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Abstract 

A DNA double-strand break is an exceptionally toxic lesion that threatens the 

structural and functional integrity of the genome. In this thesis the repair of 

DSBs was investigated using the bacterium Escherichia coli, which repairs 

DNA breaks almost exclusively by homologous recombination. The studies 

described focus on the repair of damage induced by reactive oxygen species, 

but especially on the RecN protein, which is associated specifically with the 

repair of double-strand breaks. 

The RecN protein is highly conserved across bacterial species and in E. 

coli has been identified as a key factor in the repair of DNA breaks.  In this 

thesis three RecN homologs were analysed. RecN from Haemophilus 

influenzae is shown to be capable of replacing the functions of E. coli RecN in 

vivo. However, homologs from Aquifex aeolicus and Bacteriodes fragilis 

cannot do so.  

Biochemical analysis of all three RecN homologs was undertaken. The 

H. influenzae RecN and A. aeolicus RecN were shown to have weak ATPase 

activity and an ability to interact with single-stranded DNA. ATPase deficient 

mutants of the RecN proteins were created and used to demonstrate the 

functional importance of the ATP hydrolysis. In the case of E. coli and            

H. influenzae, the ATPase defective mutants failed to function in vivo. In vitro, 

the ATPase deficient H. influenzae RecN mutant and a similar mutant of        

A. aeolicus RecN failed to interact with single-stranded DNA. These data are 

discussed in terms of a relationship between RecN and the structural 

maintenance of chromosome family of proteins. 

Finally, a model for RecN activity is presented based on those 

developed to explain the function of structural maintenance of chromosome 

proteins and the new data presented here. In this model, RecN is suggested to 

trap DNA molecules holding a break site and repair template in close 

proximity, facilitating the repair of DNA breaks by homologous 

recombination. The possibility of RecN acting as a global, damage induced 

cohesin is also discussed. 
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Chapter 1  
Introduction 

The accurate replication of DNA and faithful transmission of duplicated 

chromosomes are major challenges that dividing cells must meet in order to 

maintain genomic stability. To address these issues, organisms have evolved 

numerous mechanisms to preserve the basic integrity of the genome (Giraud et 

al. 2001). Damage to DNA is a major and persistent threat. It can range from 

simple replication errors that create DNA base pair mismatches, through 

lesions that affect the deoxyribose sugar backbone, or the nitrogenous bases, all 

of which can be repaired using the complementary strand as a template, to the 

extremely genotoxic double-strand break (DSB), where both sugar phosphate 

chains of the DNA have been broken. This introduction provides an overview 

of DNA damage and its repair, focusing in particular on oxidative damage to 

DNA and the repair of DNA breaks. 

1.1 DNA damage and repair 

The DNA in all living cells is constantly under assault and the sources of DNA 

damage can be split crudely into those that are from external sources 

(exogenous DNA damage) and those that come from within the cell 

(endogenous DNA damage). Major sources of exogenous DNA damage 

include UV light, which induces the formation of pyrimidine dimers and other 

lesions and with high doses is capable of causing DSBs (Bonura and Smith 

1975) (Table 1). DSBs can also be generated by exposure to ionising radiation 

(IR), which includes both gamma and X-rays (Ward 1975). Chemical 

mutagens and antibiotics are also known to cause damage to DNA. Many are 

exploited experimentally, including bleomycin, methyl methanesulphonate and 

mitomycin C (Iyer & Szybalski, 1963; Povirk et al., 1977).  

Endogenous sources cause the majority of DNA damage. In a 

mammalian cell they can cause 10,000 or more lesions a day (Lindahl 1993; 

Mitchell et al. 2003; Setlow 2001). The principal endogenous cause of damage 
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are reactive oxygen species (ROS), namely the superoxide anion (02•-), the 

hydroxyl radical (HO•) and hydrogen peroxide (H2O2). They arise primarily 

due to electron leakage from the respiratory chain during oxidative 

metabolism, but also as a result of water radiolysis by UV and IR (Beckman 

and Ames 1998; Storz and Imlay 1999; Seaver and Imlay 2004). ROS cause a 

wide variety of damage to cellular components, including numerous lesions to 

DNA and their prevalence means that DNA damage is inevitable. Fortunately, 

cells have evolved numerous repair pathways to correct lesions in general and 

thus limit the accumulation of potentially mutagenic or genotoxic damage 

(Table 1.1). 

Several pathways exist that can remove those lesions that affect just one 

strand of the DNA. These pathways act by excision of the strand region 

affected by the lesion and then make use of DNA polymerases and DNA ligase 

to synthesise the missing section and restore the DNA to its duplex form 

(Figure 1.1). Base excision repair (BER) involves the specific recognition of a 

lesion by a DNA glycosylase, which breaks the N-glycosidic bond connecting 

the base to the sugar phosphate backbone, followed by cleavage of the 

backbone by an AP endonuclease (Krokan et al. 1997; Lindahl and Wood 

1999). Nucleotide excision repair (NER) and the mismatch repair (MMR) 

pathways both excise much larger sections. NER is a more versatile pathway 

than BER, as it targets a lesion by recognising the distortions it causes in the 

DNA rather than the lesion itself and NER can be targeted to actively 

transcribed regions of the genome, reducing the risk of mutations arising 

within expressed genes (Friedberg 1985; Sancar 1996a; Wood 1996). 

Mismatch repair (MMR) allows a cell to remove bases that have been 

misincorporated during DNA replication. This requires the cell to distinguish 

between the parental (template) strand containing the correct nucleotide and 

the newly synthesised strand, containing the misincorporated nucleotide. In the 

bacterium Escherichia coli this is achieved by comparing the methylation state 

of the two strands (Modrich 1991; Fishel and Kolodner 1995; Kolodner 1996).  

Some lesions can be repaired directly, i.e. by reversal of the disfiguring 

event. Thus, a single-strand nick can be ligated by DNA ligase (Barnes et al. 
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1992), while UV-induced intra-strand cross-links, such as cyclobutane 

pyrimidine dimers and 6-4 photoproducts, can be broken by the action of a 

photolyase (Kelner 1949; Sancar 1996b; Sancar 2000). Even chemical 

modifications of the DNA, such as methylation caused by alkylating agents, 

can be repaired by protein-mediated removal of the methyl group. In many 

bacteria this is part of the ‘adaptive response’ in which exposure to alkylating 

agents induces expression of the Ada transcription factor. Once activated by 

methylation Ada itself can remove methyl groups and also induce expression 

of the AlkB enzyme, which can remove methyl groups from modified bases by 

oxidative decarboxylation (Samson and Cairns 1977; Lindahl et al. 1988; 

Trewick et al. 2002). All of these systems act to restore the DNA to its correct, 

stable chemical form. 

Many lesions prevent synthesis by the replicative DNA polymerase, but 

have little or no effect on the progression of the replicative helicase and 

associated replisome components. This can result in gaps being left opposite a 

lesion, making excision repair impossible. However, most cells possess 

alternative DNA polymerases that can be recruited to the replisome to catalyse 

translesion synthesis. These polymerases tend to have low processivity and are 

displaced by the replicative polymerase as soon as a lesion is bypassed. Hence, 

they allow DNA synthesis to continue, preserving the DNA duplex so that 

excision repair can remove the lesion after the replisome has passed. 

Consequently translesion synthesis allows a lesion to be tolerated, but can lead 

to misincorporation, resulting in mutation of the genome (Lehmann 2006; 

Shcherbakova and Fijalkowska 2006). Because of the risk of mutation 

translesion synthesis is usually thought to be a last resort. 
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Table 1.1. Common DNA lesions and the mechanism used for their repair. 

Lesion Effect on DNA Causal agent Repair mechanism 

Cyclobutane 
pyrimidine dimers 

e.g. T^
T dimers. 

Cross linking of 
neighbouring bases. 
Distorts the DNA 
helix and inhibits 

replication. 

UV light 

Photoreactivation, 
NER and 

BER (in prokaryotes 
and phage). 

(6-4) photoproducts 

Linkage of C6 an C4 
of adjacent 

pyrimidines. 
Distorts DNA helix 

and inhibits 
replication. 

UV light 

Photoreactivation, 
NER and 
BER (in 

prokaryotes and 
phage). 

Loss of purine or 
pyrimidine bases 

 
AP site Hydrolysis of N-

glycosidic bond. BER or NER. 

Deamination e.g. 
Cytosine to Uracil. 

Base changes, 
cause miscoding 
during replication 

Spontaneous or 
nitrous acid 
exposure. 

BER or NER. 

Oxidised bases e.g. 
8-hydroxyguanine. 

Base changes, 
affects replication 

Caused by 
exposure to ROS. BER or NER. 

Mis-incorporation of 
bases. 

 

Base changes, 
can cause transitions 

and transversions. 

Replication errors, 
DNA polymerases 

can insert the 
wrong base. 

MMR 

Alkylation of bases 
e.g. Adenine to 

N3-methyadenine. 

Addition of methyl 
or ethyl groups. 

 

Alkylating agents 
e.g. Nitrogen 

mustard 

“The adaptive 
response” 

(Requires Ada and 
AlkB proteins) or 

NER. 

DNA cross-links Covalent linkage of 
DNA strands. 

Alkylating agents 
e.g. Cis-platin and 

mitomycin C 

Requires NER and 
HR. 

Single-strand breaks 

Gap in one strand of 
the deoxyribose 

sugar chains, 
affects replication 

Ionising radiation 
and failure to join 

Okazaki 
fragments. 

Repair by ligation 
or 

larger gaps by DNA 
polymerase. 

 
Double-strand 

breaks 
 

Both deoxyribose 
sugar chains are 

broken. 

IR, bleomycin, 
endonucleases 
replication fork 

collapse 

NHEJ or HR. 
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Figure 1.1. Diagram outlining some of the excision repair pathways that 
organisms use to remove DNA lesions and preserve genomic integrity. 

The solid lines represent the deoxyribose sugar backbone while the small squares 
represent base pairs. Lesions and erroneous bases are represented in red, newly 
synthesised DNA is shown in black. BER involves a nitrogenous base being ‘flipped 
out’ of the DNA to create an apurinc or apyrimidinc (AP) site, which can be 
recognized by an AP endonuclease that breaks the sugar phosphate backbone 
removing the lesion. NER requires recognition of the distortion caused by a lesion, 
this allows recruitment of nucleases that nick either side of the lesion and a helicase, 
which removes the nicked fragment as a short oligonucleotide. The fragment liberated 
is always the same size: 12-13 bases in E. coli and 29 bases in mammals. MMR 
requires recognition of the DNA strands and of a mismatched base. The DNA is then 
nicked, either 3' or 5' of the lesion. A fragment containing the lesion is then removed; 
unlike in NER, this is done by degradation of the DNA by an exonuclease, assisted by 
a DNA helicase. Strand recognition is achieved by methylation state of the DNA 
(DNA methylation is shown as yellow methyl groups).  

 

 Lesions that affect both strands of the duplex, such as DSBs and DNA 

cross-links, are extremely genotoxic because they expose the DNA to 

degradation and/or block replication. DSBs can be repaired via one of two 

principal mechanisms, non-homologous end joining (NHEJ) or homologous 

recombination (HR) (Figure 1.2). The NHEJ pathway is often error-prone as 

during NHEJ the broken ends are ligated together in a reaction that may 

involve processing of the ends. This results in the loss of genetic material. The 

HR pathway requires homologous sequences to use as a template for the repair 

of the damaged region. This means that any sequences lost during the 

processing of the break can be copied from the template, preserving the DNA 

sequences around the break site (Figure 1.2) (Szostak et al. 1983; Critchlow 



6 

 

and Jackson 1998). DSBs are discussed in detail in Section 1.3 (cause) and 1.4 

(repair). Inter-strand cross-links covalently join two strands of DNA. Their 

repair depends upon both NER and HR. It is thought that the cross-link is 

excised on one strand and HR then allows homologous sequences to be used to 

close the gap. NER can then remove the cross-linked region on the other strand 

and the duplex is restored by DNA synthesis (Cole 1973; McHugh et al. 2001).  

 

Figure 1.2. Diagram outlining the repair of some lesions, which affect both 
strands of the DNA duplex. 

The damaged DNA molecule is shown in black and its homologous sister, which 
maybe required for repair, is in red. The light blue background represents a region, 
which can be lost during NHEJ, but not HR. Cross-link repair involves both NER and 
recombination (covalent cross-links are indicated as a yellow line). 

 

The range of lesions DNA can suffer is very extensive. Those discussed 

here and in Table 1.1 are just indicators of how varied the damage can be. 

Repair involves numerous, often overlapping, pathways and may require the 

cooperation of several systems to ensure removal of a lesion (Friedberg et al. 

1995; Friedberg 2008). This is illustrated clearly by the systems evolved to 



7 

 

cope with oxidative damage caused by ROS, the most common endogenous 

source of damage to DNA. 

1.2 Oxidative damage, damage prevention and repair  

The generation of ROS is an unavoidable consequence of respiration and the 

term oxidative stress has been coined to refer to the steady state of oxidative 

damage that occurs within cells. Oxidative stress has been implicated as a 

major contributor to ageing and human diseases. Experiments with murine 

models suggest that a calorie-restricted diet, which reduces the oxidative 

phosphorylation rates, can greatly reduce oxidative damage and prolong life 

(Aruoma et al. 1991; Sohal 2002). Most organisms have therefore evolved 

systems to cope with ROS. This includes pathways to detect and eliminate 

ROS before they can damage cellular components, including DNA. These 

mechanisms have been extensively studied in bacteria. 

Two regulons have been identified in E. coli as having roles in the 

detection and elimination of ROS. Each comprises an oxidative stress sensor, a 

transcriptional activator and a set of enzymes concerned with the processing of 

ROS. The SoxRS regulon has the SoxR sensor protein and the SoxS 

transcription factor that activates genes in the regulon. The SoxRS system 

removes the superoxide anion. The sod genes, which encode superoxide 

dismutase (SOD), are major components of the SoxRS regulon. SOD converts 

the superoxide anion into H2O2, which, although less toxic can damage cellular 

components in micromolar concentrations. Therefore, H2O2 also has to be 

detoxified and this is achieved by a second ROS detoxifying regulon, 

controlled by OxyR (Storz and Imlay 1999; Seaver and Imlay 2001b; Seaver 

and Imlay 2001a; Seaver and Imlay 2004). 

 The OxyR protein is a dimer that acts both as a sensor of oxidative 

stress and as the transcriptional activator for the regulon. As generation of 

H2O2 is unavoidable, the OxyR regulon has an important housekeeping 

function (Seaver and Imlay 2001b; Seaver and Imlay 2004). It is found in a 

large number of bacteria and has been shown to be vital for survival after 

exposure to ROS, including H2O2, which are often encountered when a 
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bacterial pathogen tries to invade a host. The bacteria are attacked by the host’s 

immune cells, which utilise an oxidative burst of H2O2 to kill the pathogen. 

This makes OxyR an important virulence factor (Mukhopadhyay and 

Schellhorn 1997; Ochsner et al. 2000).  

As oxidative stress increases so does the redox potential inside a cell. 

This permits the formation of a disulphide bond between the two subunits of 

the OxyR dimer. The conformational change this induces allows the protein to 

bind to its target sequences and activate expression of proteins in the regulon 

(Zheng et al. 1998). The OxyR protein induces several genes, including itself 

(Volkert and Landini 2001) and the catalase genes, katG and katH, which 

encode two separate catalases, both capable of breaking down H2O2 

(Mukhopadhyay and Schellhorn 1997). However, the AhpC protein, rather 

than the catalases, has been identified as the primary H2O2 scavenger in E. coli 

(Seaver and Imlay 2001a).  

AhpC is part of the OxyR regulon, along with its co-factor AhpF. 

Together they are able to break down H2O2 (Storz et al. 1989; Tartaglia et al. 

1989). This reaction differs from the catalase-driven breakdown in its kinetics. 

AhpC can degrade H2O2 at very low concentrations  (<0.1µM), whereas 

catalases require H2O2 concentrations above 1µM (Seaver and Imlay 2001b). 

This means AhpC can prevent ROS build up and thus limit DNA damage. 

Deletion of both the catalase genes does not affect H2O2 levels within the cell. 

A detectable increase in H2O2 levels requires a triple deletion of both catalase 

genes and the ahpC gene (Seaver and Imlay 2001a; Seaver and Imlay 2001b).  

AhpC and AhpF are both required for the removal of H2O2. AhpC degrades 

H2O2 but then has to be regenerated by AhpF before it can remove any more 

H2O2. The regeneration is energy intensive, requiring NADH (Poole and Ellis 

1996; Poole 2005). In contrast, catalases do not require regeneration, so 

although AhpC is a highly efficient H2O2 detoxifying enzyme it can become 

saturated at moderate H2O2 concentrations and its activity is energy intensive.  

Evidence from several studies suggests interplay between the ROS 

scavenging systems and a cell’s DNA repair pathways. Expression of bacterial 

AhpC in human cells reduces nuclear DNA damage and inhibits apoptosis 
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(Lombard et al. 2005). Furthermore, OxyR is involved in the upregulation of 

uvrD, which encodes a DNA helicase, known to be involved in several DNA 

repair pathways, including NER and MMR (Figure 1.1) (Modrich 1994; 

Mukhopadhyay and Schellhorn 1997). Studies of bacterial responses to 

oxidative stress found that several genes involved in HR are important for 

resistance to H2O2. Indeed, increased sensitivity to H2O2 was observed in both 

recA and recBCD E. coli mutants, which is probably a combined result of these 

mutants being deficient in both HR and induction of the SOS response, which 

provides a global response to DNA damage (Linn and Imlay 1987; Asad et al. 

1997; Konola et al. 2000; Erill et al. 2007). In Neisseria gonorrhoea, recA and 

the recombination associated gene recN, are both important for survival after 

H2O2 exposure and recN is also important for H2O2 resistance in Helicobacter 

pylori where it is induced by H2O2 exposure (Stohl and Seifert 2006; Wang and 

Maier 2008). In Pseudomonas aeruginosa, oxyR is in an operon with recG, 

which is known to be involved in DNA repair (Ochsner et al. 2000). Taken 

together these data suggest a degree of co-regulation of the DNA repair and the 

oxidative stress responses. This gives a layered defence against oxidative stress 

and the damage it causes, to ensure the preservation of genomic integrity 

against this constant threat. 

1.3 DSB formation 

A DNA DSB is probably the most genotoxic lesion a cell can encounter (van 

Gent et al. 2001). Not only are both strands of the DNA backbone broken, but 

spatial separation of the broken ends can also occur. Thus, repair of a DSB is 

not only essential, but complicated by the need to keep the broken ends in 

proximity to each other. DSBs can be classified according to whether they are 

generated in a replication-independent or replication-dependent manner and 

whether one or two DNA ends are exposed.  

Generally, replication-independent breaks are caused by direct attacks 

on the DNA and result in two exposed DNA ends (Figure 1.2). The lethality of 

IR exposure is largely due to the DNA DSBs it causes; a dose of just 1 Gray 

can cause 40 DSBs in a mammalian cell (Ward 1988). Exactly how IR causes a 
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break is unknown. Both direct cleavage of the DNA and clustered damage 

caused by ROS, generated by radiolysis of water in the cell, have been 

suggested (Siddiqi and Bothe 1987). High UV doses can also cause replication-

independent breaks, which are thought to arise as a result of excision repair of 

damaged bases on both DNA strands at nearby sites. Chemical agents, such as 

the anti-cancer drug bleomycin and the antibiotic mitomycin C, have also been 

shown to cause DSBs (Povirk et al. 1977), although mitomycin C is actually a 

DNA cross-linking agent and thus is not a direct cause of DSBs (Iyer and 

Szybalski 1963). Cellular endonucleases can also attack DNA, causing a DSB. 

Ironically, eukaryotes utilise endonucleases to deliberately break a 

chromosome and thus induce meiotic recombination (Keeney et al. 1997). 

Likewise, the Rag1 and Rag2 enzymes create DSBs to trigger V(D)J 

recombination, which is required to generate the diversity seen in antibodies. 

Yeast makes use of site-specific HO endonucleases to create site-specific 

DSBs that trigger recombination and facilitate mating type switching (Haber 

1995; Belfort and Roberts 1997; Keeney et al. 1997). All of the replication-

independent systems will generate a DSB like that in Figure 1.2, where two 

DNA ends have been generated. 

During normal growth the vast majority of DSBs are likely to arise in a 

replication-dependent manner. DNA replication has evolved to be highly 

accurate and processive and has been extensively studied in E. coli. The E. coli 

chromosome consists of a single circular DNA molecule, with a single origin 

of replication called oriC. Replication occurs in a bi-directional manner from 

the origin, with two replication forks being established at the origin, which 

then move around the chromosome in opposite directions. Approximately 180˚ 

around the chromosome from oriC the forks encounter the termination region 

(ter) where replication is completed. The two chromosomes are then separated 

and segregated into daughter cells (Figure 1.3).  
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Figure 1.3. Schematic representation of a 
replicating E. coli chromosome. 

The replisomes (green circles) and DNA (in 
black) are shown. If a DSB were to occur at the 
site marked A then there is an intact copy 
within the newly replicated regions of DNA at 
A*, which can be used as a template. The origin 
(oriC) and terminus (ter) regions are marked. 

 

 

 

The leading DNA strand is replicated continuously, while the lagging 

strand is synthesized as short fragments, of approximately 1000 nucleotides, 

called Okazaki fragments, which are subsequently ligated together (Kornberg 

and Baker 1992). Complete replication of the chromosome takes 

approximately 40 minutes. However, exponentially growing E. coli can divide 

every 20 minutes. This means that there must be multiple, overlapping rounds 

of replication and as a result there can be multiple copies of at least portions of 

the chromosome. Consequently if a DSB was to occur in the replicated region, 

then there would also be an intact copy of this DNA, which can be used as a 

repair template (Figure 1.3). 

Despite accurate and rapid replication being vital, replication forks are 

commonly perturbed before they get to the terminus. This is often due to DNA 

lesions, although secondary structure and DNA bound proteins also have an 

effect (Hyrien 2000). Estimates in bacteria suggest a replication fork rarely 

completes its journey around the chromosome without encountering some form 

of blockage, which can lead to the formation of a DSB (Cox et al. 2000; 

Sandler and Marians 2000; Marians 2004). 

The majority of replication-dependent breaks arise when a replication 

fork collapses due to passage through a single-strand nick (reviewed by 

Kuzminov 1995b). Nicks can be generated on the lagging strand as a result of 

the removal of the RNA primers that facilitate the semi-discontinuous 
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replication of this strand. However these will tend to be sealed by DNA ligase 

(Heitman et al. 1989). Nicks that arise due to DNA damaging agents will occur 

with equal frequency on both strands. When the replication fork encounters a 

nick, it can cause fork collapse, thus generating a DSB with a single exposed 

end (Figure 1.4) (Cox et al. 2000; Sandler and Marians 2000; Kuzminov 2001). 

A noteworthy feature of replication-dependent breaks arising from a nicked 

leading strand is that they are blunt ended, whereas if they arise as a result of a 

nicked lagging strand they are likely to have a 3' overhang (see Figure 1.4). 

Figure 1.4. Diagram describing the formation of replication-dependent DSBs. 

The replisome (green ellipse) can 
collapse upon encountering a 
single-strand nick in the DNA. This 
creates a DSB with a single DNA 
end in the newly synthesised DNA 
(red line) and the nick is left in the 
parental strand (black line). The 
structure of the DNA end varies, 
depending on which DNA strand 
the nick is present. Strand polarity 
is shown 

 

The collapse of the replisome is not pre-determined by an encounter 

with a replication block. Sometimes the replisome can stall, but remain 

assembled and bound to the DNA at a the site of a blockage (McGlynn and 

Lloyd 2000). To allow replication to proceed the cause of the block must be 

removed. In the case of a DNA lesion this requires repair. However, the 

replisome prevents repair proteins gaining access to the lesion and must 

therefore, be removed to allow repair. This is achieved by fork regression, 

which involves annealing of the newly synthesised DNA to create a type of 

Holliday junction, referred to as a ‘chicken foot’. Holliday junctions can be 

recognised and cleaved by structure specific endonucleases, resulting in a DSB 

(Michel et al. 1997; Seigneur et al. 1998; McGlynn and Lloyd 2000; Seigneur 

et al. 2000; Postow et al. 2001) (Figure 1.5). 
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Figure 1.5. Generation of DSBs from a stalled replication fork. 

Fork regression can be driven in several ways, but leads to the generation of a 
‘chicken foot’ type Holliday junction. This can be cleaved, resulting in the generation 
of a DSB, with one exposed terminus. 

 

Generally, replication-independent breaks result in two exposed DNA 

ends, while the replication-dependent breaks result in one. However, 

replication-dependent breaks with two exposed DNA ends can also arise. The 

SbcCD complex of E. coli is a specialized nuclease capable of cleaving hairpin 

structures. These are proposed to arise during the replication of palindromic 

sequences in the lagging strand template, which is transiently single-stranded. 

The DNA opposite the hairpin cannot be synthesised and subsequent cleavage 

of the hairpin by SbcCD generates a DSB (Connelly et al. 1999; Cromie et al. 

2000; Eykelenboom et al. 2008). DSBs can even arise because of MMR 

(Figure 1.1). In cells deficient for the dam gene product, which methylates 

DNA, the parental and newly synthesised DNA strands cannot be distinguished 

and excision repair can initiate on both, which results in a DSB if the excision 

events overlap (Au et al. 1992).  

Studies on the repair of DSBs have been conducted in numerous 

organisms including mammals, yeast and bacteria. These studies often made 

use of IR and chemical mutagens to generate DSBs. However, such agents 

cause a wide variety of DNA lesions and other cellular damage. The spectrum 

of damage caused makes it impossible to assign the observed phenotypes to the 

presence of DNA DSBs alone. To avoid this uncertainty, many studies have 

focused on analysing specialised recombination events, which are often 

initiated by the cell inducing a DSB, such as V(D)J recombination of 
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mammalian immunoglobulin genes and the mating type switching of yeast 

(Haber 1998b; Pierce et al. 2001; Sugawara and Haber 2006). Studies in E. coli 

have focused on analysis of the phenotypes observed in wild-type and various 

mutant strains after exposure to IR, restriction enzyme attack, palindrome 

cleavage or recombination events associated with linear DNA, like conjugation 

and transduction (Sargentini and Smith 1986; Asai et al. 1994; Lloyd and Low 

1996; Cromie et al. 2000; Cromie and Leach 2001). To overcome these 

problems, systems have been developed to generate site specific DSBs using 

the yeast homing endonuclease, I-SceI. These systems allow defined DSBs to 

be generated at particular loci within the genome and have been used 

successfully in mammalian and yeast cells (Lukacsovich et al. 1994; Haber 

2000; Johnson and Jasin 2001). However, only recently were similar systems 

developed for bacteria, where an inducible I-SceI endonuclease has been used 

to cleave the E. coli chromosome at engineered target sites (Chapter 4) 

(Meddows 2002; Meddows et al. 2004; Grove et al. 2008). The specificity of 

these systems allows far more conclusive analysis of consequences of DSB 

formation and of the repair of DSBs in vivo. 

1.4 DSB repair 

The integrity of the DNA backbone is constantly threatened, making the 

occurrence of DSBs endemic. Cells have therefore evolved systems to cope 

with DSBs, repairing them so as to preserve the integrity of the genome 

(Paques and Haber 1999; Cox 2001). There are two distinct DSB repair 

pathways, which have been identified in eukaryotic cells, HR and NHEJ 

(Figure 1.2) (Hoeijmakers 2001; van Gent et al. 2001). HR can accurately 

repair a DSB, but requires an intact copy of the damaged region to act as a 

template. In contrast NHEJ repairs DSBs without a template, but the process is 

potentially less accurate.  

NHEJ involves numerous proteins that capture the broken ends and 

then process them so that they can be ligated. This process can lead to loss of 

nucleotides, both during the breakage and subsequent processing, posing a 

threat to genomic integrity. After a DSB occurs, the exposed DNA termini can 
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be bound by heterodimers of the Ku70 and Ku80 proteins. The Ku-dimer has 

an open ring-shaped structure and can load onto exposed DNA ends (Walker et 

al. 2001; Mari et al. 2006; Uematsu et al. 2007). The Ku-dimers act as a 

scaffold, recruiting the DNA-dependent protein kinase catalytic subunits 

(DNA-PKcs) to the DNA ends. This kinase has several roles in DNA repair, 

but most importantly perhaps, it can interact with the DNA-PKcs binding the 

other end of a DSB to form a synaptic complex. The complex bridges the two 

DNA ends and holds them stably together, so they can be ligated (Yaneva et al. 

1997; DeFazio et al. 2002).  

Ligation requires DNA ends to be blunt, therefore overhangs have 

either to be filled in by polymerases, or resected by a nuclease, specifically 

Artemis, but possibly the MR(N/X) complex (Jeggo et al. 1998). DNA 

polymerase μ has been shown to interact with Ku proteins (Mahajan et al. 

2002) and depletion of DNA polymerase λ reduces end joining in vitro (Lee et 

al. 2004). Artemis has a crucial role in V(D)J recombination and has been 

demonstrated to interact with DNA-PKcs, while mutants are sensitive to IR 

(Ma et al. 2002).  

The ligation reaction restores the DNA strands and requires the action 

of a protein complex comprising XRCC4 and DNA ligase IV. Exactly when 

this complex is recruited to a break is unclear, but it does interact with Ku, 

suggesting it could be recruited early during repair (Nick McElhinny et al. 

2000; Mari et al. 2006; Costantini et al. 2007). It also seems that the interaction 

with the DNA-Ku scaffold enhances the efficiency of ligation (Nick 

McElhinny et al. 2000). 

The second pathway of DSB repair is HR. The classical model was first 

proposed by Szostack (1983) to explain meiotic recombination in yeast (Figure 

1.6). In this model a DSB is processed via a four way branched structure, 

referred to as Holliday Junction. These structures were first proposed by Robin 

Holliday in 1964 as part of his model to explain recombination in fungi 

(Holliday 1964). However, unlike the original Holliday model, the Szostack 

model predicts an intermediate structure containing two Holliday junctions 

(Holliday 1964; Szostak et al. 1983). HR in eukaryotes was first studied 
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extensively in the ascomycete fungi and budding yeast Saccharmoyces 

cerevisiae. Many of the yeast genes involved were identified as mutations 

leading to radiation sensitivity and were thus named RAD genes, including 

RAD50, RAD51, RAD52 etc. (Krogh and Symington 2004). Many of these 

genes are conserved between yeast and man, suggesting an evolutionary 

conservation of HR processes. HR begins with the processing of the DNA ends 

at a DSB, to allow synapsis of two homologous pieces of DNA. Synapsis 

requires strand invasion of an intact homologous duplex, which is achieved by 

the action of three proteins RAD51, RAD52 and RPA (McIlwraith et al. 2000). 

It is proposed that the exposed termini at a break site (Figure 1.6 A) are 

processed to generate 3' single-stranded DNA (ssDNA) overhangs or tails 

(Figure 1.6 B), by the exonuclease activity of the MRE11/RAD50/NBS1 

complex (XRS2, replaces NBS1 in yeast), which is also involved in the early 

binding and recognition of DSBs (Krogh and Symington 2004). The overhangs 

are bound by a recombinase, RAD51 (a homolog of bacterial RecA), which 

forms a nucleoprotein filament and guides the invasion of the homologous 

duplex DNA (Figure 1.6 C) (Paques and Haber 1999; Allers and Lichten 

2001b). RAD52 actively recruits RAD51 to the ssDNA and facilitates its 

loading by displacement of the single-strand binding protein RPA, from the 

tails (Shinohara et al. 1992; Sugiyama and Kowalczykowski 2002; Sugiyama 

et al. 2006). Strand invasion generates a specific structure called a D-loop 

(Figure 1.6 D) in which the invading single-stranded tail can act as a primer for 

DNA synthesis (Figure 1.6 E).  
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Figure 1.6. Model of DSBR adapted from Szostak (1983). 

Some of the proteins involved are 
indicated, bacterial homologs of 
known processing enzymes are 
named in red  

A) A DSB initiates the 
 process.  

B) RecBCD/MR(N/X) (blue 
 circles) processes the ends 
 to give 3' overhangs. 

C) RecA/Rad51 (green 
 circles) loads onto the 
 ssDNA and forms a 
 nucleoprotein filament.   

D) RecA/Rad51 mediated 
 strand invasion of the 
 sister duplex generates a 
  D-loop. 

E) DNA synthesis occurs 
 (dashed lines represent 
 newly synthesised DNA).  

F) A second strand invasion 
 occurs, generating a double
  Holliday junction 
  structure. 

G) Resolution planes of the 
 junctions creates either a
 crossover or non-crossover  
 

 

 

Repair may then proceed via the classical DSB repair model as 

described by Szostak (1983), with the other exposed DNA end participating in 

a second strand invasion event generating a double Holliday junction structure 

(Figure 1.6 F) (Sugiyama et al. 2006). Specialised proteins, termed resolvases, 

can break the junctions formed. These resolaveses are well characterised in 

bacteria, but remain elusive in eukaryotes. In bacteria, resolution is often 

coupled to ‘branch migration’ of the Holliday junctions, moving the junction 

so as to expand the region of homology and also allows the resolvase to locate 

its target sequence and cleave the DNA. Resolution generates either a 

crossover or a non-crossover product, depending on which plane the two 

Holliday junctions are resolved. (Figure 1.6 G).  
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As an alternative, synthesis-dependent strand annealing (SDSA) could 

occur. Based on yeast studies, it is believed that the D-loop generated during 

strand invasion primes replication (Figures 1.6 D and 1.7 A), after which the 

newly synthesised DNA can be displaced and annealed to its broken partner 

(Figure 1.7 B). Repair can then be completed by replication of the missing 

DNA as if it were a gap in the duplex (Figure 1.7 C). In this model SDSA 

generates non-crossovers, while crossovers arise from HR (Allers and Lichten 

2001a). DNA synthesis, primed from a D-loop, is essential in both pathways 

(Allers and Lichten 2001a; McIlwraith et al. 2005; McIlwraith and West 2008). 

Several repair polymerases have been suggested to facilitate DNA synthesis 

from a D-loop (Goodman 2002), but only DNA polymerase η has an identified 

role in HR. In the absence of polymerase η, the rate of gene conversion is 

reduced in chicken DT40 cells, furthermore, it has been demonstrated to 

synthesise DNA from a D-loop (Figure 1.6 D) (McIlwraith et al. 2005; 

McIlwraith and West 2008). 

 

 

Figure 1.7. SDSA pathway of DSBR repair as proposed by Allers and Lichten 
(2001). 

A) Strand invasion, guided by Rad51/RecA (green circles), generates a D-loop 
allowing DNA synthesis to be primed by PriA.  

B) Newly synthesised DNA (dashed line) is displaced and annealed to its sister 
strand.  

C) Missing DNA is synthesised as if it were a gap in the DNA, generating a non-
crossover event. Crossovers are generated by HR. 

 

Both DSB repair pathways share a common start point and possibly the 

same initial detection and processing mechanisms (Aylon and Kupiec 2004). It 

is unclear what controls the choice of repair pathway and pathway preference 

may vary depending on the cell cycle. HR is an option, only when an intact 
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homologous sequence is available to act as a template for DNA synthesis 

(Shrivastav et al. 2008). Mutations in BRCA1 and BRCA2 restrict HR, making 

NHEJ the only pathway for the repair of DSBs  (Moynahan et al. 1999; 

Moynahan et al. 2001).  This leads to major genomic instability, including  

chromosome translocation and deletions, and is suggested to be the cause of 

the cancer predisposition associated with BRCA1 and BRCA2 defects (Yu et 

al. 2000; Wang et al. 2001). It seems that both HR and NHEJ have key roles in 

DSB repair, despite the mutagenic nature of NHEJ (Stephanou et al. 2007).  

The two models discussed involve the processing of both DNA ends. 

However, HR can involve just one exposed DNA end, either as a result of only 

one successfully invading, or it could be a replication-dependent break, with 

only one end. It has been thought for some time that one-ended recombination 

events could lead to the establishment of a replication fork (Meselson and 

Weigle 1961). This idea was developed by Kogoma to explain how replication 

in E. coli could be initiated at sites other than oriC and he proposed a process 

of break-induced replication (BIR) (Kogoma 1996; Kogoma 1997). In 

eukaryotes, BIR is thought to allow non-reciprocal recombination, which can 

be induced in yeast by a DSB and is dependent on RAD51 and RAD52 

(Malkova et al. 1996; Bosco and Haber 1998). Data suggests that BIR is 

important for rescuing broken replication forks (Kuzminov 1995b; Seigneur et 

al. 1998; Michel 2000; Kraus et al. 2001; Michel et al. 2001) and involves the 

formation of a D-loop, although whether a full replication fork is then 

established is currently unclear (Kraus et al. 2001). 

1.4.1 DSB repair in bacteria 

Until recently, it had been assumed that prokaryotes repaired DSBs solely by 

HR. However, NHEJ has now been identified in several bacterial species, 

initially in B. subtilis and then several species of mycobacteria where Ku-like 

proteins and a specific end-joining ligase, LigD have been identified (Doherty 

et al. 2001; Weller et al. 2002; Gong et al. 2005; Shuman and Glickman 2007). 

Ironically, despite most of the DSBR models being based on studies of 

eukaryotic systems, in particular yeast, the enzymology of DSB repair via HR 

is probably best understood in E. coli. The recombination events initiated at 



20 

 

DNA ends are particularly well studied. The exposed DNA termini are usually 

processed by RecBCD to facilitate recombination dependent DNA repair 

(Spies et al. 2005). The RecBCD complex is comprised of three subunits. The 

RecB and RecD subunits are helicases, with the opposing polarities. This 

allows them to load onto different DNA strands of the duplex, yet translocate 

overall in the same direction. RecC has regulatory roles, controlling the activity 

of the complex (Boehmer and Emmerson 1991; Yu et al. 1998; Dillingham et 

al. 2003; Taylor and Smith 2003). To initiate repair, RecBCD binds to blunt 

DNA termini at the break site. It then unwinds the duplex with high 

processivity and degrades both DNA strands (Roman et al. 1992). As RecBCD 

translocates, the RecC subunit can scan for χ sequences (chi- crossover hotspot 

instigator, 5'-GCTGGTGG-3') (Lam et al. 1974). Upon encountering χ, RecC 

binds to the exposed 3' strand and attenuates the complex’s nuclease activity, 

resulting in the generation of 3' ssDNA tails, with χ sequences at their ends 

(Figure 1.6 B). By this action RecBCD expands a break into a gap of over 5Kb 

on average (Taylor et al. 1985; Taylor and Smith 1995; Bianco and 

Kowalczykowski 1997; Handa et al. 1997; Singleton et al. 2004). 

RecBCD can then facilitate loading of RecA onto the single-stranded 

tail, forming a nucleoprotein filament (Figure 1.6 C) (Anderson and 

Kowalczykowski 1997). This filament subsequently acts to promote 

homologous pairing and strand exchange of DNA, during which the ssDNA 

invades an intact sister duplex, displacing one of the DNA strands to generate a 

D-loop (Figure 1.8 D) (Rao and Radding 1993; Anderson and 

Kowalczykowski 1997; Churchill and Kowalczykowski 2000; Galletto et al. 

