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Abstract  

i

AAbbssttrraacctt   

Polymers have been used as biomaterials for nearly a century and have 

recently become the material of choice for use in tissue engineering. However, the 

classes of biodegradable and biocompatible polymers available for use in 

biomedical devices and as tissue engineering scaffolds are limited. This lack of 

available polymers with suitable properties could inhibit the development of 

biomedical devices with improved biocompatibility and hinder the growth of the 

fledgling tissue engineering field. Researchers in the polymer and biomaterials 

fields have tried to remedy this problem by applying combinatorial and high 

throughput methods developed in drug discovery to the search for new polymers. 

A recent advance has been the development of combinatorial polymer libraries 

printed as microarrays. This format allows the polymers to be readily screened for 

their cell adhesion and differentiation properties, allowing ‘hit’ materials with 

ideal properties to be identified. However, without knowledge of the surface 

properties of these novel polymers it is impossible to rationalise their biological 

properties. The surface characterisation of such microarrays presents numerous 

practical problems included small sample size, sample number and even analysis 

of such large amounts of data. It is the aim of this thesis to develop methods for 

the characterisation of the surface chemistry, wettability and protein adsorption 

properties of polymers in situ in microarray format and within realistic 

timeframes. The thesis will explore multivariate statistics in the form of PCA and 

PLS as methods of analysing the large amount of data acquired.  

The first part of this thesis describes the surface chemical analysis of a 

polymer microarray using ToF-SIMS and XPS. A comparison of the polymers’ 

surface to bulk chemistries by XPS indicated that 64 % of the polymers had a 

surface chemistry which differed from the bulk. This reinforces the need for 

characterisation of the polymers’ surface chemistries, as it is obvious that this can 

not be inferred from their bulk chemistries. ToF-SIMS imaging was shown to be 

an ideal method of studying the distribution of specific ion species across the 

array and to confirm that the microarray was printed in the intended layout. 
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Principal component analysis is shown to be an ideal technique to analyse both 

ToF-SIMS and XPS spectral data from the arrays, allowing similarities and 

differences in the surface chemistry of the polymers to be easily visualised.  

To estimate the surface energies of the arrayed polymers it is necessary to 

use picolitre volume droplets to make contact angle measurements. In Chapter 4 it 

is shown that contact angle measurements taken from picolitre volume water 

droplets are equivalent to those measured from more conventional microlitre 

droplets. In Chapter 5 picolitre contact angle measurements are used to estimate 

the polar and dispersive surface energies of a polymer microarray, which has been 

specifically designed to exhibit a maximum range of surface energy values. The 

analysis shows that there is indeed great variation in the WCA and polar surface 

energies of the polymers, demonstrating the power of intelligently designed 

combinatorial libraries. To understand the chemical basis of this large range of 

surface energies the results are compared to surface chemical data from ToF-

SIMS and XPS. Surface atomic and functional data from XPS is unable to provide 

any definitive explanations for the range of surface energies observed. However, 

information about the molecular structure of the surface from ToF-SIMS gives an 

insight into what surface functionalities are responsible for high and low surface 

energies.   

In Chapter 6 PLS regression is investigated further as a method for 

investigating surface structure-property relationships in large polymer libraries. 

Specifically two issues are investigated: the influence of sample number on the 

results obtained and the ability of PLS to make quantitative predictions. The ToF-

SIMS and surface energy dataset discussed in Chapter 5 is used for this task. It is 

demonstrated that the results obtained from PLS models of large polymer libraries 

are equivalent to those obtained from much smaller datasets, in terms of the ions 

identified in the regression vector. Using various test sets of polymers it is shown 

that there is a limit to the predictive ability of PLS: specifically, as the difference 

between the training and test sets increases, the quality of the predictions 

decreases. Potential problems with data pre-processing and re-scaling are also 

identified.  
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In the final experimental chapter two methods are described for 

investigating protein adhesion and adsorption to micro-arrayed polymers using 

AFM and fluorescently labelled proteins. Both methods indicate a wide range of 

protein adsorption properties within the group of polymers analysed. A good 

correlation between the two sets of data was observed which appears to validate 

both methods.  

In summary the work described in this thesis has demonstrated the 

feasibility of the characterisation of the surface chemistry, energetics and protein 

adsorption properties of a micro-arrayed polymer library within realistic time-

frames. PCA and PLS have been shown to be useful tools for analysing the data 

obtained. It is hoped that the methods described in this thesis will allow the 

biological data from polymer microarrays to be rationalised using the surface 

properties of the polymers, allowing the design of new biomaterials.  
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1.1 Polymers as biomaterials  

The term biomaterial is commonly defined in either of two ways: a 

material derived from a biological source or a material used in the treatment of a 

medical condition within the human body.[1] This thesis is concerned with the 

latter of the two definitions, i.e. materials used within the human body for the 

purpose of treating disease. Although the term biomaterial has only been defined 

relatively recently, the use of materials in medicine has been common practice for 

most of recorded history. Examples include the use of gold fillings in dentistry 

over two thousand years ago and the manufacture of replacement eyes out of glass 

in the middle ages.[2] However, modern biomaterials science really started at the 

beginning of the 20th century with the use of modern, synthetic polymers. In the 

1940’s nylon sutures were used for the first time during surgical procedures.[3] 

The use of polymers such as poly(methyl methacrylate) (PMMA), polyesters and 

poly(vinyl chloride) (PVC) in surgery was reported not long after.[4] Many of 

these materials’ utility as biomaterials were discovered by accident. For example, 

after the Second World War a British ophthalmologist called Harold Ridley 

discovered that fragments of PMMA from the shattered windows of fighter planes 

did not cause any long term inflammation when embedded in the eyes of pilots. 

These polymers (along with poly(tetrafluoroethylene) (PTFE) and 

poly(urethanes)) are still in common usage as hip implants, artificial lenses, 

catheters, sutures, stents and many other medical devices.[5]   

The aforementioned biomaterials have served their purpose well, however 

they are far from perfect. Problems include chronic inflammatory responses by the 

body towards implanted biomaterials which can lead to a poorly vascularised 

fibrous layer being formed around the implant.[1] This response can be desirable 

as it helps to anchor the implant to the host tissue; however related clinical 

complications such as infection and tissue contraction are major problems.  

Although research has found ways to improve the functionality of these polymers 

in their myriad of uses, the amount of time they have been in use is perhaps 

indicative of the lack of progress in the development of new, specifically designed 

biomaterials.  
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Tissue engineering is a relatively new field which is concerned with the 

application of biology and engineering to the development of substitutes to 

replace tissue which has been damaged through disease or old age.[6] Two main 

approaches have been taken in the quest to create new tissue. The first approach 

involves isolating cells of interest and culturing them in vitro until they are ready 

to inject directly into the patient at the site of need. The second approach involves 

growing the isolated cells on or within matrices which are then implanted into the 

patient. These matrices are intended to replicate the natural cell environment and 

to give the implant the desired physical properties of the tissue until the implanted 

cells can establish themselves with the patient.[7]   

Developing biomaterials to use in the manufacture of these cell supports is 

a major challenge as there are many properties which are required, many of which 

are specific to the tissue being engineered. For simplicity these requirements can 

be divided into two types: bulk and surface properties. Bulk properties include 

mechanical strength and chemical reactivity, both of which greatly influence the 

utility of a material. For example, if a biomaterial is going to be used to make a 

replacement hip the mechanical properties are very important as the material will 

be load bearing. However, the main interaction between the material and the body 

will be at the material surface. In the words of Ratner et al “the body will ‘read’ 

this surface structure” and will then decide how it will react.[2] Historically it this 

reaction which has caused the failure of biomedical devices, as the body ‘sees’ the 

implant surface as foreign and therefore directs the bodies immune system to 

react. Therefore it has been common to try to modify the surface of biomaterials 

to make them as inert as possible once implanted into the body, using methods 

such as plasma treatment. Recently it has been the goal of researchers working in 

the field to design biomaterials with biologically active surfaces, i.e. instead of 

initiating a negative response, they will actively encourage the body to accept the 

material. It has been demonstrated that both the surface chemical, topographical 

and mechanical properties can all influence biocompatibility. Hence it is 

important that a potential biomaterial’s surface is well characterised.   

This thesis is concerned with the development and screening of new 

polymeric biomaterials; therefore it is necessary to begin by defining what 
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constitutes a polymer. In simple terms a polymer can be defined as a substance 

composed of molecules made up of long sequences of one or more species (atoms 

or groups of atoms), usually linked by covalent bonds.[8] It is important to note 

that there are many different classes of polymer, the simplest of which is called a 

homopolymer. A homopolymer is composed of only one type of monomer, an 

example of which is poly(ethylene) which is composed solely of the monomer 

ethylene.[9] Copolymers are polymers which contain more than one type of 

monomer, for example poly(lactic-co-glycolic acid) which contains the two 

monomers lactic and glycolic acid. The monomers that are used to synthesise 

copolymers can be in varying proportions and can polymerise to form different 

types of copolymer (Figure 1). For example, a random co-polymer is one where 

its constituent monomers are in no discernable order, where as the constituent 

monomers in a block copolymer form long sequences or “blocks” of the same 

type. The way copolymers monomers order themselves can greatly influence the 

morphology and therefore physical properties of the resulting polymer.[9] 

Polymeric biomaterials can be divided into those which are natural in origin and 

those which are artificial, i.e. have been synthesised by man.  

AAAAAAAAAAAA

AAABBBAAABBB

AABABABBABBA

Homopolymer

Block Copolymer

Random Copolymer

ABABABABABABAlternating Copolymer

AAAAAAAAAAAA

AAABBBAAABBB

AABABABBABBA

Homopolymer

Block Copolymer

Random Copolymer

ABABABABABABAlternating Copolymer  

Figure 1. Possible arrangements of monomers in polymeric materials.   

The most commonly used natural polymeric biomaterials are collagens, 

which are a family of fibrous proteins that are found in nearly all mammalian 

tissues.[10] Natural polymers such as collagen are useful as they commonly have 

a greater intrinsic biocompatibility than polymers of synthetic origin. However, 

one major disadvantage is the natural batch-to-batch variation in these materials 

which can cause major problems in the regulatory process. 
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Polymers are not the only materials used in medicine. Metallic 

biomaterials are commonly used in orthopaedics to replace worn-out joints such 

as knees, hips or ankles.[2] They are also used to manufacture dental implants, 

craniofacial plates, screws and devices such as pacemakers. Metal alloys are 

generally used rather than the metals themselves, due to their superior properties. 

It is common for these alloys to undergo some form of surface treatment before 

use, either to facilitate fixation of implants into the bone or to improve 

biocompatibility.[2] The most commonly used are stainless steels, cobalt-based 

alloys and titanium alloys. Ceramics and glasses are essential materials for the 

manufacture of diagnostic instruments, tissue culture flasks and fibre optics for 

endoscopy. They are also used extensively in dentistry to make dentures and 

cements. Ceramics are particularly useful biomaterials due to their physical and 

mechanical properties, i.e. they can replace hard skeletal and connective 

tissues.[2] However, their success relies greatly on them being able to adhere 

sufficiently to the surrounding connective tissue, hence it is commonly their 

surface properties which are lacking.  

A review of the relevant literature reveals that the vast majority of 

polymers used in tissue engineering research are still simple copolymers of lactic 

and glycolic acid.[11] The situation is better in the more established field of 

biomedical devices, however there are still only a small number of classes of 

synthetic biodegradable polymers that are approved by the FDA for use. Indeed 

an NIH report on the subject concluded that attempts to tailor polymers’ 

properties to specific applications were based almost entirely on “trial and error” 

with existing classes of polymers.[12] The lack of potential polymers available for 

use in the biomedical and tissue engineering fields could potentially retard the 

rapid growth that has been seen in these areas over the past decade.[11, 13]  

In summary, there is a need for new biomaterials (particularly polymers) 

for use in both biomedical devices and tissue engineering. These materials require 

both the correct bulk and surface properties to suit their desired application.   
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1.2 High throughput and combinatorial methods for the discovery of new 

polymers  

High-throughput screening in the biological sciences has caused a 

revolution in the way research is done. Traditionally, new compounds or materials 

were developed and investigated individually or in small groups using information 

on their probable action; a very time consuming and labour intensive exercise 

which has been likened to finding a needle in a haystack! Combinatorial methods 

allow the synthesis and screening of hundreds, or even thousands, of samples in a 

relatively short period of time. Theoretically this should increase the chance of 

finding a compound with the desired properties; however some critics have 

suggested that these methods only serve to increase the size of the haystack! 

Hence, it has been argued that a more evidence based, traditional approach using 

structure-activity relationships is superior. However, the two methodologies are 

not mutually incompatible as it is highly beneficial to use existing knowledge of 

compound properties to design a combinatorial library.  The success of high-

throughput techniques in areas such as genomics, proteomics and drug discovery 

has prompted interest by researchers in other areas such as materials science. High 

throughput research in the materials field has mainly centred on polymeric 

materials, particularly for use as biomaterials. Indeed, the years 1998 to 2006 have 

seen a considerable body of research into combinatorial and high-throughput 

methods in polymer research.[14] Various methods have been trialled to build 

combinatorial libraries of novel polymers with varied success. These libraries 

have been presented for analysis as discrete samples, gradients and micro 

patterned arrays; all of which present challenges for characterisation. A review of 

this research and a discussion of the merits of each approach are presented below.  

The first step in high-throughput material discovery is the synthesis of a 

large library of new materials to be screened. Polymers are well suited to this task 

as large libraries can be prepared by simply mixing a small number of monomers 

in a pair wise fashion or blending polymers in different ratios. Blending different 

polymers commonly results in a material with intermediate properties to the 

constituent polymers.  Different surface features can be produced by processes 
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such as annealing or mixing.[14] These new materials can either be analysed 

individually or fixed to a chip in an organised fashion to allow high speed 

screening. There are two approaches to this task: discrete and continuous libraries. 

The relative merits of the two approaches are discussed later. Finally, methods 

must be developed to determine whether the new materials on the chip have the 

properties desired.  

1.2.1 Large scale discrete libraries  

The first large scale work using a combinatorial method to synthesise a 

library of novel polymers was reported by Brocchini et al.[15] A library of 112 

degradable polyacrylates was prepared by reacting various tyrosine based 

monomers together in different combinations in parallel. Fourteen different 

diphenol monomers were each reacted with eight diacid monomers to create the 

112 polymers. Each pair of monomers was reacted in an individual vial to ensure 

the purity of the resulting polymer. The glass transition temperature (Tg), 

molecular weight, water contact angle and tensile properties of each polymer were 

then determined. The Tg values were determined using DSC and the molecular 

weight using gel-permeation chromatography. The tensile properties of the 

polymers were investigated by taking stress-strain curves of solvent cast films of 

the samples. It is perhaps disappointing that the authors did not carry out a more 

detailed surface characterisation, rather than simply measuring the polymers’ 

wettability.  

In a follow-up study, glass cover slips were spin coated with the polymers 

and fetal rat fibroblasts were cultured on their surfaces to determine the ability of 

the polymers to support cell growth.[16] The Tg and contact angle values varied 

incrementally across the polymer library (Figure 2). It was noted that the Tg of the 

polymers decreased with increasing numbers of methylene groups in the pendent 

chain and backbone. Conversely, the water contact angles of the polymers 

increased with increasing numbers of methylene groups.  
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Figure 2. Water contact angles of the poly(arylate) library.[16]   

When the authors used the same polymer library to investigate the 

relationships between polymer structure and cell response,[16] the extent of 

fibroblast proliferation on the polymers ranged from total coverage of the polymer 

film to complete absence of growth. There were significant correlations between 

cell proliferation and the contact angle of the polymers (Figure 3), where it was 

noted that fibroblast proliferation decreased as the contact angle of the polymers 

increased. This effect of surface hydrophobicity on fibroblast cells has been 

observed in other studies.[17-19] However, there was an exception to this trend: 

those polymers whose backbone contained oxygen supported cell growth even 

with contact angles exceeding 95°. This study was one of the first to demonstrate 

the benefits of producing combinatorial libraries of polymers for biomaterials 

research. In fact one of the polymers in the library developed has since been 

approved by the FDA for use in a new hernia repair device which is marketed in 

the United States.[20] The work showed the speed at which new polymers with a 

range of desired physical and biological properties can be prepared. However, the 

way in which the polymers were synthesised and investigated was not new: only 

the scale of synthesis. In fact the way in which the polymer library was prepared 

was relatively time-consuming and hinders rapid analysis. Before analysis each 

polymer had to be individually spin-coated into a large scale film and then 

analysed with traditional low throughput methods. It is for these reasons that the 



Chapter 1. Introduction  

9

 
next step in combinatorial biomaterials research was towards miniaturisation 

using gradients and micro patterned arrays. However, very recently Brocchini et 

al’s approach (large scale preparation of polymer libraries prior to screening) has 

been praised as it allows thorough characterisation of the polymers’ bulk 

properties, such as glass transition temperature and molecular weights.[21] 

However, this criticism neglects to mention the importance of the polymers’ 

surface properties and may be left redundant by some of the developments in 

polymer library characterisation presented in this thesis.[22]  

 

Figure 3. The influence of polymer water contact angle on fibroblast proliferation.[16]   

A similar approach to that taken by Brocchini et al, albeit with different 

monomers was used by Lynn et al in the development of a polymer library to be 

screened for use as possible DNA transfection vectors.[23] Seven diacrylate 

monomers were mixed pairwise in all possible combinations with twenty amine 

monomers to produce 140 structurally unique polymers. The amine monomers are 

able to insert into the diacrylate backbone to produce biodegradable cationic 

polymers with the ability to condense DNA at physiological pH (Figure 4). Half 

of the polymers synthesised were not sufficiently water soluble to undergo a 

DNA-binding assay. However, those polymers which were water soluble were 

analysed using an electrophoresis assay to identify those with greater DNA-

binding ability than the commercially produced Lipofectamine 2000, which is a 

leading lipid-based transfection vector. Seven polymers from the library were 

identified as having high DNA-binding ability, validating this combinatorial 

approach as a viable method for discovering new polymers for gene delivery. The 

method was taken further by the same authors by vastly increasing the number of 
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monomers used.[24] This enabled them to create a combinatorial library of 2350 

novel poly(ß-amino esters) which they again screened for DNA-binding ability. 

This time 46 new polymers were identified as potential gene delivery systems, 

demonstrating that increasing the size of the combinatorial library analysed can 

increase the chances of finding a polymer with the desired properties.  

  

Figure 4. Synthesis of poly(ß-amino ester) by reaction of diacrylate with amine monomer.   

1.2.2 Gradient material libraries  

A gradient surface is one in which a property of the surface (chemical, 

physical or morphological) gradually changes.[25] Gradient surfaces have become 

an important tool for the high throughput investigation of interfacial phenomena 

in areas as diverse as physics, biology and materials sciences. A large amount of 

this research has concerned polymeric gradients, with various methods proposed 

for creating surface chemical and morphological differences.   

The combinatorial approach taken by Brocchini et al was developed by   

Meredith et al using polymer film gradients.[26] They prepared polymer libraries 

containing a continuum of distinct surface chemical and topographical properties 

using composition spread and temperature gradient techniques. This involved 

pumping one polymer into a vial which already contains another polymer, while a 

syringe is used to withdraw the resulting blend.[17] This blend was then spread 

using an automated knife onto a 25 x 30mm silicon wafer producing a film with a 

thickness that varied from 345-510 nm (Figure 5).  
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Figure 5. Schematic of the continuous composition gradient deposition process.[17]  

The two polymers used were poly(D,L-lactide) (PDLA) and poly(e-

caprolactone); both chosen because they are FDA approved for use in certain 

medical devices. The polymer films were annealed at different temperatures to 

produce varied morphological features on the polymer surfaces.   

The polymer films were analysed with Atomic Force Microscopy and 

Fourier Transform Infrared Spectroscopy (FTIR). Osteoblasts were then cultured 

on the wafers to test cell response to the polymer blends. Cell density and 

morphology were assayed with light and fluorescence microscopy. The analysis 

showed that cell adhesion and function were strongly influenced by 

microstructures on the polymer surface. Many of these microstructures were 

produced by polymer phase separation induced by the annealing process. The 

cells appeared to attach preferentially to surfaces rich in PDLA which is 

hydrophilic. Most importantly it was observed that when the osteoblasts were 

cultured on one polymer blend there was upregulation of alkaline phosphatase 

expression within the cells. This blend was 45 % PCL and 55 % PDLA, annealed 

at 100 °C. It is likely that the surface chemistry and morphology of this blend 

induce cell shape changes and mechanical stresses with the cells that lead to 

upregulation of alkaline phosphatase expression. This research demonstrated the 

value of high throughput methods in characterising cell-surface interactions. 

However, the way they prepared the polymers (as gradient libraries on slides) 
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does not necessarily allow “statistically relevant combinatorially designed” 

selections of polymer composition.[14] In contrast a discrete library allows 

intelligently selected polymer compositions, gradient libraries such as this leave it 

almost to chance.  

A similar investigation to the one described above was carried out by 

Washburn et al who used high-throughput methods to investigate osteoblast 

response to nanometre-scale roughness on polymer surfaces.[18] Gradients of 

roughness on films of poly(L-lactic acid) (PLLA) were produced by annealing 

different parts of the film at different temperatures. The root-mean-square (RMS) 

roughness of sections of the sample was determined using tapping mode Atomic 

Force Microscopy. This showed that the annealing process had produced a 

roughness gradient along the slide (Figure 6), although the actual variation was 

minimal. 

 

Figure 6. Plot of average measured RMS roughness as a function of library position.[18]   

Osteoblasts were then cultured on the polymer films for between one and 

five days to test cell response. Automated fluorescence microscopy was used to 

determine the number of cells on different parts of the polymer film. Figure 7 

shows the average cell numbers observed on different positions on the gradient, 

demonstrating that the rate of proliferation of the osteoblasts was greatest on the 

smoother, amorphous surface. The rate of proliferation decreased as the surface 

got rougher.  
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Figure 7. Plot of average cell number versus library position after culturing for 1(¦ ), 3( ) and 
5( ) days.[18]  

Another example of using polymer gradient libraries to investigate cell 

response to polymeric materials is the research carried out by Simon et al.[27] 

They prepared gradient libraries containing blends of poly(L-lactic acid) (PLLA) 

and poly(D,L-lactic acid) PDLLA, then determined the composition of the blends 

using FTIR. The roughness of the libraries was measured from images acquired 

using AFM. After characterisation murine osteoblasts were cultured on the 

polymer blend libraries; then cell adhesion and proliferation were analysed using 

automated fluorescence microscopy. Figure 8 shows the percentage bulk 

composition at different points along the library as determined by FTIR and 

Figure 9 shows the roughness of the surface of the library. 
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Figure 8. Graph showing the composition of the polymer blend library at different positions.[27]  

Generally the osteoblasts adhered well to all areas of the library including both 

PDLLA and PLLA rich areas. However, cell proliferation was greatest at the 

PDLLA-rich end of the library. It is possible that this could be due to the surface of 

the PDLLA-rich end being smoother than other areas of the library.   

