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Abstract

With a proven ability to uncover fundamental biological processes, the atomic force

microscope (AFM) represents one of the most valuable and versatile tools available to

the biophysical sciences. We study the unsteady small-scale flows generated within the

AFM by its sensing probe (a long thin cantilever), which have received relatively little

attention to date, yet which are increasingly relevant in an age of microdevices.

The early parts of this thesis investigate some canonical two-dimensional flows

driven by oscillations of an infinite-length rigid cantilever. These prove amenable to

analysis and enable us to investigate many of the important physical phenomena and

compile a comprehensive collection of asymptotic expressions for the drag. The corre-

sponding results lay out the influence of a nearby wall, geometry and oscillation fre-

quency. The limitations of a two-dimensional approach are then explored through the

development of a novel unsteady slender-body theory (USBT) for finite-length cylin-

ders, an asymptotic treatment of which offers corrections to traditional resistive-force-

theory (RFT) methods by accounting for geometric factors and flow inertia. These

ideas are then extended to the study of thin rectangular plates. Two key parameters

are identified which promote two-dimensionality in the flow, namely the frequency of

oscillation and the proximity of a nearby boundary. We then examine flexible cylinders

and plates by coupling the hydrodynamics to linearized elastic beam and plate equa-

tions, which simulate the hydrodynamically-damped high-speed deformable motion of

the AFM’s cantilever, when driven either externally or by Brownian motion. In the later

case, we adopt an approach which offers notable improvements over the most advanced

method currently available to the AFM community.

vi



Chapter 1

Introduction

Since its conception by Binnig et al. (1986), the atomic force microscope (AFM) has

revolutionised the biosciences. The AFM belongs to a group of techniques collectively

termed scanning-probe microscopy, so-named because their central capabilities lie in

the use of a sensing probe. Figure 1.1 displays one particular model of an AFM manu-

factured by Digital Instruments. A variety of techniques now fall under scanning-probe

microscopy, all of which can trace their origins back to the original scanning-probe

microscope (SPM), the scanning-tunnelling microscope (STM, Binnig et al. 1982):

scanning near-field optical microscopy (SNOM), which uses a optic fibre to investi-

gate a sample using the photon tunnel effect (Durig et al. 1986); scanning magnetic

microscopy, which measures the magnetic interaction between the sample and a mag-

netised probe (Saenz et al. 1987); scanning ion conductance microscopy (SICM), which

uses the flow-rate of ions from an electrolyte-filled pipette (Hansma et al. 1989) and

scanning electrochemical microscopy (SECM), which measures the current of an elec-

trode immersed in electro-active solution to judge both electrode–sample distance and

sample conductivity (Bard et al. 1991). Over the years, however, the AFM has main-

tained its status as one of the most popular and versatile members of the SPM family.

Now established as a standard and widely available commercial tool for probing the

structure and chemistry of biological samples, the AFM itself continues to evolve. Al-

1



CHAPTER 1 INTRODUCTION 2

FIGURE 1.1: A Digital Instruments Nanoscope IIIa Scanning Probe Microscope.

though use of the AFM is not exclusive to the biosciences, having established important

roles in the physical sciences alongside other techniques such as electron microscopy

(EM) and STM, its invaluable contribution to the biosciences lies in its ability to op-

erate in fluid; this presents the opportunity to study the biology of samples in their

native environment. The study of samples in a fluid environment brings its own set of

challenges, yet these hydrodynamic challenges are not unique to the AFM. A host of

new microelectromechanical systems (MEMS) are also capable of producing the types

of small-scale high-speed flows which are encountered in the AFM. Traditionally, stud-

ies into microscopic bodies moving in fluid have focused on the relatively low-speed

flows generated by micro-organism propulsion. The advent of the AFM and other mi-

crotechnologies places demands on us for a better understanding of high-velocity flow

regimes.

In §1.1 we introduce the AFM and discuss its chief applications, in particular sample

imaging (§ 1.1.2) and force spectroscopy (§ 1.1.3), together with a review of calibration

methods (§ 1.1.4) which are vital to obtaining accurate force measurements. In § 1.2

we present the formulation appropriate for describing the flow generated by the rapid

motion of microscopic bodies and outline key results for slow movement (§1.2.2), some
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general findings for time-dependent flows (§1.2.3) following by some results pertaining

specifically to oscillatory motion (§1.2.4). The objectives and structure of the remaining

thesis will be laid out in §1.3.

1.1 AFM in the biosciences

1.1.1 Principles of atomic force microscopy

FIGURE 1.2: AFM cantilevers are predominantly diving-board or V-shaped and usually

made from silicon nitride which can be gold-coated to improve reflectivity.

In the case of the AFM, the probe used to investigate a sample is a microcantilever,

often etched out of silicon nitride (Si3N4), which has a density and Young’s modulus of

about 2gcm−3 and 2 × 1012gcm−1s−2, respectively. This microcantilever is suspended

above a substrate (usually cleaved mica, which is virtually an atomically flat surface),

usually at an angle of 10–15 degrees. The substrate is mounted on a platform which

can be moved vertically as well as in the horizontal plane. Specimens are then immo-

bilised onto the mica in a variety of ways, including the use of Van der Waals forces,

hydration effects or hydrophobicity, all of which work by producing a net attraction of

the specimen to the surface.

Cantilever dimensions vary, but are typically 100µm, 10µm and 1µm, in length,

width and thickness respectively, and are shaped as diving-boards or are V-shaped (see
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FIGURE 1.3: Interactions with the sample cause the AFM cantilever to deflect, which

is measured by reflecting laser light off the cantilever’s top surface. This reflected light

is detected by photo-diodes and fed to processing software.

figure 1.2). Conventionally, V-shaped cantilevers are considered more resistant to lat-

eral forces, although a theoretical study has recently cast doubt on this preconception

(Sader 2003). The cantilever can be moved, with a displacement sensitivity of 0.01nm,

via piezo-crystals attached to its supported end, which expand in reaction to an electric

current and a sharp tip at the cantilever’s end provides high measurement resolution

(in colloidal probe experiments this tip is replaced by a particle, approximately 10µm

in radius).

Specimens are analysed through their interactions with the cantilever tip, as it is

brought close. Any interactions cause the cantilever to bend and so. In order to make

precise measurements, it is necessary to accurately determine these deflections. Most

modern AFM’s achieve this by focusing a laser beam onto the back of the cantilever.

Silicon nitride has a reflectivity of only about 13% and so the cantilever is often coated

with gold to improve its reflective properties. The reflected beam is collected by a 4× 4

array of photoreceptors, as illustrated in figure 1.3, which determine both the deflection

of the cantilever at its tip-end and the degree to which it has twisted about its axis.

AFM experiments can be conducted in air, yet this has its disadvantages. Measure-

ments can be distorted by capillary forces, produced by the formation of a meniscus

between the tip and specimen. Also, in the case of biological specimens, gaseous sur-

roundings do not always represent the desired physiological conditions. Therefore bi-
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ological samples are usually immersed in a fluid, which typically has the viscosity of

water (0.01cm2s−1). The fluid may be contained by an O-ring (which can leak if the

cantilever–substrate separation exceeds around 50µm, Maeda and Senden 2000). Op-

erating in liquids, however, brings its own set of challenges. AFM liquid experiments are

exposed to thermal-noise contamination, arising from thermally-excited solvent mole-

cules bombarding the AFM cantilever. As a result, in the absence of any externally

applied driving force, the cantilever still fluctuates (albeit with nanometre-scale ampli-

tudes at room temperature). Furthermore, any motion of the cantilever through the

fluid environment is met with hydrodynamic resistance, which can significantly effect

AFM readings. The nature of this hydrodynamic affect depends greatly upon the way in

which the AFM is used, so let us briefly review the principal experimental techniques.

1.1.2 AFM imaging

The AFM built its early reputation in the biosciences on its imaging capabilities. Al-

though the pioneering membrane investigations of Worcester et al. (1988) were re-

ceived with scepticism, the work on imaging DNA in air by Bustamante et al. (1992)

firmly established the AFM’s potential as a powerful tool in the study of biological struc-

tures. In its original form, when the AFM scanned a specimen, contact between the can-

tilever and the sample was maintained throughout the scan. This method created an

image by measuring the twisting and bending of the cantilever as it rode the peaks and

troughs of the sample’s surface, much like a phonograph needle. However, full-contact

modes can damage soft biological samples and so, to overcome this flaw, Hansma et al.

(1994) developed tapping-mode (TM-AFM). In TM-AFM the cantilever is excited to os-

cillate close to its resonant frequency (10 − 600 kHz), with amplitudes ranging up to

20nm. This results in only intermittent contact between the cantilever and the sample,

which minimises the chances of damage to the specimen.

The catalogue of biological samples investigated using the AFM is now extensive.

AFM imaging of DNA, conducted in a physiological fluid environment (Lyubchenko

et al. 1993), can now capture enzyme degradation of DNA (see figure 1.4), observe

RNA transcription and probe the damage caused to chromosomes by exposure to ra-
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FIGURE 1.4: AFM snapshots of the degradation of DNA-G4 complexes by the enzyme

DNAse I, imaged in deionised water (Laboratory of Biophysics and Surface Analysis,

University of Nottingham).

diation. Since Worcester et al. (1988), the study of membranes has become an active

area of research, with particular interest in the complex behaviour of lipid-bilayers (Hui

et al. 1995), insertion of molecules into a membrane and the mechanical properties of

the membrane itself. Membrane proteins have also been the subject of much work,

in part due to the stability and limited degrees of freedom imposed upon the protein

by the membrane (for an example, see Heymann et al. 1997). The study of non-

membrane proteins includes the muscle fibres actin and myosin, which have also been

imaged by Weisenhorn et al. (1990), Hallet et al. (1995). The AFM also offers tantalis-

ing opportunities to visualise cells in their native environment, as well as intracellular

structures such as synaptic vesicles and the cytoskeleton. The difficulties associated

with cell experiments mean that it is common practice to couple AFM imaging to a sec-

ond technique, such as optical microscopy (Vesenka et al. 1995), to minimise the risk

of falsely identifying structures. All the areas of biological investigation covered above

are detailed more completely in a recent review article by Santos and Castanho (2004).

One consequence of hydrodynamic damping during sample imaging is its effect

on the responsiveness of the cantilever. This, in turn, places a limit upon the rate at
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(a) (b)

FIGURE 1.5: (a) force-distance curve for single molecular interaction

(http://www.chemsoc.org/exemplarchem/entries/kscott/afm.htm), (b) force-

distance plot showing unfolding of multiple immunoglobulin domains in the muscle

protein titin (http://www.biophysik.uni-bremen.de/radmacher/elasticity.html).

which samples can be scanned. Furthermore, fluid effects reduce the sharpness of the

cantilever’s response, decreasing the so-called Q-factor of the measurement (Butt et al.

1993). A theoretical model for the effect of fluid damping in TM-AFM was proposed by

Chen et al. (1994), who modelled the cantilever as a damped one-dimensional oscillator

with loading equal to the steady hydrodynamic drag on a sphere. The predictions from

this simple model illustrated a decrease in Q-factor with an increase in fluid viscosity.

However, the assumption that fluid inertia can be neglected is dubious for TM-AFM,

where the cantilever oscillates with considerable frequency. Unsteadiness in the AFM’s

flow was taken into account by Kirstein et al. (1998), who modelled the cantilever as an

infinitely-long circular cylinder. By substituting the calculated drag coefficients into the

elasticity equation for a simple beam, the damped resonant frequencies of the cantilever

were found as a function of the resonant frequency in vacuo. Once these quantities had

been found by fitting the oscillator model to experimental data in air, this approach was

successfully able to predict the resonant frequency of the cantilever in water.
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1.1.3 AFM force spectroscopy

The field of AFM force measurement is an area which holds huge promise, having the

potential to profoundly increase our understanding of biology by exposing the funda-

mental processes by which molecular bonds form and proteins are stabilized.

It works by lowering the cantilever tip towards a sample until the strength of the

tip–sample attraction overcomes the cantilever stiffness, causing the tip to jump into

contact with the specimen. The cantilever is then raised at approximately 1µms−1

whilst the tip is still attached to the sample by intermolecular forces, thereby causing

the cantilever to bend. Application of Hooke’s law then converts this deflection into

a force and a force-distance curve can be generated for the interaction. An annotated

example of such a curve is shown in figure 1.5(a). The cantilever approaches the sub-

strate (O), until it comes sufficiently close that attractive forces cause it to jump into

contact with the sample (L) and any further decrease in separation during contact pro-

duces in a linear change in the deflection (I). The cantilever is then retracted until

the intermolecular bond breaks, with a noticeable hysteresis between the attachment

and detachment distances (H). The strength of the intermolecular bond is directly pro-

portional to detachment distance, via the spring constant. Using this technique, early

force spectroscopy examined ligand–receptor bonds (Florin et al. 1994) and the affinity

between strands of DNA (Lee et al. 1994), measured down to an accuracy of a few

pico-Newtons.

When the sample has a complex spatial structure, such as a folded protein, the mole-

cule may alter its configuration under an applied load resulting in the type of force curve

shown in figure 1.5(b). Here the muscle protein titin is being unfolded and the distance

between each peak in the force curve gives the length of one (unfolded) immunoglobu-

lin domain in the protein and the height of each peak corresponds to the force required

to unfold it. Interest in protein unfolding has remained high since the celebrated work

of Rief et al. (1997) on the muscle protein titin (see Janovjak et al. 2004 and references

therein). By understanding the unfolding process of proteins, the hope is to understand

the folded structures which dictate so much of a protein’s biological function. Devel-

opments in this area include analysing the unfolding process as a function of retraction
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speed (Strunz et al. 1999), in so-called dynamic-force spectroscopy (DFS). Using so-

phisticated analysis, DFS offers insights into the potential barriers overcome during the

unfolding process and the rate at which these barriers can naturally be crossed (specific

details can be found in a review article by Evans 2001). These potential barriers are

often referred to as the energy landscape of the folding process. The extent to which

this energy landscape can be explored is currently restricted by limitations on cantilever

retraction speeds. With pulling speeds much above 10µms−1 the fluid drag on the can-

tilever becomes comparable with the strength of the molecular forces being measured.

For this reason, there is considerable interest in quantifying the hydrodynamic effects

at work in these experiments.

Vinogradova et al. (2001) exploited the close proximity between cantilever and

sample during force measurements to approximate fluid effects using lubrication the-

ory. This quasi-steady lubricating flow was combined with the three-dimensional elastic

behaviour of the cantilever to give a coupled system for flow pressure and cantilever

deflection. This was then solved numerically using finite-element analysis (FEA). In

the limiting case of a narrow cantilever, the system becomes amenable to analysis. It

was shown that, in contrast to the case of a concentrated point-force applied at the end

of the cantilever, a distributed hydrodynamic loading over the length of the cantilever

results in deflections which are highly sensitive to the angle of inclination. This study

gives an indication of when it is appropriate to consider tip–sample-dominated hydro-

dynamics or when the cantilever is sufficiently close (i.e. when the tip/colloidal-probe

distance is sufficiently small) that hydrodynamic loading along its entire length becomes

an issue. Applying this work to force measurements, Vinogradova and Yakubov (2003)

approximated the drag on a cantilever fitted with a colloidal probe (10µm sphere),

at moderate cantilever–sample distances, by adding a wall-independent term to the

lubrication drag which is fitted to experimental data. The deflection caused by this

hydrodynamic loading was combined with that due to a point loading at the tip un-

der lubrication forces, representing tip–sample interactions. This study also examined

the validity of the no-slip condition in colloidal-probe experiments (see § 1.2.1). Close

to a substrate Craig and Neto (2001) suggested that the drag on a cantilever loaded
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with a colloidal probe is estimated well by the classical result for the drag on a sphere

approaching a rigid wall (Brenner 1961). This drag, together with measurements of

cantilever deflection on approach, were used to find a value for the cantilever spring

constant through Hooke’s law. A similar approach was offered by Notley et al. (2003),

who oscillated the substrate in close proximity to the colloidal particle at amplitudes

of up to 10nm and frequencies less than 1kHz. A relationship between fluid viscos-

ity, frequency of oscillation, amplitude of response and spring constant, derived by

Israelachvili (1986a) for thin fluid films, was then called upon.

By gathering force-curves from many points on a sample’s surface, a map of tip–

surface interactions can be created. An early version of this technique was implemented

by Burnham et al. (1990), who used a tungsten-tipped cantilever to differentiate be-

tween two compounds with differing chemistries. By functionalising the cantilever tip

with chemically active compounds, the force-mapping technique continued to find ap-

plication in the analysis of sample chemistry. A review by Green et al. (2002) covers

some recent chemical-force microscopy (CFM) investigations into the chemical func-

tionality of compounds, including the work of Werts et al. (1997) on real-time scanning

of chemical reactions. The mapping of specific biomolecular interactions came with the

work done by Ludwig et al. (1997) who investigated antibody–antigen complexes, using

a tip functionalised with biotin scanned over a streptavidin-patterned substrate. There

is now an industry of research which uses antibody-modified tips to map antigen-coated

surfaces (Green et al. 2002 gives a more comprehensive survey). Other biological stud-

ies include the mapping of a mixed group of blood cells (Grandbois et al. 2000) and

identifying complementary DNA (Mazzola et al. 1999).

The long sampling-time and large data-storage-capacity problems encountered when

generating a force–distance curve at each sampling point were addressed by Frisbie

et al. (1994) who, instead, measured the frictional force experienced by the tip as the

cantilever scans whilst in contact with the surface. This friction-force mode of force

sensing has the advantage of speed, minimising experimental error derived from ef-

fects such as sample drift, but has the potential to damage samples. As in imaging

techniques, the resolution to this problem is to use intermittent contact to keep spec-
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imen damage down to a minimum. For this reason, TM-AFM has also found a role

in force measurement experiments. Moreover, analysis of the difference in oscillation

phase between the tip and the driven end of the cantilever provides information about

the adhesive and viscoelastic properties of the sample (Winkler et al. 1996), the wetting

properties of the sample (Gil et al. 2000) and the sample’s surface charge (Czajkowsky

et al. 1998). For example, Radmacher et al. (1994) used tip adhesion to survey the

viscoelastic qualities of the enzyme lysozyme.

One of the major problems for techniques which set out to probe dynamic sample

properties, however, is the fact that tip–sample interactions are often non-linear. De-

spite the ability of TM-AFM to tap with amplitudes of 1nm, the displacement remains

large enough on the molecular scale that a linear sample response cannot be guar-

anteed, which is a prerequisite for determining properties such as local compliance.

Both thermal and mechanical (electrical) noise are traditionally an obstacle to further

amplitude reduction, with manufacturers producing smaller cantilevers which are less

susceptible to such effects both in force spectroscopy (Viani et al. 1999) and imaging

(Walters et al. 1996). If properly understood, however, these effects offer a means by

which cantilevers can be driven with amplitudes of just 0.1nm.

In their theoretical analysis of the thermal spectrum, Roters and Johannsmann

(1996) introduced a δ-correlated (white-noise) forcing term into the damped harmonic

oscillator equation, where the damping coefficient is considered to be steady. This re-

sults in a Langevin equation (Reichl 1987) to describe the stochastic behaviour of the

cantilever tip. Solving this equation gives a power spectrum in the form of a Lorentzian

(f(x) ∝ 1/(a2 + (x− b)2) where a and b are constants) which depends upon the damp-

ing coefficient, the spring constant and the mass of the cantilever. Values for these

quantities are then found by fitting the Lorentzian to experimental data in the absence

of any tip–sample interactions. On bringing the tip close to both hard (glass) and soft

(polymer brush) surfaces, the resonant peaks were seen to flatten, more so in the case

of a soft surface. Lorentzians were fitted to these flattened peaks, with the correspond-

ing adjustments in the fitting-parameters acting as an empirical measure of viscous and

elastic coupling in the system.
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In order to convert the cantilever deflection measured in experiments into a force

requires knowledge of the cantilever spring constant, which usually must be found

through calibration methods.

1.1.4 Calibration

Cantilever manufacturers are often unable to provide a precise value for the spring

constant, which is central to the use of Hooke’s law when converting cantilever de-

flection into a force. Furthermore, factors such as temperature dependence, structural

deflects and gold coating change the cantilever’s elastic properties from any manufac-

turer estimates. Consequently, calibration is central to force measurement experiments.

A traditional method of Cleveland et al. (1993) involves attaching small masses to the

cantilever and recording the change in its resonant frequency. Unfortunately, the re-

sulting spring constant can depend upon the location of the masses along the cantilever

and, moreover, this process can also render the cantilever unusable for subsequent ex-

periments.

By examining the elasticity equation which governs cantilever behaviour, efforts

have been made theoretically to predict the spring constant. Noting that AFM can-

tilevers are generally much longer than they are wide, Sader and White (1993) as-

sumed that the leading-order deflection in vacuum involves only transverse bending,

with twisting motion appearing as a second-order correction, which is realistic when the

cantilever is thin. This resulted in cantilever dynamics governed by the one-dimensional

Euler–Bernoulli beam equation at leading order. The spring constant was then given as

the strength of the force over the deflection at the point of application (Hooke’s law).

The three-dimensional elastic plate equations were also considered (again in vacuum),

using FEA computations, for both rectangular and V-shaped cantilevers. A FEA compu-

tation, taking account of the full three-dimensional geometry of both rectangular and

V-shaped cantilevers, was also conducted with the findings casting doubt on the validity

of modelling a V-shaped cantilever as two beams (Albrecht et al. 1990). In later work,

Sader et al. (1995) provided an expression connecting cantilever the spring constant

with its mass and resonant frequency in vacuum. The constant of proportionality con-
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necting these quantities was computed numerically, for both rectangular and V-shaped

cantilevers, by solving the full elasticity equation, without damping, again using FEA.

Estimates for spring constants using this approach showed good agreement with values

obtained using the method of Cleveland et al. (1993). The results also demonstrate

the effect on the spring constant of positioning calibration masses at different distances

from the cantilever tip, which also has implications for colloidal probe experiments

(see above). Nonetheless, a drawback of this approach is that it requires knowledge of

cantilever mass and resonant frequency in vacuum. Results were also presented which

predict the change in resonant frequency due to gold-coating, which appear to agree

well with experimental data.

The calibration methods above, which arrive at the spring constant by purely theo-

retical means, are often hampered in practice by a lack of information about the can-

tilever’s material properties. Combining experimental and theoretical analyses can lead

to greater robustness in predictions. Such a calibration method, which enjoys wide-

spread popularity, uses thermal fluctuations of the cantilever. Theoretical analysis of

these fluctuations began with the work of Hutter and Bechhoefer (1993), who modelled

the cantilever tip as a sphere undergoing harmonic oscillations with average energy

given by 1
2 kBT (kB Boltzmann’s constant, T is temperature), in accordance with the

equipartition theorem for a tip in thermal equilibrium. This approach provides an ex-

pression for the spring constant in terms of the temperature and the root-mean-square

(rms) displacement of the tip, both of which are experimentally measurable quantities.

By considering only the tip, however, this model fails to account for the full elastic

behaviour of the cantilever itself. This deficiency was addressed by Butt and Jaschke

(1995), in the absence of any fluid damping, by expressing the deflection of a rectan-

gular cantilever’s as a superposition of all undamped modes. Each undamped mode

receives 1
2 kBT by equipartition of energy, which was equated to the total (bending

and kinetic) energy for that particular vibrational mode. In doing so, a revised expres-

sion for the spring constant was obtained for each mode in terms of the temperature,

the eigenfrequency of that mode and mean deflection at the tip, or its derivative. This

modal analysis was repeated by Stark et al. (2001) for V-shaped cantilevers, although
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the complex geometry meant that eigenmodes had to be computed using FEA.

All of the models mentioned so far neglect hydrodynamic damping. However, from

an AFM perspective it is important to take into account the influence of the fluid envi-

ronment. Functionalising the tip in biological experiments changes the effective spring

constant of the cantilever. Calibration must therefore be conducted within the liquid

environment, to prevent drying out of the tip, which would again alter the effective

spring constant. Elmer and Dreier (1997) modelled a rectangular cantilever as an elas-

tic beam (i.e. one-dimensional deflections only). The cantilever experienced an added

mass due to the presence of the fluid, but viscous effects were neglected. A relationship

between the resonant frequencies in fluid and vacuum was derived. Consideration of

viscous effects came with the work of Sader (1998), who approximated the drag on

a thin rectangular cantilever by that exerted on an infinite-length circular cylinder in

unbounded fluid, which permits the use of the classical result of Stokes (1851). This

is justified for a long, thin cantilever provided that the mode of oscillation is not too

high (recent work by Maali et al. (2005) highlights problems with two-dimensional

flow models after the fourth harmonic, which they attribute to the non-negligible axial

flows). Thermally-excited transverse deflections were written as a sum of all undamped

(in vacuo) modes, each weighted according to the effects of fluid damping. The eigen-

mode amplitudes were once more determined by equipartition of energy. In the limit

of small dissipative effects e.g. in gas, the harmonic peaks became distinct and Sader

(1998) showed that the thermal spectra can be reduced down to an expression which

describes the behaviour of a damped-harmonic oscillator, where there exists a relation-

ship between the experimentally-measurable Q-factor (peak sharpness), fundamental

resonant frequency in vacuum, plan-view dimensions (length and width) and the spring

constant (Sader 1999).

Strictly speaking, however, some of the 1
2kBT of thermal energy given exclusively

to each cantilever mode by Sader (1998) should go into moving the fluid (Hinch 1975).

Furthermore, the analysis made an assumption that the thermal noise was frequency in-

dependent, which is untrue when the hydrodynamic drag is unsteady. Time-dependent

hydrodynamic drag depends upon the earlier dynamics and this in turn leads to mem-
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ory in the Brownian forcing, which is no longer δ-correlated (i.e. it has a frequency-

dependent, rather than constant, power spectrum). Despite these issues, Chon et al.

(2000) demonstrated that the model of Sader (1998) performs well against experimen-

tal data in both air and water. Comparisons were made using the full viscous model,

a simple harmonic-oscillator (SHO) model and an approach which takes the immers-

ing fluid to be inviscid. The viscous model was seen to perform well, as was the SHO

model when dissipative effects were not too strong but, by contrast, the inviscid model

performed poorly. Paul and Cross (2004) offered an alternative approach, however, us-

ing the fluctuation-dissipation theorem (Reichl 1987), although no direct comparison

was made with the results of Sader (1998). The linear response of a cantilever, af-

ter a uniformly applied small force is turned off, was simulated using a computational

fluid dynamics (CFD) package, which simultaneously solved for the flow and the dy-

namics of the cantilever. The sophistication of this package allowed cantilevers with

complex geometries, as well as an array of multiple cantilevers, to be investigated. The

thermal spectrum of the cantilever’s tip was determined by substituting the change in

its average position, on removal of the force, into the fluctuation–dissipation theorem.

In a companion paper to Sader (1998), Green and Sader (2002) considered torsional

oscillations of a thermally driven cantilever which can be coupled to earlier work on

transverse oscillations (through the linearity of the governing equations) to describe

a clamped thermally-excited cantilever undergoing both transverse and rotational mo-

tion. This work finds application in lateral-force experiments where the cantilever is

twisted at high frequencies, for example in the study of in-plane surface acoustic wave

phenomena. Recognising the need to understand the effect of a nearby boundary, re-

cent follow-up work by Green and Sader (2005) 1 has examined the flow generated by

two-dimensional cantilevers oscillating near a wall, using boundary element methods

(BEM), considering both translational and torsional oscillations.

1Some of the issues and methods used in this work were studied in parallel work by Clarke et al.

(2005a)
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1.2 Unsteady linearized flow

The preceding discussion outlined the influence of hydrodynamics in the AFM. With

much still to do in quantifying these effects, we now focus on the pertinent hydrody-

namic theory.

In the majority of imaging and force measurement techniques the liquid (of density

ρ, viscosity µ and kinematic viscosity ν = µ/ρ) used within the AFM is incompressible

and Newtonian. Let us assume the AFM contains a cantilever with length 2L, width

2R and thickness 2D, whose tip is deflected with maximum amplitude A during mea-

surements. The flow is governed by Navier-Stokes equations and by scaling lengths on

an appropriate lengthscale L, velocities and time on typical AFM operating parameters

V and T we are able to assess the relative importance of fluid inertia and viscosity by

inspecting the non-dimensional version of these equations

St
∂U

∂t
+ Re (U · ∇U) = ∇ · σ, ∇ · U = 0, (1.1a)

σ = −IP + ∇U + ∇UT . (1.1b)

Here U the fluid velocity, σ is the stress tensor (superscript T denotes transpose) and

P is the pressure (scaled on µV/L). The dimensionless parameters St ≡ L2ρ/T µ and

Re ≡ V Lρ/µ are the Strouhal and Reynolds numbers, respectively. When the AFM

cantilever operates at a distance H from a sample surface, it proves useful to define

another dimensionless parameter

∆ ≡ H/L, (1.2)

which measures the separation distance between the wall and the cantilever relative to

cantilever length.

Table 1.1 provides typical values for these parameters under the various AFM tech-

niques. During dynamic-force (DFS) and tapping-mode (TM-AFM) spectroscopy the

dominant length scale L is the small cantilever–substrate separation distance (about

1µm), whilst amplitudes A are in the order of 10nm, much smaller than the cantilever’s

thickness. During calibration, amplitudes are smaller still, about 0.1nm, since they

arise from thermal excitation. The dominant length scale here is the cantilever’s length
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L (cm) A (cm) 1/T (s−1) V (cm s−1) Re ∆ St

DFS H = 10−4 10−6 102 10−4 10−8 0.01 10−4

TM-AFM H = 10−4 10−6 105 10−1 10−3 0.01 0.1

Calibration L = H = 10−2 10−8 104 10−4 10−4 1 100

TABLE 1.1: Typical operating parameters encountered during dynamic-force spec-

troscopy (DFS), tapping-mode AFM (TM-AFM) and calibration in water (µ/ρ =

10−2cm2s−1), for a cantilever with width R = 10−3cm, length L = 10−2cm and thick-

ness D = 10−4cm (Santos and Castanho 2004, Chon et al. 2000, Rief et al. 1997).

(O(100µm)). In TM-AFM and calibration the timescale T is determined by the oscilla-

tion frequency, whereas in DFS it is decided by the duration of retraction.

The Reynolds number is seen to be small for all techniques, which allow us to neglect

the nonlinear convective term in (1.1), leaving us with the unsteady Stokes equation

for linearized viscous flow

St
∂U

∂t
= −∇P + ∇

2U , ∇ · U = 0. (1.3)

For the purposes of describing AFM hydrodynamics, we are especially interested in

unsteady linearized flows generated by the motion of bodies and in particular the hy-

drodynamic drag (scaled on µV L ), which is defined by

D ≡
∫

S
σ · n dA, (1.4)

i.e. the integral over the body’s surface S of the normal stress component. Since an-

alytic solutions of (1.3) are obtainable for only the most basic body shapes, many

workers have also sought to find principles for approximating quantities such as drag

from knowledge of behaviour in simpler flows (c.f. Basset forces and Faxen relations in

§ 1.2.2).

In most cases we shall assume no-slip and no-penetration boundary conditions

U |S = V , (1.5)

where V is the velocity of the solid surface S. However, under certain circumstances

(1.5) is inappropriate, as we discuss below.
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1.2.1 Fluid–solid interfaces

The no-slip condition was a contentious issue in the early development of fluid me-

chanics. However, experimental observations appeared to confirm its validity over a

vast array of differing situations. Over time, of course, situations arose where the no-

slip condition was manifestly incorrect, for example in the study of moving contact-

lines, where the no-slip condition leads to a non-integrable stress singularity (Huh and

Scriven 1971). The need for more sophisticated boundary conditions when the fluid is

non-Newtonian is also well-established (Schowalter 1988).

A popular way of modelling slip uses the Navier-slip condition

(
U · tk − V · tk

)∣∣
S = Ls (tk · σ · n)|S , k = 1, 2 (1.6a)

U · n|S = V · n|S , (1.6b)

(tk and n are the orthogonal unit tangents and normal to S respectively) where Ls

is the slip-length, scaled on the dominant length scale. We should note, however, that

there is experimental support for the existence of a non-linear slip–shear relationship

(Zhu and Granick 2001), perhaps due to the presence of surface nanobubbles (see

below).

With the growing importance of microfluidics, driven by the arrival of micro-devices

such as MEMS and the AFM, efforts are being made to evaluate Ls to a high level of

precision. Indirect methods infer the slip from macroscopic flow properties; for ex-

ample, the flow rate through a channel due to an applied pressure drop (Choi et al.

2003) is a function of slip length. A variation on this idea involves measuring the slip-

dependent lubrication forces acting on a body which translates or oscillates near a sur-

face. Force measurements can be made with the surface force apparatus (SFA), where

slip lengths of 1µm have been recorded for mica coated with a hydrophobic compound

(Zhu and Granick 2001) (compared with the no-slip results for untreated mica (Is-

raelachvili 1986b)). Alternatively, several investigations have used the AFM equipped

with colloidal-probe at the tip, which have recorded O(10nm) slip for saline solution

over polystyrene (Vinogradova and Yakubov 2003) or glass (Bonaccurso et al. 2002),

sucrose solution over silica coated with gold and thiols (Craig et al. 2001, Neto et al.
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2003) or silicon (Bonaccurso et al. 2003), propanol over glass (Sun et al. 2002), water

over mica/silica (Henry et al. 2004) and various hydrocarbons over treated borosilicate

(Cho et al. 2004).

Direct measurements of slip can be made using particle image velocimetry (PIV),

which records the change to the velocity field, resulting from finite slip, using small

particles as tracers. With this method, slip lengths of up to 50nm were measured for

water flowing over glass (Joseph and Tabeling 2005). Other direct methods include flu-

orescence recovery after photobleaching (FRAP), where focussing a laser on fluorescent

probes strips them of their fluorescence and subsequent monitoring of the overall flu-

orescence then reveals the velocity field. The way in which the probes are illuminated

takes advantage of the refractive properties of light travelling from a dense material

(e.g. glass coverslip) into a less dense medium (e.g. sample fluid). When the incident

angle is larger than a critical value, total internal reflection is possible and light prop-

agates through the fluid parallel to the surface, as evanescent waves. The purpose of

generating these evanescent waves is that their depth can be controlled very precisely,

thereby reducing the background noise due to reflection off out-of-focus particles and

allowing for very localized flowfield measurements. Pit et al. (2000) recorded slip

lengths of 175nm for hexadecane over sapphire using this technique. For an entirely

different direct approach which uses nuclear magnetic resonance (NMR) see Britton

and Callaghan (1997).

Experimental findings all point towards several major factors which determine slip

over a solid surface. A rough surface resists fluid motion and an experimental value for

no-slip roughness was found to be 6nm (Zhu and Granick 2002). Richardson (1973)

showed that roughness can lead to an effective no-slip condition for the bulk flow even

when the boundary condition on the scale of the roughness is perfect slip, by recog-

nising that small surface features can exert resistances over relatively large distances.

There is speculation as to whether a critical shear rate exists for slip to occur, although

Baudry et al. (2001) and others have reported slip over a broad range of flow rates.

The wetting properties of a surface are widely accepted as crucial in determining

the slip lengths on a solid surface. Thermodynamic considerations can yield slip-length
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predictions, with Tolstoi (1952) predicting zero slip when there is perfect wetting. A

different approach uses the fluctuation–dissipation theorem (see §6), which predicts

zero slip for perfect wetting once the surface roughness exceeds the molecular size by

a few percent (Bocquet and Barrat 1994). Cottin-Bizonne et al. (2004) have suggested

that roughness can cause dewetting between surface aberrations.

A different mechanism for slip was proposed by Vinogradova (1999), who proposed

that shear induces vapour bubbles to coalesce and eventually cover the surface, so that

the liquid flows over a cushion of gas rather than the solid itself. Experimental support

for this hypothesis comes from experiments which showed that slip depends upon the

type of gas which saturates a liquid (Granick et al. 2003). In contrast to the perfect-

wetting scenario (Richardson 1973), Cottin-Bizonne et al. (2003) suggest that, for par-

tial wetting, rough features can enhance slip by acting as surface nucleation sites for

vapour bubbles. Several experimental observations of nanobubbles have been reported

recently, including those of Ishida et al. (2000) using the AFM. A theoretical effective

slip (slip as inferred indirectly by observation of a macroscopic measurable, rather than

by molecular considerations) due to the presence of nanobubbles in a microchannel

is computed by Lauga and Stone (2003), who consider a heterogeneously patterned

slip/no-slip surface. Understanding the stability of these nanobubbles, however, is an

ongoing issue. An increase in roughness could be due to surface contamination and

this is offered as an explanation for the noticeable slip during low-shear observed by

Cottin-Bizonne et al. (2005) using a highly-sensitive dynamic SFA. These results were in

disagreement with the no-slip observations of Zhu and Granick (2001), who conducted

a similar experiment but with a surface densely contaminated with platinum nanopar-

ticles. Furthermore, unlike Pit et al. (2000), Cottin-Bizonne et al. (2005) found no slip

when the liquid was wetting. This is indicative of the problems preventing a defini-

tive cataloguing of liquid–surface dynamics: seemingly very similar experiments report

markedly different results.

In gases the slip length is related to the Knudsen number Kn which is the ratio of

the mean-free-path to the dominant flow dimensions. For most practical surfaces, the

molecular mean-free-path is comparable in magnitude to the slip-length (Gad-El-Hak
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2001) and Ls ≈ Kn. Therefore for an AFM cantilever in air, when operating far from

the wall, we estimate Kn to be approximately 0.014 (based on cantilever half-width).

Although there is no consensus on an exact figure, no-slip is expected to fail when Kn

& 0.01 (Roy et al. 2003).

Evidence of finite slip is also confirmed by (computationally very demanding) non-

continuum simulations. Molecular dynamics (MD) simulations calculate individual tra-

jectories for a large number (O(104)) of particles which obey Newton’s laws of mo-

tion, where the interaction potentials between particles can take a variety of forms

(e.g. Lennard–Jones potential). Simulations have shown how the properties of the wall

(Thompson and Troian 1997), the liquid density (Koplik et al. 1989) and liquid–solid

interactions (Barrat and Bocquet 1999) can all influence slip, though these computa-

tions are unable to reproduce experimentally-realisable shear rates due to limitations

on the distances and time intervals that are feasible to simulate. Direct simulation

Monte Carlo (DSMC) offers an alternative to MD computations and has shown that

for a low-density gas (Kn & 0.1), the flow model given by (1.3, 1.5) loses its validity

not only through high values of slip but also through discrete molecular effects (Gallis

and Torczynski 2004). A continuum approach is still possible for Kn. 10 by replac-

ing Navier–Stokes with the Burnett equation (Agarwal et al. 2001), which is obtained

from the Chapman–Enskog expansion of the Boltzmann equations. Beyond Kn= 10,

however, discrete simulations are the only option.

All of these investigations therefore point to the fact that, on a sufficiently small

scale, the no-slip condition must be interpreted with considerable caution under some

circumstances. Foss et al. (2005) covers many the issues described here in more detail.