2006; Spies and Kowalczykowski 2006). D-loops are believed to allow 

priming of DNA replication, via the action of PriA protein (McGlynn et al. 

1997) and DNA synthesis is required to fill in the missing DNA at the break 

site (Figure 1.6 E) (Liu et al. 1999). Expansion of the region paired by RecA 

leads to reciprocal exchange of the DNA and can create a Holliday junction. 

This leads to the formation of a replication fork, associated with a Holliday 

junction (as seen in Figure 1.8). If the second tail is processed in the same 

manner, then instead of the double Holliday junction structure envisaged by 
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Szostack et al (1983) (Figure 1.6 F), two replication forks, each associated with 

a Holliday junction, are established some 5kb or more apart.  

In order to complete the repair process, branch migration and cleavage 

of the Holliday junctions is necessary to separate the synapsed duplexes. These 

reactions are achieved in E. coli by the RuvABC complex. A tetramer of RuvA 

forms a platform on which the Holliday junction can be held in an open square 

planar conformation. This is believed to involve four protrusions at the centre 

of the tetramer, each made up of a pair of acidic residues, which form acidic 

‘pins’ that separate the DNA strands (Parsons et al. 1995; Rafferty et al. 1996). 

RuvB is a hexameric ring helicase that assembles on each of two diametrically 

opposed arms of a Holliday junction, bound by RuvA (Mitchell and West 

1994; Stasiak et al. 1994). Branch migration is ATP dependent and is achieved 

by both RuvB rings pulling DNA through the complex across the channels on 

the surface of  the RuvA tetramer (Tsaneva et al. 1992; Parsons et al. 1995). 

RuvC is proposed to associate directly with RuvAB and the complete RuvABC 

complex has been termed the “resolvasome” (Kuzminov 1993; Mandal et al. 

1993; Whitby et al. 1996; Davies and West 1998; van Gool et al. 1998). RuvC 

is a dimeric, structure specific endonuclease that can scan for its consensus 

sequence (5'-A/TTT↓G/C-3', where ↓ indicates nick site) as the DNA is pulled 

across RuvA. When the sequence is detected, the RuvC dimer nicks opposing 

DNA strands of the junction (Figure 1.6 F) (Bennett et al. 1993; Shah et al. 

1997; Davies and West 1998). Nicking by the resolvase can occur in one of 

two planes, to give either a crossover or a non-crossover event, which should 

occur in the same ratio (Figure 1.6 F) (Davies and West 1998; van Gool et al. 

1999).   

The original evidence that both the branch migration and resolution 

reactions are linked to the same enzyme complex came from genetic studies. 

As mutations in any of the ruv genes gave the same phenotype and mutations 

of any of the three could be suppressed by expression of an alternative 

resolvase, RusA (Mandal et al. 1993). RusA is normally silent, present in E. 

coli on a cryptic prophage, DLP12 (Mandal et al. 1993; Mahdi et al. 1996). 

When expressed, RusA will cleave branched DNA structures, particularly 
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Holliday junctions, although it is less structure specific than RuvC (Sharples et 

al. 1994; Chan et al. 1997; Giraud-Panis and Lilley 1998). However, the ability 

of RusA to suppress ruv mutants depends on the activity of another protein, 

RecG (Mandal et al. 1993). RecG is a highly conserved bacterial helicase, with 

the ability to branch migrate Holliday junctions and other branched DNAs. As 

long as RecG is present, ruv mutants remain recombination proficient, even 

though they are defective in DNA repair suggesting RecG can provide a 

parallel pathway for some of the Ruv proteins functions (Lloyd 1991; Lloyd 

and Sharples 1993a; Lloyd and Sharples 1993c; Sharples et al. 1999; Wen et al. 

2005).  

RecG also appears to have an important role in the processing of stalled 

replication forks, being capable of regressing them to create the ‘chicken foot’ 

structure (Mcglynn 2000; McGlynn and Lloyd 2001; Gregg et al. 2002; Wen et 

al. 2005). A reversed fork could in theory be restarted by nuclease processing 

of the ‘chicken foot’. Alternatively, a recombination-based pathway could 

restore the fork (Figure 1.8). This leads to the generation of a DSB with one 

exposed DNA end (Figure 1.8 A). This must be repaired and replication 

restarted (Figure 1.8 A – E). First, as in DSB repair, the exposed end is 

processed to generate a 3' ssDNA tail, onto which RecA can be loaded 

promoting strand invasion to generate a D-loop (Figure 1.8 B). This structure 

can be used to initiate replication and restore the chromosome.  

In E. coli the initiation of replication at sites other than oriC requires 

the action of PriA. PriA has been known for some time to be involved in 

replication. In vitro it is required for the assembly of the ΦX174 primosome 

(Wickner and Hurwitz 1975; Shlomai and Kornberg 1980). A priA mutant 

shows an array of phenotypes, including replication deficiencies, low viability 

and increased UV and IR sensitivity (Sandler and Marians 2000). Importantly 

it has been shown that PriA can bind and assemble a replisome at D-loop 

structures, by recruitment of the replicative helicase DnaB (Figure 1.8 C and 

D) (McGlynn et al. 1997; Liu and Marians 1999). In E. coli it seems likely that 

the majority of breaks would be processed in this manner. Even if a two-ended 

DSB occurs, the rampant DNA degradation caused by RecBCD would mean 
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that the ends were several kilobases apart and so be processed as if they were 

two separate single-ended breaks (Roman et al. 1992).  

A reliance on recombination proteins to restart replication forks would 

also explain the relatively low viability of recA and recB mutants 

(approximately 50% and 75% viability, respectively) (Capaldo-Kimball and 

Barbour 1971). Mutations in polA and lig mutations, which encode the E. coli 

repair polymerase and DNA ligase respectively (Kornberg and Baker 1992; 

Kuzminov 1995b), prevent the maturation of Okazaki fragments into a 

complete DNA strand. This increases the occurrence of fork collapse and polA 

and lig mutations are synthetically lethal in conjunction with a recA mutation 

(Kuzminov 1995b), suggesting that without recombination, collapsed forks 

cannot be restarted. Since replication forks rarely reach the terminus 

unhindered, fork restart would appear to be a housekeeping function of the 

recombination machinery (Cox et al. 2000; Marians 2000; Sandler and Marians 

2000; Marians 2004). 
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Figure 1.8. Potential pathways for 
the restart of a stalled fork. 

A regressed fork structure (see 
Section 1.3 and Figure 1.5 for details) 
could be processed directly by 
endonucleases to reset the fork or by a 
recombination-mediated pathway. 

A) The recombination pathway
  involves the generation of a
  single-ended DSB.  

B) The break is processed and
  invades a sister duplex, to
  form a D-loop. 

C) This is bound by PriA (dark
  green ellipse), which recruits
  DnaB helicase (orange 
  ellipses) 

D) DnaB allows loading of the
  replisome. 

E) The replisome (green ellipse)
  is reloaded. A resolvase 
 (orange circle), maybe 
  required to break a Holliday

        junction formed. 

 

The repair of a DSB is usually initiated by the processing of the DNA 

ends by RecBCD. In its absence, recombination is barely detectable and cells 

are sensitised to agents that damage DNA. However, suppressor mutations can 

arise that restore almost wild-type levels of recombination and viability to 

cells. These suppressor mutations, termed suppressors of recBC (sbc) 

mutations, are found in two forms, both of which allow recombination to occur 

in a RecBCD-independent manner. The first class, sbcA mutations, occur only 

in E. coli strains carrying the Rac prophage. The prophage encodes two genes, 

recE (encoding exonuclease VIII) and recT, and expression of both is activated 

by sbcA mutations. It is proposed that RecE replaces RecBCD’s nuclease 

activity, while RecT acts in place of RecA to promote strand exchange, as 

RecA loading is reduced in the absence of RecBCD (Kolodner et al. 1994; 

Lloyd and Low 1996). The second class of sbc suppression requires mutations 

in two unlinked genes, one in sbcB, and the second in either sbcC or sbcD. The 
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sbcB mutation affects exonuclease I, while sbcC and sbcD encode the two 

components of the heterodimerc nuclease SbcCD. As these suppressor 

mutations inactivate nucleases, DNA ends persist giving greater opportunity 

for RecA to be loaded (Lloyd and Low 1996). It is thought that in a recBC 

sbcBC background, end processing requires the action of RecQ helicase and 

RecJ nuclease (Kowalczykowski 2000), with loading of RecA facilitated by the 

action of three proteins; RecF, RecO and RecR. In wild-type cells, these 

proteins are responsible for directing RecA loading at ssDNA gaps but the 

RecFOR proteins can displace SSB and load RecA at DNA ends, albeit less 

efficiently than RecBCD (Kushner et al. 1971; Lloyd and Buckman 1985; 

Morimatsu and Kowalczykowski 2003). Once RecA is loaded, recombination 

could proceed as described above. 

1.5 RecN 

The recN gene was identified independently by two laboratories, in 1983. It 

was isolated by Lloyd et al. (1983) as a DNA damage inducible and 

recombination-defective Mud(Apr) insertion mutation in a recB sbcBC strain 

background. Sargentini and Smith (1983) identified a randomly generated 

mutant, sensitive to IR, that they designated radB101. They later mapped 

radB101 to the same location as recN. Since this was the more commonly used 

nomenclature, recN was retained (Sargentini and Smith 1988). Early studies 

suggested that RecN was involved in the repair of DSBs and regulated as part 

of the E. coli SOS response (Lloyd et al. 1983; Sargentini and Smith 1983; 

Picksley et al. 1984a; Picksley et al. 1985a).  

1.5.1 The SOS response 

 Found in many bacteria, the SOS response provides a global response 

to DNA damage and has become the textbook paradigm of a coordinated gene 

response. It leads to the induction of numerous genes involved in the repair of 

DNA lesions, including members of the NER, HR and lesion bypass pathways. 

A DNA damage response in E. coli (reviewed by Witkin (1976)) was first 

described in the 1970s and following studies that suggested a common basis 

for many, apparently disparate observations, giving rise to the theory of a 
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global DNA damage response named the SOS response (Radman 1974; 

Radman 1975). The SOS regulon works via the repression of member genes by 

the action of LexA, which binds to a consensus TACTG(TA)5CAGTA motif, 

often referred to as an SOS box (Berg 1988). These are positioned to interfere 

with RNA polymerase binding or translocation along the DNA when LexA is 

bound. Variations of the SOS box sequences, away from the consensus 

sequence, means that LexA binds to different SOS boxes with differing 

affinities (Lewis et al. 1994). This allows variable basal expression of genes in 

the SOS response and timed induction of genes, after SOS is initiated (Janion 

2001). Activation occurs by de-repression of the genes involved, which is 

achieved by the autolytic cleavage of LexA, in response to a signal mediated 

by the binding of RecA to ssDNA (Higashitani et al. 1995). When damage 

occurs, ssDNA accumulates in the cell, onto which RecA can load to form a 

nucleoprotein filament. DSBs can lead to SOS induction as ssDNA is produced 

during end processing (Rinken and Wackernagel 1992; Kogoma 1997). When 

bound to ssDNA, RecA has been referred to as RecA* and is the signal for 

LexA autolytic cleavage to occur. SOS regulated genes, including LexA and 

RecA, can then be transcribed. Although it has been reported that expression of 

around a thousand genes can be affected during SOS induction (Courcelle et al. 

2001; Khil and Camerini-Otero 2002; Quillardet et al. 2003), only around forty 

are defined as members of the SOS regulon, i.e. are directly regulated by LexA 

(Fernandez De Henestrosa et al. 2000; Courcelle et al. 2001). As DNA damage 

is repaired, the abundance of ssDNA and RecA* decreases, therefore the newly 

synthesised LexA can bind once again to SOS boxes and repress the SOS 

response (Walker 1996). During prolonged damage, factors such as SulA are 

induced, which inhibits cell division until repair can be completed (Trusca et 

al. 1998).  

1.5.2 The role of RecN as an SOS induced DSBR protein 

Induction of the SOS response drastically improves survival of cells 

exposed to UV and IR. For instance, when the SOS response is induced using a 

low dose of IR and time allowed for protein synthesis, cells were noted to be 

much more resistant to subsequent doses of IR (Pollard and Achey 1975; 
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Krasin and Hutchinson 1981). This suggests DSBR is enhanced after SOS 

induction and it is tempting to speculate that this may involve RecN, as it is 

one of the genes which is heavily induced as part of the SOS response. In fact, 

from 2D gel analysis, RecN is one of only four proteins that can be seen to be 

SOS induced, and after RecA, it is the most abundant SOS induced protein 

(Finch et al. 1985a). This was confirmed by studies using a lac reporter fused 

to the recN promoter, showing the gene to be induced at least 8-fold upon SOS 

induction (Picksley et al. 1984b). Furthermore, work by Rostas et al. (1987) 

identified two lexA binding motifs in the recN promoter region. This is 

unusual; only two other SOS response genes, lexA itself and ydjM, have more 

than one LexA binding motif (Little et al. 1981; Fernandez De Henestrosa et 

al. 2000). Sequence analysis of the recN promoter region and codon usage 

supports RecN having a low basal expression, which can be heavily 

upregulated (Rostas et al. 1987). Recently, Erill et al. (2007) analysed the SOS 

response of species across the gamma proteobacteria. This study suggested that 

the SOS response is conserved across species and all the SOS regulons have a 

core set of induced proteins. They showed that recN belonged to this core set 

of genes along with key components of the SOS response, such as recA and 

lexA. The authors suggest that these gene products are integral to the SOS 

response of all the species analysed. They also identified a putative, third lexA 

binding site upstream of recN, although a regulatory role, if any, has yet to be 

determined (Erill et al. 2003; Erill et al. 2007). 

RecN would appear to be a major player in the SOS response and an 

important factor in the repair of DSBs, and this would explain the sensitivity of 

recN mutants to IR (Sargentini and Smith 1983). Exposure to IR causes DNA 

fragmentation, which is far more pronounced in a RecN deficient strain, than in 

wild-type bacteria. It has been suggested that RecN could limit fragmentation 

by aiding repair, or reducing the occurrence, of DSBs (Picksley et al. 1984a). 

When analysed further, RecN deficient strains were shown to be sensitive, not 

only to IR, but also to other DNA damaging agents particularly compounds 

which cause cross-linking, like mitomycin C (Dye and Ahmad 1995) and 

bleomycin, which  causes DSBs (Povirk et al. 1977). A recN mutant is actually 
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as sensitive to bleomycin as recA or recBCD mutants, which are effectively 

incapable of HR. The high sensitivity to bleomycin may represent a variable 

reliance on RecN for DSB repair, depending on the nature of a break (Picksley 

et al. 1984a; Kosa et al. 2004). In E. coli, mutation of recN causes a moderate 

induction of the SOS response. Thus it would seem that in the absence of 

functional RecN, DNA damage accumulates, suggesting that RecN has roles in 

DNA repair, besides its role in the SOS response (Simic et al. 1991; Dunman 

et al. 2000). Strains of E. coli carrying recN mutations also show a slightly 

elevated sensitivity to UV and to the alkylating agent methyl 

methanesulphonate (Sargentini and Smith 1983; Picksley et al. 1984a). Both 

primarily cause single stranded DNA lesions,  although, there is evidence that 

UV can cause low levels of DSBs (Bonura and Smith 1975) and it is possible 

that MMS has a similar effect.  

 Meddows et al. (2005) confirmed a role for RecN in the repair of DSBs 

by using the yeast homing endonuclease I-SceI to generate inducible, site-

specific DSBs. This study showed that RecN had a moderate sensitivity to a 

single DSB, however recombination deficient strains carrying recA and 

recBCD mutations were far more sensitive. It was only when cleavage sites 

were introduced at several chromosomal loci that a recN strain became acutely 

sensitive to I-SceI (Meddows et al. 2005). Analysis of the repaired break sites 

also showed that, in the absence of RecN, deletions around the cleavage site 

were more common and more extensive. This led to the speculation that RecN 

not only has a role in the repair of DSBs, but also in the accuracy of their repair 

(Meddows et al. 2005). It has since been shown that the moderate phenotype of 

recN to a single DSB was at least in part due to the frequency of cleavage of 

the cleavage site used in this study. When a more active cleavage site was 

introduced, recN mutants become incredibly sensitive to I-SceI exposure, with 

survival comparable to recA and recBCD mutants (Grove et al. 2008). 

1.5.3 RecN is involved in numerous recombination processes 

Both the RecBCD and RecFOR complexes can promote recombination, 

therefore RecN could function in either pathway. To determine in which RecN 

functions, the moderate UV sensitivity of a recN mutant was exploited. Genetic 
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studies combining recN mutations with recB and recD mutations, had no 

effect, but when a recN mutation was introduced into a recF background, a 

notable increase in UV sensitivity was observed. This was also the case, 

though the sensitivity was less marked, when recN mutations were combined 

with mutations in another RecFOR pathway gene, recJ. These data all 

suggested RecN was in the RecBCD recombination pathway (Lloyd et al. 

1988; Wang and Smith 1988). Wang and Smith (1988) investigated this 

further, using neutral alkaline sucrose gradients to distinguish between DSBs 

and unrepaired daughter strand gaps, which are normally repaired by the 

RecFOR pathway. As expected for a RecBCD pathway component, RecN was 

important for the repair of UV induced DSBs, but had no effect on the repair of 

daughter strand gaps (Wang and Smith 1988). However, a recN strain that also 

carries both recBCD sbcBC mutations and should therefore be capable of 

recombination, is actually recombination defective, suggesting that in this 

background recombination requires a functional recN gene product (Picksley et 

al. 1984a).  

Peterson and Mount (1993) showed that dam recN, and dam recBC 

sbcBC mutant strains (so only the RecFOR pathway is functional), are viable, 

but a dam recN recBC sbcBC mutant is inviable (Peterson and Mount 1993). 

Additionally, when recD recJ double mutants have a recN mutation introduced 

they show increased UV sensitivity and reduced levels of recombination 

(Lloyd et al. 1988). The conflicting information led to the suggestion that 

perhaps there are three epistatic recombination groups in E. coli; RecF, 

RecBCD and RecN (Lloyd and Buckman 1991). This notion of placing the 

recN gene in its own separate epistatic group is supported by work in              

B. subtilis, where recN forms one of the seven separate epistatic groups 

involved in recombination (Sanchez et al. 2007b).  

RecN is also involved in recombination-based processes like 

conjugation. In a recN mutant DNA transfer is almost completely eliminated 

(Lloyd and Buckman 1995) and it was proposed that RecN was required to 

protect the incoming ssDNA from nucleases. This idea is supported by 

evidence from B. subtilis, which is naturally competent and takes up DNA 
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under certain growth conditions. Kidane and Graumann (2005) showed that 

during periods of competent growth, a RecN-YFP fusion protein formed foci, 

localised to the cell poles, in the same region as proteins associated with uptake 

of DNA. These foci dissipated after DNA uptake. 

 Like many proteins involved in recombination, RecN also appears to 

have a role in DNA replication. Experiments in E. coli, using a non-replicative 

plasmid with an endonuclease cleavage site showed that RecN was crucial for 

propagation of the plasmid. Induction of the endonuclease results in cleavage 

of a small fraction of the plasmid population, which generates a DSB. This can 

be processed and invasion of an intact plasmid generates a D-loop, allowing 

initiation of replication. The requirement for RecN could be eliminated if cells 

were SOS induced (Asai et al. 1994). When a recN mutation was combined 

with a polA mutation, cells showed increased sensitivity to UV and IR, 

suggesting that RecN, like many of the recombination proteins, perhaps has a 

role in stabilising or rebuilding collapsed replication forks (Sargentini and 

Smith 1983). 

1.5.4 The activity of RecN in vitro 

RecN is widely distributed throughout the bacterial kingdom and the 

proteins show a high degree of functional conservation. In Haemophilus 

influenzae the  RecN protein is a key component of this organism’s SOS 

response (Sweetman et al. 2005). In Deinococcous radiodurans and 

Helicobacter pylori, recN mutants demonstrate phenotypes comparable to 

those of E. coli recN mutants, including sensitisation to IR, UV and  

mitomycin C exposure (Funayama et al. 1999; Wang and Maier 2008). H. 

pylori recN mutants also show reduced virulence (Wang and Maier 2008).  

Kidane and Graumann (2005) were the first to publish details of an in 

vitro activity for a RecN protein, showing that a His-tagged B. subtilis RecN 

protein (BsRecN) could bind ssDNA. This supported suggestions that RecN 

may function to protect ssDNA during processes such as conjugation and 

competence (Lloyd and Buckman 1995; Kidane and Graumann 2005).            

B. subtilis RecN (BsRecN) shares a high degree of homology with its E. coli 

counterpart. It is LexA regulated and mutants are sensitive to agents like 
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mitomycin C and show reduced levels of recombination (Van Hoy and Hoch 

1990; Alonso et al. 1993). The binding of BsRecN to ssDNA was reported to 

be ATP independent (Sanchez and Alonso 2005). However, in the presence of 

ssDNA (preferentially linear ssDNA), RecN showed increased ATPase 

activity, suggesting that ATP does affect DNA binding. If Mg2+ ions and either 

ADP or ATP were added to the reactions, BsRecN formed higher order 

structures with ssDNA, which were broken down by the addition of RecA. 

Their formation is also inhibited by the presence of SSB (Sanchez and Alonso 

2005). This was supported by AFM binding studies that showed large 

accumulations of ssDNA-BsRecN protein complexes in vitro, which could also 

be disassembled by RecA (Sanchez et al. 2007a).  

The year before the Kidane and Graumann (2005) study, wild-type 

BsRecN was partially purified and shown to run as an octamer on gel filtration, 

with smaller, dimeric and tetrameric species detectable by glycerol gradient 

centrifugation (Kidane et al. 2004). Higher order RecN complexes could even 

be detected in vivo, after DSBs had been induced. These structures were 

postulated to represent large nucleoprotein complexes that formed in response 

to DSBs (Kidane et al. 2004). The same study made use of fluorescently 

tagged B. subtilis RecN, RecF and RecO homologs and demonstrated that they 

were all recruited to the nucleoid, in an sequential manner, after DNA damage, 

forming one or two foci per cell. RecN was the first protein recruited to the 

nucleoid, and if absent the RecF and RecO foci did not form. It was therefore 

suggested that perhaps RecN could bind and ‘flag’ a DSB, aiding in the 

recruitment of subsequent repair proteins (Kidane et al. 2004). BsRecN also 

formed nucleoid-associated foci in the absence of SOS induction, suggesting 

the basally expressed RecN has a role perhaps aiding repair of breaks that arise 

due to replication fork collapse. Binding to them as it does other DSBs (Kidane 

et al. 2004). Consequently, perhaps RecN has a role similar to that of the 

eukaryotic MR(N/X) complexes (Kidane et al. 2004; Sanchez et al. 2007a). 

These complexes are believed to be early sensors of a DSB, recruiting other 

repair proteins and having active roles in the repair of a DSB (Usui et al. 1998; 

Mirzoeva and Petrini 2001; Usui et al. 2001; McGowan and Russell 2004). 
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Similarly, E. coli RecN was shown to be recruited to the nucleoid, after DNA 

damage (Nagashima et al. 2006; Moore Unpublished data). However, the 

tagged E. coli RecN also formed large cytoplasmic protein aggregates, which 

dissipated after the damage was repaired (Nagashima et al. 2006). 

If RecN does act as a flag of DSBs it would be expected that it would 

be one of the first proteins recruited to a break site, prior to end-processing. In 

B. subtilis this appears to be true; a deletion of recJ and addAB (the recBCD 

homolog) prevents end processing. Yet, BsRecN-YFP foci still formed on the 

nucleoid in this strain and were actually more common (Sanchez et al. 2006), 

leading the authors to propose that RecN binds to a DSB, which cannot be 

repaired in this background and therefore RecN remains bound to the 

unprocessed breaks, thus explaining the multiple foci. However, contrary to 

this hypothesis is BsRecN’s in vitro activity, where it has been shown to bind 

ssDNA, preferentially ssDNA with a 3'-OH group, which would only present 

after end processing of a break (Kooistra et al. 1993; Sharples and Lloyd 1993; 

Sanchez and Alonso 2005). The following questions must therefore be 

resolved: if BsRecN binds ssDNA, which is only present at a break site after 

end-processing rather than duplex DNA, how then does RecN bind and flag a 

break prior to end processing? Furthermore, what is the reason for the 

differences in the observed localisation of E. coli and B. subtilis RecN (Kidane 

et al. 2004; Nagashima et al. 2006). 

The inherent insolubility of E. coli RecN has proven problematic for 

biochemical studies of this protein (Meddows 2002). However, E. coli RecN 

has been demonstrated to be a substrate of the ClpXP protease (Neher et al. 

2006), which is composed of two subunits and degrades proteins in an ATP-

dependent manner (Kim and Kim 2005). ClpXP has numerous targets 

including a large number of SOS induced proteins, such as UvrA, UmuD, 

LexA cleavage fragments (formed when LexA undergoes autolytic cleavage) 

and RecN (Neher et al. 2003; Flynn et al. 2004; Neher et al. 2006). RecN has a 

seven amino acid ClpXP tag at its C-terminus, which targets RecN to ClpXP. 

Due to the activity of ClpXP, RecN has a half-life of approximately 8 minutes. 

RecN is heavily induced, within 20 minutes of the SOS response being 
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initiated, but is completely degraded within 160 minutes, which corresponds to 

the appearance and disappearance of GFP-foci in the nucleoid and the large 

fluorescent protein aggregates seen in the cytoplasm (Nagashima et al. 2006; 

Neher et al. 2006). Mutation of the ClpXP-tag on RecN prevents targeting to 

ClpXP and drastically increases the half-life of RecN molecules. Consequently, 

the protein aggregates remain in the cytoplasm and cells show an increased 

sensitivity to DNA damage (Nagashima et al. 2006). A similar DNA damage 

sensitisation was observed when wild-type E. coli RecN was overexpressed 

from a plasmid (Meddows 2002). It is plausible that the accumulation of RecN, 

perhaps as cytoplasmic aggregates, is toxic to the cell.  

RecN has been compared to the MR(N/X) complex of eukaryotes, 

functioning as a DSB sensor (Sanchez et al. 2007a). One of the key 

components of the MR(N/X) complex is Rad50, a member of the structural 

maintenance of chromosome (SMC) protein family (Hopfner et al. 2000). 

Sequence analysis of E. coli RecN, Pyrococcus furiosus Rad50 and SbcC, an 

E. coli SMC family member, revealed that they are all structurally related 

(Sharples and Leach 1995), suggesting that RecN is also a member of this 

protein family and could share their properties (Gorbalenya and Koonin 1990; 

Sharples and Leach 1995; Meddows 2002).  

1.5.5 RecN is an SMC like protein 

 SMC proteins are nucleoid-associated ATPases found in most 

organisms. They have diverse roles in DNA metabolism including DNA repair, 

chromosome cohesion and chromosome condensation (Hirano 2002). SMC 

proteins have a distinctive structure (Figure 1.9); a long coiled-coil region 

separates their two globular domains, one at each terminus of the protein. The 

coiled-coil region can fold back on itself, so as to bring the globular domains 

together. The folding is facilitated by a central flexible-hinge domain 

(Graumann 2001; Haering et al. 2002). The globular N-terminal and C-

terminal domains possess Walker A and B box motifs, respectively. When 

brought together, these two motifs form a functional nucleotide binding and 

hydrolysis pocket (Walker et al. 1982; Hopfner et al. 2000).  
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A more in-depth sequence analysis was performed by Meddows (2002), 

who compared RecN once again to Rad50 of Pyrococcus furiosus and the 

SbcC of E. coli. Despite the much smaller size of RecN (E. coli RecN is 553 

amino acids long, while P. furiosus Rad50 is 1313 amino acids and SbcC is 

1048 amino acids), there was a high degree of homology, particularly in the 

head domains around the Walker A and B boxes. However, the author noted 

that a glutamate residue, postulated to be essential for the binding of Mg2+, 

which is thought to be required for the hydrolysis of ATP (Hopfner et al. 

2000), was not present in RecN. 

 

Figure 1.9. Generalised structure of 
an SMC protein.  

The two globular domains at the N- and 
C-terminus, (dark green and dark red 
respectively) are separated by a long 
coiled-coil region, these are brought 
together via folding of the molecule at 
the hinge domain (orange region). The 
Walker A and B boxes, which make up 
the nucleotide-binding pocket, are 
brought together by the folding of the 
molecule. 

 

Eukaryotes possess multiple SMC proteins and at least six, named 

Smc1 – 6 respectively, are essential. They form heterodimers, through 

interactions at their hinge domains (Haering et al. 2002; Hirano and Hirano 

2002), and are core components of three DNA-associated SMC-containing 

complexes, namely cohesin, condensin and the Smc5 – 6 complex (Figure 

1.10) (Hirano 2002; Losada and Hirano 2005). These all have roles in 

chromosome dynamics and the repair of damaged DNA (Hirano 2002; 

Lehmann 2005; Strom and Sjogren 2007).  

Cohesin is responsible for the tethering together of sister chromatids 

produced during DNA replication (Figure 1.10) (Nasmyth and Haering 2005). 

This tethering, referred to as sister chromatid cohesion, is essential to allow the 

correct segregation of chromosomes during mitosis (Tanaka et al. 2000). 

Mutations of the cohesin complex components leads to missegregation of 
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chromosomes and have also been linked to cancer and other human diseases 

(Sjogren and Nasmyth 2001; Tonkin et al. 2004; Wang et al. 2004). It is 

proposed that cohesin forms a ring-like structure (see Figure 1.10) with its two, 

non-SMC components linking the SMC protein heads. This structure could 

encircle DNA, trapping it inside the complex and potentially hold the sister 

chromatids together (Ciosk et al. 2000; Haering et al. 2002; Gruber et al. 2003; 

Ivanov and Nasmyth 2005; Ivanov and Nasmyth 2007).  These rings are 

incredibly stable and loading is facilitated by opening of the ring  at the SMC 

hinge, in response to ATP hydrolysis in the head domains (Hirano et al. 2001; 

Arumugam et al. 2003; Gruber et al. 2006; Hirano and Hirano 2006; Shintomi 

and Hirano 2007). This ATPase activity is stimulated by the non-SMC subunits 

(Arumugam et al. 2006). Although the entrapment model is not the only model 

to explain SMC-DNA interactions, it is the most widely accepted and the basis 

for our understanding of how SMC complexes interact with DNA (Hirano 

2002; Huang et al. 2005; Guacci 2007). Loss of sister chromatid cohesion 

actually requires enzymatic cleavage of the complex, which allows separation 

of chromosomes at anaphase (Tomonaga et al. 2000; Uhlmann et al. 2000). 

 

 

Figure 1.10. Proposed model structures of the known SMC protein complexes.  

Cohesin, condensin and Smc5 – 6 are discussed in detail in the text. Each forms a 
heterodimer, with the heads bridged by a non-SMC protein. The Smc5 – 6 complex is 
unique in that the head is bridged by Nse4, while a sub-complex of Nse5/6 can bridge 
the heterodimer within the coiled-coil region. The MRN complex acts to flag DSBs, in 
some organism Xrs2 replaces Nbs1. MukBEF are the E. coli SMC structural homolog, 
showing functional homology to condensin. 

 

Condensin (Figure 1.10) forms a complex much like cohesin. It is 

responsible for compacting chromosomes (Hirano 2002; Hirano 2005a), which 

is important for their segregation. The complex also has roles in transcription, 
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DNA repair, and in vertebrates it interacts with components of the BER 

pathway (Figure 1.1) (Chen et al. 2004; Blank et al. 2006; Heale et al. 2006). 

The third complex, Smc5 – 6, is primarily involved in DNA repair, but also the 

segregation of repetitive regions of DNA (Torres-Rosell et al. 2005). Initially 

identified in S. pombe as mutations that were IR and UV sensitive (Nasim and 

Smith 1975; Phipps et al. 1985), the Smc5 and Smc6 proteins were 

subsequently shown to be SMC proteins and part of a third, essential 

eukaryotic SMC complex (Fousteri and Lehmann 2000; Lehmann 2005; 

Sergeant et al. 2005). Interestingly, not all of the non-SMC components of the 

complex are essential, at least in S. pombe, although they are in S. cerevisiae. 

The Nse subunits of the complex also appear to interact in a novel manner, 

with several interacting with the SMC protein within the coiled-coil region 

(Figure 1.10) (Fousteri and Lehmann 2000; Sergeant et al. 2005; Palecek et al. 

2006). These subunits are also unusual as they have distinct biochemical 

activities and are not just structural components of the complex (Andrews et al. 

2005; Potts and Yu 2005; Zhao and Blobel 2005; Potts and Yu 2007).  

Interestingly, both cohesin and the Smc5 – 6 complex have been 

implicated in DNA segregation, HR, replication and DNA repair, particularly 

of DSBs. Mutations in either complex cause mild UV sensitivity and a more 

pronounced sensitivity to IR (Nasim and Smith 1975; Phipps et al. 1985; 

Birkenbihl and Subramani 1992). This would suggest a defect with the 

processing of DSBs and there is a surfeit of evidence suggesting both 

complexes are involved in the repair of DSBs by HR (Mengiste et al. 1999; 

Skibbens et al. 1999; Sjogren and Nasmyth 2001; Morishita et al. 2002; 

Lehmann 2005; Strom and Sjogren 2007). Both complexes also show 

differential recruitment to damaged chromosomes and there is evidence that 

they can be recruited to break sites in an Mre11-dependent manner (Kim et al. 

2002a; Strom et al. 2004; Unal et al. 2004; De Piccoli et al. 2006; Lindroos et 

al. 2006; Potts et al. 2006). Mre11 is part of the MR(N/X) DSB sensor 

complex and also contains another SMC protein, Rad50 (Figure 1.10). Exactly 

how these two complexes are involved in HR is unclear, but they seem to be 

very important. In their absence, chromosomal crossovers either do not occur 
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or occur abnormally (Klein et al. 1999; Mengiste et al. 1999; Buonomo et al. 

2000; Lehmann 2005; Strom and Sjogren 2007). It has been speculated that the 

cohesin and Smc5 – 6 complex could aid HR by holding homologous sister 

chromatids in close proximity improving strand exchange (Sjogren and 

Nasmyth 2001).  

 These SMC complexes appear to have a lot in common with RecN, 

besides their apparent structural similarities (Sharples and Leach 1995; 

Meddows 2002). They are also involved in HR, particularly the repair of DSBs 

and probably the maintenance of replication forks. There are known bacterial 

SMC proteins, which share structural and functional homology with those 

discussed. E. coli MukBEF proteins form a complex with structural similarity 

to these SMC complexes (Figure 1.10) (Niki et al. 1992; Bartosik and Jagura-

Burdzy 2005). Although, the role of MukBEF remains contentious as it has 

been suggested to facilitate both chromosome condensation (Ohsumi et al. 

2001), and has also been proposed to function akin to cohesin (Sunako et al. 

2001). However, it’s essential role is apparent from the phenotype of a mukB 

mutant, in which chromosomes fail to partition correctly (Niki et al. 1992).  

Known SMC homologs, with apparent roles in chromosome segregation also 

exist in Thermatoga maritima and B. subtilis (Hiraga 2000; Lowe et al. 2001). 

RecN has also been compared to the SMC containing MR(N/X) complex 

(Sanchez et al. 2007a). Although, the Rad50 component shares homology with 

another E. coli protein, SbcC. Many functions have been assigned to Rad50 

containing complexes (reviewed in Haber 1998a) and the SbcCD complex also 

appears to have  numerous cellular roles.  

It appears that E. coli cells possess proteins that can fulfil all the 

potential roles that RecN has been implicated in. However, unlike the other 

SMC homologs, RecN has one key distinguishing feature, being a member of 

the SOS regulon. This suggests that it is only required during extreme 

circumstances, perhaps functioning like cohesin that can induce genome wide 

sister chromatid cohesion in response to DNA damage (Kim et al. 2002b; 

Strom and Sjogren 2005). Despite this it does seem likely that RecN has some 
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role in the day to day maintenance of the cell, as a recN mutant is mildly SOS 

induced in the absence of exogenous DNA damage (Dunman et al. 2000). 

1.6 Summary 

Damage to DNA is probably the major threat to an organism’s survival and is 

unavoidable, often caused by endogenously generated agents. A cell must 

therefore either tolerate or repair damaged DNA. A DSB is one of the most 

genotoxic lesions that can occur, it inhibits replication and due to its 

recombinogenic nature causes genomic instability. Repair of a DSB is 

therefore essential. 

 RecN is one of several bacterial proteins implicated in the repair of 

DSBs and more generally in HR. The role RecN fulfils may depend on the 

level of expression, requiring high levels of RecN to repair chronic damage to 

the genome, while basal expression is adequate to support HR processes, like 

conjugation, competence and perhaps the processing of collapsed replication 

forks. In the absence of RecN, lesions cannot be correctly processed and this 

leads to chronic SOS induction, which in turn leads to mutagenesis and 

genomic instability (Higashitani et al. 1995; Mukherjee et al. 1998). Therefore, 

by aiding repair and limiting the duration of the SOS response, RecN helps 

ensure genomic stability and cell survival (Savory 2007). Studies of RecN have 

suggested that it may have a dual role in the DSB repair pathways, acting 

before end processing, as a DSB sensor, and after end processing, when it 

could bind to the ssDNA present. However, neither role has been confirmed 

and biochemical data on RecN remains incomplete 

RecN shows structural homology to SMC proteins (Sharples and Leach 

1995), a diverse family of proteins with roles in DNA metabolism, including 

chromatid segregation, DNA repair, and HR (Hirano 1999). Loss of these SMC 

proteins is usually lethal and mutations that are viable cause gross 

chromosomal abnormalities and severe defects in chromosome segregation 

(Hirano 2005b). This contrasts with what we know about RecN; it is not 

essential and during normal growth, the absence of RecN has an insignificant 

effect on a cell. It is only after DNA damage occurs that the deleterious nature 
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of RecN deficiency becomes apparent. Cells lacking RecN are extremely 

sensitive to DNA lesions, such as DSBs, which require HR to facilitate repair. 

The major importance, yet non-essential role, of RecN to HR makes it rather 

unique. Perhaps RecN, which is heavily SOS induced, could provide cohesion 

of sister chromatids to facilitate repair, akin to what is seen with eukaryotic 

cohesin after DNA becomes damaged. Further study of RecN may improve our 

understanding of both HR and SMC proteins. 

