

third strategy (give robots a fighting chance) performed the best.

2.5.7 Critical Analysis of Multi-robot Systems

As discussed in section 2.5.1, robots that are members of unaware systems act as

individuals and have no concept of ‘the team’. No explicit communication or co-

2. literature review 60

ordination occurs between members of the system. Robots make decisions based

upon the positions of other agents (team members or other elements of the system).

In the most general case, this being a decision of “something’s there, so I can’t go there

and must go somewhere else”. The solution to a task is not achieved as a group — it

is achieved as individuals. Solutions are more or less always sub-optimal. Unaware

systems are often the benchmark systems used by multi-robot systems researchers

to compare the effectiveness of another system’s communication and co-ordination

against. Indeed, this is the case in this thesis. The non-sharing system described in

chapter 4 is of the unaware type.

Section 2.5.2 describes a number of aware, not co-ordinated systems. A robot

in these systems can distinguish other team members from other elements of the

environment. However, there is still no explicit communication or co-ordination.

These systems act in a similar fashion to the unaware systems, but the recognition

of team members allows the system to reduce the amount of interference between

team members during a task. Aware, not co-ordinated systems are reliant upon

their ‘team member detection’ sensor. If this fails, the system reverts to an unaware

system. False positive and false negative team member recognition can also be an

issue, both of which affect the performance of the system in the given task. Aware,

not co-ordinated systems often appear in simulated environments where the reliability

of the ‘team member detection’ sensor can be guaranteed.

Weakly co-ordinated systems, as discussed in section 2.5.3, share the properties of

the above systems in that they do not use any form of explicit co-ordination. However,

they do employ the use of implicit co-ordination. Team behaviours are an emergent

property of local interactions within the system. Weakly co-ordinated systems have

the benefit of being simple to design due to the lack of a complicated co-ordination

strategy, coupled with the additional benefit of the designer having knowledge of how

the system will react in an environment a priori . Due to this limited co-ordination,

the level of complexity of the task being undertaken is also limited in nature.

Section 2.5.4 describes the strongly co-ordinated, strongly centralised type of multi-

robot system, in which a group of robots is controlled or led by a designated ‘leader’

robot or by a remote PC. The ‘leader’ agent makes sure that the system is always

2. literature review 61

moving towards a solution and gives the designer of the system yet more assurances

of the behaviour of the system in a given environment. If undesirable behaviour is

occurring, the ‘leader’ agent can be used to change this behaviour. The main problem

with a strongly co-ordinated, strongly centralised system is its centralised nature. If

the ‘leader’ agent fails, the system will, at best, reverting to a weakly co-ordinated

system. At worst the whole system will fail.

Strongly co-ordinated, weakly centralised systems, as described in section 2.5.5,

unlike their strongly centralised peers do not assign ‘leader’ agents a priori . Instead,

the assignment of ‘leaders’ is task dependant. Typically, robots within the system use

a bidding method to discover which robot is more capable of performing a given task.

Robots that are unable to form a bid, perhaps due to systems failure, act as individ-

uals. The cost is, of course, a more complex co-ordination strategy. However, there

is the benefit of increased tolerance to failure (especially in homogeneous groups).

Finally, strongly co-ordinated, distributed systems, as described in section 2.5.6,

do not assign any agent as a ‘leader’ — each robot within the system makes its own

informed decisions. Typically, each robot will have a number of individual goals to

achieve as well as a number of team goals. By maximising their individual achieve-

ments robots within the team aim to maximise the team’s achievements. The cost

of such a system is the complex co-ordination strategy coupled with a typically high

bandwidth communications protocol. However, allowing each robot to make its own

decisions throughout the task increases the fault tolerance and the robustness of

the system dramatically, if the robots are presumed homogeneous. If heterogeneous

robots are employed, this type of system reduces the amount of wasted resource, as

robots are aware of what tasks they can and cannot complete.

2.6 The Potential Field Method

The potential field method is an analogy of the movement of electrically charged

particles in free space. Particles of equal signs are repulsed by one another; particles

of opposite signs are attracted to one another. Noteworthy robotic systems that have

implemented the potential field method, that have not already been discussed above,

2. literature review 62

will now be discussed. This section will conclude with a discussion of the known

limitations of the potential field method, proposed solutions from the literature and

close with a critical analysis.

The potential field method was introduced in Khatib’s seminal work on obstacle

avoidance [54], in which he took what was commonly thought of as a high level

planning problem and turned it into a low level real-time control problem. He also

envisioned a hybrid class of robotic system, in which a high level planner would

generate a global strategy, whilst a low level controller would produce the commands

to reach the goals set by the high level planner.

In the robot football domain Tews et al. [88] used a centralised system to plan the

actions of team members. Only three actions were implemented within the system: go

to destination; kick the ball ; and halt. The central planner examined the state of the

game and made decisions based upon the robot’s perspective. Potential fields were

used to determine the locations where the robots would carry out these actions. One

robot was chosen to kick the ball to a desirable location; the others moved to useful

locations. Both of these types of actions were based upon a potential field evaluation

of grid locations. The precise action depended upon the state of the game i.e. at-

tacking or defending. The potential field was constructed based upon objects within

the physical field. For example, a base field which was biased towards the opposi-

tion’s goal was used to encourage the robots to attack, and a robot’s personal region

was used to discourage interference from other team members. Choosing desirable

locations to kick the ball to, or move robots to, were calculated by the summation of

a number of potential fields. Experiments showed that the system performed better

than a system that did not employ any co-ordination.

Also in the robot football domain, Damas et al. [36] used a potential field method

to enable a robot to dribble the ball. The potential field was “stretched” in the

direction of motion, in the direction of the x-axis in a non-holonomic robots case.

As shown in figure 2.26, a non-holonomic robot is restricted to movement along the

x-axis. As the ball was an attractive force within the potential field, the robot moved

towards it. In order to maintain contact with the ball (dribble) the inertia and

friction forces exerted on the ball had to be balanced with the torque generated at

2. literature review 63

the contact point. The system was successfully implemented on the IsocRob team in

the RoboCup middle-size league.

Figure 2.26: The robot cannot freely move along the y-axis, movement along the x-axis is a necessity.

Figure adapted from [36].

Pathak et al. [76] applied the potential field method to mobile robot path plan-

ning. Given a starting location and a goal location a planner algorithm outputted a

string of overlapping bubbles joining the start and goal locations. The size of each

bubble represented the free space available between obstacles. The shortest path

was calculated through these bubbles, and was guaranteed to encapsulate the robot’s

own current bubble. An example of the bubble path planning is shown in figure

2.27, where a robot safely navigates past two obstacles to a desired location. The

robot’s own bubble was moved in discrete steps towards the direction provided by

the planner, whilst avoiding unexpected obstacles i.e. other moving entities within

the environment. Hence, motion was achieved through the switching between two

controllers. These controllers were defined as local potential fields, the first attracted

the robot to the centre of its bubble, and the second attracted the robot to the desired

orientation. The system was implemented on real robots in a laboratory setting in a

2. literature review 64

exploration type task.

Figure 2.27: Obstacle free path from start location to goal location. The black rectangles are known

obstacles, the grey square is an unknown obstacle. The large circles represent the free space between

known obstacles, the small circles are steps generated to get to the goal location. Figure adapted

from [76].

Zavlanos et al. [96] used artificial potential fields to maintain the connectivity

constraint of a group of twenty mobile agents (represented as a graph). The agents

maintained a formation whilst following a leader, and avoiding collisions with one an-

other. The leader agent was used to steer the other agents throughout the simulated

environment, and as such it was not affected by the potentials of the other agents.

However, it was attracted to a rendezvous point within the environment, to encourage

motion. The follower agents were repulsed by other agents, in order to avoid inter

agent collisions. A repulsive force also existed between agents and an imaginary ob-

stacle. This imaginary obstacle represented the connectivity constraint of the system.

An example is shown in figure 2.28, in which each non-leader robot is attracted to the

leader robot. Once the non-leader robots are close enough to the leader robot, the

potential field governing formation becomes dominant. Finally, once in formation,

the group moves towards the desired target. During simulated experiments, agents

avoided imaginary obstacles which enabled them to stay in formation.

2. literature review 65

(a) (b)

(c) (d)

Figure 2.28: The time steps of 5 agents first moving into formation, then moving towards the target

as a formation: Note that we have one leader agent (empty circle) and four follower agents (filled

circles). The solid lines are the graph connections. The dashed line is the leader robot’s path to the

rendezvous point (arrow head).

All of the literature above has concentrated on two dimensional potential fields..

The reason for this is that two dimensional potential fields are by far the most com-

monly used within the robotics community, as the majority of robots are restricted

to travel in two dimensions. Potential fields can be constructed in three dimensions

for robots can travel in three dimensions. However, the basic premise is the same,

2. literature review 66

particles of the same sign repel one another and particles of different signs attract

one another.

2.6.1 Limitations of the Potential Field Method

(a) (b)

(c) (d)

Figure 2.29: (a) Trap. (b) No Passage. (c) Oscillation in presence of obstacle. (d) Oscillation in

narrow passage. The grey circles are obstacles. The dashed line represents the straight line path

from the start location (S) to the target location (T). The solid line represents the path taken by

the robot.

Koren et al. [55] identified four major limitations of the potential field method:

2. literature review 67

1. Trap Situations : These are situations in which cyclic behaviour between local

minima occurs, as shown in figure 2.29a. Trap situations occur when robots run

into dead ends e.g. U shaped obstacles, where the robot’s range sensors pick

up objects to the front and sides of the robots. The potential field generated

in such a case forces the robot into a cyclic behaviour. In these situations, it is

often necessary for some global recovery mechanism to intervene, which often

results in a sub-optimum solution, but at least the robot is no longer trapped.

2. No Passage: Closely spaced obstacles bar passage, as shown in figure 2.29b. No

passage situations arise when a robot attempts to travel between two obstacles.

However, the obstacles are sufficiently close enough together that the potential

field that is generated forces the robot away from the passage, so that in essence,

the two objects are treated as one large object. Again the results are sub-

optimal.

3. Oscillations in the presence of obstacles : This type of oscillation occurs when a

robot passes an object — the resultant potential field generated forces unstable

motion whilst passing the object. This results in a sub-optimal solution. An

example is shown in figure 2.29c

4. Oscillations in narrow passages : This type of oscillation occurs when a robot

is travelling down a narrow passage. The resultant potential field causes the

robot to oscillate from one side to the other. This is a result of the robot being

repulsed by the objects on either side of it sequentially, until the robot has

escaped the passage. Again, the results are sub-optimal. An example is given

in figure 2.29d.

Ren et al. [81] proposed a general solution to the inherent oscillation problems (see

figures 2.29c and 2.29d) in the potential field method. The modified Newton’s method

was implemented to alleviate oscillations by approximating the navigation function

with a quadratic form, compared to the traditional gradient method which contains

only linear information. From observations of simulated experiments, it was clear that

the gradient method encountered difficulties. Unlike the modified approach, whose

2. literature review 68

tolerance level was higher than the gradient method and so could navigate through

the narrow passages. The gradient method also produced a much higher failure rate.

Each of Arkin’s motor schemas [1] (described in section 2.3.1) output was a velocity

vector, this was the point in the potential field of the entire environment in which

the robot currently resided. Each schema only had to compute this one point within

the potential field in order to create the velocity vector. An additional noise schema

was incorporated into the system to help the robot avoid oscillations between local

maxima and minima. This solution was successfully implement on a group of robots

which completed a formation control task [7].

2.6.2 Critical Analysis of the Potential Field Method

As detailed in section 2.6.1, the potential field method has a number of well known

limitations. However, the method is still widely used in the robotics community due

to its simplicity and elegance. The limitations of the method generally mean that

systems that employ it also employ some type of recovery mechanism to escape from

local minima traps. The use of these recovery mechanisms and the method’s sus-

ceptibility to oscillations leads to sub-optimal solutions. The potential field method

can be assigned to the reactive robotics architecture described in section 2.3.1. As

such, the sub-optimal nature of the solutions is expected. The potential field method

therefore takes advantage of the same benefits as any other reactive system in that it

has no reliance on information gathered a priori .

2.7 Related Work

In this section the literature most related to the system presented in chapter 4 will

be discussed.

At the individual robot control level, all of the literature discussed in section 2.6 is

related to the control system used by the potential field sharing method described in

chapter 4. The major difference is that in the potential field methods from the litera-

ture, a vector sum is calculated for the individual robot from a number of potentials

fields created by obstacles and the environment, the resultant vector provides the

2. literature review 69

motion dynamics of the robot. In the system described in chapter 4, a resultant force

is calculated for each of the ultra-sonic sensors on the robot. The motion dynamics

are provided by an action selection method, based upon these resultant forces.

Howard et al.’s mobile sensor network (as described in section 2.5.3) solved the

coverage problem through the emergent property of the system [50]. This system is

another potential field based approach. Robots were repulsed by one another and

other obstacles within the environment. The same can be said about the shared

potential field method implemented in this thesis. However, it is to a lesser extent,

because in the potential field sharing system, teammate recognition is not possible.

Section 8.5 describes how the system could be extended to allow such recognition, in

which case the behaviour of the two systems could be more alike.

In the potential field sharing system described in chapter 4, the concept of local

groups is introduced. This process of sharing information within a finite set of robots

is similar in concept to “dynamic robot networks” in Clark et al. (see section 2.3.3)

but instead of sharing trajectories, potential field information is shared. Another

noteworthy difference is that whereas Clark et al.’s system forms non-overlapping

networks of robots, the potential field sharing method produces groups of overlapping

robots. Figure 2.30 gives an example. Whereas in ‘dynamic robot networks’, robots

1 to 4 form an non-overlapping network, in the potential field sharing method, 4

overlapping local groups are created: robots 1 and 2; robots 1, 2 and 3; robots 2, 3

and 4; and finally robots 3 and 4.

Robots in Sugawara et al.’s system (as described in section 2.5.1) only interact

once a puck is discovered [87]. The sharing potential field system (see chapter 4) is

similar in a fashion, as interaction only occurs between robots when they enter one

another’s local group radius. In Sugawara et al.’s approach, the interaction causes

the ‘search’ robots to move in the direction of the discovered puck, whereas in the

potential field sharing method robots are also encouraged in a direction, but in this

case in the direction of least resistance. It is also believed that the performance of

the potential field system, as with the system in Sugawra et al., is related to the

puck/target distribution.

Vail et al. also implement co-ordination though “shared potential fields” in the

2. literature review 71

unlike in the system presented in chapter 4 in which broadcast information is limited

to local groups. Where the systems are similar is that both contain local and shared

models of the world, that are distributed throughout the system.

2.8 Summary

In this chapter, a number of common robotic problems were defined, ranging from the

low level path planning problem to the high level robot football problem. An overview

of the three major robotic architectures has been given. Reactive systems are not

given any knowledge of the environment a priori and react to the environment through

the information gathered by sensors in real-time. Global behaviours are often an

emergent property of the system. Deliberative systems are given as much information

as possible prior to the task being executed. Near optimal solutions for sub tasks are

computed a prior and executed sequentially throughout the task. Hybrid systems

attempt to gain the benefits from both reactive (robustness to unexpected events) and

deliberative (near optimal solutions) systems, whilst minimising the known problems

associated with each system. A critical analysis of the robotic architectures was also

conducted.

A number of multi-robot taxonomies were discussed and critically analysed. Farinelli

et al.’s taxonomy was chosen as the taxonomy that would be used to categorise

the multi-robot systems within the literature review, as well as the new multi-robot

system presented in chapter 4. This taxonomy splits various robotic systems into

sub-categories based upon the level of communication and co-ordination within the

systems. The most simple (in terms of the level of communication and co-ordination)

category is unaware; in these systems, robots are totally unaware that they are within

a team of robots, and no explicit communication or co-ordination of any kind occurs

between team members. These systems rely upon implicit communication such as

changes to the environment made by one robot affecting the decisions made by an-

other robot. The next step up is, aware-not co-ordinated systems, although aware

of the existence of other team members, they again rely upon implicit forms of com-

munication. Like their unaware counterpart’s behaviours they are often an emergent

2. literature review 72

property of the system. Weakly co-ordinated systems are aware of team members,

and as the name suggests, do perform some low level explicit communication; usually

the communication is limited to task relevant situations. For example, a robot may

broadcast the message “I have found a puck” in a forage type scenario. This would

enable the other robots in the team to either move to the robots location in search

of other pucks (if they assume a low puck distribution within the environment), or

stop the task all together if all pucks have been found. The last three sub-categories

are all strongly co-ordinated — explicit communication is used heavily throughout

the assigned task. They do, however, differ in terms of architecture: strongly cen-

tralised, weakly centralised and distributed — the difference being where the decisions

are made. In centralised systems, a remote PC or robot “leader” makes the decision

on how to solve a given task; if the whole task is solved by this central system it

is said to be a strongly centralised system. If only a small amount of the decision

process is taken at the centre, then the system is said to be weakly centralised. As

the name suggests, a distributed system has no central controller and all decisions

are made by the system members on an individual basis.

A number of robotic systems that employed the potential field method were also

discussed. The potential field method uses the concept of artificial forces which are

produced by all entities within an environment. When two entities produce a force

with the same sign, they are repulsed by one another; if the signs differ they are

attracted to one another. This concept allows mobile robots to explore an environ-

ment whilst avoiding obstacles. The concept is analogous with electrostatic forces

and magnetism. Known limitations of the potential field method and solutions avail-

able in the literature were discussed. A critical analysis of the potential field method

was presented, which concluded that despite the known limitations of the system, the

simplicity and elegance of the system makes it a popular choice amongst researchers.

A detailed review of the of other systems in the literature that are related to the

system presented in chapter 4 is presented. The innovations made in this thesis are

highlighted. These innovations include the use of shared potential fields as both a

method for communication and co-ordination.

73

Chapter 3

Robotic Hardware and Software

3.1 Introduction

In this chapter, the type of robot used throughout the project outlined within this

thesis will be introduced — the Miabot Pro. Brief technical specifications will be

given for each device used in our experimentation. The laboratory setup will also

be described. This includes the overhead camera system used to track the Miabots

throughout the environment. The software developed to control the Miabot Pro will

be introduced. The software architecture, in which a plug-in for the Miabot Pro was

implemented, will be briefly described. Configurations and settings used throughout

the experimental study will also be briefly described. The current system architec-

ture will be outlined and possible future architecture(s) discussed. The chapter will

conclude with a summary of the experimental setup used throughout this thesis.

3.2 Miabot Hardware

3.2.1 Base Module

What follows is only a brief introduction to the Miabot Pro class of robots. More

information can be found at http://www.merlinrobotics.co.uk.

As shown in figure 3.1, the base module of the Miabot Pro consists of a differential

steering drive, a processor board and a Bluetooth communications board. The dif-

ferential steering drive has an optical resolution of 0.04mm and a reported maximum

3. robotic hardware and software 74

speed of 3.5m/s (approximately 1m/s in a straight line). The processor board has

64kb of programmable memory and supports up to eight IO devices. The Bluetooth

communications board transmits in 2.4GHz range at 11.5kb/s. The large and ac-

cumulative errors within the Miabots encoders makes them an unreliable source of

positional information and so an overhead tracking system is used to position the

Miabots within the environment, as described in section 3.2.4.

Figure 3.1: The base module contains a differential steering drive and a bluetooth communications

module.

All devices transmit and receive information through a single communications bus

on the processor board. Devices are assigned to one of two categories:

• master : Devices which subsume control over the bus from slave devices.

• slave: Devices which differ control of the bus to a master device.

3. robotic hardware and software 75

The differential drive is a slave to this single bus.

3.2.2 Ultra-sonic Range Finders

As shown in figure 3.2, the ultra-sonic sensor array supports 8 individual sensors

at 45o intervals, giving a 360o field-of-view (FOV). Each individual sensor has a

FOV of approximately 30o, leading to small gaps of approximately 15o between each

sensor. The affect of these blind spots on sensor coverage decreases the further away

obstacles are within the environment. If obstacles are of small enough dimensions,

they may not be detected by the ultra-sonic array. The probability of such an oversight

increases the closer such an obstacle is to the array. In the experiments within this

thesis, all obstacles within the environments are of big enough dimensions as to be

detectable within the entire range of the ultra-sonic array. The sensors have a reported

range of 6m, although only ranges of 2.5m have been observed due to environmental

conditions. The ultra-sonic sensor module is a slave to the single bus on the processor

board.

Figure 3.2: Contains eight separate transceiver and receiver pairs, giving approximately a 360 degree

view.

3. robotic hardware and software 76

3.2.3 Blob-finder

As shown in figure 3.3, the blob-finder module has its own processor board, which

includes its own embedded blob-finding algorithm. The blob-finder tracks up to 8

different, RGB defined, blob values at 30fps (frames per second). The tracked image

resolution is 88 × 144 pixels. The blob-finder module is the master of the single bus

on the Miabot processor board. This can be an issue if blob data is abundant within

the environment, as the blob-finder module will effectively lock the bus, not allowing

possibly critical information to be communicated (e.g. ultra-sonic data). As such,

the environment is kept as blob free as possible. Only a single blob is defined to the

module and this only occurs once within the environment (of course, it is not wise to

assume that this will always be the case, i.e. light reflections, but the effect can be

minimised).

Figure 3.3: Can track up to eight different RGB defined blobs at a time.

3. robotic hardware and software 77

3.2.4 Robot Village

The Miabot tracking system (supplied by the Miabot manufacturer), shown in figure

3.4, consists of two webcams with an image resolution of 640 × 480 pixels. Each of

these connects to its own PC via a fire-wire connection. Each of these PCs runs a

local blob server, which track the robots in each camera frame. Each robot is crowned

with a blob patch, as shown in figure 3.5. By finding the centres of the 3 blobs, the

system can estimate the centre of the Miabot (the centre point between points 1 and

3 in the example) and by the use of trigonometry it can estimate the orientation

of the Miabot (the angle highlighted in the example). One of these PCs also has a

global blob server which takes the local co-ordinates from each local blob servers (via

a TCP/IP network) and constructs a global co-ordinate for each robot. As is shown

in figure 3.6, the x-axis of the local blob servers overlap. This is intentional, as this

overlapping avoids any blind spots between camera frames. However, the global co-

ordination system needs to take into account this additional translation. The distance

of the overlap is known a priori to all experiments.

As can be seen in figure 3.7 the Player server and clients described in section 3.3

resided on another PC that communicates to the Miabots through a Bluetooth router,

which allows TCP/IP communication over the Bluetooth RF-COMM (virtual serial

communications) port. The PC also used TCP/IP to read the global blob servers

socket to gain access to position information.

3. robotic hardware and software 78

Figure 3.4: The approximate coverage area of each camera is shown with white lines.

3. robotic hardware and software 79

Figure 3.5: By finding the centre of each of the three blobs, the x and y position of the Miabot (at

point C) can be discovered, as well as the θ orientation.

3. robotic hardware and software 80

Figure 3.6: The co-ordinate systems from both of the local blob servers (LBS1 and LBS2) are joined

together by the global blob server (GBS) to create a global co-ordinate system.

3. robotic hardware and software 81

Figure 3.7: Two cameras are connected to two PCs via firewire. Both have local blob servers running,

one has a global blob server. A third PC has the Player server/clients running and communicates

to the Miabots via a bluetooth router. The whole system is a TCP/IP network.

3.3 Player/Stage

3.3.1 Introduction

This is only a brief introduction to the Player/Stage architecture — more information

about the project can be found at http://playerstage.sourceforge.net/.

Figure 3.8 shows the basic Player/Stage architecture. The most important part

of the architecture is the Player Server. It acts as the middleware. The Player server

enables end users to write client applications, without any prior knowledge of the

low level robotics, to communicate with either a 2d simulator (Stage) or a number

3. robotic hardware and software 82

Figure 3.8: The player server acts as the middleware between the clients and the robots/simulation.

of known devices (a robot or individual a sensor/actuator). The Player clients use

abstract device definitions that allow the same client to control any type of device

known to the Player server. For example, instead of writing code to retrieve range

data from a specific ultra-sonic sensor, the client’s code uses a global ‘get sonar range

data’ function. The Player server then looks to see what specific device is involved and

communicates to it using the necessary low level commands, returning to the client

the requested data. As new devices are developed all of the time, the developers of

the Player/Stage architecture have implemented a plug-in scheme which allows users

to add knowledge of devices to the Player server. When the server is queried about a

device it does not recognise, it looks up its plug-in table to find the appropriate device.

Similarly with Stage, if a user wants to simulate a new device they simply have to

create a Stage model of the device. A Stage model is an abstract description of the

3. robotic hardware and software 83

device based upon terms Player/Stage recognises. See section 3.3.3 as an example.

As the Player/Stage architecture uses TCP/IP as its communication protocol, it can

be distributed over a robotic system in a number of ways:

1. Autonomous : A server and client embodied on each robot.

2. Remote: A server embodied on each robot. A client(s) embodied on a separate

computer.

3. Local : A server(s) and a client(s) embodied on a separate computer, with the

robot(s) treated as a device(s) of the computer.

For the laboratory experimental setup in this thesis, a local approach is taken, as

the Miabots do not have enough on-board memory to run a Player server or client.

