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Abstract

In this thesis analytical and simulation techniques are applied to problems in

biological evolution. The thesis is divided into four parts.

Firstly, chapter two investigates anomalies that occur in the Penna bit-string

model of ageing, an influential model of mutation accumulation and selection.

These anomalies result in unusual demographic distributions and can lead to

the so-called Eve effect. The anomalies are characterised along with their asso-

ciated demographic distributions. It is argued that the anomalies are similar in

nature to the well known first-passage problem.

Secondly, chapter three uses evolutionary game theory to investigate the

evolution of harmful mating tactics in hermaphrodites. These tactics benefit

the function of the sperm donor at the expense of sperm recipient. The model

predicts evolutionary stable values of resource allocation between sexual func-

tions, and the level of harm. The analysis provides support for empirical ob-

servations and makes predictions about the effects of harmful mating tactics on

population evolution.

Thirdly, chapter four considers the sustainability of the two main types of
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sexual reproduction; hermaphroditism and dioecy (male and female individ-

uals). By use of stochastic spatial simulations it is demonstrated that herm-

aphroditism can have an even greater advantage over dioecy than predicted

by mean-field analysis. This result provides support for the observation that

hermaphroditism is associated with sedentary species.

Finally, chapter five considers the evolution of gynodioecy, a breeding sys-

tem of plants in which populations consist of hermaphrodite and female indi-

viduals. It is both a common and widespread polymorphism, and has been

identified in many species of ecological and economic interest. Mean-field cal-

culations and stochastic spatial simulations are used to identify the conditions

necessary for gynodioecy to evolve.
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CHAPTER 1

Modelling evolution

1.1 Introduction

Evolutionary studies aim to explain and predict physical, behavioural and ge-

netic changes in biological populations with time. Darwin [1] first proposed

that the forces driving these changes were inheritance of traits, from parents to

offspring, and natural selection on these traits. Though, Darwin had no knowl-

edge of the genetic mechanism for inheritance. A genetic mechanism for in-

heritance was first discovered by Mendel through breeding experiments with

pea plants [2]. Mendel’s laws of inheritance describe the inheritance of a trait

that is controlled by a pair of alleles at a single genetic locus, this is known as

a Mendelian trait. Mendel’s laws state that an individual receives one allele

from each parent and that alleles of different genes assort independently. It is

now known that independent assortment of genes is only true for traits that

are not linked. Genetic linkage occurs when loci are on the same chromosome.
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Thus, linked traits may not display the phenotypic distributions predicted by

Mendel’s laws.

The theories of Darwin and Mendel were unified in what is now referred to

as the Modern Synthesis [3]. A key constituent to the Modern Synthesis was

the development of population genetics. Population genetics is the study of the

evolution of gene frequencies in a population by explicitly mapping genotype

to phenotype. Traits considered in population genetics tend to be qualitative

in nature, and display discrete variation between phenotypes in a population.

In contrast, the field the quantitative genetics considers quantitative traits that

usually display continuous variation across a population, for example, height

in the human population. A key assumption in quantitative genetics is that

these traits are influenced by the interaction of many genes. Although inher-

itance is based on Mendelian principles, these traits are not Mendelian traits

so distributions of phenotypes can not be predicted by Mendel’s laws. Thus,

genes influencing a particular quantitative trait can not be readily identified.

For this reason quantitative genetics is statistical in nature and populations are

described in terms of phenotypic means and variances.

In order for selection to act in an evolutionary model, it is necessary to have

some measure for the success of an individual who bears a particular trait. This

measure is the fitness of an individual and is usually defined as the number of

viable offspring produced by that individual. This definition of fitness is used

throughout this thesis. The fitness of an individual can be dependent on pop-

ulation size (density dependent selection) and/or dependent on the frequency
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of other phenotypes in the environment (frequency dependent selection). For

the case where fitness is both density and frequency independent, traits which

confer the highest per capita growth rate are selected. If fitness is density de-

pendent and frequency independent, dynamics favours genes that confer the

largest carrying capacity, or in other words the gene that maximises popula-

tion size. When fitness is frequency independent, selection of the fittest trait

is an optimisation problem; maximising per capita growth rate or maximising

carrying capacity. When fitness is frequency dependent, an individual’s fitness

depends on other individuals’ (opponents) strategies. Thus, the frequency de-

pendent selection case requires a more involved game theoretical analysis.

The frameworks of population genetics and quantitative genetics were the

original approaches for modelling evolution in biological populations. Both

were derived for the case where fitness is frequency independent, thus they can

be described in isolation to evolutionary game theory. In the following sections,

population genetics, quantitative genetics and evolutionary game theory are

described in more detail.

1.2 Population genetics

In the field of population genetics, populations are described in terms of geno-

type frequencies and gene frequencies. Genotype frequencies describe the fre-

quency of individuals with a particular genotype. Gene frequencies describe

the frequency of alleles at a particular locus in the population.
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To incorporate selection it is necessary to map genotypes to a corresponding

fitness, this mapping is commonly referred to as the fitness landscape. Consider

the case of a single genetic locus in a diploid species for which there are two alle-

les, B1 and B2, with frequencies p1 and p2 = (1− p1) respectively. The genotype

frequencies in the population are p21, 2p1p2 and p
2
2 for the genotypes B1B1, B1B2

and B2B2 respectively. Each genotype ismapped to a fitness, wherew11,w12 and

w22 are the fitnesses of the B1B1, B1B2 and B2B2 genotypes respectively. The

mean fitness of an individual carrying allele B1 is thus, W1 = p1w11 + p2w12,

and the mean fitness of the population is given by,

W = p21w11 + 2p1p2w12 + p22w22. (1.2.1)

The simplest, and perhaps the most common, method for evolving the popula-

tion is to assume that the population is updated in parallel and replaced with a

daughter population after one generation. For a population evolving according

to this parallel update process, the frequency of allele B1 in the next generation

will be,

p′1 = p1
W1

W
, (1.2.2)

and the frequency of allele B2 will be,

p′2 = p2
W2

W
. (1.2.3)

If w11 ≥ w12 > w22, allele B2 is eliminated from the population as the popu-

lation evolves with time. If w12 > w11 and w12 > w22, the population main-

tains both alleles B1 and B2. The equilibrium gene frequencies are calculated by

solving equilibrium condition,W1 = W2, with known genotype fitnesses. This
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example for evolution at one locus ignores mutation. Mutation can be included

in the model described above by adding a rate at which one allele mutates to

the other allele during the production of gametes. Addition of a mutation rate

generally shifts the equilibrium gene frequencies from those that would be seen

in the example above, because mutation and selection need to balance at equi-

librium.

The evolution of many beneficial mutations over long periods of time can

be modelled by using an alternative approach to population genetics, the adap-

tive walk [4, 5]. Adaptive walk models assume that the population is homoge-

neous, in genetic terms, most of the time and that beneficial mutations spread

rapidly through the population in comparison to the rate at which they occur.

In contrast to population genetic models (which describe evolution of gene fre-

quency), the main aim of the adaptive walk model is to incorporate more com-

plex gene interactions , such as epistasis and pleiotropy, into the evolutionary

process to describe statistical properties of the system. Epistasis is the interac-

tion of multiple genetic loci, in which case a trait is affected by several genetic

loci. In contrast, pleiotropy describes the case where a single gene influences

multiple phenotypic traits. Both epistasis and pleiotropy are thought to be in-

volved in the expression of many traits [6, 7].

In many adaptive walk models an organisms genome is represented by a

binary bit-string, this allows for efficient computer simulation and the use of

analytical techniques originally derived for use in statistical physics [5]. For

example, consider the adaptive walk model introduced by Kauffman [4], where
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an organism’s genotype is represented by a binary bit-string, γ, consisting of N

elements. The fitness contribution of each element, γi, is dependent on K other

elements, γi1 ,γi2 , . . . ,γiK . Thus, the fitness of a configuration γ is given by,

W(γ) =
1

N ∑
i

J(γi1 ,γi2 , . . . ,γiK), (1.2.4)

where J contains a sum over 2K spin products. To simulate the adaptive walk,

elements are switched (0→ 1, or 1→ 0) at random; if the resulting genotype is

of higher fitness the new configuration is adopted, else it is rejected and another

element is switched.

Bit-string representations of genomes have also proved useful when pop-

ulations cannot be assumed homogeneous. For these problems each individ-

ual can be represented by a bit-string and the population evolved according

to the mode of reproduction and selection under investigation. Populations

represented by binary bit-strings can be modelled very efficiently by computer

simulation which allows more complex themes of genetics and evolution to be

easily incorporated into models, for example; recurrent mutation [8, 9], epista-

sis [9], pleiotropy [9], ageing [8] and speciation [10]. This approach is distinct

from the population genetic models described above in that the population is

no longer described simply by gene-frequencies but by a gene sequence. A bit-

sting model which incorporates ageing and recurrent mutation is the subject of

chapter 2 in this thesis.
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1.3 Quantitative genetics

The field of quantitative genetics is concerned with quantitative traits that are

assumed to be influenced by genes at many loci (polygenic), with each gene

contributing a small effect to the trait [11]. These quantitative traits usually vary

continuously across the population. This contrasts with the discrete nature of

traits often associated with population genetic models. Using the assumption

that large numbers of genes are responsible for a quantitative trait, quantitative

genetics considers these genes in aggregate. This has been likened to the study

of systems at the macroscopic level in the physical sciences [12].

The theory of quantitative genetics extends the principles of Mendelian in-

heritance to accommodate polygenic traits and deduces phenotypic properties

on a population level. This is a statistical approach whereby phenotypic varia-

tion is decomposed into components of additive genetic variation, non-additive

genetic variation and environmental variation. Theory and experiment have a

close relationship in quantitative genetics. Empirical data is necessary to deter-

mine the properties of the genes associated with quantitative variation, this in

turn is used to determine properties such as the heritability of a trait. Experi-

mental breeding then allows the validity of the theory to be tested. This method

has proved successful in application to livestock and crop improvement [13].

Quantitative genetics was built upon statistical abstractions of genetic ef-

fects, though currently the field is advancing. By utilising recent technologi-

cal developments, quantitative geneticists aim to reveal explicit links between
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genes and complex phenotypes. This synthesis is having a large impact on the

areas of evolutionary biology, plant and animal breeding, and the analysis of

human disease [14].

1.4 Game Theory

An essential property of any game is that each player’s success depends not

only on his own strategy but the strategy of others. This differentiates a game

problem from an optimisation problem. The theory of games had its beginnings

with the two-player matrix game [15]. Matrix games have a finite number of

strategy choices, the payoff to each player is determined by an element of a

matrix. One player’s strategy corresponds to the selection of a row and the

other player’s strategy corresponds to the selection of a column.

An important concept of game theory is that of the Nash equilibrium [16,

17]. If two opponents adopt the Nash equilibrium strategy neither can increase

their payoff by unilaterally deviating from this strategy. For example, consider

a case of the well known Prisoner’s Dilemma, where two suspects (here called

John and Jo) are questioned in separate interrogation rooms. Each suspect is

faced with the choice of blaming the other (defect from his accomplice) or re-

main silent (cooperate with his accomplice). It is reasoned that if both stay silent

(cooperate), both will get sentences of 2 years in prison. If one cooperates and

the other defects, the cooperator will be sentenced to 5 years and the defector

walks free. If both defect, each is sentenced to 3 years. A payoff matrix for John
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Jo cooperates Jo defects

John cooperates −2 −5

John defects 0 −3

Table 1.1: Payoff matrix for a Prisonser’s Dilemma game. Numbers corre-

spond to years spent in prison.

is given in table 1.1. The payoff matrix for Jo is obtained by swapping the labels

John and Jo in table 1.1, thus the game is said to be symmetric.

John and Jo are in Nash equilibrium if both choose to defect because nei-

ther can increase his payoff by unilaterally deviating from this strategy. Thus,

‘defecting’ is the Nash equilibrium strategy for this game.

Evolution by natural selection is a game in the sense that it has players (or-

ganisms), strategies (phenotypic traits) and payoffs (fitness). Several features

distinguish evolutionary game theory from classical games like the Prisoner’s

Dilemma described above. In classical game theory, the focus is on the play-

ers who aim to choose strategies that optimise their payoffs, thus rationality or

self-interest provides the optimising agent for strategy selection. In evolution-

ary games, strategies are inherited and natural selection serves as an optimising

agent. The focus of evolutionary games is on strategies that persist with time.

In an evolutionary game, the fitness of an individual directly influences the

frequencies of strategies present in the next generation. Consider the Hawk-

Dove game [18], where a population consists of two phenotypes, hawk and

dove, and all individuals are competing for favourable territory. An individ-
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Dove Hawk

Dove V
2 0

Hawk V V−C
2

Table 1.2: Payoff matrix for the Hawk-Dove evolutionary game.

ual can produce V extra offspring if it occupies favourable territories (wins

contest) when compared to the number of offspring it produces if it occupies

unfavourable territories (loses contest). During a pair-wise contest a dove will

display its interest in the territory but retreat if its opponent wishes to escalate

to a potentially harmful fight. In contrast a Hawk will always escalate in the

contest and will continue until injured or its opponent retreats. A dove-dove

contest results in one of the individuals winning the territory by pure chance, a

hawk-dove contest results in the hawk winning the territory, and a hawk-hawk

contest results in one hawk winning the territory but the other losing and sus-

taining damage. This damage is deemed to cost the loser in fitness terms an

amount C. The payoff matrix for this game is given in table 1.2.

The payoff matrix for the Hawk-Dove game (table 1.2) shows that a popula-

tion of doves would always be invaded by a small number of hawks because a

member of the resident population of doves would receive a payoff ofV/2 com-

pared to the payoff of V for the invading hawks. The invading hawks would

have a greater per capita growth rate and would grow in frequency. In contrast,

a population of hawks would be stable against invasion by a small number of

doves if (V − C)/2 > 0. Thus, if (V − C)/2 > 0, the hawk strategy is said to
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be an Evolutionary Stable Strategy (ESS). The ESS is a solution concept for evo-

lutionary games defined by Maynard Smith and Price [19] as; a strategy such

that, if most members of the population adopt it, there is no mutant strategy

that would give higher reproductive fitness. They reasoned that such a strat-

egy would be stable under natural selection.

It has been recognised that the ESS definition is equivalent to the Nash equi-

librium of classical game theory. A Nash equilibrium and an ESS are ‘no regret’

strategies in the sense that if everyone in a population is playing aNash strategy

(in a classical game) or an ESS (in an evolutionary game), then no one individ-

ual can benefit from unilaterally changing their strategy. In the absence of an

ESS, a mixed state where multiple phenotypes coexist may be stable. This is the

case in the the Hawk-Dove game when (V − C)/2 < 0. Other games, such as

the game of rock-paper-scissors [20], can exhibit stable cyclic behaviour.

The Hawk-Dove game described above is an example of a discrete evolu-

tionary game. Another type of evolutionary game is the continuous evolu-

tionary game, where strategy sets are continuous and payoff is given by some

function of the strategies. For example, in chapter 3, a continuous evolution-

ary game is considered where a hermaphrodites strategy is the fraction of its

resources allocated to its male function, r ∈ [0, 1]. The ESS is an end point of

evolution by natural selection as small numbers of mutants cannot invade the

population once the ESS is established. However, it is also important to de-

termine whether the ESS is attainable through evolution by natural selection.