 In this thesis, numerous approaches were taken to unravel the mystery 

that still surrounds RecN’s function in vivo. This includes a continuation of the 

genetic studies, making use of a synthetic lethality assay to isolate any 

mutations that are lethal in conjunction with a recN mutation. Although no 

such mutants were isolated, this study did prove fruitful, identifying 

interactions between DSB repair pathways and the regulation of oxidative 

stress within a cell. The second approach taken was based on biochemical 

analysis. Although E. coli RecN proved non-amenable to purification, I will 

report details on the isolation and purification of RecN proteins from several 

bacterial species, including one homolog that can function in E. coli, fully 

complementing a deletion of the recN gene.  These purified proteins have been 

shown to have in vitro activities, including ATPase and DNA binding 

properties, and their potential to provide structural data was assessed, including 

attempts to crystallise the proteins and identification of discrete protein 

complexes under an electron microscope. This provides new avenues for the 

study of RecN, and the ubiquitous SMC proteins. 
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Chapter 2 
Materials and methods 

2.1 Materials 

2.1.1 Chemicals and other Materials  

The majority of the analytical reagent grade chemicals used in this study were 

purchased from Sigma, Fisher, Fluka and Melford. Agarose was purchased 

from Flowgen, acrylamide stock solution (acrylamide/bis-acrylamide 29:1) 

from Severn Biotech Ltd., and scintillation fluid from Packard. Exceptions are 

detailed in the relevant sections. The water used in this study was deionised 

and filtered with a USF ELGA Option 7/15 water purification unit. Where 

necessary, it was sterilised by autoclaving at 121°C for 15min. 

2.1.2 Radiochemicals 

[α32P] ATP was purchased from GE Healthcare at 5000Ci/mmol. 
 
2.1.3 Enzymes and other Proteins 

All of the restriction endonucleases were purchased from New England 

Biolabs (NEB). As were T4 polynucleotide kinase, Calf Intestinal Alkaline 

Phosphatase (CIP) and T4 DNA ligase. Red Hot Taq DNA polymerase was 

obtained from Abgene, while Dynazyme EXT DNA polymerase and Phusion 

DNA polymerase were from NEB (FINNZYMES). Unless otherwise stated, all 

the enzymes were used with the buffers supplied in accordance with the 

supplier’s recommendations. NTPs (Invitrogen) for PCR were diluted to a final 

concentration of 10mM (2.5mM of each NTP) using sterile distilled water and. 

ATP used in assays was made at 100mM stock concentration in dH2O and 

adjusted to pH7.0. Both were stored in small aliquots at -20°C 

 
2.1.4 Buffers and solutions 

All the concentrations given are for final working concentration, stock 

concentrations, when made, are detailed. 
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DNA buffers 

• Ficoll loading buffer – 3% (w/v) Ficoll 400, 0.05% (w/v) bromphenol 

blue/xylene cyanol (stock solution, 5x). 

• GBB (Gel Binding Buffer) – 50mM Tris-HCl pH8.0, 5mM EDTA, 

1mM DTT, 100μg/ml BSA, 6% (v/v) glycerol (stock solution, 5x). 

• HB (Helicase Buffer) – 20mM Tris-HCL pH7.5, 2mM DTT, 100μg/ml 

BSA. 

• LIS – 6.7mM Tris-HCl pH8.0, 3.3mM sodium acetate, 2mM EDTA 

pH8.0 (stock solution, 10x). 

• SSC – 150mM NaCl, 15mM sodium citrate, pH7.0 (stock solution, 

20x). 

• SSPE – 150mM NaCl, 3.6mM sodium dihydrogen orthophosphate 

monohydrate, 1mM EDTA (stock solution, 20x). 

• TAE – 40mM Tris-acetate, 1mM EDTA (stock solution, 50x). 

• TE – 10mM Tris-HCl pH7.5, 1mM EDTA. 

• TBE – 90mM Tris-borate, 2mM EDTA (stock solution, 10x). 

• TNE – 10mM Tris-HCl pH8.0, 10mM NaCl, 10mM EDTA. 

Protein buffers 

• Buffer A (standard low salt buffer) – 50mM Tris-HCl pH7.5, 1mM 

EDTA, 1mM DTT. 

• Buffer B (standard high salt buffer) – As above plus 1M NaCl. 

• Gel Filtration buffer – 50mM Tris-HCl pH7.5, 150mM NaCl. 

• Lysis buffer – 50mM Tris-HCl, pH7.5, 150mM NaCl. 

• SDS PAGE running buffer – 0.1% (w/v) SDS, 1.44% (w/v) glycine, 

0.3% (w/v) Trizma base (stock solution, 10x). 

• SDS PAGE loading buffer – 50mM Tris-HCl pH6.8, 100mM DTT, 2% 

(w/v) SDS, 0.1% (w/v) bromphenol blue, 10% (v/v) glycerol (stock 

solution, 5x). 

• Western transfer buffer – 25mM Tris-HCl pH8, 192mM glycine, 20% 

(v/v) methanol. 

Miscellaneous Buffers 

• MC buffer – 100mM MgSO4, 5mM CaCl2 
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• Lambda buffer – 6mM Tris-HCl pH7.2, 10mM MgSO4, 0.005% (w/v) 

gelatine. 

• TFB-1 - 100mM  KCl, 50mM MnCl2, 30mM KAc, 10mM CaCl2, 15% 

glycerol (v/v). 

• TFB-2 – 10mM Mops, 10mM KCl, 75mM CaCl2, 15% glycerol (v/v). 

• CTAB Extraction solution – 100mM Tris-HCl pH7.5, 25mM EDTA, 

2M NaCl. 

• CTAB dilution solution – 50mM Tris-HCl pH7.5, 10mM EDTA, 1% 

Cetyl triethylammonium bromide (CTAB). 

2.1.5 Growth media 

Yeast extract, tryptone, bactoagar and MacConkey agar base were all obtained 

from Difco. Liquid and solid media used for the growth of E. coli strains were 

prepared according to the standard recipes below. Growth media were 

sterilised by autoclaving at 121°C for 15min. 

 
• Luria and Burrows (LB) Broth and Agar – 1% (w/v) tryptone, 0.5% 

(w/v) yeast extract, 0.05% (w/v) NaCl and 0.008% (w/v) NaOH, pH7.5. 
LB broth was supplemented with 1.5% (w/v) bactoagar to make LB 
agar. 

• Luria-Bertani Broth – 1% (w/v) typtone, 0.5% (w/v) yeast extract, 0.5% 
(w/v) NaCl and 0.008% (w/v) NaOH, pH7.5. 

• Mu Broth and Agar – 1% (w/v) typtone, 0.5% (w/v) yeast extract, 1% 
(w/v) NaCl and 0.008% NaOH, pH7.5. Mu broth was supplemented 
with 1% (w/v) bactoagar to make Mu agar. Overlays were made by 
supplementing Mu broth with bactoagar to either 0.4% (w/v) or 0.6% 
(w/v). 

• Minimal 56/2 Salts – 78mM KH2PO4, 98mM NaHPO, 0.01% 
MgSO4·7H2O (w/v), 0.1% (NH4)2SO4 (w/v), 0.0005% Ca(NO3)2 (w/v) 
and 0.000025% FeSO4·7H2O (w/v). 

• Minimal salts agar medium – made using double strength 56/2 salts 
media supplemented with glucose to 3.3mg/ml and thiamine to 1μg/ml 
for basic salts agar media. Nucleotides were added at 5-10μg/ml except 
for thymine, which was at 100μg/ml. Amino acids were added to a 
concentration of 50–80μg/ml as required for growth of auxotrophic 
strains. This was mixed with an equal volume of water with 3% (w/v) 
bactoagar to give 1.5% agar plates. 
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• P1 Agar – LB agar supplemented with 5mM CaCl2 and 0.13% (w/v) 
glucose (3 ml 0.5 M CaCl2/l, 2ml 20% glucose/l) 

• SOB broth – 2% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.05% (w/v) 
NaCl, 10ml 1M MgCl2 and 10ml 1M MgSO4/litre of media. 

• SOC broth – 2% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.05% (w/v) 
NaCl and 20mM glucose. 

• Tryptone (TB) – 1% (w/v) tryptone, 0.5% (w/v) NaCl, the media was 
supplemented with 0.7% (w/v) bactoagar to produce TB overlay agar 
and 1% bactoagar to make TB agar. 

• YT media – 1.6% (w/v) tryptone, 1% (w/v) yeast extract, 0.5% (w/v) 
NaCl 

2.1.6 Antibiotics 

Antibiotic stock solution were made in sterile distilled water and stored at 4°C, 

except for tetracycline and apramycin, which were stored at -20°C. All the 

antibiotics were obtained from Sigma, except for chloramphenicol, which was 

sourced from Melford. Occasionally, when large quantities of ampicillin were 

needed, as during fermenter runs, the antibiotic was dissolved in ethanol to 

minimise handling volume. Ampicillin (amp), apramycin (apra), carbenicillin 

(cb), kanamycin (kan) and trimethoprim (dhfr) were used at final 

concentrations of 40μg/ml, while chloramphenicol (cat) and tetracycline (tc) 

were used at final concentrations of 10μg/ml 

2.1.7 Bacterial strains, bacteriophages and plasmids 

The allele designations follow standard nomenclature, except where no 

standards apply when conventions established in the Lloyd laboratory and 

elsewhere are applied (Table 2.1). Bacterial strains used in this study are listed 

in Table 2.2 (commercial and public domain) and Table 2.3 (laboratory 

strains). All genotypes are derived from MG1655 unless otherwise stated.  
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Table 2.1. Description of alleles used in this study 

Allele description 

ΔlacZYA::FRT 

The lac operon genes are deleted and replaced with 
kanamycin gene flanked by FRT repeats. These repeats 
allow removal of the kan gene but the repeats themselves 
remain in the genome. 

ΔattB::PBAD::I-SceI  

I-SceI expression cassette I-SceI expression is regulated 
by the arabinose inducible promoter PBAD and this 
promoter and I-SceI gene construct is inserted into the 
chromosome at the attB loci (Meddows et al., 2004). 

ΔlacZ::I-SceICCS4 
I-SceI cleavage site inserted into the chromosome at the 
lacZ loci. The site is linked to a chloramphenicol 
resistance gene (Grove et al. 2008).  

ΔrecN::Hi-recN-kan 

E. coli chromosomal construct where the E. coli recN 
genes coding sequence are deleted and replaced with the 
coding sequence of H. influenzae recN strain Rd KW20 
(genomic DNA was kindly provided by Dr. G. Thomas, 
University of York). The E. coli recN promoter is left in 
place ensuring the gene is regulated, as is the native gene. 
Immediately 3' of the new coding sequence is a kan 
resistance gene as a marker.  (For construction see 
Chapter 4).  

ΔrecN::Aq-recN-kan 

As above except the E. coli recN is replaced by the 
coding sequence of the recN gene of A. aeolicus (Chapter 
4). A. aeolicus recN was cloned from pTRM129 
(Meddows, 2002) 

ΔrecN::Bf-recN-kan 

As above except the E. coli recN is replaced by the 
coding sequence of the recN gene of B. fragilis recN 
(Chapter 4). Bacteriodes fragilis strain VPI2553 genomic 
DNA was acquired from the ATCC 

ΔrecN::recNK35A-kan 

As the above recN gene deletions, except the coding 
sequence of E. coli recN is replaced by the coding 
sequence of E. coli recN encoding a mutated version of 
the protein with the lysine residue at position 35 mutated 
to an alanine (Chapter 6). 
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ΔrecN::Hi-recNK35A-kan 

As above, but in this case it is a mutated version of the H. 
influenzae recN encoding the K35A substitution inserted 
into the chromosome to replace the E. coli recN coding 
sequence (Chapter 6). 

ahpC::kan 

This study. Mini Tn10 insertion carrying a kanamycin 
resistance gene inserted  98 base pairs from the start of 
the ahpC genes coding sequence. Generated during 
mutagenesis of strain AM1581 using the EZ::TN <KAN-
2> Tnp Transposome kitTM (Chapter 2.2.7 and Chapter 3, 
strain SW1005)  

ΔoxyR::apra 

This study. A full deletion of the oxyR gene coding 
sequence with an apramycin resistance cassette inserted 
in its place, generated using the method described by 
Datsenko and Wanner (2000). Using primers Oapr-1 and 
Oapr-2 (Table 2.6) to clone by PCR an apramycin 
resistance gene flanked by homology to the oxyR gene 
(SW1039). 

 

Table 2.2. Commercial and public E. coli strains used in this study. 

Strain Relevant genotype Source or derivation 

MG1655 F-  λ-  rph-1 Bachmann (1996) 

DH5α 
F' endA1 hsdR17 (rK-mk) supE44 thi-1 
recA1 gyrA (Nal) relA1 ΔlacZYA-argF 
U169 deoR (Φ80 lac (ΔlacZ) M15) 

Raleigh et al (1989) 

BL21 
(DE3) 

F- ompT hsdS dcm lon gal (r- m- E. coli B 
strain) with DE3 a λ prophage carrying the 
T7 RNA polymerase. 

Studier and Moffat 
(1986) 

W3110 IN (rrnD – rrnE)1 Bachmann (1996) 

TB28 ΔlacZYA::FRT 
Bernhardt and de Boer 
(2003) 

 

Table 2.3. Laboratory strains of E. coli used in this study 

Strain Relevant genotype Source or derivation 

AM1581 ΔlacZYA::FRT recB268::Tn10, carrying 
pAM375 (recB+ lacZYA+) 

Laboratory  strain 

DIM435 ΔlacZYA::FRT ΔrecN266 tyrA::Tn10 Laboratory  strain 

JIG509 ΔattB::PBAD::I-SceI ΔlacZ::I-SceICCS4 Grove et al (2008) 

JIG619 ΔrecN::kan Laboratory  strain 
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JIG623 BL21(DE3) ΔrecN::kan, carrying pLysS  Grove et al (2008) 

JIG625 ΔrecN::dhfr Grove et al (2008) 

JIG628 
ΔattB::PBAD::I-SceI ΔlacZ::I-SceICCS4 
ΔrecN::dhfr Laboratory  strain 

JIG645 ΔrecN::Hi-recN-kan Laboratory  strain 

JIG646 
ΔattB::PBAD::I-SceI ΔlacZ::I-SceICCS4 
ΔrecN::Hi-recN-kan Laboratory  strain 

JIG652 ΔrecN::Aq-recN-kan Laboratory  strain 

JIG653 
ΔattB::PBAD::I-SceI ΔlacZ::I-SceICCS4 
ΔrecN::Aq-recN-kan Laboratory  strain 

JIG655 ΔrecN::Bf-recN-kan Laboratory  strain 

JIG656 
ΔattB::PBAD::I-SceI ΔlacZ::I-SceICCS4 
ΔrecN::Bf-recN-kan Laboratory  strain 

JIG685 ΔrecN::Hi-recNK35A-kan Laboratory  strain 

JIG723 
ΔattB::PBAD::I-SceI ΔlacZ::I-SceICCS4 
ΔrecN::Hi-recNK35A-kan Laboratory  strain 

JIG725 ΔrecN::recNK35A-kan Laboratory  strain 

JIG726 
ΔattB::PBAD::I-SceI ΔlacZ::I-SceICCS4 
ΔrecN::recNK35A-kan Laboratory  strain 

JJ1017 
ΔlacZYA::FRT ΔrecG::cat, carrying pJJ100 
(recG+, lacZYA+) Laboratory  strain 

N1710 
F- supF supE hsdR galK trpR metB1 lacY 
tonA Laboratory  strain 

N4279 recA269::Tn10 Laboratory  strain 

N5747 
ΔlacZYA::FRT ΔruvC::cat, carrying 
pAM372 (ruvC+ lacZYA+) Laboratory  strain 

N5988 
ΔlacZYA::FRT recB270::kan, carrying 
pAM375 (recB+ lacZYA+) Laboratory  strain 

N6121 
ΔlacZYA::FRT recA269::Tn10, carrying 
pAM383 (recA+ lacZYA+) Laboratory  strain 

N6909 Δrep::dhfr Laboratory  strain 

SW1005 
ΔlacZYA::FRT recB268::Tn10 ahpC::kan, 
carrying pAM375 (recB+ lacZYA+) 

ahpC mutant 
isolated (Chapter 3) 
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SW1018 ahpC::kan 
 P1.SW1005 × 
MG1655 to kan 

SW1019 
ΔlacZYA::FRT ΔrecN266 tyrA::Tn10 
ahpC::kan, carrying pSW101 (recN+ 
lacZYA+) 

P1.SW1018 × 
SW1054 to kan 

SW1020 ΔlacZYA::FRT ahpC::kan 
P1.SW1018 × TB28 

to kan 

SW1030 ΔlacZYA::FRT recB268::Tn10 ahpC::kan, 
carrying pAM375( recB+ lacZYA+) 

P1.SW1018 × 
AM1581 to kan 

SW1039 ΔoxyR::apra 
Deletion of the oxyR 
gene (Table 2.1) 

SW1040 ΔlacZYA::FRT ΔoxyR::apra 
P1.SW1040 × TB28 
to apra 

SW1041 
ΔlacZYA::FRT ΔrecN266, tyrA::Tn10 
ΔoxyR::apra, carrying pSW101 (recN+, 
lacZYA+) 

P1.SW1040 × 
SW1054 to apra 

SW1042 
ΔlacZYA::FRT ΔrecN266 tyrA::Tn10 
ΔoxyR::apra ahpC::kan, carrying pSW101 
(recN+ lacZYA+) 

P1.SW1040 × 
SW1019 to apra 

SW1054 ΔlacZYA::FRT ΔrecN266 tyrA::Tn10, 
carrying pSW101 (recN+ lacZYA+) 

Transformation of 
DIM435 with 
pSW101. 

SW1097 ΔlacZYA::FRT recB270::kan ΔoxyR::apra, 
carrying pAM375 (recB+, lacZYA+) 

P1.SW1040 × 
N5988 to apra 

SW1100 ΔlacZYA::FRT recA269::Tn10 ΔoxyR::apra, 
carrying pAM383 (recA+, lacZYA+) 

P1.SW1040 × 
N6121 to apra 

SW1101 ΔlacZYA::FRT recA269::Tn10 ahpC::kan, 
carrying pAM383 (recA+ lacZYA+) 

P1.SW1018 × 
N6121 to kan 

SW1120 ΔlacZYA::FRT ΔrecG::cat ΔoxyR::apra, 
carrying pJJ100 (recG+ lacZYA+) 

P1.SW1040 × 
JJ1017 to apra 

SW1124 ΔlacZYA::FRT ΔrecG::cat ahpC::kan, 
carrying pJJ100 (recG+ lacZYA+) 

P1.SW1018 × 
JJ1017 to kan 

SW1135 ΔlacZYA::FRT ΔruvC::cat ΔoxyR::apra, 
carrying pAM372 (ruvC+ lacZYA+) 

P1.SW1040 × 
N5747 to apra 

SW1145 ΔlacZYA::FRT ΔruvC::cat, ahpC::kan, 
carrying pAM372 (ruvC+ lacZYA+) 

(P1.SW1018 × 
N5747 to kan) 

TRM160 ΔrecN266 tyrA::Tn10 Lab Strain 
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Table 2.4. Plasmid vectors used in this study 

Plasmid Description Source 

pET3a 
Protein over-expression vector, uses phage T7 
promoter system, encodes kan resistance 

Novagen 

pET14b 

Protein over-expression vector, uses phage T7 
promoter system, encodes amp resistance, can 
be used to add a his-tag at N-terminus of 
protein. 

Novagen 

pET22a 
Protein over-expression vector, uses phage T7 
promoter system, encodes amp resistance 

Novagen 

pET28b 
Protein over-expression vector, uses phage T7 
promoter system, encodes kan resistance 

Novagen 

pGEM-
7Zf(-) 

High copy cloning vector (300-400 
copies/cell) encodes amp resistance 

Promega 

pKD46 

Low copy plasmid containing 2154nt of phage 
λ Red (γ, β and exo genes) expressed from 
PBAD, and having a temperature sensitive 
replicon (oriR101) and encodes amp resistance 

Datsenko and 
Wanner (2000) 

pLau17 
PBAD-gfp. Can be used to make GFP fusions. 
Also the source of the arabinose inducible 
promoter PBAD.  

Lau et al (2003) 

pLysS 

Helper plasmid used in protein 
overexpression. Encodes T7 lysozyme which 
acts to suppress T7 polymerase expression. 
Contains the cat gene encoding cm resistance 

Novagen 

pRC7 
Unstable, low copy, lacZYA+, encodes amp 
resistance (for details see Figure 3.1A) 

Bernahrdt and de 
Boer (2004)  

pT7-7 
Protein over-expression vector, uses phage T7 
promoter system, encodes amp resistance. 

Tabor and 
Richardson (1985) 

pUC19 
Temperature sensitive high copy number (75 
copies at 37°C), encodes amp resistance. 

NEB 
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Table 2.5. Plasmid constructs used in this study 

Plasmid Description Source 

pAM372 

The ruvC gene of E. coli cloned into pRC7 as an 
EcoRI – HindIII fragment. Expression of the 
ruvC gene is controlled by the plasmids lac 
promoter 

Laboratory 
plasmid 

pAM375 

The recB gene of E. coli cloned into pRC7 as an 
EcoRI – HindIII fragment. recB expression is 
regulated by the lac promoter (for details see 
Figure 3.1 B).  

Laboratory 
plasmid 

pAM383 
The recA gene of E. coli cloned into pRC7 as an 
EcoRI – HindIII fragment. Expression of the recA 
gene is controlled by the plasmids lac promoter. 

Laboratory 
plasmid 

pAPS108  
pGEM-7Zf(-) based plasmid encoding cat 
resistance used during recombineering as PCR 
template 

Savory, 2007 

pJG16 As pAPS108 but with the cat resistance gene, 
replaced by kan resistance gene 

Laboratory 
plasmid 

pJG71 
The H. influenzae recN gene cloned into pLau17 
as an EcoRI – HindIII fragment. Allows 
arabinose inducible expression of HiRecN. 

Laboratory 
plasmid 

pJG74 

pET22 with the 489 base pairs of the E. coli recN 
genes promoter amplified from genomic DNA as 
an XbaI – NdeI  fragment and cloned into the 
complimentary sites. 

Laboratory 
plasmid 

pJG75 

As pJG74 but with a kan resistance gene cloned 
into the HindIII restriction site immediately 
downstream of the cloned promoter. Used in the 
creation of heterologous strains (Chapter 4) 

Laboratory 
plasmid 

pJG83 

As pJG75 with the H. influenzae recN gene PCR 
amplified from genomic DNA, cloned between 
the E. coli recN promoter and the kan resistance 
gene as a NdeI – HindIII fragment. 

Laboratory 
plasmid 

pJG94 
The B. fragilis recN gene PCR amplified from 
genomic DNA and cloned into pT7-7 as an NdeI 
– BamHI fragment. 

Laboratory 
plasmid 

pJG95 

As pJG75 with the A. aeolicus recN gene sub- 
cloned from pTRM129 as a NdeI – HindIII 
inserted between the E. coli promoter and the 
kanamycin reistance gene 

Laboratory 
plasmid 

pJG98 

As pJG75 with the H. influenzae recN gene PCR 
amplified from genomic DNA, cloned between 
the E. coli recN promoter and the kan resistance 
gene as a NdeI – HindIII fragment. 

Laboratory 
plasmid 
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pJG99 

The B. fragilis recN gene sub-cloned from pJG94 
as NdeI – HindIII fragment into the compatible 
sites of pLau17. Allows arabinose inducible 
expression of BfRecN.  

Laboratory 
plasmid 

pJG121 

pET22 with the A. aeolicus recN gene amplified 
from pTRM129 cloned in as a NdeI – HindIII 
fragment, used to give a C-terminal His tag. Used 
for overexpression. 

Laboratory 
plasmid 

pJG122 

Sub-clone from pSW116 of  A. aeolicus recN with 
the K35A substitution as a NdeI – HindIII 
fragment cloned into the complimentary sites  of 
pET22 to generate a C-terminal His-tag. Used for 
overexpression. 

Laboratory 
plasmid 

pJG123 
As pJG121 with the H. influenzae recN gene 
cloned in as an NdeI – HindIII sites to give a C-
terminal his tag. Used for overexpression. 

Laboratory 
plasmid 

pJJ100 
The recG gene and its promoter were amplified 
from E. coli genomic DNA and cloned into pRC7 
as a blunt ended product into the ApaI site. 

Laboratory 
plasmid 

pSW101 

The recN gene and its promoter were amplified by 
PCR from E. coli MG1655 using primers RecN-F 
and RecN-2. It was cloned as a blunt ended 
ligation into the ApaI site of pRC7. 

This study 

pSW103 

The C-terminal 489nt of E. coli recN amplified 
from genomic DNA using primers SWN3 and 
SWN4 to introduce NcoI and BamHI sites cloned 
into the complimentary sites of pET28. Used for 
overexpression. 

This study 

pSW104 

The N-terminal 456nt of E. coli recN amplified 
from genomic DNA using primers SWN1 and 
SWN2 that introduce a NdeI and BamHI sites the 
fragment is cloned into the complimentary sites of 
pET22. Used for overexpression. 

This study 

pSW114 
QuickchangeTM mutagenesis of pJG71 using 
primers SWN42 and SNW43 to introduce K35A 
mutation into H. influenzae recN. 

This study 

pSW115 
QuickchangeTM mutagenesis of pTRM129 using 
primers SWN40 and SNW41 to introduce K35A 
mutation into A. aeolicus recN. 

This study 

pSW116 
A. aeolicus recN sub-cloned from pTRM129 as a 
NdeI – HindIII fragment inserted into the 
complimentary sites of pJG74 

This study 

pSW117 
QuickchangeTM mutagenesis of pSW116 using 
primers SWN40 and SNW41 to introduce K35A 
mutation into A. aeolicus recN. 

This study 

pSW118 
QuickchangeTM mutagenesis of pJG83 using 
primers SWN42 and SNW43 to introduce K35A 
mutation into H. influenzae recN. 

This study 
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pSW119 
QuickchangeTM mutagenesis of pTRM106 using 
primers SWN44 and SNW45 to introduce K35A 
mutation into E. coli recN. 

This study 

pSW121 
The E. coli recN gene sub-cloned from pTRM106 
as an NdeI – BamHI fragment and cloned into the 
complimentary sites of pJG75. 

This study 

pSW122 
QuickchangeTM mutagenesis of pSW121using 
primers SWN44 and SNW45 to introduce K35A 
mutation into E. coli recN. 

This study 

pSW123 
QuickchangeTM mutagenesis of pJG123 using 
primers SWN42 and SNW43 to introduce K35A 
mutation into H. influenzae recN  

This study 

pTRM106 pT7-7 with the E. coli recN gene cloned in as a 
NdeI-BamHI fragment. Used for overexpression. 

Meddows, 2002 

pTRM129 pT7-7 with the A. aeolicus recN gene cloned in as 
a NdeI-BamHI fragment. Used for over-expression. 

Meddows, 2002 
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2.2 Biological methods 

2.2.1 Propagation and maintenance of bacterial strains 

It was standard practice to grow primary overnight cultures in 5ml LB broth 

inoculated from single colonies on LB plates. Appropriate antibiotics were 

added as required. Overnight cultures were routinely grown at 37°C, unless 

stated otherwise, with gentle aeration in a tube rotator, and stored for up to 2 

weeks at 4°C. Sterile glycerol was added to cultures to a final concentration of 

30% for long term storage at –20°C. Secondary cultures were typically grown 

in 8ml Mu broth inoculated with 0.04–0.2ml overnight culture. Incubation was 

performed with vigorous aeration in a shaking water bath (Grants Instruments) 

at 37°C, unless stated otherwise, to the required optical density (OD) as 

measured at 650nm using a Thermo Spectronic 20 spectrophotometer or a 

Beckanan Coulter DU530 spectrophotometer. An OD650 of 0.48 was taken to 

be equivalent to 3×108 cells/ml. All cultures were disposed of in 0.5% Trigene. 

2.2.2 Harvesting bacterial cells from liquid culture 

Cells were harvested from culture by centrifugation. Volumes up to 2ml were 

harvested in a bench top microfuge at room temperature for 1 min at 13,000 

rpm. Volumes up to 8 ml were harvested, at 4°C, in a Sorvall SS-34 rotor for 

6min at 6,000rpm. While larger volumes 50 – 200ml were harvested at 4°C in 

a Sorvall SLA-1500 rotor at 6,000rpm and anything larger than this harvested 

by centrifugation in a Sorvall SLA-3000. 

2.2.3 Preparation of bacteriophage P1 lysates 

P1 lysates for use in P1vir-mediated transductions were generated either in 

liquid culture, or on agar plates. To prepare lysates in liquid culture 8ml Mu 

broth was inoculated with between 0.2–0.5ml host strain overnight culture, and 

incubated at 37°C in a shaking water bath to an OD650 of 0.3–0.4. Cultures 

were supplemented with 0.1 ml 0.5 M CaCl2 and incubated for a further 10min, 

and then inoculated with approximately 1×107–1×108 plaque forming units 

(pfu) of P1vir bacteriophage propagated in the wild-type strain W3110. The 

culture was returned to the shaking water bath until lysed, after which 0.5ml 
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chloroform was added and the cell debris pelleted in a refrigerated centrifuge at 

10,000rpm from 15min. The supernatant was decanted, and 0.5ml of 

chloroform added prior to storage at 4°C.  

Alternatively P1 lysates were generated on plates by incubating 8ml 

Mu broth (supplemented with 0.1ml 0.5M CaCl2), inoculated with between 

0.2–0.5ml fresh host overnight culture, to an OD650 of between 0.8–1.0. Fresh 

P1 agar plates were overlaid with 0.1ml of culture and 3ml 0.4% Mu soft agar, 

containing approximately 2×107, 1×107 and 5×106 pfu of P1 phage propagated 

on strain W3110, and incubated for <18h at 37°C. Plates were examined for 

lysis and phage harvested from overlays in a Sorvall SS-34 rotor 4°C, with 1ml 

MC buffer, and 0.5ml chloroform, for 15min at 10,000rpm. The supernatant 

was decanted, and an additional 0.5ml chloroform was added for storage at 

4°C. 

2.2.4 Transduction with Bacteriophage P1vir 

The transduction of nutritional markers was completed essentially according to 

the method of Miller (1972). Simply put, the recipient strain was grown to an 

OD650 of 0.8, the cells collected, and resuspended in 2 ml MC buffer. Phage 

was added at a ratio of approximately 0.1-0.5:1 phage:bacterial cell, allowed to 

adsorb for 25-30 min at 37°C before addition of 0.2ml 1M sodium citrate to 

chelate the calcium, stopping infection. The transduction mixture was mixed 

with 3ml molten water agar (at 42°C), and overlaid onto the appropriate media. 

Incubation was allowed to proceed until transductant colonies were sufficiently 

developed, typically 24-48h. 

The transduction of antibiotic resistance markers was essentially the 

same as for the transduction of nutritional markers although the ratio of phage 

to bacteria was 0.5-1:1. The transduction mixture was added to 3.5ml of molten 

0.6% Mu agar and used to overlay the appropriate selective media. Incubation 

periods were generally 16-40h.  

Bacteriophage P1 transductions were used to construct new genotypes. 

A P1 lysate of the donor strain was prepared by growing a culture of the 

required strain to an OD650 of 0.4 in Mu broth containing 6.25mM CaCl2. The 

culture was then infected with 1x108 pfu and incubated until cell lysis was 
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observed. Cell debris was removed by centrifugation, and the phage stored 

over chloroform. 

2.2.5 Bacterial Transformation 

E. coli were routinely made competent for the uptake of plasmid DNA by the 

CaCl2-heat shock method. The required strain was grown to an OD650 of 0.6-

0.8 in LB broth, the cells harvested, and resuspended in 5ml of ice-cold 0.1M 

CaCl2. The cells were incubated on ice for 45min before being harvested and 

resuspended in 1ml ice-cold 0.1M CaCl2 and incubated for a further 15min on 

ice. Typically, 0.5-1μg of plasmid DNA was mixed with 50-100μl of 

competent cells, and incubated on ice for 30 min. Heat shock was at 42°C for 

2min, followed by a further 2min on ice. 1ml of SOC broth was added, and the 

transformation mixture incubated at 37°C for 45min (or 32°C for temperature 

sensitive strains/plasmids). The transformed cells were collected by 

centrifugation, resuspended in 100μl fresh SOC broth and spread onto LB agar 

containing the appropriate selection. 

Chemically competent cells were also made in advance and stored at     

-80°C by growing a 300ml culture in SOC broth to an OD650 of 0.4 – 06. Cells 

were then harvested at 4°C by centrifugation and resuspended in 90ml of 

buffer TFB-1 before incubation on ice for one hour. The cells were then 

collected once again by centrifugation and resuspended in 10ml of buffer TFB-

2 before being aliquoted and stored at -80°C, such cells were competent for 

several months and could be used by thawed on ice and then treated as above, 

with the cells being mixed with DNA and heat shocked. 

When higher transformation efficiencies were required, e.g. introducing 

linear DNA into a strain, the cells were electroporated. The required strain was 

grown to an OD650 of 0.6 in 10ml SOC broth. The cells were harvested, and 

washed three times with 1ml of ice-cold 1mM HEPES buffer pH7.0. After the 

third wash, the cell pellet was resuspended in 100μl of ice-cold sterile water. 

Typically 0.1-0.5μg of donor DNA was mixed with 50μl competent cells 

before being added to a pre-cooled, 0.1cm electroporation cuvette. 

Electroporation was performed using a BioRad Gene Pulsar set at 1.8 kV, 
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25μF with Pulse controlled at 200ohms. The electroporated cells were 

immediately diluted with 1ml SOC broth, incubated for 1h at the appropriate 

temperature before being plated onto LB agar containing the appropriate 

selection for the transformation. 

2.2.6 Testing strain genotypes 

When it was necessary to test the phenotypes of several colonies, e.g. moving 

linked genes, the colonies were picked and streaked as a regular array (gridded) 

onto a master plate. Sterile velvets were used to print replicas of the master 

grid onto different media. Patches of the grid displaying the desired phenotype 

were purified from the master plate and retested. When it was necessary to test 

fewer colonies e.g. when moving a gene containing an antibiotic resistance 

marker as an insertion, the transductants were purified, and 10μl of the 

overnight culture tested directly. 

 

Confirmation of Genetic Markers 

Transposon and antibiotic resistance insertions were confirmed on the 

appropriate selective media. Auxotrophy was confirmed by streaking onto 

minimal media  with and without the appropriate sugars and/or amino acids. 

 

Sensitivity to DNA Damage 

Semi-quantitative tests of DNA damage sensitivity were completed on LB agar 

with or without MMC at 0.2μg/ml and 0.5μg/ml. UV irradiation of a duplicate 

set was completed at a dose rate of 1 J/m2/sec, at a peak output of 245nm, for 

30seconds (MMC containing plates) and 1min (LB agar plates). 

Where appropriate, a quantitative measure of the ability of a culture to 

survive UV or γ-irradiation was made. Cultures were grown in LB broth to an 

OD650 of 0.4, and the culture diluted by ten-fold increments in 56/2 salts. 10μl 

of the dilutions were spotted onto LB agar, and the spots allowed to dry before 

being exposed to the radiation. UV-irradiation was at 1 J/m2/sec for set 

intervals up to 60 seconds. γ-irradiation was from a caesium-137 source with 

an output of  923.3 Rads/min, for set intervals up to 48min. Irradiated plates 
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were incubated along with an unirradiated control for 16-24h before colonies 

of survivors were scored. 

2.2.7 Transposon mutagenesis 

Mutagenesis was conducted using a mini Tn10 carried by λNK1327 or by the 

EZ-system (Epicentre). 

 

Tn10-mediated transposon mutagenesis 

 The λNK1327 phage carries a mini-transposon, derived from Tn10, it 

only has a lysogenic life cycle, due to amber mutations, which inactivate genes 

essential to the lytic life cycle. Due to this it can randomly introduce 

kanamycin resistance genes into the chromosome, flanked by short repeats of 

IS10 sequences  but not lyse the cell (Kleckner et al. 1991). It was utilised to 

mutagenise various strains in the synthetic lethal screen. Phage λNK1327 was 

purified to a single plaque and then used to grow a plate lysate. Strain N1710 

was grown either in TB broth overnight, or fresh in LB to an OD650 of 0.4-0.6. 

The cells were then harvested by centrifugation and resuspended in 0.5 

volumes of 10mM MgSO4 before being incubated for 30min at 30°C to starve 

the cells. A 100μl aliquot of starved cells was mixed with 2.5ml of 0.7% TB 

overlay agar supplemented with 100μl of 10% (w/v) MgSO4 and overlaid onto 

TB agar plates and once hardened the λNK1327 stock was streaked onto the 

overlay. Plates were incubated overnight at 37°C and a single plaque was then 

removed as an a agar plug and placed in 1ml of λ buffer and a drop of 

chloroform added to kill cells, 10μl of this was then spotted onto a fresh 

overlay. This gave a larger plaque, which was extracted and treated as the 

individual plaque to give the initial phage stock. Aliquots, (100-200μl) of this 

stock, were then mixed with a similar volume of the starved cells, incubated at 

32°C for 10min, before being overlaid on to TB plates by mixing with 2.5ml of 

TB 0.7% agar. These overlays were sealed in a damp container (a “wet box”) 

and incubated for 6-8h or until lysis occurs and plates appear clear. Once lysis 

occurred the plates were chilled to 4°C and then flooded with 5ml of pre-

chilled λ buffer. These were left overnight to let the phage leech out into the 
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buffer, which was then collected. To the collected buffer 0.5ml of chloroform 

was added to kill cells, cell debris was removed by centrifugation (10,500rpm, 

20min, SS-34 rotor). The supernatant was decanted to a fresh tube and a few 

drops of chloroform added, before being stored at 4°C. 

The protocol used for mutagenesis is essentially that described by 

Kleckner et al (1991). A 50ml culture of the strain to be mutagenised is grown 

in LB broth, supplemented with 0.2% MgSO4 and any antibiotic selection 

required, to an OD650 of 0.3-0.4. The cells were harvested by centrifugation 

and resuspended in 2ml of 10mM MgSO4, 200μl aliquots of cells were then 

added to 200μl aliquots of λNK1327 either, undiluted or diluted to 10-1 or 10-2. 

These were then incubated for 15min at 37°C with vigorous shaking in a water 

bath, to allow phage adsorption. Once incubated 200μl of 1M Sodium citrate 

was added to each dilution to chelate calcium ions and so halt infection. The 

cells were then allowed to recover at 42°C for 1h in LB broth, before being 

harvested by centrifugation and resuspended in 500μl of 56/2:Sodium citrate 

(1:1). These cells were then plated onto LB media supplemented with 

kanamycin, and any other supplements required by the strain. The plates were 

then incubated for 16h at 37°C and the cells collected by re-suspension of 

colonies in LB broth. Library size i.e. the number of inserts was estimated from 

the number of colonies present on the 10-1 and 10-2 dilution plates. For storage 

glycerol was added to a final concentration of 30% (v/v) glycerol.  

