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Abstract

Rod photoreceptors are cells that sense and receive light. They consist of two major

parts, an outer and an inner segment, which are linked by a connecting cilium. Con-

tinual growth of the rod outer segment is balanced by shedding of the tip of the outer

segment. We start this thesis by developing nonlinear ordinary differential equations

to describe the metabolic activity of the rod photoreceptor cells in order to investigate

whether changes in metabolic demand during periods of light and dark are respon-

sible for the observed (daily) variation in the length of the outer segment of the rod

photoreceptors. Analysis of the rod system is carried out by investigating the steady-

state solutions.

Secondly, because the eyes form part of the nervous system, we have also developed

an ordinary differential model involving the glutamate-glutamine cycle in the nervous

system in order to study how the rates at which glutamate and glutamine are released

influence the metabolic demand of the system. We use a combination of numerical

simulation and asymptotic techniques to understand the system dynamics. The as-

ymptotic analysis provides insight into processes that control different stages of the

glutamate-glutamine cycle.

Although glutamate is the main excitatory neurotransmitter in the mammalian central

nervous system, it can be toxic to neuronal cells. Excitotoxicity occurs when there is

overactivation of neuronal-glutamate receptors caused by excessive extracellular glu-

tamate levels. This can lead to intracellular calcium overload and neurodegeneration.

In the later stages of this thesis we extend our model of the glutamate-glutamine cycle

by including an additional equation for intracellular calcium levels in order to study

how calcium interacts with the glutamate-glutamine cycle and how it triggers excito-

toxicity. Moreover, we find that as the extracellular volume fraction decreases, the con-

centration of components in the extracellular space increases, resulting in a neuron’s

responsiveness to a fixed amount of neurotransmitter consistent with clinical evidence.
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CHAPTER 1

Introduction

1.1 Background Biology

The eye is the first part of the visual system which allows people to communicate with

each other. It is a highly specialised organ of photoreception, using a process by which

light energy from the surrounding environment produces changes in nerve 1 cells in

the retina. These changes result in nerve action potentials, which are subsequently re-

layed to the optic nerve and then to the brain, where the information is processed and

consciously appreciated as vision.

In this background biology section we firstly give a brief introduction to the retina

which is where the rod photoreceptors are located. We then describe cellular energy

metabolism and explain how this information can be used to develop our model of

light-dark regulation of outer segment length. Next we introduce the nervous system

of the brain focusing on neurotransmitter metabolism which forms the basis for our sec-

ond model, which describes the glutamate-glutamine cycle. This is interesting because

the human eyes are known as a part of the nervous system. Pathophysiology involving

medical disorders and ageing that affect the photoreceptor cells and the metabolism of

the nervous system are also briefly reviewed at the end of this section.

1.1.1 The Retina

Human eyes consist of three main layers: the sclera, the choroid and the retina. The

retina is located in the innermost part of the eye and consists of five layers, namely gan-

glion cells (inner layer of the retina), bipolar cells, horizontal cells, amacrine cells, and

1See the Glossary in Appendix.
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photoreceptor cells (outermost layer of the retina). The horizontal and amacrine cells

modulate communication between the cells in the retina (see Figure 1.1). The retina

lies against a darkly coloured layer of cells called the retinal pigment epithelium (RPE).

Between the RPE and the sclera, which forms the visible white part of the eye, is the

choroid. The choroid is rich in blood vessels which provide nutrition and oxygen for

the RPE and deep layers of the retina.

The initial step in vision is the absorption of light by visual pigments in the outer seg-

ments of the retinal photoreceptor cells. Any light rays that escape the photoreceptor

cells are absorbed by the RPE. The light absorption of the RPE prevents distracting

light from reflecting inside the eye and distorting the visual image. The photoreceptors

convert light energy into nerve impulses that can ultimately be transmitted to the brain

via the optic nerve [1, 4, 5].

Figure 1.1: Retinal Layers: The retinal visual pathway is from the photoreceptor cells
(rods and cones) to the bipolar cells to the ganglion cells. The amacrine
and horizontal cells act locally for the retinal processing of visual input.
(Figure is adapted from [1].)

There are two types of photoreceptors, rods and cones, situated on the outer side of

the retina. Each photoreceptor is a long narrow cell with an outer and inner segment,

connected by the cilium, and a synaptic terminal at the end of the photoreceptor, lying

closest to the bipolar cells. The inner segment contains a large number of mitochondria

and a nucleus. By contrast, the outer segment (see Figure 1.2) is composed of membra-

2
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nous discs with an abundance of photopigment molecules. Photopigment molecules

undergo chemical alterations when activated by light. The photopigment consists of

the enzymatic protein, opsin. The photoreceptors’ opsins vary slightly, enabling them

to absorb differentially various wavelengths of light. There are four different photopig-

ments. The photopigment rhodopsin is found in the rods, while red, green and blue

colour pigments are found in the cones. Therefore rods and cones have different func-

tions. Humans typically have three million cones and 100 million rods per eye. Rods

have high sensitivity to light but low sharpness, so they are important in vision at night.

Cones, on the other hand, have low sensitivity but high sharpness. Thus cones provide

sharp colour vision during the day. As a result, the photoreceptors are cells that sense

and receive light.

Figure 1.2: Photoreceptor cells (adapted from [1]).

New discs grow in the region of the cilium. As each new disc is formed at the junction

between the outer and inner segment, the older discs are pushed outward towards the

RPE. The photoreceptors shed the oldest discs from the outer segments, and these are

taken up and digested by the RPE. The process of shedding in rods occurs mainly in

the morning or, following prolonged periods of darkness, when light reappears. In hu-

mans, the rod outer segment is entirely replaced every 8 to 14 days. By contrast, in cone

cells this process occurs at night and it takes approximately one month for complete re-

newal [5–8]. It is known that the length of the rod outer segment increases during the

dark period [9]. By contrast the length of the cone outer segment (in the lizard) in-

creases during the light period [10].

Photopigment has to be synthesised to maintain a photoreceptor’s ability to respond to

light. Synthesis of photopigment requires energy which is typically derived from the

3
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high-energy phosphate compound ATP (adenosine triphosphate).

1.1.2 Cellular Energy Metabolism

There are two main types of cellular energy metabolism [4]: anaerobic metabolism

which does not involve oxygen consumption, and aerobic metabolism which does in-

volve oxygen consumption.

Anaerobic Metabolism

Anaerobic metabolism occurs in the cytoplasm and can happen in two different ways.

The first source for supplying additional ATP (adenosine triphosphate) is creatine phos-

phate (CP) which is used to convert ADP (adenosine diphosphate) rapidly to ATP and

creatine (Cr) (see reaction (1.1.1)).

CP + ADP
CK



CPK
Cr + ATP . (1.1.1)

The reaction (1.1.1) is reversible. The forward reaction occurs when the cells need en-

ergy and is catalysed by the enzyme creatine kinase (CK); the reverse reaction occurs

when the cells have excess energy and is catalysed by the enzyme creatine phosphoki-

nase (CPK).

When the cell needs energy the forward reaction in (1.1.1) is believed to act as the main

energy source [11]. However, the amount of ATP that can be formed by this process

is limited by the amount of CP in the cell. If energy is needed for more than a few

seconds, the cell must be able to form ATP from other sources. The main secondary

source of energy is anaerobic glycolysis. Here glucose in the bloodstream diffuses into

the cytoplasm and produces two moles of ATP and two moles of pyruvate (see the

irreversible reaction (1.1.2) and Figure 1.3):

Glucose + 2NAD+ + 2ADP + 2Pi → 2Pyruvate + 2ATP + 2NADH + 2H+, (1.1.2)

where NAD+ is nicotinamide adenine dinucleotide, Pi is inorganic phosphate, NADH

is the reduced form of NAD+ and H+ is a hydrogen ion.

4
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Aerobic Metabolism

Aerobic metabolism takes place within the mitochondria, which are the sites of energy

production and contain enzymes of the Krebs cycle. The Krebs cycle, which is also

known as the tricarboxylic acid cycle (TCA), refers specifically to a complex series of

chemical reactions all of which utilise oxygen as part of their respiration process [4].

Pyruvate which is produced from the glycolysis pathway is converted to acetyl coen-

zyme A (or acetyl CoA) which enters the Krebs cycle in the mitochondria (see Figure

1.3). This process produces 36 moles of ATP from one mole of glucose and six moles

of oxygen. Although providing a rich yield of ATP for each molecule of glucose, this

process is relatively slow because of the number of steps involved. In addition, it re-

quires a constant supply of oxygen. If the oxygen supply is inadequate to permit op-

eration of the Krebs cycle, any excess pyruvate may be temporarily disposed of by

reducing it to lactate (see the forward reaction (1.1.3)). At the expense of accumulating

lactate, glycolysis continues to operate and produce two moles of ATP. When oxygen

is restored to normal levels, lactate is converted back to pyruvate and the Krebs cycle

continues (see the reverse reaction (1.1.3)). Pyruvate then is converted to acetyl CoA

which enters the Krebs cycle.

2Pyruvate + 2NADH 
 2Lactate + 2NAD+. (1.1.3)

Within the photoreceptor, the outer segment relies upon anaerobic metabolism because

it does not contain any mitochondria. By contrast, the inner segment utilises both aer-

obic and anaerobic metabolism (the latter if oxygen is insufficient). Since the formation

of ATP from CP occurs in the first few second and is limited [11], we neglect the amount

of ATP that is generated from CP.

As mentioned above, the rods are present in much greater numbers than the photore-

ceptors. Therefore in our first model (see Chapter 2) we will focus on modelling the

metabolic activity of the rod photoreceptor cells and investigate whether changes in

metabolic demand during periods of light and dark are able to explain the observed

(daily) variation in the length of the photoreceptor cells. In particular, as stated before,

it is believed that the length of the rod outer segment is greater under dark than light

conditions [9].
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Figure 1.3: A schematic diagram of anaerobic glycolysis and aerobic metabolism.

Now, the eyes form part of the nervous system. The neural pathways associated with

vision begin with the rods and cones [11]. These photoreceptor cells communicate

via electrical synapses with each other and with second-order neuronal cells such as

bipolar cells and ganglion cells. In the next section, we introduce the nervous system

of the brain in order to clearly how the visual nervous system operates.

1.1.3 The Nervous System

All animals, including humans, obtain information about their environment through a

variety of sensory receptors. The information from these receptors is transformed by

the brain into perceptions or into commands for movement. The brain is the control

centre of the nervous system. The outstanding tasks of the brain are accomplished us-

ing only neurons and the connections between them [12].

The nervous system is a very complicated system. It controls and maintains diverse bi-

ological processes that are essential for maintaining an acceptable quality of life [2, 12].

For a thorough understanding of the basic functions of the nervous system and how

this system is affected by pathological conditions such as disease, toxin and injury, it

is essential to understand the anatomy, physiology and biochemistry of the nervous

system. In Chapter 3 of this thesis we develop a mathematical model that focuses
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on the metabolic fundamentals of the nervous system of the brain, in particular neuro-

transmitter metabolism and metabolic trafficking (glutamate-glutamine cycle) between

neurons and glial cells. These are related to the human eyes which are the part of the

nervous system.

The nervous system is divided into two main parts, the central nervous system (CNS)

and the peripheral nervous system (PNS). The CNS contains the brain and the spinal

cord and represents the major pathway for the flow of information between the brain

and other parts of the body. The PNS comprises all the nerves and wiring. The nervous

system is dominated by two cell types: neurons (or neuronal cells) which are the basic

signalling units of the nervous system, and the support cells which are known as glial

cells (or glia or neuroglia) [2, 12–14]. While both cells play important roles in the vital-

ity of the system, only the neuronal cells can transmit messages from one part of the

CNS to another or out of the system altogether (e.g. to the muscles and glands), and

vice versa (e.g. from the sensory organs into the CNS). We describe briefly neuronal

and glial cells below.

Neuronal Cells

Neurons are excitable cells that generate and carry electrical signals. The neuron is the

smallest structure that can carry out the functions of the nervous system. Neuronal

cells have long appendages that extend outward from the cell body. The cell body

contains the nucleus, storing the cell’s genes, and the organelles, which synthesise its

proteins. Moreover, the cell body consists of a large number of dendrites (which receive

incoming signals) and axons (which transmit information). Their main role is to allow

neurons to communicate with each other and with other cells. Several neurons are

similar to the diagrammatic neuron depicted in Figure 1.4 [2, 12, 13].

In Figure 1.4, mitochondria and membrane-bound vesicles that are filled with neuro-

crine molecules are contained in the axon terminal. The anatomically-specialised junc-

tion between two neurons, where one neuron alters the activity of another, is called

a synapse (see Figure 1.4). At most synapses, the signal is packaged within synaptic

vesicles and is transmitted from one neuron to another by neurotransmitters, a term

which also includes the chemicals by which neurons communicate with target cells.

The neurotransmitters released from one neuron alter the receiving neuron by binding

with specific membrane receptors on the receiving neuron [2]. The neuronal cell that
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Figure 1.4: Diagrammatic representation of a neuron: the neuron shown is a typical
neuron, consisting of a cell body and numerous extensions. The region
where axon terminals communicate with their target cells is known as a
synapse (taken from [2]).

receives the signal is known as the postsynaptic cell, and the cell that sends the signal

is called the presynaptic cell. These two cells are separated at the synapse by a gap, the

synaptic cleft [2, 12]. In a neural reflex, information moves from the presynaptic to the

postsynaptic cell.

Glial Cells

In addition to neuronal cells, the nervous system also contains glial cells. There are

approximately 10 times more glial cells than neurons. However, since glial cells are

approximately one-tenth the size of the neuronal cells, both neuronal and glial cells

take up equal space [2]. They are known as the supporting cells of the nervous sys-

tem because they hold the neurons together in proper spatial relationships. The four

principal roles of glial cells are: to surround neuronal cells and hold them in place, to

supply oxygen and nutrients to neurons, to insulate one neuron from another and to

destroy and remove the dead neurons. Without glial cells, the neurons would not work

properly. Even though these neuronal support cells do not participate directly in the

transmission of electrical signals over long distances, they communicate with neurons
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and with each other using electrical and chemical signals. The glial cells serve as the

connective tissue of the CNS and, as such, help support the neuronal cells both physi-

cally and metabolically [2, 12].

Glial cells in the vertebrate nervous system are divided into two main classes: microglia

and macroglia [12]. Microglia are phagocytes (cells that ingest and destroy dead cells)

that are mobilised after injury, infection or disease. However, three types of macroglia

predominate in the vertebrate nervous system: oligodendrocytes, Schwann cells and

astrocytes. However, Schwann cells are known as the glial cells of the PNS. Oligoden-

drocytes (which is in the CNS) and Schwann cells (which is in the PNS) form the myelin

sheaths that insulate axons. Astrocytes are the most abundant glial cells. They appear

in the CNS and help to maintain the correct potassium ion concentration in the synap-

tic cleft that separated two neurons. Moreover, astrocytes take up neurotransmitters

from the synaptic cleft after release by neurons and help regulate synaptic activities by

removing transmitters. For our purposes the astrocytes are the glial cells of interest.

Neurons and glial cells are separated from each other by extracellular space (synap-

tic cleft) [15, 16]. The extracellular space (ECS) comprises approximately 20% of brain

tissue volume and is responsible for the exchange from neurons to glial cells of ions,

neurotransmitters and metabolites [17]. Recent studies indicate that some glial cells

provide metabolic support to neurons, help maintain the composition of the extracellu-

lar fluid, and even participate in information transfer [2, 15, 16]. In addition, glial cells

are particularly characterised by high concentrations of glutamine synthetase (GS), a

glial-specific enzyme that converts the amino acid glutamate (Glu) to the amino acid

glutamine (Gln) [1, 5, 15, 16].

1.1.4 Glutamate-Glutamine Metabolism

Glutamate (Glu) is the principal excitatory neurotransmitter in the mammalian brain

and retina [18, 19], and is removed to, or from, the ECS by an energy-dependent process

(active transport) involving neuronal and glial cell transporters [18]. Glu uptake is an

active process, its mediated transport across membranes requiring the expenditure of

cellular energy. During an ischaemic (less blood supply) episode, however, extracel-

lular Glu concentrations may rise to excitotoxic (nerve injury produced by Glu) levels

[15, 20, 21]. Therefore, the regulation of Glu release and absorption is critical. Glu se-

creted from the neuron (called the presynaptic neuron) must be removed rapidly. There
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are three possibilities after Glu is released into the ECS (see Figure 1.5): 1© uptake into

the postsynaptic compartment; 2© reuptake into the presynaptic compartment; and 3©
uptake into a non-neuronal compartment (glial cell) [22, 23]. Since most Glu secreted

into the ECS is transported into the glial cells [16, 22, 24], we will consider only the

third mechanism when we develop our model (see Chapter 3). Once released into the

ECS, Glu is absorbed by glial cells via neuronal or glial Glu transporters [20, 21].

A major role of the Glu transporter is to maintain the concentration of free Glu in the

ECS at low levels [18, 23]. In the absence of normally functioning Glu transporters, Glu

levels would build up and kill cells in a process called excitotoxicity (here excessive

amounts of Glu are toxic to neurons by triggering a number of biochemical cascades).

There are many types of Glu transporter which are dependent on the target cells. For

instance, the Glu-Asp transporter (GLAST) is associated with glial cells (Müller cells in

the retina) and the EAAT5 transporter (excitatory amino acid transporter 5) is associ-

ated with neuronal cells (photoreceptor and bipolar cells in the retina) [20]. The glial

and neuronal Glu-uptake system thus terminates the excitatory signal and reduces the

possibility of excitotoxic neuronal damage. Glu neurotoxicity has been implicated the

neuronal degeneration that follows injury or focal ischemia and in the pathophysiology

of a wide variety of neurological disorders such as Alzheimer’s disease (AD), Parkin-

son’s disease (PD) and glaucoma [15, 25–27].

Glu which is released from neuronal cells is transported, via the ECS, into glial cells

and converted by the enzyme GS in the cytosol to the non-toxic amino acid Gln. This

process requires energy and can be schematised as follows:

Glutamate + NH+
4 + ATP GS−→Glutamine + ADP + Pi, (1.1.4)

where NH+
4 is ammonia. It is known that reaction (1.1.4) protects neurons from excito-

toxicity by converting Glu to Gln.

Additionally, there is evidence [28] that Glu can be released from glial cells in order to

reduce the rate of ATP production in glial cells. Furthermore, several authors [16, 23,

29–31] state that, rather than Glu being mainly converted to Gln in the glial cell, there
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Figure 1.5: A schematic diagram of Glu uptake and the Glu-Gln cycle. Glu released
from the presynaptic terminals is 1© taken up by postsynaptic neurons,
2© reabsorbed by presynaptic neurons, or 3© transported into glial cells.

Glu released from presynaptic neurons is mostly transported to glial cells,
where it is converted to Gln via the enzyme GS. This Gln is taken up by
the neurons where Glu is regenerated via the enzyme PAG (glutaminase),
a mitochondrial enzyme.

are three other biochemical reactions involving Glu:

Glutamate + Pyruvate −→ Alanine + a−Ketoglutarate, (1.1.5)

Glutamate + Oxaloacetate 
 a−Ketoglutarate + Aspartate, (1.1.6)

Glutamate + NAD+ −→ a−Ketoglutarate + NADH +NH3, (1.1.7)

where NAD+ is nicotinamide adenine dinucleotide, NADH is the reduced form of

NAD+, and NH3 is ammonia (reduced form of NH+
4 ).

Reactions (1.1.4), (1.1.5) and (1.1.6) occur in the cytoplasm whereas (1.1.6) and (1.1.7)

occur in the mitochondria. Reactions (1.1.5)-(1.1.7) describe the transamination process

which is the transfer of the amino group to an a-keto acid. In [31] reaction (1.1.4) which

is catalysed by the enzyme GS was shown to be the main route. Moreover, it can be

said that ammonia is trapped by the enzyme GS whereas Gln production is controlled

by Glu. When the flux through the enzyme GS reaction is limited due to insufficient

ammonia (below 10 mM), more Glu is available for reactions (1.1.6) and (1.1.7). In ad-

ditional to ammonia, ATP is important for reaction (1.1.4). It is suggested that a major

part of the ATP used by GS is produced through the glycolytic pathway. Furthermore,

pyruvate which is used in reaction (1.1.5) is also produced from the glycolysis pathway.

These details could be included in future work. In the model that we develop below it
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is assumed that in the glial cell Glu conversion to Gln is the dominant reaction.

After its conversion from Glu in the glial cell, Gln is released into the ECS before be-

ing absorbed by the neuronal cell [30, 32]. As for Glu, Gln must use a transporter in

order to travel from the glial cell to the ECS and from the ECS to the neuronal cell. The

System N transporter, SN1, mediates efflux and influx of Gln by glial cells, and System

A transporters, SA1 and SA2, mediate its uptake by neurons [33, 34]. Gln transport is

probably mediated by passive diffusion (i.e. movement from a region of high concen-

tration to one of lower concentration [35]). In neurons, Gln and water are converted

back to Glu via the enzyme phosphate-activated glutaminase (PAG) or glutaminase

which is localised on the inner mitochondrial membrane of the glutamatergic nerve

terminals which is called hydrolysis process [22] (see reaction (1.1.8)):

Glutamine + H2OPAG−→Glutamate + NH+
4 . (1.1.8)

As with glial cells, Glu can be transaminated to Asp (reaction (1.1.6)) via the Kerbs cycle

in the neuronal cells. However, Asp levels are assumed to be very low. We therefore

assume that reaction (1.1.6) does not occur in our interesting model. Newly synthe-

sised Glu is then packaged and stored in high concentrations (in excess of 20 mM [36])

within synaptic vesicles. Subsequently, when the neurons are excited, Glu is released

into the ECS [18, 23] via EAAT5. This interaction between neuronal and glial cells is

called the Glu-Gln cycle (see Figure 1.6). It acts to replenish the neurotransmitter pool

to prevent neurotoxicity.

Figure 1.6: A schematic diagram of the Glu-Gln cycle. Glu released from the neuronal
cell to the glial cell is converted to Gln via the enzyme GS. Gln is released
back to the neurons where Glu is regenerated via the enzyme PAG.

The Glu-Gln cycle plays a special role not only in glutamatergic neurotransmission but

also in the removal of excess ammonia (ammonia detoxification process). Hence any
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disorder in the Glu-Gln cycle caused by pathological conditions may result in a differ-

ent pattern of brain damage. In order to understand such situations more information

is needed about the metabolism of the substrates involved in the Glu-Gln cycle.

There is further evidence [24] which shows that Glu metabolism in the human brain is

compartmentalised, involving two main metabolic pools of Glu; a neuronal compart-

ment and a glial compartment. In our second model (see Chapter 3), we will study the

metabolic activity in the Glu-Gln cycle of three different compartments in the nervous

system: the neuron, the ECS and the glial cell.

In fact, the release of Glu from the synaptic vesicle in the neuronal cell into the ECS

needs an intra-calcium [36–40]. We extend the model of the Glu-Gln cycle in Chapter 3

by adding the intracellular calcium levels. In this model (see Chapter 4) we study how

calcium interacts with the Glu-Gln cycle and how it triggers excitotoxicity.

Furthermore, there is some evidence [41] supporting that Glu can be a toxin in the ner-

vous system. In 1957 Lucas and Newhouse [41] found that feeding glutamate to infant

mice destroys neurons in the retina. This is called as excitotoxicity. Excitotoxicity refers

to the ability of glutamate or similar substances to destroy neuronal cells by excessive

activation of glutamate receptors. Normally, the glutamate concentration released into

the ECS rises to high levels (1 mM), but it remains at this level for only a few mil-

liseconds. If abnormally high levels of glutamate accumulate in the ECS, the excessive

activation of neuronal glutamate receptors can excite neurons to death [36–38].

When Glu receptors are activated, ion channels on the cell membrane open. This al-

lows flow of sodium and small amounts of calcium into the cells and potassium out of

the cells. The secretion of neurotransmitter (Glu) is triggered by calcium influx through

voltage-gated channels, which gives rise to a transient increase in calcium concentra-

tion with in the presynaptic terminal. The rise in calcium concentration causes synaptic

vesicles to fuse with the presynaptic plasma membrane and release their contents into

the extracellular space. However, high levels of extracellular Glu allow high levels of

calcium into the cells. This can cause excitotoxicity. Calcium influx to cells activates a

number of enzymes. These enzymes go on to damage cell structures and the cells die.

We also investigate excitotoxicity of the Glu-Gln cycle at the end of Chapter 4.
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1.1.5 Pathophysiology

There is evidence that certain medical disorders and ageing affect photoreceptor cells

[42–44]. For example, age-related retinal degeneration involves the progressive loss of

photoreceptor cells from the peripheral retina. By contrast, diabetes reduces the rate at

which rhodopsin is regenerated and hence leads to a decrease in the length of the outer

segments. These features lead to vision changes and may eventually cause blindness.

In additional, neuronal damage is one of the problems which involves the eye. Neu-

rotoxicity has been defined as an adverse change in the structure or function of the

nervous system following exposure to a chemical (natural or synthetic) or physical

agent. This can eventually disrupt or even kill neurons. A chemical is considered to

be a neurotoxicant if it induces a consistent pattern of neural dysfunction or lesion

in the nervous system. Neurotoxicity can result from exposure to substances used in

chemotherapy, radiation treatment, drug therapies and organ transplants, as well as ex-

posure to heavy metals such as lead and mercury, certain foods, pesticides, or cleaning

solvents. Symptoms may appear immediately after exposure or be delayed. Individu-

als with certain disorders may be especially vulnerable to neurotoxins.

Neurotoxicity can also be called excitotoxicity if excitatory neurotransmitters such as

Glu, aspartate (Asp) and glycine act as a toxin to neurons [2, 15]. Excess Glu, for ex-

ample, chronically over stimulates NMDA (N-methyl-D-aspartate) receptors cause the

release of excess intracellular calcium and leading to neuronal cell death [27, 36–38].

Glu excitotoxicity also contributes to ganglion cell (which is located in the inner layer

of the retina) death which causes to glaucoma [27]. It can cause to retinitis pigmentosa

(RP) that primarily affects the photoreceptors [45].