1.2.2 Steady flow

By and large, research into linearized viscous flow has concentrated on the quasi-steady

limit (St � 1) where flow is dominated by viscous effects. The work done in this area

is far too extensive to be included here as a discussion in its own right, although it

contains some directly relevant results and techniques that we shall draw attention to

below.
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A fundamental issue with the Stokes flow generated by the motion of a body is its

singular behaviour at large distances. For body translation, this is most evident in two-

dimensions where it is referred to as Stokes’ paradox. Here the velocity field exhibits

logarithmic growth at infinity. The three-dimensional analogy, Whitehead’s paradox,

although less marked (flow velocities decay at infinity) nevertheless presents difficul-

ties. For rotational motion the equivalent problem is known as Jeffery’s paradox. Oseen

(1910) had the first success in tackling these paradoxes by accounting for convective

forces (in a linear fashion) in the far field, which was later improved upon through the

matched asymptotic analysis of Proudman and Pearson (1957).

For bodies of arbitrary shape, an important general result was derived by Brenner

(1964). Using the Lorentz reciprocal theorem (Lorentz 1907)

∇ ·
[
µ′ u′ · σ − µu · σ′] = 0 (1.7)

(where u′,u are two independent flows) it was shown that the drag on a body held

an arbitrary flow is related to the traction on the same body under rigid-body motion

in quiescent fluid. This relation between incident velocity and force represents one

version of the generalised Faxen relations, after Faxen (1924) who found that the force

on a sphere of radius a is 6πµa times the average unperturbed surface velocity. Karrila

(1988) has since derived an inverse relation which expresses the traction field for rigid

body motion from knowledge of the drag in arbitrary flow.

The linearity of (1.3) implies the existence of Green functions (i.e. solutions un-

der δ-function forcing), which in the context of viscous-flow are usually referred to as

Stokeslets. From these, further higher-order singularities can be derived. Hasimoto

and Sano (1980) compiled a table of the most commonly used fundamental singulari-

ties (as well as describing the existence of quasi-steady eddy structures, important for

the generation of micro-organism feeding currents (Liron and Blake 1981), as shall

be discussed in more detail shortly). These Stokeslets will prove hugely important

to our work, not least of all because they yield a boundary-integral flow representa-

tion, early examples of which include the works of Williams (1966a) and Youngren

and Acrivos (1975). Under this formulation Stokeslets are distributed over all flow
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surfaces, except for those upon which the boundary conditions are automatically sat-

isfied by the Stokeslet; a judicious choice of Stokeslets can therefore drastically re-

duce computational overheads, e.g. when implementing numerical techniques such as

boundary-element methods (BEM). In the event of a long and thin body geometry,

the boundary-integral representation can be replaced by a distribution of singularities

along the body’s axis and this approximation is refered to as slender-body theory (see

below). Singularity methods extend this idea to a more general class of body shape,

by finding an internal distribution of Stokeslets and higher-order singularities which

approximately satisfies the surface boundary conditions. An example of this technique

is provided by Chwang and Yao-Tsu Wu (1974), who consider the rotational motion of

a prolate axisymmetric body using a distribution of singular torques, called rotlets.

Slender bodies

Boundary-integral methods allow the flow generated by the motion of a body to be rep-

resented by a surface distribution of singularities (as discussed above). When the body

is long and thin, slender-body theory (SBT) offers a further simplification, allowing the

flow to be approximated by a one-dimensional distribution of singularities (typically

Stokeslets and dipoles) along the body axis (Hancock 1953).

SBT for quasi-steady flow has enjoyed particular success in the study of micro-

organism motility in fluid (Brennen and Winet 1977). Early theoretical work utilised

resistive-force theory (RFT), a simplification of SBT which yields a local relationship

between velocity and force over each segment of the slender body (Gray and Hancock

1955). Although simple, the predictions of RFT applied to modelling simple waves

in a flagellum proved remarkably successful in describing the propulsion of sea-urchin

spermatozoa. Encouraged by this achievement, Brokaw (1965) used RFT to investigate

non-sinusoidal flagella waves, as well as modelling multiple spermatozoa. This was

followed by RFT work on helical waves (Chwang and Wu 1971) and very large ampli-

tude waves (Silveste and Holwill 1972). In their study of sea-urchin spermatozoa, Gray

and Hancock (1955) chose resistance coefficients which had a tangential to normal ra-

tio of 0.5. Lighthill (1975) found a relationship between the segment length and the
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wavelength of flagellar undulations, resulting in a revised normal–tangent ratio of 0.7.

Confusingly, this revised ratio seemed to perform worse against observations of sperma-

tozoa, until it was realised that the presence of the nearby microscopic glass slide was

influencing the measurements. The ability of a local boundary to effect micro-organism

swimming is now a well-recorded phenomenon, with experimental data (Frymier et al.

1995) clearly demonstrating that bacteria adopt circular trajectories when swimming

near a solid surface, which numerical simulations have reproduced, incorporating hy-

drodynamic wall-effects (Magariyama et al. 2005).

Unfortunately RFT is limited by the difficulty of accounting for the motion of neigh-

bouring sections of the body; the long-range character of quasi-steady flow means

that RFT captures only the dominant terms in an asymptotic expansion in powers of

ln(1/ε)−1, where ε � 1 is the body’s aspect ratio. Early asymptotic attempts to deter-

mine the flow generated by the entire slender body were made by Hancock (1953), yet

real understanding and progress came with matched asymptotic analysis; local flows

near a segment of a body were matched to a global flow which exploited the slen-

der geometry. The original formulations, developed for rigid axisymmetric bodies with

straight (Tillett 1970) and curved axes (Cox 1970, 1971) were later improved by Geer

(1976), who derived a uniform asymptotic expression for the flow. Non-axisymmetric

rigid bodies (Batchelor 1970) and bodies that could twist and dilate (Keller and Sol

1976) also received attention. However, a particular weakness of SBT is the logarith-

mic nature of the expansion. Strategies for improving the accuracy of SBT to obtain

algebraic accuracy in ε include the use of higher-order singularities in the governing

integral equation (Johnson 1980). More recent developments in SBT include the incor-

poration of convective inertial effects (Khayat and Cox 1989, Chadwick 2002).

A slender-body approach for modelling for the swimming motion of a micro-organism

with a spherical head and a flagellum was laid out in a series of papers by Higdon

(1979a,b,c). Quasi-steady image Stokeslets, designed automatically to satisfy no-slip

and no-penetration on the spherical body (see below), were distributed along the flagel-

lum. In the first instance, planar waves were prescribed along the flagellum, later

replaced by more realistic helical waves. The overall translation and rotation of the
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organism was accounted for by placing a Stokeslet, dipole and rotlet, of unknown

strengths, inside the cell body. The strength of these singularities, together with the

Stokeslet distribution along the flagellum, were then found by imposing zero net force

and net torque conditions. Moreover, by adding a wall and utilising image Stokeslets, it

was shown how the development of a toroidal eddy in the flow offers insights into the

way in which certain organisms (e.g. flagellate protozoa, such as choanoflagellates) use

their flagella to generate feeding currents, once their body is tethered to a solid surface.

This subject was revived some time later by Orme et al. (2003), who considered feeding

currents generated by helical flagellar waves (not dealt with by Higdon 1979a in con-

nection with feeding currents). Results focused on flow patterns and showed favourable

qualitative agreement with the experimental findings of Pettitt (2001). The importance

of the cell-body shape on micro-organism mobility was examined by Phan-Thien et al.

(1987) who, using a three-dimensional boundary-integral formulation, showed that cell

bodies most suited to swimming efficiently have a flattened ellipsoidal shape.

An alternative method by which micro-organisms can propel themselves (e.g. opalina)

or generate feeding currents (e.g. vorticella) involves the beating action of a dense cov-

ering of cilia. These hair-like cilia (which are about 10−50µm in length and 0.5µm in di-

ameter and attached to a nearby surface) beat at frequencies up to 50Hz in metachronal

waves (i.e. waves of in-phase beating). This is in contrast to flagellar bundles, which

are seen to synchronise their motions. The elongated shape of cilia again make slender-

body a natural modelling choice, as shown by Blake (1972) who studied beating waves

which move in the direction of the effective stroke (symplectic) and against it (antiplec-

tic). For a single cilium the flow was found to have a two-layer structure. The upper

layer only feels a mean flow produced by the fast effective (forward) stroke of a cil-

ium, whereas the lower layer experiences a comparable oscillatory flow generated by

the both the effective and (slower) recovery strokes. An array of cilia was modelled by

averaging the cumulative influence of each cilium over time and the area over which

the cilia are attached. The sheet of fluid which was found to migrate over the beating

cilia is central to such physiological processes as transport of mucus in the airways,

where it is believed that penetration of the cilia from the periciliary fluid into the mu-
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cus layer is essential for effective transport. Further theoretical work in muco-ciliary

transport mechanisms includes a SBT study into the effect of cilia penetrating through

a fluid–fluid interface (Blake 1984). SBT continues to contribute to biophysics, in stud-

ies of flexible biopolymers such as actin (Wiggins et al. 1998) and the coiling of protein

filaments during DNA transcription (Wolgemuth et al. 2000).

Another field to profit from slender-body theory is the study of rods falling in fluids,

where differences between axial and transverse drag coefficients leads to the lateral

drift observed when a rigid rod sediments (Taylor 1969). Linearity and irreversibility

of Stokes flow means that the orientation of a rod remains constant during sedimen-

tation in an unbounded fluid. In practice, however, the long-range character of Stokes

flow means that the influence of container walls can affect the rod’s angle of orienta-

tion. Drag coefficients were obtained using a slender-body treatment of the flow due

to both horizontally and vertically orientated rods translating with prescribed velocity

near a single wall or midway between two parallel walls. Initially this was done for the

case where the distance to the wall was much greater than the rod length (De Mestre

1973) and then later for arbitrary separations (Katz et al. 1975). The no-slip and no-

penetration conditions were satisfied on both walls simultaneously, using a technique

developed by Faxen (1923) for describing the motion of a sphere between walls, rather

than by using the method of successive images. In experiments it was found that, for

non-horizontal or non-vertical inclination angles, a constant orientation was not main-

tained during falling motion, as the rod was seen to rotate as well as drift. De Mestre

and Russel (1975) treated these rotations theoretically, by looking at rods falling axi-

ally and transversely towards horizontal and vertical plane wall. For axial fall parallel

to the wall the no-torque condition was seen to lead the rotation of the leading edge

away from the wall observed in the experiments of De Mestre (1973). These results are

also supported by the experimental work of Trahan and Hussey (1985). Russel et al.

(1977) examined the general case of a rod released at an arbitrary angle and allowed

to sediment under the influence of gravity, with rotational and translational velocities

determined through force balance and no-torque considerations in the slender-body

equations. It was seen that lateral drift caused the rod to come into contact with a
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vertical wall, where the initial inclination angle determined whether the leading end

rotates away from the wall (glancing action) or whether the trailing end rotates (re-

versing action).

Wall effects

The nature of AFM experiments means that the cantilever usually operates in close

proximity to a sample and, therefore, cantilever-generated flow will be influenced by

nearby surfaces. Some of the AFM literature discussed above takes account of this fact,

in particular drawing upon the result due to Brenner (1962), who solved the quasi-

steady flow generated by a sphere translating normally to a plane wall in bispherical

coordinates. This investigation was extended by Williams (1966a), who analysed the

boundary-integral formulation for the flow produced when a body of arbitrary shape

moves near a wall at distances much greater than the body geometry, obtaining approxi-

mate force–velocity relationships. Other investigations into quasi-steady wall-effects in-

cludes the work of Jeffrey and Onishi (1981) who, using bipolar coordinates, solved the

analogous problem in two dimensions, as well as considering rotations. For more com-

plex bodies, singularity-based methods can be adapted to account for the presence of a

wall using the method of images. Numerous quasi-steady image systems have been dis-

covered since Lorentz (1896) first calculated the image of a three-dimensional Stokeslet

in a plane wall using the reciprocal theorem. Blake (1971), using Fourier transforms,

showed that this image system can be neatly expressed by a second Stokeslet, a di-

pole and a stresslet (a force-doublet). Examples of common image systems include a

Stokeslet outside a sphere (Oseen 1927), a rotlet above a plane wall (Blake and Chwang

1974), a Stokeslet inside a cylinder or between parallel planes (Liron and Mochon

1976), a higher-order singularity (Blake 1979) inside an infinite cylinder and a ring of

Stokeslets between parallel planes (Liron and Blake 1981). (Some of these compact

representations were used in the aforementioned applications of slender-body theory.)

A finite number of image singularities, appropriately located, can be used to describe

flows of considerable geometric complexity, for example the Stokes flow generated by

moving one cylinder inside another (Finn and Cox 2001).
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When the distance between the body and the boundary is small, the flow becomes

amenable to asymptotic analysis. For the case of infinitely thin plates, of arbitrary

shape, in squeezing motion (Kim et al. 2001b) or sliding motion (Kim et al. 2001a)

above a plane wall, the flow is determined by matching an inner lubrication region to a

quasi-steady outer flow driven by point sources on the wall; the flow around the plate

rim which connects these regions is found using complex-variable methods, conformally

mapping the flow domain into the upper-half plane.

Despite its ability to accurately determine a huge range of fluid dynamical phenom-

ena there are, naturally, limits on the scope of quasi-steady flow’s applicability. Feng

and Joseph (1995) provide a nice account of some of the well-documented failings of

the quasi-steady predictions, before considering some novel cases (rotation of an ellip-

soid in shear flow, sedimentation of multiple cylinders) where flow inertia cannot be

ignored. We shall expand on and extend some of these themes below.

1.2.3 Unsteady linearized flow

When a quasi-steady flow is generated by a body which starts from rest, there is a

period of unsteady transient behaviour before steady flow is attained. This could be

of importance in AFM force measurement experiments, where an initially stationary

cantilever generates a flow over a short period of time.

Numerous workers have addressed the problem of the unsteady drag on an iso-

lated body following Stokes’ (1851) treatment of a cylinder and sphere oscillating at

small amplitude (see Rosenhead 1963). Basset (1888) realised that, by taking an in-

verse Fourier transform of the oscillatory motion, the general time-dependent drag on

a sphere may be decomposed into the steady (Stokes) drag, an added-mass term and a

term which is dependent upon the history of the flow, often called the Basset force. A

similar decomposition was found for the torque on the sphere due to rotational motion,

but only for times much less than the diffusive time-scale (based on sphere radius). This

was improved upon by Feuillebois and Lasek (1977) who considered the impulsive (e.g.

δ-function in time) rotation of a sphere of radius a using a Laplace transform and were

able to write the torque as the steady Stokes couple plus Basset forces for all time. These
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history-terms were seen to become O(Re) (i.e. comparable in size to the neglected con-

vective forces) in O(a/U) times (where U is a typical translational velocity). This is in

contrast to translational motion, where the Basset forces become this small only over

O(Re−1a/U) times. In further studies, Hocquart and Hinch (1983) found the decay rate

of the flow after an impulsive force or couple applied to a centrally-symmetric body.

Lawrence and Weinbaum (1986, 1988) demonstrated that the simple drag decom-

position found by Basset (1888) does not carry over to axially translating spheroids, for

which the body’s non-spherical geometry produces a complicated fourth drag compo-

nent. Despite its complexity, a good approximation could be made to this additional

drag component by taking a suitable linear combination of the Basset force and the first

inertial correction to the steady Stokes drag. Although this ad hoc approximation was

developed from results for axially oscillating spheroids, its applicability has been shown

to be quite general. Pozrikidis (1989a) used singularity methods to demonstrate its suc-

cess in approximating the drag on a transversely oscillating spheroid and Loewenberg

(1993) showed that the Lawrence and Weinbaum (1988) prescription could also reli-

ably approximate the drag on an axially or transversely oscillating cylinder, provided

that it has moderate aspect ratio.

Smith (1987) examined the evolution of a flow created by impulsively introduc-

ing a singularity into the flow for times t > 0 (i.e. with the singularity strength given

by a Heaviside step function in time) and considered the realisation of a steady state

through the act of diffusion alone. The impulsive Stokeslets and rotlets exhibited large-

time singularities as a consequence of Stokes’ paradox (large-distance singularity) be-

cause of the similarity structure of diffusive flow. This time-dependent paradox, like its

quasi-steady counterpart, can be resolved by including Oseen-convective terms or, al-

ternatively, by considering the two-dimensional body as a limit of a three-dimensional

geometry (Smith 1991). Gavze (1990) conduct further formal work in this area by

considering the force on an accelerating body of arbitrary shape, where they report the

appearance of an extra drag term when the forcing is change from impulsive to contin-

uous in time. In addition, they derive some general results regarding the symmetry of

resistance tensors for pure translational or rotational motion and investigate how these
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tensors couple under combined translation and rotation.

When Avudainayagam and Geetha (1995) studied the linear flow produced by an

instantaneously introduced point-force (i.e. strength given by a δ-function in time), this

time-dependent Stokes’ paradox was not observed when the fluid was initially at rest

but re-emerged if a quasi-steady Stokeslet was prescribed as the initial condition. A

time-distribution of these instantaneous Stokeslets, together with inviscid singularities,

was used to describe arbitrary motion of a cylinder starting from rest. This was solved

analytically for one special case, producing a flow with bounded velocity at infinity.

A Faxen relation was also derived for arbitrary translations of the circular cylinder in

terms of an integral equation.

Bounding the flow with an infinite plane wall also eradicates Stokes’ paradox and

provides the opportunity to observe flow reversal on the wall. The introduction of a

Stokeslet results in shear layers on the wall which expand into the initially irrotational

bulk flow. The Stokeslet also causes immediate reversal of the flow from the wall, in

contrast to the impulsive rotlet where there is a delay before the onset of reversal (Smith

1987). Although flow reversal is a feature of quasi-steady flow for a rotlet placed above

a plane wall (Ranger 1980), it is seen that reversal due to the presence of a Stokeslet

is a purely transient phenomenon which decays at large times. Eddy structures formed

by flow reversal have also been noted for quasi-steady flows generated by a rotlet in

the presence of various other types of boundary. These include a rotlet inside a cylinder

(Wannier 1950), a rotlet outside a cylinder (Dorrepaal et al. 1984) and a rotlet between

parallel plates (Hackborn 1980). The development of the reversed flow structures from

transient beginnings was examined by (Smith 1993). For example, the rotlet inside

a cylinder stimulates flow reversal at all distances from the cylinder wall, however

at distances less than some critical value these reversals were found to be transitory,

decaying at large time. The value of this critical value agreed with the prediction of

Wannier (1950) for the formation of a quasi-steady eddy structure.

One specific type of unsteady flow of particular interest in the study of AFM hydro-

dynamics is that generated by the oscillatory motion of a body and we discuss this in

more detail next.
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1.2.4 Oscillatory flow

AFM cantilevers in imaging or thermally-driven modes generate oscillatory flows (of

frequency ω) and under these circumstances we seek solutions to (1.3) of the form

U(x, t) = Re
(
u(x)eiωt

)
, P (x, t) = Re

(
p(x)eiωt

)
, and choose to scale length on can-

tilever length L, yielding

iγ2u = −∇p+ ∇2u, ∇ · u = 0, (1.8)

where

γ = L
√
ρω/µ. (1.9)

Unsteady inertial forces confine the diffusion of vorticity away from any solid surfaces

to a distance of O(L ), where L =
√
µ/ρω.

Mathematically equivalent to oscillatory Stokes flow, Brinkman’s equation is a model

for flow in porous media that is valid at low solid volume fraction (Durlofsky and Brady

1987), with L now interpreted as the Brinkman screening length. This similarity in

mathematical structure means that the motion of bodies in a Brinkman medium also

have relevance to flows generated by small-amplitude oscillations.

Rotational oscillations

One of the earliest works on rotational oscillatory flow is detailed in Lamb (1932)

(pp.642–644) and is concerned with the flow produced in the fluid between two spheres

when the inner sphere executes rotational oscillations, which is expressed in terms of

spherical harmonics. Other geometries were considered by Kanwal (1955a), who used

the Stokes streamfunction to solve the flow due to rotational oscillations of an infinite

cylinder, as well as a prolate or oblate spheroid (with a thin disk as a limiting case).

Hocquart (1976) calculated the Basset force for the torque experienced by a rotating

ellipsoid.

Much research into the flow produced by rotationally oscillating disks has been

stimulated by the rotatory oscillating disk viscometer, which measures fluid viscosity

via the torque exerted an disk undergoing rotational oscillations. In the low-frequency
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limit, Kanwal (1970) derived the torque on an infinitely-thin disk using results from

elasticity theory, whilst Landau and Lifshitz (1959) solved the high-frequency case. An

approach to modelling both rotational and translational motions of disks using dual-

integral techniques was taken by Zhang and Stone (1998), adapting the quasi-steady

formulation of Davis (1993b). The drag was found to consist of Stokes and Basset

components alone. Feng et al. (1998a) treated the mathematically equivalent problem

of a disk moving in a Brinkman medium.

The above studies consider a disk of infinitesimal thickness, however viscometers

have disks with finite depth. In addition to providing a general review of rotatory oscil-

latory flows, Tekasakul et al. (1998) laid out a boundary-integral formulation for find-

ing the torque on slowly oscillating axi-symmetric bodies, including a finite-thickness

disk. An alternative viscometer consists of an oscillating wire grid and this has received

theoretical treatment from Davis (1993a).

Singularity methods also provide a means by which oscillatory rotational flow can

be analysed, with Shatz (2004) approximating the flow generated by rotations of oblate

and prolate spheroids by distributing rotlets along the focal length.

Translational oscillations

The investigations of Kanwal (1955a) not only considered rotational oscillations of axi-

symmetric bodies, but also their longitudinal oscillations. In two dimensions, Kanwal

(1955b) used elliptic coordinates to express the flow produced by an infinitely thin

plate oscillating in unbounded fluid as an infinite series of Matthieu functions.

An alternative approach to the flow produced by an infinite plate was presented by

Tuck (1969), who proposed a boundary-integral expression for two-dimensional oscil-

latory flow in terms of the flow’s pressure and streamfunction. This formulation has the

advantage that it can describe plates of finite thickness and arbitrary cross section. The

BEM computations showed that the drag exerted on the plate bears remarkable similar-

ity to that experienced by a circular cylinder of equivalent width and this was exploited

by Sader (1998) in his estimation of the drag on a rectangular AFM cantilever. In

earlier work, Williams (1966b) expressed oscillatory viscous flow in boundary-integral
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form and obtained the leading-order inertial correction to the quasi-steady drag on an

arbitrary accelerating body, qualifying a previously derived expression due to Kanwal

(1964) (although the latter had considered the case where both inertial and convective

inertia were equally important).

Three-dimensional free-space oscillatory Stokeslets were computed by Pozrikidis

(1989a) and used in a singularity method approximation to the flow generated by axial

and transverse oscillations of a prolate spheroid. In subsequent work, these Stokeslets

were used in boundary-integral expressions for the oscillatory three-dimensional flow

(Pozrikidis 1989b), which exploited Lorentz’s reciprocal relation (1.7), with u′ as the

flow generated by the presence of an oscillatory Stokeslet and u as the flow gener-

ated by the motion of the body. The same approach works in two-dimensions (Avu-

dainayagam and Geetha 1998) using the oscillatory Stokeslets calculated by Avudainayagam

and Geetha (1993). The three-dimensional formulation was used to compute the flow

generated by oscillating spheroids, dumbbells and biconcave disks (Pozrikidis 1989b),

as well as the axial (Loewenberg 1994b) and transverse (Loewenberg 1994a) oscilla-

tions of a finite-length cylinder. One of the main features of these results is the ap-

pearance of viscous eddies on the surface of the bodies, which eventually detach and

dissipate in the bulk flow. At low frequencies of oscillation Smith (1995) analysed this

flow reversal in some detail, examining the structure of the transition between two

steady flows which occurs when a body changes direction. An asymptotically distinct

outer region was discovered at O(γ−1/2) distances from the body, which sees the body

as a three-dimensional Stokeslet, whilst the local flow is quasi-steady except during

a change in direction. These regions were matched asymptotically, to describe slow

oscillatory flow past any axisymmetric body. In separate analysis, general conditions

were obtained for separation of flow on the surface of an axisymmetric body placed in

streaming flow.

In two-dimensions, such considerations provide an alternative perspective into the

paradoxes of Stokes and Jeffery (see above). Traditionally these paradoxes are resolved

by recognising the importance of convective forces in the far field. For slow oscillatory

flow (γ � 1), however, Smith (1997) chose to make unsteady inertia dominant over
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convection in the far field. In this regime, slowly oscillating flow past a circular cylinder

generates eddies which detach into the local flow. These eddies dissipate only in an

asymptotic region which lies at O(γ−1/2) distances from the body, with this transition

taking place over an O((ln γ)−1) timeframe. The Jeffery paradox was investigated by

considering a rotlet outside of a cylinder (Dorrepaal et al. 1984). The outer flow here is

more complex, having two distinct outer flows at O(γ−1/2) and O((ln γ)−1) distances.

The inner flow is once again quasi-steady for most of the time and a locally generated

eddy again collapses in the far-field; however, in this case the process can take longer

than an oscillation cycle.

Wall effects

Few studies of oscillatory flows have accounted for the presence of nearby walls. Chu

and Kim (2002) determined the oscillatory two-dimensional flow around a semi-infinite

plate above a wall by conformally mapping the geometry to the upper-half plane and

then solving numerically using finite-differences. In separate work, they extended the

dual-integral-equation method of Zhang and Stone (1998) to describe a disk undergo-

ing rotational and translation motions above a plane wall (Chu and Kim 2004). Sev-

eral other examples can be found in the literature on Brinkman flow. Kim and Russel

(1985) examined the flow due to two spheres in a Brinkman medium using the method

of reflections and a boundary collocation technique. Feng et al. (1998b) computed the

flow due to a translating sphere in the presence of a plane wall, employing a boundary-

integral technique that exploits symmetry but requires the solution of integral equations

on all solid boundaries. Broday (2002) used a boundary-integral method to determine

the drag on a spherical bead near a planar interface between two Brinkman media,

while Sugihara-Seki (2004) used a finite-element method to compute the motion of

a sphere in a cylindrical tube. The motion of a two-dimensional body in a Brinkman

medium near a rigid boundary does not appear to have been studied in any detail.

For oscillatory flows, image methods are less straightforward. As shown by Pozrikidis

(1989a) in three dimensions and Chu and Kim (2001) in two dimensions, to satisfy

no-slip and no-penetration conditions on a wall, an oscillatory Stokeslet must be sup-
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plemented with an image system reflected in the wall plus a distribution of singularities

along the wall.

Steady streaming

The linearized momentum equation (1.3) describes the leading-order flow in the limit

in which the amplitude of oscillation is small compared to the body diameter. At higher

orders, nonlinearities associated with convective inertia lead to steady streaming ef-

fects, which produces irreversible migration of fluid particles over time. This phenom-

enon was reported by Faraday (1831) during his work on vibrating plates and later by

Schlichting (1932), who also conducted a theoretical study using boundary-layer the-

ory. Some theoretical work had been done in this area by Rayleigh (1884) but outside

the framework of boundary-layer theory. When the viscous length scale is small, the

Reynolds stresses in the Stokes layer produce a streaming flow which persists outside

of this shear layer. A streaming Reynolds number Rs can be defined for this mean

flow which characterizes its behaviour outside of the boundary layer. When Rs � 1

a secondary-boundary layer forms (Stuart 1966), where migrating fluid particles can

collide forming jet-like flow along the axis of oscillation (see Van Dyke 1982). Riley

(1967) showed that Rs � 1 and Rs = O(1) characterize quasi-steady and fully non-

linear steady outer flows, respectively. Riley (2001) has compiled a comprehensive re-

view of steady streaming, including streaming in inviscid flows with a free surface and

acoustic streaming, where there is apparent slip on the length scale of the boundary-

layer thickness.

1.3 Objectives and structure of thesis

The study of biological specimens using the AFM is hampered by the presence of fluid

effects, especially in high-speed regimes (e.g. TM-AFM and during calibration). The

nature of AFM measurements mean that the sample is often in close proximity to the

fast moving components and this increases the influence of hydrodynamic effects still

further. We therefore set out to develop techniques which allow us to compute or
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approximate these small-scale high-speed flows which are confined by the presence of

a nearby boundary; we believe this will find relevance not only with the AFM, but also

with respect to a much wider class of micro-devices (e.g. MEMS). Results will seek to

quantify the effects on the drag of varying the flow speed and geometry, looking for

situations where the simple approaches work well. (Although surface slip discussed in

§ 1.2.1 is not a major focus of this study, we do briefly consider its effects in Appendix A,

for a couple of simple two-dimensional geometries. Also, while recognising that steady

streaming is of great theoretical interest, we do not include it in this study.) Then, by

coupling the fluid dynamics to solid-body mechanics, we simulate cantilever behaviour

and make comparisons with actual experimental results.

As we progress, the flow models shall advance towards more realistic AFM can-

tilever geometries, starting in chapter 2 with the very general problem of the two-

dimensional flow generated by an infinite-length circular cylinder oscillating above a

plane wall. Three-dimensional effects are then included in chapter 3, where we con-

sider the flow generated by a finite-length circular-cylinder oscillating above a plane

wall, using a novel unsteady slender-body flow approximation. We then extend the hy-

drodynamics in chapter 4 to flows which are generated by both infinite and finite-length

plates with a rectangular cross-sections. Determining the dynamics of a viscously-

damped cantilever requires an understanding of the solid-body mechanics and so in

chapter 5 we incorporate the hydrodynamics into models describing the elastic behav-

iour of beams and plates driven sinusoidally. As we have seen, there is much interest

in determining the behaviour of thermally-driven cantilevers and this forms the focus

of chapter 6, where we compare our theoretical model to experimental data. We draw

some overall conclusions and outline possible extensions to this work in chapter 7.



Chapter 2

Flows generated by an

infinite-length circular cylinder

We begin by considering an infinitely long cantilever, circular in cross section, which

oscillates above a flat, rigid substrate. This simple geometry will provide some early in-

sights into wall effects and form useful validation when dealing with more sophisticated

cantilever shapes.

Specifically, we consider the two-dimensional unsteady flow generated by small-

amplitude vertical oscillatory motion of a cylinder, whose surface is denoted by S and

which has a circular cross-section of radius R, aligned parallel to an infinite rigid hor-

izontal wall. In Cartesian coordinates (x2, x3), the wall lies at x3 = 0 and the centre

of the cylinder lies at (0,H) (see figure 2.1a). The cylinder oscillates normal to the

wall with frequency ω, with an amplitude of oscillation A, where A � R. The two-

dimensionality of the geometry means that the focus here is on εγ = R
√
ρω/µ, ∆/ε =

(H −R)/R. Rescaling lengths on R rather than L recasts (1.8) into the form

i(εγ)2u = −∇p′ + ∇2u, ∇ · u = 0, (2.1a)

where p′ = εp is the pressure rescaled on R/µV .

37
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This must be solved subject to no-slip and no-penetration boundary conditions

u|S = x̂3, u(x2, 0) = 0 for −∞ < x2 <∞, u → 0 as |x| → ∞. (2.1b)

(εγ)−1 is a measure of the distance over which vorticity diffuses during an oscillation

relative to the cylinder’s diameter. The dimensionless separation parameter, ∆/ε =

(H − R)/R now measures the minimum distance between S and the wall in terms

of the cylinder’s radius (see figure 2.1a). We also define a streamfunction ψ by u =

(ψx3 ,−ψx2), where subscripts x2 and x3 denote derivatives. Taking the curl of (2.1a)

yields

i(εγ)2∇2ψ = ∇4ψ, (2.2a)

ψ(x2, 0) = 0, ψx3(x2, 0) = 0, ψx2|S = −1, ψx3 |S = 0, ψ → 0 as |x| → ∞.

(2.2b)

Symmetry of the flow about x2 = 0 means that we need consider the flow only in the

quadrant x2 ≥ 0, x3 ≥ 0.

In §2.1 we describe the numerical scheme use to compute the flow generated by a

two-dimensional circular cylinder near a wall, followed in §2.2 by numerous asymptotic

results used to validate and extend the numerics. The results in § 2.3 concentrate on

how the vertical component of drag per unit length D3 (refer to (1.4) where lengths

are scaled on R) is influenced by (∆/ε) and εγ, with the findings discussed in §2.4.

The effect of slip (see §1.2.1) on the drag for an unbounded fluid are presented in

Appendix A.1.

2.1 Numerical treatment

When the cylinder is circular, the geometry of the flow lends itself to cylindrical bipolar

coordinates (ξ′, η′), defined by (Jeffery 1921)

x2 = − c sin ξ′

cosh η′ − cos ξ′
, x3 =

c sinh η′

cosh η′ − cos ξ′
, c =

√
(∆/ε)((∆/ε) + 2). (2.3)

In this coordinate system, the flow domain in x2 ≥ 0 maps to the rectangle −π ≤ ξ′ ≤
0, 0 ≤ η′ ≤ η1 ≡ cosh−1(1 + (∆/ε)) (see figure 2.1b). However, we gain this finite
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1H/R

FIGURE 2.1: Geometry of the flow domain for a circular cylinder above a wall (non-

dimensional units) in (a) Cartesian coordinates and (b) bipolars (2.3).

rectilinear geometry at the cost of losing separability in our governing equation (2.2a),

which becomes

i(εγ)2c2∇2ψ = ∇2
((

cosh η′ − cos ξ′
)2 ∇2ψ

)
. (2.4)

We discretize (2.4) using a finite-difference scheme on a uniform mesh and solve the

resulting linear system of equations by Gaussian elimination. Following Jeffery (1921)

we choose to work with (cosh η′ − cos ξ′)ψ/c rather than with ψ itself, as this results

in a simpler form for the operator and the boundary conditions. As εγ is increased the

demand for mesh points also increases, to resolve the boundary layers that arise on

the cylinder and wall. We obtained solutions for εγ ≤ 30 on a 200 × 200 mesh, with

convergence verified on a 350 × 350 mesh and validation provided by comparison with

asymptotic results derived in §2.2.

2.2 Asymptotic treatment

Figure 2.2 charts the distinct asymptotic regions (I–VI) of (εγ, (∆/ε))-parameter space

for a two-dimensional circular cylinder. In §2.2.1 we treat the case where the distance

that vorticity diffuses over one oscillation is much greater than the wall–cylinder separa-
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ln(∆/ε)

ln εγ

∆/ε ∼ (εγ)−1
∆/ε ∼ (εγ)−4/3

I

II

IIIIV

V

VI

FIGURE 2.2: Asymptotic regions of (εγ, (∆/ε))-parameter space for a circular cylinder.

A sketch inside each region shows the physical picture, with dotted lines indicating the

distance over which vorticity diffuses during one oscillation.

tion ((∆/ε) � (εγ)−1) and wall effects are controlled by viscosity. In §2.2.2 the converse

situation is investigated ((∆/ε) � (εγ)−1), where inviscid wall interactions dominate.

Finally §2.2.3 describes the transition between these two states (∆γ = O(1)). In the

following we denote the boundaries between regions (IV and V, say) as IV/V.

2.2.1 Viscous wall interactions: ∆ � γ−1

Small separations: Region IV, (∆/ε) � min(1, (εγ)−4/3)

When the cylinder is close to the wall (region IV) we can model the flow in the gap

between these two surfaces using lubrication theory, approximating the surface of the

cylinder with the parabola x3 = (∆/ε) + (x2
2/2). Rescaling using

x3 = (∆/ε) x̌3, x2 = (∆/ε)1/2 x̌2,

u2 = (∆/ε)−1/2 ǔ2, u3 = ǔ3, p = (∆/ε)−2 p̌, ψ = (∆/ε)−3/2 ψ̌, (2.5)
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the governing equations for the streamfunction become at leading order

ψ̌x̌3x̌3x̌3 = p̌x̌2, p̌x̌3 = 0, (2.6a)

ψ̌x̌2(x̌2, 0) = 0, ψ̌x̌3(x̌2, 0) = 0, ψ̌x̌2(x̌2, 1 + x̌2
2/2) = −1, ψ̌x̌3(x̌2, 1 + x̌2

2/2) = 0,

(2.6b)

which yields

ψ̌ = − 2x̌2x̌
3
3(

1 + 1
2 x̌

2
2

)3 +
3x̌2x̌

2
3(

1 + 1
2 x̌

2
2

)2 , p̌ = − 24

(2 + x̌2
2)

2
, (2.7)

so that

D3 = 3
√

2π(∆/ε)−3/2 +O((∆/ε)−1/2), (2.8)

in agreement with Jeffrey and Onishi (1981). The flow outside the gap provides an

O(1) drag contribution when εγ . 1. For 1 � εγ � (∆/ε)−3/4, the leading-order

drag outside the lubrication region is O((εγ)2) but remains sub-dominant to (2.8). We

discuss the case in which these contributions become comparable in §2.2.3 below.

Moderate separations: Region IV/V, (∆/ε) = O(1), εγ � 1

When εγ � 1 and (∆/ε) = O(1), (2.1a) reduces to the steady Stokes equations

0 = −∇p′ + ∇2u, ∇ · u = 0, (2.9)

subject to (2.1b). The steady Stokes’ problem of a circular cylinder translating perpen-

dicularly to a horizontal wall was solved as a finite series in bipolar coordinates (2.3)

by Jeffrey and Onishi (1981). A more compact form of the solution may be obtained

using complex-variable techniques, such as adopted by Finn and Cox (2001), who de-

termined the quasi-steady flow generated by one circular cylinder translating inside

another. From their closed-form solution, we take the limit in which the radius of the

outer cylinder tends to infinity and recover a solution which reveals the singularity

structure of the flow:

ψ = β1

(
x2

2
ln
r+
r−

− 2cx2(x3 + c)

r+
+

2c2x2

r+

)
+ β2

(
x2

2
ln
r−
r+

+
2cx2(x3 − c)

r−
+

2c2x2

r−

)
,

(2.10)
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where r+ = x2
2 + (x3 + c)2, r− = x2

2 + (x3 − c)2, c is given by (2.3c) and

β1 =
c+ (∆/ε) + 1

c− (∆/ε) − 1
β2, β2 = (c− (∆/ε) − 1)

(
2c+ (1 + (∆/ε)) ln

(
1 + (∆/ε) − c

1 + (∆/ε) + c

))−1

.

(2.11)

Defining

M =



 1 0

0 −1



 , (2.12)

(2.10) can be interpreted as a superposition of (i) two Stokeslets within the cylinder

at (0, c) of strengths −β1 x̂3 and β2 x̂3, (ii) two image Stokeslets at (0,−c) of strengths

β1 x̂3 and −β2 x̂3, (iii) a stresslet at (0,−c) of strength −cβ1M , (iv) a stresslet at (0, c)

of strength cβ2M and (v) dipoles at (0,−c) and (0, c) of strengths c2β1 x̂3 and c2β2 x̂3

respectively. This description of the flow in terms of these singularities immediately

gives the leading-order drag on the body to be

D3 = (β2 − β1) = −8π(1 + (∆/ε))

(
2c+ (1 + (∆/ε)) ln

(
1 + (∆/ε) − c

1 + (∆/ε) + c

))−1

, (2.13)

which is the net strength of the Stokeslets inside the cylinder. For (∆/ε) � 1, (2.13)

reduces to (2.8). It is instructive to obtain the large-(∆/ε) limit of (2.13) using an

independent argument, as follows.