 

EZ::TN transposome mutagenesis 

 The EZ::TN <KAN-2> Tnp Transposome kitTM (Epicentre) was used as 

an alternative to Tn10 mutagenesis based on λNK1327. The method involves 

introducing a transposome, essentially a transposon and its specific transposase 

protein into a cell. The transposase is rapidly degraded and so the insertion is 

not mobile. The method used was similar to that described in the Epicentre 

user’s guide. Cells were made electro competent by growing the desired 

culture in 50ml LB broth to an OD650 of 0.3-0.4. They were then incubated on 

ice for 15min before being harvested by centrifugation and resuspended in 

20ml, of ice cold, 10% glycerol. This was repeated twice and the cells then 
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resuspended in just 200μl of 10% glycerol. These were kept on ice, and then 

40μl aliquots placed into pre-cooled electroporation cuvettes and gently mixed 

with 0.25μl of the supplied transposome solution. The mixture was then 

electroporated (2kV/cm, 25μFD, 200ohms with a Time constant of 4.0-4.8), 

1ml of SOC broth was immediately added to the electroporated cells and the 

cells were then incubated at 30°C for one hour to recover. The cells were the 

diluted 5-fold and plated onto LB agar supplemented with Kanamycin to select 

for the insert and grown for 16h at 37°C and the cells collected by re-

suspension of colonies in LB broth. 

2.2.8 Measures of cell survival following chromosome cleavage by 
I-SceI  

Qualitative Viability Assay 

To assay survival after I-SceI expression, 10μl of fresh overnight culture of 

strains carrying both an I-SceI cleavage site and the chromosomal arabinose 

inducible I-SceI expression cassette were streaked on LB agar plates 

supplemented with, or without, arabinose at a final concentration of 0.2% 

(w/v). Growth was scored after overnight incubation at 37°C. 

 

Quantitative Viability assay 

For quantitative analysis, survival was measured after transient I-SceI 

expression in liquid culture, 40μl of fresh overnight culture was diluted into 

8ml Mu broth (approximately a 200-fold dilution), and grown at 37°C to an 

OD650 of 0.2 (unless otherwise stated). Cultures were then split in two, with 

glucose added to one half, and arabinose to the other, to final concentrations of 

0.2% (w/v). Incubation was continued for 30min, unless stated otherwise, 

before cultures were serially diluted in 56/2 salts. 10μl aliquots were spotted 

onto LB agar and scored for growth after overnight incubation. A relative 

viability was calculated from a comparison of glucose and arabinose grown 

cultures (Meddows et al. 2004). Data from all lab members experiments on I-

SceI viabilities were pooled and viabilities from all experiments incorporated 

into the data set. 
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2.3 DNA preparation and analysis 

2.3.1 Preparation of Plasmid DNA 

Plasmid DNA was extracted from overnight cultures using the appropriate 

Qiagen kit QIAprep Spin Miniprep Kit (1.5-3ml of culture), or the QIAGEN-

tip 100 (60-100ml of culture) following the manufactures instructions. Briefly, 

the cells were harvested by centrifugation, and resuspended in 50mM Tris-HCl 

pH8.0, 10mM EDTA, 100μg/ml RNase A. An equal volume of lysis solution 

(200mM NaOH, 1% SDS) was added to the cell suspension, incubated for 1-5 

min at room temperature, and neutralised with 1.4 volumes of 3M potassium 

acetate, pH5.5. The cell debris was removed by centrifugation and when 

purifying DNA on a small scale, the clear lysate was added to a QIAprep spin 

column, allowing plasmid DNA to bind the silica-gel membrane in the column. 

The DNA was then washed with an ethanol based buffer (Buffer PE, Qiagen), 

before being eluted in 10mM Tris-HCl pH8.5. The principle of the larger scale 

plasmid purification is the same, although QIAGEN-tip 100s, and different 

buffers were used. The column matrix was pre-equilibrated with 750mM NaCl, 

50mM MOPS, pH7.0, 15% isopropanol, 0.15% Triton X-100 before plasmid 

DNA was bound. The column was washed with the same buffer but containing 

1M NaCl, and the DNA eluted in 1.25M NaCl, 50mM Tris-HCl, pH8.5, 15% 

isopropanol. Eluted DNA was precipitated by addition 0.7 volumes of 

isopropanol and pelleted by centrifugation. The pellet was washed with 70% 

ethanol and the DNA resuspended in 50-200μl TE buffer, depending on the 

copy number of the plasmid. 

2.3.2 Preparation of chromosomal DNA 

Chromosomal DNA was extracted from cells in one of two ways:  

 

Extraction using Phenol Chloroform 

Strains were grown to the required optical density, the cells (100ml) harvested 

by centrifugation and resuspended in 0.5ml TNE. 50μl each of 10% Triton X-

100 and 5mg/ml lysozyme were added, and incubated at 37°C for 30min. 60μl 

of a 5mg/ml solution of proteinase K was then added, followed by incubation 
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at 65°C for 2h. A standard phenol-chloroform extraction was completed 

(Sambrook et al. 1989), the DNA precipitated with 0.1 volumes sodium acetate 

and 2 volumes of ethanol, and spooled out into 70% ethanol. The DNA was 

then allowed to dissolve overnight in 1ml of TE with gentle agitation at 4°C. 

This method produces about 1mg of chromosomal DNA. 

 

Extraction using CTAB 

Strains were grown to the required optical density (OD650 of 0.8 – 1) then 

harvested by centrifugation. The pellet was resuspended in 6ml CTAB 

extraction solution and 0.2mg/ml final concentration of proteinase K and 

80μg/ml RNase H added, followed by incubation at 37°C for 1h. 4ml of 

chloroform:isoamylalcohol (24:1) was added and the sample emulsified by 

vortexing. This was centrifuged (15min, 12,000rpm in SS-34 rotor) and the 

upper layer removed and mixed gently with 18ml of CTAB dilution solution 

until a precipitate appeared. This was allowed to settle to form a pellet and the 

supernatant removed, before rinsing the precipitate with 25ml of 0.4M NaCl in 

TE, this was decanted and the pellet washed a second time. The pellet was then 

mixed with 5ml of 1.42M NaCl in TE and gently mixed until the pellet 

becomes transparent. The mixture was then ethanol precipitated by addition of 

10ml of 70% ethanol, this was decanted and the precipitate washed with 10ml 

of 70% ethanol a second time. The resultant pellet was resuspended in 4.5ml 

TE and precipitated using 4ml of 3M sodium acetate:isopropanol (1:7). The 

precipitant was pelleted by centrifugation and washed twice with 70% ethanol, 

which was completely removed and the pellet dissolved overnight in 300 - 

500μl of TE and giving 0.5 – 1mg of chromosomal DNA. 

2.3.3 Agarose gel electrophoresis 

DNA fragments were routinely separated with 1% Seakem agarose (Flowgen) 

although 0.8%-1.2% gels were used to separate larger or smaller fragments. 

Gels were made using TBE, and stained with 0.2μg/ml ethidium bromide 

before casting. Before loading the DNA sample was mixed with 0.2 volumes 

of Ficoll gel loading buffer. DNA was separated on the gel at a constant 
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voltage of 5V/cm was used, and fragment size was determined using 0.25μg of 

1kb ladder (NEB). DNA was visualised using UV light, and documented with 

a BIO-RAD Gel Doc EQ and the Quantity one 1-D analysis software.  

DNA fragments separated on agarose were excised using a clean 

scalpel blade, and the agarose removed using the QIAquick Gel Extraction kit 

(Qiagen). The agarose containing DNA was melted at 55°C in a solubilisation 

buffer. This solution containing the DNA was passed through a QIAquick spin 

column, selectively binding the DNA. The DNA washed on the column using 

an ethanol based buffer (buffer PE, Qiagen), and eluted using 35-50μl Tris-

HCl pH8.5. In some cases SyBr Green was added to the DNA (approximately 

2000-fold dilution) before loading and the DNA visualised using blue light, to 

prevent UV induced damage of the excised DNA. The DNA was excised and 

purified as described. 

2.3.4 Cloning DNA fragments 

DNA Restriction 

A standard restriction digest was completed using 1-2.5μg DNA, a buffer 

appropriate to the enzyme (supplied by the manufacturer), and 5-10units of 

enzyme in a 20 or 50μl final volume. Incubation times varied from 1h to 

overnight. The DNA was purified from the reaction using gel purification 

(Qiagen). 

 

Ligation  

Appropriately prepared DNA fragments were ligated using T4 DNA ligase, 

and the supplied buffer. The fragments to be ligated were quantified, and 

mixed in a ratio so that the number of DNA ends of the insert were in a three-

fold excess to the number of ends of the vector. A typical reaction was 

completed in a 20μl final volume usually cohesive-end ligations were 

incubated at 15°C for 4h to overnight, and blunt-end ligations were incubated 

at 15°C overnight. 5μl of the ligation mix was transformed into competent 

DH5α, and spread onto LB agar containing the appropriate selection. 
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Polymerase chain reaction (PCR) 

DNA amplification was completed using the Polymerase Chain Reaction 

(PCR) according to published methods (Mullis and Faloona 1987; Saiki et al. 

1988), and following the recommendations of the enzyme manufacturer. Taq 

DNA polymerase was used. However, in most instances the higher fidelity 

Dynazyme or Phusion polymerases (NEB) were used for preparing DNA for 

sequencing, and screening for chromosomal deletions/insertions, as well as the 

cloning of genes by PCR. When a bacterial colony was to be used as the source 

of template DNA, a single colony was transferred to 50μl sterile distilled water 

using a sterile toothpick. The suspension was vortexed for 3min, and incubated 

at 37°C for 15min; 1μl was used in the PCR reaction.  

 

QuikChangeTM Mutagenesis 

Point mutations were introduced into DNA using the QuikChangeTM protocol 

(Stratagene). Two complementary primers containing the mutation were used 

to amplify a circular template. The template DNA was degraded by DpnI 

digestion, and the reaction transformed into DH5α. Positive clones were 

screened for by DNA sequencing, or if a novel restriction site was created, or 

an existing one removed, restriction analysis. 

2.3.5 Automated DNA sequencing 

The target sequence was amplified from the template using standard PCR 

protocol and Phusion DNA polymerase. The product of the reaction was gel 

purified into 50μl of dH2O, and used as a template for cycle sequencing. Cycle 

sequencing used 4μl each of BigDye (ABI Prism) and HalfTerm (Genpack), 

and 0.3μl of primer at 50nM concentration in a 20μl reaction volume. The 

reaction was cycled 25 times at 96°C for 30seconds, 50°C for 15seconds and 

60°C for 4min. The reaction products were purified by precipitation with 0.1 

volumes 3M sodium acetate and 2.5 volumes 100% ethanol, and analysed in an 

ABI model 373A automated sequencer. Good quality template DNA in the 

cycle sequencing reaction allowed DNA sequence to be read up to 1000bp 
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from the primer. Sequencing was performed by the BSAU, University of 

Nottingham, or MWG. 

2.3.6 Creating gene deletions - Recombineering 

Gene deletions were created according to the method described by Datsenko 

and Wanner (2000). Briefly, a PCR product was created so as to insert an 

antibiotic resistance gene with flanking homology that complements the ends 

of the region to be deleted. MG1655 cells were transformed, at 30°C, with 

pKD46 selecting for the ampicillin resistance. Cultures of this were grown in 

8ml of Mu broth supplemented with 0.15% (w/v) arabinose, and ampicillin at 

30°C.  Once at an OD650 of 0.5 cultures were immediately cooled on ice for 

10min. Cells were harvested by centrifugation and washed three times with 

4ml of 1mM HEPES pH7.5, before finally being resuspended in 40μl of 1mM 

HEPES pH7.5. All 40μl of cells were transformed by electroporation at 1.75 

kV using between 10–100ng chilled PCR product, eluted from a Qiagen 

column in 1mM HEPES pH7.5. Cells were resuspended in 3ml SOC, and 

allowed to recover at 30°C for 1h. Cells were harvested by centrifugation, 

resuspended in 50μl SOC, and incubated overnight, at 37°C, on LB agar 

supplemented with the appropriate antibiotic. Single colonies were inoculated 

in regular arrays on selection medium and replica plated onto LB agar 

supplemented with ampicillin to confirm the spontaneous loss of pKD46. 

2.4 Protein preparation and analysis 

2.4.1 SDS-PAGE 

Proteins were separated by one-dimensional electrophoresis using the BioRad 

Mini-Protean II gel apparatus throughout. The protein gels were separated into 

resolving, and stacking components. The resolving gel contained 12.5% 

acrylamide/ bis-acrylamide 29:1, 0.375M Tris-HCl pH8.8, and 0.1% (w/v) 

SDS. The stacking gel contained 5% acrylamide:bis-acrylamide 29:1, 0.125M 

Tris-HCl pH6.8, and 0.1% SDS. Both portions of the gel were polymerised 

using 0.08% ammonium persulphate and 0.08% tetramethylethylene diamine 

(TEMED). Protein samples were prepared by mixing at a 5:1 ratio of the 
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sample and 5x SDS loading buffer, they were then heated to 95°C for 2min. 

Molecular Weight Marker Standards (Bio-Rad or Fermentas PagerulerTM), and 

protein samples were loaded onto the gel, and run at 200V for 75 min in SDS 

PAGE running buffer. Gels were stained using PageBlueTM (Fermentas) as 

described by the manufacturer. Briefly the gel was washed twice with hot 

dH2O and then stained with 20ml of the PageBlueTM solution, heated in the 

microwave to approximately 90°C and allowed to stain for 15min. The gel was 

then de-stained by soaking in dH2O for 30min. 

2.4.2 Protein Overexpression 

Overexpression of cloned genes in E. coli was tested on a small scale before 

the volumes used in purification were inoculated. Samples from fresh 5 ml 

overnight cultures, made from freshly transformed colonies, were used to 

inoculate 8 ml of Mu broth; the appropriate selection was maintained at all 

stages. The secondary cultures were grown to an OD650 of 0.4-0.5 at 37°C and 

a sample of the culture was removed as a zero time point, the remainder split 

into two, and inducer added to half. Unless otherwise stated in the text, 

induction was with 1mM IPTG for the lac or T7 promoter driven systems and 

0.5% (v/v) arabinose for the PBAD promoter systems. Other promoter systems 

used are described in the text. Overexpression was typically for 3-4 hours, 

although a total cell protein was analysed by SDS-PAGE, using 10μl of 0.5ml 

culture collected by centrifugation and lysed with 100μl 1x SDS-PAGE 

running buffer. 

Overexpression on a preparative scale was performed using 1l baffle 

flasks containing 400 ml Mu or YT broth inoculated with 3-5ml of a fresh 

culture. Details are otherwise as for small-scale overexpression with large scale 

overexpression up to 10l performed in a Fermac 310/360 fermenter system 

(Electrolab). The fermenter and the growth vessel with media and associated 

apparatus was autoclaved at (123°C, 90min) to sterilize. Once sterilized the 

growth vessel was reconnected to the external fermenter components, which 

provides both a jacket for heating and a sealed water cooling system for the 

growth vessel. Aeration of the media was with a filtered air supply at 6-
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7litres/min flow rate. The apparatus and media was left to equilibrate overnight 

to 37°C. The following day the media was checked for bacterial contamination 

and the temperature. The dissolved oxygen probe was calibrated so that the 

culture at full aeration with rapid mixing from the rotor (300-400rpm) was 

100% aeration. At this point anti-foam was added if required and any 

antibiotics needed for selection. Introduction of cell starter culture, antifoam 

and antibiotics was via self-sealing membrane to prevent contamination. 

Inoculations were at a 1:100 (occasionally 1:50 if the strain is slow growing) 

ratio of starter culture to growth media. The culture was grown to the desired 

OD650, with rotor speed regulated by the dissolved oxygen levels to ensure 

100% aeration. Temperature was controlled (usually at 37ºC), although pH was 

not. In all cases cells were harvested by centrifugation and usually stored as 

cell pellets at -80°C. 

2.4.3 Isolating soluble proteins 

Cell pellets to be lysed were removed from -80°C storage, thawed in 0.01 

volumes of lysis buffer (as page 41). Lysis was performed by sonication of the 

cells, using a Soniprep150 Ultrasonic disintegrator (Sanyo Gallenkamp) with 

either a 9.5mm probe or an exponential micropobe depending on the cell 

volume. Cells were sonicated on ice 3-5 times for 5-10 seconds with a 

microprobe, for volumes below 2ml. For larger volumes the cells were 

sonicated 3-5 time for 20-30 seconds, using the 9.5mm probe.  

After lysis cell debris and soluble proteins are separated by 

centrifugation, 10,000g, for 30min, at 4°C. Depending on volume this was 

done either in a benchtop microfuge, or larger volumes processed using a 

Sorvall, SS-34 rotor. 

2.4.4 Ammonium sulphate precipitation 

Ammonium sulphate precipitations were performed by addition of ammonium 

sulphate to cell extracts to the desired percentage of saturation. This was done 

slowly to ensure all the ammonium sulphate dissolved and then samples 

allowed to precipitate for 1h, usually at 4°C, with continuous mixing. The 

precipitated material was harvested by centrifugation (10,000g for 30min). 



69 

 

2.4.5 ÄKTA operation 

Protein purifications were performed using ÄKTA FPLC system (GE 

Healthcare). All of the columns used were purchased pre-packed from GE 

healthcare, unless stated otherwise.  As a general rule all elutions were 

performed in a 20mM Tris-HCl pH7.5, 1mM EDTA based buffer (buffer A) 

with NaCl gradients used to elute proteins. All the buffers were vacuum 

filtered through a 0.2μm membrane to ensure particle removal and to degas the 

solution. Fractions were collected and those corresponding to the detected UV 

peaks were analysed by SDS-PAGE to determine where the protein being 

purified was located. Such fractions were pooled and then further purified. For 

details of RecN purification see Chapter 5. 

2.4.6 Determination of protein concentration  

Protein concentrations were determined using the BioRad Protein Assay kit, a 

modification of the Bradford Assay (Bradford 1976). The OD595 of a series of 

1-24μg/ml aliquots of BSA protein standard were determined, and compared to 

the OD595 of the sample protein. 

2.4.7 Measuring ATP hydrolysis,  

ATP hydrolysis was measured by quantifying the production of inorganic 

phosphate, which was measured by monitoring the change in absorbance at 

660nm of a mixture of malachite green and ammonium molybdate (Bird et al. 

1997).  ATPase activity was either assayed as a direct measure of inorganic 

phosphate produced over 30min or as a time course where samples of the 

reaction were taken at set time points. The proteins were incubated at 37°C (or 

55°C for A. aeolicus RecN) in 1x helicase buffer, with the addition of 5mM 

MgCl2 and 5mM ATP (unless otherwise described). In certain reactions 

ΦX174, pBR322 duplex plasmid DNA, or linear single stranded or duplex 

DNA oligonucleotides of 60, bases or base pairs respectively, were used. At 

the set time points, 100μl samples of the reaction mixture were taken and 

added to 800μl of a 3:1 mixture of 0.045% malachite green: 4.2% ammonium 

molybdate in 4M HCl, incubated for 2min at room temperature, and 100μl of a 
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34% sodium citrate solution added. The colour was allowed to develop for 

30min and the absorbance was read at 660nm (using a Beckman Coulter 

DU530 spectrophotometer), and compared to a standard curve constructed 

using known concentrations of KH2PO4. 

2.4.8 Glutaraldehyde cross-linking  

To perform cross-linking, 10μl samples of the protein to be cross-linked, at 

1mg/ml concentration were aliquoted into separate tubes and incubated with an 

equal volume of glutaraldehyde solution at 0.01-2% final concentration, for 

15min at room temperature. Reactions were stopped by addition of an equal 

volume of 0.5M Tris-HCl pH7.0. Samples were then analysed by SDS-PAGE. 

2.4.9 Electron microscopy 

Electron microscopy was performed with the assistance of Dr. Katy Evans 

(University of Nottingham). The apparatus used was a transmission electron 

microscope (TEM), specifically a JEOL JEM 1010 TEM at 100kV at 

magnifications ranging from 100 – 500k. Using formavar/carbon grids (Agar 

scientific) with a 200 Cu mesh. Proteins were stained with 1% PTA or 1% 

uracil acetate. 

2.4.10 Labelling of Oligonucleotides and gel retardation assays 

Oligonucleotides that were to be used in gel retardation assays were labelled 

using T4 kinase (NEB) to replace the gamma phosphate with radioactive [α32P] 

ATP following the manufacturer’s instructions. Unincorporated 

oligonulceotide were removed using Bio-Rad exclusion columns with a 10base 

pair cut off.  The quantity of labelled DNA recovered was estimated at 95% 

and the final concentration of labelled oligonucleotide calculated by comparing 

the total radioactivity used to the final emittence value of the labelled 

oligonucleotides assuming 90% recovery of the DNA.  

Oligonucleotides used to make duplex DNA substrates were annealed 

to each other by mixing cold:labelled DNA at a 3:1 ratio quantities of each, 

heating to 95°C for 5min and then allowing the mixture to cool slowly to room 

temperature. The mixture was then analysed by polyacrylamide gel 
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electrophoresis and the annealed product visualised and excised from the gel, 

with a clean scalpel blade, before being eluted from the gel slice by placing it 

in TE buffer overnight at 4°C. 

Retardation assays were performed using a 10% acrylamide/bis-

acrylamide 29:1 TAE gel, which once set was placed in the gel running tank, 

with two litres of 1xTAE running buffer and left to equilibrate at 4°C 

overnight. DNA binding reactions were conducted in a fluid volume of 20μl 

and contain the DNA substrate at 2nM, as well as the protein and other 

supplements as specified, although usually RecN reactions were performed in 

1xHB (page 41) supplemented with final concentrations of 5mM MgCl2, 1mM 

nucleotide and protein concentrations of 0-500nM. The binding reactions were 

then loaded onto the gel and run at 160Volts/Cm for 75 min. Once run the gel 

was dried using an air dryer (BIO-RAD model 583) and then the presence of 

radiolabeled DNA visualised by exposure to a phosphoimage screen 

(Molecular dynamics) and scanned (Molecular dynamics Storm scanner 840). 
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Chapter 3  
The essential nature of the OxyR regulon in 

the absence of recombination 

 

To isolate the genes involved in DNA repair, studies have often made use of 

random mutation and the detection of phenotypes, specifically, deficiencies in 

the process being studied. This includes studies into DSB repair, the 

enzymology of which has been well characterised in E. coli (as described in 

Chapter 1). Clark and Margulies identified the first recombination deficient 

mutants in 1965, by making mutation libraries of F- cells and identifying those 

mutants which had lost the ability to acquire genetic markers from Hfr strains. 

These mutants could not utilise HR and were therefore referred to as rec-. The 

first mutant found, named recA, was also shown to be sensitive to DNA 

damaging agents, in particular those, which are known to cause DSBs (Clark 

and Margulies 1965). Other rec- mutants were discovered later that year, 

initially identified as being sensitive to X-rays. They were subsequently shown 

to have reduced recombination efficiencies and were named recB and recC 

(Emmerson and Howard-Flanders 1965). Many of the other rec genes were 

discovered in a similar manner, including recN. Unfortunately, this 

methodology has limitations as it can only be used to identify genes that, when 

mutated, cause a detectable phenotype, which is actually being screened for at 

this time. Secondly, the function lost cannot be essential; otherwise, the cells 

will simply die.  Therefore, to identify novel genes involved in recombination, 

and in particular the repair of DSBs, a synthetic lethal screen, similar to that 

used in yeast  was used (Bender and Pringle 1991).  
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3.1 Identification of genes that are synthetically lethal 
with the recombination genes recB and recN 

The role of the recN gene product in the repair of DSBs is currently 

ambiguous. It may act very early in repair, flagging a DSB, or more likely acts 

later to ensure high fidelity repair of the break (Meddows et al. 2005; Sanchez 

et al. 2006). The recB gene product’s role is well defined, being one of the 

components of the RecBCD end processing complex that resects the ends of a 

break, allowing the initiation of homologous recombination (Spies et al. 2005). 

Therefore, my initial studies into double strand break repair began by 

examining the possibility that the recB and recN genes may have functions that 

have yet to be identified because these functions are masked by the 

overlapping activities of other gene products. To investigate this possibility I 

initiated a screen for mutations that are synthetically lethal with recB or recN 

null alleles. The analysis of such mutations might then provide insight into 

recombination and perhaps identify new cellular interactions that shed light on 

the role of RecN in particular. 

 Bernhardt and de Boer (2004) originally established the E. coli 

synthetic lethal screen adopted. The screen involves covering a chromosomal 

deletion of the gene to be studied with a functional copy of the gene borne on a 

derivative of plasmid pRC7. This is a low copy number, mini-F vector plasmid, 

which lacks the usual F-factor stabilisation system, and is therefore unstable 

(Figure 3.1 A) (Koop et al. 1987). The synthetic lethal screen relies on the 

unstable nature of this plasmid, as retention suggests a selection pressure acting 

to keep the plasmid in the cell. Derivatives of pRC7 were made which were 

either recB+ (pAM375) or recN+ (pSW101). The recN derivative included not 

only the coding sequence of the gene, but also its promoter to ensure the 

correct regulation of expression, while the recB gene expression was regulated 

by the lac promoter (Figure 3.1 B).  For screening purposes the plasmid carries 

the lacZYA reporter operon. Loss of the plasmid can therefore be detected in a 

Δlac background by the segregation of lac- clones. On media containing the β-

galactosidase indicator, X-gal, these lac- clones appear as white colonies or 

white sectors within a blue colony. Synthetic lethality between the primary 
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mutation, which is covered by a pRC7 derivative carrying the gene, and a 

secondary mutation is revealed when plasmid free clones fail to grow, resulting 

in uniformly blue colonies (Figure 3.1 C). 

The two pRC7 derivatives were transformed into a ΔlacZ background, 

which was also deficient in their respective gene, making activity dependent on 

the plasmid-borne copy (recN strain is SW1054 and recB strain AM1581). 

These strains all had a sectoring phenotype, indicating plasmid loss, on X-gal 

(Figure 3.1 C). The relevant plasmid-borne gene was able to complement for 

the known UV and mitomycin C sensitivity of a recB mutant and the 

mitomycin C sensitivity of a recN mutation. Mutant libraries were then made 

of these strains, using either the EZ::TN <KAN-2> Tnp Transposome kitTM 

(Epicentre), or phage λNK1327 (Kleckner et al. 1991), as described in Chapter 

2. Both methods randomly insert kan resistance genes into the genome. 

Screening was performed by plating the libraries onto LB agar plates 

supplemented with X-gal (6μg/ml), and IPTG (5mM). Colonies were allowed 

to grow at 37°C for 24-48 hours. Any colonies showing a solid blue phenotype, 

indicating retention of the plasmid, were purified onto fresh agar plates 

containing X-gal and IPTG (Figure 3.1 C). If they still had the solid blue 

phenotype, a stock of phage P1 was grown on the mutant isolate and the 

phenotype confirmed by transduction of the kanamycin resistance marker into 

the parental strain from which the mutant libraries were made. This was 

necessary as a relatively large number of colonies were actually shown to be 

false positives. During the screening, over 60 insertions in the recB screen and 

23 insertions in the recN screen were shown to be false positives (Table 3.1). 

In these instances the solid blue colony phenotype was not due to plasmid 

retention because of the gene it carried, but some other factor. Commonly, this 

was due to integration of the plasmid into the chromosome, although in some 

instances the mutations were found to have increased the stability of the 

plasmid. Once the synthetic lethal phenotype was confirmed, the location of 

kanamycin insertion was determined by sequencing.  
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Figure 3.1. Plasmid constructs used in the synthetic lethal screen. 

A) Plasmid map of the unstable mini-F plasmid pRC7, which was used in this 
study. 

B) Maps of the plasmid constructs derived from pRC7 containing either the recB 
or the recN gene coding sequence, which was cloned into them as shown by 
the additional arrows. The recN gene also had its promoter cloned with it 
(both constructs are described in Table 2.4). 

C) Screening for synthetic lethal mutations. Colonies were allowed to grow on 
X-gal containing media, resulting in either a sectoring or a solid blue colony 
phenotype. 

 

Despite screening several recN libraries, which included over 12,000 

separate insertion events, no synthetic lethal mutations were identified (table 

3.1). Although solid blue colonies were present, none of them could be 

reconstructed by a backcross (P1 transduction of the kan marker into the 



76 

 

parental strain). It would seem that there is no mutation, at least of a non-

essential gene, that is synthetically lethal with recN. This does not rule out the 

possibility of RecN protein having interaction or complex forming partners, but 

if they exist they are either essential to cell survival, or their absence is not 

lethal, even in the absence of RecN. However, I have to accept the possibility 

that mutations that cause synthetic lethality do exist and could be identified by 

transposon mutagenesis, but were missed by my screen. There are several 

thousand non-essential genes in E. coli. Although I screened 12,000 insertion 

events in total, the possibility of missing an insertion into one gene still exists, 

especially if the gene were to be smaller than average. 

In the case of the recB screen, seven synthetic lethal mutants were 

identified, all of which were located inside the rep gene (Figure 3.2). Two of 

the mutations were confirmed by sequencing. This was achieved, by colony 

PCR, using a set primer at the 3' end of the kanamycin resistance gene  

(EzKan-1) and an arbitrary primer (ARB-1) that will bind randomly within the 

E. coli genome. The product of this reaction was amplified if necessary by a 

secondary, nested, PCR (using EzKan-2 and ARB-2 primer set) and then 

sequenced (Figure 3.2 A). The identity of the other five mutations as rep 

insertions was confirmed by the introduction of a functional rep gene into to 

the chromosome allowing normal growth (Table 3.1). This data was 

supplemented by work by Dr. Akeel Mahdi (University of Nottingham), who 

also identified and sequenced two other recB synthetic lethal mutations, both 

of which were also in rep (Dr. Akeel Mahdi, personal communication) (Figure 

3.2 B).  
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Primary 
mutation 

Number of 
libraries 

made 

Estimated 
number of 

inserts 
screened 

Number 
of 

colonies 
screened 

Number of 
potential 
synthetic 

lethals found 

Confirmed 
synthetic 

lethal 
mutations 

recB 7 9,200 ~25,000 62 
7 + 1 

synthetically 
sick mutation

recN 14 12,450 ~50-
75,000 23 0 

Table 3.1 Table showing the scale of the synthetic lethal screens and number if 
mutations identified as interesting.  

Inserts screend is an estimate of the number of inserts made, colonies screened is 
estimated on plate numbers assuming 50-100 colonies per plate on average 

 

 

Figure 3.2. Locating mutations that are synthetically lethal with recB. 

A) Schematic showing the PCR reactions used to isolate and sequence the DNA 
fragment showing the location of the insertion. The kanamycin insertion is 
shown along with a piece of chromosomal DNA. The binding positions of the 
primary primer pair (EzKan-1 and ARB-2) and the nested primer pair 
(EzKan-2 and ARB-2) are also shown (Primers are defined in Table 2.6).  

B) Schematic of the rep gene modified from Korolev et al (1997), the coding 
sequence (light grey) and the promoter region (dark grey) are shown along 
with the conserved helicase (red) and TXGX motif (orange). The location of 
the four known inserts is also shown (triangles).  
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The  synthetic lethality of rep and recB mutations has already been 

documented (Uzest et al. 1995), but the repeated identification of rep did 

demonstrate the robust nature of the system and would seem to confirm that the 

absence of recN synthetic lethal mutations is a real result and not a fault of the 

system. The high incidence of rep inserts could also suggest that the gene is 

perhaps in a recombination ‘hotspot’. Although the insertions are random, 

there are regions of the chromosome that are more accessible and so these 

‘hotspots’ will accumulate a higher incidence of insertion events.  One of the 

rep insertions occurs within the promoter and presumably disrupts expression 

of the gene. The others disrupt the coding sequence and probably result in a 

truncation of the product, making it non-functional. Despite screening over 

9,000 mutants only one other mutation was identified as being synthetically 

lethal with recB. In fact it was not synthetically lethal as previously desfined. 

When tested, the strain gave an unusual phenotype on the indicator plates, 

yielding large blue and relatively small white colonies (Figure 3.3, row (I), 

strain SW1030). This ‘synthetically sick’ phenotype suggests that although the 

double mutant is viable, it is sick when compared to the recB+ strain. 

Therefore, RecB is not required for survival, but is important to full viability 

and growth of cells carrying this mutation (Figure 3.3). The mutation also has a 

phenotype in isolation, causing a significant defect in the growth rate (data not 

shown) and was identified as an insertion in a gene called ahpC. 

3.2 Mutations in the OxyR regulon are synthetically 
lethal with rec mutations 

The ahpC gene is a key component of the OxyR regulon. This regulon deals 

almost exclusively with the breakdown of H2O2 and although other detoxifying 

enzymes exist, ahpC is believed to encode the primary H2O2 detoxifying 

enzyme in E. coli (Storz et al. 1989; Tartaglia et al. 1989; Mukhopadhyay and 

Schellhorn 1997; Ochsner et al. 2000; Seaver and Imlay 2001a). The OxyR 

regulon, which is positively regulated by the OxyR protein in response to 

oxidative stress, also includes two catalases as well as other detoxifying 
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proteins that can remove H2O2. Therefore, in the absence of functional AhpC, 

the expression of other H2O2 scavenger can be upregulated by OxyR to 

compensate and reduce oxidative stress (Mukhopadhyay and Schellhorn 1997; 

Zheng et al. 1998; Ochsner et al. 2000; Volkert and Landini 2001). However, 

in the absence of OxyR, the genes in the regulon will either not be expressed at 

all, or at the very least will not be induced in response to oxidative stress. The 

complete loss of the oxidative stress response to H2O2, should be far more 

detrimental to the cell than the loss of a single H2O2 scavenger. 
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To test this, a full deletion of the oxyR gene was created using the 

Datsenko and Wanner (2000) recombinering method, replacing the oxyR gene 

coding sequence with an apramycin resistance cassette to give strain SW1039 

(Table 2.3). The deletion and insertion was confirmed by sequencing, and as 

expected, the oxyR deficient strain showed a marked sensitivity to H2O2 (Kullik 

et al. 1995). The oxyR deletion was then introduced as a secondary 

chromosomal mutation into the recB strain carrying a recB+ plasmid, derived 

from pRC7. When plated onto X-gal, white colonies were extremely rare and 

very small, suggesting that only cells that retained the plasmid can grow and 

produce colonies (Figure 3.3, row (I) strain SW1097). The oxyR mutation is 

therefore synthetically lethal with a recB mutation. Some interplay between 

recB, which is involved in DNA repair as well as recombination generally, and 

oxyR, which prevents the build-up of H2O2 would seem plausible, as recB has 

been identified as a factor in bacterial resistance to H2O2 (Stohl and Seifert 

2006).  
H2O2 is probably the principal endogenous ROS and even micromolar 

concentrations are extremely toxic, causing an array of DNA and other cellular 

damage (Seaver and Imlay 2001b). In the absence of oxyR, H2O2 can 

accumulate increasing the damage caused. However, the synthetic lethality 

between oxyR and recB may be due to a particular activity of recB, and not due 

to the cell’s reduced DNA repair ability because of the loss of HR. If 

recombination is required in an oxyR mutant then it would be expected that a 

recA deletion strain, which is almost completely recombination deficient, 

would also be synthetically lethal with oxyR. 

 To investigate this, a strain carrying a recA mutation covered by a 

pRC7 derived recA+ plasmid (N6121) had secondary ahpC and oxyR mutations 

introduced (strains SW1101 and SW1100 respectively). These two mutations 

had almost identical affects as in the recB background when plated on X-gal 

containing media, ahpC being synthetically sick, and oxyR synthetically lethal, 

with recA mutations (Figure 3.3, row (II)). This would suggest that the lethality 

is not specific to a function of RecB, but due to an inability of this strain to 

utilise recombination. Similar phenotypes were also seen when the ahpC and 
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oxyR mutations were placed into strains carrying mutations in ruvC, which 

encodes the only active E. coli Holliday junction resolvase (Bennett et al. 

1993; Mandal et al. 1993; Shah et al. 1997; Davies and West 1998), or in recG, 

which encodes a dsDNA translocase involved in both replication and 

recombination (Lloyd 1991; Lloyd and Sharples 1993a; Lloyd and Sharples 

1993c; Sharples et al. 1999; McGlynn and Lloyd 2001; Gregg et al. 2002; Wen 

et al. 2005). Within these genetic backgrounds the ahpC mutation only appears 

to be synthetically sick with ruvC (Figure 3.3, row (III), strain SW1145). With 

recG the colonies sector and the blue and white colonies formed are a similar 

size (Figure 3.4, row (IV), strain SW1124), suggesting that the RecG is not 

required for survival. However, an oxyR mutation is synthetically lethal with 

both recGand ruvC on LB (Figure 3.3, strains SW1120 and SW1135). It would 

appear that in the absence of H2O2 scavengers, cells are forced to rely on HR. 

Since ROS, in particular H2O2, cause DNA damage, it would seem likely that 

recombination is required to repair this DNA damage. Whether HR is needed 

to repair DSBs, or for the rescue of stalled replication forks is unclear.  

If the working hypothesis is true, that synthetic lethality between oxyR 

and the mutations in recombination genes is due to DNA damage caused by 

H2O2, then limiting accumulation of H2O2 should alleviate the synthetic 

lethality and restore a sectoring colony phenotype in the assays used. To reduce 

the endogenous concentration of H2O2, two methods were used. Firstly, 

attempts were made to remove the H2O2 generated, before it can do damage. 

Although AhpC is the primary endogenous H2O2 scavenger it is not the only 

one. Catalases are also part of the OxyR regulon and like AhpC they 

specifically breakdown H2O2 but, unlike AhpC, they only function efficiently 

when the H2O2 concentration exceeds 1μM (Seaver and Imlay 2001a). By 

supplementing the agar plates with catalase (150U/ml) it is possible to break 

down H2O2 present in the media, including any that may diffuse out of a cell 

across its membrane. Therefore, if the synthetic lethality observed for oxyR 

mutants is due to H2O2 it should be suppressed in the presence of catalase. 

Indeed, the presence of catalase did restore some viability, allowing white 

colonies to grow. However, the resulting phenotype suggests that the strains 
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are still synthetically sick, showing the associated phenotype, of large blue and 

small white colonies, except for the recG oxyR mutants which appeared to fully 

viable with similar sized blue sectoring and white colonies visible (Figure 3.3). 

The synthetically sick phenotype indicates that while the double mutants can 

survive, the white rec- colonies are sick and slower growing compared to those 

that are rec+. This suggests that the cells still benefit from having a functional 

recombination system. The inability to restore full viability may be a 

consequence of catalase failing to remove all the H2O2 from within the cell. 

Firstly, catalase can efficiently remove H2O2 only at a relatively high 

concentration (in excess of 1μM) (Seaver and Imlay 2001b; Seaver and Imlay 

2001a).  Secondly, the catalase is exogenous, so it can only remove H2O2 that 

has diffused out of the cells into the media. Although the activity of the 

catalase will ensure a large concentration gradient across the cell membrane, 

some H2O2 will remain within the cell. Therefore, it is not possible for 

exogenous catalase to prevent DNA damage because of H2O2 accumulation, 

resulting in a requirement for recombination to repair the damage in an OxyR 

deficient cell. 