A server per Miabot was run on a separate computer, which communicated to the

Miabots through the TCP/IP network. The computer also ran individual clients for

each Miabot. In the simulation experiments, the same individual clients were used to

connect to the Stage simulator (one Player server).

In the following sub-sections, both the Miabot plug-in (section 3.3.4) and the

Tracker plug-in (section 3.3.5) were developed by the author. The wavefront plug-in

(section 3.3.6) was developed by the developers of the Player architecture, and the

Nearness Diagram (ND) plug-in (section 3.3.6) was develop by Minguez et al. as

discussed in chapter 2.

3.3.2 Stage Validity

Gerkey et al. point out that no guarantee is given that the experiments run under

stage are directly comparable with experiments run in the laboratory [46]. They

point out that a client written for Stage will work on a real robot with little or no

modification and vice-versa. This was confirmed in experiments carried out in this

research as described in chapters 5 and 6.

As simulation was used in this project as a fast prototyping method (as discussed

in chapter 5) a test of Stage’s validity was conducted. These tests showed that, given

3. robotic hardware and software 85

3.3.3 Stage Miabot Model

The Stage Miabot model is split into three parts: the sonar, the blob-finder and the

base robot. Below is an example of the Miabot sonar definitions. The number of

sensors in the array, the pose of these sensors in relation to the centre of the Miabot,

the field-of-view of the individual sensors and the size of the individual sensors are

defined.

The Miabot sonar array

define miabot_sonar ranger

(

number of sensors in array

scount 8

define the pose of each transducer

spose[0] [0.0375 0 0]

spose[1] [-0.0375 0 180]

spose[2] [0 -0.0375 270]

spose[3] [0 0.0375 90]

spose[4] [0.0375 -0.0375 315]

spose[5] [-0.0375 0.0375 135]

spose[6] [0.0375 0.0375 45]

spose[7] [-0.0375 -0.0375 225]

define the field of view of each transducer

sview [0.03 1.0 30]

define the size of each transducer

ssize [0.015 0.032]

)

Below are the Miabot blob-finder definitions. The number of different colours the

device can track is defined, along with the specific colours. The range, field-of-view

and size of the camera are also defined, along with the size of the tracking frame.

The Miabot blob-finder

define miaptz ptz

(

blob-finder

(

2 colour definitions

channel_count 2

channels ["blue" "yellow"]

3. robotic hardware and software 86

range_max 1.0

only fov

ptz [0 0 30.0]

image [88 144]

size [0.028 0.04]

)

)

Finally, the base Miabot definition is given below. The dimensions of the chassis,

the initial location (in odometry terms) and the mass of the robot are given. The

type of drive system is defined, in this case differential. The type of localisation is

also defined, in this case odometry. Finally, the base definition is told what sensors

it is equipped with, in this case the sonar and blob-finder sensors defined above.

A Miabot in standard configuration

define miabot position

(

actual size

size [0.075 0.075]

origin [0 0 0]

estimated mass in KG

mass 0.567

differential steering model

drive "diff"

localization "odom"

use the sonar array defined above

miabot_sonar()

#use the blob-finder defined above

miaptz()

)

3.3.4 Player Miabot Plug-in

This is only a brief introduction to the Miabot Plug-in — more information can be

found at:

http://www.asap.cs.nott.ac.uk/∼robots/wiki/index.php/Player/Stage/Gazebo.

The job of the Miabot plug-in is two-fold. Firstly, to translate the abstract com-

mands/requests from the Player server into low level Miabot commands/requests.

3. robotic hardware and software 87

When the Player server connects to the Miabot for the first time, the Miabot is

initialised using a configuration file, an example of which is given below. The con-

figuration file tells the Player what devices the Miabot supports (position2d, sonar,

blob-finder) and what devices it requires (tracker — this is the plug-in for the over-

head camera system, see appendix 3.3.5). The Miabots communicate via Bluetooth.

However, in the laboratory Bluetooth routers are deployed, which the Miabots con-

nect to on start-up. The router assigns each Miabot a port number, and hence the

configuration file provides the name of the router and the port number of the Miabot

to allow TCP/IP communications over bluetooth. A number of sonar settings are

also initialised, the ping mask sets which ultra-sonic sensors in the array are pow-

ered. The ping rate sets the time in milliseconds between each sonar ping. It is also

possible to buffer the last ‘good’ sonar reading. This feature is only used when using

the Nearness Diagram (ND) algorithm (used within the hybrid system described in

chapter 7) to override the emergency stop procedure that occurs when the ultra-sonic

sensors return zero. The Bluetooth socket wait time is also set; this is the time that

the plug-in will wait on a socket waiting for a response from the Miabot. The camera

settings set the initial camera parameters and the RGB value of the colour to be

tracked. Secondly, the plug-in manages the Bluetooth connection to the Miabot.

driver

(

name "miabot"

plugin "miabot.so"

requires ["tracker:::position2d:2"]

provides ["odometry:::position2d:0"

"sonar:0"

"blobfinder:0"]

are you using the overhead tracking system

tracker 1

are you using a dongle (1) or the router (0)

type 0

router settings

router "village1"

port 5000

sonar settings

ping 255

3. robotic hardware and software 88

ping_rate 200

buffer_sonar 1

socket settings

bt_wait 260000

camera settings

set_cam 1

auto_white 1

auto_adj 1

light_filt 0

num_blobs 1

redmin0 160

greenmin0 64

bluemin0 16

redmax0 192

greenmax0 80

bluemax0 48

)

Player server commands are simply translated into the corresponding Miabot com-

mands. A number of examples are shown in table 3.1:

Table 3.1: Player to Miabot command translations.

Player Abstract Command Miabot Command

Start Sonar [Sn] (n is the ping rate in ms)
Start Blob-finder [iA0 = 0, 45, 54, 0D]
Stop Motor [s]
Set left and right wheel velocities to 10cm/s [= 50, 50]

When the Player server requests data it simply references the appropriate device

data structure in the plug-in. In order to store this data, however, the plug-in listens

on the appropriate Miabot socket waiting for a response to a previous command.

When it captures a response, it first looks up what request the response corresponds

to, by checking the response header. It is then able to translate the response into the

appropriate Player data structure. Table 3.2 shows some Player server requests and

the related Miabot responses.

The Miabot responds to all requests with packets (denoted by < .. >) of hexadeci-

mal values. All sonar related packets have the header, SEn:, where n is the address of

3. robotic hardware and software 89

Table 3.2: Miabot response translations.

Player Abstract Request Miabot Response Miabot Translation

Sonar Data < SE0 : 7F002F > 0: 0.47
< SE2 : 8A0023 > 1: 0.35
< SE4 : 640026 > 2: 0.38
< SE6 : 9E001C > 3: 0.28
< SE8 : 6B001E > 4: 0.3
< SEA : 5400AA > 5: 1.7
< SEC : 2F0017 > 6: 0.23
< SEE : 2C0017 > 7: 0.23

Blob-finder Data < R0A010049 > Count:1
< R6E5C71FF > blob 0:

id: 0
area: 80
X: 82
Y: 111
Left: 73
Right: 92
Top: 110
Bottom: 113

the sonar. When translating sonar data the Miabot can ignore the first hexadecimal

value after the header, as this relates to the photodiode. The second hexadecimal

value is only used when the range reading is above 2.55m which is possible in theory,

although never seen in practice. The third hexadecimal value is the range result up

to 2.55m. The result is converted into a decimal (giving a result in centimetres) then

divided by ten to give a result in meters. All blob-finder related packets have the

header, R. After stripping all blob-finder headers and non blob-finder related packets

out (e.g. sonar packets), if the first hexadecimal value after the header is 0A, which

denotes the start of blob data, then the plug-in grabs all packets until finding the

hexadecimal value, FF, which denotes the end of blob data. The second hexadecimal

value represents the number of blobs detected. The third hexadecimal value repre-

sents the colour ID of that blob (passed to the Miabot in the configuration file). The

fourth, fifth, sixth and seventh hexadecimal values, represent the left, top, right and

bottom of the bounding box of the blob respectively. The centre point (X and Y

3. robotic hardware and software 90

values) and the area of the bounding box can be calculated from the bounding box

values already obtained.

3.3.5 Player Tracker Plug-in

The manufacturers of the Miabot also provided an overhead camera tracking system;

more information can be found in section 3.2.4. In order to use it within the Player

architecture, a plug-in was developed. Unlike the Miabot plug-in which supported

multiple devices, the tracker plug-in only needed to support a position2d device to

provide the x and y co-ordinates and the orientation of a Miabot within our laboratory

setup. Like the Miabot plug-in, the tracker plug-in was initialised with a configuration

file, an example is given below:

driver

(

name "tracker"

plugin "tracker.so"

provides ["tracker:::position2d:2"]

global_server "grishnakh"

global_port "9000"

socket_wait 260000

x_conv 1.62

y_conv 2.46

x_res 1200

y_res 2600

)

As with the Miabot plug-in, the tracker plug-in supports a position2d device and

communicates via TCP/IP. The overhead tracking system is made up of two local

blob servers (one for each camera) and a global blob server. The local blob servers

track the Miabots within their individual camera frames and broadcast their co-

ordinates. The global blob server reads the co-ordinates from both local blob servers

and transforms the co-ordinates into a global co-ordinate frame. As such, the plug-in

only needs to know the name and port of the global blob server. The dimensions of

the area covered by the global co-ordinate system are also provided along with the

global pixel resolution.

3. robotic hardware and software 91

When the Miabot plug-in requests the position of a Miabot (assigned a unique

id on initialisation) the tracker plug-in requests the current position from the global

blob server. The global blob server responds with the x and y co-ordinates of the

Miabot (in pixels) along with its orientation (in degrees). The plug-in converts the

co-ordinates into metres and the orientation into radians. The origin of the global

co-ordinate system is in the top left hand corner, whereas the origin of the Player co-

ordinate system is in the centre of the global co-ordinate system. The plug-in makes

the necessary translation. The orientation systems of the global co-ordinate system

and Player also differ; again the plug-in makes the required adjustments. Once the

positional data is in the Player data structure, the tracker plug-in responds to the

Miabot plug-in request.

3.3.6 Hybrid System: Player Configuration

In chapter 7, the sharing system is compared against a hybrid system. This system is

made up of the wavefront and nd drivers provided in Player. The configuration and

settings for these drivers follow.

Wavefront Driver

The Wavefront driver is the Player frontend to the wavefront propagation algorithm,

described in detail in section 7.2.1. The algorithm plots a path from the robot’s

current location to a desired goal location.

Like the Miabot plug-in, the Wavefront driver provides and requires a number of

devices. The planner device allows the robot to store goal locations and way-point lo-

cations. The “output” device is the robot to be controlled. The “input” device is the

source of current pose information (e.g. the tracker plug-in). The map device is an im-

age representation of the environment being explored. The value of ‘safety dist’ is the

minimum distance to a known obstacle for which a path will be planned. ‘max radius’

is the radius around the robot within which obstacles are taken into consideration

when planning motion; the lower the value the faster the computational time, the

higher the value the more optimal the path. ‘angle epsilon’ and ‘distance epsilon’

3. robotic hardware and software 92

are the threshold values used to trigger goal completion. ‘replan dist thresh’ and

‘replan min time’ are the distances travelled or time passed in-order to activate the

computation of a new path, whichever occurs first. ‘dist penalty’ is a weight used in

the computation of a solution, the higher the value the greater the punishment for

cutting corners.

driver

(

name "wavefront"

provides ["6665:planner:0"]

requires ["output::6665:position2d:1" "input::6665:position2d:0"

"6665:map:0"]

safety_dist 0.03

max_radius 0.2

distance_epsilon 0.10

angle_epsilon 20

replan_dist_thresh 0.2

replan_min_time 10

dist_penalty 10

)

More detail of the Wavefront driver and the parameters can be found in the Player

manual at http://playerstage.sourceforge.net/doc/Player-2.0.0/player/.

Nearness Diagram Driver

The Nearness Diagram driver is the Player frontend to the ND motion control algo-

rithm, described in detail in section 2.3.1.

Again, the Nearness Diagram driver provides and requires a number of devices.

The position2d device provides the necessary commands to the robot to avoid obsta-

cles whilst moving towards a goal location. The “input” device is the current source

of pose information. The “output” device is the robot to be controlled. The “sonar”

device is the source of sensory information used to avoid obstacles. The ‘max speed’

and ‘min speed’ parameters set the maximum and minimum translational and ro-

tational velocities for the robot, respectively. ‘goal tol’ sets the distance and rota-

tional threshold values to trigger goal completion. ‘wait on stall’ tells the robot to

3. robotic hardware and software 93

recover from stall until proceeding. ‘rotate stuck time’, ‘translate stuck time’, ‘trans-

late stuck dist’ and ‘translate stuck angle’ are the times or distances the robot has

to travel (or have travelled) in order to avoid “giving up”. ‘avoid dist’ is distance at

which the robot will begin avoiding obstacles. ‘safety dist’ is the minimum distance

the robot will move next to an obstacle. ‘sonar bad transducers’ is used to disable the

rear ultra-sonic sensors when calculating the obstacle density in the robot security

zone.

driver

(

name "nd"

provides ["position2d:1"]

requires ["output:::position2d:0" "input:::position2d:0" "sonar:0"]

max_speed [0.1 10]

min_speed [0.02 5]

goal_tol [0.075 15]

wait_on_stall 1

rotate_stuck_time 30.0

translate_stuck_time 30.0

translate_stuck_dist 0.05

translate_stuck_angle 5

avoid_dist 0.30

safety_dist 0.03

rear sonars not needed

sonar_bad_transducers [1 6 7]

)

More detail on the Nearness Diagram driver and the parameters used can be found

in the Player manual at http://playerstage.sourceforge.net/doc/Player-2.0.0/player/.

3.4 System Architecture

Throughout this thesis, all robots are controlled through the Player architecture, as

described in section 3.3. The architecture provides a number of client libraries. The

C++ library was chosen to develop the clients used throughout this thesis. Each

robot (simulated or real) has a client associated with it. In the simulation, these

3. robotic hardware and software 94

connect to a server that provides the simulated environment. In the real world, each

robot has a server associated to it, which the relevant client connects to.

Communication between clients is achieved through the reading and writing of

shared files. The reasons for implementing communications in this manner are two-

fold:

1. As all of the client programs are run from the same computer, this method

simplified the communications process.

2. The Miabot robots used in our laboratory experimentation have Bluetooth com-

munications modules. Bluetooth uses a virtual serial connection. As such, a

device can only be connected to one other device at any one time. As the Player

server for each Miabot is hosted on a remote PC, the single connection for each

Miabot must be with this PC; otherwise the Miabots would be uncontrollable.

Each client has write access to its own communications file; eand has read access

to every communications file within the multi-robot group. As only one client has

write access to any given file there is no danger of multiple clients trying to write

to the same file at the same time. The only drawback of the system is that when a

robot reads a file no guarantee is given that the file is up to date. This is not a major

issue as, due to the communications lag within the system, all sensory information is

“old”, and so the increased lag is considered to be insignificant.

The communications file contains two pieces of information. The first piece of

information is the “current” position and orientation of the robot, the position is used

by the robot reading the file to see if this robot is within its local group radius. If so,

the orientation is used to discover which part of the potential field is being shared.

More information can be found in chapter 4. The second piece of information is the

robot’s “current” potential field. This information is read only if the robot is sharing

potential field information. The communications file is simply a tab separated file

which is parsed by other robots within the system to read the relevant information.

An example is shown in table 3.3 (see section 4.2.1 for more information on the

potential field construction).

3. robotic hardware and software 95

Table 3.3: Miabot Communication File: Where x, y and θ are the co-ordinates (in metres) and

orientation (in radians) of the robot respectively, and 0-7 are the generated forces for the eight

ultra-sonic readings (the potential field).

x y θ 0 1 2 3 4 5 6 7
0.1 0.34 1.2 11.1 4.7 3.3 11.1 11.1 11.1 11.1 1.2

As can been seen from the above description and in figure 3.10, currently the

multi-robot system is implemented on a centralised network. However, as has been

discussed, this is due to limitations with the current hardware being employed. It

is hoped that, in the future, the multi-robot system can be implemented as a fault-

tolerant distributed system. In concept, the system is already distributed as each

client/server pair is an individual agent that makes its own decisions. To make the

system physically distributed, the Bluetooth communications module would need to

be replaced by a broadcast capable medium e.g. wireless Ethernet. Consequently,

instead of writing a communications file, the data in table 3.3 would be constructed

as a TCP/IP packet. The memory capacity of the Miabots would also need to be

dramatically increased in order to be able to run an embedded Linux operating system

running the Player server and client.

3.5 Summary

In this chapter, the Miabot Pro and other hardware used in the set of experiments

presented in this thesis have been described and their limitations discussed. The

Miabot Pro consists of a base module, which contains a differential steering drive,

a processor board, and a Bluetooth communications board. The base module has

the capacity to support an additional eight I/O devices. However, the base module

only contains a single communications bus which each device must use in order to

transmit/receive information. Additional devices are treated as either masters or

slaves of the bus. As only the blob-finder module is a master of the bus, in our

experiments, the only time any issue arises is when blob information is abundant

within the environment, causing the blob-finder module in effect to permanently lock

the bus, not allowing other, perhaps, critical information to be communicated (i.e.

3. robotic hardware and software 96

Figure 3.10: The physical systems architecture is centralised, each robot (R) is controlled by a server

(S) and client (C) hosed on a remote PC (dashed rectangle). In concept, the system is distributed

(dotted rectangle), with each robot making it’s own decisions.

ultra-sonic data). The chance, of situations of high blob count is reduced only by

defining a single blob to be tracked and by damping the effect of light reflections

within the environment. The ultra-sonic module has 15o blind spots every 45o. The

closer to the Miabot and the smaller the objects are, the more likely it is that the

objects will not be detected. However, in the experiments conducted in this thesis,

all objects are large enough to be detectable at all ranges. Due to the large and

accumulative error within the Miabot encoders, a global tracking system is used to

position the Miabots within the experimental environments. The global tracking

system consists of 2 local blob systems (covering the two halves of the environment)

and a global blob system, which consolidates the 2 local co-ordinate systems into a

single global co-ordinate system.

The software architecture used to control the physical/simulated Miabots and

3. robotic hardware and software 97

the global tracking system has also been discussed. The 2d simulation model of

the Miabot Pro was described, including models for the ultra-sonic array and the

blob-finder. A plug-in module for the Player robot controller that allowed control

of the Miabots at an abstract level was also discussed; configuration options and a

general overview of its internal workings were described. A plug-in for the overhead

camera system was also discussed. The configuration options for the wavefront and

ND drivers (used by the hybrid system detailed in chapter 7), already implemented

within the Player architecture, were also discussed.

The current and future architecture of the multi-robot system was discussed. Due

to hardware limitations, the system is currently deployed as a centralised system.

However, the system has been designed to be distributed and it would be of interest

to deploy the system as a distributed architecture.

98

Chapter 4

A Potential Field Sharing Multi-robot

System

4.1 Introduction

Although there has been much work in both the unaware and weakly co-ordinated

categories of multi-robot systems (described in chapter 2), the mixture of the two

employed in the multi-robot system detailed in this chapter represents a novel co-

ordination architecture. The system is unaware at the global level, yet weakly co-

ordinated at the local level. It is believed that this is beneficial to the system as

co-ordination only occurs when needed. However, this co-ordination is not necessarily

needed to complete an assigned task. In this chapter, the multi-robot system will be

discussed in detail and concluded with a summary.

4.2 Sharing Potential Fields

The outline of the processes involved in the new multi-robot system is as follows:

Individual robots construct potential fields from available sensor data (in the current

system only ultra-sonic data is used), see figure 4.1 A-B. Robots that are assigned to

the same group then calculate local group intersections and share relevant potential

field information, figure 4.1 C. Each individual robot then creates a combined po-

tential field using the shared information (figure 4.1 D) and then makes the relevant

4. a potential field sharing multi-robot system 99

action selection, (figure 4.1 E). The non-sharing system that is used as a control for

the experiments in chapters 5 and 6 only contains the processes A, B and E in figure

4.1.

Figure 4.1: Given some sensory input, individual potential fields are created. Robots within local

groups share information and create shared potential fields. Action selection is based upon these

potential fields.

4.2.1 Individual Potential Field

The basis of our multi-robot system is Coulomb’s law of electrostatic force, as given

by

F = kC

q1q2

r2
, (4.1)

where F is the force, q1 represents the unit charge of the robot and q2 the unit

charge of an obstacle detected by an ultra-sonic sensor. For simplicity, all obstacles

and robots are given a unit charge of 1. r is the sensor reading from the relevant

ultra-sonic sensor, the distance of the closest object. kC is an electrostatic constant

which is ignored (set to 1). Therefore, the calculation is now the inverse square law:

4. a potential field sharing multi-robot system 100

F =
1

r2
(4.2)

A small reading from the ultra-sonic sensor results in a high force. The reason

why Coulomb’s law is simplified is that, as only the ultra-sonic sensors are used to

create the potential field, it is not possible to distinguish between objects. As such,

all objects have to be assigned the same unit value. Therefore, the unit charge of the

robot is also set to the same unit value, in order to get the appropriate behaviour

(attraction to regions of low resistance). The electrostatic constant is ignored as it

is just a constant and has no direct effect in this application. An example of the

potential field calculations is given in figure 4.2, where the detection of objects which

are close by results in high repulsive forces. Distant objects have a low repulsive

force. As the system was designed with the Miabot Pro class of robot in mind, eight

forces are calculated per robot corresponding to the fact that each robot has eight

ultra-sonic sensors — see section 6.2 for the full robot specification.

(a) (b)

Figure 4.2: (a) Example ultra-sonic readings. (b) Resultant forces.

4.2.2 Local Group Interactions

In this system, local groups of robots are formed which share information. Local

groups are formed by sequentially iterating through the robots within the environment

and assigning other robots to their group if they are within a given distance of that

robot. In the simulated experiments, a distance of 2m is used (double the range of

4. a potential field sharing multi-robot system 101

the ultra-sonic sensors). In the laboratory experiments, a distance of 70cm is used

(double the boresight reflection1 of the ultra-sonic sensors). An example of local

groups is shown in figure 4.3, where robot 1 assigns robots 2 and 3 to its group, robot

2 assigns robots 1 and 3 to its group, robot 3 assigns robots 1, 2 and 4 to its group,

robot 3 is also assigned by robot 4 to its group, and finally robot 5 is on a group of

its own.

Figure 4.3: Local groups: group 1 and 2 (robots 1, 2 and 3), group 3 (robots 1, 2, 3 and 4), group

4 (robots 3 and 4) and group 5 (robot 5).

Euclidean distances have been used to define local groups, in order to simulate

likely communication range limitations. In the robotics laboratory at the University

of Nottingham, the maximum area that the robots can explore is approximately

1The boresight of an ultra-sonic sensor is the angle to which it is pointing. Boresight reflection
refers to the response received by the ultra-sonic sensor from the ground.

4. a potential field sharing multi-robot system 102

5m × 3m — this is well within the communications range of the Bluetooth modules

embedded in the robots used during experimentation (Class 2 — 100m range). No

barriers to communication exist within the environment. In a real world application,

it would be expected that the communications range of the robots would be heavily

affected by the environment within which they are situated. The reliability of the

communications system would also vary depending on the environment. This is one

of the reasons why the motion of the individual robots is not reliant upon receiving

information from local group members. In the real world, if no communication was

received from group members, an individual robot would use its own potential field

information to make action selection choices. Indeed, the action selection process

does not distinguish between individual and shared potential fields.

4.2.3 Combined Potential Field

Once local groups have been assigned, potential field information is shared. In order

to explain this as clearly as possible an example, as shown in figure 4.4, will be

described in detail:

1. The robots are modelled within 2-dimensional space. Ultra-sonic ranges are

represented as lines on a plane and the sensory limits of a robot are represented

as circles on a plane.

2. Each robot is within each others’ local group. All ultra-sonic ranges that in-

tersect the line A (the radical line — the line that intersects the two points of

intersection between the two circles) are available to share information. These

lines are marked with a ∗ in figure 4.4a.

3. Information is shared between these ultra-sonic ranges and any of the other

robots ultra-sonic ranges that they intersect. To simplify the example, we will

use line B (figure 4.4a). It shares information with 3 ultra-sonic ranges (thick

lines). In such cases, calculations are completed on intersections sequentially.

In the example, the force of B would be compared with the force of 1, then the

force of 2, then 3.

4. a potential field sharing multi-robot system 103

(a)

(b)

Figure 4.4: (a) A 2-dimensional model of the robots: lines represent the ultra-sonic ranges. Line

A is the radial line of the two circles representing the sensory limits of the robots. (b) Obstacle

Detection: Robot 3 detects obstacle X, robot 4 detects obstacle Y.

