
School of Mathematical Sciences

Division of Applied Mathematics

Theoretical Mechanics

Numerical Methods for Stiff Systems

A thesis submitted to the University of Nottingham for

the Degree of Doctor of Philosophy

by

Hala Ashi

Supervisors

Dr. Paul Matthews

Dr. Linda Cummings

June 2008

http://www.nottingham.ac.uk/
http://www.maths.nottingham.ac.uk/
http://www.maths.nottingham.ac.uk/research/applied_mathematics/

Abstract

Some real-world applications involve situations where different physical phenomena

acting on very different time scales occur simultaneously. The partial differential

equations (PDEs) governing such situations are categorized as “stiff” PDEs. Stiff-

ness is a challenging property of differential equations (DEs) that prevents conven-

tional explicit numerical integrators from handling a problem efficiently. For such

cases, stability (rather than accuracy) requirements dictate the choice of time step

size to be very small. Considerable effort in coping with stiffness has gone into

developing time-discretization methods to overcome many of the constraints of the

conventional methods. Recently, there has been a renewed interest in exponential

integrators that have emerged as a viable alternative for dealing effectively with

stiffness of DEs.

Our attention has been focused on the explicit Exponential Time Differ-

encing (ETD) integrators that are designed to solve stiff semi-linear problems.

Semi-linear PDEs can be split into a linear part, which contains the stiffest part of

the dynamics of the problem, and a nonlinear part, which varies more slowly than

the linear part. The ETD methods solve the linear part exactly, and then explicitly

approximate the remaining part by polynomial approximations.

The first aspect of this project involves an analytical examination of the methods’

stability properties in order to present the advantage of these methods in overcom-

ing the stability constraints. Furthermore, we discuss the numerical difficulties in

approximating the ETD coefficients, which are functions of the linear term of the

PDE. We address ourselves to describing various algorithms for approximating the

coefficients, analyze their performance and their computational cost, and weigh their

advantages for an efficient implementation of the ETD methods.

The second aspect is to perform a variety of numerical experiments to evaluate

the usefulness of the ETD methods, compared to other competing stiff integrators,

for integrating real application problems. The problems considered include the

Kuramoto-Sivashinsky equation, the nonlinear Schrödinger equation and the

nonlinear Thin Film equation, all in one space dimension. The main properties

tested are accuracy, start-up overhead cost and overall computation cost, since these

parameters play key roles in the overall efficiency of the methods.

i

To the ever living memory of my father and my father-in-law

“May ALLAH bestow His mercy upon them and award them paradise”

ii

Acknowledgments

First and foremost, I would like to thank ALLAH for giving me the strength and

making the completion of this thesis possible.

Early in this project, when I took the preliminary steps towards my thesis, I did

not foresee how many individuals would contribute to its completion whom I owe

my thanks and appreciation to. I am particularly grateful to my supervisors, Dr.

Paul Matthews and Dr. Linda Cummings, for their unlimited support and guid-

ance, thoughtful suggestions, objective comments, practical advice, and insightful

direction. Without their knowledge and expertise this thesis would never have been

completed.

I would like to express my sincere appreciation to Helen Cunliffe, the Research

Secretary, for her continuous support and assistance.

My gratitude also goes to my beloved husband, Mamdouh Tayeb, whose bound-

less love and firm belief in me have been a source of inspiration for me during my

lengthy project.

I am extremely motivated to express my greatest appreciation to my mother and

mother-in-law for their continuous support and prayers for me.

Finally, special mention must be made of my children Taher, Mohammed, and

Tala, I love you all.

iii

Contents

1 Introduction 1

1.1 Introduction . 2

1.2 Layout Of Thesis . 8

2 Spatial Discretization Methods 11

2.1 Introduction . 13

2.2 Finite Difference Formulas . 13

2.2.1 Finite Difference Approximation 14

2.2.2 An Example . 15

2.2.3 Matrix Form . 17

2.3 Spectral Methods . 17

2.3.1 Fourier Spectral Methods . 19

2.3.2 Numerical Derivatives . 22

2.3.3 An Example . 23

3 Exponential Time Differencing (ETD) Methods 26

3.1 Introduction . 28

3.2 Algorithm Derivation . 30

3.2.1 Integrating Factor Methods 31

3.2.2 Exponential Time Differencing Methods 32

3.2.3 Exponential Time Differencing Runge-Kutta Methods 35

3.3 Stability Analysis . 37

3.3.1 Stability of Exponential Time Differencing Methods 39

3.3.2 Stability of RK Exponential Time Differencing Methods . . . 45

3.4 Conclusion . 53

iv

4 Various Algorithms for Evaluating the ETD Coefficients 55

4.1 Introduction . 57

4.2 The Scalar Case . 61

4.2.1 Taylor Series . 61

4.2.2 The Cauchy Integral Formula 62

4.2.3 Scaling and Squaring Algorithm: Type I 64

4.2.4 Scaling and Squaring Algorithm: Type II 73

4.2.5 Composite Matrix Algorithm 78

4.3 Non-Diagonal Matrix Case . 81

4.3.1 Taylor Series . 84

4.3.2 the Cauchy Integral Formula 86

4.3.3 Varying the Radius of the Circular Contour 89

4.3.4 Scaling and Squaring Algorithm: Type I 95

4.3.5 Padé Approximation and the Taylor Series 99

4.3.6 Composite Matrix Algorithm 101

4.3.7 Matrix Decomposition Algorithm 103

4.4 Chebyshev Spectral Differentiation Matrices 105

4.5 Matrices With Imaginary Eigenvalues 108

4.6 Computation Time . 109

4.7 Conclusion . 112

5 Numerical Experiments 115

5.1 Introduction . 117

5.2 Numerical Experiments . 118

5.3 Kuramoto-Sivashinsky (K-S) Equation 123

5.3.1 Computational Results . 126

5.3.2 Conclusion . 134

5.4 Non-Linear Schrödinger (NLS) Equation 134

5.4.1 Computational Results . 138

5.4.2 Error Analysis of the ETD and the IF Methods 148

5.4.3 Conclusion . 152

5.5 Thin Film Equation . 153

5.5.1 Computational Results . 157

5.5.2 Conclusion . 160

v

6 Overall Conclusions 161

6.1 Overall Conclusions . 162

Appendices 170

A The Numerical Solution of the Kuramoto-Sivashinsky Equation 170

B Derivation of the Local Truncation Errors 172

Bibliography 175

vi

Chapter 1
Introduction

1

Chapter 1. Introduction 2

1.1 Introduction

The numerical solution of ordinary differential equations (ODEs) is an old topic.

Various techniques have been devised over the years to solve such equations, and

astonishingly, the old well-established methods such as the Runge-Kutta methods

[78] are still the foundation for the most effective and widely-used codes. Neverthe-

less, there are several kinds of problems which classical methods do not handle very

effectively, problems that are said to be “stiff”.

The earliest detection of stiffness in differential equations in the digital computer

era, by the two chemists, Curtiss and Hirschfelder (1952) [20], was apparently

far in advance of its time. They named the phenomenon and spotted the nature of

stiffness (stability requirement dictates the choice of the step size to be very small).

To resolve the problem they recommended possible methods such as the Backward

Differentiation Formula [78] for numerical integration. In 1963, Dahlquist [21]

defined the problem and demonstrated the difficulties that standard differential

equation solvers have with stiff differential equations.

At about this time several authors participated in independent research for han-

dling and evading the problems posed by stiff differential equations. For example,

Gear [31] in 1968, became one of the most important names in this field. More

articles on integrating stiff ODEs are listed in [44, 68].

Considerable efforts have gone into developing numerical integration for stiff

problems [72], and hence, the problem of stiffness was brought to the attention of

the mathematical and computer science community, see [33] for further details on

the topic of stiffness, and [30] for a comprehensive review of this phenomena.

Stiff differential equations are categorized as those whose solutions (or different

components of a single solution) evolve on very different time scales occurring si-

multaneously, i.e. the rates of change of the various components of the solutions

differ markedly. Consider, for example, if one component of the solution has a term

of the form e−ct, where c is a large positive constant. This component, which is

called the transient solution, decays to zero much more rapidly, as t increases, than

other slower components of the solutions. Alternatively, consider a case where a

component of the solution oscillates rapidly on a time scale much shorter than that

associated with the other solution components.

For a numerical method which makes use of derivative values, the fast component

continues to influence the solution, and as a consequence, the selection of the step

size in the numerical solution is problematic. This is because the required step size

Chapter 1. Introduction 3

is governed not only by the behavior of the solution as a whole, but also by that

of the rapidly varying transient which does not persist in the solution that we are

monitoring.

In reality, the numerical values occurring in nature are frequently such as to

cause stiffness. Therefore, a realistic representation of a natural system using a

differential equation is likely to encounter this phenomenon. An example is the field

of chemical kinetics [20]. Here ordinary differential equations describe reactions of

various chemical species to form other species. The stiffness in such systems is a

consequence of the fact that different reactions take place on vastly different time

scales.

Another important class of stiff ODEs originates frequently from application of

the general approach ‘the method of lines’ [84] to stiff time-dependent PDEs. In this

method we first discretize the spatial derivatives of a PDE with a spatial derivative

approximation method, which results in a stiff coupled system of ordinary differential

equations (ODEs) in time only. Then, we apply any well established numerical

method to achieve an accurate approximate solution to the problem. Two broadly

applicable techniques include Finite Difference Formulas [58, 83], which are local

methods and Spectral Methods [25, 83, 84], which are global methods, see §2 for

further details.

The idea of using spectral representations for numerical solutions of ODEs goes

back at least to Lanczos [51] in 1938. Spectral methods are a class of techniques

used in applied mathematics and scientific computing to numerically solve certain

partial differential equations, often involving the use of the Fast Fourier Trans-

form (FFT) algorithm of Cooley and Tukey [18]. A short historical summary

of the FFT can be found in [12], while a comprehensive survey and its mathemati-

cal applications can be found in Henrici’s article [34]. Spectral methods have been

widely used for spatial discretization in the context of solving time-dependent PDEs

since the early 1970’s, see for example the article published in 1972 by Kreiss and

Oliger [48]. The books by Trefethen [84] and Fornberg [25] are intended for

researchers interested in exploring this field of study.

If the differentiation matrix applied to discretize the spatial derivatives has eigen-

values with very diverse values, i.e. the ratio of largest to smallest (in magnitude)

eigenvalues is very large, or if a PDE has spatial derivatives of higher than second

order, then the problem is more likely to be stiff. The degree of stiffness depends

Chapter 1. Introduction 4

on the grid spacing of the spatial discretization. As we decrease the grid spacing,

i.e. increase the number of points with which we are discretizing the operator, the

eigenvalues vary greatly in magnitude.

Given that stiffness has extensive practical applications and arises in many phys-

ical situations, the demand for special techniques that permit the use of a step size

governed only by the rate of change of the overall solution is very great.

Despite the fact that numerical integrations of stiff systems with constant coeffi-

cients have been considered in detail, a stiff differential equation does not lend itself

readily to numerical solution by classical methods [33]. In principle, the stability

region of the integration method must include the eigenvalues of the discrete linear

operator of a stiff PDE in order to be stable. Linear explicit schemes have a penalty

of requiring an extremely small step size in order to be stable, causing unaccept-

able increase in the number of integration steps and in the integration times and

even an excessive error accumulation. On the other hand, implicit schemes have an

advantage of the freedom of choice of the time step and nice stability properties.

However, discretization of a nonlinear PDE leads to a large nonlinear system of

equations that has to be solved at each time step. This renders implicit schemes

costly to implement. Thus, the goal of developing more efficient time integrators

for stiff systems is to provide alternative choices of more sophisticated schemes that

have better stability properties and require fewer arithmetic operations per time

step than standard explicit and implicit schemes respectively.

Various methods have been proposed to avoid the difficulties that appear when

trying to solve nonlinear equations with an implicit method. A popular strategy is

to combine pairs of an explicit multi-step formula to advance the nonlinear part of

the problem and an implicit method to advance the linear part. This strategy forms

the basis of the so-called Implicit-Explicit (IMEX) schemes. These schemes

were proposed to solve stiff PDEs as far back as the late 1970’s [87]. The direct

derivation of the linear-multi-step IMEX schemes and their stability properties is

fully documented in a paper by Ascher [4], and further stability analysis can be

found in [27]. Other more complicated forms of the IMEX schemes such as the

Runge-Kutta IMEX schemes are reported in [3, 16].

The most popular second-order linear-multi-step IMEX scheme (AB2AM2)

[4] utilizes the second-order Adams-Moulton [14] and Adams-Bashforth [14]

schemes to advance the linear and the nonlinear parts of the problem in time re-

Chapter 1. Introduction 5

spectively. Unfortunately, it is not always so easy to construct an IMEX scheme by

coupling two multi-step methods. From an accuracy point of view, the combination

of the order of accuracy of each coupled implicit and explicit methods must give the

correct order of accuracy of the overall method.

IMEX schemes can be useful methods, especially when used in conjunction with

spectral methods, for approximating spatially discretized reaction-diffusion prob-

lems [66] arising in chemistry and mathematical biology. For these problems the

nonlinear reaction term can be treated explicitly while the diffusion term is treated

implicitly. Examples for reaction-diffusion systems from a biological standpoint can

be found in [62].

IMEX methods are restricted from having an order higher than two if A-stability1

is required (this is the second Dahlquist stability barrier [78]). Therefore, despite

their simplicity and frequent usage, they are not extendable to higher order. A

subset of these schemes are the backwards differencing schemes. These schemes are

frequently used in stiff problems because, although they may not be A-stable for or-

der greater than two, they do correctly damp non-oscillatory decaying perturbations

(but not those which are oscillatory in general) [43].

Nonlinear methods or methods with non-constant coefficients are not restricted

by the Dahlquist Barrier and may be generalized to arbitrary order. Such schemes

have been explored by several authors [37, 82] to solve stiff DEs. In 1960, Certaine

[17] observed that the negligible rapidly varying transient solution, in a system of

first-order coupled differential equations, is a hindrance to any conventional scheme

to give an accurate solution to the system (an example is the Trapezium Rule

[14]). He resolved this by coming up with a new class of nonlinear schemes based on

the Adams-Moulton methods of second and third order. A distinctive feature of

these schemes is the exact evaluation of the linear part of the differential equation

(and so the schemes are automatically A-stable). That is, if the nonlinear part is

zero, then the scheme reduces to the evaluation of the exponential function of the

operator (or matrix) that represents the linear part.

Historically, various constructions of Certaine schemes with various names

have been derived since the 1960’s. In 1969, Nørsett [63] modified the Adams-

1A-stability is the property that physically decaying solutions are numerically damped for any

choice of time step. This feature is highly desirable for stiff problems, as fast decaying perturbations

would be damped even with time steps much longer than their life time.

Chapter 1. Introduction 6

Bashforth formulas to be A-stable methods of arbitrary order, suitable for the

numerical integration of a stiff system of ODEs. In 1998, Beylkin et al. [9] con-

structed implicit and explicit schemes of arbitrary order, which they called Exact

Linear Part (ELP) method. They analyzed, in detail, the stability of the meth-

ods when applied to solve nonlinear PDEs. However, the formulas of the methods’

coefficients were not given explicitly. Later in 2002, a clear derivation of the ex-

plicit ELP schemes of arbitrary order was given by Cox and Matthews [19], where

they referred to these methods as the ‘Exponential Time Differencing (ETD)’

methods (the term used arose originally in the field of computational electrodynam-

ics [40, 65, 71]). The authors also broadened these schemes to more accurate ETD

‘Runge-Kutta’ (ETD-RK) methods, and illustrated the superior performance of

the ETD methods when they were applied to both dissipative and dispersive PDEs.

Furthermore, a class of exponential propagation techniques known as Exponen-

tial Propagation Iterative (EPI) schemes were introduced by Tokman in [81].

These schemes were constructed by reformulating the integral form of a solution to

a nonlinear autonomous system of ODEs as an expansion in terms of products of

matrix and vector functions. To trace the history of discovering and developing the

ETD schemes see [89].

The formula of the ETD schemes is based on integrating the linear parts of the

differential equation exactly, and approximating the nonlinear terms by a polyno-

mial, which is then integrated exactly. A similar approach is used in the Integrating

Factor (IF) schemes, which were introduced first in 1967 by Lawson [52]. In the

approach of the IF schemes [7, 11, 19, 44, 45, 49, 84], we multiply both sides of

an ODE by an appropriate integrating factor and obtain a differential equation in

which we change variables so that the linear part can be solved exactly. Afterwards,

we apply any numerical scheme (multi-step or Runge-Kutta methods) to integrate

the transformed nonlinear equation. Then we transform back the approximated so-

lution which becomes an approximate solution for the original variable, see [8, 57]

for a comprehensive review.

Methods like ETD and IF, based on the exact treatment of the linear terms,

require the computation of matrix exponentials (or matrix functions) for the linear

operators. However, as pointed out by Cox and Matthews [19] in their imple-

mentation of the ETD methods, a computational problem arises when evaluating

the methods’ coefficients. When we discretize a stiff semi-linear PDE in space, the

Chapter 1. Introduction 7

linear operator of the resulting system of coupled ODEs, which is represented by a

diagonal (in case of discretizing with Fourier spectral methods) or a non-diagonal

matrix (in case of discretizing with finite difference formulas or Chebyshev polyno-

mials [11, 25, 83, 84]), might have zero, large and small (in magnitude) eigenvalues.

For eigenvalues approaching zero, the ETD coefficients give imprecise results be-

cause of the large amount of cancellation in their formulas. This problem gets worse

with the higher order ETD methods. For eigenvalues equal to zero, we are actually

dividing the numerator by zero denominator in the explicit formulas for the coef-

ficients, which renders them useless in this case. To deal with the problem in the

case where the linear operator is represented by a diagonal matrix, the authors of

[19] used the Taylor series to evaluate such coefficients for small eigenvalues and

used the explicit formulas of the ETD coefficients for large eigenvalues. However,

this process cannot be applied in case of the linear operator being a non-diagonal

matrix because the eigenvalues of small and large magnitude are indistinguishable.

It is therefore important to have an accurate numerical algorithm for evaluating the

ETD coefficients.

We note that the problem of computing the exponential of large matrices has

been of interest in numerical analysis for a long time [59]. Recently, Moler and

Van Loan [60] updated the publication of “Nineteen Dubious Ways to Compute

the Exponential of a Matrix, Twenty-Five Years Later”, in which they analyzed the

efficiency of various algorithms and gave further developments in computing a matrix

exponential. One example is the algorithm that is based on scaling and squaring

which proved its efficiency in approximating a matrix exponential accurately [9].

Additionally, various algorithms have been devoted to compute non-diagonal matrix

functions efficiently by many authors [2, 8, 35, 37, 47, 53, 54, 56, 57, 67, 70, 76, 80,

81]. Recently, Kassam and Trefethen [44, 45] proposed a modification of the ETD

Runge-Kutta schemes of Cox and Matthews [19], to ameliorate the numerical

difficulties associated with these schemes. The key idea is to evaluate the ETD

coefficients by means of contour integrals in the complex plane using the well-known

Cauchy Integral Formula [55]. Further discussion of this issue is detailed in §4.

Exponential Time Differencing methods have extensive applications in solving

stiff systems [15, 39]. For example, in the field of chemical kinetics problems, the

author of [81] conducted some numerical comparisons in which he deduced that

explicit exponential integrators are highly competitive relative to those standard

Chapter 1. Introduction 8

integrators. The authors of [22, 23] indicated that the higher order ETD based

schemes can be several orders of magnitude faster than low-order semi-implicit

methods in some simulations of micro-structure evolution (a core component of

phase field modeling) in two and three dimensions. Moreover, Kassam and Tre-

fethen [44, 45] compared various fourth-order methods, including the ETD methods

of [19], and their results revealed that the best is the ETD4RK method of [19] for

solving various one-dimensional diffusion-type problems. However, more recently

Krogstad [49] presented a fourth-order ETDRK4-B method with better accuracy

than the ETD4RK method of [19] and illustrated its efficiency in solving several

semi-discretized PDEs, such as the Kuramoto-Sivashinsky (K-S) equation [41]. A

recent report [57] also showed that the ETD type of exponential integrators sur-

pass integrators of Lawson type [52] in solving parabolic semi-linear problems, such

as the K-S and the nonlinear Schrödinger (NLS) equations [77]. Again and under

certain circumstances, Berland and Skaflestad [7] solved the NLS equation and

found that the performance of a fourth-order Lawson integrating factor method was

demonstrably poorer than the fourth-order ETD4RK method of [19].

Related work in numerical simulations of stiff problems has made extensive use

of the ETD methods [8, 37, 46]. The explicit ETD methods have proved their ef-

ficiency in numerous applications, for example, in computational electrodynamics

[71], in reaction kinetics [61] and in solving incompressible magnetohydrodynamics

equations [53]. This further motivates our theoretical and numerical investigation

on the various properties of the ETD schemes while carrying out more computa-

tional studies for real application problems.

1.2 Layout Of Thesis

The main objective of this thesis is to present the Exponential Time Differencing

(ETD) schemes as a viable alternative to classical integrator methods for solving

stiff semi-linear PDEs. In semi-linear PDES, the linear part contains higher order

spatial derivatives than those in the nonlinear part. We place emphasis on the

stability, accuracy, efficiency and reliability of these numerical integrators.

The purpose of chapter 2 is to present the “Method of Lines” procedure for

solving initial boundary value problems. This procedure starts with discretizing

Chapter 1. Introduction 9

the spatial derivatives in the PDE with algebraic approximations. We include two

spatial derivative approximation techniques: Finite Difference Formulas and

Spectral Methods. We show through examples how to formulate the resulting

semi-discrete problem, which is a stiff system of coupled ODEs with time as the

only independent variable.

The next step in the procedure is to search for an accurate and fast numerical

method and apply it to these initial value ODEs to compute an approximate nu-

merical solution to the PDE. Hence, we consider in chapter 3, the ETD schemes of

arbitrary order as time-discretization methods. We give in detail the derivation of

these methods following the approach in [9, 17, 19, 63], and present the ETD-RK

type constructed in [19]. In addition, we examine analytically the methods’ stabil-

ity properties to present the advantage of these methods in overcoming the stability

constraints that are imposed on any conventional explicit method utilized to solve

a stiff system of ODEs. The approach is to compute the boundaries of the stability

regions in two dimensions for a general test problem, where the stiffness parameter

is negative and purely real.

In chapter 4, we go through the difficulties occurring in the computation of the

ETD coefficients (as mentioned previously in the introduction, the evaluation of

coefficients for eigenvalues approaching zero suffers from numerical rounding errors

due to the large amount of cancellation in the explicit formulas). We conduct com-

parison experiments on various algorithms and analyze their performance and their

computational cost for an accurate evaluation of the coefficients and an efficient im-

plementation of the ETD methods. The algorithms included are the Taylor series,

the Cauchy integral formula, the Scaling and Squaring algorithm, the Composite

Matrix algorithm and the Matrix Decomposition algorithm for non-diagonal matrix

cases. The matrices considered are the second-order centered difference differenti-

ation matrix for the first and second derivatives and the Chebyshev differentiation

matrix for the second derivative to show that the algorithms’ efficiency is by no

means restricted to any special structure of certain matrices. We have published in

the article [5] (in press) some of the results developed in this chapter.

In chapter 5, we demonstrate the effectiveness of the ETD methods for integrat-

ing real application problems. For the simulation tests, we consider three one space-

dimensional problems with periodic boundary conditions. We apply Fourier spectral

approximation for the spatial discretization, and employ first, second and fourth-

Chapter 1. Introduction 10

order ETD methods, first-order Implicit-Explicit (IMEX) method and first, second

and fourth-order Integrating Factor (IF) methods for time discretization. The first

two problems considered are the time-dependent scalar Kuramoto-Sivashinsky

(K-S) equation and the nonlinear Schrödinger (NLS) equation. In these two

equations, the linear terms are primarily responsible for stiffness. The stiffness in

the K-S equation is due to the strong dissipation of high wave number modes on

a time scale much shorter than that typical of the nonlinear term, whereas, the

stiffness in the NLS equation is due to the rapid oscillations of high wave number

modes. The third model considered is the nonlinear Thin Film equation. Solving

this equation is a more challenging task since the nonlinear terms are the ones re-

sponsible for stiffness. To facilitate numerical studies of the thin film equation, we

consider a perturbation to the uniform solution of the equation and obtain after a

few algebraic manipulations two split parts of the linear and nonlinear terms. The

stiffness in the problem is again due to the strong dissipation.

The main testing factors in differentiating between the methods are the stabil-

ity, the accuracy, the start-up overhead cost and the CPU time consumed by the

methods. To address the question of stability and accuracy of the methods we per-

form a series of runs with different choices of final times which are computed, for all

methods, with various time step sizes. The time step values are selected to ensure

that all methods achieve stable accurate results. We measure the accuracy in terms

of the relative error evaluated in the integrated error norm. Then, we turn our

attention to the accuracy of the methods as a function of CPU time. All the cal-

culations presented in this chapter are performed using Matlab codes. We evaluate

the coefficients of the ETD methods, once at the beginning of the integration for

each value of the time step sizes, using the ‘Cauchy integral’ approach proposed by

Kassam and Trefethen [44, 45].

Finally, in chapter 6, we conclude with a brief discussion of the work carried out

and the main results drawn from this research and reiterate the main conclusions;

additionally, we outline a number of possible extensions to this work in further future

studies.

Chapter 2
Spatial Discretization Methods

11

Outline of Chapter

Our physical world is most generally described in scientific terms with respect to

three space dimensions and time. Time-dependent partial differential equations

(PDEs) provide a mathematical description for a large range of physical space-time

problems, and are very widely used in applied mathematics.

A general numerical procedure for solving initial boundary value problems is the

“Method of Lines”. This procedure starts with discretizing the spatial derivatives

in the PDE with algebraic approximations. The resulting semi-discrete problem,

which is a system of coupled ordinary differential equations (ODEs) with time as

the only independent variable, must then be integrated. The method of lines is

an efficient tool that allows standard (accurate) general methods that have been

developed for the numerical integration of ODEs to be used.

The purpose of this chapter is to present two spatial derivative approximation

techniques: Finite Difference Formulas [58, 83] and Spectral Methods [25,

83, 84], and show, through examples, how to formulate the system of ODEs that

approximates the original PDE.

12

Chapter 2. Spatial Discretization Methods 13

2.1 Introduction

The field of partial differential equations (PDEs) is broad and varied, as is inevitable

because of the great diversity of physical phenomena that these equations model.

Much of the variety is introduced by the fact that practical problems involve different

geometric classifications (hyperbolic, elliptic, parabolic), multiple space dimensions,

systems of PDEs, different types of boundary conditions, varying smoothness of the

initial conditions, variable coefficients and frequently, nonlinearity.

A well-known numerical approach to solve a time-dependent PDE, whose solu-

tions vary both in time and in space, is the Method of Lines [84]. In the approach

of this method, firstly, we construct a semi-discrete approximation to the problem

by setting up a regular grid in space1, i.e. the spatial independent variables that

have boundary constraints are discretized. Thereby, we generate a coupled system

of ordinary differential equations (ODEs) in the time independent variable t, which

is associated with the initial value. Secondly, we numerically approximate solutions

to the original PDE by marching forward in time on this grid. Now we can apply

any existing, and generally well established, numerical methods (such as the Expo-

nential Time Differencing methods, see §3 for more details) for these initial value

ODEs to compute an approximate numerical solution to the PDE.

The idea of semi-discretization focuses attention on spatial difference operators

as approximations of spatial differential operators. Two broadly applicable spatial

derivative approximation techniques are Finite Difference Formulas [58, 83] and

Spectral Methods [25, 83, 84]. The key factors in selecting among these tech-

niques are the nature of the grid, the complexity of the domain and the required

levels of accuracy of differentiation. These techniques are discussed in §2.2 and §2.3

respectively.

2.2 Finite Difference Formulas

The purpose of discretizing time-dependent PDEs is to obtain a problem that can

be solved by a finite procedure. The simplest such kind of finite procedure is the

Finite Difference Formula (FDF). A FDF is a fixed formula that approximates a
1When solving a one-dimensional time-dependent PDE, we assume (throughout the thesis) a

fixed space step h > 0 and a fixed time step ∆t > 0 for discretizing the spatial part x and temporal

part t respectively. Thereby, we are defining the points (xn, tj), for any integers n and j, in a two

dimensional regular grid, formally, the subset hZ×∆tZ of R2.

Chapter 2. Spatial Discretization Methods 14

continuous function by a function of a finite number of grid values; thereby, we

obtain a finite system of equations to be solved.

In this section we describe FDFs as discrete approximations to the spatial deriva-

tives of a PDE. Given a function on a set of uniform grid points, Finite Difference

Approximations (FDAs) approximate the derivative of the function by the derivative

of the local interpolators on the grid [84].

2.2.1 Finite Difference Approximation

Suppose that a function f(x), defined on an interval 0 < x < L that is divided into

q subintervals, has some known values at a finite number of points on a uniform

mesh of size h = L/q. FDAs approximate the first and second numerical derivatives

df(x)/dx and d2f(x)/dx2 of f(x) respectively for example, as follows,

df(x)
dx

∣∣∣∣
x=xn

=
f(xn+1)− f(xn)

h
+O(h),

and
d2f(x)
dx2

∣∣∣∣
x=xn

=
f(xn)− 2f(xn+1) + f(xn+2)

h2
+O(h).

The two approximations above are derived using the Taylor series and are called

Forward Differentiation. Note that the first derivative df(x)/dx is obtained using

the values of f(x) at the points xn and xn+1, and the second derivative uses the

points xn, xn+1 and xn+2. These approximations have a truncation error (obtained

from truncating the Taylor series) of O(h), that is local to the interval enclosing the

sampling points. For sufficiently small h, the errors are then proportional to h, and

the approximations are first-order in h.

When using finite differences, it is important to keep in mind that there are

several sources of errors: the truncation error (which is introduced by truncating

the Taylor series approximation), roundoff error and condition error. Roundoff error

comes from roundoff in the arithmetic computations required. Condition error comes

from magnification of any errors in the function values. It arises typically from the

division by a power of the step size, and so grows with decreasing step size. This

means that in practice, even though the truncation error approaches zero as h does,

the actual error starts growing beyond some point.

To obtain higher-order approximations to the derivative, it is easy to invoke

many function values further away from the point of interest. Thus, the second-

Chapter 2. Spatial Discretization Methods 15

order forward finite difference approximation for df(x)/dx is

df(x)
dx

∣∣∣∣
x=xn

=
−3f(xn) + 4f(xn+1)− f(xn+2)

2h
+O(h2),

and for d2f(x)/dx2 is

d2f(x)
dx2

∣∣∣∣
x=xn

=
2f(xn)− 5f(xn+1) + 4f(xn+2)− f(xn+3)

h2
+O(h2).

The simplest finite difference approximations are centered and symmetrical, i.e.

they use values of the function at points either side equally and always have even or-

der of accuracy. Using the Taylor expansions for f(xn+1) and f(xn−1), the second-

order centered finite difference approximation for df(x)/dx is

df(x)
dx

∣∣∣∣
x=xn

=
f(xn+1)− f(xn−1)

2h
+O(h2),

and for d2f(x)/dx2 is

d2f(x)
dx2

∣∣∣∣
x=xn

=
f(xn+1)− 2f(xn) + f(xn−1)

h2
+O(h2).

Note that it is not possible to use centered finite difference approximations in some

cases as follows:

• If we are near the boundary, required values of f(x) may not be available.

• For certain problems, the stability is improved with one-sided forward finite

differences,

and hence one-sided forward finite difference approximations are sometimes used

instead.

In general, formulas for any given derivatives of any chosen order can be derived

from Taylor expansions as long as a sufficient number of sample points are used.

However, these approximations become cumbersome beyond the simple examples

shown above. We refer the reader to the book by Fornberg [25], where the centered

and one-sided Finite Differences formulas for approximating derivatives up to fourth-

order, for equi-spaced grids, with order of accuracies up to the eighth are readily

available in tables.

2.2.2 An Example

As a basic illustrative example of a PDE, we consider the linear heat (diffusion)

equation
∂u(x, t)
∂t

= ν
∂2u(x, t)
∂x2

, t0 ≤ t ≤ T, x0 ≤ x ≤ xq, (2.1)

Chapter 2. Spatial Discretization Methods 16

where

• u(x, t) is the dependent variable,

• t and x are the independent variables representing time and one-dimensional

space respectively,

• ν is a real positive constant,

subject to an initial condition at t0 = 0

u(x, t = 0) = u0(x),

and two boundary conditions, corresponding to boundaries of a physical system

(there are other possibilities)

u(x = x0, t) = f(t), u(x = xq, t) = g(t),

where f(t) and g(t) are given boundary values of u for all t.

To illustrate the method of lines procedure to solve the heat equation (2.1),

suppose that u(x, t) is discretized in space with q + 1 points, of which q − 1 are

interior points, on a uniform grid with step size h as follows

u(xn, t) ≈ un(t), 0 ≤ n ≤ q,

where the index n designates a position along the grid in x. To approximate the

spatial derivative ∂2u/∂x2 in equation (2.1), we use for example, the second-order

centered finite difference approximation

∂2u(x, t)
∂x2

∣∣∣∣
x=xn

≈ un+1(t)− 2un(t) + un−1(t)
h2

+O(h2). (2.2)

Substituting equation (2.2) into (2.1), gives a system of q − 1 approximating ODEs

u0(t) = f(t),

du1(t)/dt = ν(u2(t)− 2u1(t) + u0(t))/h2,

du2(t)/dt = ν(u3(t)− 2u2(t) + u1(t))/h2,
...

duq−1(t)/dt = ν(uq(t)− 2uq−1(t) + uq−2(t))/h2,

uq(t) = g(t),

(2.3)

subject to the initial conditions

un(t = 0) = u0(xn), 0 ≤ n ≤ q. (2.4)

Chapter 2. Spatial Discretization Methods 17

To complete the solution of the original PDE (2.1), we compute a solution to the

approximation system of ODEs (2.3). The system (2.3) and the initial conditions

(2.4) now constitute the complete method of lines approximation of equation (2.1).

2.2.3 Matrix Form

Since differentiation and finite difference approximation are linear operations, an

alternative way of representing an approximation to the differential operator is with

a matrix. This matrix is referred to as a differentiation matrix.

Using second-order centered FDAs, for example, to approximate the spatial

derivatives on a uniform grid of q + 1 points, reduces the problem to q − 1 cou-

pled ODEs. Hence, for any given non-periodic boundary conditions, the differenti-

ation matrix representing the second derivative, for example, is a (q − 1) × (q − 1)

tridiagonal matrix of the form

M2 =
1
h2

−2 1 0 0 0 . . . 0 0

1 −2 1 0 0 . . . 0 0

0 1 −2 1 0 . . . 0 0
...

...
...

...
... . . .

...
...

0 0 0 0 0 . . . 1 −2

.

For periodic boundary conditions, M2 is of the same form but has a 1 in the top right

and bottom left corners. Similarly, for the fourth-order centered approximation, the

resulting differentiation matrix, representing the second derivative is pentadiag-

onal. As a result, the order of the approximation determines the sparsity of the

matrix.

2.3 Spectral Methods

In spectral methods, instead of representing a function by its values at grid points,

the function is written as an expansion in terms of smooth basis functions φk(x) as

f(x) ≈
N∑
k=1

akφk(x), (2.5)

for some integer N .

Spectral methods are global approximations since the values of the spectral coef-

ficients ak influence the function and its derivatives for all x, whereas finite difference

Chapter 2. Spatial Discretization Methods 18

methods are local approximations since the value f(xn) of f(x) at a grid point xn

only has influence near that point.

The definitive advantage of spectral methods lies in their remarkable accuracy

properties. For any given analytic function, spectral approximations approximate

the function and its derivatives within an exponential accuracy. It was shown [79]

that when differencing analytic functions on regular grids using spectral methods,

the errors decay to zero at an exponential rate as the grid is refined, rather than at

(much slower) polynomial rates obtained by finite difference formulas. This behavior

is essentially due to the corresponding exponential decay of the spectral coefficients

as the number of grid points is increased.

The basis functions φk(x), k = 1, . . . , N used in the expansion (2.5) must satisfy

three criteria [25]:

(i) The coefficients ak must decrease rapidly with k, which ensures the rapid

convergence of the approximation (2.5) of f(x).

(ii) It should be easy to write the first derivative df(x)/dx as an expansion in the

same basis functions with the coefficients bk such that

d

dx

(
N∑
k=1

akφk(x)

)
=

N∑
k=1

bkφk(x),

for given coefficients ak.

(iii) One must be able to convert from the coefficients ak in the ‘spectral’ space

and the function f(x) in ‘physical’ space.

Usually, each spectral method is named after choosing a function class for the

basis functions. For non-periodic problems, the preferred choice is the orthogo-

nal2 Chebyshev polynomials and the method is referred to as the Chebyshev

Spectral method. Boyd [11] and Trefethen [83] are valuable references for this

case.
2The set of functions {φ0, φ1, . . . φn}, defined on an interval [a, b], is said to be an orthogonal

set, with respect to the weight function w, if

∫ b

a

w(x)φj(x)φk(x) dx =

 0 for j 6= k,

αk > 0 for j = k.

for some constant αk. In addition, if αk = 1 for each k = 0, 1, . . . , n, the set is said to be

orthonormal.

Chapter 2. Spatial Discretization Methods 19

For periodic problems, the natural choice of basis functions is the trigonometric

functions, and the function is ideally represented by its Fourier series. Here the

method is referred to as the Fourier Spectral method [83, 84].

