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Abstract

The Minkowski question mark function F (x) arises as a real distribution function

of rationals in the Farey (alias, Stern-Brocot or Calkin-Wilf) tree. In this thesis

we introduce its three natural integral transforms: the dyadic period function G(z),
de�ned in the cut plane; the dyadic zeta function ζM(s), which is an entire function;

the characteristic function m(t), which is an entire function as well. Each of them

is a unique object, and is characterized by regularity properties and a functional

equation, which reformulates in its own terms the functional equation for F (x). We

study the interrelations among these three objects and F (x). It appears that the

theory is completely parallel to the one for Maass wave forms for PSL2(Z). One of

the main purposes of this thesis is to clarify the nature of moments of theMinkowski

question mark function.
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Chapter 1

Introduction and summary

1.1 Introduction

Figure 1.1: Minkowski's question mark F (x), x ∈ [0, 2]

The main hero of this thesis is the function F (x) (with the awkward name \the

questionmark function", which is now standard), which was introduced byMinkowski

in 1904 [50] as an example of a continuous function F : [0,∞) → [0, 1), which maps

1



1.1. Introduction 2

rationals to dyadic rationals, and quadratic irrationals to non-dyadic rationals. For

non-negative real x it is de�ned by the expression

F ([a0, a1, a2, a3, ...]) = 1− 2−a0 + 2−(a0+a1) − 2−(a0+a1+a2) + ..., (1.1)

where x = [a0, a1, a2, a3, ...] stands for the representation of x by a (regular) continued

fraction [36]. The latter explicit expression for the �rst time was given in [16]. Our

de�nition slightly di�ers from the customary - usually one considers a function ?(x),
de�ned only for x ∈ [0, 1]. Thus, we will make a convention that ?(x) := 2F (x)
for x ∈ [0, 1]. For rational x the series terminates at the last nonzero element an

of the continued fraction. Though being remembered rarely in the �rst half of the

20th century, this function received a substantial increase in interest in the past two

decades; the number of publications is constantly growing. Next section gives a short

overview of available literature. Nevertheless, the author of this thesis has a strong

conviction that many hidden facts still need to be discovered, and many profound

things are encoded in this simple de�nition. Why this object is so important in

number theory, dynamic systems, complex dynamics, ergodic theory and the theory

of automorphic forms? Recently, Calkin and Wilf [11] (re-)de�ned a binary tree

which is generated by the iteration

a

b
7→ a

a+ b
,

a+ b

b
,

starting from the root 1
1 . Elementary considerations show that this tree contains any

positive rational number exactly once, each being represented in lowest terms [11].

First four iterations lead to
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(1.2)

Thus, the nth generation consists of 2n−1 positive rationals x
(i)
n , 1 ≤ i ≤ 2n−1. We

denote this tree by T , and the nth generation by T (n). The limitation of this tree to

the interval [0, 1] is the well known Farey tree (albeit with a di�erent order of rational
numbers in the nth generation). Reading the tree line by line, this enumeration of

Q+ starts with

1
1
,

1
2
,

2
1
,

1
3
,

3
2
,

2
3
,

3
1
,

1
4
,

4
3
,

3
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,
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,

2
5
,

5
3
,

3
4
,

4
1
, . . .

This sequence was already investigated by Stern [65] in 1858, where the de�nition

of related the so called Stern-Brocot tree was presented. The sequence satis�es the

remarkable iteration discovered by M. Newman [52]:

x1 = 1, xn+1 = 1/(2[xn] + 1− xn),
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thus giving an example of a simple recurrence which produces all positive rationals,

and answering a�rmatively to a question by D.E. Knuth. The nth generation of

this binary tree consists of exactly those rational numbers, whose elements of the

continued fraction sum up to n; this observation is due to Stern [65]. Indeed, this

can be easily inherited directly from the de�nition. First, if rational number a
b is

represented as a continued fraction [a0, a1, ..., ar], then the map a
b →

a+b
b maps a

b to

[a0 +1, a1..., ar]. Second, the map a
b →

a
a+b maps a

b to [0, a1 +1, ..., ar] in case a
b < 1, and

to [1, a0, a1, ..., ar] in case a
b > 1. Hence, this fact is of utmost importance in our work:

though it is not used in explicit form, this highly motivates the investigations of

momentsML andmL, given by (2.4). The sequence of numerators of the Calkin-Wilf

tree

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, ...

is called the Stern diatomic sequence [65], and it satis�es the recurrence relations

s(0) = 0, s(1) = 1, s(2n) = s(n), s(2n+ 1) = s(n) + s(n+ 1). (1.3)

This sequence, and the pairs (s(n), s(n+1)), where also investigated by Reznick [59];

see also Lehmer [45]. The statistics of this sequence plays an important role in the-

ories of phase transitions, spin-chains, and, naturally, in number theory and dio-

phantine approximations. See, for example, [8], [13], [15], [21], [23], [32], [34],

[51].

In the next section we will show that each generation of the Calkin-Wilf tree

possesses a distribution function Fn(x), and that Fn(x) converges uniformly to F (x).
This is by far not a new fact. Nevertheless, we include the short proof of it for the

sake of self-containedness. The function F (x), as a distribution function, is uniquely

determined by the functional equations (2.1). This implies the explicit expression

(1.1) and the so called symmetry property F (x)+F (1/x) = 1. Surprisingly, the struc-
ture of the moments of F (x), which is our principal concern, was not investigated

before (apart from the mean value). On the other hand, the mean value of F (x)
was treated by several authors and was proved to be 3/2 ([59], [66], [75]). We will

obtain this result using quite a di�erent method.

All papers mentioned in the next Section are concerned with the function F (x)
per se. On the other hand, the aim of this thesis is to give a di�erent treatment

of Minkowski's ?(x). It appears that there exist several natural integral transforms

of F (x), which are analytic functions and which encode certain (in fact, all) sub-

stantial information about the question mark function. Each of these transforms is

characterized by a regularity property and a functional equation. Lastly, and most

importantly, let us point out that there are striking similarities and analogies be-

tween the results proved in Chapters 2 and 4, with Lewis'-Zagier's [47] results on

period functions forMaass wave forms. Let, for example, u(z) be aMaass wave form
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for PSL2(Z) with spectral parameter s. This similarity arises due to the fact that the

limit value of u(z) on the real line, given by u(x+ iy) ∼ y1−sU(x) + ysU(x) as y → 0+,

satis�es (formal) functional equations U(x + 1) = U(x) and |x|2s−2U
(
− 1

x

)
= U(x).

Thus, these functional equations are completely analogous to those which F (x) does
satisfy (see (2.1)), save the fact that U(x) is only a formal function - it is a distribu-

tion (e.g. a continuous functional in a properly de�ned space of functions). Thus,

our objects G(z), m(t) andM(t), de�ned in Chapter 2, are analogues of objects ψ(z),
g(w) and φ(w) respectively, which are de�ned in [47]. In Section 4.1 we present

more explanations on this topic. In Chapter 4 it is shown that in fact L−functions
attached to Maass wave forms also do have an analogue in our setting - the dyadic

zeta function ζM(s).

1.2 Short literature overview

The Minkowski question mark function was investigated by many authors. In this

section we give an overview of available literature.

Denjoy [16] gave an explicit expression of F (x) in terms of continued fraction ex-

pansion (that is, the formula (1.1)). He also showed that ?(x) is purely singular: the

derivative, in terms of the Lebesgue measure, vanishes almost everywhere (the short

proof of this will be given in Section 2.1). Salem [62] proved that ?(x) satis�es the
Lipschitz condition of order log 2

2 log γ , where γ = 1+
√

5
2 , and this is in fact the best pos-

sible exponent for the Lipschitz condition. The Fourier-Stieltjes coe�cients of ?(x),
de�ned as

∫ 1
0 e

2πinx d?(x), where also investigated in the same paper (these coe�-

cients also appeared in [9]; see also [58]). The author, as an application of Wiener's

theorem about Fourier series, gives average results on these coe�cients without giv-

ing an answer to yet unsolved problem whether these coe�cients vanish, as n→∞.