The second method used to reduce the level of H2O2 within a cell is to 

limit its production. Endogenous H2O2 is generated as a by-product of electron 

transfer during respiration, therefore reducing respiration rates will result in 

reduced production of H2O2 (Beckman and Ames 1998; Storz and Imlay 1999; 

Seaver and Imlay 2004). Experiments in murine models suggest that calorie 

restriction can greatly reduce the rate of oxidative phosphorylation, which was 

linked to reduced rates of ageing (Aruoma et al. 1991; Sohal 2002). A similar 

affect to calorie restriction can be achieved in bacteria by reducing the 

available nutrients. To do this, cells were grown in LB broth and then plated 

onto minimal 56/2 salts agar supplemented with Cas-amino acids at 0.1%. Due 

to the slower growth rate plates were incubated for 72, rather than 48 hours, to 

allow colony formation prior to analysis. The restricted growth rates seem to 

largely restore viability to the all the oxyR strains, except for ruvC oxyR 

(Figure 3.3). However, the recB oxyR and recG oxyR double mutants remained 

a little sick, giving large blue colonies and smaller white colonies. The recA 
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oxyR strain had an unusual small, largely white colony phenotype, with only a 

small, central blue sectored zone within the colony (Figure 3.3). The small 

colony size could partly be due to the reduced growth rate of a recA deficient 

strain. Interestingly, the rapid sectoring of the colonies suggests rapid loss of 

the recA+ plasmid. Therefore, these cells may actually be more viable in the 

absence of recombination.  

The strains were also plated on minimal media, additionally 

supplemented with catalase. Compared to minimal media without catalase, no 

affect on the phenotype of the strains was observed, except for the ruvC oxyR 

strain, which was made viable, although it had a synthetically sick phenotype. 

This suggests that it is catalase which has the effect in this genetic background 

(data not shown). Growth of the ahpC strains on catalase supplemented LB 

media or on minimal media had no affect with all the strains showing a 

synthetically sick phenotype, as observed for growth on LB (data not shown). 

I used the recN+ derivative of pRC7 (pSW101) to investigate whether 

RecN was needed to maintain viability in the absence of AhpC or OxyR. The 

recN ahpC and recN oxyR cells proved to be viable (Figure 3.4), revealing that 

RecN is not required in either case. Therefore, it appears that unlike the other 

rec mutants, recN is not synthetically lethal with mutations in the oxidative 

stress response. This is somewhat surprising as ROS are known to induce DNA 

breakage and RecN is required to repair breaks. Perhaps the rate of break 

formation is low enough for the cell to cope without RecN. 

 

Figure 3.4. Synthetic 
lethality assay between 
recN and the oxidative 
response genes ahpC and 
oxyR. 

 

Mutations are introduced into the chromosome, with the recN mutation covered by a 
pRC7-derived plasmid construct (pSW101), so the strains are effectively recN+. The 
effect of introducing the secondary mutations is shown. All colonies were grown on 
LB agar supplemented with X-gal (6μg/ml) and IPTG (5mM), cells were allowed to 
grow for 48 hours before being photographed. The total percentage of blue colonies is 
indicated beneath each panel, with the blue/total colony number shown in parentheses. 
The strain name is shown above each panel. 
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3.3 Discussion 

The synthetic lethal screen initially proved promising for studies into recN, 

especially when its robustness was demonstrated via the isolation of rep 

mutations being synthetically lethal with recB. Despite these promising results, 

the screening did not lead to the discovery of any new recN interactions. 

However, this does not rule out the possibility of as yet unknown interactions, 

as the screen still has limitations. If the gene is essential, its activity cannot be 

lost, so it will not be identified. Also, even if an interaction does exist, this does 

not mean that the absence of the interacting partner would result in lethality in 

the absence of RecN.  

Nonetheless, this study proved fruitful, with the isolation of an ahpC 

mutation that had a synthetically sick phenotype in conjunction with recB. This 

led to the study of the affect of ahpC and its regulator oxyR when combined 

with various recombination deficient mutations. This is not the first time that 

the interplay between DNA repair and oxidative stress regulatory systems has 

been observed, as discussed previously in context of cellular responses that 

limit DNA damage (Section 1.2).  

All of the recombination genes studied were shown to be synthetically 

lethal with the oxyR deletion and this appears to be due to an inability of these 

cells to deal with H2O2, as the addition of catalase to growth media partially 

restored viability to all the oxyR rec-/ruv constructs examined. This would also 

seem to confirm studies that H2O2 is membrane soluble as it must diffuse out 

of the cell to be degraded by the catalase in the plates (Seaver and Imlay 

2001b). However, Seaver and Imlay (2001b) suggest that the permeability of 

the cell membrane to H2O2 is severely limited, which can lead to substantial 

differences between intra- and extracellular H2O2 concentrations. Yet, it is 

clearly adequate to reduce the cellular concentration of H2O2 to a level that is 

not lethal in the absence of recombination, suggesting that a substantial 

percentage of H2O2 can diffuse out of the cell. The synthetic lethality between 

the oxyR and rec genes highlights the interplay between DNA damage 

prevention and repair, if one system is inactivated then the cells become 

dependent on the other.  
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Intriguingly, it was not possible to restore full viability to all the oxyR 

strains by supplementing the plates with catalase as the strains still showed a 

synthetically sick phenotype. This suggests DNA damage, and therefore 

dependence on recombination, still occurred. A possible explanation for this is 

that in an oxyR mutant the ahpC gene cannot be expressed. Even when catalase 

is added not all of the H2O2 is removed, this requires the specialised activity of 

AhpC. Therefore, there is still a low level of H2O2, which leads to chronic 

DNA damage and in turn, a reliance on DNA repair systems, resulting in the 

synthetically sick phenotype. The same would occur in the ahpC rec-/ruv 

double mutants, explaining their sick phenotype. 

The almost identical phenotypes of the oxyR mutation in combination 

with recA, recB or ruvC, and a similar phenotype with recG, suggests that the 

inability to cope with H2O2 is due to the cells inability to undergo 

recombination. HR is crucial to DNA repair, specifically of DSBs and the 

restart of collapsed replication forks (Kuzminov 1995a; Hoeijmakers 2001; van 

Gent et al. 2001). As H2O2 is probably the major ROS, all of which cause 

DNA damage, it would seem apparent that recombination is needed to repair 

the DNA damage that results from the increased concentration of H2O2 present 

in the cell. However, ROS will principally cause single- and not double-

stranded damage and it is unlikely to generate DSBs directly, which would 

require recombination to correct. In fact, it is tempting to suggest that the 

principal issue will be single-stranded lesions leading to replication fork 

collapse and that recombination will be needed for fork restart. This may 

explain the less severe phenotype of the recG mutants. Generally, they are 

healthier than the other mutations, with recG ahpC being almost normal 

(although the blue colonies tend to be slightly more common and do not sector 

as readily) and recG oxyR mutants appearing completely healthy in the 

presence of catalase. RecG is known to promote HR, however it is not 

essential, but it has also been speculated to rescue stalled replication forks 

(McGlynn and Lloyd 2000; McGlynn and Lloyd 2001; McGlynn and Lloyd 

2002; Donaldson et al. 2004). If this is the case it maybe that RecG’s non-

essential role in HR means that it is only when the concentration of H2O2 is 
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quite high and therefore the DNA damage more severe, as in the recG oxyR 

mutant, that recG is essential. 

 A reliance on HR could also explain the observation that, unlike oxyR 

rec- strains, the oxyR ruvC strain remains synthetically lethal on minimal 

media, while oxyR recA mutants actually appear to favour a rec- phenotype. 

Although H2O2 production is reduced, the overall concentration is still 

probably higher than when catalase was present in the media. As a result, DNA 

damage is comparably more common. Alternative repair systems can probably 

cope with the majority of the single-strand damage caused, and since 

recombination can be genotoxic, resulting in a variety of genome 

rearrangements and deleterious mutations, using the alternative repair systems 

maybe favourable, limiting recombination under these conditions. This would 

explain the oxyR recA strains rapid plasmid loss, giving a completely rec- 

strain. However, if recombination is initiated then it must be completed. The 

activity of recB and recG is either not essential or can be replaced by other 

factors and so these strains show only a slight synthetically sick phenotype. 

However, ruvC encodes the sole active cellular resolvase, in its absence 

crossover products cannot be resolved and these genotoxic recombination 

intermediates accumulate in the cell. Therefore, it is essential to resolve these 

intermediates and so the cell requires ruvC, resulting in retention of the ruvC+ 

plasmid and the synthetically lethal phenotype observed on minimal media. 

 It is worth noting that this is not the first report to associate oxidative 

stress with a need for repair by HR. Numerous recombination genes, including 

recA and recBCD of E. coli, have been shown to be important for H2O2 

resistance (Linn and Imlay 1987; Asad et al. 1997; Konola et al. 2000; 

Bredeche et al. 2001; Erill et al. 2007). However, in the case of recA and 

recBCD mutants the affect is complicated as these mutants are not only 

compromised for HR, but also SOS induction. It is also noteworthy that OxyR 

can induce expression of at least one gene known to be involved in DNA 

repair, uvrD, which is involved in NER and MMR (Modrich 1994; 

Mukhopadhyay and Schellhorn 1997).  



88 

 

What this study does highlight is the reliance cells place on various 

systems to preserve the genome. DNA damage from ROS is unavoidable and 

cells therefore have a complex layered defence. Initially trying to prevent ROS 

accumulation and then repairing any damage that does occur. Even in the 

absence of one of these systems, a cell remains viable. Oxidative stress is also 

the primary cause of ageing, a result of cells accumulating DNA damage over 

time. In fact expression of the bacterial ahpC gene in eukaryotic cells can 

reduce nuclear DNA damage and prevent apoptosis (Lombard et al. 2005). 

Interestingly a recent paper on antibiotic action showed that the major 

difference between a bacteriostatic and bactericidal antibiotic is that the action 

of the bactericidal antibiotic results in increased levels of ROS within the cell 

(Kohanski et al. 2007). In an age when antibiotic resistance is becoming ever 

more prevalent, the potential of any target for antibiotic action is tempting for 

study. Inhibition of AhpC or OxyR could make cells more sensitive to 

bactericidal antibiotics and possibly even sensitise cells to antibiotics that have 

fallen into disuse due to the prevalence of antibiotic resistance. Overall, the 

importance of ROS scavengers to both the survival of the cell and maintenance 

of genomic integrity cannot be overstated.  
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Chapter 4  
RecN homologs can function in E. coli 

 

RecN is an integral part of the SOS response of many bacteria and has a key 

role in the repair of DSBs. It also appears to be relatively conserved and recN 

mutants have been generated, or identified, in several species, and all show 

similar phenotypes (Picksley et al. 1984a; Van Hoy and Hoch 1990; Sharples 

and Leach 1995; Funayama et al. 1999; Skaar et al. 2002; Wang and Maier 

2008). Despite this conservation, recN is not essential and during normal 

growth recN mutations cause only minor phenotypic affects. It is only when a 

cell is forced to rely on HR, for instance to repair DSBs, that the absence of 

recN becomes apparent (Picksley et al. 1985b; Sargentini and Smith 1986; 

Simic et al. 1991; Meddows et al. 2005; Erill et al. 2007). This chapter will 

explore how well RecN is conserved across species and what implications this 

may have for our understanding of its role in the cell. 

4.1 RecN homology  

A search of the TIGR database (http://cmr.tigr.org) shows that there is an 

annotated RecN homolog in all of the currently sequenced bacterial genomes 

(404 are currently complete as of the 2nd December 2008), with the exception 

of the Thermatoga species. The absence of RecN in this group could be due to 

incomplete annotation of these genomes. However, BLAST searches of the 

Thermatoga genomes and proteome, against several RecN sequences, 

including E. coli and A. aeolicus, as well as a consensus RecN sequence that 

was generated, failed to find a RecN homolog. The searches did identify a 

recF-like gene and the Thermatoga SMC protein. Both are SMC-like proteins 

and so share homology with RecN (Section 1.5). RecN is therefore not just 

well conserved, but essentially ubiquitous in bacterial genomes, suggesting that 

its function is also highly conserved and must be of great importance to a cell. 
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Alignment of the RecN protein sequences from several species shows 

that the proteins share considerable homology. However, this appears to be 

limited to the N- and C-terminal domains of RecN (Figure 4.1). These 

correspond to the globular domains that form the head of an SMC protein. The 

two globular domains of RecN contain well conserved motifs that have been 

identified as Walker A, Walker B and Signature motifs (Meddows 2002). 

These motifs can form between them a functional ATP binding and hydrolysis 

pocket, if brought together (Walker et al. 1982). The residues that are essential 

for ATPase activity are particularly well conserved, including K35 in the 

Walker A box, essential for ATP hydrolysis, and the FDE residues of the 

Walker B box, required for ATP binding.  

The Walker motifs are located at opposite termini of the protein (Figure 

4.1). However, to function they must be in proximity. The eukaryotic SMC 

proteins have a similar arrangement, with the head domains separated by a long 

coiled-coil region, which can fold back on itself, due to a central flexible 

‘hinge’ domain, thus bringing the globular heads together (Haering et al. 2002; 

Hirano 2005b). The central region of the RecN proteins show limited sequence 

conservation. This could represent the coiled-coil region, the sequence of 

which is of little consequence, as long as the structural form is conserved. 

There is, therefore, limited amino acid conservation in this region. It could 

even be advantageous for an organism to modify the coiled-coil depending on 

the environment it inhabits (Trivedi et al. 2006). Unfortunately, no conserved 

hinge domain could be identified. However, by examining the alignment data it 

was possible to estimate where the interfaces between the conserved globular 

and coiled-coil domains are located (for E. coli RecN, residues 1-152 are 

predicted to be the N-terminal domain and 390-553 the C-terminal domain) 

(Figure 4.1).  

Since sequence homology appears to be restricted to the globular 

domains, and the probable location of these can be predicted, it is therefore 

possible to align the globular domains separately, which is useful as RecN is 

small for an SMC family member. When the head domains of E. coli RecN and 

several known SMC proteins were aligned, homology was shown to be 
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extremely limited, almost exclusively in fact to the Walker and signature 

motifs (Figure 4.2). However, even SMC proteins from the same species show 

limited homology. It would seem that the best way to characterise an SMC 

protein is via structural and not sequence homology, as has been done for 

RecN (Sharples and Leach 1995).  
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4.2 RecN protein structure 

SMC proteins have a distinctive structure. Each SMC protein possesses two 

globular domains, one at the N-terminus and one at the C-terminus. These 

contain the conserved ATPase motifs and are separated by a long anti-parallel 

coiled-coil motif with a central flexible hinge domain. The hinge domain 

allows the protein to fold back on itself and it is via this intra-molecular folding 

that the globular domains are brought into contact to create the ‘head domain’. 

It is believed that the folded SMC proteins usually dimerise, and the 

association of the two head domains causes functional ATP binding pockets to 

form (Melby et al. 1998; Haering et al. 2002; Hirano and Hirano 2002; 

Hopfner and Tainer 2003; Cobbe and Heck 2004; Nasmyth and Haering 2005). 

RecN proteins share sequence homology (Figure 4.1). However, this is limited 

to the globular, head forming, domains. In contrast the homology between 

RecN and other SMC proteins is remote, limited almost entirely to the ATPase 

motifs (Chapter 4). It is therefore suggested that it is structural and not 

sequence homology that is important in recognising SMC family members and 

that perhaps this structural homology also represents functional homology 

(Sharples and Leach 1995).  

One of the most recognisable features of an SMC protein is its long 

coiled-coil region, the presence of which can be predicted via BLAST searches 

as was used to assign residues to the globular domains (figure 4.1). It is also 

possible to predict the likelihood of an individual residue belonging to a coiled-

coil motif in silico. Using the COILS software (Lupas 1991), it is possible to 

predict the locations and extent of the coiled-coil regions more accurately 

(Figure 4.3).  It is worth noting that the alpha helices that comprise a coiled-

coil are themselves extremely common structural elements of proteins and so 

false positives can occur (Lupas et al. 1991; Jones 1999; Offer et al. 2002). 

From the predictions of the COILS software the likelihood of residues 

belonging to a coiled-coil was plotted (Figure 4.3). As expected, the data 

suggest that the N- and C-terminus of the protein, previously assigned to the 

globular domains, have a very low probability of being part of a coiled-coil, 

while the central region has a high probability. In three of the plots (HiRecN, 
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AqRecN and BsRecN) there appears to be two distinct regions of coiled-coil 

motif, separated from each other by a region with a very low probability of 

being a coiled-coil (Figure 6.11). As the globular domains of RecN appear to 

be of a similar size to those of known SMC proteins (Figure 4.2), it would 

appear that the ‘missing’ residues of RecN would be part of the coiled-coil 

region. This means that if RecN does function as a cohesin-like protein and 

forms a ring structure to trap DNA, this ring, assuming RecN forms a dimer, 

would have a much smaller diameter (Haering et al. 2002; Gruber et al. 2003). 

As bacterial chromosomes are generally smaller and have less higher order 

structure than their eukaryotic counterparts, it is feasible that two or more DNA 

strands could fit within a RecN ring, allowing RecN to function as a cohesin-

like molecule (Chapter 1). However, evidence from B. subtilis suggests RecN 

forms an octameric, rather than a dimeric, protein complex (Kidane et al. 

2004).  

The identification of a central region of low coiled-coil probability 

gives a possible location for the, as yet unidentified, hinge domain of RecN 

(Figure 4.3). The hinge is crucial to the function of SMC proteins as it is 

essential to folding of the molecule and believed to mediate several activities 

including dimerisation and loading onto DNA (Hirano et al. 2001; Hirano and 

Hirano 2002; Gruber et al. 2006; Hirano and Hirano 2006). This would suggest 

that some sequence conservation in this region should be expected. However, 

the hinge domain of EcRecN and BfRecN remains indistinct, with several 

central regions of low coiled-coil probability. By isolating and aligning the 

region independently I tried to detect the hinge domain and any conserved 

sequences and identify the location of EcRecN and BfRecN hinges. Therefore, 

I performed sequence alignments of the 70 residues in and around the proposed 

hinge domains (Figure 4.4).  
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Figure 4.3. Graphs showing the likelihood of each individual residue belonging to 
a coiled-coil motif for several RecN proteins. 

The likelihood of a residue belonging to a coiled-coil motif was predicted using the 
COILS software (Lupas 1991) and plotted against its position within RecN. This is 
shown for all the RecN proteins which have been part of this study and also BsRecN. 
The black arrow shows the 70 amino acid sequence aligned as part of the hinge studies 
and identified as the likely hinge region. The generalised structure of RecN compares 
the coiled-coil prediction for HiRecN to the proposed structure of RecN and how it 
can fold bringing the globular domains together as well as what regions of the plot 
belong to which domain of the protein. 
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The alignment of the sequences around the proposed hinge regions, 

allowed the identification of the likely EcRecN and BfRecN hinges (Figure 

6.11, black arrows). When these sequences were aligned they can be seen to 

share a reasonable degree of similarity, with the hinge showing an elevated 

level of sequence similarity and identity compared to the full-length protein 

(Figure 6.12 B and C). When the full-length proteins were aligned (Figure 4.1) 

no hinge domain was detectable. It may be possible in the future to use this 

information to target site directed mutagenesis on residues likely to be essential 

to hinge function, especially as in vivo and in vitro assays are now available for 

RecN function.  

 

 

Figure 4.4. Relationship of RecN proteins using clustalW v1.83. 

A) The sequence alignment for the 70 residues that correspond to the hinge 
regions of the RecN proteins, as proposed by the coiled-coil predictions 
(Figure 6.11). The alignment was performed in MacVector 9.5.2 using 
clustalW v1.83. 

B) Table showing the percentage of sequence identity (black) and 
similarity (blue) of the 70 residue of the hinge region alone. 

C) Table showing the percentage of sequence identity (black) and 
similarity (blue) for the full length of the RecN proteins.  

 

The homology between the globular domains of RecN proteins suggests 

conservation and it is plausible that this is adequate to allow them to share 

functionality. It was therefore decided to test RecN homologs for their ability 
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to function in E. coli, in place of the E. coli RecN (EcRecN). It was also hoped 

that these homologs could then be used for in vitro studies, which has not been 

feasible for the E. coli protein. 

4.3 Heterologous genetics 

Initially, three bacterial RecN homologs were tested for their ability to replace 

EcRecN in vivo. These homologs were cloned from Haemophilus influenzae 

(HiRecN), a bacterium closely related to E. coli, Bacteriodes fragilis 

(BfRecN), an obligate anaerobe that lives in the gut and Aquifex aeolicus 

(AqRecN), a hyperthermophile, found in hot water springs, growing at 

temperatures in excess of 90°C. Aquifex aeolicus is part of the earliest 

branching families within the bacterial domain (Deckert et al. 1998). 

To test complementation, strains were constructed (Dr. Jane Grove, 

University of Nottingham) whereby the coding sequence of the EcRecN was 

replaced with that of the homolog on the chromosome, whilst leaving the E. 

coli recN promoter sequences intact. This produced a heterologous strain that 

expresses a RecN homolog in place of EcRecN and eliminated any issues 

associated with expression from a plasmid or from inducible promoter systems. 

Replacement of EcRecN first required a full deletion of the coding sequence, 

using the recombineering method described by Datsenko and Wanner (2000) to 

insert a trimethoprim resistance marker in its place (Datsenko and Wanner 

2000). Once the deletion was created, the same protocol was used to insert the 

homologous recN coding sequences, replacing the trimethoprim resistance 

cassette with the alternative RecN protein coding sequence linked to a 

kanamycin resistance marker downstream. 

To do this, PCR primers were designed to allow cloning of the coding 

sequences of the RecN homologs, into a plasmid (pJG75). This allowed the 

cloned sequence to be flanked by the E. coli recN promoter sequence at the 5' 

end and a kanamycin resistance cassette at the 3' end. The resulting plasmid 

provided a template for generating PCR products for recombineering 

(Datsenko and Wanner 2000) the hybrid gene into the chromosome of E. coli 

(Figure 4.5). The linked kanamycin resistance gene allows movement of the 
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hybrid recN construct into different E. coli genetic backgrounds via P1 

transduction (Chapter 2). All of the chromosomal integrants were sequenced to 

confirm their identity and correct integration. This showed a silent, C to T 

transition, in codon 39 (valine) of the H. influenzae recN sequence, when 

compared to that published in GenBank. These heterologous strains are 

designed to express a RecN homolog in place of the E. coli protein, with 

expression regulated by the E. coli recN promoter sequence (Figure 4.5, strains 

made are listed in Table 2.3, plasmid constructs in Table 2.5).  

 

Figure 4.5. Constructing 
heterologous RecN E. coli 
strains. 

Primer positions are shown, 
with colours suggesting 
homology. Dashed outlines 
indicating chromosomal DNA. 

A) The E. coli recN 
coding sequence (green) is 
deleted and replaced with an 
antibiotic resistance cassette 
(red). Using the Datsenko and 
Wanner method (Chapter 2). 
To create a ΔrecN strain this is 
then used in the construction 
of heterologous recN strains 
B) The recN coding 
sequence from another 
bacteria (purple) is amplified 
by PCR and cloned into vector 
pJG75, between the E. coli 
recN promoter and a 
kanamycin resistance gene. 
This plasmid is used to 
generate a PCR product with 
the recN homolog and the 

kanamycin reistance gene cloned onto a DNA fragment flanked by sequences 
homologous to the  E. coli chromosome and containing a kanamycin resistance 
gene as a marker 

C) The PCR product is used to replace the chromosomal antibiotic resistance 
cassette. This creates a heterologous strain that expresses the AqRecN (JIG652), 
BfRecN (JIG655) or HiRecN (JIG645) (regulated by the EcRecN promoter (dark 
red). As a control an E. coli recN construct was produced with the kanamycin 
resistance downstream and shown to behave as a wild-type strain (JIG725). 
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4.4. H. influenzae RecN can function instead of E. coli 
RecN in vivo 

The major phenotype of a RecN deficient cell results from an inability to repair 

DSBs, which manifests as sensitivity to any agent that causes DSBs. Therefore, 

to ascertain if the RecN homologs could complement for EcRecN in vivo, the 

heterologous strains were assessed as to how well they survive DSBs generated 

by I-SceI.  

4.4.1 The I-SceI cleavage system 

This system allows DSBs to be generated in an inducible, site-specific manner, 

using I-SceI homing endonuclease from yeast, which cuts DNA at a specific 

14bp site, not found naturally in the E. coli chromosome (Meddows et al. 

2004). Both cleavage sites and an arabinose inducible I-SceI expression 

cassette have been engineered into the E. coli chromosome at specific loci 

(Figure 4.4). Addition of arabinose to these strains during growth allows 

expression of I-SceI (Guzman et al. 1995), causing a DSB at the cleavage site 

(Meddows 2002).  

 The effect of transient induction of I-SceI on cell survival is readily 

measured by comparing the viable cell count per ml of a glucose fed culture 

with a sample of the same culture fed with arabinose. Studies have shown that 

even an essentially wild-type E. coli strain is sensitive to DSBs generated by I-

SceI, with only 10-15% of cells surviving under the assay conditions 

established. A ∆recN strain is yet more sensitive, with cell survival below 0.1% 

(Grove et al. 2008).  

 

Figure 4.6. I-SceI induced cleavage of the  
E. coli chromosome. 

Addition of arabinose induces expression of   
I-SceI (blue circles) from an expression 
cassette (blue square). Cleavage occurs at 
defined sites (red rectangle). Pre-replicated 
regions provide a template for repair 
(Meddows 2002). 
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4.4.2 Survival of heterologous strains after transient I-SceI 
expression 

To assess the ability of the hybrid recN genes to function in E. coli, the genes 

were introduced into a strain carrying an I-SceI expression cassette in the attB 

gene locus and I-SceI cleavage site engineered into lacZ. This allowed me to 

assess whether the heterologous RecNs could promote repair of DSBs. 

All the strains are sensitive to DSBs generated by I-SceI (Figure 4.7). 

However, the survival of a ΔrecN strain (JIG628) is reduced over a 100-fold 

compared to the wild-type (JIG509) (Figure 4.7). When the heterologous 

strains were assayed it is readily apparent that only the strain carrying the H. 

influenzae recN hybrid gene (JIG646) has a viability comparable to wild-type 

(Figure 4.7 A and B).  

These results were further analysed by experiments where the I-SceI 

exposure was continuous over a two hour period and the decrease in viable 

cells measured (Figure 4.8). In the absence of RecN the viable cell count 

diminished rapidly compared to the wild-type E. coli. However, in this case it 

can be clearly seen that the strain carrying the H. influenzae recN hybrid gene 

survived as well as the wild-type. Meanwhile the other hybrids showed 

severely compromised survival and were clearly more sensitive to the DSBs 

caused by I-SceI. It would appear that only the RecN from H. influenzae can 

complement for it’s E. coli homolog and facilitate repair of the DSBs induced 

by I-SceI. 
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Figure 4.7. I-SceI viabilities of E. coli strains expressing RecN homologs. 

All strains carry an I-SceI expression cassette and a cleavage site. The strains used are 
otherwise wild-type strain (JIG509, green n = 9), ΔrecN (JIG628, red, n = 4), or 
heterologous strains expressing HiRecN (JIG646, purple n = 4), AqRecN (JIG653, 
orange n = 4) or BfRecN (JIG656, light blue n = 3).  

A) Serial dilution and spotting of 10μl of culture grown with or without transient 
induction of I-SceI for 35min. Error bars are standard error of the mean for 
combined data set number of repeats is shown for each strain by the n value. 

B)  Graph showing the average viabilities after transient I-SceI exposure.  
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Figure 4.8. Long term I-SceI 
viability of heterologous strains 
over two hours. 

All strains carry an I-SceI expression 
cassette and a cleavage site. The 
strains used are otherwise wild-type 
strain (JIG509, green n = 8), ΔrecN 
(JIG628, red n = 4), or heterologous 
strains expressing HiRecN (JIG646, 
purple n = 3), AqRecN (JIG653, 
orange n = 3) or BfRecN (JIG656, 
light blue n = 3). Error bars are not 
shown as they are too small on the 
logarithmic scale used 

 

 

 

4.4.3 Complementation of mitomycin C sensitivity 

It has been noted that recN mutations show variable sensitivity to different 

DSB causing agents, when compared to recombination deficient strains such as 

recA mutants, which are consistently extremely sick after exposure to such 

agents. This may reflect different structures or types of break (Picksley et al. 

1984a; Kosa et al. 2004). Therefore, although HiRecN could complement for 

EcRecN in respect to I-SceI induced breaks the question remains can it 

complement when DSBs are formed by other methods? The sensitivity of recN 

mutants to mitomycin C is well documented not only for E. coli, but several 

other species as well (Iyer and Szybalski 1963; Picksley et al. 1984a; 

Mascarenhas et al. 2006; Wang and Maier 2008). Although mitomycin C does 

not cause DSBs directly, it is useful to ascertain the functionality of the RecN 

homologs strains in vivo. 

The hybrid recN genes were transduced into an MG1655 E. coli 

background and these constructs grown to an OD650 of 0.48 before testing for 

sensitivity to mitomycin C. A simple streak test showed that the HiRecN 

protein could confer resistance (Figure 4.9 A). A semi-quantitative spot 

dilution revealed that this protein is as effective as the wild-type E. coli RecN, 

conferring resistance to mitomycin C (Figure 4.9 B).  
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Figure 4.9. Sensitivity of E. coli strains to the DNA damaging agent mitomycin C. 

A) 10μl of culture at OD650 of 0.48 were streaked directly onto LB agar plates 
with and without mitomycin C at a concentration of 0.5μg/ml. Wild-type 
(MG1655), H. influenzae hybrid (JIG645) and ΔrecN (JIG625) strains were 
tested. 

B) Serial dilution 10 -1 - 10-5 of culture at OD650 0.48 was spotted (10μl) onto LB 
± mitomycin C at 0.5μg/ml. 

 

4.4.4 Complementation of Ionising Radiation sensitivity  

One of the first phenotypes identified for a recN mutation was sensitivity to IR 

(Picksley et al. 1984a), which causes DSBs in a dose dependent manner (Ward 

1975; Ward 1988). E. coli strains carrying recN mutations have an intermediate 

sensitivity to IR, when compared to a wild-type and a ∆recA strain. When the 

heterologous HiRecN E. coli strain was exposed to IR, it was as resistant as a 

wild-type E. coli. It appears that HiRecN functions as effectively as EcRecN, 

fully complementing an array of phenotypes associated with RecN deficiency 

(Figure 4.10). 
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Figure 4.10. Sensitivity of the hybrid         
H. influenzae RecN and other E. coli strains 
to IR 

Comparison of MG1655 (wild-type, open 
green circles), the heterologous HiRecN 
expressing strain (closed, purple squares, 
JIG646), an E. coli ΔrecN (open red squares, 
TRM160) and a ΔrecA strain (open light blue 
circles, N4279). Survival is plotted against 
increasing doses of IR. All experiments were 
repeated three times, no error bars are visible 
on the logarithmic scale used. 

 

 
 
 
4.5 Discussion 

4.5.1 Conservation of RecN 

Sequence analysis suggests that RecN is well conserved within the bacterial 

kingdom. Although, actual sequence conservation is limited to the globular 

domains, with the ATPase motifs being particularly well conserved. There us 

considerable structural homology between both the RecN proteins and SMC 

proteins. The preservation of RecN throughout bacterial species, suggests it has 

an important role in the cell. However, mutants and deletions can be generated, 

which under normal growth conditions are healthy, except for a moderate 

induction of the SOS response (Simic et al. 1991). RecN shares limited 

sequence homology, but does have structural homology, with the SMC family 

of proteins (Sharples and Leach 1995). This is despite this protein being much 

smaller (approximately a third the size) of many of the SMC proteins.  

However, even closely related SMC proteins have limited sequence homology, 

with their relationships being determined by structural and functional 

homology. The only way to determine if RecNs structural resemblance to an 



106 

 

SMC protein relates to a functional homology is to identify its activities in 

vitro and in vivo and compare them to those of SMC proteins. 

 

4.5.2 Conservation of RecN function between homologs 

Out of the RecN homologs studied, only HiRecN could replace the function of 

EcRecN. The inability of the A. aeolicus and B. fragilis RecN to function in E. 

coli could be due to several factors. Both of these proteins show greater 

sequence divergence from the E. coli protein, than HiRecN. This could suggest 

that RecN has conserved interaction partners in the cell and the more divergent 

RecN proteins simply cannot interact with the E. coli RecN partners. This 

would fit with the data on SMC proteins, which form complexes with non-

SMC proteins (Section 1.5) that are essential for function (Haering and 

Nasmyth 2003; Hirano and Hirano 2004; Nasmyth and Haering 2005).  

 An alternative hypothesis could be that B. fragilis and A. aeolicus RecN 

are inadequately expressed, at least in an active form, within E. coli. 

Expression of RecN is massively induced during the SOS response, making it 

one of the most abundant proteins in E. coli under these conditions (Finch et al. 

1985a). Even though the E. coli promoter regulates the expression of the RecN 

homologs and consequently the mRNA should be expressed as if they were the 

E. coli protein, this does not mean that the subsequent translation and correct 

protein folding occur. B. fragilis shares similar codon usage to E. coli. 

Therefore, E. coli cells should be able to translate B. fragilis RecN mRNA 

efficiently. However, issues with expression could be particularly relevant for 

the AqRecN. A. aeolicus is a hyperthermophile, found in hot water springs. It 

grows in conditions where temperatures exceed 90˚C and makes use of several 

codons that are rare in E. coli. This could severely limit the expression of A. 

aeolicus proteins within E. coli cells. Secondly, its proteins have to be active 

and stable at elevated temperatures and it could simply be that although the 

AqRecN is produced, it cannot function at 37˚C. Testing activity in vivo at 

elevated temperatures (42˚C) showed no improvement (data not shown). 

However, even 42°C is still relatively low for A. aeolicus growth. 
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4.5.3 Summary  

RecN is an almost ubiquitous within the largest domain of life on earth. Yet 

how RecN functions and what role it plays in DSB repair remain unknown. 

The study of RecN should provide a useful new insight into the repair of DSBs 

and genome dynamics in bacteria. To date analysis of RecN’s function in E. 

coli has been limited to genetics as the protein cannot be isolated. However, 

here I have identified a RecN homolog from H. influenzae that appears to fully 

substitute for E. coli RecN. It could therefore be studied instead of the E. coli 

protein. Any in vitro activities discovered should be applicable to the E. coli 

protein (Chapters 5 and 6).  
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Chapter 5  
Purification of RecN 

Despite the discovery of the recN gene in E. coli over 20 years ago and the 

subsequent studies into its genetics, remarkably little is known about the 

biochemical activities of RecN. The only major biochemical data comes from 

studies of BsRecN, and to date these have not been fully conclusive or 

reconciled with the data available on the E. coli protein (Section 1.5). 

However, the purification of functional E. coli RecN has not been successful, 

largely due to its insoluble nature (Meddows 2002; Neher et al. 2006).  

Since BsRecN has been purified successfully (Kidane et al. 2004; 

Sanchez and Alonso 2005), it seemed possible that the insolubility of EcRecN 

is specific to this protein and not an inherent property of RecN proteins in 

general. This raised the possibility of purifying and studying other EcRecN 

homologs. In Chapter 4, the ubiquity of RecN in bacteria was highlighted, 

along with the ability of the recN gene from H. influenzae, to complement in 

vivo for a deletion of the E. coli gene. This means that studies of the               

H. influenzae protein (HiRecN) could provide data that is applicable to 

EcRecN. 

Even though HiRecN was the only homolog to function in place of 

EcRecN, purification of all three RecN homologs described in Chapter 4 was 

attempted. These three have different physical properties (Table 5.1), therefore 

it was hoped that one or more might be purified, and in a functional form. If 

more than one RecN could be purified, their comparison would allow 

definition of intrinsic, and species-specific attributes. In this chapter the 

successful expression and purification of all three RecN homologs; HiRecN,    

A. Aeolicus RecN (AqRecN) and B. fragilis RecN (BfRecN) is described, with 

particular reference to the purification of HiRecN. 
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Table 5.1. The physical properties of E. coli RecN homologs.  

RecNa 

homolog 
Nucleotide 

number 
Amino 
acids 

Mass 
(kDa) 

Predicted 
pI 

% amino 
acid 

identity to 
E. coli 
RecN 

E. coli 1662 553 61.37 5.24 100 

H. influenzae 1677 558 62.63 4.59 48 

A. aeolicus 1563 520 60.43 4.74 20 

B. fragilis 1686 561 62.93 4.84 34 

B. subtilis 1731 576 64.48 4.80 30 
a These proteins have either been purified, or their purification attempted. 
Those in red were examined in this study. 

 
5.1 Expression of RecN proteins in E. coli  

The proteins were expressed in E. coli using a variety of plasmid constructs 

(Table 5.2), production of which is described in Chapter 2. All of the 

constructs were sequenced to confirm their identity. Initially, the RecN 

homologs were screened to determine if they could be expressed in E. coli. 

Cultures were grown at 37°C, in the presence of appropriate antibiotics and 

trials were performed by growing two 8ml cultures in parallel. When they 

reached an OD650 of 0.4, one of the cultures was induced (Table 5.2) to express 

the RecN homolog before incubating for a further four hours. The cells were 

then harvested by centrifugation and lysed by re-suspending the cell pellets in 

1ml of SDS-PAGE running buffer. Samples of both induced and non-induced 

cultures were then analysed by SDS-PAGE. Both BfRecN and HiRecN were 

induced (Figure 5.1), with protein bands of about the correct size being visible 

on the gel. Unfortunately, although the AqRecN appeared to be expressed, its 

yield was relatively low compared to the other two RecN proteins (Figure 5.1).  

 

 



110 

 

Table 5.2 Expression vectors used to express RecN homologs in this study.  

Expressed 
protein 

Expression 
vector 

Vector 
backbone 

Mode of 
induction 

Expressed in 
strain 

H. influenzae  pJG71 pLau17 Arabinosea MG1655 

A. aeolicus pTRM129 pET3a IPTGb BL-21(DE3) 
pLysS  

B. fragilis pJG99 pLau17 Arabinosea MG1655 

a 0.2% final concentration  
b 5mM final concentration 

 

Figure 5.1. Small-scale overexpression of RecN homologs. 

Total proteome of cultures uninduced (-), or induced (+) to express the RecN protein 
indicated. Size markers are in lane M with relevant sizes marked (kDa). 
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5.2 Purification of RecN from H. influenzae  

To determine whether HiRecN is soluble, induced cells were harvested, lysed 

by sonication in lysis buffer (50mM Tris-HCl, pH7.5, 150mM NaCl) and then 

clarified by high-speed centrifugation (15,000g, 30min). When samples of both 

the supernatant and the resuspended cell pellet were run on a polyacrylamide 

gel, the HiRecN was found almost exclusively in the soluble fraction (Figure 

5.2). 

The solubility of a protein in solution can be decreased by the addition 

of ammonium sulphate ((NH4)2SO4). Different proteins will precipitate at 

different (NH4)2SO4 concentrations, allowing a cell extract to be fractionated 

(Chapter 2). The amount of (NH4)2SO4 required to precipitate HiRecN was 

determined in a small-scale trial. The soluble protein fraction, from cells 

induced to express HiRecN, was isolated. (NH4)2SO4 was added to reach a set 

percentage of saturation, and proteins allowed to precipitate for 1 hour at 4°C; 

the solution was then clarified by centrifugation before increasing the 

(NH4)2SO4 concentration and repeating precipitation. Samples of the pellet 

after each concentration were then analysed by SDS-PAGE. The HiRecN was 

found in the 60% saturation pellet, but is not in the 40% pellet (Figure 5.3).  