2.3.1 Fourier Spectral Methods

Fourier analysis occurs in the modeling of time-dependent phenomena that are ex-

actly or approximately periodic. Examples of this include the digital processing of

information such as speech; the analysis of natural phenomena such as earthquakes;

in the study of vibrations of spherical, circular or rectangular structures; and in the

processing of pictures. In a typical case, Fourier spectral methods write the solution

to the PDE as its Fourier series. Fourier series decomposes a periodic real-valued

function of real argument into a sum of simple oscillating trigonometric functions

(sines and cosines) that can be recombined to obtain the original function. Sub-

stituting this series into the PDE gives a system of ODEs for the time-dependent

coefficients of the trigonometric terms in the series (this series is usually written in

complex exponential form); then we choose a time-stepping method to solve those

ODEs.

1. Fourier Series.

The Fourier series of a smooth and periodic real-valued function f(x) ∈ C[0, 2L]

with period 2L is

f(x) =
a0

2
+
∞∑
n=1

(an cos (nπx/L) + bn sin (nπx/L)).

Since the basis functions cos(nπx/L) and sin(nπx/L) are orthogonal, i.e.∫ 2L

0
cos(nπx/L) sin(mπx/L) dx = 0,∫ 2L

0
cos(nπx/L) cos(mπx/L) dx = Lδmn,∫ 2L

0
sin(nπx/L) sin(mπx/L) dx = Lδmn,

where

δmn =

 0 for m 6= n,

1 for m = n,

the coefficients are given by

an =
1
L

∫ 2L

0
f(x) cos (nπx/L) dx, for each n = 0, 1, . . . ,

Chapter 2. Spatial Discretization Methods 20

and

bn =
1
L

∫ 2L

0
f(x) sin (nπx/L) dx, for each n = 1, 2,

If f(x) is odd (f(−x) = −f(x)) then an = 0. Similarly, if f(x) is even

(f(−x) = f(x)) then bn = 0.

2. Complex Form.

Fourier series can be expressed neatly in complex form as follows

f(x) =
a0

2
+
∞∑
n=1

[
an
2

(einπx/L + e−inπx/L) +
bn
2i

(einπx/L − e−inπx/L)
]
.

If we define

c0 =
a0

2
, cn =

an − ibn
2

, c−n =
an + ibn

2
,

where c−n is the complex conjugate of cn, i.e. c−n = c∗n, then f(x) can be

written as

f(x) =
∞∑

n=−∞
cne

inπx/L, (2.6)

where the coefficients cn can be determined from the formulas of an and bn as

cn =
1

2L

∫ 2L

0
f(x)e−inπx/L dx. (2.7)

In many applications, particularly in analyzing of real situations, the func-

tion f(x) to be approximated is known only on a discrete set of “sampling

points” of x. Hence, the integral (2.7) cannot be evaluated in a closed form

and Fourier analysis cannot be applied directly. It then becomes necessary to

replace continuous Fourier analysis by a discrete version of it.

3. Discrete Fourier Transform.

The linear discrete Fourier transform [84] of a periodic (discrete) sequence

of complex values u0, . . . , uNF−1 with period NF , is a sequence of periodic

complex values û0, . . . , ûNF−1 defined by

ûk =
1
NF

NF−1∑
j=0

uje
−2πijk/NF , k = 0, 1, . . . , NF − 1. (2.8)

The linear inverse transformation is

uj =
NF−1∑
k=0

ûke
2πijk/NF , j = 0, 1, . . . , NF − 1. (2.9)

The most obvious application of discrete Fourier analysis consists in the

numerical calculation of Fourier coefficients. Suppose we want to approximate

Chapter 2. Spatial Discretization Methods 21

a real-valued periodic function f(x), defined on the interval [0, 2L] that is

sampled with an even number NF of grid points

xj = jh, h = 2L/NF , j = 0, 1, . . . , NF − 1,

by its Fourier series (2.6). First we compute approximate values of the Fourier

coefficients cn (2.7) by the discrete Fourier transform (2.8)

ĉk ≈
1
NF

NF−1∑
j=0

f(xj)e−2πijk/NF , (2.10)

and then truncate the Fourier series (2.6) formed with these approximate

coefficients. Because the discrete Fourier transform and its inverse exhibit

periodicity with period NF , i.e. ûk+NF = ûk (this property results from the

periodic nature of e2πijk/NF), it makes no sense to use more than NF terms

in the series, and it suffices to calculate one full period. Thus, the range of

Fourier modes distinguishable on the grid, discretized with an even number

NF of grid points, is k = −NF/2 + 1, . . . , NF/2 and the Fourier series (2.6)

formed with the approximate coefficients (2.10) is

f̂(x) ≈
NF/2∑

k=−NF/2+1

ĉke
ikπx/L. (2.11)

The function f̂(x) not only approximates, but actually interpolates f(x) at

the sampling grid points xj .

The approximation of large amounts of equally spaced data by trigonomet-

ric polynomials can produce very accurate results. Fourier’s theorem states

that at a point where the function f(x) is continuous, the Fourier series con-

verges to the value of f(x), with a speed related to the smoothness of the

function. The smoother the function f(x) is, the more rapidly the series con-

verges. The subsequent rapid decay of the coefficients implies that the Fourier

series can be truncated after a few terms.

For discontinuous functions with bounded variation, at the point of discon-

tinuity the Fourier series converges to the average of the values on either side

of the discontinuity, and the rate of the coefficients’ decay is O(1/n); and if

f(x) is continuous but the first derivative df(x)/dx is discontinuous, then the

rate is O(1/n2) and so on.

Chapter 2. Spatial Discretization Methods 22

4. Matrix Form.

In matrix form, the discrete Fourier transform (2.8) can be written as

ûk =
1
NF

Mkjuj , k, j = 0, 1, . . . , NF − 1, (2.12)

where Mkj = ωkj and ω = e−2πi/NF is the NF th root of unity, so

M =

1 1 1 1 . . . 1

1 ω ω2 ω3 . . . ωNF−1

1 ω2 ω4 ω6 . . . ω2(NF−1)

...
...

...
... . . .

...

1 ωNF−1 ω2(NF−1) ω3(NF−1) . . . ω(NF−1)(NF−1)

.

Similarly, the inverse discrete Fourier transform (2.9) has the form

uj = M∗kj ûk, k, j = 0, 1, . . . , NF − 1, (2.13)

where M∗kj = (ω∗)kj and ω∗ is the complex conjugate of ω.

In the early years, the impact of discrete Fourier analysis was limited by the

very large number of arithmetic calculations required by the theory in its naive

form (number of multiplications required is O(N2
F)). This was changed in 1965 by

the invention of the mathematical algorithm of Cooley and Tukey [18], which has

become known as the “Fast Fourier Transform” (FFT).

The FFT algorithm reduces the computational work required to carry out a dis-

crete Fourier transform by reducing the number of multiplications and additions of

(2.13) (computational time is reduced from O(N2
F) to O(NF logNF)). This algo-

rithm is useful in situations where the number of grid points can be chosen to be

a highly composite number. Since 1965, the FFT usage has expanded and led to a

revolution in the use of trigonometric polynomial approximations.

2.3.2 Numerical Derivatives

To apply spectral methods to a partial differential equation we need to evaluate

derivatives of functions. Suppose that we have a periodic real-valued function f(x)

with period 2L, defined on the interval [0, 2L] that is discretized with an even number

NF of grid points, so that the grid size h = 2L/NF . The complex form of the Fourier

series representation of f(x) is

f̂(x) ≈
NF/2∑

k=−NF/2+1

ĉke
ikπx/L. (2.14)

Chapter 2. Spatial Discretization Methods 23

At k = NF/2, the above series (2.14) gives a term ĉNF/2e
iNπx/(2L), which alternates

between ±ĉNF/2 at the grid point xj = jh, j = 0, 1, . . . , NF − 1, and since it cannot

be differentiated, we should set its derivative to be zero at the grid points.

The numerical derivatives of the function f(x) can be illustrated as a matrix

multiplication. For the first derivative, we multiply the Fourier coefficients (2.10)

by the corresponding differentiation matrix

D1 = Diag
(

0, 1, 2, 3, . . . ,
NF
2
− 1, 0,−

(
NF
2
− 1
)
, . . . ,−3,−2,−1

)
iπ

L
,

for an even number NF of grid points. This matrix has non-zero elements only

on the diagonal. For an odd number NF of grid points, the differentiation matrix

corresponding to the first derivative is diagonal with elements

(0, 1, 2, . . . , (NF − 1)/2,−(NF − 1)/2, . . . ,−1)iπ/L.

Then, we compute an inverse discrete Fourier transform using (2.11) to return to

the physical space and deduce the first derivative of f(x) on the grid.

Similarly, taking the second derivative corresponds to the multiplication of the

Fourier coefficients (2.10) by the corresponding differentiation matrix D2 which is

diagonal with elements

−

(
0, 1, 4, . . . ,

(
NF
2
− 1
)2

,

(
NF
2

)2

,

(
NF
2
− 1
)2

, . . . , 4, 1

)
π2

L2
,

for an even number NF of grid points.

In general, in case of an even number NF of grid points, approximating the mth

numerical derivatives of a grid function f(x) corresponds to the multiplication of

the Fourier coefficients (2.10) by the corresponding differentiation matrix which is

diagonal with elements ((ikπ/L)m) for

k = 0, 1, 2, 3, . . . ,
NF
2
− 1,

NF
2
,−
(
NF
2
− 1
)
, . . . ,−3,−2,−1,

with the exception that for odd derivatives we set the derivative of the highest mode

k = NF/2 to be zero.

2.3.3 An Example

Discrete Fourier transforms (2.10) are often used to solve partial differential equa-

tions. The exponential basis functions are eigenfunctions of differentiation, which

Chapter 2. Spatial Discretization Methods 24

means that this representation transforms any linear differential equation with con-

stant coefficients into ordinary differential equations. One then uses the inverse

DFT (2.11) to transform the result back into the ordinary spatial representation.

Such an approach is called a spectral method.

Consider again the linear diffusion equation

∂u(x, t)
∂t

= ν
∂2u(x, t)
∂x2

, t0 ≤ t ≤ T, 0 ≤ x ≤ 2L, (2.15)

subject to periodic boundary conditions and an initial condition at t0 = 0

u(x, t = 0) = u0(x).

Suppose that the space interval [0, 2L] is discretized with an even number NF of

grid points and the solution u(x, t) is represented by its Fourier series as follows

u(x, t) =
a0(t)

2
+
NF/2∑
n=1

an(t) cos (nπx/L) +
NF/2−1∑
n=1

bn(t) sin (nπx/L). (2.16)

Note that the Fourier series (2.16) satisfies the boundary conditions of the problem,

i.e. u(0, t) = u(2L, t), u(x, t) = u(x+ 2L, t).

Differentiating (2.16) with respect to t once, and with respect to x twice yields

∂u(x, t)
∂t

=
1
2
da0(t)
dt

+
NF/2∑
n=1

dan(t)
dt

cos (nπx/L) +
NF/2−1∑
n=1

dbn(t)
dt

sin (nπx/L), (2.17)

and

∂2u(x, t)
∂x2

= −
NF/2∑
n=1

an(t)(nπ/L)2 cos (nπx/L)−
NF/2−1∑
n=1

bn(t)(nπ/L)2 sin (nπx/L),

(2.18)

respectively. Substituting (2.17) and (2.18) into the diffusion equation (2.15), and

equating for the Fourier coefficients reduces the PDE to an uncoupled system of

ODEs

da0(t)
dt

= 0,

dan(t)
dt

= −ν(nπ/L)2an(t),

dbn(t)
dt

= −ν(nπ/L)2bn(t).

This system can be solved analytically, i.e. an(t) = an(0) exp(−ν(nπ/L)2t), etc.,

where an(0) are the Fourier coefficients of the Fourier series representation of the

initial condition u0(x), and so no numerical solution is needed.

Chapter 2. Spatial Discretization Methods 25

For nonlinear PDEs, the nonlinear terms are evaluated by transforming from

spectral space to physical space to find the values of these terms at the grid points.

Then one transforms back to Fourier space to work out derivatives. The resulting

system of ODEs is coupled through the nonlinear terms, while the linear part is

represented by a diagonal matrix in the Fourier basis. In this case, the system is

not trivial to solve analytically and a numerical method is needed.

Chapter 3
Exponential Time Differencing (ETD)

Methods

26

Outline of Chapter

The basic idea of the method of lines is to replace the spatial derivatives in a partial

differential equation (PDE) with algebraic approximations. Thus, we have a coupled

system of ODEs with only time remaining as an independent variable. Now we can

apply any existing well established numerical methods to compute an approximate

numerical solution to the PDE.

Exponential Time Differencing (ETD) schemes are time integration methods

that can be efficiently combined with spatial approximations to provide accurate

smooth solutions for stiff or highly oscillatory semi-linear PDEs. The work reported

in this chapter gives the derivation of the explicit ETD schemes for arbitrary order

following the approach in [9, 17, 19, 63], and presents the explicit Runge-Kutta

(ETD-RK) versions of these schemes constructed by Cox and Matthews [19].

In addition, the work contains an analytical examination of the methods’ sta-

bility properties, which determines the range of time step for which the method is

numerically stable. The approach computes the boundaries of the stability regions

for a general test problem for the explicit ETD methods of multi-step or RK type

up to fourth-order. The stability regions are illustrated in two-dimensional plots

for various negative and purely real stiff parameters of the test problem. The plots

demonstrate the ability of these methods to use large time-step sizes. This gives

them an advantage over the ordinary explicit time-discretization methods which

have severe restrictions on the selection of time step size for reason of stability when

solving stiff problems.

27

Chapter 3. Exponential Time Differencing (ETD) Methods 28

3.1 Introduction

Many physical phenomena can be represented by partial differential equations (PDEs).

When discretizing the spatial part of these equations (see §2), one commonly ob-

tains a stiff system of coupled ordinary differential equations (ODEs) in time t. Stiff

systems are routinely encountered in scientific applications and are characterized

by having a large range of time scales. Often the large-scale solution sought varies

much more slowly in time than small scales that decay or disperse rapidly, or have

both features of rapid decay and rapid oscillation. In other words, stiff problems

arise in areas where vastly different time scales all play a role in the overall solution

of the PDE.

Stiffness can also be inherent in the problem due to the wide range of the eigen-

values, (i.e. the eigenvalues differ greatly in magnitude), of the differentiation matrix

applied to discretize the spatial derivatives in a PDE (see §2.2.3 and §2.3.2). These

eigenvalues spread out and become even larger as we increase the number of points

with which we are discretizing the spatial operator. The stiffness problem is also

exacerbated when a PDE has higher order spatial derivatives than the second. For

such problems, numerical integrators require particular handling to achieve a precise

solution to the problem.

As mentioned in §1, applying conventional explicit time stepping schemes to

a stiff system requires the least number of computations per time step, but the

stability requirement restricts the size of the time step to be very small to resolve

the transient (rapidly-varying) part of the solution. Implicit time stepping schemes

have much better stability properties compared to conventional explicit integrators,

and allow significantly larger time steps that do not introduce instabilities. However,

the number of computations required to solve a large nonlinear system of ODEs at

each time step increases significantly.

Numerous time discretization methods that are designed to handle stiff systems

have been developed. One example is the family of Exponential Time Differ-

encing (ETD) schemes. This class of schemes is especially suited to semi-linear

problems which can be split into a linear part, which contains the stiffest part of the

dynamics of the problem, and a nonlinear part, which varies more slowly than the

linear part. These schemes have been rediscovered several times in various forms

and under various names [15, 17, 37, 49, 53, 61, 63, 82]. An example is the Exact

Linear Part (ELP) schemes that were derived in [9] for arbitrary order. However,

the authors of [9] did not give explicit formulas for the methods’ coefficients. In

Chapter 3. Exponential Time Differencing (ETD) Methods 29

a subsequent paper, Cox and Matthews [19] gave an explicit derivation of the

explicit ELP methods, for arbitrary order s, with explicit formulas for the meth-

ods’ coefficients and referred to these methods as the Exponential Time Differencing

(ETD) schemes (the term used arose originally in the field of computational elec-

trodynamics [40, 65, 71]). In addition, the authors of [19] further constructed new

explicit Runge-Kutta (ETD-RK) versions of these schemes up to fourth-order.

In §3.2, we follow the approach in [9, 17, 19, 63] and present the algorithm

derivation for the explicit ETD schemes. In the first step, the ETD schemes recover

the exact solution to the linear part, which (numerically) is the difficult part (stiff or

oscillatory in nature) of the differential equation, in a similar way to the approach

of the Integrating Factor (IF) schemes [7, 8, 11, 19, 44, 45, 52, 57, 84] (see §3.2.1

for further details concerning the approach of the IF methods). The next step

in the derivation is to integrate exactly an approximation of the nonlinear terms.

We may approximate the nonlinear parts by some polynomial in time t that may be

calculated using previous steps of the integration process, thus producing multi-step

ETD methods (see §3.2.2) or by RK-like stages, resulting in ETD schemes of Runge-

Kutta type (see §3.2.3). The coefficients of the ETD methods are the exponential

and related functions of the linear operators. These coefficients can be evaluated

once before the integration begins if a constant time step is used throughout the

integration, see §4 for further details.

The convergence analysis for the explicit s-step exponential schemes was carried

out in [7, 15, 57] for solving semi-linear equations. The analysis showed that the

schemes achieve order of accuracy s, for appropriate starting values at the nth and

previous time steps. In addition, the authors of [37, 39] analyzed the convergence

behavior of the explicit exponential Runge-Kutta methods for integrating semi-linear

parabolic problems. They gave a new derivation of the classical order conditions

and showed convergence for these methods up to order four.

In §3.3, we illustrate some key features of the explicit ETD schemes such as their

stability properties. We follow the approach developed in [9, 19] for constructing

stability regions of the ETD (in §3.3.1) and the ETD-RK (in §3.3.2) schemes of

orders up to four. The stability regions are plotted in two dimensions, considering

the case where the stiffness parameter in a general test problem is negative and

purely real. We analyze these plots in order to show that these methods are capable

of avoiding the rigorous ceiling imposed on the selection of the time step size when

Chapter 3. Exponential Time Differencing (ETD) Methods 30

solving stiff problems with conventional explicit time discretization methods. The

overall results are summarized in §3.4.

3.2 Algorithm Derivation

We begin by giving briefly the main idea behind the Lawson Integrating Factor IF

methods [52], then we give, in detail, the algorithm derivation for the explicit ETD

schemes [9, 17, 19, 63].

Consider stiff semi-linear PDEs that can be written in the form

∂u(x, t)
∂t

= Lu(x, t) + F(u(x, t), t), (3.1)

where the linear operator L contains higher-order spatial derivatives than those con-

tained in the nonlinear operator F , and is mainly the term responsible for stiffness.

For problems with spatially periodic boundary conditions, we use Fourier spectral

methods [25, 83, 84] to discretize the spatial derivatives of (3.1) (see §2 for more

details), and hence obtain a stiff system of coupled ODEs in time t

du(t)
dt

= Lu(t) + F (u(t), t). (3.2)

The linear part L of the system is represented by a diagonal matrix, and F represents

the action of the nonlinear operator on u on the grid. For problems where the

boundary conditions are not periodic, we use finite difference formulas [58, 83] or

Chebyshev polynomials [11, 25, 83, 84], and in this case, the linearized system is

represented by a non-diagonal matrix. For dissipative PDEs, the eigenvalues of the

matrix L are negative and real, whereas they are imaginary for dispersive PDEs.

Dissipation in a dynamical system represents the concept of important mechanical

modes, such as waves or oscillations, losing energy over time. Such systems are

called dissipative systems. On the other hand, a dispersive PDE represents a system

in which waves of different frequencies propagate at different phase velocities (the

phase velocity is the rate at which the phase of the wave propagates in space).

For the stiff system of ODEs (3.2), the eigenvalues of the matrix L vary widely

in magnitude, and the stiffness is caused by the eigenvalues of large magnitude. A

competitive time stepping method should be able to integrate the system (3.2) accu-

rately without requiring very small time steps for the largest magnitude eigenvalue.

Simultaneously it should be able to handle small eigenvalues. The nonlinear term F

Chapter 3. Exponential Time Differencing (ETD) Methods 31

requires an explicit treatment since fully implicit methods are too costly for a large

system of ODEs.

To derive the time discretization methods (IF and ETD methods), we consider

for simplicity a single model of a stiff ODE

du(t)
dt

= cu(t) + F (u(t), t), (3.3)

where the stiffness parameter c is either large, negative and real, or large and imagi-

nary, or complex with large, negative real part and F (u(t), t) is the nonlinear forcing

term.

3.2.1 Integrating Factor Methods

The main idea behind the IF schemes is to use a change of variables

w(t) = u(t)e−ct,

so that when differentiating both sides of this equation we obtain

dw(t)
dt

=
(du(t)

dt
− cu(t)

)
e−ct,

and then substituting from equation (3.3) we get

dw(t)
dt

= F (u(t), t)e−ct,

= F (w(t)ect, t)e−ct. (3.4)

The aim now is to use any numerical integrator (IF schemes can be generalized

to arbitrary order by applying any multi-step or Runge-Kutta methods) on the

transformed nonlinear differential equation (3.4). The approximated solution is then

transformed back to provide an approximate solution for the original u variable.

For example, we can choose to apply the Euler method [14] to the transformed

differential equation (3.4) as follows

wn+1 = wn + ∆tF (wnectn , tn)e−ctn ,

where ∆t is the time step size and wn denotes the numerical approximation to w(tn),

and then transform back to the original variable to obtain the solution approxima-

tion. This yields the first-order Integrating Factor Euler (IFEULER) method

[11, 84]

un+1 = (un + ∆tFn)ec∆t, (3.5)

Chapter 3. Exponential Time Differencing (ETD) Methods 32

where un and Fn denote the numerical approximation to u(tn) and F (u(tn), tn)

respectively.

The purpose of transforming the differential equation (3.3) to equation (3.4), is

to remove the explicit dependence in the differential equation on the operator c,

except inside the exponential. Now the problem is no longer stiff since the linear

“stiff” term of the differential equation (3.3), that constrains the stability, is gone.

Therefore, it can be solved exactly with the possibility of larger time steps. However,

for PDEs with slowly varying nonlinear terms, the introduction of the fast decay

time scale into the nonlinear term introduces large errors [7, 11, 19, 49] into the

system.

3.2.2 Exponential Time Differencing Methods

To derive the s-step ETD schemes (the derivation is taken from [9, 17, 19, 63]), we

follow an approach similar to that of deriving the IF schemes, i.e. we multiply (3.3)

through by the integrating factor e−ct, and then integrate the equation over a single

time step from t = tn to t = tn+1 = tn + ∆t to get

u(tn+1) = u(tn)ec∆t + ec∆t
∫ ∆t

0
e−cτF (u(tn + τ), tn + τ)dτ. (3.6)

This formula is exact, and the next step is to derive approximations to the integral

in equation (3.6). This procedure does not introduce an unwanted fast time scale

into the solution and the schemes can be generalized to arbitrary order.

If we apply the Newton Backward Difference Formula [14], using information

about F (u(t), t) at the nth and previous time steps, we can write a polynomial

approximation to F (u(tn + τ), tn + τ) in the form

F (u(tn + τ), tn + τ) ≈ Gn(tn + τ) =
s−1∑
m=0

(−1)m
(
−τ/∆t
m

)
∇mGn(tn), (3.7)

where ∇ is the backward difference operator defined as follows

∇mGn(tn) =
m∑
k=0

(−1)k
(
m

k

)
Gn−k(tn−k),

≈
m∑
k=0

(−1)k
(
m

k

)
F (u(tn−k), tn−k), (3.8)

and

m!
(
−Λ
m

)
= (−Λ)(−Λ− 1) · · · (−Λ−m+ 1), m = 1, . . . , s− 1.

Chapter 3. Exponential Time Differencing (ETD) Methods 33

(note that 0!
(−Λ

0

)
= 1). If we substitute the approximation (3.7) in the integrand

(3.6), we get

u(tn+1)− u(tn)ec∆t ≈ ∆t
s−1∑
m=0

(−1)m
∫ 1

0
ec∆t(1−Λ)

(
−Λ
m

)
dΛ∇mGn(tn), (3.9)

where Λ = τ/∆t.

We will indicate the integral in (3.9) by

gm = (−1)m
∫ 1

0
ec∆t(1−Λ)

(
−Λ
m

)
dΛ, (3.10)

and then calculate the gm by bringing in the generating function. For z ∈ R, |z| < 1,

we define the generating function

Γ(z) =
∞∑
m=0

gmz
m,

=
∫ 1

0
ec∆t(1−Λ)

∞∑
m=0

(
−Λ
m

)
(−z)mdΛ,

=
∫ 1

0
ec∆t(1−Λ)(1− z)−ΛdΛ,

=
ec∆t(1− z − e−c∆t)

(1− z)(c∆t+ log(1− z))
. (3.11)

Rearranging (3.11) to the form

(c∆t+ log(1− z))Γ(z) = ec∆t − (1− z)−1,

and expanding as a power series in z(
c∆t− z − z2

2
− z3

3
− · · ·

)
(g0 + g1z + g2z

2 + · · ·) = ec∆t − 1− z − z2 − z3 − · · · ,

we can find a recurrence relation for the gm for m ≥ 0 by equating like powers of z

c∆tg0 = ec∆t − 1,

c∆tgm+1 + 1 = gm + 1
2gm−1 + 1

3gm−2 + · · ·+ 1
m+1g0 =

∑m
k=0

1
m+1−k gk.

(3.12)

Having determined the gm, the ETD schemes (3.9) then can be given in explicit

forms.

Substituting (3.8) and (3.10) in (3.9), we deduce the general generating formula

of the ETD schemes of order s [19]

un+1 = une
c∆t + ∆t

s−1∑
m=0

gm
m∑
k=0

(−1)k
(
m

k

)
Fn−k, (3.13)

where un and Fn denote the numerical approximation to u(tn) and F (u(tn), tn)

respectively, and the gm are given by (3.12).

Chapter 3. Exponential Time Differencing (ETD) Methods 34

ETD Schemes

The first-order ETD1 scheme [9, 15, 19, 61]

un+1 = une
c∆t + (ec∆t − 1)Fn/c, (3.14)

is obtained by setting s = 1 in the explicit generating formula (3.13). Setting s = 2

in (3.13) gives us the second-order ETD2 scheme [19]

un+1 = une
c∆t + {((c∆t+ 1)ec∆t − 2c∆t− 1)Fn + (−ec∆t + c∆t+ 1)Fn−1}/(c2∆t).

(3.15)

If s = 3 in (3.13), we obtain the third-order ETD3 scheme

un+1 = une
c∆t + {((2c2∆t2 + 3c∆t+ 2)ec∆t − 6c2∆t2 − 5c∆t− 2)Fn

+(−(4c∆t+ 4)ec∆t + 6c2∆t2 + 8c∆t+ 4)Fn−1

+((c∆t+ 2)ec∆t − 2c2∆t2 − 3c∆t− 2)Fn−2}/(2c3∆t2).

(3.16)

Set s = 4 in (3.13) to achieve the fourth-order ETD4 scheme

un+1 = une
c∆t + (Φ1Fn − Φ2Fn−1 + Φ3Fn−2 − Φ4Fn−3)/(6c4∆t3), (3.17)

where

Φ1 = (6c3∆t3 + 11c2∆t2 + 12c∆t+ 6)ec∆t − 24c3∆t3 − 26c2∆t2 − 18c∆t− 6,

Φ2 = (18c2∆t2 + 30c∆t+ 18)ec∆t − 36c3∆t3 − 57c2∆t2 − 48c∆t− 18,

Φ3 = (6c2∆t2 + 24c∆t+ 18)ec∆t − 24c3∆t3 − 42c2∆t2 − 42c∆t− 18,

Φ4 = (2c2∆t2 + 6c∆t+ 6)ec∆t − 6c3∆t3 − 11c2∆t2 − 12c∆t− 6.

Note that as c→ 0 in the coefficients of the s-order ETD methods, the methods

reduce to the corresponding order of the Adams-Bashforth schemes [43, 84]. For

example, if we expand the exponential function, using Taylor series, in the first-order

ETD1 method (3.14) as follows

un+1 = un

(
1 + c∆t+

(c∆t)2

2
+

(c∆t)3

3!
+ · · ·

)
+ Fn

(
∆t+

c∆t2

2
+
c2∆t3

3!
+ · · ·

)
,

and then take the limit as c→ 0, while keeping terms of O(∆t), we obtain

un+1 = un + ∆t(cun + Fn) = un + ∆tdu(t)/dt,

which corresponds to the forward Euler method. In fact, in the case of c = 0,

the explicit formulas of the coefficients involve division by zero, and for very small

values of |c|, the coefficients suffer from rounding errors due to the large amount of

cancellation in the formulas. To tackle this problem we can use the Taylor series

instead of using the explicit formula of the coefficients, see §4 for a detailed discussion

of this issue.

Chapter 3. Exponential Time Differencing (ETD) Methods 35

3.2.3 Exponential Time Differencing Runge-Kutta Methods

Generally, for the one-step time-discretization methods and the Runge-Kutta (RK)

methods, all the information required to start the integration is available. However,

for the multi-step time-discretization methods this is not true. These methods

require the evaluations of a certain number of starting values of the nonlinear term

F (u(t), t) at the nth and previous time steps to build the history required for the

calculations. Therefore, it is desirable to construct ETD methods that are based on

RK methods.

ETD Runge-Kutta Schemes

Cox and Matthews [19] and Friedli [28] constructed a second-order ETD Runge-

Kutta method, analogous to the “improved Euler” method given in [78], as follows.

Putting s = 1 in (3.13) gives the first step

an = une
c∆t + (ec∆t − 1)Fn/c. (3.18)

The term an approximates the value of u at tn+∆t. The next step is to approximate

F in the interval tn ≤ t ≤ tn+1, with

F = Fn + (t− tn)(F (an, tn + ∆t)− Fn)/∆t+O(∆t2),

and substitute into (3.6) to give the ETD2RK1 scheme

un+1 = an + (ec∆t − c∆t− 1)(F (an, tn + ∆t)− Fn)/(c2∆t). (3.19)

In a similar way, we can also form an ETD2RK2 scheme analogous to the

“modified Euler” method [78]. The first step

an = une
c∆t/2 + (ec∆t/2 − 1)Fn/c,

is formed by taking half a step of (3.18); then use the approximation

F = Fn +
(t− tn)
∆t/2

(F (an, tn + ∆t/2)− Fn) +O(∆t2),

in the interval [tn, tn + ∆t] in (3.6) to deduce the ETD2RK2 scheme

un+1 = une
c∆t+{((c∆t−2)ec∆t+c∆t+2)Fn+2(ec∆t−c∆t−1)F (an, tn+∆t/2)}/c2∆t.

(3.20)

Chapter 3. Exponential Time Differencing (ETD) Methods 36

In fact there is a one-parameter family of such ETD2RK schemes. For ∈ R+,

one can start with any fraction 1/ of ∆t for the first step (3.18) which gives

an = une
c∆t/ + (ec∆t/ − 1)Fn/c.

The term an approximates the value of u at tn + ∆t/. Next use the approximation

F = Fn +
(t− tn)

∆t/
(F (an, tn + ∆t/)− Fn) +O(∆t2),

in the interval [tn, tn + ∆t] in (3.6) to deduce the general ETD2RK schemes as

follows

un+1 = une
c∆t+{((c∆t−)ec∆t+(−1)c∆t+)Fn+(ec∆t−c∆t−1)F (an, tn+∆t/)}/(c2∆t).

In a similar way, for different values of the fraction 1/ there are infinitely

many third-order and fourth-order ETD-RK schemes. For example, the third-order

ETD3RK scheme [19] which is analogous to the classical third-order RK method

[14] is given by

an = une
c∆t/2 + (ec∆t/2 − 1)Fn/c,

bn = une
c∆t + (ec∆t − 1)(2F (an, tn + ∆t/2)− Fn)/c,

un+1 = une
c∆t + {((c2∆t2 − 3c∆t+ 4)ec∆t − c∆t− 4)Fn

+4((c∆t− 2)ec∆t + c∆t+ 2)F (an, tn + ∆t/2)

+((−c∆t+ 4)ec∆t − c2∆t2 − 3c∆t− 4)F (bn, tn + ∆t)}/(c3∆t2).

(3.21)

The terms an and bn approximate the values of u at tn + ∆t/2 and tn + ∆t respec-

tively. The formula (3.21) is the quadrature formula for (3.6) derived from quadratic

interpolation through the points tn, tn + ∆t/2 and tn + ∆t.

Introducing a further parameter, a fourth-order scheme ETD4RK (taken from

[19]) is obtained as follows:

an = une
c∆t/2 + (ec∆t/2 − 1)Fn/c,

bn = une
c∆t/2 + (ec∆t/2 − 1)F (an, tn + ∆t/2)/c,

cn = ane
c∆t/2 + (ec∆t/2 − 1)(2F (bn, tn + ∆t/2)− Fn)/c,

un+1 = une
c∆t + {((c2∆t2 − 3c∆t+ 4)ec∆t − c∆t− 4)Fn

+2((c∆t− 2)ec∆t + c∆t+ 2)(F (an, tn + ∆t/2) + F (bn, tn + ∆t/2))

+((−c∆t+ 4)ec∆t − c2∆t2 − 3c∆t− 4)F (cn, tn + ∆t)}/(c3∆t2).

(3.22)

The terms an and bn approximate the values of u at tn + ∆t/2 and the term cn

approximates the value of u at tn+∆t. The formula (3.22) is the quadrature formula

Chapter 3. Exponential Time Differencing (ETD) Methods 37

for (3.6) derived from quadratic interpolation through the points tn, tn + ∆t/2 and

tn + ∆t, using average values of F at an and bn.

In general, the ETD4RK method (3.22) has classical order four, but Hochbruck

and Ostermann [38] showed that this method suffers from an order reduction. This

is due to not satisfying some of the stiff order conditions. These conditions were de-

rived [38] for explicit exponential Runge-Kutta methods applied to stiff semi-linear

parabolic problems with homogeneous Dirichlet boundary condition and under ap-

propriate temporal smoothness of the exact solution. They also presented numerical

experiments which show that the order reduction, predicted by their theory, may in

fact arise in practical examples. In the worst case, this leads to an order reduction

to order three for the Cox and Matthews method (3.22) [19] and gives order four

for Krogstad’s method (ETDRK4-B) [49]. However, for certain problems, such as

the numerical experiments conducted by Kassam and Trefethen [44, 45] for solving

various one-dimensional diffusion-type problems, and the numerical results obtained

in §5 for solving some dissipative and dispersive PDEs, the fourth-order convergence

of the ETD4RK method [19] is confirmed numerically.

Finally, we note that as c→ 0 in the coefficients of the s-order ETD-RK meth-

ods, the methods reduce to the corresponding order of the Runge-Kutta schemes.

3.3 Stability Analysis

The stability of a given method for solving a system of ODEs is a theoretical measure

of the extent to which the method produces satisfactory approximations. Stability is

related to the accuracy of the methods and refers to errors not growing in subsequent

steps. Such methods are called numerically stable. The stability analysis determines

the range of time step for which the method is numerically stable. The stability

region is the subset of the complex plane consisting of those ∆tλ ∈ C for which,

with time step ∆t, the numerical approximation produces bounded solutions when

applied to the scalar linear model problem du(t)/dt = λu(t).

In general, the linear stability analysis of time discretization methods is valid for

a linear autonomous system of ODEs, linearized about a fixed point. This analysis

only gives an indicator as to how stable the numerical methods are. It cannot be

directly applied to solutions of nonlinear time-dependent PDEs with large amplitude

Chapter 3. Exponential Time Differencing (ETD) Methods 38

since convergence and stability are solution-dependent issues.

Beylkin et al. [9] studied the stability for a family of explicit and implicit ELP

schemes, and showed that these schemes have significantly better stability properties

when compared with known Implicit-Explicit schemes. In addition, Krogstad [49]

analyzed the stability regions of various time integrating methods, including the

fourth-order ETDRK4-B method and multi-step generalizations of the IF methods,

all of which he proposed, and the ETD4RK method of Cox and Matthews [19].

He deduced that the ETDRK4-B method has the largest stability region. Cox and

Matthews [19] also studied the stability properties of the second-order ETD type

schemes, while in [23], the study was for the ETD-RK schemes of [19] of orders

up to and including the fourth. All authors concluded that ETD type schemes

maintain good stability properties and can be widely applicable to dissipative PDEs

and nonlinear wave equations.

The approach developed in [9, 19] for the stability analysis of composite schemes,

i.e. schemes that use different methods for the linear and nonlinear parts of the

equation, computes the boundaries of the stability regions for a general test problem.

That is, to analyze the stability of the ETD schemes, we linearize the autonomous

ODE
dv(t)
dt

= cv(t) + F (v(t)), (3.23)

about a fixed point u0 (so that cu0 + F (u0) = 0), to obtain

du(t)
dt

= cu(t) + λu(t), (3.24)

where u(t) is the perturbation to u0 and

λ =
dF (u(t))

du

∣∣∣∣
u(t)=u0

.

In order to keep the fixed point u0 stable, we require Re(c + λ) < 0 (note that

the fixed points of the ETD methods are the same as those of the ODE (3.23), in

contrast to the IF methods which do not preserve the fixed points for the ODE that

they discretize [19]. It seems desirable for a numerical method to fulfill this property

with respect to capturing as much of the dynamics of the system as possible).

If both c and λ are complex, the stability region is four-dimensional. But if both

c and λ are purely imaginary [26] or purely real [19], or if λ is complex and c is fixed

and real [9] then the stability region is two-dimensional.

Chapter 3. Exponential Time Differencing (ETD) Methods 39

Our study concentrates on two cases, where first, λ is complex and c is fixed,

negative and purely real and second, c is negative and both c and λ are purely real.

The stability regions are constructed for the ETD and the ETD-RK methods in

§3.3.1 and §3.3.2 respectively.

3.3.1 Stability of Exponential Time Differencing Methods

When applying the first-order ETD1 method (3.14) to the linearized problem (3.24),

we obtain

un+1 = une
c∆t + λun(ec∆t − 1)/c.