This can be determined by approximating the strategy dynamics of a popula-
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ESS not ESS

Convergent CSS Branching Point

not Convergent Garden of Eden Invasible Repellor

Table 1.3: Types of equilibrium.

tion. Strategy dynamics describe how the strategy used by a population evolves

over time in a continuous game, this is a result of changes in the underlying

phenotypes present in the population. Dynamical equations governing strat-

egy dynamics are introduced in chapter 3. If the strategy dynamics converge

on a particular strategy, this strategy is said to exhibit convergent stability.

The two stability concepts of ESS and convergent stability are independent

of each other [21]. Thus, four different equilibria can be classified, these are

summarised in table 1.3. Strategy dynamics converge on a Continuously Stable

Strategy (CSS) [22]. Once a population adopts the CSS, it is resistant to inva-

sion by a small number of mutant strategies. These are the strategies which

would be expected to be observed in nature. Strategy dynamics converge on

the branching point, though, at the branching point the population can be in-

vaded by mutants. It is thought that this could lead to speciation. At a Garden

of Eden point a population is stable against invasion, however if the population

strategy is perturbed away from this point strategy dynamics will evolve away

from the Garden of Eden point. A population will always evolve away from

and invasible repellor, even if the bulk population is initially at the equilibrium

point.
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Evolutionary game theory relies on the basic assumption that like begets

like, thus does not include any explicit genetic mechanism of trait inheritance.

This may appear a short coming when compared to the explicit nature of pop-

ulation genetics, however, game theory is a useful technique for calculating the

phenotypes (strategies) that would be expected to evolve in a population and

for uncovering reason for the evolution of particular phenotypes [18]. Also, it is

often the case that the underlying gentics responsible for a trait are unknown.

There are some applications of evolutionary game theory which include explicit

genetic detail, however these tend to be less common [18, 23].

1.5 Summary

In chapter 2, computer simulation and an analytical approach are used to in-

vestigate the origin and consequences of certain anomalies which have been

observed in the Penna model of biological ageing. Penna’s model is a model of

mutation accumulation and selection where each individual’s genome is repre-

sented by a binary bit-string.

In chapter 3, an evolutionary game theory model is derived to investigate

the evolution of harmful mating tactics in hermaphrodites. Analysis of this

model yields the conditions under which harmful mating tactics would be ex-

pected to evolve and the consequences of harmful mating on other aspects of

population evolution.

In chapter 4, stochastic spatial simulations and mean-field analysis are used
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to investigate the stability of hermaphrodite and dioecious (separate male and

female individuals) populations. This investigation doesn’t consider coevolu-

tion or invasion but the robustness of the two mating strategies to extinction.

In Chapter 5, stochastic spatial simulations andmean-field analysis are used

to investigate the conditions necessary for gynodioecy to evolve. Gynodioecy

is a breeding system of plants in which populations consist of hermaphrodite

and female individuals. The model derived explicitly describes the underlying

genetics for the case of a dominant nuclear allele conferring male sterility.
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CHAPTER 2

Anomalies and the Eve Effect in the

Asexual Penna Model

2.1 Introduction

In 1995, T. J. P. Penna [8] proposed a binary bit-string computational model for

the process of evolutionary ageing. The model is deceptively simple to con-

struct, and yet it captures some key features of evolution, namely, mutation

accumulation and selection. Indeed, the basic Penna model provides a useful

foundation upon which other effects could be added and studied [24]. As a

result, the Penna model has acquired a considerable popularity, and over 200

published citations of the original 1995 article can be found at the time of writ-

ing.

The idea that the natural selection, and therefore the survival of the fittest,

seemingly contradicts the detrimental behaviour of ageing and the general de-
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cline of an organism’s capability [25]. The resolution of this conflict lies in the

occurrence of mutations. It is now generally accepted that ageing is regulated

by specific genes, as originally proposed by Medawar [26], and their effects

depend on the reproductive life cycle of the individual organism as well as ran-

dommutations that occur [27]. The Penna model [8] provides a means to model

this delicate interplay during the evolution of an age-structured population un-

der the influence of age-specific harmful mutations [24].

The original Penna model is designed for computer simulations, and there-

fore is discrete in nature. Time steps are counted by an integer and an organ-

ism’s genome represented by a binary bit-string. Each 0 on the bit-string repre-

sents a healthy site, and each 1 a harmful one. The location of the harmful sites

on the bit-string, indicate the ages at which the organism suffers the harmful

effect (a disease). Having suffered Td diseases an organism dies. The bit-string

is of course finite in length (usually 32 or 64 bits as dictated by the available

32-bit and 64-bit computer processors) and each newborn inherits the parental

string, with extra mutations introduced into its bit-string.

An early success of the Penna model was accounting for the catastrophic

senescence found in Pacific salmon[28]. The model demonstrated that the only

condition required for catastrophic senescence to emerge is a semelparous re-

productive strategy, which means that the organism reproduces just once dur-

ing its lifetime. Salmon only mate once in their life-time at a specific age, any

individual with too many diseases prior to this age will never reproduce. The

combination of the selective pressure up to this reproductive age and the lack
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of selection following this age leads to catastrophic senescence shortly after re-

production.

Another interesting application of the Penna model was simulating the ad-

vancements in medical care over the last century by steadily increasing the dis-

ease threshold Td. Laszkiewicz et al [29] reasoned that changes inmortality over

this period are not due to changes in the genetic population because human life-

span is too long compared to the period of time. They found a reasonable match

of their simulation results for mortality with recorded results for the American

population between the years 1870 and 1980. Penna’s model has also been able

to reproduce important demographic features, such as exponentially increas-

ing mortality with age [30] (the so-called Gompertz Law [25]), and mortality

plateau for the oldest old[31, 32].

In sexually reproductive species the production of males who can’t carry

offspring constitutes a two-fold cost of sexual reproduction when compared to

asexual reproduction. There is heated debate [33] as to how and why sexual

reproduction has emerged given this two-fold cost. Due to its bit-string nature,

genetic recombination and mutation are very easy to model using the Penna

model and Penna’s model has been used to identify regimes in which sexual

reproduction is favourable [34, 35].

The asexual Penna model has been formulated and solved [31, 36]. The case

of T = 1 gives straightforward agreement between computer simulation and

analytical solution. For Td > 1, the analytical solution was obtained through

the ansatz that the positions of non-terminal deleterious bits (the first (Td − 1)
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deleterious bits) are not significant in determining the sizes of subpopulations

of a given genetic lifespan l. Agreement between this analytical solution and

computer simulations is observed, for Td > 1, provided that simulation size is

very large and simulation period is relatively short. With moderate parameters

however, computer simulation can frequently lead to a host of distinct steady

states. These are indicative of certain anomalies, which are analysed in the

following sections.

Many simulations using the asexual Penna model with disease threshold

greater than one (Td > 1) have noted discontinuities when plotting the fre-

quency of diseased bits versus genetic location for a population [34, 37]. This

was also manifested in mortality plots as discontinuous jumps in an otherwise

smooth curve. The locations of these discontinuities was found to vary even for

simulations run with samemodel parameters and initial conditions. Sá Martins

et al [34] attributed these discontinuities to the fixation of mutations at certain

loci, but did not suggest a mechanism for fixations to emerge. Most previous

simulations of the Penna model have used a disease threshold greater than one,

making them susceptible to these anomalies.

Section 2.2 describes simulation of the asexual Penna model in more detail.

An analytical solution for the multiple disease Pennamodel and an explanation

of the origins of the anomalies observed for Td > 1 is presented in section 2.3.

For the purpose of clarity, the analysis presented here concentrates on the case

of T = 2. For higher threshold values of Td, the anomalies remain qualitatively

the same.
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2.2 The asexual Penna model

During each simulation time step every individual’s bit-string is inspected to

check for new heritable diseases then the organisms age is incremented. A dis-

eased (1) bit at location i on the organisms bit-string affects the individual at age

i. On accumulating Td diseases an individual dies. Thus, an individual with its

Tdth diseased bit located at postion 10 on its bit-string (bits are indexed from

zero) will live for 10 time steps in the simulation. During each time step, each

individual reproduces with a probability b. There is a probability of error in the

replication process attributed to random mutation occurring with probability

Pm per location on the bit-string. For ease of notation Pm is written as 1− e−β,

where β is referred to as the mutation rate. This is a common convention used

in the literature.

Mutations are considered as always harmful (turns a 0 into a 1), since harm-

ful mutations vastly outnumber the helpful ones in nature [27]. This assump-

tion may be relaxed to allow a small rate of positive mutation which does not

qualitatively alter the overall picture [38]. Therefore, here only single harmful

mutations at births are considered. If a location already set to 1 is selected for a

mutation it remains 1.

To maintain a finite population size a Verhulst-factor [39] birth rate is used,

b(t), given by,

b(t) = b0(1− N(t)/Nmax), (2.2.1)

where b0 is a constant, N(t) is the population size at time t and Nmax is the
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carrying capacity of the environment.

Deleterious mutation during reproduction results in an offspring with a

shorter genetic lifespan than its parent. As subpopulations of a given genetic

lifespan, l, receive input due to mutation from populations of longer genetic

lifespan, there must exist a subpopulation of longest genetic lifespan, lmax, ca-

pable of maintaining itself. Thus, the expected number of unmutated offspring

produced by an individual of genetic lifespan lmax over its lifetime must be one,

lmaxbe
−β(lmax−Td+1) = 1, (2.2.2)

where b is the steady state birth rate. This steady state birth rate is reached

quickly in the simulation, and the birth rate varies relatively little after reaching

equilibrium. Also, if the population is to remain bound, for any subpopulation

of l < lmax the expected number of unmutated births by an individual during

its lifetime must be less than one,

(lmax − 1)be−β[(lmax−1)−Td+1] < 1. (2.2.3)

Rearrangement of equation 2.2.2 gives the steady state birthrate for a given lmax,

b =
eβ(lmax−Td+1)

lmax
. (2.2.4)

Substituting equation 2.2.4 into equation 2.2.3 gives the constraint on lmax,

lmax <
1

(1− e−β)
. (2.2.5)

Equation (2.2.5) is particularly useful when choosing simulation parameters as

lmax should be less than 32 or 64, depending on the processor being used.
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2.3 Analytical solution and simulation results

For the Td = 2 case, the first 2 deleterious bits, l1 and l (with l > l1), are of inter-

est. The second bit at l marks the death of the individual and thus l is referred

to as the genetic lifespan. A population can be characterised in terms of the

population distribution function n(l1, l), defined as the number of individuals

with their first 2 deleterious bits located at l1 and l.

Figure 2.1 presents a typical scenario of n(l1, l) from a computer simulation

of a population after reaching steady state. Simulation parameters are; muta-

tion rate β = 1/30, birth rate is given by the Verhulst birth rate with b0 = 1,

the maximum population Nmax = 107, and lmax = 16 represents the maximum

genetic lifespan of the population.

A notable feature in figure 2.1 is the formation of a ridge at l = 11. The pop-

ulation as a function of genetic lifespan l can be obtained by summing n(l1, l)

over l1,

n(l) = ∑
l1

n(l1, l), (2.3.1)

then the aforesaid ridge gives rise to a spike in the corresponding n(l) plot, as

presented in figure 2.2 (all simulation parameters for figure 2.2 are the same as

for figure 2.1). The spike is located at the postion of the ridge, ls = 11. This is

in stark contrast to predictions using the ansatz, that positions of non-terminal

deleterious bits are not significant in determining the sizes of subpopulations,

which gives rise to a smooth curve for n(l), shown to be valid for very large
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populations over short simulation times [31].
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Figure 2.2: Fraction of population with genetic string length l, n(l)/∑l′ n(l
′);

from simulation (�) and analytical solution (×), showing excellent

agreement.

Further simulations show that the spike location ls appears to be developed

randomly for repeated simulations with the same set of initial conditions. Once

the spike forms, its location ls becomes fixed. Furthermore, the population

n(l1, l) dies out completely for the case l1 > ls, and the case l1 < ls and l > ls.

Guided by these observations, we formulate our analytical approach step by

step for l > ls, l = ls, l < ls, as follows.

For l > ls; since a population with l1 > ls dies out, those organisms with
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l1 = ls obey the following evolution equation,

dn(ls, l)

dt
= be−β(l−1)n(ls, l)−

n(ls, l)

l
+ bPme

−β(l−1)
lmax

∑
l ′=l+1

n(ls, l
′) (2.3.2)

where b and β are rates for birth andmutation respectively; Pm is the probability

of mutation at a given site Pm = 1 − e−β; and lmax is the maximum l of the

population. The first term on the right hand side results from mutation free

births, the second term from death and the third term frommutated births. This

formulation is similar to the T = 1 case of the standard Penna model [31]. For

steady state, the time derivative d/dt goes to zero, and our evolution equation

can be solved exactly by the recursion relation,

n(ls, l + 1)

n(ls, l)
=
l + 1

l

eβ(l−1) − bl
eβl − b(l + 1)e−β

. (2.3.3)

Thus, given the population n(ls, lmax), we can determine all n(ls, l) for ls < l <

lmax. The model is linear and scalable, so the distribution function n(l1, l) can be

normalised later to give results in terms of the fraction of the population with a

genotype (l1, l).

For l = ls; the mutated births into l = ls can only come from those n(ls, l)

with ls < l ≤ lmax, since only single harmful mutations are considered. Thus,

the evolution equation for population n(l1, ls) reads:

dn(l1, ls)

dt
= be−β(ls−1)n(l1, ls)−

n(l1, ls)

ls
+ bPme

−β(ls−1)
lmax

∑
l ′=ls+1

n(ls, l
′). (2.3.4)

Again setting the time derivative to zero for steady state, yields the solution

n(l1, ls) =
bPmls

eβ(ls−1) − bls

lmax

∑
l ′=ls+1

n(ls, l
′), (2.3.5)

24



where the sum is given by the solution n(ls, l) from the previous l > ls case.

Note that right hand side does not contain l1, thus our analysis predicts that

n(l1, ls) is independent of l1. In other words, the ridge in figure 2.1 should be

level, a prediction confirmed by simulations.

For l < ls; population n(l1, l) can be enhanced by mutated births from either

n(l1, l
′) or n(l, l′) with l′ > l, so

dn(l1, l)

dt
= be−β(l−1)n(l1, l)−

n(l1, l)

l
(2.3.6)

+ bme−β(l−1)
ls

∑
l ′=l+1

[

n(l1, l
′) + n(l, l′)

]

.

Noting that this equation, in fact, remains true for all l1 < l, we deduce that

the solution n(l1, l) will be independent of l1. This deduction is confirmed by

the simulation results shown in figure 2.1, and therefore, equation (2.3.6) can be

solved analytically yielding the following recursion relation,

n(l1, l + 1)

n(l1, l)
=
l + 1

l

eβ(l−1) − bl
eβl − b(l + 1)(2e−β − 1) . (2.3.7)

Combining the above three stages of analysis, the entire distribution of pop-

ulation can be calculated. Finally, normalisation can be applied to give results

in terms of the fraction of the population with a genotype (l1, l), thus indepen-

dent of simulated population size.