As mentioned above excitotoxicity occurs when Glu levels in the ECS exceed a thresh-

old value. In [29, 46] it is proposed that the extracellular Glu is maintained below

0.06 mM in order to avoid excitotoxicity to neurons. In more details there is a Glu

transporter to limit free Glu levels in the ECS and after being transported into the glial

cell, Glu is converted to Gln by the enzyme GS. However, there are some factors to

destroy this natural protection such as aging, some diseases and anti-epileptic drugs

[25–27, 47, 48].

Parkinson’s disease (PD) and Alzheimer’s disease (AD) are strongly associated with
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aging and can cause glial dysfunction [26, 49], increasing neuronal degeneration due

to regional loss of the enzyme GS. Recall that GS is a key enzyme in the Glu-Gln cycle:

decreased uptake of Glu, due to decrease GS activity, could have neurotoxic effects. By

contrast, the activity of other enzymes involved in the Glu-Gln cycle such as the en-

zyme PAG (involving in our second model) seems to be unchanged during aging [50].

There is some clinical evidence [51], which supports the hypothesis that high levels of

Glu in the ECS may contribute to progressive dysfunction of the glutamatergic system.

Cauquil-Caubère et al. [51] propose that after being injected into the striatum of rats,

Glu levels increase in the synaptic cleft. This can contribute to progressive dysfunctions

of neurotransmitters, and, thereby, contribute to neurotoxicity. Moreover, in vitro study

Choi [52] suggests that a 5 minute exposure to 1-100 mM Glu destroys many cultured

cortical neurons and by one hour neuronal damage is almost complete. However, the

glial cells remain intact.

1.2 Previous Mathematical Models

In this section we focus on the previous mathematical models relating to our models

such as the model of rod photoreceptors, neurotransmitter, and intracellular calcium.

The modelling approach in this thesis involves the formulation of a system of ordinary

differential equations.

Firstly we address some previous mathematical models for rod photoreceptors. An-

dreucci et al. [53] have developed a model describing the correlation between the

transversal and longitudinal diffusion of cGMP which is a cyclic guanosine monophos-

phate derived from guanosine triphosphate (GTP) and calcium in the rod outer seg-

ment of vertebrates. It is noted that cGMP acts as a second messenger. This model

presents the excitation phase of the signalling cascade of rod outer segment in response

to illumination. Upon activation of a single rhodopsin (a pigment of the retina), cGMP

changes are local and exhibit both a longitudinal and a transversal component and

changes in the membrane are also highly localised. The spatial spread of the single

photon response along the longitudinal axis of the outer segment is predicted to be

3− 5 mm.

In addition, the models of Caruso et al. [54] and Khanal et al. [55] incorporate the

mechanisms presented by Andreucci et al. [53] to operate in rod phototransduction.
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These models are reduced to simpler models. A spatio-temporal model for diffusion

of second messengers in rod phototransduction to predict single-photon response is

presented in [54]. This model shows strong localisation of the response about the acti-

vation site and allows quantification of the longitudinal spread at any particular time.

They notice that maximum separation of activated sites produces maximum responses,

which by itself can build variability of dim light responses apart from any other factors.

Khanal et al. [55] in turn study this model by comparing the electrical response from

rod geometry of mouse and human with that of salamander. They demonstrate that

the thinner the rod outer segment the higher the response, and the higher the number

of disc of outer segment the lower the response.

Next, there are many mathematical models studied in the Glu-Gln cycle, since this

cycle is important to the neurotransmitter metabolism and involves cell death. Kleinle

et al. [56] develop a three-dimensional model for release and diffusion of Glu in the

synaptic cleft. This model composes of a source function describing transmitter release

from the vesicle and a diffusion function describing the spread of transmitter in the

cleft. They suggest that for each release site a corresponding receptor aggregate exists,

subdividing an individual synapse into independent functional subunits without the

need for specific lateral diffusion barriers.

In addition, Gruetter et al. [24] propose an ODE model for cerebral compartmentation

of three different amino acids (Glu, Gln and Asp) after administration of glucose, the

major source of energy in the brain. This study assesses the rate of exchange between

the cytosolic amino acids and their mitochondrial Krebs cycle counterparts. This ex-

change is disputed by the malate-aspartate shuttle, providing a mechanism by which

Asp and Glu can be labelled from the Krebs cycle through transport of Asp and Glu by

the Asp/Glu antiporter. The metabolic relationship between Glu and Gln implies that

the relative distribution of the label in the different positions of Gln must be the same

as that of Glu, with the assumption that the large neuronal pool is the dominant source

of the label for the glial pool of Gln.

Recently, Uffmann and Gruetter [57] have presented a new approach for the mathemat-

ical modelling of carbon-13 (13C) label incorporation into amino acids (Glu and Asp)

via the TCA cycle (Krebs cycle) that eliminates the explicit calculation of the labelling of

the TCA cycle intermediate. This model is based on the model of [24] that includes the

following steady-state assumption: metabolic concentrations and fluxes are constant,
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and the TCA cycle concentration is compared with Glu and Asp concentrations. They

conclude that the explicit solution of the labelling of the TCA cycle intermediates can be

eliminated from the model. This model offers a formal method to study the principles

of label kinetics in such 13C turnover experiments leading to analytical expressions.

We now turn our attention to models for intracellular calcium. Calcium plays a sim-

ilar role as a messenger, not only within single cells but also between multiple cells.

The study of the calcium dynamics shows many mathematical similarities with mod-

els based on electrical excitability. The early model of Goldbeter et al. [58] for calcium

release assumes the existence of two distinct internal calcium stores. One is sensitive to

inositol (1,4,5)-triphosphate (IP3) receptor, and another is sensitive to calcium. Stimu-

lation leads to the production of IP3 which releases calcium from the IP3-sensitive store

through IP3 receptors. A key assumption of the model is that the concentration of cal-

cium in the IP3-sensitive store remains constant, as the store is rapidly refilled from the

extracellular matrix.

Subsequently, in 1993 Sneyd et al. [59] include diffusion in the model of [58] and con-

sider a piecewise linear simplification of the model and also construct travelling pulse

and periodic plane wave solutions to the simplified model. They show the existence of

a travelling pulse in the simplified model and it appears to be unique. The travelling

pulse is the limit of a family of periodic plane wave solutions as the period tends to

infinity. There are two travelling pulse solutions, one stable and one unstable.

This model is then extended in [60] for calcium oscillations so that it includes spatial

diffusion of calcium in a cell with discrete active loci of wave amplification. The new

model predicts that different locations in the cell can have different frequencies of os-

cillations. The amplification loci are thought to be specialised areas of the endoplasmic

reticulum (ER) membrane containing a higher density or higher sensitivity of IP3 re-

ceptors. It is showed that in astrocytes (one of the glial cell types) receptor mediated

calcium signals appear as waves supported by calcium release at multiple cellular loci

acting as weakly coupled oscillators each with its intrinsic latency and frequency of os-

cillation. Thus the appearance of propagated calcium wave may be a reflection of these

differences rather than an actual diffusional wave propagation.

Recently, many mathematical models have been proposed to describe intracellular cal-

cium oscillations that are oscillatory changes in free cytosol calcium concentration,
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playing an important role in cell signalling. Marhl et al. [61] present a mechanism

for complex calcium oscillations focussing on calcium exchange between the cytosol

and the three calcium stores in the cell: the ER, mitochondria and cytosolic proteins.

They have found that the most calcium (approximately 80%) released from the ER is

cleared first into the mitochondria. By contrast, a very slow calcium release from the

mitochondria back to the cytosol is crucial for understanding this mechanism of com-

plex calcium oscillations. This causes bursting calcium oscillations.

Furthermore, [62] proposes a mathematical model for a role of mitochondria in the reg-

ulation of the amplitude during calcium oscillations. In this model mitochondria act as

buffers effectively limiting the amplitude of calcium oscillations and keeping the am-

plitude constant. The simple plausible rate laws for mitochondrial calcium influx and

efflux have been used with a positive effect on the constancy of the amplitude. How-

ever, as the effect is only observed in one specific model and there is a need for finding

universal effects in order to make theoretical results far-reaching, it is important to ver-

ify the observations with other models.

Grubelnik et. al [63] use the same kinetic equations for calcium exchange across the

inner mitochondrial membrane as in [62], and they can be inserted in a modular way

in other mathematical models for spiking and bursting calcium oscillations including

a store-operated model of [61]. They find that the amplitude of calcium oscillations is

regulated by the sequestration of calcium in the mitochondria. Once entering the mito-

chondrial matrix, calcium is buffered very rapidly in a reversible manner with a very

high effective calcium binding ratio (approximately 5000).

Finally, we will move to the excitotoxicity models, in particular the occurrence of glu-

tamate and calcium by referring to the previous models. For example, Dronne et al.

[40] present a mathematical model in order to simulate neuron and glial behaviours

during stroke, and in order to study the influence of glial cell on the surrounding cell

survival. This model is based on electrophysiological mechanisms and reproduces the

movements of several ionic species such as glutamate, calcium, sodium, potassium

and chloride ionised form, across the neuronal and glial membranes during the ex-

citotoxicity process. This model is shown to be robust both in severe and moderate

ischaemia. Furthermore, this model is improved by the same authors in [40]. The new

model is studied the influence of diffusion phenomena on brain cell behaviours during

ischaemia by including diffusion terms in the ECS and from the glial cell to another

18



CHAPTER 1: INTRODUCTION

through gap junctions [64].

Tiveci et al. [65] propose a model of calcium dynamics in brain energy metabolism in

order to study Alzheimer’s disease (AD). Calcium is not only an important molecule

for signalling in neurons but it is also essential for memory storage. They find that in

the case of AD, the effect of halved cerebral blood flow increase results in a negative

blood oxygenation level dependent signal implying suppressed neural activity.

1.3 Outline of Thesis

In this work, we shall focus on two different models, rod photoreceptor metabolism

and the glutamate-glutamine cycle. Firstly we present a nonlinear mathematical model

for rod photoreceptor metabolism consisting of the length of the outer segment of the

rod, and the concentrations of glucose and oxygen both in the outer and inner seg-

ments. Secondly, we describe nonlinear ordinary differential equations of the glutamate-

glutamine cycle in the nervous system as the eye uses one of these systems. Next

calcium signalling in the glutamate-glutamine cycle is presented as the basis of excito-

toxicity. The work is organised as follows:

In Chapter 2 we present the model development for rod photoreceptor metabolism

composed of five time-dependent ordinary differential equations. Analysis of the rod

system will be carried out by investigating the steady-state solutions for the full model

together with results for submodels in which either oxygen or glucose is assumed to be

the rate-limiting metabolite. Numerical simulations of the system for each submodel

are shown to agree with our analysis.

In Chapter 3 a mathematical model is developed to describe the glutamate-glutamine

cycle in the nervous system. The model is studied using a combination of numeri-

cal and analytical techniques. Numerical solutions imply that qualitative dynamics of

the system do not change when e is varied from a physically realistic value (e = 0.5)

to an asymptotically small value (e = 0.05 � 1). The qualitative agreement moti-

vates performing an asymptotic analysis of the governing equations in the asymptotic

limit (e � 1). The analysis provides insight into the processes that regulate different

timescales of the glutamate-glutamine cycle.
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In Chapter 4 we extend the model of the glutamate-glutamine cycle from Chapter 3 in

order to investigate how calcium, an important intracellular messenger, regulates the

glutamate-glutamine cycle. Model analysis and simulations are presented. In addition,

we consider when our system affects excitotoxicity by including a constant toxic source

into the ODE for extracellular glutamate. This model forms the basis of our study of

excitotoxicity.

In Chapter 5 the main conclusions from Chapters 2-4 are presented in addition to sug-

gestions for future work.
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CHAPTER 2

Model of Light/Dark Regulation of

Length of the Outer Segment

In this chapter we examine rod photoreceptor metabolism. Our model will be pre-

sented in term of oxygen and glucose levels in two segments: the inner and outer seg-

ments. We investigate whether changes in metabolic demand during periods of light

and dark are able to explain the observed (daily) variation in the length of the photore-

ceptor cells.

In §2.1, we recap the biology background, describing rod photoreceptors and cellu-

lar energy metabolism in order to develop a mathematical model in the subsequent

section. In §2.2 we begin by developing a mathematical model for rod photoreceptor

metabolism in which oxygen and glucose are assumed to be the rate-limiting nutri-

ents and all other species are assumed to be present in abundance. In order to account

for observed changes in the length of the outer segment during periods of light and

dark, we couple our metabolic model to an ordinary differential equation (ODE) for

the length of the rod outer segment. Model analysis and numerical simulations are

presented in the following section. In the last section we summarise our findings and

discuss model shortcomings and possible extensions.

2.1 Introduction

The photoreceptor cell is one of five layers in the retina which is important in sending

and receiving light (see Figure 2.1 for a re-cap of the retinal layers). There are two differ-

ent cell types of photoreceptors, rods and cones, situated on the outer side of the retina.
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Each photoreceptor is a long narrow cell with an outer and inner segment, connected

by the cilium, and a synaptic terminal at the end of the photoreceptor, lying closest to

the bipolar cells. The inner segment contains a large number of mitochondria and a

nucleus. We note that we consider the synaptic terminal as a part of the inner segment

in our developed model. On the other hand, the outer segment (see Figure 2.2 for a re-

cap of the photoreceptor cells) is composed of membranous discs with an abundance

of photopigment molecules. Photopigments are able to distinguish between rod and

cone. The rod cells consist of one photopigment, rhodopsin, which is important in vi-

sion at night, while colour pigments are in the cone cells only. The latter are important

for vision in day time [1, 4, 5]. It can be said that rod cells dominate the human retina

since there are approximately 30 times more rods than cones.

Figure 2.1: A re-cap of the retinal layers. (Figure is adapted from [1].)

The photoreceptors shed the oldest discs from the outer segments, and these are taken

up and digested by the retinal pigment epithelium (RPE). New discs grow in the region

of the cilium. As each new disc is formed at the junction between the outer and inner

segment, the older discs are pushed outward towards the RPE. The process of shed-

ding in rods occurs mainly in the morning or, following prolonged periods of darkness,

when light reappears. In humans, the rod outer segment is entirely replaced every 8

to 14 days. By contrast, in cone cells this process occurs at night and it takes approx-

imately one month for complete renewal [5–8]. It is known that the length of the rod

outer segment increases during the dark period [9]. In our work we focus on only the
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Figure 2.2: A re-cap of the photoreceptor cells (adapted from [1]).

rod photoreceptor metabolism since it is believed that it dominates the photoreceptor

cells.

Photopigment has to be synthesised to maintain a photoreceptor’s ability to respond

to light. Synthesis of photopigment requires energy and the energy for physiological

function is derived from the high-energy phosphate compound ATP. There are two

main types of cellular energy metabolism [4]: anaerobic and aerobic metabolism.

• Anaerobic metabolism does not consume oxygen and is able to occur in two dif-

ferent ways. The first source for supplying additional ATP is CP which is used

to convert ADP rapidly to ATP and Cr (see reaction (2.1.1) for a re-cap reaction

(1.1.1)). This reaction is reversible. The forward reaction occurs when the cells

need energy by using the enzyme CK and the reverse reaction occurs when the

cells have excess energy by using the enzyme CPK.

CP + ADP
CK



CPK
Cr + ATP , (2.1.1)

When the cell needs energy, the forward reaction of reaction (2.1.1) is the first

source. However, the amount of ATP is limited by the initial concentration of CP

in the cell by this process. If the cell needs energy for more than a few seconds,

the other sources to form ATP must be used.

The other approach is anaerobic glycolysis, in which glucose produces two moles
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of ATP and two moles of pyruvate (see reaction (2.1.2) for a re-cap reaction (1.1.2)).

Glucose + 2NAD+ + 2ADP + 2Pi → 2Pyruvate + 2ATP + 2NADH + 2H+,(2.1.2)

• The latter metabolism, aerobic metabolism, does consume oxygen. This takes

place within the mitochondria, which are the sites of energy production and con-

tain enzymes of the Krebs cycle. The Krebs cycle, also named as the tricarboxylic

acid cycle (TCA) refers specially to a complex series of chemical reactions in all

utilise oxygen as part of their respiration process [4].

Pyruvate, which is produced from glycolysis pathway, is converted to acetyl CoA

on entering the Krebs cycle in the mitochondria (see Figure 2.3 for a re-cap of

anaerobic glycolysis and aerobic metabolism). This process produces 36 moles of

ATP from one mole of glucose and six moles of oxygen. Although providing a

rich yield of ATP for each molecule of glucose, this process is relatively slow be-

cause of the number of steps involved. In addition, it requires a constant supply

of oxygen.

Figure 2.3: A re-cap of the anaerobic glycolysis and aerobic metabolism.

Since the amount of ATP that can be formed by CP process is limited, we only consider

the amount of ATP that can be formed by glycolysis for anaerobic metabolism. The

outer segment relies upon anaerobic metabolism because it does not contain any mito-
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chondria. By contrast, the inner segment uses both aerobic metabolism and anaerobic

metabolism (the latter if oxygen is insufficient).

2.2 Model Development and Nondimensionalisation

In this section, we develop an ordinary differential equation (ODE) model of rod pho-

toreceptor metabolism in which oxygen and glucose are assumed to be the rate-limiting

nutrients and all other species are assumed to be present in abundance. In order to ac-

count for observed changes in the length of the outer segment during periods of light

and dark, we couple our metabolic model to an ODE for the length of the outer seg-

ment, Los(t).

We treat the outer segment (OS) and inner segment (IS) as cylinders of equal radii. We

denote by Lis and Los the lengths (in metres, m) of the IS and OS, respectively, and by

A the (assumed constant) cross-sectional area (m2) of each rod. Our model is an ODE

model in which the rod photoreceptor cell is decomposed into two compartments: the

OS and the IS, i.e. we assume that each metabolite is uniformly distributed in each of

the OS and the IS, but allow the concentrations in the two compartments to differ. We

introduce xos, xis, yos and yis to denote the concentrations (in millimolars, mM) of oxy-

gen (x) and glucose (y) in the OS and IS. We use the principle of mass balance to derive

ODEs for the concentrations of oxygen and glucose in both compartments. Figure 2.4

illustrates how oxygen and glucose enter the rod and how oxygen exchanges between

the OS and the IS.

Figure 2.4: A schematic diagram of rod photoreceptor showing how oxygen and glu-
cose enter the OS and the IS and how oxygen exchange between the OS
and the IS (see description of this diagram in §2.2.1).
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2.2.1 Mass Balance Equations

Here we apply the principle of mass balance to oxygen and glucose in each compart-

ment to derive ODEs for their time evolution. Oxygen and glucose enter the cell

through the OS from the blood vessels of the choroid. Since glucose is water solu-

ble and transported across cell membranes, it can also diffuse through the extracellular

space and, from there, enter both the OS and IS [66, 67]. Not all chemicals can pass,

via the cilium, between the OS and IS. For example, while oxygen is freely exchanged,

glucose is not (see Figure 2.4) [68]. Here we introduce xbl and ybl to represent the as-

sumed constant concentrations of oxygen and glucose, respectively, in the vasculature.

We assume that the concentration of glucose in the ECS is equal to ybl .

When considering the evolution of xos, the oxygen concentration in the OS, we suppose

that the dominant factors are:

• the rate at which oxygen enters from the vasculature,

• the rate at which it exchanges with the IS (via the connecting cilium),

• the rate at which it undergoes natural decay.

We assume that the rate at which oxygen enters the OS from the vasculature is propor-

tional to (xbl − xos). Similarly the rate at which oxygen passes from the OS to the IS is

proportional to (xos − xis). Combining the above and noting that the total amount of

oxygen in the OS is given by (ALosxos), we deduce that the evolution of xos satisfies:

d(ALosxos)
dt

= kos A(xbl − xos)− ko A(xos − xis)− kr ALosxos. (2.2.1)

In equation (2.2.1), the positive constants kos, ko and kr represent respectively the rates

at which oxygen enters the OS from the blood, the rate at which it exchanges with the

IS and its natural decay rate.

Next we consider the evolution of the oxygen concentration in the IS, xis. We presume

that there are three factors:

• the rate at which oxygen passes from the OS to the IS,

• the rate at which oxygen is consumed in the IS,

• the rate at which it undergoes natural decay.
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We assume that because glucose, which is used in glycolysis, serves as a common path-

way for aerobic respiration, the rate at which oxygen is consumed in the IS is propor-

tional to the concentration of glucose in the IS, yis, multiplied by the total amount of

oxygen in the IS (ALisxis). Combining the above factors, we deduce that the evolution

of xis satisfies:

d(ALisxis)
dt

= ko A(xos − xis)− KALisxisyis − krr ALisxis. (2.2.2)

The positive constants K and krr in equation (2.2.2) are the rates at which oxygen is

consumed in the IS and its natural decay rate, respectively.

In a similar manner, we may derive an ODE for the glucose concentration in the OS,

yos. We assume that the dominant factors are:

• the rate at which glucose enters from the blood and the ECS,

• the rate at which it is consumed in the OS,

• the rate at which it undergoes natural decay.

We denote by A1 the assumed constant area for exchange of glucose from the blood

and the ECS into the OS and we assume that A1 is equal to the area for exchange of

glucose from the extracellular space into the IS (A1 = 2prLis ≈ 60pr2 (m2) where r is

a radius of the rod (1× 10−6 m [69])). Here we assume that the rate at which glucose

enters the OS from the vasculature and the ECS is proportional to (ybl − yos). As for xis

(see equation (2.2.2)), we assume that the rate at which glucose is consumed in the OS

is yosxos. By combining the above we deduce that the evolution of yos is:

d(ALosyos)
dt

= kin A1(ybl − yos)− RALosyosxos − kg ALosyos. (2.2.3)

In equation (2.2.3), the positive constants kin, R and kg represent respectively the rates

at which glucose enters the OS, the rate at which it is consumed in the OS and its nat-

ural decay.

Finally, we consider the evolution of the glucose concentration in the IS, yis. We pre-

sume that the main factors are:

• the rate at which glucose enters from the extracellular space,
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• the rate at which glucose is consumed due to glycolysis (when the oxygen supply

is not high enough) and due to aerobic respiration,

• the rate at which it undergoes natural decay.

We assume that the rate at which glucose enters the IS is proportional to (ybl − yis). We

also assume that the rate at which glucose is consumed due to glycolysis is proportional

to xis, multiplied by the total amount of glucose in the IS (ALisyis). Thus we obtain:

d(ALisyis)
dt

= kin A1(ybl − yis)−QALisyisxis − PALisyis − ka ALisyis. (2.2.4)

The positive constants Q, P and ka in equation (2.2.4) represent respectively the rates

at which glucose is consumed due to glycolysis and aerobic respiration, and its natural

decay rate.

2.2.2 The length of the OS

Since the OS sheds and renews discs, its length varies over time and we must therefore

incorporate the growth rate of the OS into our model. We assume that the OS obtains

energy from the IS to maintain and increase its length, so that any excess energy that is

produced in the IS is transported into the OS, where it is used to maintain the length of

the OS. If there is sufficient surplus energy, then growth of the OS occurs [5]. If there is

a deficit of energy, then the OS sheds discs into the RPE.

We assume that there is a surplus of oxygen and glucose only in the IS. These surpluses

are given by the net difference between energy production and energy consumption.

Energy can be produced from oxygen only in the IS but is consumed in both the IS and

the OS. We assume that energy is produced and consumed due to glucose in the same

way. However, there is a maximum rate at which discs in the OS can be produced,

[1, 5]. We suppose that the energy production in the IS from the oxygen and glucose

is proportional to respectively xisLis and yisLis, the energy consumption due to oxygen

and glucose in the OS and IS are X1Lis, x2Los, and Y1Lis and y2Los, respectively, and

the maximum rate at which discs are produced is proportional to (k4xisLis + 1)−1 (for

oxygen), and (g4yisLis + 1)−1 (for glucose). By combining these ideas we deduce that:

d(Los)
dt

=
k1xisLis − k2X1Lis − k3x2Los

(k4xisLis + 1)
+

g1yisLis − g2Y1Lis − g3y2Los

(g4yisLis + 1)
, (2.2.5)
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where k1, k2, k3, k4, g1, g2, g3, g4, X1, x2, Y1 and y2 are positive constants.

In summary, our model system comprises equations (2.2.1)-(2.2.5). The physical mean-

ing and units of all model parameters are given in Table 2.1.

2.2.3 Nondimensionalisation

Since the rates of oxygen and glucose consumption are different under light and dark

conditions (see Table 2.2), we separate our model (2.2.1)-(2.2.5) into two submodels, for

dark and light conditions. The parameters that are affected are K, R, P, Q, X1 and Y1.

We now nondimensionalise the model equations (2.2.1)-(2.2.5) by introducing the fol-

lowing dimensionless variables:

x̂os =
xos

X
, x̂is =

xis

X
, L̂os =

Los

L
, ŷos =

yos

Y
, ŷis =

yis

Y
, t̂ =

t
T

, (2.2.6)

where the constants X, Y, L and T are characteristic values of oxygen and glucose

concentration, length and time, respectively, and are chosen as follows

X = xbl , Y = ybl and L = Lis.