Large separations: Region V, 1 � ∆ � γ−1

Even though in region V the wall–cylinder separation distance is large, the cylinder

oscillates so slowly that vorticity diffuses a distance much greater than the distance to

the wall during an oscillation. Thus we expect the cylinder to generate an O(ln(∆/ε))

flow at the wall. An image flow of similar magnitude must be present to allow the

boundary conditions at the wall to be satisfied. This is determined as follows. Setting

x = (∆/ε)x̆, p = (∆/ε)−1p̆, ψ = (∆/ε)ψ̆ and D3 = (∆/ε)−1D̆3 gives the following form

for (2.1a):

−∇̆p̆+ ∇̆2u = O((∆γ)2), ∇̆ · u = 0. (2.14)
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Since ∆γ � 1 in region V, we have a quasi-steady flow at leading-order. Suppose a

point force is located at x̆ = (0, 1) of unknown strength 4πA, orientated perpendicular

to the wall, on which no-slip and no-penetration are satisfied. Liron and Blake (1981)

give the streamfunction for the resulting flow as

ψ̆ = A

(
x̆2 ln

√
x̆2

2 + (x̆3 − 1)2

x̆2
2 + (x̆3 + 1)2

+
2x̆2(x̆3 + 1)

x̆2
2 + (x̆3 + 1)2

− 2x̆2

x̆2
2 + (x̆3 + 1)2

)
. (2.15)

We can identify the singularity structure of (2.15) as comprising Stokeslets of non-

dimensional strength 4πAx̂3 at (0, 1) and (0,−1), a dipole of strength −4πAx̂3 at

(0,−1) and a stresslet of strength 4πAM at (0,−1). We now modify (2.15) to pro-

duce a flow that satisfies no-slip and no-penetration at the cylinder’s surface. The flow

near the cylinder is assumed to be a superposition of a Stokeslet, uniform flow and

dipole of the form

ψ = Bx2 ln
√
x2

2 + (x3 − 1 − (∆/ε))2 + Cx2 + Ex2/(x
2
2 + (x3 − 1 − (∆/ε))2); (2.16)

the boundary conditions on the cylinder surface are satisfied by choosing C = −1 −
B/2 and E = B/2. Using the requirement that the outer flow (2.15) evaluated near

the cylinder matches the inner flow (2.16) evaluated far from the cylinder, asymptotic

matching shows that

B = (ln(∆/ε))−1 + (ln(∆/ε))−2(1 − ln 2) +O
(
(ln(∆/ε))−3

)
, A = (∆/ε)B. (2.17)

Thus the drag is given by the strength of the Stokeslet inside the cylinder

D3 =
4π

ln(∆/ε)
+

4π (1 − ln 2)

(ln(∆/ε))2
+O

(
1

(ln(∆/ε))3

)
, (2.18)

in agreement with (2.13) for (∆/ε) � 1. We shall exploit this constructive method

again in §2.2.3 below.

2.2.2 Inviscid wall interactions: ∆ � γ−1

Large separations: Regions VI & I, (∆/ε) � max(1, (εγ)−1)

On the region VI/I boundary ((∆/ε) � 1, εγ = O(1)) the flow is largely inviscid. The

flow must satisfy no-penetration at the wall and (far from the cylinder) can be described
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by a dipole at the centre of the cylinder together with its image dipole in the wall. The

flow produced by the image dipole is very weak at the cylinder, with velocity of order

(∆/ε)−2, and so the drag is approximately that exerted on an oscillating cylinder in

unbounded fluid (Stokes 1851):

D3 = iπ(εγ)2

(
1 +

4K1(
√
iεγ)√

iεγK0(
√
iεγ)

)
(2.19)

subject to an O(ε3γ2/∆) error, due to the generation of a cylinder surface pressure of

this size from the image dipole (see Appendix A for the effect of slip on this drag result).

Taking the limit εγ � 1 in (2.19), we obtain the drag in region VI (εγ � 1)

D3 = − 4π

ln εγ
+

4πc0
(ln εγ)2

− 4πc20
(ln εγ)3

+
4πc30

(ln εγ)4
+O

(
1

(ln εγ)5

)
, c0 =

(
iπ

4
+ ε0 − ln 2

)
,

(2.20)

where ε0 ≈ 0.57721 is Euler’s constant. When εγ � 1, (2.19) gives the leading-order

drag in region I

D3 = iπ(εγ)2 + 4π
√
iεγ + 3π +O((εγ)−1), (2.21)

provided that (∆/ε) � εγ. When this is the case, the wall–cylinder interaction does

not feature in the O(εγ) secondary flow and so the drag is successfully approximated

by that exerted on a circular cylinder oscillating in an unbounded fluid. However, if

(∆/ε) � εγ then the secondary O(εγ) flow is described by a collection of inviscid

singularities located at the centre of the cylinder, together with their images in the wall.

Rather than determine these directly, we use the Fourier-series method outlined below.

Moderate and small separations: Regions I & II, εγ � max(1, (∆/ε)−1)

On the region I/II boundary ((∆/ε) = O(1), εγ � 1) we write

p′ = (εγ)2p(0) + εγp(1) + · · · , u = u(0) + (εγ)−1u(1) + · · · , (2.22)

and (2.1a) implies that

iu(0) = −∇p(0), iu(1) = −∇p(1), (2.23)
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where u(0)(x2, 0) = 0 and u(0)
∣∣
S = x̂3. Thus the primary and secondary flows are both

inviscid with viscous effects restricted to thin boundary layers on the solid surfaces. Fur-

thermore, the boundary layers that match to u0 determine the boundary conditions for

u(1). The secondary inviscid flow provides an O(εγ) drag contribution, commensurate

with that from the boundary layers, which requires its retention.

A Fourier-series solution for the leading-order inviscid flow may be found by map-

ping the infinite Cartesian flow domain into a finite rectangular domain using bipolar

coordinates (2.3) (see Appendix B), giving

ψ(0) = 2c

∞∑

n=1

en sinh(nη′) sin(nξ′), en =
e−nη1

sinh(nη1)
, (2.24)

where η1 = cosh−1(1 + (∆/ε)), from which we determine the slip velocities us
c on the

cylinder and us
w on the wall. Using (2.23a) and (2.24) it is straightforward to show that

the pressure is given by

p(0) = 2ic
∞∑

n=1

en cosh(nη′) cos(nξ′), (2.25)

from which the leading-order O((εγ)2) drag may be determined.

Writing x3 = (εγ)−1x̃3, we find the usual Stokes boundary layer on the wall in the

form

u(x2, x̃3) = us
w(x2)

(
1 − e−

√
ix̃3

)
+O

(
(εγ)−1

)
. (2.26)

By transforming into polar coordinates with origin at the cylinder centre

x2 = r cos θ, x3 = 1 + (∆/ε) + r sin θ (2.27)

and rescaling radial distances r = 1 + (εγ)−1r̃, we find a Stokes boundary layer on the

cylinder surface

uθ(r̃, θ) = us
c(θ) − (us

c(θ) − cos θ) e−
√

ir̃ +O
(
(εγ)−1

)
, (2.28)

where uθ is the azimuthal component of velocity. The normal boundary-layer velocities

drive the secondary O(εγ) inviscid outer flow, imposing upon it the following boundary

conditions

ψ(1)(1, θ) = i−1/2 (− cos θ + us
c(θ)) , ψ(1)(x2, 0) = −i−1/2us

w(x2), (2.29)
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which correspond to conditions at η′ = 0 and η′ = η1 in bipolar space.

By expressing the boundary conditions (2.29) as a Fourier sine series in bipolar

coordinates (see Appendix B), we can write the secondary inviscid flow as

ψ(1) =

∞∑

n=1

(
an coshnη′ + bn sinhnη′

)
sinnξ′, (2.30)

where

an =
1√
i

[
(n− 1)en−1 + (n + 1)en+1 − 2nen

]
, (2.31a)

bn =
1√
i

[
2 (n dn + c) en − (dn − c) (n− 1) en−1 − (dn + c) (n+ 1) en+1

]
, (2.31b)

with dn = (2 + (∆/ε))/ tanh nη1 and c given by (2.3c). The secondary pressure is then

p(1) = i

∞∑

n=1

(
an sinhnη′ + bn cosh nη′

)
cosnξ′, (2.32)

which, when combined with (2.25) and (2.28) and converted to polar coordinates,

gives the drag

D3 = −(εγ)2
∫ 2π

0
p(0)(θ) sin θ dθ − εγ

∫ 2π

0

(
p(1)(θ) sin θ −

√
i (us

c(θ) − cos θ) cos θ
)

dθ,

(2.33)

where p(0), p(1) and us
c are given by (2.25), (2.32) and (B.5a), respectively. We show in

§2.3 below how (2.33) matches to (2.21) for sufficiently large (∆/ε). The small-(∆/ε)

limit of (2.33) is discussed in §2.2.3 below.

2.2.3 Viscous/inertial wall interactions: ∆γ = O(1)

We now consider situations in which the interaction between the particle and the wall

is mediated by both viscous and unsteady inertial effects. This occurs primarily when

the parameter τ ≡ ∆γ = O(1).

Large separations: Region V/VI, (∆/ε) ∼ (εγ)−1 � 1

Between regions V and VI, the lengthscale for viscous diffusion is comparable to the

separation between the cylinder and the wall. As in §2.2.1, we find the flow by se-
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quential construction, first introducing an oscillating two-dimensional Stokeslet (Avu-

dainayagam and Geetha 1993), of unknown strength C, combined with a dipole,

ψ = C

(
−1

r

(
1 +

2K1(
√
iεγ)√

iεγK0(
√
iεγ)

)
+

2K1(
√
iεγr)√

iεγK0(
√
iεγ)

)
cos θ, (2.34)

where (r, θ) are polar coordinates centred on the cylinder. As these singular solutions

induce non-zero flow at the wall, we must also add their image system (see Appendix

C.1)

ψI = C

∫ ∞

0

[
−A1

(
(k + q)e−k(x3+2(∆/ε)) − 2ke−q(x3+(∆/ε))−(∆/ε)k

)

− A2

i(εγ)2

(
k

q
(k + q)e−q(x3+2(∆/ε)) − 2ke−k(x3+(∆/ε))−(∆/ε)q

)]
sin kx2

(k − q)
dk,

(2.35)

where q =
√
i(εγ)2 + k2, A1 = 1 + 2K1(

√
iεγ)/

√
iεγK0(

√
iεγ) and A2 = 2/K0(

√
iεγ).

At leading order, the image system generates a uniform flow near the cylinder, as can be

seen by asymptotically evaluating the integrals in (2.35) to give ψI = Cx2(∆/ε)
−2I(τ, εγ)+

O((∆/ε)−1), where

I(τ, εγ) =

∫ ∞

0

[
−A1

(
u(u+ q2) e

−2u

(u− q2)

)
− A2

i(εγ)2
u2(u+ q2) e

−2q2

q2 (u− q2)

+2

(
A1 +

A2

i(εγ)2

)
u2 e−(u+q2)

(u− q2)

]

du (2.36)

and q2 =
√
u2 + τ2. Consequently, the flow local to the cylinder is given by

ψ = C

(
−1

r

(
1 +

2K1(
√
iεγ)√

iεγK0(
√
iεγ)

)
+

2K1(
√
iεγr)√

iεγK0(
√
iεγ)

+
I(τ, εγ)r

(∆/ε)2

)
cos θ +O((∆/ε)−1).

(2.37)

We can satisfy ψ = −r cos θ on S by setting C =
(
1 − (∆/ε)−2I(τ, εγ)

)−1
. Only the

Stokeslet exerts drag on the cylinder and thus the drag is

D3 = iπC(εγ)2

(

1 +
4K1(

√
iεγ)√

iεγK0(
√
iεγ)

)

≈
(

1 − I(τ, εγ)

(∆/ε)2

)−1( 4π

ln 2 − ln(
√
iεγ) − ε0

+O((εγ)2)

)
, (2.38)
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where, as in §2.2.2, ε0 is Euler’s constant. In the limit τ � 1 we are able to evaluate the

integral I(τ, εγ) asymptotically, to obtain (see Appendix C.2)

D3 =
4π

(ln(∆/ε) + ln 2 − 1 − τ2/4)
+O((εγ)2(ln(∆/ε))−1, ((∆/ε)2 ln εγ)−1, (εγ)4),

(2.39)

with τ2/4 giving the first inertial correction to the quasi-steady result (2.18) for region V.

Conversely, in the limit τ � 1, since I/(∆/ε)2 ∝ (τ2 ln τ)−1 we see that (2.38) reduces

to the region-VI limit (2.19).

Small separations: Region III, (εγ)−4/3 . (∆/ε) . (εγ)−1 � 1

A second interaction between viscous, inertial and wall effects occurs in region III. The

boundaries of this region are defined as follows. For (∆/ε) ∼ (εγ)−1 � 1 (the II/III

boundary), the Stokes layers on the cylinder and wall are comparable in thickness to

the wall–cylinder spacing. Thus the inner lubrication flow has a mixed viscous–inertial

structure over a horizontal length scale (∆/ε)1/2. However, the drag remains dominated

by the O((εγ)2) inviscid contribution from the outer flow. As (∆/ε) is reduced, the

lubrication region develops a nested structure, with a viscous region of width (∆/ε)1/2

(contributing an O((∆/ε)−3/2) drag, see (2.8)) lying within a viscous/inertial region of

width (εγ)−1/2. Once (∆/ε) = O((εγ)−4/3), the drag from the viscous region becomes

comparable with the leading-order inertial drag in the outer region; this defines the

III/IV boundary. For (∆/ε) � (εγ)−4/3, we enter region IV and (2.8) dominates.

We derive here an expression connecting the behaviour in regions II and IV. It is

sufficient to work along the region II/III boundary, since the nested boundary layer

structure in region III is captured implicitly. Along this boundary, we anticipate drag

contributions atO((εγ)2) (inviscid outer),O((εγ)3/2) (viscous/inviscid inner) andO(εγ)

(viscous outer). Thus both inner and outer regions are needed for a reliable estimate

of the drag.

The inviscid flow is found by conformally mapping the outer flow domain, in which

the cylinder appears to be in contact with the wall, to an infinite strip, where Fourier
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transform methods yield the following streamfunction for the flow (see Appendix D)

ψ = 4π

∫ ∞

0

(
e−2πk

sinh 2πk

)
sinh

(
2πkη′′

)
sin
(
2πkξ′′

)
dk. (2.40)

In the lubrication region, (2.5) yields the following governing equations

ψ̌x3x3x3 − iτ2ψ̌x3 = p̌x̌2 , p̌x̌3 = 0, (2.41a)

up to an O(∆/ε) correction, subject to the boundary conditions (2.6b), which are satis-

fied by

ψ̌ = A(x̌2)e
√

iτ x̌3 +B(x̌2)e
−
√

iτ x̌3 + (
√
iτ)−2C(x̌2)x̌3 + (

√
iτ)−2E(x̌2). (2.42a)

Defining κ =
√
iτ (1 + x̌2

2/2), the coefficients in (2.42a) are

A(x̌2) =
1

2

(
x̌2 (1 − e−κ)

κ sinh τ − 2 cosh κ+ 2

)
, B(x̌2) =

1

2

(
x̌2 (1 − eκ)

κ sinhκ− 2 cosh κ+ 2

)
,

C(x̌2) =
−(

√
iτ)3 x̌2 sinhκ

κ sinhκ− 2 cosh κ+ 2
, E(x̌2) =

−(
√
iτ)2 x̌2(1 − coshκ)

κ sinhκ− 2 cosh κ+ 2
. (2.42b)

For τ � 1 with x̌2 = O(1), (2.42) reduces to (2.7).

The leading-order drag in both the inner and outer flows comes from the pressure,

whose gradient we now express as a composite expansion. Adding the outer pO
θ and

inner pI
θ expressions for the pressure gradient, and subtracting off their common expres-

sion pC
θ in the intermediate region between inner and outer, we arrive at the following

uniformly valid expression for the pressure gradient on S

pθ = (∆/ε)−2
(
pI

θ + τ2pO
θ − τ2pC

θ

)
, (2.43a)

where

pI
θ = (

√
i∆γ)3Θ sinhα (α sinhα− 2 coshα+ 2)−1 , α = (

√
i∆γ)

(
1 + Θ2/2

)
,

(2.43b)

pO
θ = 8iπ2

∫ ∞

0

(
ke−2πk

tanh 2πk

)
sin(2πk cos θ(1 + sin θ)−1)

(1 + sin θ)
dk, (2.43c)

pC
θ = 2i (θ + π/2)−1 , (2.43d)
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with Θ = (∆/ε)−1/2 (θ + π/2). We numerically integrate pθ for the pressure, which is

then used to determine the drag

D3 = 2

∫ π

0

(∫ β

0
pθ dθ

)
sin β dβ. (2.44)

We have not included the cylinder boundary layers and secondary inviscid flows in the

outer flow, but (2.44) successfully connects the leading-order drag in region II with that

in region IV, as demonstrated numerically in §2.3.2 below.

2.3 Results

We now present numerical results for circular cylinders. In §2.3.2 we compare calcu-

lations for the drag on a circular cylinder using the scheme outlined in §2.1 with the

asymptotic predictions developed in §2.2 in limiting cases.

2.3.1 Streamlines

Figure 2.3 shows two sets of streamlines for a circular cylinder at unit distance from

the horizontal wall x3 = 0, each showing the instantaneous behaviour at three distinct

times in the oscillation cycle for (εγ)2 = 1 (panels a–c) and (εγ)2 = 10 (panels d–f).

At both frequencies we see that there is an up–down asymmetry in the streamlines

induced by the presence of the wall. However, this asymmetry is less pronounced for

(εγ)2 = 10, indicating that, as viscous effects become confined to boundary surfaces,

wall effects diminish elsewhere in the flow. At t = 0 the cylinder passes through its zero-

displacement position; as the cylinder changes direction at t = π/2, closed streamlines

are shed from the cylinder’s surface. Such flow reversal has been noted in other studies

of oscillating bodies (Pozrikidis 1989b; Loewenberg 1994b) in the absence of external

boundaries. In the presence of a nearby wall we observe reversal on this external

boundary which, at (εγ)2 = 10, occurs fractionally earlier than the reversal on the

body’s surface.
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FIGURE 2.3: Streamlines for a circular cylinder when (∆/ε) = 1 at (a) t = 0, (b)

t = π/2, (c) t = π/2 + 0.1 when (εγ)2 = 1 and at the same times for (εγ)2 = 10, (d, e

and f respectively). The wall is located along the x2-axis.
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FIGURE 2.4: Modulus (a) and phase (b) of the drag when (εγ)2 = 0, 0.1, 1, 2, 3, 10, 30

plotted over a range of (∆/ε), together with modulus (c) and phase (d) of the drag

when (∆/ε) = 0.01, 0.1, 1, 10, 20 and 50, plotted over a range of (εγ). Thin solid

lines correspond to numerical computations, whilst asymptotic results for regions I/II

(2.33), III (2.44), IV (2.8), IV/V (2.13), V (2.18), V/VI (2.38) and VI/I (2.19) (cover-

ing both I & VI) are shown with thicker dashed lines.



CHAPTER 2 INFINITE-LENGTH CIRCULAR CYLINDER 53

2.3.2 Drag

Figure 2.4 presents numerical drag computations for a infinite-length circular cylinder

alongside the corresponding asymptotic limits, highlighting the trends in drag as (∆/ε)

and (εγ) are varied. For fixed (εγ) (figure 2.4a, b), a decrease in (∆/ε) produces a

monotonic increase in the drag’s modulus and a monotonic decrease in its phase. This

change is seen to be a function of (εγ), occurring at lower values of (∆/ε) as (εγ) is in-

creased. The results for fixed (∆/ε) (figure 2.4c, d) show that drag’s modulus increases

and becomes less sensitive to separation distance at larger (εγ). The phase tends to-

wards the inviscid limit of π/2 as (εγ) is increased, but with the rate of convergence

slower at small (∆/ε).

An important feature of these results is the comprehensive coverage of parameter

space provided by the asymptotics, with good continuity between these limits. Thus

we are able to make a circuit of parameter space and use the asymptotics to explain

the dominant features which contribute to the drag. In figure 2.4(a, b) we see that, at

sufficiently small separations, steady lubrication theory (region IV, (2.8)) approximates

the drag well even at high frequencies. However, as the separation is increased the

behaviour of the drag depends upon the frequency. At low frequencies the lubrication

approximation to the drag is maintained until the separation increases to roughly one

tenth of the cylinder radius, at which point the finite dimensions of the cylinder need

to be taken into account. A geometrically more advanced quasi-steady estimate when

(∆/ε) = O(1) (IV/V, (2.13)) and the steady Stokeslet image system, valid for (∆/ε) � 1

(V, (2.18)), work well until the separation becomes comparable with the viscous length

(εγ)−1, at which point it breaks down due to the importance of unsteadiness on these

length scales. However, here we are able to turn to the unsteady Stokeslet image system

(V/VI, (2.38)) which provides accurate estimates for the drag right up to the unsteady

unbounded limit (VI/I, (2.19)). Conversely, at high frequencies, steady lubrication

theory quickly fails and we require the merged boundary-layer model to describe the

transition to inertia-dominated flow (III, (2.44)). This takes us to the limit of inviscid

flow, with viscous effects restricted to thin boundary layers on the solid surfaces (I/II,

(2.33)). In this limit, even at O(1) separations the presence of the wall is seen to
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exert little influence upon the drag, illustrating the weaker nature of the inviscid wall

interactions in the high-frequency regime.

An alternative perspective is offered by figure 2.4(c, d), which shows how the mod-

ulus and phase of the drag both increase monotonically with frequency at fixed sep-

aration. At sufficiently large frequencies an inviscid flow plus boundary layers (I/II)

provides a good drag estimate, capturing the increase in the drag’s modulus at small

separations due to the inviscid wall interaction. However, in the small separation limit,

as the frequency is reduced, the boundary-layer model rapidly fails and the merged

boundary-layer model (III) describes the transition to quasi-steady lubrication flow (IV).

At large separations the boundary-layer approximation persists for longer, yet provides

a drag which is already estimated well by the unbounded fluid limit (VI/I). As the fre-

quency is decreased still further the distance over which vorticity diffuses grows until

becoming comparable with the large wall–cylinder separation, resulting initially in a

wall interaction which is governed by unsteady viscous flow and finally in an interac-

tion governed by steady viscous flow; the unsteady Stokeslet image system (V/VI) is

seen to capture this transition.

2.4 Discussion

We have examined the influence of a nearby rigid wall on the drag experienced by a

two-dimensional oscillating cylinder as a function of the dimensionless oscillation fre-

quency (εγ)2 and the separation distance (∆/ε). Drag predictions have been obtained

numerically, using a finite-difference method accompanied by extensive asymptotic re-

sults spanning all extremes of (εγ,∆/ε)-parameter space. A summary of our leading-

order asymptotic drag expressions for circular cylinders (in dimensional form) has been

compiled in Table 2.1.

Our results demonstrate the boundaries in parameter space across which wall effects

have a significant leading-order influence on the drag. At low frequencies ((εγ) � 1),

wall effects are important for (∆/ε) = O((εγ)−1), indicating that wall interactions are

significant even at large separation distances (as expected from Stokes’ paradox). As
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Region D∗
3

IV 3
√

2πµV (∆/ε)−3/2

IV / V
−8πµV (1 + (∆/ε))(

2
√

(∆/ε)((∆/ε) + 2) + (1 + (∆/ε)) ln

(
1 + (∆/ε) −

√
(∆/ε)((∆/ε) + 2)

1 + (∆/ε) +
√

(∆/ε)((∆/ε) + 2)

))

V
4πµV

ln(∆/ε)
+

4πµV (1 − ln 2)

(ln(∆/ε))2

V / VI µV

(

1 − I((∆/ε), R
√
ωρ/µ)

(∆/ε)2

)−1(
4π

ln 2 − ln(R
√
iωρ/µ) − ε0

)

VI − 4πµV

lnR
√
ωρ/µ

+
4π (iπ/4 + ε0 − ln 2)µV

(lnR
√
ωρ/µ)2

VI / I
iπR2ωρV

µ

(

1 +
4K1(R

√
iωρ/µ)

R
√
iωρ/µK0(R

√
iωρ/µ)

)

I iπR2ωρV/µ + 4πV R
√
iωρ/µ

I / II See (2.33)

III See (2.44)

TABLE 2.1: Summary of the leading-order drag (lengths scaled on R) Re
(
D∗

3 e
iωt
)

experienced by a circular cylinder of radius R oscillating in a fluid of viscosity µ with

frequency ω normally to a wall, with its centre a height H above the wall. Here

(∆/ε) = (H − R)/R, ε0 ≈ 0.57721 and I is given by (2.36). Regions of parameter

space are as shown in figure 2.2.

(∆/ε) is reduced from an initially large value, we demonstrated how wall effects have

their first nontrivial impact when (∆/ε) ∼ (εγ)−1 by using the image system of an

unsteady Stokeslet to determine the drag on a circular cylinder. This image system is

distributed along the wall, thus appearing as an integral in the expression for the drag

(2.38). For (∆/ε) = o((εγ)−1) the flow is dominated by quasi-steady viscous effects: the

magnitude of the drag rises rapidly (figures 2.4a, b) until being dominated by viscous

lubrication forces as (∆/ε) → 0. At high frequencies ((εγ) � 1), when viscous effects
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are typically confined to thin Stokes layers, the wall has negligible effect on the drag

until the separation is very small. For circular cylinders, for (∆/ε) ∼ (εγ)−1, there is

the first nontrivial change in the structure of the flow when the Stokes layers on the

cylinder and wall overlap. However it is not until (∆/ε) ∼ (εγ)−4/3 that the leading-

order drag depends explicitly on (∆/ε). For sufficiently small (∆/ε), the quasi-steady

lubrication drag dominates that from the outer oscillatory flow.

A key aspect of any experimental system is three-dimensionality, and we should be

concerned that our assumption of two-dimensional flow may be unrealistic. Certainly

a finite-length circular cylinder, possibly tilted relative to the wall, is capable of gener-

ating three-dimensional flows and we shall address this issue next (chapter 3). Also,

since AFM cantilevers are rarely circular in practice, later work will examine cantilevers

with more typical rectangular cross sections (chapter 4). We shall also treat flexible

cantilevers in chapters 5 and 6.



Chapter 3

Flows generated by a finite-length

circular cylinder

Although two-dimensional models can capture many important aspects of the flow

physics, they are nonetheless limited in their ability faithfully to represent the true hy-

drodynamics of an AFM cantilever. The ends of the cantilever, which have the potential

to influence the overall flow, are neglected, as are any axial flows generated due to

non-horizontal orientations. We exploit the elongated geometry of an AFM cantilever

and use slender-body theory to approximate the flow.

Let us consider a rigid circular cylinder, of length 2L and radius R, that is tilted at

an angle α to the horizontal and which oscillates in a plane either vertically or normal

to its axis. The cylinder’s axis lies a minimum distance H above a plane horizontal

wall (see figure 3.1). The plate’s velocity is Re(V eiωt), where V = Aω, ω is the driving

frequency and A � R is the amplitude of oscillation. At small amplitudes, rescaling

lengths on L, velocities on V and the pressure on µV/L, the flow is governed by the

linearized Navier–Stokes equations (1.8)

iγ2u = −∇p+ ∇2u, ∇ · u = 0, (3.1a)

recalling that γ = L
√
ωρ/µ. This must be solved subject to the following boundary

57
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x̂3

x̂2

x̂1

2L

R

H

V = Aωα

s

θ

x
X

xw

x̂

x̄

FIGURE 3.1: A cylinder with length 2L oscillates either vertically or normal to its axis

with frequency ω and amplitude A above a plane wall (x3 = 0). The cylinder axis lies

a minimum distance H from the wall.

conditions, expressed in Cartesian coordinates (x1, x2, x3)

u |S = d, u(x1, x2, 0) = 0, u → 0 as |x| → ∞ for x3 ≥ 0. (3.1b)

Because the boundary conditions are linearized we may take the cylinder surface S
to be fixed. When the cylinder oscillates normal to its axis d = n̂ ≡ (sinα, 0, cosα)

and for vertical motion d = x̂3 ≡ (0, 0, 1). The wall lies along x3 = 0. The problem is

characterized by three dimensionless geometric parameters, the minimum wall-cylinder

separation ∆ = (H−R)/L, the aspect ratio ε = R/L� 1 and the tilt angle α. S is then

parameterized using dimensionless cylindrical polar coordinates (s, ε, θ) as

x = (s cosα+ ε sin θ sinα)x̂1 + ε cos θ x̂2 + (∆ − s sinα− ε sin θ cosα)x̂3 (3.2)

for x ∈ S and where −1 ≤ s ≤ 1 is a coordinate along the cylinder axis. We seek the

leading-order flow in the limit ε→ 0 with γ, ∆ and α fixed.

In a slender-body formulation, the velocity at a point X in the flow may be approx-
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imated by the integral (c.f. Blake 1974)

ui(X) =
1

8π

∫ 1

−1

[
Sw

ij(x,X ; γ,∆) fj(x; γ,∆) + 2dkQik(x̂)
]

ds, (3.3)

where x(s) lies on the cylinder axis and x̂ = x − X . Sw
ij and Qik are the three-

dimensional oscillatory Stokeslet (accounting for the presence of the wall) and free-

space potential dipole, respectively, and f(x; γ,∆) is an unknown Stokeslet distribu-

tion (scaled on µV ). Letting X ∈ S, where u is prescribed, yields a first-kind integral

equation for the Stokeslet distribution. The drag (1.4) due to this singularity distribu-

tion is given by Pozrikidis (1989a) to be D =
∫ 1
−1 f(s) ds − iγ2

∫
Vp

u dV , where Vp is

the volume of the body and u is an internal flow which satisfies the surface boundary

conditions (3.1b).

The free-space dipole and oscillatory Stokeslet are (Pozrikidis 1989a)

Sij(x̂; γ) = A(r̂; γ)
δij
r̂

+B(r̂; γ)
x̂ix̂j

r̂3
, (3.4a)

Qij(x̂) = −δij
r̂3

+ 3
x̂ix̂j

r̂5
, (3.4b)

respectively, where r̂ = |x̂| and

A(r̂; γ) = 2e−
√

iγr̂

(
1 +

1√
iγr̂

− i

γ2r̂2

)
+

2i

γ2r̂2
, (3.4c)

B(r̂; γ) = −2e−
√

iγr̂

(
1 +

3√
iγr̂

− 3i

γ2r̂2

)
− 6i

γ2r̂2
. (3.4d)

For γ � 1, we recover the quasi-steady Stokeslet

Sij =
δij
r̂

+
x̂ix̂j

r̂3
+O(γ). (3.5)

Pozrikidis (1989a) has also determined the three-dimensional oscillating Stokeslet which

satisfies no-slip and no-penetration on a plane wall at x3 = 0

Sw
ij(x,X ; γ,∆) = Sij(x̂; γ) − Sij(x̄; γ) + Λij(x,X ; γ,∆), (3.6)

where x̄ = xw − X and xw is the image of x in the plane x3 = 0 (figure 3.1). The

wall-interaction tensor Λij involves integrals over the wall,

2πγ4Λi3(x,X; γ,∆) = (δi3∂k∂k − ∂i∂3) Σ1(x,X ; γ), (3.7a)

2πγ4Λij(x,X ; γ,∆) = ∂j [∂iΣ2(x,X; γ) + (δi3∂k∂k − ∂i∂3)Σ3(x,X; γ)] (3.7b)
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where ∂k ≡ ∂/∂xk, for i, k = 1, . . . , 3 (sum over k) and j = 1, 2 with

Σ1(x,X; γ) =

∫ ∞

0
b(a+ b)

[(
1 − e(a−b) X3

)
e−ax3 + (1 − e(b−a) X3)e−bx3

]
J0(b%) db,

(3.7c)

Σ2(x,X; γ) =

∫ ∞

0
a(a+ b)

(
1 − e(b−a) X3

)
e−b x3J0(b%) db, (3.7d)

Σ3(x,X; γ) =

∫ ∞

0
(a+ b)

(
1 − e(a−b) X3

)
e−a x3J0(b%) db (3.7e)

where a2 = b2 + iγ2, % =
√
x̂2

1 + x̂2
2 and J0 is a Bessel function of the first kind. Substi-

tuting (3.6) into (3.3) yields our unsteady slender-body theory (USBT) description of

the flow.

The coefficients dk in (3.3) must be chosen to reflect the fact that the prescribed

motion at X ∈ S should depend only upon X · t, where t = (cosα, 0,− sinα) is

the unit vector along the cylinder’s axis. In other words, any θ-dependence (see fig-

ure 3.1) about the axis due to the Stokeslets must be cancelled out (to leading order

in ε) by the dipoles. By expressing a surface point using polar coordinates (3.2), θ-

dependence arises from the presence of ε cos θ, ε sin θ terms in the dipole, Stokeslet and

image Stokeslet numerators (3.4a–c) and (3.7c–e). However as long as ∆ � ε the θ-

dependent terms in the image Stokeslets (3.6, 3.7) are negligible. Furthermore, since

the θ-dependence about an axial point is a local phenomenon, fj(s) can be approxi-

mated by its value at that axial point. A local analysis for quasi-steady Stokeslets (3.5)

and dipoles (Hancock 1953, Higdon 1979b) shows that their respective θ-dependence

can be cancelled out by setting

2dk = akjfj, where akj ≡ −1
2ε

2 (δkj − tktj) (3.8)

(up to an error which is algebraically small in ε). Since this analysis is local about a

given axial point, where the oscillatory Stokeslet reduces to (3.5), (3.8) also proves

suitable for an unsteady formulation.

In addition to the constraint ∆ � ε, there is also an upper bound to the frequencies

which can be explored using (3.3). This can be seen by recalling that boundary-integral

methods offer an exact representation of the flow through a surface distribution of

Stokeslets. Under these circumstances r̂ measures the distance from a point in the flow
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to a surface point X. This differs in value from the distance to the axis point with coor-

dinate s = X · t (see figure 3.1) by only an O(ε) amount. Therefore we can expand the

surface oscillatory Stokeslets (3.4–3.6) about the cylinder axis, resulting in an axial dis-

tribution of Stokeslets at leading-order plus higher-order singularities at O(max(ε, γε)).

We expect O(γε) errors due to the neglect of the remaining higher-order singularities

(see (3.4)). Their contribution will be negligible, leaving the flow well-described by

(3.3), provided that γ � ε−1, i.e. when viscous boundary-layers are much thicker than

the cylinder radius. This also ensures that the dipoles operate effectively via (3.8) and

that the drag can be approximated by an integral of the Stokeslet distribution alone,

D =
∫ 1
−1 f(s) ds.

3.1 Numerical treatment

We solve (3.3) numerically by discretizing the cylinder axis −1 ≤ s ≤ 1 into N equally-

sized elements consisting of the closed intervals sm = [(2(m − 1)/N) − 1, (2m/N) − 1]

with mid-point xm (m = 1, . . . , N), and assume that each component of the Stokeslet

distribution and prescribed velocity is uniform across each element. We then define

F = (f1 (x1) , f2 (x1) , f3 (x1) , . . . , f1 (xN ) , f2 (xN ) , f3 (xN )) , (3.9a)

V = (u1 (X1) , u2 (X1) , u3 (X1) , . . . , u1 (XN ) , u2 (XN ) , u3 (XN )) , (3.9b)

where Xm is a surface point that satisfies Xm ·t = xm ·t. Equation (3.3) then produces

the linear system (α′, β = 1 . . . 3N)

Vα′ = Gα′β Fβ , Gα′β =
1

8π

∫

sm

[
Sw

ij (xM ,XM ; γ,∆) + akjQik (x̂M )
]

ds, (3.10)

(x̂M = xM − XM) where 1 ≤ i, j ≤ 3 and 1 ≤ m,M ≤ N are given through α′ =

3k′ + i, β = 3k′′ + j and α′ = 3(M − 1) + h′, β = 3(m− 1) + h′′ (for 0 ≤ k′, k′′ ≤ N − 1

and 1 ≤ h′, h′′ ≤ 3). Determining Gα′β involves evaluating the integrals which contain

image Stokeslets Sw
ij that are computed by taking Σi(x,X ; γ) derivatives (3.7c–e) as

specified by (3.7a,b) and then numerically integrating over b. The system (3.10) is then

solved by Gaussian elimination for the unknown distribution vector F using N = 60

axial elements, with convergence verified using N = 100.
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3.2 Asymptotic treatment

We can also solve (3.3) using techniques which have proved effective in the quasi-

steady case (Batchelor 1970, Blake 1974). This approach exploits the existence of an

approximately local relationship between the force and velocity at any point along the

body axis. The USBT formulation (3.3), on the other hand, takes account of non-

local effects arising from the body’s extended geometry, as well as the influence of flow

inertia. An iterative process can be derived which extracts resistive-force theory (RFT)

and its unsteady non-local corrections from (3.3).

To this end, we take a frame of reference where the cylinder lies horizontally and

the wall is tilted, accounted for by the Stokeslet image system. In a cylindrical polar

coordinate system (s, r, θ) orientated along the cylinder axis (see figure 3.1), surface

points (ξ, ε, θ) and axial points are given by

X = ξx̂1 − ε sin θ x̂2 + (∆ − cos θ)x̂3, x = s x̂1 + ∆ x̂3, (3.11a)

respectively, with image xw = s x̂1 − ∆ x̂3. Hence (for −1 ≤ ξ ≤ 1, −1 ≤ s ≤ 1)

x̂ = (s− ξ) x̂1 + ε sin θ x̂2 + ε cos θ x̂3, (3.11b)

x̄ = (s− ξ) x̂1 + ε sin θ x̂2 − (2∆ − ε cos θ) x̂3. (3.11c)

Anticipating a local relationship between force and velocity, we rewrite (3.3–3.7) as

8πui(ξ) = Iij(ξ; γ) fj(ξ; γ,∆) + Ti(ξ,f ; γ) +Wi(ξ,f ; γ,∆), (3.12a)

where

Iij(ξ; γ) ≡
∫ 1

−1
(Sij(x̂; γ) + akjQik(x̂)) ds, (3.12b)

Ti(ξ,f ; γ) ≡
∫ 1

−1
(Sij(x̂; γ) + akjQik(x̂)) (fj(s) − fj(ξ)) ds, (3.12c)

Wi(ξ,f ; γ,∆) ≡
∫ 1

−1
(Λij(x,X ; γ,∆) − Sij(x̄; γ,∆)) fj(s) ds. (3.12d)

Sij , Λij are given in (3.4) and (3.7), respectively. The basis of RFT comes from the fact

that the integrands in (3.12) take their largest values close to ξ and their integrated
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contributions (provided ξ is not too close to ±1) are

∫ ξ+δ

ξ−δ
Sij(x̂; γ) ds = O(ln ε),

∫ 1

ξ+δ
akjQik(x̂) ds = O(ε2),

∫ 1

ξ+δ
Sij(x̂; γ) ds = O(1),

∫ ξ+δ

ξ−δ
akjQik(x̂) ds = O(1), (3.13)

(ε � δ � 1) when i = j and similarly for the (−1, ξ − δ) intervals. The off-diagonal

contributions i 6= j are at most O(ε). Although the Stokeslet integral over [ξ − δ, ξ + δ]

is O(ln ε), the θ-dependent terms make only an O(1) contribution and can therefore be

cancelled by the O(1) dipole contributions, thus leaving Iij independent of θ to leading

order in ε.