 

Figure 9. Graph showing the roughness (nm) of the surface of the polymer library.[27]     
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1.2.3 Micro-patterned material arrays  

So far the research discussed has been that involving the preparation of 

polymer libraries as either gradients or as large scale samples, with their 

associated disadvantages.  Recently, there has been great interest in the 

application of array technology to materials development.[28, 29] Previously it 

was only water soluble molecules such as DNA and RNA that were printed and 

screened using array systems.[28] The use of arrays for investigation of materials 

in the solid state, for example polymers, has been a more recent development and 

has presented a number of challenges due to their difference to established 

methods used in drug discovery.[30] These challenges include the differing 

rheological properties of polymer solutions compared to the aqueous solutions 

printed in biological array manufacture. Hence, the added viscosity of polymer 

solutions can complicate the printing process if necessary measures are not taken. 

Two principal methods have been reported for the manufacture of polymer 

microarrays: inkjet printing and contact printing. Schubert et al have investigated 

the use of inkjet printers to print polymers in some detail,[31, 32] however it has 

only been within the past year that the first full inkjet printed microarray has been 

reported. Zhang et al prepared a hydrogel microarray by sequential inkjet printing 

of acrylate monomers and initiator, allowing in situ polymerisation.[33] However, 

with the above exception, the remaining literature has described polymer 

microarray fabrication using contact printing and it will be this that is described 

below.  

A major advance in high throughput polymer research came in 2004 with 

the development of a method of preparing miniaturised micro-patterned polymer 

arrays using a contact printing methodology. Since this development the polymer 

microarray field has taken two different approaches. Firstly the contact printing of 

existing polymer libraries and secondly the contact printing of monomer mixtures 

which are polymerised in situ in array format. Anderson et al reported a method 

of rapidly producing large discreet libraries of different polymers and screening 

them for their effects on stem cell adhesion and differentiation.[34] They selected 

25 different acrylate, diacrylate, dimethacrylate and triacrylate monomers and 
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mixed them in 576 different combinations. These mixtures were deposited in 576 

individual spots on a glass slide where they were polymerised using UV radiation. 

Three arrays of 576 polymer spots were printed onto each glass slide to allow the 

reproducibility of the method to be assessed. The glass slide was coated with 

poly(hydroxylethyl methacrylate) prior to the addition of the polymer spots, as 

this polymer has been proven to inhibit cell growth.[35] Manufacturing polymer 

libraries as microarrays allows the advantages of using both large discrete samples 

(i.e. each sample is assessed individually), but also all printed on one support to 

aid a rapid analysis.  

To test the newly synthesized polymer spots for their effects on human 

embryonic stem cell growth and differentiation, each spot on the arrays was 

seeded with embryoid bodies. The cells were then incubated with retinoic acid for 

six days, after which the arrays were fixed and stained for cytokeratin 7 (an 

intermediate filament protein found in most epithelial cells) and vimentin (an 

intermediate filament protein found in cells with mesenchymal origin). It was 

found that nearly all the new materials allowed cell attachment and growth, 

however polymers containing monomers 6, 18 and 21 inhibited cell growth or 

attachment to varying degrees. It was also observed that cells on a majority of the 

polymers were cytokeratin-positive, i.e. showing differentiation into epithelial-

type cells. The researchers also grew cells from an embryonic muscle line on the 

arrays to examine the polymers effects on non-human embryonic stem cells. 

These muscle cells grew on all polymer spots except those containing monomer 

18, demonstrating that human embryonic stem cells are strongly influenced by the 

surface they are cultured on in different ways to normal cells.  

The research was taken further by identifying those polymers on the array 

that supported cell growth particularly well and retesting them on different arrays. 

These arrays contained only 24 different polymers repeated 72 times. The 

polymer spots on these arrays were then seeded with hESC and cultured with and 

without retinoic acid. In the absence of retinoic acid there was lower expression of 

cytokeratin, but the number of cells per spot was higher and they were more 

closely packed together. However, some polymer spots could only support hESC 

growth with retinoic acid (e.g. 100% monomer 6). This type of investigation 
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demonstrates that cell experiments on microarrays do not have to be just simple 

cell adhesion assays; more sophisticated differentiation studies and alike are 

possible.   

Another difference between the research described in the above paper and 

that which had been done before is scale. The methods described enable hundreds 

of polymers to be synthesised and tested for the ability to support cell growth in a 

relatively short period of time. The research also reinforced the fact that materials 

can have a large influence on hESC growth and differentiation. The same research 

group published a second research article shortly afterwards further demonstrating 

the potential of the arrays they have developed.[36] However, this differed from 

their previous research because the polymers were not synthesised in situ on the 

array, but were commercially available and already well-characterized. The 

polymer library was created by blending 24 commercially available polymers 

pairwise at ratios of 70:30 and 90:10 to produce 1152 different combinations in 

total, i.e. double the size of their previous library. The 24 polymers used were all 

biodegradable polyesters except for one which was an anhydride. Several different 

cell types were cultured on these arrays. These cell types were human 

mesenchymal stem cells (hMSC), bovine articular chondrocytes and murine 

neural stem cells.   

The hMSC attached and spread on most of the polymer spots, however 

there were polymer blends that did not allow cell attachment. For example, the 

polymer blends containing poly(ethylene glycol) inhibited cellular attachment. It 

is well known that this polymer does not support cell attachment.[37] Figure 10 

shows the polymer array in question containing hMSC which have been stained 

green with actin. It is obvious on the image which spots have not allowed cell 

attachment as these spots are only partially stained or not stained at all.  
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Figure 10. A polymer array containing hMSC stained green with actin.[36]  

The bovine articular chondrocytes attached well to the polymer spots and 

multiplied to produce larger numbers of cells than the hMSC. Finally, neural stem 

cells were grown on the array then stained for glial fibrillary acidic protein 

(expression of which suggests differentiation towards astrocytes). The neural stem 

cells formed monolayers on all the polymer spots and stained brightly for glial 

fibrillary acidic protein. The authors of the research noted that heterogenous phase 

separation of the polymer blends, which changes the polymer microstructure, 

could influence cell behaviour.[36] It would have been preferable if this had been 

confirmed using an imaging technique such as atomic force microscopy. This 

research further demonstrates the potential of microarrays in the study of cell-

material interaction, whilst suggesting the feasibility of using multiple cell types 

on the arrays.   

Since the pioneering work in this area by Anderson et al there have been a 

number of papers published by different groups replicating the research, albeit 

with different cell types. However, Bradley et al have taken a rather different 

approach, after criticising the in situ, nanolitre scale polymerisation approach used 

by Anderson et al. The specific criticisms were related to the fact that the arrayed 

polymers had not undergone the classical bulk characterisation common in the 

polymer sciences for novel polymers.[21] They also took issue with the perceived 

problems that may be encountered due to rapid evaporation of the printed 
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monomer solutions before polymerisation (i.e. the exact composition of the final 

polymers is unknown).[21] It could be argued that the first issue is irrelevant as 

bulk characterisation of ‘hit’ polymers could be undertaken once the polymers 

were scaled up in the later stages of investigation. Similarly, the second issue 

could be minimised by printing the arrays under the correct environmental 

conditions. However, it was these issues that prompted Bradley et al to 

manufacture microarrays by contact printing a library poly(urethane)s. Prior to 

printing this library had already been well-characterised by gel permeation 

chromatography, differential scanning calorimetry and water contact angle 

measurement. These microarrays were then used in renal epithelial cell adhesion 

assays to identify the most cell-adhesive polymers in the library.[21] The same 

group has since published studies using the same library to screen for dendritic 

cell adhesion and to screen for polymers that direct drug crystal growth.[38, 39]  

One major issue with polymer libraries printed and analysed in a 

miniaturised array format, is the relevance of the data gained from them to the 

macro world. In other words, if the polymers on a microarray are scaled up into 

large scale samples and retested, will they yield identical biological, physical and 

chemical properties to those observed when they are printed as 300 µm

 

spots?    

1.2.4 Three-dimensional polymer libraries  

The methods described above all focus on the two dimensional interaction 

of cells with a flat surface. Cells in vivo do not exist in such an environment, 

rather in a three dimensional matrix allowing interaction with surrounding cells 

and ECM proteins.[7] Cells behave in a more natural way in a three dimensional 

environment, hence the development of three dimensional scaffolds for use in 

tissue engineering. Simon et al have proposed a method for preparing discrete and 

gradient three dimensional polymer scaffold libraries.[40] This involves blending 

two polymers in different compositions with sodium chloride, then leaching the 

salt out of the polymer blends once they have set using water to form a porous 

scaffold (Figure 11). 
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a ba b 

Figure 11. Three dimensional a) gradient b) discrete polymer scaffold libraries.[40]  

The authors used this technique to form a 48 member library of discrete 3D 

polymer scaffolds from two commercially available tyrosine-derived 

poly(carbonates).[41] Osteoblast cells were cultured on these scaffolds to 

investigate which polymer blends supported cell attachment.  

1.4. Research involving high-throughput surface characterisation of 

polymeric materials  

It is interesting to note that the surface chemical and physical 

characterisation of the polymer libraries discussed above has been minimal. This 

may be due to the investigators being more interested in the polymers’ biological 

properties or perhaps because of the difficulties associated with analysing large 

numbers of samples in unfamiliar formats. The small number of studies involving 

such characterisation will be discussed below. In this context FTIR spectroscopy 

(in its attenuated total reflectance mode) will be treated as a surface sensitive 

technique due to its common usage in the field, although technically it is defined 

as only a near-surface technique (1 to 4 µm).[42]  

Thissen et al have investigated the  viability of XPS as a method for 

analysing polymers printed as microarrays.[43] Poly(ethylene glycol) 

methacrylate (PEGMA) was printed onto a poly(styrene) coated substrate to 

produce polymer spots with a diameter of approximately 375 µm. During analysis 

the aperture on the XPS was adjusted to collect electrons from only a small area 

of approximately 120 µm diameter. XPS survey and high resolution C1s spectra 
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were then acquired from both the poly(styrene) substrate and a printed PEGMA 

spot. The two sets of spectra were distinct and were identical to the spectra of pure 

poly(styrene) and PEGMA respectively, thus confirming the feasibility of 

analysing arrayed polymers with XPS.  

Nanoindentation involves applying a rigid indenter onto a surface while 

continuously measuring the load applied and the displacement of the indenter into 

the surface. It can provide information on a sample’s near surface mechanical 

properties including elastic modulus E and hardness H, and has been shown to be 

well-suited to characterisation of discrete or gradient material libraries.[44] This 

technique was applied to a large array of 1728 polymer spots by Tweedie et al to 

investigate the possibility of characterising the mechanical properties of a large 

number of polymer samples.[45] The polymer arrays used were produced using 

the same method as described by Anderson et al which are discussed above.[34] 

The nanoindentation measurements were carried out using an automated 

nanoindenter produced by Micromaterials Ltd and characterisation of the entire 

array took less than 24 hours. The results of the experiment demonstrated that the 

elastic modulus of any particular polymer depended almost entirely on the major 

monomer constituent; i.e. the minor monomer constituent had very little influence 

on elastic modulus of the polymer spot. However, two monomers did have a 

considerable influence on elastic monomers when they were a minor component. 

The most important result of this research is the demonstration of the feasibility of 

characterising the mechanical properties of large numbers of polymer samples on 

microarrays using nanoindentation.  

Similar work to the research discussed above has been carried out by 

Kossuth et al, but not on the same scale. They used a Symyx Parallel Dynamic 

Mechanical Analyzer to take modulus measurements of discrete polymer samples 

mounted on arrays. The modulus measurements were taken by measuring the 

force needed to deform a thin polyimide substrate by a set amount with and 

without the sample present. The modulus of the sample was calculated relative to 

that of the polyimide using a well-known mathematical model. Plateau modulai 

and glass transition temperatures can also be measured using this technique.  
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An attempt to develop high-throughput methods for determining 

structure/mechanical property relationships for polymers has been made by 

Sormana et al.[46]  Temperature gradient libraries of segmented polyurethaneurea 

(SPUU) elastomers were prepared on silicon wafers. SPUU elastomers are block 

co-polymers with a micro-phase separated morphology. The gradient libraries 

were analysed using FT-IR spectroscopy and non-contact atomic force 

microscopy. Then stress/strain curves were measured at various points across the 

libraries using a high-throughput impact and strain apparatus developed for 

characterisation of polymer gradient libraries. The FT-IR was used to measure the 

degree of hydrogen bonding between the segments of the polymer by observing 

three peaks in the carbonyl region of the infra red spectra.  

Fourier transform infrared microspectroscopy was also used by Eidelman 

et al to characterise combinatorially prepared gradient polymer blend libraries. 

The libraries tested were blends of PLLA and PDLLA, both polymers which are 

commonly used in tissue engineering. The gradient libraries were thin films on 

low emission reflective slides. The FTIR spectrophotometer was used in 

reflectance mode to analyze the gradient libraries and the results used to produce 

images that showed the chemical composition of all areas of the library. Figure 12 

is an example of the composition maps produced from the arrays showing the 

ratio of PLLA to PDLLA in different areas. 

 

Figure 12. A composition map of a polymer gradient library prepared using FTIR.  

FTIR imaging is a useful technique for visualizing the near-surface of a polymer 

blend - showing where on a sample different polymers dominate. This technique 
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could be applied to a discrete polymer library also, depending upon what substrate 

it was prepared on.  

Thaburet et al have developed a high throughput methodology to 

determine the wettability of a large library of polyurethanes.[47] A robotic liquid 

handler was used to dispense microlitre water droplets onto spin coated films of 

the polymers, and then a camera fixed to the handler was used to take top-down 

images of the droplets. A calibration curve was then use to determine the 

polymers’ contact angles from the spreading area of the droplets (Figure 13). 

Although this work was a nice demonstration of how wettability measurements 

can be automated, there was not much new about how the library was prepared for 

analysis. Each polymer still had to be individually spin-coated onto a substrate 

prior to analysis; a very time consuming exercise for 280 polymers!  

 

Figure 13. Relationship between contact angle and spreading area.[47]           
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1.5 Aims and objectives of thesis  

Thus far the reader has been introduced to the different approaches that 

have been trialled to speed the discovery of new polymeric biomaterials. It is 

hoped that this has emphasised the fact that the general characterisation, and 

particularly the surface characterisation, of these combinatorial polymer libraries 

arrays has been neglected. Indeed if any surface characterisation is undertaken it is 

often in the form of simple wettability measurements or near-surface spectroscopy 

e.g. FTIR. With the advent of polymer microarrays there is a real opportunity to 

use large libraries of polymers to study the fundamental science behind the 

biological response to polymeric materials. However, without knowledge of the 

polymers’ surface properties it will be impossible to rationalise the biological data 

from these polymers, nor study surface structure-property relationships.  

It is the aim of this thesis to develop methods for the characterisation of 

the surface chemistry of polymers in situ in microarray format and within realistic 

timeframes. Multivariate statistics in the form of principal component analysis 

will be investigated as a method of dealing with the massive amounts data 

obtained from such arrays. Methods will also be described for the estimation of 

the surface energy of microarrayed polymers and the characterisation of their 

protein adsorption properties: both are properties which have previously been 

used to rationalise cell response to materials. Finally the data obtained will be 

used to demonstrate how surface chemical data from polymer microarrays can be 

related to other surface properties using partial least squares regression.  
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2.1 Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS)  

ToF-SIMS is a very surface sensitive technique which allows a mass 

spectrum of a material’s surface to be obtained to a depth of approximately 1 to 2 

nm.[48] This spectrum can give a great detail of information about the molecular 

structure of the material’s surface. To obtain a mass spectrum the surface is 

bombarded with primary ions, which results in the emission of positive and 

negative secondary ions (plus a large amount of neutral fragments) (Figure 14). 

Although SIMS appears to be a destructive technique, in static SIMS the primary 

ion dose is kept very low (always less than 1013 ions cm-2), meaning that within 

the time-frame of the experiment less than 1 % of the top layer of a material’s 

surface receives an ion impact.[49] Hence the spectral information gained should 

always be from undamaged areas of the sample surface. The relatively high 

energy impact of the primary ions into the surface results in a large amount of 

bond breakage and fragmentation at the collision site, causing the emission of 

atomic species. The kinetic energy of the primary ions is transferred to the atoms 

of the sample by a cascade of collisions. As the distance from the collision site 

increases the collisions are less energetic and hence result in fewer bonds breaking 

and therefore the emission of molecular and quasi-molecular species. Primary ion 

sources which are in common use include Caesium, Gallium and Bismuth.[48]  

The primary ion beam is pulsed over very short periods of time which 

produces discrete ‘packets’ of secondary ions from the surface. The ‘packets’ of 

ionised species emitted are accelerated over a very short distance resulting in all 

the ions having virtually identical kinetic energies, which is vital to the working of 

the Time-of-Flight spectrometer. The ‘packet’ of ionised species then travels 

through a drift tube on their way to the analyser. The ions separate by mass as the 

heavier ions have a lower velocity than the ions of lower mass.[49] This effect is 

described in the following equation:  

2

2
1

mVEk     (1)  
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where Ek is the kinetic energy, m is the mass and V is the velocity of the ion. The 

differing velocities of the ions will result in them arriving at the analyser at 

different times. The following equation can then be used to calculate each ion’s 

mass from the time it takes for them to travel the length of the drift tube:  

2/1

0 2 kE

m
Ltt    (2)  

where L is the length of the flight path, t0 is the start time and t is the arrival time 

at the detector. A Time-of-Flight instrument allows much greater mass resolution 

to be obtained than older systems which employ Quadrupole detectors, 

particularly when a reflectron is used.[49] Although all secondary ions are 

accelerated to have approximately the same kinetic energies, there is still a small 

spread of energies for ions with the same mass. This can result in a lower mass 

resolution. To compensate for this spread many Time-of-Flight instruments 

employ a reflectron, which is essentially a retarding electric field that allows ions 

with a higher kinetic energy to penetrate further into the reflectron. This results in 

higher energy ions travelling further and hence compensating for the spread in 

kinetic energies. A major advantage of Time-of-Flight systems is that they allow 

the whole mass spectrum to be collected in parallel, thereby greatly reducing the 

primary ion dose needed.  

Primary ion beam

-

+

Secondary ionsUnionised species

Primary ion beam

-

+

Secondary ionsUnionised species

  

Figure 14. Diagram illustrating the production of secondary ions from a surface.   

When using ToF-SIMS to analyse insulating materials such as polymers, it 

is necessary to employ a charge compensation device. This is because the sample 

gains a net positive charge due to dosing with positive primary ions and emission 



Chapter 2. Experimental Methods  

28

 
of secondary electrons.[49] This compensation device is normally in the form of 

an electron gun which floods the sample surface with electrons which stabilises 

the surface potential.  

ToF-SIMS can also be used to image surfaces thereby showing the 

distribution of selected atomic or molecular species on a sample surface. Using a 

modern instrument it is possible to image areas ranging in size from a few 

micrometres to tens of millimetres, by rastering the primary ion beam over the 

surface of the sample by means of a motorised stage.[49] Time-of-Flight detectors 

are ideally suited to imaging due to their high transmission and most importantly 

their simultaneous collection of all masses. This results in ToF-SIMS images 

having a full mass spectrum per pixel allowing retrospective visualisation of any 

ion in the spectrum. ToF-SIMS image interpretation can be challenging due to 

topographic and matrix effects on the intensity of ions from different parts of the 

sample.[48] Therefore care must be taken to separate intensity variation which is 

due to changes in surface chemistry from those that are simply due to topography.   

2.2 X-ray Photoelectron Spectroscopy (XPS)  

XPS or ESCA (electron spectroscopy for chemical analysis) is a highly 

surface-sensitive technique (top 1 to 10 nm), which provides quantitative 

information about all elements except Hydrogen and Helium.[50] The defining 

event in its history was the discovery of the photoelectric effect by Heinrich 

Rudolph Hertz in 1887, which describes the emission of electrons from a material 

after absorption of energy in the form of electromagnetic radiation such as X-

rays.[49] The X-rays used for analysis are generated by bombarding an anode 

with high energy electrons from a heated filament. The anode is commonly made 

out of Aluminium or Magnesium. The X-rays produced are generally mono-

chromated to provide a smaller range of energies, thereby improving the 

resolution of the technique.  
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The technique involves directing a beam of X-rays onto a sample, which 

penetrates to a distance of a few micrometres. This causes the ejection of electrons 

from core energy levels in atoms on or near the surface, but only if the energy of 

the X-rays is great enough to overcome the energy holding the electrons to the 

nucleus (known as the binding energy). Only a small amount of these electrons 

emerge from the sample surface without suffering any energy loss through 

collisions on the path through the sample bulk. The chance of an electron reaching 

the surface without any energy loss decreases greatly as the distance from the 

surface increases. The binding energy of an electron can then be calculated if the 

kinetic energy of the electrons is known.[51] The following equation is used to 

describe the relationship between the binding energy of an electron and its kinetic 

energy when ejected from its orbital:  

bindkin EhvE     (3)  

where Ekin is the electrons kinetic energy, Ebind is its binding energy, h

 

is the 

energy of the X-rays used and 

 

is the work function of the spectrometer.   

O1s

C1s

O1s

C1s 

Figure 15. Example of a broad XPS spectrum.  

The binding energies of core electrons from different atoms are unique, 

therefore an XPS spectrum can show what atoms are present on the surface of a 
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sample. A survey XPS scan of a surface is commonly carried out first which 

covers the entire binding energy range (generally 0 to 1000 eV). Integrating the 

area under each of the peaks on this spectrum can give the relative quantity of 

each of the atoms on the surface. This survey scan is a useful way of identifying 

what elements are present on a surface and their relative quantities (Figure 15).  

The XPS spectrum of a hydrocarbon polymer containing no impurities is 

very simple, as only the Carbon 1s peak is visible. Surface contaminants such as 

adventitious hydrocarbons, surface oxidation products or PDMS are often visible 

on XPS survey spectra. Therefore it is very important that care is taken during the 

preparation, handling and analysis of samples to minimise surface contamination.  

C-C

ß shift
(C=O)OC

C-O C-C

ß shift
(C=O)OC

C-O

 

Figure 16. Example of a high resolution C1s XPS spectrum with component peaks fitted.   

XPS spectra can be obtained at high resolution, focusing on specific 

binding energies. This is useful as the binding energies of detected photoelectrons 

are also dependent on their local chemical environment. Therefore small shifts in 

binding energy can be observed when an atom is bound to different atoms. Hence 

XPS can provide information not only on what atoms are present at a surface, but 

also the chemical environment that these atoms are in. When analysing the 

surfaces of polymers a large amount of information can be gained from close 

study of the C1s peak in particular (Figure 16). The C1s peak is generally the sum 



Chapter 2. Experimental Methods  

31

 
of a number of component peaks which are each caused by carbon atoms in 

different chemical states. For example, Carbon bonded to another carbon atom or 

hydrogen gives a peak at 285 eV, whereas carbon single bonded to oxygen (for 

example in an ether functionality) gives a peak at ~ 286.5 eV. Hence a shift in 

bonding energy of ~ 1.5 eV due to the different chemical environments of the 

carbon atoms. These component peaks of the high resolution C1s peak can also be 

integrated to give a quantitative assessment of the relative quantities of different 

functional groups on a surface.   

Sample charging can also be a problem in XPS analysis of insulating 

materials such as polymers, due to the removal of electrons from the surface 

region, resulting in a net positive charge.  Sample charging can cause shifts in the 

binding energies of peaks on an XPS spectra. As with ToF-SIMS analysis an 

electron flood gun is generally used to minimise this charge. The spectra can also 

be charge corrected prior to analysis.   