It is worth noting that in Section 4.7 we will encounter analogous coe�cients (see

Proposition 4.8). Kinney [37] proved that the Hausdor� dimension of growth points

of ?(x) (denote this set by A) is equal to α = 1
2

( ∫ 1
0 log2(1 +x) ?(x)

)−1
(see Section 5.8

for a numerical value of this constant). Also, if x0 ∈ A, ?(x) at a point x0 satis�es

the Lipschitz condition with an exponent α. The function ?(x) is mentioned in [14]

in connection with a game called \box". In [42] Lagarias and Tresser introduced the

so called Q−tree: an extension of the Farey tree, which contains all (positive and

negative) rationals. Tichy and Uitz [67] extended Kinney's approach (mainly, the

calculation of a Hausdor� dimension) to a parametrized class of singular functions

related to ?(x). Motivated by the investigation of Hermite problem - to represent

real cubic irrationals as periodic sequences of integers - Beaver and Garrity [6] intro-

duced a 2-dimensional analogue of ?(x). They showed that periodicity of Farey iter-

ations corresponds to a class of cubic irrationals, and that 2−dimensional analogue
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of ?(x) possesses similar singularity properties. Nevertheless, the Hermite problem

remains open. Bower [10] considers the solution of the equation ?(x) = x, di�erent

from x = 0, 1
2 or 1. There are two of them (symmetric with respect to x = 1

2 ), the �rst

one is given by x = 0.42037233+ [24]. Apparently, no closed form formula exists for

it. In [20] Dilcher and Stolarsky introduced what they call Stern polynomials. The

construction is analogous to the one given in Section 5.2. Nevertheless, in the work

cited all polynomials have coe�cients 0 and 1, and their structure is compatible with

regular continued fraction algorithm, whereas in our case another algorithm is be-

ing introduced ( p−continued fractions). In [22] Dushistova and Moshchevitin �nd

conditions in order ?′(x) = 0 and ?′(x) =∞ to hold (for certain �xed positive real x)

in terms of

lim sup
t→∞

a0 + a1 + ...+ at
t

and lim inf
t→∞

a0 + a1 + ...+ at
t

respectively, where x = [a0, a1, a2, ...] is represented by a continued fraction. The na-

ture of singularity of ?(x) was clari�ed by Viader, Parad��s and Bibiloni [55]. In

particular, the existence of the derivative ?′(x) in R for �xed x forces it to van-

ish. Some other properties of ?(x) are demonstrated in [56]. In [35] Kesseb �ohmer

and Stratmann study various fractal geometric aspects of the Minkowski question

mark function F (x). They show that the unit interval can be written as the union

of three sets: Λ0 := {x : F ′(x) = 0}, Λ∞ := {x : F ′(x) = ∞}, and Λ∼ := {x :
F ′(x) does not exist and F ′(x) 6=∞}. Their main result is that the Hausdor� dimen-

sions of these sets are related in the following way:

dimH(νF ) < dimH(Λ∼) = dimH(Λ∞) = dimH

(
L (htop)

)
< dimH(Λ0) = 1.

Here L (htop) refers to the level set of the Stern-Brocot multifractal decomposition

at the topological entropy htop = log 2 of the Farey map Q, and dimH(νF ) denotes the
Hausdor� dimension of the measure of maximal entropy of the dynamical system

associated with Q. The notions and technique were developed earlier by authors

in [34]. The paper [41] deals with the interrelations among the additive continued

fraction algorithm, the Farey tree, the Farey shift and the Minkowski question mark

function. Themotivation for the work [54] is a fact that the function ?(x) can be char-
acterized as the unique homeomorphism of the real unit interval that conjugates the

Farey map with the tent map. In [54] Panti constructs an n-dimensional analogue of

the Minkowski question mark function as the only homeomorphism of an n-simplex

that conjugates the piecewise-fractional map associated to the M�onkemeyer contin-

ued fraction algorithm with an appropriate tent map. Marder [49] introduces two

2-dimensional analogues of F (x), based on a map between Farey and barycentric

subdivisions of the triangle. In [69], [70] and [71] Vepstas gives the treatment of

various aspects of the question mark function from the perspective of computer sci-

ence. In [9] Bonanno and Isola introduce a class of 1-dimensional maps which can be
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used to generate the binary trees in di�erent ways, and study their ergodic proper-

ties. This leads to studying some random processes (Markov chains andmartingales)

arising in a natural way in this context. In the course of the paper the authors also

introduce a function ρ(x) =?
(

x
x+1

)
, which is, of course, exactly F (x). Okamoto and

Wunsch [53] construct yet another generalization of ?(x), though their main concern

is to introduce a new family of purely singular functions. Meanwhile, the paper by

Grabner, Kirschenhofer and Tichy [29], out of all papers in the bibliography list, is

the closest in spirit to the current thesis. In order to derive precise error bounds for

the so called Garcia entropy of a certain measure, the authors consider the moments

of the continuous and singular function

F2([a1, a2, ...]) =
∞∑
n=1

(−1)n−13−(a1+...+an−1)(qn + qn−1),

where q? stand for a corresponding denominator of the convergent to [a1, a2, ...]. Lam-

berger [43] has shown that F (x) and F2(x) are the �rst two members of a family (in-

dexed by natural numbers) of mutually singular measures, derived from the subtrac-

tive Euclidean algorithm. The latter two papers are very interesting and promising,

and the author of this thesis does intend to generalize the results about F (x) to the

whole family Fj(x), j ∈ N.

1.3 Summary of the thesis

1.3.1 Chapter 2

In Section 2.1 we demonstrate some elementary properties of the distribution func-

tion F (x). Since the existence of all moments is guaranteed by the exponential decay

of the tail, our main object is the generating function of moments, denoted by G(z).
In Section 2.2 we prove two functional equations for G(z), which can be merged

into a single one. In Section 2.3 this function is given the \Eisenstein" series expan-

sion. Moreover, the uniqueness of solution of the functional equation is demon-

strated, along with another representation of G(z); the latter allows to calculate the

moments numerically with much higher accuracy than directly from the Calkin-Wilf

tree. Surprisingly, the Eisenstein series G1(z) appears on the stage. In Section 2.4

we prove the integral equation for the exponential generating power function, using

standard techniques of Hankel transform. Further, a new class of functions emerg-

ing from eigen-functions of Hilbert-Schmidt operator (we call them \dyadic period

functions") is introduced in Section 2.5. These are dyadic analogues of functions

discovered by Wirsing [74] in connection with Gauss-Kuzmin-L �evy problem. In Sec-

tion 2.6 we describe the p−adic distribution of rationals in the Calkin-Wilf tree. It

appears that, di�erently from the real case, the distribution is uniform. In the �nal

Section 2.7 some concluding remarks are presented. It took almost 8 months to ac-
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complish this Chapter. Indeed, the starting point for these investigations was only

the iteration x 7→ x+ 1, x
x+1 . It took quite a while for the wider picture to unfold.

1.3.2 Chapter 3

In Section 3.2 we establish the bounds for the moments mL. In Section 3.2 this

is improved to obtain the �rst asymptotic term for mL (and the method allows to

extract other terms in asymptotic expansion as well). The method is a variant of the

Laplace method for asymptotic expansion of certain integrals which depend on one

parameter. In our case we need some adjustments, though the main technique is a

standard one.

1.3.3 Chapter 4

In Section 4.1 we present some explanations why it is natural to introduce three

satellites of F (x). In Section 4.2 we give a short proof of the three term functional

equation (2.13), and prove the existence of certain distributions Fλ(x), which can be

thought as close relatives of F (x). In Section 4.3 it is demonstrated that there are

linear relations among moments ML, and they are presented in an explicit manner.