 

Figure 5.2. The soluble and insoluble proteome of E. 
coli cells induced to express HiRecN. 

Polyacrylamide gel showing insoluble proteins, present 
in the pellet (Lane P) and soluble proteins are present in 
the supernatant (Lane S). Size markers are in Lane M, 
with appropriate size markers shown (kDa). 

  

 

 

 

 

 

 



112 

 

Figure 5.3. Ammonium 
sulphate precipitation of E. coli 
cell extracts containing 
HiRecN. 

Cell extract (lane E) was treated 
to raise the (NH4)2SO4  
concentration to the percentage of 
total saturation indicated. 
Samples of precipitated proteins 
analysed on a SDS-PAGE gel. 
HiRecN protein (*) is present in 
the cell extract and 60% sample. 
Size markers are in lane M, with 
relevant sizes marked (kDa). 

 

 

To scale up the purification, cells from 400ml of culture, grown 

aerobically at 37°C and induced to express HiRecN for four hours after 

reaching an OD650 of 0.4, were harvested and the pellet stored overnight at       

-80°C.  The cells were then resuspended in 0.01 cell volumes of lysis buffer 

and lysed by sonication on ice, after which the soluble fraction was isolated by 

centrifugation (15,000g, 30min). This was precipitated with (NH4)2SO4 at a 

concentration of 40%. The pellet discarded and then the remaining cell extract 

precipitated with (NH4)2SO4 at a concentration of 60% saturation, this time the 

pellet was retained. The (NH4)2SO4 precipitation was performed at 4°C, with 

each precipitation being left for one hour before isolation of the pellet.  

HiRecN was then further purified by chromatography at 4°C, using an 

ÄKTA FPLC system (GE Healthcare). All of the columns used were purchased 

pre-packed from GE Healthcare, unless stated otherwise.  The (NH4)2SO4 

pellet was resuspended in buffer A (50mM Tris-HCl pH7.5, 1mM EDTA, 

1mM DTT) supplemented with 1 M (NH4)2SO4 and loaded onto a 20ml Hiprep 

16/10 FF Phenyl-sepharose hydrophobic interaction column. Proteins were 

eluted, with a gradient of (NH4)2SO4 from one to zero Molar, across ten 

column volumes (CV), in buffer A. HiRecN eluted between 500-350mM 

(NH4)2SO4 (conductivity of 82 – 62mS/cm) (Figure 5.4). 

Fractions containing HiRecN (Figure 5.4) were pooled, and diluted 

with buffer A so as to reduce the salt concentration, allowing HiRecN to bind 
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2x5ml Hitrap Q HP ion exchange columns. Typically, this required dilution so 

that the final conductivity was less than 20mS/cm. The diluted fractions were 

then loaded onto the column, the column washed with 0.2M NaCl in buffer A, 

and proteins eluted with a salt gradient, over 10 CV, of 0.2-1.0M NaCl in 

buffer A. There were two distinct peaks of material eluted from the column, as 

indicated by the UV absorbance trace (Figure 5.5). The first occured between 

350-380mM NaCl (conductivity of 38-45mS/cm) and the second at 450-

500mM NaCl (58-62mS/cm conductivity). SDS-PAGE analysis indicated that 

only the first peak contained HiRecN. The second contained no protein 

material (by SDS-PAGE). Ethidium bromide staining of an agarose gel 

revealed that these fractions contained DNA (data not shown) and it seems 

therefore that the observed UV absorbance was due to the elution of DNA 

(Figure 5.5). 

The fractions containing HiRecN (Figure 5.5) were pooled once again 

and diluted with buffer A, so that the conductivity was <10mS/cm. This 

allowed purification of the HiRecN using a 5ml heparin column. HiRecN will 

not adhere to the heparin column, but several contaminants do (Figure 5.6). 

However, after the protein is washed through the sample required 

concentrating, so as to reduce total volume for handling and loading onto the 

next column. Therefore, a 1ml Hitrap HP Q column, was placed in series with 

the heparin column. The HiRecN binds to the Q column after it has passed 

through the heparin column. The heparin column was then removed and the 

proteins eluted from the 1ml Q column. HiRecN was found in the first peak of 

the UV trace at 350-380mM NaCl (Conductivity of 58-62mS/cm) (Figure 5.6). 

The pooled fractions containing HiRecN (Figure 5.6) were then run on 

a Hiprep 16/60 Sephacryl S-300 HR size exclusion column (GE Healthcare), in 

gel filtration buffer (50mM Tris-HCl, pH7.5, 100mM NaCl). This column 

separates proteins and protein complexes based on their apparent size; the 

larger they are, the sooner they elute. It is possible to use this to estimate a 

protein’s size, from its elution volume, by comparing to the elution volumes of 

known size standards. HiRecN elutes early, in the first peak seen (Figure 5.7), 

at a volume of 40.0-54.1ml (median of peak is at 46.3ml). By comparison to 
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the elution volume of knwon proteins (Figure 5.7) it is possible to estimate the 

size of these complexes and the elution volume of HiRecN suggests a protein 

complex of 650-156kDa (325kDa) in size. The formation of large RecN 

complexes would fit with data on BsRecN, which forms large protein 

complexes in vivo and in vitro (Kidane et al. 2004; Sanchez et al. 2007a). 

Unfortunately, gel filtration does not provide a definitive measure of protein 

size as it assumes the protein is globular. However, SMC proteins have 

elongated forms with the coiled-coil domains protruding away from the 

molecule (Melby et al. 1998; Hirano 2002). This would increase their apparent 

size, or Stokes radius, drastically. The increased Stokes radius of RecN will 

therefore make it appear to run on a gel filtration column as a far larger protein 

than it actually is. Yet, gel filtration does suggest that RecN forms some type 

of Homeric complex in solution. Importantly, the size exclusion column did 

further the purification of HiRecN, removing two contaminating proteins, both 

of which ran as smaller species on the column, but one actually appears larger 

upon SDS-PAGE analysis (Figure 5.7). 

As a final purification and concentration step, fractions containing 

HiRecN were loaded onto a Mono Q HR 5/5 ion exchange column. The 

column was washed with 0.2M NaCl in buffer A and bound proteins eluted 

across a gradient of 0.2 – 0.5M NaCl, over 20CVs in buffer A. This time there 

was only a single UV absorbance peak, which was shown to contain the 

HiRecN, which appears to be pure on an SDS-PAGE gel (Figure 5.8). The 

fractions containing pure HiRecN were pooled and dialysed, against a storage 

buffer (50mM Tris-HCl, pH7.5, 100mM NaCl), in which the protein is stable 

for at least two weeks, at 4°C (data not shown). Glycerol could not be used as a 

cryoprotectant for freezing, as it was found to interfere with activity (Chapter 

6). Once dialysed, the protein concentration as determined by the Bio-Rad 

protein assay (Bio-Rad) with BSA as the standard was approximately 4mg/ml. 

The identity of the protein was confirmed by MALDI-PMF fingerprinting 

(University of Nottingham, BSAU). This compares the trypsin digest profile of 

the protein, as seen by mass spectrometry, to those in the SWISS-Prot and 

TrEMBL databases. 
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Figure 5.4. Purification of HiRecN using a 20ml Hiprep 16/10 FF Phenyl-
sepharose column. 

A) Trace showing the UV absorbance (blue line), conductivity (brown line) and 
the concentration of buffer B (buffer A + 1M (NH4)2SO4) (green line). The 
UV absorbance peaks suggest where proteins are eluted.  

B) Samples from fractions coinciding with the UV peaks were loaded onto an 
SDS-PAGE gel, as indicated. Size markers, with relevant sizes marked (kDa), 
are shown. LD indicates load material and the fractions pooled for further 
purification (containing the HiRecN) are boxed in red on the gel and indicated 
on the trace (A). 
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Figure 5.5. Purification of HiRecN using 2 x 5ml Q HP columns. 

A) Trace showing the UV absorbance (blue line), conductivity (brown line) and 
the concentration of buffer B (buffer A + 1M NaCl) (green line). The UV 
absorbance peaks suggest where proteins are eluted.  

B) Samples from fractions coinciding with the UV peaks were loaded onto an 
SDS-PAGE gel, as indicated. Size markers, with relevant sizes marked 
(kDa), are shown. LD indicates load material and the fractions pooled for 
further purification (containing the HiRecN) are boxed in red on the gel and 
indicated on the trace (A). 
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Figure 5.6. Purification of HiRecN using a heparin and 1ml Q HP anion-
exchange column. 

A) Trace showing the UV absorbance (blue line), conductivity (brown line) and 
the concentration of buffer B (buffer A + 1M NaCl) (green line). The UV 
absorbance peaks suggest where proteins are eluted.  

B) Samples from fractions coinciding with the UV peaks were loaded onto an 
SDS-PAGE gel, as indicated. Size markers, with relevant sizes marked (kDa), 
are shown. LD indicates load material and the fractions pooled for further 
purification (containing the HiRecN) are boxed in red on the gel and indicated 
on the trace (A).  
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Figure 5.7. Purification and determination of apparent size of HiRecN using a 
120ml Hiprep 16/60 Sephacryl S-300 HR column. 

A) The UV trace peaks as proteins are eluted (blue line); the conductivity (brown 
line) is also shown. The centre of eluyion peaks of known protein standards 
used to calibrate the column are shown as vertical black lines along with 
details of the standards used. 

B) Samples from fractions coinciding with the UV peaks were loaded onto an 
SDS-PAGE gel, as indicated on the gel. Size markers with relevant sizes 
marked are in lane 1. LD indicates the load material. The fractions, which 
were pooled (containing HiRecN) are boxed in red on the gel and indicated on 
the trace (A). 
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Figure 5.8. Final stage of HiRecN purification, using a 1ml Mono Q HR 5/5-anion 
exchange column. 

A) The UV trace (blue line) suggests were proteins are eluted, while 
conductivity (brown line) and the concentration of buffer B (buffer A +1M 
NaCl) (green line), are also shown.  

B) Samples from fractions coinciding with the UV peak were loaded onto an 
SDS-PAGE gel as indicated. Fractions pooled and kept are boxed in red. 
Lane 1 contains size markers with relevant sizes marked (kDa). LD indicates 
the load material. 
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5.3 Purification of the other RecN homologs 

Both BfRecN and AqRecN were successfully expressed within E. coli cells, 

albeit inefficiently in the case of AqRecN (Figure 5.1). 

5.3.1 Aquifex aeolicus RecN purification 

The limited expression of AqRecN could be due to its coding sequence 

containing several codons that are rare in E. coli. Expression can be improved 

by increasing the final cell density and rate of growth (Derewenda 2004). To 

achieve better cell growth, and hopefully improve expression of AqRecN, the 

cells were grown in a fermenter (Electrolab, Fermac 360/310). This allowed 

regulation of growth conditions; such as temperature, as well as improving 

aeration and agitation of the media, which was a rich (2xYT) broth. All these 

factors can improve a cell’s growth (Neubauer et al. 1992). Induction was 

performed in the same manner as the small-scale trials, yet in this case 

expression of AqRecN was clearly induced after four hours (Figure 5.9). 

 

 

 

Figure 5.9. Expression of A. aeolicus RecN, in E. coli 
grown in a fermenter. 

Cells where grown and induced in 2xYT media, at 37°C. 
Size markers are in lane M (kDa), uninduced culture (-) and 
induced (+) were run with the induced band (AqRecN) being 
indicated. 

 

 

 

Upon cell lysis, the AqRecN was shown to be largely insoluble (data 

not shown), and thus impossible to purify in a functional form directly. 

However, A. aeolicus proteins should be thermostable. Heating of the cell 

extract was therefore trialled as a method to liberate AqRecN into the soluble 

fraction. Heating for twenty minutes prior to clarification was shown to 

increase the proportion of AqRecN in the soluble fraction and also denatures E. 
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coli proteins, making them insoluble and thus acting as a purification step. 

Increasing the temperature generally increased the quantity of AqRecN 

liberated, and the percentage of E. coli proteins denatured, with the highest 

yield of AqRecN occurring at approximately 60°C (Figure 5.10). 

 

Figure 5.10. Effect of heating on the soluble proteome of E. coli cells 
overexpressing AqRecN. 

Total cell extract (E) was heated to the temperatures specified, for 20min, and then 
clarified (15,000g, 30min) with the cell pellet (P) and supernatant (S) then being run 
on the SDS-PAGE gel. AqRecN is boxed, with size markers (lane M) shown and 
appropriate sizes (kDa) indicated.  

 

To purify AqRecN, 2.5 litres of induced, fermenter-grown cells were 

resuspended in lysis buffer, lysed by sonication and then heated to 60°C for 

twenty minutes, before being clarified by centrifugation. The supernatant was 

then precipitated with (NH4)2SO4, the 40% pellet discarded and the 60% pellet 

resuspended and purified on an ÄKTA FPLC as described for HiRecN. Elution 

from the columns was comparable to that observed for HiRecN, except from 

the 20ml Hiprep 16/10 FF Phenyl-sepharose column, where AqRecN eluted at 

(NH4)2SO4 concentrations of less than 100mM, in buffer A (conductivity was 
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<40mS/cm. The protein was purified to a gel pure state (Figure 5.11) and could 

be concentrated in excess of 7mg/ml, as determined by the Bio-Rad protein 

assay with BSA as the standard. 

5.3.2 Bacteriodes fragilis RecN purification 

BfRecN was also successfully purified. When overexpressed it was, like 

HiRecN, found almost exclusively in the soluble fraction. However, it did elute 

from some of the columns differently. Like AqRecN, it eluted from a 20ml 

Hiprep 16/10 FF Phenyl-sepharose column at (NH4)2SO4 concentrations of less 

than 100mM, and on gel filtration eluted much earlier than the other two RecN 

proteins, suggesting it forms a much larger protein complex (Table 5.3). The 

reason for this, and its significance, is currently unclear. The protein appears to 

be pure as seen on a SDS-PAGE gel (Figure 5.11) and has a good yield (Table 

5.3), although the maximum protein concentration is somewhat lower than 

AqRecN, being approximately 4-5mg/ml as determined by the Bio-Rad protein 

assay. 

 

 

Figure 5.11. Purified AqRecN and BfRecN analysed 
on a SDS-PAGE gel. 

No contaminants are visible, despite the high load of 
protein except for the faint band, shown by black arrows, 
which was sequenced and shown to be RecN protein. 
This may represent a dimeric species of the proteins. 
Size markers are in lane M with relevant sizes indicated. 
In both cases, the purified and concentrated protein was 
run on the gel, with equal load volume of each. The 
identity of both proteins was confirmed by MALDI-
PMF. 

 

 



123 

 

5.4 Discussion 

The purification of functional EcRecN has to date been unsuccessful, despite 

extensive attempts (Meddows 2002; Neher et al. 2006). However, in this 

chapter the purification of no less than three RecN homologs is described, 

along with a generalised protocol that could be used to purify others (Figure 

5.12). Even though they varied in their physical properties, all three proteins 

purified in a similar manner. Previously, only the purification of BsRecN has 

been described, however, the preparations showed chronic GroEL 

contamination (Sanchez and Alonso 2005). This has also been an issue with the 

RecN purifications described here, but this protocol does allow exclusion of 

GroEL and purification of the RecN proteins to homogeneity, as detectable on 

a polyacrylamide gel.  

Due to the structure of SMC-like proteins, with their long coiled-coil 

arms, the use of gel filtration to identify the size of complexes formed is not 

ideal, but the suggested sizes are shown. The BfRecN appeared somewhat 

different, eluting in a smaller volume, suggesting it formed a much larger 

protein complex (Table 5.3) than the other RecN proteins. It does seem likely 

that RecN associates with itself to form higher order species, with potential 

dimers appearing to be stable during SDS-PAGE (Figure 5.11). It is also worth 

noting that there was a significant difference in the yield of the RecN proteins. 

Even when expressed in a fermenter, the AqRecN yield was significantly less 

than the other two, around 1mg of protein per litre of starting culture (Table 

5.3). However, good quantities of protein can be obtained by processing larger 

volumes of induced cell culture. The low level expression of AqRecN in E. coli 

may also explain the inability of this protein to substitute for the native protein 

in vivo. EcRecN is heavily induced during the SOS response (Finch et al. 

1985b). Therefore, AqRecN may not be expressed to the same level.  
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Figure 5.12. Generalised purification scheme for a RecN protein. 

The different columns are listed in order in the boxes, RecN containing fractions are 
eluted, pooled, salt concentration modified and then loaded onto the next column. 

 

Table 5.3. Differences observed between the RecN homologs during purification. 

Expressed 
protein 

Range 
protein 

eluted from 
S-300 (ml) 

Suggested 
protein size 

from peak of 
elution (kDa) 

Protein sizes 
inferred from 

elution 
volume 
(kDa) 

Approximate 
protein yield 

mg/l of 
starter culture

H. influenzae 40.0 – 54.1 325 156 – 650 30.00 

A. aeolicus 40.2 – 52.3 320 139 – 635 0.75 – 1.00 

B. fragilis 37.0 – 44.3 572 401 – 943 27.50 

 

The successful purification of E. coli RecN homologs opens up the 

possibility of studying these proteins in vitro and thus to understand how 

EcRecN, and RecN proteins generally, may function (Chapter 6). It will also 

allow structural studies, including crystallisation trials, to be commenced. 

These studies, alongside other in vitro assays (Chapter 7), will generate data 

that will allow a greater understanding of RecN as well as of DSB repair and 

HR. 
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Chapter 6 

The in vitro activities of RecN 

In the previous chapter I described the purification of three RecN proteins. 

These include the H. influenzae RecN homolog, which crucially functions in 

vivo in place of EcRecN (Chapter 4). Since the insolubility of EcRecN means 

biochemical characterisation is impossible (Meddows 2002; Nagashima et al. 

2006), HiRecN provides a viable method to characterise in vitro activities of a 

RecN protein that will complement previous genetic studies. Prior to this, the 

only reported purification of a RecN protein was that of the B. subtilis protein 

(Kidane et al. 2004).  

RecN is part of the incredibly diverse SMC family of proteins that have 

essential roles in many cellular functions, including DNA repair (Sharples and 

Leach 1995; Hirano 2005b; Hirano 2006; Cortes-Ledesma et al. 2007). Despite 

the array of cellular activities in which SMC proteins are involved, they share 

many similarities. Principally they form dimers that are integral to larger 

complexes involved in DNA metabolism. These complexes are generally 

believed to function by forming stable ring-shaped complexes that can ensnare 

DNA (Melby et al. 1998; Ciosk et al. 2000; Haering et al. 2002). This 

entrapment model is based on the activities of cohesin, which is responsible for 

sister chromatid cohesion. One key question is how does cohesin load onto and 

entrap DNA? It is believed that cohesin loading is dependent on ATP 

hydrolysis, which causes conformational changes allowing the complex to 

temporarily disassociate at the hinge domain. This opens the ring to allow 

loading onto DNA (Hirano et al. 2001; Arumugam et al. 2003; Hirano and 

Hirano 2006; Shintomi and Hirano 2007). This was supported by experiments 

in which the cohesin complex was expressed as a single, fused Smc1 – Scc1 – 

Smc3 protein. This fusion complex could still load onto DNA in an ATP 

dependent manner, as long as the hinge was unperturbed (Gruber et al. 2006). 

However, this is not the only proposed model and more work is needed to 

confirm SMC functionality (Guacci 2007). Recently work with a related SMC 
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containing complex, condensin, showed that disruption of the proposed ring 

complex did not liberate DNA (Hudson et al. 2008). It seems plausible, even 

likely, that mechanisms of SMC-DNA interaction remain undiscovered. RecN 

is a unique SMC-type protein that can be studied in bacterial systems, with all 

the inherent benefits of a well-defined model organism. Characterisation of the 

in vitro properties of RecN is therefore important, not only to our 

understanding of DNA repair, but also to shed further insight into the functions 

of the SMC protein family. 

6.1 RecN has a detectable ATPase activity 

SMC proteins require a functional ATPase activity (Arumugam et al., 2003; 

Hirano et al., 2001; Hirano & Hirano, 2006; Shintomi & Hirano, 2007). So one 

of the first biochemical questions asked was whether RecN is an ATPase. 

When the sequences of several RecN proteins were aligned, there was a high 

degree of conservation in the head domains, in particular of motifs known to be 

involved with ATP binding and hydrolysis (Chapter 4). These motifs, known 

as Walker A and Walker B motifs, are well conserved in a variety of ATPases 

(Walker et al. 1982) and they are both required and intimately involved in the 

binding and hydrolysis of ATP (Azzaria et al. 1989; Loo and Clarke 1995; 

Szabo et al. 1998; Hrycyna et al. 1999). There is also a third conserved motif 

unique to the subgroup of ATPases to which SMC proteins belong. This 

subgroup is referred to as the ABC-type ATPases, as the motifs were initially 

characterised in ATP binding cassette (ABC)-type membrane transport 

proteins (Higgins 1992; Holland and Blight 1999; Schmitt and Tampe 2002). 

However, they have also been characterised in several DNA repair proteins; 

including UvrA, MutS, and the DSBR protein Rad50 (Aravind et al. 1999). 

The unique third motif of this subgroup is therefore referred to as the ABC 

signature motif. The signature motif is required along with the Walker A and 

Walker B motifs to facilitate ATPase activity in this class of protein (Hyde et 

al. 1990). Therefore, the ABC-type ATPases all have a highly conserved set of 

motifs, which are found in a diverse range of configurations. It is believed that 

all such ATPases share a common mode of action, whereby ATP binding and 
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hydrolysis is used to drive conformational changes required for the protein to 

function (Hopfner and Tainer 2003; Gruber et al. 2006).  

 Studies of the crystal structure of the Thermatoga SMC and Rad50 

from Pyrococcus furiosus showed why ATP binding was essential to allow 

dimerisation of these SMC proteins (Hopfner et al. 2000; Lammens et al. 

2004). This dimer traps two ATP molecules between the head domains, with 

the ATP molecules contacting the Walker A and B motifs from one head and 

the signature motif of the other. However, the gross conformational changes 

associated with ATP hydrolysis, often termed a “power stroke” (Hopfner and 

Tainer 2003), have not been observed with SMC proteins (Lammens et al. 

2004). It has been suggested that the ATP hydrolysis induced conformational 

changes allows transport of DNA into the ring-shaped cohesin complex, which 

facilitates sister chromatid cohesion (Weitzer et al. 2003). Mutations in the 

Walker B box that prevent ATP hydrolysis, but not ATP binding, have also 

been shown to prevent loading of cohesin onto the chromosome (Arumugam et 

al. 2006). BsRecN also has a requirement for ATP; in its absence BsRecN can 

bind single-stranded DNA, but only in its presence can larger RecN-DNA 

complexes be formed (Sanchez and Alonso 2005; Sanchez et al. 2007a). 

Since ATPase activity is vital to SMC proteins, I would expect this to 

be true for the RecN proteins in this study. To determine if this was the case 

the ATPase activity of RecN was determined using the malachite green assay 

(Chapter 2), which quantifies the level of free inorganic phosphate in solution. 

Detection is achieved by monitoring the colour change of the reagents due to 

the presence of inorganic phosphate released during hydrolysis of ATP and is 

quantified by comparison to known standards (Bird et al. 1997).  
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6.1.1 RecN is a weak DNA independent ATPase in vitro 

 

Figure 6.1. The in vitro ATPase activity of HiRecN. 

All the reactions were performed at 37°C, with HiRecN at 1.5nM reactions were 
performed in helicase buffer supplemented with 5mM ATP and 5mM MgCl2.  

A) The change in concentration of inorganic phosphate (Pi) present in solution 
released over time by HiRecN alone (blue), or in the presence of either 
circular single-stranded φX174 (2μM; red,), or circular duplex pBR322, DNA 
(2μM; green,). A no protein control (purple,) was also included the error bars 
represent SEM of four separate repeats for each time point 

B) The rate of Pi released into solution per molecule of HiRecN alone (blue) and 
in the presence of either circular single-stranded φX174 DNA (2μM; red), or 
circular duplex DNA (2μM; green) based on the data gathered for part A, 
normalised to the no protein control.  

 

Purified HiRecN was shown to turnover ATP, and release inorganic 

phosphate, at a uniform rate over thirty minutes at 37°C (Figure 6.1 A). The 

average rate of ATP turnover by HiRecN is approximately one molecule of 

ATP per minute per RecN molecule (0.84 ±0.11 ATP molecules/RecN/minute) 

(Figure 6.1 B). Although the rate is slightly elevated in the presence of ssDNA, 



129 

 

this increase is not significant and duplex DNA had no apparent affect (Figure 

6.1). Similar experiments, using linear duplex and ssDNA, suggested that these 

DNA species had no affect on the ATPase activity either (data not shown). It 

appears that HiRecN is a DNA-independent ATPase.  

The rate of ATP turnover by HiRecN is consistent with the available 

data on the ATPase activity of other SMC-type proteins such as cohesin, which 

has a basal ATP turnover of approximately one ATP molecule/cohesin 

complex/minute (Arumugam et al. 2006) and Rad50, which will turnover 

approximately 0.2 ATP molecules/Rad50 protein/minute (Hopfner et al. 2000). 

In bacteria the isolated head domain of the E. coli SMC homolog, MukB 

(MukB342), was reported to turnover 1.29 molecules of ATP per minute 

(Lockhart and Kendrick-Jones 1998). However, some other reports conflict 

with this; the full-length protein was reported to only turnover 0.2 molecules of 

ATP/MukB dimer/minute (Petrushenko et al. 2006a), but a recent study 

suggested higher rates of ATP turnover of 2-5 molecules of ATP per minute, 

which increases about two-fold if the complete MukBEF complex is present 

(Chen et al. 2008). Despite the variable rates reported all ATPase activities 

have comparatively low rates, for instance the ATPase activity of the DNA 

repair helicase RecG from E. coli is in excess of 3000 ATP molecules/RecG 

molecule/minute (Lloyd and Sharples 1993).  

Since SMC proteins associate with DNA, and BsSMC and BsRecN 

have both been reported to possess DNA-stimulated ATPase activity (Sanchez 

and Alonso 2005; Hirano and Hirano 2006; Hirano 2006), it would seem 

contradictory that HiRecN is a DNA-independent ATPase. However, although 

BsSMC ATPase activity has been shown to be DNA-stimulated, this is not the 

case with the SMC proteins in the cohesin complex, which are DNA-

independent (Arumugam et al. 2006). The ATPase activities of SMC proteins 

appears to be rather complex and although no observable stimulation was seen, 

it cannot be ruled out that under other conditions, for example in the presence 

of partner proteins, it may occur.  

 Surprisingly, no ATPase activity could be detected for the B. fragilis 

RecN protein using these assay conditions, the reason for this remains 
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unknown as  RecN from A. aeolicus also has ATPase activity (Figure 6.2), 

which appears to be DNA-independent (data not shown). The reason for my 

inability to detect any activity for the BfRecN remains unclear although 

possible explanations are discussed in the discussion of this chapter and could 

go some way to explaining its inability to function in E. coli. 

 Interestingly, and despite AqRecN being a hyperthermophile, the 

protein functions at 37°C, with a rate of ATPase activity similar to that of 

HiRecN at 37°C (1.14 ± 0.20 ATP molecules/AqRecN molecule/minute). 

However, it is unclear whether this rate of turnover reflects a true biological 

activity, as Aquifex aeolicus lives at temperatures in excess of 90°C (Deckert et 

al. 1998). Therefore, we investigated the effect of elevated temperatures on the 

ATPase activity of RecN. According to the Q10 (temperature coefficient) rule, 

an increase of 10°C should double the rate of a catalytic reaction. In the case of 

an enzyme this assumes that the increase is within the protein’s physiological 

temperature range and therefore that the enzyme will not be denatured by said 

increase in temperature, thus HiRecN was not used as trial experiments showed 

its activity to be diminished at elevated temperatures (>45°C), suggesting the 

protein is denatured (data not shown). 

6.1.2 RecN ATPase activity is not significantly influenced by 
temperature 

 To ascertain if AqRecN ATPase activity was affected by temperature 

and if its enzyme kinetics obey the Q10 rule, ATPase assays were performed at 

various temperatures. Since the C-terminal His-tagged AqRecN is easier to 

purify in larger quantities, it was used instead of the wild-type protein; the 

purification protocol for AqRecN-His is similar to that described in Chapter 5 

but with the addition of a 5ml His-trap HP column (GE Healthcare) as the first 

purification step. Importantly, at 55°C its ATPase activity was 

indistinguishable from that of the wild-type protein when assayed in parallel 

(data not shown) and was approximately two-fold higher than when incubated 

at 37°C (2.06 ± 0.12 ATP molecules/RecN/minute, at 55°C) (Figure 6.2).  
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Figure 6.2. Affect of temperature on 
the ATPase activity of C-terminal His-
tagged AqRecN. 

The protein concentration of AqRecN 
was kept constant and the reactions 
incubated for 30min at the temperatures 
specified in helicase buffer 
supplemented with 5mM ATP and 5mM 
MgCl2. His-tagged AqRecN was at a 
final concentration of 2nM. The error 
bars represent the SEM of four repeats 
of the experiment at each temperature. 

 

 

 

Although it is apparent that increasing the temperature does increase 

the rate of ATPase activity of His-tagged AqRecN, as expected, it does not 

obey the Q10 rule. Increases in temperature of 10°C did not double the relative 

ATPase activity (Figure 6.2 B). However, the increase in rate suggests that the 

protein is functional and thus stable at these temperatures. Therefore, the rates 

observed should be comparable. The reason why the ATPase activity does not 

obey the Q10 rule is unclear, but it is not uncommon in biological systems and 

may reflect a degree of regulation of the ATPase activity, or the reliance on a 

set time period for the ATP to be turned over and released, regardless of the 

temperature. The similar rates of HiRecN and AqRecN at 37°C is surprising. It 

would be expected that the two proteins would have similar ATPase rates at 

their physiological temperature if they are to perform the same function. It 

would seem that the rate of ATPase activity is dependent on temperature and is 

not regulated in vitro so as to be optimal at the organism physiological 

temperature. Perhaps this represents the basal rate of activity for a RecN at this 

temperature and in vivo other factors can regulate the rate of ATP turnover by 

RecN.  
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6.1.3 RecN ATPase activity is Mg2+ dependent 

A key residue, common to many ABC-type ATPases, is a conserved 

glutamine residue within the proposed Q-loop motif, which is closely 

associated with the Walker A motif of RecN. This glutamine residue is 

involved in the binding of the catalytic Mg2+ and of the water molecule 

involved in the nucleophillic attack, making it important for ATPase activity 

(Rosen et al. 1999; Gorbulev et al. 2001). The Q-loop forms part of the active 

site and is a likely candidate for transmitting conformational changes, induced 

by the binding and hydrolysis of ATP, throughout the molecule (Hopfner and 

Tainer 2003). However, it has previously been reported that RecN proteins are 

missing this conserved glutamine residue, it being substituted for a histidine 

residue in EcRecN (H135) and in HiRecN (H138) (Hopfner et al. 2000; 

Meddows 2002). The substitution of this conserved glutamine led Meddows 

(2002) to propose that perhaps RecN can bind but not hydrolyse ATP, or 

alternatively that RecN has an unusual ATPase activity, which does not require 

Mg2+ ions (Meddows 2002). The former seems unlikely however, as RecN 

proteins have detectable ATPase activity in vitro. To determine if the ATPase 

activity of RecN is dependent on Mg2+ ions, the rate of ATP turnover by 

HiRecN was measured in the presence of different concentrations of MgCl2 

over a set time (Figure 6.3).  

 

Figure 6.3. Effect of MgCl2 
concentration on the rate of 
ATP turnover by HiRecN. 

HiRecN at 1.5nM final 
concentration was incubated at 
37°C in helicase buffer, 
supplemented with 5mM ATP 
and MgCl2 at the final 
concentrations shown. The 
quantity of Pi released over 30 
minutes was measured by the 
malachite green assay and used to 
estimate the rate of turnover. The 
error bars represent the SEM of 4 
separate experiments. 
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Generally, increasing the concentration of magnesium increased the 

ATPase activity of the protein, though the effect is reduced as the 

concentration is increased and the increase appears to reach a plateau. 

However, the ATPase activity of HiRecN does not appear to be wholly 

magnesium dependent and some free phosphate was liberated in the absence of 

addedMgCl2 (Figure 6.3). This is unlikely to be due to variation in the 

experiment as no protein and no ATP controls show little variation from zero. 

However, further analysis is needed to confirm that this is an effect of Mg2+ 

ions, such as observing the affect when magnesium acetate is used in place of 

MgCl2. It has been shown that KCl cannot stimulate the reaction (Dr. Jane 

Grove, University of Nottingham, personal communication).  

These data seem to suggest that HiRecN ATPase activity is largely 

dependent on magnesium as in its absence the ATPase activity is reduced 5-10 

fold. It is possible that the ATPase activity observed when the reaction buffer 

was not supplemented with MgCl2 could be due to magnesium ions present 

within the protein preparation and carried over from the original cell extract. 

Unless metal ions are rigorously excluded some carryover is almost 

unavoidable, especially if they are bound to the target protein. 

6.1.4 RecN ATPase activity is affected by glycerol 

Purified RecN proteins stored at 4°C were found to retain their ATPase 

activity over a period of at least two weeks. However, the activity of samples 

stored at -80°C was substantially reduced. This could either be as a direct result 

of the freezing process damaging the protein, or perhaps an affect of the 

storage buffer. Although the storage buffer was essentially identical to the 

buffers used during the purification (50mM Tris-HCl pH7.5, 150mM NaCl), it 

did also include 50% glycerol (v/v), used as a cryoprotectant. I therefore 

decided to test if the glycerol was affecting the ATPase activity of the protein. 

Aliquots of HiRecN were diluted with glycerol (to a final concentration of 50% 

(v/v)) or water to keep buffer concentrations identical. These samples (with 

and without glycerol) were then either flash frozen in liquid nitrogen and 

stored at; -80ºC or -20ºC, or alternatively kept unfrozen at 4ºC. After 24 hours 
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the samples were assayed for ATPase activity, with the frozen samples being 

rapidly thawed to limit any damage.  

 

 

Figure 6.4. Effect of glycerol on ATPase activity of HiRecN 

HiRecN at 15nM was stored overnight in 50mM Tris-HCl pH7.5, with 150mM NaCl 
and in the presence or absence of 50% glycerol. The protein was diluted 10-fold into 
the reaction mixture to give a final glycerol concentration of 5%.  

A) Rate of ATP turnover after storage at the indicated temperature with or 
without glycerol. The error bars shown SEM of six values for each point. 

B) The mean of all the reactions with and without glycerol independent of 
storage temperature. Error bars once again show SEM, but this time of 18 
separate experiments for each. 

 

It is readily apparent that, in the presence of glycerol, the ATPase 

activity of HiRecN is reduced three to four-fold. The reason for this is 

currently unclear, although it was not an effect of storage temperature (Figure 

6.4). However, it does appear to be an inhibitory, rather than a toxic, effect as 

reduction of the glycerol concentration, by either dilution or dialysis, restores 

ATPase activity (Dr. Geoff Briggs, University of Nottingham, personal 

communication). Glycerol is known to affect enzymatic activity (Star activity, 
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NEB catalog). High concentrations can promote the star activity associated 

with certain restriction enzymes and there are reports of glycerol affecting the 

activity of various ATPases. The reasons and effects appear to be varied and 

complex, but one of the simplest explanations is that the presence of glycerol 

increases the viscosity of a solution, which has been speculated to inhibit any 

protein activity that requires conformational changes (Uribe and Sampedro 

2003). The greater viscosity of glycerol, compared to water, increases friction 

between the protein and the solution it is in and thus the conformational 

changes are limited or slowed, reducing the activity of the protein (Uribe and 

Sampedro 2003). Glycerol has also been reported to increase the structural 

rigidity of a protein and this could also restrict conformational changes (Meng 

et al. 2004). Although ATP induced conformational changes have not been 

demonstrated to occur in RecN, they seem likely, especially when considering 

that most of the ABC-type ATPases and SMC proteins are believed to undergo 

gross conformational changes during ATP hydrolysis (Hirano 2002; Hopfner 

and Tainer 2003; Gruber et al. 2006). This provides a plausible explanation for 

the inhibitory effect of glycerol seen on the proteins’ ATPase activity. 

However, freezing had a minimal affect on the proteins ATPase activity, with 

rates being comparable between the frozen and unfrozen samples (Figure 6.4), 

and so it was assumed that the protein could be frozen in small aliquots, in the 

absence of a cryoprotectant, for later use. 

6.1.5 Is the ATPase activity detected truly due to RecN 

The relatively low rate of ATP turnover observed for RecN does raise a 

problem; it could be that this weak RecN ATPase activity is not due to RecN at 

all, but is in fact due to the activity of a minor yet highly active ATPase 

contaminant. The main contaminant that I, and others, have identified when 

purifying RecN is the chaperone complex GroEL (Kidane et al. 2004). The 

presence of GroEL was not detectable by western blotting, using commercially 

available antibodies (Sigma), in any of the HiRecN and AqRecN preparations 

used for this study (data not shown). This suggests that it is not present and it is 

certainly not a substantial contaminant. However, it is reported to be a major 

contaminant of the BsRecN preparations used in the studies by Kidane and 
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Sanchez (2004). The authors of this report argue that as the ATPase activity of 

GroEL is dependent on K+ ions (Viitanen et al. 1990), GroEL should be 

inactive under the assay conditions they used.  However, analysis of a partially 

pure preparation of E. coli GroEL showed it to have ATPase activity even in 

the absence of K+ ions (Dr. Jane Grove, University of Nottingham, personal 

communication). Also, Viitanen et al. (1990) noted that K+ ions were often 

present due to carry over from the purification and they had to be ‘rigorously 

excluded’. Kidane et al.  (2004) assayed BsRecN, purified directly from B. 

subtilis cell, although K+ ion exclusion limits the ATPase activity of E. coli 

GroEL (Viitanen et al. 1990), it may not have the same affect on B. subtilis 

GroEL.  

To exclude the possibility that the ATPase activity I detected is due to a 

contaminant, two approaches were taken. Firstly, individual fractions 

containing HiRecN, eluted from the gel filtration column during the 

purification (Section 5.4), were assayed for ATPase activity and total protein 

concentration was measured. These samples were not yet completely clean and 

minor contaminants are clearly visible upon SDS-PAGE analysis (Figure 6.5). 

What is interesting is that the ATPase activity corresponds to the total protein 

concentration and its peak coincides with the highest concentrations of 

HiRecN. There is a minor contaminant visible upon SDS-PAGE analysis and 

peak elution of this protein occurs after that of the HiRecN, but it does not 

influence the ATPase activity. This would strongly suggest that the ATPase 

activity detected is not due to the presence of a contaminant but to the HiRecN. 