4. a potential field sharing multi-robot system 104

4.2.4 Optimistic and Pessimistic

Two versions of the potential field sharing multi-robot system have been implemented

— referred to as pessimistic and optimistic in terms of sensor noise. In the pessimistic

system, when two lines intersect their forces are compared and the highest value is

used. In the optimistic system, the lowest value is used. In our example (figure 4.4b),

robot 3’s ultra-sonic sensor detects the obstacle X. However, robot 4 detects obstacle

Y. In the pessimistic system, robot 4’s force value, being the greater of the two, is

used by robots 3 and 4. Hence, robot 3 would detect an obstacle that is closer than

would have been previously possible. For example, if the lines are initialised with the

following values: B = 0.7, 1 = 0.6, 2 = 0.2, 3 = 1, as shown in figure 4.5a. After

robot 3 makes it’s comparisons, the values would be: B = 0.2, 1 = 0.6, 2 = 0.2, 3

= 1 and after robot 4’s comparisons, the values would be: B = 0.2, 1 = 0.2, 2 = 0.2,

3 = 0.2, as shown in figure 4.5b. However, if robot 4 made its comparisons first, a

different result would occur: B = 0.7, 1 = 0.6, 2 = 0.2, 3 = 0.7, after robot 4’s pass,

then B = 0.2, 1 = 0.6, 2 = 0.2, 3 = 0.7 after robot 3’s pass, as shown in figure 4.5c.

Conversely, in the optimistic system, robots 3 and 4 would use the smaller force

value from robot 3 and so robot 4 would detect an obstacle further away than previ-

ously. For example, if the initial values previously stated are used again. After robot

3 makes its comparisons the values would be: B = 1, 1 = 0.6, 2 = 0.2, 3 = 1 and after

robot 4’s comparisons the values would be: B = 1, 1 = 1, 2 = 1, 3 = 1, as shown in

figure 4.5d. However, if robot 4 made its comparisons first, a different result would

occur: B = 0.7, 1 = 0.7, 2 = 0.7, 3 = 1 after robot 4’s pass, then B = 1, 1 = 0.7, 2

= 0.7, 3 = 1 after robot 3’s, as shown in figure 4.5e.

As has been demonstrated in both sets of examples, the sequence of comparisons

can make a significant difference to the resulting potential field, the difference being

the scale to which the system is pessimistic or optimistic. For example, when com-

paring the pessimistic systems, it can be seen that the system in figure 4.5b is more

pessimistic (in terms of sensor noise) than the system in figure 4.5c. Conversely, when

comparing the optimistic systems it can be seen that the system in figure 4.5d is more

optimistic (in terms of sensor noise) than the system in figure 4.5e.

4. a potential field sharing multi-robot system 105

(a) (b)

(c)

(d) (e)

Figure 4.5: (a) The initial potential fields. (b) Very pessimistic. (c) Normal pessimism. (d) Very

optimistic. (e) Normal optimism.

4. a potential field sharing multi-robot system 106

The desired advantage of the pessimistic system is that it will be less vulnerable

to false negatives (not detecting obstacles that are there). However, it will be more

susceptible to false positives (detecting obstacles that are not there). The desired

advantage of the optimistic system is that it will be less vulnerable to false positives.

However, it will be more susceptible to false negatives.

4.2.5 Action Selection

Once the combined potential field has been calculated (or not in the case of the non-

sharing control), the minimum force fmin is discovered, as shown in figure 4.6a, where

f3 is assigned the lowest force. The robot has a default forward motion within the

environment unless it comes across an obstacle in its path. A force value of 25 or

less is used, even though this is 20cm from an obstacle. This is due to lag within the

communications system, meaning that the robot will not avoid the obstacle until a

distance of about 5cm. In which case the robot rotates towards fmin, as shown in

figure 4.6b, where the robot rotates towards the initial orientation of f3. Once the

forward orientation of the robot equals the direction of fmin, the robot resumes its

forward motion, as shown figure 4.6c. Using this algorithm, robots move away from

areas of high charge (obstacles) and towards areas of low charge (open spaces).

(a) (b) (c)

Figure 4.6: (a) The robot calculates the minimum force, f3, (b) The robot rotates towards the

minimum force, (c) The robot moves forwards (towards the minimum force).

4. a potential field sharing multi-robot system 107

4.3 Limitations of proposed potential field method

As described in section 2.6.1, the potential field method has a number of limitations.

How the system presented in this thesis differs in relation to these limitations will

now be discussed.

1. Trap Situations : This is still a limitation within this system. It is also worth

noting that currently no global trap recovery is employed. Hence, once a robot

enters a U shaped object it is not guaranteed that it will ever escape.

2. No passage: As the system employs a default forward motion to all robots

until they meet an object being directly in their path, it is not affected by

this limitation directly. However, it is indirectly affected when the ultra-sonic

sensors do not differentiate between objects. An example is shown in figure

4.7a, where the robot (the square) is unable to distinguish between the two

objects (grey circles) and hence creates a ghost object (the shaded region).

3. Oscillation in the presence of obstacles : Again the system is not directly affected

by this limitation. Only if the ultra-sonic sensors produce bad echo data is the

system affected. That is, the sensed distance to an object keeps changing, so as

to make the robot believe that it would be advantageous to turn towards the

object. An example is shown in figure 4.7b, where the robot has a bad sensor

reading (the dashed triangle) which results in a sub-optimal path being taken

(bold line). The straight line is the desired optimal path.

4. Oscillation in narrow passages : If a robot meets the passage head on, as in

the No passage case, it is not directly affected by this limitation. However, if a

robot enters a passage at an angle, then oscillation can occur until the robot’s

orientation matches the orientation of the passage or the robot exits the passage.

An example is shown in figure 4.7c, where the dashed squares and triangles are

the position of the robot and its forward ultra-sonic range in future time steps.

4. a potential field sharing multi-robot system 108

(a) (b)

(c)

Figure 4.7: (a) No Passage. The shaded region is where the ultra-sonic sensor “thinks” an obsta-

cle exists. (b) Oscillation in the presence of an obstacle. The bold line is the path taken when

intermittent bad ultra-sonic echoes occur. (c) Oscillation in a narrow passage.

4.4 Place in Farinelli’s Multi-robot Taxonomy

Unlike previous multi-robot systems, the potential field sharing system presented in

this chapter does not fit neatly into one category of the Farinelli’s multi-robot taxon-

omy (as discussed in section 2.4.2), as the system possesses different characteristics

at different levels. Each robot within the multi-robot system can move freely between

the different levels of co-ordination throughout the given task.

The multi-robot system presented in this chapter is unaware at the global level.

The relevant section of the multi-robot taxonomy hierarchy is shown in figure 4.8.

The global level is everything outside of the local group radius of an individual robot.

4. a potential field sharing multi-robot system 109

At this level, robots are not assigned to local groups. The only source of sensory input

to the potential fields is the ultra-sonic array, which only provides range readings to

the nearest object. It is not known what this object is, as robots have no concept

of team members or indeed other robots outside of their local groups. A blob-finder

module (as described in chapters 5 and 6) is used to detect the target. However, it

is not used for team member recognition. As shown in figure 4.9 groups A, B and C

are unaware systems.

At the local level, the system is considered weakly co-ordinated. The relevant

section of the multi-robot taxonomy hierarchy is shown in figure 4.8. The local level

is everything within the local group radius of an individual robot. At this level, robots

are assigned to local groups — the members co-ordinate implicitly through the use

of shared potential fields. However, no explicit co-ordination occurs as robots do not

have the ability to distinguish between team members from other objects within the

environment as previously discussed. As shown in figure 4.9, robots 1 and 2 are weakly

co-ordinated, as are robots 3 and 4, whilst robot 5 reverts to single-robot system, as

depicted in the multi-robot taxonomy hierarchy shown in figure 4.8.

It is worth noting that the system could converge to an entirely weakly co-ordinated

system. This is more likely within small environments or in cases where the local

group radius has been set to be arbitrarily large. Conversely, the system could also

disperse to an entirely unaware system. This is more likely in large environments

or in cases where the local group radius has been set to be arbitrarily small. It is

believed that the hybrid of the two system types will be beneficial to the system, as

co-ordination only occurs when needed. However, this co-ordination is not a necessity

to task completion.

It is also envisaged that more tightly coupled tasks such as search and rescue

may require a higher level of co-ordination than the weakly co-ordinated local level

can provide. In such cases, the local level could be substituted with a strongly co-

ordinated system, without disrupting the global level. As such, it would still be

possible to design a system with low levels of communication and co-ordination during

the “search” aspect of the task, only relying upon communication and co-ordination

when necessary. That is, the “rescue” sub-task.

4. a potential field sharing multi-robot system 110

Figure 4.8: Hierarchical view of the sharing potential field method’s place within Farinelli’s taxon-

omy. Crossed out categories are not implemented.

4.5 Summary

In this chapter, a new multi-robot system has been described in detail. Potential

field information is shared between members of local groups to implicitly co-ordinate

the behaviour of the robots. Individual potential fields are calculated for all robots

using an inverse square law; robots within an arbitrary radius from one another are

4. a potential field sharing multi-robot system 111

Figure 4.9: Groups A, B and C are all unaware of each other. Robots 1 and 2 are weakly co-ordinated.

Robots 3 and 4 are weakly co-ordinated. Robot 5 reverts to non-sharing behaviour.

assigned to the same local group. Robots within these local groups share information.

Two varieties of the system are presented: (1) the pessimistic system in which higher

forces overwrite lower forces (and has the desired advantage of being less vulnerable to

false negatives with regards to sensor noise), and (2) the optimistic system in which

lower forces overwrite higher forces (which has the desired advantage of being less

vulnerable to false positives).

A comparison to the traditional potential field method was conducted in terms

of susceptibility of the multi-robot system presented to the known limitations of the

potential field method. It is shown that although the system is still susceptible to

trap situations and oscillations in narrow passages, it is not directly susceptible to

no passage and oscillations in the presence of obstacles. However, the more noisy the

sensor information, the more affected by the latter limitations the system becomes.

A discussion on where the multi-robot system belongs within the multi-robot

4. a potential field sharing multi-robot system 112

taxonomy clearly shows that the system is unaware at the global level, yet weakly co-

ordinated at the local level. This is beneficial to the system as co-ordination occurs

when needed, but the system does not rely upon this co-ordination to complete a

task.

The novel multi-robot system, presented in this chapter, has helped this project

meet one of its goals given in chapter 1.

• To design and implement a new type of multi-robot system based

upon Farinelli’s multi-robot taxonomy (as described in section 2.4.2).

The two level architecture, described in this chapter, is novel. It allows the

system to benefit from team co-ordination, but not be dependant upon it to

make decisions. Making the system more fault tolerant with respect to the loss

of robots or communication failures.

113

Chapter 5

Simulated Search Problems

5.1 Introduction

Before attempting to run the system on real robots, it was decided to run a number of

experiments in simulation. In his early work, Brooks was highly critical of developing

artificial intelligent robots through “toy” worlds (simulations or simple block worlds)

[24]. He argued that no matter what the intention of the researcher, these worlds

have been designed specifically for that robot. He also argued that if a robot is to

survive in a real environment it must learn in that environment. However, in certain

cases, such as this project, when it was not practical to prototype the system on real

robots for various logistical reasons, simulation can play an important role as long as

the developer of the system does not lose track of the end goal of implementing the

system on real robots in the real world.

The robots were given the task of navigating through a number of simulated

environments to find a target(s), within a time limit. This task is akin to the ‘search’

sub-task of the search and rescue problem defined in section 2.2. In this chapter,

the simulation is described, both the environment and the robots. The statistical

methods used to measure the performance of the systems are then discussed. As well

as the two sharing potential field variants, a non-sharing system is employed as a

control. Three experiments are described and their results shown — first the single

target search problem is tackled, then the multiple target search problem. The final

set of experiments investigates the effect of sensor noise on the performance of the

5. simulated search problems 114

potential field sharing systems, as well increasing the group size and environment size.

The chapter ends with a summary.

5.2 Simulated Environment

The system was prototyped using Stage; a 2-dimensional real-time simulator provided

with the Player architecture as discussed in chapter 3. Four environments, containing

obstacles and targets were created. In order to maintain impartiality, the number of

obstacles, the placement of the obstacles and targets within the environment and the

starting location of the robots were all generated randomly (C rand function, current

time used as the seed). The simulation environments shown in figures 5.1, 5.2 and

5.3 had dimensions of 5m × 3m. The simulated environment in 5.4 had a dimension

of 10m × 6m.

Figure 5.1: Environment 1. It consists of 8 robots (red squares), 2 targets (yellow and blue squares)

and 19 obstacles (black rectangles)

5. simulated search problems 115

Figure 5.2: Environment 2. It consists of 8 robots (red squares), 2 targets (yellow and blue squares)

and 7 obstacles (black rectangles)

The simulated Miabots contained the position2d, sonar and blob-finder interfaces

(as defined by the Player robot controller). The parameters of these interfaces were

set as close to the real devices (that would be used in future experiments) as was

possible within the simulation environment. A summary of the interfaces is given

below. The complete Stage model definition file is given in section 3.3.3.

• Position2d : The Miabot was modelled as a non-holonomic (the robot cannot

move in arbitrary directions) robot with a differential drive (different velocities

must be sent to each wheel to turn the robot).

• Sonar : Each of the 8 ultra-sonic sensors from the Miabot were modelled in

simulation with a minimum range of 3cm and a maximum range of 1m (limited

to 1m as in the laboratory environment the real sensors rarely give readings

above 1m), with a field-of-view (FOV) of 30o. This gives the robot a total FOV

of almost 360o. Small gaps of 15o exist between each individual sensor. See

figure 5.5a.

5. simulated search problems 116

Figure 5.3: Environment 3. It consists of 8 robots (red squares), 2 targets (yellow and blue squares)

and 16 obstacles (black rectangles)

• Blob-finder : The blob-finder was modelled in the simulation with a range of

1m (limited to mimic the real camera image going out of focus) and a FOV of

30o, with a fixed forward orientation with regards to the robot. The blob-finder

could track blue and yellow objects. See figure 5.5b.

During these experiments, the robot’s motion was limited to either move forwards

or rotate. The robot’s forward motion (S) was relative to the force calculated for

the forward ultra-sonic sensor (F), S = 1 − (F
10

), which gave a maximum speed of

approximately 1m/s. Hence, the closer the robot came to an obstacle, the slower

the velocity became, and vice-versa. It rotated at approximately 0.025rad/s, with a

forward motion of approximately 0.5m/s (to avoid oscillations). The blob-finder was

used to detect the colour of the target. Once the target(s) were verified, the robot(s)

came to a permanent halt.

5. simulated search problems 117

Figure 5.4: Environment 4. It consists of 8 robots (red squares), 1 target (blue square) and 45

obstacles (black rectangles)

(a) (b)

Figure 5.5: Simulated Miabot with (a) sonar and (b) blob-finder.

5. simulated search problems 118

5.2.1 Noiseless Simulations

It is important to note that during the single and multi-target search tasks no noise

was simulated in either the robots (e.g. odometry errors) or the environment (e.g.

bad ultra-sonic reflections). In the real world, an ultra-sonic is a very noisy device

that is affected by numerous aspects of the environment (e.g. shape of objects within

the environment or the height of the transmitter from the ground and the frequencies

used). In the simulation, ultra-sonic readings are correct at all times and boresight

reflections never occur. Noise is introduced into the ultra-sonic readings during the

third set of experiments (section 5.6) to investigate its effect on the performance of

the potential field sharing systems. In the simulation, all objects within the envi-

ronment are single uniform colours; in the real world, objects are multi-coloured and

non-uniform and the blob-finder is heavily affected by the lighting conditions of the

environment. In this noiseless simulation, once the blob-finder detects 1 pixel of the

correct target RGB value, the target is considered to be discovered. Finally, errors

in odometric readings are frequent and accumulative, due to wheel slippage and the

inevitability that one of the motors will be more dominant than the other. How-

ever, in our simulation this is not the case and so the odometric readings are used

to position the robots within the environment, relative from the starting location of

robot 1, i.e. (0, 0). An implicit form of noise is communications lag. The real robots

use Bluetooth to communicate and all sensors are connected to a single bus on the

robot. Both of these represent a possible point of slow throughput. Again, this real

world phenomenon was not modelled in the simulation, although some lag may have

occurred in the Player/Stage architecture (essentially a TCP/IP network), although

not to the same extent as on the real robots.

It was decided to have a noiseless simulations in the first two sets of experiments in

order to encourage fast (in that it was not necessary to build an accurate simulation

from scratch) prototyping of the system, as one of the goals of this project was to

implement the system on real robots in a laboratory setting. This methodology is

common in robotics research (see [7]).

5. simulated search problems 119

5.3 Statistical Analysis

Two statistical tests were chosen to analyse the data collected from our experiments.

The Kruskal-Wallis test was chosen, as it is useful in detecting a difference in the

medians of distributions. The Friedman test was chosen to detect the existence of

association between characteristics of a population. Our performance metric was the

time taken for the task to be completed. If the task was not completed within three

hundred seconds, the task was assumed to have failed, and a result of three hundred

seconds was recorded.

5.3.1 Kruskal-Wallis Rank Sum Test

The Kruskal-Wallis rank sum test involves ranking all of the times provided from

each population. The mean of the sum of ranks for each was taken and the significant

differences noted. The null hypothesis (h0) and alternative hypothesis (h1) were as

follows:

• h0: The medians of the k populations do not differ.

• h1: At least two of the medians differ.

As detailed in [47], the Kruskal-Wallis H test statistic was produced whilst cor-

recting for ranking ties. If the corrected H value was greater than the selected P -value

(0.1) (this value is relatively large, due to the small sample size used throughout the

experimentation in order to encourage the detection of significant results), then h0

could be rejected in favour of h1. If the differences between the means of ranks did

not satisfy (5.1) and was negative, this meant that the first group had a significantly

smaller completion time than the second group. However, if it was positive, it could

be concluded that the second group had a significantly smaller completion time. This

is because a larger mean difference relates to a longer completion time.

|Ri − Rj| ≤ z

√

k(N + 1)

6
, (5.1)

5. simulated search problems 120

where k is the number of samples (3), N is the total sample size (60) — the sample

size was small due to the time taken to complete the experimentation in real-time

(approximately fours hours per sample). Finally, z is the critical z value for a level

of significance of 0.1 (2.1 to 1 d.p.)

5.3.2 Friedman Rank Sum Test

The Friedman test involves ranking all of the samples provided. The sum of ranks for

each was taken and the significant differences noted. This was repeated for all three

environments. The null hypothesis (h0) and alternative hypothesis (h1) were set as

follows:

• h0: The number of R in the k populations has no effect.

• h1: The number of R has an effect.

where R is the property of the system that is being investigated. As detailed in

[47], the Friedman Q test statistic was calculated. If the Q value was greater than

the selected P -value (0.1) (as previously stated this is a relatively high value due to

the small sample size), then h0 could be rejected in favour of h1. If the difference

between column sums did not satisfy (5.2) and was negative, this meant that the first

group had a significantly larger completion time than the second group. If positive,

it can be concluded that the first group had a significantly smaller completion time.

|Ri − Rj| ≤ z

√

kn(n + 1)

6
, (5.2)

where k is the size of a sample (20) — the sample size was small due to the

practicalities of conducting the experimentation in real-time. n is the number of

samples (7) and z is the critical z value for a level of significance of 0.1 (2.8 to 1 d.p.).

5.4 Single Target Search

In the single target experiment [12], the robots explored the environments shown

in figures 5.1-5.3 with the exception that the yellow target was not included. Each

5. simulated search problems 121

system (non-sharing, pessimistic and optimistic) completed the task in groups of two

to eight robots over three different environments. Each group completed twenty runs.

The mean completion times for each system, within each environment, are shown in

table 5.1. The fastest time for a category is shown in bold. Full results are given in

appendix A.1.

Table 5.1: Mean completion (seconds) for each system in each environment for 2-8 robots, to 1 d.p.

The standard deviation is given in brackets, to 1 d.p.

2 3 4 5

Environment 1
non 300.0 (0.0) 250.7 (89.1) 255.9 (81.0) 225.1 (107.8)
pes 203.4 (103.8) 211.1 (109.5) 172.6 (95.5) 133.9 (106.3)
opt 262.5 (74.3) 198.8 (115.6) 150.2 (110.0)

Environment 2
non 153.8 (123.0) 129.6 (104.3) 70.1 (84.9) 31.7 (24.0)
pes 77.2 (102.6) 55.6 (62.4) 43.2 (62.0) 49.9 (67.8)
opt 132.1 (122.1) 43.1 (23.1) 31.7 (17.9) 26.3 (19.8)

Environment 3
non 52.2 (6.2) 91.2 (90.2) 69.6 (23.7) 73.6 (54.7)
pes 115.5 (94.8) 141.8 (106.9) 67.9 (11.5) 78.8 (53.0)
opt 115.5 (94.8) 128.5 (102.5) 70.5 (14.1) 105.7 (85.6)

6 7 8

Environment 1
non 205.2 (106.5) 273.0 (56.3) 288.2 (44.3)
pes 121.6 (107.3) 124.3 (105.9) 120.6 (95.3)
opt 98.0 (89.0) 110.2 (98.5) 116.0 (98.6)

Environment 2
non 32.4 (34.2) 33.2 (25.1) 29.9 (16.6)
pes 8.0 (4.5) 4.3 (1.0) 11.9 (11.3)
opt 11.4 (13.6) 4.3 (0.6) 9.5 (7.3)

Environment 3
non 62.7 (14.0) 112.7 (97.1) 134.4 (112.5)
pes 64.7 (9.7) 133.5 (112.3) 95.9 (88.7)
opt 66.7 (13.3) 106.6 (85.3) 110.0 (98.0)

By looking at table 5.1 it can be seen that in environment 1, the optimistic system

performs the best in all but one category (2 robots). In environment 2, again the

optimistic system performs best but, this time, in only six of the categories. In

5. simulated search problems 122

environment 3, the non-sharing system performs best in four of the categories.

5.4.1 Comparison Across Systems

Table 5.2: Significant differences between the non-sharing (R1), pessimistic (R2) and optimistic

(R3) systems (to 1 d.p.)

R12 R13 R23

Two Robots
env 1 15.5 7.0 -8.6
env 2 -16.6 -7.4 9.2
env 3 -27.9 -27.7 0.3

Three Robots
env 1 6.4 8.8 2.4
env 2 15.7 19.2 3.6
env 3 -18.4 -14.7 3.8

Four Robots
env 1 13.2 18.3 5.2
env 2 6.1 8.1 2.1
env 3 -2.8 -6.9 -4.1

Five Robots
env 1 11.7 13.1 1.4
env 2 -0.4 5.3 5.7
env 3 -9.0 -13.3 -4.3

Six Robots
env 1 14.3 17.6 3.3
env 2 23.6 22.0 -1.6
env 3 -5.1 -5.6 -0.5

Seven Robots
env 1 20.4 22.6 2.1
env 2 30.4 29.5 -1.0
env 3 -2.0 -4.0 -2.0

Eight Robots
env 1 22.2 25.2 3.1
env 2 22.6 26.7 -4.1
env 3 4.4 0.8 -3.6

Using the Kruskal-Wallis test described in the previous section, the following

results are obtained. Table 5.2 shows the significant differences between the means

of ranks for the non-sharing system (R1), pessimistic system (R2) and the optimistic

5. simulated search problems 123

system (R3). Non-significant differences are shown in italics. As only values above

11.8 (to 1 d.p.) are significant, it can be seen that the pessimistic system performs

better than the non-sharing system in groups of five or more in environments 1 and 2.

This is clearly shown in figures 5.6 and 5.7, where points between the horizontal lines

are insignificant, and points above the highest horizontal line represent instances

when the sharing systems out-performed the non-sharing system. It can be seen

that the optimistic system performs better than the non-sharing system, in groups

of six or more in environments 1 and 2. For groups of less than six, the results

are mixed. Again, this is clearly shown in figures 5.6 and 5.7. The non-sharing

system performs significantly better in environment 3, for group sizes of up to five.

This is clearly shown in figure 5.8, where points between the horizontal lines are

insignificant and points below the lowest horizontal line represent instances when the

non-sharing system out-performed the sharing systems. Beyond that, the differences

become insignificant. It can also be observed that no significant difference between

the pessimistic and optimistic systems performance occurred.

5.4.2 Comparison Across Size

Table 5.3: Significant differences between the numbers of robots, for the non-sharing system. (to 1

d.p.)

2 3 4 5 6 7 8

Environment 2
ind2 NA 3.0 42.0 58.5 68.0 61.5 54.0
ind3 -3.0 NA 39.0 55.5 65.0 58.5 51.0

Environment 3
ind3 NA -19.5 -46.0 -34.5 -32.5 -55.0 -47.0

To investigate what effect the number of robots had on performance, the Friedman

rank sum test was conducted. Table 5.3 shows significant differences between the

pairs of column sums for the non-sharing system. Significant differences are shown

in bold. As only values above 38.6 (to 1 d.p.) are significant, it can be seen that

in environment 2, the non-sharing system performs better with four or more agents.

5. simulated search problems 124

Figure 5.6: Differences between ranks for environment 1 (single target): R12 — differences between

the performance of the non-sharing system and the pessimistic system. R13 — differences between

the performance of the non-sharing system and the optimistic system. Points in between the two

horizontal lines are not significant.

5. simulated search problems 125

Figure 5.7: Differences between ranks for environment 2 (single target): R12 — differences between

the performance of the non-sharing system and the pessimistic system. R13 — differences between

the performance of the non-sharing system and the optimistic system. Points in between the two

horizontal lines are not significant.

5. simulated search problems 126

Figure 5.8: Differences between ranks for environment 3 (single target): R12 — differences between

the performance of the non-sharing system and the pessimistic system. R13 — differences between

the performance of the non-sharing system and the optimistic system. Points in between the two

horizontal lines are not significant.