Moreover, we formulate a conjecture, based on the analogy with periods, that these

are the only possible relations over Q. In Section 4.4 we prove the exactness of a

certain sequence of functional vector spaces and linear maps related to F (x) in an es-

sential way. This is an analogue of Kuzmin's result on the convergence of the iterates

of the Gauss-Kuzmin-L �evy-Wirsing operator. Section 4.5 is devoted to calculation

of a number of integrals, giving a rare example of Stieltjes integral, involving the

question mark function, that \can" be calculated. Also, we exhibit that the \orthog-

onality" of dyadic eigen-functions Gλ(z) can be stated in terms of a series, involving

their Taylor coe�cients. In Section 4.6 we compute the Fourier expansion of F (x).
The idea to expand a periodic function Ψ(x) = 2x(1 − F (x)) into a Fourier series,

though being a simple idea, was a breakthrough which led to other results in this

Chapter. It is also shown that this establishes yet another relation among m(t), G(z)
and F (x) via Taylor coe�cients and special values. In the penultimate Section 4.7,

the associated Dirichlet series (\dyadic zeta function") ζM(s) is introduced. Appar-
ently, this zeta function has in�nitely many zeros on the critical line <s = 0, though
there are many other zeros apart from these. In the last Section 4.8 some conclud-

ing remarks are presented, regarding future research; relations between F (x) and the
Calkin-Wilf tree (and the Farey tree as well) to the known objects are established.

Note also that we use the word \distribution" to describe a monotone function on

[0,∞) with variation 1, and also for a continuous linear functional on some space of

analytic functions. In each case the meaning should be clear from the context.
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1.3.4 Chapter 5

In Section 5.1 we formulate the main results of the Chapter, which ought to be con-

sidered as a climax of this thesis. It states that in a half-plane <z ≤ 1
2 (apparently,

<z ≤ 1 is a precise region of convergence) the dyadic period function G(z) can be ex-

pressed as a convergent sum of explicit rational function of the formHn(z) = Bn(z)
(z−2)n+1 ,

where Bn(z) are certain polynomials of degree n − 1. In Section 5.2, for each p,

1 ≤ p <∞, we introduce a generalization of the Farey (Calkin-Wilf) tree, denoted by

Q p. This leads to the notion of p−continued fractions and p−Minkowski question

mark functions Fp(x). Though p−continued fractions are of independent interest

(one could de�ne a transfer operator, to prove an analogue of the Gauss-Kuzmin-

L �evy theorem, various metric results and introduce structural constants), we con�ne

to the facts which are necessary for our purposes, and leave the deeper research for

the future. In Section 5.3 we extend these results to the case of complex p, < p ≥ 1.
The crucial proposition states that a function X( p, x) (which, if restricted to Q, gives

a bijection between the trees Q1 and Q p) is a continuous function in x and is analytic

function in p for | p− 2| ≤ 1. Note that this section contains four unproved proposi-

tions: they are obvious heuristically, but very di�cult to prove (see some remarks in

this section). Hence, eventually our proof of Theorem 5.1 depends on one unproved

statement. In Section 5.4 we introduce exactly the same integral transforms of Fp(x)
as was done in a special (though most important) case of F (x) = F1(x). Also, in this

section we prove certain relations among the moments. In Section 5.5 we give a

proof of the three term functional equation for G p(z) and the integral equation for

m p(t). The results of the latter Section were obtained almost automatically using

precisely the same arguments as in Chapter 2. This was not very fascinating, up to

the moment when we arrived at an idea that partial derivatives (with respect to p)

of this three term functional equation does give a rich information about the case

p = 1! Thus, section 5.6 is devoted to demonstration how empirically one could ar-

rive at the statement of Theorem 5.4. Finally, Theorem 5.1 is proved in Section

5.7. The hierarchy of sections is linear, and all results from previous ones is used

in Section 5.7. There should be, of course, a straightforward way to verify Theorem

5.1 without introducing a variable p. Unfortunately, the recurrence for polynomials

Bn(z) is very complicated, and the direct proof will certainly pose many technical

di�culties. Supplementary Section 5.8 contains MAPLE codes to compute rational

functions Hn(z) and Qn(z), as well as some numerical calculations. Also, it contains

a subsection where we speculate on yet another direction for investigations on the

Calkin-Wilf tree. The Chapter also contains graphs of some p−Minkowski question

mark functions Fp(x) for real p, and also pictures of locus points of elements of trees

Q p for certain characteristic values of p.



Chapter 2

Basic properties of integral

transforms: the dyadic period

function

2.1 Some properties of the distribution

The following proposition was proved by many authors in various forms, concerning

(very related) Stern-Brocot, Farey or Calkin-Wilf trees. Though to our knowledge

this was not written explicitly anywhere, this seems to be a well-known fact about

a distribution of rationals in these trees. For the sake of completeness we present a

short proof, since the functional equations forG(z) andm(t) (see Sections 2.2 and 2.4)
heavily depend on the functional equation for F (x) and are in fact reformulations of

these in di�erent terms.

Proposition 2.1. Let Fn(x) denote the distribution function of the nth generation,

i.e.,

Fn(x) = 21−n#{j : x(n)
j ≤ x}.

Then uniformly Fn(x) → F (x). Thus, F (0) = 0, F (∞) = 1. Moreover, F (x) is

continuous, monotone and singular, i.e., F ′(x) = 0 almost everywhere.

Proof. Let x ≥ 1. One half of the fractions in the (n + 1)st generation do not

exceed 1, and hence also do not exceed x. Further,

a+ b

b
≤ x ⇐⇒ a

b
≤ x− 1.

Hence,

2Fn+1(x) = Fn(x− 1) + 1, n ≥ 1.

Now assume 0 < x < 1. Then

a

a+ b
≤ x ⇐⇒ a

b
≤ x

1− x
.

9
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Therefore,

2Fn+1(x) = Fn

( x

1− x

)
.

The distribution function F , de�ned by (1.1), satis�es the functional equation

2F (x) =

{
F (x− 1) + 1 if x ≥ 1,
F ( x

1−x) if 0 < x < 1.
(2.1)

For instance, the second identity is equivalent to 2F ( t
t+1) = F (t) for all positive t. If

t = [b0, b1, ...], then t
t+1 = [0, 1, b0, b1, ..] for t ≥ 1, and t

t+1 = [0, b1 + 1, b2, ...] for t < 1,
and the statement follows immediately.

Now de�ne δn(x) = F (x) − Fn(x). In order to prove the uniform convergence

Fn → F , it is su�cient to show that

sup
x≥0
|δn(x)| ≤ 2−n. (2.2)

It is easy to see that the assertion is true for n = 1. Now suppose the estimate is

true for n. In view of the functional equation for both Fn(x) and F (x), we have

2δn+1(x) = δn

( x

1− x

)
for 0 < x < 1, which gives sup0≤x<1 |δn+1(x)| ≤ 2−n−1. Moreover, we have

2δn+1(x) = δn(x− 1)

for x ≥ 1, which yields the same bound for δn(x) in the range x ≥ 1. This proves

(2.2).

Clearly, F , as a distribution function, is monotonic; obviously, it is also con-

tinuous. It remains to prove that F (x) is singular. Given an irrational number

α = [a0, a1, a2, ...], we consider the sequence

αn = [a0, a1, ..., an−1, an + 1, an+1, ...];

obviously, αn is the real number which is de�ned by the continued fraction expansion

of α, where the nth partial quotient an is replaced by an+1. Depending on the parity

of n, αn is less than or greater than α. Thus, any real number y, which is su�ciently

close to α, is contained between two terms of the sequence, αL and αL+2 say. Then∣∣∣F (y)− F (α)
y − α

∣∣∣ ≤ ∣∣∣F (αL)− F (α)
αL+2 − α

∣∣∣.
From the explicit form of F we deduce

|F (αL)− F (α)| ≤ 1
2

2−(a0+a1+...+aL).

On the other hand,

|αL+2 − α| ≥ ([a1, a2, ..., aL+2 + 1, ...]− [a1, a2, ..., aL+2, ...])(a0 + 1)−2

≥
(

(a0 + 1)(a1 + 1)...(aL+2 + 1)
)−2
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by induction. Thus,∣∣∣F (y)− F (α)
y − α

∣∣∣ ≤ 21−(a0+a1+...+aL)
L+2∏
i=1

(ai + 1)2.