However, this does not exclude the possible presence of a co-eluting 

contaminant that may not be visible on SDS-PAGE analysis, causing the 

ATPase activity observed. So a second approach was taken, creating ATPase 

deficient RecN mutants and assaying their ATPase activity. 
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Figure 6.5 Relative ATPase and protein concentration of fractions off a gel 
filtration column of HiRecN.  

The relative, ATPase activity is indicated by the red line and total protein 
concentration by the blue bars. The graph is overlaid onto an SDS-PAGE of the 
fractions obtained from the gel-filtration column to show the protein concentrations. 
The arrow indicates a contaminant present in some of the fractions. 

 
6.2 RecN requires ATPase activity to function 

The definitive method to confirm that the ATPase activity detected is due to 

RecN, and not a contaminant, is to generate and purify a RecN mutant that is 

deficient for ATP hydrolysis. To do this a mutation in the Walker A motif was 

made, substituting the highly conserved lysine residue (at position 35) for 

alanine (Walker A motif; GXXXXKT/S). Numerous studies have shown that 

mutation of this residue inhibits the ATPase activity of ABC-type ATPases. 

This inhibition is believed to be as a result of mutants being unable to bind 

ATP (Rozen et al. 1989; Schneider and Hunke 1998; Lapinski et al. 2001; 

Frelet and Klein 2006). Therefore, the RecNK35A mutant proteins should be 

ATPase deficient.  Furthermore, it will be informative to determine whether the 

ATPase mutation results in a detectable phenotype when introduced into the 
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chromosome of E. coli, and if so, how similar this phenotype is to that of a 

ΔrecN strain.  

The A. aeolicus H. influenzae and E. coli recN gene sequences were 

mutated and cloned into the same plasmids used for overexpression (Chapter 2 

and Table 5.2) and the mutant RecN proteins were overexpressed and purified 

in the same manner as the wild-type proteins. Like EcRecN, EcRecNK35A was 

present in the insoluble fraction and so could not be studied. The HiRecNK35A 

and the His-tagged AqRecNK35A
 proteins were soluble and purified in the same 

manner as the wild-type proteins. The malachite green ATPase assay revealed 

free Pi at only background levels, with no detectable increase over time. This 

strongly suggests that the K35A mutation eliminates the ATPase activities of 

these two proteins and that the previously detected ATPase activities were due 

to the RecN proteins and not due to a contaminant. RecN is therefore an 

ATPase. I proceeded to investigate if the ATPase activity is essential to the 

function of RecN in vivo. 

The genes encoding EcRecNK35A and HiRecNK35A were introduced into 

the E. coli chromosome, replacing the EcRecN coding sequence and leaving 

the promoter intact, as was described previously for the creation of the 

heterologous E. coli strains carrying foreign recN coding sequences (Chapter 

4). The presence of the mutations was confirmed by sequencing and the 

mutations were then moved into the I-SceI expression and cleavage strain and 

the viability of E. coli carrying these mutations assayed by exposure to I-SceI. 

It is clear that the K35A mutation in both proteins makes the cells as sensitive 

to DSB formation as a ΔrecN (Figure 6.6). It would appear that loss of the 

ATPase activity results in a complete loss of function of the RecN proteins in 

vivo. 
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A) Serial dilution and plating of heterologous RecN strains carrying the I-SceI 
expression cassette and cleavage site after being induced to express I-SceI by 
exposure to arabinose.  

B) Graph showing the average viability of such strains after transient I-SceI 
induction compared to the same cultures grown in glucose. Error bars 
represent the SEM of four separate experiments, except for JIG509  which 
was repeated seven times 

 

 

 

 

 

 
6.3 DNA Binding Activities of RecN 

 SMC proteins are almost universally associated with DNA and this is also the 

case with several other ABC-type ATPases (Hopfner and Tainer 2003; Hirano 

2006). RecN is an SOS induced protein, known to be involved in 

recombination and DNA repair (Picksley et al. 1984a; Finch et al. 1985b) and 

in B. subtilis the RecN protein has been shown to bind and aggregate ssDNA 

(Sanchez and Alonso 2005; Sanchez et al. 2007a). Therefore, an interaction of 

the RecN proteins purified in this study with DNA would seem to be likely. 

Although BsRecN has been reported to only interact with ssDNA, SMC 

Figure 6.6. The viability of E. coli strains expressing ATPase deficient RecN 
proteins, after I-SceI induced formation of DSBs.  
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proteins have been reported to interact with a variety of DNA substrates; 

including single-stranded and duplex DNA (Hirano and Hirano 2004; Hirano 

2005b). The effect of nucleotides was also investigated, since both the BsSMC 

and BsRecN proteins can interact with DNA in the absence of ATP, but in its 

presence they cause aggregation of the ssDNA (Hirano and Hirano 1998a; 

Hirano et al. 2001; Sanchez and Alonso 2005; Sanchez et al. 2007a). 

Therefore, gel retardation assays were used to detect any possible interactions 

with a variety of DNA substrates and a variety of nucleotides were added to 

detect any effect on the gel retardation assays. 

Since glycerol has been shown to have inhibitory affect on RecN’s 

ATPase activity, and could inhibit other activities (Figure 6.4), glycerol-free 

helicase buffer (Chapter 2.1.4) was used in the gel retardation assays. All the 

retardation experiments were performed as described in Chapter 2, with the 

reactions being incubated for 30 minutes at either 37°C for HiRecN, or 55°C 

for AqRecN, before loading. No difference was seen between using a glycerol 

or ficoll based loading buffer, which was added immediately prior to loading to 

ensure the samples were dense enough to enter the wells. This is despite the 

suspected inhibitory effect of glycerol on the ATPase activity of RecN protein. 

6.3.1 RecN binding to linear ssDNA is ATP independent 

 

Figure 6.7. Gel retardation of linear ssDNA by RecN proteins. 

The effect of HiRecN and AqRecN, at final concentrations of 0nM, 250nM and 
500nM, on ssDNA (50-mer, RGL16, 2nM final concentration the arrow head shows 
the 3' end) is shown. The protein was pre-incubated for 30min with the labelled DNA 
in helicase buffer supplemented with MgCl2 (5mM final concentration) and 
nucleotides as indicated (1mM final concentration). The arrow indicates the wells 
where the retarded material can be seen.  
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Despite extensive attempts, DNA binding was not seen with either of 

the RecN proteins. However, a small quantity of labelled material was 

consistently observed in the wells, when the protein concentration is at over a 

100-fold excess compared to the labelled oligonucleotide (Figure 6.7). The 

retention of labelled material within the well would suggest that it is part of a 

very large protein-DNA complex, which cannot migrate into the gel. 

Interestingly, this interaction is inhibited in the presence of ADP, with no 

labelled material being retained in the well. The same effect was observed with 

both HiRecN and AqRecN. The retention of material in the well seems to 

represent some form of RecN-DNA interaction, although it is not a stochastic 

binding event. Therefore, it appears that under the conditions tested HiRecN 

and AqRecN are not DNA binding proteins.  

Perhaps RecN works like the SMC complexes to entrap DNA. 

Therefore, it could potentially trap multiple DNA molecules resulting in large 

DNA-protein aggregates that cannot migrate into the gel. Rad50 and ABC-type 

transporter proteins make use of ATP binding and hydrolysis to drive the 

conformational changes that facilitate their activity (Hopfner et al. 2000; Smith 

et al. 2002). Therefore, it is possible that ADP induces conformational changes 

in the RecN protein that prevent it interacting with DNA. The turnover of ATP 

also drives the conformational changes of the SMC proteins in the cohesin 

complex. These changes allow DNA to be transported into the interior of the 

ring-complex, causing entrapment of the DNA (Gruber et al. 2006). However, 

BsSMC can interact with DNA in a nucleotide independent manner, although 

ATP hydrolysis can drive other conformational changes that allow the 

assembly of large BsSMC-DNA complexes. Therefore, it would appear the 

affect of ATP hydrolysis driven conformation changes varies between SMC 

proteins, but it is generally required for their ability to interact with DNA.  

However, it seems likely that ATP hydrolysis is driving conformational 

changes in RecN. Perhaps in the presence of ATP, or no nucleotide, the protein 

can assume a conformation that allows it to interact with DNA. However, in 

the presence of ADP the protein is fixed in a release conformation preventing 
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the DNA interaction. The hydrolysis of ATP could therefore allow RecN to 

release DNA in a regulated manner.  

Next, I investigated whether the RecN K35A mutant proteins could still 

interact with DNA. The inability of these mutations to function in vivo, or as 

ATPases in vitro, has already been discussed. When the K35A mutant proteins 

of HiRecN and AqRecN were incubated with ssDNA, radiolabeled material 

was not retained in the wells (Figure 6.9). Surprisingly, proteins with the K35A 

mutation do not appear to interact with DNA, even in the limited manner seen 

with the wild-type proteins. Since the RecN proteins did not need to bind ATP 

to allow the RecN-DNA interaction it could be assumed that preventing ATP 

binding would have a minimal effect on this activity. However, this is not the 

case. It is possible that the mutation has induced more dramatic affect on the 

structure of the protein than expected preventing its activity. This does seem 

unlikely since the mutant proteins purified in a manner almost identical to that 

of the wild-type proteins. Alternatively the residue may have other roles in the 

function of the protein and the loss of DNA binding is a secondary effect, not 

directly connected to the loss of ATP binding. 

 

Figure 6.8. Gel retardation of single stranded DNA by RecN proteins carrying 
the K35A ATPase mutation.  

The effect of the mutant HiRecN and his-tagged AqRecN are shown. Both were pre-
incubated with the ssDNA (50mer, RGL16 arrow head denotes the 3' end, 2nM) in 
Helicase buffer supplemented with MgCl2 (5mM, final concentration) and nucleotides 
as shown (1mM final concentration), protein concentrations of 0nM, 250nM and 
500nM were used. DNA was at a final concentration of 2nM. 
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6.3.2 The DNA binding activity of RecN is specific to ssDNA 

The SMC proteins are reported to interact with a variety of DNA substrates, 

including duplex DNA (Hirano and Hirano 2004). Therefore, further 

experiments tested whether the RecN proteins were able to interact with 

double-stranded DNA substrates. Linear duplex DNA was made by annealing a 

complementary sequence to the single-stranded oligonucleotide used 

previously. No DNA binding or well retention was observed when this 

oligonucleotide was incubated with the purified RecN proteins (Figure 6.9). 

Attemps were also made using the non-hydrolysable Gamma – S – ATP to see 

if this could induce RecN to remain in a binding receptive form, all of these 

assays failed to show any interaction between RecN and the duplex oligo. 

Therefore, it would appear that RecN is unable to interact with this duplex 

DNA. 

 

 

Figure 6.9. Gel retardation of duplex DNA by RecN proteins. 

The affect of HiRecN and AqRecN at final concentrations of 0nM, 250nM and 
500nM, are shown. Both proteins were pre-incubated with the linear-duplex 50mer 
DNA (RGL16 annealed with ELB37, 2nM final concentration, wrrow heads show the 
3' ends) in Helicase buffer supplemented with MgCl2 (5mM final concentration) and 
nucleotides as indicated (1mM final concentration). 

 

Since BsRecN has been reported to bind ssDNA preferentially that with 

an exposed 3′-OH group (Sanchez and Alonso 2005; Sanchez et al. 2007a), the 

interaction of HiRecN with DNA structures containing 3′ or 5′ overhangs was 
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investigated. It is possible that RecN will show a preference for structures, 

which contain a duplex/single-stranded DNA interface. These could potentially 

mimic the DNA structures found at a break site after end processing and could 

indicate if RecN shows a preference for 5' or 3' ssDNA ends. Overhangs were 

created by annealing complementary 25 and 50 oligonucleotides to give a 3′ 25 

oligonucleotide or 5′ 25 oligonucleotide overhang. HiRecN interacts with both 

types of DNA overhang in exactly the same manner, resulting in the retention 

of a small quantity of labelled DNA within the well. This retention of material 

in the well is inhibited in the presence of ADP (Figure 6.10). These results are 

almost identical to those obtained for HiRecN incubated with the single-

stranded 60 oligonucleotide, suggesting that HiRecN does not bind to a 

duplex/single-stranded DNA interface, but is only binding to the single-

stranded region. The results also show that the binding of ssDNA is not 

affected by the presence of either 3' or 5' ends. 

 

 

Figure 6.10. Gel retardation of DNA fragments with single stranded overhangs, 
by HiRecN proteins. 

The effect of HiRecN, at a final concentration of 0nM, 250nM and 500nM on two 
types of DNA overhang is shown (both at a final concentration of 2nM arrow heads 
show the 3' ends). The HiRecN was pre-incubated for 30min with labelled DNA in 
helicase buffer supplemented in with MgCl2 (5mM final concentration) and 
nucleotides as indicated (1mM final concentration). The arrow indicates the wells 
where the retarded material can be seen.  

 

As both RecN proteins show a preference for ssDNA the effect of 

HiRecN on circular, rather than linear ssDNA was also tested. If the RecN 

protein functions like a cohesin, trapping DNA within its structure, then its 
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affect on circular DNA should be more pronounced than that on linear, simply 

because the DNA cannot ‘fall out’ of the ring complex. Therefore, gel 

retardation assays using HiRecN and circular single-stranded ΦX174 DNA 

were performed. The results were inconclusive, although in the presence of the 

wild-type protein a small quantity of material appeared to be retarded (data not 

shown).  It could be that HiRecN is unable to interact productively with 

circular ssDNA in the same way as it does the linear substrate. However, 

further experiments will be required to establish whether this is indeed the 

case. 

6.4 Structural properties of RecN 

The sequence and predicted structural homology of RecN to SMC proteins led 

to the speculation that RecN was a member of this family of proteins. These 

studies have however concentrated on sequence analysis, in particular the 

conserved Walker A and B boxes and the Q-loop (Sharples and Leach 1995; 

Meddows 2002). I have already presented some data on the sequence 

conservation between RecNs from different species (Chapter 4). Here the 

tertiary and quaternary structure of RecN is investigated, in particular the 

possibility that RecN proteins may form functional complexes. 

 

6.4.1 RecN can form multimer complexes in vitro 

It is almost universal that SMC proteins form dimers and complex with other 

proteins. Even the BsSMC, which can function as a simple homodimer, has 

partner proteins that modulate its activity (Hirano 2002; Hirano 2006). The 

available data on RecN from B. subtilis suggests that while it associates with 

DNA on its own, it does form large protein-DNA complexes (Sanchez and 

Alonso 2005; Sanchez et al. 2007a). It would therefore seem likely that RecN 

would also dimerise or multimerise and perhaps interact with other proteins as 

well. During purification it was noted that that HiRecN, AqRecN and BfRecN 

proteins eluted from a gel filtration column in a manner that suggested their 

apparent size was much greater than 60kDa (Chapter 5). A similar observation 

of BsRecN suggested it eluted as an octameric complex (Kidane et al. 2004). 
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However, size estimates by gel filtration assume the protein is spherical. As 

stated before, being an SMC-like protein, RecN is unlikely to be a spherical 

molecule and due to this will have a larger Stokes radius than its actual size 

suggests. Although the Stokes radius does have an effect, it is unlikely to lead 

to the increases in apparent size observed alone, as some estimates suggested 

that RecN was running as a complex in excess of 600kDa in size. It was also 

noted during the purification that if excessive quantities of pure protein were 

loaded onto a gel a faint band, approximately twice the size of the three RecN 

proteins purified in this study, became visible. Sequencing suggested that this 

was RecN and so it was proposed that rather than this band being a 

contaminant, it actually represented a dimeric species of RecN that could form 

even under the denaturing conditions used (Chapter 5). The RecN proteins also 

have a propensity to aggregate both in vitro and in vivo and this could lead to 

the large protein complexes observed during purification of EcRecN 

(Meddows 2002; Nagashima et al. 2006). It would seem likely therefore that 

the RecN proteins can interact with themselves forming at least dimeric and 

possibly even larger complexes, although, whether this represents a 

coordinated complex formation, or random aggregation, is unclear. 

To investigate these possibilities, glutaraldehyde cross-linking was used 

to detect if any higher order RecN species existed, even transiently, in solution. 

Exposure to glutaraldehyde will covalently link molecules that are in close 

proximity. As a result molecules become permanently linked and the complex 

formed can then be identified by SDS-PAGE under denaturing conditions. The 

number of bonds formed depends upon the concentration of both the protein 

and glutaraldehyde used. Purified AqRecN was incubated for 30 minutes with 

glutaraldehyde and then analysed by SDS-PAGE (Figure 6.13). 
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Figure 6.11. Affect of glutaraldehyde cross-linking on the migration of AqRecN. 

AqRecN at 0.25mg/ml was cross-linked by exposure to glutaraldehyde at 0.1% or 
0.5% final concentration, for 5, 10, 20 or 30 minutes at 4°C and then analysed by 
SDS-PAGE. Gels of different concentrations were used to allow size determination of 
the species present. The arrow indicates the position of the monomeric and dimeric 
RecN species. 

 

In the absence of glutaraldehyde all the AqRecN protein is visible as a 

monomer, running as a single band of protein a little under 60kDa in size. 

Similarly, at low glutaraldehyde concentrations the majority on the AqRecN 

remained as a monomer (Figure 6.11). However, a larger band of 

approximately a 120kDa is also clearly visible, especially on the 5% gel. This 

makes it tempting to speculate that a dimer of RecN exists in solution. There 

are also much larger RecN complexes visible on the gel and these may reflect 

random cross-linking events or perhaps the functional form of the protein. 

Similar results were obtained when HiRecN was cross-linked with 

glutaraldehyde, with both dimeric and larger RecN species detectable (Dr. Jane 

Grove, University of Nottingham, personal communication). 

The larger RecN complexes became prevalent at increased (0.5%) 

glutaraldehyde concentration. As cross-linking is random and will link any 

protein in close proximity there will always be a certain percentage of random 

cross-linking of several RecN monomers which would give the larger 

complexes seen here. Interestingly on the 5% gel they can be seen to form 

several discrete bands in excess of 200kDa. These complexes are largely 

absent at the 0.1% glutaraldehyde concentration and those that are present 
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appear to be smaller (Figure 6.13). Whether these bands represent distinct 

species of RecN formed into large protein networks, as suggested by Sanchez 

and Alonso (2005), or random cross-linking events of the proteins remains 

ambiguous at this stage. The previously mentioned tendency of RecN protein 

to aggregate could also affect these results, increasing the chance of cross-

linking numerous RecN molecules. 

6.4.3 AqRecN forms discrete complexes as visualised by EM 

Electron microscopy of SMC proteins revealed that the dimers appear as 

distinctive V-shaped structures, with the two SMC proteins joined at their 

hinge region (Melby et al. 1998; Anderson et al. 2002; Haering et al. 2002). 

While RecN is much smaller, the BsRecN protein has also been visualised by 

AFM, being identified as ‘discrete aggregates’ on DNA (Sanchez et al. 2007a). 

It should therefore be possible to visualise HiRecN and AqRecN, and possibly 

identify any structures formed in solution. 

Purified AqRecN and HiRecN were therefore analysed using 

transmission electron microscope (TEM), specifically a JEOL JEM 1010 TEM 

at 100kV at magnifications ranging from 100 – 500k. Images captured of 

AqRecN reveal discrete structures that are present throughout the visual field 

(Figure 6.14 A). These structures appear to be ring-shaped with a central 

cavity, whether this cavity is a hole, or merely an indentation, is unclear. 

Interestingly, with an approximate diameter of 5-10nM the rings are roughly 

the correct size to be the heads of a RecN dimer assuming they are a similar 

size to those of SMC proteins (Melby et al. 1998). Closer examination shows a 

non-uniform, almost bumpy or spiky, edge to the protein complexes, perhaps 

due to protrusions from the main molecule. One possible explanation for this 

structure is that the globular heads of two or more RecN proteins form the ring 

with the long coiled-coil region jutting away from the molecule giving rise to 

the protrusions. 
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Figure 6.12. Transmission electron microscopy images taken of AqRecN and 
comparison to other proteins including SMC’s. 

The scale is shown on each picture; all the proteins are negatively stained although 
various stains were used. 

A) AqRecN protein shown at two magnifications, negatively stained with 1% 
PTA. These images were taken with the kind assistance of Dr. Katy Evans 
(University of Nottingham). 

B) GroEL image obtained from www.planetesacha.com, the side-on images of 
GroEL are highlighted by arrows. 

C) Shows EM images of three other proteins, C1 and C2 are Earth worm 
haemoglobin (images obtained from www.biology.bnl.gov shown at two 
magnifications. The long rod shaped objects are of the tobacco mosaic virus 
particles, used as internal controls. C3 and C4 show EM images of virus capsid 
protein, C3 is largely comprised of assembled protein in large spherical objects 
but smaller particles are visible in the background, C4 is a mutant form of the 
protein that cannot assemble and remains monomeric, both were obtained 
from Bishop et al., (2007). C5 shows Haemoporin, one of the major 
components’ of the haemolymph of Aplysia californica, obtained from 
Jaenicke et al., (2003). The protein is believed to allow the formation of 
membrane channels (Jaenicke et al. 2003).  

D) Image of BsSMC showing the characteristic structure of known SMC proteins 
under EM (Melby et al. 1998). 
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The structure observed for AqRecN is however very similar to that of 

GroEL, the oft-mentioned contaminant common in RecN preparations 

(Sanchez and Alonso 2005) (Figure 6.14 B). However, the protein was 

confirmed by MALDI-PMF sequencing. Furthermore, when viewed from the 

side the GroEL molecule appears to be a much longer barrel-shaped structure 

that has a distinct banded patterning and only end-on does it appear as a ring 

(Figure 6.14 B). No barrel-like structures are visible in the images of AqRecN 

(Figure 6.14 A).  

Ring-shaped structures are relatively common to several known protein 

complexes (Figure 6.14 C). In Figure 6.14 C, there are three sets of electron 

micrographs of different, and unrelated proteins. Frames C1 and C2 show 

earthworm haemoglobin, a globular molecule that resembles both GroEL and 

AqRecN (Figure 6.14 C1), but on closer examination the elongated barrels are 

not visible. Instead it forms a more globular molecule that lacks the 

distinguishing banding pattern of GroEL (Figure 6.14 C2). The next two frames 

show images of the L1 capsid protein of human papiloma virus (Figure 6.14 C3 

and C4). This protein assembles into a large spherical structure, the virus 

capsid, while in the background smaller doughnut shaped molecules can be 

seen. These doughnut shaped molecules are unincorporated monomers of the 

capsid proteins (Figure 6.14 C3). When a mutant of this protein, which cannot 

assemble into the capsid, was visualised the individual capsid proteins are 

more readily visible (Bishop et al. 2007). These capsid monomers also formed 

discrete doughnut-shaped structures with spiky edges, much like AqRecN 

(Figure 6.14 C4). Finally, the haemoporin protein shown in frame C5, also 

forms a doughnut-shaped molecule, again being somewhat spiky in appearance 

and of a similar size to the structures seen for AqRecN. Interestingly, these 

molecules are all unrelated and vary in size, yet they form remarkably similar 

shapes, as revealed by electron microscopy (Figure 6.14) (Jaenicke et al. 2003; 

Bishop et al. 2007) and this may reflect a tendency for certain gross structures 

to look similar. These observations support the suggestion that AqRecN forms 

a complex, although its appearance is quite distinct from that of SMCs.  
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Surprisingly, such structures were not visible when the HiRecN was 

examined. Instead the protein appears to be amorphous in nature and no 

distinct structures could be observed (Figure 6.15) 

 

 

Figure 6.13. Transmission electron microscopy images of HiRecN. 

The protein is at a concentration of approximately 1mg/ml and is negatively stained 
with 1% PTA. Magnification increases as you go from left to right and scale is shown 
by the bars. Images produced with the kind assistance of Dr. Katy Evans (University 
of Nottingham). 

 

6.4.4 Model of RecN structure provides evidence for dimerisation 

The resolution of crystal structures has proven to be extremely informative, 

providing information on both the functions and interactions of a protein. 

However, there is no crystal structure for a RecN protein, or even of a full-

length SMC family member (Hopfner and Tainer 2003; Lammens et al. 2004). 

There have, however, been successful attempts to crystallise parts of SMC 

proteins, particularly the head domains, and the crystal structure of several 

SMC head domains are available. This includes the head domains of P. 

furiosus Rad50, the T. maritima SMC and the E. coli SMC homolog MukB 

(van den Ent et al. 1999; Hopfner et al. 2000; Lowe et al. 2001). Using the 

data from the first two structures, Dr. Geoff Briggs (University of Nottingham) 

created a model of RecN (Figure 6.16). The probability Z-score of the model 

protein suggested a high likelyhood of the model being accurate. Despite the 

structure being limited to the head domain, the model does provide a way to 

understand the activity of RecN, as well as providing insight into how site-

directed mutagenesis might prove informative.  
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Figure 6.14. Construction of a model of E. coli RecN. 

The secondary structure including β-sheets (yellow), flexible loops (green) and α-
helices (red).  

A) Structure of T. maritima SMC head domain (Lowe et al. 2001).  

B) Structure of P. furiosus Rad50 head domain (Hopfner et al. 2000).  

C) Modelled structure of E. coli RecN. This was created via sequence alignment 
of EcRecN using ClustalW v1.83 and applied to the other structures using 
Chainsaw, a component of the CCP4 suite. Images were taken from PyMOL 
for Windows (www.pymol.org).  

The model was used to help understand how RecN may function. AqRecN 

and HiRecN have been shown to be ATPases. When the model is examined it 

can be seen that although the Walker A and B motifs are in close proximity and 

could form a binding pocket, however, the signature motif can be seen to be 

spatially distinct (Figure 6.17 A). It has been suggested that SMC proteins 

dimerise to allow the signature motif from one head to contact and interact 

with the Walker motifs of the other (Lammens et al. 2004). This occurs in a 

reciprocal manner, thus forming two ATP binding pockets and allows the 

heads come together to create a nucleotide-sandwiched dimer (Figure 6.17 E) 

(Haering et al. 2004; Lammens et al. 2004). A similar arrangement has been 

postulated in other ABC-type ATPases (Hopfner et al. 2000; Lammens et al. 

2004). This model would also be consistent with the dimeric complexes 

detected by cross-linking, with the heads providing at least one potential dimer 

interface (Figure 6.13). 
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6.5 Discussion 

Since the discovery 25 years ago of RecN as a component of the SOS response 

associated with the repair of DSBs, a wealth of genetic evidence about the 

function of the protein has been described (Lloyd et al. 1983; Sargentini and 

Smith 1983; Finch et al. 1985b; Sharples and Leach 1995). However, even 

with the recent reports on the biochemical activities of BsRecN, there is still 

much we do not understand about its enzymology and we have few clues as to 

how RecN is involved in the repair of a DSB. In this chapter, biochemical data 

is presented for two RecN proteins, along with mutational analyses of both. 

HiRecN and AqRecN have a weak ATPase activity, turning over 

roughly one molecule of ATP per minute per molecule of RecN. I have shown 

this ATPase activity to be essential for the repair of DSBs, as the K35A 

mutation of EcRecN and HiRecN, eliminates its ATPase activity in vitro and 

results in sensitivity to DSBs in vivo. The reliance on active ATPase activity 

for the repair of DSBs could also explain the inability of BfRecN to function in 

E. coli. This RecN has no detectable ATPase activity under the conditions used 

and one could infer that perhaps it cannot function as an ATPase within E. coli. 

Whether BfRecN can act as an ATPase under the correct experimental 

conditions is unclear, as they were not found in this study. I would favour the 

idea that BfRecN is an ATPase and that in this study it was simply not 

detected, as even though BfRecN has the least sequence homology to EcRecN, 

it retains the amino acid residues essential to ATPase activity. Also, the 

conserved nature of RecN throughout the bacterial kingdom suggests an 

important functional role so why then would B. fragilis have a non-functional 

version of the protein in its genome, rather I simply failed to recreate the 

conditions in which it functions. AqRecN also failed to function in E. coli, 

even though it is a functional ATPase. However, since A. aeolicus is a 

hyperthermophile the protein may not fully function at 37°C, even though it 

does have ATPase activity at this temperature. Alternatively, as A. aeolicus is 

the most diverged species from E. coli studied (Deckert et al. 1998), the 

inability to function could represent an inability of AqRecN to interact with 

any putative EcRecN partners in vivo. 
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The ATPase activity of HiRecN and AqRecN appears to be DNA-

independent but magnesium-dependent. Surprisingly, both the EcRecN and 

HiRecN carry a substitution of a Q-loop glutamine residue, which is supposed 

to be essential to Mg2+ binding (Hopfner et al. 2000). This was initially 

speculated to prevent ATP hydrolysis by preventing Mg2+ binding or 

alternatively that RecN possessed a novel ATPase mechanism quite distinct 

from that of the other ABC-type ATPases (Meddows 2002). However, the 

results clearly demonstrate ATPase activity that is dependent on Mg2+ ions. 

Perhaps the relatively conservative substitution of a histidine still allows Mg2+ 

binding, or RecN may possess an alternative Mg2+ binding site. Overall, the 

rate of ATP turnover by these two RecN proteins is comparable to that of the 

other SMC proteins, like cohesin, Rad50 and MukB (Hopfner et al. 2000; 

Hirano and Hirano 2004; Arumugam et al. 2006; Chen et al. 2008).  

Both AqRecN and HiRecN were shown to cause linear ssDNA to be 

retained in the wells of polyacrylamide gels at high protein concentrations. 

This activity is dependent on the proteins having a functional ATPase activity. 

Although DNA association does not require a nucleotide to be bound, a 

mutation of the essential lysine residue in the Walker A box eliminated the 

DNA-RecN interaction. However, the observed DNA interaction is not DNA 

binding in a stochastic sense, as typically observed for known DNA binding 

proteins. The retention of DNA in the well suggests a large DNA-protein 

complex that is incapable of migrating into the gel. The data contrast with that 

reported for BsRecN. BsRecN binds 3′ ssDNA and forms large, but discrete, 

nucleo-protein complexes in the presence of ATP (Kidane et al. 2004; Sanchez 

and Alonso 2005; Sanchez et al. 2006; Sanchez et al. 2007a). The formation of 

large nucelo-protein aggregates would explain the retention of material within 

the wells. Although this it is not a classical DNA binding activity, as it was 

blocked by addition of ADP, or mutation of the Walker A box, and was 

specific to ssDNA, it suggests that this the result of DNA-protein interactions. 

It is possible that the ‘true’ in vivo DNA target of RecN was not approximated 

and therefore DNA binding was not seen. However, it does seem likely that a 

region of ssDNA is required. Another possible, and very tempting suggestion, 
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is that the RecN proteins alone only weakly, or transiently, interact with DNA 

and that other factors, possibly partner proteins, are required to facilitate 

binding. This explanation is given more credence when considering that both 

Rad50 and BsRecN have been speculated to act as early sensors of DSBs, 

transiently associating and recruiting other factors to the break site.  

Structural studies of RecN, based on sequence alignment and 

microscopy, may provide further insight into its activity and our understanding 

of how the protein functions. SMC proteins almost universally form dimers 

and this is essential to their function. Even the B. subtilis SMC, which can 

function without any other partners, forms a homodimer (Hirano and Hirano 

1998b; Hirano 2005b). This lead to the speculation that RecN may also forms 

dimers and that these could be the active form of the protein. Various evidence 

supports RecN protein forming complexes of some description. Firstly, during 

purification gel filtration suggested that the protein was much larger than the 

60kDa expected for the monomer (Chapter 5). Secondly, electron microscopy 

showed what appear to be distinct AqRecN complexes, the structure of which 

is unclear, although, they differ from the classical V-shaped molecule 

commonly associated with SMC proteins (Melby et al. 1998; Haering et al. 

2002). Experiments on BsRecN suggest that this protein also forms large 

complexes, which are associated with DNA (Sanchez and Alonso 2005; 

Sanchez et al. 2006; Sanchez et al. 2007a). The E. coli protein is also reported 

to have a propensity to form large protein aggregates in vivo and in vitro 

(Meddows 2002; Nagashima et al. 2006). During gel retardation assays, there 

was a small quantity of labelled material retained within the well, which would 

also suggest that the proteins are forming large non-migrating species in vitro. 

Finally, when the proteins were artificially cross-linked, several large species 

of RecN could be distinguished by SDS-PAGE analysis, including a dimeric 

species, supporting the idea that RecN may form complexes (Figure 6.13). 

However, it is not apparent whether RecN forms relatively simple dimers or 

large protein networks with many RecN proteins interacting.  

The RecN model developed by Dr. Geoff Briggs (University of 

Nottingham), which is based on two known SMC structures, illustrates the 
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possibility that dimerisation may be essential to function. As with many SMC 

proteins the key domains involved in ATP hydrolysis are not all in close 

proximity (Hopfner and Tainer 2003; Lammens et al. 2004). Specifically, the 

signature motif is located away from the Walker A and Walker B motifs. 

However, if the protein forms a dimer, the Signature motif of one RecN 

molecule could interact with the Walker motifs present on its counterpart and 

vice versa. This would form two functional ATP binding and hydrolysis 

pockets, and it can be clearly seen how the essential Walker A and Walker B 

motif residues involved in ATP binding and hydrolysis face into the pocket and 

could contact ATP (Figure 6.17). This nucleotide-sandwiched head domain 

structure would also potentially provide one of the interfaces required to 

dimerise the RecN proteins (Figure 6.17). In the future, the generation of 

mutations targeted to disrupt these potential dimer interfaces, and detect any 

phenotypic effects, could prove informative, especially since in vitro and in 

vivo assays to assess RecN activity are now available. 

In all these cases, it is assumed that RecN is forming a dimer, via head 

and probably hinge domain interactions, like other SMC proteins (Figure 6.18 

A). If this is true then it should be feasible to see this shape with the EM 

images of AqRecN. Although, these images are hard to interpret it is possible 

that what we are seeing are dimers. From the model structure it appears that the 

two RecN proteins pair and have a region that curves around slightly. If 

represented as a simple cartoon (Figure 6.18 B) it appears as a slightly curved 

sausage shaped structure. This shape, when overlaid onto the EM images does 

fit relatively well. The central hole of the doughnut shaped structure is actually 

the cavity, or at least a region of low density where the two RecN proteins 

meet and interface (Figure 6.18 C). There are two protrusions coming out of 

the top of this structure and facing away from it, which are assumed to be the 

coiled-coil region of the protein. If it is imagined that the RecN protein is 

pressed flat onto the grid then the coiled coils are also flattened, the globular 

domains form a circular structure as seen and the coiled-coil regions if laid 

down beside the globular domain form the protrusions. If they lie beneath or on 

top of the globular domain then they cannot be seen. Although this is just one 
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possible interpretation of the results seen it could explain how a RecN dimer 

gives rise to the structures seen.  

 

 

 

Figure 6.16 Diagram illustrating the potential for RecN to dimerise. 

The RecN molecules are shown as dimers  in all cases one is light blue and one is light 
green. 

A) Generalised model of an SMC protein dimer, potentially formed by RecN. 

B) Model structure of RecN (Dr. G. Briggs) showing how dimerisation can 
facilitate formation of functional ATP binding pockets. Lower pane 
cartoon of the shape of this dimer. 

C) EM image of AqRecN showing an example of one of the structure 
observed, the potential shape of a RecN dimer based on the model shown 
in B is overlaid onto the EM image. 

 

In this chapter I have demonstrated that, like all SMCs, HiRecN and 

AqRecN are magnesium dependent ATPases. Furthermore, this activity is vital 

for their in vivo role in the repair of DSBs, although we cannot yet ascertain 

how RecN facilitates repair. It is interesting that some data contrasts with that 

reported for BsRecN, but it is possible that BsRecN has other cellular roles 

besides the repair of DSBs. For instance, B. subtilis is the only species in which 

RecN has been implicated in cellular competence (Kidane and Graumann 

2005). The apparent structural and functional similarities between RecN and 

the eukaryotic SMC proteins are intriguing and of interest for future studies. It 

seems likely that RecN functions in a similar manner, forming dimers and 

potentially functional DNA-associating complexes. With the purification of 
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HiRecN, and the apparent ability of this protein to function within an E. coli 

cell, we have the tools to complement previous genetic studies. The value of 

this cannot be overstated and will allow future work to unravel the functions of 

RecN.
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Chapter 7  

General discussion 

The central theme to this thesis has been the study of the repair of DNA breaks, 

and in particular the role of the RecN protein. Not long after the discovery of 

recN (Lloyd et al. 1983), evidence was presented to suggest that the RecN 

protein was involved in the repair of DSBs (Sargentini and Smith 1983; 

Picksley et al. 1984a). However, exactly what it did was not clear. Whatever its 

function, the fact that RecN is present in virtually all bacteria would suggest 

that it is of some importance. 

 My initial studies began with attempts to identify mutations that are 

synthetically lethal with recN and recB mutations. From these studies ahpC 

and oxyR mutations were demonstrated to be either synthetically sick or lethal 

in conjunction with mutation of several recombination genes (Chapter 3). 

Although H2O2 is the least destructive ROS, it is likely to cause the majority of 

cellular damage due to its abundance (Storz and Imlay 1999; Seaver and Imlay 

2001b; Seaver and Imlay 2001a; Seaver and Imlay 2004). The dependence of a 

cell upon recombination for survival in the absence of H2O2 scavengers 

highlights the threat ROS pose and the importance of limiting DNA damage. 

However, as the majority of DNA damage caused by ROS is likely to affect 

just one DNA strand, it is unlikely that HR is required to repair DSBs caused 

directly by ROS, but rather to maintain replication forks and deal with 

replication dependent breaks that will arise. In such a background, where DNA 

damage is elevated due to the prevalence of ROS, it is conceivable that the 

increased levels of recombination can pose a threat to genomic stability. Even 

though recombination is an accurate pathway, errors can occur and increasing 

the  potential for genomic rearrangements. 

It was perhaps surprising that recN was not one of the mutations 

identified as being synthetically lethal with ahpC and oxyR. Although recN is 

not essential for recombination, in a wild-type genetic background, it can 

promote recombination as is evident from the recombination deficient 
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phenotype of a recBC sbcBC recN strain (Picksley et al. 1984a). RecN has also 

been suggested to increase the accuracy of repair by preventing break induced 

chromosomal rearrangements (Meddows et al. 2005). Therefore, it would be 

expected that the importance of RecN would be elevated in a genetic 

background where recombination is more prevalent. In fact, the screen for recN 

synthetic lethal mutants did not reveal any such mutation. This would suggest 

that such mutations don’t exist (Chapter 3). However, the lack of synthetic 

lethal mutations does not rule out the possibility of recN interactions, or the 

existence of partner proteins in vivo, just that they are unlikely to be detected 

using this methodology.  

The repair of a DSB is essential, as even a single break can be lethal. In 

bacteria, yeast and mammalian germ-line cells, where accurate repair is 

important for genome transmission, DSBs are corrected by HR. Largely due to 

studies in E. coli, the enzymology of this process is relatively well 

characterised. However, there are still proteins known to be involved, but with 

ambiguous roles in HR, RecN being one. RecN has been implicated in the 

repair of DSBs in a variety of species (Sargentini and Smith 1983; Picksley et 

al. 1984a; Alonso et al. 1993; Funayama et al. 1999; Kosa et al. 2004; 

Meddows et al. 2005; Wang and Maier 2008). Currently our understanding of 

the biochemistry of RecN, especially the E. coli protein on which the majority 

of the genetic studies were undertaken, is minimal. Therefore, a significant 

portion of this work is dedicated to the characterisation of the biochemical 

properties of RecN.  