2.3 Atomic Force Microscopy (AFM)  

The Atomic Force Microscopy (AFM) was developed by Binnig et al in 

1986 following on from the invention of Scanning Tunnelling Microscope (STM) 

in 1981.[52] AFM is now the most commonly used type of scanning probe 

microscope principally because, unlike STM, it can be used to image insulating 

samples such as biologics. AFM can also be operated in ambient and aqueous 

environments. An AFM consists of a very sharp tip at the end of a cantilever 

which is generally either moved along a surface (contact AFM) or tapped onto a 

surface (tapping mode AFM) (Figure 17). A laser focused on the cantilever is 

used to detect the vertical movement of the tip and the information used to create 

an image of the surface, i.e. these microscopes image a sample by ‘feeling rather 

than looking’. These images can provide useful information on surface 

topography and roughness down to the nanoscale, far surpassing the resolution of 

optical and electron microscopes.   



Chapter 2. Experimental Methods  

32

 
In tapping mode AFM further information can be gained by observing the 

phase lag of the cantilever as it oscillates on the surface. This lag is caused by 

interactions between the surface and tip which cause the cantilever to oscillate out 

of sync with the driving mechanism.[53] Therefore phase images can provide 

useful information about the morphology of the surface being studied, for 

example whether a polymer blend is phase separated, or the mechanical properties 

of the surface. The information in the height images can be used to get 

quantitative information on a samples roughness allowing the roughness of more 

than one sample to be compared statistically. The root mean square roughness is 

commonly used to describe the roughness of surfaces. This is calculated by taking 

the centre line of a surface profile and calculating the route mean square deviation 

of a number of points on the profile from the centre line. Further information on 

the theory and uses of both contact and tapping mode AFM can be found 

elsewhere.[54, 55]  

Photodiode Laser

Samplex
y

Tip Cantilever

Photodiode Laser

Samplex
y

Tip Cantilever

  

Figure 17. Diagram describing the typical construction of an AFM.  

As well as imaging a sample by rastering the tip across the surface, an 

AFM may also be used to study the adhesive force between the AFM tip and a 
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sample. It is also possible to attach molecules to the AFM tip to measure the 

interaction force between the molecules and a surface. An example of this is the 

attachment of proteins to the AFM tip to measure the adhesion force between the 

protein molecule and a surface.[56] The tip is driven towards the sample while the 

cantilever deflection is monitored. A plot of the vertical position of the tip relative 

to the sample versus cantilever deflection is called a force-distance curve (or 

simply a force curve) (Figure 18).  

Relative z position
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Relative z position
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Figure 18. Example force-distance curve.  

As the tip is driven towards the surface there is initially no deflection of 

the cantilever as the tip is not close enough to interact with surface forces. When 

the tip comes into range of the surface forces it is pulled towards the surface 

causing the cantilever to bend (known as ‘snap-to-surface’). As the tip is driven 

further towards the surface the cantilever straightens again until repulsive forces 

on the surface cause the cantilever to deflect again. When the cantilever is 

withdrawn from the surface the tip is held to the surface again by adhesive forces 

causing the cantilever to deflect (the magnitude of the deflection depends on the 

strength of the adhesive force). As the cantilever is drawn further away from the 

surface the tip eventually detaches from the surface and the cantilever straightens 

again. The magnitude of the deflection of the cantilever is converted to force by 

the following equation (known as Hooke’s law): 
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F = -kd          (4)  

where F is Force, k is the force constant of the cantilever and d is the cantilever 

deflection. Measuring the deflection of the cantilever as the tip is drawn away 

from the surface and converting this into force with the above equation gives the 

adhesive force. Information about the mechanical properties of a material may 

also be extracted from a force curve, by analysing the portion of the curve were 

the tip has been driven into the same. There are various mathematical formulae 

which allow the calculation of properties such the Young Modulus from the 

information available in a force curve.[57]        
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3.1 Introduction  

Polymer microarrays have shown promise as a method for screening for 

new polymers with properties of interest.[29] These include properties such as the 

ability to support cell growth,[21, 34, 36, 38] mechanical properties[45] and to 

direct drug crystal growth.[39]  Two approaches can be taken with this type of 

study: screen for hit polymers with properties of interest or to study the 

relationship between the chemistry of the polymers and the property of interest. 

Simplistic comparisons may be made between a polymer’s bulk chemistry and its 

various properties. However, this method is redundant if the property that is being 

studied depends on the chemistry of the polymers’ surfaces, rather than their bulk. 

This is the case in applications as diverse as biomaterials[58] and 

semiconductors.[59, 60] The surface chemistry of a polymer cannot necessarily be 

assumed from its bulk chemistry, as issues such as surface contamination and 

segregation of mobile components can result in the surface being considerably 

different to the bulk.[42]  Hence a detailed characterisation is necessary using 

surface sensitive techniques. Once this information is acquired it is then possible 

to study surface structure/property relationships.  

The two surface analytical techniques used in this chapter are Time-of-

Flight Secondary Ion Mass Spectrometry and X-ray Photoelectron Spectroscopy, 

both of which are commonly used for the characterisation of polymer surfaces. 

The theory behind the two techniques is discussed in some detail in Chapter 2. 

There are a number of challenges to be surmounted to enable a high throughput 

surface characterisation of a polymer microarray. These includes issues such as 

the number of samples on the array, the size of the samples (e.g. only 300 µm 

diameter spots) and importantly methods of analysing such large amounts of data. 

The two techniques used in this chapter both have the capability of operation with 

a high spatial resolution, giving reassurance that the data collected is only from 

the polymer spot analysed and not from the substrate.[61] Automated acquisition 

software (including a fully automated stage) enable rapid and unattended analysis 

of large amounts of samples in microarray format.   
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Figure 19.  One principal component in the case of two variables. a)  PC1 describes the 
greatest variance in the 6 sample data set b) Loadings are the cosine of the angle between 
each axis and PC1 c) Scores are the projections of the sample points onto the PC1. 
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Simple computer programs allow automated calibration and sorting of the large 

amount of data acquired from a microarray. Finally multivariate statistics can be 

applied to analyse the large amount of data acquired.  

Due to the method of ion generation involved, a ToF-SIMS spectrum can 

contain hundreds of different ion peaks. It can be a relatively difficult task to 

interpret the positive and negative spectra of one polymeric sample, but if there 

are hundreds of samples (e.g. a microarrayed library) the task of manually 

analysing the spectra becomes lengthy and laborious. This aspect of ToF-SIMS 

data that makes it difficult to compare multiple samples is due to the fact that it is 

multivariate in nature, i.e. each measurement (spectrum) is made up of multiple 

variables. Multivariate statistics in the form of principal component analysis 

(PCA) is a useful tool for simplifying the analysis of large volumes of data. PCA 

reduces the dimensionality of ToF-SIMS data to a small number of abstract 

factors that describe the variation in the data, enabling similarities and differences 

in the samples to become apparent.[62] To describe how PCA works it is easiest 

to imagine that each sample is plotted in n dimensional space (n corresponds to 

how many ion peaks are used), where each axis corresponds to an ion peak and 

the samples position depends upon the intensity of each peak in its spectrum 

(Figure 19a). A vector can then be plotted (through the origin) that describes the 

greatest amount of variation in the group of samples (Figure 19a). This is called 

the first principal component (PC1). If each sample point is then projected onto 

this principal component and the distance of this project measured to the origin, 

we get the score value for this sample on PC1 (Figure 19c). Therefore instead of 

describing this sample using hundreds of ion peaks, we can describe it using this 

single score value. PCA assigns each variable (ion peak) with a loadings value 

which indicates the extent to which this variable is responsible for the variance 

within the data set. The loadings value is calculated by taking the cosine of the 

angle between the principal component vector and the axis of each variable 

(Figure 19b). Therefore it can be reasoned that axis that have a large angle 

between themselves and the principal component (e.g. ~ 90°) do not explain the 

variance described in the principal component and will have a loadings values 

close to zero. If an axis has a very small angle between itself and principal 

component (e.g. ~ 0°), it is likely to help explain the variance and will have a 
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loadings value close to 1. More principal components may be fitted to the data, 

providing they are orthogonal to the previous components. Each new principal 

component will describe progressively less variance, until it gets to a point when 

each new component is simply describing noise within the dataset.  

PCA has been widely used in the surface analytical field. There has been 

much interest recently in the use of PCA for processing ToF-SIMS images,[63, 

64] however it is still predominantly used for looking for similarities and 

differences in the ToF-SIMS spectra of groups of samples. PCA has previously 

been used to study the composition of adsorbed protein layers[65, 66], the 

chemistry of self-assembled monolayers[67] and study the influence of surface 

chemistry on water contact angle.[68]  

The published literature concerning the surface chemical analysis of 

microarrays (DNA, protein or otherwise) is limited. Belu et al used ToF-SIMS to 

image the micropatterned protein streptavidin on a self assembled monolayer 

(SAM) surface.[69] To distinguish the proteins from the substrate the streptavidin 

was labelled with the stable isotope 15N, allowing images to be formed by 

following the intensity of the C15N- ion. Similar work was reported by Hashimoto 

et al who used ToF-SIMS to image a DNA microarray, using the PO2
- and PO3

- 

ions formed from the DNA backbone.[70] This type of work is aimed more at the 

confirmation of a particular pattern or layout on a surface, rather than a detailed 

surface chemical analysis of the arrayed materials. The area was explored further 

by Lee et al who used ToF-SIMS, XPS and fluorescence imaging to analyse a 

DNA microarray.[71] One interesting observation was that the XPS P 2p atomic 

percentage of each DNA spot was highly correlated with fluorescence 

measurements of the amount of printed DNA. PCA was utilised to improve the 

contrast between the DNA spots and substrate in the images. The work discussed 

in this chapter will go much further than the work discussed above. Instead of 

imaging single or small numbers of microarray spots, images of an entire 576 spot 

microarray were acquired. The feasibility of a detailed surface chemical analysis 

of an entire microarray using both ToF-SIMS and XPS will be demonstrated.  



Chapter 3. Surface Chemical Analysis of Polymer Microarrays    

40

 
This chapter describes the application of ToF-SIMS and XPS to the 

surface chemical analysis of a polymer microarray. ToF-SIMS imaging is utilised 

to confirm the layout of the entire microarray. Multivariate statistics in the form of 

principal component analysis (PCA) is used to analysis the large amount of 

spectral data acquired.   

3.2 Methods and Materials  

3.2.1 Microarray Synthesis  

Epoxy-coated glass slides were dip-coated into 4 % (w/v) PHEMA 

solution in ethanol and dried for three days. Stock solutions of acrylate monomers 

were prepared at a ratio of 75 % (v/v) monomer, 25 % (v/v) DMF and 1 % (w/v) 

2,2-dimethoxy-2-phenylacetophenone. The monomers were divided into major 

and minor monomers (Figure 20) and mixed in the following ratios: 

(major:minor) 70:30, 75:25, 80:20, 85:15 and 90:10 in all possible combinations. 

Mixing was carried out in 384-well black polypropylene plates. Monomer 

solutions were then printed using the larger format CMP9B pins with a Pixsys 

5500 robot (Cartesian), in an atmosphere of humid argon. The slides were 

polymerised by exposure to long-wave UV light for approximately 10 seconds, 

after which they were dried for one week at < 50 mTorr.    

3.2.2 Time-of-Flight Secondary Ion Mass Spectrometry  

ToF-SIMS analysis was performed using an ION-TOF IV (GmbH, 

Münster, Germany) instrument. ToF-SIMS images of the microarray were 

obtained by rastering a primary ion beam over an 18.2 x 18.2 mm area (256 x 256 

pixel raster) with 512 ion pulses taken per pixel. To obtain spectra from each 

polymer spot secondary ions were sampled from a 100 x 100 µm area on each 

spot. Images and spectra were obtained using a Ga+ primary ion beam, operated at 
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25 kV energy. The sampling depth of ToF-SIMS is approximately 2 nm.[72] The 

acquisition and calibration of all spectra was fully automated via the design of 

specific macros using instrument software, allowing completely unattended 

operation.  

3.2.3 X-ray Photoelectron Spectroscopy  

All XPS analysis was carried out using a Kratos Axis Ultra spectrometer 

using a mono-chromated Aluminium X-ray gun, with a charge-compensating 

electron flood. To allow automatic acquisition of spectra from all polymers on the 

microarray, the coordinates of each polymer spot on the microarray was loaded 

into the instrument software. Photoelectrons were sampled from a 110 µm 

diameter area for each polymer to ensure that there was no contribution from the 

PHEMA substrate. The sampling depth for XPS is approximately 10 nm.[51] To 

enable the whole microarray to be analysed in a reasonable amount of time, the 

data acquisition time for each polymer was limited to 9 minutes (6 minutes for 

survey scan and 3 minutes for C1s high resolution scan). Pass energies of 80 eV 

and 20 eV were used for survey and C1s scans respectively.  

Elemental and functional quantification was achieved using CASA 

software. A linear background was applied to the C1s high resolution peaks and 

synthetic Gaussian/Lorentzian peak shapes used to fit the peak components. Bulk 

O:C ratio was calculated from knowledge of the theoretical monomer composition 

used to synthesise the polymers (the photo-initiator was also included).  

3.2.4 Principal Component Analysis  

The positive and negative ion spectra for all 496 polymers were 

automatically mass calibrated using ION-TOF ToF-Bat software.[73] This 

automatic calibration was relatively accurate, with mean deviations of < 40 ppm 

from true mass for m/z 0-100. One peak list each was then created for both 

positive (344 peaks) and negative (92 peaks) ion spectra using mass spectra taken 
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from a group of polymers from the array containing monomers with widely 

varying chemistries. This group included polymers synthesised using all of the 

monomers in Figure 20. This peak list was then applied to all 496 polymers. The 

peaks were then integrated using ION-SPEC software and peak intensities 

exported to Origin Pro 7.5. The positive and negative ion intensities for each 

polymer were normalised to the total ion count separately, to account for normal 

variation in secondary ion yield between polymers. PCA analysis was carried out 

on the positive and negative ion data matrices separately using Eigenvector 

PLS_Toolbox 3.5 for Matlab. The ToF-SIMS data were mean-centered before 

analysis.  
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Figure 20.  Monomers used to synthesise the polymer microarray.  

The atomic and functional group composition data obtained using XPS for 

all polymers on the microarray was arranged into one data matrix in Origin Pro 

7.5, where the each column was a polymer and the rows the XPS data (496 x 8). 

The data were mean-centered and auto-scaled prior to PCA analysis using PLS 

Toolbox 3.5.      



Chapter 3. Surface Chemical Analysis of Polymer Microarrays    

43

  

Figure 21. ToF-SIMS imaging of the polymer microarray. Images for 12 example ions are shown: 
6 positives on the left and 6 negatives on the right. 
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3.3 Results  

3.3.1 Time-of-Flight Secondary Ion Mass Spectroscopy  

ToF-SIMS images were acquired to show the distribution of 12 key ions 

across the microarray (Figure 21). The individual polymer spots are easily visible 

on all of the images, with the exception of the CHO2
- image. The distribution of 

the different ions varies across the microarray array. The contrast is greatest for 

the two fluorine containing ions CF+ and F-, and least for CHO2
-.  

The positive and negative ToF-SIMS spectra of the micro-arrayed 

polymers contain previously reported features that are characteristic of acrylic 

polymers,[74] with trace sodium and silicone contamination. PCA was carried out 

separately on the positive and negative ToF-SIMS spectra of the polymers from 

the microarray. The initial positive ion PCA model was dominated by the 

secondary ions at m/z 73.053 and 147.076, which are characteristic of PDMS 

contamination. Therefore secondary ions characteristic of PDMS were removed 

from the positive dataset and PCA analysis repeated. The first two principal 

components accounted for 61 % of the variance within the data. Figure 22a shows 

the score values of each of the polymers on the first two principal components. 

There is some grouping of polymers due to their major monomer component, for 

example for polymers containing major monomers 1 and 12, however for the 

majority of the major monomer groups do not. Examination of the loadings for 

PC1 show that the ions with the greatest positive loadings are m/z 57.074, 41.039 

and 29.039, and those with the greatest negative loadings are m/z 59.050 and 

45.035 (Figure 22b). Examination of the loadings for PC2 show that the ions with 

the greatest positive loadings are m/z 59.050, 57.074 and 45.035, and those with 

the greatest negative loadings are m/z 55.022, 27.024 and 105.036 (Figure 22c).      
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Figure 22. Principal component analysis of positive ion intensities from microarray. a) Scores 
biplot of PC1 and PC2. Polymers are group by their major monomer constituents. b) Loadings 
versus m/z on PC1. c) Loadings versus m/z on PC2.  
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Figure 23. Principal component analysis of negative ion intensities from microarray. a) Scores 
biplot of PC1 and PC2. Polymers are group by their major monomer constituents. b) Loadings 
versus m/z on PC1. c) Loadings versus m/z on PC2. 
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The first two principal components in the PCA model for the negative ion 

dataset accounted for 75 % of the variance. The scores bi-plot is considerably 

simpler for the negatives than that for the positive ions, with polymers  containing 

the fluorinated monomer D separating from the remaining polymers on the second 

principle component (Figure 23a). The loadings plots reflect this simpler picture 

with only m/z 18.997 having a significant loadings value on PC2 (Figure 23c). 

Ions with m/z 13.008, 15.996 and 17.003 have positive loadings on PC1, with 

only m/z 14.015 having a significant negative loading (Figure 23b).   

3.3.2 X-ray Photoelectron Spectroscopy  

XPS spectra, including survey and C1s high resolution scans, were 

obtained for all polymers on the microarray. The atoms visible in the survey scans 

of the polymers were carbon, oxygen, fluorine and nitrogen (Figure 25a & c). The 

presence of all these atoms can be explained with reference to the monomers used 

in the synthesis of the array (Figure 20). No silicon indicative of PDMS 

contamination was detected on any of the polymers on the microarray, in contrast 

to the ToF-SIMS results. Carbon and Oxygen was detected on all of the polymers, 

however fluorine was only observed in the survey spectra of polymers containing 

the fluorinated monomer D (Figure 25e). Nitrogen was detected in the survey 

spectra of some of the polymers containing monomer E, but at very low 

concentrations (~ 1-2 %). The polymers’ C1s high resolution peaks were fitted 

with their component peaks, which for the majority of polymers consisted of the 

aliphatic peak at 285 eV, ß shifted carbon peak at ~ 285.7 eV, ether peak at ~ 

286.5 eV and the carboxylic ester peak at ~ 289 eV (Figure 25b). The majority of 

the fluorinated polymers also contained the F-C-F peak at ~ 290.9 eV (Figure 

25d). 
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Figure 24. Comparison between polymer surface and bulk chemistries. The ratio of polymer 
surface O:C ratio is plotted versus bulk O:C ratio. Bulk is calculated from theoretical ratios based 
upon knowledge of the ratio of monomers used to synthesise each polymer (the radical initiator 
has been included in calculations).   

To investigate the relationship between the surface and bulk chemistries of 

the polymers the theoretical bulk O:C ratio of the polymer was calculated and 

compared to the surface O:C obtained using XPS (Figure 24). XPS analysis for 

homogeneous surfaces can determine the atomic concentration of the surface with 

accuracies of  = 90 %;[75] therefore a 10 % confidence limited is given on Figure 

24. It can be seen that only 36 % of the polymers have a surface O:C which is 

similar to their bulk O:C ratio. Whereas 29 % of the polymers have carbon rich 

surfaces and 35 % have oxygen rich surfaces. For example, polymers containing 

monomers 4, 9 and 11 have oxygen rich surfaces, whereas those containing 

monomers 6 and 10 have carbon rich surfaces (Figure 24).   
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Figure 25.  XPS analysis of the polymer microarray. a) Example survey spectrum of a 
representative polymer b) Example high resolution C1s spectrum of a representative polymer c) 
Example survey spectrum of a fluorinated polymer d) Example high resolution C1s spectrum of a 
fluorinated polymer e) Atomic percentage of Fluorine for all polymers on microarray.      
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PCA was carried out on the atomic and C1s component information 

gained from the microarray. The first two principal components described 57 % of 

the variance within the dataset. Analysis of the score values of the polymers on 

PC1 indicates that the majority of the polymers have a score value close to zero 

(Figure 26a). Polymers containing monomers 4, 5 and 14 have the greatest 

negative score values, whereas those containing monomers 1, 3, 6 and 16 have the 

greatest positive score values. Analysis of the score values on PC2 indicates that 

polymers containing monomer D have the greatest positive values, whereas the 

rest of the polymers have either negative score values or close to zero (Figure 

26b). Analysis of the loadings values on PC1 indicates that the C-C and C1s % 

variables have positive loadings and the C-O and O1s % variables have negative 

loadings (Figure 26c). On PC2 the O-C=O, C-F and F1s % variables have the 

greatest positive loadings, whereas the C-O and C1s % variables have negative 

loadings (Figure 26c). The N1s % variable has a loadings value close to zero for 

both PC1 and PC2, suggesting that it has a minimal influence on the PCA model.   

3.4 Discussion  

XPS and ToF-SIMS spectra were obtained for all polymers on the 

microarray analysed within a period of approximately six days. This means that 

the surface chemical analysis of a polymer microarray can be achieved within the 

same time-frame as the biological evaluation (2 to 10 days),[34] which illustrates 

the high throughput nature of the analysis discussed in this chapter.   

ToF-SIMS imaging provides information on the distribution of different 

secondary ions across a sample. This is particularly useful for microarray work as 

it enables confirmation that the polymers have been printed in the layout intended. 
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Figure 26. PCA of XPS data from the microarray. a) Scores biplot of PC1 and PC2. Polymers are 
grouped by their major monomer constituents. b) Scores biplot of PC1 and PC2. Polymers are 
grouped by their minor monomer constituent c) Loadings biplot of PC1 and PC2.  
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The most characteristic secondary ion on the microarray is the F- ion, which is 

only seen at high intensities in polymers containing the fluorinated monomer D 

(Figure 21). This pattern is also seen for the CF+ ion, although the intensities are 

much lower than that seen for F-, which is probably due to the lower probability of 

this ion forming.[48] The ToF-SIMS CF+ and F- ion images correlate very well 

with the XPS Fluorine atomic concentration data (Figure 25e). The CH3
+ fragment 

shows greatest intensity in polymers containing monomer 16 as their major 

monomer component (Figure 21). This monomer contains an ethane side chain 

and methoxyethane side chain, both of which are likely to fragment to form the 

CH3
+ ion. This is confirmed by the observation of a particularly intense peak at 

m/z 15.023 in the positive ion spectra of polymers containing this monomer. The 

CH3O
+, C2H3O

+ and C3H7O
+ ions are all most intense for the majority of polymers 

containing either monomer 3 or 6 (Figure 21). Both of these monomers contain 

propylene oxide functionalities, which readily fragment to form the three ions 

mentioned above. Oddly this pattern is not observed for the C2H3O
- and CHO2

- 

ions which can also be formed from fragmentation of propylene oxide.  