The theorem of Khinchin ([36], p. 86) implies that
∏n
i=1(ai + 1)1/n tends to a �xed

constant limit almost everywhere. On the other hand, the same reasoning shows

that 1
n

∑n
i=1 an tends to in�nity for almost all x. Thus, almost everywhere the limit

lim
y→α

(F (y)− F (α))(y − α)−1

exists and is equal 0. This �nishes the proof. �

As it was noted, the singularity of F (x) was proved in [16]. By the same argument

as for the singular behaviour of F we can show that F ′(
√

5+1
2 ) = ∞. Actually, the

terms of T (n) are densely concentrated around numbers with F ′(x) =∞ and scarcely

around those where F ′(x) = 0. The value of F (x) is rational i� x is either rational or

quadratic irrationality, e.g.

F (1) =
1
2
, F (

√
2) =

3
5
, F ((

√
5 + 1)/2) =

2
3
.

This follows immediately from Lagrange's theorem which characterizes the quadratic

irrationals by their eventually periodic continued fraction expansion. For Euler's

number e = [2, 1, 2n, 1] we �nd that F (e) can be expressed in terms of special values

of Jacobi theta functions.

Since F (x) has a tail of exponential decay (1 − F (x) = O(2−x), as it is clear from
(1.1)), all moments do exist. Let for L ∈ N0

ML =

∞∫
0

xL dF (x),

mL =

∞∫
0

( x

x+ 1

)L
dF (x) = 2

1∫
0

xL dF (x) =

1∫
0

xL d?(x). (2.3)

Therefore, ML and mL can also be de�ned as

ML = lim
n→∞

21−n
∑

a0+a1+...+as=n

[a0, a1, .., as]L,

mL = lim
n→∞

22−n
∑

a1+...+as=n

[0, a1, .., as]L, (2.4)

where the summation takes place over all rationals, whose elements of the continued

fraction sum up to n. It is these expressions which highly motivate our research on

moments. Numerically, one has

M1 = 1.5, M2 = 4.29092, M3 = 18.556, M4 = 107.03;

m1 = 0.5, m2 = 0.29092, m3 = 0.18638, m4 = 0.12699.
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We will see that the generating power function of mL possesses some interesting

properties. Let ω(x) be a continuous function of at most power growth: ω(x) =
O(xT ), x → ∞ for certain T . Then, as noted above, F (x) has a tail of exponential

decay; therefore, there exists next integral. The functional equation for F (x) (2.1)
gives F (x+ n) = 1− 2−n + 2−nF (x), x ≥ 0. Hence

∞∫
0

ω(x) dF (x) =
∞∑
n=0

1∫
0

ω(x+ n) dF (x+ n) =

1∫
0

∞∑
n=0

ω(x+ n)
2n

dF (x).

Let x = t
t+1 , t ≥ 0. Since F ( t

t+1) = 1
2F (t), this change of variables gives

∞∫
0

ω(x) dF (x) =
∞∑
n=0

∞∫
0

ω( t
t+1 + n)
2n+1

dF (t)

(All changes of order of summation and integration are easily justi�able minding the

condition on ω(x)). Let ω(x) = xL, L ∈ N0. Then, if we denote Bs =
∑∞

n=0
ns

2n+1 , we

have
∞∫
0

xL dF (x) =

∞∫
0

L∑
i=0

( x

x+ 1

)i(L
i

)
BL−i dF (x).

Whence the relation

ML =
L∑
i=0

mi

(
L

i

)
BL−i, , L ≥ 0. (2.5)

The generating exponential power function of Bi is

B(t) =
∞∑
L=0

BL
L!
tL =

∞∑
L=0

∞∑
n=0

nLtL

2N+1L!
=
∞∑
n=0

ent

2n+1
=

1
2− et

.

Denote byM(t) and m(t) the corresponding exponential generating power functions

of the coe�cients ML and mL respectively. Thus,

M(t) =

∞∫
0

ext dF (x), m(t) =

∞∫
0

exp
( xt

x+ 1

)
dF (x) = 2

1∫
0

ext dF (x).

The relation (2.5) in terms of M(t) and m(t) reads as

M(t) =
∞∑
L=0

ML

L!
tL =

1
2− et

∞∑
L=0

mL

L!
tL =

1
2− et

m(t). (2.6)

We see that the functionm(t) is entire and the generating functionM(t) has a positive
radius of convergence. The last identity implies the asymptotics for ML.

Proposition 2.2. For L ∈ N0,

ML =
m(log 2)
2 log 2

( 1
log 2

)L
L! +Oε

(
((4π2 + (log 2)1/2 − ε)−L

)
L!

=
(m(log 2)

2 log 2

( 1
log 2

)L
+O(6.3−L)

)
L!
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Proof. By Cauchy's formula, for any su�ciently small r,

ML =
L!
2πi

∫
|z|=r

M(z)
zL+1

dz.

Changing the path of integration, we get by the calculus of residues

ML = −Resz=log 2

(
m(z)

(2− ez)zL+1

)
− L!

2πi

∫
|z|=R

m(z)
2− ez

dz
zL+1

,

where R satis�es log 2 < R < | log 2 + 2πi| (which means that there is exactly one

simple pole of the integrand located in the interior of the circle |z| = R). It is easily

seen that the residue coincides with the main term in the formula of the lemma; the

error term follows from estimating the integral. �

Also, (2.6) gives the inverse to linear equations (2.5):

mL = ML −
L−1∑
s=0

Ms

(
L

s

)
, L ≥ 0. (2.7)

Since B(t)(2 − et) = 1, the coe�cients BL can be calculated recursively: BL =∑L−1
s=0

(
L
s

)
Bs. Thus, B0 = 1, B1 = 1, B2 = 3, B3 = 13, B4 = 75, B5 = 541. This

sequence is labeled A000670 in [64].

In the future we will consider the integrals involving m(t), and we need the eval-

uation of this function for negative t.

Proposition 2.3. Let C = e−
√

log 2 = 0.4349.... Then C2
√
t � m(−t)� C

√
t as t→∞.

Proof. In fact, m(−t) =
∫∞
0 exp(− xt

x+1) dF (x). Hence, m(t) is positive for t ∈ R.
Let 0 < M < 1. Since 1− F (x) � 2−x as x→∞, and F (x) + F (1/x) = 1,

m(−t) =
( M∫

0

+

∞∫
M

)
exp(− xt

x+ 1
) dF (x)� 2−1/M + exp

(
− Mt

M + 1

)
.

This is valid for every M < 1 and the implied constant is universal. Now choosing

M =
√

log 2√
t

gives the desired upper bound. To establish lower bound, note that

m(−t) >
M∫
0

exp(− xt

x+ 1
) dF (x)� 2−1/M · exp

(
− Mt

M + 1

)
.

The same choice for M establishes the lower bound. Naturally, similar evaluation

holds for the derivative, since m′(−t) =
∫∞
0

x
x+1 exp(− xt

x+1) dF (x). �

We will prove one property of the function m(t) which represents the symmetry

of F given by F (x) + F (1/x) = 1.

Proposition 2.4. We have m(t) = etm(−t).
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Proof. In fact,

m(t) =

∞∫
0

exp
( xt

x+ 1

)
dF (x) = −

∞∫
0

exp
( t/x

1/x+ 1

)
dF (1/x)

=

∞∫
0

exp
( t

x+ 1

)
dF (x) = et

∞∫
0

exp
(
− xt

x+ 1

)
dF (x) = m(−t)et. �

Whence the relations

mL =
L∑
s=0

(
L

s

)
(−1)sms, , L ≥ 0.

For example, m1 = m0 −m1, which gives m1 = 1/2, and thus we have M1 = 3/2. For
other coe�cients we only have linear relations. Thus, 2m3 = −1/2 + 3m2.

2.2 Generating function of moments: G(z)

We introduce the generating power function of moments

M(z) =
∞∑
L=0

mLz
L.

A priori, this series converges in the unit circle. Since
∫∞
0 xne−x dx = Γ(n + 1) = n!,

we have, using the symmetry relation for m(t), and for real z < 1:

M(z) =

∞∫
0

m(zt)e−t dt =

∞∫
0

m(−zt)e−t(1−z) dt =

∞∫
0

m
(
t

z

z − 1

) 1
(1− z)

e−t dt =M
( z

z − 1

) 1
1− z

. (2.8)

Both integrals converge for z < 1 (sincemk ≤ 1, |m(z)| ≤ ez), hence for these values of
z we have the above identity. M(z) is initially de�ned for |z| < 1; nevertheless, this
identity gives us the holomorphic continuation ofM(z) to the half plane <z < 1/2.