We use the length of the IS divided by the oxygen flow from the OS to IS to fix the

timescale, so that T =
Lis

ko
. Therefore, under dark conditions our model equations

become:

dx̂os

dt̂
=

k̂os

L̂os
(1− x̂os)−

1
L̂os

(x̂os − x̂is)− k̂r x̂os −
x̂os

L̂os

dL̂os

dt̂
, (2.2.7)

dx̂is

dt̂
= (x̂os − x̂is)− (k̂dŷis + k̂rr)x̂is, (2.2.8)

dŷos

dt̂
=

k̂in

L̂os
(1− ŷos)− (k̂d x̂os + k̂g)ŷos −

ŷos

L̂os

dL̂os

dt̂
, (2.2.9)

dŷis

dt̂
= k̂in(1− ŷis)− (q̂d x̂is + p̂d + k̂a)ŷis, (2.2.10)

dL̂os

dt̂
=

(k̂1 x̂is − k̂2 x̂d − k̂3 x̂2 L̂os)
(k̂4 x̂is + 1)

+
(ĝ1ŷis − ĝ2ŷd − ĝ3ŷ2 L̂os)

(ĝ4ŷis + 1)
, (2.2.11)

29



CHAPTER 2: MODEL OF LIGHT/DARK REGULATION OF LENGTH OF THE OUTER

SEGMENT

Parameter Physical Meaning Units Notes
Lis the rod inner segment length m Lis = 32× 10−6 m [69]
xbl the concentration of oxygen in

blood vessels
mM xbl = 0.0672 mM [70]

ybl the concentration of glucose in
blood vessels

mM ybl = 4.5 mM [70]

kos the flux per unit area of oxygen
from blood vessels to the OS

ms−1 kos = oxygen diffusion
Lis

[70]

ko the flux per unit area of oxygen
from the OS to IS

ms−1 ko = oxygen diffusion
Lis

[70]

kin the flux per unit area of glucose
from blood vessels to the OS and IS

ms−1 kin = glucose diffusion
Lis

[70]

K the rate of oxygen utilisation in the
IS

(mMs)−1 separated into dark (kd) and light (kl)
a1

R the rate of glucose consumption due
to anaerobic respiration

(mMs)−1 separated into dark (rd) and light (rl) a1

P the rate of glucose consumption due
to aerobic respiration

s−1 separated into dark (pd) and light (pl)
a1

Q the rate of glucose consumption due
to glycolysis respiration

(mMs)−1 separated into dark (qd) and light (ql)
a1

kr and krr the rate of oxygen removal through
the outer surface of the OS and IS,
respectively

s−1 a2

kg and ka the rate of glucose removal through
the outer surface of the OS and IS,
respectively

s−1 a2

k1 and g1 that rate at which energy is pro-
duced by oxygen and glucose, re-
spectively, supplied to IS

(mMs)−1 a2

k2 and k3 the rate at which energy is con-
sumed by oxygen in the IS and OS,
respectively

(mMs)−1 a2

X1 and x2 the concentration of oxygen con-
stants in the IS and OS, respectively

mM X1 varying under dark (xd) and light
(xl) conditions a3

g2 and g3 the rate at which energy is con-
sumed by glucose in the IS and OS,
respectively

(mMs)−1 a2

k4 and g4 saturating energy by oxygen and
glucose, respectively

(mMm)−1 a2

Y1 and y2 the concentration of glucose con-
stants in the IS and OS, respectively

mM Y1 varying under dark (yd) and light
(yl) conditions a3

Table 2.1: Parameter values for the equations (2.2.1)-(2.2.5), (a1 taken from Table 2.2, a2

estimated in section 2.2.4 and a3 fixed as shown in section 2.3.1).
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where

k̂os =
kos

ko
, k̂r =

krLis

ko
, k̂rr =

krrLis

ko
, k̂d =

kdLisybl

ko
, k̂1 =

k1xbl Lis

ko
,

k̂2 =
k2xbl Lis

ko
, k̂3 =

k3xbl Lis

ko
, k̂4 = k4xbl Lis, x̂d =

xd

xbl , x̂2 =
x2

xbl ,

k̂in =
60kin

ko
, r̂d =

rdLisxbl

ko
, k̂g =

kgLis

ko
, k̂a =

kaLis

ko
, p̂d =

pdLis

ko
,

ĝ1 =
g1ybl Lis

ko
, ĝ2 =

g2ybl Lis

ko
, ĝ3 =

g3ybl Lis

ko
, ĝ4 = g4ybl Lis, ŷd =

yd

ybl ,

ŷ2 =
y2

ybl , q̂d =
qdLisxbl

ko
.

We also obtain the analogous dimensionless model under light conditions by replacing

k̂d, r̂d, p̂d, q̂d, x̂d and ŷd in equations ( 2.2.7)-(2.2.11) by k̂l , r̂l , p̂l , q̂l , x̂l and ŷl , respec-

tively, where kl =
kl Lisybl

ko
, r̂l =

rl Lisxbl

ko
, p̂l =

pl Lis

ko
, q̂l =

ql Lisxbl

ko
, x̂l =

xl

xbl and

ŷl =
yl

ybl .

After dropping the hats for notational simplicity in the dimensionless equations, under

dark conditions the full model becomes:

dxos

dt
=

kos

Los
(1− xos)−

1
Los

(xos − xis)− krxos −
xos

Los

dLos

dt
, (2.2.12)

dxis

dt
= (xos − xis)− (kdyis + krr)xis, (2.2.13)

dyos

dt
=

kin

Los
(1− yos)− (rdxos + kg)yos −

yos

Los

dLos

dt
, (2.2.14)

dyis

dt
= kin(1− yis)− (qdxis + pd + ka)yis, (2.2.15)

dLos

dt
=

(k1xis − k2xd − k3x2Los)
(k4xis + 1)

+
(g1yis − g2yd − g3y2Los)

(g4yis + 1)
. (2.2.16)

We obtain the analogous dimensionless model under light conditions by replacing kd,

rd, pd, qd, xd and yd in equations (2.2.12)-(2.2.16) by kl , rl , pl , ql , xl and yl , respectively,

where these new dimensionless parameters are also defined above.

2.2.4 Parameter Estimation

Where possible we obtain estimates from the literature (see references [3, 69–71]) as fol-

lows. The concentrations of oxygen and glucose in the blood vessels are 0.0672 (xbl) and

4.5 (ybl) mM, respectively and the length of the IS is 32× 10−6 m [69, 70]. Diffusion co-
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efficients of oxygen and glucose in water at 370C are 2.11× 10−9 and 2× 10−11 (m2/s),

respectively [70]. Values for ATP consumption rates (mM/s) [3] in each compartment

under dark and light conditions are shown in Table 2.2 and we convert ATP consump-

tion rates into oxygen and glucose consumption rates in each compartment (see Note

under Table 2.2 for conversion of ATP consumption rates into oxygen and glucose con-

sumption rates). In this way, the parameters kos, kd, kl , kin, rd, rl , pd, pl , qd and ql can

be estimated (see Table 2.3).

We assume that the oxygen natural decay rate in the OS (kr) equals the oxygen natural

decay rate in the IS (krr) and that this rate of decay is less than the oxygen consumption

(kd and kl). We also assume the glucose natural decay rate in the OS (kg) equals the glu-

cose natural decay rate in the IS (ka) but the rate of decay is similarly less than the con-

sumption of glucose (rd, pd, qd, rl , pl and ql). We fix kr = krr = 0.1 and kg = ka = 0.01.

Additionally we set k1 = 12, k2 = 2, k3 = 12, k4 = 1, g1 = 0.2, g2 = 0.2, g3 = 0.4 and

g4 = 1. We also assume that the concentrations of oxygen and glucose constants in the

IS and OS under dark and light conditions (xd, xl , x2 and yd, yl , y2, respectively) are

less than xbl and ybl , respectively. However, it is noted that the available information

about these six parameters (xd, xl , x2, yd, yl and y2) is insufficient to enable an estima-

tion of their values.

ATP (mM/s)b oxygen (mM/s) glucose (mM/s)
dark light dark light dark light

OS 0.03 0.135 - - 0.015 6.75×10−2

IS 2.52 1.14 0.42 0.19 1.26 (anaerobic) 0.57(anaerobic)
0.07 (aerobic) 3.2×10−2 (aerobic)

Table 2.2: ATP, oxygen and glucose consumptions in each compartment under dark
and light conditions (b taken from [3]).

Notes: • As mentioned in section 2.1, in cell metabolism a mole of glucose yields two moles

of ATP for anaerobic glycolysis. In addition, for aerobic metabolism (in the Krebs

cycle) one mole of glucose and six moles of oxygen convert to 36 moles of ATP,

[5, 67].

• Values for ATP consumption in the IS are divided by six to give the oxygen con-

sumption in the IS and those in the OS are divided by two to give the glucose con-

sumption in the OS. For glucose consumption in the IS, there are two pathways,

anaerobic and aerobic metabolism. Thus ATP consumption values are divided by

two to give the glucose consumption due to anaerobic metabolism and by 36 to give

that due to aerobic metabolism. Oxygen and glucose consumption in each compart-

ment under dark and light conditions is shown as Table 2.2.
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We set x2 = 0.03 and y2 = 1.8 and then we consider how values, xd, xl , yd and yl affect

the length of the OS. We plot a contour (see Figure 2.5) of the length of the OS under

light conditions (Ll
os) against its value under dark conditions (Ld

os) (see expressions of

Ld
os and Ll

os in §2.3.1) by varying only the concentrations of the oxygen constant under

light conditions (xl) from 0 to 0.07 mM and those of the glucose constant under light

conditions (yl) from 0 to 4 mM, with other parameter values stated above. The contour

plot shows that when xl > xd and yl > yd, the ratio of Ll
os: Ld

os is less than one. By

contrast, when xl < xd or yl < yd, the ratio is greater than one. Therefore, we predict

that we need yl > yd and xl > xd in order to ensure that the length of the OS is greater

under dark than light conditions, replicating the biological results [9]. Hence we fix

xd = 0.01, xl = 0.06, x2 = 0.03, yd = 1.5, yl = 2.5 and y2 = 1.8.

Figure 2.5: A contour plot of Ll
os

Ld
os

in the full model with the parameter values in 2.3
and varying only the values of xl from 0 to 0.07 and yl from 0 to 4, shows
that Ld

os > Ll
os only where xl

xd
and yl

yd
are sufficiently large. By contrast,

Ll
os > Ld

os, when xl
xd

or yl
yd

are sufficiently small.

The dimensional parameter values as mentioned above are shown in Table 2.3 where

we also show dimensionless parameter values of the full model under dark and light
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Parameters Dimensional Dimensionless
kos 6.59× 10−5 (ms−1) [70] 1
kd 0.42 (mMs)−1 c

1 0.917
kl 0.19 (mMs)−1 c

1 0.415
kr 0.1 (s−1) c

2 0.0485
krr 0.1 (s−1) c

2 0.0485
xd 0.01 (mM) c

3 0.15
xl 0.06 (mM) c

3 0.89
x2 0.03 (mM) c

3 0.45
k1 12 (mMs)−1 c

4 3.9× 10−1

k2 2 (mMs)−1 c
4 6.5× 10−2

k3 12 (mMs)−1 c
4 3.9× 10−1

k4 1 (mMm)−1 c
4 2.2× 10−6

kin 6.25× 10−7 (ms−1) [70] 0.569
rd 0.015 (mMs)−1 c

1 4.89× 10−4

rl 6.75× 10−2 (mMs)−1 c
1 2.2× 10−3

pd 0.07 (s−1) c
1 3.4× 10−2

pl 32× 10−2 (s−1) c
1 1.54× 10−2

qd 1.26 (mMs−1) c
1 4.11× 10−2

ql 0.57 (mMs−1) c
1 1.86× 10−2

kg 0.01 (s−1) c
2 4.85× 10−3

ka 0.01 (s−1) c
2 4.85× 10−3

yd 1.5 (mM) c
3 0.33

yl 2.5 (mM) c
3 0.56

y2 1.8 (mM) c
3 0.40

g1 0.2 (mMs)−1 c
4 0.44

g2 0.2 (mMs)−1 c
4 0.44

g3 0.4 (mMs)−1 c
4 0.87

g4 1 (mMm)−1 c
4 1.44× 10−4

Table 2.3: All dimensional and dimensionless parameter values of the full model.

Notes: • c
1 taken from Table 2.2,

• c
2 we estimate kr = krr < oxygen consumption, and

kg = ka < glucose consumption,
• c

3 we estimate xd, x2, xl < xbl and yd, y2, yl < ybl ,
• c

4 we have fixed these values.

conditions.

2.3 Model Analysis and Simulations

In the previous section we developed a simple model to describe how the length of the

OS changes over time and how its evolution is related to the oxygen and glucose levels

in the IS and OS. In this section we analyse our model by first finding steady-state

solutions and then presenting numerical simulations.
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2.3.1 The Full Model

We start by constructing steady-state solutions of equations (2.2.12)-(2.2.16) under dark

conditions. We denote by xd
os, xd

is, yd
os, yd

is and Ld
os the steady-state solutions under dark

conditions of, respectively, the concentrations of oxygen in the OS and IS, glucose in

the OS and IS and the OS length.

Steady-State Analysis

From equations (2.2.13) and (2.2.15), we deduce

yd
is =

kin

kin + pd + ka + qdxd
is
≡ kin

(n1 + qdxd
is)

, (2.3.1)

where n1 = kin + pd + ka,

xd
os = (1 + krr + kdyd

is)xd
is =

(
1 + krr + kd

kin

n1 + qdxd
is

)
xd

is. (2.3.2)

From equation (2.2.12), (2.3.1) and (2.3.2), we have

Ld
os = −

qd(kos(1 + krr) + krr)xd
is

2 + ((1 + kos)(krrn1 + kdkin) + kos(n1 − qd))xd
is − kosn1

krqd(1 + krr)xd
is

2 + kr(n1(1 + krr) + kdkin)xd
is

,

(2.3.3)

while equations (2.2.16) and (2.3.1) give us

Ld
os = [qd(k1 − g2ydk4)xd

is
2
+ (kin(g1k4 + k1g4) + n1(k1 − g2ydk4)− qd(k2xd − g2yd))xd

is

−k2xd(n1 + g4kin)− g2ydn1 + g1kin]/[g3y2k4qdxd
is

2
+ (k3x2qd + g3y2(k4n1 + qd))xd

is

+k3x2g4kin + k3x2n1 + g3y2n1]. (2.3.4)

By equating equations (2.3.3) and (2.3.4), we derive a quartic equation for xd
is, namely:

D1(xd
is)

4 + D2(xd
is)

3 + D3(xd
is)

2 + D4(xd
is) + D5 = 0, (2.3.5)
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where

D1 = qd
2[kr(1 + krr)(k1 − g2ydk4) + g3y2k4(kos(1 + krr) + krr)],

D2 = krqd(1 + krr)[k1(g4kin + n1) + k4(g1kin − g2ydn1)− qd(k2xd − g2yd)]

+g3y2k4qd[krrn1 + kdkin − kos(qd + n1(1 + krr) + kdkin)]

[k3x2qd + g3y2(k4n1 + qd)][kosqd(1 + krr) + krrqd]

+krqd(k1 − g2ydk4)[n1(1 + krr) + kdkin],

D3 = qd(kos(1 + krr) + krr)[k3x2(g4kin + n1) + g3y2n1][kosqd(1 + krr) + krrqd]

+[k3x2qd + g3y2(k4n1 + qd)][krrn1 + kdkin − kos(qd + n1(1 + krr) + kdkin)]

−kosn1g3y2k4qd − krqd(1 + krr)[n1(k2xd + g2yd) + kin(k2xdg4 − g1)]

+kr(n1(1 + krr) + kdkin)[k1(g4kin + n1) + k4(g1kin − g2ydn1)− qd(k2xd + g2yd)],

D4 = [[k3x2(g4kin + n1) + g3y2n1][kos(qd + n1(1 + krr) + kdkin)− krrn1 − kdkin]

+kr(n1(1 + krr) + kdkin)[n1(k2xd + g2yd) + kin(k2xdg4 − g1)]]

+kosn1[k3x2qd + g3y2(k4n1 + qd)],

D5 = −(k3x2(g4kin + n1) + g3y2n1)kosn1.

When xd
is is known, we can then determine yd

is, xd
os and Ld

os from equations (2.3.1), (2.3.2),

and (2.3.3), respectively. Using equations (2.2.14), (2.3.2) and (2.3.3) we deduce

yd
os = kin(n1 + qdxd

is)/[Ld
osrdqd(1 + krr)xd

is
2

+(Ld
osrdn1(1 + krr) + Ld

os(rdkdkin + kgqd) + kinqd)xd
is + n1(kin + kgLd

os)].

(2.3.6)

We remark that if xd
is and Ld

os are greater than zero, then the steady-state values of the

other dependent variables are also greater than zero (see equations (2.3.1), (2.3.2) and

(2.3.6)), this of course being required for the steady state to be physically meaningful.

Assuming xd
is = a0 to be a positive real root of equation (2.3.5), we may rewrite (2.3.5)

as

(xd
is − a0)[D1(xd

is)
3 + (D2 + a0D1)(xd

is)
2 + (D3 + a0(D2 + a1D1))(xd

is)

+(D4 + a0(D3 + a0(D2 + a0D1)))(xd
is)] = 0, (2.3.7)

using (from (2.3.5)) D5 + a0[D4 + a0D3 + a2
0D2 + a3

0D1] = 0.

We can in principle use Descartes’ rule of signs to find the number of real positive roots,
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real negative roots or complex roots from the signs of the coefficients in (2.3.7) to ensure

that the quartic equation (2.3.5) has only one positive real root (for further information

about the Descartes’ rule of signs see, for example, [72]). Equation (2.3.5) will have only

one positive real root (a0) if and only if

D1 > 0, (2.3.8)

(D2 + a0D1) > 0, (2.3.9)

(D3 + a0(D2 + a0D1)) > 0, (2.3.10)

(D4 + a0(D3 + a0(D2 + a0D1)) > 0. (2.3.11)

We remark that if one of the four inequalities above does not hold, equation (2.3.5) will

have more than one positive real root for xd
is. The model would then not have a unique

positive steady-state solution. However, in practice there only ever seems to be one

physical steady-state solution. Nevertheless, to date, we have not been able to confirm

that the inequalities (2.3.8)-(2.3.11) are necessarily all satisfied.

The steady-state solutions of the full model under light conditions (xl
is, xl

os, yl
is, yl

os, Ll
os)

may be determined in a similar manner. Therefore, xl
is will be obtained by equating the

following two equations of Ll
os:

Ll
os = −

ql(kos(1 + krr) + krr)xl
is

2 + ((1 + kos)(krrn2 + klkin) + kos(n2 − ql))xl
is − kosn2

krql(1 + krr)xl
is

2 + kr(n2(1 + krr) + klkin)xl
is

,

(2.3.12)

Ll
os = [ql(k1 − g2ylk4)xl

is
2
+ (kin(g1k4 + k1g4) + n2(k1 − g2ylk4)− ql(k2xl − g2yl))xl

is

−k2xl(n2 + g4kin)− g2yln2 + g1kin]/[g3y2k4qlxl
is

2
+ (k3x2ql + g3y2(k4n2 + ql))xl

is

+k3x2g4kin + k3x2n2 + g3y2n2], (2.3.13)

where n2 = kin + pl + ka.

When xl
is is known, we can determine Ll

os in equation (2.3.12) and the steady-state val-

ues of other dependent variables which are stated below:
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yl
is =

kin

(n2 + qlxl
is)

, (2.3.14)

xl
os =

(
1 + krr + kl

kin

n2 + qlxl
is

)
xl

is, (2.3.15)

yl
os = kin(n2 + qlxl

is)/[Ll
osrlql(1 + krr)xl

is
2

+(Ll
osrln2(1 + krr) + Ll

os(rlklkin + kgql) + kinql)xl
is + n2(kin + kgLl

os)].(2.3.16)

Numerical Results

We now present numerical results for the full model system. All parameter values are

taken from the §2.2.4 (Parameter Estimation).

The dimensionless parameter values (see Table 2.3) are applied to the steady-state so-

lutions of the dimensionless full model both under dark and under light conditions, as

stated above. We then obtain the dimensionless steady-state values of the dependent

variables for the full model under dark and light conditions, shown in Table 2.4. The

dimensional steady-state values of each variable are also shown in Table 2.4, these be-

ing obtained by substituting the dimensionless steady-state values of each dependent

variable into equation (2.2.6).

Dimensionless Dimensional
Dark Light Dark Light

xos 0.6642 0.7484 0.0446 mM 0.0503 mM
xis 0.3520 0.5187 0.0237 mM 0.0349 mM
yos 0.9933 0.9931 4.4699 mM 4.4689 mM
yis 0.9143 0.9501 4.1144 mM 4.2755 mM
Los 0.7375 0.6063 23.60×10−6m 19.40×10−6m

Table 2.4: Steady-state values of the dependent variables for the full model under dark
and light conditions. Dimensionless and dimensional values are stated.

From Table 2.4, we can see that the oxygen concentration is greater under light than

dark conditions and higher in the OS than in the IS. These trends are because the rate

of oxygen consumption decreases under light conditions (see Table 2.2). We note that

since glucose and oxygen are consumed to produce energy, their rates of consumption

are inversely proportional to their concentrations. As previously mentioned, oxygen

enters the cell through the OS (see Figure 2.4) from the blood vessels and is transported

through the IS, so the oxygen concentration is greater in the OS than in the IS. By con-

trast, glucose consumption is greater under light than dark conditions in the OS but
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less under light than dark conditions in the IS (see Table 2.2). As a result, the glucose

concentration is less under light than dark conditions in the OS but greater under light

than dark conditions in the IS. Moreover, glucose is used for energy production in both

aerobic and anaerobic glycolysis in the IS but in the OS it is used only in anaerobic

glycolysis. Therefore, the glucose concentration is higher in the OS than in the IS. In

addition, the length of the OS is greater under dark than light conditions, which is con-

sistent with what happens in vivo and results here because the rod OS disc shedding

occurs after the onset of light, as stated above. Moreover, the dimensional values of

oxygen and glucose both in the OS and in the IS are reasonable under both dark and

light conditions because these values are less than the concentrations of oxygen and

glucose in blood vessels, respectively. By contrast, the lengths of the OS under dark

and light conditions are not in close agreement with the lengths from the literature (28

mm) [69]. A reason for this disagreement may be that in our model only glucose and

oxygen control the length of the OS: in practice, Cr, CP, ATP and ADP also play impor-

tant roles.

We carry out the numerical simulations of the full model system (throughout this chap-

ter and indeed throughout this work) by using the ode15s solver in MATLAB v. 7.1

(The MathWorks, Inc.). We assume that under dark and light conditions at the initial

glucose and oxygen both in the OS and in the IS are equal to glucose and oxygen in the

blood vessels, respectively, and also assume that the length of the OS equals the length

of the IS at the beginning. By applying these values in equation (2.2.6) in §2.2.3, we use

1 to be the initial conditions for each variable. Figure 2.6 shows time courses of the full

model under dark and light conditions, as they tend towards steady-state values.

Next we consider continuous exposure to alternating dark and light periods under

two different lifestyles, a normal person and an insomniac (eight hours in dark and 16

hours in light for the normal person and four hours in dark and 20 hours in light for

the insomniac). Figures 2.7 and 2.8 show the numerical simulations of the full model

under these different lifestyles by solving the full model under dark and light condi-

tions and assuming continuity of each of the variables at the transitions from the dark

periods to the light periods, with parameter values from Table 2.3. We observe oscilla-

tions in each variable between the dark period and the light period. During the dark

period the glucose level in the IS and the oxygen levels both in the OS and in the IS

decrease rapidly and tend towards their (dark) steady-state values. When the light pe-

riod begins, they rapidly increase and tend to their (light) steady-state values prior to

39



CHAPTER 2: MODEL OF LIGHT/DARK REGULATION OF LENGTH OF THE OUTER

SEGMENT

Figure 2.6: Time courses of the dimensionless model variables under dark and light
conditions of the full model with parameter values, as shown in Table
2.3.Key: solid line (dark periods); dashed line (light periods).

the transition from light to dark. By contrast, the length of the OS increases rapidly and

tends to its steady-state value during the dark period but rapidly decreases and tends

towards its steady-state value during the light period. We note that the dynamics of

the glucose concentration in the OS differ from those of the other variables. During

the light period, glucose levels decrease rapidly before increasing to their steady-state

value. By contrast during the dark period they rapidly increase before decreasing to

their steady-state value at the transition from dark to light. The glucose trend in the OS

is because glucose is the main source of energy. During the light period a lot of glucose

is used to produce energy at the beginning until the OS has enough energy or the OS

obtains excess energy from the IS, and then the need for glucose is reduced. However,

during the dark period no energy generation is required since there is initially spare

energy from the light period, so the glucose level increases. When the spare energy

has been consumed, glucose becomes the source of energy production until there is

adequate energy in the OS. These two lifestyles affect photoreceptor dynamics, having

different maximum and minimum values for the length of the OS and different con-

centrations of oxygen and glucose. For the parameter values chosen, the timescales to

reach steady state are significantly shorter than the periods spent in light and dark, so
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the steady states are (almost) attained between the transitions. In summary, it can be

deduced that the OS length, and concentrations of oxygen and glucose are coupled to

the light-dark cycle.

Figure 2.7: Time courses show how oxygen and glucose levels and the length of the
OS vary for a normal person (eight hours in dark and 16 hours in light per
day). Simulations obtained by solving the full model under dark and light
conditions and assuming continuity of the transitions from light to dark
(and vice versa) with parameter values and initial conditions as shown in
Figure 2.6. Key: solid line (dark periods); dashed line (light periods).

We now reduce our model system (2.2.1)-(2.2.5) in order to investigate how oxygen and

glucose, taken individually, can affect the growth rate of the OS length on its own. The

resulting systems will be called the oxygen and glucose submodels.

2.3.2 The Oxygen Submodel

If we set the glucose concentration to be constant in equations (2.2.12)-(2.2.16) and ig-

nore equations (2.2.14) and (2.2.15), then we obtain our (dimensionless) oxygen sub-

model under dark conditions:
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Figure 2.8: Time courses show how oxygen and glucose levels and the length of the
OS vary for an insomniac (four hours in dark and 20 hours in light per
day). Simulations obtained by solving the full model under dark and light
conditions and assuming continuity of the transitions from light to dark
(and vice versa) with parameter values and initial conditions as shown in
Figure 2.6. Key: solid line (dark periods); dashed line (light periods).

dxos

dt
=

kos

Los
(1− xos)−

1
Los

(xos − xis)− krxos −
xos

Los

dLos

dt
, (2.3.17)

dxis

dt
= (xos − xis)− (kdyid + krr)xis, (2.3.18)

dLos

dt
=

(k1xis − k2xd − k3x2Los)
(k4xis + 1)

+
(g1yid − g2yd − g3y2Los)

(g4yid + 1)
, (2.3.19)

where yid is the assumed constant glucose concentration under dark conditions in the

IS (0.9143).
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Steady-State Analysis

By setting the time-derivatives to zero in equations (2.3.17)-(2.3.19) it is possible to

show that at steady state

xd
os = (1 + kdyid + krr)xd

is ≡ (1 + b1)xd
is, (2.3.20)

Ld
os =

(k1xd
is − k2xd)(g4yid + 1) + (g1yid − g2yd)(k4xd

is + 1)
k3x2(g4yid + 1) + g3y2(k4xd

is + 1)
, (2.3.21)

Ld
os =

kos − (b1(1 + kos) + kos)xd
is

kr(1 + b1)xd
is

, (2.3.22)

where b1 = kdyid + krr > 0.