Over O(δ) intervals about ξ, fj(s; γ,∆) − fj(ξ; γ,∆) = O(δ) and so from (3.13)

the Ti will not exhibit any significant θ dependence and will make at most an O(1)

contribution via the outer intervals. This is sub-dominant to the O(ln ε) terms in Iij ,

which therefore controls the local velocity–force relationship. AsWi terms depend upon

the cylinder–wall distance these too will be sub-dominant to Iij and are θ-independent

provided ∆ � ε. Detailed calculations (see Appendix E) reveal

8πui(ξ) = q−1
i fi(ξ; γ,∆) (−2 ln ε+Hi(ξ; γ)) + Ti(ξ, fi; γ) +Wi(ξ,f ; γ,∆) (3.14)

(no sum over i, with qi ≡ 1
2 (1 + δi2 + δi3) and subject to O(ε ln ε) errors) where

Hi(ξ; γ) ≡ ni



 e−
√

iγ(1−ξ)

√
iγ(1 − ξ)

+
e−

√
iγ(1+ξ)

√
iγ(1 + ξ)

−
i
(

e−
√

iγ(1−ξ) − 1
)

γ2(1 − ξ)2
−
i
(

e−
√

iγ(1+ξ) − 1
)

γ2(1 + ξ)2





− Ei(
√
iγ(1 − ξ)) − Ei(

√
iγ(1 + ξ)) − 2ε0 − 2 ln

√
iγ + ln 4, (3.15)

with ni ≡ (2δi1 − 1), ε0 ≈ 0.5772 (Euler’s constant) and Ei(z) ≡
∫∞
1 t−1 e−tz dt is the

exponential integral. Also

Ti(ξ, fi; γ) ≡ 2(1 − δi1)

∫ 1

−1

e−
√

iγ|s−ξ|

|s− ξ| (fi(s; γ,∆) − fi(ξ; γ,∆)) ds

+2(1 − 3δi1)−
∫ 1

−1



 e−
√

iγ|s−ξ|
√
iγ|s − ξ|2

−
i
(

e−
√

iγ|s−ξ| − 1
)

γ2|s− ξ|3



 (fi(s; γ,∆) − fi(ξ; γ,∆)) ds

(3.16)
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(no sum over i) with the second integral defined in the Cauchy-principal-value sense.

The dominant term in Iij in (3.14) is O(ln ε) and so by expanding f in powers of 1/ ln ε

as

f(ξ; γ,∆) = (ln ε)−1
f (0)(ξ) + (ln ε)−2

f (1)(ξ; γ,∆) + . . . , (3.17a)

the leading-order quasi-steady RFT solution

f
(0)
i (ξ) = −4πqi ui(ξ) (3.17b)

has the first correction

f
(1)
i (ξ; γ,∆) = −2πqi [Hi(ξ; γ)ui(ξ) + qi Ti (ξ, ui(ξ); γ) + qiWi(ξ,v; γ,∆)] , (3.17c)

(no sum over i in (3.17b, c)) with v = (u1/2, u2, u3), where we have substituted ui for fi

in Ti using (3.17b). This captures: (i) the nonlocal force–velocity relationship through

integrals over the entire body axis which appear in Ti and Wi, (ii) flow inertia through

γ-dependence in Hi,Ti and Wi and (iii) a non-diagonal resistance matrix accounting

for wall effects via Wi. However, Ti depends on differences in ui and so, for prescribed

uniform velocity, Ti = 0. Thus, far from the wall, where |Wi| � 1, (3.17c) provides

a local velocity–force relationship but, unlike traditional RFT, this relationship varies

with axial position s and frequency γ. The ability of this local relationship to capture

finite-length effects can be further explored by examining the limiting behaviour of

Hi close to the cylinder ends. For ε � 1 − ξ � 1, (3.15) takes the limiting form

Hi(ξ; γ) = ln
(√
iγ(1 − ξ)

)
+O(1), (likewise for ξ → −1); thus γ controls the magnitude

of the logarithmic singularities at the cylinder ends. Higher-order terms (for i > 1) can

be determined through

2f
(k)
i = Hi(ξ; γ)f

(k−1)
i + qi Ti

(
ξ, f

(k−1)
i ; γ

)
+ qiWi(ξ,f

(k−1); γ,∆) (3.18)

(no summation over i). In the quasi-steady limit (γ � 1)

H1(ξ; γ) = ln(1 − ξ2) − 1 + ln 4 +O(γ), H2(ξ; γ) = H1(ξ; γ) + 2, (3.19a)
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and hence

ui(ξ) =
(1 + δi1)

4π

(
ln(2/ε) + 1

2 ln(1 − ξ2) − 1
2 + δi2 + δi3

)
fi(ξ; γ,∆)

+
δij (1 + δi1)

8π

∫ 1

−1

(fj(s; γ,∆) − fj(ξ; γ,∆))

|s− ξ| ds+
1

8π
Wi(ξ,f ; γ,∆), (3.19b)

(again, no summation over i) subject to an O(γ) correction, in agreement with Blake

(1974).

When oscillations are high frequency (1 � γ � ε−1), the exp(−
√
iγr̂) (viscous)

contributions to the oscillatory Stokeslet (3.4b,c) are exponentially small except within

O(γ−1) distances of the singularity (ε� γ−1 � 1)

∫ ξ+fγ−1

ξ−fγ−1

Sij(x̂; γ) ds = O(ln ε),

∫ 1

ξ+fγ−1

Sij(x̂; γ) ds = O(1) (3.20)

(f = O(1)). Hence the Ti terms in (3.12) are algebraically small in γ−1, leading

(assuming the wall is sufficiently distant) to a local force–velocity relationship

8πui(ξ) = fi(ξ; γ)(1 + δ1i) (−2 ln ε+Hi(ξ; γ)) +O
(
γ−1 ln ε, γε

)
(3.21)

(no sum over i). As will be demonstrated in §3.3, (3.21) captures end-effects in the

Stokeslet profile without the need for the iteration scheme (3.17, 3.18), which con-

verges slowly in the large-γ limit.

3.3 Results

We now use unsteady slender-body theory (USBT) to examine (in §3.3.1) finite-length

effects as a function of oscillation frequency γ and wall separation distance ∆ when

the tilt angle α is 0. We then inspect Stokeslet distributions (§ 3.3.2) to judge the

accuracy of modified RFT against USBT computations. Drag curves are presented in

§ 3.3.3, computed for a range of γ and ∆; § 3.3.4 examines the influence of tilting the

cantilever as the wall is approached.

3.3.1 Screening of three-dimensional effects

The role of end effects as the frequency and separation distance are changed is explored

in figures 3.2 and 3.3, where computations highlight the ∆ and γ-dependence of the
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FIGURE 3.2: (a) γ-screening: real (solid line) and imaginary (dashed line) parts of f3

when ∆ = 100, ε = 10−3, α = 0 for γ = 0.1 and 5. Thick solid and dashed lines show

the corresponding two-dimensional unsteady unbounded drag result (2.19). (b) ∆-

screening: f3 in the quasi-steady limit (γ = 0.01) for ∆ = 0.1, 1 and 10 and ε = 10−3.

Thick lines show the two-dimensional quasi-steady drag result (2.13), whilst markers

show RFT with leading-order wall correction for a cylinder either far away from the

wall (3.22, plus signs) or very close to it (3.23, circles).
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FIGURE 3.3: Comparisons with various two-dimensional models showing (a) real and

(b) imaginary parts of Stokeslet strength profiles f3 arising from USBT computations

when ∆ = 0.1, γ = 0.1, 20, 100, ε = 10−4 and α = 0. The thick lines correspond to

two-dimensional results (2.38), (2.19) and (2.13). Note that Im(f3) is too small to be

distinguishable in (b) when γ = 0.1.
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Stokeslet distributions. In figure 3.2 (a) the separation distance is large (∆ = 100),

making the wall’s presence largely irrelevant when γ = 0.1 and γ = 5. Vorticity dif-

fuses O(γ−1) distances with respect to the cylinder’s length and consequently we ex-

pect finite-length effects to cover similar distances. This is confirmed in figure 3.2(a),

where for γ−1 = 10 vorticity diffuses distances greater than the cylinder length and

the Stokeslet profile is everywhere non-uniform. However, when γ−1 = 0.2, not only

do we see a decrease in the strength of the profiles, but finite-length effects are indeed

restricted to O(γ−1) distances of the ends. The two-dimensional model (2.19) then

provides an accurate picture of the Stokeslet profile over much of the cylinder; we shall

refer to this as γ-screening. Agreement with (2.19) provides useful validation of the

USBT computations.

∆-dependence is explored in figure 3.2 (b), where the separation distance between

the cylinder and the wall is decreased to reveal another mechanism by which end-effects

are suppressed. We expect finite-length effects to be confined to within an O(γ−1)

distance or an O(∆) distance (when ∆ � γ−1) of the cylinder ends. Therefore when

γ � 1 and ∆ = 10 (figure 3.2b) the finite-length character of the flow is evident

along the cylinder’s entire length and the quasi-steady two-dimensional approximation

(2.13) proves inadequate. However when ∆ = 0.1, the Stokeslet distribution increases

in strength and becomes uniform away from the ends, where it is approximated well

by (2.13); we call this ∆-screening. It is also instructive to compare these quasi-steady

predictions to others in the literature, summarized by Brennen and Winet (1977). In

the large-∆ limit, the leading-order finite-length effects are captured by (Brennen and

Winet 1977)

f3 = 4πu3

(
ln(2/ε) + 0.193 − (3/2)∆−1

)−1
, (3.22)

which predicts a uniform Stokeslet distribution that is closer than (2.13) to the com-

puted result when ∆ = 10 (figure 3.2b). For small ∆, (2.13) reduces to a simpler form

(Brennen and Winet 1977)

f3 = 4πu3 (ln(2ε/∆) − 1)−1 (3.23)
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FIGURE 3.4: The real (a) and imaginary (b) parts of the vertical component of

Stokeslet strength f3 along the cylinder’s axis. The predictions of modified RFT (3.17-

3.18) using n corrective terms (RFT + n) are shown against USBT computations (3.10)

for a horizontal cylinder (α = 0) when γ = 1, ε = 10−3 and ∆ = 40.

which works well when ∆ = 0.1 (figure 3.2 b), providing further validation of the

numerical scheme.

Figure 3.3 demonstrates the transition between various two-dimensional models

through γ- and ∆-screening. For ∆ = γ = 0.1, vorticity diffuses much further from

the cylinder than the separation distance and so in this case the quasi-steady model

(2.13) is appropriate. However, when γ = 20 vorticity diffuses distances comparable

to ∆ = 0.1 and so unsteady inertia is important in the wall interaction, with (2.38)

accurately reproducing the uniform portion of the Stokeslet distribution. Finally, when

γ = 100 vorticity is confined very close to the cylinder surface, leaving wall interactions

governed by weak inertial effects. Under these circumstances Stokes’ (1851) classical

result (2.19) works well.

3.3.2 Modified resistive-force-theory

Figures 3.4 and 3.5 assess the performance of modified RFT and its higher-order correc-

tions (3.17–3.18) in capturing the non-uniform Stokeslet distribution. Comparisons are

made with the USBT computations (3.10) at both moderate and high frequencies for a
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FIGURE 3.5: Vertical component of Stokeslet strength f3 showing (a) real and (b)

imaginary parts along cylinder axis, for γ = 100, ε = 10−4 and ∆ = 100. Profiles are

computed using RFT plus higher-order corrections (3.17-3.18) and also by exploiting

a high-frequency local force–velocity relationship (HFRFT, (3.21)).

cylinder far from the wall. When γ = 1 (figure 3.4a,b), the leading-order uniform RFT

profile is modified at higher orders to capture the distribution’s non-uniform charac-

ter (with just two corrective terms proving sufficient), with only small deviations from

USBT very close to the ends of the cylinder. However, when the frequency is increased

to γ = 100 (figure 3.5), convergence of the modified RFT iterative scheme is slower.

Under these circumstances the high-frequency expression (3.21) (which is equivalent

to (2.19) away from the ends of the cylinder) is an effective and direct approximation.

3.3.3 Drag

Integrating the Stokeslet distribution along the length of the cylinder yields the drag.

This is plotted in figure 3.6 under various conditions, against modified RFT predictions

(3.17) and the two-dimensional approximation (2.38). Panels (a,b) illustrate the effect

of varying ∆, namely an increase in drag amplitude and a decrease in its phase at

smaller separations. When γ is decreased both drag amplitude and phase decrease
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FIGURE 3.6: Drag on a slender horizontal cylinder (α = 0) computed using USBT

(3.10) and modified RFT (3.17–3.18) over (a,b) a range of ∆ when ε = 10−3 and

γ = 0.1, 10, (c,d) a range of γ when ε = 10−3, ∆ = 40 and (e,f) a range of ε when

∆ = 40 and γ = 1. Drag amplitudes are shown in (a,c,e), with phases given in (b,d,f).

Markers correspond to two-dimensional drag predictions (2.38) and the cross in (c) to

(3.22).
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(c,d), as is also the case when the slenderness ratio is reduced (e,f).

At large separation distances and low frequencies (figure 3.6(a, b), γ = 0.1) there

is no screening of finite-length effects and so the three-dimensional drag compares

unfavourably with the two-dimensional result (2.38). In particular, for two-dimensional

flow we observe a continuing change in drag with ∆ (due to Stokes’ paradox), which

saturates via weak inertial effects only at very large ∆, whereas the algebraic far-field

decay of the three-dimensional steady flow causes the drag to approach a limiting value

more quickly as ∆ increases. However, as ∆ is decreased the two-dimensional drag

prediction becomes more effective through ∆-screening, an effect enhanced when γ =

10.

Panels 3.6(c,d) further emphasise the drag’s frequency dependence. At small γ, vor-

ticity diffuses distances comparable with the cylinder length and end-effects once again

exert a strong influence over the drag, causing it to diverge from the two-dimensional

approximation. However the quasi-steady approximation (3.22) that captures leading-

order end effects agrees with the predicted drag as γ → 0. As γ is increased, finite-

length effects decay more rapidly away from the ends and this induces two-dimensionality

in the flow along much of the cylinder length, leading to improved agreement with the

two-dimensional approximation. In panels (e,f) we observe the expected breakdown

of the two-dimensional approximation as the cylinder is made less slender, due to the

increasing importance of geometrically-controlled end effects.

Figure 3.6 also demonstrates the accuracy of modified RFT. Panels (a,c) demon-

strate that for γ = 0.1 the first RFT correction proves suitable over a wide range of

∆, but achieves greatest accuracy at smaller separations. The iterative scheme strug-

gles at high frequencies irrespective of the separation distance (figure 3.6a,b, γ = 10),

where four corrective terms are still not sufficient to reach agreement with the USBT

computations. The dependence of asymptotic accuracy upon γ is emphasized further in

figure 3.6(c,d), where fewer corrective terms are seen to be required when γ is small.

Since RFT is based on an expansion in powers of log 1/ε, the number of corrections re-

quired is relatively insensitive to the value ε (figure 3.6e,f). In summary, modified RFT

works well in situations where the two-dimensional model breaks down, specifically at
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low and moderate frequencies, when separation distances are large.

3.3.4 Tilt

So far we have considered a cylinder with its axis parallel to a plane wall. However,

USBT allows us to tilt the cylinder relative to the wall. The variation in the normal drag

for a cylinder driven perpendicularly to its axis at fixed γ and varying ∆ is plotted in

figure 3.7(a,b) for several inclination angles. As the cylinder is brought closer to the

wall the drag increases and the phase decreases, more so at low tilt angles where the

influence of the wall is greatest. At large ∆ the normal drag is insensitive to the angle of

tilt, since the wall induces negligible axial flows. Only for ∆ . 20 (with γ = 0.1) do wall

interactions influence the normal drag at larger tilt angles. The effects of tilt are also

reduced by increasing the frequency of oscillation, which results in wall interactions

being governed by weaker inviscid effects. Figure 3.7(c,d) shows that for γ & 50 (with

∆ = 0.1) the normal drag is largely independent of inclination angle and in this limit

γ-screening means that the two-dimensional drag result (2.38) works well (applied in

a frame of reference in which the cylinder axis is horizontal).

When the cylinder is tilted but driven vertically we can make meaningful compar-

isons with two-dimensional models over a wider range of ∆. Although at large ∆ wall

interactions are weak, vertical driving generates non-negligible axial flows which affect

the vertical drag, particularly at large tilt angles (figure 3.8) and two-dimensional mod-

els are a poor approximation. When the separation distance is decreased, however, the

effects of ∆-screening lead to improved agreement between two-dimensional results

and USBT computations, although at severe tilt (α = π/4) full convergence is never

quite reached.

The three-dimensional nature of the flow due to a tilted cylinder oscillating near

a wall is illustrated in figure 3.9, which visualizes the flow field from different angles.

The arrows (all normalized to unit length) give the flow direction with the background

shading indicating the flow speed (lighter shading corresponds to faster flow). Panel

(a) gives a side-on view of the cylinder, clearly demonstrating the change in flow over

the length of the cylinder body. This is further emphasized through two cross-sectional
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FIGURE 3.7: Curves show the behaviour of the drag (a,c) amplitude and phase (b,d) in

a direction normal to the axis for a cylinder (ε = 10−3) at various angles of inclination

(α = 0, π/20 and π/4), as a function of (a,b) separation distance ∆ for γ = 0.1 and

(c,d) frequency γ for ∆ = 0.1. The markers correspond to results obtained using the

two-dimensional unsteady drag (2.38).
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FIGURE 3.8: Curves show the behaviour of the drag amplitude (a) and phase (b) of a

cylinder (ε = 10−3) driven vertically at various angles of inclination (α = 0, π/20 and

π/4), as a function of separation distance ∆ when γ = 0.1. The markers correspond to

results obtained using the two-dimensional unsteady drag (2.38).

perspectives of the flow, one taken near the raised end of the cylinder (b) and another at

its lowered end (c), where it can be seen that the location of recirculating flow changes

relative to the cylinder, over its length.

3.4 Discussion

We have developed a novel unsteady slender-body theory (USBT) approximation to de-

scribe the flow generated by oscillations of a finite-length cylinder in the presence of a

plane wall. We assumed throughout that oscillation amplitudes were sufficiently small

to allow linearization of the Navier-Stokes equations and boundary conditions. The flow

was modelled using an axial distribution of three-dimensional oscillatory Stokeslets

and dipoles (plus appropriate images) in a way which, to leading-order in the slender-

ness parameter ε, satisfied no-slip and no-penetration on the cylinder surface and the

wall. The singularity distribution was determined both numerically and by perturb-

ing about the local velocity–force relationship (a modification of resistive-force theory).

The slender-body approximation holds for ∆ � ε and γ � ε−1 (figure 3.10), breaking
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(a)

x3

(b)

x3

(c)

x3

x2x2

x1

FIGURE 3.9: Flow fields for a cylinder (ε = 10−3) oscillating with γ = 0.1, tilted at

angle π/4 when ∆ = 0.1. The arrows (all normalized to unit lengths) give the flow

velocity and background rendering indicates flow speeds, with faster flow shown in

lighter shades. Panel (a) gives the flow profile along a plane intersecting the cylinder

axis longitudinally and dashed-dotted lines mark the location of cross-section slices

shown in more detail in (b) and (c).
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FIGURE 3.10: (∆, γ)-parameter space for a non-tilted cylinder, indicating the domain

accessible to USBT and the regions where USBT gives good agreement with existing

two-dimensional models through γ- or ∆-screening. The thick dashed line represents

the boundary of parameter space which is inaccessible to USBT but which is described

well by two-dimensional models.

down either when the wall separation distance or viscous boundary layers are compa-

rable to the cylinder radius.

When the cylinder is parallel to the wall, two mechanisms suppress finite-length

effects and leave the flow two-dimensional along much of the cylinder’s length. Under

such circumstances we can exploit our extensive range of asymptotic drag approxima-

tions for two-dimensional flow (see chapter 2). Increasing the frequency of oscillation,

γ, or decreasing the separation distance between the cylinder and the wall, ∆, both

limit the range of end effects, and the Stokeslet distribution away from the ends rapidly

attains the uniform value given by two-dimensional flow models. When ε � ∆ �
min(1, γ−1) vorticity diffuses distances much greater than ∆ and we can appeal to a

quasi-steady two-dimensional drag (2.13). When ε� ∆ ∼ γ−1 � 1 we can use a result

which exploits unsteady image-Stokeslets (2.38). For max(1,∆−1) � γ � ε−1, wall

interactions are inviscid and weak, allowing us to exploit an unbounded drag result

(2.19). Flows at higher frequencies (ε−1 . γ) and lower separations (∆ . ε) can be de-

scribed using additional two-dimensional models (see figure 3.10). USBT can describe
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the genuinely three-dimensional flow which occurs when γ . 1 . ∆, i.e. when the

viscous lengthscale
√
µ/ρω and the wall separation distance are both comparable to, or

larger than, the cylinder length. (For reference, a 100 µm long cylinder oscillating in

water at 400 Hz has γ = 1.) Therefore, used in conjunction, USBT and two-dimensional

models are able comprehensively to cover (γ,∆)-parameter space.

When the cylinder is tilted and driven normal to its axis, large separation distances

and high-frequencies render the drag largely insensitive to the angle of inclination, due

to the weak character of wall interactions (figure 3.7). Alternatively, when the cylinder

is tilted but driven vertically, axial flows result in drag differences at different angles of

inclination, even in the absence of wall interactions (figure 3.8). At small separations,

however, there is good agreement between the two-dimensional prediction (2.38) and

USBT computations provided that the angle of inclination is not too great.

We also developed a modified form of RFT which exploits the approximately uni-

form local relationship between velocity and force in the USBT equations (3.3) that

arises at leading order under quasi-steady conditions. Higher-order corrections in

1/ ln ε, computed iteratively, account for non-local geometry and the effects of flow

inertia. For γ = O(1), just one or two corrections in the RFT expansion are generally

sufficient for convergence to the USBT computations for sufficiently slender cylinders.

It was shown how interaction with the wall leads to off-diagonal elements in the cylin-

der’s resistance matrix (through Wi in (3.17c)). In the low-frequency limit (γ � 1) the

quasi-steady SBT formulation of Blake (1974) is recovered. At high-frequencies conver-

gence of the modified RFT is slow; however, γ-screening means that the high-frequency

limit (3.21) (which extends Stokes’ classical result (2.19) to capture end effects) works

effectively.

Our calculations provide justification for the use of simpler two-dimensional mod-

els in many practically relevant circumstances (depending, for example, on the level of

cantilever tilt) and they provide a relatively straightforward mechanism (particularly

through our modification of RFT) for capturing genuinely three-dimensional effects if

necessary. As shall be seen later (chapters 5 and 6), when coupled to models of flexible

cantilevers, the simplifications offered by modified RFT or by two-dimensional approx-
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imations offer considerable computational benefits, when computing sinusoidally or

thermally driven responses.

Although USBT provides important information into the extent of finite-length ef-

fects, in its present form it is unable to represent flows generated by a body with signif-

icant width. As such, we next look to variations on the above ideas that will work for

oscillating rigid plates.



Chapter 4

Flows generated by a thin

rectangular plate

Up to this point we have examined the flow generated by a body of circular cross

section, a geometry which lends itself to a degree of analytical treatment. In practice

many AFM cantilevers (and MEMS components) have rectangular cross sections and

so we now consider driven vertical oscillations of a rigid rectangular plate of length

2L, width 2R and thickness 2D with its plane of vertical symmetry (parameterised by

coordinates ξ and η) at a distance H above a plane wall which is located at x3 = 0 (see

figure 4.1). The plate’s velocity is Re(V eiωt), where V = Aω, ω is the driving frequency

and A � R is the amplitude of oscillation. In addition to γ (1.9), the flow dynamics

are characterized by two geometric parameters (ε = R/L and d = D/L) as well as the

dimensionless separation distance ∆ = (H−D)/L.

We begin by assuming that the plate is sufficiently long that the flow is principally

two-dimensional away from the ends of the body. This is examined in § 4.1 using a

boundary-integral formulation for oscillatory viscous flow. Due to the limitations of

this technique at high frequencies we also include a boundary-layer analysis (§ 4.1.1),

with boundary-integral techniques employed once more to solve the outer inviscid

79
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2L

2R

2D

H

x1

x2

x3

V = Aω

ξ

η

FIGURE 4.1: A plate with length 2L, width 2R and thickness 2D oscillates with fre-

quency ω and amplitude A normal to a plane wall (x3 = 0). The plate’s plane of

vertical symmetry, parameterized by (ξ, η), lies a distance H from the wall. The plate

surface is denoted by S with the perimeter of a cross-sectional slice given by SX

flows. The boundary-integral flow representations are solved using boundary-element

methods (BEM) and the numerical scheme is laid out in §4.1.2. If we impose the

additional constraint that the plate thickness is much less than its width we can de-

rive a two-dimensional thin-plate-theory (TPT) approximation for the two-dimensional

flow, which requires only a distribution of image Stokeslets (3.6) along the cross sec-

tion’s mid-plane (x3 = H) (§ 4.2). In the high-frequency (§ 4.2.1) and small-separation

(§ 4.2.2) limits we explain how further flow approximations can be made.

The three-dimensional flow can be described using the boundary integral methods

described in §4.1. However the computational overheads are prohibitive, so in §4.3 we

explore the three-dimensional TPT, this time placing a two-dimensional distribution of

Stokeslets over the plate’s mid-plane. Once again, simplifications can be made in the

case of small separation (§ 4.3.2). Results are presented in § 4.4 and their implications

discussed in § 4.5.
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4.1 Two-dimensional boundary-integral formulation

For two-dimensional oscillating rectangular cantilevers we rescale lengths on R, giving

(1.8) in the form

i(εγ)2u = −∇p′ + ∇2u, ∇ · u = 0, (4.1)

where εγ = R
√
ω/ν and p′ = εp is the pressure scaled on µV/R. This must be solved

subject to the boundary conditions

u|SX
= x̂3, u(x2, 0) = 0, u → 0 as |x| → ∞ for x3 ≥ 0, (4.2)

where x̂3 ≡ (0, 0, 1) and SX is the cross-sectional perimeter. Since lengths are scaled

on R, it is more meaningful to take ∆/ε as our dimensionless separation distance.

We now follow Pozrikidis (1989b) and Loewenberg (1994b) by using a two-dimensional

version of their boundary-integral formulation. For transverse oscillations, Pozrikidis

(1989b) gives the following first-kind Fredholm equation for the velocity field u in a

domain with boundary SX and outward unit normal n̂

ui(X) = − 1

4π

∫

SX

f ′j(x)Sw
ij(x̂) ds(x), f ′j(x) = σ′jknk − i(εγ)2ukxkn̂j, (4.3)

where X ∈ SX , σ′ is the stress tensor (1.1b) (non-dimensionalized on µV/R), x̂ =

x − X and Sw
ij is the two-dimensional oscillatory Stokeslet which satisfies no-slip and

no-penetration on the wall x3 = 0. Chu and Kim (2001) showed that

Sw
ij(x,X; εγ) = Sij(x̂; εγ) + Λij(x,X ; εγ), (4.4a)

where Sij is the two-dimensional oscillatory free-space Stokeslet (Avudainayagam and

Geetha 1998)

Sij(x̂; εγ) ≡ 2

i(εγ)2

(
δij
r̂2

− 2x̂ix̂j

r̂4

)

− 2K0(
√
iεγr̂)

(
δij −

x̂ix̂j

r̂2

)
− 2K1(

√
iεγr̂)√

iεγr̂

(
δij −

2x̂ix̂j

r̂2

)
, (4.4b)

(r̂ = |x̂|) and

Λij(x,X; εγ) = (−1)δi1∂iΨj(x,X ; εγ), (4.4c)
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where

Ψ1(x,X; εγ) =
1

2π(
√
iεγ)2

∫ ∞

0

1

q − k

(

(q + k)
(
e−k(x3+X3) + e−q(x3+X3)

)

− 2qe−kx3−qX3 − 2ke−qx3−kX3

)

cos kx2 dk, (4.4d)

Ψ2(x,X; εγ) =
1

2π(
√
iεγ)2

∫ ∞

0

1

q(q − k)

(
(q + k)

(
qe−k(x3+X3) + ke−q(x3+X3)

)

− 2kq
(
e−kx3−qX3 + e−qx3−kX3

))
sin kx2 dk (4.4e)

(q =
√
k2 + iε2γ2, ∂i = ∂/∂xi) is the wall-interaction term (calculated using Fourier

transforms) which cancels out any slip and penetrating flow at the wall due to the

presence of the free-space Stokeslet

4.1.1 High-frequency limit

High demands on the resolution required to capture viscous boundary layers and the

oscillatory nature of the kernel, both place a practical upper limit on the size of εγ and

for this reason we also employ a boundary-layer formulation at high frequencies. Here

an approximation for the drag on the body is obtained by solving separately for the

leading-order inviscid flow, Stokes layers on the solid boundaries and the second-order

inviscid flow driven by fluid ejected from the Stokes layers (this secondary inviscid flow

makes an O(εγ) drag contribution, comparable in size to the boundary-layer contribu-

tion; note that this linear inviscid flow is distinct from the nonlinear streaming flows

(see § 1.2.4) that are also generated by Stokes layers, but which we here neglect). The

inviscid flows are determined using the standard boundary-integral formulation for the

potential flow u = ∇φ (Pozrikidis 1996)

φ(X) =
1

π

∫

SX

V ′ · n̂ ln r̂ ds(x) − 1

π
−
∫

SX

x̂ · n̂
r̂2

φ(x) ds(x), (4.5)

with the second integral taking its Cauchy principal value. Setting V ′ = x̂3 on the

cylinder and V ′ = 0 on the wall in (4.5) yields an expression for the potential of
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the primary inviscid flow φ(1). Boundary layers on the solid surfaces drive a secondary

potential flow φ(2), which can be expressed using (4.5) once we have extracted the value

of V ′ from the boundary-layer flows. Within this asymptotic limit, an approximation

for the drag per unit length (lengths scaled on R) is then given by

D3 = i

∫

SX

(
(εγ)2φ(1) + εγφ(2)

)
ds(x) +

√
i

∫

Sv
X

εγ (vs − 1) ds(x), (4.6)

where Sv
X represents the vertical sides of the cantilever and vs = ∂φ(1)/∂x3 is the slip

velocity on these vertical sides. (The corresponding asymptotic expression for the drag

on a circular cantilever was derived in §2.2.2.)

4.1.2 Numerical treatment

Boundary-element methods provide a computational route to solving (4.3) and (4.5)

for the modified traction f(x) and flow potential φ(x), respectively. Discretizing the

cantilever’s surface and the wall into N boundary elements, approximating the geom-

etry of the boundary in the kth element with the simple polynomial curve Bk, with

mid-point X(k) and assuming that f(x), φ(x) are constant on each boundary element,

we can rewrite (4.3) and (4.5) as the following systems of linear equations, respectively

ui(X
(m)) = − 1

4π

N∑

k=1

Ak
ij(X

(m))f ′j(X
(k)), Ak

ij(X
(m)) =

∫

Bk

Sij(x,X
(m)) ds(x),

(4.7a)

φ(X(m)) =
1

π

N∑

k=1



(V ′ · n)k

∫

Bk

ln
∣∣∣x − X(m)

∣∣∣ ds(x) − φk−
∫

Bk

(x − X(m))
∣∣∣x − X(m)

∣∣∣
2 · n̂ ds(x)



 ,

(4.7b)

for m = 1, . . . , N , where φk = φ(X(k)), which are solved by Gaussian elimination.

Logarithmic singularities at x = X are dealt with in the usual fashion, namely an in-

terval is taken around the singularity, within which the asymptotically expanded kernel

is integrated analytically.

The non-smooth shape of the cantilever also requires special attention, as there

exists an integrable singularity in |σ · n̂| at the cantilever edges. We follow Loewenberg
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(1994b) and adjust the spacing of the boundary elements at the edges to account for

O(s−α0) and O(s−β0) viscous and inviscid singularities, respectively, where s measures

the distance from the edge, α0 ≈ 1/2 and β0 ≈ 1/3. The contributions to the drag from

the two-dimensional boundary layers wrapped around each edge are sub-dominant to

terms in (4.6) (Loewenberg 1994b).

All sides of the square cantilever had 15 clustered boundary elements per half-length

(or 10 for higher aspect ratios). Numerical convergence was verified by doubling the

number of boundary elements on all surfaces and results are presented in §4.4.1 below.

4.2 Two-dimensional thin-plate formulation

When the thickness of a two-dimensional plate is small compared with its width (D/R,

D/H � 1) we can expand the surface distribution of Stokeslets in (4.3) about the mid-

plate (x3 = H) and approximate the flow through a distribution of two-dimensional

image Stokeslets along this line. Although similar in approach to the slender-body

formulation (3.3), the change in geometry leads to important differences in the local

integral contributions about a point X located on the upper or lower surface of the

plate, where η = X · x̂2

∫ η+δ

η−δ
Sw

ij(x̂; εγ) dt =






O(δ ln(d/ε)), i = j = 1

O(δ), otherwise

(4.8a)

(d/ε � δ � 1). Unlike the finite-length circular cylinder, small intervals about η make

no leading-order contribution in δ. Outside of this interval r̂ � (d/ε) and because x̂ ·
x̂3 = O(d/ε) no distinction is made between the top and bottom of the plate to leading

order in ε. Hence for a thin two-dimensional plate a line distribution of Stokeslets

can satisfy prescribed boundary conditions over the whole body (i.e. no dipoles are

required, to leading order in ε). Therefore, without loss of generality, we can restrict

attention to the top surface of the plate and define mid-plane and upper-surface points

by

x = t x̂1 + (∆ + (d/2ε)) x̂3, X = η x̂1 + (∆ + (d/ε)) x̂3, (4.9)
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respectively. Expanding the Stokeslet distribution about the mid-plane then gives

ui(η) = − 1

4π

∫ 1

−1
Sw

ij(x,X ; εγ)f ′j(t) dt. (4.10)

The absence of a local dominance in the integrand about η, however, means that

the leading-order flow at a station along the plate is influenced by the entire geometry

of the plate. Consequently, at moderate εγ, we no longer have a local force–velocity

relationship which can be corrected for unsteady non-local effects through iteration

and we are left needing to solve (4.10) numerically. As before, we discretize the line of

vertical symmetry into N elements and assume that the fj are constant on each one;

the Stokeslet integrals are evaluated by numerical quadrature. This results in an N ×N
linear system which is solved by Gaussian elimination. Results are presented in § 4.4.2,

where comparisons are made with full BEM computations.

4.2.1 High-frequency limit

Although no local force–velocity relationship exists in general for a two-dimensional

thin plate, when the frequency of oscillation is high (εγ � 1) viscous effects do become

localized, which can lead to significant simplifications. This can be seen by splitting the

unsteady free-space Stokeslet (4.4b) into its viscous and inviscid components

ui(η) =
1

4π

∫ 1

−1
Sij(x̂; εγ)f ′j(t) dt =

− 1

2π

∫ 1

−1

(

K0(
√
iεγr̂)

(
δij +

x̂ix̂j

r̂2

)
− K1(

√
iεγr̂)√
iεγr̂

(
δij −

2x̂ix̂j

r̂2

))

f ′j(t) dt

+
1

2π(
√
iεγ)2

∫ 1

−1
Qij(x̂)f ′j(t) dt. (4.11)

The first integral contains the viscous terms, whilst the second integral contains a dis-

tribution of two-dimensional dipoles

Qij ≡
δij
r̂2

− 2x̂ix̂j

r̂4
. (4.12)

The modified Bessel functions K0(z) and K1(z) in the viscous expression exhibit expo-

nential decay for |z| � 1 and so we only expect a non-negligible contribution to the
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first integral (viscous contribution) over an O((εγ)−1) interval about η. This suggests

the rescaling t = η + (εγ)−1t′, in which case

ui(η) =
1

2π(
√
iεγ)2

∫ 1

−1
Qij(x̂)f ′j(t) dt− 1

2π
Iijf

′
j(η) +O((εγ)−1), (4.13)

where

Iij =

∫ εγ(1−η)

−εγ(1+η)

(
K0(

√
ir̃)

(
δij +

x̃ix̃j

r̃2

)
− K1(

√
ir̃)√
ir̃

(
δij −

2x̃ix̃j

r̃2

))
dt′ (4.14)

and x̃2 = t′, x̃3 = d/ε and r̃2 = t′2 + (γε)2. Hence in this high-frequency limit the

leading-order inviscid flow depends upon the full geometry of the plate and requires

a distribution of dipoles along its line of symmetry, whereas viscous contributions are

observed to be local to a given point. Although (4.13) still must be solved numerically,

by discretizing into elements along the line of symmetry and assuming the f ′j are con-

stant on each element, this approach offers substantial computational savings, since

we can integral the dipoles analytically over each element, thereby dispensing with the

greatest overhead, numerical quadrature. Moreover, as there is no need to compute

explicitly the boundary layers and secondary inviscid flow, (4.13) also offers significant

advantages over the boundary-layer approach (4.5).

4.2.2 Lubrication limit

Computing the integrals in the unsteady-image Stokeslet (4.4c–e) becomes more com-

putationally demanding as the separation distance decreases. Therefore it proves prac-

tical to derive a lubrication theory expression for the drag when ∆/ε � 1. This is

calculated analogously to the circular cantilever case (§2.2.1), but with the rescalings

x3 = (∆/ε)x̌3, x2 = x̌2, u3 = ǔ3, u2 = (∆/ε)−1ǔ2, p = (∆/ε)−3p̌, D = (∆/ε)−3Ď.

(4.15)

An analysis similar to that in §2.2.3 gives the pressure

p̆ =
i
√
i(x̌2

2 − 1)τ3 sinh
√
iτ

4 − 4 cosh
√
iτ + 2

√
iτ sinh

√
iτ
, (4.16)

(τ = ∆γ) which produces the lubrication drag

D3 =
2

3
i(∆/ε)−1(εγ)2

( √
iτ sinh

√
iτ

2 − 2 cosh
√
iτ +

√
iτ sinh

√
iτ

)

, (4.17)
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subject to an O((εγ)2) correction due to flow outside of the gap. The impact on this

drag of introducing slip is examined in Appendix A.2.