Proposition 2.5. The function M(z) can be analytically continued to the domain

C\[1,∞).

Proof. In fact, m(t) =
∫∞
0 exp( x

x+1 t) dF (x). As noted above, |m(t)| ≤ et for positive
t (in fact, Proposition 2.3 gives a slightly better estimate). Therefore, for real z, z < 1,
we have:

M(z) =

∞∫
0

∞∫
0

exp
( x

x+ 1
zt
)
e−t dF (x) dt =

∞∫
0

1
1− x

x+1z
dF (x).
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We already obtained the analytic continuation ofM to the region {|z| < 1}
⋃
{<z <

1/2}. Let z = σ + iy with y > 0 and σ ≥ 1/2. In a small neighborhood of z the

imaginary part is bounded: y ≥ y0 > 0, and also the real part is bounded: σ ≤ σ0.

In this neighborhood the integral converges uniformly; in fact, there we have the

estimate ∣∣∣(1− x

x+ 1
z)
∣∣∣ ≥ max{

∣∣∣1− x

x+ 1
σ
∣∣∣, ∣∣∣ x

x+ 1
t
∣∣∣}.

For 0 ≤ x ≤ 1/σ we have the bound 1
σ0+1 , and for x > 1/σ we have the bound t0

σ0+1 .

Hence, the function under integral in this neighborhood is uniformly bounded, which

proves the uniform convergence of the integral and the statement of Proposition. �

The system (2.5) gives us the expression ofML in terms ofms. In fact, there exists

one more system which is independent of the distribution F (x); it simply encodes

the relation among functions
(

x
1−x

)L
and xs given by( x

1− x

)L
=
∑
s≥L

(
s− 1
L− 1

)
xs, L ≥ 1, 0 ≤ x < 1.

Change x = t
t+1 gives

tL =
∑
s≥L

(
s− 1
L− 1

)( t

t+ 1

)s
L ≥ 1, t ≥ 0.

And ultimately,

ML =
∑
s≥L

(
s− 1
L− 1

)
ms. (2.9)

For the convenience, we introduce a function

G(z) =
M(z)− 1

z
=
∞∑
L=1

mLz
L−1 =

∞∫
0

x
x+1

1− x
x+1z

dF (x) = 2

1∫
0

x

1− xz
dF (x). (2.10)

Our next purpose is to prove the main result about the function G(z). The power

series converges in the disc |z| ≤ 1 (including the boundary, as can be inherited from

(2.9); moreover, this implies that there exist all left derivatives of G(z) at z = 1).
The integral converges in the cut plane C \ (1,∞).

Theorem 2.6. Let mL =
∫∞
0 ( x

x+1)L dF (x). Then the generating power function, de-

�ned as G(z) =
∑∞

L=1mLz
L−1, has an analytic continuation to the domain C\Rx>1.

It satis�es the functional equation

− 1
1− z

− 1
(1− z)2

G
( 1

1− z

)
+ 2G(z + 1) = G(z), (2.11)

and also the symmetry property

G(z + 1) = − 1
z2
G
(1
z

+ 1
)
− 1
z
.

Moreover, G(z) = o(1) as z →∞ and the distance from z to R+ tends to in�nity.
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Proof. In analogy toM(z), for real z < 0 de�ne the following function: M0(z) =∫∞
0 M(zt)e−t dt. In view of (2.6), this integral converges for real z < 0. Thus,

M0(z) =

∞∫
0

∞∫
0

exp(xzt)e−t dF (x) dt =

∞∫
0

1
1− xz

dF (x).

In the same manner as with M(z), we deduce that M0(z) extends as an analytic

function to the region C\R>0. In this domain now we see that

M0(z)− 1
z

=
M(z + 1)− 1

z + 1
, (2.12)

which is the consequence of an algebraic identity( 1
1− xz

− 1
)
· 1
z

=
( 1

1− x
x+1(z + 1)

− 1
)
· 1
z + 1

.

The relation (2.12) is independent of the speci�c distribution function, it simply en-

codes the information contained in (2.9) about the relation of xL to (x/(x+ 1))s. On
the other hand, the speci�c information about F (x) is encoded in (2.5), or in the

form (2.6). The comparison of these two gives the desired functional equation for

G(z). In fact, for real t < 0 the following estimate follows from (2.6) and Proposition

2.3: |M(t)| = |m(t)(2− et)−1| ≤ |m(t)| � 1; and thus for real z < 0:

M(z) =

∞∫
0

m(zt)e−t dt =

∞∫
0

(2− ezt)M(zt)e−t dt =

2M0(z)−
∞∫
0

M(zt)e−t(1−z) dt = 2M0(z)−M0

( z

1− z

) 1
1− z

.

Finally, the substitution (2.12) gives us the functional equation

1− z
1 + z

− z

1− z
M
( 1

1− z

)
+ 2

z

z + 1
M(z + 1) =M(z).

This equation from the principle of analytic continuation should be satis�ed for

all values of arguments in the region of holomorphicity ofM(z). Direct inspection

shows that for G(z) = M(z)−1
z this equation reads as (2.11). Also, the symmetry

property is a reformulation of (2.8). This proves the �rst part of the theorem. Ob-

viously, the last assertion follows from the integral representation of G(z) given by

(2.10). �

We call the function G(z) the dyadic period function, since its functional equation
is completely parallel to a three term functional equations which are satis�ed by

rational period functions and period functions associated with Maass wave forms

[47]. The word \dyadic" refers to the binary origin of the distribution function

F (x). Indeed, thorough inspection shows that the multiplier 2 in the equation (2.11)

emerges exactly from the fact that every generation of T has twice as many members

as a previous generation.
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2.3 Uniqueness of G(z)

In this section we prove the uniqueness of the function having the properties, de-

scribed in Theorem 2.6. Note that two functional equations for G(z) can be merged

into single one. It is easy to check that

1
z

+
1
z2
G
(1
z

)
+ 2G(z + 1) = G(z) (2.13)

is equivalent to both together. In fact, the change z 7→ 1/z in the last equation gives

the symmetry property and application of it to the term G(1/z) of the above gives

the functional equation (2.11).

Proposition 2.7. The function G(z), satisfying the conditions of Theorem 2.6, is
unique.

Proof. Suppose, there are two such functions. Then their di�erence G0(z) has

the same behavior at ∞, and satis�es the homogenic form of the equation (2.13).
LetM = sup−1≤x≤0 |G0(x)|. We will show thatM = 0 and by the principle of analytic

continuation this will imply that G0(z) ≡ 0. Let z be real, −1 ≤ z ≤ 0. Let us

substitute z 7→ z − n in the equation (2.13), n ∈ N, n ≥ 1, and divide it by 2n. Thus,
we obtain:

G0(z − n)
2n

− G0(z − n+ 1)
2n−1

=
1

2n(z − n)2
G0

( 1
z − n

)
.

Note that for z in the interval [−1, 0], 1
z−n belongs to the same interval as well. Now

sum this over n ≥ 1. The series on both sides are absolutely convergent, minding

the behavior of G0(z) at in�nity. Therefore,

−G0(z) =
∞∑
n=1

1
2n(z − n)2

G0

( 1
z − n

)
. (2.14)

The evaluation of the right side gives

|G0(z)| ≤
∞∑
n=1

1
2nn2

M =
(π2

12
− 1

2
log2 2

)
M for − 1 ≤ z ≤ 0.

The constant is < 1. Thus, unless M = 0, this is contradictory for z0 in the interval

[−1, 0], such that |G0(z0)| = M . This proves the Proposition. �

Note the similarity between (2.14) and the expression for the Gauss-Kuzmin-

Wirsing operatorW. The latter is de�ned for bounded smooth functions f : [0, 1]→ R
by the formula

[Wf ](x) =
∞∑
k=1

1
(k + x)2

f
( 1
k + x

)
.