Our analytical results have been plotted in figure 2.2, together with the data

from simulation. The excellent agreement validates the theoretical formulation

and the mechanisms it reveals of the population dynamics in the Penna model.
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2.4 Discussion

The standard Penna simulations only consider a possible single negative mu-

tation at birth as the dominant mutation mechanism. This in turn limits the

interaction between different genotypes. For a steady state to exist there must

be a longest lived subpopulation which is self-sustaining, i.e. not reliant on

mutated births. No other shorter-lived subpopulation can be self-sustaining if

the population is to remain bounded, as shorter-lived organisms can always be

created by mutated copies of longer-lived ones. For the longest-lived subpop-

ulation to be self-sustaining, each organism must produce one perfect copy of

itself during its lifetime. All other populations, with l < lmax, gain from mu-

tated births of the longest lived, so unmutated birth per individual must, on

average, be less than unity.

In simulations, birth rate is modified by the so called Verhulst factor, and

when the steady state is reached the birth rate would be such that the organism

with l = lmax produces exactly one mutation-free copy of itself during its life-

time. For T = 1, there is no ambiguity to the longest living genotype n(lmax),

but for T = 2 however, it is possible for two individuals to have different lo-

cations for their first deleterious bit whilst having the same l = lmax and the

same lifespan. Moreover, if l1 6= l′1, a subpopulation n(l1, lmax) can never give

rise to n(l′1, lmax) through a single negative mutation. Therefore, the genotype

(l1, lmax) would evolve somewhat independently from (l′1, lmax). In fact, the

evolution equation (2.3.2) is identical to the earlier ansatz solution for T = 2
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[31].

In the case of T = 1, extinction of the lmax subpopulation is alleviated by the

Verhulst factor which increases the birth rate when the total population drops.

But for T = 2, all subpopulation n(l1, lmax) for different l1’s fluctuate due to the

stochastic nature of the simulation, much like a collection of diffusing particles

under an overall constraint due to the Verhulst factor. But the Verhulst factor

only acts on the total population, and each subpopulation can easily become

extinct as another subpopulation can grow to make up the total population.

When a subpopulation n(l1, lmax) ventures close to extinction, it receives little

help towards a recovery, and the closer it is to extinction the more vulnerable

it becomes. Therefore, given enough time, the system would eventually set-

tle into one of subpopulations which gives rise to the spiked states observed

in simulations. This is akin to the first-passage problem of multiple diffusive

particles [40, 41].

Once the population has evolved to contain a unique longest lived subpop-

ulation (ls, lmax), it is still possible for this subpopulation to become extinct due

to the stochastic nature of the simulation. However, the timescale for this to

occur is far longer than the time taken for the population to reach a state with

a unique longest lived subpopulation. It should also be recognised that over

long enough timescales the entire population could become extinct. However,

neither of these two events were observed for the parameters used in the inves-

tigations described here, the spiked state was stable over very long simulation

times.
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By labelling each individual in the initial population with a number and en-

suring this identifier is passed on to offspring, at any subsequent time, an indi-

vidual can be identified as being a descendant of one of the original population.

Thus individuals can be thought of as belonging to a particular family. Figure

2.3 plots the number of distinct genetic families versus time, showing a steady

decline, and leading to the “Eve effect” [37, 42] (all individuals are descendants

of one member of the initial population). This is in broad agreement with pre-

vious results [37] reporting potential scaling regimes of -1 and -2. However, it

should be noted that the scaling does not persist over a significant range as is

the case in reference [37], and the early time behaviour is particularly sensitive

to initial conditions.

Figure 2.4 gives a histogram of time taken to reach a spiked population con-

figuration from 1600 repeated simulations under the same initial conditions.

The simulation parameters are: β = 1/30, b0 = 1, Nmax = 4.5 × 104 and

lmax = 16. The resulting histogram is very similar to the survival time distribu-

tion, the so-called Smirnov density, of the first-passage problem [40, 41]. Larger

populations give rise to a longer survival time, in accordance with the first-

passage problem solution. Due to the presence of the Verhulst factor, which in

effect introduces interaction between the diffusing particles, a direct compari-

son is not legitimate and the Smirnov density function did not give a good fit

of the simulation results in figure 2.4 (fit not shown). In practise, the Verhulst

factor varies relatively little after the early stage simulation steps during which

a steady total population is achieved. This explains why figure 2.4 closely re-
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Figure 2.3: The decline of the number of distinct genetic families versus time,

leading to the “Eve effect”. The two straight lines have slopes -1

and -2.
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sembles the first-passage survival time distribution.
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Figure 2.4: Histogram of normalised frequency versus time to complete spike

formation. Simulation parameters are β = 1/30, b0 = 1, lmax = 16

with Nmax = 2.25× 104 (�) and Nmax = 4.5× 104 (×).

Figure 2.5 shows the occurrence frequency of the different locations of the

spikes in 1600 repeated simulations. The simulation parameters are the same as

those of figure 2.4 with Nmax = 4.5× 104. Figure 2.5 shows that the probability

distribution for the location of ls is uniform, thus we can conclude that location

ls is indeed random, as our analysis would suggest. The formation of the spiked

population configurations clearly reduces the diversity in lineage, as a large

number of subpopulations are in effect wiped out during the spike formation.
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Different power laws were observed for early and late stage simulations of

the “Eve effect” [37, 42]. This difference, according to our analysis, could be

linked to the variation within (and the lack of) the Verhulst factor at the early

and late stage simulations.

Finally, for cases where T > 2, we find qualitatively similar anomalies in

simulations. The analytical formulation follows a similar line as presented here,

with the population n(l1, l) generalising to n(l1, l2, l).
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Figure 2.5: Distribution of the spike location ls.

2.5 Conclusions and future investigations

It has been shown bymeans of exact analytic solution and computer simulation

that, in the asexual Penna model, a series of anomalies exist which may have

affected all similar Penna simulations in the past. These anomalies and their

associated demographic distributions were characterised. Future simulations

of the asexual Penna model need to pay special attention to these anomalies if

reliable results are to be obtained. The analysis presented here also suggests

that the so-called Eve effect arises in the Penna model via a mechanism similar

to the first-passage problem.

In the future, the Pennamodel could be a useful tool for investigating effects
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of age and epistasis in disease. Over the past two decades genetic screening has

been successful in identifying genes associated with Mendelian diseases (dis-

eases associated with one genetic locus) [43]. However many diseases, such as

Alzheimer’s disease [44] and type 2 diabetes [45], appear to be influenced by

multiple genetic loci. Currently, there is much research interest in identifying

loci associated with increased risk to these diseases [43, 46, 47]. In the related

area of evolution of complex genetic traits, a binary bit-string model of muta-

tion and selection (though not age structured) has been utilised to investigate

the way in which a population moves through sequence space for a variety of

fitness landscapes [9]. The landscapes used are similar to the Kauffman’s NK

model [4], and adaptive walks were used to characterise the landscape prior

to population dynamical simulations. Simulations of this type increase under-

standing of the evolution of complex traits and may indicate likely associations

in empirical data. The Penna model could be used in a similar manner to in-

vestigate the evolution of diseases which result from the interaction of multiple

genetic loci.
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CHAPTER 3

Harmful Tactics in Mating

3.1 Stability in Evolutionary Games

The two stability concepts for evolutionary games, the ESS and convergent sta-

bility, were introduced in 1.4. Here the ESS and convergent stability are de-

scribed in the context of evolutionary gameswith continuous strategy sets (con-

tinuous evolutionary games). In this section methods are presented for charac-

terising equilibria in terms of the ESS and convergent stability. These methods

are later applied to the evolution of harmful mating tactics in hermaphrodites.

3.1.1 The Evolutionary Stable Strategy

Maynard Smith defined an Evolutionary Stable Strategy (ESS) as a strategy such

that, if most of themembers of a population adopt it, there is nomutant strategy

that would give higher reproductive fitness [18, 19, 48]. Here, ESS conditions

are described for a continuous evolutionary game. To test whether a strategy r
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is an ESS, it is necessary to construct a function ,W(r̂, r), which describes the fit-

ness of a rare mutant using strategy r̂ living in a population which uses strategy

r. As the mutant is rare it is approximated that it only interacts with members

of the resident population (using strategy r). Following Maynard Smith’s defi-

nition of the ESS, a sufficient condition for a strategy to be an ESS is,

W(r̂, r∗) < W(r∗, r∗) ∀ r̂ 6= r∗, (3.1.1)

where r∗ is the ESS. It is common notation to mark an ESS with an asterisk and

is used throughout this thesis.

Generally a strategy set will be bound. Strategies lying on the boundaries of

the strategy set will be referred to as boundary strategies and strategies lying

between the boundary strategies will be referred to as interior strategies. From

equation (3.1.1), it can be seen that an interior strategy is an ESS if,

∂W(r̂, r∗)
∂r̂

∣

∣

∣

∣

r̂=r∗
= 0, (3.1.2)

and

∂2W(r̂, r∗)
∂r̂2

∣

∣

∣

∣

r̂=r∗
< 0. (3.1.3)

The lower bound of the strategy set is an ESS if,

∂W(r̂, r∗)
∂r̂

∣

∣

∣

∣

r̂=r∗
< 0. (3.1.4)

Inequality in equation (3.1.4) is reversed for the case of the upper bound of the

strategy set.

ESSs are end points in an evolutionary process. Once established, a pop-

ulation using the ESS is stable against invasion by a small number of mutant
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strategies. Next, convergent stability is considered, this can test whether an ESS

is attainable through evolution, if the population originally uses an alternative

strategy.

3.1.2 The G-function approach and strategy dynamics

A similar framework to that described above (in section 3.1.1) was derived by

Vincent et al. [21], who introduced the fitness generating function (G-function).

This approach is particularly useful when considering a symmetric evolution-

ary game with many phenotypes. Consider an environment consisting of Np

different phenotypes. The per capita growth rate, Hi(u, x), for phenotype i is a

function of all the other phenotypes in the environment, u = (u(1), . . . ,u(Np)),

and the density of each phenotype, x = (x(1), . . . , x(Np)). This per capita growth

rate includes the fitness of the individual and death rate. The population dy-

namics are given by,

dx(i)

dt
= x(i)H(i)(u, x). (3.1.5)

A G-function is defined as follows [21]: a function G(v,u,n) is fitness gen-

erating function for the population if and only if,

G(v,u, x)|v=u(i) = H(i)(u, x), i = 1, . . . ,Np, (3.1.6)

where u(i) is the strategy of phenotype i and v is referred to as a virtual strategy.

The per capita growth rate for a strategy u(i) can be obtained by substituting

v = u(i) into the G-function. The population dynamics for the phenotype i are
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then given by,

dx(i)

dt
= x(i) G(v,u, x)|v=u(i) . (3.1.7)

Consider a population consisting of only one phenotype u; the ability of

this population to resist invasion by a small number of mutant phenotypes (the

condition for ESS) can be tested by constructing the G-function, G(v, u, x). The

condition for a strategy, u, to be an ESS, u∗, is [49],

G(v, u∗, x) < G(v, u∗, x)|v=u∗ ∀ v 6= u∗. (3.1.8)

This is similar to the condition for an ESS in equation (3.1.1). The dependence

on x can be dropped from equation (3.1.8) for cases of one resident phenotype

where selection is density independent. This is indeed the case for the harmful

mating model considered later in this chapter. The virtual strategy v in the

G-function approach plays the same role as the rare mutant strategy r̂ in the

invasion analysis described above.

The G-function approach has been utilised to approximate the evolution of

strategies used by a population [21, 50]. These strategy dynamics were derived

by considering a species to consist of a local distribution of strategies about

some mean. The pay-off for using a particular strategy in the distribution is

approximated by playing it against the mean strategy of the local distribution

of strategies. Populations of individuals with higher fitness grow quicker, thus

the mean strategy evolves in the direction of the fitness gradient as,

du

dt
= η

∂G(v, u)

∂v

∣

∣

∣

∣

v=u

. (3.1.9)

where u now represents the mean strategy of the local distribution of strategies
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and η is the variance in u. A rigorous derivation of equation 3.1.9 is given in ref-

erences [21, 51]. These dynamics are in agreement with other derivations using

similar arguments [22, 52]. Equilibria for the strategy dynamics can be found

by solving equation (3.1.9) with the time derivative set to zero. If the strategy

dynamics, given by equation 3.1.9, converge on a point (equilibrium or bound-

ary), this point is said to display convergent stability. Convergent stability can

be global or local according the the basin of attraction for a given equilibrium.

An example of strategy dynamics converging on an interior ESS is shown in fig-

ure 3.1. The fitness function in this example is taken from a model for resource

allocation between male and female sexual functions in hermaphrodites [53].

In nature many traits do not evolve in isolation but are affected by the evo-

lution of other traits. A game theoretical approach for coevolution requires

the introduction of vector strategies (strategies with multiple components). For

example, later in this chapter a model for harmful mating tactics is derived

where resource allocation between sexual functions and level of harm are the

two strategy components.

Strategy dynamics have been extended for populations withmultiple species

and vector strategies (strategies with multiple components) [21, 50]. Assuming

heritable independence between components of a vector strategy, the strategy

dynamics for a two component vector strategy is given by,

du1
dt

= η1
∂G(v1, v2, u1, u2)

∂v1

∣

∣

∣

∣

v1=u1,v2=u2

(3.1.10)

du2
dt

= η2
∂G(v1, v2, u1, u2)

∂v2

∣

∣

∣

∣

v1=u1,v2=u2

(3.1.11)
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Figure 3.1: Strategy dynamics resulting in an ESS. The curves show the dif-

ference in per capita growth rate between a virtual strategy v and

the population mean strategy u, G(v, u) − G(u, u). Arrows show

the direction of evolution for the population mean strategy u. The

temporal order of the plots is (a), (b), (c) then (d). The population

strategy u comes to rest at an ESS u∗.

39



where u1 and u2 the mean strategies for each component, v1 and v2 are two

virtual strategy components, and η1 and η2 are the variance of each of the strat-

egy components. Equations (3.1.10) and (3.1.11) are used to test the convergent

stability of equilibrium strategies later in the chapter.

3.2 Harmful tactics in mating

Sexual reproduction between males and females is frequently a discordant af-

fair because of a conflict between the interests of males and females. This

means that if an adaptation to increase fitness arises in one sex, then a counter-

adaptation may arise in the other, leading to a potential, perpetual coevolution-

ary arms race [54]. In hermaphrodites, these conflicts are further complicated

because an individual can take both roles at the same time, while simultane-

ously making fine adjustments to the resources allocated to each sex [54, 55].

There has been some debate as to precise definitions, but the origin and

maintenance of harmful male adaptations is generally understood from two

main perspectives. First, the ‘adaptive harm’ hypothesis [56–58]; defines a gen-

eral scenario in which a male harming a female causes a change in behaviour

so as to directly increase paternity (e.g. reduced probability of re-mating). An

alternative perspective is that of ‘collateral harm’, where harm evolves as a neg-

ative pleiotropic side effect of a trait that benefits the male function [59], such

as increased efficiency of sperm displacement.