Defining r = un+1/un, x = λ∆t and y = c∆t, leads to

r = ey +
x

y
(ey − 1). (3.25)

If the second-order ETD2 method (3.15) is applied to (3.24), the linearization of

the nonlinear term in the numerical method yields a recurrence relation involving

un+1, un and un−1, and the equation for the factor r [19] by which the solution is

multiplied after each step is

y2r2 − (y2ey + [(y + 1)ey − 2y − 1]x)r + (ey − y − 1)x = 0. (3.26)

In a similar way, when applying the ETD3 (3.16) and the ETD4 (3.17) schemes

to (3.24), a recurrence relation is obtained from the linearization, and the equation

for r is a third and fourth-order polynomial for the ETD3 and the ETD4 schemes

respectively. The formulas of the factor r for the ETD3 and the ETD4 methods are

not given explicitly here since they are very cumbersome.

We commence our analysis by choosing real negative values of the constant c, i.e.

varying y = c∆t, and looking for a region of stability in the complex x plane where

the solution un remains bounded as n → ∞. The solution for r = un+1/un can be

sought in the form r = r1e
iθ. Evidently, the solution decays if r1 < 1. Hence, the

boundary of the stability region is determined by writing r = eiθ, θ ∈ [0, 2π] in each

equation for the factor r for the ETD1 (3.14), the ETD2 (3.15), the ETD3 (3.16)

and the ETD4 (3.17) methods and then by solving for x = λ∆t. The corresponding

family of stability regions are plotted in the complex x plane and displayed in figures

3.1, 3.2 and 3.3. Note that, in these figures, the horizontal and the vertical axes

represent real x (Re(x)) and imaginary x (Im(x)) respectively.

Chapter 3. Exponential Time Differencing (ETD) Methods 40

Figure 3.1: Stability regions in the complex x plane. The four methods are: ETD1 (blue-

solid), ETD2 (blue-dashed), ETD3 (red-solid), ETD4 (green-solid).

In figure 3.1, notice first that, for each fixed value of y = −1,−5,−10,−15, the

stability region of the ETD1 and the ETD2 schemes is the interior of the curves,

which are simple and closed; while for the ETD3 and the ETD4 schemes, it is only

the interior of those portions of the curves that contain the origin. Next, observe

that the ETD1 scheme has the largest stability region while the ETD4 scheme has

the smallest. In fact, as shown in figure 3.1, the stability region, for each fixed value

of y, shrinks as the method’s order increases.

Figures 3.2 and 3.3 illustrate the complex plot of the same four methods with

different values of y. The outer curves for the ETD1, the ETD2 and the ETD3

schemes correspond to y = −6, and to y = −3 for the ETD4 scheme. The inner blue

Chapter 3. Exponential Time Differencing (ETD) Methods 41

Figure 3.2: Stability regions in the complex x plane. The curves for the ETD1 and the

ETD2 schemes correspond to y = −6,−5,−4,−3,−2,−1, from the outer curve

to the inner curve respectively. The inner red curves correspond to y = 0.

curves for all four schemes correspond to y = −1. The inner red curves correspond to

the case y = 0, where the stability regions coincide with those of the corresponding

order Adams-Bashforth schemes [43, 84]. This is expected since in the limit

y → 0, ETD schemes turn into the corresponding order explicit Adams-Bashforth

schemes [9]. In the limit y → −∞, we find that the stability region of each of the

four methods preserves its shape and each grows larger, which allows the methods

to use a large time-step size (∆t = O(1) as |c| → ∞) when solving stiff problems.

On the contrary, the stability regions of the conventional explicit numerical methods

preserve their size whatever the value of the stiffness parameter is (for example, the

stability region of the Euler methods is a fixed circle of radius 1), which forces the

methods to use very small time-step sizes (∆t = O(1/|c|)) when integrating stiff

problems, see §5 for illustrative examples.

As shown in figure 3.2, the boundary of the stability region for the ETD1 and the

ETD2 schemes passes through the point x = −y (this is true for any fixed value of

y), which agrees with the result found in [19] for the ETD2 schemes. This feature is

consistent with the true stability boundary of the differential equation (3.24) of the

Chapter 3. Exponential Time Differencing (ETD) Methods 42

Figure 3.3: Stability regions in the complex x plane. The curves for the ETD3 scheme

correspond to y = −6,−5,−4,−3,−2,−1, from the outer curve to the inner

curve respectively. The same holds for the ETD4 scheme for y = −3,−2,−1.

The inner red curves correspond to y = 0.

test problem, namely, the solution decays for Re(c+ λ) < 0 and it grows otherwise.

For the ETD3 method, we find that for values of y ∈ [−6, 0) the curves of

its region do not cross and hence the stability region has a simple structure and

passes through the point x = −y, see figure 3.3. As y decreases, the curves of

the region cross over and the region develops to a more complicated structure,

separating into several portions. The stability regions for the ETD3 method for

values of y ∈ [−10,−6) (not shown) are the interior of those portions of the curves

that contain the origin, and the interior of those portions of the curves where the

boundary passes through the point x = −y, whereas for values of y = −10, . . . ,−∞

they are only the interior of those portions of the curves that contain the origin, see

figure 3.1 for y = −10,−15.

For the ETD4 method, we find that the curves of its region cross and hence the

region separates into several portions. For values of y ∈ [−2, 0) the stability regions

are the interior of those portions of the curves that contain the origin, see figure 3.3.

For values of y ∈ [−3,−2) (not shown) the stability regions are the interior of those

portions of the curves that contain the origin, and the interior of those portions of

Chapter 3. Exponential Time Differencing (ETD) Methods 43

Figure 3.4: Stability regions (shaded) in the real (x, y) plane for the ETD1 (3.14) and the

ETD2 (3.15) methods.

the curves where the boundary passes through the point x = −y. Finally for values

of y = −3, . . . ,−∞ the stability regions are the interior of those portions of the

curves that contain the origin, see figure 3.1 for y = −10,−15.

In the real (x, y) plane, the right-hand boundary for both the ETD1 (3.14) and

the ETD2 (3.15) schemes, corresponding to substituting r = 1 in equations (3.25)

and (3.26) respectively, is the line x+y = 0. The left-hand boundaries for the ETD1

and the ETD2 schemes, corresponding to substituting r = −1 in equations (3.25)

and (3.26) respectively, are the curve

x =
−y(ey + 1)
ey − 1

,

Chapter 3. Exponential Time Differencing (ETD) Methods 44

Figure 3.5: Stability regions (shaded) in the real (x, y) plane for the ETD3 (3.16) and the

ETD4 (3.17) methods.

Chapter 3. Exponential Time Differencing (ETD) Methods 45

and the curve [19]

x =
−y2(ey + 1)

(y + 2)ey − 3y − 2
,

respectively.

Similarly, the right-hand boundary for both the third and fourth-order ETD

methods, corresponding to r = 1, is the line x + y = 0, but only for the specified

values of y in the ranges mentioned previously (for values outside the ranges, there

is no simple formula for the right-hand boundaries due to the complicated structure

of the stability regions, and so, the plots of the stability regions of the ETD3 and

the ETD4 methods in the real (x, y) plane are produced using Maple). For r = −1,

the left-hand boundaries for the ETD3 (3.16) and the ETD4 (3.17) methods are the

curves

x =
−y3(ey + 1)

(y2 + 4y + 4)ey − 7y2 − 8y − 4
,

and

x =
−3y4(ey + 1)

(3y3 + 20y2 + 36y + 24)ey − 45y3 − 68y2 − 60y − 24
,

respectively.

The stability regions for the ETD1 and the ETD2 schemes are illustrated in

figure 3.4, whereas those for the ETD3 and the ETD4 methods are illustrated in

figure 3.5. Note that the horizontal and the vertical axes in these figures represent

Re(x) and Re(y) respectively. In line with the previous case of the complex x plane,

we find that the stability region of the ETD1 method is broader than those of the

other three higher-order methods, whereas it is very narrow for the ETD4 method.

Additionally, we find that the region of stability for all schemes includes the negative

y-axis [19] and grows larger as y decreases.

3.3.2 Stability of RK Exponential Time Differencing Methods

The basic question of stability is again addressed by applying each of the ETD-RK

schemes to the linearized problem (3.24), and determining the boundary separating

growing and decaying solutions un.

When applying the ETD2RK1 method (3.19) to (3.24), we obtain

un+1 = ec∆tun + {((c∆t− 1)ec∆t + 1)λun

+ (ec∆t − c∆t− 1)(λec∆t + λ2(ec∆t − 1)/c)un}/(c2∆t).

Chapter 3. Exponential Time Differencing (ETD) Methods 46

Defining r = un+1/un, x = λ∆t and y = c∆t, leads to [19]

r = ey +
(
ey − 1
y

)2

x+
(

(ey − 1)(ey − y − 1)
y3

)
x2. (3.27)

Similarly, for the ETD2RK2 scheme (3.20), r satisfies

r = ey+

(
2(ey − y − 1)ey/2 + (y − 2)ey + y + 2

y2

)
x+

(
2(ey − y − 1)(ey/2 − 1)

y3

)
x2.

(3.28)

In a similar way, when applying the third-order ETD3RK (3.21) and the fourth-

order ETD4RK (3.22) schemes to (3.24), the equation is linear for the factor r for

each scheme. The formulas for the factor r for the ETD3RK and the ETD4RK

methods are not neat and simple, hence, they are not given explicitly here.

We note that the equations for the factor r are different for the different formulas

of an s-order ETD-RK scheme. This is in contrast to the fact that the different

formulas of an explicit s-order (s = 1, 2, 3, 4) RK scheme have the same equation for

the factor r [84], that is r = |1+y+y2/2+· · ·+ys/s!|. This curve for r is obtained by

applying an explicit s-order RK scheme to the linearized problem du(t)/dt = cu(t)

where r = un+1/un and y = c∆t.

In the limit y → −∞, equations (3.27) and (3.28) become

x2

y2
≈ r, (3.29)

for the ETD2RK1 scheme, and

2x2

y2
+
x

y
≈ r, (3.30)

for the ETD2RK2 scheme, respectively, and the equations for the factor r for the

ETD3RK (3.21) and the ETD4RK (3.22) schemes become

− 2x3

y3
− x2

y2
≈ r, (3.31)

and
2x4

y4
− x2

y2
≈ r, (3.32)

respectively.

Our analysis below depends on choosing real negative values of the constant c

and looking for a region of stability in the complex x plane where the solution un

remains bounded as n → ∞. The boundary of the stability region is determined

by writing r = eiθ, θ ∈ [0, 2π] in each equation for the factor r = un+1/un in the

Chapter 3. Exponential Time Differencing (ETD) Methods 47

Figure 3.6: Stability regions in the complex x plane. The curves correspond to

y = −6,−5,−4,−3,−2,−1, from the outer curve to the inner curve respec-

tively. The inner red curves correspond to y = 0.

ETD2RK1 (3.19), the ETD2RK2 (3.20), the ETD3RK (3.21) and the ETD4RK

(3.22) methods and then by solving for x = λ∆t. The corresponding families of

stability regions are plotted in the complex x plane and displayed in figures 3.6, 3.7

and 3.8. Note that, in these figures, the horizontal and the vertical axes represent

Chapter 3. Exponential Time Differencing (ETD) Methods 48

Figure 3.7: Stability regions in the complex x plane for different values of y. The

four methods are: ETD1 (red-solid), ETD2RK1 (circle), ETD3RK (cross),

ETD4RK (point).

Re(x) and Im(x) respectively.

Figure 3.6 exhibits the complex plot of the stability regions of the four schemes

with different values of y. The outer curves correspond to y = −6 and the inner

blue curves correspond to y = −1. Generally, the stability regions of the ETD-RK

Chapter 3. Exponential Time Differencing (ETD) Methods 49

Figure 3.8: Stability regions in the complex x plane for different values of y. The

four methods are: ETD1 (red-solid), ETD2RK2 (circle), ETD3RK (cross),

ETD4RK (point).

schemes are larger than those of the explicit multi-step ETD schemes. We also find

that for all schemes, the origin belongs to the stability regions and the boundary of

the stability regions passes through the point x = −y [19, 23]. This is consistent with

the true stability boundary of the differential equation (3.24) of the test problem,

Chapter 3. Exponential Time Differencing (ETD) Methods 50

namely, the solution decays for Re(c + λ) < 0 and it grows otherwise. Clearly, as

shown in figure 3.6, the region of stability for all ETD-RK schemes grows larger as y

decreases. The red curves correspond to the case y = 0, where the stability regions

of the ETD-RK schemes coincide with the those of the corresponding order RK

schemes [84]. This is expected since in the limit y → 0, ETD-RK schemes reduce to

the corresponding order explicit RK schemes (this result was also found in [23] for up

to fourth-order ETD-RK schemes and by Krogstad [49] for the ETD4RK and the

ETDRK4-B methods). Note that the stability regions of the RK schemes increase

as the order of the methods increases. Also note the fact that the different formulas

of an explicit s-order RK scheme have the same stability regions [84]. However,

we find, as shown in figure 3.6, that the stability region of the ETD2RK2 scheme

is smaller than that of the ETD2RK1 scheme for any given value of y, and thus,

generally the different formulas of an s-order ETD-RK scheme do not have the same

stability region.

Figure 3.7 illustrates the plot of the ETD1, the ETD2RK1, the ETD3RK and

the ETD4RK methods all in one diagram for different values of y. For y = −1,

we find that the stability region increases as the order of the ETD-RK schemes

increases, that is, the ETD2RK1 scheme (3.19) has the smallest stability region

while the ETD4RK scheme (3.22) has the largest. As y decreases, see figure 3.7,

we find that the stability regions of the ETD1 and the ETD2RK1 schemes become

slightly larger than those of the other schemes. As y → −∞, the explicit ETD1

and ETD2RK1 schemes coincide in their stability regions and become the largest,

and simultaneously simplify to the disc |x| < |y| [19] (this corresponds to substitut-

ing |r| = 1 in equation (3.29)), while the stability region of the ETD3RK scheme

becomes the smallest.

Figure 3.8 illustrates the plot of the ETD1, the ETD2RK2, the ETD3RK and the

ETD4RK methods all in one diagram for different values of y. We notice that as the

order of these schemes increases the stability regions increase in size for any given

value of y. Furthermore, as y → −∞ the stability region of the ETD4RK scheme

contains those of the ETD3RK and the ETD2RK2 schemes of which the latter is

the smallest, though, the stability region of the ETD4RK schemes is contained by

those of the ETD2RK1 and the ETD1 schemes [23], see figures 3.7 and 3.8.

In the real (x, y) plane, the left-hand boundaries for the ETD2RK1 (3.19) and

ETD2RK2 (3.20) schemes, corresponding to substituting r = 1 in equations (3.27)

Chapter 3. Exponential Time Differencing (ETD) Methods 51

Figure 3.9: Stability regions (shaded) in the real (x, y) plane for four methods.

and (3.28) respectively1, are the curve [19]

x =
−y2

ey − y − 1
,

1No stability boundaries corresponding to r = −1 are obtained for the ETD2RK1, ETD2RK2

and ETD4RK schemes.

Chapter 3. Exponential Time Differencing (ETD) Methods 52

and the curve

x =
−y2(ey/2 + 1)
2(ey − y − 1)

,

respectively, while in the same situation, the right-hand boundary for both schemes

is the line x+ y = 0.

Similarly, the equation for the factor r is a third and fourth order polynomial

in x for the ETD3RK (3.21) and the ETD4RK (3.22) schemes respectively, and

for both schemes, the right-hand boundaries (corresponding to r = 1) are the line

x + y = 0 (note that the right-hand boundary is the same for all four schemes

[23]). The formulas of the left-hand boundary for the ETD3RK and the ETD4RK

methods, corresponding to r = −1 and r = 1 respectively, are complicated and

hence not given explicitly. The real stability regions for these four methods are

shown in figure 3.9, where the horizontal and the vertical axes represent Re(x) and

Re(y) respectively.

In figure 3.9, we notice that the region of stability for all schemes includes the

negative y axis [19] and grows larger as y decreases. In addition, the stability region

of the ETD2RK1 scheme is broader than that of the ETD2RK2 scheme, which

agrees with the previous case of the complex x plane.

In the limit y → −∞, the right-hand boundaries for the ETD2RK1 (3.19) [19],

the ETD2RK2 (3.20) and the ETD4RK (3.22) schemes correspond to

x ≈ −y,

which is the same for all schemes. The left-hand boundaries for the ETD2RK1,

the ETD2RK2 and the ETD4RK schemes, corresponding to substituting r = 1 in

equations (3.29), (3.30) and (3.32) respectively, are

x ≈ y,

and (2x
y
− 1
)(x

y
+ 1
)
≈ 0 =⇒ x ≈ y

2
,

and

(2x2 + y2)(x2 − y2) ≈ 0 =⇒ x ≈ y,

respectively, see figure 3.9. In the same limit, the right-hand and the left-hand

boundaries for the ETD3RK (3.21) scheme, corresponding to substituting r = 1

and r = −1 respectively in equation (3.31), are

(2x2 − xy + y2)(x+ y) ≈ 0 =⇒ x ≈ −y,

Chapter 3. Exponential Time Differencing (ETD) Methods 53

and

x ≈ 0.657y,

respectively.

3.4 Conclusion

In our study of the ETD methods we have found that these methods possess the

following features:

• If the nonlinear part F (u(t), t) of the differential equation (3.3) is zero, the

integrator produces the exact solution to the ODE and so is automatically

A-stable.

• If the linear part is zero (c = 0 in (3.3)), the ETD and the ETD-RK inte-

grators reduce to linear multi-step or classical explicit Runge-Kutta methods

respectively.

We have also discussed the stability properties of the ETD and ETD-RK schemes

up to fourth-order. We have found that the various formulas of the explicit second-

order ETD-RK schemes do not have the same stability region, in contrast to the fact

that all RK schemes of a given order have the same stability region. In addition, we

have found that as the order of the ETD-RK methods increases the stability regions

increase in size, i.e. the stability region of the ETD4RK scheme contains those of

the ETD3RK and the ETD2RK2 methods. However, as the stiffness parameter

c → −∞ in (3.23), the stability region of the ETD2RK1 method contains those of

the ETD4RK, the ETD3RK and the ETD2RK2 methods. This is in contrast to

noted properties of the stability regions of the multi-step ETD methods. We have

found that the stability region of the fourth-order ETD scheme is contained by those

of the lower order ones, i.e. the stability regions of the ETD methods shrink as the

order of the methods increases. In general, we have found that the stability regions

of the ETD-RK methods are larger than those of the multi-step ETD methods.

To conclude, the stability characteristics of the ETD and the ETD-RK methods

(the stability regions grow larger as the stiffness parameter c → −∞) reveal that

when solving stiff problems the selection of the time step size for these methods is

only limited by accuracy and not stability. This indicates the possibility of using a

Chapter 3. Exponential Time Differencing (ETD) Methods 54

large time step and consequently these methods provide computational savings over

conventional explicit methods.

Chapter 4
Various Algorithms for Evaluating the

ETD Coefficients

55

Outline of Chapter

The coefficients of the Exponential Time Differencing (ETD) methods are the ex-

ponential and related functions of the linear operators of a semi-discretized partial

differential equation (PDE). When applying the ETD methods, the computations

of the coefficients need only to be carried out once at the start of the integration

if a constant time step is used during the integration. The computation of these

functions depends significantly on the structure and the range of the eigenvalues of

the linear operator and the dimensionality of the semi-discretized PDE. The linear

part should not be explicitly time dependent and, if possible, should be represented

as a diagonal matrix in order for the exponential integrators to be computation-

ally competitive. On the other hand, the linear part might have eigenvalues equal

to or approaching zero, which leads to complications in the computation of the

coefficients.

In this chapter, we discuss methods for the accurate computation of the ETD

coefficients and the efficiency of implementation. We first explain why the ETD

methods need further development, and then address ourselves to describing the

various algorithms. We analyze their performance and their computational cost, and

weigh their advantages for improving the numerical difficulties in approximating the

ETD coefficients. This gives us the chance to distinguish between the algorithms

and choose the one that is best for the success of the methods.

56

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 57

4.1 Introduction

When a stiff partial differential equation (PDE) with periodic boundary conditions is

discretized in space using Fourier spectral methods [25, 83, 84] (see §2.3), a system of

coupled ordinary differential equations (ODEs) in time t, for the Fourier coefficients,

is obtained. The linear part of this system is represented by a diagonal matrix in

the Fourier basis, which might have eigenvalues of both large and small magnitude.

A complication [19] arises in using the time discretization ETD methods (see §3)

for problems which have eigenvalues equal or close to zero in the diagonal linear

operator. These difficulties are twofold: firstly, when some of the eigenvalues are

equal to zero, the explicit formulas (3.12) for the coefficients gm cannot be used

directly since they involve division by zero, i.e. c = 0. Instead, the limiting form of

the coefficients as c→ 0 must be used. Secondly, these methods suffer from rounding

errors occurring due to the large amount of cancellation in the ETD coefficients gm

(3.12) for eigenvalues approaching zero.

To identify the problem, consider evaluating numerically the expression

f1(z) =
ez − 1
z

, (4.1)

that appears in the ETD1 scheme (3.14), for z a scalar. f1(z) is an analytic function

and has a removable singularity at z = 0. The limiting form of the expression f1(z)

as z → 0± should result in 1. Undesirably, as z gets close to zero, the expression

does not approach 1 when evaluated numerically. The terms in the expression do

not cancel precisely and the small errors of cancellation become substantial as we

are dividing the result by a number approaching zero. This problem gets worse in

higher order methods.

The expressions

fk(z) =
ez −Gk(z)

zk
, k = 1, 2, . . . , s, (4.2)

where

Gk(z) =
k−1∑
j=0

zj

j!
, (4.3)

is the first k terms in the Taylor series approximation to the exponential function

f0(z) = ez, are at the core of the ETD and ETD-RK methods (3.13) of order s.

In fact the coefficients of these methods are really a combination of the expressions

fk(z) (4.2). As with f1(z) (4.1), the expressions fk(z) for k > 1 suffer from numerical

evaluation errors as z → 0±. In fact, in the limiting form of the expressions as z →

0±, the numerator and denominator are of O(zk). Hence, in order to implement the

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 58

ETD and ETD-RK methods accurately, we need an accurate algorithm to evaluate

the fk.

Figure 4.1 shows a plot of the exponential function f0(z), the formulas f1(z)

(4.1), and

f2(z) =
ez − 1− z

z2
, (4.4)

and

f3(z) =
(ez − 1− z − z2/2)

z3
, (4.5)

for values of z over the range [−2, 2]. Analytically, for values of z →∞, f1(z) ≈ ez/z,

f2(z) ≈ ez/z2 and f3(z) ≈ ez/z3 and generally, as z →∞

fk(z) ≈
ez

zk
, k = 1, 2, 3, . . . , s. (4.6)

Also, for values of z → 0±, f1(z) ≈ 1, f2(z) ≈ 1/2 and f3(z) ≈ 1/6 and in general,

as z → 0±

fk(z) ≈
1
k!
, k = 1, 2, 3, . . . , s. (4.7)

And as z → −∞, f1(z) ≈ −1/z, f2(z) ≈ −1/z and f3(z) ≈ −1/(2z) and in general,

as z → −∞

fk(z) ≈
−1

(k − 1)!z
, k = 1, 2, 3, . . . , s. (4.8)

Numerically however, as z gets close to zero, these formulas fk(z) (4.2) suffer from

serious cancellation errors1, as we are dividing the result by a number approaching

zero and raised to a power, see for example the plot of the function f3(z) (4.5) in

figure 4.2 over a range of very small values in magnitude of z.

In order to make the ETD and ETD-RK methods (3.13) practical in this case

(where the linear part of a discretized PDE is represented by a diagonal matrix in the

Fourier basis) only the scalar form of fk(z) (4.2) is required, since the exponential of

a diagonal matrix can be obtained by just exponentiating every entry on the main

diagonal independently. A simple approach here is to use a Taylor series expansion

[19] to approximate such expressions for values of z less than some chosen threshold

value zth, as follows

fk(z) =
∞∑
j=k

zj−k

j!
, z ≤ zth, k = 1, 2, . . . , s, (4.9)

1These errors depend on the computer precision. So, in single computer precision these errors

get worse.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 59

Figure 4.1: The values of the exponential function f0(z) and the function fk(z) (4.2) of

orders k = 1, 2, 3 versus the values of z.

and to use the explicit formulas of the ETD coefficients gm (3.12) for values of

z larger than zth.

On the other hand, if we discretize a PDE in space using finite difference for-

mulas [58, 83] (see §2.2) or Chebyshev polynomials [11, 25, 83, 84], for instance, a

system of coupled ODEs is obtained. Thus, the linear operator is represented by

a non-diagonal matrix that might have eigenvalues with values of both large and

small magnitude for stiff problems. Applying the ETD methods here requires the

computation of a non-diagonal matrix exponential, which in itself is not a straight-

forward task [60]. Furthermore, having eigenvalues equal to or close to zero in the

non-diagonal matrix, again leads to inaccuracies in evaluating expressions of the

form (4.2). In this case we cannot distinguish between eigenvalues of small and

large magnitude and simply switch between using the Taylor series expansion and

the explicit formulas of the ETD coefficients (3.12) respectively. It is therefore im-

portant to have an accurate numerical algorithm for evaluating the function fk(z)

(4.2) in both scalar and non-diagonal matrix cases. One would like a single algo-

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 60

Figure 4.2: The values of the function f3(z) (4.5) versus a range of very small values in

magnitude of z, evaluated numerically with 16-digit precision.

rithm that is simultaneously accurate for all values of z in the scalar case, and also

performs well in the non-diagonal matrix cases.

In §4.2, we describe some of the algorithms that appear to be practical for

approximating the expression fk(z) (4.2) of orders k = 1, 2, 3, since these expressions

are the most frequently used in the ETD methods (3.13), for the scalar z with values

of large and small magnitude. Then in §4.3 we set up some tests on the second-

order centered difference differentiation matrix (see §2.2) for the second derivative,

to represent the non-diagonal matrix case. We also conduct similar tests on the

Chebyshev differentiation matrix for the second derivative and the second-order

centered difference differentiation matrix for the first derivative, in §4.4 and §4.5

respectively. The aim is to show that the algorithms also work well for these non-

diagonal matrices, and that their efficiency is by no means restricted to any special

structure of certain matrices.

The algorithms considered are Taylor series, an algorithm based on the Cauchy

Integral Formula [44, 45], different forms of the Scaling and Squaring algorithms

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 61

[8, 9, 35, 37, 47, 53, 60, 76], the Composite Matrix algorithm [2, 54, 67], and the

Matrix Decomposition algorithm [60] for non-diagonal matrix cases. We assess the

effectiveness of these algorithms by considering their stability, accuracy, efficiency,

ease of use and simplicity. The accuracy of an algorithm refers primarily to the error

introduced by the algorithm. Efficiency of the algorithms is measured by the amount

of computer time required to approximate such expressions, and this is the primary

focus of §4.6. Also, we outline the issues that contribute to our understanding of the

limitations of the algorithms if they fail to produce accurate enough results. The

overall conclusions of the comparison tests are given in §4.7.

4.2 The Scalar Case

To demonstrate the effectiveness of the algorithms, we test them against each other

for the scalar z with values of large and small magnitude to approximate the ex-

pression fk(z) (4.2) of orders k = 1, 2, 3. We compute the relative error of each

algorithm, given by

relative error =
|exact value− approximate value|

|exact value|
, (4.10)

where the exact values of the expressions were approximated using 50 digit arith-

metic in Matlab code. Figures 4.3 and 4.4 show the relative errors of each algorithm

to approximate the expressions f1(z) (4.1) and f3(z) (4.5) versus the values of z

(we find that for f2(z) (4.4), the algorithms behave in a qualitatively similar way

to f3(z)). The figures also show the errors for the use of the explicit formulas;

this means simply evaluating the formulas f1(z) and f3(z) with standard double

precision (16 digits) arithmetic.

4.2.1 Taylor Series

The formula

ez ≈ 1 + z +
z2

2!
+
z3

3!
+ · · ·+ zm

m!
,

for some integer m may be used to approximate the exponential in the expression

fk(z) (4.2) of orders k = 1, 2, 3, so that fk(z) becomes

fk(z) ≈
m−1∑
j=k

zj−k

j!
.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 62

Attention to where to truncate the series is important if efficiency is being con-

sidered. We can simply sum the series until adding another term does not alter the

accuracy of the algorithm.

In doing the test described in §4.2, we find that for |z| � 1, the explicit formulas

for f1(z) (4.1) and f3(z) (4.5) are imperfect due to the cancellation errors, but the

Taylor expansion with 30 terms is remarkably good, see figures 4.3 and 4.4. For

|z| � 1, the explicit formulas f1(z) and f3(z) give acceptable results but the Taylor

expansion is imprecise. For z � −1, the errors in using the Taylor series are due

to the “catastrophic cancellation”. This term refers to the extreme loss of accuracy

when small numbers are additively computed from large numbers. The errors in

using the Taylor expansion can actually be larger than the correct exponential,

and the answer will not be correct, no matter how many terms in the series are

summed (it should be emphasized here, that the difficulty is not the truncation of

the series, but the truncation of the arithmetic). In the limit z → ∞, see figure

4.3, the numerical relative errors for the Taylor approximation approach 1 since the

exponential values in the explicit formulas f1(z) and f3(z) dominate over the Taylor

expansion.

The primary advantage of this algorithm is the simplicity and ease of implemen-

tation. Note that figures 4.3 and 4.4 show that, in the scalar case, it is possible to

use the Taylor series for |z| < 1 and the explicit formulas for f1(z) (4.1) and f3(z)

(4.5) for |z| ≥ 1, without significant loss of accuracy.

4.2.2 The Cauchy Integral Formula

To overcome the numerical difficulties in the ETD and ETD-RK methods (3.13)

of order s, a different tactic for evaluating the function fk(z) (4.2) of orders k =

1, 2, . . . , s was proposed by Kassam and Trefethen in [44, 45]. The key idea is to

approximate the functions (for matrices or scalars) by means of contour integrals in

the complex plane.

The well-known Cauchy Integral Formula [55]

f(z) =
1

2πi

∫
Γ

f(T)
T − z

dT, (4.11)

evaluates the analytic function f via an integral along a closed contour Γ that

encloses z. The Cauchy integral formula (4.11) says that the values of f on Γ

completely determine the values of f inside Γ.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 63

The simplest choice of the contour Γ is a circle with radius R centered at some

point z0,

Γ = {T (θ) = z0 +Reiθ : 0 ≤ θ ≤ 2π}.

Then by the definition of the contour integral for any function H∫
Γ
H(T)dT =

∫
θ
H(T (θ))dT (θ)dθ, (4.12)

the Cauchy integral (4.11) of a function of a scalar z along the circular contour Γ

becomes

f(z) =
1

2πi

∫ 2π

0

f(z0 +Reiθ)
T (θ)− z

Rieiθdθ =
1

2π

∫ 2π

0

f(z0 +Reiθ)
T (θ)− z

(T (θ)− z0)dθ, (4.13)

which is a periodic integral of our function evaluated at points on the circumference

of the circular contour. If we employ the periodic Trapezium Rule defined by∫ 2π

0
P (θ)dθ ≈ 2π

N

N∑
j=1

P (θj), θj =
2πj
N

, (4.14)

to approximate the integral on the right-hand side of (4.13), we obtain the formula

proposed by Kassam and Trefethen [44, 45] for a circular contour,

f(z) ≈ 1
N

N∑
j=1

f(T (θj))
T (θj)− z

(T (θj)− z0). (4.15)

Referring to [44, 45, 84], the authors stated that the periodic Trapezium Rule is

simply the Fourier spectral method for integrating a periodic function. The conver-

gence of spectral methods in general, and Fourier methods in particular, depends

on the smoothness of the function that is being interpolated. For analytic functions,

the Fourier coefficients decay exponentially [79] and we have correspondingly expo-

nential convergence of spectral methods, including the periodic Trapezium Rule.

This algorithm has turned out to be very powerful, as figures 4.3 and 4.4 show.

Testing the algorithm as described in §4.2 shows that the algorithm performs very

well when approximating the expression fk(z) (4.2) of orders k = 1, 3 for the scalar

z with values of large and small magnitude (qualitatively similar results are found

for k = 2). For each value of z, the chosen contour is a circle of radius R = 1,

centered at z0 = z, and sampled at N = 32 equally spaced points {θj}, and fk(z) is

approximated by (4.15) as follows

fk(z) ≈
1
N

N∑
j=1

fk(T (θj)), (4.16)

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 64

which is an average of the function values at the N points T (θj) = z+Reiθj around

the discretized circumference of the circle (it is important to ensure that none of the

points on the contour are close to or at the origin, otherwise the original problem

of rounding errors reappears).

In the case where the linear part of a discretized PDE is represented by a diagonal

matrix in the Fourier basis which may have eigenvalues that are zero or of small

magnitude, we can compute the expression fk(z) (4.2) of orders k = 1, 2, . . . , s for

each element on the diagonal independently by again using the above formula (4.16)

[44, 45], for circles centered at each element on the matrix diagonal.

4.2.3 Scaling and Squaring Algorithm: Type I

One of the most widely used of the algorithms that have been proposed for ap-

proximating expressions such as fk(z) (4.2), k = 1, 2, . . . , s that appear in the ETD

and ETD-RK methods (3.13) of order s, is the Scaling and Squaring algorithm

[8, 9, 35, 37, 47, 53, 60, 76]. This section considers the algorithm in the form in

which we scale up from small values of |z|; the alternative approach of scaling down

from large values of |z| is discussed in §4.2.4 (for ease of presentation we outline the

theory for the scalar case, but the algorithm is equally applicable to matrices, to be

described in §4.3.4).

Consider first the accurate evaluation of the exponential function, f0(z) = ez. It

is possible to use the Taylor series or Padé approximation (4.94) [35, 37, 47, 76] for

|z| ≤ 1, but to avoid loss of accuracy for |z| > 1, we use the Scaling and Squaring

algorithm [60], based on the identity

f0(2z) = (f0(z))2 = (ez)2. (4.17)

First we compute f0(2−lz) for some l chosen to be the smallest integer such that

l ≥ log(|z|/δ)
log 2

, (4.18)

so that for some threshold value δ we have |2−lz| ≤ δ. This computation is efficiently

and accurately performed using the Taylor expansion or Padé approximation. Using

(4.17), the resulting value is then squared l times to obtain the final answer

f0(z) = [f0(2−lz)]2
l
. (4.19)

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 65

A similar approach can be used for computing the expression fk(z) (4.2) of orders

k = 1, 2, 3. The algorithm uses either the identities (taken from [9])

f1(2z) =
1
2

(f0(z)f1(z) + f1(z)) , (4.20)

f2(2z) =
1
4

(f1(z)f1(z) + 2f2(z)) , (4.21)

f3(2z) =
1
8

(f1(z)f2(z) + f2(z) + 2f3(z)) , (4.22)

or the identities (taken from [54])

f1(2z) =
1
2

(f0(z)f1(z) + f1(z)) , (4.23)

f2(2z) =
1
4

(f0(z)f2(z) + f1(z) + f2(z)) , (4.24)

f3(2z) =
1
8

(
f0(z)f3(z) +

1
2
f1(z) + f2(z) + f3(z)

)
. (4.25)

A general form of the squaring relations (4.23) - (4.25) stated with proof in [76] is

fk(2z) =
1
2k

[
f0(z)fk(z) +

k∑
j=1

1
(k − j)!

fj(z)
]
, k = 1, 2, . . . , s. (4.26)

The authors of [76] pointed out that the choice of the squaring laws is very important

as generally this is the main source of errors committed in the algorithm (as will

be explained later in this section) and concluded from their experiments that their

choice (4.26) results in the minimum accumulation of errors.

In addition, the algorithm can also be based on the identity (taken from [37, 53])

f1(2z) =
(1

2
zf1(z) + 1

)
f1(z), (4.27)

and either the identities (4.21) - (4.22) or (4.24) - (4.25).

Note that we refer to the algorithm based on the identities (4.20) - (4.22) or

(4.23) - (4.25) or (4.27) as the Scaling and Squaring algorithm.

Before we illustrate the algorithm, we verify the identities (4.20) - (4.22) and

(4.27). For (4.20)

f1(2z) =
(ez − 1)(ez + 1)

2z
=

1
2
f1(z) (f0(z) + 1) .

For (4.21)

f2(2z) =
(ez − 1)(ez + 1)

4z2
− 1

2z
,

=
1
4
f1(z)

(
ez + 1
z

)
− 1

2z
,

=
1
4
f1(z)f1(z) +

1
2z

(
ez − 1− z

z

)
,

=
1
4

(f1(z)f1(z) + 2f2(z)) .

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 66

And for (4.22)

f3(2z) =
(ez − 1)(ez + 1)

8z3
− 1 + z

4z2
,

=
1
8
f1(z)f2(z) +

(ez − 1)(2 + z)
8z3

− 1 + z

4z2
,

=
1
8
f1(z)f2(z) +

ez − 1− z − z2/2− z2/2
4z3

+
ez − 1

8z2
,

=
1
8
f1(z)f2(z) +

1
4
f3(z) +

ez − 1− z
8z2

,

=
1
8

(f1(z)f2(z) + f2(z) + 2f3(z)) .

The identity (4.27) can be derived from the relation

f1(2z) =
ez + 1

2
f1(z),

and the relation

f1(z) =
ez − 1
z
⇒ ez = zf1(z) + 1,

so that

f1(2z) =
zf1(z) + 2

2
f1(z) =

(zf1(z)
2

+ 1
)
f1(z).

In implementing the Scaling and Squaring algorithm, we use a 30-term Taylor

series to compute the expression fk(z) (4.2), k = 1, 2, 3 (as explained in §4.2.1) for

values |z| ≤ δ, for some threshold value δ. But for values |z| > δ, the algorithm starts

by the computation of f1(2−lz), f2(2−lz) and f3(2−lz) for some l, again selected by

the formula (4.18) so that the value of |2−lz| ≤ δ. For this evaluation we use a

30-term Taylor series2. We then proceed by applying the identities (4.20) - (4.22)

or (4.23) - (4.25) (or (4.27) and either (4.21) - (4.22) or (4.24) - (4.25)) l times to

compute the expression fk(z) (4.2) of orders k = 1, 2, 3, for the required values of z.