The eigenvalue 1 corresponds to the function 1
1+x (see [36] chapter III, for Kuzmin's

treatment). The second largest eigenvalue −0.303663... (the Wirsing constant) leads
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to a function with no analytic expression known [74]; this eigenvalue determines the

speed of convergence of iterates [W(n)f ](x) to c
1+x (for certain c ∈ R). The spectral

analysis of our operator is presented in Section 2.5. Chapter 4 contains much more

details and results in this direction.

Let =z > 0. We remind that the Eisenstein series of weight 2 is de�ned as [63]

G1(z) =
∑
n∈Z

∑
m∈Z

′ 1
(m+ nz)2

;

(mind the order of summation, since the series is not absolutely convergent). This

series has the following Fourier expansion If q = e2πiz, then

G1(z) =
π2

3
− 8π2

∞∑
n=1

σ1(n)qn, σ1(n) =
∑
d|n

d.

Then this function is not completely modular, but we have the following identities

([63], chapter VII):

G1(z + 1) = G1(z), G1(−1/z) = z2G1(z)− 2πiz.

Note that for =z > 0, all arguments in (2.11) simultaneously belong to the upper half

plane. It is surprising (but not coincidental) that the function i
2πG1(z) satis�es the

functional equation (2.11) for =z > 0 (see the remarks in Section 2.7 about possible

connections in idelic setting). To check this statement, note that

i

2π
G1

(
− 1
z − 1

)
=

i

2π

(
(z − 1)2G1(z − 1)− 2πi(z − 1)

)
=

i

2π
(1− z)2G1(z)− (1− z).

Thus, plugging this into (2.11), we obtain an identity. If we de�ne G1(z) = G1(z) for
=z < 0, one checks directly that the symmetry property is also satis�ed. This is a

surprising phenomena. See last section of Chapter 4 for more speculations on this

topic, where the space of dyadic period functions in the upper half plane (denoted

by DPF) is introduced.

We end this section with presenting a system of linear equations which the mo-

mentsmL do satisfy. This system is derived from the three term functional equation

(2.13) and is a superior result in numerical calculations: whereas directly from the

de�nition we can recover only a few digits of the moments, this method allows to

calculate up to 60 digits and more.

Proposition 2.8. Denote cL =
∑∞

n=1
1

2nnL
= LiL(1

2). The moments ms satisfy the

in�nite system of linear equations

ms =
∞∑
L=0

(−1)LcL+s

(
L+ s− 1
s− 1

)
mL, s ≥ 1.
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Proof. Indeed, for <z ≤ 0 we have (recall that m0 = 1):

−G(z) =
∞∑
n=1

1
2n(z − n)

+
∞∑
n=1

1
2n(z − n)2

G
( 1
z − n

)
=
∞∑
n=1

1
2n

∞∑
L=0

mL

( 1
z − n

)L+1
.

This series is absolutely and uniformly convergent for <z ≤ 0, as is implied by (2.9).

We obtain the needed result after taking the sth left derivative at z = 0. �

Numerical calculations are presented in Section 5.8. This method gives high pre-

cision values for other constants, including the Kinney's constant.

2.4 Exponential generating function m(t)

The aim of this section is to interpret (2.13) in terms of m(t). The following Theorem
uniquely determines the function m(t), along with the boundary condition m(0) = 1
and regularity property as in Proposition 2.3.

Theorem 2.9. The function m(s) satis�es the integral equation

m(−s) = (2es − 1)

∞∫
0

m′(−t)J0(2
√
st) dt, s ∈ R+, (2.15)

where J0(?) stands for the Bessel function:

J0(z) =
1
π

π∫
0

cos(z sinx) dx.

Proof. For <z < 1, we have that G(z) =
∫∞
0 m′(zt)e−t dt. Thus,

G(z) = −1
z

∞∫
0

m′(−t)et/z dt for <z < 0, G(z) =
1
z

∞∫
0

m′(t)e−t/z dt for 0 < <z < 1.

Thus, the functional equation for G(z) in the region <z < −1 in terms of m′(t) reads
as

1
z

=

∞∫
0

m′(−t)
( 2
z + 1

e
t

z+1 +
1
z
etz − 1

z
e
t
z

)
dt. (2.16)

Now, multiply this by e−sz and integrate over <z = −σ < −1, where s > 0 is real.

We have ([44], p. 465)
−σ+i∞∫
−σ−i∞

e−sz

z
dz = −2πi;
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2

−σ+i∞∫
−σ−i∞

e
t

z+1
−sz

z + 1
dz = −2es

σ−1+i∞∫
σ−1−i∞

esz−
t
z

z
dz = −2es

σ0+i∞∫
σ0−i∞

e
√
stz−

√
st
z

z
dz = −4πiesJ0(2

√
st),

where σ0 = (σ− 1)
√

t
s > 0, and Jλ(∗) stands for the Bessel function (see [44], p. 597

for the representation of the Bessel function by this integral). Further,

−σ+i∞∫
−σ−i∞

e(t−s)z

z
dz =

−2πi if s > t,

0 if s < t,

−σ+i∞∫
−σ−i∞

e
t
z
−sz

z
dz = −2πiJ0(2

√
st).

Thus, eventually

−2πi = −2πi

∞∫
0

m′(−t)(2es − 1)J0(2
√
st) dt− 2πi

s∫
0

m′(−t) dt;

since m(0) = 1, this proves the theorem. �

Thus, we obtained an integral equation for m(s), which corresponds to the func-

tional equation (2.13) for G(z). Since the Laplace transform of J0(2
√
t) in variable z

is 1
z e
−1/z ([44], p. 503), multiplying the integral equation by e−zs, and integrating

over s ≥ 0, we obtain:

∞∫
0

m(−s)
2es − 1

e−zs ds =

∞∫
0

m′(−t)
( ∞∫

0

J0(2
√
st)e−zs ds

)
dt =

1
z

∞∫
0

m′(−t)e−
t
z dt = G(−z).

Despite the fact that the �rst integral was calculated for <z > 0, it does converge for
<z > −1, and therefore we have an integral representation of G(z) in a wider region

<z < 1 by a single integral

∞∫
0

m(−t)
2et − 1

ezt dt = G(z). (2.17)

We conclude this chapter with yet another integral equation, which, unfortu-

nately, is insu�cient in determining the moments, since it represents only the sym-

metry property of G(z). Consider the integral (2.17) in the half plane <z < 0. Since
m(0) = 1, this reads as

∞∫
0

m(−t)
( etz

2et − 1
+

1
z2
e
t
z

)
dt = −1

z
. (2.18)

Recall that, as usually, Kn(∗) denotes the Macdonald function, which for positive

real t is de�ned as

Kn(t) =
1
2

∞∫
0

e−t/2(z+ 1
z
)

zn+1
dz.

([72], chapter VI, section 6.22). Then the following proposition holds.
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Proposition 2.10. We have an identity

∞∫
0

M ′(−t)K0

(
2
√

(s+ t)s
)

dt =
1
2
K0(2s), for s > 0.

Proof. If we substitute in (2.18) z → −z, then this equality holds for <z > 0.
Multiply now both sides by e−sz−

s
z , s > 0, and integrate over real z ≥ 0. Thus,

∞∫
0

e−tz−sz−
s
z dz =

∞∫
0

e−
t
z
− s
z
−sz

z2
dz = 2

√
s

s+ t
K1(2

√
(s+ t)s),

∞∫
0

e−sz−
s
z

z
dz = 2K0(2s).

Therefore,

∞∫
0

m(−t)
( 1

2et − 1
+ 1
)√ s

s+ t
K1(2

√
(s+ t)s) dt = K0(2s).

By (2.6), m(−t)( 1
2et−1+1) = 2M(−t). Now integrate by parts. We haveK ′0(t) = −K1(t)

([72], chapter III, section 3.71; this can be easily proved directly, given the integral

representation of these functions). Thus,

∂

∂t
K0(2

√
(s+ t)s) = −K1(2

√
(s+ t)s)

√
s

s+ t
,

and

−2K0(
√

(s+ t)s)M(−t) |∞0 = 2K0(2s),

whence the claim of the proposition follows. �

Now we will make some formal calculations involving divergent series. They

show that the last proposition is insu�cient in determining M(t) - it simply repre-

sents the symmetry property of G(z) given in Theorem 2.6. One auxiliary lemma

about integrals involving the Macdonald function is needed ([72], chapter XIII, sec-

tion 13.47).