5. simulated search problems 127

Table 5.4: Significant differences between the numbers of robots, for the pessimistic system. (to 1

d.p)

2 3 4 5 6 7 8

Environment 1
pes2 NA 1.5 12.0 36.0 41.5 33.5 36.0
pes3 -1.5 NA 10.5 24.5 40.0 32.0 34.5

Environment 2
pes2 NA -8.0 6.5 15.5 52.0 83.0 54.0
pes3 8.0 NA 14.5 23.5 60.0 91.0 62.0
pes4 -6.5 -14.5 NA 9.0 45.5 76.5 47.5
pes5 -15.5 -23.5 -9.0 NA 36.5 67.5 38.5

Environment 3
pes3 18.5 NA 36.0 36.0 45.5 28.5 45.5

Table 5.5: Significant differences between the numbers of robots, for the optimistic system. (to 1

d.p.)

2 3 4 5 6 7 8

Environment 1
opt2 NA 19.0 38.5 47.5 61.5 56.0 57.5
opt3 -19.0 NA 19.5 28.5 42.5 37.0 38.5

Environment 2
opt2 NA 5.5 18.0 34.5 61.0 89.0 72.0
opt3 -5.5 NA 12.5 29.0 55.5 83.5 66.5
opt4 -18.0 -12.5 N/A 16.5 43.0 71.0 54.0

5. simulated search problems 128

However, for environment 3, the non-sharing system performs better with two agents

only — this is clearly shown in figure 5.10. It can also be observed that group size

had no significant impact in environment 1. Table 5.4 shows the same data for the

pessimistic system (significant differences are shown in bold). It appears to perform

better with six or more agents in all three environments (which is in line with the

results from table 5.2). These results are shown in figures 5.9, 5.10 and 5.11. Table 5.5

again shows the same data for the optimistic system (significant differences are shown

in bold), which performs better in environments 1 and 2 with five or more agents.

These results are clearly shown in figures 5.9 and 5.10. There were no significant

differences in environment 3, as shown in figure 5.11.

5.4.3 Discussion of Single Target Results

From the results in this section, it can be observed that both the pessimistic and

optimistic systems perform better than the non-sharing system (when in groups of 6

or more). It can also be observed that both the pessimistic and optimistic systems

perform better in larger group sizes (6 or more and 5 or more respectively). These

results are as expected, as the presence of more robots implies a higher probability

that the robots can take advantage of potential field sharing, instead of reverting to

the non-sharing behaviour. The second observation is interesting as it shows that a

system less inclined to avoid obstacles performs better with a smaller group size than

a system that is inclined to avoid obstacles. This also makes sense as the smaller

the group size, the less likely it is that more (previously unseen) obstacles will be

discovered. The observation that the performance of the pessimistic and optimistic

systems did not differ significantly is also interesting as this implies that the ability

to detect more obstacles has the same benefit as the ability to ignore more sensor

noise. This result, however, is not a surprise as little or no noise was present within

the simulation.

5. simulated search problems 129

Figure 5.9: Differences between ranks for environment 1 (single target): pes2 — Differences between

the performance of 2 robots compared to 2 to 8 robots using the pessimistic system. pes3 —

Differences between the performance of 3 robots compared to 2 to 8 robots using the pessimistic

system. opt2 — Differences between the performance of 2 robots compared to 2 to 8 robots using

the optimistic system. opt3 — Differences between the performance of 3 robots compared to 2 to 8

robots using the optimistic system. Points in between the two horizontal lines are not significant.

5. simulated search problems 130

Figure 5.10: Differences between ranks for environment 2 (single target): ind2/ind3 — Differences

between the performance of 2/3 robots compared to 2 to 8 robots using the non-sharing system.

pes2/pes3/pes4/pes5- Differences between the performance of 2/3/4/5 robots compared to 2 to 8

robots using the pessimistic system. opt2/opt3/opt4- Differences between the performance of 2/3/4

robots compared to 2 to 8 robots using the optimistic system. Points in between the two horizontal

lines are not significant.

5. simulated search problems 131

Figure 5.11: Differences between ranks for environment 3 (single target): ind2 — Differences between

the performance of 2 robots compared to 2 to 8 robots using the non-sharing system. pes3 —

Differences between the performance of 3 robots compared to 2 to 8 robots using the pessimistic

system. Points in between the two horizontal lines are not significant.

5. simulated search problems 132

5.5 Multi-target Search

In the multi-target experiment [13], the robots explored the environments shown in

figures 5.1-5.3. As with the single target search, each system (non-sharing, pessimistic

and optimistic) completed the task in groups of two to eight robots over three different

environments. Each group completed twenty runs. The mean completion times for

each system, within each environment, are shown in table 5.6. The fastest time for a

category is shown in bold. Full results are given in appendix A.2.

Table 5.6: Mean completion (seconds) for each system in each environment for 2-8 robots, to 1 d.p.

The standard deviation is given in brackets, to 1 d.p.

2 3 4 5

Environment 1
non 300.0 (0.0) 195.0 (113.5) 284.0 (48.3) 241.1 (88.7)
pes 184.5 (113.1) 183.5 (120.2) 104.8 (86.2) 135.1 (103.6)
opt 195.0 (113.5) 188.5 (116.0) 149.5 (105.6) 117.7 (98.7)

Environment 2
non 123.3 (105.9) 127.1 (61.0) 85.0 (111.8) 73.9 (83.4)
pes 70.2 (101.0) 48.5 (30.8) 53.8 (85.5) 62.3 (65.8)
opt 76.5 (100.7) 68.6 (64.1) 52.4 (61.9) 45.7 (64.6)

Environment 3
non 249.0 (104.7) 173.2 (130.2) 163.3 (115.4) 104.6 (71.5)
pes 116.2 (63.6) 94.5 (16.2) 135.7 (88.3) 114.5 (83.3)
opt 135.4 (86.0) 110.0 (67.2) 163.6 (104.9) 111.8 (83.4)

6 7 8

Environment 1
non 189.2 (98.6) 250.0 (83.5) 163.3 (118.7)
pes 126.3 (101.8) 165.0 (112.6) 104.0 (85.4)
opt 85.0 (76.0) 138.9 (109.5) 139.1 (109.9)

Environment 2
non 25.9 (14.2) 37.1 (62.0) 26.7 (17.9)
pes 37.7 (21.0) 28.0 (17.8) 25.4 (12.0)
opt 42.2 (62.9) 38.4 (62.8) 40.6 (61.7)

Environment 3
non 170.3 (102.5) 198.5 (115.3) 103.5 (87.0)
pes 98.8 (71.3) 103.6 (86.6) 83.3 (59.5)
opt 118.6 (94.6) 76.3 (40.9) 75.4 (58.2)

5. simulated search problems 133

By looking at table 5.6, it can be seen that in environment 1, the pessimistic

system performs best with two to four robots, whilst the optimistic system performs

better with five to seven robots. In environment 2, the pessimistic system performs

best with two to three robots and seven to eight robots, whilst the optimistic system

performs better with four to five robots. In environment 3, again the pessimistic

system performs best with two to four robots, whilst the optimistic system performs

better with seven to eight robots.

5.5.1 Comparison Across Systems

Using the Kruskal-Wallis test described in section 5.3.1, the following results are ob-

tained. Table 5.7 shows that in environment 1 both the pessimistic and the optimistic

system perform significantly better than the non-sharing system in all but one case (3

robots). Non-significant differences are shown in italics. The results are clearly visible

in figure 5.12. In environment 2, the pessimistic system significantly outperforms the

non-sharing system in the 2 and 3 robot cases. The optimistic system significantly

outperforms the non-sharing system in the 2, 3 and 5 robot cases. The results are

clearly visible in figure 5.13. In environment 3, both the sharing systems significantly

outperformed the non-sharing system in the 2 and 7 robot cases. This is shown in

figure 5.14. As with the single target case, the sharing system’s performance did not

differ significantly.

5. simulated search problems 134

Table 5.7: Significant differences between the non-sharing (R1), pessimistic (R2) and optimistic

(R3) systems for the multi-target case (to 1 d.p.)

R12 R13 R23

Two Robots
env 1 16.5 15.1 -1.4
env 2 17.8 15.1 -2.7
env 3 17.1 11.7 -5.4

Three Robots
env 1 2.1 0.9 -1.2
env 2 24.8 19.7 -5.1
env 3 -0.8 -0.7 0.1

Four Robots
env 1 26.4 17.8 -8.6
env 2 10.2 2.8 -7.4
env 3 -2.1 -5.4 -3.3

Five Robots
env 1 15.7 18.4 -2.7
env 2 2.4 11.8 9.4
env 3 -1.6 0.1 1.7

Six Robots
env 1 11.8 20.2 8.4
env 2 -5.6 3.8 9.4
env 3 11.0 10.4 -0.6

Seven Robots
env 1 13.0 15.9 2.9
env 2 15.6 7.9 2.3
env 3 16.5 19.9 3.3

Eight Robots
env 1 2.7 0.7 -2.1
env 2 -0.6 -6.2 -5.6
env 3 2.2 7.8 5.6

5. simulated search problems 135

Figure 5.12: Differences between ranks for environment 1 (multiple targets): R12 — differences

between the performance of the non-sharing system and the pessimistic system. R13 — differences

between the performance of the non-sharing system and the optimistic system. Points in between

the two horizontal lines are not significant.

5. simulated search problems 136

Figure 5.13: Differences between ranks for environment 2 (multiple targets): R12 — differences

between the performance of the non-sharing system and the pessimistic system. R13 — differences

between the performance of the non-sharing system and the optimistic system. Points in between

the two horizontal lines are not significant.

5. simulated search problems 137

Figure 5.14: Differences between ranks for environment 3 (multiple targets): R12 — differences

between the performance of the non-sharing system and the pessimistic system. R13 — differences

between the performance of the non-sharing system and the optimistic system. Points in between

the two horizontal lines are not significant.

5. simulated search problems 138

5.5.2 Comparison Across Size

Once again, using the Friedman test described in section 5.3.2, the following results

are obtained. Table 5.8 shows that the non-sharing system performed better with 6 or

more robots in environments 1 and 2. Significant differences are shown in bold. The

pessimistic system results suggest no significant advantage can be gained by increasing

the number of robots within the system. Table 5.9 shows that the optimistic system

performed best with 6 or more robots in environments 1 and 2. Significant differences

are shown in bold. The results discussed are clearly visible in figures 5.15, 5.16 and

5.17.

Table 5.8: Significant differences between the numbers of robots, for the non-sharing system. For

the multi-target case. (to 1 d.p.)

2 3 4 5 6 7 8

Environment 1
ind2 NA 36.0 9.0 25.5 41 19.5 47.5

Environment 2
ind2 NA -16.0 33.0 27.5 59.0 50.5 49.0
ind3 16.0 NA 49.0 43.5 75.0 66.5 65.0

Environment 3
ind2 NA 28.0 19.5 29.5 12.5 11.5 39.0

Table 5.9: Significant differences between the numbers of agents, for the optimistic system. For the

multi-target case. (to 1 d.p)

2 3 4 5 6 7 8

Environment 1
opt2 NA -1.5 10,5 27.5 42.5 15.5 17.5
opt3 1.5 NA 12.0 29.0 44.0 17.0 19.0

Environment 2
opt3 28.5 NA 20.5 36.5 38.0 39.5 26.0

Environment 3
opt2 NA 9.5 -2.5 18.5 22.5 48.0 54.5
opt3 -9.5 NA -13.0 9.0 13.0 38.5 45.0
opt4 2.5 12.0 NA 21.0 25.0 50.5 57.0

5. simulated search problems 139

Figure 5.15: Differences between ranks for environment 1 (multiple targets): ind2 — Differences

between the performance of 2 robots compared to 2 to 8 robots using the non-sharing system. opt2

— Differences between the performance of 2 robots compared to 2 to 8 robots using the optimistic

system. opt3 — Differences between the performance of 3 robots compared to 2 to 8 robots using

the optimistic system. Points in between the two horizontal lines are not significant.

5. simulated search problems 140

Figure 5.16: Differences between ranks for environment 2 (multiple targets): ind2 — Differences

between the performance of 2 robots compared to 2 to 8 robots using the non-sharing system. ind3

— Differences between the performance of 3 robots compared to 2 to 8 robots using the non-sharing

system. opt3 — Differences between the performance of 3 robots compared to 2 to 8 robots using

the optimistic system. Points in between the two horizontal lines are not significant.

5. simulated search problems 141

Figure 5.17: Differences between ranks for environment 3 (multiple targets): ind2 — Differences

between the performance of 2 robots compared to 2 to 8 robots using the non-sharing system. opt2

— Differences between the performance of 2 robots compared to 2 to 8 robots using the optimistic

system. opt3 — Differences between the performance of 3 robots compared to 2 to 8 robots using

the optimistic system. opt4 — Differences between the performance of 4 robots compared to 2 to 8

robots using the optimistic system. Points in between the two horizontal lines are not significant.

5. simulated search problems 142

5.5.3 Discussion of Multi-target Results

The results show that the sharing systems perform significantly better than the non-

sharing system. As with the single target case, it was observed that the performance

of the pessimistic and optimistic systems did not differ significantly. Again, it is

believed that this may be due to the limited amount of noise within the simulation

and that the differences in the sharing systems’ performance will be more apparent in

the real world. The observation that both the non-sharing and the optimistic system

perform better with six or more robots makes sense as, in the case of the non-sharing

system, more robots in the environment results in a greater area coverage. In the

case of the optimistic system, as well as having the same benefits of the non-sharing

system, more robots result in more information being shared and so each robot can

make better decisions. The observation that the pessimistic system did not benefit

from an increased number of robots was not expected and requires further research.

5.6 Single-target Search with Noisy Sensor Readings

In the final set of simulation experiments, the effect of noise within the sensor readings

and an increase in group size is investigated [10]. As with the single target search,

the two potential field sharing systems (pessimistic and optimistic) had to complete

the task of finding an target within the environment. In this experiment only group

sizes of eight and sixteen robots were investigated, completing twenty runs each on a

single environment (Environment 4 - figure 5.4).

Noise was intorduced into the ultra-sonic readings of each robot. This was achieved

by adding guassian noise to the initial reading of each ultra-sonic sensor. Three levels

of noise were chosen to be investigate 0.01, 0.05 and 0.1 these values added noise

normally distributed within a range of +/−1cm, +/−5cm and +/−10cm respectively

to each sensor reading.

The mean completion times for each system, are shown in table 5.10. The fastest

time for a category is shown in bold. Full results are given in appendix A.3.

Table 5.10 clearly shows that apart from the 16 robot pessimistic case the perfor-

5. simulated search problems 143

Table 5.10: Mean completion (seconds) for each system with varying levels of sensor noise for 8 and

16 robots, to 1 d.p. The standard deviation is given in brackets, to 1 d.p.

Low Mid High

Optimistic

8 69.1 (48.0) 55.7 (28.3) 43.0 (5.9)

16 46.1 (18.4) 43.6 (11.9) 42.6 (5.2)

Pessimistic

8 76.4 (57.2) 49.0 (13.7) 44.8 (7.4)

16 43.9 (14.2) 47.9 (15.9) 46.4 (11.7)

Table 5.11: Kruskal-Wallis rank sum test. Differences between means, pessimistic system, to 1

decimal place.

low mid high

opt (8 - 16) -6.8 -5.9 -0.7

pes (8 - 16) -12.7 -1.6 -3.4

mance of the system increases with an increase in sensor noise.

5.6.1 Comparison Across Size

The Kruskal-Wallis was used to compare the performace of a system across group size.

As in the previous sections, the H statistic was calculated and then the differences

in means compared. In this case the following values where substituted into equation

4.2: k = 2, N = 40 and z = 1.96. Therefore, the differences were significant if they

were greater than or equal to 7.2 (to 1 decimal place).

It is clear to see from table 5.11 that the effect of group size on the optimistic

system’s performance was not significant. For the pessimistic system, group size

only had a significant effect when the level of sensor noise was low, with 8 robots

out-performing 16 robots.

5. simulated search problems 144

Table 5.12: Kruskal-Wallis rank sum test. Differences between means, to 1 decimal place.

8 16

Optimistic

Low - Mid 2.2 -0.3

Low - High 14.6 2.7

Mid - High 12.4 3.0

Pessimistic

Low - Mid 15.6 -3.0

Low - High 20.8 -5.0

Mid - High 5.2 -2.0

5.6.2 Comparison Across Noise

Using the same values in the Kruskal-Wallis test as in section 5.6.1. The effect of

noise on the shared potential method was also analysed.

It is shown in table 5.12 that the optimistic system performed the best when high

levels of sensor noise were introduced. It also shows that the pessimistic systems

performance was worst when there was only low levels of sensor noise.

5.6.3 Discussion of Single-target with Noise Results

The results show that the pessimistic system performed better with 8 robots when

a low level of sensor noise was introduced. It is believed that an increase in the

number of robots within the pessimistic system causes the group of robots to become

more cautious within the environment, and thus take longer to complete a given task.

Higher levels of noise counteract this affect. It is also shown that both the sharing

systems performed better with the higher levels of sensor noise. It is beleived this is

due to addition of sensor noise causing the systems to avoid cases of local minima,

and so enabled them to navigate the environment faster. For example, not getting

“stuck” in ‘U’ shaped parts of the environment.

5. simulated search problems 145

5.7 Summary

In this chapter, the simulated experimental setup has been discussed. The potential

field sharing system was compared against a non-sharing system over three different

environments with varying group sizes. In order to aid fast prototyping no noise

was added to the simulation. The effect of noise on the systems was left for the

investigation on real robots.

In both sets of experiments, single target and multi-target, the behaviour of the

systems was similar. This is due to the fact that the addition of targets merely

increases the number of obstacles in the environment and, therefore, only affects

performance (in terms of task completion time) rather than behaviour. It was shown

that the pessimistic system significantly outperformed the non-sharing system with

group sizes of five or more robots and that the optimistic system outperformed the

non-sharing system with six or more robots.

Larger group sizes increased the performance of all the systems; the non-sharing

system’s performance increased with 4 or more robots when compared to the per-

formance of just 2 or 3 robots. The pessimistic system only showed an increase in

performance in the one target case, where groups of 6 or more robots outperformed

groups of 2 to 4 robots. The optimistic system’s performance increased when in

groups of 6 or more robots when compared against groups of just 2 to 4 robots.

When noise was introduced to the simulation, both of the sharing systems per-

formed better with the higher levels of noise. It is beleived that the increase in sensor

noise allows the system to avoid areas of local minima within the potential feild. This

enables the sytems to navigate the environment faster.

The experiments, presented in this chapter, have helped this project meet one of

its goals given in chapter 1.

• To design and implement a multi-robot system that is not reliant

upon explicit information gathered from other robots.

The potential field sharing method did not at anytime, during the simulation

experiments, explicitly co-ordinate the team members. Co-ordination was an

5. simulated search problems 146

emergent property of combined potential fields.

The findings from the experiments discussed in this chapter were published in the

following conference proceedings and book chapter.

• J.L. Baxter, E.K. Burke, J.M. Garibaldi & M. Norman, “The Effect of Poten-

tial Field Sharing in Multi-Agent Systems”, In the proceedings of 3rd Interna-

tional Conference on Autonomous Robots and Agents (ICARA 2006), Palmer-

ston North, New Zealand, 12th-14th December, pp 33-38, 2006.

• J.L. Baxter, E.K. Burke, J.M. Garibaldi & M. Norman, “Multi-Robot Search

and Rescue: A Potential Field Based Approach”, in Autonomous Robots and

Agents, series: Studies in Computational Intelligence book series, Vol. 76,

Mukhopadhyay, Subhas; Sen Gupta, Gourab (Eds.), Springer-Verlag, pp 9-16,

2007.

The simulation investigation into the affect of sensor noise on the systems is pre-

sented in a journal paper under review.

• J.L. Baxter, E.K. Burke, J.M. Garibaldi, S. Groenemeyer & M. Norman, “Multi-

robot Co-ordination Using Shared Potential Fields”, submitted to IEEE Trans-

actions on Robotics, 2009.

147

Chapter 6

Laboratory Search Problems

6.1 Introduction

After the completion of the simulated experiments, the next phase was to run a

number of experiments on real robots in a laboratory environment. In this chapter,

the Miabot (Mobile Intelligent Autonomous Robot) and the laboratory setup used

in the experiments in this chapter and chapter 7 are described. In the experiments

in this chapter, the robots had the same task to complete as in the simulated single

target search problem (see chapter 5). However, the size of the environments was

considerably smaller due to restrictions in the overhead camera system (discussed in

further detail in section 6.3). Results for these experiments are shown and analysed,

and the chapter ends with a summary.

6.2 Robot Specification

The type of robot used in the experimentation is a Merlin Miabot Pro (more in-

formation is available in section 3.2), see figure 6.1. Each robot was approximately

18cm × 8cm × 8cm and was equipped with the following sensors/actuators:

• Position2d : a differential steering drive, with an optical encoder resolution of

0.04mm and a maximum reported speed of 3.5m/s. As in the simulation, the

Miabot is non-holonomic.

6. laboratory search problems 148

Figure 6.1: Merlin Miabot Pro with ultra-sonic sensor array and camera modules.

• Sonar : an ultra-sonic sensor array with a range of approximately 3cm − 2m

and a field-of-view of approximately 360o. As with the simulated Miabot, small

gaps of approximately 15o existed between each individual sensor.

• Blob-finder : a camera with a fixed forward orientation and 30o field-of-view.

An on-board blob-finder algorithm tracked the environment for a single blob

defined by an RGB value sampled from a single frame grabbed from a camera

approximately 30cm away from the target. Unlike the simulated blob-finder,

the real blob-finder has no physical range limit as such. However, the further

an object is from the camera the more out of focus it becomes, making it harder

to differentiate specific blobs from the background.

In order to control the Miabots using the Player architecture, a Player plug-in

driver was developed for the Miabot (see section 3.3.4 for more details).

6. laboratory search problems 149

In order to position the Miabots accurately within the environment needed by the

sharing systems and the hybrid system (discussed in detail in chapter 7), an overhead

camera system was used to track the Miabots (more information is provided in section

3.2.4). Again, a Player plug-in driver was developed to add the tracking system to

the Player environment. See section 3.3.5 for more information.

6.3 Environment Specification

As our overhead tracking system could not cover the same area as was used in the

simulated experiments, the experimental environments had to be redesigned. It was

decided to test the systems on three different environments differing in the number of

obstacles present, from a sparse environment (20% obstacle coverage) to a cluttered

environment (40% obstacle coverage); see figures 6.2, 6.3 and 6.4. The positions of

obstacles, the target, and the Miabot’s starting location in the cluttered environment

were generated randomly. To create the sparse environments four obstacles were re-

moved randomly (one from each image quarter) to create environment 2, and another

four to make environment 3. Each environment was approximately 1.7m × 2.5m,

as this was the maximum area that the overhead camera system could cover, and

was enclosed within 15cm high walls. The reason why the environment sizes in the

simulation experiments in sections 5.4 and 5.5 do not match the sizes used in these

laboratory experiments, is that when the simulation experiments were conducted it

was beleived that it would be possible run the laboratory experiments under the same

conditions, unfortunately this did not turn out to be the case. The target was a pink

can approximately 12cm × 7cm × 7cm. Obstacles were rectangular boxes approxi-

mately 16cm × 12cm × 8cm.

6.3.1 Environment Noise

Unlike in simulation, in which the Miabots were given perfect (noiseless) information,

the environment in the lab had numerous sources of noise. A brief description of the

major contributors were:

6. laboratory search problems 150

Figure 6.2: Overhead view of the arena (two camera frames): Environment 1 — cluttered (with 5

Miabots at their initial starting locations). The target is circled.

Figure 6.3: Overhead view of arena (two camera frames): Environment 2 — normal. The target is

circled.

6. laboratory search problems 151

Figure 6.4: Overhead view of arena (two camera frames): Environment 3 — sparse. The target is

circled.

• Ultra-sonic sensors : Each Miabot used in the experimentation was equipped

with an ultra-sonic sensor array as described earlier. The most fundamental

thing to remember when using ultra-sonic sensors is that the retrieval of echoes

is not guaranteed due to numerous environmental factors that could lead to

the source single being absorbed, or the echo dissipating before reaching the

transceiver on the ultra-sonic sensor.

One of the drawbacks of manufacturing ultra-sonic sensors to the required size

to be mounted on a Miabot is that the frequencies used by the sensors are set

by the manufacturer and cannot be altered. As all of the ultra-sonic sensors are

set to the same frequency, if two ultra-sonic sound waves from different Miabots

collide then the result is either false object detection at the point of collision,

or no echo is received by the Miabots resulting in no object detection. Both of

these situations can be dangerous as either the Miabots avoid objects that are

not there, or do not avoid objects that are there. An example is shown in figure

6.5.

6. laboratory search problems 152

Figure 6.5: Example of ultra-sonic collisions. In case A, the collision stops both robots from detecting

the object in the top left corner. In case B, the collision stops robot 1 from detecting the object in

the bottom right corner.