To demonstrate the algorithm’s validity, we compute the relative error (4.10)

of using this algorithm based on the identities (4.20) - (4.22) to approximate the

expression fk(z) (4.2), k = 1, 3 (qualitatively similar results hold for k = 2) for

values of z with small and large magnitude and with the choice of the threshold

value δ = 1. As displayed in figures 4.3 and 4.4, this algorithm is one of the most

effective and powerful algorithms. It is stable for small positive values and for

all negative values of z3. However, this algorithm is one of the most complex to
2Reasons for favoring the Taylor series than the Padé approximation are explained in §4.3.5.
3Qualitatively similar results hold when applying the identities (4.23) - (4.25) or (4.27) and

either (4.21) - (4.22) or (4.24) - (4.25).

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 67

Figure 4.3: Relative errors in f1(z) (4.1) and f3(z) (4.5) versus the values z > 0 in the

scalar case. The algorithms are: Explicit Formula (red circles), 30-term Taylor

series (blue diamonds), the Cauchy Integral Formula (magenta stars), Scaling

and Squaring Type I based on the identities (4.20) - (4.22) (black stars),

Scaling and Squaring Type II based on the identities (4.48) - (4.50) (green

circles) and Composite Matrix (cyan squares).

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 68

Figure 4.4: Relative errors in f1(z) (4.1) and f3(z) (4.5) versus the values z < 0 in the

scalar case. The algorithms are: Explicit Formula (red circles), 30-term Taylor

series (blue diamonds), the Cauchy Integral Formula (magenta stars), Scaling

and Squaring Type I based on the identities (4.20) - (4.22) (black stars),

Scaling and Squaring Type II based on the identities (4.48) - (4.50) (green

circles) and Composite Matrix (cyan squares).

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 69

implement and its accuracy decreases as the value of z > 1 increases. This is due to

the amplification of the truncation errors and the rounding errors (resulting from

using the Taylor series) by the scaling and squaring process (these errors will be

analyze shortly in this section).

It has been noted [35] that for a better performance of the algorithm, we should

increase the threshold value δ as well as increasing the number of terms used in

the Taylor series, so that the algorithm has fewer squarings to undo the effect of

the scaling in approximating f0(z) = ez using (4.19). These computed squares can

be contaminated by rounding errors that are doubled at each scaling. To examine

the effects of the squaring phase, in using the relation (4.19), on the approximated

rounding errors, assume that the function f0(2−lz) (for l selected by (4.18) so that

|2−lz| ≤ δ) is contaminated by some error ε in its computation and that the relative

error is ε/|f0(2−lz)|. Then, squaring f0(2−lz) using the identity (4.19) l times to

approximate f0(z) at |z| � 1 has rounding errors with

relative error ≈ |(f0(2−lz) + ε)2l − f0(2−lz)2l |
|f0(2−lz)2l |

. (4.28)

Applying the binomial series

(x+ y)n =
n∑
j=0

(
n

j

)
xn−jyj ,

(
n

j

)
=

n!
j!(n− j)!

, (4.29)

to the relative error (4.28) gives

relative error ≈ |2
lf0(2−lz)2l−1ε+O(ε2)|

|f0(2−lz)2l |
,

≈ 2lε
|f0(2−lz)|

≈ |z|ε/δ
|f0(2−lz)|

∝ |z|, (4.30)

which shows that the errors are doubled at each scaling and we expect the relative

error to increase linearly, by a factor of 2l = |z|/δ (see formula (4.18)), as |z|

increases. Figure 4.5 confirms the above analysis and illustrates the linear increase

of the computed relative errors (4.30) of using (4.19) to approximate f0(z) = ez

for |z| � 1 with threshold value δ = 1. Hence, it seems desirable to minimize the

number of squarings in the algorithm.

For more analysis of this algorithm, the reader is referred to a paper by Higham

[35] who gave a backward error analysis (in exact arithmetic) of the algorithm com-

bined with Padé approximation (for computing the matrix exponential) that em-

ploys sharp bounds for the truncation errors in the approximant, and identified that

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 70

(a) z < 0

(b) z > 0

Figure 4.5: Relative errors of using the Scaling and Squaring Type I algorithm based on

the identity (4.19), versus the values (a) z < 0 and (b) z > 0, for approximat-

ing the function f0(z) in the scalar case.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 71

the loss of accuracy in the computed results is related to the number of squaring

steps used and that larger values of the threshold may be optimal for the algorithm’s

optimal efficiency.

By looking at the relations (4.20) - (4.22) and (4.23) - (4.25), we find that they

involve f0(z) = ez, which for its approximation depends on the scaling and squaring

process using the identity (4.19). Therefore, the errors (4.30) in the squaring process

will directly affect the use of these relations for approximating fk(z) (4.2), k = 1, 2, 3

at large positive values of z. So if z � 1, then ez � 1 and therefore according to

(4.6) the identities (4.20) - (4.22) become

f1(2z) ≈ 1
2
f0(z)f1(z), (4.31)

f2(2z) ≈ 1
4
f1(z)f1(z), (4.32)

f3(2z) ≈ 1
8
f1(z)f2(z), (4.33)

respectively, and (4.24) - (4.25) become

f2(2z) ≈ 1
4
f0(z)f2(z), (4.34)

f3(2z) ≈ 1
8
f0(z)f3(z), (4.35)

respectively. This shows that applying the above identities to compute fk(z) (4.2),

k = 1, 2, 3 for the required large positive value of z, will be affected by the error

(4.30). But if z � −1 then ez � 1 and therefore according to (4.8) the identities

(4.20) - (4.22) become

f1(2z) ≈ 1
2
f1(z), (4.36)

f2(2z) ≈ 1
2
f2(z), (4.37)

f3(2z) ≈ 1
8
f2(z) +

1
4
f3(z), (4.38)

respectively, and (4.24) - (4.25) become

f2(2z) ≈ 1
4

(f1(z) + f2(z)), (4.39)

f3(2z) ≈ 1
8

(
1
2
f1(z) + f2(z) + f3(z)), (4.40)

respectively. Hence, the identities (4.36) - (4.40) do not involve f0(z) = ez, the error

(4.30) in applying the identity (4.19) has no effect on these identities when they are

applied for all required values z < 0, and thus the algorithm becomes more stable

and accurate.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 72

The above analysis explains the behavior of the algorithm based on the identities

(4.20) - (4.22), displayed in figures 4.3 and 4.4, where the errors grow for z � 1 but

not for z � −1.

To analyze the rounding errors resulting from applying the identity (4.27)

f1(2z) =
(1

2
zf1(z) + 1

)
f1(z),

to compute f1(z) (4.1), assume that the exact value of f1(z) is contaminated by

some error ε1 in its computation so that

relative error =
ε1
|f1(z)|

. (4.41)

Applying the identity (4.27) then has rounding errors with

relative error ≈
|f1approx(2z)− f1exact(2z)|

|f1exact(2z)|
,

≈ |f1(z)zε1/2 + ε1zf1(z)/2 + ε1|
|f1(z)zf1(z)/2 + f1(z)|

. (4.42)

As z →∞, ez � 1, f1(z) ≈ ez/z, the relative error (4.41) becomes

relative error ≈ ε1z

ez
, (4.43)

and (4.42) becomes

relative error ≈ |e
zε1/2 + ε1e

z/2 + ε1|
|e2z/2z + ez/z|

,

≈ 2ε1z
ez

, (4.44)

which shows that the errors (4.43) are doubled at each scaling and that the algorithm

becomes less accurate as the value of positive z increases. In this case, the identities

(4.32) and (4.33) will also be affected by the error (4.44) when they are applied to

compute f2(z) (4.4) and f3(z) (4.5).

On the other hand, for values of z → −∞, ez � 1 and f1(z) ≈ −1/z and

therefore the order ε1 terms in (4.42) simplify to

relative error ≈ 0,

which shows the algorithm’s validity when applying the identities (4.27) (and when

subsequently applying either identities (4.21) - (4.22) or (4.24) - (4.25) for approxi-

mating fk(z) (4.2), k = 1, 2, 3 for all values z < 0).

In further experiments on the Scaling and Squaring algorithm, we investigate

what the best choice of the threshold value δ is, among certain chosen values δ =

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 73

0.5, 1, 2, 3. In figure 4.6, and for each chosen value of the threshold δ, we plot

the computed relative errors (4.10) of using the algorithm, based on the identities

(4.20) - (4.22), to approximate f3(z) (4.5) (qualitatively similar results hold for the

expressions f1(z) (4.1) and f2(z) (4.4)) for positive values of z4. The figure reveals

that, the choices of threshold values δ = 0.5, 1, 2 are all good, giving better results

than the value δ = 3. At larger value δ ≥ 3, we experimentally find that increasing

the value of the threshold requires an increase in the number of terms used in the

Taylor series combined with the algorithm for better accuracy.

In addition, in figure 4.7, we note that the computed relative errors (4.10) of

using the Scaling and Squaring algorithm to approximate f3(z) (qualitatively similar

results hold for the expressions f1(z) and f2(z)) for positive values of z are, firstly,

similar regardless of which relations (the identities (4.20) - (4.22) or (4.23) - (4.25) or

(4.27) and either (4.21) - (4.22) or (4.24) - (4.25)) are used and whatever the chosen

value of the threshold δ is (in the figure δ = 1). Secondly, these errors increase

linearly for z � 1, which agrees with the above analysis. On the other hand, in

doing the same experiment for negative values of z (figures are not shown), we find

that the errors are smaller (errors of O(10−15)) and they do not grow linearly for

values of z → −∞ as our above analysis suggests.

4.2.4 Scaling and Squaring Algorithm: Type II

Recall that the numerical evaluation of the explicit formula fk(z) (4.2), k = 1, 3 is

accurate for scalar values |z| > 1 but not for |z| < 1 (the same qualitatively holds for

k = 2), see figures 4.3 and 4.4. This suggests a second type of Scaling and Squaring

algorithm, based on scaling down from |z| > 1.

Consider again the evaluation of the exponential function. For values of |z| ≥ γ,

for some threshold value γ, we use the function f0(z) = ez, but for values |z| < γ, we

use the Scaling and Squaring algorithm based on the identity, which we now write

in the form

f0(z) = (f0(2z))1/2 = (e2z)1/2. (4.45)

First we compute f0(2l1z) using the exponential function for some l1 chosen to be
4Qualitatively similar results hold when the algorithm is based on the identities (4.23) - (4.25)

or (4.27) and either (4.21) - (4.22) or (4.24) - (4.25) and for negative values of z.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 74

Figure 4.6: Relative errors of using the Scaling and Squaring Type I algorithm based on

the identities (4.20) - (4.22), versus the values of z, for approximating the

expression f3(z) (4.5), for different values of threshold δ (see formula (4.18)).

the smallest integer such that

l1 ≥
log(γ/|z|)

log 2
, (4.46)

so that the value of |2l1z| ≥ γ. Using (4.45) the resulting value is then square-rooted

l1 times to obtain the final answer

f0(z) = [f0(2l1z)]1/2
l1
. (4.47)

A similar approach can be used for computing the expression fk(z) (4.2) of orders

k = 1, 2, 3. For values of z with large or moderate magnitude we can simply use

the formula fk(z) (4.2), which give accurate results, but for values of z with small

magnitude we use either the identities

f1(z) = 2f1(2z)/(f0(z) + 1), (4.48)

f2(z) = 2f2(2z)− 1
2
f1(z)f1(z), (4.49)

f3(z) = 4f3(2z)− 1
2
f1(z)f2(z)− 1

2
f2(z), (4.50)

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 75

Figure 4.7: Relative errors of using the Scaling and Squaring Type I algorithm, versus the

values of z, for approximating the expression f3(z) (4.5). The blue line (circles)

uses the identities (4.20) - (4.22), the cyan line (stars) uses the identities (4.23)

- (4.25), the green line (diamonds) uses the identities (4.27), (4.21) and (4.22)

and the black line (squares) uses the identities (4.27), (4.24) and (4.25).

or

f1(z) = 2f1(2z)/(f0(z) + 1), (4.51)

f2(z) = (4f2(2z)− f1(z))/(f0(z) + 1), (4.52)

f3(z) = (8f3(2z)− 1
2
f1(z)− f2(z))/(f0(z) + 1). (4.53)

The identities (4.48) - (4.50) and (4.51) - (4.53) are formed by rearranging the

identities (4.20) - (4.22) and (4.23) - (4.25) respectively.

We start by computing f1(2l1z), f2(2l1z) and f3(2l1z) using the formula fk(z)

(4.2) for k = 1, 2, 3 respectively, which will be accurate, for some l1 selected by the

formula (4.46), so that the value of |2l1z| ≥ γ, which we choose here to be γ = 1.

The identities (4.48) - (4.50) or (4.51) - (4.53) are then applied l1 times to compute

the expression fk(z) (4.2) of orders k = 1, 2, 3 for the required values of z.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 76

To examine the effects of using (4.47) to compute f0(z) = ez on rounding errors,

assume that the function f0(2l1z), for l1 selected by the formula (4.46), is contam-

inated by some error ε in its computation so that the relative error is ε/|f0(2l1z)|.

Taking the square-root of f0(2l1z) l1 times, it follows that using the identity (4.47),

to approximate f0(z) at |z| � 1 has rounding errors with

relative error ≈ |(f0(2l1z) + ε)2−l1 − f0(2l1z)2−l1 |
|f0(2l1z)2−l1 |

. (4.54)

Applying the binomial series (4.29) to the relative error (4.54) gives

relative error ≈ |2
−l1f0(2l1z)2−l1−1ε+O(ε2)|

|f0(2l1z)2−l1 |
,

≈ 2−l1ε
|f0(2l1z)|

≈ |z|ε/γ
|f0(2l1z)|

∝ |z|, (4.55)

which shows that the errors are halved at each scaling and we expect the relative

error to decrease linearly with |z|, by a factor of 2l1 , as |z| is halved l1 times.

We may carry out a similar analysis to analyze the rounding errors resulting

from applying the identity (4.48)

f1(z) =
2f1(2z)
f0(z) + 1

,

to compute the function f1(z) (4.1) for the required values of z. To do this, we first

assume that errors in approximating f0(z) by applying (4.47) are negligible, due to

the result (4.55), and that the exact value of the function f1(2z) is contaminated

by some error ε1, with relative error ε1/|f1(2z)|. Thus, applying the identity (4.48)

has rounding errors with

relative error ≈
|f1approx(z)− f1exact(z)|

|f1exact(z)|
,

≈
∣∣∣2f1(2z) + 2ε1 − 2f1(2z)

f0(z) + 1

∣∣∣/∣∣∣ 2f1(2z)
f0(z) + 1

∣∣∣,
≈ ε1
|f1(2z)|

. (4.56)

This shows that there is no amplification of the errors at each scaling and that

the algorithm’s accuracy remains the same. For |z| � 1 and according to (4.7),

f1(2z) ≈ 1 and the relative error (4.56) becomes

relative error ≈ ε1. (4.57)

When applying the above ideas to analyze the rounding errors resulting from

applying the identities (4.49) and (4.48) to compute f2(z) (4.4), we now assume

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 77

that the errors in applying the identity (4.48) are negligible, because these errors

are not amplified (not growing) according to (4.57). Then if the relative error in

approximating f2(2z) is

relative error =
ε2

|f2(2z)|
, (4.58)

for some error ε2, the relative error in applying the identity f2(z) (4.49) is

relative error ≈ 2ε2
|2f2(2z)− 1

2f1(z)f1(z)|
. (4.59)

As z → 0± and according to (4.7), f1(z) ≈ 1, f2(2z) ≈ 1/2, the relative error (4.58)

becomes

relative error ≈ 2ε2, (4.60)

and (4.59) becomes

relative error ≈ 4ε2,

which shows that errors (4.60) are doubled at each scaling and we expect the rel-

ative error to increase linearly, by a factor of 2l1 , as |z| is halved l1 times, i.e. the

relative error ∝ 1/|z|.

As above, we may analyze the rounding errors resulting from applying the iden-

tities (4.48) - (4.50), assuming again that the errors in applying (4.48) are negligible,

because these errors are not amplified according to (4.57). If the relative error in

approximating f3(2z) is

relative error =
ε3

|f3(2z)|
, (4.61)

for some error ε3, then the relative error in applying the identity (4.50) is

relative error ≈ 4ε3 − ε2(f1(z) + 1)/2
|4f3(2z)− 1

2f1(z)f2(z)− 1
2f2(z)|

. (4.62)

Since the relative error in approximating f3(z) is growing faster by a factor of 2 than

that of approximating f2(z) (due to (4.59) and (4.62)), we assume that the relative

error of approximating f2(z) is small compared to that of approximating f3(z) and

therefore it can be ignored, and so (4.62) becomes

relative error ≈ 4ε3
|4f3(2z)− 1

2f1(z)f2(z)− 1
2f2(z)|

. (4.63)

As z → 0± and according to (4.7), f1(z) ≈ 1, f2(z) ≈ 1/2, f3(2z) ≈ 1/6, the relative

error (4.61) becomes

relative error ≈ 6ε3, (4.64)

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 78

and (4.63) becomes

relative error ≈ 24ε3,

which shows that errors (4.64) are amplified by a factor of 4 at each scaling, and we

expect the relative error to increase by a factor of (2l1)2 as |z| is halved l1 times, i.e.

the relative error ∝ 1/z2.

Regarding the test described in §4.2, and according to figures 4.3 and 4.4, the

Scaling and Squaring algorithm based on the identity (4.48) performs well overall

when evaluating the simplest expression f1(z) (4.1). But when numerically comput-

ing the relative error (4.10) of applying the identities (4.48) - (4.50)5 to compute the

function f3(z) (4.5) for values of z with small magnitude, we find that the results

are inaccurate6. The results of using the algorithm shown in figures 4.3 and 4.4

agree well with the above analysis, and thus, for values of z → 0±, the Scaling and

Squaring type II algorithm is not a very stable nor a useful algorithm.

4.2.5 Composite Matrix Algorithm

Although this algorithm is not explicitly given in earlier work, related algorithms

appear in [2, 56, 67, 73]. The algorithm starts with the construction of an (s+ 1)×

(s+ 1) matrix with the structure

B1s =

z 1 0 0 0 . . . 0

0 0 1 0 0 . . . 0

0 0 0 1 0 . . . 0
...

...
...

...
... . . .

...

0 0 0 0 0 . . . 1

0 0 0 0 0 . . . 0

. (4.65)

If we exponentiate the matrix B1s, the resulting matrix is

eB1s =

ez f1(z) f2(z) f3(z) f4(z) · · · fs(z)

0 1 1 1/2 1/3! · · · 1/(s− 1)!

0 0 1 1 1/2 · · · 1/(s− 2)!
...

...
...

...
... · · ·

...
...

...
...

...
... · · ·

...

0 0 0 0 0 · · · 1

, (4.66)

5Qualitatively similar results are found when using the identities (4.51) - (4.53).
6Qualitatively similar results are found when approximating the function f2(z) (4.4).

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 79

which can be verified directly using the Taylor series expansion of the exponential

function. We note in particular that, due to the structure of B1s, any power of

the matrix B1s contains as an element the corresponding power of the value z in

the same position where B1s contains z, and therefore, the exponential of z will be

generated in the same position.

To prove the result (4.66), we start by exponentiating the matrix B1s (4.65)

using the Taylor series expansion which gives

eB1s =
∞∑
n=0

B1ns
n!

,

= I +B1s +B12
s/2! +B13

s/3! +B14
s/4! + (4.67)

Note that B10
s = I and

B1ns =

zn zn−1 · · · z0 0 0 0 · · · 0

0 0 · · · 0 1 0 0 · · · 0

0 0 · · · 0 0 1 0 · · · 0
...

... · · ·
...

...
...

... · · ·
...

0 0 · · · 0 0 0 0 · · · 1(s−n+1)×(s+1)

0 0 · · · 0 0 0 0 · · · 0
...

... · · ·
...

...
...

... · · ·
...

0 0 · · · 0 0 0 0 · · · 0

, if n < s

zn zn−1 zn−2 zn−3 zn−4 zn−5 · · · zn−s

0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...

0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 · · · 0

, if n ≥ s.

(4.68)

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 80

Therefore, using (4.68) we can rewrite (4.67) as follows

eB1s =

s−1∑
n=0

zn

n!

s−1∑
n=1

zn−1

n!

s−1∑
n=2

zn−2

n!

s−1∑
n=3

zn−3

n! · · ·
s−1∑

n=s−2

zn−s+2

n!

s−1∑
n=s−1

zn−s+1

n! 0

0 1 1/1! 1/2! · · · 1/(s− 3)! 1/(s− 2)! 1/(s− 1)!

0 0 1 1/1! · · · 1/(s− 4)! 1/(s− 3)! 1/(s− 2)!
...

...
...

... · · ·
...

...
...

0 0 0 0 · · · 1 1/1! 1/2!

0 0 0 0 · · · 0 1 1/1!

0 0 0 0 · · · 0 0 1

+

∞∑
n=s

zn

n!

∞∑
n=s

zn−1

n!

∞∑
n=s

zn−2

n!

∞∑
n=s

zn−3

n! · · ·
∞∑
n=s

zn−s+2

n!

∞∑
n=s

zn−s+1

n!

∞∑
n=s

zn−s

n!

0 0 0 0 · · · 0 0 0

0 0 0 0 · · · 0 0 0

0 0 0 0 · · · 0 0 0

0 0 0 0 · · · 0 0 0
...

...
...

... · · ·
...

...
...

0 0 0 0 · · · 0 0 0

.

The first matrix arises from the sum of the terms in the series (4.67) for which n < s

and the second arises from the terms in the sum with n ≥ s. Adding together these

two matrices gives the result of

eB1s =

∞∑
n=0

zn

n!

∞∑
n=1

zn−1

n!

∞∑
n=2

zn−2

n!

∞∑
n=3

zn−3

n! · · ·
∞∑

n=s−2

zn−s+2

n!

∞∑
n=s−1

zn−s+1

n!

∞∑
n=s

zn−s

n!

0 1 1/1! 1/2! · · · 1/(s− 3)! 1/(s− 2)! 1/(s− 1)!

0 0 1 1/1! · · · 1/(s− 4)! 1/(s− 3)! 1/(s− 2)!
...

...
...

... · · ·
...

...
...

0 0 0 0 · · · 1 1/1! 1/2!

0 0 0 0 · · · 0 1 1/1!

0 0 0 0 · · · 0 0 1

.

If we consider expanding the expression fk(z) (4.2), k = 1, 2, . . . , s using the

Taylor series expansion as in equation (4.9), then we have completed the proof of

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 81

(4.66), that is

eB1s =

ez f1(z) f2(z) f3(z) · · · fs−2(z) fs−1(z) fs(z)

0 1 1/1! 1/2! · · · 1/(s− 3)! 1/(s− 2)! 1/(s− 1)!

0 0 1 1/1! · · · 1/(s− 4)! 1/(s− 3)! 1/(s− 2)!
...

...
...

... · · ·
...

...
...

0 0 0 0 · · · 1 1/1! 1/2!

0 0 0 0 · · · 0 1 1/1!

0 0 0 0 · · · 0 0 1

.

This algorithm evaluates the expression fk(z) (4.2) of orders k = 1, 2, . . . , s,

which are contained in the matrix (4.66) and can be extracted easily, assuming

that we have a reliable function for computing the matrix exponential (such as the

Matlab function expm, which uses a scaling and squaring method combined with

Padé approximation (4.94) [35, 37, 47, 76]).

This algorithm is very attractive, being very simple and easily programmed.

The approximations of the expressions f1(z) (4.1) and f3(z) (4.5) for small positive

values of z, shown in figure 4.3, and for all values z < 0, shown in figure 4.4, are

accurate to within machine precision (qualitatively similar results are found for the

expression f2(z) (4.4)). As the value of positive z increases, the performance of the

algorithm deteriorates, see figure 4.3. This is due to the increase in the norm of the

matrix B1s (4.65), which leads to an increase in the number of scalings needed to

approximate the matrix exponential eB1s (4.66). This scaling and squaring process

amplifies the truncation errors and the rounding errors resulting from the matrix

inversion and the repeated matrix multiplications when using the Padé approxima-

tion, see §4.3.5. In fact these errors are doubled at each scaling, as shown in (4.30),

and we expect the relative error to increase linearly as the value of positive z in-

creases (see in §4.2.3 the analysis of the rounding errors in using the Scaling and

Squaring algorithm for approximating the exponential function).

4.3 Non-Diagonal Matrix Case

Implementing the ETD methods [19] as a time discretizing method for a system

of ODEs, where the linear operator is represented by a non-diagonal matrix, re-

quires the computation of matrix functions that involve the matrix exponential.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 82

As discussed at the start of the chapter, in addition to the difficulties inherent in

computing the matrix exponential itself, accurate evaluation of the matrix functions

can be problematic when the matrix has small eigenvalues. This is a well known

problem in numerical analysis. Various algorithms have been proposed by many

authors [2, 8, 35, 47, 54, 56, 57, 67, 80, 81], and have been investigated in terms

of their practical efficiency. For example, Schmelzer and Trefethen [69, 70] dis-

cussed the efficient computation of matrix functions. They proposed two methods

for the fast evaluation of these functions building on previous work by Trefethen

and Gutknecht, Minchev, and Lu. The first method is based on computing opti-

mal rational approximations to the matrix functions on the negative real axis using

the Carathéodory-Fejér procedure [85]. The second method is an application

of the Trapezium rule on a Talbot-type contour encircling the eigenvalues of the

matrix.

Computing the matrix exponential alone has also attracted several authors’ at-

tention. For example, Beylkin et al. [9] used the algorithm that is based on scaling

and squaring to approximate a matrix exponential. Also, following an original paper

on this problem [59], Moler and Van Loan [60] recently revisited this problem in

“Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five

Years Later”, in which they described recent developments in computing the ex-

ponential of a matrix, and provided some interesting analysis and applications of

some of the algorithms mentioned previously in this chapter. They cautioned that

practical implementations are ‘dubious’ in the sense that implementation of a sole

algorithm might not be entirely reliable for all classes of problems.

To investigate the algorithms’ performance in the non-diagonal matrix case,

we set up a large number of computational experiments on various orders q of

the second-order centered difference differentiation matrix (see §2.2) for the second

derivative,

M2 =

−2 1 0 0 0 . . . 0 0

1 −2 1 0 0 . . . 0 0

0 1 −2 1 0 . . . 0 0
...

...
...

...
... . . .

...
...

0 0 0 0 0 . . . 1 −2

, (4.69)

(note that if the order of the matrix M2 (4.69) is q, the scaling of M2 is such that

it corresponds to the second derivative on an interval of length q + 1).

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 83

Tests on the Chebyshev differentiation matrix for the second derivative [11, 25,

83, 84] and the second-order centered difference differentiation matrix for the first

derivative are described in §4.4 and §4.5 respectively.

We use the Matlab function expm to approximate the exponential function e∆tM

of a matrix M , and the function inv to find (∆tM)−1, and 50 digit arithmetic to

approximate the exact values of the expressions

f1(∆tM) =
e∆tM − I

∆tM
, (4.70)

f2(∆tM) =
e∆tM − I −∆tM

(∆tM)2
, (4.71)

and

f3(∆tM) =
e∆tM − I −∆tM − (∆tM)2/2

(∆tM)3
, (4.72)

where I is the q × q identity matrix and ∆t is the time step, that are required for

the ETD1 (3.14) and the ETD2 (3.15) methods, respectively, in the matrix case.

For the ETD3 (3.16) and higher order methods (also the ETD-RK methods), the

coefficients are really a combination of the expression

fk(∆tM) =
e∆tM −Gk(∆tM)

(∆tM)k
, k = 1, 2, . . . , s, (4.73)

where

Gk(∆tM) =
k−1∑
j=0

(∆tM)j

j!
, (4.74)

is the first k terms in the Taylor series approximation to the exponential function

f0(∆tM) = e∆tM and (∆tM)0 = I. These coefficients can be evaluated using the

algorithms (to be explained later in this section), in a manner similar to evaluating

the expression fk(∆tM) (4.73), k = 1, 2, . . . , s by those algorithms.

The definition of the 2−norm of a matrix [78]

||∆tM ||2 = max
||∆tMx||2
||x||2

,

where x ∈ Rq
∗ = Rq\{0}, is equivalent to the formula

||∆tM ||2 =
√
ζmax((∆tM)T (∆tM)), (4.75)

(the square root of the maximum eigenvalue ζmax of the matrix multiplied by its

transpose). Formula (4.75) are used in our experiments to find the numerical rela-

tive errors (4.10) of using each algorithm to approximate the expression fk(∆tM)

(4.73), k = 1, 2, 3 for large and small values of the time step ∆t. In figure 4.8, we

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 84

present only the results of our experiments for the expressions f2(∆tM2) (4.71) and

f3(∆tM2) (4.72) in the 40×40 matrix case, since those for the expression f1(∆tM2)

(4.70) are qualitatively similar. The size of the matrix used is limited not by the time

used by the algorithms but by the much greater time needed to obtain the ‘exact’

50-digit results. Results for smaller and larger matrices are qualitatively similar.

Note that figure 4.8 also shows the errors for the use of the explicit formulas; in the

matrix case this means simply evaluating the formulas f2(∆tM2) and f3(∆tM2) us-

ing the Matlab commands expm and inv with standard double precision (16 digits)

arithmetic (the function expm uses a scaling and squaring method combined with

Padé approximation (4.94) [35, 37, 47, 76], and therefore is not quite explicit).

4.3.1 Taylor Series

The approximation

e∆tM ≈ I + ∆tM +
(∆tM)2

2!
+

(∆tM)3

3!
+ · · ·+ (∆tM)m

m!
,

where I is the q×q identity matrix, for some integer m may be used to approximate

the exponential in the expression fk(∆tM) (4.73), so that

fk(∆tM) ≈
m∑
j=k

(∆tM)j−k

j!
, k = 1, 2, 3, (4.76)

where (∆tM)0 = I. However, it is well known that although in principle this series

is convergent, in practice the algorithm is very inaccurate when ||∆tM || is large

(see, for example [60]).

The 30-term Taylor series algorithm is one of the easiest algorithms to implement

in the matrix case. However, as expected, it does not perform very well for large

values of ∆t, as is indicated in figure 4.8. The problem in using the Taylor expansion

directly is that it results in a loss of accuracy, because some of the eigenvalues of

the q × q matrix ∆tM2 are negative and much less than −1 for large values of ∆t.

Therefore the problem of cancellation reappears (see §4.2.1). The eigenvalues λj of

the matrix ∆tM2 (4.69) can be derived analytically (see [43]) in the form

λj =
(
−2 + 2 cos

(
jπ

q + 1

))
∆t, j = 1, · · · , q,

so the eigenvalue of largest magnitude is λq ≈ −4∆t and the smallest is λ1 ≈

−π2∆t/(q + 1)2 ≈ −0.0059∆t for q = 40.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 85

Figure 4.8: Relative errors in f2(∆tM2) (4.71) and f3(∆tM2) (4.72) versus the values of ∆t

in the 40× 40 matrix case. The algorithms are: Explicit Formula (red stars),

30-term Taylor series (blue circles), the Cauchy Integral Formula (magenta

circles), Scaling and Squaring Type I based on the identities (4.20) - (4.22)

(black stars), Composite Matrix (cyan diamonds) and Matrix Decomposition

(green squares).

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 86

Figure 4.8 also shows that, for small values of ∆t, the explicit formulas fk(∆tM2)

(4.73), k = 2, 3 are inaccurate (qualitatively similar results are found for formula

f1(∆tM2) (4.70)) due to the cancellation errors arising from the small eigenvalues

that are close to zero. For large values of ∆t, the norm of the matrix ∆tM2 (4.69)

gets larger, and as already noted, the computation of the matrix exponential e∆tM2 ,

in the explicit formula, depends on the Matlab function expm, which is based on

the Scaling and Squaring algorithm combined with Padé approximation (4.94). In

this case, the algorithm also yields inaccurate results due to the increase in the

number of scalings needed to approximate the matrix exponential e∆tM2 . Each

scaling doubles the errors due to cancellation, truncation and rounding, resulting

from the matrix inversion and the repeated matrix multiplications when using the

Padé approximation. The analysis of the rounding errors in using the Scaling and

Squaring algorithm for approximating the exponential function (see also formula

(4.30)) is explained in §4.2.3.

In the matrix case, there is a large range of values of ∆t for which both the

explicit formulas and the Taylor series algorithm are inaccurate, so we cannot simply

switch between the two algorithms in this case as we proposed in the scalar case in

§4.2.1.

4.3.2 the Cauchy Integral Formula

A less well known Cauchy integral formula is the matrix form

f(∆tM) =
1

2πi

∫
Γ

f(T)
TI −∆tM

dT, (4.77)

where f is an analytic function of the matrix ∆tM , I is the q × q identity matrix

and the contour Γ is sufficiently large to enclose all the eigenvalues of the matrix

∆tM (see [32, 44, 45]). Formula (4.77) is an analogous to the formula (4.11), for

the scalar case, presented in §4.2.2.

Suitable contours Γ may vary from one problem to another. For example, ellipti-

cal contours were investigated by Kassam and Trefethen [44, 45] and Livermore

[53]. The ellipse is centered at some point z0 = x0 + iy0 in the complex plane and

has a semi major axis a and a semi minor axis b and can be expressed parametrically

as

T (θ) = z0 + a cos θ + ib sin θ, 0 ≤ θ ≤ 2π.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 87

Plugging this into the Cauchy integral formula (4.77) and employing the periodic

Trapezium Rule (4.14) to approximate the integral we obtain the formula for an

elliptical contour,

f(∆tM) ≈ 1
N

N∑
j=1

(b cos θj + ia sin θj)(T (θj)I −∆tM)−1f(T (θj)), (4.78)

where T (θj) = z0 +a cos θj + ib sin θj , θj = 2πj/N are N points along the bounding

ellipse.

The simplest choice of the contour Γ is a circle with radius R centered at some

point z0 on the real line. By making the substitution dT (θ) = Tθ(θ)dθ, where

T (θ) = z0 +Reiθ : 0 ≤ θ ≤ 2π, the Cauchy integral (4.77) becomes

f(∆tM) =
1

2πi

∫ 2π

0

f(z0 +Reiθ)
T (θ)I −∆tM

Rieiθdθ,

=
1

2π

∫ 2π

0
(T (θ)− z0)(T (θ)I −∆tM)−1f(T (θ))dθ. (4.79)

Employing the periodic Trapezium Rule (4.14) to approximate the integral

on the right-hand side of (4.79), we obtain the corresponding formula proposed by

Kassam and Trefethen [44, 45] for a circular contour

f(∆tM) ≈ 1
N

N∑
j=1

(T (θj)− z0)(T (θj)I −∆tM)−1f(T (θj)), (4.80)

where T (θj) = z0 + Reiθj , θj = 2πj
N are the N points around the circumference of

the circle centered at z0.

To approximate the function fk(∆tM), k = 1, 2, . . . , s (required for the ETD

methods of order s) with this algorithm, we simply evaluate the scalar function

fk(z) (4.2), k = 1, 2, . . . , s respectively at a set of N points T (θj) = z0 + Reiθj in

the complex plane, and then apply (4.80)

fk(∆tM) ≈ 1
N

N∑
j=1

(T (θj)− z0)(T (θj)I −∆tM)−1fk(T (θj)). (4.81)

Our experience shows that many different choices of the contour work well, so long

as one is careful to ensure that none of the points on the contour are close to or at

the origin (otherwise the original problem of rounding errors reappears), and that

all the eigenvalues of the matrix ∆tM are indeed enclosed by Γ.

However, formula (4.81) shows that, in order to do this, we need to work out

N matrix inverses (T (θj)I −∆tM)−1, and this consequently restricts the good per-

formance of the algorithm to matrices of moderate norm. This is because of the

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 88

approximation of the integral (4.77) for matrices with large norm (the spread of the

eigenvalues increases) via the circular contour algorithm (4.81), requires us to en-

large the circle so that it encloses all the eigenvalues of the matrices. Consequently

we must increase the number N of points around the circle required to give accurate

results. We therefore also increase the amount of work required for computing the

large number N of matrix inverses (one for each point on the discretized circle).

This adds a disadvantage in terms of the high cost in computer time (see §4.6).

In addition to the difficulties mentioned above, the eigenvalues (if not already

known) must be computed beforehand – or at least, the eigenvalue of largest absolute

value must be determined – in order to choose a suitable integration contour (for the

matrices we consider, the eigenvalues are already known). Some of these difficulties

were also noted by Livermore [53]. However, Kassam and Trefethen [44, 45]

recommended that, if the functions that we want to calculate are real, we can

halve the amount of work by exploiting the ±i symmetry of the algorithm (4.81)

and evaluate in equally spaced points on the upper half of a circle centered on the

real axis, then take the real part of the results. Also, Schmelzer and Trefethen

[69, 70] had a new perspective on contour integrals that improves some of these

difficulties. The authors have shown that the function fk(∆tM), k = 1, 2, . . . , s

can be evaluated efficiently using a Hankel contour and a different form of the

integral (4.77). Rather than working with circles and ellipses as contours, they

enclosed the eigenvalues by open contours winding around the negative real line.

The authors claimed that the use of Hankel contours in the Cauchy integral avoids

the expensive computation of eigenvalues to estimate the shape of an enclosing

contour, and overcomes the algebraic decay of the functions in the left half-plane

which makes this approach flexible and efficient. Unfortunately, we received this

information too late to incorporate it in our experiments.