In the quasi-steady limit, τ → 0, (4.17) reduces to D = 8(∆/ε)−3, in agreement

with Kim et al. (2001b), who also calculated the first drag correction arising from a

quasi-steady outer flow when the plate is infinitely thin. Asymptotically matching the

lubrication flow to a local flow at the cantilever’s edges and to an outer flow where the

presence of the plate is accounted for by point sources on the wall, they obtained

D3 = 8(∆/ε)−3 + 14.8560(∆/ε)−2 . (4.18)

The results in § 4.4 will illustrate the improvements offered by (4.18) over (4.17) in the

quasi-steady limit, both of which also act as useful validation of the numerical scheme.

4.3 Three-dimensional thin-plate formulation

In three dimensions (where lengths are scaled on L), the flow is governed by (1.8)

iγ2u = −∇p+ ∇2u, ∇ · u = 0, (4.19)

subject to the boundary conditions

u|S = x̂3, u(x1, x2, 0) = 0, u → 0 as |x| → ∞ for x3 ≥ 0, (4.20)

where S is the plate’s surface.

A boundary-integral representation of the flow exists which is analogous to the two-

dimensional representation presented in § 4.1

ui(X) =
1

8π

∫

S
fj(x)Sw

ij(x̂) dA, fj(x) = σjknk − iγ2ukxkn̂j , (4.21)

where X ∈ S, n̂ is the outward normal and Sw
ij now represents the three-dimensional

Stokeslet plus images given in (3.6). Solving (4.21) numerically poses a formidable

challenge, due to the number of boundary elements required to cover the three-dimensional

surface and the number of numerical quadratures that this entails. A full boundary-

element treatment of the three-dimensional flow is therefore computationally prohibitive.

However, following the same reasoning as before, when the plate thickness is small
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compared with the other dimensions (D/R, D/L, D/H � 1) we can expand the sur-

face distribution of Stokeslets in (4.21) about the plane of vertical symmetry x3 = H
and approximate the flow through a two-dimensional distribution of three-dimensional

image Stokeslets over this plane

ui(ξ, η) =
1

8π

∫ ε

−ε

∫ 1

−1
Sw

ij(x,X ; γ,∆)fj(s, t) dsdt, (4.22)

where x = s x̂1 + t x̂2 + (∆ + d/2) x̂3 is a point in the mid-plane and X = ξ x̂1 + η x̂2 +

(∆ + d) x̂3 is a point on the upper surface. For the same reasons as those discussed in

§ 4.2, no distinction is made between the lower and upper surfaces at leading order in

this flow approximation and therefore no dipoles or higher-order viscous singularities

are required.

4.3.1 Numerical scheme

In analogous fashion to the numerical treatment of finite-length circular cylinders de-

scribed in § 3.1, we computationally solve the thin-plate equation (4.22) by discretizing

the plate into Nξ × Nη equally-sized panels, setting ξm = m/Nξ and ηk = kε/Nη . We

assume that the Stokeslet distribution f is constant over each panel and define

V =
(
u1(ξ1, η1), u2(ξ1, η1), u3(ξ1, η1), . . . , u1(ξNξ

, η1), u2(ξNξ
, η1), u3(ξNξ

, η1), . . . ,

u1(ξ1, ηNη), u2(ξ1, ηNη ), u3(ξ1, ηNη), . . . , u1(ξNξ
, ηNη), u2(ξNξ

, ηNη ), u3(ξNξ
, ηNη )

)
,

(4.23a)

F =
(
f1(ξ1, η1), f2(ξ1, η1), f3(ξ1, η1), . . . , f1(ξNξ

, η1), f2(ξNξ
, η1), f3(ξNξ

, η1), . . . ,

f1(ξ1, ηNη ), f2(ξ1, ηNη), f3(ξ1, ηNη), . . . , f1(ξNξ
, ηNη ), f2(ξNξ

, ηNη ), f3(ξNξ
, ηNη)

)
.

(4.23b)

The integral equation (4.22) can then be approximated by the linear system

Vα′ = GV
α′βFβ, GV

α′,β =
1

8π

∫ ηk

ηk−1

∫ ξm

ξm−1

Sw
ij(xM ,XM ; γ,∆) dsdt, (4.24)

where the values of 1 ≤ α′, β ≤ 3NξNη determine the force and velocity component

indices 1 ≤ i, j ≤ 3 through the equalities

α′ = 3(k′ − 1)Nξ + 3(m′ − 1) + i, β = 3(k − 1)Nξ + 3(m− 1) + j, (4.25)
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where 1 ≤ k, k′ ≤ Nη, 1 ≤ m,m′ ≤ Nξ and (k′,m′) and (k,m) index the panels on

which velocity and force, respectively, are being evaluated. Profiles were generated on

a 30 × 30 mesh, with convergence verified on a 50 × 50 mesh.

4.3.2 Lubrication limit

As in § 4.2.2, when ∆ ∼ γ−1 � ε the dominant drag contribution will come from an

unsteady lubrication region between the wall and the plate. The flow in this gap can be

examined by rescaling distances, velocities and pressures in the usual way

x1 = x̃1, x2 = x̃2, x3 = ∆x̃3, u1 = ∆−1ũ1, u2 = ∆−1ũ2, u3 = ũ3, p = ∆−3p̃. (4.26)

The leading-order flow is then governed by (dropping tildes)

iτ2u1 = − ∂p

∂x1
+
∂2u1

∂x2
3

, iτ2u2 = − ∂p

∂x2
+
∂2u2

∂x2
3

,
∂p

∂x3
= 0, ∇ · u = 0, (4.27)

(τ = γ∆) subject to the no-slip and no-penetration conditions under prescribed plate

velocity w(x1, x2)

u(x1, x2, 0) = 0, u(x1, x2, 1) = w(x1, x2) x̂3. (4.28)

This is solved by

u1 x̂1 + u2 x̂2 = Ae
√

iτx3 + Be−
√

iτx3 − 1

iτ2
∇s p, (4.29a)

u3 = ∇s · B
e−

√
iτx3

√
iτ

− ∇s · A
e
√

iτx3

√
iτ

+ x3
∇2

sp

iτ2
+ C, (4.29b)

where ∇s = (∂/∂x1, ∂/∂x2) and

A =
∇sp

2iτ2

(
1 − e−

√
iτ

sinh
√
iτ

)
, B =

∇sp

2iτ2

(
e
√

iτ − 1

sinh
√
iτ

)
, C = ∇2

sp

(
1 − cosh

√
iτ

i3/2τ3 sinh
√
iτ

)
.

(4.29c)

The no-penetration condition at x3 = 1 then provides a Poisson equation for the pres-

sure

∇2
sp = k0(τ)w(x1, x2), (4.30a)

k0(τ) =
(
√
iτ)3 sinh

√
iτ

(2 − 2 cosh
√
iτ +

√
iτ sinh

√
iτ)

, (4.30b)

p(Sb) = 0, (4.30c)
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where we have specified the pressure on the rim of the plate’s underside Sb to be zero,

to leading-order in ∆. In the quasi-steady limit τ → 0, where vorticity diffuses distances

much greater than the gap thickness, k0(τ) → 12 in agreement with Kim et al. (2001b).

When the prescribed velocity is uniform (w(x1, x2) = w) there is a closed solution

for (4.30) which is obtained by splitting the pressure into an inhomogeneous solution

pI = (x2
1 − 1)k0(τ)w/2, (4.31)

which violates the zero-valued boundary condition on x2 = ±ε and an harmonic solu-

tion ph which restores the boundary conditions, i.e.

∇2ph = 0, ph(±1, x2) = 0, ph(x1,±ε) = (1 − x2
1)k0(τ)w/2. (4.32)

Then, solving Laplace’s equation by separation of variables, we arrive at

p(x1, x2) = k0(τ)w




(x2

1 − 1)

2
+

16

π3

∞∑

k=1
k odd

sin(kπ(1 + x1)/2)ak(x2)

k3ak(ε)



 , (4.33a)

where

ak(x2) = sinh (kπ(1 + x2)/2) + sinh (kπ(1 − x2)/2) . (4.33b)

Narrow plate limit (ε� 1)

In preparation for later work on elastic plates (§5.2.1), we consider the case where the

plate is narrow (ε � 1) and the plate velocity is dependent upon x1 alone. Rescaling

x2 = ε x̃2, (4.30) then takes the form

∂2p

∂x̃2
2

+ ε2
∂2p

∂x2
1

= ε2k0(τ)w(x1), (4.34)

subject to p(0) = p(1) = 0. Expanding the pressure p = p(0) + ε2p(1) + ε4p(2) + . . . and

respecting symmetry about x̃2 = 0, at leading order we find the trivial solution and its

first-order correction

p(0) = 0, p(1) =
1

2
k0(τ)w(x1)(x̃

2
2 − 1). (4.35)
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This outer solution is unable to satisfy both zero pressure and non-zero deflection con-

ditions at x1 = 0 and x1 = 1 at the same time. We therefore consider the end region

where x1 = O(ε) by rescaling x1 = ε x̃1, which leaves us needing to solve

∂2p(1)

∂x̃2
2

+
∂2p(1)

∂x̃2
1

= k0(τ)w(0) (4.36a)

for the non-trivial pressure, subject to

p(1)(0, x̃2) = p(1)(x̃1, 0) = 0, p(1)(x̃1, x̃2) →
1

2
k0(τ)w(0)(x̃2

2 − 1) as x̃1 → ∞. (4.36b)

As before, this Poisson equation can be solved by posing the inhomogeneous solution

p
(1)
I =

1

2
k0(τ)w(0)(x̃2

2 − 1), (4.37)

which matches the outer solution as x̃1 → ∞ and then calculating the harmonic func-

tion which cancels the non-zero values of the pressure at x̃1 = 0 and decays at large

x̃1

∇2p
(1)
h = 0,

p
(1)
h (0, x̃2) =

1

2
k0(τ)w(0)(1 − x̃2

2), p
(1)
h (x̃1, 1) = 0, p

(1)
h → 0 as x̃1 → ∞. (4.38)

Separation of variables then gives us the end-region pressure near x1 = 0

p(x̃1, x̃2) = k0(τ)w(0)




(x̃2

2 − 1)

2
+

16

π3

∞∑

k=1
k odd

sin(kπ(1 + x̃2)/2)e
−kπx̃1/2

k3



 . (4.39)

(Similar analysis gives the end-region pressure near x1 = 1.) Hence the pressure can

then be expressed as the following composite expansion:

p(1)(x1, x2) =
1

2
k0(τ)w(x1)(x

2
2 − ε2)/ε2

+
16k0(τ)w(0)

π3

∞∑

k=1
k odd

sin(kπ(ε+ x2)/2ε)e
−kπx1/2ε

k3

+
16k0(τ)w(1)

π3

∞∑

k=1
k odd

sin(kπ(ε+ x2)/2ε)e
−kπ(1−x1)/2ε

k3
. (4.40)

In § 4.4 we compare pressure profiles obtained using this composite expression against

the numerical solutions of (4.30) when w is a prescribed function of x1. Note that

this numerical scheme has been developed primarily to solve a more general class of

deflections which depend upon both x1 and x2 (see § 5.2.1).
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4.4 Results

We begin by examining the two-dimensional flow generated by plate of finite thickness

(§ 4.4.1) computed using both viscous and inviscid boundary-elements methods (BEM).

The flow is visualized through surface stress plots and via flowfield representations.

Drag results reveal the impact of varying γ, ∆ and the aspect ratio, making compar-

ison with the drag experienced by a cylinder with circular cross-section, computed in

chapter 2, as well as lubrication theory (4.17). The validity of the two-dimensional TPT

approximation (4.10) is tested in § 4.4.2, together with its high-frequency limit. Finally,

§ 4.4.3 looks at the limitations of a two-dimensional flow assumption, by comparing

three-dimensional TPT profiles (4.22) against two-dimensional BEM predictions (4.3),

as well as presenting three-dimensional lubrication theory results.

4.4.1 Two-dimensional finite-thickness plate

Stokeslet profiles and flow visualization

Surface stresses are readily obtainable using BEM and serve to illustrate the impact

of the nearby wall. Figure 4.2 shows the vertical component of the surface stress on

the wall and the infinite-length square cantilever for the case where εγ = ∆/ε = 1.

The difference in stress profiles on the top and bottom of the cantilever, as well as the

skewed shear stress on the cantilever’s side, are both a sign of the wall’s influence. The

integrable stress singularities at each edge of the body are evident, although in practice

it is likely that geometrical smoothing or wall slip (particularly in gases) would act to

regularize this singular behaviour.

Once the stress profile is known, it can be substituted back into (4.3) to yield the

velocity at a given point in the flow. This has been done in figure 4.3 and the resulting

flowfields demonstrate, at a given instant in time (t = 0), the formation of boundary

layers on the body surface as γ is increased (figure 4.3a,b), as well as the flow’s fore–aft

asymmetry when the wall is nearby (figure 4.3c).
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FIGURE 4.2: Normal component of surface stress on (a) top, (b) bottom and (c) side

of rectangular cantilever with d/ε = 1, when εγ = 1 and ∆/ε = 1. Plot (d) shows the

normal component of surface stress on the wall. Real parts are given by a full line and

imaginary parts by a dashed line.
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FIGURE 4.3: Flow fields for a plate (lengths scaled on R) with unit aspect ratio (d/ε =

1) at time t = 0 oscillating with (a) εγ = 1 with ∆/ε = 100, (b) εγ = 10 with

∆/ε = 100 and (c) εγ = 1 when ∆/ε = 1, computed using boundary-element methods

(4.3). The arrows (all of unit length) indicate the direction of the flow velocity and

shading represents the flow speed |u|.
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FIGURE 4.4: Modulus (a) and phase (b) of the drag on a cantilever, when d/ε = 0.05

(solid line) or d/ε = 1 (dashed line), over a range of ∆ and the modulus (c) and

phase (d) of the drag over a range of γ. The unsteady lubrication limit (4.17), for an

infinitely thin plate, is marked by a thick dash–dotted line, and is plotted alongside a

quasi-steady limit which accounts for the full geometry (4.18). The thick solid lines in

(c, d) show drag predictions computed using a separate boundary-element scheme for

the potential flow (4.6).
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FIGURE 4.5: Comparison between (a) the modulus and (b) the phase of the drag on a

circular cantilever (full line) and rectangular cantilever with d/ε = 0.1 (dashed line).

Drag

Rectangular cantilever drag results are presented in figure 4.4 for two different can-

tilever shapes, thin (aspect ratio 20) and square. The dependence of modulus and

phase on ∆ and γ is broadly similar to the circular case, however, we are now in a

position to assess the impact of differing aspect ratio. The dash–dotted lines represent

a lubrication limit for the drag on the cantilever (4.17).

Figures 4.4(a, c) illustrate the improvements offered by the quasi-steady ∆/ε � 1

drag prediction (4.18), which corrects the standard lubrication drag D = 8(∆/ε)−3 to

account for the full plate geometry. Moreover, figures 4.4(c, d) demonstrate the effec-

tiveness of (4.17) in capturing the influence of flow inertia on the drag in the lubrica-

tion regime, as well as the effectiveness of the inviscid BEM predictions (4.6) at high

frequencies.

These results confirm that thin cantilevers experience less drag than square ones,

but this distinction is diminished when quasi-steady effects dominate the drag, i.e. when

either εγ or ∆/ε become sufficiently small. If the cantilever is sufficiently close to the

wall, the phase of the drag is independent of the cantilever’s aspect ratio. However,
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as the separation is increased, the phases in each case differ, particularly at higher

frequencies. If the separation is increased still further, the sensitivity of the drag’s phase

to the cantilever’s thickness begins to diminish.

Comparing circular and rectangular cantilevers (figure 4.5) we see that the drag on

a thin rectangular cantilever is similar to that on a circular cantilever of the same width

for sufficiently large wall–cantilever separations. The similarity between the drag for

an oscillating infinitely thin plate and an oscillating cylinder in an unbounded fluid,

first noted by Tuck (1964), persists at moderate distances from a rigid wall (and more-

over, as shown in figure 4.4(a), extends to cantilevers of other aspect ratios at low

frequencies). However, the drag on a thin cantilever diverges significantly from that on

a circular cantilever as ∆ is decreased, as we would expect. For separations less than

roughly one cantilever width, there is a dramatic increase in the drag’s modulus and a

significant drop in its phase (the former more so and the latter less so at low frequen-

cies; see figure 4.5, reflecting the differing size of the lubrication regions in each case.

So whilst the circular cylinder approximation to an AFM cantilever works well when

the sample–cantilever interaction is of little interest (e.g. perhaps during cantilever cal-

ibration), but shape is otherwise an important factor.

4.4.2 Two-dimensional thin-plate theory

Stokeslet profiles

In the two-dimensional thin-plate-theory (TPT) limit (d/R � 1) (4.10) approximates

the flow using a distribution of Stokeslets along the plate’s centre-line, plotted in figure

4.6 for the cases where (a) ∆/ε = 100, εγ = 3, (b) ∆/ε = 1, εγ = 1 and (c) ∆/ε =

100, εγ = 50. As (4.10) is a limiting case of the boundary-integral formulation (4.3),

we expect the centre-line Stokeslet distribution to be equal to the sum of the upper and

lower Stokeslet distributions in the full BEM computations. Figures 4.6(a,b) show that

this is indeed the case. Additionally, panel (c) demonstrates the effectiveness of high-

frequency thin-plate-theory (HFTPT) (4.13), by comparing the Stokeslet distribution

against that computed using the more general TPT method (4.10). Away from the
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FIGURE 4.6: Vertical component of Stokeslet strength f3 for a thin two-dimensional

plate (ε = 10−2) computed using two-dimensional BEM (a–c) (4.3) (lines) plus (a,b)

two-dimensional thin-plate-theory TPT (4.10) (markers) and (c) high-frequency thin-

plate theory HFTPT (4.13) (markers) when (a) ∆/ε = 100, εγ = 3, (b) ∆/ε = 1, εγ = 1

and (c) ∆/ε = 100, εγ = 50.
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ends (where the Stokeslet distribution and its derivatives are singular) (4.13) is seen to

perform well in capturing the highly non-uniform Stokeslet distribution, caused by the

sensitivity of inviscid flow to plate geometry.

4.4.3 Three-dimensional thin-plate theory

Stokeslet profiles

Figures (4.7, 4.8) show the mid-plane Stokeslet distributions f3, obtained using three-

dimensional TPT (4.22) in the absence of any wall. As with oscillating finite-length cir-

cular cylinder studied in chapter 3, we see how the frequency of oscillation can control

the range of finite-length effects. When γ−1 = 100, as in figure 4.7, the length scale over

which vorticity diffuses is much larger than the plate length and so the cross-sectional

Stokeslet profile differs from the two-dimensional BEM predictions. However, when we

increase the frequency of oscillation so that γ−1 = 0.1 (figure 4.8), vorticity is confined

to the plate edges (γ-screening). Consequently when the plate is considerably longer

than it is wide, a Stokeslet cross-section at ξ = 0 is seen to give good agreement with

two-dimensional BEM computations, with deviation from this profile only occurring at

O(ε) distances from ξ = ±1. The same is not necessary true for a cross section taken

along η = 0, however, because the long edges (η = ±1) are capable of generating three-

dimensional flows over O(1) distances. So whilst very close to both the long edges and

short edges (ξ = ±1) we expect an O(s−α0) singularity in the Stokeslet profile, where

α0 ≈ 0.5 for viscous flow around a flat plate (Dean and Montagnon 1949), the flows

away from these very localized regions differ at the two edge types (as observed in

figures 4.7 and 4.8). By contrast, long edges are largely unaffected by the limited O(ε)

range of short-edge flows, (hence the need for both a narrow plate and γ-screening for

good agreement with two-dimensional theory at ξ = 0). The flow near the corners is

more complex, with no simple canonical flow providing the strength of the singularity,

although the profiles would suggest that this corner flow is more singular than along

the edges.

By integrating the two-dimensional Stokeslet distribution over the plate surface we



CHAPTER 4 THIN RECTANGULAR PLATE 100

1

0.5

0

0.2
0.1

0   

0

10

20

30

40

50

(a)

ξ

η

f 3

1

0.5

0 	

0.2
0.1

0   

0

0.5

1

1.5

2

2.5

(b)

ξ

η

f 3
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Stokeslet distribution f3, computed using three-dimensional thin-plate-theory (TPT)

(4.22) when γ = 0.01, d/ε = 10−2, in the absence of a wall. The thick line gives the

predictions of two-dimensional BEM (4.3).
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FIGURE 4.9: Modulus (a,c,e) and phase (b,d,f) of the three-dimensional TPT drag

(full line) evaluated over a range of γ, compared with the two-dimensional BEM drag

(dashed line) and the two-dimensional TPT formulation (markers) when (a,b) ε = 0.1,

(c,d) ε = 0.2 and (e,f) ε = 0.4, in the absence of a wall.
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can obtain the drag, as plotted in figure 4.9 as a function of γ for several different aspect

ratios, computed using two-dimensional TPT and BEM in addition to three-dimensional

TPT techniques. In two-dimensions, TPT and BEM predictions are seen to be in con-

sistent agreement. In contrast, when comparing two- and three-dimensional drags, we

see the expected divergence between two- and three- dimensional predictions at low γ

due to the increasing influence of three-dimensionality via long-ranged viscous length-

scales. When the frequency of oscillation is increased, the two- and three-dimensional

drags initially converge, as viscous end effects become shorter ranged. However, γ-

screening is unable to prevent the three-dimensional flows generated by finite-width ef-

fects and these ultimately lead to the eventual divergence between the two- and three-

dimensional drags at large γ (still within AFM operating range), with the rate of this

divergence increased as the plate becomes wider.

4.4.4 Three-dimensional lubrication theory

Figure 4.10 demonstrates the two-dimensional nature of the flow over much of the

plate’s surface at small separations (∆ = 0.01), when using three-dimensional lubrica-

tion theory under prescribed uniform velocity (4.33). End effects (x1 = 0 and x1 = 1)

are clearly in evidence (figures 4.10a,b) in the three-dimensional pressure profiles, how-

ever, cross-sections taken away from the ends (x1 = 0.5) show good agreement with

the two-dimensional result (4.16) (figures 4.10c,d). Noting that γ = 0.01, which figure

4.7 has demonstrated is too low for γ-screening, we deduce that the two-dimensionality

arises from ∆-screening effects. Integrating the three-dimensional pressure distribution

over the plate surface yields the drag, which is shown by figures 4.10(e,f) to agree well

with the predictions of two-dimensional lubrication theory. When the prescribed ve-

locity is not uniform, but rather depends upon x1, we are still able to determine the

pressure profile over the plate asymptotically, provided that it is sufficiently narrow.

Figure 4.11 presents the pressure profiles when the velocity is given by w = cosx1,

which have been calculated both numerically by solving (4.30) using a finite-difference

scheme and also using the composite expansion (4.40). As can be seen, agreement

between the two is excellent, with the composite expansion fully accounting for the
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FIGURE 4.10: Real (a) and imaginary (b) parts of the three-dimensional pressure

profile in the lubrication limit (4.33) for a plate with aspect ratio ε = 0.1 when γ = 0.01

and ∆ = 0.01, with uniform prescribed velocity w = 1. Cross-sectional slices taken

at x1 = 0 are compared against real (c) and imaginary (d) components of the two-

dimensional lubrication pressure profiles ((4.16), markers). The amplitude (e) and

phase (f) of the corresponding two- (4.17, markers) and three-dimensional drags are

plotted for ∆ = 0.01 over a range of γ.
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FIGURE 4.11: Real (a) and imaginary (b) parts of the pressure profile under a plate

when γ = 100, ∆ = 0.01 and ε = 0.1 when the velocity is prescribed as w(x1) = cosx1,

computed by solving Poisson’s equation (4.30) numerically (shaded surface) and using

narrow-plate asymptotics (4.40) (wire mesh).

rapidly changing pressure profile at x1 = 0 and x1 = 1.

4.5 Discussion

We have examined the flow generated by oscillating plates using a variety of techniques.

For a plate which is much greater in length than in width, we made a two-dimensional

flow assumption which reduced the plate geometry down to a rectangle. For a plate

of arbitrary thickness, the flow was formulated in terms of a boundary-integral rep-

resentation which distributed oscillatory image-Stokeslets over the two-dimensional

cross-sectional surface. In the high-frequency case, a boundary-layer approximation

was adopted, where the inviscid flow was again formulated in terms of a boundary-

integral. These boundary-integral representations were then solved using boundary-

element methods (BEM). Note that parallel and independent work by Green and Sader

(2005) also recognises the importance of wall effects in the AFM and uses BEM to study

the two-dimensional flow generated by a rectangular cylinder. Their boundary-integral
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representation uses the streamfunction-pressure formulation proposed by Tuck (1964)

and, as such, cannot be extended to study three-dimensional plates as we have done

here.

In the limiting case of a thin plate we developed thin-plate-theory (TPT) formulation

which approximated the surface distribution of Stokeslets using one-dimensional distri-

bution over the plate’s centre-line. Under a high-frequency constraint, the formulation

was further simplified to a line distribution of dipoles, with viscous effects captured by

a local force-velocity coefficient. This TPT formulation was then extended into three di-

mensions, using a two-dimensional distribution of Stokeslets over the plate’s mid-plane.

In the small separation limit two- and three-dimensional lubrication theory was able to

describe the flow.

For two-dimensional rectangular cantilevers oscillating at high frequency, the wall

has a substantial effect. For γ−1 � ∆ � 1, the unsteady acceleration of liquid along

the narrow gap dominates the drag (see (4.17); this is an inviscid lubrication regime);

for ∆ ∼ γ−1 the Stokes layers fill the gap, and then for ∆ � γ−1 the dominant drag is

from viscous lubrication forces.

One of the most striking findings from the two-dimensional BEM computations is

the very weak dependence of drag on aspect ratio. Comparing rectangular cantilevers

with d/ε = 1 and d/ε = 0.05, figure 4.4 shows (not surprisingly) negligible differ-

ence in the thin-gap limit (∆/ε � 1) and differences of only a few percent at high

frequencies. This high-frequency insensitivity is also demonstrated in figure 4.5, which

reflects Tuck’s (1964) observation that a plate of the same width serves as a good model

for a cylinder (in the absence of a wall). However, figure 4.5 provides clear evidence

of the limitations of using the drag on a two-dimensional circular cylinder (2.19), an

approximation used commonly in AFM studies (e.g. Sader 1998): the drag on a thin

rectangular cylinder rises dramatically (note the logarithmic scale in figure 4.5) and

the phase falls substantially as ∆ falls below O(1) values, an experimentally realized

regime.

The thin-plate-theory (TPT) formulation was developed to lower computation over-

heads when d/ε � 1 by using only a centre-line distribution of Stokeslets to approxi-
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mate the flow. The Stokeslet profiles obtained using this method were shown to approx-

imate the full BEM computations well (figure 4.6). Near to the wall, profiles differed on

the upper and lower surfaces using BEM; TPT correctly predicts, however, the additive

profile (i.e. top plus bottom) which is all that is required for determining the overall

drag (figure 4.6b). When γ � 1 further simplifications are possible; in high-frequency

thin-plate-theory (HFTPT), viscous effects are captured by a local coefficient and all

non-local phenomena are contained by a dipole distribution, which can be treated ana-

lytically, thereby eliminating the need for numerical quadrature. Figure 4.6(c) demon-

strates the effectiveness of HFTPT by comparing with profiles obtained using the more

demanding BEM formulation (4.3). Only near the ends does HFTPT differ noticeably,

suggesting the need to include O(γ−1) corrective terms.

The benefits of the TPT formulation are especially realised in three dimensions,

where we can use it to compute flows which would otherwise be unfeasible using

BEM under conventional processing power. Consideration of narrow plates provides

the opportunity to validate the numerical scheme, since at large enough frequencies

γ-screening leaves cross-sectional profiles away from the ends in good agreement with

two-dimensional BEM results (figure 4.8). Drag results showed good agreement be-

tween three-dimensional TPT predictions and two-dimensional BEM results for moder-

ate γ, with the ε-dependent breakdown in this agreement at higher γ attributed to three-

dimensional end-flow, the range of which scales with the plate’s width. Although not

presented here, at higher frequencies it should be possible to derive a three-dimensional

version of HFTPT, by following the procedures laid out in § 4.2.1 for two dimensions.

Although the three-dimensional TPT formulation allows us to use image Stokeslets

(3.4), the fact that their evaluation requires additional numerical integration makes

their use prohibitively expensive. We do have, however, the three-dimensional lubri-

cation result (4.33) for uniform plate velocity, which shows us how edge-effects are

confined by ∆-screening (figure 4.10a–d), leading to a total drag on the plate which

is well-approximated (see figure 4.10e,f) by two-dimensional lubrication theory (4.16).

These end effects in the pressure profile can be captured asymptotically, as illustrated

for the case where the prescribed plate velocity is a function of x1 (figure 4.11). The
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gently varying outer pressure profile is matched to end regions where the pressure

varies rapidly, resulting in a uniformly valid expression for the pressure (4.40).

The plate hydrodynamics developed here give us further options for describing the

fluid mechanics at work within an AFM and allow us to verify the limitations of earlier

flow approximations. The next step is to couple the various flow models to an elastic

description of a flexible body, which is the goal of the remaining two chapters.



Chapter 5

Damped dynamics of a

sinusoidally-driven cantilever

Up to now we have considered the drag exerted upon a rigid body undergoing

prescribed motion, yet in practice the AFM is a flexible body and its motion depends

upon the drag generated by its dynamics. Determining this motion therefore requires an

elastohydrodynamic treatment of the coupled fluid-structure system. This task is made

easier by the restrictions on the magnitude of cantilever deformation, which allows us

to linearize the flow equations and their boundary conditions, as well as the elasticity

equations which describe flexural vibrations of the cantilever.

In §5.1 we introduce the Bernoulli–Euler beam equation used to describe the span-

wise (η-independent) deflections of a narrow cantilever which is subject to a hydrody-

namic loading described by (i) two-dimensional flow models (§5.1.1), (ii) slender-body

theory (§5.1.2) and (iii) modified-resistive-force theory (§5.1.3). In §5.2 we extend the

study to consider elastic plates whose deflection is a function of both ξ and η and which

can be described using linear plate theory. The hydrodynamic loading is described us-

ing either (i) lubrication drag (§ 5.2.1) or (ii) TPT hydrodynamics (§ 5.2.2). The results

are presented in § 5.3, with their implications discussed in §5.4.

109
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FIGURE 5.1: The elastic behaviour of a thin cantilever with length width 2R and thick-

ness 2D, with its mid-plane a distance H from a rigid plane wall, can be described

using linear elasticity theory. When the plate is (a) narrow (length 2L, D � R � L)

span-wise deflections in the η direction are negligible and the one-dimensional elas-

tic dynamics can be described using the Euler–Bernoulli beam equation (5.1). Wider

cantilevers (b) (length L, D � R,L) experience non-negligible span-wise deflections

which must be described by the linear plate equation (5.7).

5.1 One-dimensional beams

We consider deflections W(ξ, η, t) in the x̂3 direction of a thin elastic beam of length 2L,

width 2R and thickness 2D (D � R,L), which is driven sinusoidally at a clamped end,

tilted at angle α from the horizontal, with frequency ω and amplitude A (A � D, R, L)

and where the non-clamped end is free. The mid-plane of this beam lies at a minimum

distance H from a rigid plane wall located at x̂3 = 0 (see figure 5.1a).

If we impose the further restriction that the cantilever is narrow (R � L), we

expect little span-wise deflection and the one-dimensional planar deflections can be

well-described by the Bernoulli–Euler beam equation, which is valid when

(i) cantilever motion is confined to planar transverse deflections (i.e. no twisting or

lateral movement),
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(ii) shear deformation is negligible compared to the bending deformation,

(iii) rotation is negligible compared with transverse deflection.

Seeking oscillatory solutions W(ξ, t) = Re
(
w(ξ)eiωt

)
, the (non dimensional) beam

equation is given by (Kelly 1993)

wξξξξ −Mγ4w = iMΩγ2F(ξ; γ,∆), (5.1a)

where subscripts denote derivatives. F(ξ; γ,∆) represents the hydrodynamic loading

on the cantilever per unit length (scaled on µAω) in the direction normal to the can-

tilever’s axis, Ω ≡ ρL2/mc depends upon the fluid to cantilever density ratio as mc is

the cantilever’s mass per unit length and M ≡ mcµ
2/ρ2EI, where E and I are the

cantilever’s Young’s modulus and moment of inertia, respectively. For a cantilever of

given dimensions and density, operating in a fluid of given viscosity, M therefore char-

acterizes its stiffness. For typical AFM experiments, E ≈ 1012gcm−1s−2, I ≈ 10−8cm4,

ω ≈ 104s−1 and ρc ≈ 1gcm−3, resulting in γ = 104, M ≈ 10−4, Ω ≈ 103.

In simulating TM-AFM (see §1.1.2), we are interested in a cantilever sinusoidally-

driven in a direction normal to its axis, clamped at one end at an angle α to the hori-

zontal. The driving amplitudes A � D are sufficiently small that at leading order the

cantilever lies undeflected at an angle α to the horizontal. We analyse the normal de-

flections to this base state and hence (5.1) must be solved subject to clamped conditions

at ξ = −1 and no-stress conditions at ξ = 1

w(−1) = 1, wξ(−1) = wξξ(1) = wξξξ(1) = 0. (5.1b)

5.1.1 Two-dimensional hydrodynamics

When the cantilever is horizontal (α = 0) and when finite-length effects are confined

to the cylinder ends (γ � 1 or ∆ � 1), we may assume that the hydrodynamic loading

is essentially two-dimensional and (5.1a) then simplifies to

wξξξξ − κ4w(ξ) = 0 (5.2a)
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subject to (5.1b) with

κ =
(
Mγ4 + iMΩγ2 Γ(εγ,∆) cosα

)1/4
, (5.2b)

where Γ(εγ,∆) is the two-dimensional drag coefficient appropriate for the particular

parameter values (see chapter 2). This is solved by

w(ξ) = A1 cos κξ +A2 sinκξ +A3e
κξ +A4e

−κξ, (5.3a)

where

A1 =
e2κ + 1

2 (e2κ cos κ+ e2κ sinκ+ cosκ− sinκ)
, (5.3b)

A2 =
e2κ − 1

2 (e2κ cos κ− e2κ sinκ+ cosκ+ sinκ)
, (5.3c)

A3 =
eκ
(
e2κ + 2cos2 κ− 2 sinκ cos κ− 1

)

2 (2e4κ cos2 κ− e4κ + 2e2κ + 2cos2 κ− 1)
, (5.3d)

A4 =
eκ
(
2e2κ sinκ cos κ− e2κ + 2e2κ cos2 κ+ 1

)

2 (2e4κ cos2 κ− e−4κ + 2e2κ + 2cos2 κ− 1)
. (5.3e)

The validity of (5.3) is in doubt, however, when the two-dimensional flow assumption

is unreasonable. Hence we look to the previously developed three-dimensional flow

models.

5.1.2 Slender-body-theory hydrodynamics

When the two-dimensional flow assumption is unrealistic for a circular cylinder, due

either to long-range end effects (γ−1,∆ � 1) or non-horizontal orientation (α 6= 0), we

may turn to USBT to provide the hydrodynamic forcing in (5.1). For a tilted cantilever

we shall consider two distinct motions, vertical oscillations and oscillations normal to

the axis. In the absence of a wall, normal oscillations should simply amount to a change

in the frame of reference and therefore not directly generate any axial flow; vertical os-

cillations, on the other hand, are capable of producing axial flow. Furthermore, when

describing non-normal cantilever oscillations, we assume that the cantilever is inexten-

sible and so any axial body motion is transmitted unchanged through the cantilever.
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Therefore, in Cartesians, the distribution of Stokeslets f is related to cantilever deflec-

tion w(ξ) by (c.f. (3.3))





iγ2w sinα

0

iγ2w cosα




=

1

8π

∫ 1

−1

(
Sw

ij(x,X ; γ,∆) + akjQik(x̂)
)
fj(s; γ,∆)ds, (5.4)

which we solve in conjunction with the beam equation (5.1), by discretizing the can-

tilever axis into N elements and assuming that the deflection w and loading f are

constant on each element sm = [(2(m − 1)/N) − 1, (2m/N) − 1]. The Stokeslets and

dipoles Sw
ij(x,X ; γ,∆), Qik(x̂) are numerically integrated along each (possibly tilted)

element of the beam. This leaves us needing to solve the 4N × 4N system

Πy = b1 (5.5a)

where

y = (w1, . . . wN , f1, . . . , f3N ) (5.5b)

is the Stokeslet distribution vector (3.9a), augmented with the discretized cantilever

deflections

w = (w(x1), . . . , w(xN )) , (5.5c)

whilst

b1 = (−4, 1, 0, . . . , 0) (5.5d)

captures the boundary conditions (5.1b) and

Π ≡



 E I1

I2 G



 , (5.5e)

where the matrix E (N×N) holds the finite-difference approximation to the derivatives

on the left-hand side of (5.1a). The N × 3N matrix I1 , which incorporates the normal

drag per unit length into the beam equation, contains zeroes except for −MΩγ2 cosα

and −MΩγ2 sinα entries in the elements indexed by (i,N + 3 (i − 1) + 3) and (i,N +
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3 (i − 1) + 1) (i = 1 . . . N), respectively. The 3N × N matrix I2 captures the velocity

dependence on the right-hand side of (5.4) and consists of zeros except for − cosα and

− sinα in the (N +3 (i− 1)+3, i) and (N +3 (i− 1)+1, i)-indexed entries, respectively

(i = 1 . . . N). The 3N × 3N matrix G is given by (3.10). This linear system is solved by

Gaussian elimination, to give both the cantilever deflection and the three components

of the singularity distribution f .

5.1.3 Modified resistive-force-theory

The numerical scheme described by (5.5) is somewhat inefficient for our purposes,

since it requires us to compute all three components of f when only f3 is required for

a horizontal cantilever, supplemented with f1 when the cantilever is tilted. Therefore,

as a less arduous alternative, we estimate the hydrodynamic loading in (5.1) using RFT

(3.17b,c) plus its first-order correction (thereby neglectingO
(
1/(ln ε)3

)
drag terms and

smaller). We established in § 3.2 that the non-diagonal elements in the resistance matrix

come solely from wall interactions, therefore axial motion contributes to the normal

drag F only through the Wi terms. By working in a frame of reference aligned with the

cantilever axis, we obtain an integro-differential equation for cantilever deflection

∂4w(ξ)

∂ξ4
−Mγ4w(ξ) = −iMΩγ2

(
4π

ln ε
+

2πH3(ξ; γ)

(ln ε)2

)
w(ξ)

−4πiMΩγ2

(ln ε)2
−
∫ 1

−1



 e−
√

iγ|s−ξ|
√
iγ|s − ξ|2

−
i
(
e−

√
iγ|s−ξ| − 1

)

γ2|s− ξ|3 +
e−

√
iγ|s−ξ|

|s− ξ|



 (w(s) −w(ξ)) ds

−2πiMΩγ2

(ln ε)2
W3(ξ, α,w; γ,∆), (5.6)

where we have exploited the simple relationships u · n̂ = iγ2w. In §5.3.1 we compare

this asymptotic treatment with the full USBT computations.