Examples of male harming behaviour include the seminal ‘toxins’ of Droso-
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phila fruitflies [60], genital spines that prolong copulation [61], hypodermic in-

semination to moderate female choice [62], and ‘love’ darts to hormonally influ-

ence fertilisation [63, 64]. The aim of all these tactics appears to be to increase

the sperm precedence of the harming male, though the tactics also appear to

cause physical damage to the female. In extreme circumstances, some tactics

have been observed to increase probability of death of females following mat-

ing [65, 66].

It has been shown [67] that collateral harm may evolve in both gonochorists

and hermaphrodites when linked to sperm precedence. However their model

was limited in that individuals could notmate more than twice, and resource al-

location between male and female functions was fixed for hermaphrodites. As

previous models of sperm competition in hermaphrodites [68, 69] have shown

that the most successful resource allocation strategy is often not an equal divi-

sion of resources between male and female functions, then further refinements

are clearly required.

Here a previous sperm competition model is extended [68, 69] to include

mating tactics which cause collateral harm. These tactics increase sperm prece-

dence for the sperm donor but reduce the survival probability of the sperm

recipient. Fitness equations are formulated analytically and solved numerically

to find evolutionary stable pairs of values for resource allocation to male func-

tion and degree of harmful mating tactics. This mathematical approach allows

predictions which would be difficult to obtain simply by intuition.
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3.3 Sperm competition models

3.3.1 Charnov’s Infinity Model

Charnov [68] considered a hermaphrodite over an interval of time yielding one

mating. Each hermaphrodite has a total resource R at its disposal per mating.

This resource is divided such that a fraction r is allocated to the male func-

tion (sperm production) leaving a fraction, (1− r), to the female function (egg

production). Sperm competition is modelled by a function φ(r) which repre-

sents the fraction of sperm an individual displaces in its mating partner’s sperm

store. Charnov [68] considered a mutant X with resource allocation r̂ in a pop-

ulation in which all individuals have resource allocation r. Upon mating the

mutant displaces a fraction of sperm, φ(r̂), in the stores of its partner, Y. When

Y next lays eggs, X fathers a fraction φ(r̂). Y goes on to mate again, almost

certainly with a wild type, as the mutant is rare. This latest mate displaces a

fraction φ(r) of Y’s sperm stores, leaving a fraction [1− φ (r)] from previous

mates. When Y lays again, X fathers an additional fraction φ(r̂)[1− φ(r)]. This

process continues as Y re-mates an infinite number of times. Thus, the fitness

of this mutant, X, from one mating is given by,

W(CM) = R (1− r̂) + R (1− r) φ (r̂)
[

1+ [1− φ (r)] + [1− φ (r)]2 + . . .
]

.

(3.3.1)

The first term in equation (3.3.1) represents the fitness from the mutant’s fe-

male function and the second term represents fitness from the mutant’s male

function. Equation (3.3.1) can be summed as a geometric series and the ESS for
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resource allocation calculated.

Charnov [68] tested three different sperm displacement functions, φ(r), and

found that the exact form of the sperm displacement function did not affect

the ESS for resource allocation. The sperm displacement functions used by

Charnov were characterised by the parameter,

δ = Rc/µ, (3.3.2)

where c is a constant which converts resource to the number of sperm deposited

in the recipient’s sperm stores and µ is the total sperm remaining in the recipi-

ents sperm stores from previous mating partners.

One sperm displacement function considered by Charnov [68] was the case

where new sperm is mixed with the stored sperm and a fair sample of this

mixture is stored, φ1(r) = δr/(δr + 1). Another sperm displacement function

considered by Charnov [68] represents the case in which sperm flows smoothly

into the sperm stores with constant mixing and flushing of new and old sperm,

φ2 (r) = 1− e−δr. The sperm stored from previous mating partners (µ) was

assumed to be constant in the investigations of Charnov [68] and a modified

version of Charnov’s model by Greeff and Michiels [69]. This is also assumed

in the harmful mating model constructed later in this chapter.

3.3.2 Finite Number of Matings Model

Greeff and Michiels [69] modified the model of Charnov [68] by considering a

hermaphrodite which took part in T reproductive bouts. It was assumed that
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the population had non-overlapping generations and reproductive bouts were

synchronous across the population. Following Charnov [68], their model as-

sumed that an individual oviposits after each mating and that resource alloca-

tion is fixed for an individual’s lifetime. Lifetime reproductive success (the total

number of offspring produced) was used as a measure of fitness.

Greeff and Michiels [69] considered a mutant with resource allocation r̂ in a

population with resource allocation r. The mutant’s fitness from female func-

tion is TR(1− r̂). The fitness from the mutant’s male function is given by,

w
(GM)
m = R(1− r)φ (r̂)

























1+ [1− φ (r)] + [1− φ (r)]2+ . . .+ [1− φ (r)]T−1+

1+ [1− φ (r)] + [1− φ (r)]2+ . . .+ [1− φ (r)]T−2+

...

1

























.

(3.3.3)

The large brackets in equation 3.3.1 do not infer a matrix, they contain a long

sum of terms where separate lines are used to aid in understanding. Starting

with the first mating, each next line in equation (3.3.3) represents male fitness

achieved through each successive mating by themutant. Equation (3.3.3) can be

summed as a geometric series. Greeff and Michiels [69] found the ESS resource

allocation by numerically searching for a strategy which cannot be invaded by

mutants. For simplicity Greeff andMichiels [69], like Charnov [68] before them,

used the approximation that the sperm storage organ already contains sperm

at the first mating. They pointed out that this approximation should become

more accurate with increasing T.
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In agreement with Charnov [68], Greeff and Michiels [69] found that sperm

displacement functions φ1(r) and φ2 (r) gave similar results in their analysis.

However, they found that φ1(r) often yielded equations solvable using stan-

dard analytical techniques and used φ1(r) in their model.

3.4 Harmful mating model

Here the sperm competition model by Greeff and Michiels [69] is extended to

include a harmful mating tactic which promotes the sperm precedence of the

sperm donor at the expense of the sperm recipient. It was found that sperm

displacement functions φ1(r) and φ2(r) gave similar results in the analysis of

our model. However, φ1(r) yielded equations which were much simpler to

solve thus the sperm displacement function, φ1(r) = δr/(δr+ 1) has been used

as a basis in the model described below.

A tactic which increases the sperm precedence of the donor should increase

the total fraction of sperm that an individual can displace in the sperm stores

of the recipient. This increase is characterised using the parameter s, where the

sperm displacement function becomes,

φ(r, s) =
r(δ + s)

r(δ + s) + 1
. (3.4.1)

An hermaphrodite with larger value of s will displace more sperm and thus

father more offspring. An s value of 0 returns φ to the Charnov [68] formula-

tion. The additive relation between δ and s proposed in equation (3.4.1) is the

simplest form that captures this interaction. For example, a multiplicative re-
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lationship would be reasonable for the large δ and s limit but not for, δ → 0,

which corresponds to no sperm displacement.

Our model considers the case where harm to the sperm recipient is a side

effect of a tactic which promotes a donor’s sperm. An example of this in nature

is the increased probability of death of females following mating [65, 66]. In

our model, when a harmful mating tactic is employed by a sperm donor there

is an associated probability of death for the sperm recipient. This possible death

occurs between mating and laying eggs.

When harmful mating tactics are not used, s = 0, the probability of survival

of a sperm recipient is unity. It is expected that an increase in the ability to

displace sperm using a harmful mating tactic, s, should result in reduced prob-

ability of survival for the sperm recipient. The probability of survival, σ(s), is a

decreasing function of s. An appropriate function relating the survival proba-

bility of sperm recipient to parameter s was selected to be,

σ(s) =

(

1

1+ s

)m

. (3.4.2)

The relationship between survival probability and s is tuned by a severity pa-

rameter m. Increasing m increases the probability of death, for any given value

of s > 0 (see figure 3.2). m therefore characterises the severity of the harmful

mating tactic, with larger m corresponding to greater severity. An example of

this is the acceleration of harm with respect to increased dose observed for a

number of different toxins [70, 71]. We chose equation (3.4.2) for mathematical

convenience but our results below do not depend on the precise form of the

survival probability.
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Figure 3.2: Survival probability of sperm recipient, σ, versus s. Plots are

shown for the severity parameter m = 0.5, 1 and 2.

A hermaphrodite’s life in our model proceeds in the following way: it mates

in both male and female function, it experiences a probability of death due to

harm it received during mating, and if the hermaphrodite survives it lays eggs.

This cycle is repeated a maximum of T times. Consider a rare mutant using the

strategy (r̂, ŝ) in a population using the strategy (r, s). If the maximum number

of matings, T = 2, the fitness of the rare mutant due to its female function is

given by,

w f (r̂, ŝ, r, s) = σ(1− r̂)R+ σ2(1− r̂)R. (3.4.3)

For ease of notation the survival probabilities are written, σ̂ = σ(ŝ) and σ =

σ(s). The first term in equation (3.4.3) is the product of the probability that the

mutant survives the first mating with a wild type to lay eggs and the resource
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the mutant has allocated to egg production. The second term is the product of

the probability that the mutant survives the first and second matings with wild

types to lay a second clutch of eggs and the resource the female has allocated to

egg production.

The fitness from the female function of a rare mutant hermaphrodite using

strategy (r̂, ŝ) in a population with strategy (r, s) is generalised for T matings

by the equation,

w f (r̂, ŝ, r, s) = R(1− r̂)
T

∑
i=1

σi. (3.4.4)

The fitness of the same mutant due to its male function, for T = 2, is given by,

wm(r̂, ŝ, r, s) =









σ̂φ̂R(1− r) + σ̂σφ̂ (1− φ) R(1− r)+

σσ̂φ̂R(1− r)









, (3.4.5)

where φ̂ = φ(r̂, ŝ) and φ = φ(r, s). The first term in equation (3.4.5) is from eggs

produced by the sperm recipient (wild type) immediately after mating with the

mutant. This is a product of the probability that the wild type survives the

mating, the fraction of sperm the mutant displaces in the wild type’s sperm

stores and the number of eggs produced by the wild type. The second term in

equation (3.4.5) is from offspring produced by the wild type after it engages in

a second mating with another wild type. Thus in order to lay eggs the wild

type needs to have survived its first and second matings. The second mating

will leave a fraction φ(r̂) (1− φ(r)) of the mutants sperm in the wild type’s

sperm stores. The third term in equation (3.4.5) is from the secondmating of the

mutant. The mutant needs to have survived its first mating in female function

in order to engage in a second mating. Thus the third term is equal to the
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first term multiplied by the probability that the mutant lives to mate a second

time. Following the models of Charnov [68] and Greeff and Michiels [69] it is

approximated that there is sperm stored at the first mating. This approximation

should be accurate for large numbers of matings or large values of δ, where

mating with an individual with no sperm stored becomes less significant. For

small number of matings and small δ the approximation becomes less accurate,

the impact of this is discussed later.

The fitness from the male function of a rare mutant using strategy (r̂, ŝ) in a

population using strategy (r, s) is generalised for T matings by the equation,

wm(r̂, ŝ, r, s) = R(1− r)φ̂σ̂
T

∑
i=1

(

σi−1
T−i
∑
j=0

σj (1− φ)j
)

. (3.4.6)

The second sum in equation (3.4.6) is over themutant’s mating partner going on

to mate (T− i) times with others in the population, weighted by the probability

that the mating partner survives to take part in the jth mating, where j > i. The

first sum in equation (3.4.6) sums the T matings of the rare mutant in question,

weighted by the probability that the mutant survives to take part in the ith

mating. Equation (3.4.6) can be summed as a geometric series.

Notice that in equations (3.4.4) and (3.4.6), fertilised egg production is not

limited by ability to get sperm, but by resource allocated to eggs. Also, male

reproductive success is limited by ability to gain access to eggs (these are the

assumptions behind Bateman’s principle [53, 72]). A consequence of these as-

sumptions is that, if there is no competing sperm, males can fertilise eggs with

vanishingly small amounts of sperm. Under these conditions, this can act as a

selection pressure for unrealistically low allocation to male function. This as-
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sumption was also used by Charnov [68] and Greeff and Michiels [69].

The total fitness W(r̂, ŝ, r, s) of a mutant individual using strategy (r̂, ŝ) in

a population using strategy (r, s) is given by the sum of its fitness from male

function and female function (equations (3.4.4) and (3.4.6)),W = w f + wm.

ESS and convergent stability were tested using themethods described above

in section 3.1. The G-function describing the evolution of the harmful mating

model described above can be written,

G(r̂, ŝ, r, s) = W(r̂, ŝ, r, s)− 1, (3.4.7)

where r̂ and ŝ represent virtual strategies and the −1 term is due to parallel

update mechanism of the model; i. e. the daughter population is derived from

parent population with no overlapping of generations.

3.5 Stability Analysis

Equilibrium strategies were determined by solving equations (3.5.1) and (3.5.2)

simultaneously subject to the constraints 0 ≤ r ≤ 1 and s ≥ 0. These equations

were solved numerically using Mathematica.

∂G(r̂, ŝ, r, s)

∂r̂

∣

∣

∣

∣

ŝ=s,r̂=r

= 0 (3.5.1)

∂G(r̂, ŝ, r, s)

∂ŝ

∣

∣

∣

∣

ŝ=s,r̂=r

= 0 (3.5.2)
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3.5.1 Interior ESS

An equilibrium is an ESS if G(r̂, ŝ, r∗, s∗) < G(r∗, s∗, r∗, s∗). This can be tested

by performing a Taylor expansion about the equilibrium,

δG ≡ G(r̂, ŝ, r∗, s∗)− G(r∗, s∗, r∗, s∗)

δr

[

∂G

∂r̂

]

∗
+ δs

[

∂G

∂ŝ

]

∗
+
1

2

[

(δr)2
∂2G

∂r̂2
+ (δs)2

∂2G

∂ŝ2
+ 2δrδs

∂2G

∂r̂∂ŝ

]

∗
+ . . .

(3.5.3)

where δr = r̂ − r∗, δs = ŝ− s∗. The notation [ ]∗ denotes that all derivatives

are evaluated at r̂ = r = r∗, ŝ = s = s∗. The first two terms on the right-hand

side of equation (3.5.3) are zero by equilibrium conditions. Equation (3.5.3) can

then be arranged in matrix form, and eigenvalues calculated. A strategy is an

ESS if eigenvalues are negative. All interior equilibria that were calculated for

the harmful mating model were ESSs.

3.5.2 Boundary ESS

The following will consider the lower boundary value for the strategy compo-

nent s as an example (s = 0), however similar reasoning (not shown) was used

to test the stability of the boundary values for the strategy component r (r = 0

and r = 1). For this case (s = 0), boundary equilibria can be calculated by solv-

ing the equilibrium equation (3.5.1) with s = 0. On substituting the equilibrium

value for r and s = 0 into the Taylor expansion in equation (3.5.3), the δr term

(first term) in equation (3.5.3) is zero due to the equilibrium condition and the
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δs term (second term) dominates. As the lower boundary value for s is being

considered it follows that, δs > 0, hence a boundary ESS must satisfy,

[

∂G

∂ŝ

]

∗
< 0 (3.5.4)

and,
[

∂2G

∂r̂2

]

∗
< 0. (3.5.5)

Some boundary equilibria for the harmful mating model were ESS some were

not, this is discussed later.