In our experiments, we take the contour to be a circle centered at half the

minimum eigenvalue (λmin) of the matrix ∆tM2 (4.69) (the eigenvalues of the matrix

∆tM2 are on the negative real axis), and sampled at 128 equally spaced points in

(4.81). The radius

R = −λmin
2

+ 5,

is varying for each value of ∆t to ensure that the circular contour encloses all the

eigenvalues of the matrix ∆tM2 and does not pass too close to any. The above

choice of R was found to be suitable for values of ∆t > 0.6, but less accurate for

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 89

small values of ∆t. An interesting observation from our practical experiments is

that the algorithm is sensitive to the choices of the center and the radius of the

circular contour relative to the range of the eigenvalues of the matrix ∆tM2. For

values of ∆t ≤ 0.6 the contour is a circle centered at the minimum eigenvalue (λmin)

of the matrix ∆tM2 sampled at 128 equally spaced points. The radius in this case

R = −λmin + 1,

also varies for each value of ∆t to ensure that the circular contour encloses all the

eigenvalues of the matrix ∆tM2 and that the algorithm yields the desired error

levels.

Regarding the test described in §4.3, we find that, when computing the numerical

relative errors (4.10) of using this algorithm to approximate the expression fk(∆tM2)

(4.73), k = 2, 3 for matrix size q = 40 and small values of ∆t, the algorithm (4.81)

performs very well and the results are very satisfactory, see figure 4.8 (qualitatively

similar results are found for formula f1(∆tM2) (4.70)). However, this algorithm

is slightly less accurate than the Scaling and Squaring algorithm type I and the

Composite Matrix algorithm (to be described in §4.3.4 and §4.3.6 respectively), and

the deficiency of its performance is particularly pronounced for large values of ∆t.

As is apparent in figure 4.8, there is a sharp increase of the relative errors, due to

enlarging the circular contour to enclose all the eigenvalues of the matrix ∆tM2,

without increasing the number N of points around the circle (more than 128 points

are needed to give accurate results; in fact 512 points are needed for ∆t = 100).

The form of this error is analyzed in the following section.

4.3.3 Varying the Radius of the Circular Contour

To investigate the effects of varying the circular contour radius, we set up two

experiments, one for the scalar case and one for the matrix. For the first, we use

the Cauchy integral algorithm (4.16) to compute the scalar expression fk(z) (4.2) of

orders k = 1, 2, 3 for a fixed number of points N = 32 and a fixed value of z = 10−1

(the circle center). We start with a radius R = 1 and work up to a radius R = 20. In

figure 4.9 we plot the relative errors (4.10) for each value of the radius R, where the

‘exact’ values of these expressions were calculated using 50 digit arithmetic. With

increasing the radius R for a fixed number of discretization points N , we observe

the huge growth of the errors.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 90

Figure 4.9: Relative errors of using the Cauchy integral formula (4.16), for z = 10−1 and

fixed number of points N = 32, versus the contour radius R, for approximating

in the scalar case, the expressions: f1(z) (4.1) (blue diamonds), f2(z) (4.4)

(black circles) and f3(z) (4.5) (red squares). The estimated error lines are E1

(4.86) (cyan), E2 (4.87) (green) and E3 (4.88) (magenta).

For the second experiment, we use the matrix Cauchy integral formula (4.81) to

compute the expression fk(∆tM2) (4.73), k = 1, 2, 3 and q = 40, for a fixed number

of points N = 32 and fixed value of ∆t = 0.25, with the circle centered at zero. We

again start with a radius R = 1 and work up to a radius R = 20. In figure 4.10

we plot the relative errors (4.10), using the 2−norm (4.75) of a matrix in Matlab

code for each value of the radius. As usual, the ‘exact’ values of these expressions

were calculated using 50 digit arithmetic. The experiment shows that changing the

radius R of the contour for a fixed number of discretization points N has a dramatic

effect on the errors. Firstly, if we decrease the radius R so that it is too small

to enclose all the eigenvalues of the matrix, we see the huge growth of the errors.

Secondly, when the radius R is just enough to enclose all the matrix eigenvalues, the

errors are minimized and the accuracy is good. Thirdly, with increasing the radius

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 91

R far beyond the eigenvalue with maximum absolute value, we see the errors grow

unboundedly again, in the same way as in the scalar case.

We can explain this increase in the error of the algorithm with R by an exami-

nation of the leading error term in the periodic Trapezium rule (4.14)

1
2π

∫ 2π

0
P (θ)dθ ≈ 1

N

N∑
j=1

P (θj), θj =
2πj
N

. (4.82)

P (θ) is a periodic function of θ, so it can be written as a Fourier series

P (θ) =
∞∑
n=0

ane
inθ.

Plugging this into (4.82) and interchanging the order of summation, we have

1
N

N∑
j=1

∞∑
n=0

ane
inθj =

1
N

∞∑
n=0

an

N∑
j=1

e2πjni/N . (4.83)

The second summation in the last expression above is simply the sum of the N roots

of unity. This is zero in general, unless the exponent n is an integer multiple K of

N , i.e. n = NK. Therefore, the periodic Trapezium rule (4.83) gives us

1
N

(Na0 +NaN +Na2N + · · ·). (4.84)

Equivalently, in terms of aliasing errors [84], with N points we cannot distinguish

between the constant function 1 and the functions (e2πjni/N , n = NK), since these

functions are 1 at all mesh points θj . In addition, because of the exponential decay

[79] of the Fourier coefficients, we deduce that the coefficient a2N is much less than

aN . Therefore, since the true value in the periodic Trapezium rule (4.84) is a0, the

leading error term is just aN and the relative leading error term is |aN/a0|.

We use this theory to estimate the error when using the Cauchy integral formula

to approximate the scalar expression f1(z) (4.1) with a fixed number of points N ,

while increasing the contour radius R. We have

f1(z +Reiθ) =
ezeRe

iθ − 1
z +Reiθ

, (4.85)

and if we assume that |z| � R, we can neglect z and write the right-hand side of

(4.85) as a Fourier series

1 +Reiθ/2! +R2e2iθ/3! + · · ·+RNeNiθ/(N + 1)! + · · · .

Hence the estimated leading relative error in the trapezium rule, |aN/a0|, is the

coefficient of eNiθ, which is

E1 = RN/(N + 1)!. (4.86)

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 92

Figure 4.10: Relative errors of using the Cauchy integral formula (4.81), for ∆t =

0.25, q = 40 and fixed number of points N = 32, versus the contour radius

R, for approximating in the matrix case, the expressions: f1(∆tM2) (4.70)

(blue diamonds), f2(∆tM2) (4.71) (black circles) and f3(∆tM2) (4.72) (red

squares). The estimated error lines are E1 (4.86) (cyan), E2 (4.87) (green)

and E3 (4.88) (magenta).

Similar calculations can be made for the expression fk(z) (4.2) of orders k = 2, 3,

and the leading relative errors for these cases are found to be

E2 = 2RN/(N + 2)!, (4.87)

and

E3 = 6RN/(N + 3)!, (4.88)

respectively.

Figure 4.9 shows that the theoretically estimated errors E1 (4.86), E2 (4.87) and

E3 (4.88) agree very well with the numerical relative errors of using the Cauchy

integral algorithm (4.16) for approximating the expression fk(z) (4.2) of orders k =

1, 2, 3 respectively, for large radius R at fixed values of discretization points N .

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 93

On the other hand, applying the same theory to estimate the error when using

the Cauchy integral formula to approximate the expression fk(∆tM), k = 1, 2, . . . , s

(4.73) in the matrix case is cumbersome, though our numerical experiments show

that the above analysis and results hold. Figure 4.10 shows that the theoretically

estimated errors E1, E2 and E3 agree very well with the numerical relative errors

of using the Cauchy integral algorithm (4.81) for approximating the expressions

f1(∆tM2) (4.70), f2(∆tM2) (4.71) and f3(∆tM2)(4.72) respectively.

In a third experiment, we found that two criteria need to be met for the error

formulas E1 (4.86), E2 (4.87) and E3 (4.88) to agree accurately with the numerical

relative errors of using the Cauchy integral algorithm (4.16) for approximating the

expressions7:

1. In the scalar case |z| � 1 and |z| � R,

2. The center of the circular contour, in the non-diagonal matrix case, should be

zero.

If one of the criteria is breached, the theoretically estimated errors E1, E2 and E3

will not agree with the numerical relative errors of using the Cauchy integral algo-

rithm for approximating the expression fk(z), for large radius R at fixed values of

discretization points N . Figure 4.11 shows a case of testing the Cauchy integral for-

mula (4.81) for computing f1(∆tM2) (4.70), f2(∆tM2) (4.71) and f3(∆tM2) (4.72)

with q = 40, for a fixed number of points N = 128 and fixed value of ∆t = 10. Here

the circular contour is centered at half the minimum eigenvalue (λmin) of the matrix

∆tM2 (4.69). In the plot, we can see that the estimated error lines E1 (4.86), E2

(4.87) and E3 (4.88) do not agree with the numerical relative errors for each value

of the radius, ranging from R = −λmin
2 + 1 up to R = −λmin

2 + 60.

Our error formulas can be used to determine the value of the radius R at which

the algorithm becomes inaccurate for a given value of N . More usefully, for larger

values of the radius R, we can also estimate the number of points N required to

achieve a relative error of some chosen tolerance ε, in terms of the radius R and ε.

For large integers N , we use Stirling’s formula [1]

N ! ≈
√

2πN
NN

eN
,

7These criteria are not required for the accuracy of the Cauchy integral algorithm when approx-

imating the expressions.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 94

Figure 4.11: Relative errors of using the Cauchy integral formula (4.81), for ∆t = 10, q =

40 and fixed number of points N = 128, versus the contour radius R, for ap-

proximating in the matrix case, the expressions: f1(∆tM2) (4.70) (blue dia-

monds), f2(∆tM2) (4.71) (black circles) and f3(∆tM2) (4.72) (red squares).

The estimated error lines are E1 (4.86) (cyan), E2 (4.87) (green) and E3

(4.88) (magenta).

to approximate (N + 1)!, in the formula E1 = RN/(N + 1)! (4.86), so that

RN u ε
√

2π(N + 1)N+ 3
2 e−(N+1),

N logR u log ε+ log
√

2π +
(
N +

3
2

)[
logN + log

(
1 +

1
N

)]
− (N + 1).(4.89)

Applying the series expansion to the logarithmic function

log
(

1 +
1
N

)
=
∞∑
j=1

(−1)j+1

j

(1
N

)j
=

1
N

+O
(1
N2

)
,
∣∣∣ 1
N

∣∣∣ < 1,

and substituting in (4.89), ignoring the terms of O(1/N), since they are small com-

pared to our assumption that R and N are large gives us

N logR u log ε+ log
√

2π +
(
N +

3
2

)
logN −N. (4.90)

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 95

Equating the largest terms in (4.90) leads to

logR ≈ logN ⇒ R ≈ c0N,

for some constant c0. If we substitute this result in (4.90) we obtain

N log c0 u log ε+ log
√

2π +
3
2

logN −N, (4.91)

and again equating large terms leads us to

log c0 ≈ −1⇒ N ≈ eR.

Now set

N ≈ eR+ ε, ε� eR, (4.92)

so that the added ε term provides a more accurate approximation. If we again

substitute in (4.90), we get

(eR+ ε) logR u log ε+ log
√

2π +
(
eR+ ε+

3
2

)[
log eR+ log (1 +

ε

eR
)
]

− (eR+ ε),

and applying again the series expansion to the logarithmic function in the equation

above gives

(eR+ ε) logR u log ε+ log
√

2π +
(
eR+ ε+

3
2

)[
1 + logR+

ε

eR
+O

(ε

eR

)2]
− (eR+ ε),

0 u log ε+ log
√

2π + ε+
3
2

+
3
2

logR,

ε u − log ε− log
√

2π − 3
2
− 3

2
logR.

Substituting the last result for ε in (4.92) leads to the approximate condition

N u eR− log ε− log
√

2π − 3
2
− 3

2
logR,

for the error E1 to be of order ε, assuming that the radius R is large.

4.3.4 Scaling and Squaring Algorithm: Type I

In the non-diagonal matrix case, we use a 30-term Taylor series, as explained in

§4.3.1, to compute the expression fk(∆tM2) (4.73), k = 1, 2, 3 if the largest absolute

eigenvalue λmax of the matrix ∆tM2 (4.69) is less than some threshold value δ1. If

not, we use the following Scaling and Squaring algorithm.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 96

Figure 4.12: Relative errors of using the Scaling and Squaring Type I algorithm based on

the identities (4.20) - (4.22), versus the values of ∆t, for approximating the

expression f3(∆tM2) (4.72) for q = 40, for different values of threshold δ1

(see formula (4.93)).

In a manner similar to the scalar case discussed in §4.2.3, we first use a 30-term

Taylor series to compute f1(2−l2∆tM2), f2(2−l2∆tM2) and f3(2−l2∆tM2), for some

l2 chosen to be the smallest integer such that

l2 ≥
log(λmax/δ1)

log 2
, (4.93)

so that the largest absolute eigenvalue of the matrix 2−l2∆tM2 is less than the

threshold δ1, which we choose to be δ1 = 1 in our experiments. We then proceed by

using the identities (4.20) - (4.22) or (4.23) - (4.25), or (4.27) and either the identities

(4.21) - (4.22) or (4.24) - (4.25), l2 times to compute the expression fk(∆tM2) (4.73),

k = 1, 2, 3 to obtain the final answer. Note that as for the Cauchy integral algorithm,

the Scaling and Squaring algorithm requires the knowledge of the eigenvalue of

largest magnitude.

Regarding the test described in §4.3, we find that the Scaling and Squaring

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 97

Figure 4.13: Relative errors of using the Scaling and Squaring Type I algorithm, versus the

values of ∆t, for approximating the expression f3(∆tM2) (4.72) for q = 40.

The blue line (circles) uses the identities (4.20) - (4.22), the cyan line (stars)

uses the identities (4.23) - (4.25), the green line (diamonds) uses the identities

(4.27), (4.21) and (4.22), and the black line (squares) uses the identities

(4.27), (4.24) and (4.25).

algorithm based on the identities (4.20) - (4.22) is very good in the non-diagonal

matrix case, being the most accurate for approximating the expression fk(∆tM2)

(4.73), k = 2, 3 for matrix size q = 40, for small values of ∆t, as displayed in figure

4.8 (the same holds qualitatively for the expression f1(∆tM2) (4.70)). The reasons

for favoring this algorithm are that it is accurate and efficient for both diagonal

and non-diagonal matrix problems (for small values of ∆t), compared with the

other algorithms. The accuracy depends on the norm of the matrix ∆tM2 (4.69),

however. As the value of ∆t increases, the norm of the matrix increases. Therefore,

more scaling operations are needed, leading to an amplification of the cancellation

errors and the rounding errors resulting in the repeated matrix multiplication when

using the Taylor expansion. In fact these errors are doubled at each scaling, and we

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 98

expect the relative error to increase linearly as the value of ∆t increases (in fact,

the simple arguments for the scalar case in §4.2.3, about how errors do not grow for

z � −1, cannot be applied directly to the matrix case).

In further tests, we compute the relative errors of using the Scaling and Squaring

algorithm, based on the relations (4.20) - (4.22) or (4.23) - (4.25), or (4.27) and

either the identities (4.21) - (4.22) or (4.24) - (4.25), to approximate the expression

fk(∆tM2) (4.73), k = 1, 2, 3, for different choices of the threshold values δ1 =

0.5, 1, 2. We find, firstly, that any choice of the threshold values δ1 < 3 is desirable.

Figure 4.12 illustrates the relative errors of using the algorithm based on (4.20)

- (4.22) for approximating f3(∆tM2) (4.72) with q = 40, demonstrating that the

accuracies of the algorithm for the threshold values δ1 = 0.5, 1, 2 are more acceptable

than that for the threshold δ1 = 3. In addition, we find that there is a direct relation

between larger values of the threshold and the number of terms used in the Taylor

series combined with the algorithm. As the value of the threshold gets larger, it

is necessary to increase the number of terms in the Taylor series to maintain the

efficiency of the algorithm.

Secondly, we find that a similar level of accuracy is achieved when computing the

relative errors for both families of the Scaling and Squaring formulas (4.20) - (4.22)

and (4.23) - (4.25) for approximating the expression fk(∆tM2) (4.73), k = 1, 2, 3.

However, these errors are found to be larger than those resulting from using the

identities (4.27), (4.21) and (4.22). These last formulas have turned out to be

the most accurate out of all other formulas tested in this chapter and have the

property that we need never compute a matrix exponential (the analysis, see §4.2.3,

in using the Scaling and Squaring algorithm type I, shows that there are rounding

errors (4.30) in applying the identity (4.19) to approximate a matrix exponential.

However, our analysis also shows that these errors have no effect on the Scaling

and Squaring algorithm type I based on (4.27), (4.21) and (4.22), since they do not

involve computing a matrix exponential to approximate the expression fk(∆tM2)

for z � −1 in the scalar case. And hence, they have shown the best accuracy).

Figure 4.13 provides numerical evidence of the algorithms’ validity when using

the identities (4.27), (4.21) and (4.22) for approximating the expression f3(∆tM2)

(4.72), for matrix size q = 40, and a threshold value δ1 = 1, and also illustrates no

significant differences between the errors for the two different forms of the scaling

identities (4.20) - (4.22) and (4.23) - (4.25). However, the relative errors of using

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 99

all the Scaling and Squaring formulas, except the formulas (4.27), (4.21) and (4.22),

are seen to increase significantly as ∆t increases8. This is due to the increase in

the number of scalings needed (due to the increase in the norm of the matrix ∆tM2

(4.69)) to approximate the expression f3(∆tM2). This process doubles (see formula

(4.30)), at each scaling, the cancellation errors and the rounding errors resulting

in the repeated matrix multiplication when using the Taylor expansion, and we

expect the relative error to increase linearly as the value of ∆t increases (the simple

arguments for the scalar case in §4.2.3, about how errors do not grow for z � −1,

cannot be applied directly to the matrix case). This leads us to the conclusion

that, the smaller the norm of the matrix, the fewer the number of required matrix

squarings, and the smaller the errors.

A similar conclusion was arrived at by Higham [35] who gave a new rounding

error analysis that shows that the computed Padé approximant of the scaled matrix,

for computing the matrix exponential, is highly accurate owing to the fact that it

requires fewer matrix squarings.

4.3.5 Padé Approximation and the Taylor Series

It is more common in the literature (especially in the matrix case) to use a Padé

approximation [35, 37, 47, 76] rather than Taylor series. The (n,m) Padé approxi-

mation to the exponential function e∆tM is defined by

rnm(∆tM) = Unm(∆tM)/Wnm(∆tM), (4.94)

where Unm(∆tM) and Wnm(∆tM) are polynomials of degrees at most n and m

respectively, both defined as follows

Unm(∆tM) =
n∑
j=0

(n+m− j)!n!
(n+m)!j!(n− j)!

(∆tM)j , (4.95)

and

Wnm(∆tM) =
m∑
j=0

(n+m− j)!m!
(n+m)!j!(m− j)!

(−∆tM)j . (4.96)

8We also test formulas (4.27), (4.21) and (4.22), with different values of the threshold δ1, in

approximating the function fk(∆tM) (4.73), k = 1, 2, 3, for different matrix sizes q of the Chebyshev

differentiation matrix for the second derivative [11, 25, 83, 84] and of the second-order centered

difference differentiation matrix ∆tM1 (4.101) for the first derivative (results are not shown). Our

tests show that these formulas are the most accurate ones out of all identities used in this chapter,

and that errors are seen not to increase as ∆t increases. This confirms our analysis in §4.2.3.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 100

Figure 4.14: Relative errors of using the 16-term Taylor expansion (blue line) and the (8, 8)

Padé approximation (green line) versus the values of ∆t, for approximating

the function f0(∆tM2) = e∆tM2 for matrix size q = 20.

Nonsingular behavior of Wnm(∆tM) (4.96) is assured if the eigenvalues of the matrix

∆tM are negative [60]. The order of the approximation is equal to the sum of the

degrees of the numerator and the denominator, which matches the Taylor series

expansion up to order n+m.

The function fk(∆tM) (4.73) can be approximated accurately using the Padé

approximation (4.94) near the origin i.e. when the norm of the matrix ∆tM is not

too large. Moreover, the diagonal Padé approximation, which uses equal degree

in the numerator and the denominator is, in general, more accurate and compu-

tationally economical for a matrix argument than the off-diagonal approximation.

However, we favor the Taylor series combined with the Scaling and Squaring algo-

rithm type I over the Padé approximation, for three reasons. Firstly, we find that

the Padé approximations lead to rounding errors roughly double those of the Taylor

series, which is significant in view of the amplification of these errors caused by the

scaling and squaring process, discussed in §4.2.3. For large m, Wmm(∆tM) (4.96)

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 101

approaches the series for e−∆tM/2, whereas Umm(∆tM) (4.95) tends to the series

for e∆tM/2. Hence, cancellation error can reduce the accuracy. This is illustrated in

figure 4.14, where we plot the relative errors of using the 16-term Taylor expansion

and the (8, 8) Padé approximation to the exponential function f0(∆tM2) = e∆tM2 ,

of the matrix M2 (4.69) of order q = 20, versus the values of ∆t. The exact values

of the exponential function e∆tM2 are approximated using the Matlab code expm

and 50 digit arithmetic. Secondly, in addition to the cancellation problem, the

Padé approximation requires a more expensive matrix inversion. The denomina-

tor matrix Wnm(∆tM) may be very poorly conditioned with respect to inversion,

and this is particularly true when the matrix ∆tM has widely spread eigenvalues

[60]. Thirdly, it is possible to keep the number of matrix multiplications reasonably

small because of the relation Unm(∆tM) = Wmn(−∆tM), which reflects the prop-

erty 1/e∆tM = e−∆tM , and by using the Paterson–Stockmeyer [64] algorithm (this

algorithm minimizes the number of matrix multiplications in an efficient way, by

grouping the terms together and using the partitioning within a matrix polynomial;

see [86] for more detail). However, we find that, when the Paterson–Stockmeyer

algorithm is used, the (n, n) Padé approximation for a general function requires a

number of matrix multiplications that scales as 2
√

2n, which is exactly the same as

for the corresponding Taylor series of degree 2n.

To sum up, for the reasons mentioned above (the Padé approximation is less

accurate than the Taylor series and requires a matrix inversion), we favor the Tay-

lor series combined with the Scaling and Squaring algorithm type I in all of our

experiments.

4.3.6 Composite Matrix Algorithm

Analogous to the scalar case (see §4.2.5), we now consider the ((s+ 1)q)× ((s+ 1)q)

composite matrix

Bs =

∆tM I 0 0 0 . . . 0

0 0 I 0 0 . . . 0

0 0 0 I 0 . . . 0
...

...
...

...
... . . .

...

0 0 0 0 0 . . . I

0 0 0 0 0 . . . 0

, (4.97)

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 102

where q is the order of the matrix ∆tM , 0 is the q× q zero matrix and I is the q× q

identity matrix. If we exponentiate the matrix Bs, the resulting matrix

eBs =

e∆tM f1(∆tM) f2(∆tM) f3(∆tM) f4(∆tM) . . . fs(∆tM)

0 I I I/2 I/3! · · · I/(s− 1)!

0 0 I I I/2 · · · I/(s− 2)!
...

...
...

...
... · · ·

...
...

...
...

...
... · · ·

...

0 0 0 0 0 · · · I

,

(4.98)

returns the coefficient fk(∆tM) (4.73), k = 1, 2, . . . , s, required by the ETD methods

of order s, which can again be extracted easily. The proof of the resulting matrix

(4.98) is essentially the same as in the scalar case (see §4.2.5), which uses the Taylor

series expansion of the exponential function. We note in particular that, due to the

structure of the matrix Bs, any power of the matrix Bs contains as a sub-matrix

the corresponding power of the matrix ∆tM in the same position where Bs contains

∆tM , and therefore, the exponential of the matrix ∆tM will be generated in the

same position.

This algorithm is implemented using the Matlab function expm to approximate

the exponential eBs (4.98), and has the advantage of being one of the simplest of all

the algorithms to code. Figure 4.8 shows that, when computing the relative error

(4.10) of using this algorithm for approximating the expression fk(∆tM2) (4.73),

k = 2, 3 of matrix size q = 40 for small values of ∆t, the results are very satisfactory

(the same holds qualitatively for the expression f1(∆tM2) (4.70)). As the value

of ∆t increases, the norm of the matrix Bs (4.97) also increases. Therefore more

scaling operations are needed9, leading to an amplification of the cancellation errors

and the rounding errors resulting from the matrix inversion and the repeated matrix

multiplications when using the Padé approximation, see §4.3.5, and to an increase

in the computational expense. In fact, referring to formula (4.30), these errors are

doubled at each scaling and we expect the relative error to increase linearly as the

value of ∆t increases (see in §4.2.3 the analysis of the rounding errors in using

the Scaling and Squaring algorithm for approximating the exponential function).

In addition, the algorithm uses a much larger matrix than the other algorithms,
9As already noted, the Matlab code expm uses a scaling and squaring method combined with

Padé approximation (4.94) [35, 37, 47, 76].

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 103

because the order of the matrix Bs (4.97) is (s+ 1) times that of the matrix ∆tM2

(4.69). This also leads to a significant increase in the computational effort that slows

the algorithm (see §4.6).

4.3.7 Matrix Decomposition Algorithm

One class of efficient algorithms for problems involving large matrices and evaluation

of the exponential e∆tM is based on factorizations or decompositions [60] of the

matrix ∆tM .

Such matrix decompositions are based on transformations of the form

∆tM = V DV −1,

and the power series definition of e∆tM then implies

e∆tM = V eDV −1.

The idea is to find a matrix V for which eD is easy to compute. This provides

a useful algorithm in the case where matrices can be diagonalized. The simplest

approach [60] is to take V to be the matrix whose columns are the eigenvectors of

the matrix ∆tM , that is

V = [v1] . . . [vq],

and

∆tMvj = ζjvj , j = 1, . . . , q,

where ζj are the eigenvalues of the matrix ∆tM of order q. These q equations can

be written

∆tMV = V D,

where D = diag(ζ1, . . . , ζq). The exponential of the diagonal matrix D can be found

easily, since it only requires computing the exponential of a scalar

eD = diag(eζ1 , . . . , eζq).

Using the above considerations, we can write the expression fk(∆tM) (4.73),

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 104

k = 1, 2, . . . , s as follows:

fk(∆tM) =
(
e∆tM −

k−1∑
j=0

(∆tM)j

j!

)/
(∆tM)k,

= (V DV −1)−k
(
V eDV −1 −

k−1∑
j=0

(V DV −1)j

j!

)
,

= V D−keDV −1 −
k−1∑
j=0

V D−kDjV −1

j!
,

= V D−k
(
eD −

k−1∑
j=0

Dj

j!

)
V −1,

= V fk(D)V −1. (4.99)

Here, we have simplified the evaluation of a function of a non-diagonal matrix ex-

ponential to that of a diagonal matrix exponential D, whose elements are the eigen-

values ζj , j = 1, . . . , q of the matrix ∆tM .

In our numerical experiments, firstly, we use the command [V,D] = eig (∆tM2),

in Matlab code, for matrix size q = 40, to produce a diagonal matrix D whose

elements on the main diagonal are the eigenvalues λj , j = 1, 2, . . . , q of the matrix,

and another matrix V whose columns are the corresponding q eigenvectors. Then,

we use the Taylor expansion with 30 terms, as described in §4.2.1, to approximate

the exponentials eλj , j = 1, . . . , q in fk(D) (4.99), k = 1, 2, 3 for those eigenvalues

satisfying |λj | < 1, and the explicit formula fk(z) (4.2) of orders k = 1, 2, 3 re-

spectively for those eigenvalues satisfying |λj | ≥ 1. Finally, we compute the matrix

inverse of the matrix V , using the command inv in Matlab code, then apply (4.99)

to approximate the expression fk(∆tM2) (4.73), k = 1, 2, 3 and find the numerical

relative errors (4.10) of using this algorithm.

According to figure 4.8, this algorithm is remarkable when we compare its ac-

curacy with that of the explicit formula fk(∆tM2) (4.73), k = 2, 3, over all, and

with that of the Taylor series and the Cauchy integral formula for large values of

∆t. However, it is less accurate than the Cauchy integral formula, the Scaling and

Squaring type I algorithm, and the Composite Matrix algorithm for small values of

∆t (qualitatively similar results are found for the formula f1(∆tM2) (4.71)).

The theoretical difficulty with this algorithm obviously occurs when a matrix

does not have a complete set of linearly independent eigenvectors. In this case

there is no invertible matrix of eigenvectors V , and the algorithm in the conven-

tional eigenvector approach breaks down (a more general Schur decomposition can

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 105

be used in this case [56]).

4.4 Chebyshev Spectral Differentiation Matrices

In this section, we carry out some tests on Chebyshev spectral differentiation ma-

trices [11, 25, 83, 84]. The formulas for the entries of the (Q + 1) × (Q + 1)

Chebyshev differentiation matrix for the first derivative on the Chebyshev points

xj = cos(jπ/Q), j = 0, 1, . . . , Q, x ∈ [−1, 1] are given in [84]. To compute the

Chebyshev differentiation matrix Mc for the second derivative with Dirichlet bound-

ary conditions, we square the Chebyshev matrix for the first derivative and then strip

the first and last rows and columns to obtain a matrix Mc of order q = Q−1. These

rows and columns have no effect, since the rows are multiplied by zero and the

columns are ignored. Note that these matrices are dense and have widely-spread

eigenvalues.

In order to compare the results for the Chebyshev matrix Mc with those of

our earlier experiments on the finite difference matrix M2 (4.69), we re-scale Mc so

that it applies to an interval of arbitrary length q + 1 = Q (this ensures that its

eigenvalues of small magnitude are almost identical to those of M2). Thus we work

with the matrix MC = 4Mc/Q
2, for the second derivative, of order q = Q− 1 = 40.

We again use the Matlab function expm, to approximate the exponential function

e∆tMC , the function inv to find (∆tMC)−1, 50 digit arithmetic to approximate the

exact values of the expression

f3(∆tMC) =
e∆tMC − I −∆tMC − (∆tMC)2/2

(∆tMC)3
, (4.100)

and we use the 2−norm of a matrix, given by (4.75), to find the numerical rela-

tive errors (4.10) of using each algorithm to approximate the expression for a range

of values of ∆t. In figure 4.15 we present the results for the expression f3(∆tMC)

(4.100) with the errors for the use of the explicit formula; this means simply evaluat-

ing the formula f3(∆tMC) using the Matlab commands expm and inv with standard

double precision (16 digits) arithmetic (results for the expressions f1(∆tMC) (4.70)

and f2(∆tMC)(4.71) are found to be qualitatively similar).

The test exhibits qualitatively similar results to the case of the finite difference

matrix ∆tM2 (4.69), shown in figure 4.15, except that the errors are typically larger,

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 106

Figure 4.15: Relative errors for the expression f3(∆tMC) (4.100) versus the values of ∆t

in the 40×40 matrix case. The algorithms are: Explicit Formula (red stars),

30-term Taylor series (blue circles), the Cauchy Integral Formula (magenta

circles), Scaling and Squaring Type I based on the identities (4.20) - (4.22)

(black stars), Composite Matrix (cyan diamonds) and Matrix Decomposition

(green squares).

due to the larger eigenvalues of the Chebyshev matrix ∆tMC . The eigenvalue of

largest magnitude is approximately −319.5∆t and the smallest is approximately

−0.0059∆t for q = 40.

The values of ∆t, for which the explicit formula, the Taylor series and the Cauchy

Integral Formula algorithms start to be inaccurate when numerically evaluating the

function f3(∆tMC), are smaller (errors are also larger and worse) than that when

approximating f3(∆tM2), again this is due to the larger eigenvalues of the Chebyshev

matrix ∆tMC , see figure 4.15.

For the Cauchy Integral Formula algorithm, we take the contour of integration

in (4.81) to be a circle centered at half the minimum eigenvalue (ξmin) of the matrix

∆tMC (the eigenvalues of the matrix are on the negative real axis), and sampled at

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 107

128 equally spaced points. The radius

R = −ξmin
2

+ 5,

is varying for each value of ∆t ≥ 0.025 to ensure that the circular contour encloses

all eigenvalues of the matrix ∆tMC , and does not pass too close to any. The above

choice of R was found to be less accurate for small values of ∆t, so the radius

R = −ξmin
2

+ 1,

is chosen for each value of ∆t < 0.025; this again varies to ensure that the circular

contour encloses all the eigenvalues of the matrix and that the algorithm yields the

desired error levels.

For the Composite Matrix algorithm, we compute the exponential of the matrix

Bs (4.97) (that contains the matrix ∆tMC), using the Matlab code expm, which is

based on the Scaling and Squaring algorithm combined with Padé approximations

(4.94). We find that for small values of ∆t, see figure 4.15, the expm function

leads to significantly greater rounding errors than those when using the Scaling

and Squaring algorithm type I based on identities (4.20) - (4.22), combined with

the Taylor series, with a threshold value δ1 = 1 for approximating the function

f3(∆tMC). This confirms our reasons, explained in §4.3.5, for favoring the Taylor

series to combine the Scaling and Squaring algorithm than the Padé approximation.

On the other hand, as the value of ∆t increases, the norm of the matrices Bs and

∆tMC increases, as the eigenvalues of the matrix ∆tMC spread widely, and the

performance of the Composite Matrix algorithm resembles that of the Scaling and

Squaring type I algorithm, both being the second least accurate algorithms. This is

due to the amplification (in fact, it is doubling) of the rounding errors caused by the

increase in the number of scaling and squaring operations needed to approximate

the function f3(∆tMC) and the matrix exponential eBs (4.98). And so, we expect

the relative error to increase linearly as the value of ∆t increases (see in §4.2.3

the analysis of the rounding errors in using the Scaling and Squaring algorithm for

approximating the exponential function, leading to formula (4.30)).

Finally, according to figure 4.15, the performance of the Matrix Decomposition

algorithm surpasses that of all other algorithms for large values of ∆t, though for

small ∆t, the algorithm’s performance resembles that of the Composite Matrix algo-

rithm, both being less accurate than the Taylor series, the Cauchy integral formula,

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 108

Figure 4.16: Relative errors in f3(∆tM1) (4.102) versus the values of ∆t in the 60 ×

60 matrix case. The algorithms are: Explicit Formula (red stars), 30-term

Taylor series (blue circles), the Cauchy Integral Formula (magenta circles),

Scaling and Squaring Type I based on the identities (4.20) - (4.22) (black

stars), Composite Matrix (cyan diamonds) and Matrix Decomposition (green

squares).

and the Scaling and Squaring type I algorithm.

4.5 Matrices With Imaginary Eigenvalues

To investigate further the efficiency of the algorithms described in §4.3 for approx-

imating the function fk(∆tM) (4.73), k = 1, 2, . . . , s, we conduct similar tests on

the 60× 60 second-order centered difference differentiation matrix (see §2.2) for the

first derivative,

M1 =
1
2

0 1 0 0 0 . . . 0 0

−1 0 1 0 0 . . . 0 0

0 −1 0 1 0 . . . 0 0
...

...
...

...
... . . .

...
...

0 0 0 0 0 . . . −1 0

. (4.101)

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 109

Note that if the order of the matrix M1 (4.101) is q, the scaling of the matrix M1

is such that it corresponds to the first derivative on an interval of length q + 1, and

that the eigenvalues of the matrix are all pure imaginary. The eigenvalues ηj of the

matrix ∆tM1 (4.101) can be derived analytically (see [43]) in the form

ηj = i cos
(

jπ

q + 1

)
∆t, j = 1, · · · , q,

so the eigenvalue of largest magnitude is ηmax ≈ 0.998i∆t and the smallest is ηmin ≈

0.0257i∆t for q = 60.

As usual, we use the Matlab function expm, to approximate the exponential func-

tion e∆tM1 , the function inv to find (∆tM1)−1, 50 digit arithmetic to approximate

the exact values of the expression

f3(∆tM1) =
e∆tM1 − I −∆tM1 − (∆tM1)2/2

(∆tM1)3
, (4.102)

and we use the 2−norm of a matrix, given by (4.75), to find the numerical relative

errors (4.10) of using each algorithm to approximate the expression. In figure 4.16

we present a comparison of the results for the expression f3(∆tM1) (4.102) using the

same six algorithms as in the previous sections (results for the expressions f1(∆tM1)

(4.70) and f2(∆tM1) (4.71) are found to be qualitatively similar).

For the Cauchy Integral Formula algorithm, we take the contour of integration

in (4.81) to be a circle centered at zero, and sampled at 128 equally spaced points.

The radius R = |ηmax| + 3, where |ηmax| is the largest absolute eigenvalue of the

matrix ∆tM1 (4.101), is varying for each value of ∆t to ensure that the circular

contour encloses all eigenvalues of the matrix ∆tM1, and does not pass too close to

any so that the algorithm yields the desired error levels.

The test exhibits qualitatively similar results to the case of the finite difference

matrix M2 (4.69) and suggests that the algorithms are efficient for approximating

the function fk(∆tM) (4.73), k = 1, 2, . . . , s, for small values of ∆t, whatever the

type and the magnitude of the eigenvalues of the matrix M .

4.6 Computation Time

The main computational challenges in the implementation of the ETD methods are

the need for fast and accurate algorithms for approximating the ETD coefficients.

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 110

(a) ∆t = 0.6

(b) ∆t = 10

Figure 4.17: CPU time of using each algorithm for approximating the expression

f3(∆tM2) (4.72) versus the order q of the matrix ∆tM2 (4.69). The al-

gorithms are: Taylor series (blue stars), the Cauchy Integral Formula (circle

black), Scaling and Squaring Type I based on the identities (4.20) - (4.22)

(green diamonds), Composite Matrix (magenta circles) and Matrix Decom-

position (black pluses).

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 111

The preceding subsections investigated the accuracy of the various algorithms; we

now study the computational time of each.