Equations (2.3.21) and (2.3.22) are a pair of simultaneous equations for Ld
os and xd

is.

Therefore we have the quadratic equation:

B1(xd
is)

2 + B2xd
is + B3 = 0, (2.3.23)

where

B1 = [k1(g4yid + 1) + g1yidk4 − g2ydk4]kr(1 + b1) + (kos(1 + b1) + b1) g3y2k4,

B2 = (1 + g4yid)(krk2xdb1 − b1k3x2 + krk2xd) + (1 + b1)(krg2yd − krg1yid)

−g3y2(kos + b1)− kosk3x2(1 + b1g4yid + b1 − g4yid)− kosg3y2(b1 − k4),

B3 = kosk3x2g4yid + kosk3x2 + kosg3y2 > 0.

Once xd
is is known, xd

os and Ld
os can be determined by using equations (2.3.20) and

(2.3.21), respectively. Therefore the steady-state values of the other dependent vari-

ables rely on xd
is. We remark that if xd

is and Ld
os are greater than zero, xd

os is also greater

than zero, which is required for the steady state to be physically meaningful.

By applying the Descartes’ rule of signs in quadratic equation (2.3.23) we obtain that if

B1 < 0, (2.3.24)

then the equation (2.3.23) has only one positive real root for xd
is. Thus the oxygen sub-

model has a unique positive steady-state solution. If B1 > 0, then there can be three

possible cases: two positive real roots, two negative real roots or two complex conju-

gate roots, and this submodel would not have unique positive steady-state solution. In
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practice, however, we can find only one physical steady-state solution.

We determine the behaviour of the system under light conditions by changing kd, xd,

yd and yid to kl , xl , yl and yil , respectively (where yil is the assumed constant glucose

concentration under light conditions in the IS).

Numerical Results

We determine the dimensionless and dimensional steady-state values (xos, xis, Los) of

the oxygen submodel under dark and light conditions for the parameter values shown

in Table 2.3, with yid = 0.9143 and yil = 0.9501 (these are the dimensionless steady-

state values of the glucose concentration under dark and light conditions, respectively,

in the IS of the full model (see Table 2.4)). Both dimensionless and dimensional steady-

state values of the oxygen submodel correspond to those obtained for the full model

(see Table 2.5 for the steady-state values of the oxygen submodel).

Dimensionless Dimensional
Dark Light Dark Light

xos 0.6716 0.7534 0.0451 mM 0.0506 mM
xis 0.3559 0.5222 0.0239 mM 0.0351 mM
Los 0.7376 0.6064 23.60×10−6m 19.41×10−6m

Table 2.5: Steady-state values of the dependent variables for the oxygen submodel un-
der dark and light conditions. Results presented in terms of dimensionless
and dimensional values.

We plot time series of the dimensionless full model against the dimensionless oxygen

submodel under dark and light conditions to show how they differ before reaching

their steady-state values (see Figure 2.9). In Figure 2.9, there is good agreement be-

tween simulations for the oxygen submodel and the full model as follows. The oxygen

levels for the oxygen submodel are slightly less than their levels for the full model at the

beginning before they reach their steady-state values in both the OS and IS. Moreover,

the length of the OS for the oxygen submodel is slightly greater than its length for the

full model before reaching its same steady-state values under dark and light conditions.

A reason for their differences might be that we set the constant glucose concentration

under dark conditions (yid = 0.9143) and under light conditions (yil = 0.9501) in the IS

for the oxygen submodel to be greater than the initial value for glucose concentration

in the IS (0.8 under both light and dark conditions) in the full model. It is noted that

when the glucose concentrations, both under dark and light conditions, are fixed in the

IS for the oxygen submodel, the dynamics of the oxygen submodel do not differ sub-
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stantially from those of the full model. The oxygen submodel approximates well the

behaviour of the full model.

Figure 2.9: Time courses for the dimensionless full model and oxygen submodel un-
der dark and light conditions with parameter values as shown in Table 2.3
together with yid = 0.9143 and yil = 0.9501.Key: bold solid line (for the
full model under dark conditions); bold dashed line (for the full model
under light conditions); solid line (for the oxygen submodel under dark
conditions); dashed line (for the oxygen submodel under light conditions).

2.3.3 The Glucose Submodel

We obtain the glucose submodel by fixing the oxygen concentration in the OS and IS

of the full model system (2.2.1)-(2.2.5). In this way, we find that the (dimensionless)

glucose submodel under dark conditions is

dyos

dt
=

kin

Los
(1− yos)− (rdxod + kg)yos −

yos

Los

dLos

dt
, (2.3.25)

dyis

dt
= kin(1− yis)− (qdxid + pd + ka)yis, (2.3.26)

dLos

dt
=

(k1xid − k2xd − k3x2Los)
(k4xid + 1)

+
(g1yis − g2yd − g3y2Los)

(g4yis + 1)
, (2.3.27)

where xod and xid, are the assumed constant oxygen concentrations under dark condi-

tions in the OS and IS, respectively ( xod = 0.6642 and xid = 0.3520).
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Steady-State Analysis

We determine the steady state of equations (2.3.25)-(2.3.27) by setting the time-derivatives

to zero.

yd
is =

kin

(kin + qdxid + pd + ka)
> 0, (2.3.28)

Ld
os =

(k1xid − k2xd)(g4yd
is + 1) + (g1yd

is − g2yd)(k4xid + 1)
k3x2(g4yd

is + 1) + g3y2(k4xid + 1)
, (2.3.29)

yd
os =

kin

(kin + (rdxod + kg)Ld
os)

. (2.3.30)

We find Ld
os and yd

os by substituting (2.3.28) into (2.3.30) and (2.3.29). As yd
is > 0, we find

that if Los > 0 when

k1xid(g4yd
is + 1) + g1yd

is(k4xid + 1) > k2xd(g4yd
is + 1) + g2yd(k4xid + 1),

then we will have only one positive steady-state solution for the dimensionless glucose

submodel under dark conditions.

We determine the behaviour of the glucose submodel under light conditions by chang-

ing rd, qd, pd, xd, yd xod and xid in equations (2.3.30)-(2.3.29) to rl , ql , pl , xl , yl xol and

xil , respectively (where xol and xil are the assumed constant oxygen concentrations

under light conditions in the OS and IS, respectively).

Numerical Results

The dimensionless and dimensional steady-state values of (yos, yis, Los) under dark and

light conditions are determined by using the parametric values in Table 2.3. In addi-

tion, we fix xod = 0.6642, xid = 0.3520, xol = 0.7484 and xil = 0.5187 (these are the

dimensionless steady-state values of the oxygen levels under dark and light conditions

in the OS and IS, respectively, of the full model, as shown in Table 2.4). Both dimen-

Dimensionless Dimensional
Dark Light Dark Light

yos 0.9934 0.9932 4.4703 mM 4.4694 mM
yis 0.9143 0.9501 4.1144 mM 4.2754 mM
Los 0.7347 0.6038 23.51×10−6m 19.32×10−6m

Table 2.6: Steady-state values of the dependent variables for the glucose submodel
under dark and light conditions in term of dimensionless and dimensional
values.
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sionless and dimensional steady-state values for the glucose submodel, presented in

Table 2.6, correspond to those values for the full model.

Figure 2.10 shows how time dependent solutions for the dimensionless full model and

glucose submodel under dark and light conditions are different before they reach their

steady-state values. The simulations between the glucose submodel and the full model

are not in good agreement. The glucose levels in the OS for the glucose submodel are

higher at the beginning and then shorter than their levels for the full model before they

tend towards their steady-state values. Moreover, the glucose levels in the IS change

slightly between the glucose submodel and the full model. The OS lengths for the

glucose submodel both under dark and light conditions decrease quickly, before tend-

ing to their steady-state values. The OS lengths, moreover, are shorter for the glucose

submodel than their lengths for the full model. It is noted that, at the beginning, the

length of the OS for the glucose submodel under dark conditions decreases while its

length for the full model increases. These behaviours might be explained by the fact

that, in both the OS and the IS, the constant oxygen concentrations under dark con-

ditions (xod = 0.6642 and xid = 0.3520) and under light conditions (xol = 0.7484 and

xil = 0.5187) for the glucose submodel are less than the initial values for the oxygen

concentrations in the IS and OS (0.8 both under light and dark conditions) in the full

model. When the oxygen concentrations (under both dark and light conditions) are

fixed in the OS and the IS for the glucose submodel, the dynamics of the glucose sub-

model differ in terms of the glucose level in the OS and the OS length, compared to

those of the full model.

2.4 Summary of Light/Dark Regulation of the OS Length Model

In this chapter we have developed a mathematical model to study metabolism of rod

photoreceptors. The resulting model consists of a system of nonlinear ordinary differ-

ential equations that describe how oxygen and glucose levels in the OS and IS change

over time and also how the length of the OS evolves. We distinguished between dark

and light conditions, because consumption rates of oxygen and glucose are different in

each situation.

Analysis of the rod system has been carried out by studying the steady-state solution

for the full model and for two submodels in which either oxygen and glucose is as-

sumed to be the rate-limiting metabolite. Although our model of light/dark regulation
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Figure 2.10: Time courses for the dimensionless full model and glucose submodel un-
der dark and light conditions with parameter values as shown in Table 2.3
together with xod = 0.6642, xid = 0.3520, xol = 0.7484 and xil = 0.5187.
Key: bold solid line (for the full model under dark conditions); bold
dashed line for the full model under light conditions); solid line (for the
glucose submodel under dark conditions); dashed line (for the glu-
cose submodel under light conditions).

of length of the OS has predicted what the OS length and the concentration of oxygen

and glucose should be under dark and light conditions the same as the vivo results

(for more details see §2.3.1), the length of the OS under both conditions are not in close

agreement with the lengths from the literature (28 mm) [69]. This disagreement might

be that in our model only oxygen and glucose regulate the OS length. In practice,

however, Cr, CP, ATP and ADP also play important roles. When we compare both the

oxygen and glucose submodels with the full models we have found that oxygen, rather

than glucose, is the growth rate-limiting metabolite of our model.

Our models have some weaknesses. In particular in our present model only glucose

and oxygen regulate the OS length. Moreover, we do not account for energy exchange

from the IS to the OS. It is known that the human eyes form part of the nervous sys-

tem. There is some evidence [41] supporting that glutamate (an essential amino acid)

involves with a mechanism by which retina ganglion cells die in the glaucoma, an
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eye disease causing gradual loss of sight. In Chapters 3 and 4 we shall consider the

metabolism of the nervous system. The nervous system consists mainly of two cell

types: the neuronal cells and the glial cells [2, 12–14]. Both cells play essential roles

in the life of the system. The neuronal cells are excitable cells that generate and carry

electrical signals. Such a signal molecule is called a neurotransmitter. The glial cells

however provide support and protection for the neuronal cells. The neuronal and glial

cells are separated from each other by the extracellular space [15, 16].

The metabolism of the neurotransmitters is regulated by a cycle in which substrates

such as glutamate and glutamine are exchanged between neuronal and glial cells. This

cycle is known as the glutamate-glutamine cycle. We will focus on the glutamate-

glutamine cycle in the nervous system which is divided into three compartments: the

neuronal cell, the extracellular space and the glial cell. We investigate whether changes

in metabolic demand of the rates of glutamate and glutamine in the extracellular space

can avoid excitotoxic neuron cell damage.
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Model of the Glutamate-Glutamine

Cycle

In this chapter a model describing the Glu-Gln cycle within the nervous system is pre-

sented. This is of interest since the human eyes form part of the nervous system. We

start with a brief explanation of the relevant biology and then develop a mathemati-

cal model, comprising a system of time-dependent ordinary differential equations. In

this system Glu and Gln are assumed to be the rate-limiting substrates and all other

chemicals such as ammonia, aspartate, ATP and a− Ketoglutarate are assumed to be

present in abundance. We use our model to investigate whether the rates at which Glu

and Gln are released into (or out of) the extracellular space (ECS) change the metabolic

demand of the system and, thereby, enable it to avoid excitotoxic neuronal cell damage.

Since excessive amounts of Glu in the ECS are toxic to neurons, high Glu levels may

kill neuronal cells. We will study excitotoxicity in more detail in Chapter 4.

3.1 Introduction

As mentioned in §1.1.3, the nervous system consists mainly of two cell types: neuronal

cells and glial cells [2, 12–14]. Neurons are excitable cells that generate and transport

electrical signals. Such a signal molecule is called a neurotransmitter. The glial cells

however provide support and protection for the neuronal cells. The neuronal and glial

cells are separated from each other by the synaptic cleft (ECS) [15, 16] (see the three

compartments: the neuronal cell, the ECS and the glial cell, in Figure 3.1).

The metabolism of the neurotransmitters is regulated by a cycle in which substrates

such as Glu and Gln are exchanged between neuronal and glial cells. This cycle is
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known as the Glu-Gln cycle (see Figure 3.1). The steps in the Glu-Gln cycle are briefly

explained [15, 16, 18, 20–22, 24, 35] as follows:

• extracellular Glu is actively transported from the neuronal cell to the glial cell via

the ECS,

• Glu is converted to Gln in the glial cell by the enzyme GS (see reaction (3.1.1)),

Glutamate + NH+
4 + ATP GS−→ Glutamine + ADP + Pi, (3.1.1)

• Gln is transported passively to the neuronal cell from the glial cell via the ECS,

and

• Gln in neuronal cells is converted to Glu via the action of the enzyme PAG (see

reaction (3.1.2)).

Glutamine + H2O PAG−→ Glutamate + NH+
4 . (3.1.2)

We note that there is evidence [28] which suggests that Glu can be released from the

glial cells back to the ECS. Glu efflux from glial cells acts to reduce ATP production in

these cells. In Figure 3.1 we present a schematic diagram of the Glu and Gln concen-

trations in the three compartments of interest: the neuronal cell, the ECS and the glial

cell. Since Gln transport is believed to be passive, it is a reversible, two-way process.

By contrast, active transport across membranes uses cellular energy to move molecules

up concentration gradients (and is irreversible (one-way process)).

It is well known that the Glu-Gln cycle plays a crucial role in glutamatergic neurotrans-

mission. Disruption of this cycle caused by pathologic conditions such as Alzheimer’s

disease, Parkinson’s disease and Retinitis Pigmentosa, may result in different patterns

of brain damage. Observations by Lucas and Newhouse [41] and Choi [52] suggest

that after injection of excitatory amino acid into the brain, release of the normal exci-

tatory amino acid transmitter, Glu, can itself cause neuronal damage during a seizure.

Because it has been difficult to detect an increase in extracellular Glu during a single

prolonged seizure without intervening and full recovery of consciousness, it would

appear that the trigger is excessive stimulation of Glu receptors. Hence, it is initially

important to understand how the Glu-Gln cycle functions.

In the following section we derive our mathematical model of the Glu-Gln cycle. As
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Figure 3.1: A schematic diagram of our model of the Glu-Gln cycle showing how Glu
and Gln move during neuronal cells, the ECS and glial cells. GS= the en-
zyme glutamine synthetase; PAG = the enzyme glutaminase; 
 represents
the passive transport; → represents the active transport.

stated above, the nervous system is divided into three compartments, namely the neu-

ronal cells, the ECS and the glial cells (see Figure 3.2). In §3.3 numerical simulations

and an asymptotic analysis of our model are presented. In §3.4 we summarise our re-

sults, and discuss the model shortcomings and possible extensions.

3.2 Model Development and Nondimensionalisation

In this section we present our model of the Glu-Gln cycle in which we focus on three

tissue compartments (see Figure 3.2). We assume that Glu and Gln are the rate-limiting

substrates: all other chemicals such as aspartate, ammonia and ATP, are assumed to be

present in abundance. We investigate how the rates at which Glu and Gln exchange

with the ECS influence the metabolic demand of the system and enable it to avoid ex-

citotoxic neuronal damage.

When developing our model we denote by G and g the concentrations (in millimolar,

mM) of Glu and Gln, respectively. The model consists of a system of coupled ODEs

and the tissue is decomposed into three compartments: the neuronal cells, the ECS and

the glial cells. We do not distinguish between the mitochondria and cytosol in the neu-

ronal and glial cells. We use the subscripts N, E and L to represent neuronal, ECS and

glial quantities, respectively. We introduce GN , gN , GE, gE, GL and gL to denote the

concentrations of Glu and Gln in each compartment. li’s are reaction rates, and gi’s

are positive constants; for more detail about the physical meaning of the parameters
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see Table 3.1. We use the principle of mass balance [73] to derive evolution equations

for the six time-dependent variables and the law of mass action [73] to deduce func-

tional forms for the production or loss terms of the concentrations of Glu and Gln in

the neuronal and glial cell (see reactions (3.1.1) and (3.1.2)). We note that the concen-

trations of the other reactants that appear in reactions (3.1.1) and (3.1.2) are assumed to

be constant.

Figure 3.2: A schematic diagram of our model of the Glu-Gln cycle showing how Glu
and Gln move between the neuronal cells, the ECS and the glial cells. li’s
are reaction rates, and gi’s are constants; for more detail about the physical
meaning of the parameters, see Table 3.1.

3.2.1 The Principle of Mass Balance and the Law of Mass Action

We apply the principle of mass balance to Glu and Gln in each compartment to derive

ODEs for their time evolution. Then the law of mass action, stating that the rate of reac-

tion is proportional to the product of the concentrations of the reactants [73], is applied

in reactions (3.1.1) and (3.1.2).

We assume that the volume of a neuronal cell is VN (mm3), the volume of a glial cell is

VL (mm3) and the volume of the ECS is VE (mm3). We note that the total amounts of Glu

and Gln in the various compartments are given by VNGN , VN gN , VEGE, VEgE, VLGL

and VLgL, respectively.
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Therefore, the dimensional system is

d(VNGN)
dt

= l1VN gN − lGVNGN , (3.2.1)

d(VN gN)
dt

= l̃n A2(gE − g1gN)− l1VN gN , (3.2.2)

d(VEGE)
dt

= lGVNGN − lmVEGE + lcVLGL, (3.2.3)

d(VEgE)
dt

= l̃g A2(gL − g2gE)− l̃n A2(gE − g1gN), (3.2.4)

d(VLGL)
dt

= lmVEGE − l2VLGL − lcVLGL, (3.2.5)

d(VLgL)
dt

= l2VLGL − l̃g A2(gL − g2gE), (3.2.6)

where the li’s are rate constants, the gi’s are positive constants and A2 is the cross-

sectional area of the nervous system (mm2).

Summing equations (3.2.1)-(3.2.6) we note that there is a conserved quantity

d(VNGN)
dt

+
d(VN gN)

dt
+

d(VEGE)
dt

+
d(VEgE)

dt
+

d(VLGL)
dt

+
d(VLgL)

dt
= 0,

so that

VNGN + VN gN + VEGE + VEgE + VLGL + VLgL = VTGT(constant),

where VTGT is the total amount of Glu and Gln (mm3) within the presented system.

We can use this result to eliminate gE in terms of the other model variables and in this

way reduce equations (3.2.1)-(3.2.6) to five ODEs. As stated in §1.1.4, glial cells are

approximately one-tenth the size of neuronal cells [2] and the ECS comprises approx-

imately 20% of brain tissue volume [17]. However, there are approximately 10 times

more glial cells than neurons, therefore neuronal and glial cells take up equal space.

The volumes VN , VE and VL that appear in equations (3.2.1)-(3.2.6) are assumed to be

constant. We estimate that

VN = VL,
VE

VT
= 0.2,

VL

VT
=

VN

VT
= 0.4. (3.2.7)

We note that

VE

VL
=

1
2

,
VE

VT
=

1
5

. (3.2.8)
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Parameters Physical Meanings Units
l1 rate constant for enzyme PAG per minute (min−1)
l2 rate constant for enzyme GS min−1

lG rate at which the neuronal cell secrets
Glu into the ECS

min−1

lc rate at which the glial cell releases Glu
back to the ECS

min−1

lm rate at which the ECS transports Glu
into the glial cell

min−1

l̃n rate at which the ECS releases Gln into
the neuronal cell

(mm) min−1

l̃g rate at which the glial cell releases Gln
into the ECS assumed to be equation
(3.2.14)

(mm) min−1

lgo a maximum rate of Glu at which it
causes Gln to be released from the glial
cell to the ECS

min−1

lh the concentration of Glu in the ECS at
which the rate is half of lgo

mM

GT total amount of Glu and Gln in the
three compartments

mM

VN , VE, VL volume of the neuronal cell, the ECS
and the glial cell, respectively

(mm)3

A2 the cross-sectional area of nervous sys-
tem,

(mm)2

g1 Gln efflux from the neuronal cell to the
ECS coefficient

-

g2 Gln uptake from the ECS to the glial
cell coefficient

-

Table 3.1: Parameters appearing for the equations (3.2.1)-(3.2.6) and their estimated
values will be shown in Table 3.2.

We can rewrite our model equations as follows:

dGN

dt
= l1gN − lGGN , (3.2.9)

dgN

dt
= ln((

VT

VE
GT −

VN

VE
(GN + gN + GL + gL)− GE)− g1gN)− l1gN ,(3.2.10)

dGE

dt
=

VN

VE
lGGN − lmGE +

VL

VE
lcGL, (3.2.11)

dGL

dt
=

VE

VL
lmGE − (l2 + lc)GL, (3.2.12)

dgL

dt
= l2GL − lg(gL − g2(

VT

VE
GT −

VN

VE
(GN + gN + GL + gL)− GE)). (3.2.13)

where ln =
l̃n A2

VN
and lg =

l̃g A2

VL
.
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In what follows we assume that all rates have constant coefficients, except for the rate

at which the glial cells secrete Gln into the ECS (lg). As mentioned above, Gln released

from the glial cell is transported back to the neuron via the ECS where it is a main

precursor of neurotransmitter pools of Glu. Moreover, the Glu level in the ECS (GE) is

an important indicator of excitotoxicity in the nervous system. We assume that lg, the

rate at which the glial cell releases Gln into the ECS, is a saturating function of GE,

lg =
lgoGE

lh + GE
, (3.2.14)

where lgo represents the maximum rate (in min−1) at which Glu can be transported

from the glial cells to the ECS, and lh is the concentration of Glu in the ECS (in mM) at

which the rate is half-maximal.

With lg = lg(GE) defined by (3.2.14), our model of the Glu-Gln cycle becomes:

dGN

dt
= l1gN − lGGN , (3.2.15)

dgN

dt
= ln[(

VT

VE
GT −

VN

VE
(GN + gN + GL + gL)− GE)− g1gN ]− l1gN ,(3.2.16)

dGE

dt
=

VN

VE
lGGN − lmGE +

VL

VE
lcGL, (3.2.17)

dGL

dt
=

VE

VL
lmGE − (l2 + lc)GL, (3.2.18)

dgL

dt
= l2GL −

lgoGE

lh + GE
[gL − g2(

VT

VE
GT −

VN

VE
(GN + gN + GL + gL)

−GE)]. (3.2.19)

Estimates of Initial Conditions

Where possible we obtain estimates for the initial conditions from the literature (see

[16, 18, 23, 29, 46, 74]). Typical Glu levels are high in the mammalian brain, with an

average value of 12.5 mM which is considerably greater (by two-three fold) than levels

of Gln. Thus the total Gln concentration in the three compartments is assumed to be

5.5 mM. Therefore, the total amount of both amino acids, Glu and Gln, in the three

compartments, GT, is approximately 18 mM. Most Glu is found in neurons and its ex-

tracellular concentration is normally maintained in the low micromolar range in order

to avoid excitotoxic nerve cell damage: if the Glu level in the ECS rises to 0.06 mM,

neuronal cells get damaged. For Gln, its concentration in the glial cells is higher than

elsewhere and Gln is normally present in the ECS at higher levels than other amino

acids in the ECS. Accordingly, we fix the dimensional initial values of Glu and Gln in
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each compartment as follows:

GN(0) = 4, gN(0) = 0.5, GE(0) = 10−3,

GL(0) = 0.1, gL(0) = 1. (3.2.20)

In summary, our dimensional model comprises system (3.2.15)-(3.2.20). The physical

meaning of all model parameters is given in Table 3.1.

3.2.2 Nondimensionalisation

We now nondimensionalise equations (3.2.15)-(3.2.19) by setting the following dimen-

sionless variables:

G∗N =
GN

GT
, g∗N =

gN

GT
, G∗E =

GE

GT
, G∗L =

GL

GT
, g∗L =

gL

GT
, t∗ =

t
T

, (3.2.21)

where GT and T are respectively typical values of Glu and Gln in the three compart-

ments, and time, and starred variables denote dimensionless variables.

We use the rate constant that models the conversion of Gln to Glu in the neuronal

cell to fix the timescale so that T =
1
l1

. Substituting these scalings into equations

(3.2.15)-(3.2.19) and (because of exactly estimating the volumes of the three compart-

ments above) introducing the small parameter e such that

e =
VE

VL
and e

2 =
VE

VT
, (3.2.22)

and the following dimensionless parameters

l

∗
G =

lG

l1
, l

∗
n =

ln

l1
, l

∗
2 =

l2

l1
, l

∗
h =

lh

GT
,

l

∗
m =

lm

l1
, l

∗
c =

lc

l1
, l

∗
go =

lgo

l1
,
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(dropping the stars for notational simplicity) gives

dGN

dt
= gN − lGGN , (3.2.23)

dgN

dt
= e

−2
ln[1− e(GN + gN + GL + gL)− e

2GE − e

2
g1gN ]− gN , (3.2.24)

e

dGE

dt
= lGGN − elmGE + lcGL, (3.2.25)

dGL

dt
= elmGE − (l2 + lc)GL, (3.2.26)

dgL

dt
= l2GL −

lgoGE

lh + GE
[gL − e

−2
g2(1− e(GN + gN + GL + gL)

−e

2GE)], (3.2.27)

with initial conditions (appealing to equations (3.2.20) and (3.2.21) with GT = 18):

GN(0) =
2
9

, gN(0) =
1

36
, GE(0) =

1
1.8× 104 ,

GL(0) =
1

1.8× 102 , gL(0) =
1

18
. (3.2.28)

We have now presented our dimensionless model of the Glu-Gln cycle (3.2.23)-(3.2.28).