As the minimum range of the ultra-sonic sensors is 3cm, any object that gets

closer to a Miabot than that may cause a collision. Miabots can collide with

three different types of objects within the environment; obstacles, the target

or other Miabots. If a Miabot collides with an obstacle, the Miabot can move

the obstacle out of the way, and resume the search after getting clear of the

obstacle (assuming the Miabot has sufficient momentum to move the obstacle).

If this happens during an experimental run using the wavefront propagation

path planner, the result could be a less efficient path being plotted to a goal,

due to planning paths through unmapped obstacles (more information on the

6. laboratory search problems 153

wavefront algorithm is given in section 7.2.1). Otherwise, the Miabot may get

stuck against the obstacle (in the case of the potential field systems, as they

do not implement a crash recovery mechanism) or they will take an unknown

amount of time to recover from the crash.

If a Miabot collides with the target, it will push the target until it becomes

unattached (as the target’s weight is much lower than the Miabot’s). This

could either be helpful, by moving the target into a more accessible area of the

arena, or un-helpful, by moving the target to a less accessible part of the arena.

If a Miabot collides with another Miabot, then either it will be a glancing blow

and the Miabots will carry on as normal or, as in the obstacle case, the Miabot

will be stuck for an unknown amount of time, perhaps indefinitely.

• Blob-finder : Unlike in simulation, in which all objects within the environment

had a single uniform colour, in the real world objects are made up of many

colours. Even objects that are one colour to the naked eye are in fact many

variations of the colour at the blob-finder level. As such, the blob-finder is

susceptible to both false positives and false negatives. An example of the type

of blob data received is given in figure 6.6, where multiple blobs are tracked

from the same target (Labelled A-E in the figure).

False positives occur when the blob-finder detects the correct RGB value for that

target, but in fact is not “looking” at the target. To overcome this a minimum

area is defined, all blobs that have an area smaller than this are disqualified

as possible targets (in the example only the large blob would be classed as a

target). However, when a Miabot does have a false positive, the experiment

must be restarted, as the reliability of the blob-finder is not being tested.

False negatives occur when the blob-finder fails to detect the target even though

it is “looking” at it. This happens if the Miabot gets too close to the target and

so the target area is too small to be recognised, or due to lighting conditions

such as shadows cast by other Miabots

• Tracking system: The tracking system used to track the Miabots across two

6. laboratory search problems 154

Figure 6.6: Example of blob data: The Miabot is approximately 15cm from the target. Multiple

blobs are found (Labelled A-E). The rectangles represent areas of the image with the same RGB

value.

separate camera frames is heavily affected by lighting conditions. To help create

stable conditions, the windows to the laboratory were blacked out in order

to stop natural light entering. However, due to the laboratory configuration,

the arena in which the Miabots perform experiments is directly below a light

fitting. This can be see in figures 6.2, 6.3 and 6.4 with the bright patch of

light. Positioning the Miabots whilst they are in this area is less accurate than

when the Miabots are in other parts of the arena. The inaccuracy is only really

apparent when the Miabots are moving at a velocity under 10cm/s, and it

usually results in an incorrect orientation calculation.

The area of the arena covered by both of the camera frames is also an area

where the calculated orientation can be inaccurate. The reason for this is that

when a Miabot moves in between the two frames, the smallest tracking blob

6. laboratory search problems 155

can be lost, leading to a false orientation being reported.

The tracking system works by finding three blobs (two large, one small) that

are within close proximity to each other. However, if two Miabots collide with

each other, the blobs from two different Miabots can be used to calculate the

position of one Miabot, hence creating a false position. Collisions can also

lead to Miabots swapping positioning IDs, if the tracking system mistakes one

Miabot for another. This will result in the Miabots carrying out commands

which have no relation to their current position. More can be read about the

tracking system in section 3.2.4.

• Communications Lag : The Miabots communicate to the Player server through

a virtual serial communications link, via Bluetooth. The time between a Miabot

completing an action and sending information back to the Player server can be

up to 40ms, this is due to numerous verification processes Bluetooth conducts

to provide reliable communications. Unlike traditional radio communications.

The Miabots single communications bus leads to the fact that the more devices

connected to the Miabot, the higher the lag between send and receive com-

mands. In experimentation, only three modules are used: the motor drive; the

ultra-sonic sensor array; and the blob-finder. As the motor drive only receives

commands, its impact on communications lag is insignificant. However, the

ultra-sonic sensor array and the blob-finder poll the bus continuously through-

out the experiment. As the blob-finder is the master of the bus, this leads to the

ultra-sonic data not being transmitted to the Player server until the blob-finder

is finished with the bus. This can obviously lead to the Miabot not only pro-

cessing commands slowly but also to putting it at risk of colliding with obstacles

in areas with a high blob count.

• Slippage: Unlike in the simulation experiments in which input and output of

the motors are related by a linear function, on the real Miabots a number of

factors cause unexpected motor behaviour. These include wheel slippage; weight

distribution; efficiency of motors; voltage level; and dominance of individual

6. laboratory search problems 156

motors. However, the weight distribution and voltage levels of individuals can

be controlled within acceptable limits during experimentation. The efficiency

and dominance of individual motors and the effect of wheel slippage are factors

that can only be tackled by providing each Miabot with its own individual low

level motor controller, which is a research area not covered by this thesis.

6.4 Single Target Search

During this experiment [10], the motion of the Miabots was limited to either move

forwards or rotate. They moved forward at approximately 0.1m/s, rotated at ap-

proximately 0.87rad/s (with a forward motion of approximately 0.005m/s, to help

avoid the oscillation problems discussed in section 2.6.1). The on-board blob-finder

algorithm in the camera was used to detect the colour of the target. Once the target

was verified by the blob-finder, the Miabot(s) came to a permanent halt.

Table 6.1 shows the average time taken, in seconds, for each system to complete

the search task with a given group size. The best result for each group size is shown

in bold. Full results are given in appendix A.4.

It can be seen that, in the cluttered environment (environment 1), the pessimistic

system performed best in group sizes of 4 or more. In environment 2, the pessimistic

system performed best in all group sizes in all but two cases (4 and 8 Miabots). In the

sparse environment (environment 3), the optimistic system performed best in groups

of 4 to 6 Miabots.

6.4.1 Comparison Across Systems

The Kruskal-Wallis test, previously described in section (5.3.1), was used to compare

the performance of each system against the other systems over the different environ-

ments. Table 6.2 shows the differences between the means of ranks for environments 1

and 2. Significant differences are in bold. It can be seen from table 6.1, despite some

clear trends, that in environment 1, only two significant cases occur. The pessimistic

system performed better than the non-sharing system with five Miabots and the pes-

simistic system performed better than the optimistic system with four Miabots. This

6. laboratory search problems 157

Table 6.1: Mean completion (seconds) for each system in each environment for 2-8 Miabots, to 1

d.p. The standard deviation is given in brackets, to 1 d.p.

2 3 4 5

Environment 1
non 266.0 (61.3) 220.6 (84.6) 216.3 (68.9) 232.8 (82.2)
pes 273.7 (57.5) 228.9 (85.3) 177.9 (61.2) 174.6 (73.5))
opt 291.0 (26.1) 243.2 (73.0) 221.8 (68.5) 197.1 (69.9)

Environment 2
non 219.4 (105.6) 184.4 (102.7) 160.1 (100.7) 219.4 (73.2)
pes 182.5 (100.1) 161.8 (82.9) 140.2 (74.1) 115.4 (60.3)
opt 216.2 (112.5) 212.1 (87.3) 134.5 (103.9) 183.9 (96.8))

Environment 3
non 189.4 (109.4) 161.6 (117.2) 143.9 (106.1) 154.9 (100.0)
pes 216.8 (113.3) 177.4 (105.2) 171.7 (104.3) 143.9 (105.2)
opt 207.0 (106.1) 163.1 (113.5) 117.0 (90.0) 97.3 (72.7)

6 7 8

Environment 1
non 219.3 (85.5) 236.1 (74.4) 172.4 (69.0)
pes 187.3 (76.4) 212.9 (75.9) 167.2 (81.0)
opt 194.8 (64.7) 225.3 (79.0) 169.2 (77.7)

Environment 2
non 180.9 (90.7) 184.5 (97.0) 167.4 (90.6)
pes 164.4 (83.5) 189.0 (84.5) 153.7 (88.9)
opt 167.4 (93.4) 187.8 (85.9) 178.2 (85.5)

Environment 3
non 111.8 (88.9) 84.9 (66.1) 102.1 (72.9)
pes 107.1 (87.9) 102.2 (68.6) 100.1 (82.0)
opt 65.0 (39.9) 119.7 (84.0) 101.2 (90.0)

can be seen clearly in figure 6.7, in which, points between the horizontal lines relate

to there being no significant difference between the performances of all the systems.

Again, in environment 2, only two significant cases occur, with the pessimistic system

outperforming the non-sharing and optimistic systems with five Miabots. This can

be seen clearly in figure 6.8. Note that no significant cases occurred in environment

3.

6. laboratory search problems 158

Figure 6.7: Differences between ranks for environment 1: R12 — differences between non-sharing

and pessimistic systems. R13 — differences between non-sharing and optimistic systems. R23 —

differences between pessimistic and optimistic systems. Points in between the two horizontal lines

are not significant. Points in between the two horizontal lines are not significant.

6. laboratory search problems 159

Figure 6.8: Differences between ranks for environment 2: R12 — differences between non-sharing

and pessimistic systems. R13 — differences between non-sharing and optimistic systems. R23 —

differences between pessimistic and optimistic systems. Points in between the two horizontal lines

are not significant. Points in between the two horizontal lines are not significant.

6. laboratory search problems 160

Table 6.2: Significant differences between the non-sharing (R1), pessimistic (R2) and optimistic

(R3), systems (to 1 d.p.)

2 3 4 5 6 7 8

Environment 1
R12 -1.8 -0.5 9.9 13.5 7.5 5.3 2.3
R13 -5.3 -4.4 -2.2 8.8 5.7 2.2 2.2
R23 -3.5 -3.9 -12.1 -4.7 -1.8 -3.1 -0.1

Environment 2
R12 6.55 5.0 0.5 20.7 3.8 -1.8 3.5
R13 1.3 -5.5 6.7 7.1 2.8 -1.3 -2.3
R23 -5.2 -10.5 6.2 -13.6 -1.1 0.4 -5.8

Environment 3
R12 -3.9 -4.0 -4.6 4.0 -0.3 -5.3 1.6
R13 -2.3 -0.6 4.3 10.7 7.7 -7.9 2.0
R23 1.6 3.4 8.8 6.7 7.9 -2.7 0.4

6.4.2 Comparison Across Size

The Friedman test was used to compare the performance of each system with differing

group sizes. See section 5.3.2 for more information on the Friedman test.

Tables 6.3, 6.4 and 6.5 show the differences between the column sums for different

group sizes for each system. Significant differences are in bold. It can be seen again,

that despite clear trends from table 6.1, only one case occurs for the non-sharing

system of any statistical significance. This is where groups of 8 Miabots out perform

groups of two Miabots. This can be seen in figure 6.9. For the pessimistic system,

again the number of significant cases is low with groups of four, five, six and eight

Miabots out performing groups of two Miabots. This can be seen in figure 6.10. The

optimistic system has similar results with groups of five, six and eight Miabots out

performing groups of two Miabots. This can be seen in figure 6.11. Note that only

in environment 1 did the size of groups have any effect on a systems performance.

6. laboratory search problems 161

Table 6.3: Significant differences between the number of Miabots, for the non-sharing system in

environment 1, to 1 d.p.

2 3 4 5 6 7 8

2 Robots NA 25.5 27.0 22.0 24.0 16.0 43.0
3 Robots -25.5 NA 1.5 -3.5 -1.5 -9.5 17.5
4 Robots -27.0 -1.5 NA -5.0 -3.0 -11.0 16.0
5 Robots -22.0 3.5 5.0 NA 2.0 -6.0 21.0
6 Robots -24.0 1.5 3.0 -2.0 NA -8.0 19.0
7 Robots -16.0 9.5 11.0 6.0 8.0 NA 27.0
8 Robots -43.0 -17.5 -16.0 -21.0 -19.0 -27.0 NA

Table 6.4: Significant differences between the number of Miabots, for the pessimistic system in

environment 1, to 1 d.p

2 3 4 5 6 7 8

2 Robots NA 25.0 51.0 58.5 43.5 35.0 56.5
3 Robots -25.0 NA 26.0 33.5 18.5 10.0 31.5
4 Robots -51.0 -26.0 NA 7.5 -7.5 -16.0 5.5
5 Robots -58.5 -33.5 -7.5 NA -15.0 -23.5 -2.0
6 Robots -43.5 -18.5 7.5 15.0 NA -8.5 13.0
7 Robots -35.0 -10.0 16.0 23.5 8.5 NA 21.5
8 Robots -56.5 -31.5 -5.5 2.0 -13.0 -21.5 NA

Table 6.5: Significant differences between the number of Miabots, for the optimistic system in

environment 1, to 1 d.p.

2 3 4 5 6 7 8

2 Robots NA 26.5 34.0 58.0 55.5 35.5 63.5
3 Robots -26.5 NA 7.5 31.5 29.0 9.0 37.0
4 Robots -34.0 -7.5 NA 24.0 21.5 1.5 29.5
5 Robots -58.0 -31.5 -24.0 NA -2.5 -22.5 5.5
6 Robots -55.5 -29.0 -21.5 2.5 NA -20.0 8.0
7 Robots -35.5 -9.0 -1.5 22.5 20.0 NA 28.0
8 Robots -63.5 -37.0 -29.5 -5.5 -8.0 -28.0 NA

6. laboratory search problems 162

Figure 6.9: Differences between ranks for the non-sharing system: Differences between performance

of 2 robots compared to 3 to 8 robots. Points in between the two horizontal lines are not significant.

6. laboratory search problems 163

Figure 6.10: Differences between ranks for the pessimistic system: Differences between performance

of 2 robots compared to 3 to 8 robots. Points in between the two horizontal lines are not significant.

6. laboratory search problems 164

Figure 6.11: Differences between ranks for the optimistic system: Differences between performance

of 2 robots compared to 3 to 8 robots. Points in between the two horizontal lines are not significant.

6. laboratory search problems 165

6.4.3 Comparison Across Environments

The Kruskal-Wallis test was employed to compare system performance across the

three different environments (see section 5.3.1 for more information on the Kruskal-

Wallis test).

Tables 6.6, 6.7 and 6.8 show the differences between the means of ranks for each

system across the three different environments. Significant differences are in bold. It

can be seen that the non-sharing systems performance increased as the environment

became more sparse. The non-sharing system performing better in environment 3

than in environment 1 in every case but one (3 Miabots), and better in environ-

ment 3 than in environment 2 with six or more Miabots. This can be seen in figure

6.12. The pessimistic system performance worsened the more sparse the environment

became (when a small number of Miabots were deployed). The pessimistic system

performed better in environment 2 than in environment 1 with up to five Miabots,

and better in environment 3 than in both environment 1 and 2 in cases with six or

more Miabots. This can be seen in figure 6.13. The optimistic system performance in-

creased, the more sparse the environment became. The optimistic system performed

better in environment 3 than in environment 1 in all cases and it performed better

in environment 3 than in environment 2 with five or more Miabots. This can be seen

in figure 6.14.

Table 6.6: Significant differences between means, non-sharing system, to 1 d.p.

2 3 4 5 6 7 8

R12 6.18 5.4 11.0 3.1 6.9 8.2 2.2
R13 11.9 10.7 13.6 13.7 19.7 27.4 17.1
R23 5.7 5.4 2.7 10.6 12.8 19.2 14.9

Table 6.7: Significant differences between means, pessimistic system, to 1 d.p.

2 3 4 5 6 7 8

R12 15.1 12.0 9.6 12.0 5.6 4.9 3.2
R13 8.8 8.5 2.3 9.2 18.8 22.2 16.0
R23 -6.3 -3.5 -7.3 -2.8 13.2 17.2 12.8

6. laboratory search problems 166

Figure 6.12: Differences between ranks for the non-sharing system: R12 — differences between

Environment 1 and Environment 2. R13 — differences between Environment 1 and Environment 3.

R23 — differences between Environment 2 and Environment 3. Points in between the two horizontal

lines are not significant.

6. laboratory search problems 167

Figure 6.13: Differences between ranks for the pessimistic system: R12 — differences between

Environment 1 and Environment 2. R13 — differences between Environment 1 and Environment 3.

R23 — differences between Environment 2 and Environment 3. Points in between the two horizontal

lines are not significant.

6. laboratory search problems 168

Figure 6.14: Differences between ranks for the optimistic system: R12 — differences between Envi-

ronment 1 and Environment 2. R13 — differences between Environment 1 and Environment 3. R23

— differences between Environment 2 and Environment 3. Points in between the two horizontal

lines are not significant.

6. laboratory search problems 169

Table 6.8: Significant differences between means, optimistic system, to 1 d.p.

2 3 4 5 6 7 8

R12 9.8 5.9 15.5 3.3 5.6 7.2 -2.4
R13 13.0 13.4 19.0 20.4 28.3 19.9 16.3
R23 3.2 7.5 3.5 17.1 22.7 12.7 18.7

6.4.4 Comparison to Simulation Results

Only the pessimistic system with five Miabots significantly outperformed the non-

sharing system in the cluttered environments (environments 1 and 2). This is in

contrast to our simulation results, shown in chapter 5, in which both the pessimistic

and the optimistic system outperformed the non-sharing system with six or more

Miabots. This is unlike in the simulation experiments where the results show that

groups of 6 or more Miabots outperformed groups of 5 or less. In the laboratory

experiments, only groups of 2 Miabots performed significantly worse than other group

sizes. The differences in results were due to the inherent noise within the real Miabot

sensors which was not taken into consideration in the simulations.

6.4.5 Discussion of Single-target Results

The results show that the pessimistic system performed better in the more sparse

environment (environment 3) than in the cluttered environments (environments 1 and

2) with six or more Miabots. It is believed that this is due to the emergent behaviour

of the pessimistic system to be more cautious and hence able to navigate through

cluttered environments better than the less cautious optimistic system. However, the

optimistic system performed better in the more sparse environment (environment 3)

with 2 or more Miabots than in the cluttered environment (environment 1), and with

five or more Miabots than in environment 2. It is believed that this is because the

emergent behaviour of the system is less cautious and, hence, its navigation through

sparse environments is more effective. Perhaps surprisingly, the size of the Miabot

groups only had an effect in the cluttered environment (environment 1). This is

probably due to the fact that a higher number of Miabots allowed the group to

6. laboratory search problems 170

saturate the environment. The limited size of the environment was probably an

important factor. In a larger environment, it is hypothesised that the number of

Miabots in the group would have a more significant impact on a system’s performance.

The differences between the simulation and laboratory results were due to the inherent

noise within the real Miabot sensors and the laboratory environment.

6.5 Summary

In this chapter, the laboratory experimental setup has been described. The potential

field sharing system was compared against a non-sharing control in three different

environments (differentiated by object density), with group sizes of 2 to 8 Miabots.

It has been shown that in groups of five or more Miabots, the pessimistic variant

of our potential field sharing system outperforms the non-sharing control. This is in

contrast to our simulation findings where both variants outperformed the control.

The chapter also demonstrated the relationship between the density of objects

within the environment and system performance. The pessimistic variant performed

better in the cluttered environment than the optimistic variant, and the optimistic

variant performed better in the sparse environment than the pessimistic variant. This

is due to the pessimistic system being more cautious (in terms of belief in sensor

data) than the optimistic system, which is of benefit in cluttered environments. The

optimistic system is less cautious. This is a benefit in sparse environments.

Interestingly, group size had little effect on the performance of any of the systems.

The non-sharing system performed better with 8 Miabots than with 2, the pessimistic

system performed better with 4 or more Miabots than with 2, and the optimistic

system performed better with 5 or more Miabots than with 2. The reason for the

improvement in performance in the cluttered environment was due to the increased

number of robots allowing the systems to increase area coverage. The sharing systems

have a lower threshold for this improvement due to the benefits of sharing information.

The experiments, presented in this chapter, have helped this project meet two of

its goals given in chapter 1.

• To design and implement a multi-robot system that is not reliant

6. laboratory search problems 171

upon explicit information gathered from other robots.

As with the simulation experiments, the potential field sharing method did not

at anytime explicitly co-ordinate the team members, in the set of experiments

discussed in this chapter. Co-ordination was an emergent property of combined

potential fields.

The findings from the experiments described in this chapter has been submitted

to the following journal.

• J.L. Baxter, E.K. Burke, J.M. Garibaldi, S. Groenemeyer & M. Norman, “Multi-

robot Co-ordination Using Shared Potential Fields”, submitted to IEEE Trans-

actions on Robotics, 2009.

172

Chapter 7

Comparison Against a Hybrid System

7.1 Introduction

The next logical set of experiments was to compare a “known” robotic architecture

against the potential field sharing method presented in this thesis.

The potential field sharing system gathers no information about the environment

a priori and sensor inputs have a direct relationship to motor actions. As such,

the system can be classified as a reactive system, as discussed in section 2.3.1. It

was decided that it would be interesting to compare this reactive system against a

non-reactive system, which left the choice of either a deliberative system or a hybrid

system, both of which are discussed in detail in section 2.3. Given the highly dynamic

nature of the environment within the experiments (multiple moving robots), it was

decided that a purely deliberative system could not hope to compete with a reactive

system in this scenario. Therefore, it was decided that it would be compared against

a hybrid system, as knowledge gathered a priori could be used by a deliberative

planner to create feasible solutions, whilst a reactive controller enables the system to

adjust any plans due to unforeseen circumstances.

In this chapter, therefore, a hybrid robotic system attempts the single target search

problem defined in chapter 6. Results are shown and compared against the results

obtained by the potential field sharing system. The chapter ends with a summary.

7. comparison against a hybrid system 173

7.2 The Hybrid System

The hybrid system was comprised of two modules. The deliberative module was the

Wavefront propagation path planner, which when given a map (see figure 7.1) of

the experimental environment calculated the shortest path to randomly generated

targets. The reactive module, was the ND algorithm developed by Minguez et al., as

described in section 2.3.1, which enables the Miabot to avoid non-mapped obstacles.

It is clearly visible by comparing the environments in figures 6.2-6.4 and the maps,

that the target is not shown in the maps. This is to avoid the Wavefront algorithm

from punishing the Miabot from being too close to the target (via the configuration

space described in section 7.2.1).

(a) (b) (c)

Figure 7.1: Map files of the experimental environments provided to the Wavefront propagation

path planner:(a) cluttered, (b) normal, (c) sparse. Note: Target not drawn on maps to avoid the

Wavefront algorithm punishing the Miabot for going near the target.

Random targets were generated using a lagged Fibonacci (where j = 273 and k =

607) pseudo-random number generator over a uniform distribution in order to provide

each robot with the “classic” random walk behaviour. The targets x and y positions

and θ orientation were all generated separately, using the current system time as a

seed for the pseudo-random number generator. This provided a spread of targets

across the environments. An example distribution is shown in figure 7.2 which shows

7. comparison against a hybrid system 174

that, after two hundred target generations, a high percentage of the environment has

been covered. It should be noted that the target generation did not take into account

obstacles within the environment. Once, given a map of the environment, targets

generated within obstacles were ignored by the wavefront algorithm (as described in

section 7.2.1).

Figure 7.2: Example distribution of 200 points using the lagged Fibonacci pseudo-random number

generator: The X and the Y axis represent the arena total area (measured in meters). In this case,

points were plotted in pairs not closer than 0.2m to each other.

A well as differing in terms of being a hybrid system rather than reactive. The local

level controller of the hybrid system in classed as unaware in Farinelli’s mutli-robot

taxonomy. Whereas, the system presented in chapter 4 has a local level controller

which is classified as weakly co-ordinated. The global level controllers of the systems

also differ, with, the hybrid system having a stongly co-ordinated, stongly centralised

controller, and the system presented in this thesis having a global contorller which is

7. comparison against a hybrid system 175

defined as unaware.

The reactive level of the hybrid system is an unaware multi-robot system. How-

ever, the deliberative level can be defined as a strongly co-ordinated, strongly cen-

tralised multi-robot system. As the current goals of all Miabots taking part in the

experiment were globally available, and so the current goals of other Miabots were

taken into account when generating new goals for Miabots (new goals were forbidden

to be generated within a 20cm radius of current goals). This is shown in figure 7.3

with a five robot example. The circles are the Miabot’s current locations, the large

triangles are the Miabot’s target locations, the small triangles are waypoints and,

finally, the straight lines are the suggested paths (suggested by the wavefront algo-

rithm). Note that one of the current locations is not joined up to a target location.

This is because the Miabot has wandered too near an obstacle (represented by black

rectangles) and so is in the process of re-planning.

One major advantage of using the Wavefront and ND algorithms was that drivers

already existed for them within the Player architecture. Please see section 3.3.6 for

more information on the Player implementations.

7.2.1 The Wavefront Propagation Algorithm

The algorithm works as follows:

1. Initially the algorithm checks whether or not the goal provided is valid, i.e. not

within an obstacle. If the goal is invalid, a new goal is requested.

2. Given a map of the environment, a configuration space of grid cells is calculated

(the dashed line in figure 7.4). Each cell is given a cost based upon its distance

from any obstacles. To save computational time, the radius of the configuration

around the Miabot is limited to 20cm. All cells outside of the radius are given

a cost value of zero. In the example, the obstacle cost is shown on the right

hand side of the cells. The limit is represented by a dashed line.