We calculate in Matlab code the CPU time of using each algorithm to approxi-

mate the expression (4.72)

f3(∆tM2) =
e∆tM2 − I −∆tM2 − (∆tM2)2/2

(∆tM2)3
,

of the matrix ∆tM2 (4.69) versus the order of the matrix q for values ranging from

q = 40 to q = 200. We perform our numerical experiments for two values of the

time step ∆t. In the first experiment ∆t = 0.6. For the Cauchy integral formula

algorithm we use N = 32 points to discretize the circular contour, centered at the

minimum eigenvalue (λmin) of the matrix ∆tM2 (the eigenvalues of the matrix M2

are on the negative real axis) with radius R = −λmin + 1 varying to enclose all the

eigenvalues of the matrix. In the second experiment ∆t = 10, and so the eigenvalues

of the matrix ∆tM2 have a larger spread. Thus, for the Cauchy integral formula

algorithm we use N = 128 points around the circular contour centered at half the

minimum eigenvalue (λmin) of the matrix ∆tM2, with radius R = −λmin/2+5 again

varying to enclose all eigenvalues.

Figure 4.17 provides the timing results for the two different values of ∆t. The

figure shows that most of the algorithms exhibit a CPU time proportional to q3;

this is to be expected since both matrix multiplication and matrix inversion scale

in this way.

The Matrix Decomposition algorithm does extremely well over all, and is the

cheapest algorithm in terms of CPU time for non-diagonal matrix problems. The

majority of the time is consumed by finding the eigenvalues λj of the matrix ∆tM2

(4.69) and applying the 30-term Taylor series to approximate the exponentials

eλj , j = 1, . . . , q in f3(D) (4.99) for those eigenvalues satisfying |λj | < 1.

The CPU time for the Taylor series and the Scaling and Squaring type I al-

gorithms follows the same pattern for the two values of ∆t. The 30-term Taylor

series algorithm is the second most economical in time (having no need compute a

matrix exponential), and the CPU time does not depend on the value of ∆t. Most

of the CPU time is spent on working out the matrix multiplications needed for the

algorithm.

The Scaling and Squaring type I algorithm, used with a 30-term Taylor series,

has a start-up time overhead, as it requires us to carry out matrix multiplications

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 112

and compute several values of the identities (4.20) - (4.22) to begin. The time

consumption of this algorithm depends on the norm of the matrix, the value of the

threshold (here the threshold δ1 = 1), and the number of terms used in the Taylor

series: when the norm gets larger (as the value of ∆t increases) or when the chosen

value of the threshold is smaller, more scaling operations are needed. Also, when the

chosen value of the threshold is larger, more terms of the Taylor series and therefore

more work on matrix multiplications are needed. Hence in both cases the algorithm

becomes expensive.

The Cauchy integral formula algorithm is very expensive computationally as one

has to compute N matrix inverses (128 for the largest value of ∆t) and take the

average (4.81) of the function values at the N points. As we enlarge the contour to

enclose all the eigenvalues of the matrix, we must also increase the number of points

N required to discretize the contour accurately, and therefore, the computation time

of this algorithm increases.

Lastly, the Composite Matrix algorithm requires the evaluation of the exponen-

tial function eBs (4.98), which is a non-diagonal matrix of size 4q × 4q, so this is

often the slowest algorithm. In Matlab this evaluation uses the code expm which

depends on the Scaling and Squaring algorithm. Hence, for larger matrix order q

and for larger values of ∆t, i.e. larger matrix norm, more scaling operations are

required, and thus the time cost increases.

4.7 Conclusion

In our investigation of the accuracy and the efficiency of six algorithms for approx-

imating the ETD coefficients we found the following:

1. Taylor Series: The primary advantage of this algorithm is the simplicity and

ease of implementation for both scalar and matrix cases. In addition, it is the

second least costly in time. However, it is not accurate when approximating

the ETD coefficients for large values (in magnitude) of the argument (matrix

norm in the matrix case).

2. The Cauchy Integral Formula: This algorithm exhibits significant varia-

tion in performance in different cases. It has turned out to be very accurate for

diagonal matrix problems, but it can be inaccurate for non-diagonal matrices

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 113

with large norm. The large errors that can arise in such case are caused by

the chosen method of implementation: matrices ∆tM with large norm have a

large spread of eigenvalues, and a circle of large radius is thus required to en-

close all eigenvalues. This requires an a priori contour radius which in general

is problem dependent, and not trivially available. In addition, the location of

the eigenvalues must be known, which in general adds to the expense of the

algorithm. If a fixed number of points N is used to discretize the contour then

as the radius of the required circle increases, the method’s accuracy decreases.

To avoid this, N must be chosen to increase as the matrix norm increases (i.e.

as ∆t increases). This results in a large increase in computational time, as a

matrix inverse has to be calculated for each point on the contour - a disadvan-

tage to the algorithm in non-diagonal matrix cases. However, improvements

to this algorithm have recently been developed [69, 70].

3. Scaling and Squaring Algorithm Type I: This algorithm is the most

complex to implement. But it is one of the most effective and powerful algo-

rithms for diagonal and non-diagonal matrix problems. In the non-diagonal

matrix problems, knowledge of the eigenvalue of largest magnitude is required.

The algorithm based on the identities (4.20) - (4.22), which has been used in

our main experiments of which the results are illustrated in figures 4.8 and

4.15 - 4.17, has proved to be efficient in terms of computation time and accu-

racy for a good range of ∆t-values, although, the errors are seen to increase in

proportion to ∆t. But testing the algorithm with the identities (4.27), (4.21)

and (4.22) has shown that it is the most accurate out of all identities used in

this chapter. Moreover, errors have not grown for a large range of ∆t-values,

which gives these identities an additional advantage.

4. Scaling and Squaring Algorithm Type II: This algorithm performs well

when approximating the coefficient f1(z) that appears in the ETD1 method

(3.14), but when computing the coefficients in higher order ETD methods for

small values (in magnitude) of the argument the results are very inaccurate,

because of the amplification of rounding errors at each scaling. Thus, the

Scaling and Squaring type II algorithm is not a useful algorithm.

5. Composite Matrix Algorithm: From a practical point of view, the algo-

rithm is successful for approximating the ETD coefficients accurately, and is

Chapter 4. Various Algorithms for Evaluating the ETD Coefficients 114

also very easy to program. However, finding the exponential of a large matrix

in non-diagonal matrix problems can lead to high computational cost, caused

by the larger number of operations needed to approximate the exponential

matrix.

6. Matrix Decomposition Algorithm: For non-diagonal problems, the ma-

trix decomposition algorithm is the cheapest algorithm in time. Most of the

CPU time is spent on determining the eigenvalues required for the algorithm.

Furthermore, it is remarkably accurate when compared with the explicit for-

mula for ETD coefficients (over all ∆t values considered), and with the Taylor

series and the Cauchy integral formula for large values of ∆t. For small values

of ∆t, however, it is slightly less accurate than the Cauchy integral formula,

the Scaling and Squaring type I and the Composite Matrix algorithms.

We can sum up this set of comparisons by saying that the Scaling and Squaring

type I algorithm is an efficient algorithm for computing the ETD coefficients in

diagonal and non-diagonal matrix cases. It exhibits some loss of accuracy as the

matrix norm increases, but this is much less severe than for the Taylor series and the

Cauchy integral formula when approximating the ETD coefficients for large values

(in magnitude) of the scalar arguments and large norm matrices respectively. Also, it

compares favorably with the high computational cost of the Cauchy integral formula

and the Composite Matrix algorithm in non-diagonal matrix cases. The Matrix

Decomposition algorithm, in the conventional eigenvector approach, also performs

well, and is very efficient computationally, though it is slightly less accurate when

the matrix norm is small, and is not applicable to all matrices.

Chapter 5
Numerical Experiments

115

Outline of Chapter

In this chapter, we perform a variety of numerical experiments on real application

problems. For the simulation tests, we choose periodic boundary conditions and

apply Fourier spectral approximation for the spatial discretization. We employ first,

second and fourth-order ETD methods and compare them with other competing

stiff integrators including: first-order Implicit-Explicit (IMEX) method and first,

second and fourth-order Integrating Factor (IF) methods for integrating in time

three stiff partial differential equations (PDEs) all in one space dimension. The

problems considered are: the time-dependent scalar Kuramoto-Sivashinsky (K-

S) equation, the nonlinear Schrödinger (NLS) equation and the nonlinear Thin

Film equation. In the K-S and the NLS equations, the linear terms are primarily

responsible for stiffness, whereas in the third equation the nonlinear terms are the

stiffest. The main testing parameters are the accuracy, the start-up overhead cost

and the CPU time consumed by the methods, since these parameters play key roles

in the overall efficiency of the methods.

116

Chapter 5. Numerical Experiments 117

5.1 Introduction

Over the last decade there has been a renewed interest in applying Exponential

Time Differencing (ETD) schemes [15, 39, 53, 61, 71] to the solution of stiff

systems. A Matlab package recently designed by Berland et al. [8] aimed to

facilitate easy testing and comparison of various exponential integrators, of Runge-

Kutta, multi-step and general linear type methods, applied to semi-linear problems

such as, the Kuramoto-Sivashinsky (K-S) [41] and the nonlinear Schrödinger

(NLS) [77] equations.

One of the main reasons for this renewed interest is the improvement in the

accurate computation of the coefficients that arise in ETD schemes [2, 5, 8, 35,

47, 54, 56, 57, 67, 70, 80, 81] (this includes the exponential and related functions;

see also §4). Following these efforts, the exponential integrators have emerged as

viable alternatives to classical ones. The numerical comparisons presented in [81],

for solving chemical kinetics problems, and the numerical experiments performed in

[37], for solving large stiff systems of DEs, reveal examples where explicit exponential

integrators outperform standard integrators. A similar conclusion was reached by

Du and Zhu [22, 23] when they performed some simulations of micro-structure

evolution (a core component of phase field modeling) in two and three dimensions.

The authors found that the higher order ETD based schemes can be several orders

of magnitude faster than low-order Implicit-Explicit (IMEX) [87] methods.

The superior performance of the ETD methods, for solving some dissipative

and dispersive PDEs, was also illustrated in [19] by Cox and Matthews. In

addition, Kassam and Trefethen [44, 45] compared the ETD methods of [19]

with various fourth-order methods for solving various one-dimensional diffusion-

type problems. They concluded that exponential integrators are highly competitive

and accurate, with the best, by a clear margin, being the ETD4RK method of

[19]. However, more recently Krogstad [49] presented an alternative fourth-order

ETD method (ETDRK4-B), and found that it is slightly more accurate than the

ETD4RK method of [19] when solving several semi-discretized PDEs, such as the

Kuramoto-Sivashinsky (K-S) equation.

A recent report [57] on six different types of exponential integrators showed that,

especially for parabolic semi-linear problems, such as the K-S and the nonlinear

Schrödinger (NLS) equations, the ETD type of exponential integrators outperform

integrators of Lawson type [52]. Again, Berland and Skaflestad [7] used the NLS

equation as a numerical test problem, and found that under certain circumstances

Chapter 5. Numerical Experiments 118

the performance of a fourth-order Lawson integrating factor method was demon-

strably poorer than the fourth-order ETD4RK method of [19]. Further studies on

solving numerically the NLS equation were presented in [46]. The author compared

the performances of several fourth-order methods (mainly related to exponential

integrators), and found that in specific cases, these methods can be efficiently used

to solve accurately the test equations numerically.

The aim of this chapter is to make some observations regarding the efficiency of

a variety of exponential integrators of different orders (including the ETD and the

ETD-RK methods proposed by Cox and Matthews [19], see §3.2) when compared

with other competing stiff integrators. These methods are listed in §5.2 with details

of the implementations. We conduct numerical studies and comparison experiments

on three model problems all in one space dimension. In §5.3 and §5.4, we consider

the numerical solution of the time dependent scalar Kuramoto-Sivashinsky (K-

S) equation [41] and the nonlinear Schrödinger (NLS) equation [77] respectively.

The third model considered is the nonlinear Thin Film equation [36] (to our knowl-

edge, no work containing the application of the exponential integrators to the thin

film equation has been done). In the K-S and the NLS equation equations, the

linear terms of the equations are primarily responsible for stiffness whereas in the

thin film equation the nonlinear terms are the stiffest. However, we show in §5.5,

that this equation can be treated within the same framework as the K-S and the

NLS equations.

5.2 Numerical Experiments

Our comparison experiments are based on the simulation of three model prob-

lems, all in one space dimension: the time-dependent scalar dissipative Kuramoto-

Sivashinsky (K-S) equation [41], the nonlinear dispersive Schrödinger (NLS)

equation [77] and the nonlinear Thin Film equation [36] which is characterized as

a dissipative and a dispersive PDE. All the calculations presented in this chapter

are performed using Matlab codes.

For the simulation tests, we choose periodic boundary conditions. This leads

conveniently to the application of the Fourier spectral approximation [11, 12, 25,

83, 84]. This approximation provides very high accuracy for smooth solutions of

Chapter 5. Numerical Experiments 119

the test model problems. In the resulting system of ordinary differential equations

(ODEs), the linear part of the model becomes diagonal, i.e. an uncoupled system

of equations for each Fourier mode. The nonlinear term is transformed to physical

space and evaluated at the uniform grid points and then transformed back to spectral

space. Hereafter, we advance the system of ODEs in time by a numerical integration

that can be used effectively in combination with the spectral approximation.

For the time discretization, all comparable methods, listed below, are expressed

with respect to the model problem

du(t)
dt

= cu(t) + F (u(t), t), (5.1)

where the constant c is either large, negative and real, or large and imaginary, or

complex with large, negative real part, and F (u(t), t) is the nonlinear forcing term,

see §3.2.

In our study of first-order accurate methods, we analyze the performance of the

first-order ETD1 method [9, 15, 19, 61]

un+1 = une
c∆t + (ec∆t − 1)Fn/c, (5.2)

where ∆t represents the time step and un and Fn denote the numerical approxima-

tion to u(tn) and F (u(tn), tn) respectively, and compare its accuracy with the Euler

method

un+1 = un + ∆t(cun + Fn). (5.3)

The Euler method is used only to obtain the numerical solution for the K-S equation

[41] and the nonlinear thin film equation [36]. The comparison also includes the

first-order Integrating Factor Euler (IFEULER) method [11, 84]

un+1 = (un + ∆tFn)ec∆t, (5.4)

and the first-order Implicit-Explicit (IMEX) method [4] (see §1)

un+1 = un + ∆t(cun+1 + Fn). (5.5)

For second-order accurate comparison, we compare the two-step ETD2 method [19]

un+1 = une
c∆t+{((c∆t+1)ec∆t−2c∆t−1)Fn+(−ec∆t+c∆t+1)Fn−1}/(c2∆t), (5.6)

the ETD2RK1 method [19]

an = une
c∆t + (ec∆t − 1)Fn/c,

un+1 = an + (ec∆t − c∆t− 1)(F (an, tn + ∆t)− Fn)/(c2∆t),
(5.7)

Chapter 5. Numerical Experiments 120

and the ETD2RK2 method (derived in §3.2)

an = une
c∆t/2 + (ec∆t/2 − 1)Fn/c,

un+1 = une
c∆t + {((c∆t− 2)ec∆t + c∆t+ 2)Fn

+2(ec∆t − c∆t− 1)F (an, tn + ∆t/2)}/(c2∆t),

(5.8)

against the second-order ETD2CP method introduced by Calvo & Palencia [15]

un+1 = un−1e
2c∆t+{(e2c∆t−2c∆t−1)Fn+((c∆t−1)e2c∆t+c∆t+1)Fn−1}/(c2∆t),

(5.9)

and the ETDC2 method

un+1 = une
c∆t + (ec∆t − 1)(3Fn − Fn−1)/2c, (5.10)

presented by Livermore [53] in the solution of the incompressible magnetohydro-

dynamics equations. In addition, we apply the second-order Integrating Factor

Runge-Kutta (IFRK2) method [19]

an = ∆tFnec∆t,

bn = ∆tF ((un + ∆tFn)ec∆t, tn + ∆t),

un+1 = une
c∆t + 1

2(an + bn).

(5.11)

For higher order ETD methods, we consider particularly the comparison of the

fourth-order ETD4 method (derived in §3.2)

un+1 = une
c∆t + (Φ1Fn − Φ2Fn−1 + Φ3Fn−2 − Φ4Fn−3)/(6c4∆t3), (5.12)

where

Φ1 = (6c3∆t3 + 11c2∆t2 + 12c∆t+ 6)ec∆t − 24c3∆t3 − 26c2∆t2 − 18c∆t− 6,

Φ2 = (18c2∆t2 + 30c∆t+ 18)ec∆t − 36c3∆t3 − 57c2∆t2 − 48c∆t− 18,

Φ3 = (6c2∆t2 + 24c∆t+ 18)ec∆t − 24c3∆t3 − 42c2∆t2 − 42c∆t− 18,

Φ4 = (2c2∆t2 + 6c∆t+ 6)ec∆t − 6c3∆t3 − 11c2∆t2 − 12c∆t− 6,

against the ETD4RK method [19]

an = une
c∆t/2 + (ec∆t/2 − 1)Fn/c,

bn = une
c∆t/2 + (ec∆t/2 − 1)F (an, tn + ∆t/2)/c,

cn = ane
c∆t/2 + (ec∆t/2 − 1)(2F (bn, tn + ∆t/2)− Fn)/c,

un+1 = une
c∆t + {((c2∆t2 − 3c∆t+ 4)ec∆t − c∆t− 4)Fn

+2((c∆t− 2)ec∆t + c∆t+ 2)(F (an, tn + ∆t/2) + F (bn, tn + ∆t/2))

+((−c∆t+ 4)ec∆t − c2∆t2 − 3c∆t− 4)F (cn, tn + ∆t)}/(c3∆t2),

(5.13)

Chapter 5. Numerical Experiments 121

and the Integrating Factor Runge-Kutta (IFRK4) method [7, 44, 45]

an = ∆tFn,

bn = ∆tF ((un + an/2)ec∆t/2, tn + ∆t/2),

cn = ∆tF (unec∆t/2 + bn/2, tn + ∆t/2),

dn = ∆tF (unec∆t + cne
c∆t/2, tn + ∆t/2),

un+1 = une
c∆t + 1

6(anec∆t + 2(bn + cn)ec∆t/2 + dn).

(5.14)

Our tests are broken into two parts, each designed to show a particular aspect

of the methods’ performance. The goal of the first set of tests is to address the

question of stability and accuracy of the methods. Therefore, we perform a series of

runs with different choices of final times t which are computed, for all methods, with

various time-step sizes. The time-step values are selected to ensure that all methods

achieve stable accurate results. In the second set of tests, we turn our attention to

the accuracy as a function of CPU time to top up the differentiation factors between

the methods for each model tested. The CPU time is one of the factors that affects

the efficiency of the methods, that is because a method could be stable and achieve

a good accuracy in few steps, but, it could be more costly, due to the larger number

of operations per time step, and consequently less efficient than others.

We measure the accuracy in terms of the relative error evaluated in the maximum

norm, the 2-norm and the integrated error norm, between the results of each time

stepping method (for different time-step sizes) and an “exact” solution. The relative

error of the maximum norm is given by

relative max error =
max |numerical solution| −max |exact solution|

max |exact solution|
, (5.15)

the relative error of the 2-norm is given by

relative norm error =

(∑
|numerical solution|2

)1/2 − (∑ |exact solution|2)1/2
(
∑
|exact solution|2)1/2

,

(5.16)

and the relative error of the integrated error norm is given by

relative integrated error =

(∑
|numerical solution− exact solution|2

)1/2
(
∑
|exact solution|2)1/2

,

(5.17)

where the sum is taken over the number of grid points in the spatial discretization.

For the K-S and the nonlinear thin film equations, no explicit general analytic

Chapter 5. Numerical Experiments 122

solutions exist, and the exact solution is approximated numerically using a fourth-

order method with a very small time-step size. On the other hand, when considering

the NLS equation, we focus primarily on the traveling solitons [10] as explicit exact

solutions when evaluating the errors.

Experimentally, we find that the relative errors (5.15) and (5.16) do not repre-

sent appropriate measurements of accuracy. For example, the relative error (5.15)

focuses on an error occurring in the difference between a local maximum point of

the numerical and the exact solution. This could be misleading as it could yield a

zero error even when the numerical and exact solutions are different. Therefore, the

desirable choice for a measure of accuracy is the relative error of the integrated error

norm (5.17). This error is more meaningful and gives a representative measure of

the error in the entire solution space. Also, it does not yield a zero error unless the

numerical and the exact solution agree at all points. Hence, in our tests, we plot

the numerical relative error of the integrated error norm (5.17) as a function of the

time step and of the CPU time for each model tested for various initial conditions.

Considering the implementation of the above time discretization methods, we

find that the task is straightforward for the first-order methods. However, as the

order of the methods increases, the complexity of the implementation grows. The

higher order methods require more memory space, and need a relatively large compu-

tational effort. For example, the multi-step ETD and the ETD-RK methods require

an accurate algorithm for evaluating the coefficients of F (u(tn), tn) to avoid numer-

ical difficulties (see §4). We use the ‘Cauchy integral’ approach (fully detailed in

§4.2.2) proposed by Kassam and Trefethen [44, 45]. In this approach, we evaluate

the coefficients (one coefficient for the ETDC2 method (5.10), three coefficients for

the ETD2 (5.6), the ETD2CP (5.9), the ETD2RK1 (5.7) and the ETD2RK2 (5.8)

methods, four coefficients for the ETD4RK (5.13) method and eight coefficients for

the ETD4 method (5.12)), once at the beginning of the integration for each value of

the time-step sizes, by means of contour integration in the complex plane approxi-

mated by the Trapezium rule (4.16). In addition, the multi-step ETD methods need

to store the nonlinear terms at several previous time steps in order to advance the

solution. So, preceding the integration loop and for each value of the time-step sizes,

we obtain, for the two-step methods (ETD2, ETD2CP and ETDC2), one starting

value of the nonlinear term using the ETD1 method (5.2), and three starting values

of the nonlinear term for the ETD4 method using the ETD4RK method. Addition-

Chapter 5. Numerical Experiments 123

ally, we store one value of the solution at the previous time step for the ETD2CP

method. Moreover, the ETD2RK1, the ETD2RK2, the IFRK2 (5.11), the ETD4RK

and the IFRK4 (5.14) methods carry out two (for the second-order methods) and

four (for the fourth-order methods) function transforms per time step in the main

loop of integration.

For the IF schemes, we find that they require the evaluation of one or more matrix

exponentials, for which acceptable algorithms are well known [9, 60]. However, the

schemes have some disadvantages. For example, they do not preserve fixed points

for the differential equations, and are also known for having rather larger error

constants [7, 11, 19, 49, 57] (for PDEs with slowly varying nonlinear terms) than

other methods of the same order.

The investigation of the methods’ performances and the results of the exper-

iments are outlined in §5.3, §5.4 and §5.5 for the numerical solution of the K-S

equation, the NLS equation and the nonlinear thin film equation respectively.

5.3 Kuramoto-Sivashinsky (K-S) Equation

The Kuramoto-Sivashinsky equation, which we will refer to as the K-S equation, is

one of the simplest PDEs capable of describing complex (chaotic) behavior in both

time and space. This equation has been of mathematical interest [29, 75] because

of its rich dynamical properties. In physical terms, this equation describes reaction

diffusion problems, and the dynamics of viscous-fluid films flowing along walls, and

was introduced by Sivashinsky [74] as a model of laminar flame-front instabilities

and by Kuramoto [50] as a model of phase turbulence in chemical oscillations. A

fairly large number of numerical and theoretical studies have been devoted to the K-S

equation; the reader is referred to the review paper of Hyman & Nicolaenko [41].

The K-S equation in one space dimension can be written in “derivative” form

∂w(x, t)
∂t

= −w(x, t)
∂w(x, t)
∂x

− ∂2w(x, t)
∂x2

− ∂4w(x, t)
∂x4

, (5.18)

or in “integral” form

∂u(x, t)
∂t

= −1
2

(∂u(x, t)
∂x

)2
− ∂2u(x, t)

∂x2
− ∂4u(x, t)

∂x4
, (5.19)

where w(x, t) = ∂u(x, t)/∂x.

Chapter 5. Numerical Experiments 124

Equation (5.18) has strong dissipative dynamics, which arise from the fourth-

order dissipation (∂4w/∂x4) term that provides damping at small scales. Also, it

includes the mechanisms of a linear negative diffusion (∂2w/∂x2) term, which is re-

sponsible for an instability of modes with large wavelength, i.e. small wave-numbers.

The nonlinear advection/steepening (w∂w/∂x) term in the equation transforms en-

ergy between large and small scales.

The zero solution of the K-S equation is linearly unstable (the growth rate λ(k) >

0, for perturbations of the form eλteikx) to modes with wave-numbers |k| = |2π/`| <

1 for a wavelength `, and is damped for modes with |k| > 1, see figure 5.1; these

modes are coupled to each other through the non-linear term.

We can write the K-S equation (5.18) with 2L periodic boundary conditions in

Fourier space as follows

dŵk(t)
dt

= (k2 − k4)ŵk(t)−
ik

2
fft(w(t)2), (5.20)

where fft is a Matlab command that represent the fast Fourier transform FFT. The

stiffness in the system (5.20) is due to the fact that the diagonal linear operator,

with the elements k2 − k4, has some large negative real eigenvalues that represent

decay, because of the strong dissipation, on a time scale much shorter than that

typical of the nonlinear term. Thus the dynamics are dominated by a relatively

few large scale modes. However, we expect all methods except the Euler method to

work reasonably well regarding the stability analysis.

The nature of the solutions to the K-S equation varies with the system size L.

For large L, enough unstable Fourier modes exist to make the system chaotic. For

small L, insufficient Fourier modes exist, causing the system to approach a steady

state solution. In this case, the ETD methods integrate the system very much more

accurately than the IF methods, since the ETD methods assume in their derivation

that the solution varies slowly in time.

For the simulation tests, we choose two periodic initial conditions

w1(x, 0) = exp(cos(x/2)), x ∈ [0, 4π], (5.21)

w2(x, 0) = 1.7 cos(x/2) + 0.1 sin(x/2) + 0.6 cos(x) + 2.4 sin(x), x ∈ [0, 4π]. (5.22)

When evaluating the coefficients of the ETD and the ETD-RK methods via the

‘Cauchy integral’ approach [44, 45] (see §4.2.2), we choose circular contours of radius

Chapter 5. Numerical Experiments 125

Figure 5.1: The growth rate λ(k) for perturbations of the form eλteikx to the zero solution

of the Kuramoto-Sivashinsky (K-S) equation (5.18).

R = 1. Each contour is centered at one of the elements that are on the diagonal

matrix of the linear part of the semi-discretized model (5.20). The contours are

sampled at 32 equally spaced points and approximated by (4.16).

In figure 5.2, we show the numerical solution of the K-S equation (5.18) with the

initial condition w1(x, 0) = exp(cos(x/2)), x ∈ [0, 4π] (5.21), using NF = 64 grid

points in the Fourier spatial discretization. We integrate the system (5.20) using the

ETD4RK method (5.13) with time-step size ∆t = 2−10 and up to final time t = 60.

The solution, in the figure, appears as a mesh plot and shows waves propagating,

traveling periodically in time and persisting without change of shape. The compu-

tations are performed using Matlab code in a program described in Appendix A.

In the following section, we present the results of integrating the system (5.20)

for the two initial conditions (5.21) and (5.22), up to final time t = 30, utilizing the

methods described in §5.2. Again, we use NF = 64 grid points in the Fourier spatial

discretization. The results are supported by figures and analysis of the methods’

efficiency.

Chapter 5. Numerical Experiments 126

Figure 5.2: Time evolution of the numerical solution of the K-S equation (5.18) up to

t = 60 with the initial condition w1(x, 0) = exp(cos(x/2)), x ∈ [0, 4π] (5.21).

5.3.1 Computational Results

The results of our experiments are presented in figures 5.3 and 5.5 for the initial

condition (5.21), and in figures 5.4 and 5.6 for the initial condition (5.22). In figures

5.3 and 5.4, the numerical relative integrated error (5.17), of using each time dis-

cretization method to obtain the numerical solution of the K-S equation (5.18), is

plotted as a function of the time step. The exact solution is approximated numer-

ically using NF = 64 grid points in the Fourier spatial discretization. For the time

discretization, we use the fourth-order Runge-Kutta method [14] with a very small

time-step size. The plots (in figures 5.3 and 5.4) indicate the largest time-step size,

i.e. the fewest number of steps, that each method requires to converge to a solution

within a fixed given relative error in the figures. The first aspect to emphasize in

such figures is that the plots confirm the expected order of the methods. Secondly,

a fixed reduction in the time-step size will effectively improve the accuracy, but

Chapter 5. Numerical Experiments 127

Figure 5.3: Relative errors versus time step for the K-S equation (5.18) with the initial

condition w1(x, 0) = exp(cos(x/2)), x ∈ [0, 4π] (5.21).

Chapter 5. Numerical Experiments 128

Figure 5.4: Relative errors versus time step for the K-S equation (5.18) with the initial

condition w2(x, 0) = 1.7 cos(x2)+0.1 sin(x2)+0.6 cos(x)+2.4 sin(x), x ∈ [0, 4π]

(5.22).

Chapter 5. Numerical Experiments 129

considerably increases the computation cost, which is illustrated in figures 5.5 and

5.6, where we plot the methods’ accuracy as a function of the CPU time.

When testing the Euler method (5.3) we find that this method, obviously, re-

quires the smallest number of operations per time step out of all the methods we

test. However, because of the numerical stability constraints, the time-step size is

limited. Tests show, in figures 5.3 and 5.4, that the Euler method performs well

at a very small time-step size, though it breaks down for time-step size larger than

∆t ≈ 2−16. This adds to the computation cost as is shown in figures 5.5 and 5.6.

Therefore, the Euler method is not in the competition for the “best” method.

Larger time steps may be taken using the other methods that are designed for

stiff problems, where there is no such severe restriction for reasons of stability and

the time-step size selection is only limited by accuracy.

For the other first-order methods (the ETD1 (5.2), the IFEULER (5.4) and the

IMEX (5.5) methods), figure 5.3 indicates that, for the initial condition (5.21), all

methods behave similarly and the corresponding errors lie approximately on the

same line for all values of the time-step. Furthermore, all methods are inaccurate

(errors are of O(1)) for time-step sizes larger than ∆t ≈ 2−6. On the other hand,

figure 5.4 reveals a different behavior of the methods for the initial condition (5.22):

it shows a better performance and accuracy of the ETD1 method compared to the

other first-order methods. Also, we find that for the time step restriction imposed

by the linear term, all methods remain stable at a large value of the time-step

∆t ≈ 2−2, but the ETD1 method produces the most accurate solution. Considering

the computational cost of the methods, it is clear from figure 5.5 that, for the initial

condition (5.21), the methods have an almost identical computation cost per time

step. However, in figure 5.6 for the initial condition (5.22), the ETD1 method

outperforms the other methods both in speed and in the accuracy of the obtained

solution.

For the second-order accurate methods we consider, the ETD2RK1, the ETD2RK2,

the ETD2, the ETD2CP, the ETDC2 and the IFRK2 methods. Second-order con-

vergence is confirmed in figure 5.3 for the initial condition (5.21). The performance

of all second-order methods is very nearly equivalent here, and the errors for small

time steps are almost identical. In addition, the variation in time consumption,

for a given level of accuracy, is insignificant, see figure 5.5. However, the ETD2CP

method (5.9) slightly outperforms the others both in accuracy and speed referring

Chapter 5. Numerical Experiments 130

Figure 5.5: Relative errors versus CPU time for the K-S equation (5.18) with the initial

condition w1(x, 0) = exp(cos(x/2)), x ∈ [0, 4π] (5.21).

Chapter 5. Numerical Experiments 131

Figure 5.6: Relative errors versus CPU time for the K-S equation (5.18) with the initial

condition w2(x, 0) = 1.7 cos(x2)+0.1 sin(x2)+0.6 cos(x)+2.4 sin(x), x ∈ [0, 4π]

(5.22).

Chapter 5. Numerical Experiments 132

Figure 5.7: Relative errors versus CPU time for the K-S equation (5.18) with the initial

condition w2(x, 0) = 1.7 cos(x2) + 0.1 sin(x2) + 0.6 cos(x) + 2.4 sin(x) (5.22).

to figures 5.3 and 5.5 respectively.

On the other hand, for the initial condition (5.22), we find that of all comparable

second-order methods, the ETD2RK2 method (5.8) is the most accurate, for a given

time-step size, and the least time consuming for a given level of accuracy, see figures

5.4 and 5.6 respectively. The IFRK2 (5.11) and the ETD2CP methods do not do

well for the initial condition (5.22). The ETD2CP method is the least accurate

and the most time costly. In addition, figure 5.6 shows that the ETD2 (5.6) and

ETDC2 (5.10) methods consume about the same CPU time per time step, while the

ETD2RK1 method (5.7) has a longer computation time.

All second-order methods successfully integrate the system for time-step sizes less

than ∆t ≈ 2−2 and ∆t ≈ 2−1 for the initial conditions (5.21) and (5.22) respectively.

However, the ETD2CP method fails to be accurate for a larger time-step size than

∆t ≈ 2−4 for the initial condition (5.22), see figure 5.4.

For the fourth-order methods, as is evident from figures 5.3 and 5.4, the ETD4

Chapter 5. Numerical Experiments 133

(5.12), the ETD4RK (5.13) and the IFRK4 (5.14) methods behave in a similar way

for the two initial conditions. The performance of the IFRK4 method resembles that

of the ETD4 method, and the errors for small time steps are almost identical. Clearly

the methods have a superior performance, as the accuracy is improved significantly

compared to lower order methods. Referring to figures 5.3 and 5.4, the most accurate

for a given time step is the ETD4RK method. The ETD4RK method has the

advantages (relative to the other fourth-order methods) of being stable for larger

time steps1, having fewer coefficients to evaluate via the Cauchy integral formula

approach, and having no starting values to obtain. Also, the ETD4RK method uses

slightly less CPU time than the ETD4 method for a given level of accuracy, while

the most time-consuming is the IFRK4 method for the two initial conditions (5.21)

and (5.22), see figures 5.5 and 5.6.

Second-order time discretization methods have been used often for obtaining

numerical solutions for a wide range of PDEs. Reasons for their choice include the

difficulties introduced by the combination of nonlinearity and stiffness of a PDE,

the increase in complexity both of analysis and implementation for higher-order

methods, and in addition, higher-order methods usually require increased computer

storage and CPU time. However, when we do a comparison test between the per-

formance of the ETD1 (5.2), the ETD2RK2 (5.8) and the ETD4RK (5.13) methods

for solving the K-S equation (5.18) with the initial condition (5.22), we find that the

fourth-order method can be very accurate and less costly than the second-order one

(the same conclusion was reached by Kassam and Trefethen [44, 45]. The authors

found that it is entirely practical to solve nonlinear PDEs to a high accuracy by

fourth-order time-stepping methods). In our comparison test we plot, in figure 5.7,

the accuracy of these three methods, measured in the relative integrated error (5.17),

as a function of CPU time. In the figure, we can see that within the same level of

accuracy, the ETD4RK method is less costly than the ETD2RK2 method, whereas

the most expensive with high computational cost is the ETD1 method. Thus, the

greater accuracy of the ETD4RK and the ETD4 methods more than compensates

for the additional computational cost per time step.
1This agrees qualitatively with our analysis for the stability region of the ETD4 and the ETD4RK

methods in §3.

Chapter 5. Numerical Experiments 134

5.3.2 Conclusion

We have demonstrated how for stiff problems such as the K-S equation (5.18), ETD

methods provide an efficient alternative to standard explicit integrators. We have

found that the s-step ETD methods (for s = 1, 2, 4) all achieve order s and exhibit

high accuracy with superior stability properties compared to the explicit method

(the Euler method), which imposes a ceiling on the time-step size selection.

To time step our test problem with a second-order method, we can say that, in

practice, the consideration of accuracy and computational cost indicates that some

of the methods are preferable to others, but all are completely satisfactory. The

most efficient choice is the ETD2RK2 method.

Higher order methods are more advantageous. They exhibit higher accuracy and

maintain good stability. We have found that the ETD4RK method is marginally

the best for the test problem considered.

Regarding accuracy and CPU time in the solving process, we can conclude that

the ETD4RK method is clearly favored in most general cases. It is found to be

the most stable method with reasonable computational effort. Even at fairly large

time-steps, it still maintains good stability and produces high accuracy.

As a final point, this conclusion is limited to the studies of the Kuramoto-

Sivashinsky (K-S) equation with the two initial conditions (5.21) and (5.22). The

experiments have shown that the performance of the methods varies from one case

to the other, and that the ETD and ETD-RK methods of [19] outperform the com-

pared methods for solving the test model (5.18) for the initial condition (5.22).

These results cannot be generalized, as they may differ for other choices of initial

conditions and for other problems.

5.4 Non-Linear Schrödinger (NLS) Equation

The nonlinear Schrödinger (NLS) equation in one space dimension [10]

i
∂u(x, t)
∂t

=
∂2u(x, t)
∂x2

+ (V (x) + |u(x, t)|2)u(x, t), (5.23)

where V (x) is the potential function, arises in several different areas of physics,

including multi-scale perturbation theory, gravity of electromagnetic waves in a

plasma, and the propagation of intense optical light pulses in fibers. The equation

Chapter 5. Numerical Experiments 135

gives the wave amplitude u(x, t) as a function of independent variables x (space)

and t (time), and it possesses several conservation laws, notably conservation of

density, energy and momentum. In addition, it yields a rich variety of nonlinear

wave structures, including solitons with arbitrary amplitude and velocity, several

kinds of periodic nonlinear wave, and uniform wave-train solutions. The derivation

of this equation for the propagation of a plane electromagnetic wave in a nonlinear

medium can be found in [10, 42], and an introduction to its mathematical theory is

given in [77].