5.2 Two-dimensional plates

We consider deflections W(ξ, η, t) in the x̂3 direction of a thin rectangular elastic plate

of length L, width 2R and thickness 2D (D � R,L) which is driven sinusoidally at a

horizontally clamped end (α = 0) with frequency ω and amplitude A (A � D, R, L),
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with all other edges free. The mid-plane of this plate lies at a distance H from a rigid

plane wall located at x̂3 = 0 (see figure 5.1b).

The results of chapter 4 demonstrated the highly non-uniform character of the hy-

drodynamic loading over the surface of a thin plate, in both the span-wise and length-

wise directions. We are interested in knowing whether, in spite of the narrowness of an

AFM cantilever, the rapidly varying fluid loading at the plate edges can generate signifi-

cant span-wise deflections (see figure 5.1b). We therefore seek an elastic description of

a plate which allows span-wise deflections and the assumption that the thickness and

amplitude are both small with respect to other plate dimensions once again permits the

use of linear elasticity theory. In particular, flexural vibrations of a two-dimensional

plate can be studied using linear elastic plate theory, which assumes

(i) the plate has a uniform thickness and

(ii) the shear deformation, stress in the transverse direction and rotational inertia are

all negligible.

Expressing strains in terms of plate curvature and assuming Hookean stress–strain re-

lationships, vertical force balances and moment equilibria lead to the plate equation

(Timoshenko and Woinowsky-Krieger 1959)

D∇4W + ρpDWtt = F(ξ, η; γ,∆), (5.7)

where ∇4 ≡ ∂4
ξ + ∂4

η + 2∂2
ξ ∂

2
η , D = ED3/12(1 − ν2

p) is the flexural rigidity of the

plate, depending on its Young’s modulus E, Poisson ratio νp (the ratio of transverse

over compressive strain, which is approximately 0.3 for AFM cantilevers) and thickness

D. The plate density is given by ρp and F is the externally applied vertical load per

unit area. Seeking oscillatory solutions W(ξ, η, t) = Re(w(ξ, η)eiωt), we consider a plate

assuming that the deflection is symmetric about η = 0

w(ξ,−η) = w(ξ, η), wη(ξ, 0) = 0, (5.8a)

that is clamped at ξ = 0 and sinusoidally driven

w(0, 0 ≤ η ≤ ε) = 1, wξ(0, 0 ≤ η ≤ ε) = 0 (5.8b)
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and is free along the other edges, i.e. experiences no bending

wξξ + νpwηη = 0 : ξ = 1, 0 ≤ η ≤ ε, (5.8c)

wηη + νpwξξ = 0 : 0 ≤ ξ ≤ 1, η = ε (5.8d)

and no shearing or twisting; to avoid an over-prescribed system, the twisting moment is

expressed in terms of shearing forces (see Timoshenko and Woinowsky-Krieger 1959)

leading to the boundary condition

wξξξ + (2 − νp)wξηη = 0 : ξ = 1, 0 ≤ η ≤ ε, (5.8e)

wηηη + (2 − νp)wξξη = 0 : η = ε, 0 ≤ ξ ≤ 1. (5.8f)

Scaling lengths on L, time on ω−1, deflection on A and hydrodynamic loading on

Aωµ/L gives us (5.7) in non-dimensional form

∇4w − γ4Mpw = iγ2MpΩpf(ξ, η), (5.9)

where Mp ≡ ν2ρpD/D ≈ 10−7 and Ωp = ρ/ρpd ≈ 102 for typical AFM regimes. For

computational purposes, we prefer to decompose the fourth-order equation (5.9) into

a pair of coupled second-order equations

∇2v − γ4Mpw = iγ2MpΩpf(ξ, η), (5.10a)

∇2w = v, (5.10b)

with the boundary conditions on the non-clamped edges (5.10c–f) becoming

νpv + (1 − νp)wξξ = 0, (2 − νp)vξ + (νp − 1)wξξξ = 0 : ξ = 1, 0 ≤ η ≤ ε (5.10c)

νpv + (1 − νp)wηη = 0, (2 − νp)vη + (νp − 1)wηηη = 0 : η = ε, 0 ≤ ξ ≤ 1. (5.10d)

We have two options for the choice of hydrodynamic loading and we discuss both in

the following two sections.

5.2.1 Lubrication hydrodynamics

In the limit ∆ � ε, ∆ ∼ γ we can approximate the hydrodynamic loading using three-

dimensional lubrication theory (§4.3.2). This involves solving Poisson’s equation for
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the pressure (4.30), which is coupled to the plate’s elastic behaviour (5.10) as a result

of the deflection-dependent non-homogenous term in (4.30)

∇4w − γ4Mpw = iγ2MpΩp∆
−3p, (5.11a)

∇2p = k0(τ)w. (5.11b)

We solve the coupled system (5.11) by discretizing the plate surface into Nξ × Nη

panels and assuming that the deflection and pressure are constant on each panel. This

leaves us needing to solve the 3NξNη × 3NξNη system

Πpyp + M0y0 = 0, (5.12a)

where

Πp =



 Ep J1

J2 Lp



 , Ep =



 Lp −Ip

−Mpγ
4Ip Lp



 ,

J1 = −γ2MpΩp



 Ip

0p



 , J2 = −k0(τ)
(

Ip 0p

)
. (5.12b)

The NξNη×NξNη matrix Lp is the finite-difference approximation to the Laplacian and

Ip, 0p are the NξNη ×NξNη identity and zero matrices, respectively. Also,

yp =
(
w(ξ1, η1), . . . , w(ξNξ

, η1), . . . , w(ξ1, ηNη), . . . , w(ξNξ
, ηNη),

v(ξ1, η1), . . . , v(ξNξ
, η1), . . . , v(ξ1, ηNη ), . . . , v(ξNξ

, ηNη ),

p(ξ1, η1), . . . , p(ξNξ
, η1), . . . , p(ξ1, ηNη ), . . . , p(ξNξ

, ηNη )
)

(5.12c)

contains the values of w, v and p at internal points and

y0 =
(
w(1, η1), . . . , w(1, ηNη ), w(ξ1, 1), . . . , w(ξNξ

, 1),

v(1, η1), . . . , v(1, ηNη ), v(ξ1, 1), . . . , v(ξNξ
, 1), v(0, η1), . . . , v(0, ηNη ))

)
(5.12d)

contains the unknown boundary values of w and v, which are positioned for the finite-

difference scheme by M0. The values in y0 are determined by the boundary conditions

given in (5.8, 4.30d), which produce a set of (2Nξ + 3Nη) equations relating internal

points to boundary values

M1yp + M2yo = B, (5.13)
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where M1, M2 contain the finite-difference approximation to the derivatives in (5.8b–

e) and B contains the clamped condition w(0, η) = 1. Hence

y0 = M−1
2 B − M−1

2 M 1yp, (5.14)

giving, on substitution into (5.12)

(
Πp − M0M

−1
2 M1

)
yp + M0M

−1
2 B = 0, (5.15)

which we solve by Gaussian elimination for yp. Results are obtained on a 30× 30 mesh

with convergence verified by increasing this to 60 × 60.

Narrow plate limit (∆ � ε� 1)

In the narrow-plate limit asymptotic progress can be made determining the plate’s de-

flection. Rescaling η = ε η̃, (5.11a) becomes

∂4w

∂η̃4
+ 2ε2

∂2∂2w

∂η̃2∂ξ2
+ ε4

∂4w

∂ξ4
− ε4γ4Mpw = iε4γ2MpΩp∆

−3p, (5.16a)

subject to

w(ξ,−η̃) = w(ξ, η̃), wη(ξ, 0) = 0, (5.16b)

wη̃η̃ + ε2νpwξξ = 0 at η̃ = 1, (5.16c)

wη̃η̃η̃ + ε2(2 − νp)wη̃ξξ = 0 at η̃ = 1, (5.16d)

ε2wξξ + νpwη̃η̃ = 0 at ξ = 1, (5.16e)

ε2wξξξ + (2 − νp)wξη̃η̃ = 0 at ξ = 1, (5.16f)

w = 0, wξ = 0 at ξ = 0. (5.16g)

Let us consider the case when iγ2MpΩp∆
−3 = M̃ε−2, with M̃ = O(1). Now expanding

the deflection and pressure p(ξ, η̃) = p(0)(ξ, η̃) + εp(1)(ξ, η̃) + ε2p(2)(ξ, η̃) + . . ., w(ξ, η̃) =

w(0)(ξ, η̃) + εw(1)(ξ, η̃) + ε2w(2)(ξ, η̃) + . . . at leading and second orders we find

∂4w(0)

∂η̃4
=
∂4w(1)

∂η̃4
= 0. (5.17)

Hence, respecting symmetry about η̃ = 0

w(0) = A0(ξ)η̃
2 +B0(ξ), w(1) = A1(ξ)η̃

2 +B1(ξ). (5.18)
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The no-moment condition at η̃ = 1 (5.16c) then implies that A0(ξ) = 0 and

w(2) = −νp

2

∂2w(0)

∂ξ2
η̃2 +B2(ξ). (5.19)

Hence the leading-order deflection is a function of ξ alone and, using the results of

§ 4.3.2, the pressure can be approximated by the composite expansion (4.40). Conse-

quently at O(ε4) we have

∂4w(2)

∂η̃4
+ 2

∂4w(1)

∂ξ2∂η̃2
+
∂4w(0)

∂ξ4
− γ4Mpw

(0) = M̃p(2) = M̃k0(τ)w
(0)(ξ)

(η̃2 − 1)

2
, (5.20)

hence

w(2) =

((
γ4Mp −

M̃k0(τ)

2

)
w(0) − (1 − 2νp)

∂4w(0)

∂ξ4

)
η̃4

4!

+ M̃k0(τ)w
(0) η̃

6

6!
+A4(ξ)

η̃2

2
+B4(ξ). (5.21)

The no-shear condition at η̃ = 1 (5.16d) then provides the solvability condition for w(0)

(ν2
p − 1)

∂4w(0)

∂ξ4
+

(

γ4Mp −
M̃k0(τ)

3

)

w(0) = 0, (5.22)

i.e. the Euler–Bernoulli beam equation. Determining the boundary conditions for (5.22)

at ξ = 0 and ξ = 1 requires us to examine the structure of the plate deflection near the

free ends. Near ξ = 1 we rescale the ξ-coordinate according to ξ = 1 − εξ̃ and the

deflection in this end region is then governed by

∇4w − ε4γ4Mpw = iε4γ2MpΩp∆
−3p, (5.23)

subject to (5.8e,f) and matches the inner limit of the outer solution

w → w(1) − ε ξ̃w
(0)
ξ (1) + ε2



 ξ̃
2w

(0)
ξξ (1)

2
− νp

2
η̃2w

(0)
ξξ (1) +B2(1)





+ ε3



−
ξ̃3w

(0)
ξξξ(1)

6
+
νp

2
η̃2ξ̃w

(0)
ξξξ(1) − ξ̃B2,ξ(1)



 +O(ε4) as ξ̃ → ∞. (5.24)

We note that (5.24) satisfies (5.23) up to O(ε4) corrections and respects the boundary

conditions (5.8e,f), provided that

w
(0)
ξξ (1) = w

(0)
ξξξ(1) = 0, (5.25a)
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i.e. the two-dimensional no-moment and no-stress free-end conditions. Similarly, the

inner limit of the outer solution provides the leading-order solution in the ξ = 0 end

region, provided

w(0)(0) = w
(0)
ξ (0) = 0. (5.25b)

We therefore recover the familiar clamped boundary conditions for the Euler–Bernoulli

beam (5.22), which is solved by

w(0) = A1

(
eκξ − cos κξ − sinκξ −A2

(
e−κξ − cos κξ + sinκξ

))

+A3

(
e−κξ − cos κξ + sinκξ

)
+ cos κξ, (5.26a)

where

A1 =
1 + e−κ cos κ− e−κ sinκ

4 + 2e−κ cos κ+ 2eκ cos κ
, A2 =

eκ + cos κ+ sinκ

e−κ + cos κ− sinκ
, (5.26b)

A3 =
cos κ

e−κ + cos κ− sinκ
, κ =

(
M̃k0(τ) − 3γ4Mp

3(ν2
p − 1)

)1/4

(5.26c)

and in §5.3.2 we plot this narrow-plate limit against the finite-difference computations.

5.2.2 Thin-plate hydrodynamics

The approach just described in § 5.2.1 is valid when ∆ � 1, however, a more general

situation can be dealt with by using the three-dimensional TPT hydrodynamics devel-

oped in §4.3. Under these circumstances we need to solve the 5NξNη × 5NξNη system

Πvyv + M0y0 = 0, (5.27a)

where

yv =
(
w(ξ1, η1), . . . , w(ξNξ

, η1), . . . , w(ξ1, ηNη ), . . . , w(ξNξ
, ηNη ),

v(ξ1, η1), . . . , v(ξNξ
, η1), . . . , v(ξ1, ηNη), . . . , v(ξNξ

, ηNη ),

f1(ξ1, η1), f2(ξ1, η1), f3(ξ1, η1), . . . , f1(ξNξ
, η1), f2(ξNξ

, η1), f3(ξNξ
, η1), . . . ,

f1(ξ1, ηNη ), f2(ξ1, ηNη ), f3(ξ1, ηNη ), . . . , f1(ξNξ
, ηNη ), f2(ξNξ

, ηNη ), f3(ξNξ
, ηNη )

)

(5.27b)
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and

Πv =



 Ep J3

J4 G



 , (5.27c)

where Ep is the finite-difference representation of the elasticity operator (5.12b) and

G is the TPT hydrodynamic matrix defined in (4.24). J3 is a zero matrix other than

−γ2MpΩp values in (k, 3(k − 1) + 3)-indexed entries, as is J4 except for −1 values in

(3(K − 1) + 3,K)-indexed entries (1 ≤ k,K ≤ NξNη). y0 is determined as in (5.14).

Solving this linear system by Gaussian elimination then provides the plate deflection

and the Stokeslet distribution of f over the plate. Convergence is verified by solving on

30 × 30 and 50 × 50 meshes.

Narrow plate limit (ε� 1)

As for the case of lubrication hydrodynamics, when the plate is narrow we expect a

simplified form for dominant plate dynamics. The TPT findings in § 4.4.3 suggest that

under such geometric conditions and at sufficiently high frequencies of oscillation, we

may expect the flow to be largely two dimensional over much of the plate. Therefore,

assuming a ξ-independent loading in (5.9), the plate dynamics take the form

∇4w − γ4Mpw = iγ2MpΩpf
′(η)w, (5.28)

where f ′(η) is the two-dimensional TPT Stokeslet profile described in § 4.2. We can then

solve (5.28) directly (using similar finite-difference methods as before) to assess the

importance of three-dimensional flows near the ends of the plate. We may also pursue

an asymptotic route as was done when using lubrication hydrodynamics in § 5.2.1. This

gives us

(ν2
p − 1)

∂4w(0)

∂ξ4
+
(
γ4Mp + iγ2MpΩpD

)
w(0) = 0, (5.29)

D =

∫ 1

0
f ′(η) dη. (5.30)

Note that (5.29) has been derived without special treatment of the singularity in f ′(η)

at η = 1 and so in § 5.3.2 we check how this naive calculation performs against the full

two-dimensional plate computations.
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FIGURE 5.2: Maximum amplitude at the tip of a horizontal (α = 0) damped cantilever

(ε = 10−2) driven over a range of frequencies γ when ∆ = 100 and Ω = 104/π.

Cantilevers of three different stiffnesses are shown (M = 10−3, 10−4 and 10−5 and the

hydrodynamic loading is given by USBT (5.5).)

5.3 Results

These results focus on the amplitude response at the tip of a cantilever which is driven

sinusoidally at its clamped end, as a function of oscillation frequency. We look at one-

dimensional descriptions of the elastic behaviour using various expressions for the hy-

drodynamic loading (§ 5.3.1), considering the effects of tilt and the presence of a wall.

Non-uniform deflections across the width of the cantilever are the accounted for by

treating the cantilever as a finite-width elastic plate coupled to either lubrication or

TPT loading (without a wall) (§ 5.3.2).

5.3.1 Elastic beams

When the cantilever is horizontal, the tip response can be found through the beam

equation subject to hydrodynamic loading described by three-dimensional unsteady

slender-body theory (SBT) (5.5) and its modified resistive-force-theory (RFT) limit

(5.6) (circular cantilevers only) or two-dimensional drag (5.3) (circular and rectan-
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FIGURE 5.3: Maximum amplitude at the tip of a horizontal (α = 0) damped cantilever

(ε = 10−2) driven over a range of frequencies γ. Tip responses are computed with the

hydrodynamic loading given by (i) two-dimensional drag (5.3, markers), (ii) full USBT

computation (5.5, full line) and (iii) modified RFT (5.6, dashed line) when M = 10−4,

Ω = 104/π and ∆ = 0.1, 100.

0 1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

γ

m
a
x

(R
e
[w

(1
)e

x
p
(i
ω
t)

]) α = 0, ∆ = 100

α = π/4, ∆ = 100
α = 0, ∆ = 0.1
α = π/20, ∆ = 0.1
α = π/4, ∆ = 0.1

FIGURE 5.4: Maximum amplitude at the tip of a damped cantilever (ε = 10−2) tilted at

α = 0, π/20 and π/4, driven over a range of frequencies γ when M = 10−4, Ω = 104/π

for ∆ = 0.1 and ∆ = 100, using a USBT description of the hydrodynamics.



CHAPTER 5 SINUSOIDALLY-DRIVEN CANTILEVER 124

gular cantilevers).

The influence of cantilever stiffness M is illustrated in figure 5.2. A decrease in the

Young’s modulus E leads to an increase in M ≡ µ2mc/ρ
2EI (when the other material

properties of the cantilever and fluid are kept constant) and we see that this results in

more pronounced hydrodynamic damping in the frequency response and a reduction in

the resonant frequency.

In figure 5.3 we see the effect on tip oscillations of bringing the cantilever close to

the wall. For all three choices of hydrodynamic loading, decreasing ∆ from 100 to 0.1

leads to much greater loading on the cantilever, which results in a more damped re-

sponse, i.e. lower amplitudes and a shift in the resonant peak to lower frequencies. Fig-

ure 5.3 also explores the effectiveness of two-dimensional drag and three-dimensional

modified RFT as estimates for hydrodynamic loading in the beam equation. At lower γ

the two-dimensional drag assumption (5.3) leads to inaccurate results, whilst modified

RFT (5.6) performs well. Although the effectiveness of (5.6) lessens as γ is increased

(due to increasing demand for higher-order corrections to RFT, see figure 3.6c,d), at this

point two-dimensional drag begins to give good agreement with the full slender-body

computations due to γ-screening. Hence, for most values of γ, we have an acceptable

alternative to (5.5). The impact of ∆-screening on frequency responses is also shown.

Even at low γ the presence of the wall results in two-dimensional drag proving a trust-

worthy approximation, even though at these values of ∆ a single correction to RFT

proves insufficient to capture the full hydrodynamic loading on the beam.

Figure 5.4 examines the role of tilt in the frequency response of a cantilever which is

driven normal to its axis. At large values of ∆ the angle of inclination is irrelevant due to

the lack of any significant axial flows. Once the separation distance is decreased to ∆ =

0.1, however, strong flow interactions with the wall lead to substantial α-dependence

in the response.

5.3.2 Elastic plates

When the cantilever has significant width, we expect the plate deflections to vary in

the span-wise (η-dependent), as well as in the length-wise (ξ-dependent), direction.
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The elastic dynamics are then determined by the plate equation (5.9), subject to either

lubrication theory or TPT hydrodynamics.

Lubrication loading

Figure 5.5 shows the real (a) and imaginary (b) parts of a narrow (ε = 0.05) cantilever’s

deflection when oscillating at high frequency (γ = 200), whilst situated close to a

wall (∆ = 0.005). Under these circumstances we expect lubrication theory to work

well at providing the hydrodynamic loading on the plate. Furthermore, as the plate is

relatively narrow, we see in figure 5.5(a,b) that there is very little span-wise deflection.

The narrow-plate asymptotic analysis predicts that the plate will behave like a one-

dimensional Euler–Bernoulli beam (5.22) and this is indeed seen to be the case (thick

line). The lower two panels (c,d) of figure 5.5 show, respectively, the real and imaginary

parts of the pressure profile. The dashed thick lines give the outer asymptotic solution

for the pressure (4.35), which works well away from the plate ends. Although the

end regions are not required for determining the leading-order plate deflection, we see

that their inclusion via the composite pressure expansion (4.40) allows the pressure

profile to be fully captured over the whole plate (full line). When the plate is made less

narrow (figure 5.6) we are able to observe non-negligible span-wise deflections and so

our asymptotic analysis is no longer appropriate.

TPT loading

In § 4.4.3 we described how both geometry and oscillation frequency were important

in determining the extent of three-dimensionality in the flow generated by a thin rigid

plate. By increasing γ, viscous effects become confined to the surface edges and the

geometry of the plate dictates the flow structure; making the plate narrow (ε � 1)

results in two-dimensional flow over much of the plate and three-dimensional effects

remain significant only within O(ε) distances of the ξ = 0 and ξ = 1 edges. Although

small, these end regions are not necessarily insignificant to the elastic behaviour of a

narrow plate, as illustrated by figure 5.7. The TPT Stokeslet distribution (normalised

on plate velocity), shown in panels (a,b), is seen to attain an ξ-independent profile
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FIGURE 5.5: Real (a) and imaginary (b) components of an elastic cantilever’s deflec-

tion when ε = 0.05, Ωp = 1, Mp = 10−8 and νp = 0.3, and where γ = 200 and

∆ = 0.005. Deflections are computed using the three-dimensional lubrication formu-

lation (5.12) and its narrow-plate limit (5.22) (thick line). Panels (c,d) represent the

real and imaginary parts of the pressure profile, respectively, with the dashed thick line

corresponding to the outer solution in the asymptotic approximation (4.35b), whilst

the full thick line represents the full composite expansion (4.40).
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FIGURE 5.6: Real (a) and imaginary (b) components of an elastic cantilever’s deflec-

tion when ε = 1, d/ε = 10−3, Ωp = 102, Mp = 10−7 and νp = 0.5 and where γ = 20

and ∆ = 0.05. Hydrodynamic loading is given by three-dimensional lubrication theory

(5.12).
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away from ξ = 0 and ξ = 1 which agrees with two-dimensional BEM predictions (thick

red line). For these parameter values, there is good agreement with the deflections

predicted with the hydrodynamic loading provided by two-dimensional BEM compu-

tations. This is demonstrated in figures 5.7 (c,d), where the thick green line shows a

cross-sectional slice of the plate deflection computed using two-dimensional BEM hy-

drodynamic loading alone. In these plots the thick red line represents the narrow-plate

deflection, which satisfies the Euler–Bernoulli beam equation (5.29); clearly the asymp-

totics do not work as well as in the lubrication limit, possibly due to the singular nature

of the TPT Stokeslet profiles near the plate edges. This is further reflected in the fre-

quency responses for a narrow plate, shown in figure 5.8. Here plate deflections under

three distinct forms of hydrodynamic loading have been plotted as a function of oscil-

lation frequency. Although all three responses show similar qualitative behaviour, the

two-dimensional BEM hydrodynamics are seen to cause a slight shift and over-predict

the amplitude and sharpness of the resonant peak, for both beams and plates, which

naturally has implications for AFM cantilever responses. Again, this is perhaps due to

the importance of edge and end regions in the Stokeslet distribution. When the plate

is square, there is non-negligible span-wise deflection and this results in differences be-

tween the frequency response measured at the edge compared to that taken at the plate

centre (figure 5.9).

5.4 Discussion

We have determined the dynamics of a sinusoidally-driven cantilever by incorporat-

ing previous hydrodynamic theory into beam and plate equations, which describe the

elastic dynamics. When the cantilever was hydrodynamically modelled as a slender

rod, either two-dimensional drag results for an infinitely-long circular cylinder (chapter

2,4.1) or USBT results for a finite-length circular cylinder (chapter 3) were substituted

into the one-dimensional beam equation. The deformation of a driven cantilever with

finite width was determined using the two-dimensional plate equation, subject to hy-

drodynamic loading described by TPT or, at small separation, three-dimensional lubri-
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FIGURE 5.7: Panels (a,b) show the real and imaginary parts, respectively, of the three-

dimensional TPT Stokeslet profile (mesh) detailing the hydrodynamic loading on a

thin narrow plate (Ωp = 10, Mp = 10−6, νp = 0.3, ε = 0.1, d/ε = 10−2) which

oscillates in unbounded fluid with γ = 30, together with the two-dimensional BEM

profile (thick line red), all normalised on plate velocity. The corresponding real and

imaginary parts of an elastic cantilever’s deflection are shown in (c,d), respectively,

computed using TPT hydrodynamics (5.27) (shown by mesh) and two-dimensional

hydrodynamics given by BEM (4.3) (cross-sectional slice shown by thick green line).

The thick red line represents the deflection computed using the leading-order Euler-

Bernoulli beam dynamics (5.29).

(a) (b)

(c) (d)

f3/w f3/w

w w

η ξ
ξ η

η
ξξ η
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FIGURE 5.8: Frequency response of a narrow plate (νp = 0.3, Mp = 10−6, Ωp = 10,

ε = 0.1, d/ε = 10−2) under TPT hydrodynamic loading (full line and markers) and

two-dimensional BEM hydrodynamics (full line only), together with the asymptotic

description, which is governed by the Euler–Bernoulli beam equation (5.29, dashed

line).
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FIGURE 5.9: Frequency response of a square plate (νp = 0.3, Mp = 10−6, Ωp = 10,

ε = 1, d/ε = 10−2) under TPT hydrodynamic loading with deflection measured along

the edge (η = 1, circles) or at plate middle (η = 0, crosses).



CHAPTER 5 SINUSOIDALLY-DRIVEN CANTILEVER 131

cation theory (chapter 4). In both cases the narrow-plate limit lent itself to asymptotic

analysis.

The results relating to cantilevers with negligible span-wise deflections showed that

bringing the cantilever close to the wall increased the hydrodynamic loading and con-

sequently reduced the amplitude of the tip’s response. For regimes where the finite-

length flow effects were suppressed, either due to a high cantilever spring constant or

the presence of a nearby solid boundary, two-dimensional drag was shown to capture

adequately the cantilever tip’s response. Importantly, these screening mechanisms were

shown to persist at moderate angles of inclination (i.e. values typical of AFM cantilever

configurations). In the absence of any screening mechanisms (resulting in long-ranged

end effects) or when the cantilever had a large angle of inclination, the two-dimensional

flow approximations were found to misrepresent the true hydrodynamic loading on

the cantilever. Nevertheless, for the case of a horizontal cantilever without end-effect

screening, the integro-differential equation (5.6), derived using modified-resistive-force

theory (MRFT) was seen to provide a reliable and computationally less arduous alter-

native to solving the fully-coupled system (5.5).

We then moved on to consider finite-width cantilevers which could experience span-

wise deflections. Using a finite-difference scheme, we were able to solve the coupled

lubrication-plate equations to compute the deflection and pressure when ∆ ∼ γ−1 � 1.

A square plate was seen to experience significant span-wise deflections, yet this became

less pronounced as AFM cantilever aspect ratios were approached. In this narrow-plate

limit (∆ � ε� 1) an asymptotic analysis showed that the elastic behaviour once more

governed by the Euler-Bernoulli beam equation, subject to the familiar one-dimensional

clamped and free-end boundary conditions (figure 5.5). Once the deflection was known

the pressure profile could also be determined using a uniformly valid asymptotic expan-

sion, which figure 5.5 showed adequately captured the rapid pressure variations at the

plate edges x1 = 0 and x1 = 1. Figure 5.6 demonstrated how increasing the plate width

and Poisson ratio both lead to non-uniform deflections across the plate.

Application of TPT, rather than lubrication hydrodynamics, allowed us to study plate

deflections away from the wall, yet unbounded fluid proved the only case accessible
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with conventional processing power. When the plate was narrow and the frequency

of oscillation high, figure 5.7 showed that the Stokeslet profile becomes largely two-

dimensional away from the ξ = 0 and ξ = 1 edges. Here two-dimensional BEM could

be used to accurately determine plate deflection. In the narrow-plate limit, asymptotic

analysis once more lead to Euler-Bernoulli beam mechanics at leading-order, although

the agreement was not as strong as for the lubrication case, perhaps due to the rapidly

varying hydrodynamic loading near the end and edge regions. These shortcomings

lead to a noticeable shift and differences in the amplitude and sharpness of the resonant

peaks (figure 5.8). When the plate was no longer narrow, the frequency response curves

were seen dependent upon the span-wise measurement location (figure 5.9).

These findings have important implications for deciding the level of elastohydro-

dynamic sophistication needed to accurately describe the dynamics of a sinusoidally-

driven AFM cantilever. It has been demonstrated that, even when the cantilever is

narrow (as is the case with the AFM), two-dimensional assumptions may not be en-

tirely dependable, although the cantilevers considered in figures (5.7–5.9) are less stiff

and dense that typical AFM cantilevers and so the discrepancy may be somewhat exag-

gerated here.

Sinusoidally-driven cantilevers give an appropriate description of tapping-mode AFM

(TM-AFM, see § 1.1.2). However, there are other ways in which the cantilever can be

driven. One alternative (ex-vacuo) is to allow the cantilever to fluctuate under Brown-

ian motion. This method is becoming increasingly appealing to experimentalists who

wish to drive the cantilever at extremely low amplitudes and, as such, we dedicate the

final chapter to describing these thermally-driven modes of operation.



Chapter 6

Damped dynamics of a

thermally-driven cantilever

Brownian effects in fluids have long been been a source of noise contamination in

AFM measurements, but techniques have evolved which exploit the cantilever’s low-

amplitude thermal fluctuations, as discussed in some detail in §1.1.3 and § 1.1.4. There

is much interest in simulating the Brownian dynamics of AFM cantilevers and we are

now in a position to combine the earlier hydrodynamic theory with some results from

statistical physics, to predict the behaviour of thermally-fluctuating cantilevers.

We consider deflections W of a beam-like cantilever of length L, width 2R and

thickness 2D, with its mid-plane at a minimum distance H from a horizontal wall (see

figure 5.1a), which fluctuates in a thermal bath at temperature T under the action of

Brownian motion.

In §6.1 we describe an existing model for describing the thermal cantilever fluc-

tuations which enjoys great popularity in the AFM community, but which suffers from

some shortcomings. The physics behind an alternative approach for probing micro-

scopic Brownian-induced fluctuations, by analysing the macroscopic behaviour of the

system, will be presented in § 6.2 and specific application to cantilevers will be made in

133
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§ 6.3. When the flow is assumed to be two-dimensional (§ 6.3.1) the thermal spectrum

can be expressed in terms of discrete and continuous contributions. The numerical ap-

proximation of fully three-dimensional flow is then briefly outlined in §6.3.2. Results

are presented in § 6.4, including comparison to experimental data and implications are

then discussed in § 6.5.

6.1 Equipartition of energy approach

Sader (1998) modelled the cantilever’s elastic behaviour using the Euler–Bernoulli

beam equation (5.1) and the two-dimensional drag experienced by an infinite circu-

lar cylinder in unbounded fluid (2.19). The response to thermal noise was determined

by first decomposing the deflection into spatially orthogonal vacuum eigenmodes φk,

which form a basis for describing any arbitrary deflection. In this way the deflection

was expressed as

W(ξ, t) =
∞∑

k=1

αkφk(ξ) e
i ckt, (6.1a)

φk(ξ) = cos ckξ − cosh ckξ +

(
cos ck + cosh ck
sin ck + sinh ck

)
(sinh ckξ − sin ckξ), (6.1b)

where the eigenfrequencies ck satisfy

1 + cos ck cosh ck = 0 (6.2)

and φk satisfy homogeneous boundary conditions

φk(0) = φk,ξ(0) = φk,ξξ(1) = φk,ξξξ(1) = 0. (6.3)

Hydrodynamic loading was introduced by weighting these vacuum modes through the

use of a transfer function (projecting the damped response, under steady uniform load-

ing over the cantilever length, onto each vacuum mode). Equipartition of energy was

then invoked to determine the amplitude αk of each weighted mode under Brownian

forcing, by equating the potential energy of each mode in this linear decomposition to

1
2kBT of energy, where kB ≈ 1.38 × 10−16 is Boltzmann’s constant. This analysis lead

to the following expression for the thermal power spectra of the tip’s displacement Peq,
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for a cantilever with spring constant ke as a function of the oscillation frequency of the

cantilever’s tip ω

Peq(ω) =
3πkBT

ke

∞∑

k=1

|αk(ω) |2
(
c4k

∫ ∞

0

∣∣αk($
′)
∣∣2 d$′

)−1

φ2
k(1), (6.4a)

αk(ω) =
2 sin ck tan ck

ck
(
c4k − κ(ω)4

)
(sin ck + sinh ck)

, (6.4b)

κ = c1ω
−1/2
v

(
ω2 − iω(ρR2/mc)Γ(ω)

)1/4
, (6.4c)

where Γ is the expression for the drag on a circular cylinder of width R and mass per

unit lengthmc oscillating in an unbounded fluid of density ρ, as given in (2.19) and ωv is

the fundamental resonant frequency in vacuo. φk,x are derivatives of the vacuum modes

(6.1b). The dangers of such analysis, however, were highlighted by Hinch (1975) who

discussed the need to consider absorption of thermal energy by both the solid body and

the fluid. Equation (6.4) does not allocate any thermal energy to the flow.

A second shortcoming of (6.4) lies in its assumption that the Brownian noise is

δ-correlated, which is incorrect for time-dependent drag. A well-documented failing

of the δ-correlation assumption was observed in the molecular dynamic simulations

of liquid argon by Rahman (1964), where the auto-correlation function exhibited a

t−3/2 decay, rather than the e−t decay predicted from δ-correlated forcing. The correct

analysis, due to Zwanzig and Bixon (1970), took account of memory effects in the drag

(as well as compression effects in the gas) and gave the correct algebraic decay. In

§ 6.3.1 we demonstrate this algebraic decay of auto-correlations for a thermally-driven

cantilever experiencing two-dimensional drag.

6.2 Fluctuations in the canonical ensemble

Our approach avoids the equipartition of energy and δ-correlation assumptions and fol-

lows that recently suggested by Paul and Cross (2004), who made use of the Fluctuation-

Dissipation theorem. This theorem, a fundamental result from statistical physics, con-

nects microscopic fluctuations with macroscopic energy dissipation in the system.

Under Brownian forcing the cantilever fluctuations are stochastic in nature, al-

though deterministic information is available by analysing the correlations of these
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fluctuations over time. Chandler (1987) provides a description of how the fluctuation–

dissipation theorem is able to connect microscopic fluctuations to macroscopically ob-

served quantities using a classical mechanics approach, which we outline here. Our

system consists of two subsystems (i) a cantilever consisting of n particles and (ii)

a thermal bath made up of N particles, whose microscopic states can be character-

ized in phase space by the points (qn,pn) ≡ (q1, . . . , qn; p1, . . . , pn), (Q3N ,P 3N ) ≡
(Q1, . . . ,Q3N ;P 1, . . . ,P 3N ), corresponding to the motion of cantilever particles (con-

strained to one degree of freedom) and bath particles, respectively. The energy associ-

ated with the cantilever at given time t is then given by the Hamiltonian Hc(p
n,qn) and

the energy of the thermal bath by Hb(Q
3N ,P 3N ), where both systems are in thermal

equilibrium. The subsystems are closed (the number of particles and volume remain

constant) but are not isolated (energy can be exchanged between the subsystems pro-

vided that the total energy of the system E = Hc(q
n,pn) + Hb(Q

3N ,P 3N ) remains

fixed). These two conditions define a canonical ensemble.

For a given cantilever state (qn,pn) with energy Hc(q
n,pn) there are multiple mi-

croscopic states for the thermal bath consistent with the constraint Hb(Q
3N ,P 3N ) =

E − Hc(q
n,pn) and we denote their total number by Ωb(E − Hc(q

n,pn)). As there is

nothing in the physics which favours any particular microstate, it is assumed that they

are all equally likely. Consequently the probability of observing the cantilever in state

(qn,pn) is proportional to Ωb(E − Hc(q
n,pn)), i.e.

P (qn,pn) ∝ Ωb(Hb(Q
3N ,P 3N )) = Ωb (E − Hc(q

n,pn)) . (6.5)

Connection with the thermodynamics is obtained by rewriting (6.5) in the form

P (qn,pn) ∝ exp(ln(Ωb(E − Hc(q
n,pn)))) (6.6)

and using the fact that the thermal bath is sufficiently large that its energy levels ef-

fectively form a continuum and that its energy greatly exceeds that of the cantilever

(E � Hc(q
n,pn)). This allows us to expand the exponent about the total energy E

ln Ωb(E − Hc) = ln Ωb(E ) − Hc
d(ln Ωb)

dHb

∣∣∣∣∣
Hb=E

+ . . . . (6.7)
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The leading-order term in this expansion is proportional to the Gibbs entropy of the

bath S(Hb) ≡ kB ln Ωb(Hb), which counts the number of microscopic states at a given

energy and provides a link between the bath’s energy and its temperature, so that

kB
d(ln Ωb)

dHb
=

dS

dHb
≡ 1/T . (6.8)

Since ln Ωb(E ) is constant,

P (qn,pn) = Z
−1exp(−βHc(q

n,pn)), (6.9a)

where β = (kBT )−1 is computed at the bath’s maximum temperature (since Ωb is

a monotonically increasing function of Hb). Hence the probability of observing a

microscopic cantilever state decreases exponentially as the energy of this state in-

creases (Boltzmann distribution). The normalisation coefficient, found by taking the

(conventionally-named) classical trace

Z = Tr [exp(−βHc)] ≡
∫ ∫

dpndqnexp(−βHc(q
n,pn)) (6.9b)

is referred to as the canonical partition function. The equilibrium average 〈·〉eq of a

dynamical variable K (qn,pn, t) is then defined as

〈K 〉eq ≡ Tr
[
K (qn,pn, t) e−βHc

]
/Z (6.10)

and the stationary character of the equilibrium state means that this average is time-

independent 〈K (qn,pn, t)〉eq = 〈K (qn,pn, 0)〉eq.