3.5.3 Interior convergent stability

Local convergent stability is tested by dispacing the population away from the

equilibrium, (r∗, s∗), then testing if the population would evolve back to the

equilibrium via the strategy dynamics given in equations (3.1.10) and (3.1.11).

This is tested by performing a Taylor expansion of the strategy dynamical equa-

tions about (r∗, s∗),

[

∂G

dr̂

]

†

=

[

∂G

∂r̂
+ δr

(

∂

∂r̂
+

∂

∂r

)

∂G

∂r̂
+ δs

(

∂

∂ŝ
+

∂

∂s

)

∂G

∂r̂

]

∗
, (3.5.6)

[

∂G

dŝ

]

†

=

[

∂G

∂ŝ
+ δr

(

∂

∂r̂
+

∂

∂r

)

∂G

∂ŝ
+ δs

(

∂

∂ŝ
+

∂

∂s

)

∂G

∂ŝ

]

∗
, (3.5.7)

where δr = (r̂ − r∗) = (r − r∗), δs = (ŝ − s∗) = (s − s∗), and the † indicates

that the derivative is evaluated at, (r̂ = r = r∗ + δr, ŝ = s = s∗ + δs). The

first terms in equations (3.5.6) and (3.5.7) are equal to zero by equilibrium con-

ditions. Equations (3.5.6) and (3.5.7) can then be written in matrix form and

convergent stability tested by eigenvalue analysis. Negative eigenvalues indi-

cate convergent stability.
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All interior equilibrium that were calculated for the harmful mating model

displayed convergent stability as well as being ESSs.

3.5.4 Boundary convergent stability

The following will consider the lower boundary value for the strategy compo-

nent s as an example (s = 0), however similar reasoning (not shown) was used

to test the stability of the boundary values for the strategy component r (r = 0

and r = 1). For this case (s = 0), boundary equilibria can be calculated by solv-

ing the equilibrium equation (3.5.1) with s = 0. On substituting the equilibrium

value of r and s = 0 into the Taylor expansions in equations (3.5.6) and (3.5.7),

the first term on the right hand side of equation (3.5.6) goes to zero due to the

equilibrium condition.

Perturbations away from the lower boundary value of s can only be positive,

thus the equilibrium shows convergent stability if,

[

∂G

∂ŝ

]

∗
< 0 (3.5.8)

and,
[(

∂

∂r̂
+

∂

∂r

)

∂G

∂r̂

]

∗
< 0. (3.5.9)

Some boundary equilibria for the harmful mating model demonstrated con-

vergent stability some did not. Though all boundary equilibria which were

ESSs also demonstrated convergent stability and all boundary equilibria that

were not ESS did not demonstrate convergent stability. Thus, for the parame-

ters tested the harmful mating model only displays CSS and invasible repellor
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points (see table 1.3).

3.6 Results and Discussion

The stability of harmful mating tactics was investigated by varying the param-

eters T (number of matings), δ (a measure of ability to displace sperm without

harmful mating tactic, see equation (3.3.2)) and m (severity of harmful mating

tactic). Analysis showed three possible outcomes; not using harmful mating

tactics is the ESS, using harmful mating tactics is the ESS and no viable ESS. A

phase diagram for the outcomes (for constant T) is plotted in figure 3.3.

In the region of figure 3.3 marked ‘no harm’, there is a unique boundary

ESS (r∗ > 0, s∗ = 0) that also shows convergent stability. Harmful mating tac-

tics cannot evolve in this region. In the region of figure 3.3 marked ‘harm’,

boundary points (s = 0) are not an ESS, however there exists a unique ESS,

(r∗ > 0, s∗ > 0), which shows convergent stability. In this region, rare mutants

that use harmful mating tactics will always invade a resident population where

harm is absent. One possible biological consequence of these inferences is that

polymorphism for ‘harm’/‘no harm’ is an unstable condition, and so will tend

not to persist.

Following mating with an individual using the ESS, s∗, the probability an in-

dividual survives, σ(s∗), can be found by substituting the ESS s∗ and the model

parameter m into equation (3.4.2). Figure 3.4 plots the survival probability per

mating in a population using the ESS, σ(s∗), as a function of the model parame-

54



0 1 2 3 4 5 6
m

0

0.5

1

1.5

2

∆

no harm ESS

harm ESS

no viable ESS

Figure 3.3: For number of matings T = 4, this figure shows the ESS phase

diagram for parametersm, severity of harmful mating tactic, and δ.

In the region marked ‘no harm’, not using harmful mating tactics is

the ESS. In the region marked ‘harm’, using harmful mating tactics

is the ESS. In the region marked ‘no viable ESS’ r∗ → 0 so sperm

competition ceases.
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ter δ for two different values of T (the parameter denoting the maximum num-

ber of matings) and m = 1. The survival probability is unity when ‘no harm’

is an ESS (s∗ = 0). When δ ∼ 0.8, there are discontinuities in the curves and

survival probability drops rapidly. This is because the use of a harmful mating

tactic (s∗ > 0) is now an ESS (see figure 3.3 at m = 1). As δ decreases, a herm-

aphrodite’s ability to displace sperm without the use of the harmful mating

tactic decreases. It then becomes necessary for a hermaphrodite to escalate the

use of the harmful mating tactic to increase sperm displacement. This occurs at

the expense of its mating partner’s probability of survival. An interesting out-

come is that the parameter T has little effect on the ESS level of harmful mating

tactic, s∗, possibly because the mean lifespan, given by (1− σ (s))−1, doesn’t

allow most individuals to complete T matings when harmful mating tactics are

present.

For finite numbers of matings Greeff and Michiels [69] observed that de-

creasing δ resulted in an increased resource allocation to male function r∗. They

noticed an exception for small δ and T, when r∗ → 0. This was attributed to the

poor ability to displace rival sperm from the receiver’s sperm storage organ.

The ESS resource allocation (r∗) from our analysis is plotted as a function of δ in

figure 3.5. A discontinuity is again observed at value of δ ∼ 0.8 and coincides

with s∗ becoming greater than zero. It was observed that as δ tends to zero the

ESS resource allocation for T > 2 converges. This coincides with similar val-

ues of s∗ for different T, and the mean lifespan of individuals becoming shorter

than that required to complete T matings.
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Figure 3.4: Survival probability in a population using the ESS level of harm,

σ(s∗), versus δ. Plots shown for number of matings, T = 4 and 20.

The severity parameter m = 1, for both plots.
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Figure 3.5: ESS resource allocation, r∗, versus δ. Plots shown for number of

matings, T = 2, 4, 10 and 20. The severity parameter m = 1, for all

plots.

Figure 3.5 shows that harmful mating tactics should lead to a distinctly fe-

male biased resource allocation strategy, contrasting markedly with the conclu-

sions of Greeff andMichiels [69], who found that for large number of matings T

and small δ, the resources allocated between male and female function tend to

approach equality (r∗ → 0.5). One of the main conclusions of their paper may

therefore only apply to hermaphrodites where harmful mating tactics are ab-

sent. This contrast can be understood by looking at what happens to the ability

to displace sperm, measured by (δ + s∗), when the use of harmful mating tactics

becomes stable. Once the use of harmful mating tactics become stable, decreas-

ing the parameter δ actually results in an increase in the potential amount of
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sperm which can be displaced, (δ + s∗). The intuitive explanation for this is

that if sperm displacement is made more efficient by harmful mating tactics,

then the ESS returns to a more female biased resource allocation strategy. In

addition, increased mortality rates due to harmful mating should reduce r∗, as

mortality decreases the return from male function [68].

Calculating the sperm displacement function φ(δ, r∗, s∗), from the ESS val-

ues r∗ and s∗ for a given set of model parameters (δ, T,m), gives the fraction

of offspring fathered by the last male mating partner. Close to the boundary

between ‘harm’ and ‘no harm’ in Figure 3.3, φ (δ, r∗, s∗) is typically around 0.1

to 0.3, marking the largest values for which harmful mating can invade a pop-

ulation. Deep inside the region where harmful mating tactics are an ESS (small

m, small δ), φ (δ, r∗, s∗) increased to values of 0.3 to 0.6. This may therefore in-

dicate that harmful mating tactics are likely to initially evolve in populations

where the first mate gains most fertilisation, but can lead to last male sperm

precedence. Decreasing the severity parameter of the harmful mating tactic

(decreasing m), was found to have a marked impact on sperm displacement,

following the invasion of harmful mating tactics (Figure 3.6). In comparison

the parameter T was found to have a very small effect, with large T resulting in

larger values of φ (δ, r∗, s∗) (not shown). This is a result of r∗ and s∗ not varying

much with T, as explained above.

If ability to displace sperm in a partner is low, (δ + s) is small, many fu-

ture laying events are required by a sperm donor’s partner to compensate for

59



0 0.5 1 1.5 2
∆

0

0.1

0.2

0.3

0.4

0.5

0.6

Φ

0.5

1

2

Figure 3.6: ESS sperm displacement, φ(δ, r∗, s∗), versus δ. Plots shown for

the severity parameter of harmful mating tactic; m = 0.5, 1 and 2.

Number of matings T = 4, for all plots.
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this high investment, otherwise investment in the female function would yield

higher fitness. However, if the subsequent number of laying events isn’t suffi-

cient to make investment in the male function profitable, the ESS for resource

allocation to male function can tend to zero. If this occurs then it follows that

φ (δ, r∗, s∗) tends to zero, thus sperm competition ceases. This unrealistically

low allocation to male function is a consequence of the approximations used in

constructing ourmodel. When displacing rival sperm is difficult (δ is small) and

the number of matings is small, fitness due to mating with an individual with

no sperm stored should become more significant. Our model approximates

there to be sperm stored at the first mating and that production of fertilised eggs

is not limited by the availability of sperm. Thus, when T and (δ + s) are both

small the individual is better off investing all in female function and r∗ → 0.

This marks the limit in the validity of our approximations.

The ESS is for no resource allocated to the male function (r∗ → 0) on the

boundary of the ‘no viable ESS’ region (figure 3.3) and is equal to zero inside

this region. This is because the return in paternity due to a finite number of

matings, T, is insufficient and a hermaphrodite is better off investing all in fe-

male function. Increasing T shifts the boundary of the ‘no viable ESS’ region in

Figure 3.3 to lower values of δ and higher values of m. In the limit that T tends

to infinity the ‘no viable ESS’ region disappears for a plot equivalent to figure

3.3. r∗ → 0 was also observed by Greeff and Michiels [69]. They observed that

for finite T, resource allocation to male function tends to zero for small δ and

small T. In the limit that T tends to infinity r∗ tends to 0.5 for small δ [68].
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The fitness of a population using a particular ESS strategy (r∗, s∗) can be

calculated by substituting, r̂ = r = r∗ and ŝ = s = s∗, into the equation for total

fitness,W. This gives the fitness in units of the resource available per individual

per mating, R. If a species is competing with other species for the same resource

under density dependent selection, then the growth rate of each will ultimately

determine success or extinction.

Our model assumes the number of eggs to be the limiting factor in popu-

lation growth, thus greater allocation to female function would be expected to

increase the fitness of the population. Perhaps surprisingly, the model instead

shows that harmful mating tactics more than compensate. Thus, although re-

source allocation may be female biased, this heavy bias makes little difference

to the overall fitness of a population once harm invades, especially when δ is

small, or similarly, when the severity parameter for the harmful mating tactic

is low (m < 0.5) (Figure 3.7). Nonetheless, the fitness per mating when harm

is present is considerably less than when harm is absent (Figure 3.7). In con-

sequence, species that compete under density dependent selection may be at a

disadvantage when harmful mating tactics are present.
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Figure 3.7: Fitness (W) calculated for resident population at ESS, (r∗, s∗) ver-

sus δ. Fitness is in units of resource per mating, R. Plots shown

for severity parameter of harmful mating tactic, m = 0.5, 1 and 2.

Number of matings T = 4, for all plots.
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3.7 Conclusions and future investigations

The majority of the inferences from the harmful mating model are reassuring in

that they are in keeping with what might be expected based on intuition. It was

found that harmful mating in hermaphrodites is likely to be associated with

species in which sperm precedence strongly favours the first mate. Our model

predicts that this criterion becomes less important as harmful mating tactics

become more efficient. This was explicitly pointed out by [54, 56]. Harmful

mating tactics enable the sperm donor to increase its sperm precedence, and

can lead to last male sperm precedence for very efficient harmful mating tactics.

In contrast to the conclusions of previous work that did not include harmful

mating [69], the model indicates that when harm is also considered, hermaph-

rodites may again return to a female biased resource allocation strategy, partly

because sperm displacement is made more efficient by harmful tactics. Perhaps

the most surprising inference is that harmful mating tactics more than compen-

sate in these circumstances, so leading to a reduced fitness. Hermaphrodites

that use harmful mating tactics may therefore be at a disadvantage when com-

peting with other species for a limited resource.

The game theoretical approach used in this chapter also provides a useful

example of modelling the coevolution of traits. There are many empirical stud-

ies of traits that coevolve in natural populations, however, game theoretical

models which analyse the coevolution of multiple traits (using vector strate-

gies) are comparatively rare. Similar techniques to those used in this chapter
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could be applied to other coevolutionary traits.
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CHAPTER 4

Sustainability of Dioecious and

Hermaphrodite Populations on a

Lattice

4.1 Introduction

Dioecy describes sexually reproducing plant species in which there are two dis-

tinct sexes, male and female. One individual of each sex is required for repro-

duction. The equivalent mating system in animal species is referred to as gono-

chorism. In contrast to dioecy and gonochorism, simultaneous hermaphrodites

have the ability to reproduce in female and male roles simultaneously.

The Allee effect describes a positive relationship between individual fitness

and the density of conspecifics (members of the same species) [73]. By far, the

most cited cause of the Allee effect is the difficulty of finding mates in sexually
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reproducing species [74]. The most typical single-sex (hermaphrodite) model

of the Allee effect [75] is represented by,

dh

dt
= a1h(h− a2)(a3 − h), (4.1.1)

where h is the population density, and a1, a2 and a3 are positive constants (a2 <

a3). Equation (4.1.1) has three equilibria; h = 0 and h = a3 are stable, h = a2

is unstable. Below the threshold h = a2 the population converges on h = 0, so

becomes extinct. Above the threshold h = a2 the population converges on the

stable equilibrium, h = a3.

It can be shown that hermaphroditism is a more successful mating strategy

than dioecy when the probability of encountering a mate is low. Consider a

female in a dioecious population with a one to one ratio of females to males, at

each encounter with another individual, the female meets a male with proba-

bility 1/2. In a hermaphrodite population, every encounter of a hermaphrodite

would be with a compatible mating partner. All else being equal (encounter

rate, number of off-spring produced per mating pair), the hermaphrodite pop-

ulation can reproduce at twice the rate of the dioecious population. This rea-

soning provides support for the observation that hermaphroditism is often as-

sociated with sedentary species, such as plants and animals with poor mate

search efficiency [76].