3. Next, the wavefront is calculated. Each cell is given a value based upon its

distance from the goal. If the cell has an obstacle value, this value is added

7. comparison against a hybrid system 176

Figure 7.3: Example of a group of 5 Miabots planning paths within environment 2: Note that the

target is not shown on the map.

to the value calculated by the wavefront. In the example, cells outside the

configuration space only have one value. Cells inside have the plan cost on the

left hand side and the total cost in the middle of the cell.

4. The algorithm then calculates a path by joining the current location cell and

the goal cell via the lowest available adjacent cells. These cells are highlighted

in the example.

5. If the Miabot gets stuck, a new path is calculated. Various properties can be

set to help detect problems i.e. a distance threshold can be set to force the

algorithm to re-plan if the Miabot gets too close to an obstacle. See section

3.3.6 for detailed information on the Wavefront configuration.

7. comparison against a hybrid system 177

Figure 7.4: Example of the wavefront propagation algorithm: The two black rectangles are known

obstacles. R is the starting location of the robot. G is the goal. The cells highlighted in red represent

the path calculated by the algorithm.

7.3 Single Target Search

During the hybrid experiments [14, 15], the Miabots had a maximum velocity of

approximately 0.1m/s or 10deg/s, and a minimum velocity of 0.02m/s or 5deg/s.

Again, the on-board blob-finder algorithm in the camera was used to detect the

colour of the target. The Miabot(s) came to a permanent halt once the target was

found.

Table 7.1 shows the average time taken, in seconds, for the hybrid system to

complete the search task with a given number of Miabots. It is clear that the best

results for a given number of Miabots are all in the sparse environment (environment

3). Values shown in bold are the best results achieved compared to the three other

systems (See table 6.1). Full results are given in appendix A.5.

7.3.1 Comparison Across Systems

As with the previous laboratory experiments, the Kruskal-Wallis test (see section

5.3.1) is used to compare the performance of the hybrid system against the three sys-

tems previously defined, over the different environments. However, as the number of

samples has increased, the parameters used in the test need to be altered. Therefore,

k = 4, N = 80 and z = 2.4 (to 1 d.p.). Table 7.2 shows the differences between the

7. comparison against a hybrid system 178

Table 7.1: Mean completion (seconds) for the hybrid system in each environment for 2-8 Miabots,

to 1 d.p. The standard deviation is given in brackets, to 1 d.p.

2 3 4 5

Environment 1 264.6 (67.1) 267.9 (60.0) 248.4 (73.6) 254.0 (70.6)
Environment 2 210.8 (83.0) 230.4 (95.9) 168.9 (72.5) 200.6 (78.8)
Environment 3 156.7 (106.9) 142.5 (84.4) 128.6 (70.2) 176.8 (98.1)

6 7 8

Environment 1 209.7 (73.6) 246.6 (60.0) 232.3 (72.8)
Environment 2 219.5 (76.1) 155.0 (83.8) 161.4 (81.0)
Environment 3 126.5 (75.0) 115.7 (57.4) 117.9 (50.7)

means of ranks for the three potential field systems and the hybrid system. Significant

differences are in bold.

Table 7.2: Significant differences between the potential field systems (non-sharing (R1), pessimistic

(R2) and optimistic (R3)) and the hybrid (R4) system (to 1 d.p.)

2 3 4 5 6 7 8

Environment 1
R14 0.2 -12.5 -10.9 -6.1 3.1 -2.9 -17.5
R24 2.5 -11.7 -23.2 -23.5 -6.8 -9.9 -19.9
R34 7.1 -6.8 -8.3 -18.2 -4.3 -5.7 -19.5

Environment 2
R14 2.5 -9.7 -7.8 4.5 -10.8 6.0 0.6
R24 -6.7 -16.8 -9.6 -24.3 -15.8 9.1 -4.2
R34 1.1 -3.7 -16.8 -5.4 -14.2 8.4 3.9

Environment 3
R14 5.2 -0.4 -0.5 -5.9 -10.6 -17.1 -11.8
R24 9.8 5.6 6.9 -11.0 -11.2 -8.5 -13.1
R34 8.5 1.2 -6.3 -20.4 -22.1 -4.4 -14.5

As only values of 17.6 (to 1 d.p.) or higher are significant, it can be seen that,

in environment 1, the hybrid system performs as well as the non-sharing system,

but worse than the pessimistic system with 5 or less and 8 Miabots. The optimistic

system also performs better with 5 and 8 Miabots. This can be seen in figure 7.5 and

table 7.2. In environment 2, the hybrid system performs as well as all of the potential

field systems, in all but one case. This can be seen in figure 7.6 and table 7.2. In

7. comparison against a hybrid system 179

Figure 7.5: Differences between ranks for environment 1: R14 — differences between the non-sharing

system and the hybrid system. R24 — differences between the pessimistic system and the hybrid

system. R34 — differences between the optimistic system and the hybrid system. Points in between

the two horizontal lines are not significant.

7. comparison against a hybrid system 180

Figure 7.6: Differences between ranks for environment 2: R14 — differences between the non-sharing

system and the hybrid system. R24 — differences between the pessimistic system and the hybrid

system. R34 — differences between the optimistic system and the hybrid system. Points in between

the two horizontal lines are not significant.

7. comparison against a hybrid system 181

Figure 7.7: Differences between ranks for environment 3: R14 — differences between the non-sharing

system and the hybrid system. R24 — differences between the pessimistic system and the hybrid

system. R34 — differences between the optimistic system and the hybrid system. Points in between

the two horizontal lines are not significant.

7. comparison against a hybrid system 182

environment 3, the hybrid system has the same performance as the non-sharing and

pessimistic systems. The optimistic system performs better with 5 to 6 Miabots. This

can be seen in figure 7.7 and table 7.2.

7.3.2 Comparison Across Size

Again, the Friedman test (see section 5.3.2) was used to compare the performance

of each system with differing group sizes. However, the number of Miabots in the

experiment had no significant effect on the performance of the hybrid system in any

of the environments.

7.3.3 Comparison Across Environments

Again, the Kruskal-Wallis test was employed to compare system performance across

the three different environments. This time, however, the test used the parameters

from section 5.3.1. As only values above 11.8 (to 1 d.p.) are significant, it can be seen

that the hybrid system clearly performs better in environment 3 than in environment

1. This is shown in figure 7.8 and table 7.3. The performance across the other

environments are mixed, with the hybrid system performing better in environment 2

than in environment 1 with 4 and 7 or more Miabots. In contrast, the hybrid system

performs better in environment 3 than in environment 2 in just two cases (3 and 6

Miabots).

Table 7.3: Significant differences between means, hybrid system, to 1 d.p.

2 3 4 5 6 7 8

R12 9.5 6.3 14.3 9.2 -1.2 18.0 15.3
R13 18.6 21.8 23.9 14.0 18.3 26.3 24.5
R23 9.2 15.5 9.5 4.8 19.4 8.3 9.2

7.3.4 Discussion of Single Target Results

The results in this section clearly show that the hybrid system performs best in the

sparse environment (environment 3). This is probably due to two main reasons.

7. comparison against a hybrid system 183

Figure 7.8: Differences between ranks for the hybrid system: R12 — differences between Environ-

ment 1 and Environment 2. R13 — differences between Environment 1 and Environment 3. R23 —

differences between Environment 2 and Environment 3. Points in between the two horizontal lines

are not significant.

7. comparison against a hybrid system 184

Firstly, the more sparse the environment, the more valid paths/goals the wavefront

algorithm can plan, which leads to a greater area of the environment being explored.

Secondly, as the environment was less cluttered, the ND algorithm could move the

Miabot at its maximum velocity more frequently. The number of Miabots within the

hybrid system had no bearing on its performance. This is due to the relatively small

increase in group size, which did not lead to any substantial increase in probability

that the global planner would select target locations near the actual position of the

target within the environment. The hybrid system performs as well as the non-sharing

system, but worse than the sharing systems. The optimistic system performs better

with 5 to 6 Miabots in the sparse environment (environment 3), the pessimistic system

performs better in the cluttered environment (environment 1) with 5 or less and 8

Miabots, whilst the optimistic system performs better with 5 or 8 Miabots. This

is because the sharing systems react to the least resistance in the shared potential

field, whereas the hybrid system plots a path of least resistance to a goal. Hence, the

shared potential field is more adaptable to environmental changes than the wavefront

algorithm i.e. other Miabots moving in the environment.

7.4 Summary

The potential field sharing system (both pessimistic and optimistic) was categorised

as a reactive system. As such it was compared against a non-reactive system. The

hybrid class of system was chosen over a deliberative system due to its inherent

weaknesses in highly dynamic environments.

It has been shown that the hybrid system has a similar performance to the non-

sharing system. It has also been shown that the size of the multi-robot system has

no bearing on the hybrid system’s performance. This is thought to be due to the

relatively small increase in group size, which did not lead to an increased probability

that the global planner would select target locations near the actual position of the

target within the environment. The hybrid system performs best in the sparse envi-

ronment. This is probably due to the wavefront algorithm being able to plot more

goals within the environment, increasing the chances of a goal near the target. The

7. comparison against a hybrid system 185

ND algorithm can also move the Miabot at its maximum speed whilst in obstacle free

zones.

The pessimistic system performs better than the hybrid system in the cluttered

environment with 5 or less Miabots. The optimistic system performs better than the

hybrid system with 5 or 6 Miabots in the sparse environment. The sharing systems

perform better than the hybrid system due to the sharing systems reacting to areas

of least resistance, whereas the hybrid system plots a path of least resistance. In

the highly dynamic environment used in the experimentation this reactive design was

more adaptable.

The experiments, presented in this chapter, have helped this project meet one of

its goals given in chapter 1.

• To design and implement a multi-robot system that is not reliant

upon information gathered a priori .

In the experiments, discussed in this chapter, the potential field sharing method

system is never given any information concerning the environment a priori .

The findings from the experiments discussed in this chapter have been published

in the following conference proceedings:

• J.L. Baxter, E.K. Burke, J.M. Garibaldi & M. Norman, “Real-world Evalua-

tion of a Novel Potential field sharing method”, In the 5th International Confer-

ence on Computational Intelligence, Robotics and Autonomous Systems (CIRAS

2008), Linz, Austria, 19th-21st June, pp 73-78, 2008.

An extended version of the paper is to be published.in the following journal:

• J.L. Baxter, E.K. Burke, J.M. Garibaldi & M. Norman,“Shared Potential Fields

and their Place in a Multi-Robot Coordination Taxonomy”, Robotics and Au-

tonomous System, to be published, 2009.

186

Chapter 8

Conclusions

In this chapter, the contribution made by this research to the field of multi-robot

systems will be discussed. The known limitations of the multi-robot system proposed

will be explored, and directions of future research will be suggested.

8.1 Thesis Overiew

In this thesis a new multi-robot system was introduced. The system is made up of

two levels. The local level is defined as a group of robots within an arbitary distance

from one another. These robots are able to communicate and co-ordinate with one

another. The global level is defined as the interaction (or lack of) between robots

outside of these local groups. These robots do not communicate or co-ordinate with

one another. The aim of the system is to reduce the amount of communications load,

which is a source of failure within multi-robot systems. As communication only occurs

within the local levels the communications load is reduced. The systems communica-

tion and co-ordination strategy was based upon the concept of sharing potential field

information within dynamic local groups. Each member of the multi-robot system

creates their own potential field based upon individual sensor readings. Team mem-

bers that are assigned to local groups share their individual potential fields in order to

create a combined potential field which reduces the effect of sensor noise. This, there-

fore, allows the team members to make better decisions. Two variants of the system

were proposed termed “pessimistic” and “optimistic” in terms of their belief in sensor

8. conclusions 187

data. It has been shown that through real robot experiments that when performing

a search type task in a cluttered environment it is advantageous to be “pessimistic”.

Whilst, in a sparse environment it is advantageous to be “optimistic”. A number

of experiments, both in simulation and in laboratory environments, compared the

performance of the system against a non-sharing control and a hybrid system. It was

shown that the proposed system significantly outperformed the other methods in the

search type problem.

8.2 Major Contributions

As stated in chapter 1, the following contributions to research have been made:

1. A new type of multi-robot system, which performs no co-ordination or commu-

nication at the global level, but is weakly co-ordinated at the local level, has

been introduced in chapter 4. This contribution was also peer reviewed in the

following publications:[12, 13, 14, 15, 10].

2. A method of sharing information through fusing sensory information into a

potential field has been shown to be a more effective method of communication

and co-ordination in a search type task than a non-sharing control system (see

chapters 5 and 6) and a hybrid system (see chapter 7). This contribution was

also peer reviewed in the following publications: comparison against a non

sharing control [12, 13], comparison against a hybrid system [14, 15]. In order

to investigate the effectiveness of the system on a different task, it would be

necessary to fuse other types of sensor data into the potential field. These

sensors would be task dependent e.g. the blob-finder data would be needed

when conducting a surveillance type task, to encourage the robot to investigate

unexpected phenomenon.

3. It has been shown that taking a more pessimistic view in terms of sensor belief is

advantageous in cluttered environments, whilst performing a search type task.

It has also been shown that taking a more optimistic view is advantageous in

8. conclusions 188

sparse environments, whilst performing a search type task on real robots (see

chapter 6). This contribution was also peer reviewed in the following publica-

tion: [10]. The type of sensor data fused into the potential field would also have

an effect on the performance of the different variants of the system in different

scenarios. Currently only ultra-sonic data is used and so the increase in per-

formance is due to the number of reduced collisions or trap situations during

the search task. Although of benefit in other tasks as well, there may be other

factors that effect the performance of the system in other tasks. For example,

in the hunting type of task the speed of the of the “prey” would be important.

8.3 Discussion of Goals Achieved

In this section the goals set out in chapter 1 and achieved in this thesis will be

discussed in detail.

8.3.1 A New Multi-robot System

The multi-robot system described in chapter 4, is not constrained to one category

of Farinelli et al.’s taxonomy (described in detail in section 2.4.2). The system is

unaware at the global level, yet weakly-co-ordinated at the local level.

The global level (elements of the system outside of an individual robot’s local

group radius) is defined as unaware because at this level robots are not assigned

to local groups and, therefore, have no concept of team members. The local level

(elements of the system within an individual robot’s local group radius) is defined

as weakly co-ordinated as, at this level, robots are assigned to local groups and so

co-ordinate implicitly through the use of shared potential fields. However, no explicit

co-ordination occurs as robots do not have the ability to distinguish team members.

This two level architecture allows the system to benefit from team co-ordination,

but not be dependant upon it to make decisions. As such, the system can be said to

be fault tolerant with respect to the loss of robots or communications failure. If there

was a communications failure within the system, the robots would simply revert to

their unaware state of operation - making individual decisions based upon individual

8. conclusions 189

sensor readings. If a robot within a local group has a motor failure, it will simply

become a stationary sensor device which becomes part of a local group if and when

other mobile robots mover near it. Should a robot sensors malfunction, this has little

effect on the actions of other robots within its local group, as all robots are treated a

obstacles within the system (due to the robots inability to distinguish team members).

8.3.2 Shared Potential Fields

The potential field sharing method outlined in chapter 4 has been shown, through

experimentation, to be effective.

The two systems that implemented potential field sharing as a communication

and co-ordination method significantly outperformed a non-co-ordinated system (see

chapter 5 and 6). This showed that there was an advantage to be had by co-ordinating

a group of robots whilst attempting the task set during the experimentation. More

importantly the potential field sharing method also outperformed a system which

implemented co-ordination by broadcasting plan information (see chapter 7). This

showed that there was no advantage to giving information to the systems a priori .

This abstraction of sensory information into a potential field allows the design

and implementation of a relatively simple action selection method. This is general

enough to be deployed on a wide range of robots and over a wide range of tasks. As is

discussed in section 8.5, it is proposed that the system could be adapted to numerous

multi-robot problem domains. Another benefit of the system design is low expense

in terms of both computation and communication. This allows the system to be

implemented on low cost hardware, making the event of a robot failure an indifferent

one, as the robot can be replaced with relatively little expense.

8.3.3 Reliance upon a priori Information

It has been shown that a priori information has little impact on system performance

during the task carried out in experimentation. The potential field sharing method

significantly outperformed a system which was given a map of the environment a

priori , and co-ordinated its efforts to solve the problem based upon this map (see

8. conclusions 190

chapter 7).

In many tasks (especially those related to the search task tackled in this thesis i.e.

Urban Search and Rescue (USAR)), complete a priori information about the environ-

ment is likely to be infeasible. As such, designing a system that is not dependent on

such information is critical to performance. This is not to say that a system cannot

benefit from partial information of the environment, but such information should be

treated as an uncertain additional source to any system. For example, a blueprint to

a building could have its uses during a search and rescue operation — which areas of

the building are more likely to have people in. However, the accuracy of the blueprint

should not be relied upon and should be constantly measured against sensory input.

8.3.4 Implicit Communication

The potential field sharing method, introduced in chapter 4, did not at anytime

explicitly co-ordinate team members i.e. team members did not transmit information

to other (specific) robots in order to co-ordinate actions to perform a given task.

Instead, co-ordination was an emergent property of combined potential fields. The

robots within the system broadcast their individual potential fields within a local

radius, any other robot within that local radius used that potential field in conjunction

with its own to make a decision. There was no concept of “team” at either end of

this process. The transmitting robot did not know which (if any) robot would receive

the information. The receiver of the message did not know where the message came

from.

This implicit method of co-ordination negates the need for more complex explicit

co-ordination strategies, which inevitably result in the need for more complex and

therefore expensive robotic hardware. Implicit co-ordination also results in less fre-

quent communications (no need for negotiations) and hence limits a substantial source

of failure (communications loss). If there is communications loss the effectiveness of

the system is reduced, but it is still able to complete the task (as discussed in chap-

ter 4). The resultant relatively simple communications are also not a burden on the

communications bandwidth.

8. conclusions 191

8.4 Limitations of the Proposed System

The major limitation of the sharing systems is their reliance upon accurate positional

readings (provided by an overhead tracking system in the experiments presented in

this thesis). In the real world, the robots within the system would (most probably)

have to rely largely on their own internal readings of position (e.g. odometry). Due

to limitations with the Miabots, it was not possible to experiment using only the

Miabots’ odometry readings to supply position. However, if the reliability of the

odometric readings was improved and techniques such as particle filtering were incor-

porated into the system, this reliance upon the tracking system could be removed.

The centralised nature of the system is also a weakness because if the global

tracking system fails, then the whole system is reverted to the non-sharing multi-

robot system and, as has been shown in this thesis, the performance of the system

would therefore be heavily affected. If the computer facilitating the co-ordination was

to fail, this would be a catastrophic situation, as the whole system would fail due to

none of the robots being controllable.

As shown in section 4.2.4, the behaviour of the system is influenced by the sequence

in which the robots compare forces, leading to either what is termed normal behaviour

or to more extreme behaviour. Currently, the sequence depends upon the ID assigned

to each robot before the experiment begins. Hence, the behaviour of a robot at any

given time cannot be determined a priori . In an industrial application this would

need to be addressed, most probably by introducing a check into the system to remove

extreme behaviour.

Currently the system makes no attempt to filter out noisy input. Improving

the system to handle this sensor noise could improve the system’s reliability and

performance. A number of methods exist to reduce the effect of noise. These include

the use of probabilistic algorithms [89] and sensor fusion [68]. It is believed that once

sensor noise is reduced, the performance of the system in the laboratory will be more

akin to the performance of the system under simulation.

8. conclusions 192

8.5 Directions of Future Research

There a number of possible future research directions:

1. Increase scale of experiments

2. Move to a distributed architecture

3. Further system investigation

4. New multi-robot tasks

These directions are discussed in detail in the following sub-sections.

8.5.1 Increase Scale of Experiments

As mentioned in chapter 6, the size of the environment used during the experimen-

tation was limited due to the number of overhead cameras available. The size of the

environment can only be increased if the number of cameras in the laboratory was

to be increased, hence increasing the total area of coverage. Alternatively, the size of

the environment could be improved by removing the system’s reliance on the global

tracking system and by improving the reliability of the Miabots’ odometric readings,

and so removing the artificial restriction on size. Having a larger environment would

also allow the system to be extended to a very large scale robotic (VLSR) system

(hundreds of robots) such as the one discussed in section 2.5.5. The results from

chapter 6 show that eight robots was the realistic limit for the current environment

size.

8.5.2 Move to a Distributed Architecture

It would be interesting to move the co-ordination servers/clients from the remote

computer (centralised system) onto the individual Miabots (distributed system). This

would eliminate the potential single point of failure (the remote computer). In a truely

distributed system, if any of the Miabots failed, the system would simply continue.

In fact, the system would not even take note, having no concept of other robots

8. conclusions 193

or team mates. The benefits of the Miabots tracking their own position within the

environment and broadcasting this information to other Miabots within a local group

are also similar in nature. If a Miabot encounters a fault and stops transmitting

its position, it would be removed from any local group and so would be treated as

an obstacle by the other Miabots within the environment. The faulty Miabot itself

would revert to the non-sharing behaviour.

As discussed in chapter 3, moving to a distributed system could feasibly reduce

the communication efficiency of the system, due to the serial nature of Bluetooth.

However, if the hardware/communication protocol was changed to one that was not

serial in nature, e.g. RF broadcasts, this issue could be solved. The distributed

system would bring other issues to bear, which are not encountered in the centralised

system. As the Miabots would be tracking their own position within the environment,

any errors that occurred would be accumulative and poor system performance could

ensue. Communication would also not be guaranteed as in the centralised system

(guaranteed as long as the central computer does not fail). This would not stop

the system from working as discussed previously, but it would impact on system

performance.

8.5.3 Further System Investigation

As mentioned in chapter 4, in simulation a local group radius of 2m was used and

in the laboratory a radius of 75cm was set. These distances were chosen arbitrarily.

It would be of interest to see what, if any, impact the local group radius would have

on system performance. It is hypothesised that over a certain range, the effect on

performance would be detrimental. As the further away group members are from

one another, the less relevant their sensor information becomes to one another. An

example is shown in figure 8.1, in which robots A and C are in different parts of the

environment, which differ significantly in terms of object density (robot A’s environ-

ment is cluttered, whereas robot C’s environment is sparse). If they were to share

information, they would have a distorted view of the environment and, hence, could

make poor decisions. Conversely, the smaller the local group radius, the more likely

8. conclusions 194

it is that individual robots will revert to the non-sharing mode of behaviour.

Figure 8.1: Poor local group radius choice: The range chosen is too large, resulting in robots having

a distorted view of the environment.

In the current system, only ultra-sonic data is shared through the potential field.

The architecture could be extended to allow the input of multiple sensors. In partic-

ular, blob-finder data could be fused within the potential field in order to encourage

robots to move towards areas that possibly include targets (blob data above a valid

threshold). The blob-finder could also be used to aid robot dispersal, as currently

other robots are treated as obstacles, rather than the special case obstacle which they

are.

As described in chapter 4, the calculations used in the sharing systems is just

a choice of the maximum force or the minimum force. It may be of interest to see

the effect that different methods of combining information could have on the system

8. conclusions 195

performance. For example, using the mean of the values or assigning a belief value to

each robot (belief in sensor readings accuracy) and performing a comparison on that

value rather than that of the force value.

In chapter 4, Coulomb’s law is simplified to an inverse square law. It would

be interesting to see what effect implementing Coulomb’s law fully would have on

system performance. It would enable the assignment of different types of obstacles

to different unit values. For example, if other robots had a higher unit charge, the

repulsion rate would increase, helping the system disperse more evenly throughout

the environment.

8.5.4 New Multi-Robot Tasks

Finally, it would be of interest to apply the proposed system to other common multi-

robot system problems such as serach and rescue, formation control, the coverage

problem, hunting and robot football.

In the current system, only a search problem is attempted. It would be interesting

to extend the system to implement a search and rescue type problem; once the target

has been found it needs to be rescued (taken to a designated position within the

environment). This rescue operation may require multiple robots to complete it.

That is, if the target’s weight is greater than a single robots servo limitations, multiple

robots will be needed to “rescue” it.

In order to attempt the formation control problem as defined in chapter 2, the

system would have to be adjusted so that robots that are a part of a group are

attracted/repelled to/from, each other to allow them to form formations, as in the

work presented in section 2.5.2.

The coverage problem (as defined in chapter 2) could be attempted with the

current system, with the target detection removed. Group member recognition would

have to be improved, as detailed above, in order to enable the robots to spread out

from one another to improve coverage. A method of halting the robots when they

are at an optimum position within the environment would also be needed.

Robot football has become a popular test bed for multi-robot research over the

8. conclusions 196

last decade. Indeed, the University of Nottingham sent a team of Miabots to the

FIRA 2005 world championship [11]. In order to apply the system discussed in this

thesis to the problem of robot football, a number of alterations and improvements

would need to take place. In the MiroSot league (in which the University took part

in 2005), the environment consists of a non-static target (the ball), moving obstacles

(opposition members and team mates) and static obstacles (pitch enclosing walls).