The OH- ion is observed at high intensities across most of the polymers on 

the microarray and the PHEMA substrate as might be expected. However, 

exceptions include polymers containing monomers 5 and D which show relatively 

low intensities. This is intuitive as monomer 5 is a tertbutylcyclohexyl capped 

monoacrylate and monomer D is a fluorinated diacrylate (Figure 20). Nitrogen is 

commonly detected as the CN- ion in the negative ion spectra of nitrogen 

containing polymers.[48] This is observed in the ToF-SIMS images of this 

microarray, where polymers containing the nitrogen containing monomer D have 

the highest intensity for the CN- ion (Figure 21). The image for the C2H6N
+ ion 

shows a similar pattern, however other polymer spots not containing monomer D 

show relatively high intensities too. This could possibly be due to the fact that the 

peak at m/z 44 has multiple components, therefore there may be some over lap 

with other more commonly produced secondary ions such as C2H4O
+.  

ToF-SIMS provides qualitative information regarding the molecular 

structure of a polymer surface. A ToF-SIMS spectrum for a single polymer 
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contains hundreds of molecular ion species, providing a significant challenge to 

the analyst. Conventional analysis of the spectra from these polymers would be 

very time consuming and ineffectual due principally to the large number of 

polymers in the library. To extract valuable information from an entire array in the 

required timeframe is unfeasible. There is also the added difficulty that the 

polymers are novel materials, therefore there is no previous work available to help 

identify ion fragments characteristic to these materials. Therefore, to investigate 

surface chemical similarities and differences within the polymer library PCA was 

performed on both the positive and negative ToF-SIMS datasets. In PCA analysis 

samples which have similar surface chemistries will have similar scores values 

and vice-a-versa. In the case of the positive ion spectra, the polymers are 

separated by their score values on PC1 and PC2 into approximately three general 

groups, with the majority grouping round the origin. It is obvious that for most 

polymers, both the major and minor monomer influences the surface chemistry as 

the polymers containing the same major monomer do not necessarily group very 

tightly (Figure 22a). Polymers containing monomers 5 and 8 as their major 

monomer component generally have positive scores on PC1 (Figure 22a). The 

ions with the highest positive loadings on PC1 are all hydrocarbons, i.e. 57.074 

(C4H9
+), 41.039 (C3H5

+) and 29.039 (C2H5
+) (Figure 22b). Monomers 5 and 8 both 

contain tert-butyl functionalities which would likely fragment to form three ions 

mentioned above (Figure 20). The polymers with the greatest negative scores 

values on PC1 generally contain monomers 2, 3, 8, 10 and 11 as their major 

monomer component (Figure 22a). The ions with the greatest negative loadings 

on PC1 are 59.050 (C3H7O
+) and 45.035 (C2H5O

+) (Figure 22b). Monomers 2, 8 

and 10 contain ethylene oxide functionalities, whereas monomers 3 and 11 

contain propylene oxide functionalities (Figure 20). C3H7O
+ and C2H5O

+ are 

commonly formed from fragmentation of propylene oxide chains. C2H5O
+ can 

also be formed from fragmentation of ethylene oxide chains. It is possibly this 

cross-over which explains why polymers containing propylene oxide 

functionalities and those containing ethylene oxide functionalities do not separate 

on the PC1 scores (Figure 22a). It has previously been observed that PCA can be 

used to distinguish between polymers containing ethylene glycol chains of 

different lengths.[76] This does not appear to be the case in the PCA model of this 

group of polymers. 
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The ions with the greatest positive loadings values on PC2 are 59.050 

(C3H7O
+), 57.034 (C3H5O

+) and 45.035 (C2H5O
+) (Figure 22c). Polymers with 

large positive score values on PC2 are mostly those containing monomers 2, 3, 8, 

10 and 11 as their major monomer component (Figure 22a). Those containing 

monomer 3 and 11 (both containing propylene oxide functionalities) have the 

highest positive score values. Interestingly, C3H7O
+ and C3H5O

+ are both strongly 

characteristic of propylene oxide functionalities, and C2H5O
+characteristic of 

ethylene oxide functionalities. Therefore like PC1 the polymers are again 

separating on the basis of these two functional groups, however unlike PC1 there 

is a degree of separation between those containing propylene and ethylene oxide 

functionalities. This is probably due to the considerably higher positive loadings 

values for C3H5O
+ compared to the other ions (Figure 22c). The ions with the 

greatest negative loadings on PC2 are 27.024 (C2H3
+), 55.022 (C3H3O

+) and 

105.036 (C7H5O
+) (Figure 22c). These ions are characteristic of the fragmentation 

of acrylate functionalities.  

The PCA model for the negative ion data is considerably simpler than that 

for the positive ion data (Figure 23a). The ions with the greatest positive loading 

values on PC1 are 15.996 (O-), 17.003 (OH-) and 13.008 (CH-), whereas the ion 

with the greatest negative loading value is 14.015 (CH2
-) (Figure 23b). This 

reflects the pattern seen in the positive ion PCA model where PC1 separates the 

polymers mainly in terms of oxygenated and non-oxygenated species (Figure 22). 

PC2 is dominated by the F- ion which has a much greater loadings value than any 

other ion (Figure 23c). Unsurprisingly the polymers containing the fluorinated 

monomer D are separated on by the score values on this principal component 

(Figure 23c). 
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Figure 27. Influences of the addition of minor monomers on the PC1 score values of polymers 
containing major monomers a) 5 b) 7 and c) 15.  
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The score values from the PCA analysis can be used to study the influence 

on surface chemistry of varying the minor monomer constituent of a polymer. 

Analysis of the scores values in this context shows that the relationships between 

specific minor monomers and the corresponding polymers’ score values are 

complex; perhaps reflecting the differing dynamics of the many different 

monomer combinations. Indeed there are few conclusions which may be made 

which are general for all of the polymers. The score values of polymers containing 

major monomer 5 are a good example. On PC1 the polymers containing 100 % 

monomer 5 all have relatively high score values (0.17 ± 0.02). Addition of any 

quantity of monomers A and B does not influence the score value on PC1, which 

could be due to depletion of these species from the polymer surfaces or 

similarities in the production of secondary ions from these species (Figure 27a). 

Addition of monomers C, D, E or F all result in a significant decrease in the 

polymers’ score values on PC1. This is true for all concentrations of monomers E 

and F, but only for concentrations greater than 15 % for monomers C and D. The 

same relationships are also seen for polymers containing monomer 7 (Figure 27b). 

In contrast, for polymers containing monomer 15, addition of monomers A and B 

results in a decrease in the score values on PC1 (Figure 27c). Addition of 

monomer C results in no significant change, whereas addition of monomers D, E 

and F again result in a decrease in the score values.   

XPS provides quantitative information regarding the atomic and functional 

group composition of a material’s surface. Obtaining the elemental composition 

of a polymer’s surface and comparing this to the polymer’s bulk elemental 

composition is an important method of investigating whether a polymer’s bulk 

chemistry reflects its surface chemistry. The majority of the polymers (64 %) have 

a surface O:C which differs from the bulk O:C, thus clearly demonstrating that the 

surface composition of these polymers cannot be inferred from their bulk 

composition (Figure 24). This is particularly important if surface structure-

property relationships are to be studied for these polymers, as surface analysis will 

be a necessity. Approximately 29 % of the polymers have carbon rich surfaces, 

whereas 35 % of polymers had Oxygen rich surfaces. The polymers with a Carbon 

rich surface may preferentially adsorb air borne volatile organic compounds with 
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a high Carbon content.[42] Alternatively it may reflect depletion of Oxygen 

containing monomeric species from the surface of the polymer. The polymers 

with Oxygen rich surfaces may reflect the segregation of Oxygen containing 

mobile species, oxidation of surface functionalities or preferential orientation of 

functional groups.[42] These effects may also be monomer specific, for example, 

for polymers containing monomers 6 and 10 which have Carbon rich surfaces 

(Figure 24). Monomer 6 contains both hydroxyl and methyl functional groups on 

its side chain (Figure 20). In a UHV environment it is probable that this chain will 

rearrange to orientate the methyl functionalities towards the surface and the 

hydroxyl groups away from the surface, hence resulting in a Carbon rich surface. 

Likewise monomer 10 is a monoacrylate with a hydroxyl terminated side chain 

which will have the flexibility to orientate away from the surface in a UHV 

environment. Polymers containing monomer 4 have Oxygen rich surfaces which 

may be due to oxidation of the tricyclic ring structure that terminates this 

monoacrylate (Figure 20).  

XPS data is considerably simpler than ToF-SIMS data in terms of the 

possible number of variables to be investigated. However, due to the number of 

samples on the polymer microarray there is still the problem of too much data to 

realistically analyse by traditional methods. Therefore, PCA was applied to the 

XPS data from the microarray to investigate the feasibility of this method to 

analyse such data. The first two principal components only accounted for 

approximately 57 % of variance within the data set, with the remaining principal 

components accounting for mainly noise. Different pre-processing regimes (such 

as mean-centering, auto-scaling and no pre-processing)   were trialled to obtain a 

PCA model which described the maximum variance in the dataset. Mean 

centering with auto-scaling was found to maximise the variance described, 

particularly for PC2. Initial observation of the scores on these first two principal 

components may suggest that the PCA model is not discriminating between the 

polymers as well as the PCA model of the ToF-SIMS data (Figure 26a). However, 

due to the limited number of variables available to the PCA model the picture is 

actually a lot simpler and gives valuable information about the chemistry of the 

polymer surfaces. The polymers are separated on PC1 on the basis of their surface 

Oxygen/Carbon content (Figure 26a). C1s % and C-C % both have positive 
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loadings and O1s % and C-O % have negative loadings on PC1 (Figure 26c). The 

majority of the polymers have PC1 score values close to zero, however certain 

major monomer groups stand out as having surfaces that are particularly Carbon 

or Oxygen rich. For example, polymers containing monomer 4, 5 and 14 have the 

greatest positive score values on PC1 (Figure 26a). These three monomers all 

contain bulky, Carbon-heavy moieties which are probably the cause of the 

polymers high surface Carbon content compared to the rest of the library (Figure 

20). Monomer 4 contains a side chain terminated with a tri-cyclic hydrocarbon 

ring structure, monomer 5 contains a side chain terminated with a tertbutyl 

functionality and monomer 14 has both an ethyl and phenyl terminated side 

chains. Polymers containing monomers 1 and 6 have the greatest negative score 

values on PC1 (Figure 26a). Monomer 1 consists of a side chain containing four 

ethylene oxide functional groups, whereas has a side chain consisting of multiple 

oxygenated functionalities such as hydroxyl, ether and ethylene oxide groups 

(Figure 20).  

The minor monomer constituents of the polymers do not appear to 

influence the PCA model, with the exception of those polymers containing minor 

monomer D. Polymers containing monomer D have the greatest positive score 

values on PC2 and indeed separate almost entirely from the remaining polymers 

(Figure 26b). This separation is due to the high loadings values assigned to the 

F1s % and C-F % variables on PC1 (Figure 26c). PCA is very sensitive to the pre-

processing of data prior to analysis, which can influence the results of the PCA 

model substantially. When the data were only mean-centered the PCA analysis 

was unable to discriminate the Fluorine containing polymers on any principal 

component.  This was because the numerical values describing the variables in 

question (F1s % and C-F %) were considerably smaller than those of the other 

variables in the model. Auto-scaling of the data reduced this difference in scale; 

hence PC2 is now able to discriminate these polymers. Interestingly the surface 

Nitrogen content (in terms of N1s %) of the polymers containing monomer E is 

too low for the PCA model to discriminate these polymers, even when the data are 

auto-scaled prior to analysis (Figure 26b). This is evident from the very small 

loading values assigned to the N1s variable on both principal components (Figure 

26c). 
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3.5 Conclusions  

This chapter has demonstrated the feasibility of the high throughput 

surface chemical analysis of a polymer microarray using two complimentary 

surface analytical techniques. Importantly it is now possible to determine the 

surface chemistry of an entire microarray in the same time-frame as biological 

evaluation. The methods described here are applicable to any type of microarray, 

with similar spot dimensions. ToF-SIMS imaging has been shown to be useful for 

confirming the array layout and as a relatively rapid method of observing the 

layout of key secondary species. XPS analysis has confirmed the need for surface 

analysis of these arrays by demonstrating the difference between the bulk and 

surface chemistry of the polymers. Principal component analysis has been proven 

to be an ideal method for analysing the large amounts of data gained from such a 

large library and applicable to both ToF-SIMS and XPS data. In chapters 5 and 6 I 

will show how this surface chemical data can be applied to explain other surface 

properties of the polymers, such as cell adhesion, protein adsorption and 

wettability.    
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4.1 Introduction  

Wettability, the degree to which a solid may be wet by a liquid, is a 

property of surfaces that influences many phenomena such as biological response 

to materials, and coating adhesion and durability.[42, 77] Usually wettability is 

assessed through the measurement of the contact angle (CA) of a liquid droplet 

placed on a surface, which is a quick, economical and relatively simple 

technique.[78]  The CA is one of the most sensitive of all surface analytical 

techniques as only the top nanometre of a surface influences wettability.[79] The 

CA of a liquid on a solid depends on both surface chemistry and roughness.[80] 

When estimating the contact angle by fitting a function to the profile of a droplet, 

shape distortion by gravity must also be taken into account for larger droplets.[81]   

The sessile drop method of CA measurement commonly utilises a few 

microlitres of a liquid (e.g. ~ 2 µL giving a 2 mm base diameter when CA = 90°) 

which are placed on a surface from a needle. This method is useful for relatively 

large, homogenous surfaces but lacks lateral resolution when analysing surfaces 

with chemical differences on the sub millimetre scale, due to the dimension of the 

base diameter of a droplet. Smaller regions will result in a drop shape that 

averages the response of areas along the circumference of the base.[82] With the 

miniaturisation of many areas of science (microarrays, surface chemical gradients 

and microfluidics) there is an increasing need to characterise surfaces that are 

small in area, which is consequently impractical for microlitre volume drops due 

to their size.   

Recently a new method of CA measurement has been developed allowing 

the use of picolitre volume droplets of liquid. This allows for improved spatial 

resolution of wettability on a surface and an ability to measure CA on much 

smaller areas, such as microarrayed materials.[83] These picolitre volumes of 

liquid are dispensed using a piezo dosing unit similar to those used on inkjet 

printers and within biological array manufacture.[84] In the case of water as the 

dosing liquid, it is possible to produce 100 pL droplets with a base diameter of 

approximately 70 µm (when WCA = 90°). In this chapter it is demonstrated that 
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water CAs measured from picolitre droplets are equivalent to those measured 

from microlitre droplets on 6 commonly used polymers. The high spatial 

resolution of the techniques is then demonstrated by mapping the wettability of a 

chemical gradient surface formed from consecutive deposition and making of 

plasma polymers.  

4.2 Methods and Materials  

4.2.1 Preparation of polymer films.   

Solutions (1% w/v) of polystyrene (Mw 100,000), poly(L-lactic acid) (Mw 

95,000), poly(DL-Lactic acid) (Mw 95,000), poly(methyl methacrylate) (Mw 

60,000) and  poly(2-hydroxyethyl methacrylate) (Mw 20,000) were prepared in 

chloroform. All polymers were purchased from Sigma Aldrich. Silicon wafers 

were cleaned using UV light, then sonicated in methanol. The polymer solutions 

were spin coated onto the clean silicon wafers at 3000 rpm. The polymer films 

were left for 24 hours under vacuum before CA measurements. The surface of a 

piece of poly(tetrafluroethylene) (Krüss) was scraped clean before CA 

measurement.  

4.2.2 Preparation of radial plasma polymer gradient.   

The radial wettability gradient was prepared by plasma polymer deposition 

of allylamine (ppAAm) through an aperture onto a glass substrate coated with 

plasma polymerised hexane (ppHex). The radiofrequency plasma (13.56 MHz) 

was driven at a power of 20 W while the monomer pressure was kept at 300 

mTorr for both hexane and allylamine. The chemicals were supplied by Sigma 

Aldrich and degassed prior to use. The glass substrate was cleaned with ultra-

sound, washed with acetone and treated with an oxygen plasma for 3 min before 

the deposition of ppHex. The radial gradient was obtained by a diffusion 

controlled deposition of ppAAm through a 1.2 mm hole in a non-conductive mask 
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that was placed at a distance of 0.1 mm over the ppHex-coated substrate. This is a 

development of a previously reported patterning technique.[85, 86]   

4.2.3 CA measurements.   

Images of the droplet profile were recorded from which the CA was 

determined using the angle of intersection between a baseline and a circle or 

Young-Laplace function fit to the drop profile. The Young-Laplace function 

models the droplet shape using two radii of curvature. The CA was also 

determined using a tangent placed at the intersection of the liquid and solid.   A 

water droplet with a volume of 100 pL was dispensed by a piezo doser onto each 

polymer sample using a DSA100 (Krüss). Measurements were taken at 10 areas 

for each polymer sample from which average and standard deviation values were 

calculated. A CAM200 instrument (KSV instruments, Ltd) was used to dispense ~ 

2 – 12 µL volume water droplets onto each polymer sample. Again, 10 CA 

measurements were taken for each polymer sample at different areas. Ultra pure 

water was used for all CA measurements (18.2 MO resistivity at 25°C). To map 

the wettability of the polymer gradient the DSA100 was used to deposit 625 

picolitre volume droplets onto the radial plasma polymer gradient in a 6 mm by 6 

mm square grid.  This was achieved with an automated stage and took 6 hours for 

automated dosing and fitting. The CAs of these droplets were fitted using a circle 

fitting function and the resulting CAs plotted to give a 2 D map of the gradient’s 

wettability. 

4.3 Results and Discussion  

If picolitre volume droplets are to be routinely used for CA measurements 

it is useful to confirm experimentally that the CA data acquired from them are 

equivalent to that acquired from microlitre droplets. There are two major 

differences between small and large droplets, the influence of gravity on the 

droplet and the evaporation rate.[81, 87] To investigate the effect of droplet size, 

water droplets of different volume were placed on PMMA surface by controlling 
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the amount dispensed by the syringe. The droplet profile was fit using either a 

circle or Young-Laplace function and a tangent fitted by eye to the point of 

intersection with the surface. It is clear that the CAs estimated using the circle 

function decreases as the droplet volume increases (Figure 28a). The CA 

determined between the tangent and the surface did not vary significantly (69 +

 
1 

º) with droplet volume (not shown). This is considered to be the actual contact 

angle and below the estimates based on fitting a function to the profile are 

discussed. 
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Figure 28. Water Contact Angle versus  a) droplet volume and b) droplet Bond number on 
PMMA. Each water droplet was fitted using both circle and Young-Laplace function functions to 
model droplet shape. Linear regression fits have been provided to guide the eye.  
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Theory states that when a droplet is placed onto a surface a 3 phase 

equilibrium exists between the liquid, solid and vapour phases which is described 

by the classical Young equation.[88] However, this does not include droplet size 

which can influence the CA measured when fitting a function to a droplet 

profile.[81] If the droplet is small enough for the influence of gravity to be 

insignificant, the free energy of the system at equilibrium is minimised for a 

truncated sphere shape; thus the profile can be fitted to a segment of a circle. If it 

is large enough for the distortion of the shape by gravity to be significant, it is 

instead better fit using the Young Laplace equation. The Young Laplace equation 

describes the curved profile of a droplet using a 2 radius of curvature solution.[89] 

The Young-Laplace fit of the droplet shape resulted in a small increase of CA 

with time (~ 0.5° between 0.2 and 12 µL as seen in Figure 1) which suggests that 

this method does not completely compensate for increase in droplet size. 

Compared with the measured variance of the CA, this is insignificant. In contrast, 

the circle fit provides an increasingly large underestimate of the CA compared to 

the actual CA (69° ± 1°) as the droplet volume increased. As the droplet volume 

increases, the greater the effect of gravity and the less spherical the droplet 

becomes, causing the circle fitting model to become increasingly inaccurate. 

Comparison with the tangent method suggests that for droplets in this size range 

gravity is influencing the shape of the droplet, but not the CA itself. The Bond 

number (a numerical expression of the ratio of gravitational to surface tension 

forces) was calculated for 2 µL and 100 pL water droplets:  

2

0B
gL

            (5)  

where B0 is the bond number,  is the density of the liquid, g is the acceleration 

due to gravity, L is the diameter of the droplet and  is the surface tension of the 

liquid. The values obtained are 1.51 for the 2 µL droplets and 6.58x10-4 for the 

100 pL droplets respectively.[89] Figure 28b shows the relationship between the 

Bond number of a droplet and its CA on PMMA. It can be seen that at Bond 

numbers less than ~ 1 gravitational forces no longer influence the shape of the 

droplet. The Bond number for 100 pL droplets is much smaller than 1 which 

indicates that surface tension forces dominate over gravitational forces.  Thus, for 
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the remainder of this paper the Young-Laplace method will be used for the 2 µL 

droplets and a circle fit for the 100 pL droplets. Although the Young-Laplace 

method would also be suitable for 100 pL droplets, its increased complexity 

compared to the circle fitting method makes the circle method preferable.   
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Figure 29. Images of the profile of  a) 2 µL and b) 100 pL water droplets on PMMA to 

demonstrate difference in scale. Graphs of WCA versus time for c) 2 µL and b) 100 pL water 

droplets on five polymers.  

To investigate the influence of evaporation, droplet images were collected 

using a high speed camera triggered to record as the droplets were released 

(Figure 29 a and b). It was possible to accurately record the droplet image at time 

intervals very much shorter than the timescale on which the droplets evaporated 

for both large and small droplets as seen in Figure 2c and d. The WCA has been 

plotted against time for both picolitre and microlitre volume droplets on five 

polymers. The different sized droplets show quite distinctly different CA profiles 

over time. The WCA of 2 µL droplets decrease slightly with time in a linear 

manner (Figure 29c), the decrease appears to be more pronounced with PHEMA 

which has the lowest WCA. The rapid evaporation of the picolitre droplets causes 

a rapid decrease of 10 to 20° in CA within approximately the first 0.5 second 

(Figure 29d). Subsequently, a second stage was observed where the WCA 
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decreases more slowly. Both stages are essentially linear and again the WCA of 

PHEMA appears to decrease more rapidly than the other polymers.   

The observation of two distinct stages of WCA for picolitre volume 

droplets raises the question as to which WCA to measure, for example is it correct 

to take the WCA at time zero or at the start of the second stage. Examination of 

the videos revealed that as the picolitre droplets evaporate they initially decreased 

in height without movement of the perimeter, and then decreased in diameter, 

with a contraction of the perimeter. Very similar behaviour has been reported for 

microlitre droplets, although over much greater time periods (~ 30 mins) and has 

been rationalised in terms of contact angle hysteresis.[87, 90, 91] Thus, an initial 

constant contact area results due to pinning of the perimeter, causing the droplet 

height to decrease on evaporation and resulting in decreasing CA. When the CA 

reaches the receding value, the contact area decreases while the CA stays 

constant.[90] This description is valid for the size changes seen for picolitre 

droplets, although on shorter time scales since the decrease in volume occurs 

more rapidly for smaller drops.   