Stochastic spatial models have been extensively applied to chemical, ecolog-

ical and sociological systems [77, 78]. The Standard Contact Process (SCP) can

be used to model populations that reproduce asexually. In the SCP lattice sites

can be occupied or vacant. Individuals die at a rate λ and give birth at a rate b.
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Offspring are placed on a neighbouring site with probability defined by some

displacement kernel.

In the Quadratic Contact Process (QCP) [77], an occupied state becomes va-

cant at a rate λ, the same as in the SCP. However, in the QCP it takes two par-

ticles to make a new one. For this reason the QCP is often referred to as the

“sexual reproduction process”. A vacant site becomes occupied at a rate j/4,

where j is the number of diagonally adjacent pairs of occupied neighbours.

The SCP and QCP are often identified as Schlögl’s 1st and 2nd models for

autocatalytic kinetics, respectively [79]. For the 1st model, Z → 2Z and Z → ⊘;

for the 2nd model, 2Z → 3Z and Z → ⊘, where Z → ⊘ denotes the anni-

hilation of a particle. The mean-field kinetics are quadratic (cubic) for the 1st

(2nd) model suggesting a continuous (discontinuous) transition to the absorb-

ing state, ⊘. The mean-field kinetics of the QCP can lead to equation (4.1.1).

A special feature of the QCP is that if a population is contained inside a rect-

angle it can never give birth outside the rectangle [77]. This is because an empty

site needs at least two diagonally adjacent nearest neighbours to become occu-

pied. For lattices of finite size, this feature also means that complete columns

or rows of empty sites in the lattice cannot become occupied.

To assess the impact of these finite size effects, another spatial model similar

to the QCP described above is introduced here and will be referred to as the

modified Quadratic Contact Process (MQCP). For the MQCP a hermaphrodite

(female) produces offspring with rate proportional to the number of occupied
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(male) neighbouring sites. An offspring is placed on a randomly chosen neigh-

bouring site. If the site is empty the offspring takes residence. If the site is

occupied the offspring is deleted. This model is based on the sexual reproduc-

tion model of Stewart-Cox et al. [80] and has the advantage that a population

can grow outside a rectangle in which it is contained.

In this chapter, a comparison of the sustainability of hermaphrodite and

dioecious populations is presented. Comparisons of the two mating systems

are made using the QCP and MQCP simulations along with mean-field analy-

ses of each model.

4.2 Models

All populations reside on a two-dimensional square lattice of side length L,

with periodic boundary conditions. For a hermaphrodite population, each lat-

tice site can be occupied by a hermaphrodite (H) or be empty (⊘). For a dioe-

cious population each lattice site can be occupied by a male (M), a female (F) or

be empty (⊘). For both mating systems, an occupied state becomes vacant at a

rate λ (deathrate).

In the hermaphrodite QCP, a vacant site becomes occupied at rate equal to

j1b1/4, where j1 is the number of diagonally adjacent pairs of occupied neigh-

bours and b1 is the birth rate. Thus, j1 = 0,0,2 and 4 for 0, 1, 3 and 4 occupied

nearest neighbour sites respectively. j1 = 1 (0) for two occupied nearest neigh-

bours which are diagonally adjacent (on opposite sides of the vacant site).
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In the dioecious QCP, a vacant site becomes occupied at rate equal to j2b2/4,

where j2 is the number of compatible diagonally adjacent pairs of occupied

neighbours and b2 is the birthrate. Thus, an (M,M) or (F, F) diagonally adja-

cent pair does not increment j2. The gender of the offspring is set to male with

probability α and female with probability (1− α).

In the hermaphrodite MQCP, an occupied site produces an offspring at a

rate equal to k1b3/4, where k1 is the number of occupied nearest neighbours

and b3 is the birth rate. A nearest neighbour site is chosen randomly to place

the offspring on. If the chosen site is empty the offspring is placed on the site.

If the site is occupied the offspring is deleted.

In the dioecious MQCP, a female site produces an offspring at a rate equal

to k2b4/4, where k2 is the number of male nearest neighbours and b4 is the

birth rate. A nearest neighbour site is chosen randomly to place the offspring

on. If the chosen site is empty the offspring is placed on the site. If the site

is occupied the offspring is deleted. The gender of the offspring is set to male

with with probability α and female with probability (1− α).

There exists a subtle difference between theMQCP andQCP. Letting b1 = b2

in the QCP, a hermaphrodite pair of diagonally adjacent neighbours are capa-

ble of producing offspring at the same rate as a male-female pair of diagonally

adjacent neighbours. Letting b3 = b4 in the MQCP, a hermaphrodite pair of

nearest neighbours can produce offspring at twice the rate of a male-female

pair of nearest neighbours. For example, consider an isolated pair of nearest

neighbours, both members of the hermaphrodite pair can produce offspring at
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a rate b3/4 where as only the female can produce offspring in the dioecious pair,

she does this at a rate b4/4. Thus, the MQCP proposes a fourfold advantage of

hermaphrodite over dioecious populations. Letting b3 = b4, the MQCP pro-

poses that a female and a hermaphrodite can produce offspring at equal rates

provided a mating partner is in the vicinity. Depending on the species in ques-

tion, either assumption may be valid. Fortunately, scaling the reproductive val-

ues appropriately can overcome this difference. For example, letting b1 = 2b2

in the QCP, proposes that females and hermaphrodites produce offspring at the

same rate provided a mating partner is available. Letting b4 = 2b3, proposes

that a hermaphrodite pair produce offspring at an equal rate to a male-female

pair in the MQCP.

4.3 Mean-field analysis

4.3.1 Hermaphrodite population

The mean-field kinetics for the hermaphrodite population QCP are given by,

dh

dt
= −λh+ b1h

2(1− h), (4.3.1)

where h is the density of hermaphrodites residing on the lattice. The reader

can substitute b1 = 3b3/4 for a description the the mean-field behaviour in the

MQCP hermaphrodite model. Equilibrium points for equation (4.3.1) are plot-

ted in figure 4.1 as a function of b1/λ. By appropriate scaling of time (τ = λt),

the number of parameters in equation (4.3.1) can be reduced to one (b1/λ) .
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Thus, figure 4.1 is unique for a given value of b1/λ. Two non-trivial equilib-

ria (one node, one repellor) exist for b1/λ > 4. We will refer to this as the

survival/extinction phase. If the initial population density is below the unsta-

ble equilibrium, growth is negative and the population converges on the trivial

equilibrium, h = 0. If the initial population density is above the unstable equi-

librium the population converges on the stable non-trivial equilibrium. Only

the trivial equilibrium exists for b1/λ < 4, thus extinction of the population

always occurs.
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Figure 4.1: Mean-field approximation equilibrium densities for; QCP herm-

aphrodite (�), QCP dioecious (△), MQCP hermaphrodite (×) and

MQCP dioecious (+). The gender ratio of new born offspring

α = 1/2 for the dioecious populations. Solid (dashed) lines rep-

resent stable (unstable) equilibria.
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4.3.2 Dioecious population

The mean-field kinetics of the dioecious QCP are given by,

dm

dt
= −λm+ 2b2mf (1−m− f )α (4.3.2)

d f

dt
= −λ f + 2b2mf (1−m− f )(1− α) (4.3.3)

where m and f are the densities of males and females respectively. The reader

can substitute b2 = 3b4/8 into equations (4.3.2) and (4.3.3) for a description

of the the mean-field behaviour for the MQCP dioecious model. Equations

(4.3.2) and (4.3.3) have two non-trivial equilibria (one saddle point, one node)

for b2(1− α)α > 2λ . If the initial population density is sufficiently low, growth

is negative and the population converges on the trivial equilibrium, (m = 0, f =

0). If the initial population density is sufficiently high the population converges

on the stable non-trivial equilibrium. Typical population dynamics for this sys-

tem is shown in figure 4.2. Only the trivial equilibrium exists for b2(1− α)α <

2λ, thus extinction of the population always occurs.

It has been shown previously [81] that the sex ratio, α = 1/2, is the most

sustainable. Figure 4.1 shows a comparison of the equilibrium points for the

single and dioecious populations with α = 1/2. For the dioecious population

the equilibrium densities for males and females are summed to demonstrate

the size of the total population at equilibrium.

It was explained in the introduction that, if all else is equal, a hermaphrodite

population is expected to grow at twice the rate of a dual sex population in the

QCP. If we let b2 = 2b1, the single and dual sex curves in figure 4.1 overlap
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Figure 4.2: Mean-field approximation for QCP: typical dynamics for a pop-

ulation of males and females. Plot shown for b2 = 1.0, λ = 0.1,

α = 0.5. Showing the stable equilibrium (filled circle) and unstable

equilibrium (empty circle). The dashed lines are a projection of the

stable (m+ f ≈ 0.85) and unstable (m+ f ≈ 0.1) equilibria for the

hermaphrodite population with the same birth and death rates.
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for the QCP. It was also explained in the introduction that the hermaphrodite

population can grow at four times the rate of the dioecious population in the

MQCP model. If we let b4 = 4b3, hermaphrodite and dioecious curves in fig-

ure 4.1 overlap for the MQCP. As shown by figure 4.2 deviations away from

the optimum sex ratio of 1/2 can hinder the growth of the population. This

can have great effect when considering discrete spatial populations with local

interactions.

4.4 Results of lattice simulation

Previous simulations [82, 83] have shown that the QCP exhibits a discontinu-

ous phase transition between an active state (finite population) and an absorb-

ing state (extinction). It was also shown that coexistence of stable active and

absorbing phases occurs over a finite parameter space. For any parameter set

(λ, b) in this coexistence region, “droplets” of the absorbing state embedded in

the active cannot grow indefinitely but rather die out, even though the the ab-

sorbing state is stable. Similarly, “droplets” of the active state embedded in the

absorbing state are short lived.

Figure 4.3 plots population density in the hermaphrodite QCP and MQCP

models as a function of b/λ. For each point in the plot the population was ini-

tialised with a full lattice and evolved for 103 generations. The densities plotted

are averaged over the last 103 Monte Carlo Steps (MCSs) of the simulation,

where 1 MCS = L2 site selections. A transition from a stable active phase to
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a stable absorbing phase occurs at b1/λ ≈ 11. The location of the QCP tran-

sition is in agreement with previous simulations [82, 83] that have shown the

coexistence region between b1/λ ≈ 10.5 and b1/λ ≈ 11.5 for the QCP. As all

simulations in figure 4.3 were initialised with a fully populated lattice only the

stable active state of the coexistence region was observed.
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Figure 4.3: Hermaphrodite population density after 103 generations for lattice

simulation of QCP (�) and MQCP (×). L = 100.

For the MQCP a transition from a stable active phase to stable absorbing

phase occurs at b3/λ ≈ 6 (figure 4.3) . This is in contrast to the mean-field

approximation, which predicts that the transition in the MQCP model should

occur at a larger value of b/λ larger than in the QCP (see figure 4.1). These

results demonstrate that the finite size effects specific to the QCP do have a

significant impact on stability.

76



Investigations of the dynamics of the interface between active and absorbing

states in the QCP [82, 83] showed that the active phase grows fastest (recedes

slowest) for an interface orientation of 45◦ to the rows of the square lattice. This

rate of growth (reduction) decreases (increases) as the angle of orientation is

changed from 45◦. For an interface orientation of 0◦ or 90◦ to the lattice rows,

the active state cannot invade the absorbing state. This is because an empty site

needs at least two diagonally adjacent nearest neighbours to become occupied.

This results in the feature that if a population is contained inside a rectangle it

can never give birth outside the rectangle [77] and for lattices of finite size, com-

plete columns or rows of empty sites cannot become occupied. For an interface

orientation of 0◦ or 90◦, in the MQCP, the active state can invade the absorbing

state. This is expected to be the reason for the contrast between simulation and

mean-field behaviour in the QCP and MQCP.

Due to finite size effects, analysis of size dependent behaviour is required

to accurately determine the stability regions [82, 83]. The exact values of these

parameters are not calculated here but the stability of the two phases is clarified

by plotting waiting time to extinction of the population as a function of lattice

size L (figures 4.4 and 4.6). Each point in figures 4.4 and 4.6 is the mean wait-

ing time to extinction from 100 simulation runs; each run was initialised with

a fully occupied lattice and lattice sites were set to male with probability 0.5

for dioecious models. Figure 4.4 shows that in the stable active phase extinc-

tion time increases exponentially with L. The solid lines in figure 4.4 are least
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squares fits for the data, their equations are given by;

τ = exp[2.98+ 0.471L], for QCP hermaphrodite, (4.4.1)

τ = exp[2.02+ 0.263L], for QCP dioecious, (4.4.2)

τ = exp[−192+ 1.00L], for MQCP hermaphrodite, (4.4.3)

τ = exp[0.802+ 0.450L], for MQCP dioecious, (4.4.4)

where τ = λt is referred to as the time in generations (t is in Monte Carlo steps).
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Figure 4.4: The natural logarithm of waiting time to extinction plotted against

length of lattice side L, for: QCP hermaphrodite (�) with b1/λ =

11, QCP dioecious (△) with b2/λ = 300, MQCP hermaphrodite

(×) with b3/λ = 7, and MQCP dioecious (+) with b4/λ = 120. The

fitted lines are given by equations (4.4.1)–(4.4.4)
.
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Figure 4.5: Waiting time to extinction plotted against length of lattice side L

for the results shown in figure 4.4.

In the stable absorbing phase, figure 4.5 shows that the extinction time in-

creases logarithmically with L. The solid lines in figure 4.4 are least squares fits

for the data, their equations are given by;

τ = 11.2+ 18.4 ln (L) , for QCP hermaphrodite, (4.4.5)

τ = −101+ 62.0 ln (L) , for QCP dioecious, (4.4.6)

τ = −119+ 85.1 ln (L) , for MQCP hermaphrodite, (4.4.7)

τ = −119+ 85.1 ln (L) , for MQCP dioecious. (4.4.8)

Figure 4.8 plots the population density (m+ f ) as a function of b/λ for the

dioecious population. A discontinuous phase transition between the active and
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Figure 4.6: Waiting time to extinction plotted against the natural logarithm of

length of lattice side L, for: QCP hermaphrodite (�) with b1/λ = 9,

QCP dioecious (△) with b2/λ = 100, MQCP hermaphrodite (×)

with b3/λ = 6, and MQCP dioecious (+) with b4/λ = 100. The

fitted lines are given by equations (4.4.5)–(4.4.8).
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Figure 4.7: Waiting time to extinction plotted against length of lattice side L

for results shown in figure 4.6.

absorbing states is observed at b2/λ ≈ 300 for the QCP and b4/λ ≈ 100 for the

MQCP. Givenmore time, the twoQCP points at densities close to 0.3 fall to zero.