3.2.3 Steady-State Analysis

Here we construct the steady-state solutions of equations (3.2.23)-(3.2.27). By setting

the time-derivatives to zero in equations (3.2.23)-(3.2.27), it is possible to show that at

steady-state

gN = lGGN , (3.2.29)

GL =
lG

l2
GN , (3.2.30)

GE =
lG(l2 + lc)

elml2
GN , (3.2.31)

gL = e

−1(1− eb̃1GN), (3.2.32)

GN =
1− e

2
l2lmlh/lgo(l2 + lc)

eb̃1 + eb̃2/lgo(l2 + lc)
, (3.2.33)

where

b̃1 = [1 + lG(1 +
1
l2

) + lG(
(l2 + lc)

lml2
+

e

ln
+ eg1)], (3.2.34)

b̃2 = lG(l2 + lc)[1 + lgog2(
1

ln
+ g1)]. (3.2.35)
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For physically realistic solutions we require GN > 0, and hence, from (3.2.33) we de-

duce that the model parameters must satisfy the following inequality:

lgo(l2 + lc) > e

2
l2lmlh. (3.2.36)

As gL > 0, we get

GN <
1

eb̃1
. (3.2.37)

Additionally, as mentioned above, Glu concentration in the neuron cell (GN) and Gln

concentration in the glial cell (gL) are higher than the concentrations in any other com-

partments, and we also know:

GN > gL.

We deduce that

GN >
1

1 + eb̃1
. (3.2.38)

Combining inequalities (3.2.37)-(3.2.38), we obtain the following necessary con-

dition for GN > gL > 0:

1
1 + eb̃1

<
lgo(l2 + lc)− e

2
l2lmlh

elgo(l2 + lc)b̃1 + eb̃2
<

1
eb̃1

. (3.2.39)

Inequalities (3.2.37) and (3.2.39) are necessary conditions for the existence of a physi-

cally realistic steady-state.

3.2.4 Estimates of Parameters

Using available data, we have estimated e =
VE

VL
= 0.5 [2, 17]. While the appropriate

data required to determine other parameter values are not yet available, we do possess

information about how influential certain reactions are in relation to others. We antic-

ipate that the values of lG, lc, lm and l2 will be important in determining whether

the system is excitotoxic. As stated in §3.1, when Glu is released from the neuronal

cell by the efflux rate lG, it is rapidly transported (lm) to the glial cell in order to keep

extracellular Glu levels low. Glu efflux from the glial cell to the ECS (lc) increases as

the rate of ATP production decreases. If lm is low or lc is high, then the level of Glu

in the ECS may exceed typical healthy values of 0.06 mM [16, 18]. We assume that

lm � lc, l2 � lG to ensure that our model does not exhibit excitotoxicity. The re-
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maining default parameters are selected in order to ensure that inequalities (3.2.36) and

(3.2.39) hold (see the default values of all dimensionless parameters in Table 3.2).

Nondimensional Parameter Default Value
lm 48

g1, lc, l2 2
lgo 0.5
ln 0.125
g2 0.0625

lG, lh 0.025
Table 3.2: The default parameter set that is used in equations (3.2.23)-(3.2.27).

3.2.5 Numerical Results

In this section we construct numerical solutions of equations (3.2.23)-(3.2.28) with pa-

rameters from Table 3.2. We integrate the ODEs using the ode15s solver in MATLAB

v.7.1. Typical solutions of equations (3.2.23)-(3.2.28) are presented in Figure 3.3. In

Figure 3.3, since the system rapidly evolves to a steady-state, we plot the dependent

variables against log(t).

Figure 3.3: Series of semilog plots showing how, for a typical choice of parameter
values in Table 3.2, the solution to equations (3.2.23)-(3.2.27) evolves over
time.
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In Figure 3.3, we can see clearly that GE changes dramatically throughout the time of

the simulation, firstly increasing until t ∼ 10−3, following a shortly decreasing line and

then increasing before tending to a steady-state. GL decreases slightly until t ∼ 1 and

then increases before settles to a steady-state. Additionally, gN increases until t ∼ 1,

and then decreases rapidly before settles to a steady-state. By contrast, GN and gL in-

crease rapidly for 1 < t < 10 and for 1 < t < 102, respectively, an then tend to their

steady-state.

We note that e = 0.5 is not a small enough value to perform asymptotic analysis. We

show below that the system behaviour is not affected by whether e = 0.5 or e � 1

(see Figure 3.4). When e is reduced, all variables become greater (this is consistent with

the analytical expressions for the steady-state solutions (3.2.29)-(3.2.33)). In order to

perform asymptotic analysis in §3.3.5 we focus on a case for which e = 0.05 (which

is less than ten times the original epsilon) since then the analysis is tractable and the

behaviour is qualitatively similar to that when e = 0.5.

Figure 3.4: A comparison of the numerical solutions for all variables of system (3.2.23)-
(3.2.27) when e is varied, while other parameter values and initial condi-
tions are held fixed at the values used in Figure 3.3 (e = 0.5: solid lines;
e = 0.1: dashed lines; e = 0.05: dotted lines; and e = 0.01: dashed-dotted
lines).
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In the next section we perform an asymptotic analysis of system (3.2.23)-(3.2.28) in

order to understand fully its behaviour.

3.3 Model Analysis and Simulations

In this section we exploit the appearance of a small parameter (e) in equations (3.2.23)-

(3.2.28) to construct approximate model solutions valid on different timescales. We

start by estimating the dimensionless parameters and then motivate our re-scaling of

the dependent variables by inspecting the steady-state solutions. Finally numerical

simulations are presented and compared with the asymptotic solutions of our dimen-

sionless system (3.2.23)-(3.2.28).

3.3.1 Parameter Scaling

Initially we estimate our dimensionless parameters as shown in Table 3.2. At the end of

this section we present numerical solutions of equations (3.2.23)-(3.2.28) after re-scaling

all parameters and varying e (e = 0.5, 0.1, 0.05, 0.01). These simulations motivate the

re-scaling of the dependent variables that we consider in the next section.

As stated in §3.1 the nervous system can protect itself from neurotoxicity by restricting

Glu concentrations in the ECS (via the Glu transporter) and by converting Glu into Gln

(via the enzyme GS) in the glial cells. Parameters in our model which are therefore

directly important to neurotoxicity are lm, lc and l2. Since Glu uptake from the ECS

to the glial cell is an active process and limits the Glu concentration in the ECS, we

suppose that lm, the rate at which Glu, in the ECS, is transported to the glial cell is

greater than the rate at which the glial cell releases Glu back to the ECS (lc) and also

the rate at which Glu is converted to Gln by the enzyme GS in the glial cell (l2). In

particular we rescale lm, lc, l2 and g1 as follows

lm = e

−2
l̄m, (3.3.1)

lc = O(1), l2 = O(1) and g1 = O(1). (3.3.2)

In (3.3.2) we assume that g1, the rate of Gln removal from the neuronal cell to the ECS

coefficient, is O(1) so that the rates of influx and efflux to the neuronal cell are similar

in magnitude.

62



CHAPTER 3: MODEL OF THE GLUTAMATE-GLUTAMINE CYCLE

In addition, we choose

lG = e

2
l̄G, lgo = e

2
l̄go and lh = e

2
l̄h. (3.3.3)

These parameters are assumed to scale with e

2 in order to prevent excitotoxicity by

maintaining extracellular Glu at low levels (see Table 3.1 for definitions of all the para-

meters).

Finally, we assume that

ln = e

3
l̄n, and g2 = e

4
ḡ2. (3.3.4)

We choose ln, the Gln influx rate from the ECS to the neuronal cell, and g2, Gln uptake

from the neuronal cell to the ECS coefficient, to be the small as Gln levels are not related

to occurring excitotoxicity. The above scaling which guarantees that ln � g2 ensures

that there is sufficient Gln for Glu production in the neuronal cells (see reaction (3.1.2)).

Unless otherwise stated, all dimensionless parameters for the remainder of this chap-

ter (except e) will be taken to be unity, with physically realistic e = 0.5. The associated

default values of the unbarred dimensionless parameters are displayed in Table 3.2.

In Figure 3.5, we compare the numerical solutions of equations (3.2.23)-(3.2.28) when

all parameters are scaled as above (3.3.1)-(3.3.4) with the associated default parameters

in Table 3.2 (when e is varied). We see that with the new scaling parameters GN and gL

become higher, while gN , GE and GL become smaller when e is reduced. This motivates

the scaling of the dependent variables that is presented in the next section.

3.3.2 Variable Scaling

We scale the dependent variables as follows:

GN , gL = O(e−1) >> gN , GL = O(e) >> GE = O(e2). (3.3.5)

As stated in §3.2.1, the total value of Glu and Gln in mammalian brain is approximately

12.5 and 5.5 mM, respectively. The Glu concentration is high in the neuron and in the

ECS its concentration must not exceed approximately 0.06 mM to prevent excitotoxic
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Figure 3.5: A comparison of the numerical solutions for all variables of system (3.2.23)-
(3.2.28) when all parameters are scaled as shown in (3.3.1)-(3.3.4) and the
associated default parameters are shown in Table 3.2 with e is varied, (e =
0.5: solid lines; e = 0.1: dashed lines; e = 0.05: dotted lines; and e = 0.01:
dashed-dotted lines).

neuronal damage. The Gln concentration is higher in the glial cells than elsewhere.

From this we can deduce that the levels of Glu in the neuronal cell (GN) and Gln in the

glial cell (gL) are higher than the concentrations in any other compartments. We scale

GN , gL = O(e−1).

The Glu concentration is least in the ECS, so we scale

GE = O(e2).

Finally, we scale the Gln concentration in both the neuronal and glial cell to be inter-

mediate:

gN , GL = O(e).

Guided by (3.3.5) we rescale the dependent variables as follows

GN =
1
e

ḠN , gN = eḡN , GE = e

2ḠE, GL = eḠL, gL =
1
e

ḡL. (3.3.6)

Inserting the associated rescalings in the governing ODEs, equations (3.2.23)-(3.2.20)
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transform to give (dropping the bars for notational simplicity):

e

−2 dGN

dt
= gN − lGGN , (3.3.7)

dgN

dt
= ln[1− (GN + gL)− e

2(gN + GL)− e

4GE − e

3
g1gN ]− gN , (3.3.8)

e

2 dGE

dt
= lGGN − lmGE + lcGL, (3.3.9)

dGL

dt
= lmGE − (l2 + lc)GL, (3.3.10)

e

−2 dgL

dt
= l2GL −

lgoGE

lh + GE
[gL − e

3
g2(1− (GN + gL)− e

2(gN + GL)

−e

4GE)], (3.3.11)

with initial conditions

GN(0) = G(0)
N , gN(0) = g(0)

N , GE(0) = G(0)
E ,

(3.3.12)

GL(0) = G(0)
L , gL(0) = g(0)

L .

We notice that estimates of the rescaled initial conditions derive from equations (3.2.28)

and (3.3.6).

As stated above, we focus on a case for which e = 0.05 so that the analysis is tractable

(our earlier numerical simulations indicate that the behaviour when e = 0.05 is quali-

tatively similar to that when e = 0.5).

3.3.3 Steady-State Analysis

The steady-state solutions of equations (3.2.23)-(3.2.27) (before scaling parameters and

variables) are presented in equations (3.2.29)-(3.2.33). Here we state the equivalent

steady-state solutions of the rescaled equations (3.3.7)-(3.3.11):

GN =
L0

L1
+ e

2 L0L2

L2
1

+ e

3 L0L3

L2
1

+ O(e4), (3.3.13)
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where

L0 = lgo(l2 + lc)− l2lmlh,

L1 = (l2 + lc)[lG + lgo + lgo
lG

ln
],

L2 = −lgolG(l2 + lc)(1 +
1
l2

),

L3 = −lgolG(l2 + lc)(g1 +
g2

ln
),

together with

gL = 1− (
L0

L1
)b10 − e

2(
L0

L1
)b12 − e

3(
L0

L1
)b13 + O(e4), (3.3.14)

gN = lGGN , (3.3.15)

GL =
lG

l2
GN , (3.3.16)

GE =
lG(l2 + lc)

l̄ml2
GN , (3.3.17)

where

b10 = (1 +
lG

ln
),

b12 = (lG(1 +
1
l2

) +
L2

L1
b10),

b13 = (g1lG +
L3

L1
b10).

We note that in the above expressions for the steady-state solutions (see equations

(3.3.13)-(3.3.17)) the coefficient of O(e) vanishes.

3.3.4 Numerical Simulations

In this section we construct numerical solutions of equations (3.3.7)-(3.3.11) with

e = 0.05, and all parameters and initial conditions as per Figure 3.5 and e = 0.05.

To identify clearly the relevant timescales of interest, we plot the dependent variables

against log(t) in Figure 3.6. Figure 3.6 reveals that GE changes dramatically throughout

the course of the simulation, initially increasing until t ≈ 10−4, following a rapidly

decreasing line until t ≈ 1 and then increasing before settling to a steady-state. GL

decreases rapidly for 10−4 < t < 1 and then increasing before setting to a steady-

state. In addition, the variable gN increases for 10−3 < t < 1, and then decreases

66



CHAPTER 3: MODEL OF THE GLUTAMATE-GLUTAMINE CYCLE

rapidly before tending to its steady-state. By contrast, GN and gL increase rapidly for

1 < t < 103 and for 102 < t < 103, respectively, and then settle to their steady-

states. Guided by these numerical results, we suppose that our dimensionless system

(3.3.7)-(3.3.12) evolves on three distinct timescales, namely t = O(e2), t = O(1) and

t = O(e−2).

Figure 3.6: Semilog plots of the dimensionless solutions in equations (3.3.7)-(3.3.11)
with e = 0.05, other parameter values and initial conditions as performed
in Figure 3.5.

In the next section we consider how the system behaves on each of these timescales.

When comparing the numerical solutions and the asymptotic approximations we fix

the parameters and initial conditions as per Figure 3.6.

3.3.5 Asymptotic Expansions

In this section we construct asymptotic solutions of equations (3.3.7)-(3.3.11) for the

three timescales of interest.
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Timescale I: t = O(e2)

To study this fast timescale, we re-scale t = e

2t1. Equations (3.3.7)-(3.3.11) then become

1
e

4 ·
dGN

dt1
= gN − lGGN , (3.3.18)

1
e

2 ·
dgN

dt1
= ln[1− (GN + gL)− e

2(gN + GL)− e

4GE − e

3
g1gN ]− gN , (3.3.19)

dGE

dt1
= lGGN − lmGE + lcGL, (3.3.20)

1
e

2 ·
dGL

dt1
= lmGE − (l2 + lc)GL, (3.3.21)

1
e

4 ·
dgL

dt1
= l2GL −

lgoGE

lh + GE
[gL − e

3
g2(1− (GN + gL)− e

2(gN + GL)

−e

4GE)], (3.3.22)

and the initial conditions are as stated in equation (3.3.12). Recalling that the coefficient

of O(e) of all variables equals zero (see equations (3.3.13)-(3.3.17)), we seek solutions

which are regular power series expansions of the form

GN(e) = GN0 + e

2GN2 + O(e3), (3.3.23)

gN(e) = gN0 + e

2gN2 + O(e3), (3.3.24)

GE(e) = GE0 + e

2GE2 + O(e3), (3.3.25)

GL(e) = GL0 + e

2GL2 + O(e3), (3.3.26)

gL(e) = gL0 + e

2gL2 + O(e3), (3.3.27)

where 0 < e � 1. Substituting equations (3.3.23)-(3.3.27) into (3.3.18)-(3.3.22) and

equating powers of e, we obtain at leading order:

dGN0

dt1
= 0, (3.3.28)

dgN0
dt1

= 0, (3.3.29)

dGE0

dt1
= lGGN0 − lmGE0 + lcGL0, (3.3.30)

dGL0

dt1
= 0, (3.3.31)

dgL0
dt1

= 0. (3.3.32)

Solving the leading order system (3.3.28)-(3.3.32), we have that GN0, gN0, GL0 and gL0

are constant and therefore equal to their initial values. Solving equation (3.3.30), we
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obtain

GE0(t1) = (G(0)
E −

lGG(0)
N + lcG(0)

L
lm

)e−lmt1 + (
lGG(0)

N + lcG(0)
L

lm
). (3.3.33)

It is noted that when we consider the next order of e, the O(e) coefficients for all depen-

dent variables are equal to zero as we have mentioned in §3.3.3. Then we continue our

analysis by focussing on terms that are O(e2) and equating coefficients of O(e2) yields:

dGN2

dt1
= 0, (3.3.34)

dgN2
dt1

= ln[1− (GN0 + gL0)]− gN0, (3.3.35)

dGE2

dt1
= lGGN2 − lmGE2 + lcGL2, (3.3.36)

dGL2

dt1
= lmGE0 − (l2 + lc)GL0, (3.3.37)

dgL2
dt1

= 0. (3.3.38)

We can see from equations (3.3.34) and (3.3.38) that GN2 and gL2 are constant. Matching

their initial values, we obtain GN2 = 0 and gL2 = 0. Solving (3.3.35), we see

gN2(t1) = [ln(1− G(0)
N − g(0)

L )− g(0)
N ]t1, (3.3.39)

and solving (3.3.37), we get

GL2(t1) = (G(0)
E −

lGG(0)
N + lcG(0)

L
lm

)(1− e−lmt1) + (lGG(0)
N − l2G(0)

L )t1.(3.3.40)

Finally, substituting from (3.3.40) into (3.3.36), and noting that GN2 = 0, we have

GE2(t1) = −lc(G(0)
E −

lGG(0)
N + lcG(0)

L
lm

)e−lmt1 t1

− lc

lm
[G(0)

E +
l2

lm
G(0)

L −
2lGG(0)

N + lcG(0)
L

lm
]e−lmt1

+
lc

lm
(lGG(0)

N − l2G(0)
L )t1

+
lc

lm
[G(0)

E +
l2

lm
G(0)

L −
2lGG(0)

N + lcG(0)
L

lm
]. (3.3.41)

Combining the solutions of all variables from O(1) to O(e2), we can see that only GN

and gL remain constant (their initial values) over this entire timescale. The solutions of

69



CHAPTER 3: MODEL OF THE GLUTAMATE-GLUTAMINE CYCLE

gN(t1) ,GL(t1) and GE(t1) are

gN(t1) ≈ g(0)
N + e

2 ĝN2t1, (3.3.42)

GL(t1) ≈ G(0)
L + e

2(ĜE0 − ĜE0e−lmt1 + ĜL2t1), (3.3.43)

GE(t1) ≈ G(0)
E − ĜE0 + ĜE0e−lmt1

+e

2(ĜE2 − ĜE2e−lmt1 − lcĜE0e−lmt1 t1 +
lc

lm
ĜL2t1), (3.3.44)

where

ĝN2 = (ln(1− G(0)
N − g(0)

L )− g(0)
N ),

ĜE0 = (G(0)
E −

lGG(0)
N + lcG(0)

L
lm

),

ĜL2 = (lGG(0)
N − l2G(0)

L ),

ĜE2 =
lc

lm
(ĜE0 −

ĜL2

lm
).

When t1 ≈ O(e−2) (i.e. when t ≈ O(1)), the expansions for gN , GE and GL break

down. This can motivate analysis on the intermediate timescale which is presented in

next section. As t1 ≈ O(e−2), we get:

gN ≈ ln(1− G(0)
N − g(0)

L ),

GL ≈ lGG(0)
N + (1− l2)G(0)

L , (3.3.45)

GE ≈ lG

lm
(1− lc)G(0)

N +
lc

lm
(1− l2)G(0)

L .

(3.3.45) will be used as the initial (or matching) conditions for gN , GL and GE on the

following timescale.

Figure 3.7 illustrates those variables whose approximations change over this

timescale. The resulting solutions of gN(t1), GE(t1) and GL(t1) from (3.3.42)-(3.3.44)

are plotted (notice that we have plotted both the numerical solutions of the full system

and the approximate solutions against log(t)). We see unbounded growth of gN , GE

and GL, and note that there is good agreement between the analytical and numerical

solutions of all variables for 0 ≤ t ≤ 10−1.
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Figure 3.7: A comparison of the asymptotic and numerical solutions of gN , GE and
GL on the initial timescale. The numerical solutions to the dimensionless
model (3.3.7)-(3.3.11) are represented by the solid line, while the asymp-
totic approximations (3.3.42)-(3.3.44) are given by the dashed line with all
parameter values and initial conditions as used in Figure 3.6.

Timescale II: t = O(1)

We next consider the intermediate timescale t = O(1). Letting t = t2
1, the governing

equations are given by (3.3.7)-(3.3.11) which we re-state below in terms of t2:

e

−2 dGN

dt2
= gN − lGGN , (3.3.46)

dgN

dt2
= ln[1− (GN + gL)− e

2(gN + GL)− e

4GE − e

3
g1gN ]− gN , (3.3.47)

e

2 dGE

dt2
= lGGN − lmGE + lcGL, (3.3.48)

dGL

dt2
= lmGE − (l2 + lc)GL, (3.3.49)

e

−2 dgL

dt2
= l2GL −

lgoGE

lh + GE
[gL − e

3
g2(1− (GN + gL)− e

2(gN + GL)

−e

4GE)]. (3.3.50)

Matching to the previous timescale, we note that the initial conditions of GN and gL on

timescale II are the same as those on timescale I since their approximation was simply

constant on this first timescale. By contrast, since the dynamics of gN(t1), GE(t1) and

GL(t1) change on the timescale I, we use the matching conditions at t2 = 0 given by

1We notice that we have renamed t as t2 in order to make it clear we are examining the intermediate
timescale, but we could equally have simply written t.
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equation (3.3.45) as their initial conditions as follows:

g(0,t2)
N = ln(1− G(0)

N − g(0)
L ),

G(0,t2)
L = lGG(0)

N + (1− l2)G(0)
L , (3.3.51)

G(0,t2)
E =

lG

lm
(1− lc)G(0)

N +
lc

lm
(1− l2)G(0)

L ,

where G(0)
N , g(0)

L and G(0)
L are the original initial conditions (see equation (3.3.12)), and

g(0,t2)
N , G(0,t2)

L and G(0,t2)
E are the matching conditions on this second timescale. For the

remainder of this timescale (for notational simplicity), we write

g(0,t2)
N = g(0)

N , G(0,t2)
L = G(0)

L and G(0,t2)
E = G(0)

E .

After substituting the expansions (3.3.23)-(3.3.27) into equations (3.3.46)-(3.3.50), and

equating powers of e, we have at leading order:

dGN0

dt2
= 0, (3.3.52)

dgN0
dt2

= ln(1− GN0 − gL0)− gN0, (3.3.53)

0 = lGGN0 − lmGE0 + lcGL0, (3.3.54)
dGL0

dt2
= lmGE0 − (l2 + lc)GL0, (3.3.55)

dgL0
dt2

= 0. (3.3.56)

From equations (3.3.52) and (3.3.56), we see that GN0 and gL0 remain constant on this

timescale. Equations (3.3.53) and (3.3.55) can be integrated with respect to t2 and com-

bined with (3.3.54) in order to determine gN0, GE0 and GL0.

Integrating equation (3.3.53), we obtain

gN0(t2) = ln(1− G(0)
N − g(0)

L ) + [g(0)
N − ln(1− G(0)

N − g(0)
L )]e−t2 , (3.3.57)

where, as before, the superscript (0) denotes the initial value of a particular variable.

Adding equations (3.3.54) and (3.3.55), we obtain

dGL0

dt2
= lGG(0)

N − l2GL0, (3.3.58)
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giving

GL0(t2) =
lG

l2
G(0)

N + (G(0)
L − lG

l2
G(0)

N )e−l2t2 . (3.3.59)

Substituting equation (3.3.59) into (3.3.54), we have

GE0(t2) =
lG

lm
(1 +

lc

l2
)G(0)

N +
lc

lm
(G(0)

L − lG

l2
G(0)

N )e−l2t2 . (3.3.60)

We note that

GE0(t2) →
lG

lm
G(0)

N +
lc

lm
G(0)

L as t → 0. (3.3.61)

Since the O(e) coefficients of all variables are equal to zero (see §3.3.3), we equate coef-

ficients of O(e2) and obtain:

dGN2

dt2
= gN0 − lGGN0, (3.3.62)

dgN2

dt2
= −ln(GN2 + gL2 + gN0 + GL0)− gN2, (3.3.63)

dGE0

dt2
= lGGN2 − lmGE2 + lcGL2, (3.3.64)

dGL2

dt2
= lmGE2 − (l2 + lc)GL2, (3.3.65)

dgL2

dt2
= l2GL0 −

lgoGE0

lh + GE0
gL0. (3.3.66)

Recalling that GN0 is constant and gN0 is defined by equation (3.3.57), we can integrate

(3.3.62) to obtain

GN2(t2) = [ln(1− G(0)
N − g(0)

L )− lGG(0)
N ]t2 − [g(0)

N − ln(1− G(0)
N − g(0)

L )]e−t2

+[g(0)
N − ln(1− G(0)

N − g(0)
L )]. (3.3.67)

Differentiating equation (3.3.60), we have

dGE0

dt2
= −l2lc

lm
(G(0)

L − lG

l2
G(0)

N )e−l2t2 . (3.3.68)
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Adding (3.3.64) and (3.3.65) by using (3.3.68), then integrating it, we have

GL2(t2) =
lcl2

lm
(G(0)

L − lG

l2
G(0)

N )e−l2t2 t2 +
lG

l2
(ln(1− G(0)

N − g(0)
L )− lGG(0)

N )t2

−lG(
g(0)

N − ln(1− G(0)
N − g(0)

L )
l2 − 1

)e−t2 + lG[
ln(1− G(0)

N − g(0)
L )− lGG(0)

N
l

2
2

+(g(0)
N − ln(1− G(0)

N − g(0)
L ))(

1
l2 − 1

− 1
l2

)]e−l2t2

+lG(
g(0)

N − ln(1− G(0)
N − g(0)

L )
l2

−
ln(1− G(0)

N − g(0)
L )− lGG(0)

N
l

2
2

). (3.3.69)

Substituting (3.3.68) into (3.3.64), and then integrating with respect to t2, we have

GE2(t2) =
1

lm
[lGGN2 + lcGL2 +

lcl2

lm
(G(0)

L − lG

l2
G(0)

N )e−l2t2 ], (3.3.70)

where GN2 and GL2 are defined by (3.3.67) and (3.3.69).