It is apparent that this description of WCA with time after the droplet is 

dispensed is valid for PLA, PMMA and PS, whereas the PTFE and PHEMA 

WCA values do not enter a stable second phase. PHEMA is a mobile hydrogel 

which is known to modify its surface structure to minimise its interfacial energy 

by exposing methyl groups (hydrophobic) when in contact with air and hydroxyl 

groups (hydrophilic) when in contact with water.[92] This could explain why its 

WCA decreases so rapidly initially, possibly due to the reorientation of the 

polymer’s surface upon contact with the water droplet and why the WCA 

continues to decrease. It is also possible that water sorption by the PHEMA could 

be responsible for the continued decline in WCA. A rapid decrease in the WCA 

on PTFE was observed that may be attributed to either droplet or surface 

instability. Despite this, within observed experimental variance, the initial contact 

angle is close to literature values.[93]  

The WCAs of picolitre droplets taken from the first image of the droplet 

on the surface with the same image for the microlitre droplets are presented in 
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Table 1. A remarkably good correlation between the two techniques was 

observed. The average difference between microlitre and picolitre measurements 

for the five polymers is only 1.5 ° and in most cases the values were within the 

variance between measurements on the respective instruments. The precision of 

WCA measurement is often quoted as +

 
1 degree and accuracy measurements are 

rarely provided. With due consideration of precision and accuracy the results 

gained with the two methods are comparable. There is much debate over the 

influence of line tension on the CA of droplets, particularly smaller droplets 

where the influence of line tension (and other surface forces) are theoretically 

greater.[94] Line tension is defined as a linear tension at the boundary where three 

phases meet at the perimeter of a droplet. It is interesting to observe that over the 

droplet size range 100 pL to 2 µL there is no significant change in CA, suggesting 

that the influence of line tension on the contact angle in drops of this size range is 

negligible.    

Polymer CA measured from 100 

pL droplet (º)  

CA measured from   2 

µL droplet (º) 

 

poly(2-hydroxyethyl methacrylate) 

poly(L-lactic acid) 

poly(DL-lactic acid) 

poly(methyl methacrylate) 

poly(styrene) 

poly(tetrafluroethane)   

44.9 ± 1.0 

67.9 ± 0.5 

73.5 ± 0.5 

67.8 ± 0.6 

89.6 ± 0.4 

111.2 ± 1.5  

43.5 ± 1.4 

71.5 ± 0.4 

73.6 ± 0.7 

69.7 ± 1.0 

90.2 ± 2.2 

111.3 ± 0.4 

 

Table 1. Water contact angles of six polymers measursed from picolitre and microlitre volume 
droplets (± standard deviation).     
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The polymer with the largest difference in WCA between microlitre and 

picolitre volume droplets (3.6 º) was poly(L-lactic acid), whereas the difference for 

poly(DL-lactic acid) was negligible (0.1 º). To investigate this difference both 

polymers were imaged in air using Tapping mode Atomic Force Microscopy. It 

was observed that the poly(L-lactic acid) was considerably rougher (ra = 29 nm) 

than poly(DL-lactic acid) (ra = 7  nm) (Figure 30).  Contact angles have been 

observed to decrease on rougher surfaces with CAs below 90°.[80] Picolitre 

volume droplets with a base diameter of 70 µm may be more sensitive to this 

surface topography than microlitre droplets, hence the 3.6 ° lower WCA measured 

on PLLA. This explanation is supported by the similarity of the WCA measured 

using the microlitre and picolitre droplets on the smoother variant of the polymer, 

poly(DL-lactic acid). A full study of the relative effects of roughness on WCA 

measurements with different sized droplets is warranted.  

a b

c d

1 µm

1 µm

6 µm

6 µm

a b

c d

1 µm

1 µm

6 µm

6 µm 

Figure 30. Tapping mode AFM height images of PLLA a) 5 x 5 µm b) 30 x 30 µm and PDLLA c) 5 

x 5 µm d) 30 x 30 µm. The RMS roughness values for PLLA and PDLLA were 29 and 7 nm 

respectively. 
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There is much interest in using gradients of surface chemistry and 

wettability to guide cellular response and biomolecular adsorption in scaffolds, 

sensors and devices.[19, 85] Using the above procedure developed to make 

measurements with picolitre droplets, the wettability of a radial chemical pattern 

was mapped to illustrate the utility of the approach. A circular plasma 

polymerised allylamine (ppAAm) (hydrophilic) area was deposited through an 

aperture acting as a raised mask on top of a pre-deposited plasma polymerised 

hexane (ppHex) coating (hydrophobic) to provide a radial wettability gradient. 

WCA measurements were acquired at 250 µm intervals within a 6 mm by 6 mm 

which gives a highly resolved picture of the change in wettability over the 

gradient. All WCA measurements were acquired under computer control using a 

motorised stage and the drop shapes were recorded and fitted automatically.  It 

can be seen that the WCA reaches a minimum of 44 ° in the centre of the radial 

gradient suggesting complete surface coverage with ppAAm (Figure 31). The 

WCA increased gradually from the centre of the gradient outwards reaching a 

maximum of 79 ° at the periphery. The WCA of uniform samples of ppAAm is ~ 

49 ° and for ppHex is ~ 97 °, therefore it can be reasonably assumed that the CA 

increase is due to the change in chemistry over the gradient formed by diffusion of 

the ppAAm from the centre outwards.[86] 

WCA (°)WCA (°) 

Figure 31. Three-dimensional wettability map of a radial plasma polymer gradient. 
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Using ~ 2 µL volume droplets with a diameter of approximately 2 mm it 

would only be possible to take 9 CA measurements within the 6x6 mm area; 

therefore the wettability has been mapped with a resolution 70 times greater using 

the picolitre volume droplets than if conventional volume droplets were used. 

Historically surface analysts have been limited to making routine sessile drop 

WCA measurements on the millimetre scale. The development of this approach 

opens up a whole new world of applications at the sub millimetre length scale, 

with applicability to areas such as microarray and gradient surface analysis.[19, 

83]  

4.4 Conclusion  

The use of microlitre and picolitre volume droplets of water for WCA 

measurement has been compared on six polymers: PDLLA, PLLA, PMMA, PS, 

PHEMA and PTFE. It has been demonstrated that the CAs measured from 

picolitre volume droplets are remarkably similar to those measured from 

microlitre volume droplets when appropriate consideration of evaporation and 

droplet shape are used. When the contact angle of the picolitre volume droplets 

are measured over a time period of three seconds, two stages are observed. It 

appears that the contact angle at the beginning of the second stage is probably the 

receding contact angle. More work is needed to investigate if the advancing and 

receding contact angle may be extracted from such experiments.  

The high spatial resolution of wettability of this new approach has been 

demonstrated by mapping the wettability of a plasma polymer gradient. The 

polymer spots on a polymer microarrays generally have a diameter of 

approximately 300 µm, therefore it is obvious that conventional methods of 

contact angle measurement could not be used to analyse them. The application of 

picolitre contact angle measurements to determine the surface energy of 

microarrayed polymers is discussed in detail in Chapter 5.  
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5.1 Introduction  

In previous Chapters methods have been described for the surface 

chemical analysis of polymer microarrays, measuring contact angles from 

picolitre volume droplets and using PLS to study surface structure/property 

relationships using the large datasets obtained from microarrays. In this chapter 

these methods will be applied to determine the surface energies of all the 

polymers on a microarray and then investigate how the surface chemistry of these 

polymers influences their surface energies. The microarray used in this study is a 

large combinatorial library of 496 novel copolymers, the first such array designed 

to generate through monomer selection a wide range of surface energies. This 

copolymer library has been synthesised in situ in a microarray format on a glass 

slide, as described in previous chapters. This new polymer library is used to 

investigate the relationship between copolymer surface energy (polar and 

disperse) and surface chemistry (determined using XPS and ToF-SIMS). 

Alternative methodologies used previously for investigating wettability include 

gradient surfaces of polymers and self-assembled monolayers that have been 

mixed in gradually changing proportions to vary wettability within a single 

system.[95, 96] Such approaches only allow investigation of a two component 

system, i.e. a change from one chemistry to another. Large multi-component 

material libraries such as the one described herein allow the study of surfaces with 

widely varying chemistries.[14]   

The surface controls many important material performance properties such 

as biocompatibility and wettability. Material arrays provide challenges for surface 

characterisation, combining a large number of samples of a small size, spatially 

patterned. Previous attempts at high-throughput surface energy measurement of 

polymer libraries utilised microlitre volumes of liquids (with base diameters of 2-

3 mm) which are not practical for the analysis of samples on a microarray, since 

space constraints necessitate that the sample spots have sub-millimetre 

dimensions.[16, 47, 97] In Chapter 4 the application of a new method of contact 

angle measurement from individually dosed picolitre volume droplets was 

demonstrated, which yield comparable contact angles to the conventional method 
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that utilises microlitre volume droplets.[98] This Chapter describes the first 

application of picolitre contact angle measurements to determine surface energy 

values using multiple liquid contact angle measurement. This picolitre contact 

angle approach has general applicability to surface energy determination of other 

materials, including pharmaceuticals, glasses and ceramics.   

Surface energy ( ) is a fundamental property of surfaces and is defined as 

the work required to form an additional unit area of surface.[89]  It has been 

shown to correlate with a wide range of surface phenomena such as wetting, 

adsorption and bioadhesion.[42] Surface energy can also be considered to be a 

measure of the attractive forces between the molecules of a surface and a 

liquid.[99, 100] Fowkes suggested that for many surfaces this attractive force can 

be considered to be made up of two primary types of contributing forces: 

dispersive and polar. The dispersive component is that due to London van der 

Waals forces which operate between all substances (polar and non polar), whereas 

the polar component is due to more discrete interactions such as hydrogen 

bonds.[101] Hence, a saturated hydrocarbon would be expected to have zero polar 

contribution to  because it is purely disperse.  Surface energy may be estimated 

using a number of experimental methods, including atomic force 

microscopy,[102] surface force apparatus[103] and inverse gas chromatography 

(for powders).[104] The most common method of  estimation is by contact angle 

measurement, which can be achieved using a variety of methods including Owen 

and Wendt’s model, which divides  into its polar ( p) and dispersive ( d) 

components.[105, 106] Contact angle data from two or more liquids are entered 

into the extended Fowkes equation to form two or more simultaneous equations:  

l (1 + cos ) = 2( l
d 

s
d)1/2 + 2( l

p 
s
p)1/2     (6)  

where l is the surface tension of the liquid,  is the contact angle of the 

test liquid on the solid, l
d and l

p are the disperse and polar components of  of 

the liquid, s
d and s

p are the disperse and polar components of the  of the solid 

respectively. The simultaneous equations generated are then solved graphically to 

yield the polar and disperse components of  of the solid. The total surface energy 

( ) can then be calculated by adding the two components: 



Chapter 5. Surface Energy Analysis of Polymer Microarrays  

75

  

 

= p + d         (7)   

An array of micro patterned polymers was designed specifically for this 

study to investigate the effects of polymer composition on surface energy (see 

Methodology). Monomers were chosen with a variety of physicochemical 

properties with the aim of producing a library of copolymers which range from 

hydrophilic to hydrophobic. Information about the water contact angles of 

polymers from a previous acrylate/methacrylate library was also used when 

choosing the monomers.[83] The monomers used to create the 496 acrylate co-

polymers on the array analysed are listed in Figure 20. The polymer microarrays 

were created using an automated system, described in detail in Chapter 3.   

5.2 Methodology  

5.2.1 Polymer Microarray Synthesis.   

The microarray under investigation comprised of 496 novel acrylate based 

polymers synthesised from 16 major monomers which were mixed pairwise with 

6 minor monomers in the following ratios - 100:0, 90:10, 85:15, 80:20, 75:25 and 

70:30 (Figure 20). A radical initiator was added to the monomer mixtures which 

were then spotted onto a pHEMA coated glass slide. They were then polymerised 

with ultraviolet light. Full details of array manufacture can be found in Chapter 3.  

5.2.2 Contact angle Measurements.   

Contact angles were determined for each polymer on the array using two 

liquids: Ultra pure water (18.2 MO resistivity at 25°C) and diiodomethane (= 99 

% pure) (Aldrich). A DSA100 (Krüss) with a piezo-doser head was used to 

dispense a 100pL droplet of each liquid onto the centre of each polymer spot on 

the array. Data acquisition was automated with the spot side profile of the back lit 

spot being recorded. A dual camera system was used, one to record a profile of 
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the spot and the other to record a bird’s eye view of the spot to ensure that the 

water droplet was deposited at the centre of each polymer. Modifications were 

made to the DSA100 reservoir position to allow dosing of liquids with low 

interfacial tension such as diiodomethane. Data analysis involved following 

standard contact angle measurement procedures except that due to the small 

droplet size circle fitting was used instead of Young – Laplace.[98]   

50 µm

a b

100 µm
50 µm

a b

50 µm

a b

100 µm100 µm  

Figure 32. a) Side profile of a 100 pL water droplet sitting on a polymer spot which has been 
fitted with a circle function b) Birds eye view of a 100 pL water droplet sitting in the centre of a 
polymer spot.   

Figure 32 shows a picolitre volume water droplet sitting in the middle of a 

polymer spot to demonstrate the relative size of the droplet to spot. The droplet 

image is fitted with a circle segment function to demonstrate the axisymmetry of 

the contact line. Polar and disperse  values were calculated using the Owens and 

Wendt’s model as described above. Macros were written to enable rapid  

calculations for the large dataset. The surface tension values of the liquids used 

are provided in Table 2.   

Liquid Surface tension 
(mN/m) 

Dispersive component 
(mN/m)  

Polar component 
(mN/m) 

Ultra pure water  

Diiodomethane 

72.8  

50.8 

21.8  

50.8 

51.0  

0  

 

Table 2. Surface tension values (including dispersive and polar values) for test liquids.[107, 108] 
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5.2.3 X-ray Photoelectron Spectroscopy.   

Analysis was carried out using a Kratos Axis Ultra equipped with a 

monochromated Aluminum X-ray source operated at 15 mA and 10 kV anode 

potential. Photoelectrons were sampled from a 110 x 110 µm area on each 

polymer spot on the array. Survey and high resolution C1s spectra were obtained 

from each polymer spot. Due to the large amount of polymers the analysis time 

per polymer spot was limited to 9 minutes for the survey and 3 minutes for C1s 

scan. Pass energies of 80 eV were used for the survey scans and 20 eV for the C1s 

high resolution scans. Full details of XPS analysis of polymer microarrays can be 

found in Chapter 3.  

5.2.4 Time-of-Flight Secondary Ion Mass Spectroscopy.   

Analysis was carried out using a ToF-SIMS IV spectrometer (ION TOF 

GmBH, Münster, Germany) using a Ga+ primary ion beam (operated at 25 kV and 

in “bunched mode”). A 1 pA primary ion beam was rastered over a 100 x 100 µm 

area of each polymer spot on the microarray. A 60 second acquisition time was 

allowed for each polymer sample, ensuring that static conditions were maintained 

for every spectra acquired. Ion masses were determined using a Time-of-Flight 

analyser allowing very accurate mass assignment (to three decimal points). A 

macro was designed using instrument software to allow automatic acquisition of 

spectra from all polymer spots on the microarray.   

The positive and negative ion spectra for all 496 polymers were 

automatically mass calibrated using ION-TOF ToF-Bat software. One peak list 

each was then created for both positive and negative ion spectra using mass 

spectra taken from a group of polymers from the array containing monomers with 

widely varying chemistries. These two peak lists were applied to all 496 

polymers. The peaks were then integrated using ION-SPEC software and peak 

intensities exported to Origin Pro 7.5. The ion intensities for each polymer were 

normalised to the total ion count. The positive and negative ion data for all 496 

polymers was then combined to form a concatenated data matrix. PLS analysis 
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was carried out using Eigenvector PLS_Toolbox 3.5 for Matlab. The ToF-SIMS 

and surface energy data was mean-centred before analysis.  

The SIMPLS algorithm was used for the PLS analysis rather than the other 

commonly used algorithm NIPALS.[109] The two algorithms have been shown to 

give equivalent results when analysing a dataset where the independent variable is 

multivariate and the dependent variable is univariate.[110]   

5.2.5 Atomic Force Microscopy Imaging of Polymer Spots.   

A D3000 AFM (Veeco) was used in tapping mode to acquire 1 x 1 µm 

images. A Tap300 (Budget Sensors) tip was used. The mean root mean square 

(RMS) roughness was calculated from three images using instrument software. 

The images were plane corrected prior to analysis.   

5.3 Results   

5.3.1 Surface energy measurements.   

The water contact angle (WCA), diiodomethane contact angle (DCA) and, 

upon solution of equation (1), the surface energy ( p & d) was obtained for all of 

the 496 polymers. The WCA values of the polymers varied greatly from 31° to 

104°, whereas the p varied from zero to 24 mJ/m2. When WCA is plotted against 
p for all the polymers (Figure 33a) it can be seen that as WCA measured on the 

copolymer decreases, the polar component of surface energy ( p) increased. Once 

the p reaches zero the WCA continues to rise without change in p. The DCA 

values of the polymers ranged from 13 to 47°, whereas the d varied from 36 to 50 

mJ/m2. The d of the polymers is relatively invariant with WCA, with 90% of the 

polymers having a d between 44 and 49 mJ/m2 (Figure 33b).  
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If p is plotted against d it can be observed that the polymers have a 

narrow range of d values with a wide range of p values (Figure 34a). Polymers 

containing major monomer 13 have the largest range of d values (~ 39 to 48 

mJ/m2) with a moderate variation in p values (~ 0 to 9 mJ/m2). In contrast, 

polymers containing major monomer 7 group quite closely with similar p and d 

values. Monomer 7 is notable as the only monomer containing a terminal phenyl 

group. Comparison with polymers that do have a large variation (e.g. those 

containing monomer 13) suggests that this reflects a lack of the minor monomer 

constituents at the surface, which is supported by ToF-SIMS analysis of polymers 

containing this monomer. Hence, all polymers in this group have similar p and d 

values to the polymer containing 100% major monomer 7.  
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Figure 33. a) Water contact angle versus the polar component of surface energy  b) Water contact 
angle versus dispersive component of surface energy for 496 polymers on array c) Diiodomethane 
contact angle versus the polar component of surface energy d) Diiodomethane contact angle versus 
dispersive component of surface energy. Polymers containing major monomers 7, 10 and 13 have 
been highlighted to illustrate differences between polymer composition. The array contained 6 
repeats of each of the 16 100% major monomers. The error bars represent the standard deviations 
for these 16 polymers to give an indication of the error of the technique.  

The addition of minor monomers had a significant effect on the p for most 

of the copolymers. Minor monomer E generally increases the p of a polymer (e.g. 
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major monomers 7 & 13) unless the copolymer already has a very high p (e.g. 

100% major monomer 10) in which case it will decrease it (Figure 34b-d). In 

contrast minor monomer D always decreases the p of the polymer. Monomer D 

contains six fluorine atoms which have a weak hydrogen bonding ability when 

covalently bonded to carbon, hence a decreased p when it is added as a minor 

constituent.[105]  
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Figure 34. a) Polar versus dispersive component for all 496 polymers, and Water Contact Angle 
versus polar component of surface energy for b) polymers containing monomer 10 as their major 
constituent c) polymers containing monomer 13 as their major constituent d) polymers containing 
monomer 7 as their major monomer. For figures b) to d) the black star represents the polymer 
containing 100% of the major monomer, i.e. no minor monomer additions.  

5.3.2 X-ray Photoelectron Spectroscopy.   

Survey and high resolution C1s spectra were obtained for all 496 polymers 

on the microarray. Surface elemental compositions (C, O, F and N %) and high 

resolution C1s functional group compositions (C-C, C-O, C=O and C-F) were 

determined and related to polar and disperse surface energies. The surface O:C 
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ratio was calculated for all 496 polymers and plotted against the p and d values 

(Figure 35a & b). There is no obvious relationship observed between surface O:C 

ratio and p and d, which suggests that O:C ratio might be too simple a surface 

chemical descriptor for this task. A qualitative relationship between surface 

Nitrogen and Fluorine atomic concentrations and p was observed. The polymers 

containing Nitrogen at their surfaces had the highest average p values, whereas 

those containing Fluorine at their surfaces had the lowest average p values.  
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Figure 35. a) O:C ratio versus polar component of surface energy b) O:C ratio versus disperse 
component of surface energy for 496 polymers.  
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Figure 36. a) C-O % versus polar component b) C-O % versus disperse component c) C=O % 
versus polar component d) C=O % versus disperse component of surface energy for 496 
components.  
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When C-O % is plotted against p it can be observed that as the percentage 

of surface C-O increase so does polymer p (Figure 36a). The one exception to 

this relationship is the group of polymers containing monomer 10 as their major 

component, where surface C-O % is invariant with p. However, if C=O % is 

plotted against p it can be seen that there is no such relationship (Figure 36c). 

Neither surface C-O nor C=O % appear to influence polymer d (Figure 36b & d).   

5.3.3 Time-of-Flight Secondary Ion Mass Spectroscopy analysis.   

The positive and negative ion ToF-SIMS spectra obtained from the 

polymers contained secondary ions characteristic of acrylate polymers. Three PLS 

models were obtained using the positive and negative ion spectra from the 

polymer array and the p, d and total surface energy ( ). It was not possible to 

build a model with any predictive value using the d data (as measured by plotting 

the experimentally determined values of d against the predicted values). To 

determine the optimum number of latent variables for each PLS model the “leave 

one out” cross validation method was used. This involves leaving one sample out 

of the model then attempting to predict the value of this sample from the rest. This 

is done for all samples allowing the average error in prediction to be calculated - 

one measure of this error is the root mean square error of cross validation 

(RMSECV). Therefore the number of latent variables for each model was chosen 

by observing where the RMSECV reached a minimum. The RMSECV reached a 

minimum at 5 latent variables for  and 4 latent variables for p (Figure 37). 
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Figure 37. RMSECV versus latent variable for a) Total surface energy b) Polar surface energy.  
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The first PLS model built using ToF-SIMS spectra and polymer p showed 

a relatively good auto-predictive ability (Figure 39a), as measured by plotting 

experimental versus predicted values (RMSPE = 2.1). However, the model 

appears to slightly underestimate p values above 20 mJ/m2. Figure 39b shows the 

regression co-efficients for the PLS model. The ions with the greatest positive 

regression co-efficients have m/z of 69.034, 45.034, 30.010, 34.992, 17.003 and 

42.011. The ions with the highest negative regression coefficients have m/z of 

15.023, 13.008, 55.055, 29.038, 53.038 and 41.039. The second PLS model built 

using ToF-SIMS spectra and polymer  showed an equally good predictive ability 

(Figure 40a) to the first model (RMSPE = 2.3). Figure 40b shows the regression 

co-efficients for the PLS model. It can be seen that the ions with the highest 

positive regression co-efficients have m/z of 34.992, 69.034, 45.034, 22.991, 

17.003 and 15.996. The ions with the highest negative regression coefficients 

have m/z of 13.008, 39.023, 41.039, 12.000, 15.023 and 57.071.    

m/z 
Positive 

correlation 
(au)  

Ion 
structure  m/z 

Negative 
correlation 

(au) 

Ion 
structure 

17.003 41 OH-

 

13.008 -50 CH-

 

22.991 26 Na+

 

15.023 -97 CH3
+

 

30.010 59 CH2O
+

 

29.038 -36 C2H5
+

 

31.019 31 CH3O
+

 

41.039 -20 C3H5
-

 

34.992 44 Cl-

 

41.039 -28 C3H5
+

 

41.005 25 C2HO-

 

43.056 -27 C3H7
+

 

42.011 40 C2H2O
+

 

53.038 -36 C4H5
+

 

45.031 66 C2H5O
+

 

55.055 -41 C4H7
+

 

55.021 18 C3H3O
-

 

71.081 -23 C5H11
+

 

57.033 29 C3H5O
+

 

73.053 -19 SiC3H9
+

 

69.033 91 C4H5O
+

 

77.032 -20 C6H5
+

 

83.046 21 C5H7O
+

 

147.071 -18 Si2C5H15O
+

  

Table 3. Ion assignment for the ions with the largest regression coefficients for p PLS model.     
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m/z 

Positive 
correlation 

(au)  

Ion 
structure  m/z 

Negative 
correlation 

(au) 

Ion 
Structure 

15.996 21 O-

 
12.000 -22 C-

 

17.003 33 OH-

 

13.008 -82 CH-

 

22.991 34 Na+

 

15.023 -22 CH3
+

 

30.010 19 CH2O
+

 

27.023 -17 C2H3
+

 

31.019 32 CH3O
+

 

39.023 -38 C3H3
+

 

34.992 53 Cl-

 

41.039 -31 C3H5
+

 

45.034 41 C2H5O
+

 

43.056 -8 C3H7
+

 

57.033 13 C3H5O
+

 

53.038 -14 C4H5
+

 

69.033 51 C4H5O
+

 

55.055 -10 C4H7
+

 

42.031 5 C2H4N
+

 

57.071 -18 C4H9
+

 

42.011 8 C2H2O
+

 

67.050 -14 C5H7
+

 

43.019 12 C2H3O
+

 

147.071 -15 Si2C5H15O
+

  

Table 4. Structural assignments for the ions with the largest regression coefficients for  PLS 
model.   