The E. coli RecN protein has proven to be of limited use for 

biochemistry, due to its insoluble nature (Meddows 2002; Nagashima et al. 

2006). Data on the biochemistry of the RecN from B. subtilis is available, but 

the precise function of RecN remains unknown (Kidane et al. 2004; Sanchez 

and Alonso 2005; Sanchez et al. 2007a). As RecN is an ubiquitous bacterial 

protein, the possibility of studying a RecN ortholog, in place of the E. coli 

protein, was investigated (Chapter 4). Crucial to this approach was the 

identification of the capability of H. influenzae recN to encode a protein that 

could substitute in vivo for the E. coli protein. This H. influenzae protein, along 
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with two other RecN orthologs, from A. aeolicus and B. fragilis, was shown to 

be soluble after overexpression in E. coli. All three were purified to 

homogeneity (Chapter 5). Therefore, it was possible to characterise the 

biochemical activities of several RecN proteins for comparison, relate the 

activities to those already ascribed to BsRecN and, importantly, characterise a 

RecN protein that functions in E. coli, thus complementing previous genetic 

studies. 

7.1 Suggested roles of RecN  

The observation that RecN has structural similarity to the SMC proteins led to 

the speculation that it could possibly function in a manner comparable to at 

least one of the known SMC proteins. The studies of HiRecN and AqRecN 

would generally support this hypothesis. As expected, the RecN proteins are 

weak ATPases, with the ability to interact with DNA. They may also form 

complexes, although the nature of these has not been defined (Chapter 6). 

However, SMC proteins have diverse roles in DNA metabolism, many of 

which could be applied to RecN, although the key cellular roles of SMC 

proteins in eukaryotes appear to be provided in E. coli by another known SMC 

homolog, namely MukB (Niki et al. 1992; Graumann 2001; Sunako et al. 

2001; Bartosik and Jagura-Burdzy 2005).  

Eukaryotic cohesin is crucial for chromosome segregation, but also has 

roles in DNA repair, particularly the processing of DSBs and the maintenance 

of replication forks. The model of cohesin action is often used to explain the 

function of all SMC proteins. Certainly, the Smc5 – 6 complex is believed to 

function in a cohesin-like manner, trapping DNA within a ring like complex, 

and has been implicated in meiotic chromosome segregation, but appears to be 

primarily involved in DNA repair (Lehmann et al. 1995; Verkade et al. 1999; 

Pebernard et al. 2004). The third eukaryotic SMC complex is condensin. 

Although condensin has been implicated in DNA repair, specifically long-

patch BER in vertebrates (Chen et al. 2004; Blank et al. 2006; Heale et al. 

2006), it is primarily involved in chromosome compaction that occurs prior to 

segregation (Hirano 2005a). However, although I have shown in this study that 
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RecN proteins do share some functional homology with SMC proteins, this 

does not bring us closer to understanding its precise cellular function. 

7.1.1 RecN as a flag of DNA breaks 

It has been suggested from studies in B. subtilis that RecN protein binds a 

break soon after it occurs and acts as a flag to facilitate recruitment of other 

proteins (Kidane et al. 2004). This function is comparable to the role of Rad50, 

an SMC protein that forms part of the DSB sensing complex of eukaryotes 

(MR(N/X) complex) (Usui et al. 1998; Mirzoeva and Petrini 2001; Usui et al. 

2001; McGowan and Russell 2004). As discussed in Chapter 1, this idea has 

some compelling support, as BsRecN forms nuclear-associated foci, even in 

the absence of end-processing (Sanchez et al. 2006). However BsRecN has 

been shown to only bind ssDNA, preferentially ssDNA that has an exposed 3' –

OH group (Sanchez and Alonso 2005). This study failed to detect comparable 

ssDNA binding, but both HiRecN and AqRecN do interact with ssDNA.  

However, a break site will often have a blunt end with a single-stranded region 

for RecN binding only available after end-processing, by RecBCD. Secondly, 

RecN is only prevalent in a cell after SOS induction (Picksley et al. 1984b; 

Finch et al. 1985a; Rostas et al. 1987; Nagashima et al. 2006) and  SOS 

induction only occurs after DNA damage, when ssDNA has accumulated 

(Higashitani et al. 1995).  The small quantity of basally expressed protein 

would be adequate to act as a flag, which would explain the presence of only 

one or two foci, of RecN-fluorescent protein fusions on DNA during normal 

growth. So why is it then so heavily induced after damage? Moreover, why are 

multiple foci not then observed on the DNA (Moore; Kidane et al. 2004; 

Nagashima et al. 2006; Moore Unpublished data), as exposure to agents like IR 

or mitomycin C should cause a number of breaks in a dose dependent manner. 

It is possible that RecN acts as a flag of breaks, but it seems it must also have a 

second, later role in break repair that requires large quantities of the protein. 
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7.1.2 Potential of RecN to provide cohesion between DNA 
molecules 

A second hypothesis is that the RecN functions in a cohesin-like manner. 

Cohesin holds sister chromatids together after replication and ensures correct 

segregation of the chromosomes. It has been speculated that cohesin, and the 

related Smc5 – 6 complex, aid the repair of a DSB by holding sister chromatids 

in proximity. This would increase the chance of homologous sequences being 

in proximity, thus promoting efficient and accurate repair by HR (Mengiste et 

al. 1999; Skibbens et al. 1999; Sjogren and Nasmyth 2001; Morishita et al. 

2002; Lehmann 2005; Strom and Sjogren 2007). If RecN were a cohesin-like 

molecule then it would be expected to topologically interact with DNA. This 

could explain the limited DNA binding seen with HiRecN and AqRecN as 

cohesin is believed to entrap and encircle rather than bind DNA (Haering et al. 

2002). However, cohesin requires ATP hydrolysis to allow its loading onto 

DNA (Arumugam et al. 2003) and to facilitate complex formation, possibly by 

stabilising the dimer interface within  the head domain of SMC proteins 

(Weitzer et al. 2003; Lammens et al. 2004). In contrast, the two RecN proteins 

analysed in this study, associate with DNA in the absence of a nucleotide, with 

the interaction being inhibited in the presence of ADP. Similarly, BsRecN 

could also interact with DNA, in the absence of a nucleotide (Sanchez and 

Alonso 2005; Sanchez et al. 2007a). Perhaps, as suggested in Chapter 6, RecN 

requires ATP hydrolysis to allow it to release DNA. Therefore, in the presence 

of ADP all of the RecN is in a conformation that prevents DNA interaction and 

consequently cannot load onto the DNA. Interestingly, the E. coli SMC 

homolog, MukB, and BsSMC have been shown to bind DNA in an ATP-

independent manner (Niki et al. 1992; Hirano et al. 2001). Therefore, ATP-

independent DNA binding would not be unique within the SMC family of 

proteins to RecN, instead SMC proteins appear to have diverse DNA 

interactions and requirements.  

As ATP binding and hydrolysis is not required by either SMC proteins, 

or more particularly RecN to bind DNA it therefore seems contradictory that 

the K35 mutants generated did not bind DNA. Although it could be that the 
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mutant proteins fail to fold correctly, this seems unlikely. Instead I believe the 

explanation lies in the disruption of a potential dimer interface. If RecN is 

functioning in a manner related to cohesin disruption of the dimer would 

prevent it interacting with and trapping DNA. The simplest explanation for the 

deficiencies observed for the K35A mutations is that if RecN does function as 

a dimer, with at least one interface formed by the interaction of the ATPase 

domains (Chapter 6), that the ATPase mutations may disrupt this interface. The 

disruption may prevent dimerisation and thus the function of RecN. Such 

disruption has been observed with several SMC proteins (Lammens et al. 

2004).  

What is curious is the lack of dsDNA binding observed for RecN 

proteins. If the protein engages DNA by entrapment, then it should be expected 

to bind dsDNA in a comparable manner to its binding of ssDNA. However, 

neither I nor the authors of the reports on BsRecN detected any such activity 

(Sanchez and Alonso 2005; Sanchez et al. 2007a). Evidence suggests that 

BsSMC does preferentially bind ssDNA over dsDNA (Hirano and Hirano 

1998a; Sanchez and Alonso 2005). However, BsSMC still binds to dsDNA and 

the mechanism by which BsSMC preferentially binds ssDNA is unknown. But 

perhaps RecN binds to ssDNA preferentially or exclusively using a similar 

mechanism. However, further studies are needed to define the DNA substrates 

to which RecN can bind and exclude the possibility of a dsDNA binding 

activity.  

7.1.3 RecN as a condensin 

The putative models for RecN activity are largely based on the proposed 

mechanisms of cohesin activity. However compelling the cohesin DNA 

entrapment model is, it is not the only model and issues remain unresolved 

(Hirano 2002; Huang et al. 2005; Guacci 2007). The eukaryotic condensin 

complex is believed to function in a distinct manner from cohesin. DNA 

entrapment appears to be unlikely, as disruption of the proposed condensin ring 

does not affect the DNA binding activity of the complex (Hudson et al. 2008). 

Rather, it is believed that condensin shares functional homology with the        

E. coli SMC homolog, MukB. This protein also forms a complex, with MukE 
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and MukF, and this MukBEF complex appears to fulfill the role of condensin 

in E. coli (Ohsumi et al. 2001). It is proposed that ATP-bound MukBEF 

molecules polymerise along DNA in a cooperative fashion to form a filament 

that compacts the bound DNA molecule. This is achieved via interactions 

between the heads of adjacent MukB molecules along the DNA, causing it to 

coil (Case et al., 2004), and this is dependent on ATP hydrolysis (Chen et al. 

2008). Quite how a compaction of the chromosome would aid recombination is 

unclear and a cohesion-like mechanism of RecN action, with the tethering of 

DNA molecules together, seems the more likely model. However, the 

possibility that RecN may bind DNA in a condensin like manner and 

polymerise on DNA cannot be ruled out. A requirement to polymerise would 

explain the tendency of RecN to aggregate and form complexes (Kidane et al. 

2004; Nagashima et al. 2006). However, in terms of the role it fulfills, i.e. the 

repair of DNA, particularly DSBs, it most closely resembles the cohesin and 

Smc5 – 6 complexes, both of which appear to act by entrapment of DNA. 

7.2 RecN and SMC proteins can aid accurate genome 
transmission 

To ensure the proper transmission of its genome, a cell must correctly 

replicate, segregate and, if necessary, repair its DNA. The cohesin and Smc5 – 

6 complexes have key roles in all of these processes. Mutations in components 

of the cohesin complex have been shown to be mildly sensitive to UV and 

critically sensitive to IR exposure (Birkenbihl and Subramani 1992). This is 

similar to E. coli cells carrying a recN mutation, which show a very mild UV 

sensitisation, but are markedly IR sensitive (Figure 4.7) (Sargentini and Smith 

1983; Picksley et al. 1984a). The IR sensitivity of cohesin suggests a role in 

the repair of DSBs.  This has been confirmed in a variety of organisms.  

Sjörgen and Nasmyth (2001) showed that in yeast cells, cohesin has to 

be present and active, otherwise cells cannot repair IR induced DSBs. 

Activation requires DNA replication and the Eco1 protein. In the absence of 

Eco1, cells show an IR sensitive phenotype that is almost identical to that 

reported by Sjörgen and Nasmyth (2001) for cohesin deficient cells (Skibbens 
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et al. 1999; Toth et al. 1999; Sjogren and Nasmyth 2001). In chicken DT-40 

cells depletion of the cohesin component Scc1, causes sensitivity to IR. IR 

exposure also drastically increased the incidence of chromosomal 

rearrangements, suggesting that although repair occurs, it was inaccurate. It 

appears that in the absence of sister chromatid cohesion, genomic stability is 

seriously compromised (Sonoda et al. 2001). Direct evidence for cohesin 

having a role in the repair DSBs comes from a very elegant set of experiments, 

by Kim et al. (2002). They used human (HeLa) cells and a laser beam, at a 

specific frequency that will only damage DNA. The beam caused tracks of 

DSBs through the targeted cell. Using fluorescently tagged proteins, they 

monitored the recruitment of proteins to the break tracks and saw that cohesin 

complex components were recruited to these tracks of DSBs, in an Mre11 

dependent manner. Mre11 is part of the MR(N/X) complex, which is known to 

detect and aid processing of a DSB and to which RecN has already been 

compared, as an early sensor or flag of DNA breaks (Sanchez et al. 2006). The 

observations by Kim et al. (2002) suggest that cohesin is actively recruited to, 

and required for the repair of a DSB and can be detected in a region of 

approximately 50-100kb around the break site (Kim et al. 2002a; Strom et al. 

2004; Unal et al. 2004).  

The most recently identified SMC containing complex, the Smc5 – 6 

complex, is also heavily involved in DNA repair. The Smc5 and Smc6 proteins 

were identified in S. pombe, as mutants sensitive to UV and IR (Nasim and 

Smith 1975; Phipps et al. 1985; Fousteri and Lehmann 2000). These mutants 

were also shown to be compromised for NER and DSB repair (Lehmann et al. 

1995; Verkade et al. 1999). These SMC proteins were also shown to be part of 

a larger complex, with at least six non-SMC subunits (Nse1 through Nse6). 

Interestingly two of the subunits, Nse5 and Nse6, appear to form a separate 

sub-complex, unusually this does not interact with the head domains, but binds 

within the coiled-coil region of the SMC proteins. Also, Nse2 is a SUMO 

ligase, directly involved in telomere maintenance and while in S. cerevisiae all 

six Nse proteins are essential, in S. pombe the sub-complex forming Nse5 and 

Nse6 are dispensable (Fousteri and Lehmann 2000; Andrews et al. 2005; Potts 
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and Yu 2005; Sergeant et al. 2005; Zhao and Blobel 2005; Palecek et al. 2006; 

Potts and Yu 2007). 

The Smc5 – 6 complex has been implicated specifically in the repair of 

DSBs, although is involved in HR in general (Mengiste et al. 1999; Lehmann 

2005; Strom and Sjogren 2007). In cells deficient for components of the 

complex, DNA fragmentation occurs. This was presumed to be due to the 

accumulation of DSBs and Cost and Cozzarelli (2006) substantiated this claim 

by experiments that showed the fragmentation to be exacerbated by exposure 

to IR (Cost and Cozzarelli 2006). This is surprisingly reminiscent of what is 

seen with E. coli recN mutants. After IR exposure fragmentation of the E. coli 

chromosome normally occurs, however, it is more severe in cells carrying a 

recN mutation (Morishita et al. 2002). Surprisingly, while cohesin is required 

to initiate recombination, the Smc5 – 6 complex is essential to the resolution of 

recombination, specifically the crossover structures that occur within regions 

of repetitive sequence (called rDNA regions). This could explain the delay in 

chromosome segregation observed in Smc5 – 6 deficient cells (Torres-Rosell et 

al. 2005; Lindroos et al. 2006), while cohesin mutants segregate prematurely. 

The inability to segregate would also explain the requirement for the Smc5 – 6 

complex during meiotic chromosome segregation, which requires both cohesin 

and the Smc5 – 6 complex. The Smc5 – 6 complex is not acting as a cohesin in 

this case, but is needed to allow resolution of crossovers (Pebernard et al. 

2004). Perhaps the most persuasive evidence that the Smc5 – 6 complex is 

involved in the repair of DSBs is that it is actively recruited to them, in an 

Mre11-dependent manner, much like cohesin (De Piccoli et al. 2006; Lindroos 

et al. 2006; Potts et al. 2006).  

Both cohesin and the Smc5 – 6 complex appears to share some 

overlapping functions, and currently share the same model of action. Both are 

required for accurate segregation of chromosomes and the distribution of the 

Smc5 – 6 complex is altered by disruption of cohesin loading (Lindroos et al. 

2006). However, since both complexes are essential it would be expected that 

they must possess distinct roles in DNA metabolism. Perhaps the cohesin 

provides cohesion on a genome-wide scale, although it is recruited to break 



169 

 

sites to supplement cohesion in this region, whilst the Smc5 – 6 complex has a 

dual function, providing temporary cohesion at the break site and a role in 

resolving crossovers, facilitating HR and repair of a DSB.  

The simplest explanation for cohesin’s role would be that the complex 

holds sister chromatids together around the breaks site and this could aid HR 

by keeping homologous regions in close proximity (Sjogren and Nasmyth 

2001). An early role in HR would explain why genetic studies failed to place 

recN in either the RecFOR or RecBCD recombination pathway. It was placed 

in its own epistatic grouping, as it acts before either pathway is employed 

(Lloyd and Buckman 1991). However, unlike cohesin mutants, recombination 

still proceeds in the absence of RecN. Therefore, RecN is not essential to the 

initiation of recombination. Yet, this may be a result of the complexity, and 

size, of eukaryotic genomes making cohesion a requirement to ensure accurate 

repair, rather than a difference in role between cohesin and RecN. 

It is eminently plausible that RecN, like cohesin and the Smc5 – 6 

complex, is recruited to a DSB, and like cohesin this occurs early during repair.  

Evidence suggests that BsRecN may in fact be the first protein recruited to a 

break, forming the basis of the proposed ‘repair centres’ (Kidane et al. 2004). 

However, why only one or two RecN foci are observed on the DNA, even after 

chronic DNA damage will have induced numerous breaks, is unclear (Kidane 

et al. 2004; Nagashima et al. 2006; Moore Unpublished data). Perhaps the 

suggestion by Kidane et al. (2004) of repair centres, with numerous breaks 

being processed in each, is the answer. This hypothesis seems unlikely, as 

when numerous recombination events occur in close proximity, the potential 

for errors should be magnified. However, the results are complicated by the 

inability of the EcRecN fluorescent proteins to fully complement for a deletion 

of the recN gene (Moore Unpublished data) and the tagged proteins are 

expressed from a plasmid. Future work may make use of chromosomal based 

fusions, regulated by the recN promoter, to try and overcome this problem. 
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7.3 RecN and SMC proteins are involved in DNA 
replication 

RecN is indirectly implicated in the maintenance of replication, as this is 

believed to be the housekeeping function of HR (Cox et al. 2000; Marians 

2000; Sandler and Marians 2000; Marians 2004). However, it has been more 

directly implicated as it is required to facilitate break induced replication of a 

non-replicating plasmid (Asai et al. 1994).  

The Smc5 – 6 is known to be involved in DNA replication. As 

depletion of the complex causes sensitivity to hydroxy urea, this could be 

suppressed by deletion of Rad51. This would suggest that without the       

Smc5 – 6 complex, collapsed replication forks either undergo illegitimate 

recombination, or more likely, HR is initiated, but cannot be resolved in the 

absence of the complex (Harvey et al. 2004; Ampatzidou et al. 2006). It also 

appears that  loading of the  Smc5 – 6 complex onto DNA is associated with 

passage of the replication fork (Tsuyama et al. 2006). Similarly, cohesin 

mutants show sensitivity to hydroxy urea (Tatebayashi et al. 1998) and the 

establishment of sister chromatid cohesion requires the passage of a replication 

fork. It appears that cohesin is normally loaded onto chromosomes at specific 

locations, referred to as cohesin-associated regions (CARs), prior to DNA 

replication (Blat and Kleckner 1999; Glynn et al. 2004; Lengronne et al. 2004). 

As DNA replication occurs, cohesin is activated enabling sister chromatid 

cohesion and the activation requires the Eco1 (sometimes called Ctf7) protein. 

How Eco1 activates sister chromatid cohesion is unclear, but there is evidence 

that it may interact directly with components of the replisome. It also appears 

that Eco1 mediated activation is essential, as Eco1 deficient cells have 

phenotypes almost identical to cells deficient for cohesin (Skibbens et al. 1999; 

Toth et al. 1999; Lengronne et al. 2006; Moldovan et al. 2006). It is believed 

that cohesin-associated regions provide spatial localisation, by specifying 

where cohesion binds, while Eco1 activity allows temporal activation of sister 

chromatid cohesion, after DNA replication has occurred. 

RecN shares a remarkable functional resemblance to the cohesin and 

Smc5 – 6 complexes, possessing a key role in the repair of DNA DSBs, and 
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more generally in HR. However, unlike the eukaryotic SMC complexes, RecN 

is not essential and has no known interaction or complex forming partners. It is 

also interesting that the unique V-shaped structure associated with SMC dimers 

(Melby et al. 1998) could not be visualised under an electron microscope. This 

may be because RecN is much smaller and so less distinct, or that it forms 

different shaped complexes. The formation of large complexes would explain 

the protein aggregates observed in E. coli and the large nucleoprotein 

aggregates BsRecN forms with ssDNA (Meddows 2002; Sanchez and Alonso 

2005; Nagashima et al. 2006; Sanchez et al. 2007a). In future, the search for 

interaction partners via “pull down” experiments could be informative. It 

seems likely that RecN functions in a manner comparable to one or more of the 

SMC complexes. However, its cellular role maybe distinct from that of those 

currently characterised for SMC proteins.  

7.4 Models of RecN function 

Any model for RecN that suggests a cohesin-like function has to account for 

the ssDNA binding activity of the protein, the essential ATPase activity and 

how cohesion of DNA molecules by RecN could aid the rapid and accurate 

repair of a DSB. 

For the models I am about to propose, several assumptions are being 

made. Firstly, RecN forms a dimer that allows the formation of functional 

ATPase domains (Chapter 6) and also a ring shaped structure (Figure 7.1). 

Whether RecN requires partner proteins to form such a complex is speculative, 

and it maybe that, like BsSMC, it can act alone as a simple homodimer (Hirano 

and Hirano 1998a). Secondly, that the tendency of the protein to aggregate and 

form large complexes is physiologically relevant. Thirdly, that RecN not only 

has a cellular role like cohesin, but also acts in a similar manner, functioning 

by entrapment of DNA within the ring of the homodimer (Haering and 

Nasmyth 2003). Finally, SOS induction of RecN is required to provide enough 

RecN to allow cohesion to occur, potentially on a genome-wide, and certainly 

on a break-localised scale.  
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7.4.1 Break localised cohesion model of RecN activity 

 

 

 

Figure 7. 1. Generalised structure of a RecN dimer. 

The two RecN molecules are shown, with dimerisation 
occurring at the head and hinge region. The ring structure is 
highlighted with the estimated diameter shown. 

 

 

 

Kidane et al. (2004) suggested that RecN could detect a break and 

promote repair by binding to it and flagging the break, so as to recruit repair 

factors. RecN may potentially then act in a cohesion-like manner and trap the 

intact homolog, thus ensuring that the repair template is in close proximity to 

the break, promoting the speed and accuracy of repair. The basal expression of 

RecN ensures there are enough molecules present in the cell to act as a flag, 

binding a break and then directing repair to this site (Figure 7.2 A), by 

recruiting other repair proteins. The ‘flag RecN dimer’ could also act as a 

nucleation centre so that further RecN dimers can polymerise or aggregate with 

this RecN molecule, localising RecN to the break site (Figure 7.2 B). Although 

the original flagging and nucleation events would occur prior to DNA end-

processing, the subsequent action of RecN and the localised break-induced 

cohesion could occur after end-processing, when ssDNA would be available.  

RecN has been shown to bind or interact with ssDNA by Sanchez and 

Alonso (2005) for BsRecN and as demonstrated with HiRecN and AqRecN in 

this study. It can be envisaged that RecN, localised to the break site by 

nucleation with the ‘flag RecN’, might then specifically interact with ssDNA in 

this region. It is presumed that RecN will interact, and thus capture the 

processed 3' ssDNA tail at the break site, facilitating transports of the ssDNA 

tail into the interior of the RecN dimer ring (Figure 7.2 C). The relatively weak 

ssDNA interactions of RecN proteins seen in this work (Chapter 6) could be 
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due the small linear substrate used. If RecN binding to ssDNA is to facilitate 

ssDNA capture, rather than a direct binding activity, then the linear substrate 

can be held weakly but once within the RecN ring it will not be held, therefore 

the substrate would be free to migrate. It is only due to the excessive quantities 

of protein used that we see the retention of labelled material within the well in 

gel retardation assays, as a result of the initial ssDNA capture by RecN. The 

formation of a large RecN polymer would also explain why the labelled 

material remained in the well.  

Once the RecN polymer has captured the ssDNA tail, it might then also 

capture, in a non-specific manner, any DNA molecules nearby, transporting 

them into the interior of the RecN dimer ring (Figure 7.2 D). The capture of a 

sister chromatid assumes that it has not yet had time to move and will still be 

nearby. If this is the case then the recombinogenic ssDNA tail and the intact 

sister, which can act as a template for repair, will be held in proximity. The 

cohesin ring has been estimated to have a diameter of approximately 50nM, 

RecN would be much smaller as its coiled-coil domains are only about a third 

the size, although based on the size and circumference of a cohesin ring, a 

RecN dimer ring could have a diameter of up to 16nm. Although direct 

measurement from the model of the RecN dimer suggests a gap of only 5-6nm, 

which is much smaller than was estimated from the size of the cohesin ring. 

However, the coiled-coil motifs are flexible and so can move outward to give 

the larger radius away from the head. As a RecA filament is around 10nM (Yu 

and Egelman 1992), it could be possible for RecA to begin loading onto the 

ssDNA without too much interference from the RecN ring and initiate strand 

invasion. It is also possible that although RecN polymers are bound to the 

ssDNA tail they cover only a fraction of it, leaving the majority of the tail free 

to initiate recombination. Whether RecN remains bound throughout 

recombination is unclear. The ring’s diameterwould be adequate to contain a 

RecA filament and duplex DNA, but it s presnce may still interfere with 

recombination and it is possible that RecN will release the DNA, or be 

degraded by ClpXP, at this point allowing recombination to proceed 

unhindered (Figure 7.2 E).    
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Figure 7. 2. Model for the involvement in RecN in providing break recognition and 
break specific cohesion. 

Two DNA duplexes are shown with the break in one (black) and the intact sister (red). 
 

A) RecN dimer (light blue and green dimer) can recognise and bind the DNA end 
acting to ‘flag’ the break.  

 
B) The flag RecN remains bound at the end and acts as a nucleation point for a 

RecN polymer to form. 
 

C) End-processing exposes the 3' ssDNA tail, which can be bound by RecN dimers 
resulting in capture of the tail. 

 
D) The RecN dimers then capture the intact duplex bringing it into the RecN ring, 

holding the intact sister in proximity to the broken duplex.  
 

E) RecN is removed from the DNA, either by proteolysis by ClpXP (blue circle) or 
the ATPase activity of RecN disrupting the dimer, to allow recombination to 
proceed. Strand invasion could commence prior to clearance.  
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A release hypothesis could explain the requirement for ATPase activity. 

These studies suggest that RecN can interact with ssDNA with or without ATP, 

but ADP blocks this interaction. The explanation was that RecN, in the 

presence of ADP, is held in a conformation that promotes release of DNA 

(Chapter 6). If this is the case then RecN could bind ssDNA and trap nearby 

duplex without ATP hydrolysis. Turnover of ATP to ADP could then drive the 

conformation change that converts RecN into a non-DNA binding 

conformation and thus it will release the DNA, allowing recombination to 

proceed. The relatively weak ATPase activity could therefore be due to a need 

to hold DNA for a certain time period and then release. It could also be that 

other factors can regulate the ATPase activity to control when RecN 

disassociates from the DNA. A release mechanism could also prevent the basal 

levels of RecN disrupting replisome progression or access to the DNA, 

although such disruption would only seem likely when large aggregates are 

present. Once released the RecN could then be degraded by ClpXP. This 

scenario would explain why the ATPase deficient K35A mutations of RecN 

failed to function in vivo (Chapter 6), as ATP hydrolysis is needed to release 

DNA, without which RecN cannot function correctly. However, the above 

scenario does not explain why the mutant RecN proteins fail to bind DNA, but 

the simplest explanation would be the disruption of the dimer interface, as 

suggested earlier (Section 7.1.2).  

7.4.2 Global cohesion model of RecN activity 

In a modification to the specific cohesion model of RecN action, it is 

also possible that RecN could provide genome-wide cohesion in response to 

DNA damage. This model was originally proposed by Meddows (2002) to 

explain why RecN is so heavily induced during the SOS response and the idea 

has been given credence by recent reports that DNA damage can induce sister 

chromatid cohesion in yeast outside of anaphase (Strom and Sjogren 2005). In 

eukaryotes, damage-induced sister chromatid cohesion occurs on a global, 

genome-wide scale with a single DSB inducing cohesion not just on the 

chromosome where the break occurs, but across all chromosomes. The 

activation of this genome-wide cohesion is dependent on Eco1, but does not 
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require DNA replication (Strom et al. 2007; Unal et al. 2007). It appears that, 

although, cohesin normally provides a general sister chromatid cohesion, 

temporally activated by replication and spatially organised by CARs, after 

DNA damage this cohesion is enhanced on a genome-wide scale in order to aid 

repair, particularly of DSBs. Whether this global cohesion is random, or 

remains spatially organised is unclear, although the active recruitment of 

cohesin to the site of a break suggests at least some specificity (Kim et al. 

2002a).  

In E. coli the newly replicated chromosome are normally held together 

immediately after replication by the catenation of the DNA molecules, which 

occurs during replication. This provides cohesion at a particular locus for 

approximately 15 minutes after its replication. The catenation is then removed 

by the action of topoisomerase and the chromosomes can begin to segregate 

(Wang et al. 2008). This ensures that sister chromosomes are held in proximity 

immediately post-replication. However, if damage occurs then segregation 

would separate the sister chromosomes making repair by HR difficult. 

Therefore, there is a need in the cell for a mechanism to keep sister 

chromosomes together, particularly after damage to facilitate repair by HR. If 

RecN is a cohesin-like molecule then it might do this, and like cohesin provide 

genome-wide cohesion in response to DNA damage. By holding together the 

newly replicated chromosomes, RecN could facilitate the search for homology 

and thus the accuracy and rate of repair. 

In this global cohesion model, the basally expressed RecN is loaded 

onto the chromosome. This could be at random or, as with cohesin, targeted to 

specific regions of the chromosome. In either case RecN is distributed around 

the chromosome. The presence of individual RecN dimers encircling the DNA 

will not affect replisome progression, either they get ‘pushed’ along in front, or 

perhaps the ATPase activity allows them to release the DNA when a replisome 

encounters them. However, the randomly loaded RecN dimers can act as 

nucleation centres for the assembly of RecN aggregates around the 

chromosome. These numerous nucleation sites could then provide spatial 

distribution of RecN around the chromosome. There is also the possibility that 
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RecN has specific loading sites, like the CARs associated with cohesin (Blat 

and Kleckner 1999; Glynn et al. 2004; Lengronne et al. 2004). Either 

mechanism will distribute RecN dimers around the chromosome (Figure 7.3 

A). In response to DNA damage (Figure 7.3 B), RecN expression is induced as 

part of the SOS response. The newly induced RecN can then associate with the 

preloaded RecN and assemble a polymer of RecN, which will capture nearby 

DNA molecules and thus allow global cohesion between the parental and 

newly replicated genomes (Figure 7.3 C).  

Figure 7. 3. Model for the involvement of RecN in global chromosome cohesion. 

A) Basally expressed RecN is loaded onto the DNA duplex (black lines) as 
replication proceeds (replisome, green oval) but does not block replication. 

B) DNA damage (yellow arrows) occurs and the SOS response is induced. 

C) RecN is induced and the pre-loaded RecN acts as nucleation centres for RecN 
aggregates/polymers that then act to hold the parental and newly replicated 
DNA in proximity. The polymers of RecN can block or slow replisome 
progression until repair is complete. 

It is also possible, although highly speculative, that these RecN 

polymers could inhibit replisome progression, stalling replication until repair is 

complete and reducing the risk of creating further DSBs or fixing mutations. If 

we assume that RecN entraps DNA molecules then it will be ‘wrapped around’ 

the DNA. It would seem unlikely that RecN could limit access to the DNA. 

Even though estimates from the expression data on RecN suggest there could 

be 10,000 copies per cell after SOS induction (Finch et al. 1985a). The 

assumption is that RecN is a dimer and if randomly distributed then there 

would only be one RecN dimer every kilobase. It is also known from 

experiments using fluorescently tagged proteins that much of the RecN appears 
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to be in the cytoplasm as aggregates (Nagashima et al. 2006; Moore 

Unpublished data). However, if RecN does polymerise or aggregate on the 

DNA then it may block access to the DNA beneath the polymer and more 

importantly could restrict the advancement of a replication fork. An array of 

RecN dimers could be generated as a result of the polymerisation of RecN or 

via the gathering of RecN rings in front of the replisome as it travels, 

accumulating more rings as it proceeds. This array could eventually stall 

replication and potentially collapse the replication fork. In this way RecN 

could act as a checkpoint, preventing DNA replication and cell division until 

repair has been completed and the RecN protein removed. 

Inhibition of replication by RecN would explain the stringent regulation 

of, and transient expression of, RecN. At least two known, and one putative, 

LexA binding sites normally repress expression of RecN (Rostas et al. 1987; 

Erill et al. 2003). Once DNA damage occurs repression is removed and recN 

gene is rapidly expressed, peaking within 20 minutes (Nagashima et al. 2006). 

The presence of this RecN could allow cohesion to facilitate HR and also act to 

prevent replication. This could help prevent the risk of either passing on errors 

or complicating the repair of any breaks. Within 160 minutes of SOS induction 

RecN is completely removed, largely by the action of the ClpXP protease 

(Nagashima et al. 2006; Neher et al. 2006). This would free the replisomes to 

proceed and cell division to resume. If RecN does act as a replication block it 

provides an explanation for the toxicity observed when RecN is overexpressed 

from a multi-copy plasmid (Meddows 2002). Cohesin could have a similar 

affect and this would explain the stringent regulation of cohesins’ activation, 

specifically after DNA replication. Therefore, it could be assumed that prior to 

DNA replication the presence of active cohesin would be detrimental to the 

cell (Toth et al. 1999; Lengronne et al. 2006). If RecN only exists as an active 

form, it must be tightly regulated and expression controlled, to avoid a toxic 

affect on the cell and to ensure its removal it is actively targeted by a protease 

(Nagashima et al. 2006; Neher et al. 2006). 

Although two models of RecN action during DSB repair have been 

suggested; it is possible that what actually occurs within the cell is a hybrid of 
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both models, with RecN providing break-localised and genome-wide cohesion 

in response to DNA damage, much like the damage induced cohesion 

associated with cohesin (Strom and Sjogren 2005; Strom et al. 2007; Unal et 

al. 2007). The important point is that if RecN dimers can trap DNA molecules, 

they will keep the trapped molecules in close proximity to each other, 

facilitating repair. This will ensure that homologous sequences are kept in 

close proximity and thus the template for the repair of a break will be nearby. 

This will increase the ease and speed of repair, as well as the accuracy. Such a 

theory nicely explains how RecN is involved in the repair of DSBs, but also 

why the protein is not essential. In the absence of RecN recombination can still 

occur, as RecA will still find and invade homologous sequences. But the model 

predicts that the time taken to find the homologous sequences, and thus the 

chance of making errors, is increased. 

7.5 Future work 

Although the evidence presented in this thesis has provided further insight into 

the RecN protein and its function, the mechanics of its activity remains 

unresolved. A model for RecN activity is suggested in which RecN 

functionality is related to the cohesin model of DNA entrapment, however, it is 

by no means certain that RecN has a cohesin-like role. The same model is also 

used to explain the activity for the related, Smc5 – 6 complex, which has 

distinct cellular roles different from cohesins. With the isolation and 

purification of HiRecN it is possible for the first time to compare the 

biochemical activity of RecN to the extensive genetics performed in E. coli. I 

have also begun the process of characterising the activities of RecN, showing 

that it is a weak, magnesium-dependent ATPase that can interact with ssDNA. 

This has led to a closer comparison of RecN to other SMC family proteins and 

it is now possible to more clearly define RecN as an SMC protein, due to the 

shared activities. However, work remains to be done. RecN is an ubiquitous 

bacterial gene that whilst not essential, is clearly important when a cell is 

stressed. While a model for RecN activity is presented here, work is needed to 

test the ideas presented. For instance, there is no explanation for why multiple 
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RecN foci are not seen on the DNA, either as a result of global cohesion or at 

site of multiple breaks (Kidane et al. 2004; Nagashima et al. 2006; Moore 

Unpublished data). 

One approach is to attempt to localise where RecN acts and determine 

if it is loaded onto the DNA prior to damage. It is possible to detect 

chromosomally associated proteins using chromosome immune-precipitation 

(ChIP) assays. To this end, the purification of highly specific RecN antibodies 

would be useful. During this work, I raised antibodies to the insoluble EcRecN, 

but these showed limited specificity to RecN and were therefore inadequate to 

allow quantification of the protein or further analyse its location and function. 

However, antibodies raised to the N-terminal globular domain have shown 

more promise (Grove, unpublished). Antibodies may also allow pull down 

assays of RecN to try and identify any interaction partners. These partners 

could be part of a RecN ring complex like those associated with the eukaryotic 

SMC proteins, or may act to regulate the ATPase activity of RecN, like the 

ScpA and ScpB proteins that interact with BsSMC, perhaps to promote release 

of DNA (Schleiffer et al. 2003; Hirano and Hirano 2004; Palecek et al. 2006; 

Petrushenko et al. 2006b). If partner proteins doexist and they may have other 

cellular roles, like the Nse subunits of the Smc5 – 6 complex and therefore 

would not be readily detectable by screening for recombination deficiencies 

related to RecN as the deficiency may get masked by loss of alternative 

functions. It is also possible to make use of functional His-tagged HiRecN to 

do pull downs directly from E. coli cell extracts as HiRecN has been 

demonstrated to fully complement for the EcRecN in vivo it should interact 

with any E. coli partner proteins (Chapter 4). This provides an alternative 

method to isolate any RecN partners. 

Another method to discover if RecN does form complexes would be to 

try and investigate its structure. The EM studies provide evidence for the 

formation of higher order AqRecN structures and glutaraldehyde cross-linking 

and gel filtration data suggests that the RecN proteins do form complexes with 

themselves, but the exact composition is still unknown (Chapter 5; Chapter 6; 

and Kidane et al. 2004). Work is also progressing on crystallisation trials and 
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early screening using AqRecN and HiRecN has been promising. However, 

further work is needed to isolate ideal conditions and crystallise the protein. 

The resolution of the crystal structure is particularly valuable, as there is 

currently no crystal structure for a full-length SMC protein (van den Ent et al. 

1999; Lowe et al. 2001; Lammens et al. 2004; Fennell-Fezzie et al. 2005). 

Therefore, a crystal structure of the full-length RecN protein could aid our 

understanding not only of RecN, but the whole SMC protein family.  

Although how RecN aids the repair of a DNA break remains unknown, 

this study has provided new information and importantly, the tools and raw 

material needed to begin fully characterising and understanding RecN, work 

which is continuing in the Lloyd laboratory. 
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