Lemma 2.11.

∞∫
0

Kν(a
√
x2 + s2)

(x2 + s2)
1
2
ν

x2µ+1 dx =
2µΓ(µ+ 1)
aµ+1sν−µ−1

Kν−µ−1(as), for a > 0 and <µ > −1.

Thus, after change of variables (s+ t)s = x2 + s2, (with a = 2, ν = 0), we obtain

∞∫
0

tnK0

(
2
√

(s+ t)s
)

dt = n!Kn+1(2s), .
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Since K−n(z) = Kn(z) ([72], chapter III, section 3.71), integration of the equation in

Proposition 2.10 term by term leads to (a formal divergent sum)

∞∑
n=0

(−1)nMnKn(2s) =
1
2
K0(2s).

Formally (see (2.12), and the equation above),
∑∞

n=0(−1)n Mn
zn+1 = 1

zM0(−1
z ), and

therefore, after change of variables z → 1/z, we get the following valid integral∫ ∞
0

e−s(z+
1
z
)M0(−z) dz

z
= K0(2s).

This can be rewritten as∫ ∞
1

e−s(z+
1
z
)
(
M0(−z) +M0(−1/z)

) dz
z

= K0(2s).

The symmetry property impliesM0(z) +M0(1/z) ≡ 1 (Theorem 2.6). Thus, indeed

we have an identity, and this suggests that the last proposition only encodes the

latter property of G(z).

2.5 Dyadic eigenfunctions

We proceed with the de�nition of the sequence of functions Gλ(z) which satisfy the

functional equation analogous to (2.13).
Since J ′0(?) = −J1(?), J1(0) = 0, integration by parts in (2.15) leads to

∞∫
0

m(−t)√
t
J1(2
√
st) dt =

1√
s
− m(−s)√

s(2es − 1)
.

Recall that the Hankel transform of degree ν > −1/2 for the function f(r) (provided
that

∫∞
0 f(r)

√
r dr converges absolutely) is de�ned as

g(ρ) =

∞∫
0

f(r)Jν(rρ)r dr,

where Jν(?) is νth Bessel function. The inverse is given by the Hankel inversion

formula with exactly the same kernel ([72], chapter XIV, section 14.4.). Thus, after

proper change of variables,

g(ρ) =

∞∫
0

f(r)Jν(2
√
rρ) dr ⇔ f(r) =

∞∫
0

g(ρ)Jν(2
√
rρ) dρ.

Thus, application of this inversion to our last identity yields

m(−s)√
s

=

∞∫
0

J1(2
√
st)√
t

dt−
∞∫
0

m(−t)√
t(2et − 1)

J1(2
√
st) dt.
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The �rst integral on the right hand side is equal to − 1√
s
J0(2
√
st) |∞t=0= 1√

s
. Let ψ(s) =

(2es − 1)1/2. Then this equation can be rewritten as

m(−s)√
sψ(s)

=
1√
sψ(s)

−
∞∫
0

m(−t)√
tψ(t)

· J1(2
√
st)

ψ(s)ψ(t)
dt.

Hence, if we denote

J1(2
√
st)

ψ(s)ψ(t)
= K(s, t),

m(−s)− 1√
sψ(s)

= Y(s),

we obtain a second type Fredholm integral equation with symmetric kernel ([39],

chapter 9):

Y(s) = `(s)−
∞∫
0

Y(t)K(s, t) dt,

where

`(s) = − 1
ψ(s)

∞∫
0

J1(2
√
st)√

t(2et − 1)
dt =

1√
sψ(s)

( ∞∑
n=1

e−s/n2−n − 1
)
.

The behavior of the Bessel function at in�nity is given by the asymptotic formula

J1(x) ∼
( 2
πx

)1/2
cos
(
x− 3

4
π
)

([72], chapter VII, section 7.1). Therefore, obviously,

∞∫
0

∞∫
0

|K(s, t)|2 ds dt <∞,
∞∫
0

|`(s)|2 ds <∞.

Thus the operator associated with the kernel K(s, t) is the Hilbert-Schmidt opera-

tor ([39], p. 532). The theorem of Hilbert-Schmidt ([39], p. 283) states that the

solution of this type of integral equations reduces to �nding the eigenvalues λ and

the eigenfunctions Aλ(s). We postpone the solution of this integral equation (or

equation in the form (2.13)), for the future. Till the end of this section we deal

with eigenfunctions. The integral operator, consequently, is compact self-conjugate

operator in the Hilbert space, it possesses a complete orthogonal system of eigen-

functions, all λ are real and λn → 0, as n→∞. If we denote Aλ(s)ψ(s) = Bλ(s), then
the equation for an eigenfunction reads as

∞∫
0

Bλ(t)
J1(2
√
st)

2et − 1
dt = λBλ(s).

This gives Bλ(0) = 0. Since Aλ(s) ∈ L2(0,∞), and J1(∗) is bounded, this implies that

Bλ(s) is uniformly bounded for s ≥ 0 as well. Moreover, since the Taylor expansion
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of J1(∗) contains only odd powers of the variable, Bλ(s)
√
s has a Taylor expansion

with center 0. Now, multiply this by
√
se−s/z, z > 0, and integrate over s ∈ R+. The

Laplace transform of
√
sJ1(2

√
s) is 1

z2
e−1/z ([44], p. 503). Thus, we obtain

1
λ

∞∫
0

Bλ(t)
√
t

2et − 1
e−tz dt =

1
z2

∞∫
0

Bλ(s)
√
se−

s
z ds. (2.19)

Denote by Gλ(−z) the function on both sides of the equality. Thus, Gλ(z) is de�ned
at least for <z ≤ 0. Since 2et(z+1) − etz = (2et − 1)etz, we have

λ
(

2Gλ(z + 1)−Gλ(z)
)

=

∞∫
0

Bλ(t)
√
tetz dt =

1
z2
Gλ(1/z).

Therefore, we have proved the �rst part of the following theorem.

Theorem 2.12. For every eigenvalue λ of the integral operator, associated with the

kernel K(s, t), there exists at least one holomorphic function Gλ (de�ned for z ∈
C \ R>1), such that the following holds:

2Gλ(z + 1) = Gλ(z) +
1
λz2

Gλ

(1
z

)
. (2.20)

Moreover, Gλ(z) for <z < 0 satis�es all regularity conditions imposed by it being an

image under Laplace transform ([44], p. 469).

Conversely: for every λ, such that there exists a function, which satis�es (2.20) and

these conditions, λ is the eigenvalue of this operator. The set of all possible λ's is

countable, and λn → 0, as n→∞.

Proof. The converse is straightforward, since, by the requirement, Gλ(z) for

<z < 0 is a Laplace image of a certain function, and all the above transformations

are invertible. We leave the details. If the eigenvalue has multiplicity higher than 1,

then these λ−forms span a �nite dimensional C−vector space. Note that the proof

of Proposition 2.7 implies |λ| < 0.342014... Finally, the functional equation (2.20)

gives the analytic continuation of Gλ(z) to the half-plane <z ≤ 1. Further, if z ∈ U ,
where U = {0 ≤ <z ≤ 1} \ {|z| < 1}, we can continue Gλ(z) to the region U + 1, and,
inductively, to U + n, n ∈ N. Let U0 be the union of these. We can, obviously, con-

tinue Gλ(z) to the set U−1
0 +n, n ∈ N. Similar iterations cover the described domain.

�

Note that, in contrast to G(z), we do not have a symmetry property for Gλ(z).