5.4 Discussion  

The automated acquisition and processing of all contact angle data and 

surface energy calculations were completed within three days. Since this is well 

within the timeframe required for biological evaluation of such a polymer 

microarray (2-10 days), this is considered to illustrate the high-throughput nature 

of the method for this application.[34] The large range of WCA (31 to 104°) 

confirms the strategy of monomer selection - generating copolymer surfaces 

which ranged from hydrophilic to hydrophobic (Figure 33a). Rawsterne et al 

reported a relationship between the calculated logP of  amino acid-modified 

surfaces and their resulting water contact angle.[111] LogP is the partition 

coefficient of a molecule between water and octanol, and therefore gives an 

indication of its relative hydrophilicity. If there was such a relationship between 

monomer logP and the WCA of the resulting polymer, this would be a useful 

method of predicting the WCA of a polymer without the need to synthesise it. To 

investigate if polymer surface energy can be predicted from the logP value of its 

constituent monomer, the logP of each major monomer (1 to 16) were calculated. 
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Many methods exist for calculating the logP of a molecule, however the most 

widely used method is that developed by Leo et al.[112] The logP values for each 

major monomer were then compared to the WCA of the 16 polymers containing 

100 % of each monomer to see if a similar relationship was observed (Figure 38). 

No clear relationship between logP and WCA is seen for this group of 16 

polymers, where for the majority of the polymers there is a significant change in 

logP values without a corresponding large variation in WCA. Indeed two 

polymers with the highest WCA (~ 90 °) have significantly different logP values 

(Figure 38). This probably reflects the change in the chemistry of the monomers 

upon polymerisation.[113] In contrast the chemistry of the amino acids will not 

change as dramatically once chemically linked to a surface. 
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Figure 38. Calculated logP versus water contact angle for the 16 major monomer polymers.  

Polar liquids (e.g. water) have low contact angles on materials with a high 

polar component because of increased affinity for the liquid with the surface due 

to increased hydrogen bonding between the liquid and the surface. Adhesive 

forces between the liquid molecules and the surface dominate over cohesive 

forces between the liquid molecules, hence a low contact angle.[100] Figure 33a 
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illustrates the large range of p values achieved, ranging from 0 to 24 mJ/m2, 

demonstrating a significant ability to tune the polar component of a polymer 

surface by choice of monomeric constituents. In contrast the d of the polymers is 

relatively invariant with WCA, with 90% of the polymers having a d between 44 

and 49 mJ/m2 (Figure 33b). The magnitude of d is strongly related to the average 

atomic mass of the atoms at a surface, because London van der Waals forces 

increase in strength with increasing atomic size.[89] Therefore, considering that 

the majority of the monomers used in this study have backbones containing only 

carbon and oxygen it is unsurprising that there is so little variation in d between 

the different polymers.  

The diiodomethane contact angle (DiCA) of the polymers varied from ~ 

13 to 47º, with no relationship evident between DiCA and p for the polymers 

considered (Figure 33c). The attractive force between the diiodomethane and the 

surface only arises due to London van der Waals forces. The polarity of the 

surface (and consequently the potential for hydrogen bonding) will therefore not 

govern the DiCA of a surface.[100] Conversely, with increasing d the DiCA of 

the polymers decreases due to the increasing adhesive force between the 

diiodomethane and the co-polymer surfaces. This increase in dispersion force is 

due to the increasing strength of London van der Waals forces between the liquid 

and the surface as the surface becomes more hydrophobic.  

Liquid contact angles can be influenced by surface roughness,[80] 

therefore the polymer spots were imaged using optical and atomic force 

microscopy (AFM) to investigate their macro and nanoscale topography. Viewed 

through an optical microscope (20x magnification) the polymer spots were 

relatively uniform in size and smooth in appearance, with an average thickness of 

approximately 50 µm. There was no indication of dewetting of the monomer 

solutions which could have caused incomplete coverage of the substrate on 

polymerisation. AFM analysis of a sample group of 24 polymer spots described in 

chapter 7 suggests that the nanoscale roughness of the polymers was low and 

uniform (ra ~ 2-5 nm).[61] Polymer solubility is unlikely to be an issue, due to the 

timescale of the contact angle measurements, i.e. the contact angle is measured 
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from an image taken less than one hundredth of a second after the droplet contacts 

the surface.  

Simplistic comparisons can made between the surface energies of the 

polymers and their bulk chemistries. Indeed a review of the contact angle data 

from the copolymer array reveals that monomer structure has a major influence on 

surface energies as would be expected. To illustrate this point, three major 

monomer groups (7, 10 & 13) have been selected in Figure 33a to highlight the 

effect of monomer chemistry on WCA and p of the resultant copolymer surface. 

Major monomer 7 is a monoacrylate with a pendent chain containing phenyl and 

hydroxyl functionalities. Major monomer 10 is another monoacrylate, but in this 

case its pendent chain only terminates with a hydroxyl functionality. Finally, 

major monomer 13 is a triacrylate containing a hydroxyl functional group. All 

three monomers have a polar hydroxyl functional group within their structure, yet 

the polymers containing the three major monomers differ greatly in WCA (~ 35 – 

105°). Polymers containing monomer 10 as their major constituent are grouped 

towards the hydrophilic end of the scale, whereas those containing major 

monomer 13 tend towards the hydrophobic (Figure 33a). The large difference in 

the wettability of these polymers can be related to their chemical structure and 

specifically their potential for crosslinking. Monomer 10 shows the most 

hydrophilic WCA range which may be consistent with preferential orientation of 

the polar hydroxyl end groups towards the polymer surface. This phenomenon has 

been observed previously for a monoacrylate monomer with hydroxyl end 

groups.[83] The monoacrylate monomer 7 has a side chain with both hydroxyl 

and phenyl functional groups and interestingly sits in a WCA range between 

monomer 10 and polystyrene (~ 90°),[98] which would indicate an energetic 

compromise between surface hydroxyl and phenyl groups. Finally monomer 13 

shows the most hydrophobic range in WCA which would indicate that the 

triacrylate nature of the monomer increases the degree of copolymer cross-linking 

and thus the hydroxyl group is not presented at the surface due to steric hindrance. 

This exercise suggests that variations in the amount of cross-linking within a 

polymer may have a considerable effect on polymer surface energy.  
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To understand the influence of surface chemistry on polymer surface 

energy, the arrayed polymers where analysed by XPS and ToF-SIMS. A number 

of previous studies have attempted to use XPS to study the relationship between 

surface composition and surface energy, although with much smaller datasets. Liu 

et al observed a linear relationship between the surface O:C ratio of  wood 

samples and their d, i.e. as O:C ratio increased so did d,  however this was only 

the case for six samples with a limited spread of d values.[114] A similar 

observation was made for a group of 8 oxygen plasma treated polycarbonate 

wafers by Baytekin et al.[68] In another study Araujo et al reported a strong 

relationship between the WCA of various silane treated glass slides and the 

surface atomic C %.[115] Priest et al used ToF-SIMS to make rather facile 

comparisons between WCA measurements on SAM modified surfaces and the 

intensity of secondary ion peaks specific to these surfaces.[116] The authors 

reported linear relationships between POx
-  fragments (from the phosphonic acid 

terminus of the SAM) and the advancing and receding WCA. A more advanced 

study used PCA to analyse the ToF-SIMS spectra of a group of plasma treated 

samples and then related the principle component score values of these samples to 

their WCA (i.e. a simple form of principal component regression).[68] The 

principle component loadings were used to identify secondary ions which were 

characteristic of high and low WCA. There is however two major differences 

between these studies and that described in this chapter: the number and chemical 

diversity of samples analysed.  

No definitive trends were observed between the XPS and surface energy 

data which may be due to the differences in surface sensitivity of the two 

approaches. Contact angle measurement is sensitive to the top nanometre of a 

surface,[79] whereas the sampling depth of XPS is ~ 10 nm.[51] However, some 

interesting qualitative observations were noted. As surface C-O % of the polymers 

increased, the p appears to also increase, however with considerable spread in the 

data. No relationship was noted between surface C=O % and polymer p (Figure 

36a & c) Logic suggests that as p is dependent upon hydrogen bonds being 

formed between a test liquid and the polymer surface, therefore the quantity of 

polar functionalities at the surface such as C-O and C=O would influence 

measured p. A survey of the monomer structures used to create the polymers 
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(Figure 20) suggests that the C-O measured will be predominantly from ester and 

ether groups, whereas the C=O measured will only be from carbonyl groups in the 

monomer acrylate functionality. Both these functionalities are capable of forming 

hydrogen bonds, however there are significant differences in number and 

flexibility. Ester and ether groups are far more numerous in the monomer 

structures than the carbonyl groups, therefore are likely to be responsible for the 

majority of hydrogen bonding. Also, the oxygen atom in ester functionalities will 

have greater flexibility to orientate towards the polymer surface, rather than the 

oxygen atom in the carbonyl functionality. This is because the double bond in the 

carbonyl groups will make the geometry of that part of the molecule more rigid. It 

is interesting that the one group of polymers where surface C-O % did not 

increase at all with increasing p were those containing major monomer 10. This 

monomer contains a hydroxyl end group, therefore it might be expected that the 

more of these groups that orientate towards the surface, the more polar the 

surface. This may be a good example of the problems of the greater analysis depth 

of XPS (1-10 nm), i.e. all hydroxyl groups from this monomer within this 10 nm 

range will be detected by the XPS, however only those orientated towards the 

surface (top nanometre) will influence p.   

The presence of Nitrogen at the polymer surfaces was observed to increase 
p. The only Nitrogen containing monomer is minor monomer E which contains a 

dimethyl amine end group (Figure 20). Tertiary amine groups such as this have a 

positive charge in water,[117, 118] therefore polymers with this functionality at 

their surface would be expected to have a high p. The presence of Fluorine at the 

polymer surfaces was observed to decrease p. The only monomer which contains 

Fluorine was minor monomer D. This monomer contains six fluorine atoms which 

have a very weak hydrogen bonding ability when covalently bonded to carbon, 

hence a decreased p when it is added as a minor constituent.[105, 119]  

In summary XPS analysis has been of limited use in explaining the 

influence of polymer surface chemistry on surface energy values, therefore 

multivariate statistics in the form of PLS was applied to ToF-SIMS data from the 

array to see if this technique allowed any greater insight. The ToF-SIMS spectra 

from polymeric materials are very complex, generally containing hundreds of 
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secondary ion peaks in both the positive and negative spectra.[48] Multivariate 

statistical methods have therefore been applied as a means of extracting 

information from these complex spectra, as demonstrated in chapter 5. Hence we 

have used PLS to study the influence of polymer surface chemistry on surface 

energy.    
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Figure 39. PLS model for p (4 latent variables). a) Measured versus predicted p (Linear fit 
shown, R2 = 0.82) b) Regression vector plotted as regression coefficient versus peak m/z for the 
concatenated data set.     
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Figure 40. PLS model for  (5 latent variables). a) Measured versus predicted  (Linear fit shown, 
R2 = 0.87) b) Regression vector plotted as regression coefficient versus peak m/z for the 
concatenated data set.    

When PLS models were obtained to describe the relationship between the 

ToF-SIMS data and d, the RMSPE was high (> 15). This may be a result of the 

relative lack of variation in d in this group of polymers, hence there can be very 

little covariance between the ToF-SIMS and d data matrices. It is also probable 
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that information about the molecular structure of the surface obtained using ToF-

SIMS is of little use in explaining differences in surface van der Waals forces, 

which are the origin of dispersive surface forces. In contrast PLS models with a 

good predictive ability (RMSPE < 3) were obtained to describe the relationship 

between ToF-SIMS and p and  data, suggesting that the molecular structure of 

polymer surfaces does strongly influence p and . Table 3 shows the structures of 

the ions with the highest positive and negative regression coefficients for the p 

PLS model. Ions positively correlating with p are predominantly oxygen 

containing species. These include ions which are associated with ethylene glycol 

functionalities such C2H5O
+ and acrylate functionalities such as C4H5O

+. Oxygen 

containing species are able to form hydrogen bonds, therefore it is intuitive that 

surfaces that contain these species would have a higher p. Secondary ions from 

surface contaminants also had positive regression coefficients,  such as Na+ and 

Cl-. Ions negatively correlating with p are predominantly non-oxygenated 

hydrocarbons, for example CH3
+. These functionalities do not contain the lone 

pairs of electrons necessary for hydrogen bonding, resulting in a low polar surface 

energy. Ions which are associated with poly(dimethylsiloxane) (PDMS) such as 

SiC3H9
+ also negatively correlate with p. PDMS has a low p because the oxygen 

in the polymer backbone does not form hydrogen bonds due to steric hindrance.   

The information obtained from the p PLS model can be directly related to 

the ToF-SIMS spectra of the polymers on the microarray. To illustrate this fact the 

positive ToF-SIMS spectra of two polymers are shown in Figure 41: the polymer 

synthesised from 100 % monomer 10 which has a very high p (~ 21 mJ/m2) and 

the polymer synthesised from 100% monomer 13 which has a very low p (~ 0 

mJ/m2). The positive spectrum of the polymer synthesised from 100 % monomer 

13  is dominated by hydrocarbon ions, with C2H3
+ and C4H7

+ being the two most 

intense ion peaks (Figure 41b). Two ions characteristic of PDMS contamination 

are also present. Indeed the only prominent ion that does not fit the pattern 

predicted by the PLS model is C3H6O
+. The positive spectrum of the polymer 

synthesised from 100 % monomer 10 is considerably different (Figure 41a). 

Although the two most prominent ions are again hydrocarbons (C2H3
+ and C3H5

+), 

the spectrum is dominated by oxygenated hydrocarbon species such as C2H5O
+ 

and CHO+. Na+ is visible in the spectrum which had one of the greatest positive 
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regression coefficients in the p PLS model. Again, low level PDMS 

contamination is visible in the form the Si2C5H15O
+ ion.  
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Figure 41. ToF-SIMS positive ion spectra of a) polymer containing 100 % monomer 10 and b) 
polymer containing 100 % monomer 13.  
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The XPS results indicated that polymers containing Nitrogen at their 

surfaces had the highest average p. However, although Nitrogen containing 

secondary ions (e.g. C2H4N
+) do have positive regression coefficients, they are not 

amongst the highest for the p PLS model. Likewise polymers with Fluorine at 

their surfaces had the lowest average p, yet Fluorine containing secondary ions 

(e.g. CF+) do not count amongst the ions with the most negative regression 

coefficients. It is possible that these observation are due to the fact that these ions 

are common to only a small number of polymers in the library, therefore the 

model gives these ions a lower weighting in the regression vector relative to more 

common ions. It is apparent that the ions which positively and negatively correlate 

with both p and  are similar (Table 3 and  

Table 4). Again, oxygen containing ions positively correlate with  and 

non-oxygenated hydrocarbon ions negatively correlate. In this chapter  has been 

calculated by addition of p and d. It has been noted below that the majority of 

variance in polymer  has been in p, where as d is relatively invariant between 

polymers. Therefore it is not surprising that the PLS model attributes the variance 

in  to ions which account for the greatest amount of variance, i.e. those which 

influence polymer p.  

5.5 Conclusions  

In summary, the results presented here demonstrate that the acquisition of 

WCA and surface energy values for a large group of copolymers in a microarray 

format is possible within a relatively short period of time, using picolitre contact 

angle measurement. It has been shown that surface atomic and functional group 

information from XPS has limited value in explaining the differences in surface 

energy within the copolymer library studied. However, molecular information 

from ToF-SIMS analysis has been proven to provide an insight into the way the 

molecular structure of a polymer surface influences surface energy.   

The surface properties of materials are important for many applications, 

including the important field of biomaterials science. This chapter has 

demonstrated that micro-arrayed copolymer libraries are an excellent platform to 
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study surface structure-property relationships in copolymer systems, suggesting 

the feasibility of designing new materials with tuneable surface energies. 

Information gained from investigating such a large group of materials could be 

used as a basis to design materials with optimised surface properties. The 

techniques described in this chapter could readily be applied to the study of the 

interactions of cells and biomolecules with polymers printed in a microarray 

format. It would be hoped that this may provide a valuable insight into how the 

molecular structure of a polymer (and indeed any material) surface influences the 

important processes of cell adhesion and protein adsorption. This would be a 

major step-forward towards the goal of the rational design of new biomaterials.          
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6.1 Introduction  

In the field of combinatorial polymer research there has sometimes been a 

lack of emphasis on the characterisation of surface properties, probably due to the 

practical difficulties of analysing large numbers of separate samples. Analysis of 

the surface properties of combinatorial polymers is important because it is the 

surface of a material that determines many of its properties. With the advent of 

polymer microarrays, where the entire library is on one flat support, some of these 

practical issues are reduced, particularly when combined with automated 

acquisition. In Chapter 3 a high throughput methodology for the surface analysis 

of a copolymer microarray on one glass slide by the surface analytical techniques 

of  Time-of-Flight Secondary Ion Mass Spectrometry (ToF SIMS), X-ray 

Photoelectron Spectroscopy (XPS) and water contact angle measurement is 

described.[83] In Chapter 7 methods for assessing the polymers’ protein 

adsorption properties are also described.[61] Once these data have been collected 

the challenge is to develop the existing statistical data handling approaches to 

relate this large amount of surface analytical information to other properties such 

as wettability, cell adhesion assays and protein adsorption.  

High throughput polymer development may take the form of simple 

identification of ‘hit’ polymers which have a property of interest (e.g. high cell 

attachment). Alternatively, they may aim for the development of quantitative 

structure-property relationships which aim to improve our understanding of the 

key causal factors underlying the properties of ‘hit’, ‘miss’ and intermediate 

performance polymers. In this case, the surface chemical data (ToF SIMS and/or 

XPS) is termed the independent variable and the data describing the surface 

property to be predicted is termed the dependent variable. If the independent 

variable is composed of multiple observations such as spectral data from ToF-

SIMS (i.e. it is multivariate in nature), it is necessary to use multivariate 

regression techniques to identify correlations. These include Multiple Linear 

Regression (MLR), Principal Component Regression (PCR) and Partial Least 

Squares (PLS) regression.[120]   
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PLS has been used previously in the field of biomaterials to study the 

relationship between surface chemistry and endothelial cell adhesion on plasma 

polymer deposits,[121] and to investigate the relationship between surface 

chemistry and protein adsorption.[122-124] PLS is a multivariate statistical 

method allowing models to be built that relate a set of multivariate data to a set of 

univariate data.[125] Multivariate techniques such as PLS use factors to describe 

the variance in the dataset, thereby reducing the dimensionality of the data. PLS 

specifically finds factors (called latent variables) that describe variance in both the 

independent and dependent variables. i.e. to maximise the covariance described by 

the model. Covariance is a measure of how closely the independent and dependent 

variables follow the same trends. The data used to build the PLS model is termed 

the training set. The predictive ability of a PLS model can be assessed using a test 

set of samples which have not been included in the training set; this is called 

validation.  An alternative method is cross-validation which does not require a test 

set, only the original data in the training set. The most common form of cross-

validation is the Leave One Out (LOO) method which involves leaving one 

sample out of the training set at a time, then repeating the PLS model. The error in 

the predictions of the samples left out can then be determined. LOO cross-

validation is commonly used to determine the optimum number of factors used to 

build a PLS model, i.e. the number which gives a model that adequately describes 

the variance within the training set data, without including any variance due to 

noise in the data. Using too many latent variables inevitably leads to a model 

which over fits the data.    

In ToF-SIMS data analysis, a PLS model assigns each ion with a 

regression coefficient which quantifies the influence it is having on the model. If 

an ion has a positive regression coefficient it is positively correlated with the 

univariate variable and the opposite is true for ions with a negative regression 

coefficient. Ions with a regression coefficient close to zero do not significantly 

influence the model. These regression coefficients can be used to build an 

understanding of the relationship between the two datasets. It is important to 

emphasise that although PLS can help predict a response, it does not actually 

explain any underlying relationships between variables. The theory of PLS is 

described in greater detail elsewhere.[126, 127] 
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In this Chapter various aspects relating to PLS modelling of data from 

large datasets are investigated, such as how the conclusions reached from this type 

of PLS model are affected by the number of different samples in the polymer 

library and importantly the chemistry of the monomers making up the polymers 

included in the training set. Also investigated is whether the information gained 

has any predictive application outside the group of copolymers used to build the 

model. This is done using test copolymers synthesised from the same monomers 

as the training set and other polymers that are chemically different.  

6.2 Methodology  

6.2.1 Polymer Microarray Synthesis  

The microarray under investigation comprised of 496 novel acrylate based 

polymers synthesised from 16 major monomers which were mixed pairwise with 

6 minor monomers in the following ratios - 100:0, 90:10, 85:15, 80:20, 75:25 and 

70:30 (Figure 20). A radical initiator was added to the monomer mixtures which 

were then spotted onto a pHEMA coated glass slide. They were then polymerised 

with ultraviolet light. Full details of array manufacture can be found 

elsewhere.[34] Each polymer is synthesised from two monomers, therefore to 

avoid confusion in this paper we will refer to the monomer comprising the 

majority (90, 85, 80, 75 & 70%) of a polymer as the “major monomer” and the 

monomer comprising the other 30, 25, 20, 15 or 10 % as the “minor monomer”. 