Equations (3.3.63) and (3.3.66) can be integrated numerically with respect to t2 to de-

termine gN2 and gL2.

The solutions of each variable on the intermediate timescale consist of a leading order

term and an O(e2) contribution. When t2 ≈ O(e−2) (i.e. when t ≈ O(e−2)) the ex-

pansions for all variables break down (for example, see equation (3.3.67)). Similarly to

on timescale I, this motivates the analysis on the final timescale for which t = O(e−2).

We note that taking the limit as t2 = O(e−2), enables us to calculate all the matching

conditions for this subsequent timescale.

Figure 3.8 shows good agreement between the numerical and analytical solutions for

all variables in the range 10−1 ≤ t ≤ 102. In Figure 3.8, GN , GE, GL and gL display

unbounded growth as t2 → ¥, while gN shows unbounded decay.

The final timescale sees the system behaviour finally achieving its steady-state.

74



CHAPTER 3: MODEL OF THE GLUTAMATE-GLUTAMINE CYCLE

Figure 3.8: A comparison of the asymptotic and numerical solutions on the second
timescale (t = O(1)). All numerical and asymptotic solutions of variables
match perfectly in the range 10−1 ≤ t ≤ 102.

Timescale III: t = O(e−2)

When t = O(1), all variables evolve with time. We now consider the dynamics on the

long timescale, t = e

−2t3 for which the governing equations become

dGN

dt3
= gN − lGGN , (3.3.71)

e

2 dgN

dt3
= ln[1− (GN + gL)− e

2(gN + GL)− e

4GE − e

3
g1gN ]− gN , (3.3.72)

e

4 dGE

dt3
= lGGN − lmGE + lcGL, (3.3.73)

e

2 dGL

dt3
= lmGE − (l2 + lc)GL, (3.3.74)

dgL

dt3
= l2GL −

lgoGE

lh + GE
[gL − e

3
g2(1− (GN + gL)− e

2(gN + GL)

−e

4GE)]. (3.3.75)

The initial conditions on this timescale are matched to the approximations on the pre-

vious timescale when t2 = O(e−2) (i.e. when t3 → 0). Substituting series expansions of

the form (3.3.23)-(3.3.27) into equations (3.3.71)-(3.3.75) and equating like powers of e,
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we get at leading order:

dGN0

dt3
= gN0 − lGGN0, (3.3.76)

0 = ln(1− GN0 − gL0)− gN0, (3.3.77)

0 = lGGN0 − lmGE0 + lcGL0, (3.3.78)

0 = lmGE0 − (l2 + lc)GL0, (3.3.79)
dgL0
dt3

= l2GL0 −
lgoGE0

lh + GE0
gL0. (3.3.80)

Adding equations (3.3.78) and (3.3.79), we get

GL0(t3) =
lG

l2
GN0. (3.3.81)

Using equations (3.3.79) and (3.3.81), we get

GE0(t3) = (
lc + l2

lm
)
lG

l2
GN0. (3.3.82)

Solving equation (3.3.77), we obtain

gN0(t3) = ln(1− GN0 − gL0). (3.3.83)

Substituting (3.3.83) into (3.3.76), and substituting (3.3.81) and (3.3.82) into (3.3.80), we

have

dGN0

dt3
= ln(1− gL0)− (ln + lG)GN0, (3.3.84)

dgL0
dt3

= lGGN0 −
lgo(l2 + lc)lGGN0gL0

l2lmlh + lgo(l2 + lc)lGGN0
. (3.3.85)

It remains to solve equations (3.3.84)-(3.3.85) numerically: equations (3.3.81)-(3.3.83)

can then be used to determine the solution of the other system variables.

As for the two previous timescales, the O(e) coefficients of all variables vanish. Equat-
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ing power of e, we have at O(e2):

dGN2

dt3
= gN2 − lGGN2, (3.3.86)

dgN0

dt3
= −ln(GN2 + gL2 + gN0 + GL0)− gN2, (3.3.87)

0 = lGGN2 − lmGE2 + lcGL2, (3.3.88)
dGL0

dt3
= lmGE2 − (l2 + lc)GL2, (3.3.89)

dgL2
dt3

= l2GL2 −
lgo

2(lh + GE0)
(GE0gL2 + GE2gL0 −

GE0gL0GE2

lh + GE0
). (3.3.90)

Adding equations (3.3.88) and (3.3.89), we get

dGL0

dt3
= lGGN2 − l2GL2. (3.3.91)

Differentiating equations (3.3.81) and (3.3.83), we respectively have

dGL0

dt3
=

lG

l2
(gN0 − lGGN0), (3.3.92)

dgN0

dt3
= −ln(gN0 − lGGN0 + l2GL0 −

lgoGE0

lh + GE0
gL0). (3.3.93)

Substituting (3.3.93) into (3.3.87) and (3.3.92) into (3.3.89) and solving, we get

gN2(t3) = −ln(GN2 + gL2 + GL0 + lGGN0 − l2GL0 +
lgoGE0

lh + GE0
gL0), (3.3.94)

GL2(t3) =
lG

l2
[GN2 −

1
l2

(gN0 − lGGN0)]. (3.3.95)

Using (3.3.88) and (3.3.95), we have

GE2(t3) =
lGlc

l2lm
[GN2(1 +

l2

lc
)− 1

l2
(gN0 − lGGN0)]. (3.3.96)

Finally, substituting (3.3.94)-(3.3.96) into equations (3.3.86) and (3.3.90) and numerically

integrating them, we obtain solutions of GN2 and gL2. When GN2 and gL2 are known,

gN2, GL2 and GE2 are determined from equations (3.3.94)-(3.3.96).

Combining the leading-order solutions and the O(e2)-solutions for each variable, we

compare the numerical and asymptotic results for all variables on the O(e−2)-timescale

in Figure 3.9. We note the good agreement between the numeric and the asymptotic re-

sults and in particular that the approximate solutions evolve to the correct steady-state

solutions.
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Figure 3.9: A comparison of the asymptotic and numerical solutions at the final t =
O(e−2) for all variables against log(t).

We have presented a model of the glutamate-glutamine cycle. The numerical solutions

of equations (3.3.7)-(3.3.11) and the asymptotic approximations on each timescale are

in excellent agreement (see Figures 3.7-3.9) when e = 0.05.

We conclude our asymptotic analysis by comparing the numerical solutions of sys-

tem (3.3.7)-(3.3.12): solid line; with the asymptotic solutions from the three different

timescales of interest. The results are presented in Figure 3.10 for different choices of e.

As expected, the agreement between the approximate solutions and the numerical sim-

ulations improves as e is decreased, the smaller value (epsilon) being used to validate

the asymptotic approximations.

3.4 Summary of Glutamate-Glutamine Model

In this chapter we have developed a mathematical model using the principle of mass

balance and the law of mass action [73] (for reactions (3.1.1) and (3.1.2)) to study the

metabolism of the Glu and Gln cycle in the nervous system. The resulting model con-

sists of six nonlinear ordinary differential equations that describe how Glu and Gln

levels in three different compartments (the neuron (N), ECS (E) and glial cell (L))
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(a) (b)

(c) (d)

Figure 3.10: Comparisons of the asymptotic and numerical solutions at all
timescales (timescale I: circle line; timescale II: cross line; and timescale
III: square line) for all variables when e is varied. (a): e = 0.5; (b): e = 0.1;
(c): e = 0.05; and (d): e = 0.01.
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change over time. We used estimates from the literature to infer that the size of these

three compartments are such that VE < VN ≈ VL [2, 17]. We have also found that there

is a conserved quantity in the model, allowing us to reduce it to five ODEs. We then

nondimensionalised the governing equations.

We estimated all parameters using inequalities (3.2.36) and (3.2.39) hold for physically

realistic steady-state solutions with e = 0.5 from physical realistic value [2, 17]. Nu-

merical simulations performed for a range of values of e (from the physically realistic

e = 0.5 to e = 0.05 � 1) reveal that the qualitative dynamics do not change as e varies.

We exploited this qualitative agreement to justify performing an asymptotic analysis

of the governing equations in the limit for which e � 1.

After suitably rescaling the system parameters and variables, we analysed equations

(3.3.7)-(3.3.12), showing there to be three timescales of interest. This analysis gave in-

sight into processes that controlled the different stages of the Glu-Gln cycle:

t = O(e2), t = O(1) and t = O(e−2).

Initially, on the short timescale t = O(e2) (i.e. we introduced the scaling t = e

2t1),

adding the leading order terms for each variable to those at O(e2), we derived expres-

sions for gN , GE and GL. These broke down as t1 = O(e−2) (i.e. t = O(1)), see Figure

3.7. This was used to motivate the analysis on the intermediate timescale. Taking the

limit as t1 = O(e−2), we were able to calculate the matching conditions for all variables.

On the intermediate timescale t = O(1) (or t = t2). After matching to the initial

timescale and combining the leading-order and O(e2) solutions for each variable, we

found that all approximations broke down when t2 = O(e−2) (see Figure 3.8). We were

once again able to obtain the matching conditions for the subsequent timescale by tak-

ing the limit as t2 = O(e−2).

On the final timescale t = O(e−2) (or t = e

−2t3). After matching to the intermediate

timescale and combining both the leading-order and the O(e2) solutions for each vari-

able, we found there was good agreement between the numerical and the asymptotical

solutions. In particular the approximations tended to the steady-state solutions of the

full system (3.3.7)-(3.3.12), see Figure 3.9.
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Finally, we compared the numerical solutions of our system (3.3.7)-(3.3.12) with the as-

ymptotic solutions from the three different timescales of interest (t = O(e2), t = O(1)

and t = O(e−2)) for different choices of e (see Figure 3.10). There was perfectly good

agreement with sufficient small e. Reducing e improved the agreement, thus validat-

ing our asymptotic approximations.

Despite being the dominant excitatory neurotransmitter in mammalian brain, Glu can

be toxic to neurons. After Gln is converted to Glu in the neuronal cell, Glu is stored in

the synaptic vesicle. When there is an influxes of calcium through the calcium channels

and the Glu receptors, the neuronal calcium triggers fusion of the synaptic vesicle and

Glu efflux occurs. However, the excess Glu in the ECS chronically over-activates Glu

receptors, causing the release of excess intracellular calcium and leading to neuronal

cell death. This process is known as excitotoxicity. As the intracellular calcium level is

one of the causes of the excitotoxicity, in the next chapter the model of Glu-Gln cycle is

extended to include intracellular calcium.
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CHAPTER 4

Calcium Signalling in the

Glutamate-Glutamine Cycle

In the previous chapter, we developed a dimensionless model formulated as a system

of ODEs in order to study the Glu-Gln cycle within the central nervous system. Both

analytical and numerical solutions were presented. Numeric solutions imply that qual-

itative dynamics of system do not change as e varies from physically realistic value

(e = 0.5) to asymptotically small value (e = 0.05 � 1). We exploit this qualitative

agreement to motivate performing asymptotic analysis of governing equations in as-

ymptotic limit (e � 1). This analysis provides insight into processes that regulate

different stages of the Glu-Gln cycle. In this chapter we focus on the role of calcium

signalling in the Glu-Gln cycle. We start by explaining how calcium interacts with the

Glu-Gln cycle and how it triggers excitotoxicity in §4.1. In §4.2, the model of the Glu-

Gln cycle in Chapter 3 is then modified to investigate how calcium interacts with the

Glu-Gln cycles. Model analysis and simulations are presented in §4.3. In §4.4 we con-

sider when our system affects excitotoxicity by adding a toxic source to the extracellular

Glu. In the last section, we summarise our findings and discuss the recent model.

4.1 Introduction

Glu is the key excitatory neurotransmitter in the mammalian brain. After being re-

leased from neuronal cells, extracellular Glu is rapidly transported to glial cells by the

glutamate-aspartate transporter GLAST (for details see §1.1.4) in order to prevent Glu

neurotoxicity or excitotoxicity (excitotoxicity is explained below). In glial cells, Glu is

converted to Gln via the enzyme glutamine synthetase. Gln is then released to the neu-

ronal cells via the ECS (extracellular space). In the neuronal cells Gln is converted to
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Figure 4.1: A schematic diagram of the release of a neurotransmitter (Glu) from a
synaptic vesicle. Gln is released back to the neurons where Glu is regener-
ated via PAG. Neuronal Glu is stored in the synaptic vesicle and released to
the ECS when Ca2+ influx through voltage-gated channels and glutamate
receptor triggers fusion of the synaptic vesicle with the plasma membrane.
Transported to the glial cells via GLAST, Glu is converted to Gln via GS.
Ca2+ is released from the cells via Ca2+ pump and Na+/Ca2+ exchanger.
Glu (©) = glutamate; Gln (�) = glutamine; Ca2+ (⊗) = calcium; GS = the
enzyme glutamine synthetase; PAG = the enzyme glutaminase; GLAST
= glutamate aspartate transporter; EAAT5 = excitatory amino acid trans-
porter 5; SN1 = system N transporter 1; SA1 = system A transporter 1; Na+

= sodium; K+ = potassium.

Glu via the enzyme glutaminase and the resulting Glu is stored in synaptic vesicles.

The concentration of Glu in the vesicles can be very high (in excess of 20 mM) [36]. Glu

release then occurs by exocytosis (i.e. the release of cellular substances contained in

cell vesicles). The vesicle moves toward the presynaptic membrane and waits for Glu

release. When an action potential arrives at the terminal (see Figure 4.1), there is an in-

flux of calcium (Ca2+) through voltage-gated channels and Glu receptors. This triggers

fusion of the synaptic vesicle with the plasma membrane and Glu efflux occurs [36–40].

This process constitutes the Glu-Gln cycle.

It is believed that Ca2+ influx is necessary for the release of neurotransmitters [39].

Thus we consider calcium dynamics in order to understand clearly its roles in the Glu-

Gln cycle. Calcium is maintained at a very low level inside resting cells (0.1 mM) but

may rise to 5 mM when cells are stimulated. By contrast, extracellular calcium is ap-

proximately 2 mM [37, 40, 65]. Since the internal concentration is low, there is a steep

concentration gradient across the cell membrane. As there are different levels, the cells
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are able to raise their calcium concentration rapidly by opening calcium voltage-gated

channels (see Figure 4.1) and relying on passive flow down a steep concentration gradi-

ent. In addition to the action of the voltage-gated channels, calcium can enter neuronal

cells via the Glu receptor (NMDA, n-methyl-d-aspartic acid). When the Glu receptor

is activated by extracellular Glu, ion channels on the cell membrane open. This allows

sodium (Na+) and small amounts of Ca2+ to flow into the cells and potassium (K+) to

flow out of the cells [36–40].

Calcium is removed from the cells in two principal ways [40, 58]. Firstly, it is pumped

out of a cell, a process that requires expenditure of energy by a calcium ATPase that

uses energy stored in ATP. Secondly, there is also a Na2+/Ca2+ exchanger in the cell

membrane that uses the energy of the Na2+ electrochemical gradient to remove cal-

cium from the cell at the expense of Na2+ entry (see Figure 4.1).

We note that the calcium dynamics within a glial cell are similar to those within a

neuron except there is no calcium influx via the Glu receptor. The glial Glu receptor

(AMPA, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid) allows Na+ to

flow into the cells and K+ to flow out [37, 40].

Several studies support the hypothesis that Glu and calcium play important roles in

excitotoxicity [40, 53, 75]. Frequently, the Glu concentration released into the ECS rises

to high levels (1 mM), but it remains at this level for only a few milliseconds. If abnor-

mally high levels of Glu accumulate in the ECS, the excessive activation of neuronal

Glu receptors allows high levels of calcium to enter the neuronal cells. This influx acti-

vates a number of enzymes which damage cell structures and cause the cells die. This

is the process of excitotoxicity.

The aim of this chapter is to study the role of calcium of the Glu-Gln cycle and in partic-

ular the influence of intracellular calcium dynamics on excitotoxicity. In the remainder

of this chapter we extend the model of the Glu-Gln cycle developed in Chapter 3 to

account for calcium levels in the compartment of interest which is the neuronal cell,

since the excitotoxicity occurs only in the neuronal cell. We also present asymptotic

analysis and numerical simulations of a system. The excitotoxicity will be presented.

The chapter concludes with a summary of our results.
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4.2 Model Motivation and Nondimensionalisation

In this section we start by developing an ODE which describes how intracellular lev-

els of Ca2+ change over time. We then couple this ODE to our model of the Glu-Gln

cycle (see equations (3.2.15)-(3.2.19) in Chapter 3), assuming that intracellular Ca2+

within the neuronal cell is the rate-limiting substrate (i.e. the glial and extracellular

calcium concentrations are assumed to be present in abundance). We notice that only

the neuronal calcium level is considered in here differing from the Glu and Gln levels

in Chapter 3 that they occur in three compartments. This is because the excitotoxicity

occurs only in the neuronal cell. After nondimensionalising the full model, we use it

to study how the rate of calcium influx influences the metabolic demand of the neuro-

transmitters.

As for Chapter 3, we use the principle of mass balance [73] to derive an ODE which

describes the evolution of CN , the concentration of neuronal calcium (in mM). In what

follows we denote by CE and g3 the assumed constant concentration of extracellular

calcium and the rate of calcium uptake from the neuronal cell to the ECS.

When considering the evolution of CN , we suppose that the dominant factors are:

• the rate at which extracellular calcium enters via the calcium channel (a passive

process),

• the rate at which it enters via the Glu receptor (this requires activation of extra-

cellular Glu and is assumed to be an active process),

• the rate of calcium efflux via the calcium pump and the Na2+/Ca2+ exchanger

(an active process).

We assume that the rate at which calcium passes from the ECS via the calcium channel

to the neuronal cell is proportional to (CE − g3CN). Combining the above and noting

that the total amount of the neuronal calcium is given by VNCN (VN is the volume of

the neuronal cell), we deduce that the evolution of CN satisfies:

d(VNCN)
dt

= h̃0 A2(CE − g3CN) + h1VECE − h2VNCN , (4.2.1)

where A2 and VE represent respectively the cross-sectional area of nervous system and

the volume of the ECS. In equation (4.2.1), the positive constants h̃0, h1 and h2 represent

the rate at which calcium enters the neuronal via the calcium channel, its rate of influx
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via the Glu receptor and its rate of efflux, respectively. The physical interpretation and

units of all parameters that appear in (4.2.1) are given in Table 4.1.

Parameters Physical Meanings Units
h̃0 Ca2+ influx rate into the neuronal cell via the calcium

channel and the exchanger
(mm)min−1

h1 Ca2+ influx rate into the neuronal cell via the gluta-
mate receptor

min−1

h2 Ca2+ efflux rate from the neuronal cell via calcium
pump

min−1

CE the extracellular Ca2+ concentration mM
VN , VE volume of the neuronal cell and the ECS, respectively (mm)3

A2 the cross-sectional area of nervous system, (mm)2

g3 Ca2+ uptake from the neuronal cell to the ECS coeffi-
cient

-

Table 4.1: Interpretation of the parameters that appear in equation (4.2.1).

Recalling that VN and VE assumed to be constant, we can rewrite the equation (4.2.1) as

follows:

dCN

dt
= h0(CE − g3CN) + h1

VE

VN
CE − h2CN , (4.2.2)

where h0 =
h̃0 A2

VN
.

Initial Conditions

As stated above, intracellular levels of Ca2+ can vary markedly in comparison with

CE, the extracellular calcium concentration. For example, under normal physiological

conditions we anticipate CE ∼ 2 mM while CN can vary from 0.1 mM for a resting cell

to 5 mM for an activated cell [37, 40, 65]. Accordingly, we prescribe the initial value of

the neuronal calcium (in mM) to be

CN(0) = 10−3. (4.2.3)

In summary, equations (4.2.2) and (4.2.3) describe how the neuronal calcium concen-

tration changes in neuronal cells. In the next section, we couple an equation (4.2.2) to

our earlier model of the Glu-Gln cycle (3.2.15)-(3.2.19).
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4.2.1 Calcium Signalling in the Glutamate-Glutamine Cycle

Before nondimensionalising the neuronal calcium equation, we couple the equation

(4.2.2) to the dimensional equations (3.2.15)-(3.2.19) from Chapter 3. Thus our dimen-

sional full model becomes

dGN

dt
= l1gN − lGGN , (4.2.4)

dgN

dt
= ln[(

VT

VE
GT −

VN

VE
(GN + gN + GL + gL)− GE)− g1gN ]− l1gN , (4.2.5)

dGE

dt
=

VN

VE
lGGN − lmGE +

VL

VE
lcGL, (4.2.6)

dGL

dt
=

VE

VL
lmGE − (l2 + lc)GL, (4.2.7)

dgL

dt
= l2GL −

lgoGE

lh + GE
[gL − g2(

VT

VE
GT −

VN

VE
(GN + gN + GL + gL)

−GE)], (4.2.8)
dCN

dt
= h0(CE − g3CN) + h1

VE

VN
CE − h2CN , (4.2.9)

We note that lG, the rate at which the neuronal Glu is released to the ECS depends

on the intracellular calcium levels (see §4.1). By contrast, h1, the calcium influx via the

Glu receptor, and h2, the calcium efflux, depend on the extracellular Glu levels and the

intracellular calcium levels, respectively. Therefore, we define the parameters which

involve with calcium signalling based on biological information [36–39] as follows. In-

crease of extracellular Glu (GE) activates Glu receptors, so high intracellular calcium

(CN) occurs. However, increasing of CN leads to GN (neuronal Glu) decreasing but GE

increasing. Thus, it is positive feedback that regulates the calcium signalling in the

Glu-Gln cycle.

We assume that the rate of influx of Ca2+ via the calcium channel (h0) is constant. By

contrast, the rate of influx via the Glu receptor (h1) and the rate of efflux (h2) have

typically been medelled as saturating functions of GE and CN , respectively. Ca2+ influx

via the Glu receptor (h1) relies on the extracellular Glu level (GE) for activation. Thus,

we set

h1 =
h10GE

h11 + GE
, (4.2.10)

where h10 represents the maximum rate (in min−1) at which Ca2+ can be actively trans-

ported from the ECS to the neuronal cell, and h11 is the concentrations of Ca2+ in the

neuronal cell (in mM) at which this rate is half-maximal.
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As in [40], we assume that the rate of efflux of Ca2+ (h2) depends on the intracellular

calcium level, in a similar manner, so that

h2 =
h20CN

h21 + CN
, (4.2.11)

where h20 represents the maximum rate (in min−1) at which Ca2+ can be secreted to

the ECS from the neuronal cell and h21 is the concentration of Ca2+ in the neuronal (in

mM) at which the rate is half-maximal.

In addition, since Glu release from the neuronal cell depends on the intracellular cal-

cium concentration, we assume that the rate at which Glu is released to the ECS (lG) is

a saturating function of the intracellular calcium level:

lG =
lG0CN

lG1 + CN
, (4.2.12)

where lG0 represents the maximum rate (in min−1) at which intracellular Glu can be

secreted to the ECS from the neuronal cell and lG1 is the concentration of Glu in the

neuronal cell (in mM) at which the rate is half-maximal .

Thus the Ca2+ dynamics and the Glu-Gln cycle are coupled through lG = lG(CN),

h1 = h1(GE) and h2 = h2(CN). Substituting from (4.2.10)-(4.2.12) into the equations

(4.2.4)-(4.2.9), our model now becomes:

dGN

dt
= l1gN −

lG0CN

lG1 + CN
GN , (4.2.13)

dgN

dt
= ln[(

VT

VE
GT −

VN

VE
(GN + gN + GL + gL)− GE)− g1gN ]− l1gN ,(4.2.14)

dGE

dt
= (

VN

VE
)

lG0CN

lG1 + CN
GN − lmGE +

VL

VE
lcGL, (4.2.15)

dGL

dt
= (

VE

VL
)lmGE − (l2 + lc)GL, (4.2.16)

dgL

dt
= l2GL −

lgoGE

lh + GE
[gL − g2(

VT

VE
GT −

VN

VE
(GN + gN + GL + gL)

−GE)], (4.2.17)
dCN

dt
= h0(CE − g3CN) + (

VE

VN
)

h10GE

h11 + GE
CE − h20CN

h21 + CN
CN . (4.2.18)
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4.2.2 Nondimensionalisation

The calcium equation (4.2.18) and the new term of lG (lG =
lG0CN

lG1 + CN
) shown in equa-

tions (4.2.13) and (4.2.15) are nondimensionalised using a similar process to that used

for the model of the Glu-Gln model in Chapter 3. The other variables and parameters

are nondimensionalised as shown in §3.2.2. We rescale variable CN with CE, time t

with
1
l1

(l1 represents the rate constant that converts Gln to Glu via enzyme PAG in

the neuronal cell). We recall that we have estimated VN ≈ VL, and e =
VE

VN
= 0.5, being

the ratio of the ECS volume and the neuronal cell volume.

In addition, we introduce the following new dimensionless parameter groupings

l

∗
G0 =

lG0

l1
, l

∗
G1 =

lG1

CE , h∗0 =
h0

l1
, h∗10 =

h10

l1
,

h∗11 =
h11

GT , h∗20 =
h20

l1
, h∗21 =

h21

CE ,

(GT is the total amounts of Glu and Gln in the three compartments) and recall the

following dimensionless parameters which were introduced in Chapter 3

l

∗
n =

ln

l1
, l

∗
2 =

l2

l1
, l

∗
h =

lh

GT
,

l

∗
m =

lm

l1
, l

∗
c =

lc

l1
, l

∗
go =

lgo

l1
.

Under the above rescaling, the governing equations simplify to give (dropping the stars

for notational simplicity)

dGN

dt
= gN −

lG0CN

lG1 + CN
GN , (4.2.19)

dgN

dt
= e

−2
ln[1− e(GN + gN + GL + gL)− e

2GE − e

2
g1gN ]− gN , (4.2.20)

e

dGE

dt
=

lG0CN

lG1 + CN
GN − elmGE + lcGL, (4.2.21)

dGL

dt
= elmGE − (l2 + lc)GL, (4.2.22)

dgL

dt
= l2GL −

lgoGE

lh + GE
[gL − e

−2
g2(1− e(GN + gN + GL + gL)

−e

2GE)], (4.2.23)
dCN

dt
= h0(1− g3CN) + e

h10GE

h11 + GE
− h20CN

h21 + CN
CN . (4.2.24)

We solve (4.2.19)-(4.2.24) subject to the following initial conditions (see equation (3.2.20)
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for Glu and Gln, and (4.2.3) for CN (rescaling CN with CE (CE = 2))):

GN(0) = G(0)
N , gN(0) = g(0)

N , GE(0) = G(0)
E ,

GL(0) = G(0)
L , gL(0) = g(0)

L , CN(0) = C(0)
N . (4.2.25)

4.2.3 Numerical Results

Before constructing the numerical solutions of the equations (4.2.19)-(4.2.25), we note

that we could not find the explicitly steady-state solutions of equations (4.2.19)-(4.2.25).