These slow relaxations close to the transition were also observed by Tainaka [81]

and may be due to a metastable region, similar to the one observed for the QCP

[82, 83]. Again, the stability of the two phases were clarified by plotting waiting

time to extinction of the population as a function of lattice size L (figures 4.5 and

4.7). These results demonstrate that, as expected, finite size effects specific to

the QCP do have a significant impact on the stability of dioecious populations

on a lattice.

The transition from the active to absorbing phase in the QCP occurs at a

value of b/λ 30 times larger in the dioecious population than the hermaph-
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Figure 4.8: Sum of male and female densities,m+ f , versus b/λ after 103 gen-

erations for QCP (△) and MQCP (+). Each value of b/λ is ini-

tialised with a fully populated lattice where each lattice site was set

to male with a probability 0.5. The densities plotted were averaged

over the last 103 MCS of the simulation. L = 100.
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rodite population (figures (4.3) and (4.8)). The transition from the active to ab-

sorbing phase in the MQCP occurs at a value of b/λ 15 times larger in the dioe-

cious population than the hermaphrodite population (figures (4.3) and (4.8)).

These results demonstrate more drastic differences between the hermaphrodite

and dioecious mating systems than predicted by mean-field analysis (see figure

4.1). If birth rates were scaled such that hermaphrodites and females produce

the same number of offspring (b4 = 2b3), all else being equal, this would cor-

respond to a transition from absorbing to active state at a value of b/λ ≈ 7.5

times larger in the dioecious MQCP model than the hermaphrodite MQCP.

Though the models predict different values for the advantage of single sex

over dioecious populations on a lattice, both models suggest that a hermaph-

rodite population is stable over a large range of low birth rates for which a dioe-

cious population is not sustainable. The relatively large birth rates required to

sustain a dioecious population are likely to be due to local variation in the con-

centration of (M−M) or (F − F) pairs of cells, which hinder the birth process.

As offspring are placed on nearest neighbour sites, areas with an optimum sex

ratio (1/2) cannot compensate for areas with a poor sex ratio (close to 0 or 1).

This can aid the propagation of the absorbing state. The observed advantage

of hermaphroditism at low birth rates could contribute to the success of the

hermaphrodite mating system in sedentary species. This provides additional

support for the observations that hermaphroditism should be associated with

sedentary species, such as plants and animals with poor mate search efficiency

[76].
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4.5 Conclusions and Future Investigations

By means of stochastic spatial simulations we have shown hermaphrodite pop-

ulations can be sustainable at birth rates much smaller than the birth rates re-

quired for a sustainable dioecious population. This implies that a hermaph-

rodite population has a much greater reproductive advantage over a dioecious

population than the the two-fold difference predicted by mean-field analysis.

This result provides even greater theoretical support for the observations that

hermaphroditism should be associated with sedentary species, such as plants

and animals with poor mate search efficiency.

Extinction is an increasing concern worldwide. One of the central problems

in conservation biology is to discover factors that influence the sustainability of

populations. Knowledge of these factors could help in the introduction or rein-

troduction of populations in to habitats, and to eliminate pests. As explained

earlier in this chapter, the Allee effect in a deterministic model predicts a critical

population density above which the population grows to a stable equilibrium

and below which the population becomes extinct. Similar effects have been ob-

served in both macroscopic [84] and microscopic [85] stochastic models of the

Allee effect in hermaphrodite populations. Knowledge of critical population

numbers, required for a species to survive, may be of great use in conservation

biology. Given the differences between dioecious and hermaphrodite popula-

tions observed in the simulations in this chapter, a valuable investigation would

be to determine critical population numbers for dioecious populations, above

84



which the population can grow to fill an environment.
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CHAPTER 5

Evolution of Gynodioecy

5.1 Introduction

Gynodioecy is a breeding system in plants where populations consist of herm-

aphrodite and female individuals. It is both a common and widespread poly-

morphism describing approximately 7% of all flowering plants [86], which in-

cludes species of ecological and economic interest. Gynodioecy is also an ex-

cellent system for studying the interplay of genetic architecture and ecology in

evolution [87].

Gynodioecy occurs as a result of a genetic mutation which impairs pollen

production in hermaphrodite plants. Genetic mutations can impair pollen pro-

duction in several ways but still allow normal female reproduction [88]. The ge-

netic basis for male sterility can significantly affect whether a mutation for male

sterility can become established. Nuclear genes are inherited through both par-

ents whereas cytoplasmic genes are only inherited from the mother. It has been
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shown that females would need to be at least twice as fertile as hermaphrodites

(produce twice as many offspring) for a nuclear male sterility gene to become

established [89]. However, cytoplasmic male sterility can become established

when the fertility of the female is only slightly larger than that of the hermaph-

rodite [89]. This is because a cytoplasmic gene is not inherited through male

function and hence has nothing to lose if pollen production is stopped. In some

species, male sterility is complicated futher by the evolution of restorer genes

which suppress the deleterious effects of cytoplasmic male sterility [90].

Most previous models of inherited male sterility assume that female fitness

is dependent on the number of pollinators in the environment and hermaph-

rodite fitness is independent of availability of pollinators because hermaph-

rodites could self-fertilise [89, 91]. However, if the case of a self-incompatible

species is considered, cytoplasmic inherited male sterility is only stable if herm-

aphrodite and female fertility are exactly equal [92]. In this unlikely case it

would be difficult for the cytoplasmic mutation to invade from small frequen-

cies as it is neutral in terms of selection. For the case of cytoplasmic male steril-

ity in out-crossing hermaphrodites, it was shown that if female fertility is larger

than hermaphrodite fertility, females will spread until scarcity of pollen causes

the population to become extinct [93].

A spatial model of cytoplasmic male sterility in self-incompatible hermaph-

rodites [93], showed behaviour vastly different from the predictions of non-

spatial models. Where non-spatial models predicted that invasion of females

would lead to extinction of the population (female fertility > hermaphrodite
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fertility), the spatial model [93] instead displayed stable nodes, foci, limit cy-

cles or extinction depending on the relative fertility of females to hermaph-

rodites. This demonstrated that cytoplasmic male sterility can evolve in self-

incompatible hermaphrodite populations.

In this chapter, the evolution of male sterility due to a dominant allele in a

nuclear gene is investigated by use of stochastic spatial simulation and mean-

field approximation. The conditions necessary for male sterility to evolve are

calculated along with equilibrium frequency of females in the population. A

knowledge of the equilibrium frequency of females may be of use when com-

paring the results of breeding experiments with observations of female fre-

quency in the wild.

In section 5.2 the Modified Quadratic Contact Process (MQCP), which was

introduced in chapter 4, is extended to model a population of females and self-

incompatible hermaphrodites. Mean-field analysis (section 5.3) and stochastic

spatial simulation (section 5.4) are used to investigate the conditions necessary

for nuclear male sterility to evolve and the equilibrium frequency of females in

the population. The MQCP demonstrates behaviour in agreement with previ-

ous spatial simulations [93] for the case of cytoplasmic male sterility.

5.2 Model

The population resides on a two-dimensional square lattice of side length L,

with periodic boundary conditions. Each lattice site can be occupied by either
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a self-incompatible hermaphrodite (H), a female (F) or be empty (⊘). An occu-

pied site becomes vacant at a rate λ, the death rate. The death rate is considered

to be equal for hermaphrodites and females for the purposes of this model.

A hermaphrodite produces an offspring at a rate equal to jκ1/4, where j is

the number of nearest neighbour sites occupied by hermaphrodites and κ1 is the

birth rate. A nearest neighbour site is then chosen randomly. If the chosen site

is empty the offspring is placed on the site. If the site is occupied the offspring is

deleted. Similarly, a female produces a hermaphrodite offspring at a rate, jκ2/4,

and a female offspring at a rate, jκ3/4. Thus, a female produces offspring at a

total rate, j(κ2 + κ3)/4.

Genetics can be explicitly defined in this model for the case of a dominant

allele in a nuclear gene that causes male sterility, or a cytoplasmic gene that

causes male sterility. Consider a dominant nuclear allele for male sterility, B1.

Thus, B1B2 = female, and, B2B2 = hermaphrodite. Since females produce no

pollen, no homozygous B1B1 individuals are formed and there are only two

genotypes in the population [89]. κ2 6= κ3, represents the case of differential

mortality between male and female offspring due to their own sex genotypes

[94].

The case of cytoplasmic male sterility is modelled by setting κ2 = 0. Hence,

females always produce females and the hermaphrodite population is not in-

creased through mating with females.
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5.3 Mean-field Analysis

The mean-field kinetics of the hermaphrodite and female populations are de-

scribed by,

dh

dt
= h

[

−λ +
3 (hκ1 + fκ2) (1− h− f )

4

]

(5.3.1)

d f

dt
= f

[

−λ +
3hκ3 (1− h− f )

4

]

(5.3.2)

where h and f are the densities of hermaphrodites and females respectively. By

scaling time (τ = λt), the system can be simplified by introducing the parame-

ters; K1 = 3κ1/4λ, K2 = 3κ2/4λ and K3 = 3κ3/4λ.

In the following mean-field analysis, the case of nuclear male sterility (K1 >

0, K2 > 0 and K3 > 0) will be considered first and the case of cytoplasmic male

sterility (K1 > 0, K2 = 0 and K3 > 0) will be considered second.

5.3.1 Nuclear male sterility.

Equilibria for equations (5.3.1) and (5.3.2) were found by setting the time deriva-

tive equal to zero, then solving the resulting two equations simultaneously. The

nature of these equilibria was characterised by linear stability analysis of the

system of equations (5.3.1) and (5.3.2). As h ≥ 0, f ≥ 0 and h + f ≤ 1, the

region of interest on the (h, f )-plane is the triangle with vertices (h = 0, f = 0),

(h = 1, f = 0) and (h = 0, f = 1). The trivial equilibrium (h = 0, f = 0) is sta-

ble provided λ > 0. For (K1 > 0,K2 > 0,K3 > 0), equations (5.3.1) and (5.3.2)

have four equilibria besides the trivial one. Two equilibria are located on the
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( f = 0)-boundary with,

h2 =
1

2

(

1−
√

K1 − 4
K1

)

, (5.3.3)

h3 =
1

2

(

1+

√

K1 − 4
K1

)

. (5.3.4)

The remaining two equilibria are,

h4 =
K2K3 −

√
A

2K3 (K2 + K3 − K1)
, (5.3.5)

f4 =
(K3 − K1)

(

K2K3 −
√
A
)

2K2K3 (K2 + K3 − K1)
, (5.3.6)

h5 =
K2K3 +

√
A

2K3 (K2 + K3 − K1)
, (5.3.7)

f5 =
(K3 − K1)

(

K2K3 +
√
A
)

2K2K3 (K2 + K3 − K1)
, (5.3.8)

where A = K2K3 [4 (K1 − K2 − K3) + K2K3]. Eigenvalues and eigenvectors from

the linear stability analysis of these equilibria can be found in appendix A.1.

Equilibria (h2, 0) and (h3, 0) are real and positive only if K1 > 4. The eigen-

values from the linear stability analysis of these equilibria are only dependent

on K1 and K3. If K1 > K3, equilibria (h2, 0) and (h3, 0) are a saddle point and

attractor respectively. Thus, a small number of mutant females cannot invade a

hermaphrodite population. This marks a regime where hermaphroditism is an

ESS. Later it will be shown that when K1 > K3, only equilibria (0, 0), (h2, 0) and

(h3, 0) exist in the region of interest. Typical dynamics for the regime, where

K1 > 4 and K1 > K3, are shown in figure 5.1. The unstable manifold of the

saddle point in figure 5.1 lies along the ( f = 0)-boundary. Thus, a population

of just hermaphrodites evolves to the trivial equilibrium if the initial density of
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the population is below the saddle point and evolves to the stable node if the

initial density of the population is above the saddle point.
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Figure 5.1: Typical mean-field dynamics for the case where hermaphroditism

is the ESS. Filled circles mark stable nodes, the empty circle marks

a saddle point. The arrows indicate the direction of evolution. Plot

shown for K1 = 5, K2 = 3 and K3 = 3.

If K3 > K1, equilibria (h2, 0) and (h3, 0) are an unstable node and saddle

point respectively. The unstable manifold of the saddle point at (h3, 0) points

in to the interior, (h > 0, f > 0). In the absence of females the dynamics of

the hermaphrodite population is the same as for the case, K1 > K3. However,

a small number of mutant females can now invade the hermaphrodite popula-

tion. Thus, Hermaphroditism is no longer an ESS.

By inspecting equations (5.3.5)-(5.3.8) it can be seen that equilibria (h4, f4)
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and (h5, f5) are real only if A > 0. Using this condition, it can be shown that

equilibria (h4, f4) and (h5, f5) are positive and real if,

K3 > 4,

K3 > K1,

and K2 > S, (5.3.9)

where,

S =
4K3 − 4K1
K3 − 4

. (5.3.10)

When they exist in the region of interest, equilibria (h4, f4) and (h5, f5) are a

saddle point and stable node respectively. The condition, in equation (5.3.9),

that K3 > K1, means that the boundary equilibrium (h2, 0) and (h3, 0) are an

unstable node and a saddle point respectively. Thus, when conditions in equa-

tion (5.3.9) are satisfied, a small number of females will always invade a herm-

aphrodite population, the population can then evolve to the stable node (h5, f5).

Under these conditions, a coexisting population of hermaphrodites and females

is stable. Typical dynamics for this regime are shown in figure (5.2).

The conditions in equations (5.3.9) also reveal that a coexisting population of

females and hermaphrodites can be stable even when a population consisting

solely of hermaphrodites is not stable (when K1 < 4). Typical dynamics for this

regime is shown in figure 5.3.

Whilst obeying equations (5.3.9), reducing K3 (or increasing K1) brings equi-

libria (h4, f4) and (h5, f5) closer to the ( f = 0)-boundary. Equilibria (h4, f4) and

93



0 0.2 0.4 0.6 0.8 1
h

0

0.2

0.4

0.6

0.8

1

f

Figure 5.2: Typical mean-field dynamics for the case where a coexisting popu-

lation of hermaphrodites and females is evolutionary stable. Filled

circles mark stable nodes, empty circles mark saddle points and the

grey filled circle marks an unstable node. The arrows indicate the

direction of evolution. Plot shown for K1 = 5, K2 = 4 and K3 = 7.
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Figure 5.3: Typical mean-field dynamics for a coexisting population of herm-

aphrodites and females. K1 < 4, so there are no ( f = 0)-boundary

equilibrium. Filled circles mark stable nodes and the empty circle

marks a saddle point. The arrows indicate the direction of evolu-

tion. Plot shown for K1 = 3, K2 = 6 and K3 = 7.
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(h5, f5) collide with the boundary equilibrium, (h2, 0) and (h3, 0) respectively,

at K3 = K1, here a transcritical bifurcation occurs. As discussed above, when

K1 > K3, the ( f = 0) boundary equilibria (h2, 0) and (h3, 0) are a saddle point

and attractor respectively. Thus hermaphroditism is the ESS.