The microarray was printed in triplicate on the slide, therefore the water contact 

angle, diiodomethane contact angle and ToF-SIMS measurements were each 

conducted on one of the three microarrays.    
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6.2.2 Preparation of Polymer Films  

Solutions (1% w/v) of polystyrene (Mw 100,000), poly(L-lactic acid) (Mw 

95,000),  poly(methyl methacrylate) (Mw 60,000), poly(dimethlsiloxane) (Mw 

1,000) and  poly(2-hydroxyethyl methacrylate) (Mw 20,000) were prepared in 

chloroform. All polymers were purchased from Sigma Aldrich. Silicon wafers 

were cleaned using UV light, then sonicated in methanol. The polymer solutions 

were spin coated onto the clean silicon wafers at 3000 rpm. The polymer films 

were left for 24 hours before contact angle measurements. The surface of a piece 

of poly(tetrafluroethylene) (Krüss) was scraped clean before contact angle 

measurement.  

6.2.3 Time-of-Flight Secondary Ion Mass Spectrometry  

An ION-TOF ToF-SIMS IV instrument was operated using a 

monoisotopic 69Ga+ primary ion source operated at 25 kV and in “bunched mode”. 

A 1 pA primary ion beam was rastered over a 100 x 100 µm area of each polymer 

spot on the microarray. A 60 second acquisition time was allowed for each 

polymer sample, ensuring that static conditions were maintained for every spectra 

acquired. Ion masses were determined using a Time-of-Flight analyser allowing 

accurate mass assignment (to typically 40 ppm). The typical mass resolution (at 

m/z 41) was just over 6000. ToF-SIMS analysis of the microarray was fully 

automated via the design of a macro using ION-TOF ToF-Bat software, allowing 

completely unattended operation. ToF-SIMS analysis of polymer microarrays has 

been described in greater detail in Chapter 3. One positive and one negative 

spectrum were obtained for each polymer on the microarray. The reproducibility 

of these measurements has been determined previously using principal component 

analysis and found to be very good.[76]    
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6.2.4 Partial Least Squares Regression  

The positive and negative ion spectra for all 496 polymers were 

automatically mass calibrated using ION-TOF ToF-Bat software.[73] Mean 

deviations of < 40 ppm from true mass for m/z 0-100 were noted after automatic 

calibration. One peak list each was then created for both positive (344 peaks) and 

negative (92 peaks) ion spectra using mass spectra taken from a group of 

polymers from the array containing monomers with widely varying chemistries. 

This group included polymers synthesised using all of the monomers in Figure 20. 

This peak list was then applied to all 496 polymers. The peaks were then 

integrated using ION-SPEC software and peak intensities exported to Origin Pro 

7.5. The positive and negative ion intensities for each polymer were normalised to 

the total ion count separately, to account for normal variation in secondary ion 

yield between polymers. The positive and negative ion data for all 496 polymers 

was then arranged into one concatenated data matrix. PLS analysis was carried 

out using Eigenvector PLS_Toolbox 3.5 for Matlab. The ToF-SIMS and surface 

energy data were mean-centered before analysis. The Root Mean Square Error of 

Prediction (RMSPE) was calculated to quantify how well each model predicted 

the training set or test set polymers:[128]  

2/12

RMSPE
n

yy mp
      (8)  

where yp is the predicted value, ym is the measured value and n is the total number 

of samples in the training set.  

The SIMPLS algorithm was used for the PLS analysis rather than the other 

commonly used algorithm NIPALS.[109] The two algorithms have been shown to 

give equivalent results when analysing a dataset where the independent variable is 

multivariate and the dependent variable is univariate.[110]    
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6.2.4 Surface Energy Measurements  

Contact angles were determined for each polymer on the array using two 

liquids: Ultra pure water (18.2 MO resistivity at 25°C)

 
and diiodomethane (= 99 

% pure) (Aldrich). A DSA100 (Krüss) with a piezo-doser head was used to 

dispense a 100pL droplet of each liquid onto the centre of each polymer spot on 

the array. Data acquisition was automated with the spot side profile of the back lit 

spot being recorded. A dual camera system was used, one to record a profile of 

the spot and the other to record a bird’s eye view of the spot to ensure that the 

water droplet was deposited at the centre of each polymer. Data analysis involved 

following standard contact angle measurement procedures except that due to the 

small droplet size circle fitting was used instead of Young-Laplace.[98] Polar and 

disperse surface energy  values were calculated using the Owens and Wendt’s 

model as described elsewhere.[105, 106] Total surface energy was calculated by 

the addition of the polar and disperse values. Macros were written to enable rapid  

calculations for the large dataset. Although more than two probe liquids may be 

used when using the Owen-Wendt method, the use of only two liquids is common 

in the literature and it has been demonstrated that providing a polar and non-polar 

pair of liquids is used accurate surface energy measurements can be 

obtained.[106]  

6.3 Results and Discussion  

The use of PLS as a tool in surface analysis is well established, however 

the number of samples analysed using this method have been relatively small, 

with closely related chemistries through the range of samples.[121-124] The 

application of PLS to large polymer libraries containing hundreds of samples of 

very different chemistries is a new development and the limits of this approach 

have not yet been systematically investigated. Thus, a dataset acquired from a 496 

member copolymer library printed in microarray format, comprising ToF-SIMS 

spectra and surface energy values was used. The positive and negative ToF-SIMS 

spectra were obtained in an automated fashion using a methodology described in 

Chapter 3 over an acquisition  period of approximately 6 hours.[83] The surface 
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energy values were calculated from water and diiodomethane contact angles 

measured from picolitre volume droplets over an acquisition period of 

approximately 24 hours. The polar and dispersive components of the surface 

energy were calculated using the Owen and Wendt’s model, although only the 

total value is used in this study. A PLS model was built using these two datasets 

with ToF-SIMS ions intensities as the multivariate parameter and total surface 

energy as the univariate parameter.  

PLS models were constructed using either no pre-processing, with mean 

centring or with auto-scaling of the ToF-SIMS and surface energy data. The 

models constructed using data which was auto-scaled or underwent no pre-

processing had a very low predictive ability for samples within the training set 

(RMSPE > 20), therefore mean centering was chosen. The model was cross-

validated using the “leave one out” method, which indicated that the root mean 

square error of cross validation reached a minimum at 5 latent variables. When the 

experimental values of  are plotted against those predicted by the PLS model 

(Figure 42a), a linear relationship with a relatively low RMSPE is observed, 

suggesting a good predictive ability for the copolymers within the training set 

(RMSPE = 2.3). Figure 42b shows the regression co-efficients for the PLS model. 

It can be seen that the ions with the greatest positive regression co-efficients have 

m/z of 34.992 (Cl-), 69.034 (C4H5O
+), 45.034 (C2H5O

+), 22.991 (Na+), 17.003 

(OH-) and 15.996 (O-). The ions with the largest negative regression coefficients 

have m/z of 13.008 (CH-), 39.023 (C3H3
+), 41.039 (C3H5

+), 12.000 (C-), 15.023 

(CH3
+) and 57.071 (C4H9

+). The ions positively correlating with  are 

predominantly oxygenated hydrocarbons (Table 4).  Ions negatively correlating 

with  are all hydrocarbons with the exception of C- and Si2C5H15O
+ (Table 4). 

These results agree with theory concerning the molecular basis of polymer surface 

energy (see Chapter 6).[42] The disperse surface energy of the copolymers in the 

library is relatively invariant (between ~ 40 and 50 mJ/m2), therefore it is changes 

in the polar component that is responsible for most of the differences in total 

surface energy.[129] Oxygenated groups at a polymer surface can form hydrogen 

bonds, increasing the polar contribution to total surface energy. Attractive forces 

at surfaces that are predominantly composed of hydrocarbon containing moieties 
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will mainly be due to dispersive London-van der Waals forces, hence the polar 

contribution will be very small.  

Two aspects relating to PLS modelling of such a large and varied library 

of copolymers are investigated. The first issue that will be investigated is whether 

the number of the samples in the library influences the ions identified to control 

the surface energy through assignment of large positive or negative regression 

coefficients. Secondly, the limits of the PLS model in predicting the surface 

energies of polymers outside of the training set will be studied.   

6.3.1 The influence of sample number on ions identified in regression vector  

To investigate the effect of sample number on the key ions identified in 

the regression vector, the PLS model of the 496 copolymer dataset above was split 

in half to produce two new data sets, each one containing 8 major monomer 

groups (major monomers 1-8 or 9-16, i.e. 248 copolymers each). Each copolymer 

in the library under investigation contains one of 16 monomers as its major 

constituent (major monomer) and one of 6 monomers as a minor constituent 

(minor monomer). New PLS models were then constructed for each of these two 

datasets. The number of latent variables used for each new model was again 

decided by the LOO cross validation method. When the surface energy values 

predicted by each of these two new models were plotted against the measured 

values, the RMSPE were higher (average = 3.0) than the original model (Table 5), 

indicating a lower predictive ability for polymers within the two smaller training 

sets (Figure 42c & e). Analysis of the regression vectors of these two new models 

showed that the dominant ions contained in both were the same and were also 

identical to the original 496 copolymer model (Figure 42d & f). The ions 

positively correlating with surface energy were still predominantly oxygenated 

hydrocarbons and those negatively correlating were still hydrocarbons. However, 

it was noted that there were differences in the relative and absolute magnitude of 

the regression coefficients of these ions.   
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The 496 copolymer dataset was then split into quarters: major monomers 

1-4, 5-8, 9-12 and 13-16, each containing 124 copolymers. Each of these groups 

was then used to build a new PLS model. The RMSPE of the new models (mean = 

5.2) are higher than that of the model describing all 496 copolymers (Table 5). 

Analysis of the regression vector of these models identified the same ions as the 

full and half datasets; however there are some subtle differences in the regression 

vector for major monomers 1-4 (Figure 42h). For example, the ion at m/z 55.055 

corresponding to C4H7
+ has a positive regression coefficient and the ion at m/z 

43.019 corresponding to C2H3O
+ has a negative regression coefficient: the inverse 

of which is observed in the full and half models.   
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Figure 42. PLS models constructed using a) & b) 496 polymers, c) & d) 248 polymers (Major 
monomers 1 to 8), e) & f) 248 polymers (Major monomers 9 to 16) and g) & h) 124 polymers 
(Major monomers 1 to 4). Measured versus Predicted surface energy and Regression coefficient 
versus m/z is shown for each PLS model. X = Y lines are provided to guide the eye.       
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There also appears to be a systematic underestimate of predicted surface 

energies for polymers containing monomer 2 in this model (Figure 42g). This 

result could suggest that reducing sample number might lead to anomalies in the 

regression coefficients obtained, due to the more limited range of chemistries in 

the training set. Therefore, to test this observation the 31 polymers containing 

major monomer 1 were used to construct a PLS model. The RMSPE value of this 

model (1.2) is lower than that of the original model (Figure 43a). The regression 

coefficients of this model are very similar to the model of all 496 copolymers, 

without the anomalies seen in the model for major monomer 1-4 (Figure 43b). 

The main difference is the complete absence of the peak at m/z 69.033 

corresponding to C4H5O
+. This is combined with the large increase in the positive 

regression coefficient of the peak at m/z 59.050 corresponding to C3H7O
+. These 

changes do not contradict the results of the original model and are probably due to 

the decrease in the variety of surface chemistries included in this model (i.e. only 

7 out of 22 monomers). It is also possible that for this group of polymers the peak 

at m/z 59.050 correlates more strongly with surface energy than the peak at m/z 

69.033.  

Dataset RMSPE Number of Latent 
Variables 

496 polymers (Full) 2.3  5 

248 polymers 
(Major monomers 1 to 8) 

2.8 4 

248 polymers 
(Major monomers 9 to 16) 

3.2 4 

124 polymers 
(Major monomers 1 to 4) 

4.2 5 

124 polymers 
(Major monomer 5 to 8) 

5.9 4 

124 polymers 
(Major monomers 9 to 12) 

5.0 5 

124 polymers 
(Major monomers 13 to 16) 

5.5 5 

31 polymers 
((Major monomer 1) 

1.2 5 

336 (minus minor 
monomers E & F) 

3.2 5 

 

Table 5. Comparison of PLS models with different numbers of samples.  
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It is postulated that the change in RMSPE values seen above (i.e. a 

maximum error is observed for intermediate sample numbers in the training set) 

reflects a changing balance between two competing influences on the PLS models 

and the number of latent variables used. This balance is between the number of 

samples included and the chemical diversity of the polymers in the training sets. 

The model describing all 496 copolymers is very chemically diverse, but this is 

balanced by the large number of samples included in the training set. Conversely 

the model containing 31 polymers has a significantly lower sample number but 

also much less chemical diversity. Indeed, the high RMSPE value seen in this 

model is probably the result of using 5 latent variables to describe the variation of 

only 7 monomers within this group of polymers. The models containing 248 and 

124 polymers contain significant diversity, however have much fewer samples in 

the training set; hence exhibit an increase in the RMSPE values. In summary 

changing sample number influences the auto-predictive capabilities of the PLS 

models due to the changing balance between the diversity of the training sets and 

the number of latent variables used to model them.  
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Figure 43. PLS models constructed using a) & b) 31 polymers (Major monomer 1), c) & d) 336 
polymers (Minor monomers A to D. Measured versus Predicted surface energy and Regression 
coefficient versus m/z is shown for each PLS model. X = Y lines are provided to guide the eye.  
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It can be concluded from this exercise that a reduction in sample number 

does appear to systematically affect the auto-predictive capabilities of the model, 

i.e. the ability to predict surface energy of polymers within the training set (as 

judged by the RMSPE value). However, analysis of the regression vectors of the 

reduced sample models indicate that the same general chemical conclusions can 

be drawn from regression coefficients of the different models, even though there 

is a change in the relative magnitude of the regression coefficients for each ion. 

Unsurprisingly the ions observed in the regression vector is dependent upon the 

chemistry of the polymers included in the training set.   

6.3.2 Investigating the predictive ability of the PLS model outside of the 

training set  

Analysis of the PLS models obtained has provided further understanding 

of which ions govern the surface energy of the acrylate copolymers, and therefore 

an indication of which surface structure are influential. The fact that the results 

from this analysis make chemical sense, e.g. hydrocarbon CnHn
+/- ions correlate 

with low surface energy and polar oxygenated hydrocarbon CnHnOn
+/- ions 

correlate with high surface energy, gives confidence in the method. Plotting the 

measured surface energy values versus those predicted by the PLS model (and 

calculating RMSPE) has demonstrated the model has good quantitative predictive 

ability for those polymers within the training set (Figure 42a). However, the 

model has limited use in predicting surface energy if it is only applicable to 

polymers within the initial training set. To investigate the extent of the predictive 

ability of the above PLS model outside of the library of acrylate copolymers used 

in the training set, three test sets were used. The first set contained acrylate 

copolymers containing the same monomers as the training set, but in different 

proportions. The second group contained acrylate copolymers synthesised using 

minor monomers not included in the training set. The third test set comprised six 

commercially available linear polymers. Hence, predictions using test polymers 

with varying degrees of similarity to those in the training set were investigated.  
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Figure 44. Measured versus predicted surface energy values for a) 12 acrylate copolymers 
synthesised from monomers common to training set b) 160 acrylate copolymers synthesised from 
monomers not used in training set c) 6 commercially available linear polymers, using data mean-
centered using means from the training set. X = Y lines are provided to guide the eye. 
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6.3.2.1 Acrylate copolymers synthesised using monomers included in the 

training set  

The PLS model of the full 496 copolymer dataset was used to predict the 

surface energies of 12 acrylate copolymers from a different library. The error in 

the predictions ranged from ~ 1 to 20 % compared to an error of approximately ± 

10 % in predictions for polymers within the training set (Figure 42a). The error in 

the predictions for the 12 test polymers appears to be systematic, i.e. the 

predictions for the polymers with relatively low surface energies is low (< 5 %), 

whereas the error increases linearly as polymer surface energy increases (Figure 

44a). This is more apparent when the error in prediction is plotted against polymer 

surface energy (Figure 45).   
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Figure 45. Actual surface energy of a polymer versus the error in the predicted surface energy 
using PLS model.  

There are a number of things that could explain this error in surface energy 

prediction. For example, the error may possibly be due to the pre-processing of 

the data prior to analysis; both the ToF-SIMS and surface energy data was mean-

centered, which is common prior to multivariate analysis to ensure that 

numerically larger variables do not unduly influence the statistics.[130, 131] This 
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data transformation sets the origin of the model arbitrarily to the mean of the 

training set (46.6 mJ/m2), therefore the model will describe deviations from this 

mean. However, the mean surface energy of the polymers in the test set is 52.3 

mJ/m2. To test this theory the ToF-SIMS ion intensities of the test data set were 

mean-centered using the means from the training set. Predictions were then 

obtained using these data and rescaled using the mean of the surface energy values 

from the training set. This time the model over-estimated the surface energy 

values of the polymers, with a considerably higher RMSPE (Figure 46a). 

6.3.2.2 Acrylate copolymers containing minor monomers not included in the 

training set  

Although the twelve polymers used in the test set above were not included 

in the 496 copolymer training set, they are chemically related, i.e. all monomers 

used to synthesise the test set polymers are represented in the training set. To test 

the predictive ability of this approach on copolymers that were more chemically 

disparate, predictions for acrylate copolymers synthesised from monomers not 

used in the training set were obtained. To achieve this aim a PLS model was 

constructed using data from the 336 copolymers in the library that were 

synthesised using minor monomers A to D. The resulting PLS model has an 

RMSPE value of 3.2 which is greater than the full model generated from all 496 

polymers (Table 5). Analysis of the regression vector indicates that again 

predominantly the same ions positively and negatively correlate with surface 

energy, with the same variation in magnitude of regression coefficients observed 

in the other reduced sample datasets. However, ions with m/z 29.028 (CH3N
+), 

42.031 (C2H4N
+) and 58.068 (C3H8N

+) (Figure 43d) are completely absent from 

the regression vector. These ions can only be formed by cleavage of the tertiary 

amine group in monomer E; therefore it is unsurprising that the removal of 

polymers containing this monomer results in the disappearance of these ions from 

the regression vector.   

This model was then used to predict the surface energies of the remaining 

160 copolymers that contain minor monomers E and F (Table 5). Monomer E 

contains a tertiary amine functionality and monomer F contains a phenyl group. 



Chapter 6. PLS Regression as a Tool for Investigating Large Combinatorial Polymer Libraries    

113

  
Therefore the copolymers in this test set contain monomers not included in 

the training set. The predicted values for the test set are considerably different 

from the actual surface energy values (Figure 44b), with a much greater 

apparently random error than previously obtained. The predictions for the 

polymers containing either monomers E or F are equally inaccurate. This 

inaccuracy might be expected for those samples containing monomer E as there 

are no similar chemical functionalities within the training set. However, monomer 

F is a phenyl diacrylate therefore it might be expected that monomers included in 

the training set such as 7, 9 and 14 would produce similar secondary ions. These 

data suggest that it is probable that the model only has a predictive capability for 

polymers that are chemically related to those in the training set, i.e. contain the 

same monomers, as noted above.  

As above the ToF-SIMS data for these polymers were then mean-centered 

using the means from the training set and predictions obtained (Figure 46b). 

Although the RMSPE is considerably higher than previously, the relatively 

random error in the predictions has disappeared. Indeed the predictions appear to 

differ systematically from the measured values, i.e. approximately 20 mJ/m2 

higher, which may suggest that the rescaling of the predictions may be at fault. 

6.3.2.3 Polymers which are chemically unrelated to the training set  

To investigate if the PLS model has any predictive application in polymers 

that are chemically unrelated to the test set, the exercise was repeated for six 

commercially available linear polymers: polystyrene (PS), poly(L-lactic acid) 

(PLLA), poly(methyl methacrylate) (PMMA), poly(dimethlsiloxane) (PDMS), 

poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(tetrafluroethylene) 

(PTFE). All of the predictions are within 1 mJ/m2 of the average surface energy of 

the training set, suggesting that the model does not have the ability to discriminate 

between them and returns an estimate based on this average (Figure 44c). It is 

probable that this is due to the fact that the spectra of these polymers contain 

secondary ions not found in the training set, which may be equally or more 

correlated with surface energy for these samples than those modelled above.   
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Figure 46. Measured versus predicted surface energy values for a) 12 acrylate copolymers 
synthesised from monomers common to training set b) 160 acrylate copolymers synthesised from 
monomers not used in training set c) 6 commercially available linear polymers, using data mean-
centered using means from the test set. X = Y lines are provided to guide the eye. 
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When the exercise was repeated using data mean-centered using means 

from the training set, the RMSPE was considerably higher (Figure 46c). Although 

the predictions are no longer approximately identical to the mean of the training 

set, there is no correlation with polymers’ measured surface energy values.  

The above exercise has given an indication of the limits of the predictive 

power of PLS for the type of co-polymer dataset tested here. When the model was 

predicting samples that were synthesised from monomers that were included in 

the training set, the model gave the best predictions (with an error of 1 to 20 %). 

When the model was used to predict polymers synthesised from monomers that 

were not used in training set the predictions are very poor. Unsurprisingly when 

the model is used to predict the surface energy of linear polymers with significant 

chemical differences from the training set, the predictions all approximated to the 

mean value of the training set because it does not have the information to explain 

the differences in the test set. Mean-centering using the mean from the training set 

may help to improve the predictions in some cases; however more work is needed 

to investigate the effect of rescaling the data. Indeed changing the pre-processing 

method for these models has demonstrated just how sensitive these predictions are 

to the way the data is scaled (Figure 46).  

The importance that the training set is chemically related to the samples on 

which predictions are to be made has been demonstrated. More specifically, for 

this dataset it has been demonstrated that it may be possible to use PLS to make 

predictions for copolymers synthesised from the same monomers as used in the 

training set. It is expected that these predictions may be improved by more 

sophisticated data pre-processing.  

6.4 Conclusions  

PLS has been shown to be able to identify surface moieties important in 

controlling surface energy. These are chemically intuitive, with high surface 

energy coming from moieties that relate to polar surface species while low surface 

energy correlates with hydrocarbons. It has been demonstrated that the results 
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obtained from PLS modelling of large combinatorial polymer libraries are 

equivalent to those obtained from much smaller datasets, in terms of the ions 

identified in the regression vector.  The work in this Chapter has shown that 

removing acrylate copolymers with unique chemistries from the training set does 

not largely affect the ions identified in the regression vector significantly, 

although of course secondary ions specific to those polymers are not present. This 

is consistent with the supposition that PLS can only model information which has 

been included in the training set.   

There is very little research in the chemometrics literature dealing with the 

use of PLS to make quantitative predictions; hence the work discussed in this 

Chapter has given a valuable insight into the limits of prediction achievable using 

this method. The PLS model underestimated the surface energy values for acrylate 

copolymers synthesised from monomers used in the training set, probably due to 

the pre-processing of the data prior to analysis. The predictive error increased 

substantially when predictions were made for acrylate copolymers that were 

synthesised from monomers not used in the training set, suggesting that no 

predictions could be made for these polymers. Finally, when predictions were 

made for six commercially available polymers that were chemically unrelated to 

the training set the values obtained were very poor.   

Further work could include repeating this study using a polyatomic 

primary ion beam rather than the Ga+ used here. This would likely give more 

chemical information, particularly at higher mass ranges, which may improve the 

predictions obtained.         
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7.1 Introduction     

Protein adsorption to surfaces is of significant importance in the fields of 

biomedical devices and tissue engineering since most biological fluids 

encountered in vivo and used in cell culture contain serum proteins.[132] 

Adsorbed proteins have a significant effect on how cells interact with materials.  