The major application of the NLS equation (5.23) is to the analysis of the propa-

gation of dispersive wave-packets in a nonlinear medium. This equation governs the

envelope of wave-packets in the presence of the competing effects of linear disper-

sion (which tends to smear them out) and nonlinear amplitude dependence (which

tends to compress the pulse) of the material properties in a one-dimensional system.

When these two competing effects balance, the formation of optical envelope soli-

tons is possible. “Soliton solution” means that the envelope of the nonlinear wave

takes the shape of a simple pulse. Solitons are localized waves and are often used

to transmit information along optical fibers. They can be ordered in a fashion with

the taller solitons moving faster, and the shorter ones moving slower [13]. They

also have certain properties, such as clean overtaking of two solitons and clean colli-

sions, i.e. they retain their individual identities (which in addition persist over long

distances) after a nonlinear interaction [77].

In our numerical experiments, we use the cubic nonlinear Schrödinger equation

i
∂u(x, t)
∂t

=
∂2u(x, t)
∂x2

+ |u(x, t)|2u(x, t), (5.24)

with V (x) = 0 in equation (5.23). Equation (5.24) is an example of a problem whose

linearization has imaginary eigenvalues, and whose dispersion relation (λ(k) = ik2

for wave-numbers k) obtained from a linear stability analysis shows that perturba-

tion to the zero solution neither grow nor decay, but oscillate and travel at speed −k.

The stiffness in this problem comes from the term ∂2u/∂x2, which results in rapid

oscillations of high wave number modes. Transforming equation (5.24) to Fourier

space, assuming that the solution satisfies periodic boundary conditions, gives

dûk(t)
dt

= i(k2ûk(t)− fft(|u(t)|2u(t))), (5.25)

where fft is the Matlab command that represents the fast Fourier transform FFT.

Chapter 5. Numerical Experiments 136

We focus primarily on the traveling soliton solutions [10]

u(x, t) = asech(b(x− vt))ei(c0x+dt), (5.26)

where b = a√
2
, c0 = −1

2v and d = c2
0−b2 are real numbers, as explicit exact solutions

for the NLS equation (5.24), in testing the efficiency of the first, second and fourth

order time discretization methods stated in §5.2. The Euler method (5.3) is never

stable for solving the NLS equation for any time-step size. This due to the imaginary

eigenvalues of the linearized NLS equation, which are outside the stability region of

the method.

Since the exact solutions are known, the numerical results really provide only a

check on the numerical methods. The parameters are the speed v and the amplitude

a, which are independent. In particular, the larger the velocity v, the more rapid the

spatial variation in u(x, t). The amplitude of the wave u(x, t) vanishes at infinity,

so, provided we solve on a sufficiently large domain, we can treat the problem as

essentially periodic. These solitary waves are known as bright solitons [10]. We

direct interested readers to the book by Billingham and King [10] for a different

kind of solitons, known as “dark soliton solutions” for the NLS equation.

Note that, a special case of (5.26), is the non-traveling wave soliton solutions,

i.e. v = 0, given by

u(x, t) = asech(bx)eidt,

with one complete period of soliton oscillation in time t = 2π/|d|, frequency d = −b2

and amplitude a =
√

2b.

When evaluating the coefficients in the ETD and the ETD-RK methods via the

‘Cauchy integral’ approach [44, 45] (see §4.2.2), we choose circular contours of radius

R = 1.2. Each contour is centered at one of the elements that are on the diagonal

matrix of the linear part of the semi-discretized model (5.25). The contours are

sampled at 32 equally spaced points and approximated by (4.16).

The plots in figure 5.8 give a picture of the solutions (5.26) of the NLS equation

(5.24), with the choice of the wave amplitude a =
√

2, b = 1 and speeds v = 0 and

v = 4 shown in cases (a) and (b) respectively. For the spatial discretization we use

NF = 256 grid points for x ∈ [−5π, 5π] (for case (a) v = 0) and x ∈ [−6π, 10π] (for

case (a) v = 4). We integrate the system (5.25) using the ETD4RK method (5.13)

with time-step size ∆t = 2−8 up to final time t = 2π and t = 6 for cases (a) and

(b) respectively. The solution, in the figure, appears as waterfall plot and shows, in

Chapter 5. Numerical Experiments 137

(a)

(b)

Figure 5.8: Real part of the numerical complex solutions (5.26) of the NLS equation (5.24)

subject to the initial condition u(x, t = 0) =
√

2sech(x)e−ivx/2 with (a) speed

v = 0 and t = 2π and (b) speed v = 4 and t = 6.

Chapter 5. Numerical Experiments 138

case (a), waves oscillating without change in form, while in case (b), the waves are

oscillating and traveling with displacements in position.

The results of our experiments in testing the efficiency of the numerical methods,

for producing accurate solutions of the NLS equation (5.24), are illustrated in §5.4.1

and §5.4.2 and final conclusions are revealed in §5.4.3.

5.4.1 Computational Results

The comparison results of our experiments are presented in figures 5.9, 5.11 and

5.13, for the first-order, second-order and fourth-order methods stated in §5.2, re-

spectively. We consider the soliton solutions (5.26) as exact solutions for the NLS

equation (5.24) and plot, in these figures, the numerical relative integrated error

(5.17) of using each time discretization method for solving the test model as a func-

tion of the time step. In figures 5.10, 5.12 and 5.14, we plot the accuracy as a

function of the CPU time to give an insight into the computation timing. In each

figure, we consider integrating the system (5.25) up to final time t = 6 for the initial

condition

u(x, t = 0) = asech(bx)e−ivx/2, a =
√

2, b = 1, (5.27)

with speed v = 0 in case (a), while cases (b) and (c), consider the speeds v = 2, 4

respectively.

The plots (in figures 5.9, 5.11 and 5.13) confirm the expected order of the meth-

ods and indicate the largest time-step size, i.e. the fewest number of steps, that

each method requires to converge to a solution within a fixed given relative error in

the figures. Improved accuracy is assured if we reduce the time-step size, but this

considerably increases the computation cost, which is illustrated in figures 5.10, 5.12

and 5.14), where we plot the methods’ accuracy as a function of the CPU time.

For the first and second-order methods, applied to the initial wave (5.27), the

spatial discretization is performed using NF = 256 grid points on the space interval

x ∈ [−5π, 5π] for wave speed v = 0. Although the wave’s amplitude is not periodic,

it vanishes at infinity, so we can still treat the problem as periodic by enlarging the

space domain. For the wave with speeds v = 2, 4, the solutions travel, and hence,

we use NF = 512 grid points on the space interval x ∈ [−5π, 15π].

The spatial discretization in the case of utilizing fourth-order methods varies.

Generally, an estimate of the total accumulated errors during a time integration

Chapter 5. Numerical Experiments 139

consists of the truncation error of the local time step and the rounding errors of

the space discretization. Using fourth-order methods with very small time-step size

leads to a small truncation error, of O(∆t)4, though, with spectral methods the

rounding errors are important too. Therefore, to ensure periodicity of the solution

and accurate approximation in the space discretization, it is required to enlarge the

domain with an increase in the number of grid points. In the case of the initial

condition (5.27) with speed v = 0, the computations are carried out on a space

domain x ∈ [−10π, 10π], using NF = 512 grid points. For speeds v = 2, 4, we use

NF = 1024 grid points on a spatial domain x ∈ [−10π, 30π].

The comparison results for the first-order methods, shown in figure 5.9 (a), in-

dicate that, for the initial condition (5.27) with speed v = 0, the best accuracy for

a given time-step is achieved by the ETD1 method (5.2), followed by the IMEX

method (5.5) (which takes essentially similar CPU times, for a given level of ac-

curacy, as the ETD1 method, see figure 5.10 (a)). The IFEULER method (5.4)

requires a smaller time-step and consumes more CPU time than the other compa-

rable first-order methods to produce the same accuracy.

Figure 5.9 (b) shows similar results for the ETD1 method when increasing the

speed up to v = 2. Clearly the method’s performance is superior to the other

comparable first-order methods. The method uses the largest time-step size to

reach a desired accuracy. The IMEX and the IFEULER methods perform almost

identically in achieving the same level of accuracy, with similar CPU times, as

illustrated in figure 5.10 (b).

For large speed v = 4, the ETD1 method seems to perform slightly worse than

the IFEULER method (the most accurate method) for a given time-step size, see

figure 5.9 (c). In addition, a considerable variation in CPU times is noticed in

figure 5.10 (c) when running the first-order methods on a high-speed (v = 4) wave

solution. The IFEULER method consumes the least CPU time for a given error,

while a large amount is used by the IMEX method. This is due to the fact that a

much smaller step size is required for the IMEX method to obtain the same level of

accuracy obtained by the other comparable first-order methods.

Further tests are done on the first-order methods for integrating the system at

high speeds (v = 6, 8, . . .). In these tests we find that the IFEULER method is the

best for producing accurate solutions for the test model (5.24), for a given time-step

size. Moreover, increasing the speed v has no effect on its performance, i.e. as the

Chapter 5. Numerical Experiments 140

(a)

(b)

(c)

Figure 5.9: Relative errors versus time step for (5.24), with the initial condition (5.27),

with speeds (a) v = 0, (b) v = 2 and (c) v = 4, for the first-order methods.

Chapter 5. Numerical Experiments 141

(a)

(b)

(c)

Figure 5.10: Relative errors versus CPU time for (5.24), with the initial condition (5.27),

with speeds (a) v = 0, (b) v = 2 and (c) v = 4, for the first-order methods.

Chapter 5. Numerical Experiments 142

(a)

(b)

(c)

Figure 5.11: Relative errors versus time step for (5.24), with the initial condition (5.27),

with speeds (a) v = 0, (b) v = 2 and (c) v = 4, for the second-order methods.

Chapter 5. Numerical Experiments 143

(a)

(b)

(c)

Figure 5.12: Relative errors versus CPU time for 5.24), with the initial condition (5.27),

with speeds (a) v = 0, (b) v = 2 and (c) v = 4, for the second-order methods.

Chapter 5. Numerical Experiments 144

(a)

(b)

(c)

Figure 5.13: Relative errors versus time step for (5.24), with the initial condition (5.27),

with speeds (a) v = 0, (b) v = 2 and (c) v = 4, for the fourth-order methods.

Chapter 5. Numerical Experiments 145

(a)

(b)

(c)

Figure 5.14: Relative errors versus CPU time for (5.24), with the initial condition (5.27),

with speeds (a) v = 0, (b) v = 2 and (c) v = 4, for the fourth-order methods.

Chapter 5. Numerical Experiments 146

speed increases, we obtain the same quantitative results for the errors over the same

range of time-step sizes. This behavior is in contrast with that of the ETD1 and the

IMEX methods, which both suffer considerably as the wave speed increases (figures

are not shown here as the results resemble those in figure 5.9 (c), for the case of the

speed v = 4. However, the errors for the ETD1 and the IMEX methods get larger

as the speed increases (v = 6, 8, . . .), for the same range of the time-step sizes). The

IMEX method needs a much smaller time-step size and much more CPU time to

be accurate to the same level obtained by the other first-order competitor methods.

In §5.4.2, we further investigate the computational advantages of the IFEULER

method and the disadvantages of the ETD1 method.

When integrating the system (5.25) using second-order methods for the initial

wave (5.27) with speed v = 0, we find that for a given time-step size, the ETD2RK2

method (5.8) is the most accurate and the ETD2 method (5.6) is the third least

accurate, while the IFRK2 method (5.11) is the least accurate, see figure 5.11 (a).

The performance of the ETD2CP (5.9) and the ETDC2 (5.10) methods is seen to

be very similar to that of the ETD2RK2 and the ETD2 methods respectively.

In the case of increasing the speed up to v = 2, illustrated in figure 5.11 (b),

the performance of the ETD2RK1 method (5.7) resembles that of the previous case

(v = 0), while that of the ETD2CP method deteriorates. For a given time-step size,

the ETD2RK1 method is the second least accurate and the ETD2CP method is

third least accurate. The ETD2, the ETDC2 and the IFRK2 methods have almost

identical errors and are the least accurate methods for obtaining the numerical

solution of the NLS equation (5.24).

Among all comparable second-order methods, the ETD2RK2 shows the best

performance overall (in cases of v = 0, 2, 4, 6) and is the most accurate method for

a given time-step size (see figure 5.11 (c) for the case of v = 4, although errors are

equivalent to that of the IFRK2 method in the case of v = 6 (not shown)). Increasing

the speed up to v = 4, 6, . . . has a significant effect in reducing the performance of

the ETD2RK1, the ETDC2, the ETD2 and the ETD2CP methods. See the case

of v = 4 in figure 5.11 (c), where these methods require a smaller time-step size

than that used by the ETD2RK2 method to obtain a desired accuracy. On the

other hand, increasing the speed has no impact on the performance of the IFRK2

method. This method is seen to have the same quantitative error for a given time-

step size as the speed increases, see figure 5.11 (a), (b) and (c). For larger speeds

Chapter 5. Numerical Experiments 147

v = 6, . . . and for a given time-step size, the IFRK2 method is the most accurate

method.

Regarding CPU time consumption, figure 5.12 reveals that, generally, the varia-

tions in CPU time between the comparable second-order methods are insignificant

(when required to be accurate to some specified level). However, figure 5.12 shows

that, in cases (a) v = 0 and (b) v = 2, the IFRK2 method is the most expensive in

timing, as it uses a smaller time-step size than that used by the other second-order

methods to reach a desired level of accuracy. In case (c) v = 4, we find that the

ETD2RK2 method achieves a required accuracy level fastest, while the ETD2RK1

is the most time consuming.

We finally consider the performance of the fourth-order methods. It can be seen

in figure 5.13 that all methods show a clear fourth-order behavior. For speed v = 0

in the initial condition (5.27) (figure 5.13 (a)), the IFRK4 method (5.14) is slightly

less accurate, for a given time-step size, than the ETD4 (5.12) and the ETD4RK

(5.13) methods, which show the best performance in producing accurate numerical

solutions (errors are seen to be very similar for a given time step).

As the speed increases v = 2, 4, . . ., we find that the IFRK4 method has the

same accuracy for a given time-step size (this is similar to the behavior of the

IFEULER and the IFRK2 methods. The analysis applied to explain the behaviors

of the IFEULER method’s performance in §5.4.2, can also be used to analyze the

performance of the IFRK2 and the IFRK4 methods). In addition, the performance

of the ETD4RK method deteriorates gradually as v increases, while that of the

ETD4 method deteriorates dramatically (see figure 5.13 (b) and (c), of which the

case of speed v = 4 (c) shows that, for a given time-step size, the IFRK4 method is

most accurate for obtaining the numerical solution).

In figure 5.14, we find that the exponential integrators rely on the fast evalua-

tion of the exponential and related functions. The computations of the ETD and

the ETD-RK methods coefficients (which are done once at the beginning of the

integration for each time-step size) have a noticeable effect on the CPU times, as

they impose a significant timing overhead when the methods use large time-step

size. As can be seen in figure 5.14 (a), (b) and (c), the differences in timing between

fourth-order methods, for large time-step size, become significant for a required level

of accuracy. In general, the ETD4 method is the most computationally expensive,

since most of the CPU time is spent on setting up the coefficients, via the com-

Chapter 5. Numerical Experiments 148

plex integration (four more coefficients than the ETD4RK method). In addition,

as we decrease the time-step size, the variation in the time consumed by ETD4

and ETD4RK methods is negligible for a considerable range of specified error toler-

ances. However, for small time-step, and for non-traveling solitons v = 0, the ETD4

method in fact consumes least CPU time, as it can use the largest time-step size to

reach a desired accuracy. The IFRK4 method is marginally the slowest for v = 0, as

shown in figure 5.14 (a). As the speed increases v = 2, 4, see figure 5.14 (b) and (c)

respectively, the IFRK4 method maintains its rapidity in accomplishing the com-

putations, whereas the computation times of the ETD4 and the ETD4RK methods

increase gradually. For higher speeds these methods use a smaller time-step size to

obtain a level of accuracy similar to that obtained for v = 0.

We note finally that, for accurate and economical computations, it is often ad-

vantageous to utilize fourth-order methods. The benefits of these methods are that

they can use a much larger time-step size than that for the lower order comparable

integrators for an equivalent level of accuracy, and hence they are cheap.

5.4.2 Error Analysis of the ETD and the IF Methods

Our analysis in this section investigates the computational advantage of the Integrat-

ing Factor IF methods and the disadvantage of the Exponential Time Differencing

ETD methods in solving the nonlinear Schrödinger (NLS) equation (5.24). The

previous tests in §5.4.1 revealed that, increasing the speed v = 0, 2, . . . of the soliton

solutions (5.26) has no effect on the IF methods’ performance, i.e. as the speed

increases, we obtain the same quantitative results for the errors over the same range

of the time-step sizes for an s-order IF method. This behavior is in contrast with

that of the ETD methods, which suffer considerably as the wave speed increases,

and so, in cases of large speeds v = 4, 5, . . . and for a given time-step size, the IF

methods are the best for producing accurate soliton solutions.

The usual way to analyze the accuracy of a numerical method is to study the

local truncation error in time. So if we consider the model (5.1)

du(t)
dt

= cu(t) + F (u(t), t),

then the local truncation error, for example, of the ETD1 (5.2) and the IFEULER

Chapter 5. Numerical Experiments 149

(5.4) methods are

L.T.E1 ≈
∆t2

2
dF (u(t), t)/dt, (5.28a)

L.T.E2 ≈
∆t2

2
d(F (u(t), t)e−ct)/dt, (5.28b)

respectively. The derivation of equations (5.28a) and (5.28b) is given in Appendix B.

For cases where the nonlinear term F (u(t), t) is slowly varying, i.e. the value of

dF (u(t), t)/dt is small, the ETD1 method is highly accurate, while in cases where the

term F (u(t), t)e−ct is slowly varying (d(F (u(t), t)e−ct)/dt is small), the IFEULER

is the most accurate.

To understand clearly how this analysis can be applied to the numerical methods

in case of the soliton solutions (5.26), we need first to apply the analysis to simple

exact periodic solutions of the NLS equation (5.24) of the form

u(x, t) = Aei(ωt+Cx),

with amplitude A, and frequency ω = C2 −A2.

According to (5.28)

L.T.E1 ≈ ∆t2ωA3ei(ωt+Cx)/2, L.T.E2 ≈ −∆t2A5ei(Cx−A
2t)/2.

Hence, L.T.E1 ∝ ωA3 = (C2 − A2)A3 and L.T.E2 ∝ A5. For cases in which ω

is small, i.e. C and A are quantitatively similar, the ETD1 method (5.2) should

therefore show the best accuracy for a given time-step size, while if A is small and

C is large, i.e. ω is large, the IFEULER method (5.4) should be the best.

In figure 5.15, we plot the numerical relative error of the integrated error norm

(5.17) as a function of the time-step size, for two different values of ω. The choices

of our exact solutions are

u1(x, t) = ei(−3t/16+x/4)/2, x ∈ [0, 8π],

u2(x, t) = ei(63t+8x), x ∈ [0, π/4].

We use NF = 64 grid points for the space discretization, and integrate the sys-

tem (5.25) up to one period of time t = 2π/|ω|, utilizing the ETD1 (5.2) and the

IFEULER (5.4) methods. We evaluate the coefficients in the ETD1 method using

the ‘Cauchy integral’ approach. Figure 5.15 case (a) confirms that, for the initial

condition

u1(x, 0) = eix/4/2,

Chapter 5. Numerical Experiments 150

(a)

(b)

Figure 5.15: Relative errors versus time step for solving the NLS equation (5.24) with the

ETD1 (5.2) and the IFEULER (5.4) methods, subject to the initial condition

(a) u1(x, 0) = eix/4/2, x ∈ [0, 8π] (b) u2(x, 0) = ei8x, x ∈ [0, π/4].

Chapter 5. Numerical Experiments 151

with the small value of ω = −3/16, the ETD1 method gives the best accuracy for a

given time-step size, while, case (b) of the figure shows that for the initial condition

u2(x, 0) = ei8x,

with the small value of A = 1 and large value of ω = 63, the IFEULER method is

the most accurate method for solving the NLS equation (5.24).

The above analysis can also be applied in a similar way to the soliton solutions

u(x, t) = asech(b(x− vt))ei(c0x+dt), (5.29)

of the NLS equation (5.24)

∂u(x, t)
∂t

= −i
(∂2u(x, t)

∂x2
+ |u(x, t)|2u(x, t)

)
.

For these solutions, the non-linear part takes the form

F (u(t), t) = −i|u|2u = −ia3sech3
(
a(x− vt)/

√
2
)
ei(−vx/2+(v2/4−a2/2)t), (5.30)

and the linear operator (−i∂2u/∂x2) corresponds to the term c = ik2 for waves with

wave-number k. If we look again at (5.28a), we find that if the soliton solutions (5.29)

vary slowly in time, then the non-linear part F (u(t), t) (5.30) also varies slowly in

time, and the ETD1 method (5.2) is highly accurate. As we increase the speed v,

however, the value of dF (u(t), t)/dt increases, and the ETD1 method becomes less

accurate (this was seen in our earlier experiments illustrated in figure 5.9 (c) for the

case of the speed v = 4). On the other hand, if we look at (5.28b) again for the

non-linear term F (u(t), t) (5.30), we find that if the term F (u(t), t)e−ct varies slowly

in time, then the IFEULER method (5.4) should be the most accurate for a given

time step. Here, as we vary the value of the speed v, the value of d(F (u(t), t)e−ct)/dt

does not change, and therefore, the IFEULER method obtains the same quantitative

results for the errors over the same range of time-step sizes (this is illustrated in

figure 5.9 (a) v = 0, (b) v = 2 and (c) v = 4).

To give a more evident view of the above analysis, fix a =
√

2 (as in our earlier

experiments in §5.4.1) and assume that the dominant wave-number is approximately

k = −v/2⇒ c = iv2/4, and hence for the nonlinear term F (u(t), t) (5.30)

dF (u(t), t)/dt ∝ (v2/4− a2/2)a3.

Therefore, as the speed v increases, the nonlinear term F (u(t), t) varies rapidly and

the value of dF (u(t), t)/dt increases, and according to (5.28a), the ETD1 method

Chapter 5. Numerical Experiments 152

(5.2) become less accurate than the IFEULER method (5.4) for a given time step.

We would expect the ETD1 method to be highly accurate when v = 0 and v2/4 =

a2/2, i.e. v = 2, which agrees with our results in figure 5.9 (b). On the other hand

the term

F (u(t), t)e−ct = −ia3sech3(a(x− vt)/
√

2)ei(−vx/2−a
2t/2),

and hence, the value d(F (u(t), t)e−ct)/dt is not influenced by increasing the speed

v, and the truncation error (5.28b) does not change and therefore the IFEULER

method obtains the same quantitative results for the errors over the same range of

time-step sizes.

Finally, we note that the above investigation can also be useful to explain the

behaviors of the second and fourth-order ETD and IF methods in solving the NLS

equation (5.24), illustrated in figures 5.11 and 5.13 in our earlier experiments.

5.4.3 Conclusion

We have implemented several competing exponential integrators for a large stiff sys-

tem of ODEs arising from the space discretization of the NLS equation (5.24). Our

simulations for soliton solutions have revealed considerably different performances

of the compared numerical methods in different cases, which make it clear that the

best choice of method depends on the specific problem to be solved. However, all

compared methods have been able to resolve oscillatory solitons to a required error

tolerance without the severe time-step size restrictions of the standard schemes.

Experimentally, we have found that, in the non-traveling wave soliton solution

case (v = 0 in (5.26)), the most efficient methods of those we have compared are

the ETD and ETD-RK methods of Cox and Matthews [19]. The best of these

methods are the first-order ETD1 (5.2), the ETD2RK2 (5.8) and the ETD4RK

(5.13) methods. Similar conclusions have been found in the case of slowly traveling

soliton solutions (i.e. the speed v = 2 in our tests).

In addition, we have found firstly that, the performance of IFEULER (5.4),

IFRK2 (5.11) and IFRK4 (5.14) methods is not influenced by varying the values

of the speed v, i.e. if we compare the performance of similar order IF methods,

as the speed increases, we get the same quantitative results for the errors over the

same range of time-step sizes. Secondly, to produce accurate numerical solutions of

the NLS equation for larger speeds v, the IF methods prove to be the most accurate.

Chapter 5. Numerical Experiments 153

5.5 Thin Film Equation

As a next step towards solving nonlinear PDEs, we include the fourth-order thin

film equation [36]

∂H(x, t)
∂t

= −∂H(x, t)
∂x

+
∂

∂x

(
H3(x, t)

(
γ cosx−α

(∂3H(x, t)
∂x3

+
∂H(x, t)
∂x

)))
, (5.31)

where the film thickness H(x, t) is a 2π-periodic function. The authors of [36]

studied the time-dependent evolution equation (5.31) for a free-surface of a thin

film viscous fluid flow exterior to a rotating horizontal circular cylinder in a vertical

gravitational field with a polar angle x of a point on the cylinder. The model is

based on a lubrication approximation assuming that the film is very thin compared

to the cylindrical radius, and includes the effect of cylindrical rotation (−∂H/∂x),

gravity (∂(γH3 cosx)/∂x) and surface-tension (−∂(αH3(∂3H/∂x3 + ∂H/∂x))/∂x)

with corresponding parameters γ and α. The theoretical analysis and physical

interpretation of equation (5.31) in [36] revealed that distinct physical mechanisms,

governing a slow approach to a steady state, occur on different time-scales. Firstly,

there is the fast process of rotating with the cylinder. Secondly, surface-tension

squeezes the free fluid surface to a cylindrical shape. After this, oscillations decay

exponentially on a slow time scale. Their numerical investigation revealed that the

solution oscillates with time before eventually decaying to a steady state at large

time.

A very brief list of some recent research in fluid dynamics involving numerical

simulations of this class of problems includes [6, 24, 88]. The authors of [6] obtained

an evolution equation and analyzed the dynamics of a thin viscous film which lines

a rigid cylindrical tube and surrounds a core of inviscid fluid considering flow in the

2D cross section of the tube. When solving the full nonlinear system numerically,

they found that the film can evolve towards a steady solution of uniform thickness.

In addition, a model for the evolution of a thin liquid film flowing on and coating a

horizontal cylinder that is rotating uniformly about its axis is presented in [24]. The

authors of [24] obtained solutions to the evolution equation with implicit numerical

schemes based on finite differences. The results showed a wide range of possible

behavior depending on the rotation rate.

Solving the thin film equation (5.31) numerically is a challenging task since the

numerical solution poses several problems:

Chapter 5. Numerical Experiments 154

1. The fourth-order term is very stiff: the stability constraint on the time step

for explicit methods requires ∆t ≈ O(h4) for space step h.

2. When integrating the semi-discretized system of the equations, we find that

• Applying fully implicit methods requires at each time step the solution

of a system of nonlinear equations.

• Applying the IMEX methods requires at each time step the calculation of

either a pentadiagonal differentiation matrix inverse (in the case of dis-

cretizing with finite difference approximations [24]) or a full dense differ-

entiation matrix inverse (in the case of a Fourier spectral approximation).

For example, applying a first-order IMEX method gives

Hn+1 = · · ·+ (I + α∆tH3
nD4)−1Hn + · · · ,

where I is the identity matrix, D4 is the corresponding differentiation

matrix for the fourth derivative and Hn denotes the numerical approxi-

mation to H(tn).

• We cannot apply exponential integration methods directly to solve such

problems since these methods are designed for PDEs that can be split

into linear and nonlinear parts.

To facilitate numerical studies of the thin film equation (5.31), we set the per-

turbation

H(x, t) = h0 + u(x, t),

where h0 is the mean film thickness, to be the solution of the equation and obtain

∂u(x, t)
∂t

= −∂u(x, t)
∂x

+
∂

∂x

(
(h0 + u(x, t))3

(
γ cosx− α

(∂3u(x, t)
∂x3

+
∂u(x, t)
∂x

)))
.

After some algebraic manipulation to split the linear and nonlinear terms we deduce

∂u(x, t)
∂t

= −∂u(x, t)
∂x

− αh3
0

(∂4u(x, t)
∂x4

+
∂2u(x, t)
∂x2

)
− γh3

0 sinx

+
∂

∂x

(
((h0 + u(x, t))3 − h3

0)
(
γ cosx− α

(∂3u(x, t)
∂x3

+
∂u(x, t)
∂x

)))
, (5.32)

which is an exact reformulation of the original thin film equation (5.31). The per-

turbation u(x, t) is either small, leading to a weakly nonlinear PDE or large, leading

to a strongly nonlinear PDE.

Chapter 5. Numerical Experiments 155

(a)

(b)

Figure 5.16: Time evolution of the thin film equation (5.32) with α = 0.0048, γ = 0.0532

and initial film thickness H(x, 0) = 1 (a) solution at polar angle x = 0, in

the time interval 0 ≤ t ≤ 1000 (b) an approach to a steady state at t = 1000.

Chapter 5. Numerical Experiments 156

Discretizing the spatial derivatives of the thin film equation (5.32), with periodic

boundary conditions, in Fourier space yields

dû(t)
dt

= (−ik + αh3
0(k2 − k4))û(t)− γh3

0fft(sinx)

+ ik[fft((γ cosx+ iα<(ifft((k3 − k)û(t))))((u(t) + h0)3 − h3
0))], (5.33)

where k is the wavenumber and fft and ifft are Matlab commands that represent

the fast Fourier transform FFT and its inverse respectively. The FFT is a complex

transform, but in most applications, the data u to be differentiated is real, hence,

only the real part < is taken in the spectral differentiation. The semi-discrete system

(5.33) is a system of coupled ODEs in time. The stiffness in the system is due to

the fact that the diagonal linear operator, with elements −ik + αh3
0(k2 − k4), has

complex eigenvalues of which some have large negative real parts that represent

decay, because of the strong dissipation (−∂4u/∂x4), on a time scale much shorter

than that typical of the nonlinear terms.

We solve the thin film equation (5.32) in the time interval 0 ≤ t ≤ 1000 with

periodic boundary conditions and initial film thickness H(x, 0) = 1 + u(x, 0), where

u(x, 0) = 0. We set α = 0.0048 and γ = 0.0532 (taken from [36]) and use NF = 32

grid points in the Fourier spatial discretization. We utilize the ETD4RK method

(5.13) with time-step size ∆t ≈ 2−6 for the time-discretization. When evaluating

the coefficients of the ETD4RK method (and similarly for the ETD and the ETD-

RK methods utilized for the comparison computations presented in §5.5.1) via the

‘Cauchy integral’ approach [44, 45] (see §4.2.2), we choose circular contours of radius

R = 1. Each contour is centered at one of the diagonal elements of the matrix of

the linear part of the semi-discretized PDE (5.33). The contours are sampled at

32 equally spaced points and approximated by (4.16). The numerical results are

presented in figure 5.16, which shows in (a) that the solution, at the polar angle

x = 0, oscillates with time before eventually decaying to a steady state, shown in

(b), at large time. In addition, the figure demonstrates excellent agreement between

our numerical results and those of [36], providing a check on the accuracy of the

method.

In §5.5.1, we solve numerically the thin film equation (5.32) up to final time

t = 20 in a manner analogous to solving the former PDEs: the K-S (5.18) and the

NLS (5.24) equations. We utilize the time-discretization methods listed in §5.2, and

discuss the results of the comparison tests and state our conclusion in §5.5.2.

Chapter 5. Numerical Experiments 157

5.5.1 Computational Results

In our simulation tests, we numerically integrate the thin film equation (5.32) up to

final times t = 20 with periodic boundary conditions and again the initial film thick-

ness H(x, 0) = 1 + u(x, 0), where u(x, 0) = 0. We set α = 0.0048, γ = 0.0532 (taken

from [36]) and again use NF = 32 grid points in the Fourier spatial discretization.

We measure the efficiency of each time-discretization method, listed in §5.2, in

solving the test model, by computing the numerical relative error (5.17). The exact

solution is approximated utilizing, for the time discretization, the ETD4RK method

(5.13) with a very small time-step.

In figure 5.17, we plot in (a), (b) and (c) the accuracy of first, second and fourth-

order methods as a function of the time step respectively. The aim is to look for the

most competitive method which takes fewer steps (larger time-step size) to achieve

a given error tolerance. Note that the accuracy is improved as time-step decreases,

and that the figures confirm the order expected for each method. In figure 5.18

(a), (b) and (c), we plot the first, second and fourth-order methods’ accuracy as

a function of CPU time respectively, to add a competing factor in differentiating

between the methods.

Considering the first-order methods, it appears from figure 5.17 (a) that the

IMEX and the EULER methods are not reliable methods for solving the thin film

equation (5.32). In the plot, we find that these two methods are the least accurate for

a given time-step size. In addition, they are the most time consuming, see figure 5.18

(a), due to the very small time-step used by the methods (compared to the larger

time-step used by the IFEULER and the ETD1 methods) to produce a solution

that is accurate to any given level of accuracy. We find that the IFEULER method

outperforms the EULER, the IMEX and the ETD1 methods in both accuracy and

speed for any given level of accuracy.

To produce solutions for the thin film equation with higher orders of accuracy

in time, we utilize second-order methods. In figure 5.17 (b), we find that, for a

given time-step size, the IFRK2 method produces more accurate solutions than the

IFEULER method does. However, for any given level of accuracy, it is the second

most accurate and the most time consuming method, see figure 5.18 (b), comparing

to other second-order methods. Its performance resembles that of the ETD2RK1

and the ETD2CP methods, though, the ETD2CP method is the second most costly

Chapter 5. Numerical Experiments 158

(a)

(b)

(c)

Figure 5.17: Relative errors versus time step for the thin film equation (5.32) with initial

film thickness H(x, 0) = 1 (a) first-order methods (b) second-order methods

(c) fourth-order methods.

Chapter 5. Numerical Experiments 159

(a)

(b)

(c)

Figure 5.18: Relative errors versus CPU time for the thin film equation (5.32) with initial

film thickness H(x, 0) = 1 (a) first-order methods (b) second-order methods

(c) fourth-order methods.

Chapter 5. Numerical Experiments 160

method. In addition, tests show that the most accurate method is the ETD2RK2

method with the smallest amount of time consumed for solving the equation to any

given level of accuracy, see figure 5.18 (b).

Finally, we consider utilizing fourth-order methods with fourth-order conver-

gence, that guarantee higher order accuracy in time. As illustrated in figure 5.17

(c) and 5.18 (c), the IFRK4 method has proven to be a satisfactory method, being

the most accurate and the least time consuming method for any given level of ac-

curacy. In addition, our simulations reveal that, whereas the ETD4 fails to produce

an accurate solution to the equation for time-step larger than ∆t ≈ 5 × 10−3, the

ETD4RK method can use time-steps of a maximum size ∆t ≈ 8× 10−2 to produce

a solution with an accuracy of 10−7, see figure 5.17 (c). This indicates that the

ETD4RK method has larger stability region than that of the ETD4 method which

in addition, is smaller than that of the ETD2 method. This agrees with our stability

analysis in §3.3.

5.5.2 Conclusion

Problems in the fluid dynamics of thin films have been solved to demonstrate the

effectiveness of exponential integrators. Under certain circumstances, we have found

that, whereas the first-order IMEX, the EULER and the ETD4 methods are imprac-

tical for solving the nonlinear thin film equation (5.32), the IF and the ETD2RK2

methods have proven to be accurate and reliable. It would be interesting in future

to analyze theoretically and understand the behavior of the numerical methods’

performance in the experiments that have been conducted.

Our conclusions have relied on only one case study, where we have considered

one fixed value of the surface-tension and the gravity parameters with an initially

uniform film thickness. However, the thin film equation is strongly nonlinear, hence

convergence and stability become solution-dependent issues, and our conclusions

could differ greatly for different cases.

Chapter 6
Overall Conclusions

161

Chapter 6. Overall Conclusions 162

6.1 Overall Conclusions

This research aimed to employ Exponential Time Differencing (ETD) as a time-

discretization method to solve accurately stiff partial differential equations. We

considered the effectiveness of these methods for solving real application problems.

Throughout this project, we also presented the modifications that these methods

need in order to be effective. In essence, for semi-linear time-dependent equations,

these schemes provide a systematic coupling of the explicit treatment of nonlinear-

ities and the exact integration of the stiff linear part of the equations.

The thesis began with a review of the derivation of the explicit ETD method of

arbitrary order s, which includes the explicit formula of the methods’ coefficients,

and we presented the Runge-Kutta (ETD-RK) methods of Cox and Matthews

[19] up to fourth-order. We also derived the ETD2RK2 scheme (analogous to the

“modified Euler” method [78]) as an example of the one-parameter family of the

ETD2Rk schemes for ∈ R+. We concluded that

• If the nonlinear part F (u(t), t) of the differential equation (3.3) is zero, the

ETD integrators produce the exact solution to the ODE and so the schemes

are automatically A-stable.

• If the linear part is zero (c = 0 in (3.3)), the ETD and the ETD-RK inte-

grators reduce to linear multi-step or classical explicit Runge-Kutta methods

respectively.

This work raised the issue of defining other formulas for one-parameter families

of s-order ETD-RK schemes in future studies.

As a next step, we examined analytically the ETD and ETD-RK methods’ sta-

bility properties, up to fourth-order. Tests were illustrated with figures where we

computed and plotted the boundaries of the stability regions in two dimensions for

negative and purely real values of the stiffness parameter in the test problem (3.24).

The figures demonstrated that the stability regions of the ETD-RK methods are

larger than those of the multi-step ETD methods, which agrees with the conven-

tional fact that the RK methods have larger stability regions than the ordinary

multi-step time-discretization methods of the same order. However, we found that

the different types of an s-order ETD-RK schemes (for example, the ETD2RK1 and

the ETD2RK2 schemes) have different stability regions, in contrast to the stability

regions of different formulas of an s-order RK methods (which coincide). In addi-

tion, for any given value of the stiffness parameter, the stability regions of multi-step

Chapter 6. Overall Conclusions 163

ETD methods get smaller as the order of the methods increases, which agrees with

the stability characteristic of the ordinary multi-step methods. This work illustrates

that the ETD and the ETD-RK methods have the advantage of avoiding the severe

restrictions on the time-step size when compared with any conventional explicit

method in solving a stiff system of ODEs. We found that the stability regions of the

ETD and ETD-RK methods grow larger as the stiffness parameter decreases, which

permits the usage of a large time-step size and consequent rapidity in computations.