6.2.1 Microscopic equilibrium fluctuations

Equilibrium fluctuations are probed by placing the system into a non-equilibrium state

through application of a small force to the nth particle, which takes the constant value

F � 1 when t ≤ 0 and is zero for t > 0. The system will reach a macroscopically

steady non-equilibrium configuration (at t = 0); it is the indeterminate nature of this

initial state which leads to stochasticity, since the decay back to equilibrium from a

known initial condition is deterministic. For simplicity let us take this time-independent

equilibrium value to be zero, i.e. 〈qn〉eq = 0. Consequently, the average value at a given
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time t > 0 can be found by averaging all possible initial conditions. Recalling from

(6.9) that the probability density function for initial non-equilibrium states is given by

P (qn(0),pn(0)) =
exp (−β(Hc − F qn(0)))

Tr [exp (−β (Hc − F qn(0)))]
, (6.11)

the non-equilibrium average 〈qn(t)〉neq at time t can be written as

〈qn(t)〉neq ≡
Tr [ exp (−β (Hc − F qn(0))) qn(t; 0)]

Tr [exp (−β (Hc − F qn(0))) ]
, (6.12)

where qn(t; 0) is the deterministic state at time t relating to a particular initial state

qn(0). The trace is therefore an integral over all possible initial conditions.

Since F � 1 we can expand the non-equilibrium Hamiltonian about its equilibrium

form

〈qn(t)〉neq =
Tr
[
qn(t; 0) e−βHc

]

Tr [ e−βHc ]
+ βF

Tr
[
qn(0) qn(t; 0) e−βHc

]

Tr [ e−βHc ]

− βF
Tr
[
qn(0) e−βHc

]
Tr
[
qn(t; 0) e−βHc

]

Tr [ e−βHc ]
2 +O(F 2). (6.13)

Now exp(−βHc) is the probability density function for the system in the absence of the

point force and so the non-equilibrium mean displacement (6.12) can be expressed in

terms of the equilibrium averages

〈qn(t)〉neq = 〈qn(t; 0)〉eq + βF
(
〈qn(0) qn(t; 0)〉eq − 〈qn(0)〉eq 〈qn(t; 0)〉eq

)
+O(F 2)

= βF 〈qn(t; 0) qn(0)〉eq +O(F 2), (6.14)

as 〈qn(0)〉eq = 〈qn(t; 0)〉eq = 0. The right-hand side of (6.14) contains the autocorrela-

tion function

Cnn(t) ≡ 〈qn(t; 0) qn(0)〉eq , (6.15)

which measures the correlation between initial fluctuations of the tip about the equilib-

rium displacement and those at time t. Rewriting (6.14) in the form

〈qn(t)〉neq = βF Cnn(t) +O(F 2) (6.16)

gives us a version of the celebrated fluctuation-dissipation theorem, relating micro-

scopic fluctuations to the macroscopic relaxation of a system which, in turn, is linked

to energy dissipation (see Chandler 1987).
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Im(ω′)

Re(ω′)

FIGURE 6.1: In general χ(ω′)ω′−1 e−iω′t, with ω′ complex, possesses poles and a

branch cut (jagged line) in the upper-half of the complex plane, in addition to the

pole at zero. By the residue theorem the contour integral is zero, with the only non-

negligible contributions coming from the integrals around ω′ = 0 and along the real

axis.

6.2.2 Thermal spectra

The connection between the laws governing the micro- and macroscopic dates back

to the regression hypothesis of Onsager (1931), which states that the regression of

spontaneous microscopic fluctuations in an equilibrium system are governed by the

same laws which describe the relaxation of macroscopic non-equilibrium disturbances.

These macroscopic disturbances are simply the averaged microscopic state 〈qn(t)〉neq

defined in (6.12). Given the linearity of the system, there exists a function K(t) which

relates any time-dependent force Fn(t) applied to particle n to its macroscopic response

〈qn(t)〉neq =

∫ ∞

−∞
K(t− τ ′)Fn(τ ′) dτ ′, (6.17)

which in Fourier space takes the form

̂〈qn(ω′)〉neq = χ(ω′)F̂n(ω′), (6.18)

where χ(ω′) ≡ K̂(t) is commonly referred to as the system’s susceptibility and can be

determined by choosing Fn(t) to be the temporal Dirac-delta function (δ(t)). With the

susceptibility known, the response to the Fourier-transformed Heaviside forcing

F̂n(ω′) = F

(
πδ(ω′) +

i

ω′

)
(6.19)
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(see Reichl 1987) can readily be computed. The fluctuation–dissipation theorem then

gives us the autocorrelation function through an inverse-Fourier transform of (6.18)

Cnn(t) =
kBT

F
〈qn(t)〉neq =

kBT

2πF

∫ ∞

−∞
χ(ω′)F̂n(ω′)eiω

′t dω′

=
kBT

2F
χ(0) +

ikBT

2πF
−
∫ ∞

−∞

χ(ω′)
ω′ eiω

′t dω′. (6.20)

Because the fluid drag is time-dependent, χ(ω′) contains a branch cut along the posi-

tive imaginary axis (see figure 6.1) which must be navigated when taking the inverse

transform and this has important consequences (see § 6.3.1).

The auto-correlation function (6.20) can be simplified further using the residue

theorem. Following a closed contour in the complex plane, which avoids the branch cut

and any poles of χ(ω′) (see figure 6.1), gives us

πχ(0) = −i−
∫ ∞

−∞

χ(ω′) e−iω′t

ω′ dω′, (6.21)

where integration is defined in the Cauchy-Principal-Value sense. Consequently

Cnn(t) =
ikBT

2πF
−
∫ ∞

−∞

(
χ(ω′)
ω′ eiω

′t dω′ − χ(ω′)
ω′ e−iω′t dω′

)

=
−kBT

πF
−
∫ ∞

−∞

χ(ω′)
ω′ sinω′tdω′. (6.22)

The thermal spectrum of the cantilever can now be found by taking the Fourier-cosine

transform of (6.22)

P (ω) ≡2

∫ ∞

0
Cnn(t) cos ωtdt

= − 2kBT

πF

∫ ∞

0
cosωtdt−

∫ ∞

−∞

χ(ω′)
ω′ sinω′tdω′

= − 2kBT

πF
−
∫ ∞

−∞

χ(ω′)
ω′2 − ω2

dω′

= − kBT

πFω
−
∫ ∞

−∞

(
χ(ω′)
ω′ − ω

− χ(ω′)
ω′ + ω

)
dω′

= − ikBT

F

(χ(ω) − χ(−ω))

ω

=
2kBT

F

= (χ(ω))

ω
. (6.23)

Hence we have the thermal spectrum, a quantity which is measurable in AFM experi-

ments, in terms of the susceptibility χ, which can be computed deterministically.
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6.3 Fluctuating beams

For the specific case of cantilever fluctuations, AFM experimentalists measure the ther-

mal spectrum of the tip. Once we have found the tip’s susceptibility χ(ω), the thermal

spectrum follows immediately by (6.23). Although we have the technology to consider

finite-width plates, many of the important features of Brownian-driven fluctuations can

be illustrated using an Euler–Bernoulli beam description of the cantilever’s elastic be-

haviour (see §5.1).

As the cantilever fluctuates under thermal noise, rather than being driven at a fixed

frequency at very low temperatures, we rescale time on the natural frequency of the

cantilever and the cantilever’s kinetic energy on kBT . The cantilever and flow variables

rescale accordingly

x = Lx̄, W =
√
kBT L3/EI W̄, ω =

√
EI/mcL4$,

u =
√
kBT /mcL ū, σ = µ

√
kBT /mcL σ̄ (6.24)

(bars are dropped immediately), recalling that u and σ represent the flow velocity and

stress tensor. Under these rescalings the Euler–Bernoulli beam equation (Kelly 1993)

takes the form

wξξξξ −$2w = M1/2Ωfn(ξ;$1/2M−1/4,M,∆) (6.25a)

(subscripts denote derivatives), where M and Ω are as in § 5.1 and fn represents the

hydrodynamic loading on the cantilever, per unit length. Under this frequency-scaling,

the Strouhal number, which quantifies the degree of unsteadiness in the flow, is given by

$1/2M−1/4. The point load balances the shear force at the tip, giving us the boundary

conditions (under a temporal Fourier transform)

w(0) = wξ(0) = wξξ(1) = 0, wξξξ(1) = 1. (6.25b)

We consider the cases where fn is given by two-dimensional drag and three-dimensional

USBT.
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FIGURE 6.2: The inverse Fourier transform in (6.30) can be found by application of

the residue theorem. Unsteady drag introduces a branch cut (jagged line) into the

complex plane, the navigation of which yields an integral along the positive imaginary

axis. Contour segments γ1, γ2 and γ3 are shown with a dashed line and points denote

poles of the susceptibility function χ(
√
$′).

6.3.1 Two-dimensional drag

Under a two-dimensional flow assumption (lengths rescaled onR in the flow equations)

fn(ξ; ε$1/2M−1/4,M,∆) is directly proportional to the local velocity, i.e.

fn(ξ; ε$1/2M−1/4,M,∆) = i(ε$1/2)2Γ(ε$1/2M−1/4,∆)w(ξ), (6.26)

where Γ(ε$1/2M−1/4,∆) is a two-dimensional drag coefficient. Hence

wξξξξ − κ4w = 0, κ =
(
$2 + iM1/2Ωε2$Γ(ε$1/2M−1/4,∆)

)1/4
, (6.27)

subject to (6.25b), is solved by

w(ξ, ω) = c1

(
eκξ − cos κξ − sinκξ

)
− c2

(
e−κξ − cos κξ + sinκξ

)
, (6.28a)

where

c1 =
e−κ + cos κ− sinκ

4κ3(1 + cos κ cosh κ)
, c2 =

eκ + cos κ+ sinκ

4κ3(1 + cos κ cosh κ)
. (6.28b)

The susceptibility for the displacement of the cantilever tip is then given by

χ(
√
$) ≡ w(1) =

cos κ sinhκ− sinκ cosh κ

κ3(1 + cos κ cosh κ)
. (6.29)
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With χ in such a simple form, it is instructive to use the residue theorem to evaluate

explicitly the auto-correlation function for tip displacement, where it is useful to note

that χ(
√
$) → −1

3 as $ → 0. The fluctuation–dissipation theorem (6.20) requires us

to integrate the susceptibility over all frequencies

Cnn(t) =
kBT

F

(

−1

6
+

i

2π
−
∫ ∞

−∞

χ(
√
$′)

$′ ei$
′t d$′

)

. (6.30)

This dependence upon the square root of $′ leads to a the branch cut along the pos-

itive imaginary axis. Using residue theorem when t > 0, we are required to close the

contour in the upper-half of the complex plane and therefore this branch cut must be

circumvented (see figure 6.2).

The non-zero poles ak of χ are the countably-infinite vacuum eigenfreqencies κ = ck

which satisfy the transcendental equation (6.2). The residue theorem then gives us

Cnn =
kBT

F
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− 1
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(6.31)

where χ+ and χ−1 correspond to values on either side of the branch cut, which differ

in sign. In the limit ε → 0, R0 → ∞ the γ1 contribution cancels the −1/6 term, whilst

the γ2 and γ3 contour integrals become vanishingly small. Hence

Cnn = −kBT

F

[ ∞∑

k=1

res

{
χ(

√
$′) ei$

′t

$′ ; ak

}
+

1

π

∫ ∞

0

=(χ(i
√
x))e−xt

x
dx

]
. (6.32)

An expression for the residue at the non-zero pole $′ = ak can be obtained by series

expanding κ(
√
$) (6.27) about ak, i.e. κ = κ(ak) + κ1(ak)($ − ak). This gives

1 + cos κ cosh κ = κ1(ak) (cos κ(ak) sinhκ(ak) − sinκ(ak) cosh κ(ak)) ($ − ak) . (6.33)

Substituting (6.33) into (6.29) and extracting the ($− ak)
−1 coefficient in the Laurent

series then gives

res

{
χ(

√
$′) ei$

′t

$′ ; ak

}
=

eiakt

ak κ(ak)3κ1(ak)
. (6.34)



CHAPTER 6 THERMALLY-DRIVEN CANTILEVER 144

Therefore

Cnn = −kBT

F
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k=1

eiakt

ak κ(ak)3κ1(ak)
.+

1

π

∫ ∞

0

=(χ(i
√
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x
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]
. (6.35)

From (6.35) we see how the branch cut produces a contribution from the continuous

spectrum, which modifies the otherwise exponential time decay from the discrete spec-

trum. This is the same mechanism by which unsteady drag leads to t−3/2 long-time

behaviour in the auto-correlation of liquid argon (Rahman 1964, see § 6.1) Taking the

Fourier-cosine transform of (6.35) then gives us the thermal spectrum as a sum of dis-

crete and continuous spectral contributions

P ($) = 2

∫ ∞

0
Cnn(t) cos($t) dt

= −2
kBT

F
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i
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a2
k −$2

+
1

π

∫ ∞

0

=(χ(i
√
x))

x2 +$2
dx

)

. (6.36)

Consider the example where Γ(ε$1/2M−1/4) is the two-dimensional unsteady drag

in unbounded fluid (2.19). Then

κ1 =
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(6.37a)
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and so
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. (6.38)

The continuous spectral contribution derives solely from unsteadiness in the drag and

in §6.4 we examine its specific effect on the thermal spectrum.

6.3.2 USBT hydrodynamics

As with sinusoidal driving, if the hydrodynamic loading is three-dimensional we can

solve the elasticity equation coupled to a USBT description of the flow (see chapter 3).
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This can be achieved using the numerical scheme described by (5.5), but with the vector

b1 now holding the instantaneous point-force boundary conditions (6.25b). Note that

under the rescalings (6.24), the USBT frequency constraint becomes $−1/2M1/4 � ε.

This approach allows us to analyse the influence of screening effects on the thermal

spectra in §6.4.

6.3.3 Experimental setup 1

Thermal power spectra experiments were conducted using an Asylum Research (MFP-

1D) AFM molecular force probe (MFP), which was equipped with a gold-coated ParkSci-

entific silicon nitride cantilever, fitted with a 2µm high pyramidal tip. Cleaved mica was

used as a substrate and spectra were collected in both air and water (filtered at 0.2µm

using an Elga filtering system). Experiments were conducted at approximately 25 de-

grees Celsius, although the temperature was able to fluctuate slightly. Even though

manufacturer estimates were provided, high-resolution of the cantilever dimensions

were obtained using scanning-electron microscopy (SEM) whose images (figure 6.3)

show that the cantilever has length, width and thickness of 232.4µm, 20.11µm and

0.573µm, respectively (the manufacturer length estimate was 200µm). Raw data was

passed into commercial signal processing software (Igor Pro), running an Asylum Re-

search power spectrum analyser (fast-Fourier transform (FFT) routines).

Spectra, which were gathered in both air and water, are presented in § 6.4.2 along-

side theoretical predictions.

6.4 Results

6.4.1 Theory

The effects of varying the cantilever stiffness and density relative to the fluid are both

explored in figure 6.4. Decreasing the cantilever stiffness (i.e. decreasing the Young’s

1Experiments were conducted in the Laboratory of Biophysics and Surface Analysis at the University of

Nottingham in collaboration with Anita Turner, a graduate student in the School of Pharmacy.
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FIGURE 6.3: Scanning-electron microscopic (SEM) images of the cantilever used in

the thermal power spectra experiments, showing its thickness, length and width to be

0.573µm, 232.4µm and 20.11µm, respectively.



CHAPTER 6 THERMALLY-DRIVEN CANTILEVER 147

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(a)

$1/2

P
($

1
/
2
)

M = 10−3

M = 10−4

M = 10−5

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
(b)

$1/2

P
($

1
/
2
)

M = 10−3

M = 10−4

M = 10−5

FIGURE 6.4: Theoretical thermal spectra (6.23) of displacement at the tip of a horizon-

tal cantilever (α = 0) experiencing two-dimensional hydrodynamic drag (2.38) when

∆ = 100, ε = 0.1 for M = 10−3, 10−4 and 10−5 and (a) Ω = 100/π or (b) Ω = 10/π.
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FIGURE 6.5: Theoretical thermal spectra (6.23) of displacement at the tip of a horizon-

tal cantilever (α = 0) experiencing two-dimensional hydrodynamic drag (numerically

computed, see § 2.1) when ∆ = 1, 100, ε = 0.1, M = 10−4 and Ω = 100/π.

modulus E), corresponds to an increase in M and leads to the resonant peak broaden-

ing and being shifted to lower frequencies (figure 6.4a), with a similar shift observed

when the fluid to cantilever density ratio Ω is increased (figure 6.4b). Both of these

phenomena can be linked to a relative decrease in the generated flow’s inertia and,

consequently, an increase in dissipative effects.

Similar effects can be observed in figure 6.5, which shows variations in the can-

tilever’s thermal spectra as the separation distance ∆ is decreased. The small-separation

limit is dominated by quasi-steady flow and so, for the reasons just discussed above, this

leads to a broadening in the resonant peak accompanied by a shift to lower frequencies.

There is also a levelling-off in the spectra at low values of $1/2 when ∆ is small.

The impact of cross-sectional shape is explored in figure 6.6, where spectra have

been produced for cantilevers with circular and thin rectangular cross-sections at ∆ =

1 and ∆ = 10. At large separation there is little difference between the spectra, a

consequence of the similarity between the drag on a plate and that on a circular cylinder
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of equivalent width (Tuck 1969). Once the separation has been reduced to ∆ = 1,

however, the geometrical differences become important. The rectangular cantilever’s

larger lubrication region with the wall leads to greater hydrodynamic loading and hence

more strongly damped thermal spectra.

For the simple case where ∆ � 1 and the drag is assumed to be two-dimensional,

figure 6.7 shows that when we use (6.4), the method of Sader (1998), the levelling-off

in the spectra at small $1/2 is present even at a large separation (∆ = 100), in contrast

to fluctuation-dissipation spectra (6.23) which decay as $1/2 tends to zero. This can be

attributed to the inherent assumption in (6.4) that the Brownian forcing FB is delta-

correlated i.e. 〈FB(t),FB(0)〉 = kBT δ(t) when, in fact, Hauge and Martin-Löf (1973)

demonstrated that for time-dependent drag 〈FB(t),FB(0)〉 = kBT Γ(|t|), where Γ(t)

is the drag coefficient in physical space (D(t) =
∫ t
0 Γ(s)U(s) ds). Application of the

residue theorem decomposes the thermal spectrum into discrete (poles) and continuous

(branch cut) contributions (6.36) and it can be seen that this branch-cut contribution,

which is present due to the unsteadiness of the drag, is responsible for the spectral

decay at low frequencies. In figure 6.7(b), where ∆ = 0.1, the discrepancy between

the two approaches becomes less pronounced. This is because the proximity of the wall

results in a drag on the cantilever which is essentially quasi-steady over a large range

of $1/2 and in this limit the drag becomes independent of earlier motion (Γ(t) → δ(t));

hence the assumption inherent in the analysis of Sader (1998) becomes applicable for

a wide range of the frequencies integrated over in (6.4a).

The effect of wall and frequency-screening (in suppressing three-dimensionality in

the flow) in the thermal spectrum is illustrated by figure 6.8. When M is O(1), over

moderate frequency ranges $1/2 is also O(1) and so, when ∆ � 1, finite-length effects

are felt along the entire cantilever length and the flow is genuinely three-dimensional

(figure 6.8a). As was found with the driven spectra, when the separation distance

is decreased (figure 6.8b) ∆-screening of end effects results in improved agreement

between the two-dimensional and USBT drag. The two-dimensional drag predictions

prove applicable at large separations provided that the cantilever is sufficiently stiff. In

figure 6.8(c), M = 10−2, resulting in $1/2 = O(10) over much of the frequency range
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FIGURE 6.6: Theoretical thermal spectra (6.23) of displacement at the tip of two-

dimensional circular and thin rectangular (d/ε = 0.01) cantilevers when ∆ = 1 and

∆ = 10, ε = 0.1, α = 0, M = 10−1 and Ω = 100/π.

and this proves sufficient for effective frequency screening of three-dimensionality in

the flow.

6.4.2 Experiment

Figure 6.9 shows the thermal spectra at the tip of an AFM cantilever, obtained experi-

mentally using the procedures outlined in § 6.3.3. The gold-coated silicon nitride can-

tilever had a 0.573µm thickness, 20µm width, 232µm length and measurements were

made in both air and water, at different distances from a substrate.

The cantilever was gold-coated to improve its reflectivity, which results in a change

to the material properties as specified by the manufacturers. Therefore it proved nec-

essary to determine the density ρc by fitting to the thermal spectrum collected in air.

Varying cantilever density in the theoretical model changes the width-to-height ratio

(quality factor) of the first resonant peak and it was found that a density of 5.3gcm−3

gave the best fit (in approximate agreement with Chon et al. (2000), who conducted
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FIGURE 6.7: Theoretical thermal spectra of displacement at the tip of a circular can-

tilever, obtained using the two-dimensional hydrodynamic drag assumption when

α = 0, ε = 0.1, M = 10−4 and Ω = 100/π. Comparison can be made between

the fluctuation–dissipation theory prediction (6.23) (full line) and that obtained using

(6.4) (Sader 1998, markers). In (a) ∆ � 1 the hydrodynamic loading is given by

(2.19) and we use the result derived by application of residue theorem (6.36), with

the dashed line showing contributions from the discrete spectrum only (i.e. no branch-

cut integral). In (b) ∆ = 1 and the drag is computed numerically (see § 2.1) and we

must therefore evaluate the power spectrum (6.23) numerically.



CHAPTER 6 THERMALLY-DRIVEN CANTILEVER 152

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

3D num. SBT

2D drag

(a)

$1/2

P
($

1
/
2
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

3D num. SBT

2D drag

(b)

$1/2

P
($

1
/
2
)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3D num. SBT

2D drag

$1/2

P
($

1
/
2
)

FIGURE 6.8: Theoretical thermal spectra (6.23) of displacement at the tip of a hori-

zontal circular cantilever (α = 0) computed using both USBT hydrodynamics (§6.3.2,

full line) and two-dimensional drag (6.29, dashed line) when ε = 10−2, Ω = 10/π and

(a) ∆ = 100, M = 1, (b) ∆ = 1, M = 1 and (c) ∆ = 100, M = 10−3.
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similar experiments). All other theoretical predictions, including those in water, then

used this density value. Furthermore, the first resonant peak in air also provided verifi-

cation of the manufacturer’s estimate for the cantilever’s resonant frequency in-vacuo,

which typically only varies by a few percent from the value in air (Chon et al. 2000).

The software which automatically analyses the experimental data contains black-box

routines which rescale the thermal power spectrum. For this reason, we normalised

our theoretical spectra so that the amplitude of the first resonant peak in air matched

the experimental value. This normalisation constant was then used for predictions in

water, both near and away from the wall.

As in figure 6.4, the spectra obtained in the lower-density medium exhibit more

defined resonant peaks, situated at higher frequencies. A direct comparison is made

with the theoretical predictions of (Sader 1998) (6.4), shown by the full thick line

and the fluctuation–dissipation theorem (6.23), given by the dashed thick line and in

both cases hydrodynamic loading was given by (2.19). In comparing the two sets of

theoretical predictions, we note the differences in size of the second harmonic. Sader

(1998) predicts a larger response and this may be due to his assumption that all ther-

mal energy goes into moving the cantilever when, in fact, Hinch (1975) tells us that

some of that energy is needed to drive the surrounding flow. This only becomes no-

ticeable as flow inertia increases, i.e. at larger frequencies of oscillation, which perhaps

explains why the theoretical amplitudes of the first harmonics do not suffer from the

discrepancy. (The amplitude of the experimentally-measured second harmonic appears

to lie between these two theoretical predictions and this could be due to a number of

experimental factors, for example the neglect of axial flows.)

Comparison with the experimental data in figures 6.9(a,b) shows that both theoret-

ical models work reasonably well, capturing the location, amplitude and sharpness of

the resonant peaks (especially the principal harmonic) to a high level of accuracy and

correctly predicting the shift in these characteristics as the density of the surrounding

medium is varied. However, there are certain improvements offered by the fluctuation–

dissipation approach and these are best illustrated in figure 6.9(c), which gives a close-

up of the first harmonic in water. This provides experimental evidence of the low-
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frequency decay of the thermal spectrum which can be captured using fluctuation–

dissipation theorem (dashed thick line) but not using the formula given by Sader (1998)

(full thick line).

The agreement between theory and experiment is remarkably good, although there

are some experimental artifacts which have not been incorporated into the model. The

spectra are seen to exhibit a 1/ω behaviour at low frequencies (which is especially

noticeable in 6.9a) and this is due to miscellaneous mechanical vibrations, for example

from the air conditioning etc. Furthermore, the spectral baseline is non-zero and this is

due to low-level white noise produced by the apparatus electronics.

Figure 6.10 shows how wall effects can produce a shift in the spectra which is cap-

tured well by the theory. A thermal spectrum obtained experimentally, at a separation

distance of 8.87µm (including tip, red line) is seen to have a lower amplitude and reso-

nant frequency than at 70µm, where wall effects are much weaker (green line). These

changes are well captured by the fluctuation–dissipation theory (6.23) when the hydro-

dynamic drag is computed using two-dimensional BEM for a rectangular cantilever near

a wall, provided that we acknowledge the finite (α = π/12) tilt (full blue line). If tilt

is ignored (dashed blue line), the hydrodynamic loading on the cantilever is artificially

high and the spectra do not agree well. (At large separation distances, the spectrum

is not tilt sensitive.) Note, however, that tilt has only been accounted for here in a

two-dimensional context, i.e. we have neglected any flows along the cantilever axis.

6.5 Discussion

We have examined the fluctuations at the tip of a thermally-driven cantilever by using

the fluctuation–dissipation theorem, which links macroscopic behaviour to microscopic

fluctuations; we described its physical basis in some detail using a Hamiltonian descrip-

tion of a cantilever immersed in a thermal bath. Unlike the current leading model of

cantilever calibration in fluid (Sader 1998), this approach accounts fully for fluid iner-

tia, in terms of both its energy requirements and its influence on the statistical physics

which describe the thermal bath. These considerations were seen to be important at
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FIGURE 6.9: Experimental thermal power spectra (square rooted, full lines) for the

tip of a thermally-driven gold-coated silicon nitride cantilever with thickness 0.573µm,

width 20µm and length 232µm. Measurements are made in (a) air and (b,c) wa-

ter, both when ∆ = 10 and fitting in air gives an effective cantilever density of

ρc = 5.3gcm−3. A close-up of the first harmonic in water is shown in panel (c). Full

thick lines give the spectra due to (Sader 1998, 6.4), whilst dashed thick lines corre-

spond to spectra obtained using the fluctuation–dissipation theorem (6.23). Both were

computed using the drag given by (2.19), assuming the cantilever to be horizontal.
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FIGURE 6.10: Thermal power spectra for a silicon nitride cantilever (ρc = 5.3gcm−3),

tilted at α = π/12 from the horizontal, with thickness 0.573µm, width 20µm and length

232µm, thermally driven in water. The thin green line corresponds to experimental

data collected at H = 70µm, with the thick black line representing the fluctuation–

dissipation predictions (6.23). The blue and red lines correspond to theoretical and

experimental spectra measured at H = 8.87µm; the dashed blue line corresponds to

zero tilt (α = 0) computations and the full blue lines relates to predictions which

acknowledge the non-zero inclination angle.



CHAPTER 6 THERMALLY-DRIVEN CANTILEVER 157

both low and high frequencies. Using this approach, thermal spectra were analysed as

a function of cantilever stiffness and shape, as well as wall separation distance. The

use of unsteady slender-body theory (USBT) also allowed us to study the influence of

frequency and wall screening, both of which suppress three-dimensionality in the flow.

Comparison was then made between the theoretical predictions and actual experimen-

tal data.

In terms of the qualitative behaviour of the thermal spectra, figure 6.4 shows that

increasing the density of the surrounding fluid can shift the resonant peak in the thermal

spectrum to lower values, an effect that can also be achieved by decreasing cantilever

stiffness, which also broadens the peak (decreases the quality factor). Decreasing the

wall-separation distance was seen to flatten the spectra and shift the resonant peak to

lower frequencies (figure 6.5). Earlier, in §4.4.1, we demonstrated the divergence in

the drag experienced by circular and thin-rectangular cylinders as a wall is approached

and figure 6.6 illustrated the consequences of this effect on the thermal spectra, which

were seen to be highly sensitive to the cantilever shape when the wall was close.

The low-frequency discrepancies with Sader (1998) (figure 6.7) were attributed to

his assumption that the Brownian forcing is δ-correlated, which is only true when the

flow has negligible inertia. Insights into the influence of flow inertia were obtained

by computing the thermal power spectrum (as described by the fluctuation–dissipation

theorem) using complex-variable methods for the simple case of a two-dimensional

circular cantilever in unbounded fluid. The mathematical structure of the spectrum at

low-frequencies was seen to contain an integral along a branch cut, which results solely

from non-negligible flow inertia; it was the influence of this integral which controlled

the low-frequency decay observed in the thermal spectrum (figure 6.7a).

We argued that the discrepancies with Sader (1998) in the thermal spectra at high

frequencies (figure 6.9), which predict a larger-amplitude second harmonic, are due to

his assumption that all of the thermal energy goes into driving the cantilever, when in

fact some of this thermal energy must be used to drive the unsteady flow (Hinch 1975).

Therefore less energy is available to the cantilever at high frequencies of oscillation.

However, the true amplitude of the second harmonic seems to lie somewhere between
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the predictions of Sader (1998) and our values; this may be due to neglected factors

in the hydrodynamics, such as axial flows generated by finite cantilever tilt and finite-

cantilever-width effects.

Direct comparison with experimental data (figure 6.9) demonstrated the effective-

ness of the theory for both gases (air) and liquids (water). In gases the method of

Sader (1998) and the fluctuation–dissipation theorem approach both gave good esti-

mates for the first harmonic, with comparative accuracies. In water, however, only the

fluctuation–dissipation theorem was able to correctly predict the shape of the first reso-

nant peak and this clearly has implications for the analysis of AFM data. Furthermore,

in the presence of hydrodynamic wall effects, the theory was able to predict the shift

in amplitude and resonant frequency observed in the experimental data. In addition

to validating the correct treatment of the physics offered by the fluctuation–dissipation

theorem, these results have important consequences for experimentalists wishing to

extract properties of the cantilever and the sample through parameter fitting (see Ra-

jagopalan 2000). It is worth noting that in our experiments we were able to take a ther-

mal power spectrum in air, before moving to a liquid environment. The air data yielded

sharply defined resonant peaks, which made finding the cantilever density through a

fitting exercise relatively straightforward. In addition, the air measurements gave us

the opportunity to confirm the manufacturer-stated value for the cantilever’s resonant

frequency in-vacuo (which varies little from its value in air). In many biological experi-

ments, however, the tip is functionalized with a chemically-active compound (see § 1.1)

which must be kept in a liquid environment. The influence of these compounds on the

effective material properties of the cantilever will change if they are allowed to dry out

and this underlies the need for in-situ calibration. Therefore, in practice, it may not

be possible to obtain confirmation of the vacuum resonant frequency simply by taking

measurements in air; fitting may need to be performed using thermal spectra obtained

in liquid, where the peaks are less well defined. Nevertheless, this should not present

an insurmountable obstacle to the experimental application of the method.

As a final point, we note that the fluctuation–dissipation not only provides a more

reliable account of the microscopic dynamics of a single fluctuating diving-board can-
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tilever, but is equally applicable to any geometry where the deterministic, damped be-

haviour under δ-forcing can be computed, for example multiple-cantilever systems (see

Paul and Cross 2004). By contrast, the modal analysis approach detailed in § 6.1 is

much less flexible in its application.



Chapter 7

Conclusions

In this thesis we have studied hydrodynamic effects at work within an atomic force mi-

croscope (AFM), using a variety of computation and asymptotic techniques. After intro-

ducing the AFM, the role of hydrodynamics and the relevant fluid dynamics theory in

§ 1.3, the effort to quantify theoretically fluid effects began in chapter 2, with the mod-

elling of the flow produced an infinitely-long circular cantilever oscillating normal to a

flat rigid wall. Such a geometry permits two-dimensional flow only and neglects possi-

bly important effects at the cylinder ends. Therefore in chapter 3 we allowed the cir-

cular cantilever to have finite length and approximated the resulting three-dimensional

flow by developing an unsteady version of slender-body theory (USBT). Since AFM

cantilevers are typically rectangular, rather than circular, in cross section, the use of

boundary-element methods (BEM) in chapter 4 to determine the flow generated by

oscillations of an infinitely-long rectangular cantilever represented an important geo-

metric step forwards. AFM cantilevers have a typical thickness of 1µm, much less than

their other dimensions and this allowed for significant simplifications when describing

the flow that they generate, which became especially useful when extending this rec-

tangular geometry into three dimensions. The development of thin-plate-theory (TPT)

followed the rationale behind USBT and provided a computationally more efficient al-

ternative to BEM. Rather than distributing Stokeslets over the entire surface, as in an

exact boundary-integral representation, TPT approximated the two-dimensional (three-
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dimensional) flow using a one-dimensional (two-dimensional) distribution of Stokeslets

over the line (plane) of vertical symmetry. TPT, although unable to distinguish between

the different profiles on the top and bottom of the plate (only their additive contri-

bution), nonetheless provided the important information needed for drag calculations.

Unlike USBT, however, TPT did not yield any local force-velocity relationship upon

which an iterative procedure could be built. At high-frequencies, however, confine-

ment of vorticity did lead to a local force-velocity relationship for viscous effects; the

global geometry still exerted its influence, however, through the irrotational flow gen-

erated by the presence of dipoles. Nevertheless, this represented an improvement from

a computational perspective, because the dipole integrals could be integrated analyti-

cally, therefore eliminating the need for numerical quadrature. The damped-dynamics

of flexible AFM cantilevers were studied by coupling the fluid mechanics to the elastic

dynamics, as described by either linear beam or plate theory, where the cantilever was

driven externally (chapter 5) or by Brownian motion (chapter 6).

Even though this work has been directed towards a better understanding of AFM

operation, many of the results and techniques are general and apply equally well to

any small-scale body oscillating at high frequency in a Newtonian fluid. For this reason

we shall summarize some of the key fluid-dynamic results in §7.1, before going on

to discuss their direct relevance to atomic-force microscopy in § 7.2. Finally §7.3 will

outline some possibly relevant areas only touched upon, or not covered at all, which

could form the basis for future investigations.

7.1 Hydrodynamic theory

7.1.1 Wall effects

One of our objectives was to assess the influence of a nearby horizontal wall on the

drag, which is relevant to the AFM because of the proximity of nearby samples during

tapping-mode AFM (TM-AFM), as well as during various other modes of operation. The

drag results aimed to quantified how the wall’s influence varies with both separation

distance and flow inertia.
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For the case of an infinite circular cylinder (chapter 2), we were able to construct

numerous asymptotic limits to account for the wall’s influence. For high-frequencies and

moderate separation distances, wall effects were governed by inviscid flow interactions

and seen to be weak. At these oscillation frequencies, only as the separation distance

became comparable with the boundary-layer thickness, did the presence of the wall

become important due to strong lubrication effects in the thin gap. At lower frequencies

of oscillation and moderate separations, the wall exerted a significant influence on the

drag provided that the viscous length scale was of the same order of magnitude as the

wall distance. Once separations became greater than the viscous length scale the wall

interactions were once again controlled by weaker inviscid effects.

We investigated how the geometry of the cantilever can impact upon wall effects.

Using boundary-element methods (BEM) (chapter 4), we were able to determine the

flow generated by a two-dimensional rectangular cylinder oscillating normal to the

wall. It was found that the similarity between the drag experienced by a circular cylin-

der and a rectangular one, first noted by Tuck (1964) in unbounded fluid, persists

relatively well up to about one cylinder width away from the wall, after which point

the differing geometries produced rapidly differing drags.

When investigating the validity of the two-dimensional-flow assumption, by con-

sidering a finite-length circular cylinder (chapter 3), wall effects were seen to play a

key role in promoting two-dimensionality. The flow was approximated by developing a

novel version of slender-body theory (USBT) which included flow inertia and wall ef-

fects through the use of unsteady image Stokeslets. In unbounded flow, the range of the

three-dimensional flow created at the cylinder ends was dictated by either the cylinder’s

radius or the viscous lengthscale, whichever was largest. Therefore at low frequencies

of oscillation a long cylinder may still experience significant three-dimensional flow

along its entire length. Close to a wall, however, the separation distance ∆ becomes

the dominant lengthscale in determining the range of end effects and comparison with

two-dimensional flows demonstrated this effect. We termed this ∆-screening.

In principal the thin-plate-theory (TPT) formulation, developed in chapter 4 to ap-

proximate the flow generated by infinite- and finite-length plates, can automatically
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account for a nearby wall through the use of the three-dimensional image Stokeslets.

Unfortunately, however, evaluating the image system requires numerical quadrature

which, in the context of a three-dimensional plate, puts the computational overheads

beyond conventional processing power. As a possible remedy, an approach similar to

that used by Chu and Kim (2001), who found a series expression for the integral form

of the two-dimensional Stokeslet image system using residue theorem, may uncover a

more tractable expression for the three-dimensional image Stokeslet, which lends itself

more to computational methods. Alternatively, we could pursue an asymptotic treat-

ment of the boundary-integral representation for the flow generated by a body near a

wall, as undertaken by Williams (1966a) in the quasi-steady case.

Nevertheless, at small separations we were able to derive a three-dimensional lubri-

cation description of the thin-gap flow (chapter 4), which resulted in a Poisson equa-

tion for the pressure. When the inhomogeneous term in this equation was assumed

to be uniform, separation of variables lead to a series solution for the pressure. When

the plate was narrow and the inhomogeneous term was assumed to be a function the

coordinate parameterizing the plate length, we were able to find a uniformly valid as-

ymptotic expression for the pressure by considering end regions where the pressure

changed rapidly. This proved useful for later work on a flexible cantilever near a wall.

7.1.2 Finite-length effects

We have discussed above how the presence of a nearby wall can limit the range of

finite-length effects and stated that, in its absence, the range of three-dimensional end

flow is governed by the dominant geometric length scale at the end or the viscous

length scale, whichever is the largest (chapter 3). For a slender finite-length circular

cylinder, the geometric lengthscale is negligible and so flow three-dimensionality is

controlled by the frequency of oscillation. Results demonstrated that, at low frequencies

of oscillation, the Stokeslet profile in the USBT formulation was non-uniform along the

body axis, indicating a genuinely three-dimensional flow. Increasing the oscillation

frequency confined viscous effects to the ends and promoted two-dimensionality along

much of the body’s length, verified by comparison with earlier two-dimensional flow
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results. This effect was termed γ-screening.

In the case of a square thin plate (chapter 4), the geometric lengthscale is not neg-

ligible and so the flow can remain three-dimensional over the entire surface, even at

high frequencies. When the plate is narrow and the oscillation frequency high, how-

ever, both the geometric and viscous lengthscales are small and so the flow becomes

two-dimensional sufficiently far from the ends. This was checked by comparing a cross-

section of the Stokeslet profile with BEM computations for two-dimensional flow, which

showed good agreement when the plate was narrow but not when it was square.