Decreasing K2, whilst obeying the conditions in equation 5.3.9, brings equi-

libria (h4, f4) and (h5, f5) closer together. At K2 = S, equilibria (h4, f4) and

(h5, f5) collide and annihilate. This is a saddle-node bifurcation point. If K3 >

K1 and K2 < S; the ( f = 0)-boundary equilibria, (h2, 0) and (h3, 0), are a node

and saddle point respectively and no equilibrium for coexistence exists. Under

these conditions females could invade the hermaphrodite population. As the

only stable equilibrium is the trivial equilibrium the population will then con-

verge on the trivial equilibrium, resulting in extinction. Typical dynamics for

this regime are shown in figure 5.4.

All possible evolutionary outcomes for the case K1 > 0, K2 > 0 and K3 > 0

are summarised in table (5.1). At equilibrium the frequency of females in the

population is given by,

f5
f5 + h5

=
K3 − K1

K3 + K2 − K1
, (5.3.11)

which is consistent with previous results for nuclear male sterility from popu-

lation genetics [89]. Note that equation (5.3.11) is only valid if the (h5, f5) is real

and positive, therefore if the conditions in equation 5.3.9 are satisfied.
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Figure 5.4: Typical mean-field dynamics for the case where invasion of fe-

males leads to extinction. Filled circles mark stable nodes, the

empty circle marks a saddle points and the grey filled circle marks

an unstable node. The arrows indicate the direction of evolution.

Plot shown for K1 = 5, K2 = 2 and K3 = 7.

K1 > 4 K1 < 4

K1 > K3 H is ESS extinction

(only trivial equilibrium)

K3 > K1 & S < K2 female invasion extinction

leads to extinction (only trivial equilibrium)

K3 > K1 & K2 > S & K3 > 4 coexistence coexistence

Table 5.1: Evolutionary outcomes in mean-field analysis, for nuclear male

sterility (K1 > 0,K2 > 0,K3 > 0).
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5.3.2 Cytoplasmic male sterility

For the case of cytoplasmic male sterility, the behaviour of equilibria (h2, 0) and

(h3, 0) is same as in the previous section; for K1 > K3 equilibria (h2, 0) and

(h3, 0) are a a saddle point and stable node respectively, for K3 < K1 equilibria

(h2, 0) and (h3, 0)) are an unstable node and saddle point respectively.

If K2 = 0 and K1 > K3, hermaphroditism is an ESS and similar dynamics to

those shown in figure 5.1 are observed. For K2 = 0 and K3 > K1, females can

invade a hermaphrodite population but the population then converges on the

trivial equilibria and becomes extinct. The dynamics observed for this case are

similar to those shown in figure 5.4.

For the special case K2 = 0 and K3 = K1, there is a curve of equilibrium

points given by,

f =
K1h− K1h2 − 1

K1h
. (5.3.12)

Eigenvalues and eigenvectors from the linear stability analysis of this equilib-

rium curve are given in appendix A.2. The first eigenvalue for points on this

equilibrium curve is zero with corresponding eigenvector along the curve. The

second eigenvalue is negative for h > 2/K1 and positive for h < 2/K1. Typical

dynamics for this regime is shown in figure 5.5. The behaviour observed here

for the case K2 = 0 is in agreement with previous results from similar evolu-

tionary models [92, 93].

98



0 0.2 0.4 0.6 0.8 1
h

0

0.2

0.4

0.6

0.8

1

f

Figure 5.5: Typical mean-field dynamics for the case where of a curve of equi-

librium points. Plot shown for K1 = K3 = 8, K2 = 0. The solid

section of the curve is stable, the dashed section is unstable. The

filled circle indicates the point at which the curve becomes unsta-

ble. The arrows indicate the direction of evolution.
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5.4 Results of lattice simulation

All simulations were run on lattices of side length L for 100 generations, where

the time in generations is given by τ = λt, and t is in Monte Carlo steps.

The simulation results for the case of cytoplasmic male sterility (K2 = 0) are

in agreement with previous spatial simulations [93]. Simulations (for K2 = 0)

display coexistence of females and hermaphrodites for values of K3 moderately

larger than K1 (figure 5.6). Figure 5.7 shows how behaviour is increasingly

cyclic with increased female reproductive advantage (increased K3/K1). This

contrasts with mean-field kinetics, which predict extinction of the population

following the invasion of females (figure 5.4). Large vales of K3 result in extinc-

tion (not shown) showing similar behaviour to mean-field predictions (figure

5.4).

Sample paths from the lattice simulation for the case of nuclear male steril-

ity are shown in figures 5.8 and 5.9. In figure 5.8, hermaphroditism is the ESS. It

can be seen from the plot, that the hermaphrodite population is robust against

invasion by large numbers of females. This is in agreement with mean-field ki-

netics. In figure 5.9, coexistence of females and hermaphrodites is evolutionary

stable. The paths shown in figure 5.9 converge on an equilibrium at approxi-

mately (0.77, 0.12). This is difficult to see from figure 5.9 due to slow dynamics

close to the equilibrium.

Breaking the condition K2 > S (equation (5.3.9)) with K3 > K1 does not
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Figure 5.6: Lattice simulation for cytoplasmic male sterility; coexistence of fe-

males and hermaphrodites. The arrows indicate the direction of

evolution. Plot shown for K1 = 10, K2 = 0 and K3 = 20.
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Figure 5.7: Lattice simulation for cytoplasmic male sterility; coexistence of fe-

males and hermaphrodites. The arrows indicate the direction of

evolution. Plot shown for K1 = 10, K2 = 0 and K3 = 40.
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result in extinction following female invasion, as predicted by mean-field anal-

ysis. Instead simulations display coexistence with increasingly cyclic behaviour

as K2 is decreased and/or K3 increased. This result is not surprising given the

observations for K2 = 0 shown earlier (figures 5.6 and 5.7).
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Figure 5.8: Lattice simulation; hermaphroditism is an ESS. The arrows indi-

cate the direction of evolution. Simulations were run for 100 gener-

ations on a lattice of side length L = 100 with K1 = 10, K2 = 8 and

K3 = 8.

The frequency of females in natural gynodioecious populations is often used

as an indicator of the genetic mechanism responsible for male sterility in a par-

ticular species [87]. For the case of nuclear male sterility where K2 > S, spatial

simulations arrive at equilibria which are fairly static in (h, f )-space. Thus equi-

librium frequencies of females in the population are easily calculated. Figure
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Figure 5.9: Lattice simulation; coexistence of females and hermaphrodites.

The arrows indicate the direction of evolution. Simulations were

run for 100 generations on a lattice of side length L = 100 with

K1 = 10, K2 = 40 and K3 = 40.
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5.10 plots the equilibrium female frequencies for spatial simulation and mean-

field analysis as a function of K3/K1, with K2 = K3. For each set of results

K1 was fixed while K2 and K3 were incremented. By testing several values of

K1, the plots show that the relative magnitudes of K1, K2 and K3 are domi-

nant in determining the behaviour of the system and not their absolute values.

Though birth rates do need to be of sufficient magnitude to avoid extinction, as

discussed in the previous chapter.
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Figure 5.10: Comparison of equilibrium sex-ratio for mean-field (line) and lat-

tice simulation (×). Simulations shown for K2 = K3, and K1 = 10

(�) and K1 = 20 (×). Points shownwere averaged over the last 10

generations of the simulation.

Mean-field analysis predicted that nuclearmale sterility could evolve ifK3 >

K1. Figure 5.10 shows that the condition for nuclear male sterility to evolve in
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a spatial simulation with (K2 = K3) is approximately K3 > 3K1. This infers that

nuclear male sterility is less likely to evolve in species with local pollination

and seed setting, as is the case in the simulation.

Figure 5.10 also shows that female frequency is lower in the spatial simu-

lation than predicted by mean-field analysis. Thus, it may be expected that

gynodioecious plant species with local pollination and seed setting should have

lower female frequencies in thewild compared to specieswith long range pollen

interaction. This difference between mean-field and simulation is probably due

to regions of high female concentration in the spatial simulation dying off be-

cause of pollen shortage.

5.5 Conclusions and future investigations

The population dynamics for a stochastic spatial simulation and its mean-field

approximation have been presented for a gynodioecious populationwheremale

sterility is conferred by a dominant nuclear allele. It was demonstrated that a

female needs a much greater fertility advantage to become established in the

stochastic spatial simulation when compared with the mean-field approxima-

tion. This result suggests that gynodioecy is less likely to evolve in plants with

local pollination and seed setting. This also, has implications for the evolution

of dioecy, as gynodioecy is thought to be a route to dioecy [95].

The equilibrium frequency of females in the population was found to be

smaller in the stochastic spatial simulation than in the mean-field approxima-
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tion. This suggests that a lower frequency of females should be expected for

gynodioecious populations with local pollination and seed setting.

This method of simulation could be applied to related problems in the evo-

lution of sexual function, and could also be tailored to accommodate the specific

details of the species in question. For example the case presented above was for

self-incompatible hermaphrodites. In many species some self-fertilisation is ob-

served in addition to out-crossing [96]. This could be an interesting addition to

the model described in this chapter.

As pointed out in the introduction, male sterility has also been observed to

be controlled by more complex genetic interactions than studied here. For ex-

ample male sterility due to recessive genes [89], the evolution of restorer genes

which counter male sterility [90]. Spatial simulations similar to the one pre-

sented here could easily be applied to these systems.
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CHAPTER 6

Conclusions

Conclusions from the four sections of this thesis are summarised here.

Firstly, in chapter 2, it was shown that certain anomalies arise in the Penna

bit-string model of ageing that lead to unusual demographic distributions and

the so-called “Eve effect”. It was shown that these anomalies were associated

with diffusing subpopulation numbers hitting an absorbing barrier at zero,

which in turn reduced the genetic variability of the population. This process is

similar in nature to the well known first-passage problem. The analytical solu-

tion derived in this chapter to describe the unusual demographic distributions

which arose was in excellent agreement with simulation results.

Secondly, in chapter 3, evolutionary game theory was applied to the evolu-

tion of harmful mating tactics in hermaphrodites. The analysis showed that

harmful mating strategies are likely to be associated with species in which

sperm precedence strongly favours the first mate. Though this criterion be-

comes less important as harmful tactics become more efficient. It was also
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shown that a strongly female biased resource allocation strategy should be as-

sociated with harmful mating tactics, and that very high levels of harm can be

adaptive. These inferences should prove useful in the interpretation of empiri-

cal observations involving harmful mating in hermaphrodites.

Thirdly, in chapter 4, two different stochastic spatial simulations were used

to investigate the sustainability of hermaphrodite and dioecious populations.

It was shown that when interactions are local (spatial simulation), hermaph-

rodites have a much greater advantage over dioecious populations than pre-

dicted by mean-field analysis. This may contribute to the success of hermaph-

roditism as a mating strategy in sedentary species. It was also shown that finite

size effects associated with one of the spatial simulations (the QCP) can greatly

affect the stability of the active state (finite population). These results may be of

interest for other applications of the QCP in chemical, ecological and sociologi-

cal systems.

Finally, in chapter 5, the evolution of gynodioecy in self-incompatible herm-

aphrodites was investigated for the case of male sterility conferred by a domi-

nant nuclear allele. Population dynamics were presented for stochastic spatial

simulation and mean-field approximation. It was shown that, when interac-

tions are local (spatial simulation), male sterility conferred by a dominant nu-

clear allele requires a greater female fertility to evolve than predicted by mean-

field approximations. This suggests that gynodioecy is less likely to evolve in

plants with local pollination and seed setting. It was also observed that the spa-

tial simulations resulted in a lower female frequency than predicted by mean-
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field approximation. This may be useful in the interpretation of empirical ob-

servations.
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APPENDIX A

Stability Analysis of gynodioecious

population.

The stability of each equilibrium point was characterised by performing a Tay-

lor expansion of equations (5.3.1) and (5.3.2) about the equilibrium, then cal-

culating the eigenvalues of the resulting linearised system of equations. The

eigenvalues and corresponding eigenvectors for this analysis are presented be-

low.

A.1 Nuclear male sterility

The equilibrium points for nuclear male sterility are given in equations (5.3.3) –

(5.3.8). The eigenvalues for the trivial equilibrium (0, 0) are,

ν11 = −1, (A.1.1)

ν21 = −1, (A.1.2)
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with corresponding eigenvectors,

z11 = (0, 1), (A.1.3)

z21 = (1, 0). (A.1.4)

The eigenvalues for (h2, 0) are,

ν12 =
4− K1 +

√

K1 (K1 − 4)
2

, (A.1.5)

ν22 =
K3
K1

− 1, (A.1.6)

with corresponding eigenvectors,

z12 = (1, 0) , (A.1.7)

z22 =





K1

(

2− K1 +
√

K1 (K1 − 4)
)

+ 2K2

K1

(

K1 − 6−
√

K1 (K1 − 4)
)

+ 2K3
, 1



 . (A.1.8)

The eigenvalues for (h3, 0) are,

ν13 =
4− K1 −

√

K1 (K1 − 4)
2

, (A.1.9)

ν23 =
K3
K1

− 1, (A.1.10)

with corresponding eigenvectors,

z13 = (1, 0) (A.1.11)

z23 =





K1

(

2− K1 −
√

K1 (K1 − 4)
)

+ 2K2

K1

(

K1 − 6+
√

K1 (K1 − 4)
)

+ 2K3
, 1



 . (A.1.12)

The eigenvalues of (h4, 0) are,

ν14 =
K1
K3

− 1, (A.1.13)

ν24 =
2

1+ K2K3A−1/2 , (A.1.14)
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where A = K2K3 [4 (K1 − K2 − K3) + K2K3]. The corresponding eigenvectors

are,

z14 =

(

−K2
(

2K1 + K2 (K3 − 2)− 4K3 + A1/2
)

K3
(

2K1 + K2 (K3 − 4)− 2K3 + A1/2
) , 1

)

, (A.1.15)

z24 =

(

K2
K3 − K1

, 1

)

. (A.1.16)

The eigenvalues of (h5, 0) are,

ν15 =
K1
K3

− 1, (A.1.17)

ν25 =
2

1− K2K3A−1/2 , (A.1.18)

where the corresponding eigenvectors are,

z15 =

(

−K2
(

2K1 + K2 (K3 − 2)− 4K3 − A1/2
)

K3
(

2K1 + K2 (K3 − 4)− 2K3 − A1/2
) , 1

)

, (A.1.19)

z25 =

(

K2
K3 − K1

, 1

)

. (A.1.20)

A.2 Cytoplasmic male sterility

(h2,0) and (h3,0) are still equilibria for the case of cytoplasmic male sterility

(K1 > 0, K2 = 0 and K3 > 0). Though, (h4, f4) and (h5, f5) are not. For the special

case K3 = K1, a curve of equilibrium points exists given by equation (5.3.12).

The eigenvalues from the linear stability analysis of points on this curve are

given by,

ν16 = 0, (A.2.1)

ν26 = 2− K1h, (A.2.2)
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where the hermaphrodite density h refers to the hermaphrodite density on the

equilibrium curve. The corresponding eigenvectors are,

z16 =

(

K1h
2

1− K1h2
, 1

)

, (A.2.3)

z26 =

( −K1h2
1+ K1h (h− 1) , 1

)

, (A.2.4)

again the hermaphrodite density h refers to the hermaphrodite density on the

equilibrium curve.
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