If the ball is made the main attractor within the environment and the opposition

and team mates made to be repellers, team mates could also be attractors to help

maintain formations, as per the formation control problem. As a global view of the

environment is available throughout a match, the definition of a local group could be

altered. Defenders could be assigned to one group, forwards to another and the goal

keeper to its own group. This would allow team members outside of the local groups

to be treated differently to those inside (as obstacles in fact). See figure 8.2 for an

example of local groups within robot football. If team members wished to change

roles whilst in a match, this would simply involve leaving one local group and joining

another. Unlike in the search problem when this is based upon distance from other

robots, the switch could be based upon a “coach” agent’s decision (based upon the

robot’s current location in relation to the ball, team mates and opposition players).

The hunting problem (as defined in chapter 2) could readily be attempted with the

current system, as the problem is just an extension of the search problem (a moving

target). Again, this is reliant upon the improvement of object recognition.

8. conclusions 197

Figure 8.2: Local groups within robot football: Local groups are shown in dashed ellipses. Our team

are the black squares, the opposition team are white squares. The ball is the black circle.

198

References

[1] R. C. Arkin. Integrating Behavioral, Perceptual, and World Knowledge in Re-

active Navigation. Robotics and Autonomous Systems, 6:105–122, 1990.

[2] R. C. Arkin. Reactive Robotic Systems. In M. A. Arbib, editor, The Handbook of

brain theory and neural networks, pages 793–796. MIT Press, Cambridge, MA,

1995.

[3] R. C. Arkin and J. Diaz. Line-of-sight constrained exploration for reactive mul-

tiagent robotic teams. In The Seventh International Workshop on Advanced

Motion Control (AMC’02), 2002.

[4] R. C. Arkin and D. C. Mackenzie. Planning to Behave: A Hybrid Delibera-

tive/Reactive Robot Control Architecture for Mobile Manipulation. In Interna-

tional Symposium on Robotics and Manufacturing, pages 5–12, 1994.

[5] T. Balch. Taxonomies of Multirobot Task and Reward. Technical report robotics

institute, CMU, 1998.

[6] T. Balch and R. C. Arkin. Communication in Reactive Multiagent Robotic

Systems. Autonomous Robotics, 1(1):1–25, 1994.

[7] T. Balch and R. C. Arkin. Behavior-based Formation Control for Multi-robot

Teams. IEEE Transactions on Robotics and Automation, 14(6):926–939, 1998.

[8] T. Balch and M. Hybinette. Social Potentials for Scalable Multirobot Formations.

In IEEE International Conference on Robotics and Automation, pages 73–80,

2000.

REFERENCES 199

[9] M. A. Batalin and G .S. Sukhatme. Spreading Out: A Local Approach to

Multi-Robot Coverage. In The 6th International Symposium on Distributed Au-

tonomous Robotics Systems, pages 373–382, Fukuoka, Japan, June 2002.

[10] J. L. Baxter, E. K. Burke, J. M. Garibaldi, S. Groenemeyer, and M. Norman.

Multi-robot Co-ordination Using Shared Potential Fields. IEEE Transactions on

Robotics, 2009. Submitted for Review.

[11] J. L. Baxter, E. K. Burke, J. M. Garibaldi, and M. Norman. Statistical Analysis

in MiroSot. In RoboWorld FIRA World Congress 2005, Singapore, December

2005. CD-ROM ONLY.

[12] J. L. Baxter, E. K. Burke, J. M. Garibaldi, and M. Norman. The Effect of Poten-

tial Field Sharing in Multi-Agent Systems. In The 3rd International Conference

on Autonomous Robots and Agents (ICARA 2006), pages 33–38, Palmerston

North, New Zealand, December 2006.

[13] J. L. Baxter, E. K. Burke, J. M. Garibaldi, and M. Norman. Multi-Robot Search

and Rescue: A Potential Field Based Approach. In S. Mukhopadhyay and G. S.

Gupta, editors, Autonomous Robots and Agents, volume 76 of Studies in Com-

putational Intelligence, pages 9–16. Springer-Verlag, 2007.

[14] J. L. Baxter, E. K. Burke, J. M. Garibaldi, and M. Norman. Performance Com-

parison of the Potential Field Sharing Method Against a Hybrid System. In

The 5th International Conference on Computational Intelligence, Robotics and

Autonomous Systems (CIRAS 2008), pages 73–78, Linz, Austria, April 2008.

[15] J. L. Baxter, E. K. Burke, J. M. Garibaldi, and M. Norman. Shared Potential

Fields and their Place in a Multi-Robot Coordination Taxonomy. Robotics and

Autonomous System, 2009. To be Published.

[16] E. Bicho and S. Monterio. Formation control for multiple mobile robots: a non-

linear attractor dynamics approach. In International Conference on Intelligent

Robots and Systems(IROS 2003), pages 2016– 2022, 2003.

REFERENCES 200

[17] A. L. Blum and M. L. Frust. Fast planning through planning graph analysis.

Artificial Intelligence, 90:281–300, 1997.

[18] B. Bonet and H. Geffner G. Loerincs. A Robust and Fast Action Selection Mech-

anism for Planning. In 14th National Conference of the American Association

for Artificial Intelligence, pages 714–719, 1997.

[19] B. Bonet and H. Geffner. High-level Planning and Control with Incomplete

Information Using POMDP’s. In American Association for Artificial Intelligence

Fall Symposium on Cognitive Robotics, 1998.

[20] B. Bonet and H. Geffner. Planning with Incomplete Information as Heuristic

Search in Belief Space. In 5th International Conference on Artificial Intelligence

Planning and Scheduling, pages 52–61, 2000.

[21] V. Braitenburg. Vehicles: Experiments in Synthetic Psychology. MIT Press,

1984.

[22] T. V. Brook. Drones’ supply short of demand. USA Today, March 2007.

[23] R. A. Brooks. A Robust Layered Control System for a Mobile Robot. A.I. Lab

Memo 864, MIT, September 1985.

[24] R. A. Brooks. Achieving Artificial Intelligence Through Building Robots. A.I.

Lab Memo 899, MIT, May 1986.

[25] R. A. Brooks. Elephants Don’t Play Chess. Robotics and Autonomous Systems,

6:3–15, 1990.

[26] R. A. Brooks. The Behaviour Language; User’s Guide. A.I. Lab Memo 1227,

MIT, April 1990.

[27] R. A. Brooks. Intelligence Without Reason. A.I. Lab Memo 1293, MIT, April

1991.

[28] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139–

159, 1991.

REFERENCES 201

[29] H. D. Burkhard, M. Hannebauer, J. Wendler, H. Myritz, G. Sander, and T. Mein-

ert. BDI Design Principles and Cooperative Implementation in Robocup. In

RoboCup-99: Robot Soccer Worldcup III, number 1856 in Lecture Notes in Arti-

ficial Intelligence, pages 351–541. Springer-Verlag, 2000.

[30] Z. Cao, M. Tan, L. Li, N. Gu, and S. Wang. Cooperative Hunting by Distributed

Mobile Robots Based on Local Interaction. IEEE Transactions on Robotics,

22(2):403–407, April 2006.

[31] L. Chaimowicz, M. F. M. Campos, and V. Kumar. Dynamic Role Assignment

for Cooperative Robots. In IEEE International Conference on Robotics and

Automation, pages 293–298, Washington DC, 2002.

[32] A. Cimatti and M. Roveri. Conformant Planning via Model Checking. In 5th

European Conference on Planning: Recent Advances in AI Planning, pages 21–

34. Springer-Verlag, 1999.

[33] Staff Sgt. D. Clare. California Air National Guard embraces new mission.

http://www.af.mil, August 2006.

[34] C. M. Clark, S. M. Rock, and J.-C. Latombe. Dynamic Networks for Motion

Planning in Multi-Robot Space Systems. In 7th International Symposium on

Artificial Intelligence, Nara, Japan, 2003.

[35] C. M. Clark, S. M. Rock, and J.-C. Latombe. Motion planning for multiple mobile

robot systems using dynamic networks. In IEEE International Conference on

Robotics and Automation, pages 4222–4227, 2003.

[36] B. Damas, P. Lima, and L. Custódio. A Modified Potential Fields Method for

Robot Navigation Applied to Dribbling in Robotic Soccer. In G. A. Kaminka,

P. U. Lima, and R. Rojas, editors, RobotCup 2002, number 2752 in Lecture Notes

on Artificial Intelligence, pages 65–77. Springer-Verlag, 2003.

REFERENCES 202

[37] M. B. Dias and A. Stentz. Opportunistic Optimization for Marker-Based Mul-

tirobot Control. In International Conference on Intelligent Robots and Systems,

pages 2714–2720, October 2002.

[38] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. A Taxonomy for Swarm Robotics.

In International Conference on Intelligent Robots and Systems, pages 26–30,

Yokohama, Japan, July 1993.

[39] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. A Taxonomy for Multi-Agent

Robotics. Autonomous Robots, 3(4):375–397, December 1996.

[40] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An

Approach to Planning With Incomplete Information. In The Third International

Conference on Principles of Knowledge Representation and Reasoning, pages

115–125. Morgan Kaufmann, 1992.

[41] A. Farinelli, L. Iocchi, and D. Nardi. Multirobot Systems: A Classification

Focused on Coordination. IEEE Transactions on Systems, Man and Cybernetics

B, 34(5):2015–2028, October 2004.

[42] R. E. Fikes and N. J. Nilsson. STRIPS: A New Approach to the Application of

Theorem Proving to Problem Solving. Artificial Intelligence, 2:189–208, 1971.

[43] C-H. Fua and S. S. Ge. COBOS: Cooperative Backoff Adaptive Scheme for

Multirobot Task Allocation. IEEE Transactions on Robotics, 21(6):1168–1178,

December 2005.

[44] V. Gazi. Swarm aggregations using artificial potentials and sliding-mode control.

IEEE Transactions on Robotics, 21(6):1208–1214, December 2005.

[45] B. P. Gerky and M. J. Matarić. A formal analysis and taxonomy of task allo-

cation in multi-robot systems. Technical Report CRES-03-013, USC, Center for

Robotics and Embedded Systems, July 2003.

[46] B. P. Gerky, R. T. Vaughan, and A. Howard. The Player/Stage Project: Tools

for Multi-Robot and Distributed Sensor Systems. In International Conference

REFERENCES 203

on Advanced Robotics (ICAR 2003), pages 317–323, Coimbra, Portugal, June

2003.

[47] J. D. Gibbons. Nonparametric Methods for Quantitative Analysis. American

Sciences Press, Columbus, Ohio, third edition, 1997.

[48] J. Greensmith, U. Aickelin, and S. Cayzer. Introducing dendritic cells as a

novel immune inspired algorithm for anomaly detection. In The 4th Interna-

tional Conference on Artificial Immune Systems (ICARIS 2005), number 3627

in Lecture Notes in Computer Science, pages 153–167, Banff, Canada, 2005.

Springer-Verlag.

[49] A. Howard, M. J. Matarić, and G. S. Sukhatme. An Incremental Deployment

Algorithm for Mobile Robot Teams. In International Conference on Intelligent

Robots and Systems, pages 2849–2854, October 2002.

[50] A. Howard, M. J. Matarić, and G. S. Sukhatme. Mobile Sensor Network Deploy-

ment using Potential Fields: A Distributed, Scalable Solution to the Area Cov-

erage Problem. In The 6th International Symposium on Distributed Autonomous

Robotics Systems, volume 22, pages 299–308, June 2002.

[51] J. S. Jennings and C. Kirkwoord-Watts. Distributed Mobile Robotics by the

Method of Dynamic Teams. In T. Luth, P. Dario, and H. Worn, editors, Dis-

tributed Autonomous Robotic Systems, volume 3, pages 47–56. Springer-Verlag,

New York, 1998.

[52] J. S. Jennings, G. Whelan, and W. F. Evans. Cooperative search and rescue

with a team of mobile robots. In IEEE International Conference on Advanced

Robotics, pages 193–200, July 1997.

[53] H. Kautz and B. Selman. Pushing the Envelope: Planning, Propositional Logic,

and Stochastic Search. In Tenth National Conference on Artificial Intelligence

(AAAI-96), pages 1194–1201, Portland, Oregon, 1996.

REFERENCES 204

[54] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.

In IEEE International Conference on Robotics and Automation, volume 2, pages

500–505, 1985.

[55] Y. Koren and J. Borenstein. Potential Field Methods and their Inherent Lim-

itations for Mobile Robot Navigation. In IEEE International Conference on

Robotics and Automation, volume 2, pages 1398–1404, Sacramento, CA, 1991.

[56] S. Leroy, J. P. Laumond, and T. Siméon. Multiple path coordination for mo-

bile robots: A geometric algorithm. In 16th International Joint Conference on

Artificial Intelligence (IJCAI), pages 1118–1123, Stockholm, Sweden, 1999.

[57] X.-W. T. Li and J. Baltes. An Intuitive and Flexible Architecture for Intelligent

Mobile Robots. In The 2nd International Conference on Autonomous Robots

and Agents, pages 52–57, 2004.

[58] V. Lumelsky and K. R. Harinarayan. Decentralized Motion Planning for Multiple

Robots: The Cocktail Party Model. Autonomous Robots, 4:121–135, 1997.

[59] L. S. Martins-Filho, E. E. N. Macau, and R. Rocha. Planning of Unpredictable

Trajectories for Surveillance Mobile Robots. In 3rd Internation Conference on

Autonomous Robots and Agents, pages 153–158, Palmerston North, New Zealand,

December 2006.

[60] M. J. Matarić. Learning to Behave Socially. In D. Cliff, P. Husbands, J.-A. Meyer,

and S. Wilson, editors, From Animals to Animats: International Conference on

Simulation of Adaptive Behavior, pages 453–462, 1994.

[61] M. J. Matarić. Designing and Understanding Adaptive Group Behavior. Adaptive

Behavior, 4(1):50–81, December 1995.

[62] M. J. Matarić. Behaviour Based Control: Examples from Navigation, Learn-

ing and Group Behaviour. Journal of Experimental and Theoretical Artificial

Intelligence, 9(2-3):323–336, 1997.

REFERENCES 205

[63] D. McAllester and D. Rosenblitt. Systematic Nonlinear Planning. In The Ninth

National Conference on Artificial Intelligence, pages 634–639, July 1991.

[64] D. McFarland. Animal Behaviour. Longman Scientific and Technical Harlow,

1985.

[65] J. Minguez and L. Montano. Nearness Diagram (ND) Navigation: Collision

Avoidance in Troublesome Scenarios. IEEE Transactions on Robotics and Au-

tomation.

[66] J. Minguez, J. Osuna, and L. Montano. A Divide and Conquer Strategy based on

Situations to Achieve Reactive Collision Avoidance in Troublesome Scenarios. In

IEEE International Conference on Robotics and Automation, pages 3855–3862,

New Orleans, 2004.

[67] S. Monterio and E. Bicho. A dynamical systems approach to behavior-based for-

mation control. In IEEE International Conference on Robotics and Automation,

pages 2606–2611, Washington, 2002.

[68] R. R. Murphy. Dempster-Shafer Theory for Sensor Fusion in Autonomous Mobile

Robots. IEEE Transactions on Robotics and Automation, 14(2):197–206, April

1998.

[69] R. Oates, J. Greensmith, U. Aickelin, J. M. Garibaldi, and G. Kendall. The Ap-

plication of a Dendritic Cell Algorithm to a Robotic Classifier. In L. N. de Cas-

tro, F. J. V Zuben, and H. Knidel, editors, The 6th International Conference

on Artificial Immune Systems (ICARIS 2007), number 4628 in Lecture Notes in

Computer Science, pages 204–115, Santos, Brazil, August 2007. Springer-Verlag.

[70] P. Ögren, E. Fiorelli, and N. Leonard. Formations with a mission: Stable coor-

dination of vehicle group maneuvers. In The 15th International Symposium on

Mathematical Theory of Network Systems, Notre Dame, IN, August 2002.

[71] A. N. Chand G. C. Onwubolu. A Mobile Robot for Autonomous Book Retrieval.

In S. Mukhopadhyay and G. S. Gupta, editors, Autonomous Robots and Agents,

REFERENCES 206

volume 76 of Studies in Computational Intelligence, pages 101–107. Springer-

Verlag, 2007.

[72] L. E. Parker. Heterogeneous Multi-Robot Cooperation. PhD thesis, Dept. Electr.

Eng. Comput. Sci., Mass. Inst. of Technol. Cambridge, MA, 1994.

[73] L. E. Parker. L-ALLIANCE: Task-Oriented Multi-Robot Learning in Behaviour-

Based Systems. Advanced Robotics, 11(4):305–322, 1997.

[74] L. E. Parker. ALLIANCE: An Architecture for Fault Tolerant Multirobot Coop-

eration. IEEE Transactions on Robotics and Automation, 14(2):220–240, April

1998.

[75] D. Parsons and J. Canny. A Motion Planner for Multiple Mobile Robots. In IEEE

International Conference on Robotics and Automation, pages 8–13, Cincinnati,

OH, USA, May 1990.

[76] K. Pathak and S. K. Agrawal. An Integrated Path-Planning and Control Ap-

proach for Nonholonomic Unicycles Using Switch Local Potentials. IEEE Trans-

actions on Robotics, 21(6):1201–1208, December 2005.

[77] R. Petrick and F. Bacchus. A knowledge-Based Approach to Planning with

Incomplete Information and Sensing. In Proceedings of the Sixth International

Conference on Artificial Intelligence Planning and Scheduling (AIPS02), pages

37–46, 2002.

[78] R. A. Jarvis and M. S. Marzouqi. Efficient Robotic Search Strategies for Finding

Disaster Victims. In 3rd International Conference on Autonomous Robots and

Agents, pages 515–520, Palmerston North, New Zealand, December 2006.

[79] J. H. Reif and H. Wang. Social Potential Fields: A Distributed Behavioral

Control for Autonomous Robots. Robotics and Autonomous Systems, 27:171–

194, 1999.

REFERENCES 207

[80] I. Rekleitis, G. Dudek, and E. Milios. Multi-robot collaboration for robust explo-

ration. In Annals of Mathematics and Artificial Intelligence, volume 31, pages

7–40. Kluwer Academic, 2001.

[81] J. Ren, K. A. McIsaac, and R. V. Patel. Modified Newton’s Method to Potential

Field Based Navigation for Mobile Robots. IEEE Transactions on Robotics,

22(2):384–391, April 2006.

[82] M. Roth, D. Vail, and M. Veloso. A World Model for Multi-Robot Teams with

Communication. In IROS 2003. under submission.

[83] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, and

H. Younes. Coordination of Multi-Robot Exploration and Mapping. In The 17th

National Conference on Artificial Intelligence, pages 852–858, 2000.

[84] R. Simmons, S. Singh, D. Hershberger, J. Ramos, and T. Smith. First Results

in the Coordination of Heterogeneous Robots for Large-Scale Assembly. In In-

ternational Symposium on Experimental Robotics, December 2000.

[85] D. E. Smith and D. S. Weld. Conformant Graphplan. In The Fifteenth National

Conference on Artificial Intelligence, pages 889–896. AAAI Press, 1998.

[86] A. Stentz and M. B. Dias. A Free Market Architecture for Coordinating Mul-

tiple Robots. Technical Report CMU-R1-TR-99-42, Camegie Mellon University,

December 1999.

[87] K. Sugawara and M. Sano. Cooperative acceleration of task performance: For-

aging behavior of interacting multi-robot system. Physica D, 100:343–354, 1997.

[88] A. Tews and G. F. Wyeth. Using Centralised Control and Potential Fields for

Multi-robot Cooperation in Robotic Soccer. In T. Ishida, editor, Pacific Rim

International Workshop on Multi-Agents (PRIMA), pages 176–190, Singapore,

November 1998.

[89] S. Thrun. Probabilistic Algorithms in Robotics. Technical Report CMU-CS-00-

126, Carnegie Mellon Univ, Pittsburgh, PA, April 2000.

REFERENCES 208

[90] V. I. Utkin, S. V. Drakunov, H. Hashimoto, and F. F. Harashima. Robot Path

Obstacle Avoidance Control Via Sliding Mode Approach. In IEEE/RSJ Inter-

national Workshop on Intelligent Robots and Systems, pages 1287–1290, Osaka,

Japan, November 1991.

[91] D. Vail and M. Veloso. Multi-Robot Dynamic Role Assignment and Coordination

Through Shared Potential Fields. In A. Schultz, L. Parker, and F Schneider,

editors, Multi-Robot Systems, pages 87–98. Kluwer: Hingman, MA, 2003.

[92] M. Veloso and P. Stone. Individual and Collaborative Behaviors in a Team of

Homogeneous Robotic Soccer Agents. In The 3rd International Conference on

Multi-Agent Systems, pages 309–316, 1998.

[93] B. B. Werger. Ayllu: Distributed Port-Arbitrated Behaviour-Based Control.

Technical Report 99-01, Ullanta Performance Robotics, 1999.

[94] B. B. Werger. Cooperation without deliberation: A Minimal Behavior-Based

Approach to Multi-Robot Teams. Artificial Intelligence, 110:293–320, 1999.

[95] B. B. Werger and M. J. Mataric̀. Broadcast of Local Eligibility for Multi-target

Observation. In Distributed Autonomous Robotic Systems, pages 347–256, 2000.

[96] M. M. Zavlanos and G. J. Pappas. Potential Fields for Maintaining Connectivity

of Mobile Networks. IEEE Transactions on Robotics, 23(4):812–816, August

2007.

[97] R. Zlot, A. Stentz, M. B. Dias, and S. Thayer. Multi-Robot Exploration Con-

trolled by a Market Economy. In IEEE International Conference on Robotics

and Automation, volume 3, pages 3016–3023, May 2002.

209

Appendix A

Detailed Results

A.1 Simulation 1 Target

Table A.1: Non-sharing system results for environment 1, with 1 target.

2 3 4 5 6 7 8

1 300 300 300 300 300 300 300
2 300 300 300 300 300 295 300
3 300 300 126 300 300 300 259
4 300 300 146 245 198 300 104
5 300 73 300 300 68 300 300
6 300 300 300 300 120 300 300
7 300 300 300 300 300 300 300
8 300 300 300 233 300 300 300
9 300 146 300 48 300 180 300
10 300 300 131 158 233 202 300
11 300 85 300 54 70 300 300
12 300 300 300 43 300 300 300
13 300 300 300 300 300 156 300
14 300 133 165 300 300 300 300
15 300 300 300 300 300 300 300
16 300 300 300 300 145 300 300
17 300 300 300 300 71 127 300
18 300 76 49 300 93 300 300
19 300 300 300 64 49 300 300
20 300 300 300 56 57 300 300

a. detailed results 210

Table A.2: Non-sharing system results for envi-

ronment 2, with 1 target.

2 3 4 5 6 7 8

1 300 63 20 78 18 7 24
2 46 300 21 17 21 21 82
3 300 300 300 23 24 31 13
4 300 300 72 4 32 66 51
5 48 44 18 18 10 83 32
6 37 74 71 20 19 19 22
7 54 52 22 27 12 9 26
8 97 75 300 21 63 18 33
9 73 70 71 24 20 10 19
10 300 300 73 26 81 36 8
11 51 160 24 94 33 62 8
12 300 64 25 71 18 62 25
13 54 65 52 22 23 88 23
14 53 50 68 21 18 10 31
15 300 87 137 24 27 20 35
16 56 55 5 20 156 19 21
17 56 119 67 63 24 19 43
18 300 61 21 22 37 25 42
19 300 52 17 20 9 37 36
20 51 300 18 19 3 22 23

Table A.3: Non-sharing system results for envi-

ronment 3, with 1 target.

2 3 4 5 6 7 8

1 76 56 57 65 63 66 300
2 53 53 58 86 99 58 300
3 49 54 58 57 62 57 68
4 57 49 57 64 56 47 49
5 49 56 67 62 47 66 58
6 47 68 59 55 66 116 49
7 52 48 57 86 66 66 91
8 53 49 59 64 47 57 45
9 49 54 64 300 71 300 300
10 53 50 64 49 59 67 104
11 49 300 124 61 54 53 300
12 53 49 61 53 67 300 57
13 49 56 59 68 96 66 48
14 48 55 58 53 61 83 91
15 48 49 53 53 65 59 82
16 50 54 64 44 53 300 300
17 53 67 66 49 49 57 45
18 53 300 124 86 68 300 49
19 49 56 124 61 59 69 300
20 53 300 59 55 46 67 52

a. detailed results 211

Table A.4: Pessimistic system results for envi-

ronment 1, with 1 target.

2 3 4 5 6 7 8

1 155 65 141 46 101 75 100
2 300 300 300 300 73 132 107
3 86 275 243 72 48 67 50
4 300 300 70 74 48 79 85
5 300 87 90 108 44 55 300
6 300 300 237 79 45 47 57
7 59 74 61 234 112 92 50
8 300 300 137 300 300 300 50
9 56 109 186 63 300 300 50
10 300 300 65 80 52 57 45
11 159 300 300 44 51 51 98
12 152 300 300 69 300 57 119
13 300 84 90 97 60 300 300
14 58 300 300 300 89 300 112
15 157 300 300 300 47 57 88
16 300 83 68 60 67 300 102
17 90 300 70 52 300 58 49
18 300 70 197 56 51 41 50
19 300 300 215 44 300 69 300
20 95 75 81 300 44 48 300

Table A.5: Pessimistic system results for envi-

ronment 2, with 1 target.