7.1.3 Tilt

The variation in the hydrodynamics when the cylinder is tilted, as opposed to horizon-

tal, is also an important consideration, since AFM cantilevers are usually inclined at an

angle of about 10 degrees. When a finite-length circular cylinder (chapter 3) is driven

normally to its axis well away from the wall, tilt simply corresponds to a change in the

frame of reference and does not alter the structure of the flow. This ceases to be the

case once the separation distance decreases to about 20 cylinder lengths, where wall

interactions cause flows along the cylinder axis. This is reflected in the drag’s sensi-

tivity to the angle of inclination near the wall. Increasing the frequency of oscillation

sufficiently can result in wall effects becoming inviscid and weaker, thereby decreasing

the drag’s dependence on the angle of inclination at a given separation distance.

When the tilted cylinder is oscillated vertically, rather than normally to its axis, axial

flows are generated even in the absence of any wall, so two-dimensional flow models

are limited even in unbounded flow. Under these circumstances, moving the cylinder

close to the wall can actually improve the accuracy of two-dimensional predictions

through ∆-screening. The comparison with experimental data in § 6.4.2 illustrates quite

nicely the need to account for finite tilt.
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7.2 AFM implications

Many previous studies which couple fluid dynamics to elastic AFM cantilever behaviour

have concentrated on the quasi-steady limit (e.g. Vinogradova et al. 2001; Alcaraz et al.

2002). Equipped with our results for oscillatory viscous flows, we were able to consider

elastic interactions with unsteady viscous flows. This has implications not only for

AFM techniques associated with rapid movement in fluid, such as tapping-mode (TM-

AFM, see § 1.1.2), but also advances in techniques traditionally considered to generate

slow-moving flows, such as dynamic-force spectroscopy (DFS) (see §1.1.3), which are

becoming increasingly high-speed in an attempt to counter unwanted effects such as

sample drift and also to expand the range of molecular forces which can be measured.

7.2.1 TM-AFM

As has been a theme throughout this work, when simulating TM-AFM by considering

the elastic behaviour of a sinusoidally-driven cantilever under hydrodynamic loading,

we were interested in the ability of simple models accurately to approximate the dynam-

ics, especially in measuring the hydrodynamic impact of wall effects. In the simplest

scenario, two-dimensional flow models were coupled to the one-dimensional Euler–

Bernoulli beam equation (§ 5.1). We were able to quantify how an increase in hydro-

dynamic loading, generated by a decrease in the wall separation distance, damped the

response of the beam over a range of oscillation frequencies. We then allowed for three-

dimensional flows. First for the case of a slender rod through the use of USBT, where

we were able to observe how well two-dimensional models worked at small separation

distances and/or high frequencies. On a less positive note, however, the dynamics were

seen to be sensitive to the angle of tilt at separations characteristic of the AFM cantilever

operating distance (about 1µm from the sample). The differences in the cantilever re-

sponse at angles of 0 and π/20 (the typical tilt for an AFM cantilever) were not drastic,

but perhaps large enough to raise questions over the validity of two-dimensional flow

models.

In addition to measuring the transverse deflections, important information can be
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extracted by analysing other modes of cantilever motion (see Sader and Green 2002).

For this reason we examined the deflections across an elastic plate with finite width,

using either lubrication theory or TPT as the source of hydrodynamic loading (§ 5.2).

A plate with a Poisson ratio of 0.3 (a typical AFM value), and unit aspect ratio, was

seen to undergo both length-wise and span-wise bending, whereas a plate with the

narrower AFM cantilever aspect ratio seemed to experienced little span-wise deflection

(although we could expect this to change for TM-AFM in the presence of an uneven

sample topology). However, two-dimensional flow and elasticity approximations failed

to fully account for the cantilever dynamics and this could be due to the importance of

neglected end and edge regions in the hydrodynamic loading.

7.2.2 Thermal spectra

Thermally-driven cantilevers formed the subject of chapter 6, due to their growing

importance to the AFM community. Thermal spectra offer a popular, non-intrusive

method for determining the spring constant of a cantilever (Sader 1998; Paul and Cross

2004) and an accurate knowledge of this constant is critical to the interpretation of

any force–measurement experiments (see § 1.1.3). Another application of thermally-

driven cantilevers lies in the field of noise analysis, where thermally excited cantilevers

provide an ultra-sensitive, low-amplitude method for probing the micro-rheology of soft

biological specimens, in a way which minimizes damage to the sample and reduces the

risks of unwanted non-linear sample interactions. The nature of the technique means

that the cantilever oscillates in close proximity to the substrate and so clearly stands to

benefit from an increased understanding of wall effects in oscillatory Stokes flow (as

expressed by Ma et al. 2000).

We applied our hydrodynamic results and techniques to provide the cantilever’s

damping whilst undergoing Brownian motion, the stochastic behaviour of which was

described by following an approach exploiting the fluctuation–dissipation theorem rather

than a popular, but somewhat flawed, alternative due to Sader (1998). As well as allow-

ing for more general geometric situations, such as three-dimensional flows generated

by non-zero angles of inclination, our method correctly predicted the low-frequency
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behaviour of the thermal spectra. When compared with experimental data, this was

shown to be of great relevance in properly describing the principal harmonic in the

power spectrum of a AFM cantilever in water near a wall. This, in turn, could result

in substantially improved results during parameter fitting exercises which are designed

to determine the cantilever’s spring constant or the material properties of a biological

specimen (see Rajagopalan 2000)).

7.3 Extensions

7.3.1 Non-linear effects

We have assumed throughout that the amplitude of oscillation is small enough for non-

linear effects, such as steady streaming, to be negligible. We implicitly assumed the

oscillation amplitude to be much smaller than the boundary-layer thickness, which is a

restrictive condition at high frequencies. Furthermore, we have also taken no account

of possible flow instabilities. However, in high-speed AFM imaging regimes, the flow is

likely to exhibit some interesting weakly nonlinear effects. For a two-dimensional rec-

tangular cantilever oscillating with amplitude A (scaled on cantilever width R, with

(εγ)−1 � ∆/ε � 1), then O(A2) steady-streaming flow beneath the cantilever is

likely to resemble that in an infinitely long pulsating channel, as described by Sec-

omb (1978). Subsequently Hall and Papegeorgiou (1999) showed how a nonlinear

flow synchronous with the oscillating wall arises for (in our variables) εγ > 3.39/A
(this is a large-Reynolds-number asymptotic limit, assuming γ2∆2 � 1; a similar result

was also obtained by Watson et al. (1990)), and that this flow then loses stability to

quasi-periodic oscillations for εγ > 5.99/A. This indicates that, even at small ampli-

tudes, an AFM cantilever can experience a steady force (due to steady streaming) as

well as a force that fluctuates at a frequency different to that of the driver. At lower

Reynolds numbers, the quasi-steady flow between pulsating plates may also be unstable

to growing Tollmien–Schlichting waves (Stuart et al. 1990).
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7.3.2 Slip

As discussed in §1.2.1, the microscopic dimensions of AFM cantilevers raise important

questions about the validity of both the no-slip condition and the continuum approxi-

mation. The effects of slip are illustrated in a couple of two-dimensional examples in

Appendix A. In air, when operating far from the wall, we estimate the Knudsen num-

ber Kn based on cantilever half-width R to be approximately 0.014. For most practical

surfaces the molecular mean-free-path is comparable in magnitude to the slip-length

(scaled on the dominant length scale) Ls (Gad-El-Hak 2001), so that Ls ≈ Kn. Ls is

likely to be smaller in liquids (typically Ls ≈ 0.004) provided the cantilever surface is

smooth and uncontaminated (Cottin-Bizonne et al. 2005). Figure A.1(a,b) in Appen-

dix A shows how the drag on an unbounded circular cantilever, when Ls . 0.02, differs

from the no-slip value by an O(Ls) amount, but in a frequency-dependent manner;

recent boundary-element computations of unbounded oscillatory flow in a multiple-

cantilever system (Ding and Wenjiig 2004) report the same order of magnitude for the

drag correction. Slip effects are likely to be more important for cantilevers operating in

either air or liquid very close to a substrate, when the drag (at least at sufficiently low

frequencies) depends on Ls/∆ (the ratio of slip length to gap width). In liquids, slip

lengths on hydrophobic surfaces of order 1µm have been reported (Zhu and Granick

2001) and similarly large values can be anticipated for some coated or biological in-

terfaces. Substrate-dependent slip can then have a leading-order effect on drag (as

illustrated by Figure A.1(c,d)). Furthermore, for a cantilever very close to a substrate

in air, the present model may lose its validity both through high values of slip and

through discrete molecular effects (treated by Gallis and Torczynski (2004)). Since the

measurement of drag on AFM cantilever is a popular means by which slip lengths are

determined (Vinogradova and Yakubov 2003), typically reliant on simple squeeze-film

models, a thorough treatment of slip on AFM cantilevers would be worthwhile.
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7.3.3 Cantilever considerations

The focus of this work has been diving-board cantilevers, principally because of their

tractable geometry. However, V-shaped cantilevers are also commonly used and we

would expect their hydrodynamics and elastic deformations to differ substantially from

their diving-board-shaped counterparts. Some previous studies have modelled V-shaped

cantilevers, either determining their eigenmodes in vacuo (Stark et al. 2001) or with

point-force loading at the tip (Sader and White 1993). Thin-plate theory (TPT, chap-

ter 4) provides an efficient means of introducing hydrodynamic loading to plates with

arbitrary geometries, although determining the elastic behaviour of a non-rectangular

cantilever lends itself more to finite-element analysis (FEA).

In practice, an AFM cantilever twists as well as bends, especially when in contact

with a sample surface and modern AFM’s are designed to detect this potentially impor-

tant degree of freedom. As with bending, these rotational oscillations can be damped

by torsional forces exerted by the surrounding fluid and there has been some work

done in analysing these effects in two dimensions (Sader and Green 2002, Green and

Sader 2005). With slight modification, many of the methods discussed in this work

could be applied to rotational motion. For example, a variation of USBT which approx-

imates the flow generated by rotational oscillations of a slender finite-length cylinder

could be achieved through a distribution of rotlets along the body axis (c.f. Chwang and

Yao-Tsu Wu 1974).

7.3.4 Sample considerations

In TM-AFM it is the uneven sample topology which is of primary interest, yet in this

study we have assumed that the substrate is flat. The BEM, USBT and TPT formula-

tions can all be extended to include surface features, although the lack of a convenient

Stokeslet image system means that an uneven wall would need to be explicitly included

as a discretized surface.

One interesting and potentially useful direction for this work would be to consider

compliant substrates. Some experimentalists have already used the AFM to measure
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the micro-rheology of soft biological materials such as cells (see §1.1.3). These mea-

surements could be significantly influenced by elastohydrodynamic interactions at the

specimen surface. Interaction of compliant walls with fluid provide a rich array of phe-

nomena and some interesting physical effects (Carpenter and Garrad 1985, Carpenter

1986).

7.3.5 AFM Experiments

The thermal spectra presented in § 6.4.2 used the simpler forms for the hydrodynamic

drag to illustrate the principal ideas. The full range of hydrodynamic models developed

have yet to be put to use in this context. For example, the TPT hydrodynamics offer the

opportunity to consider thermally-driven span-wise fluctuations.

Simulations of thermal spectra represent just one use of hydrodynamic theory in an

AFM context. TM-AFM senses sample topology through decreases in the cantilever’s

amplitude response. In the analysis of TM-AFM data, chapter 5 tells us how much

of this damping is due to hydrodynamics. Taken further, the fluid mechanics could

perhaps form just one component in a more complete picture of AFM interactions, e.g.

Lennard–Jones potentials, electrostatic effects etc.

In dynamic-force microscopy (DFS) the cantilever is impulsively retracted once the

tip is in contact with a sample and so its motion is discontinuous. This will result in flow

transients (§1.2.3), which may influence the drag during the crucial force-measurement

stage. These flows, however, can be described through studies of oscillatory motion

using Fourier analysis.

In closing, we believe that the work presented here represents a major step forward

in quantifying the impact of geometry and flow inertia on the drag exerted by an os-

cillating (possibly flexible) body near a wall, in addition to providing some novel and

versatile techniques. So as well as being of specific relevance to the AFM community,

we hope that this work will also carry a wider hydrodynamic appeal.



Appendix A

Effects of slip

To illustrate the implications of relaxing the no-slip condition, we revisit the cases of an

unbounded circular cantilever (§ 2.2.2) and rectangular cantilever near a wall (§ 4.2.2),

recalculating the drag using the Navier-slip condition (1.6), where Ls/ε is the slip-

length scaled on R.

A.1 Two-dimensional circular cantilever

In streamfunction form, the flow is governed by (2.2a) subject to

ur = sin θ, uθ = (Ls/ε)
∂

∂r

(uθ

r

)
+ cos θ (A.1)

on the cylinder surface r = 1, i.e.

ψ(1, θ) = − cos θ, −(1 + (Ls/ε))
∂ψ

∂r

∣∣∣∣
r=1

= −(Ls/ε)
∂2ψ

∂r2

∣∣∣∣
r=1

+ cos θ, (A.2)

with u → 0 as r → ∞. This is satisfied by

ψ =

((
CK1(

√
iεγ) − 1

)

r
− CK1(

√
iεγr)

)
cos θ, (A.3)
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The drag is then found to be

D = −iπε2γ2
(
1 − 2CK1(

√
iεγ)

)
. (A.5)

At leading order in Ls/εwe recover the no-slip expression (2.19) and the high-frequency

limit εγ � 1 is dominated by the inviscid contribution Dinv = −iπε2γ2. The amplitude

and phase of the drag are plotted in figure A.1(a, b) respectively. For small εγ the drag

is almost linear in Ls/ε and slip acts to decrease the amplitude and phase of the drag;

however, these trends change at much larger εγ. Initially the slip’s influence increases

with εγ, yet after a point its impact declines, tending towards a largely slip-insensitive

inviscid limit. This phenomenon is displayed in figure A.1(e, f), where it can be seen

that there exists a non-zero εγ which maximizes drag variations at a given slip length.

We found that the frequency εγ0 which maximizes the reduction in drag amplitude sat-

isfies (εγ0)
−2 ≈ 0.4 (Ls/ε) (although we could not identify an equivalent relationship

for the drag’s phase).

A.2 Rectangular cantilever in the lubrication limit

Adopting the rescalings given by (4.15), we can re-derive the lubrication drag on a

rectangular cantilever with Navier-slip conditions on both the cantilever and nearby

wall. Similar analysis as before gives the leading-order drag as

D = −2α+(εγ)3

3
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2
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)
, (A.6)

where τ = ∆γ and α± =
√
iτ(Ls/ε) ± 1. Expanding in powers of (Ls/ε),
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FIGURE A.1: Variation in (a, c) amplitude and (b, d) phase of the drag with slip length

(Ls/ε), normalized on the no-slip value D0. (a) and (b) relate to an unbounded cylin-

der oscillating at frequencies εγ = 0.1, 1, 10 and 200 (A.5); (c) and (d) correspond

to the lubrication drag on a plate oscillating near a wall when ∆/ε = 10−1 and

εγ = 10, 100 and 1000 (A.6). Inviscid limits are shown with thick solid lines. The

maximum deviation in the amplitude (e) and phase (f) of the drag are also plotted as

a function of εγ for two different (Ls/ε).
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At leading order we recover the no-slip result (4.17). When the gap separation is much

smaller than the boundary-layer thickness (τ � 1), (A.6) reduces to the quasi-steady

limit

D =
8(∆/ε)−3

(1 + 6(Ls/ε))
= 8(∆/ε)−3 − 48(Ls/ε)(∆/ε)

−3 +O
(
(∆/ε)−3((Ls/ε))

2
)
. (A.8)

Alternatively, in the limit where boundary layers are much thinner than the separation

distance (τ � 1), the drag (A.6) tends to the inviscid limit Dinv = 2
3 i(εγ)

2(∆/ε)−1.

In figure A.1(c, d) we again see how slip influences the drag. As with the unbounded

cylinder, at low εγ the slip–drag relationship is essentially linear, becoming less so as εγ

is increased, until finally the inviscid limit is attained where slip matters little. Unlike

the cylinder case, however, slip has its greatest influence in the quasi-steady limit, and

only a weak effect at high εγ (see figure A.1(e, f)).



Appendix B

Two-dimensional inviscid flow for a

cylinder above a wall

In § 2.2.2 we consider the inviscid flow generated by high-frequency oscillations (εγ �
1) of a circular cylinder when boundary layers are much thinner than the wall–cylinder

distance (∆ � γ−1). Here we derive the leading-order inviscid flow and resulting slip

velocities by transforming into bipolar coordinates (2.3), where the flow is governed by

ψ
(0)
ξ′ξ′ + ψ

(0)
η′η′ = 0 (B.1)

(subscript denotes derivatives) subject to

ψ(0)(ξ′, 0) = 0, ψ(0)(0, η′) = 0, ψ(0)(−π, η′) = 0, (B.2a)

ψ(0)(ξ′, η1) = c sin ξ′/(cosh η1 − cos ξ′), (B.2b)

where η1 ≡ cosh−1(1 + (∆/ε)). We express ψ(0) as a Fourier series satisfying (B.2a),

ψ(0) =
∞∑

n=0

an sinhnη′ sinnξ′. (B.3)

The coefficients an are determined by expressing the remaining boundary condition as

∞∑

n=1

an sinhnη1 sinnξ′ =
c sin ξ′

cosh η1 − cos ξ′
= 2c

∞∑

n=1

e−nη1 sinnξ′, (B.4)
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(c ≡
√

(∆/ε)((∆/ε) + 2) which yields (2.24). The slip velocities on the cylinder surface

and on the wall are then

us
c =

∞∑

n=1

[
(c− dn) (n− 1)en−1 − (c+ dn) (n+ 1)en+1 + 2dnnen

]
sinhnη1 sinnξ′,

(B.5a)

us
w =

∞∑

n=1

[2nen − (n− 1)en−1 − (n+ 1)en+1] sinnξ
′, (B.5b)

respectively, where dn = (1 + (∆/ε))/ tanh nη1 and en = e−nη1/ sinhnη1.



Appendix C

Unsteady two-dimensional image

Stokeslets

We here derive the results presented in § 2.2.3, where a two-dimensional cylinder oscil-

lates above a wall with ∆/ε ∼ (εγ)−1 � 1

C.1 Leading-order flow

We postulate a leading-order flow, local to the cylinder surface, which is given by the su-

perposition of a Stokeslet–dipole combination and a uniform flow. In polar coordinates

with origin at cylinder’s centre (2.27)

ψ = c1

(
−A1

1

r
+A2

K1(
√
iεγr)√
iεγ

)
cos θ + c2 r cos θ, (C.1a)

A1 = 1 +
2K1(

√
iεγ)√

iεγK0(
√
iεγ)

, A2 =
2

K0(
√
iεγ)

, (C.1b)

Constants c1 and c2 must be chosen so that no-penetration and no-slip conditions are

satisfied on the solid surfaces. A relationship between c1 and c2 is obtained by finding

the image system of the Stokeslet–dipole combination in (C.1a) (in Cartesians centred

on the cylinder). Both dipole and Stokeslet can be determined in integral form by solv-

ing the δ-forced inviscid and unsteady Stokes equations,(2.23) and (2.1a), respectively,
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using Fourier transform methods, which in combination give

ψ = c1

∫ ∞

0

(

−A1e
−k|x3| +

A2

iε2γ2

ke−q|x3|

q

)

sin kx2 dk, (C.2a)

where q =
√
k2 + iε2γ2. This is equivalent to the more familiar closed-form expression

ψ = c1

(
−A1

x2

r2
+A2

x2K1(
√
iεγr)√

iεγr

)
. (C.2b)

This singularity solution induces the following slip and penetration velocities at the wall

(x3 = −∆/ε)

∂ψ

∂x2
(x2,−∆/ε) = c1

∫ ∞

0

(
A2k

2e−q∆/ε

iε2γ2q
−A1ke

−k∆/ε

)

cos kx2 dk, (C.3a)

∂ψ

∂x3
(x2,−∆/ε) = c1

∫ ∞

0

(
A2ke

−q∆/ε

iε2γ2
−A1ke

−k∆/ε

)

sin kx2 dk. (C.3b)

We require a solution to the unsteady Stokes equations (2.1a) which cancels these

wall velocities and this can be found (through linearity) as a combination of a viscous

(ψ1) and an inviscid flow (ψ2), i.e.

ψ ≡ ψ1 + ψ2, ∇2ψ1 − iε2γ2ψ1 = 0, ∇2ψ2 = 0. (C.4)

Under a Fourier sine transform (C.4) becomes

∂2ψ̂1

∂x2
3

− (k2 + iε2γ2)ψ̂1 = 0,
∂2ψ̂2

∂x2
3

− k2ψ̂2 = 0, (C.5)

(dropping hats hereafter) which has solutions that decay at large distances of the form

ψ =

∫ ∞

0

(
A(k)e−kx3 +B(k)e−qx3

)
sin(kx2) dk. (C.6)

Cancelling the wall velocities C.3 (a,b) then gives us

A(k)kek∆/ε +B(k)keq∆/ε = −c1
(
A2k

2e−q∆/ε

iε2γ2q
−A1ke

−k∆/ε

)

, (C.7a)

kA(k)ek∆/ε + qB(k)eq∆/ε = c1

(
A2ke

−q∆/ε

iε2γ2
−A1ke

−k∆/ε

)

, (C.7b)
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from which we deduce

A(k) =
c1

(k − q)

(
2A2ke

−(∆/ε)(q+k)

iε2γ2
−A1e

−2k∆/ε(k + q)

)
, (C.8a)

B(k) =
c1

(k − q)

(
−A2ke

−2q∆/ε

iε2γ2

(
k + q

q

)
+ 2A1ke

−k∆/ε−q∆/ε

)
. (C.8b)

Hence

ψ = c1

∫ ∞

0

(
−A1

[
(k + q)e−kx3−2k∆/ε − 2ke−qx3−(∆/ε)(k+q)

]

− A2

iε2γ2

[
k(k + q)e−qx3−2q∆/ε

q
− 2ke−kx3−(∆/ε)(q+k)

])
sin kx2

(k − q)
dk. (C.9)

We now take advantage of the fact that ∆/ε � 1 to simplify (C.9). Rescaling the

variable of integration k = (∆/ε)−1u and defining pτ ≡
√
u2 + τ2

ψ = (∆/ε)−1c1

∫ ∞

0

(

−A1

[
(u+ pτ )e

−ux3(∆/ε)−1
e−2u − 2ue−pτ x3(∆/ε)−1

e−(pτ+u)
]

− A2

iε2γ2

[
u(u+ pτ )e

−pτ x3(∆/ε)−1
e−2pτ

pτ
− 2ue−ux3(∆/ε)−1

e−(pτ+u)

])
sin((∆/ε)−1ux2)

(u− pτ )
du.

(C.10)

So when x3 = O(1) (i.e. in the vicinity of the cylinder),

ψ = c1(∆/ε)
−2x2

(
−A1

∫ ∞

0
u

(
u+ pτ

u− pτ

)
e−2u du+ 2A1

∫ ∞

0

u2e−(u+pτ )

(u− pτ )
du

−A2((iεγ)
−2

∫ ∞

0

u2(u+ pτ )

pτ (u− pτ )
e−2pτ du+ 2A2(iεγ)

−2

∫ ∞

0

u2e−(u+pτ )

(u− pτ )
du

)
+O((∆/ε)−3),

= c1x2(∆/ε)
−2I(τ,

√
iεγ) +O((∆/ε)−3), (C.11)

where

I(τ,
√
iεγ) = −A1I1(τ) −A2I2(τ) + 2

(
A1 +

A2

iε2γ2

)
I3(τ), (C.12a)

I1(τ) ≡
∫ ∞

0
u

(
u+ pτ

u− pτ

)
e−2u du, (C.12b)

I2(τ) ≡
∫ ∞

0

u2

pτ

(
u+ pτ

u− pτ

)
e−2pτ du, (C.12c)

I3(τ) ≡
∫ ∞

0

(
u2

u− pτ

)
e−(u+pτ ) du. (C.12d)
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Hence we have determined the strength of the uniform flow in (C.1)

c2 = c1(∆/ε)
−2I(τ,

√
iεγ). (C.13)

We now have

ψ = c1

(
−A1

1

r
+A2

K1(
√
iεγr)√
iεγ

+
I(τ,

√
iεγ)

(∆/ε)2
r

)
cos θ, (C.14)

with no-slip on the cylinder demanding that

c1 =
(
1 − (∆/ε)−2I(τ,

√
iεγ)

)−1
(C.15)

where it can be shown that this value of c1 also enforces no-penetration at the cylinder

surface. The strength of the Stokeslet in (C.14) determines the drag, with the contribu-

tion from a Stokeslet of unit strength given by Stokes (1851). Hence, in our case

D =
(
1 − (∆/ε)−2I(τ,

√
iεγ)

)−1
πiε2γ2

(
1 +

4K1(
√
iεγ)√

iεγK0(
√
iεγ)

)
. (C.16)

C.2 Quasi-steady limit

We now examine the limit τ � 1 of (C.16), which corresponds to the case where

vorticity diffuses distances much greater than the wall–cylinder separation. In this limit

we asymptotically expand the integrals C.12(b–d) by splitting the integral at u = u0,

where (δ/ε) = τ/u0 � 1 and rescale the integration variable close to zero

I1 ≡ I11 + I12 = τ2

∫ δ

0
v

(
v + p 1

v − p 1

)
e−2τv dv +

∫ ∞

u0

u

(
u+ pτ

u− pτ

)
e−2udu, (C.17a)

I2 ≡ I21 + I22 = τ2

∫ δ

0

v2

p 1

(
v + p 1

v − p 1

)
e−2τp 1 dv +

∫ ∞

u0

u2

pτ

(
u+ pτ

u− pτ

)
e−2pτ du, (C.17b)

I3 ≡ I31 + I32 = τ2

∫ δ

0

(
v2

v − p 1

)
e−τ(v+p 1) dv +

∫ ∞

u0

(
u2

u− pτ

)
e−(u+pτ )du, (C.17c)



APPENDIX C 181

where p 1 =
√
v2 + 1 and u = τv. We can now expand both integrands in τ

I11 =

∫ δ

0

(
τ2v − 2τ3v2 + 2τ4v3

)(v + p 1

v − p 1

)
dv +O(τ5), (C.18a)

I12 =

∫ ∞

u0

(
−4u3

τ2
− 2u+

τ2

4u
− τ4

8u3

)
e−2udu+O(τ5), (C.18b)

I21 =τ2

∫ δ

0

v2

p 1

(
v + p 1

v − p 1

)
e−2τ

√
v2+τ2

dv +O(τ5), (C.18c)

I22 =

∫ ∞

u0

u2

pτ

(
u+ pτ

u− pτ

)
e−2pτ du+O(τ5), (C.18d)

I31 =τ2

∫ δ

0

v2

v − p 1
e−τ(v+

√
v2+1) dv +O(τ5), (C.18e)

I32 =

∫ ∞

u0

(
−2u3τ−2 +

(
u2 − 1

2
u

)
− 1

8

(2u2 − 1)

u
τ2

)
e−2u du+O(τ5) (C.18f)

all subject to O(δ2τ2, τ5) errors. Evaluating these integrals up to O(δ2) terms gives

I1 = −3

2
τ−2 − 1

2
− 1

4
τ2

(
ε0 + ln τ +

1

4

)
+

8

15
τ3 +

1

4
τ4

(
ε0 + ln τ − 13

12

)
, (C.19a)

I2 = −3

2
τ−2 + 1 +

1

4
τ2

(
−13

4
+ ε0 + ln τ

)
+

8

15
τ3 − 3

8
τ4, (C.19b)

I3 = −3

4
τ−2 +

1

8
− 1

8
τ2

(
3

4
+ ε0 + ln τ

)
+

4

15
τ3 +

1

16
τ4

(
ε0 + ln τ − 25

12

)
, (C.19c)

again subject to O(δ2τ2, τ5) errors and where ε0 ∼ 0.5772 is Euler’s constant. Substitu-

tion of C.19(a–c) into C.12(a) then yields

I(τ, γ) =
τ2

iε2γ2

(1 − ε0 − ln τ)

(ln 2 − ln
√
iεγ − ε0)

− 3

8(ln 2 − ln
√
iεγ − ε0)

+
τ4

4iε2γ2
, (C.20)

subject to O(τ2/ ln
√
iεγ, τ5/iε2γ2) errors. From (C.16) we obtain the drag

D =
4π

(ln(∆/ε) + ln 2 − 1 − τ2/4)
, (C.21)

plus O(iε2γ2/ ln(∆/ε), ((∆/ε)2 ln
√
iεγ)−1, τ4) errors.



Appendix D

Two-dimensional inviscid flow for a

cylinder touching a wall

In §2.2.3 we consider high-frequency oscillations (εγ � 1) where separation distance

is comparable with the boundary-layer thickness (∆/ε . (εγ)−1. The geometry of the

inviscid outer flow, where the cylinder touches the wall, can be mapped to a rectilinear
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sy
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m
e
tr

y
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ψ = 0
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S, ψ = −x2

ζ = −2z−1

(a) (b) η′′

ξ′′

ψ = 2ξ′′/(ξ′′2 + 1)
Surface S

plane wall

x2 = x3 = 0

1

0

FIGURE D.1: Conformal map ζ = −2z−1, z = x2 + ix3, ζ = ξ′′ + iη′′ takes the flow

domain for a circular cylinder, whose surface S touches a plane wall, into an infinite

strip.
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coordinate system using the conformal mapping

ξ′′ = −2x2/(x
2
2 + x2

3), η′′ = 2x3/(x
2
2 + x2

3), (D.1)

which leaves us needing to solve Laplace’s equation ψ
(0)
ξ′′ξ′′ + ψ

(0)
η′′η′′ = 0 in the infinite

strip 0 ≤ η′′ ≤ 1. In this new flow domain η′′ = 0 and η′′ = 1 represent the wall and

cylinder surface S, respectively, and ξ′′ = 0 represents the vertical line of symmetry (see

figure D.1), hence giving the boundary conditions

ψ(0)(ξ′′, 0) = ψ(0)(0, 0 ≤ η′′ ≤ 1) = 0, ψ(0)(ξ′′, 1) = −x2 = 2ξ′′/(ξ′′2 + 1). (D.2)

We express the streamfunction in the form

ψ(0)(ξ′′, η′′) = 2

∫ ∞

0
A(k) sinh 2πkη′′ sin 2πkξ′′ dk, (D.3)

which satisfies the condition ψ = 0 on the wall and on the line of symmetry, and

determine A(k) by imposing the condition on the cylinder surface that

2ξ′′/(ξ′′2 + 1) = 2

∫ ∞

0
2πe−2πk sin(2πkξ′′)dk

= ψ(0)(ξ′′, 1) = 2

∫ ∞

0
A(k) sinh(2πk) sin(2πkξ′′)dk, (D.4)

which yields

A(k) = 2πe−2πk sinh(2πk)−1. (D.5)



Appendix E

Unsteady slender-body-theory

integrals

We now derive the integral approximations which are central to modified resistive-force

theory presented in §3.2.

E.1 Distribution-independent integrals

In what follows we work in a frame of reference parallel to the cylinder’s axis (i.e. the

unit tangent to the cylinder is t = x̂1, assuming α = 0), using the cylindrical polar

coordinates described in (3.11). The coefficient of the local velocity–force relationship

(3.12b) satifies Iij = Iji from (3.4, 3.8). This integral can be approximated by splitting

the domain of integration (for ε� δ � 1)

Iij(ξ; γ) =

(∫ ξ+δ

ξ−δ
+

∫ ξ−δ

−1
+

∫ 1

ξ+δ

)
[Sij(x̂; γ) + akjQik(x̂)] ds, (E.1)

so that Iij ≡ I
(1)
ij + I

(2)
ij + I

(3)
ij respectively. In I

(1)
ij , r̂ ≤ δ � 1 and we can expand

the Stokeslet’s exponential terms (3.4c,d) about r̂ = 0. In I
(3)
ij we can expand about
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r̂ = (s− ξ). Therefore I
(1)
ij and I

(3)
ij have terms with the general form

εl+n cosl θ sinn θ

∫ ξ+δ

ξ−δ

(s− ξ)p

((s− ξ)2 + ε2)m/2
ds, εl+n cosl θ sinn θ

∫ 1

ξ+δ

e−κ
√

iγ(s−ξ)

(s− ξ)m−p
ds,

(E.2)

(l, n = 0, 1, p = 0, 1, 2 and m = 1, . . . , 5, κ = 0, 1), respectively (and similarly for

I
(2)
ij ). Expressions of the form (E.2) can be integrated directly and then expanded in

ε. Substituting these expansions into (E.1) and noting that for zero tilt the dipole

coefficients are ak1 = 0, ak2 = −(ε2/2) δk2, ak3 = −(ε2/2) δk3 leads to the following

approximations for the Iij via lengthy but straightforward calculation:

I11(ξ; γ) = − 2e
√

iγ(ξ−1)

√
iγ(ξ − 1)

+
2e−

√
iγ(ξ+1)

√
iγ(ξ + 1)

− 2ie
√

iγ(ξ−1)

γ2(ξ − 1)2
− 2ie−

√
iγ(ξ+1)

γ2(ξ + 1)2

+
2i

γ2(ξ − 1)2
+

2i

γ2(ξ + 1)2
− 2Ei(−

√
iγ(ξ − 1)) − 2Ei(

√
iγ(ξ + 1))

− 4ε0 − 4 ln
√
iγ + 2 ln 4 − 4 ln ε, (E.3a)

I22(ξ; γ) =
e
√

iγ(ξ−1)

√
iγ(ξ − 1)

− e−
√

iγ(ξ+1)

√
iγ(ξ + 1)

+
ie

√
iγ(ξ−1)

γ2(ξ − 1)2
+
ie−

√
iγ(ξ+1)

γ2(ξ + 1)2

− Ei(−
√
iγ(ξ − 1)) − Ei(

√
iγ(ξ + 1)) − i

γ2(ξ − 1)2
− i

γ2(ξ + 1)2

− 2ε0 − 2 ln
√
iγ + ln 4 − 2 ln ε, (E.3b)

I33(ξ; γ) = I22(ξ; γ), I12(ξ; γ) = I13(ξ; γ) = I23(ξ; γ) = 0, (E.3c)

subject to at most O(ε ln ε) errors, due to neglected terms in the evaluation of expres-

sions with the form given by (E.2). Ei(z) ≡
∫∞
1 t−1 e−tz dt is the exponential integral

and ε0 ≈ 0.5772 is Euler’s constant. The choice of dipole coefficient akj has eliminated

any θ-dependence in the Iij.

E.2 Distribution-dependent integrals

The non-local velocity–force relationship in (3.12) comes from terms of the form (3.12c).

Evaluation of these integrals is achieved by once again splitting the domain of integra-

tion as in (E.1) to give Ti(ξ,f ; γ) = T
(1)
i + T

(2)
i + T

(3)
i . In T

(1)
i , we expand fj(s) about

ξ and the exponential terms in Sij (3.4b) about r̂ = 0, yielding terms with the general
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form

εl+nf
(ς)
j (ξ) cosl θ sinn θ

∫ ξ+δ

ξ−δ

(s− ξ)p+ς

((s − ξ)2 + ε2)m/2
ds, (E.4)

for m = 1 . . . 5, l, n = 0, 1, p = 0, . . . , 2 and ς = 1 . . . m − p. The superscript on fj

denotes its ςth derivative. It can be shown that these integrals produce expressions

which are algebraically small in ε and hence make no contribution to Ti. In T
(3)
i , r̂ =

(s − ξ) + O(ε2/δ) and we can expand the integrand about r̂ = (s − ξ). This results in

Stokeslet contributions to T
(3)
i of the form

∫ 1

ξ+δ

(fj(s; γ,∆) − fj(ξ; γ,∆)) e−
√

iγ(s−ξ)

(s− ξ)M
ds (M ≤ 2), (E.5a)

∫ 1

ξ+δ

(fj(s; γ,∆) − fj(ξ; γ,∆))
(

e−
√

iγ(s−ξ) − 1
)

(s − ξ)M
ds (M = 3), (E.5b)

εl+n cosl θ sinn θ

∫ 1

ξ+δ

(fj(s; γ,∆) − fj(ξ; γ,∆)) e−
√

iγ(s−ξ)

(s− ξ)m−2+l+n
ds (m ≤ 4), (E.5c)

εl+n cosl θ sinn θ

∫ 1

ξ+δ

(fj(s; γ,∆) − fj(ξ; γ,∆))
(

e−
√

iγ(s−ξ) − 1
)

(s− ξ)m−2+l+n
ds (m = 5) (E.5d)

and similarly for T
(2)
i . Provided that fj is not algebraically singular in s over the interval

of integration, (E.5c,d) are O(εl+n/δm−2+l+n) and so for non-zero l or n we are able to

choose δ such that these integrals are algebraically small in ε. Since akj = O(ε2), the

same reasoning leads us to deduce that the dipoles make no leading-order contribution

to T
(3)
i or T

(2)
i .

Therefore the only non-zero contributions to Ti from (E.5c,d) come from Sij terms

with l and n both zero. Under these circumstances the integrals (E.5c,d) assume the

form of (E.5a,b). The δ-dependence in the integration limits can be removed by consid-

ering these integrals in the interval (ξ− δ, ξ+ δ), where we can expand the exponential
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terms about |s− ξ| and fj(s; γ,∆) about ξ:

−
∫ ξ+δ

ξ−δ

(fj(s; γ,∆) − fj(ξ; γ,∆)) e−
√

iγ|s−ξ|

|s− ξ|M ds

= O



−
∫ ξ+δ

ξ−δ

(fj(s; γ,∆) − fj(ξ; γ,∆))
(

e−
√

iγ|s−ξ| − 1
)

|s− ξ|3 ds





= O

(
−
∫ ξ+δ

ξ−δ

(s− ξ)

|s− ξ|M ds

)
= 0 (M ≤ 2) (E.6a)

(subject to only algebraically small errors in ε), where integration is defined in the

Cauchy-principal-value sense. Therefore terms in T
(2)
i + T

(3)
i can be expressed as

Cauchy-principal-value integrals between −1 and 1. This combined with the fact that

the integrals given by (E.4) make no O(1) contribution, means (for m ≤ 3)

∫ 1

−1

(fj(s; γ,∆) − fj(ξ; γ,∆)) (e−
√

iγ
√

(s−ξ)2+ε2 − δ3m)

((s− ξ)2 + ε2)m/2
ds

≈ −
∫ 1

−1

(fj(s; γ,∆) − fj(ξ; γ,∆)) (e−
√

iγ|s−ξ| − δ3m)

|s− ξ|m ds (E.7)

to leading order in ε. Substituting (E.7) into (3.12c), Ti reduces (up to algebraically

small error in ε) the simpler quantity Ti given in (3.16), which is diagonal in fi.
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