Applying the ETD methods requires the computation of the coefficients, which

are matrix exponentials and related matrix functions of the linear operators. A

complication [19] arises in the computation of these coefficients, in addition to the

difficulties already inherent in computing a matrix exponential [60]. For matrices

which have eigenvalues equal to zero, the explicit formulas of the coefficients involve

division by zero, while for matrices which have very small eigenvalues approach-

ing zero, the coefficients suffer from rounding errors due to the large amount of

cancellation in the formulas.

At this stage of the research, the plan was to test various algorithms against each

other and assess their accuracy, efficiency and ease of use for improving the numerical

difficulties in approximating the ETD coefficients and for an efficient implementation

of the ETD methods. The algorithms studied in this thesis are the Taylor series,

the Cauchy integral formula, the Scaling and Squaring algorithm, the Composite

Matrix algorithm and the Matrix Decomposition algorithm for non-diagonal matrix

cases.

We now reiterate the main conclusions that were drawn from this work:

1. Taylor Series: This algorithm is known for its simplicity and ease of imple-

mentation. However, its efficiency deteriorates when approximating the ETD

coefficients for large values (in magnitude) of the argument (matrix norm in

the matrix case).

2. The Cauchy Integral Formula: The algorithm was proposed by Kassam

and Trefethen [44, 45] to evaluate the ETD coefficients by means of contour

integration in the complex plane approximated by the Trapezium rule (4.16).

This algorithm turned out to be very accurate for diagonal matrix problems,

but it can be inaccurate and time consuming for non-diagonal matrices with

large norm. In addition, this algorithm requires a prior knowledge of the

Chapter 6. Overall Conclusions 164

eigenvalue of largest magnitude, and we must ensure that none of the points

on the contour are close to or at the origin, otherwise the original problem of

rounding errors reappears.

We gave theoretical estimate formulas of the errors when using the Cauchy

integral formula to approximate the ETD coefficients for matrices with large

norm, and we used these formulas to estimate the number of points required

to discretize the contour to achieve a relative error of some chosen tolerance.

However, improvements to this algorithm have recently been developed [70].

3. Scaling and Squaring Algorithm Type I: This algorithm is one of the

most effective and powerful algorithms for diagonal and non-diagonal matrix

problems. However, it is the most complex to implement.

In diagonal matrix cases, it is stable for small positive values and for all

negative values on the diagonal. However, the algorithm performance deteri-

orates for large positive values. Due to our analysis, we found that the errors

resulting from the scaling and squaring process in approximating, for large

positive values, either the exponential of a diagonal matrix (when the algo-

rithm’s formulas include it) or the identity (4.27) (if the algorithm is based on

it), are doubled at each scaling. The analysis in both cases also predicts that

these errors increase linearly as the positive values increase.

In non-diagonal matrix cases, the algorithm requires the knowledge of the

eigenvalue of largest magnitude. In the case of matrices with negative eigen-

values, we found that the performance of the algorithm, when it is based on

the identities (4.27), (4.21) and (4.22), agrees well with that in case of the

negative values of the diagonal matrix. This is due to the advantage that we

do not need to compute a matrix exponential. However, when the algorithm

is based on (4.20) - (4.22), or (4.23) - (4.25) or (4.27) and (4.24) - (4.25), we

found that the errors resulting from the scaling and squaring process cause

the performance of the algorithm to deteriorate for large norm matrices. This

behavior is contrary to that in the case of negative values of the diagonal

matrices, and it is consequently a task for future research to investigate.

Note that we favored Taylor series to combine with the algorithm rather

than the popular Padé approximation. Firstly, we found that Padé approx-

imations lead to larger rounding errors, due to cancellation problems, than

Chapter 6. Overall Conclusions 165

Taylor series, which are then amplified by the scaling and squaring process.

Secondly, Padé approximations require a more expensive matrix inversion, in

which the matrix can be very poorly conditioned with respect to inversion.

4. Scaling and Squaring Algorithm Type II: This algorithm gave accurate

results when evaluating the coefficients in the first-order ETD1 method (3.14)

for very small values (in magnitude) of the argument utilizing the identity

(4.48). Due to our analysis, we found that there is no amplification of the errors

and the algorithm’s accuracy remains the same at each scaling. However, this

algorithm did not perform well when computing the coefficients in higher order

ETD methods for very small values (in magnitude) of the argument, due to

the amplification of rounding errors at each scaling as our analysis suggested.

Thus, the Scaling and Squaring type II algorithm is not generally useful.

5. Composite Matrix Algorithm: Implementing this algorithm involves tak-

ing the exponential of a specially constructed matrix, via the Matlab routine

“expm”, which is based on the Scaling and Squaring algorithm. The resulting

matrix contains the values of the ETD coefficients which then can be extracted

easily.

For small positive values and all negative values in diagonal problems and

for small norm matrices in non-diagonal problems, the algorithm proved to

be successful in approximating the ETD coefficients accurately. But it is

inaccurate and computationally expensive in time for non-diagonal matrices

with large norm, due to the larger number of scaling and squaring process that

become inaccurate.

6. Matrix Decomposition Algorithm: This algorithm simplifies the evalua-

tion of a function of a non-diagonal matrix exponential to that of a diagonal

matrix exponential whose elements are the eigenvalues of the non-diagonal

matrix. This algorithm is remarkably accurate when compared with the ex-

plicit formula for ETD coefficients, and is the cheapest algorithm in time. For

small norm matrices, however, it is slightly less accurate than the Cauchy in-

tegral formula, the Scaling and Squaring type I and the Composite Matrix

algorithms.

Tests on the second-order centered difference differentiation matrix for the first and

Chapter 6. Overall Conclusions 166

second derivatives and the Chebyshev differentiation matrix for the second derivative

exhibit qualitatively similar results, except that the errors are typically larger for

the Chebyshev matrix, due to the larger eigenvalues of this matrix.

The above results led us to agree with the quotation “practical implementations

are dubious in the sense that implementation of a sole algorithm might not be en-

tirely reliable for all classes of problems” [60]. However, in differentiating between

the algorithms considered, we concluded that the Scaling and Squaring type I algo-

rithm is an efficient algorithm for computing the ETD coefficients in both diagonal

and non-diagonal matrix cases. It exhibits some loss of accuracy for large values of

the scalar arguments and large norm of matrices, but this is much less severe than

for the Taylor series and the Cauchy integral formula. Also, it compares favorably

with the high computational cost of the Cauchy integral formula and the Com-

posite Matrix algorithm in non-diagonal matrix cases. The Matrix Decomposition

algorithm, in the conventional eigenvector approach is also very efficient computa-

tionally, though it is slightly less accurate when the matrix norm is small, and is

not applicable to matrices that do not have a complete set of linearly independent

eigenvectors (where no invertible matrix of eigenvectors exists).

The final part of this project aimed to conduct numerical comparison experi-

ments on three stiff PDEs, in one space dimension. We employed first, second and

fourth-order ETD methods, including the ETD and the ETD-RK methods proposed

by Cox and Matthews [19], and made some observations regarding their efficiency

against other competing stiff integrators including: the first-order Implicit-Explicit

(IMEX) method and first, second and fourth-order Integrating Factor (IF) methods.

The problems considered were: the dissipative time-dependent scalar Kuramoto-

Sivashinsky (K-S) equation, the nonlinear dispersive Schrödinger (NLS) equa-

tion and the nonlinear (dissipative-dispersive) Thin Film equation. In the K-S and

the NLS equations, the linear terms of the equations are primarily responsible for

stiffness whereas in the thin film equation the nonlinear terms are the stiffest.

For the simulation tests, we chose periodic boundary conditions and applied

Fourier spectral approximation for the spatial discretization. In addition, we evalu-

ated the coefficients of the ETD and the ETD-RK methods via the ‘Cauchy integral’

approach [44, 45].

Our simulations revealed considerably different performances of the compared

numerical methods in different cases. Regarding accuracy and CPU time in the

Chapter 6. Overall Conclusions 167

solving process of the K-S equation (5.20), we concluded that the ETD4RK method

(5.13) is marginally the best. It maintains good stability and produces high accuracy

with reasonable computational effort. Furthermore, when solving the test model for

the specific initial condition (5.22), we found that the ETD and ETD-RK methods

of [19] outperformed the compared methods in both speed and accuracy.

For non-traveling or slowly traveling wave soliton solutions of the NLS equation

(5.24), we found that, the most efficient methods of those we compared are the

ETD and ETD-RK methods of [19]. However, the performance of these methods

declines for solutions with larger speeds (fast traveling waves) and the IF methods

then prove to be the most accurate. Our analysis revealed that, as the soliton wave-

speed increases, the local truncation error of the ETD methods gets larger and the

methods become less accurate. On the other hand, the local truncation error of the

IF methods does not change as the speed varies and hence these methods maintain

their performance, and moreover we obtain the same quantitative results for the

errors (over the same range of time-step sizes) for an s-order IF method.

To apply our numerical tests to the nonlinear thin film equation, we introduced a

perturbation to split the equation into linear and nonlinear terms. For this equation

we found that the first-order IMEX and the ETD4 methods are impractical methods,

whereas the IF and the ETD2RK2 methods proved to be accurate and reliable. It

would also be interesting to analyze theoretically and understand in future work the

behavior of the numerical methods’ performance. Further studies on the thin film

equation should consider large and small perturbations to the constant solution.

We expect exponential integrators to perform well when the perturbation is small.

Large perturbations lead to nonlinear terms with a stiffer character, and hence the

performance of the exponential integrators could deteriorate.

In addition, we should consider cases of varying the surface-tension and the

gravity parameters in equation (5.32). For example, increasing the surface-tension

makes the decay of the amplitude of the higher oscillating Fourier modes more rapid

and the complexity of the time-dependent solutions increases rapidly.

Overall we deduced that all the compared methods exhibited the order of accu-

racy expected, and proved to be efficient alternatives to standard explicit integrators

for computing solutions for stiff problems without severe time-step size restrictions.

Additionally, we noted that, for accurate and economical computations, it is often

advantageous to utilize fourth-order methods. The benefits of these methods are

Chapter 6. Overall Conclusions 168

that they can use a much larger time-step size than the lower order comparable

integrators for an equivalent level of accuracy, and hence they are cheap. We also

found that the ETD integrators rely on the fast evaluation of the exponential and re-

lated functions. The computations of the methods’ coefficients, which are done once

at the beginning of the integration for each time step size, have a noticeable effect on

the CPU times, as they impose a significant timing overhead when the methods use

a large time step. However, ETD schemes can be efficiently combined with spatial

approximations to provide accurate smooth solutions for stiff or highly oscillatory

semi-linear PDEs. These methods were shown to perform extremely well in solving

various real application problems, while achieving high accuracy and maintaining

good stability. The ETD-RK methods were demonstrated to be more stable and

allow to use larger time-step size than that used by the multi-step ETD methods,

and we also found that the lower order multi-step ETD methods are more stable

than higher order ones, which agrees very well with our stability analysis in §3.

As a final point, we caution that our conclusions are restricted only to the cases

studied. These results cannot be generalized, as they may differ for other choices of

initial conditions and for other problems. It is clear that the best choice of method

depends on the specific problem to be solved.

Our research serves as a basis for more detailed theoretical and numerical in-

vestigations on time-discretization methods to be carried out in the future. It is

hoped that the future investigation will serve dual roles. Firstly, to confirm that

the ETD methods can be ideal methods to cope with stiff systems in a wide range

of applications. Secondly, to develop time-discretization methods that can facilitate

numerical studies of higher-order problems with nonlinear stiff terms arising from

mathematical models of a diverse range of physical phenomena.

Appendices

169

Appendix A
The Numerical Solution of the

Kuramoto-Sivashinsky Equation

This Matlab program is used to obtain the numerical solution of the Kuramoto-

Sivashinsky (K-S) equation (5.18), utilizing the ETD4RK method (5.13), and to

produce figure 5.2.

% Spatial grid

N = 64; L = 2*pi; x = ([0:N-1]*2*L/N)’; dt = 2^(-10);

% Spectral differentiation matrices

D1 = i*(pi/L)*[0:N/2-1 0 -N/2+1:-1];

D2 = D1.^2; D2((N/2)+1) = -(N*pi/(2*L))^2;

D4 = D2.^2; c = -D2-D4;

% Evaluating the coefficients of the ETD4RK method

% Using Cauchy integral formula

R = 1; N1 = 32; r = R*exp(2*i*pi*(1:N1)/N1);

c1 = c*dt; c2 = c1/2; E1 = exp(c1); E = exp(c2);

for k = 1:N

C1(k) = real(mean((dt/2)*((exp(c2(k)+r)-1)./(c2(k)+r))));

C2(k) = real(mean(dt*((-4-c1(k)-r+exp(c1(k)+r).*(4-3*(c1(k)+r)+(c1(k)+r).^2))

./(c1(k)+r).^3)));

C3(k) = real(mean(dt*((2+c1(k)+r+(c1(k)+r-2).*exp(c1(k)+r))./(c1(k)+r).^3)));

170

Appendix A. The Numerical Solution of the Kuramoto-Sivashinsky Equation 171

C4(k) = real(mean(dt*((-4-3*(c1(k)+r)-(c1(k)+r).^2+(4-c1(k)-r).*exp(c1(k)+r))

./(c1(k)+r).^3)));

end

% Initial condition

u = exp(cos(x/2)); uhat = fft(u);

% Solve PDE:

tmax = 60; nmax = round(tmax/dt); nc = 60; nplt = floor(nmax/nc);

udata = u; tdata = 0;

min1 = min(u); max1 = max(u);

for n = 1:nmax

t = n*dt;

uhat1_x = D1.*fft(u.^2)/2;

ahat = (E.*uhat)-(C1’.*uhat1_x); a=real(ifft(ahat));

bhat = (E.*uhat)-(C1’.*D1.*fft(a.^2)/2); b=real(ifft(bhat));

chat = (E.*ahat)-(C1’.*(D1.*fft(b.^2)-uhat1_x)); C=real(ifft(chat));

uhat = (E1.*uhat)-(C2’.*uhat1_x+C3’.*D1.*(fft(a.^2)+fft(b.^2))

+C4’.*D1.*fft(C.^2)/2);

u = real(ifft(uhat));

if mod(n,nplt) == 0

udata = [udata u]; tdata = [tdata t];

min1 = [min1 min(u)]; max1 = [max1 max(u)];

end

end

% plot results:

set(gcf,’renderer’,’zbuffer’), clf, drawnow

mesh(x,tdata,udata’), colormap(1e-6*[1 1 1])

xlabel x, ylabel t, zlabel u, grid on

axis([0 2*L 0 tmax floor(min(min1)) ceil(max(max1))])

set(gca,’ztick’,[floor(min(min1)) ceil(max(max1))])

Appendix B
Derivation of the Local Truncation

Errors

Local truncation errors or discretization errors are errors made by numerical algo-

rithms that arises from taking finite number of steps in computation. It is present

even with infinite-precision arithmetic, because it is caused by truncation of the

infinite Taylor series to form the algorithm.

To derive the local truncation errors L.T.E1 (5.28a)

L.T.E1 ≈
∆t2

2
dF (u(t), t)/dt,

of the ETD1 method (5.2)

u(tn+1) = u(tn)ec∆t + (ec∆t − 1)F (u(tn), tn)/c,

and L.T.E2 (5.28b)

L.T.E2 ≈
∆t2

2
d(F (u(t), t)e−ct)/dt,

of the IFEULER method (5.4)

u(tn+1) = (u(tn) + ∆tF (u(tn), tn))ec∆t,

(both methods are performed with respect to the model du(t)/dt = cu(t)+F (u(t), t)

(5.1)) let us assume that the function u(tn+1) can be expanded formally in Taylor

series about tn as follows,

u(tn+1) = u(tn) + ∆t
du(t)
dt

∣∣∣∣
t=tn

+
∆t2

2!
d2u(t)
dt2

∣∣∣∣
t=tn

+
∆t3

3!
d3u(t)
dt3

∣∣∣∣
t=tn

+ · · · , (B.1)

172

Appendix B. Derivation of the Local Truncation Errors 173

where

d2u(t)
dt2

= c
du(t)
dt

+
dF (u(t), t)

dt

= c2u(t) + cF (u(t), t) +
dF (u(t), t)

dt
, (B.2a)

d3u(t)
dt3

= c
d2u(t)
dt2

+
d2F (u(t), t)

dt2
,

= c3u(t) + c2F (u(t), t) + c
dF (u(t), t)

dt
+
d2F (u(t), t)

dt2
, (B.2b)

...
dmu(t)
dtm

= c
dm−1u(t)
dtm−1

+
dm−1F (u(t), t)

dtm−1
,

= cmu(t) + cm−1F (u(t), t) + cm−2dF (u(t), t)
dt

+ · · ·

+ c
dm−2F (u(t), t)

dtm−2
+
dm−1F (u(t), t)

dtm−1
. (B.2c)

For the ETD1 method (5.2), expand u(tn+1) utilizing (B.1), and substitute the

Taylor series expansion of the exponential function ec∆t to deduce

u(tn) + ∆t
du(t)
dt

∣∣∣∣
t=tn

+
∆t2

2!
d2u(t)
dt2

∣∣∣∣
t=tn

+ · · · =
(

1 + c∆t+
(c∆t)2

2!
+ · · ·

)
u(tn)

+
(

∆t+
c∆t2

2!
+ · · ·

)
F (u(tn), tn). (B.3)

Subtracting equivalent terms and substituting (B.2) in (B.3) gives us

∆t(cu(tn) + F (u(tn), tn)) +
∆t2

2!

(
c2u(tn) + cF (u(tn), tn) +

dF (u(t), t)
dt

∣∣∣∣
t=tn

)
+ · · · =(

c∆t +
(c∆t)2

2!
+ · · ·

)
u(tn) +

(
∆t+

c∆t2

2!
+ · · ·

)
F (u(tn), tn).

Again, subtract equivalent terms in the above equation to deduce the local trunca-

tion error (5.28a) of the ETD1 method

L.T.E1 ≈
∆t2

2
dF (u(t), t)/dt.

For the IFEULER method (5.4)

u(tn+1)e−ctn+1 = (u(tn) + ∆tF (u(tn), tn))e−ctn ,

expand u(tn+1)e−ctn+1 utilizing (B.1)

u(tn)e−ctn+∆t
d(u(t)e−ct)

dt

∣∣∣∣
t=tn

+
∆t2

2!
d2(u(t)e−ct)

dt2

∣∣∣∣
t=tn

+· · · = (u(tn)+∆tF (u(tn), tn))e−ctn ,

then subtract equivalent terms to deduce(
∆t
(du(t)

dt

∣∣∣∣
t=tn

−cu(tn)−F (u(tn), tn)
)

+
∆t2

2!

(d2u(t)
dt2

∣∣∣∣
t=tn

−2c
du(t)
dt

∣∣∣∣
t=tn

+c2u(tn)
)

+· · ·
)
e−ctn = 0.

(B.4)

Appendix B. Derivation of the Local Truncation Errors 174

Substituting (B.2) in (B.4) gives us

∆t2

2!

(dF (u(t), t)
dt

∣∣∣∣
t=tn

− cF (u(tn), tn)
)
e−ctn + · · · = 0.

Thus, the local truncation error (5.28b) of the IFEULER method is

L.T.E2 ≈
∆t2

2
d(F (u(t), t)e−ct)/dt.

Bibliography

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover

Publications Inc., 1972.

[2] F. Aluffi-Pentini, V. DeFonzo, and V. Parisi. A Novel Algorithm for the Nu-

merical Integration of Systems of Ordinary Differential Equation Arising in

Chemical Problems. Journal of Mathematical Chemistry, 33:1–15, 2003.

[3] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri. Implicit-Explicit Runge-Kutta

Methods for Time-Dependent Partial Differential Equations. Appl. Num.

Math., 25:151–167, 1997.

[4] U. M. Ascher, S. J. Ruuth, and B. T.R. Wetton. Implicit-Explicit Methods

for Time-Dependent Partial Differential Equations. SIAM J. Numer. Anal.,

32:797–823, 1995.

[5] H.A. Ashi, L.J. Cummings, and P.C. Matthews. Comparison of Methods for

Evaluating Functions of a Matrix Exponential. Applied Numerical Mathematics,

59:468–486, 2009.

[6] L. R. Band, D. S. Riley, P. C. Matthews, J. M. Oliver, and S. L. Waters. An-

nular Thin-Film Flows Driven by Azimuthal Variations in Inter-Facial Tension.

Quart. J. Mech. Appl. Math., In press.

[7] H. Berland and B. Skaflestad. Solving the Nonlinear Schrödinger Equation Us-

ing Exponential Integrators. Norwegian Society of Automatic Control, 27:201–

217, 2006.

175

Bibliography 176

[8] H. Berland, B. Skaflestad, and W. M. Wright. EXPINT - A Matlab Package

for Exponential Integrators. ACM Transactions on Mathematical Software,

33:Article Number 4, 2007.

[9] G. Beylkin, J. M. Keiser, and L. Vozovoi. A New Class of Time Discretization

Schemes for the Solution of Nonlinear PDEs. J. Comput. Phys., 147:362–387,

1998.

[10] J. Billingham and A. C. King. Wave Motion. Cambridge University Press,

2000.

[11] J. P. Boyd. Chebyshev and Fourier Spectral Methods. Dover, New York, second

edition, 2001.

[12] E. O. Brigham. The Fast Fourier Transform and its Applications. Prentice-Hall,

Englewood Cliffs, NJ, 1988.

[13] J. C. Bronski and J. N. Kutz. Numerical Simulation of the Semi-Classical Limit

of the Focusing Nonlinear Schrödinger Equation. Phy. Lett. A, 245:325–336,

1999.

[14] R. L. Burden and J. D. Faires. Numerical Analysis. Wadsworth Group, seventh

edition, 2001.

[15] M. Calvo and C. Palencia. A Class of Explicit Multi-Step Exponential Integra-

tors for Semi-Linear Problems. Numer. Math., 102:367–381, 2006.

[16] M. P. Calvo, J. de Frutos, and J. Novo. Linearly Implicit Runge-Kutta Methods

for Advection-Reaction-Diffusion Equations. Appl. Num. Math., 37:535–549,

2001.

[17] J. Certaine. The Solution of Ordinary Differential Equations with Large Time

Constants. In Mathematical Methods for Digital Computers, A. Ralston and

H. S. Wilf, eds.:128–132, Wiley, New York, 1960.

[18] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Calculation of

Complex Fourier Series. Math. Comp., 19:297–301, 1965.

[19] S. M. Cox and P. C. Matthews. Exponential Time Differencing for Stiff Systems.

J. Comput. Phys., 176:430–455, 2002.

Bibliography 177

[20] C. F. Curtiss and J. O. Hirschfelder. Integration of Stiff Equations. Proc. Nat.

Acad. Sci., 38:235–243, 1952.

[21] G. Dahlquist. A Special Stability Problem for Linear Multi-Step. BIT Numer.

Math., 3:27–43, 1963.

[22] Q. Du and W. Zhu. Stability Analysis and Applications of the Exponential

Time Differencing Schemes. Journal of Computational Mathematics, 22:200–

209, 2004.

[23] Q. Du and W. Zhu. Analysis and Applications of the Exponential Time Dif-

ferencing Schemes and their Contour Integration Modifications. BIT Numer.

Math., 45:307–328, 2005.

[24] P. L. Evans, L. W. Schwartz, and R. V. Roy. Steady and Unsteady Solutions for

Coating Flow on a Rotating Horizontal Cylinder: Two-Dimensional Theoretical

and Numerical Modeling. Phys. Fluids, 16:2742–2756, 2004.

[25] B. Fornberg. A Practical Guide to Pseudo-Spectral Methods. Cambridge Uni-

versity Press, Cambridge, UK, 1996.

[26] B. Fornberg and T. A. Driscoll. A Fast Spectral Algorithm for Nonlinear Wave

Equations with Linear Dispersion. J. Comput. Phys., 155:456–467, 1999.

[27] J. Frank, W. Hundsdorfer, and J. G. Verwer. On the Stability of Implicit-

Explicit Linear Multi-Step Methods. Appl. Num. Math., 25:193–205, 1997.

[28] A. Friedli. Generalized Runge-Kutta Methods for the Solution of Stiff Differen-

tial Equations. In Numerical Treatment of Differential Equations, R. Burlirsch,

R. Grigorieff, and J. Schröder, eds., 631, Lecture Notes in Mathematics:35–50,

Springer, Berlin, 1978.

[29] U. Frisch, Z. S. She, and O. Thual. Viscoelastic Behavior of Cellular Solution

to the Kuramoto-Sivashinsky Model. J. Fluid. Mech., 168:221–240, 1986.

[30] D. Garfinkel, C. B. Marbach, and N. Z. Shapiro. Stiff Differential Equations.

Ann. Rev. Biophys, 6:525–542, 1977.

[31] C. W. Gear. Automatic Integration of Ordinary Differential Equations. Com-

munications of the ACM, 14:176–179, 1971.

Bibliography 178

[32] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins

University Press, Baltimore, MD, third edition, 1996.

[33] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Springer-

Verlag, Berlin, second edition, 1996.

[34] P. Henrici. Fast Fourier Methods in Computational Complex Analysis. SIAM

Review, 21:481–527, 1979.

[35] N. J. Higham. The Scaling and Squaring Method for the Matrix Exponentials

Revisited. SIAM J. Matrix Anal. Appl., 26:1179–1193, 2005.

[36] E. J. Hinch and M. A. Kelmanson. On the Decay and Drift of Free-Surface

Perturbations in Viscous Thin-Film Flow Exterior to a Rotating Cylinder. Proc.

R. Soc. Lond. A, 459:1193–1213, 2003.

[37] M. Hochbruck, C. Lubich, and H. Selhofer. Exponential Integrators for Large

Systems of Differential Equations. SIAM. J. Sci. Comp., 19:1552–1574, 1998.

[38] M. Hochbruck and A. Ostermann. Explicit Exponential Runge-Kutta Methods

for Semi-linear Parabolic Problems. SIAM J. Numer. Anal., 43:1069–1090,

2005.

[39] M. Hochbruck and A. Ostermann. Exponential Runge-Kutta Methods for

Parabolic Problems. Appl. Numer. Math., 53:323–339, 2005.

[40] R. Holland. Finite-Difference Time-Domain (FDTD) Analysis of Magnetic Dif-

fusion. IEEE Trans. Electromagn. Compat., 36:32–39, 1994.

[41] J. M. Hyman and B. Nicolanenko. The Kuramoto-Sivashinsky Equation: a

Bridge Between PDE’s and Dynamical Systems. Physica D., 18:113–126, 1986.

[42] E. Infeld and G. Rowlands. Nonlinear Waves, Solitons and Chaos. Cambridge

University Press, 1990.

[43] A. Iserles. A First Course in the Numerical Analysis of Differential Equations.

Cambridge University Press, Cambridge, UK, 1996.

[44] A. K. Kassam. High Order Time stepping for Stiff Semi-Linear Partial Differ-

ential Equations. PhD thesis, Oxford University, 2004.

Bibliography 179

[45] A. K. Kassam and L. N. Trefethen. Fourth-Order Time Stepping for Stiff PDEs.

SIAM J. Sci. Comput., 26:1214–1233, 2005.

[46] C. Klein. Fourth Order Time-Stepping for Low Dispersion Korteweg-de Vries

and Nonlinear Schrödinger Equations. Electronic Transactions on Numerical

Analysis, 29:116–135, 2008.

[47] S. Koikari. An Error Analysis of the Modified Scaling and Squaring Method.

Comput. Math. Appl., 53:1293–1305, 2007.

[48] H.-O. Kreiss and J. Oliger. Comparison of Accurate Methods for the Integration

of Hyperbolic Equations. Tellus, 24:199–215, 1972.

[49] S. Krogstad. Generalized Integrating Factor Methods for Stiff PDEs. J. Com-

put. Phys., 203:72–88, 2005.

[50] Y. Kuramoto. Diffusion-Induced Chaos in Reaction Systems. Progr. Theoret.

Phys. Suppl., 64:346–367, 1978.

[51] C. Lanczos. Trigonometric Interpolation of Empirical and Analytical Functions.

J. Math. Phys., 17:123–199, 1938.

[52] J. D. Lawson. Generalized Runge-Kutta Processes for Stable Systems with

Large Lipschitz Constants. SIAM J. Numer Anal., 4:372–380, 1967.

[53] P. W. Livermore. An Implementation of the Exponential Time Differencing

Scheme to the Magnetohydrodynamics Equations in a Spherical Shell. J. Com-

put. Phys., 220:824–838, 2007.

[54] Y. Y. Lu. Computing a Matrix Function for Exponential Integrators. J. Com-

put. Appl. Math., 161:203–216, 2003.

[55] J. E. Marsden and M. J. Hoffman. Basic Complex Analysis. W. H. Freeman

and Company, third edition, 1998.

[56] B. V. Minchev. Computing Analytic Matrix Functions for a Class of Expo-

nential Integrators. Reports in Informatics 278, University of Bergen, Bergen,

Norway, 2004.

[57] B. V. Minchev and W. M. Wright. A Review of Exponential Integrators for

First Order Semi-Linear Problems. Tech. Rep. NTNU. (2005), , Preprint.

Bibliography 180

[58] A. R. Mitchell and D. F. Griffiths. The Finite Difference Method in Partial

Differential Equations. John Wiley & Sons, 1980.

[59] C. Moler and C. Van Loan. Nineteen Dubious Ways to Compute the Exponen-

tial of a Matrix. SIAM Review, 20:801–836, 1978.

[60] C. Moler and C. Van Loan. Nineteen Dubious Ways to Compute the Exponen-

tial of a Matrix, Twenty-Five Years Later. SIAM Review, 45:3–49, 2003.

[61] D. R. Mott, E. S. Oran, and B. V. Leer. A Quasi-Steady-State Solver for the

Stiff Ordinary Differential Equations of Reaction Kinetics. J. Comput. Phys.,

164:407–428, 2000.

[62] J. D. Murray. Mathematical Biology. Springer-Verlag Berlin Heidelberg, second

edition, 1993.

[63] S. P. Nørsett. An A-Stable Modification of the Adams-Bashforth Methods. In

Conf. on Numerical Solution of Differential Equations, Lecture Notes in Math.

109/1969:214–219, Springer-Verlag, Berlin, 1969.

[64] M.S. Paterson and L. J. Stockmeyer. On the Number of Non-Scalar Multipli-

cations Necessary to Evaluate Polynomials. SIAM J. Comput., 2:60–66, 1973.

[65] P. G. Petropoulos. Analysis of Exponential Time-Differencing for FDTD in

Lossy Dielectrics. IEEE Trans. on Antennas and Propagation, 45:1054–1057,

1997.

[66] S. J. Ruuth. Implicit-Explicit Methods for Reaction-Diffusion Problems in

Pattern Formation. J. Math. Biol., 34:148–176, 1995.

[67] Y. Saad. Analysis of Some Krylov Subspace Approximations to the Matrix

Exponential Operator. SIAM J. Numer. Anal., 29:209–228, 1992.

[68] J. M. Sanz-Serna and J. G. Verwer. Special Issue on Time Integration. Applied

Numerical Mathematics, 25:135–136, 1997.

[69] T. Schmelzer. The Fast Evaluation of Matrix Functions for Exponential Inte-

grators. PhD thesis, Oxford University, 2007.

[70] T. Schmelzer and L. N. Trefethen. Evaluating Matrix Functions for Exponen-

tial Integrators via Carathéodory–Fejér Approximation and Contour Integrals.

Electronic Transactions on Numerical Analysis, 29:1–18, 2007.

Bibliography 181

[71] C. Schuster, A. Christ, and Fichtner W. Review of FDTD Time-Stepping for

Efficient Simulation of Electric Conductive Media. Microwave Optical Technol.

Lett., 25:16–21, 2000.

[72] L. F. Shampine and C. W. Gear. A User’s View of Solving Stiff Ordinary

Differential Equations. SIAM Review, 21:1–17, 1979.

[73] R. B. Sidje. EXPOKIT: A Software Package for Computing Matrix Exponen-

tials. ACM Trans. Math. Softw., 24:130–156, 1998.

[74] G. I. Sivashinsky. Nonlinear Analysis of Hydrodynamic Instability in Laminar

Flames, Part I: Derivation of the Basic Equations. Acta Astronautica, 4:1176–

1206, 1977.

[75] G. I. Sivashinsky. Instabilities, Pattern Formation, and Turbulence in Flames.

Ann. Rev. Fluid Mech., 15:179–199, 1983.

[76] B. Skaflestad and W. M. Wright. The Scaling and Modified Squaring Method for

Matrix Functions Related to the Exponential. Applied Numerical Mathematics,

59:783–799, 2009.

[77] C. Sulem and P. Sulem. The Nonlinear Schrödinger Equation: Self-Focusing

and Wave Collapse. Springer-Verlag New York, 1999.

[78] E. Süli and D. F. Mayers. An Introduction to Numerical Analysis. Cambridge

University Press, first edition, 2003.

[79] E. Tadmor. The Exponential Accuracy of Fourier and Chebyshev Differencing

Methods. SIAM J. Numer. Anal., 23:1–10, 1986.

[80] H. Tal-Ezer. Spectral Methods in Time for Parabolic Problems. SIAM J.

Numer. Anal., 26:1–11, 1989.

[81] M. Tokman. Efficient Integration of Large Stiff Systems of ODEs with Expo-

nential Propagation Iterative (EPI) Methods. J. Comput. Phys., 213:748–776,

2006.

[82] C. E. Treanor. A Method for the Numerical Integration of Coupled First-Order

Differential Equations with Greatly Different Time Constant. Math. Comp.,

20:39–45, 1966.

Bibliography 182

[83] L. N. Trefethen. Finite Difference and Spectral Methods

for Ordinary and Partial Differential Equations. Online at:

http://www.comlab.ox.ac.uk/nick.trefethen/pdetext.html.

[84] L. N. Trefethen. Spectral Methods in MATLAB. SIAM, Philadelphia, 2000.

[85] L. N. Trefethen and H. M. Gutknecht. The Carathéodory-Fejér Method for

Real Rational Approximation. SIAM J. Numer. Anal., 20:420–436, 1983.

[86] C. F. Van Loan. A Note on the Evaluation of Matrix Polynomials. IEEE Trans.

Automatic Control, AC-24:320–321, 1979.

[87] J. M. Varah. Stability Restrictions on Second Order, Three Level Finite Dif-

ference Schemes for Parabolic Equations. SIAM J. Numer. Anal., 17:300–309,

1980.

[88] T. P. Witelski and M. Bowen. ADI Schemes for Higher-Order Nonlinear Diffu-

sion Equations. Appl. Num. Math., 45:331–351, 2003.

[89] W. Wright. A Partial History of Exponential Integrators. De-

partment of Mathematical Sciences, NTNU, Norway, Online at:

http://www.math.ntnu.no/num/expint/talks/wright04innsbruck.pdf, 2004.

http://www.comlab.ox.ac.uk/nick.trefethen/pdetext.html
http://www.math.ntnu.no/num/expint/talks/wright04innsbruck.pdf

	Title
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Introduction
	1.2 Layout Of Thesis

	2 Spatial Discretization Methods
	2.1 Introduction
	2.2 Finite Difference Formulas
	2.2.1 Finite Difference Approximation
	2.2.2 An Example
	2.2.3 Matrix Form

	2.3 Spectral Methods
	2.3.1 Fourier Spectral Methods
	2.3.2 Numerical Derivatives
	2.3.3 An Example

	3 Exponential Time Differencing (ETD) Methods
	3.1 Introduction
	3.2 Algorithm Derivation
	3.2.1 Integrating Factor Methods
	3.2.2 Exponential Time Differencing Methods
	3.2.3 Exponential Time Differencing Runge-Kutta Methods

	3.3 Stability Analysis
	3.3.1 Stability of Exponential Time Differencing Methods
	3.3.2 Stability of RK Exponential Time Differencing Methods

	3.4 Conclusion

	4 Various Algorithms for Evaluating the ETD Coefficients
	4.1 Introduction
	4.2 The Scalar Case
	4.2.1 Taylor Series
	4.2.2 The Cauchy Integral Formula
	4.2.3 Scaling and Squaring Algorithm: Type I
	4.2.4 Scaling and Squaring Algorithm: Type II
	4.2.5 Composite Matrix Algorithm

	4.3 Non-Diagonal Matrix Case
	4.3.1 Taylor Series
	4.3.2 the Cauchy Integral Formula
	4.3.3 Varying the Radius of the Circular Contour
	4.3.4 Scaling and Squaring Algorithm: Type I
	4.3.5 Padé Approximation and the Taylor Series
	4.3.6 Composite Matrix Algorithm
	4.3.7 Matrix Decomposition Algorithm

	4.4 Chebyshev Spectral Differentiation Matrices
	4.5 Matrices With Imaginary Eigenvalues
	4.6 Computation Time
	4.7 Conclusion

	5 Numerical Experiments
	5.1 Introduction
	5.2 Numerical Experiments
	5.3 Kuramoto-Sivashinsky (K-S) Equation
	5.3.1 Computational Results
	5.3.2 Conclusion

	5.4 Non-Linear Schrödinger (NLS) Equation
	5.4.1 Computational Results
	5.4.2 Error Analysis of the ETD and the IF Methods
	5.4.3 Conclusion

	5.5 Thin Film Equation
	5.5.1 Computational Results
	5.5.2 Conclusion

	6 Overall Conclusions
	6.1 Overall Conclusions

	Appendices
	A The Numerical Solution of the Kuramoto-Sivashinsky Equation
	B Derivation of the Local Truncation Errors
	Bibliography