2 3 4 5 6 7 8

1 22 24 15 4 21 3 3
2 300 73 33 5 6 4 5
3 24 23 15 73 7 5 5
4 23 66 32 21 21 3 5
5 23 66 30 60 6 3 7
6 25 26 66 4 7 4 13
7 59 24 62 64 7 6 20
8 22 84 19 5 6 4 50
9 93 28 30 5 6 5 5
10 24 55 32 300 7 4 17
11 23 31 28 21 8 7 3
12 300 25 32 21 6 4 4
13 23 76 17 128 4 4 17
14 300 28 34 32 7 5 3
15 172 83 26 19 6 4 7
16 19 76 34 60 7 5 5
17 24 23 17 27 7 4 20
18 19 23 300 66 6 4 21
19 20 300 25 5 7 4 6
20 29 24 16 78 7 4 21

a. detailed results 212

Table A.6: Pessimistic system results for envi-

ronment 3, with 1 target.

2 3 4 5 6 7 8

1 70 77 78 58 83 58 300
2 70 80 79 74 57 60 73
3 62 65 58 48 64 300 48
4 70 300 56 66 71 300 61
5 67 300 56 71 86 72 39
6 60 77 73 55 58 55 46
7 73 76 63 86 56 300 300
8 70 79 58 57 61 61 61
9 62 300 54 74 66 59 72
10 70 76 77 66 56 57 39
11 82 75 56 300 58 73 73
12 300 77 74 81 69 50 58
13 67 102 81 67 55 300 57
14 70 53 54 67 72 42 300
15 300 300 87 74 61 72 66
16 68 46 59 73 72 72 56
17 300 69 58 53 48 89 72
18 74 300 79 63 60 300 68
19 74 83 76 66 74 300 74
20 300 300 82 77 66 49 54

Table A.7: Optimistic system results for environ-

ment 1, with 1 target.

2 3 4 5 6 7 8

1 300 300 68 104 45 300 300
2 300 66 300 62 51 300 45
3 300 55 265 47 59 81 242
4 300 300 154 79 51 70 47
5 300 300 75 77 79 47 242
6 300 300 62 62 106 50 65
7 300 300 70 160 86 53 47
8 300 78 67 106 300 59 300
9 300 300 62 76 43 61 52
10 86 300 63 300 46 108 75
11 300 66 66 300 42 73 50
12 252 76 290 84 60 65 68
13 101 300 72 50 46 57 300
14 197 300 67 47 65 300 50
15 300 300 66 72 300 49 119
16 300 129 56 66 79 300 119
17 114 70 300 49 300 47 50
18 300 66 300 258 89 55 49
19 300 70 300 105 42 79 50
20 300 300 300 83 71 50 50

a. detailed results 213

Table A.8: Optimistic system results for environ-

ment 2, with 1 target.

2 3 4 5 6 7 8

1 18 28 64 31 7 4 3
2 197 18 21 18 7 4 21
3 98 24 31 8 62 4 18
4 300 18 31 66 15 4 3
5 300 18 24 6 8 4 5
6 287 59 25 56 9 5 20
7 24 26 17 22 6 4 5
8 272 24 67 47 5 4 13
9 16 35 69 62 5 4 5
10 300 29 17 22 8 4 3
11 29 77 17 31 6 4 3
12 19 46 17 17 32 4 4
13 47 69 30 22 7 4 17
14 67 70 34 4 6 4 21
15 300 78 24 5 4 4 3
16 59 21 16 3 4 4 5
17 17 83 23 20 19 5 3
18 18 24 16 50 3 4 13
19 45 68 33 16 8 5 5
20 228 37 58 19 6 6 20

Table A.9: Optimistic system results for environ-

ment 3, with 1 target.

2 3 4 5 6 7 8

1 70 83 59 72 73 114 72
2 70 118 57 73 60 96 300
3 67 66 78 98 82 74 300
4 74 68 59 69 56 114 77
5 70 300 57 126 59 300 48
6 300 300 68 75 63 300 57
7 300 44 61 300 103 72 51
8 63 67 113 66 60 53 56
9 69 300 78 68 78 45 300
10 68 67 54 52 72 74 72
11 62 300 58 57 83 73 66
12 71 74 78 84 61 64 300
13 81 80 79 300 53 74 68
14 300 300 72 51 60 300 59
15 70 83 87 43 58 69 39
16 300 68 65 64 81 55 77
17 63 52 70 72 69 51 55
18 76 52 59 75 55 58 61
19 67 67 81 300 50 72 68
20 68 81 76 68 57 74 73

a. detailed results 214

A.2 Simulation 2 Targets

Table A.10: Non-sharing system results for envi-

ronment 1, with 2 targets.

2 3 4 5 6 7 8

1 300 300 300 47 63 300 52
2 300 300 137 124 63 169 300
3 300 96 300 300 300 300 63
4 300 300 300 300 199 300 63
5 300 96 300 300 60 300 300
6 300 57 300 300 213 300 62
7 300 300 300 119 300 73 197
8 300 57 300 163 300 300 300
9 300 61 300 300 120 50 300
10 300 95 300 300 194 300 300
11 300 300 300 300 60 300 60
12 300 300 300 300 300 169 52
13 300 96 300 239 57 300 51
14 300 300 149 110 192 169 62
15 300 300 300 119 300 169 300
16 300 300 300 300 223 300 300
17 300 57 300 300 300 300 57
18 300 300 300 300 120 300 95
19 300 57 300 300 120 300 300
20 300 228 294 300 300 300 52

Table A.11: Non-sharing system results for envi-

ronment 2, with 2 targets.

2 3 4 5 6 7 8

1 300 79 22 18 23 300 23
2 62 161 21 73 23 19 19
3 61 161 22 300 23 22 25
4 300 161 300 38 70 22 23
5 72 161 67 19 23 20 21
6 62 161 300 64 21 21 102
7 300 68 300 300 23 23 23
8 62 161 21 21 19 23 19
9 61 161 28 24 23 33 21
10 20 68 19 73 64 22 26
11 61 161 24 73 23 20 25
12 62 68 18 25 19 20 22
13 69 76 300 19 22 32 26
14 118 161 80 73 19 32 19
15 67 161 20 73 19 22 24
16 67 68 22 112 19 23 25
17 61 68 21 112 19 21 25
18 300 68 22 20 22 22 21
19 300 68 67 20 24 22 21
20 61 300 26 20 19 22 23

a. detailed results 215

Table A.12: Non-sharing system results for envi-

ronment 3, with 2 targets.

2 3 4 5 6 7 8

1 300 47 60 61 300 300 300
2 300 300 72 82 300 72 59
3 300 45 60 86 300 79 99
4 300 46 60 66 66 300 300
5 300 300 300 82 66 300 300
6 300 300 300 73 140 72 65
7 300 300 60 66 140 66 99
8 300 300 300 82 140 72 57
9 45 300 109 73 59 300 57
10 45 47 86 300 59 79 99
11 45 45 300 70 140 300 65
12 300 300 67 86 300 86 99
13 300 300 65 64 300 300 36
14 300 300 59 158 67 64 65
15 45 300 300 59 140 300 68
16 300 48 300 81 300 79 56
17 300 48 109 75 96 300 51
18 300 45 59 300 53 300 45
19 300 47 300 147 140 300 51
20 300 45 300 81 300 300 99

Table A.13: Pessimistic system results for envi-

ronment 1, with 2 targets.

2 3 4 5 6 7 8

1 52 300 109 60 96 300 83
2 228 300 300 48 84 300 73
3 62 71 56 300 72 71 83
4 300 300 55 300 46 300 70
5 300 71 94 300 70 300 66
6 96 65 56 72 147 48 61
7 300 300 56 156 127 221 65
8 62 52 56 115 300 300 109
9 300 52 73 58 46 111 62
10 300 300 67 48 54 48 54
11 300 300 300 156 300 61 300
12 300 300 300 300 300 221 63
13 300 300 56 300 57 48 80
14 57 71 49 115 57 300 300
15 96 109 70 115 257 46 51
16 57 55 57 48 300 65 68
17 90 300 72 55 46 79 300
18 96 300 111 55 48 111 70
19 93 52 100 45 72 70 69
20 300 71 58 55 46 300 53

a. detailed results 216

Table A.14: Pessimistic system results for envi-

ronment 2, with 2 targets.

2 3 4 5 6 7 8

1 15 35 16 33 20 17 24
2 14 59 24 19 19 23 30
3 300 53 16 129 20 19 17
4 79 108 16 29 30 16 29
5 27 68 26 60 69 78 22
6 23 108 16 53 69 19 17
7 15 100 18 24 24 22 17
8 69 54 59 61 17 20 28
9 15 17 27 21 18 19 72
10 300 62 21 22 66 32 19
11 58 67 14 129 19 19 27
12 15 19 300 17 66 17 31
13 19 19 49 300 28 24 23
14 15 19 300 65 20 23 15
15 20 29 16 65 52 21 25
16 47 28 16 61 60 66 19
17 43 28 47 17 23 21 25
18 15 62 59 16 19 60 25
19 300 19 20 32 59 24 17
20 15 15 16 92 55 20 25

Table A.15: Pessimistic system results for envi-

ronment 3, with 2 targets.

2 3 4 5 6 7 8

1 300 121 101 48 300 62 300
2 87 74 81 109 66 300 75
3 96 101 73 94 300 51 106
4 106 91 115 300 119 41 48
5 109 84 144 50 82 51 71
6 98 93 300 102 82 69 54
7 98 95 87 73 82 68 70
8 71 84 300 50 52 51 106
9 98 94 73 50 101 54 37
10 104 104 69 119 96 300 60
11 84 60 300 300 82 73 107
12 106 118 67 64 62 73 52
13 99 94 144 50 73 72 157
14 105 108 300 73 46 300 54
15 95 64 60 98 102 63 47
16 103 101 144 94 76 128 107
17 94 92 73 106 60 87 41
18 85 114 106 103 46 70 66
19 85 89 68 106 72 78 38
20 300 108 108 300 76 80 70

a. detailed results 217

Table A.16: Optimistic system results for envi-

ronment 1, with 2 targets.

2 3 4 5 6 7 8

1 300 122 72 79 84 85 128
2 300 51 300 39 96 300 54
3 96 63 107 132 46 45 109
4 300 300 60 39 41 90 71
5 96 300 300 54 46 300 300
6 57 71 300 58 46 87 300
7 300 109 96 72 46 90 73
8 57 58 300 48 300 300 71
9 61 300 57 48 55 90 300
10 95 300 300 60 300 45 71
11 300 82 74 67 60 92 60
12 300 52 56 54 72 59 51
13 96 300 189 300 112 82 300
14 300 109 300 48 76 300 300
15 300 300 56 72 57 49 46
16 300 52 101 300 70 300 49
17 57 300 56 156 44 300 66
18 300 300 72 128 54 70 49
19 57 300 118 300 48 44 83
20 228 300 75 300 46 49 300

Table A.17: Optimistic system results for envi-

ronment 2, with 2 targets.

2 3 4 5 6 7 8

1 23 49 47 26 18 68 41
2 51 53 16 42 300 19 27
3 20 45 79 70 21 18 26
4 27 45 52 22 15 18 300
5 16 53 52 24 62 300 30
6 108 300 27 15 19 28 45
7 49 17 59 64 21 36 23
8 116 20 16 20 18 19 36
9 15 16 49 20 16 20 19
10 300 75 49 101 22 17 45
11 16 75 58 20 42 20 29
12 14 19 16 69 65 15 19
13 300 68 16 18 62 43 22
14 44 43 67 15 18 21 19
15 20 100 16 16 18 18 23
16 14 100 64 16 18 25 18
17 15 140 24 22 42 23 18
18 19 19 16 300 18 18 23
19 300 35 24 18 22 18 23
20 63 100 300 15 27 23 25

a. detailed results 218

Table A.18: Optimistic system results for envi-

ronment 3, with 2 targets.

2 3 4 5 6 7 8

1 96 113 300 300 98 107 52
2 104 300 104 95 57 80 70
3 300 63 60 66 61 54 54
4 68 105 122 60 300 72 45
5 109 101 116 300 300 74 92
6 300 300 89 300 60 66 112
7 106 101 144 103 300 44 45
8 300 58 300 56 70 52 50
9 104 101 300 66 60 102 40
10 110 69 300 74 52 60 52
11 106 63 73 97 300 75 40
12 106 108 300 67 77 52 40
13 108 102 300 105 69 74 92
14 106 86 72 60 105 55 70
15 64 85 111 121 119 59 52
16 62 94 300 73 78 236 300
17 68 85 69 68 76 60 107
18 85 112 69 66 70 55 50
19 106 69 73 104 60 72 104
20 300 85 69 54 60 76 41

a. detailed results 219

A.3 Simulation 1 Target with

Noise

Table A.19: Sharing Potential Field Systems,

group size 8. Varying levels of noise.

Pessimistic Optimistic

low mid high low mid high

1 300 91 45 146 83 45
2 57 45 35 45 74 35
3 47 63 44 55 46 44
4 77 45 41 129 50 41
5 56 52 41 222 55 41
6 69 45 45 31 62 45
7 38 34 36 40 32 36
8 78 37 55 40 34 55
9 83 60 55 53 41 55
10 78 66 55 57 163 55
11 43 49 40 60 46 40
12 56 44 35 42 45 35
13 60 47 55 48 47 55
14 70 47 32 50 54 32
15 59 54 45 40 32 45
16 51 37 41 47 45 41
17 78 47 49 41 61 49
18 48 52 55 60 46 55
19 139 30 47 119 47 47
20 40 35 44 57 50 44

Table A.20: Sharing Potential Field Systems,

group size 16. Varying levels of noise.

Pessimistic Optimistic

low mid high low mid high

1 31 39 47 72 53 35
2 29 39 46 46 36 38
3 63 49 53 47 360 43
4 41 50 51 34 44 49
5 37 78 56 42 36 45
6 37 55 61 43 53 45
7 50 31 58 50 20 42
8 54 39 62 48 53 36
9 20 39 59 46 20 34
10 42 34 38 38 53 51
11 67 40 16 89 36 43
12 49 46 42 37 50 44
13 36 88 39 69 44 34
14 56 39 42 57 69 43
15 45 40 44 25 20 50
16 19 24 56 20 44 44
17 53 59 34 19 34 45
18 45 71 29 37 50 40
19 33 46 52 29 40 42
20 70 52 43 73 57 49

a. detailed results 220

A.4 Laboratory 1 Target

Table A.21: Non-sharing system results for envi-

ronment 1 (cluttered).

2 3 4 5 6 7 8

1 188 105 149 300 300 216 230
2 300 300 189 145 300 290 167
3 300 300 202 300 247 148 300
4 300 126 158 162 300 142 195
5 262 300 197 300 186 152 89
6 300 300 203 300 300 300 98
7 300 60 92 249 94 233 145
8 187 300 233 292 300 218 104
9 300 173 205 300 96 103 117
10 300 208 300 75 168 300 296
11 300 106 92 300 121 166 141
12 300 202 218 160 300 300 225
13 124 149 132 129 102 253 278
14 300 202 300 269 217 300 238
15 300 300 219 300 148 300 97
16 117 300 300 56 91 300 106
17 300 253 237 213 300 300 168
18 300 300 300 300 216 101 108
19 300 127 300 276 300 300 157
20 242 300 300 230 300 300 189

Table A.22: Non-sharing system results for envi-

ronment 2 (normal).

2 3 4 5 6 7 8

1 74 131 300 197 300 278 300
2 300 300 293 300 179 172 300
3 300 22 85 300 91 300 265
4 214 300 122 250 105 93 140
5 82 42 300 300 76 90 107
6 300 138 133 209 300 300 300
7 89 129 176 300 70 73 48
8 58 137 57 139 159 74 224
9 115 300 300 258 110 96 233
10 300 180 59 175 95 100 56
11 74 123 191 207 300 177 128
12 300 131 300 218 300 300 62
13 300 89 63 91 300 110 101
14 300 300 300 212 266 300 173
15 82 300 53 266 258 300 125
16 300 76 133 300 100 85 108
17 300 90 84 137 100 287 105
18 300 300 99 72 145 142 300
19 300 300 108 300 119 113 205
20 300 300 45 156 245 300 68

a. detailed results 221

Table A.23: Non-sharing system results for envi-

ronment 3 (sparse).

2 3 4 5 6 7 8

1 300 62 300 232 136 48 159
2 154 48 300 300 63 75 26
3 300 102 300 130 127 191 69
4 300 35 109 300 180 112 96
5 218 75 20 61 34 82 51
6 21 263 104 88 300 57 194
7 67 300 76 84 300 52 43
8 300 300 300 53 44 55 54
9 18 300 300 153 57 170 102
10 300 300 150 270 77 110 155
11 117 298 20 25 36 43 300
12 184 68 138 300 60 52 29
13 300 38 55 79 139 32 98
14 57 156 45 90 25 44 69
15 92 300 72 300 49 52 161
16 300 161 259 160 27 300 216
17 300 300 71 102 206 69 44
18 159 37 108 42 119 58 55
19 246 43 46 250 30 33 62
20 54 45 105 78 226 63 59

Table A.24: Pessimistic system results for envi-

ronment 1 (cluttered).

2 3 4 5 6 7 8

1 300 93 300 229 104 300 185
2 300 300 147 72 85 195 79
3 300 177 139 182 300 236 106
4 300 300 255 220 300 198 81
5 300 300 176 160 136 300 116
6 300 296 167 151 300 300 238
7 300 300 94 133 300 167 110
8 300 300 95 195 94 211 233
9 300 264 173 70 216 151 300
10 256 300 112 221 192 254 300
11 130 95 126 300 179 300 89
12 131 137 131 71 212 300 96
13 300 201 251 145 204 82 266
14 288 86 193 300 284 198 115
15 300 246 300 159 159 113 300
16 300 106 173 104 159 123 103
17 169 176 167 288 157 80 83
18 300 300 160 237 82 300 183
19 300 300 236 99 106 254 150
20 300 300 162 156 176 195 211

a. detailed results 222

Table A.25: Pessimistic system results for envi-

ronment 2 (normal).

2 3 4 5 6 7 8

1 74 96 106 126 74 230 131
2 78 68 140 95 74 184 104
3 293 300 300 84 150 177 94
4 300 71 300 81 127 151 256
5 300 80 144 97 81 241 300
6 300 67 144 123 184 300 300
7 54 162 240 198 290 300 80
8 95 114 84 31 255 174 62
9 68 95 143 88 212 90 98
10 226 105 73 111 117 253 300
11 133 139 205 168 65 122 188
12 300 164 86 60 84 300 187
13 300 216 87 121 117 130 82
14 59 300 64 300 300 300 93
15 103 156 69 77 271 71 137
16 119 113 180 67 144 94 104
17 191 277 109 79 204 52 101
18 127 300 180 90 173 300 43
19 300 167 55 190 300 125 113
20 230 245 94 122 65 185 300

Table A.26: Pessimistic system results for envi-

ronment 3 (sparse).

2 3 4 5 6 7 8

1 300 30 30 41 111 26 35
2 40 107 18 44 72 29 59
3 300 300 181 54 300 63 91
4 300 192 28 300 188 69 35
5 300 50 135 267 198 81 75
6 300 300 300 49 63 28 97
7 300 75 300 120 70 143 29
8 46 300 42 194 289 147 106
9 300 300 300 45 252 98 81
10 300 30 99 160 40 256 162
11 47 71 153 234 72 89 28
12 54 300 300 37 86 125 70
13 29 184 186 164 23 248 138
14 300 86 97 46 42 73 55
15 300 132 160 27 79 57 300
16 290 216 300 300 95 173 20
17 140 97 220 300 34 156 124
18 300 300 212 111 47 21 184
19 242 300 73 86 39 49 294
20 148 178 300 298 42 112 19

a. detailed results 223

Table A.27: Optimistic system results for envi-

ronment 1 (cluttered).

2 3 4 5 6 7 8

1 300 300 300 217 182 134 72
2 300 300 214 88 300 222 192
3 300 300 243 88 192 90 94
4 300 300 217 220 87 208 300
5 290 206 300 181 300 228 270
6 211 158 241 100 164 300 167
7 300 300 144 250 136 300 82
8 300 300 300 198 190 273 292
9 300 150 300 300 214 133 204
10 219 300 115 283 272 94 112
11 300 110 300 210 273 300 99
12 300 300 220 242 159 300 223
13 300 247 182 157 168 300 178
14 300 300 208 237 158 300 120
15 300 300 103 300 102 111 189
16 300 236 300 148 160 174 82
17 300 300 243 118 300 180 149
18 300 149 96 294 226 300 182
19 300 207 230 145 139 300 77
20 300 100 179 165 173 259 300

Table A.28: Optimistic system results for envi-

ronment 2 (normal).

2 3 4 5 6 7 8

1 300 171 50 99 181 76 119
2 300 31 63 36 213 300 133
3 246 203 227 300 300 240 235
4 54 300 59 300 192 139 63
5 300 274 96 59 196 83 300
6 300 167 85 300 117 300 85
7 300 295 32 281 81 99 300
8 300 163 266 300 300 95 300
9 300 300 89 143 300 80 127
10 300 300 42 300 40 110 209
11 89 168 218 238 122 106 196
12 49 46 264 154 80 216 84
13 300 174 300 300 110 300 160
14 52 300 94 77 300 187 89
15 88 163 300 115 76 228 168
16 55 291 32 217 300 300 92
17 300 300 300 143 76 196 300
18 300 300 59 109 68 250 197
19 91 166 46 112 86 150 300
20 300 129 67 95 210 300 106

a. detailed results 224

Table A.29: Optimistic system results for envi-

ronment 3 (sparse).

2 3 4 5 6 7 8

1 62 300 300 44 59 131 88
2 300 300 158 57 74 86 125
3 94 278 163 41 75 32 41
4 300 300 84 79 189 84 52
5 300 27 114 65 56 43 300
6 239 48 32 51 133 23 111
7 300 60 123 67 29 235 94
8 139 115 20 32 36 151 60
9 190 69 194 116 69 89 31
10 300 109 22 33 46 16 77
11 99 163 179 55 16 225 18
12 300 46 54 41 57 58 61
13 19 300 44 226 27 96 81
14 300 138 256 184 24 246 43
15 300 246 48 74 66 35 49
16 42 116 62 95 34 124 28
17 267 16 300 65 77 300 300
18 216 300 65 157 92 92 84
19 72 300 86 163 73 222 81
20 300 30 36 300 68 106 300

a. detailed results 225

A.5 Hybrid System 1 Target

Table A.30: Hybrid system results for environ-

ment 1 (cluttered).

2 3 4 5 6 7 8

1 300 300 300 300 193 236 219
2 300 300 181 300 190 300 300
3 300 154 300 240 95 300 129
4 300 300 246 300 300 286 140
5 295 300 207 300 158 164 170
6 300 271 95 217 156 156 131
7 99 300 111 220 182 181 300
8 113 300 300 131 187 234 300
9 300 300 170 144 300 203 300
10 300 300 300 118 300 300 300
11 208 300 300 300 133 154 226
12 300 300 235 300 300 300 184
13 300 169 300 300 225 300 291
14 300 300 300 300 137 300 300
15 219 300 300 300 286 300 129
16 158 130 300 300 105 300 300
17 300 158 300 298 300 202 157
18 300 300 300 115 208 300 170
19 300 275 122 297 138 152 300
20 300 300 300 300 300 263 300

Table A.31: Hybrid system results for environ-

ment 2 (normal).

2 3 4 5 6 7 8

1 300 147 150 300 117 300 59
2 275 271 161 300 300 90 266
3 300 300 300 300 135 300 127
4 110 300 100 175 96 56 204
5 289 300 122 200 242 300 235
6 129 118 104 138 187 77 132
7 148 300 111 137 300 129 153
8 117 110 157 83 178 179 83
9 300 300 262 95 254 75 130
10 300 300 300 141 300 143 300
11 167 300 229 300 144 80 300
12 126 94 140 248 300 163 204
13 88 128 120 188 269 300 103
14 300 70 110 140 300 104 120
15 300 69 121 244 167 110 300
16 174 300 195 300 136 117 102
17 300 300 95 183 125 93 148
18 192 300 300 300 240 139 55
19 117 300 100 114 300 123 93
20 183 300 201 125 300 222 113

a. detailed results 226

Table A.32: Hybrid system results for environ-

ment 3 (sparse).

2 3 4 5 6 7 8

1 51 61 82 222 300 90 86
2 300 76 126 300 184 92 125
3 300 215 300 300 121 120 65
4 188 87 116 98 67 54 95
5 300 89 77 300 58 52 66
6 78 300 205 138 179 112 72
7 86 139 120 43 100 91 195
8 57 98 176 208 41 157 133
9 65 98 56 300 215 300 67
10 120 94 75 125 75 88 161
11 300 260 101 300 133 66 233
12 72 91 93 300 140 79 206
13 103 300 153 77 99 104 113
14 43 111 140 54 113 89 77
15 64 143 123 83 300 120 165
16 300 102 87 136 66 118 127
17 94 157 104 253 55 203 71
18 68 81 94 79 87 85 124
19 300 300 43 128 117 122 87
20 244 47 300 92 80 172 89