The default parameter values in (4.2.19)-(4.2.24) are fixed at the same values used to

solve (3.2.23)-(3.2.27) in Chapter 3 (see Table 4.2). Moreover, the default values of the

new parameters are stated in Table 4.3. We note that we set lG1 < lG0 and keep

lG0 = 0.025 which is the same as lG in Chapter 3. We assume that h20 and g3 are

greater than other remainder parameters to ensure that our model does not exhibit

excitotoxicity.

Nondimensional Parameter Default Value
lm 48

g1, lc, l2 2
lgo 0.5
ln 0.125
g2 0.0625
lh 0.025

Table 4.2: The default parameter set that is used in equations (3.2.23)-(3.2.27).

Nondimensional Parameter Default Value
h20 5
g3 1

h21, h10, h11, 0.25
lG0, h0 0.025

lG1 0.01
Table 4.3: The new default parameter set.

In Figure 4.2, we show a comparison of numerical solutions of equations (4.2.19)-

(4.2.25) by the solid line, and those of equations (3.2.23)-(3.2.27) by the dashed line

against log(t) since the system rapidly tends to a steady-state with parameters from

Tables 4.2 and 4.3, and e =
VE

VL
= 0.5 [2, 17]. These Glu and Gln behaviours are

qualitatively similar on both systems, while CN increases until t ∼ 1 and settles to a

steady-state.
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Figure 4.2: A comparison of numerical solutions (4.2.19)-(4.2.24) by the solid
line, and (3.2.23)-(3.2.27) by the dashed line with e = 0.5 and other pa-
rameters as shown in Tables 4.2 and 4.3.

In the next section we present an asymptotic analysis of system (4.2.19)-(4.2.25) by start-

ing with rescaling all parameters and variables in term of the physically realistic value,

e = 0.5. As for Chapter 3, e = 0.5 is not small enough to perform asymptotic analy-

sis. In addition, to avoid the repetitive process from showing the qualitative dynamics

of equations (4.2.19)-(4.2.24) do not change when e varies, as for Chapter 3, we use

e = 0.05 � 1 that the analysis is tractable.

4.3 Model Analysis

We start by estimating the dimensionless parameters in equations (4.2.19)-(4.2.24) and

then motivate our scaling of the dependent variable CN , based on the physically realis-

tic value e = 0.5. We fix some estimated parameters and the scaling of Glu and Gln as

used in Chapter 3. We note that the new rate of release of GN (i.e.
lG0CN

lG1 + CN
in (4.2.19)

and (4.2.21)) is also estimated below.
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4.3.1 Parameter and Variable Scaling

As for Chapter 3, we recall that some Glu-Gln parameters and variables scale with e

(for more details see §3.3) as follows:

lc, l2, g1 = O(1), lgo = O(e), lh = O(e2), ln = O(e3), g2 = O(e4),

and

GN , gL = O(e−1) >> gN , GL = O(e) >> GE = O(e2).

We next scale the new parameters (lG0, lG1, h0, g3, h10, h11, h20, h21) which are in-

troduced in this chapter. As mentioned in §4.1, in order to prevent excitotoxicity, in-

tracellular calcium must be maintained at low levels. Therefore, we suppose that all

parameters involving the rates of Ca2+ efflux (namely g3, h20 and h21) are considerably

greater than the correspondence rates of influx (h0, h10 and h11). We thus choose

g3 = O(1), h20 = O(1) and h21 = e

2h̄21. (4.3.1)

We note that h21 is scaled with e

2 in order to ensure that the Ca2+ efflux rate (i.e.
h20CN

h21 + CN
, note that h21 appears in the denominator) is greater than the Ca2+ influx

rate. In addition, we choose

h0 = e

2h̄0, h11 = e

2h̄11 and h10 = eh̄10. (4.3.2)

We choose h11 to have the same magnitude as GE, and the calcium influx rate via the

Glu receptor (i.e.
h10GE

h11 + GE
) to be higher than that rate via the calcium channel (h0), in

order to give influx via the Glu receptor more influence.

As stated above, calcium is normally maintained at very low levels inside cells [37, 65].

We deduce that CN = O(GE) (note that GE is scaled to be the smallest in Chapter 3).

Recalling from above that GE = O(e2), we consequently obtain the following scaled

dependent variable

CN = e

2C̄N . (4.3.3)
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Finally, we choose

lG0 = e

2
l̄G0 and lG1 = e

2
l̄G1 (4.3.4)

in order to ensure that the values of lG0 and lG1 that we use in (4.2.13) and (4.2.15)

are such that the nonlinear intracellular Ca2+-dependent term (see (4.2.12)) is similar

in magnitude lG to that is used in Chapter 3.

Combining the above assumptions and inserting the associated rescalings in the gov-

erning ODEs we deduce that the equations (4.2.19)-(4.2.25) transform to give (dropping

the bars for notational simplicity):

e

−2 dGN

dt
= gN −

lG0CN

lG1 + CN
GN , (4.3.5)

dgN

dt
= ln[1− (GN + gL)− e

2(gN + GL)− e

4GE − e

3
g1gN ]− gN , (4.3.6)

e

2 dGE

dt
=

lG0CN

lG1 + CN
GN − lmGE + lcGL, (4.3.7)

dGL

dt
= lmGE − (l2 + lc)GL, (4.3.8)

e

−2 dgL

dt
= l2GL −

lgoGE

lh + GE
[gL − e

3
g2(1− (GN + gL)− e

2(gN + GL)

−e

4GE)], (4.3.9)
dCN

dt
= h0(1− e

2
g3CN) +

h10GE

h11 + GE
− h20CN

h21 + CN
CN , (4.3.10)

with

GN(0) = G(0)
N , gN(0) = g(0)

N , GE(0) = G(0)
E ,

(4.3.11)

GL(0) = G(0)
L , gL(0) = g(0)

L , CN(0) = C(0)
N .

We note that exact values for the rescaled-initial conditions are stated in equations

(3.3.12), and (4.2.3) when applied to the new scaling of CN (see (4.3.3)).

4.3.2 Numerical Simulations

In this section we present numerical solutions of equations (4.3.5)-(4.3.11) against log(t)

by using the associated default parameters, as shown in Table 4.2 and 4.3. Typical so-

lutions of equations (4.3.5)-(4.3.11) are shown in Figure 4.3.
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As in Chapter 3, we note that all dimensionless parameters for the remainder of this

chapter (except e) will be taken to be unity with the physically realistic value e = 0.5

being the focus of attention. Figure 4.3 shows a series of semilog plots of the numerical

solutions of equations (4.3.5)-(4.3.11) with the asymptotically small value e = 0.05:

these provide guidance for the small e asymptotic analysis.

Figure 4.3: Series of semilog plots of numerical solutions of equations (4.3.5)-(4.3.11)
with e = 0.05 and the associated default values as shown in Tables 4.2 and
4.3.

From Figure 4.3, the neuronal Ca2+, CN , increases dramatically for 10−3 < t < 1,

before slowly tending to a steady-state. As the behaviour of GN , gN , GE, GL and gL

in equations (4.3.5)-(4.3.11) is qualitatively similar to that in equations (3.3.7)-(3.3.12),

we are guided by the asymptotic analysis from Chapter 3 and that presented later in

this chapter. In particular, in terms of what varies when t = O(e2), when t = O(1) and

when t = O(e−2), these results are similar to what happens in Chapter 3.

In the next section we perform a time-dependent asymptotic analysis of equations

(4.3.5)-(4.3.11).
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4.3.3 Asymptotic Expansions

Guided by the numerical simulations presented in §4.3.2 and the analysis from Chapter

3, in this section we construct asymptotic expansions of equations (4.3.5)-(4.3.10) on

three distinct timescales: t = O(e2), t = O(1) and t = O(e−2). We notice that, as for

Chapter 3, when we write the steady-state solutions of equations (4.3.5)-(4.3.10) in term

of e, there is no O(e) term in any of the variables.

Timescale I: t = O(e2)

On the initial timescale, we re-scale t = e

2t1. Equations (4.3.5)-(4.3.10) transform to

give

1
e

4 ·
dGN

dt1
= gN −

lG0CN

lG1 + CN
GN , (4.3.12)

1
e

2 ·
dgN

dt1
= ln[1− (GN + gL)− e

2(gN + GL)− e

4GE − e

3
g1gN ]− gN , (4.3.13)

dGE

dt1
=

lG0CN

lG1 + CN
GN − lmGE + lcGL, (4.3.14)

1
e

2 ·
dGL

dt1
= lmGE − (l2 + lc)GL, (4.3.15)

1
e

4 ·
dgL

dt1
= l2GL −

lgoGE

lh + GE
[gL − e

3
g2(1− (GN + gL)− e

2(gN + GL)

−e

4GE)], (4.3.16)
1
e

2 ·
dCN

dt1
= h0(1− e

2
g3CN) +

h10GE

h11 + GE
− h20CN

h21 + CN
CN . (4.3.17)

We seek regular power series expansions of the dependent variables in terms of the

small parameter, e. The leading order equations can be solved to give:

GN0(t1) = G(0)
N , gN0(t1) = g(0)

N , GL0(t1) = G(0)
L ,

gL0(t1) = g(0)
L , CN0(t1) = C(0)

N , (4.3.18)

where the superscripts (0) represent their initial conditions, and

GE0(t1) =
1

lm
(

lG0C(0)
N

lG1 + C(0)
N

G(0)
N + lcG(0)

L ) +

[G(0)
E − 1

lm
(

lG0C(0)
N

lG1 + C(0)
N

G(0)
N + lcG(0)

L )]e−lmt1 . (4.3.19)

As in what happens in §3.3.5, the O(e) terms in all dependent variables vanish. Then
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we continue our analysis by focussing on O(e2) term. Equating coefficients of O(e2)

and integrating them, the solutions of gN2(t1), GL2(t1) and GE2(t1) are the same as

shown in equations (3.3.39)-(3.3.41), respectively, on inserting the constant

lG =
lG0C(0)

N

lG1 + C(0)
N

.

By contrast, we get

CN2(t1) = (
h10(lGG(0)

N + lcG(0)
L )

lmh21 + lGG(0)
N + lcG(0)

L

+ h0 −
h20C(0)

N

2

h21 + C(0)
N

)t1. (4.3.20)

Combining the solutions of all variables from leading-order to O(e2), we can see the

expansions of gN , GE, GL and CN break down when t1 = O(e−2), or when t = O(1);

for on example (of this breaking down) see equation (4.3.20) when t1 = O(e−2). As

t1 = O(e−2), we have

CN = C(0)
N +

h10(lGG(0)
N + lcG(0)

L )

lmh21 + lGG(0)
N + lcG(0)

L

+ h0 −
h20C(0)

N

2

h21 + C(0)
N

. (4.3.21)

Equation (4.3.21) will be used as the matching condition for CN in the follow-

ing timescale, while the matching conditions for gN , GL and GE are given by equation

(3.3.45) on substituting lG =
lG0C(0)

N

lG1 + C(0)
N

.

As depicted in Figure 4.4, gN , GE, GL and CN change over this initial timescale. There is

good agreement between the numerical and analytical solutions on this short timescale

(e.g. for 0 ≤ t ≤ 10−1).
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Figure 4.4: A comparison of the asymptotic and numerical solutions on the initial
timescale with e = 0.05, other parameter values and initial conditions as
used in Figure 4.3. Key: solid line (numerical solutions of the full system
(4.3.5)-(4.3.11)), dashed line (asymptotic solutions expanded to O(e2) on
the first timescale).

Timescale II: t = O(1)

On this intermediate timescale, t = t2
1, and the governing equations are given by

equations (4.3.5)-(4.3.10) which we re-state below:

1
e

2 ·
dGN

dt2
= gN −

lG0CN

lG1 + CN
GN , (4.3.22)

dgN

dt2
= ln[1− (GN + gL)− e

2(gN + GL)− e

4GE − e

3
g1gN ]− gN , (4.3.23)

e

2 dGE

dt2
=

lG0CN

lG1 + CN
GN − lmGE + lcGL, (4.3.24)

dGL

dt2
= lmGE − (l2 + lc)GL, (4.3.25)

1
e

2 ·
dgL

dt2
= l2GL −

lgoGE

lh + GE
[gL − e

3
g2(1− (GN + gL)− e

2(gN + GL)

−e

4GE)], (4.3.26)
dCN

dt2
= h0(1− e

2
g3CN) +

h10GE

h11 + GE
− h20CN

h21 + CN
CN . (4.3.27)

1As for Chapter 3, we note that we have renamed t as t2 in order to make it clear we are examining the
intermediate timescale, but we could equally have simply written t.
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Recalling that on the previous timescale gN(t1), GE(t1), GL(t1) and CN(t1) changed

over time, we apply the matching conditions from the previous timescale at t2 = 0 (i.e.

in order to get the initial conditions on this timescale; see more details at the end of the

previous timescale). By contrast, the initial conditions for GN and gL on this timescale

are the same as those on the timescale I.

Taking the leading-order terms of (4.3.22)-(4.3.27) and matching to the previous

timescale again gives a system which can be solved sequentially to give

GN0(t2) = G(0)
N , gL0(t2) = g(0)

L , (4.3.28)

gN0(t2) = ln(1− G(0)
N − g(0)

L ) + [g(0)
N − ln(1− G(0)

N − g(0)
L )]e−t2 , (4.3.29)

GE0(t2) =
1

lm
[
lG0G(0)

N CN0(t2)
lG1 + CN0(t2)

+ lcGL0(t2)]. (4.3.30)

We note that the superscript (0) denotes the initial value of a particular variable which

differs from the previous timescale, except for G(0)
N and g(0)

L .

Substituting (4.3.28) and (4.3.30) into (4.3.25) and (4.3.27), we have

dGL0

dt2
=

lG0G(0)
N CN0

lG1 + CN0
− l2GL0, (4.3.31)

dCN0

dt2
= h0 +

h10GE0

h11 + GE0
− h20CN0

h21 + CN0
CN0. (4.3.32)

We integrate equations (4.3.35)-(4.3.37) numerically using (4.3.30) to substitute for GE.

In this way we can solve for GL, CN and GE.

Noting that the O(e) terms are 0 for all variables, we move on to O(e2). Taking the

O(e2) terms of (4.3.22)-(4.3.27) gives the system
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dGN2

dt2
= gN0 −

lG0G(0)
N CN0

lG1 + CN0
, (4.3.33)

dgN2

dt2
= −ln[GN2 + gL2 + gN0 + GL0]− gN2, (4.3.34)

dGL2

dt2
= lmGE2 − (l2 + lc)GL2, (4.3.35)

dgL2

dt2
= l2GL0 −

lgog(0)
L GE0

lh + GE0
, (4.3.36)

dCN2

dt2
= −h0g3CN0 +

h10GE2

2(h11 + GE0)
(1− GE0

h11 + GE0
)

−h20CN0CN2

h21 + CN0
(1− CN0

2(h21 + CN0)
), (4.3.37)

dGE0

dt2
=

lG0

2(lG1 + CN0)
[CN0GN2 + G(0)

N CN2 −
G(0)

N CN0CN2

lG1 + CN0
]− lmGE2

+lcGL2. (4.3.38)

Differentiating equation (4.3.30) and substituting it into (4.3.38), we have

GE2(t2) =
lG0

2lm(lG1 + CN0)
(CN0GN2 + G(0)

N CN2 −
G(0)

N CN0CN2

lG1 + CN0
) +

lc

lm
GL2

− 1
l

2
m

[
lG0G(0)

N
lG1 + CN0

(1− CN0

lG1 + CN0
)(h0 +

h10GE0

h11 + GE0
− h20C2

N0
h21 + CN0

)

+lc(
lG0G(0)

N
lG1 + CN0

− l2GL0)]. (4.3.39)

Substituting (4.3.39) into the equations (4.3.33)-(4.3.37) and integrating numerically

those equations, we obtain solutions to equations (4.3.33)-(4.3.38). The solutions of

each variable on the intermediate timescale are composed of a leading order term and

an O(e2) contribution. In Figure 4.5, we can see clearly that, when t2 → ¥, the expan-

sions of all variables break down. Moreover, we can see good agreement between the

numerical results and the asymptotic approximations in the range 10−1 ≤ t ≤ 10 for

all variables on this timescale.

Next, we show that the system behaviour finally brings it to its steady state on the final

timescale.
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Figure 4.5: A comparison of the numerical (solid line) and asymptotic (dashed line)
solutions on the second timescale (t = O(1)).

Timescale III: t = O(e−2)

The final timescale of interest is the long timescale t = e

−2t3. On this timescale the

governing equations become

dGN

dt3
= gN −

lG0CN

lG1 + CN
GN , (4.3.40)

e

2 dgN

dt3
= ln[1− (GN + gL)− e

2(gN + GL)− e

4GE − e

3
g1gN ]− gN , (4.3.41)

e

4 dGE

dt3
=

lG0CN

lG1 + CN
GN − lmGE + lcGL, (4.3.42)

e

2 dGL

dt3
= lmGE − (l2 + lc)GL, (4.3.43)

dgL

dt3
= l2GL −

lgoGE

lh + GE
[gL − e

3
g2(1− (GN + gL)− e

2(gN + GL)

−e

4GE)], (4.3.44)

e

2 dCN

dt3
= h0(1− e

2
g3CN) +

h10GE

h11 + GE
− h20CN

h21 + CN
CN . (4.3.45)

Since all variables evolve during the second timescale, their initial conditions on this

final timescale differ from those used in the previous one. Matching to the previous
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timescale (as t2 → ¥ and t3 → 0), we have the initial conditions of this timescale.

Taking the leading-order expressions of (4.3.40)-(4.3.45), we have:

dGN0

dt3
= gN0 −

lG0CN0

lG1 + CN0
GN0, (4.3.46)

dgL0

dt3
= l2GL0 −

lgoGE0

lh + GE0
gL0, (4.3.47)

0 = ln[1− (GN0 + gL0)]− gN0, (4.3.48)

0 =
lG0CN0

lG1 + CN0
GN0 − lmGE0 + lcGL0, (4.3.49)

0 = lmGE0 − (l2 + lc)GL0, (4.3.50)

0 = h0 +
h10GE0

h11 + GE0
− h20CN0

h21 + CN0
CN0. (4.3.51)

Rearranging equation (4.3.48) gives

gN0(t3) = ln[1− GN0 − gL0]. (4.3.52)

Adding equations (4.3.49) and (4.3.50), we get

GL0(t3) = (
lG0CN0

lG1 + CN0
)(

GN0

l2
). (4.3.53)

Combining equations (4.3.50) and (4.3.53), we get

GE0(t3) = (
l2 + lc

l2lm
)(

lG0CN0

lG1 + CN0
)GN0. (4.3.54)

From (4.3.51), we have

GE0(t3) =
h20h11C2

N0 − h0h11(h21 + CN0)
(h10 + h0)(h21 + CN0)− h20C2

N0
. (4.3.55)

We can see that CN0 varies with time since GN0 = GN0(t3) satisfies equation (4.3.46).

When CN0 is known, we can solve for other variables. Equations (4.3.54) and (4.3.55)

are a pair of simultaneous equations for GE0. Therefore we have a cubic equation for

CN0:

z(CN0) ≡ G0C3
N0 + G1C2

N0 + G2CN0 + G3 = 0, (4.3.56)
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where

G0 = −[(l2 + lc)lG0h20GN0 + lml2h20h11] < 0,

G1 = [(l2 + lc)(h10 + h0)lG0GN0 + lml2h11(h0 − lG1h20)],

G2 = [(l2 + lc)(h10 + h0)lG0h21GN0 + lml2h0h11(lG1 + h21)] > 0,

G3 = [lml2lG1h0h11h21] > 0.

We note that GN0 is greater than zero and all parameter values are positive. Thus,

G0 < 0, G2 > 0 and G3 > 0. When applying the Descartes’ rule of signs (for example

see [72]), the cubic equation (4.3.56) has only one positive real root for whatever sign of

G1 is. The other two roots are negative real roots or complex conjugates.

The cubic equation (4.3.56) will have two distinct negative real roots and one positive

real root if

4p3 + 27q2 < 0, (4.3.57)

where p =
G2

G0
− G2

1

3G2
0

and q =
G3

G0
− G1G2

3G2
0

+
2
27

G3
1

G3
0

. Therefore if (4.3.57) holds, the one

positive real root in term of GN0 of equation (4.3.56) is

CN0 = 2D0 −
G1

3G0
, (4.3.58)

where

D0 + iD1 =
3

√
− q

2
+ i

√
−4p3 + 27q2

108
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Substituting (4.3.58) into (4.3.53) and (4.3.54), we have GE0 and GL0 in terms of GN0.

When GE0 and GL0 are known, we can solve a system (4.3.46)-(4.3.47) numerically to

get GN0 and gL0. In this way, we also solve for gN0, GL0, GE0 and CN0 from equations

(4.3.52), (4.3.53), (4.3.54) and (4.3.58), respectively.

The numerical and asymptotic results for all variables on the final timescale

(t = O(e−2)) against log(t) are shown in Figure 4.6. It can be seen that there is good

agreement between the numerical and analytical solutions on this timescale. We note

that on this final timescale it is sufficient to consider only the leading-order terms.

Here we have presented a model of the calcium signalling in the glutamate-glutamine
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Figure 4.6: A comparison of the asymptotic and numerical solutions on the final
timescale (t = O(e2)).

cycle by adding the neuronal calcium level into the model of the glutamate-glutamine

cycle in Chapter 3. The numerical and asymptotic approximations of equations (4.3.5)-

(4.3.10) do match perfectly on every timescale (see Figures 4.4-4.6) with the asymptot-

ically small value e = 0.05 � 1. In addition, we also show the corresponding results

of the numerical and asymptotic approximations for physically realistic value e = 0.5

(see Figure 4.7). This also improve that the higher value of e can not be used to validate

the asymptotic approximations.

There is some clinical evidence that injecting Glu can destroy neuronal cells [41, 51, 52].

Lucas and Newhouse [41] say that feeding Glu to infant mice destroys the neuronal

retina. Cauquil-Caubère et al. [51] propose that, after being injected into the striatum of

rats, Glu level rises in the extracellular space. This can lead to progressive dysfunctions

of neurotransmitters. In addition, Choi [52] suggests an in vitro study that a 5 minute

exposure to 1-100 mM Glu destroys many cultured cortical neurons and by one hour

neuronal damage is almost complete. In the following section, we add a toxic source

into our recent equations (4.3.5)-(4.3.10) in order to study excitotoxicity.
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Figure 4.7: A comparison of the numerical solutions of system (4.3.5)-(4.3.10): solid
line; and the asymptotic and numerical solutions at all timescales
(timescale I: circle line; timescale II: cross line; and timescale III: square
line) for e = 0.5.

4.4 Excitotoxicity

As mentioned in §4.1, excitotoxicity can occur when there are excessive amounts of GE.

The excessive GE activates the neuronal Glu receptors and this allows calcium to enter

the cell. The neuronal calcium (CN) triggers fusion of the synaptic vesicle and Glu ef-

flux occurs. However, the high levels of CN can damage the cell structures and cause

cells to die by destruction of a number of cell enzymes [40, 53, 75]. Thus the key for

excitotoxicity is GE and CN levels.

As stated above, normally the GE levels are kept below 0.06 mM [16, 18] (correspond-

ing to the value 0.0133 in our system) in order to prevent excitotoxic nerve cell damage.

However, the GE levels can rise to 1 mM when the neuronal cells are activated but it re-

mains at this level for a few milliseconds. If high levels of GE are maintained for over a

few milliseconds, the excessive activation of neuronal Glu receptors allows high levels

of calcium to enter the neuronal cells. Excessively neuronal-calcium levels can cause

the cells die [52, 53]. This process is called excitotoxicity.
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In order to model excitotoxicity, we introduce a constant source of extracellular Glu,

GIn
E , in equation (4.3.7). Then equations (4.3.5)-(4.3.10) become:

e

−2 dGN

dt
= gN −

lG0CN

lG1 + CN
GN , (4.4.1)

dgN

dt
= ln[1− (GN + gL)− e

2(gN + GL)− e

4GE − e

3
g1gN ]− gN , (4.4.2)

e

2 dGE

dt
=

lG0CN

lG1 + CN
GN − lmGE + lcGL + GIn

E , (4.4.3)

dGL

dt
= lmGE − (l2 + lc)GL, (4.4.4)

e

−2 dgL

dt
= l2GL −

lgoGE

lh + GE
[gL − e

3
g2(1− (GN + gL)− e

2(gN + GL)

−e

4GE)], (4.4.5)
dCN

dt
= h0(1− e

2
g3CN) +

h10GE

h11 + GE
− h20CN

h21 + CN
CN . (4.4.6)

Setting time-derivative of (4.4.6) to zero, we deduce that at steady state

CN =
−M̄1 +

√
M̄2

1 − 4M̄0M̄2

2M̄0
, (4.4.7)

where

M̄0 = (h20 + e

2
g3h0)(h11 + GE),

M̄1 = −(h0(h11 + GE)(1− e

2
g3h21) + h10GE),

M̄2 = −(h0h11 + (h0 + h10)GE)h21.

In Figure 4.8, we use (4.4.7) to show how CN varies with log GE with all other parame-

ter values as per Figure 4.3. The point (GE, CN) = (0.0083, 0.1551) corresponds to the

steady-state of equations (4.3.5)-(4.3.10), while the point (0.0133, 0.1570) denotes the

threshold point of GE for cytotoxicity and the corresponding to value of CN when we

apply (4.4.7). We can see that when GE increases, CN increases. When CN exceeds the

maximum value for maintaining healthy neurons leaded to high levels of intracellular

calcium, the neuronal cells can be killed. This is entirely consistent with the experimen-

tal results [52, 53].