The adsorption of adhesion proteins, such as fibronectin, is generally thought to 

control cellular adhesion in combination with displacement of non cell-adhesive 

proteins such as albumin.[133] For many biomedical devices the non-specific 

adsorption of protein to their surface causes a cascade of events resulting in harm 

to the patient, e.g. thrombus formation.[134] Hence understanding why different 

proteins adsorb to different surfaces and the effect this has on cell adhesion and 

proliferation is of major importance. Protein adsorption to surfaces is dependent 

on various molecular interactions including van der Waals interactions, 

electrostatic interactions, hydrogen bonding and hydrophobic interactions.[135] 

AFM has become an important method of quantifying these various, non-specific 

forces.[52] By coating an AFM tip or colloidal probe with proteins the technique 

has been used to directly measure the protein adhesion properties to polymers,[56, 

136, 137] metals[138] and self-assembled monolayers (SAM).[139] Protein 

coated AFM probes have also been applied to investigate the effect of surface 

wettability of a range of SAMs on protein adhesion.[140] The theory underlying 

AFM is discussed in some detail in chapter 2. Methods used to quantify the 

amount of protein adsorbed to a surface from solution include fluorescent and 

radioactive labelling of proteins, of which the former is readily adaptable to micro 

arrays using commercially available fluorescent slide readers.[141, 142]  

When measuring protein adhesion forces with an AFM a standard tip may 

be coated directly with proteins or a micrometre diameter sphere may be attached 

first and then coated with proteins.[143-145] Attaching the colloid sphere is 

advantageous as it can help overcome problems with variable tip geometry or 

non-homogenous sample coating. The increased radius of the sphere in 

comparison with the bare AFM tip gives a higher sensitivity, allowing much 
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smaller forces to be measured.[146] The disadvantage with this method is that the 

lateral resolution of the technique is reduced to the diameter of the sphere, i.e. 

micrometres.  

This chapter describes the application of two approaches for characterising 

protein-surface interactions; AFM force measurement of adhesion and 

fluorescence measurement of adsorption from solution to a library of novel 

copolymers printed on a poly(hydroxyethyl methacrylate) coated glass slide. The 

mechanism of protein-surface interactions is beyond the scope of this proof-of-

concept study; these important issues will be addressed in future application of the 

methods developed in this chapter. Here, the protein adhesion and adsorption data 

are used to investigate the relationship between these two measurements and 

surface wettability to illustrate how such data may be used to relate protein 

interactions and a surface property. The polymer array was created using an 

automated system which produces spots of ~ 300 µm diameter from mixtures of 

acrylate monomers polymerised in situ.[34] The structure of the monomers that 

were combined pair wise in the v/v ratio 70:30 to create the polymer library are 

presented in Figure 47.    

 

Figure 47. The 24 monomers used to synthesis the polymer library. Monomer 17 was substituted 
for * as a minor monomer to increase hydrophilicity.    
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7.2 Methods and Materials  

7.2.1 Array synthesis.   

The microarray under investigation comprised of 576 novel acrylate and 

methacrylate polymers synthesised from 24 monomers. Stock solutions of each 

monomer were prepared by mixing 75 % monomer, 25 % DMF and 1 % (w/v) 

2,2-dimethoxy-2-phenyl acetophenone. These solutions were then mixed pairwise 

in all possible combinations at a ratio of 70:30. Monomer mixtures were then 

printed onto a poly(hydroxyethyl methacrylate) coated glass slide and 

polymerised by exposure to long-wave UV, to form spots with a diameter of ~ 

300 µm and a centre-to-centre spacing of 740 µm. Monomers used to create the 

polymer library analysed can be found in Figure 47. Full details can be found in 

chapter 3. Each polymer is synthesised from two monomers, therefore to avoid 

confusion in this chapter we will refer to the monomer comprising 70 % of a 

polymer as the “major monomer” and the monomer comprising the other 30 % as 

the “minor monomer”.  

7.2.2 AFM imaging and force measurements.   

A 5µm diameter borosilicate sphere was glued to the tip of a standard 

silicon nitride AFM cantilever (spring constant = 296.9 pN/nm) with epoxy resin. 

Acrylic acid was plasma polymerised and deposited on to the cantilever at 282 

mTorr pressure and 20 W power.[147] The AFM probe was then reacted with 6 

mM 1-ethyl-3 (3-dimethylaminopropyl) carbodiimide hydrochloride and 15 mM 

N-hydroxysulfosuccinimide in pH 7 phosphate buffered saline (PBS) (Figure 48). 

The probe was then reacted with human fibronectin (0.1mg/ml) in PBS for two 

hours, then washed in fresh PBS. A D3000 AFM (Veeco) was then used to take 

100 force-distance measurements from each of 48 polymers on the polymer array 

in PBS. All measurements were taken using a preset maximum load to keep 

contact force constant. The deflection of the AFM cantilever was converted into 

force using Hooke’s law: F = -k D, where k = spring constant and D = tip 
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deflection. To monitor for any deterioration or change in the state of the AFM 

probe, force-distance measurements were taken at the beginning and throughout 

the experiment on three control surfaces: glass, poly(tetrafluoroethylene) (PTFE) 

and fibronectin adsorbed onto silicon. The 24 polymer spots containing monomer 

1 as their major monomer were imaged in tapping mode using a D3000 AFM 

(Veeco) in air (Tap300 tip). A scan size of 1 x 1 µm was used at a scan rate of 1 

Hz. RMS roughness (ra) was calculated using instrument software.  

7.2.3 Contact angle measurements.   

All contact angle measurements were taken using a DSA100 (Krüss) fitted 

with a piezo dosing head. A 100 pL water droplet was dispensed onto each 

polymer spot and the droplet profile recorded. The contact angles of these droplets 

were fitted using a circle fitting function.[98] Contact angle measurement from 

arrayed materials has been described in Chapter 5 in greater detail.[83]   

7.2.4 Fluorescently labelled protein adsorption.   

Human fibronectin (1mg/ml ) was prepared in a 0.1M sodium carbonate 

buffer (pH 9). Fluorescein Isothiocyanate (FITC) was dissolved in Dimethyl 

sulfoxide (1mg/ml) and 50 µL added to the fibronectin solution. This fibronectin-

FITC solution was incubated for 8 hours at 4 ºC. Ammonium chloride was then 

added to a final concentration of 50 mM and then incubated for a further 2 hours 

at 4 ºC. The unbound FITC was then removed by dialysis. A polymer array was 

immersed in a 0.01mg/ml solution of the fibronectin-FITC for 1 minute, after 

which it was removed and rinsed with fresh PBS. A Genepix 4000B scanner (laser 

wavelength 488 nm) was used to measure the fluorescence of the polymer spots 

before and after immersion. The intensity before immersion was then subtracted 

from the intensity after to account for background fluorescence of the 

polymers.[142] The intensities were then normalised by dividing all values by the 

maximum intensity.  
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7.3 Results and Discussion  

Force measurements were made on 48 polymer spots of the microarray in 

PBS using a fibronectin coated colloidal AFM probe (recording 100 force-

distance measurements on each polymer). The surface of the colloidal probe was 

first coated with plasma poly(acrylic acid) (ppAA). Fibronectin molecules were 

then covalently bound to the surface after activation of carboxyl groups with EDC 

and NHS (Figure 48). In a previous study ppAA deposited on glass has been 

shown to be stable in PBS for 24 hours.[145]  
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Figure 48. Formation of an amide bond between carboxylic groups on ppAA and amine 
functionalities on fibronectin (Figure adapted from Tsapikouni et al[145]).   

All measurements were taken using a preset maximum load to keep the 

contact force constant. Force-distance measurements were taken on three control 

surfaces at the beginning and throughout the experiment to monitor any 

deterioration or changes in the AFM probe (Figure 49). These control surfaces 

were glass, PTFE and fibronectin adsorbed to silicon. The fibronectin coated 

probe adhered most strongly to the control PTFE surface (~ 5.5. nN), which can 
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be explained by the presence of strong hydrophobic forces between the surface 

and the probe. The adhesion force on glass (~ 1 nN) was less than that measured 

on PTFE which is probably due to its more hydrophilic nature. No adhesion force 

was measured between the fibronectin coated probe and the fibronectin pre-

adsorbed to silicon. The fibronectin molecules on the AFM probe and on the 

silicon surface will have the same charge in the phosphate buffer, hence the two 

surfaces do not adhere. No significant changes in maximum adhesion forces on 

glass, PTFE and fibronectin coated surfaces was noted throughout the experiment.  

This provides a good indication that the probe coating remained intact during the 

experiments and will have given reproducible force measurements on the arrayed 

polymers. 
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Figure 49. Typical force-distance curves measured between a fibronectin coated AFM probe and 
three contol surfaces: glass, PTFE and fibronectin adsorbed to silicon.   

No attractive forces were detected between the fibronectin coated probe 

and any of the 48 polymers analysed during the approaching cycle of the force 

measurements (Figure 50). This suggests that there were no significant long-range 



Chapter 7. Investigating Protein Adhesion and Adsorption to Micro-arrayed Polymers    

124

 
interactions between the fibronectin molecules on the AFM probe for any of the 

polymers. This is consistent with any electrostatic forces being screened by the 

PBS buffer. Weaker, secondary forces such as van der Waals will only act when 

the AFM probe is in very close proximity to the surface. Hence all of the 

polymers analysed would adsorb fibronectin from solution to the surface that 

arrives by diffusion and Brownian motion alone, rather than be electrostatic 

attraction to the surfaces.[137] Occasionally, rupture points can be observed on 

the retracting part of the force-distance curves measured on the polymers (Figure 

50). These may be due to different parts of the AFM probe detaching from the 

polymer surface in succession. 
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Figure 50. Example force-distance curve for the polymer containing 70 % monomer 21 and 30 % 
1.  

The maximum adhesion forces of the fibronectin coated AFM probe to 

each of the 48 polymers were measured and are presented in Figure 51. The 

values presented are the mean forces measured from 100 force-distance 

measurements with the error bars representing the standard deviation. The 

adhesion forces varied greatly from 0.15 to 2.65 nN within the sample set of 
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polymers, suggesting significantly differing affinities of the fibronectin for the 

range of polymers.   
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Figure 51. Graph displaying the maximum adhesion force between a fibronectin coated probe and 
48 polymers.  

The adhesion forces measured exhibited a normal distribution for nearly 

all of the polymers, suggesting that the use of the mean adhesion force is 

appropriate (Figure 52a). The only exception was the polymer containing 70% 

monomer 21 and 30% monomer 7 (Figure 52b). This polymer is also notable for 

having the largest standard deviation in adhesion measurements (Figure 51). The 

histogram for this polymer shows a bimodal distribution, which explains the large 

standard deviation observed in the data. This distribution suggests that the surface 

of this polymer is heterogeneous in such a way as to produce two distinct 

adhesion forces at ~ 1 and ~ 7.5 nN. This heterogeneity may be chemical, for 

example phase separation of the polymer or physical, for example microscale 

roughness. To investigate this further the polymer was imaged using tapping 

mode AFM. The RMS roughness of the polymer was calculated as 11 nm. The 

phase images of the polymer show no surface morphology indicative of phase 

separation.  
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Figure 52. Histograms displaying adhesive forces (nN) between a fibronectin coated AFM probe 
and polymers synthesised from a) 70 % monomer 21 & 30 % monomer 2 b) 70 % monomer 21 & 
30 % monomer 7.    
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To measure the relative amount of fibronectin adsorption from solution, a 

polymer array was immersed in a 0.03 mg/ml solution of human fibronectin-FITC 

for 1 minute, after which it was removed and rinsed with fresh PBS.[148]  A 

Genepix 4000B scanner (laser wavelength 488 nm) was used to measure the 

fluorescence intensity of the polymer spots before and after immersion to quantify 

the relative amount of retained protein. The intensity before immersion was 

subtracted from the intensity after to account for any auto-fluorescence from the 

polymers and normalised to the maximum intensity (Figure 53).[142] Proteins 

adsorb to a surface from solution within seconds of exposure and the speed of 

adsorption depends upon the chemistry of the surface.[2, 132]  
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Figure 53. Graph displaying the normalised fluorescent intensities of 48 polymers after adsorption 
of fluorescent labelled fibronectin.  

An adsorption time of 1 minute was chosen to provide a fixed amount of 

time in which to measure initial protein adsorption to the polymers, to allow a 

measure of relative affinity of fibronectin to each polymer. Longer adsorption 

times could be studied as the microarrays are stable in aqueous media for up to six 

days.[34]  
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Figure 54. RMS roughness versus normalised fluorescent intensity for 24 polymers containing 
monomer 1 as their major constituent.   

The roughness of the polymer surfaces could potentially influence the amount of 

fibronectin adsorbed by increasing the surface area available for adsorption. To 

investigate whether surface roughness influenced the amount of protein adsorbed, 

the 24 polymers containing monomer 1 as their major component were imaged 

using tapping mode AFM and their ra values were calculated from 1 x 1 µm scans.  

No relationship was observed between polymer roughness and amount of 

fibronectin adsorbed (Figure 54).   

To investigate the relationship between the adhesion force of the protein 

coated probe to a polymer and the quantity of protein adsorbed, these two 

parameters were plotted against each other (Figure 55). It can be seen that there is 

a linear relationship between the two with a correlation coefficient R2 = 0.89. 
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Figure 55. Adhesion force versus normalised fluorescent intensity for 48 polymers (R2 = 0.89).   

This correlation between the data from the two experiments is interesting 

because the two are related but very different measurements of protein-surface 

interactions: one measuring the strength of the interaction between fibronectin and 

a surface, and the other measuring the amount of fibronectin adsorbed after 

solution exposure and rinsing. This linear relationship suggests that proteins that 

strongly adhere to a surface will adsorb and on washing be retained in greater 

numbers than proteins which only have a weak affinity for a surface. Bremmell et 

al have previously reported a similar relationship between protein adhesion and 

amount of protein adsorbed using radiolabelling on a small group of large scale 

plasma polymer samples.[141] The data reported in this chapter combined with 

previous work relating protein adhesion measurements to protein adsorption using 

surface plasmon resonance,[143] demonstrates the value of fluorescently labelled 

protein adsorption as a method to investigate protein affinity for biomaterials. 
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Figure 56. Relationship between protein adhesion force and water contact angle for 48 polymers.   

To demonstrate the utility of protein adhesion data from microarrays the 

relationship between protein adhesion and surface wettability was investigated. 

The water contact angles of the 48 polymers were measured using picolitre 

volume water droplets and compared with the adhesion forces (Figure 56). All 

contact angle measurements were taken using a piezo dosing head to produce 100 

pL droplets. The WCA of the polymers varied from ~ 48 to 91°, demonstrating 

that the polymers ranged from relatively hydrophilic to hydrophobic. It has 

previously been reported on SAM surfaces (alkanethiolates on gold terminated 

with different functional groups) that large proteins such as fibronectin adhere 

greatest to hydrophobic surfaces, as the protein molecules are able to expose more 

internal hydrophobic residues during adhesion.[140, 149, 150] This is not 

observed in this group of polymers, where it can be seen that protein adhesion was 

generally low with higher values at WCA between 65 to 85º. This indicates that 

the conclusions on protein adhesion drawn from studies using well ordered SAM 

surfaces cannot be extended to this set of polymers. A more complex surface 
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chemistry than the well ordered SAM systems is likely to be at the root of this 

difference; including variable cross-linking, stearic consideration and specific 

moieties.   

7.4 Conclusions  

A wide range of protein adsorption properties within the 48 combinatorial 

polymers synthesised and analysed in a microarray format has been observed. 

Since protein adsorption to materials is such an important stage in cellular 

adhesion, it is essential that protein interactions with microarrayed materials are 

studied, in order to more greatly understand cellular response. Both methods 

described in this chapter show promise for the analysis of arrayed polymer 

libraries. The correlation between the two sets of data appears to validate both. 

This proof of concept study indicates that these may be used in combination with 

surface analysis methods to further study the relationship between surface 

properties and protein adsorption. It will be necessary to extend the protein 

adsorption experiments to more realistic competitive and sequential multi-protein 

experiments which more closely mimic actual serum conditions encountered in 

cell culture. 
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8.1 General Conclusions  

The aim of this thesis was to develop methods for the characterisation of 

the surface properties of polymers printed as microarrays. Chapter 3 described the 

surface chemical analysis of a library of 496 polymers in situ in microarray format 

using ToF-SIMS and XPS. Importantly the acquisition of this data was possible 

within the timeframe of cell adhesion and proliferation assays, thus suggesting 

that the screening of the biological and surface chemical properties of these 

libraries could run in parallel. ToF-SIMS was used to image the whole 

microarray, thereby showing the distribution of key secondary ion species across 

the array. It could easily be envisaged using this technique as a rapid method of 

confirming the correct array layout prior to printing – an essential step before 

conclusions can be made from data acquired from the arrays. A comparison of the 

bulk and surface chemistries of the polymers on the microarray showed great 

differences for a large proportion of the polymers. This confirms the importance 

of surface analysis procedures for these arrays, as it obvious that the polymers’ 

surface chemistries can not be inferred from their bulk chemistries.   

Principal component analysis was applied to both the ToF-SIMS and XPS 

spectral data with great success, suggesting that this is in an ideal method for 

analysing the vast amounts of information gained from these arrays. PCA allowed 

the similarities and differences in the surface chemistries of the polymers to be 

easily visualised. Analysis of the principle component score values of the 

polymers gave a great deal of information about how the monomer composition of 

the polymers influenced their surface chemistries. It could be imagined that this 

kind of study could easily be used to ‘tune’ the surface chemistry of a new 

polymer to an ideal for a particular use, by studying how the relative amounts of 

certain monomers will change the resulting polymer surface. PCA could also be 

used to investigate whether the surface chemistry of polymers with identical 

constituent monomers are equivalent, i.e. test the repeatability of the method of 

polymer synthesis.  
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In Chapter 4 a new technique allowing contact angle measurement from 

picolitre volume droplets was described. The contact angles measured using these 

very small droplets was shown to be equivalent to those measured from the more 

conventional microlitre volume droplets, with appropriate consideration of their 

rapid evaporation. With the miniaturisation of many areas of science it is 

becoming increasingly necessary to characterise surface with very small 

dimensions. To demonstrate the ability of this new technique to achieve high 

spatial resolution, the wettability of a radial chemical gradient was mapped at 

intervals of only 250 µm. This indicated the utility of this technique in countless 

applications where sample size or the unit change in wettability is very small, for 

example, gradient surfaces microfluidic devices and microarrays.    

The new technique for contact angle measurement described in Chapter 4 

allowed the contact angles of individual polymers on a microarray (diameter of ~ 

300 µm) to be measured for the first time. Chapter 5 described the estimation of 

the surface energies of all 496 polymers on a microarray using contact angle data 

from picolitre volume droplets of water and diiodomethane. As with the surface 

chemical data, the surface energy data can be acquired well within the time 

required to screen the polymers’ biological properties. The water contact angles 

and polar surface energies of the polymers varied greatly, demonstrating the 

power of combinatorial methods to produce polymers with a wide range of 

properties. To investigate what the chemical basis is for this large range in surface 

energies, the ToF-SIMS and XPS data from the polymers was related to their 

surface energy values. It was noted that atomic and functional group information 

from XPS was unable to explain the variation in surface energy values probably 

because of the lower surface sensitivity of the technique. In contrast when ToF-

SIMS ion intensity data was related to surface energy using partial least squares 

regression some interesting conclusions could be made. It was observed that 

oxygenated hydrocarbon secondary ions were strongly associated with high 

surface energy values, whereas non-oxygenated hydrocarbon secondary ions were 

strongly associated with low surface energy values. These conclusions were 

confirmed by reference to the raw spectra of the polymers. This exercise 

demonstrates the massive potential the combination of PLS and arrayed polymer 

libraries have for studying surface structure-property relationships. For example, 
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PLS could be used to identify the surface chemistries of polymers which promote 

cell adhesion, inhibit non-specific protein adsorption or even direct the 

differentiation of stem cells into specific lineages. This information could then be 

used to design new polymers with the desired polymers, i.e. moving towards the 

intelligent design of new biomaterials.    

If PLS is to be used as a tool to study large combinatorial polymer libraries 

it is essential that the limits of the technique are known. In Chapter 6 two 

important issues relating to the use of PLS in large datasets were investigated. 

Firstly, the influence of the number and type of samples in the training set on the 

results obtained was investigated. Secondly, the ability of PLS to give accurate, 

quantitative predictions was studied. Importantly it was observed that changing 

the number of samples included in the training set does not appear to influence the 

key ions in the regression vector, only their relative and absolute magnitude of the 

regression coefficients. This suggests that the results obtained from large libraries 

of polymers are equivalent to those from smaller, more conventional sized 

datasets. It was noted that if polymers with unique chemistries are removed from 

the training set, secondary ions specific to these polymers are not observed in the 

regression vector, as would be expected.   

There has been very little research in the chemometrics field investigating 

the use of PLS to make quantitative predictions. Therefore in the second part of 

Chapter 6 different test sets of polymers were used to test the ability of PLS to 

predict surface energy. It was observed that the best predictions obtained were for 

polymers that were closely related chemically to the training set. The predictions 

were seen to decrease in accuracy as the test polymers became more chemically 

dissimilar to the training set. These observations are intuitive as a PLS model is 

only able to make predictions on the basis of the information it has been given in 

the training set. It can be concluded from this exercise that the potential for using 

PLS as a predictive tool is perhaps limited. However with knowledge of these 

limits and the correct choice of training sets there is scope for obtaining 

predictions within groups of closely related polymers. More research is needed 

into the influence of data pre-processing and rescaling on the predictions obtained.  
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Protein adsorption to surfaces is a vitally important step in the function of 

biomaterials, therefore it is important that methods exist for studying the 

interaction of proteins with new polymer libraries that are printed in microarray 

format. Hence in the final experimental chapter two methods are described for 

studying protein interactions with arrayed polymers. AFM was used to measure 

the adhesion force between a fibronectin-coated probe and a group of polymers on 

a microarray. The microarray was then incubated in a solution of fluorescently 

labelled fibronectin to obtain a relative measure of the amount of fibronectin 

adsorbed to each spot. Interestingly there was a linear relationship between the 

adhesion force of fibronectin to a polymer and the amount of fibronectin adsorbed 

(as measured by fluorescence). This suggests that if a protein is strongly attracted 

to a surface it will adsorb in greater quantities. As the adsorption of adhesion 

proteins to polymers is such an important stage in cellular adhesion, it is hoped 

that using techniques such as those described above to study the protein 

adsorption properties of arrayed polymers will aid further understanding of 

cellular response.  

8.2 Final Comments   

This thesis has demonstrated the feasibility of a thorough characterisation 

of the surface properties of a polymer microarray, within the timeframe of their 

biological assessment. It is worth noting that the techniques described here could 

also be applied to microarrays of other types of materials. The methods described 

in this thesis have two principal applications. Firstly they enable an understanding 

of the surface properties of hundreds of novel materials to be obtained, which 

otherwise would remain uncharacterised. Importantly this allows confirmation 

that any desired properties have been achieved and gives reassurance that the 

array is laid out as intended. Secondly, knowledge of the surface properties of 

these polymer libraries allows surface structure-property relationships to be 

studied, using techniques such as PLS. This will aid greater understanding as to 

why materials exhibit certain properties and allow the intelligent design of new 

materials.  
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