We next look at the steady-state profile of GE as we vary GIn
E for different choices of

e. Figure 4.9 shows the resulting solution of equations (4.4.1)-(4.4.6) for GE when GIn
E

is varied. We note that the curves of e = 0.1, 0.05 and 0.01 are indistinguishable. As
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Figure 4.8: The solution curve of (4.4.7) when GE is varied; the point (0.0083, 0.1551)
is the point at steady-state of equations (4.3.5)-(4.3.10) (or when GIn

E = 0),
and the point (0.0133, 0.1570) is the point at the threshold.

stated above, the dimensionless value 0.0133 of GE in our system is the threshold for

excitotoxicity. Thus we can divide our system into two areas: a healthy area and an

excitotoxic area. In Figure 4.9, we can see that larger values of e require larger values of

GIn
E to produce excitotoxicity. We recall that e represents the ratio of the volume frac-

tion of the ECS to that occupied by the neuronal cells.

The results presented in Figure 4.9 are consistent with observations made by Porter

and McCarthy [76], and Traynelis and Dingledine [77]. As the extracellular volume

fraction is decreased, the concentration of components in the ECS increases. Thus re-

ducing e could lead to an increase in a neuron’s responsiveness to a fixed amount of

neurotransmitter. It has been said that when the extracellular volume fraction reduces,

the excitability of the neurons increases to some extent [76, 77]. In such cases smaller

amounts of GIn
E will be needed to stimulate excitotoxicity for smaller e.
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Figure 4.9: The steady-state profile of equations (4.4.1)-(4.4.6) for GE when GIn
E is var-

ied for different choices of e; the solid lines: for e = 0.5, the dashed lines:
for e = 0.1, the dashed-dotted lines: for e = 0.05, and the dotted lines: for
e = 0.01, and other parameter values and initial conditions as per Figure
4.3. We note that e = 0.1, 0.05 and 0.01 curves are indistinguishable.

4.5 Summary of Calcium Signalling in the Glutamate-

Glutamine cycle

In this chapter we have extended the model from Chapter 3 to examine the role of cal-

cium in the Glu-Gln cycle and investigate how it may stimulate excitotoxicity in our

model system. We included an additional equation for intracellular calcium in the neu-

ronal cells into our model of the glutamate-glutamine cycle as excitotoxicity seems to

occur only in the neuronal cells. The resulting model consists of a system of six dimen-

sionless nonlinear ordinary differential equations that describe how Glu, Gln and Ca2+

levels change over time in the neuronal cell, the ECS and the glial cell.

As in Chapter 3, numerical simulations revealed that the qualitative dynamics of the

system do not change when e varies from physically realistic values (e = 0.5) to as-
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ymptotically small values (e = 0.05 � 1). We performed an asymptotic analysis of the

governing equations in the limit for which e = 0.05 � 1 and obtained good agreement

between the numerical and analytical results for all timescales.

We then used our model to study excitotoxicity caused by addition of extracellular Glu.

Excitotoxicity is caused by overstimulation of the neuronal Glu receptors (by GE) which

leads to an increase in intracellular Ca2+ and consequently neurodegeneration due to

activation of cytotoxic intracellular pathways [40, 53, 75]. As mentioned before, 0.06

mM is the extracellular glutamate threshold for excitotoxicity [16, 18] and this value

corresponds to the dimensionless value 0.0133 in our model.

We then introduced a constant toxic source of extracellular Glu, GIn
E , into our model.

By plotting the solutions of equations (4.4.1)-(4.4.6) for GE as GIn
E varied (and for differ-

ent choices of e, see Figure 4.9) we showed that smaller values of e need lower levels

of GIn
E to produce excitotoxicity. This result is consistent with clinical evidence [76, 77]

and can be explained as follows. As the extracellular volume fraction decreases, the

concentration of components in the ECS increases, and hence a neuron’s responsive-

ness to a fixed amount of neurotransmitter.
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Conclusion

Vision is one of the most important sensory systems in humans. The visual system

detects and interprets information. The eye focuses the visual image on the receptor

cells and a neural component transforms the visual image into a pattern of neural dis-

charges.

When light enters the eye, it impinges on the photoreceptors of a specialised sensory

epithelium in the retina. The photoreceptors comprise cones and rods. Cones have

high thresholds for detecting light and operate best under daylight conditions. By con-

trast, rods are sensitive to light and operate best under dark conditions. These photore-

ceptors communicate via electrical synapses with each other and with second-order

neurons in the retina such as bipolar cells and ganglion cells. The output signals are

then carried to the brain via the optic nerves [1, 4, 5, 36, 37].

The brain is the control centre of the nervous system. The nervous system controls and

maintains diverse biological processes which are essential for maintaining an accept-

able quality of life [2, 12]. The nervous system includes neuronal and glial cells. Both

cells play important roles in the vitality of the system. However, only neuronal cells can

transmit messages from one cell to another. Although the glial cells do not participate

directly in the transmission of electrical signals over long distances, they communicate

with neurons and with each other via electrical and chemical signals called neurotrans-

mitters. It can be said that the glial cells perform as the connective tissue of the nervous

system by helping to support the neuronal cells both physically and metabolically.

The most important excitatory neurotransmitter for the mammalian brain and retina

[18, 19] is glutamate (Glu). In the neuronal cells Glu is converted from glutamine (Gln)
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via the enzyme glutaminase and then packaged and stored in synaptic vesicles. When

there is calcium influx, fusion of the synaptic vesicle with the plasma membrane oc-

curs and Glu is released into the extracellular space (ECS) [36–40]. After it is released

from the neuronal cell, extracellular Glu is rapidly transported to the glial cell by the

glutamate-aspartate transporter in order to avoid Glu neurotoxicity. In the glial cell,

Glu is converted to Gln via enzyme glutamine synthetase. Gln is then released to the

neuronal cell via the ECS. This process is called the Glu-Gln cycle.

In this thesis we have applied mathematical techniques to model the photoreceptor

cells in order to study whether changes in metabolic demand during periods of light

and dark are responsible for the observed variation in the length of the outer seg-

ment of the rod. In addition, we have developed an ordinary differential model of the

glutamate-glutamine cycle in the nervous system in order to study whether the rates

at which glutamate and glutamine released change the metabolic demand of the sys-

tem. We also extended our model of the glutamate-glutamine cycle to account for cal-

cium signalling in order to develop a more detailed model of the glutamate-glutamine

metabolism and to form the basis future studies of excitotoxicity.

We began by developing a nonlinear mathematical model of light/dark regulation of

the length of the outer segment of the rod, since it is known that the retinal detach-

ment leads to a reduction in photoreceptor outer segment length. We used our model

to predict what the outer segment length and the oxygen and glucose concentrations

should be under dark and light conditions, obtaining results which agree with in vivo

results. However, the outer segment length under both conditions was shorter than

28 mm which is the rod outer segment length as stated by Duke-Elder and Wybar [69].

Moreover, only oxygen and glucose regulated the length of the rod outer segment in

our model. In practice, however, there are other substances such as creatine, creatine

phosphate and ATP, playing important roles to the length of the outer segment.

We then moved on to study the glutamate-glutamine cycle in the nervous system as

the eyes form the part of the nervous system. The model we developed accounted

for glutamate and glutamine concentrations in three compartments: the extracellular

space, neuronal and glial cells. We estimated all parameters using inequalities (3.2.36)

and (3.2.39) hold for physically realistic steady-state solutions with e = 0.5 (the ratio of

the volume of the extracellular space to that of the neuronal cell) from physical realistic

value [2, 17].
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Numerical solutions of the model equations (3.2.23)-(3.2.27) revealed that qualitative

dynamics of system did not change as e varied from the physically realistic value

e = 0.5 to the asymptotically small value (e = 0.05 � 1). We exploited this qual-

itative agreement to justify developing asymptotic analysis of the governing equa-

tions in the limit e → 0. The resulting analysis revealed three timescales of interest:

t = O(e2), t = O(1) and t = O(e−2). Both analytical and numerical results matched

perfectly on each timescale, from the beginning stage until reaching their steady-state

with the asymptotically small value, e = 0.05.

Initially, on the short timescale t = O(e2) (i.e. we introduced the scaling t = e

2t1),

adding the leading order terms for each variable to those at O(e2), we derived expres-

sions for gN , GE and GL. These broke down as t1 = O(e−2) (i.e. t = O(1)), see Figure

3.7. This was used to motivate the analysis on the intermediate timescale. Taking the

limit as t1 = O(e−2), we were able to calculate the matching conditions for all variables.

On the intermediate timescale t = O(1) (or t = t2). After matching to the initial

timescale and combining the leading-order and O(e2) solutions for each variable, we

found that all approximations broke down when t2 = O(e−2) (see Figure 3.8). We were

once again able to obtain the matching conditions for the subsequent timescale by tak-

ing the limit as t2 = O(e−2).

On the final timescale t = O(e−2) (or t = e

−2t3). After matching to the intermediate

timescale and combining both the leading-order and the O(e2) solutions for each vari-

able, we found there was good agreement between the numerical and the asymptotical

solutions. In particular the approximations tended to the steady-state solutions of the

full system (3.3.7)-(3.3.12), see Figure 3.9.

We also compared the numerical solutions of the full system of the glutamate-glutamine

cycle with the asymptotic solutions for different choices of e. The excellent agreement

when e was small provided independent validation of our asymptotic approximations.

Glutamate is known as the principal excitatory neurotransmitter in the mammalian

central nervous system. It is well established that elevated levels of glutamate can

result in wide-spread excitotoxicity [52]. Excessive amounts of the extracellular glu-
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tamate allow calcium to enter the cell. However, high intracellular calcium levels can

damage cell structures and cause the cell die by destruction of a number of cell en-

zymes [40, 53, 75].

In order to study this process, we extended the model of Chapter 3 to account for in-

tracellular calcium concentration. Moreover, the intracellular calcium level is also im-

portant to the neurotransmitter release (glutamate). We set the glutamate efflux from

the neuron (lG) in a saturating term of the intracellular calcium. We found that there

were similar dynamics between the full model from Chapter 3 and the model with in-

tracellular calcium in Chapter 4. We also followed this model with a time-dependent

asymptotic analysis with the asymptotically small value, e = 0.05. Both analytical and

numerical solutions matched well on each timescale with e = 0.05.

Subsequently, we introduced a constant toxic source into the ODE for extracellular glu-

tamate. Figure 4.9 showed the solutions of excitotoxic equations (4.4.1)-(4.4.6) for GE as

GIn
E varied (for different choices of e). Recalling that the extracellular glutamate thresh-

old is 0.06 mM for excitotoxicity [16, 18] corresponding to the dimensionless value

0.0133 in our system, we divided our system into two areas: a healthy area and an ex-

citotoxic area. We found that larger values of toxin are needed for larger values of e to

produce excitotoxic effects (see Figure 4.9). This result is consistent with observations

made by Porter and McCarthy [76] and Traynelis and Dingledine [77]. As the extracel-

lular volume fraction decreases, the concentration of components in the extracellular

space increases. Thus reducing e (our e is the ratio of the volume fraction of the ex-

tracellular space to that occupied by the neuronal cell) could lead to an increase in a

neuron’s responsiveness to a fixed amount of neurotransmitter.

We had, thus far, considered the models of the rod photoreceptors separating into

two different models: light/dark regulation of length of the outer segment and the

glutamate-glutamine cycle. There are a number of obvious extensions to the work pre-

sented in this thesis. Firstly, only glucose and oxygen regulated the rod outer segment

length. Future work could account for the energy exchange between the inner and

outer segment of other species such as creatine, ATP and ADD.

Secondly, in our model of the glutamate-glutamine cycle additional substances such as

aspartate, ammonia and ATP could be included.
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In vitro experiments by Choi [52] suggest that five minutes exposure to 1-100 mM glu-

tamate can destroy a large proportion of cortical neurons (1/100th of the tissue con-

centration normally present in neocortex), with damage almost complete following 60

minutes exposure. It would be interesting to modify the model of Chapter 4 to account

for repeated boluses of GE in order to study how they may cause excitotoxicity.

Finally, extended study could combine the models from Chapter 2 (light/dark regula-

tion of length of the outer segment) and Chapter 4 (calcium signalling in the glutamate-

glutamine cycle) in order to develop a more detailed model of glutamate-glutamine

metabolism within the rod photoreceptor. A study of the photoreceptor degeneration,

retinitis pigmentosa, could also be carried out.
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Glossary

Active transport. Movement across a membrane that requires the input of energy from

ATP.

Adenosine diphosphate (ADP). Precursor of ATP, composed of adenine, ribose and

two phosphate groups.

Adenosine triphosphate (ATP). An energy-storing compound composed of adenine,

ribose and three phosphate groups.

Alzheimer’s disease (AD). A progressive, neurodegenerative disease characterised by

loss of function and death of nerve cells in several areas of the brain leading to loss of

cognitive function such as memory and language.

Aspartate (Aps). Amino acid that plays a critical part of the enzyme in the liver that

transfers nitrogen-containing amino groups, either in building new proteins and amino

acids or in breaking down proteins and amino acids for energy and detoxifying the

nitrogen in the form of urea.

Cone(s). A photoreceptor for high acuity vision and colour vision during the daytime.

Cyclic guanosine monophosphate (cGMP). A cyclic nucleotide derived from guano-

sine triphosphate (GTP). cGMP acts as a second messenger much like cyclic AMP,

most notably by activating intracellular protein kinases in response to the binding of

membrane-impermeable peptide hormones to the external cell surface.

Endoplasmic reticulum (ER). A eukaryotic organelle forms an interconnected network

of tubules, vesicles, and cisternae within cells.

Extracellular space (ECS). Interstitial space between cells, occupied by fluid as well as

amorphous and fibrous substances.

Exocytosis. The release cellular substances contained in cell vesicles by fusion of the

vesicular membrane with the plasma membrane and subsequent release of the contents
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to the exterior of the cell.

Excitotoxicity. The pathological process by which nerve cells are damaged and killed

by Glu and similar substances.

Glaucoma. An eye disease that causes gradual loss of sight.

Glial cells. Non-excitable support cells of the central nervous system.

Glutaminase (GS). An enzyme that hydrolyzes glutamine to glutamic acid and ammo-

nia.

Glutamine (Gln). Amino acid that is found both free and in proteins in plants and

animals and that yields glutamic acid and ammonia on hydrolysis.

Glutamate (Glu). Amino acid that also acts as an excitatory neurotransmitter.

Guanosine monophosphate (GMP). A nucleotide that is found in RNA.

Guanosine triphosphate (GTP). Substrate for the synthesis of RNA during transcrip-

tion.

Inositol (1,4,5)-triphosphate (IP3). A secondary messenger molecule used in signal

transduction in biological cells.

Krebs cycle. Key metabolic pathway of aerobic respiration. Synonyms: citric acid cycle,

tricarboxylic cycle, TCA cycle.

Metabolism. All the chemical reactions in the body.

Nerve. A collection of axons running between the central nervous system and the

peripheral target cells.

Nervous system. Network of billions or trillions of nerve cells linked together in a

highly organized manner to form the rapid control system of the body.

Neuron. A nerve cell, capable of generating and transmitting electrical signals.

Neurotoxicity. Toxic to the nerves or nervous tissue.

Neurotransmitter. A chemical signal released by a neuron that influences the neuron’s

target cell.

Parkinson’s disease (PD). A chronic progressive neurological disease mainly of later

life that is linked to decreased dopamine production in the substantia nigra and is

marked especially by tremor of resting muscles, rigidity, slowness of movement, im-

paired balance, and a shuffling gait.

Passive transport. Movement across a membrane that does not depend on an outside

source of energy.
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Photoreceptor cell. Sensory receptors in the eye that respond primarily to light energy.

Presynaptic cell. The cell releasing neurotransmitter into the chemical synapse.

Postsynaptic cell. The target cell at a synapse.

Retina. Sensory receptors lining the posterior cavity of the eye.

Retinal pigment epithelium (RPE). The retinal pigment epithelium is located just out-

side the retina and is attached to what is called the choroid, a layer filled with blood

vessels that nourish the retina.

Retinitis Pigmentosa. Any of several hereditary progressive degenerative diseases of

the eye marked by night blindness in the early stages, atrophy and pigment changes in

the retina, constriction of the visual field, and eventual blindness.

Rod(s). A receptor for monochromatic nighttime vision.

Synapse. Region where a neuron meets its target cell.

Synaptic cleft. The space between the pre- and post-synaptic cells.

Synaptic vesicle(s). Small secretory vesicles that release neurotransmitter into the

synapse.

116



References

[1] L. Sherwood, Fundamentals of Physiology: A Human Perspective, 2nd ed. Minneapo-

lis, West: St. Paul, 1995.

[2] D.U. Silverthorn, Human Physiology: An Integrated Approach, 2nd ed. Upper Sad-

dle River, New Jersey: Prentice Hall, 2001.

[3] S.C. Hsu and R.S. Molday, “Glucose metabolism in photoreceptor outer segments.

Its role in phototransduction and in NADPH-requiring reactions,” J. Biol. Chem.,

vol. 269, pp. 17 954–9, 1994.

[4] E.E. Selkurt, Basic Physiology for the Health Sciences, 2nd ed. Little, Brown and

Company, Inc., 1982.

[5] J.V. Forrester, A.D. Dick, P. McMenamin, and W.R. Lee, The Eye Basic Sciences in

Practice, 2nd ed. WB Saunders, 2002.

[6] D.J. Spalton, R.A. Hitchings, and P.A. Hunter, Atlas of Clinical Ophthalmology.

Gower Medical Publishing Ltd, 1984.

[7] M.W. Levine and J.M. Shefner, Fundamentals of Sensation and Perception, 2nd ed.

Brooks, Cole Publishing Company, 1990.

[8] R.S. Snell and M.A. Lemp, Clinical Anatomy of the Eye, 2nd ed. Blackwell Science,

1998.

[9] I.R. Bicknell, R. Darrow, L. Barsalon, S.J. Fliesler, and D.T. Organisciak, “Alter-

ations in retinal rod outer segment fatty acids and light-damage susceptibility in

P23H rats,” Molecular Vision, vol. 8, pp. 333–40, 2002.

[10] S.A. Bernstein, D.J. Breding, and S.K. Fisher, “The influence of light on cone disk

shedding in the lizard, sceloporus occidentalis,” J. Cell Biol., vol. 99, pp. 379–89,

1984.

117



REFERENCES

[11] A. Vander, J. Sherman, and D. Luciano, Human Physiology: The Mechanisms of Body

Function, 7th ed. McGraw-Hill, 1998.

[12] E.R. Kandel, J.H. Schwartz, and T.M. Jessell, Essentials of Neural Science and Behav-

ior. Stamford, Connecticut: Appleton & Lange, 1995.

[13] J.G. Nicholls, A.R. Martin, B.G. Wallace, and P.A. Fuchs, From Neuron to Brain,

4th ed. Sunderland, Massachusetts, USA: Sinauer Associates, Inc., 2001.

[14] C.U.M. Smith, Elements of Molecular Neurobiology, 3rd ed. John Wiley & Sons,

LTD., 2002.

[15] I. Shaked, I. Ben-Dror, and L. Vardimon, “Glutamine synthetase enhances the

clearance of extracellular glutamate by the neural retina,” J. Neurochem, vol. 83,

pp. 574–80, 2002.

[16] M. Tsacopoulos, “Metabolic signaling between neurons and glial cells: a short

review,” J. Physio. Paris, vol. 96, pp. 283–8, 2002.

[17] M.C. Papadopoulos, D.K. Binder, and A.S. Verkman, “Enhanced macromolecular

diffusion in brain extracellular space in mouse models of vasogenic edema mea-

sured by cortical surface photobleaching,” The FASEB J., vol. 19, pp. 425–8, 2005.

[18] M. Erecinska and I.A. Silver, “Metabolism and role of glutamate in mammalian

brain,” Prog. Neurobio., vol. 35, pp. 245–96, 1990.

[19] C.K. Vorwerk, S.A. Lipton, D. Zurakowski, B.T. Hyman, B.A. Sabel, and E.B.

Dreyer, “Chronic low-dose glutamate is toxic to retinal ganglian cells,” Invest.

Ophthalmol. Vis. Sci., vol. 37, pp. 1618–24, 1996.

[20] N.L. Barnett, D.V. Pow, and N.D. Bull, “Differential perturbation of neuronal and

glial glutamate transport systems in retinal ischaemia,” Neurochem. Inter., vol. 39,

pp. 291–9, 2001.

[21] J. Shen, K.F. Petersen, K.L. Behar, P. Brown, T.W. Nixon, G. O.A.C. Petroff, G.I.

Shulman, R.G. Shulman, and D.L. Rothman, “Determination of the rate of the

glutamate/glutamine cycle in the 13C NMR,” Proc. Natl. Acad. Sci., vol. 96, pp.

8235–40, 1999.

[22] Y. Daikhin and M. Yudkoff, “Compartmentation of brain glutamate metabolism

in neurons and glia,” J. Nutr., vol. 130, pp. 1026S–31S, 2000.

[23] N.C. Danbolt, “Glutamate uptake,” Prog. Neurobio., vol. 65, pp. 1–105, 2001.

118



REFERENCES

[24] R. Gruetter, E.R. Seaquist, and K. Ugurbil, “A mathematical model of compart-

mentalized neurotransmitter metabolism in the human brain,” Am. J. Physiol. En-

docrinol Metab., vol. 281, pp. E100–E112, 2001.

[25] D.M. Cohen, “Inhibition of glutamine systhetase induces critical energy threshold

for neuronal survival,” Ann. New York Acad. Sci., pp. 456–60.

[26] R.M. Solano, M.J. Casarejos, J. Menndez-Cuervo, J.A. Rodriguez-Navarro, and J.

Garca de Ybenes, “Glial dysfunction in parkin null mice: Effects of aging,” J. Neu-

rosci., vol. 28, pp. 598–611, 2008.

[27] A.J. Lotery, “Glutamate excitotoxicity in glaucoma: truth or fiction,” Eye, vol. 19,

pp. 369–70, 2005.

[28] C.M. Anderson and R.A. Swanson, “Astrocyte glutamate transport: Review of

properties, regulation, and physiological functions,” GLIA, vol. 32, pp. 1–14, 2000.

[29] E. Lieth, K.F. LaNoue, D.A. Berkich, B. Xu, M. Ratz, C. Taylor, and S.M. Hutson,

“Nitrogen shuttling between neurons and glial cells during glutamate synthesis,”

J. Neurochem, vol. 76, pp. 1712–23, 2001.

[30] T.S. Rao, K.D. Lariosa-Willingham, and N. Yu, “Glutamate-dependent glutamine,

aspartate and serine release from rat cortical glial cell cultures,” Brain Res., vol.

978, pp. 213–22, 2003.

[31] S. Poitry, C. Poitry-Yamate, J. Ueberfeld, P.R. MacLeish, and M. Tsacopoulos,

“Mechanisms of glutamate metabolic signaling in retinal glial (Müller) cells,” J.

Neurosci, vol. 20, pp. 1809–21, 2000.

[32] B.S. Winkler, N. Kapousta-Bruneau, M.J. Arnold, and D.G. Green, “Effects of in-

hibiting glutamine synthetase and blocking glutamate uptake on b-wave genera-

tion in the isolated rat retina,” Visual Nerosci., vol. 16, pp. 345–53, 1999.

[33] J.L. Boulland, K.K. Osen, L.M. Levy, N.C. Danbolt, R.H. Edwards, J. Storm-

Mathisen, and F.A. Chaudhry, “Cell-specific expression of the glutamine trans-

porter SN1 suggest differences in dependence on the glutamine cycle,” Euro. J.

Neurosci., vol. 15, pp. 1615–31, 2002.

[34] F.A. Chaudhry, D. Schmitz, R.J. Reimer, P. Larsson, A.T. Gray, R. Nicoll, M. Ka-

vanaugh, and R.H. Edwards, “Glutamine uptake by neurons: interaction of pro-

ton with System A transporter,” J. Neuronsci., vol. 22, pp. 62–72, 2002.

119



REFERENCES

[35] T.C. Welbourne, “Evidence for passive glutamine uptake coupled to glutaminase

I,” Am. J. Physiol., vol. 226, pp. 549–54, 1974.

[36] G.J. Siegel, B.W. Agranoff, R.W. Albers, S.K. Fisher, and M.D. Uhler, Basic Neuro-

chemistry: Molecular, Cellular and Medical Aspects, 6th ed. Lippincott Williams and

Wilkins, 1999.

[37] D. Purves, G.J. Augustine, D. Fitzpatrick, W.C. Hall, A-S. LaMantia, J.O. McNa-

mara, and L.E. White, Neuroscience, 4th ed. Sinaue Associates, Inc., 2008.

[38] E.R. Kandel, J.H. Schwartz, and T.M. Jessell, Principles of Neural Science, 4th ed.

McGraw-Hill, 2000.

[39] P. Brodal, The Central Nervous System: Structure and Function, 2nd ed. Oxford

University Press, 1998.

[40] M-A. Dronne, J-P. Boissel, and E. Grenier, “A mathematical model of ion move-

ments in grey matter during a stroke,” J. Theo. Bio., vol. 240, pp. 599–615, 2006.

[41] D.R. Lucas and J.P. Newhouse, “The toxic effect of sodium L-Glutamate on the

inner layers of the retina,” AMA. Arch. Ophth., vol. 58, pp. 193–201, 1957.

[42] S.E. Ostroy, S.M. Frede, E.F. Wagner, C.G. Gaitatzes, and E.M. Janle, “Decreased

rhodopsin regeneration in diabetic mouse eyes,” Invest. Ophthalmol. Vis. Sci.,

vol. 35, pp. 3905–9, 1994.

[43] W. Fan, N. Lin, H.J. Sheedlo, and J.E. Turner, “Müller and RPE cell response to

photoreceptor cell degeneration in aging fischer rats,” Exp. Eye Res., vol. 63, pp.

9–18, 1996.

[44] J.A. Phipps, P. Yee, E.L. Fletcher, and A.J. Vingrys, “Rod photoreceptor dysfunc-

tion in diabetes: Activation, deactivation, and dark adaptation,” Invest. Ophthal-

mol. Vis. Sci., vol. 47, pp. 3187–94, 2006.

[45] E.L. Fletcher, “Alterations in neurochemistry during retinal degeneration,” Mi-

crosc. Res. Tech., vol. 50, pp. 89–102, 2000.
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