Next calculations produce the �rst few eigenvalues. The Taylor expansion of

Gλ(z) is given by

Gλ(z) =
∞∑
L=1

m
(λ)
L zL−1.
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It converges inside the unit circle, including its boundary (as is clear from (2.20),

there exist all left derivatives at z = 1). Thus, m(λ)
L have the same vanishing proper-

ties as mL (which guarantees the convergence of the series in (2.9)). And therefore,

as in the Proposition 2.8, we obtain:

λm(λ)
s =

∞∑
L=1

(−1)L−1cL+s

(
L+ s− 1
s− 1

)
m

(λ)
L , s ≥ 1.

Here cL =
∑∞

n=1
1

2nnL
. If we denote es,L = (−1)L−1cL+s

(
L+s−1
s−1

)
, then λ is the eigen-

value of the in�nite matrix E∞s,L=1 = (es,L)∞s,L=1. The numerical calculations with the

augmentation of this matrix at su�ciently high level give the following �rst eigen-

values in decreasing order, with all digits exact:

λ1 = 0.25553210+, λ2 = −0.08892666+, λ3 = 0.03261586+, λ4 = −0.01217621+.

Figure 2.1 shows the functions Gλ(z) (for the �rst six eigenvalues) for real z in

the interval [−1,−0.2]. The choice of this interval is motivated by Theorem 2.12.

Note also that functional equation implies Gλ(0) =
(

1
2 + 1

2λ

)
Gλ(−1). Thus, one has

Gλ(0)
Gλ(−1) →∞, as λ→ 0. This can also be seen empirically from Figure 2.1.

2.6 p−adic distribution

In the previous sections we were interested in the distribution of the nth generation

of the tree T in the �eld of real numbers. Since the set of non-equivalent valuations

of Q contains a valuation associated with any prime number p, it is natural to con-

sider the distribution of the set of each generation in the �eld of p−adic numbers

Qp. In this case we have an ultrametric inequality, which implies that two circles

are either co-centric or do not intersect. We de�ne

Fn(z, ν) = 2−n+1#{a
b
∈ T (n) : ordp(

a

b
− z) ≥ ν}, z ∈ Qp, ν ∈ Z.

(When p is �xed, the subscript p in Fn is omitted). Note that in order to calculate

Fn(z, ν) we can con�ne to the case ordp(z) < ν; otherwise ordp(ab−z) ≥ ν ⇔ ordp(ab ) ≥
ν. We shall calculate the limit distribution µp(z, ν) = limn→∞ Fn(z, ν), and also some

characteristics of it, e.g. the zeta function

Zp(s) =
∫

u∈Qp

|u|sdµp, s ∈ C, z ∈ Qp,

where | ∗ | stands for the p−adic valuation.
To illustrate how the method works, we will calculate the value of Fn in two

special cases. Let p = 2 and let E(n) be the number of rational numbers in the

nth generation with one of a or b being even, and let O(n) be the corresponding
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λ1 = 0.25553210+ λ2 = −0.08892666+

λ3 = 0.03261586+ λ4 = −0.01217621+

λ5 = 0.00458154+ λ6 = −0.00173113+

Figure 2.1: Eigenfunctions Gλ(z) for z ∈ [−1,−0.2]
.
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number of fractions with both a and b odd. Then E(n) + O(n) = 2n−1. Since a
b in

the nth generation generates a
a+b and

a+b
b in the (n + 1)st generation, each fraction

a
b with one of the a, b even will generate one fraction with both numerator and

denominator odd. If both a, b are odd, then their two o�springs will not be of this

kind. Therefore, O(n+ 1) = E(n). Similarly, E(n+ 1) = E(n) + 2O(n). This gives the
recurrence E(n+ 1) = E(n) + 2E(n− 1), n ≥ 2, and this implies

E(n) =
2n + 2(−1)n

3
, O(n) =

2n−1 + 2(−1)n−1

3
, µ2(0, 0) =

2
3
.

(For the last equality note that a
b and b

a simultaneously belong to T (n), and so the

number of fractions with ord2(∗) > 0 is E(n)/2). We will generalize this example to

odd prime p ≥ 3. Let Li(n) be the part of the fractions in the nth generations such

that ab−1 ≡ i mod p for 0 ≤ i ≤ p− 1 or i =∞ (that is, b ≡ 0 mod p). Thus,∑
i∈Fp∪∞

Li(n) = 1;

in other words, Li(n) = Fn(i, 1). For our later investigations we need a result from

the theory of �nite Markov chains.

Lemma 2.13. Let A be a matrix of a �nite Markov chain with s stages. That is,

ai,j ≥ 0, and
∑s

j=1 ai,j = 1 for all i. Suppose that A is irreducible (for all pairs

(i, j), and some m, the entry a
(m)
i,j of the matrix Am is strictly positive), acyclic and

recurrent (this is satis�ed, if all entries of Am are strictly positive for somem). Then

the eigenvalue 1 is simple and if λ is another eigenvalue, then |λ| < 1, and Am, as

m → ∞, tends to the matrix B, with entries bi,j = πj, where (π1, ..., πs) is a unique

left eigenvector with eigenvalue 1, such that
∑s

j=1 πj = 1.

A proof of this lemma can be found in [33], Section 3.1., Theorem 1.3.

Proposition 2.14. µp(z, 1) = 1
p+1 for z ∈ Zp.

Proof. Similarly as in the above example, a fraction a
b from the nth generation

generates a
a+b and

a+b
b in the (n+ 1)st generation, and it is routine to check that

Li(n+ 1) =
1
2
L i

1−i
(n) +

1
2
Li−1(n) for i ∈ Fp ∪ {∞}, (2.21)

(Here we make a natural convention for i
1−i and i−1, if i = 1 or∞). In this equation,

it can happen that i − 1 ≡ i
1−i mod p; thus, (2i − 1)2 ≡ −3 mod p. The recurrence

for this particular i is to be understood in the obvious way, Li(n + 1) = Li−1(n).
Therefore, if we denote the vector-column (L∞(n), L0(n), ..., Lp−1(n))T by vn, and if

A is a matrix of the system (2.21), then vn+1 = Avn, and hence

vn = An−1v1,
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where v1 = (0, 0, 1, 0, ..., 0)T . In any particular case, this allows us two �nd the values

of Li explicitly. For example, if p = 7, the characteristic polynomial is

f(x) =
1
16

(x− 1)(2x− 1)(2x2 + 1)(4x4 + 2x3 + 2x+ 1).

The list of roots is

α1 = 1, α =
1
2
, α3,4 = ± i√

2
, α5,6,7,8 =

−1−
√

17
8

±
√

1 +
√

17
2
√

2
,

(with respect to the two values for the root
√

17), the matrix is diagonalisible, and

the Jordan normal form gives the expression

Li(n) =
8∑
s=1

Ci,sα
n
s .

Note that the elements in each row of the (p+ 1)× (p+ 1) matrix A are non-negative

and sum up to 1, and thus, we have a matrix of a �nite Markov chain. We need to

check that it is acyclic. Let τ(i) = i − 1, and σ(i) = i
1−i for i ∈ Fp ∪ {∞}. The entry

a
(m)
i,j of Am is

a
(m)
i,j =

∑
i1,...,im−1

ai,i1 · ai1,i2 · ... · aim−1,j .

Therefore, we need to check that for some �xed m, the composition of m σ′s or τ ′s

leads from any i to any j. One checks directly that for any positive k, and i, j ∈ Fp,

τp−1−j ◦ σ ◦ τk ◦ σ ◦ τ i−1(i) = j,

τp−1−j ◦ σ ◦ τk(∞) = j,

τk ◦ σ ◦ τ i−1(i) = ∞;

(for i = 0, we write τ−1 for τp−1). For each pair (i, j), choose k in order the amount

of compositions used to be equal (say, to m). Then obviously all entries of Am are

positive, ant this matrix satis�es the conditions of lemma. Since all columns also

sum up to 1, (π1, ..., πp+1), πj = 1
p+1 , 1 ≤ j ≤ p + 1, is the needed eigenvector. This

proves the Proposition. �

Next theorem describes µ(z, ν) in all cases.

Theorem 2.15. Let ν ∈ Z and z ∈ Qp, and ordp(z) < ν (or z = 0). Then, if z is p−adic
integer,

µ(z, ν) =
1

pν + pν−1
.

If z is not integer, ordp(z) = −λ < 0,

µ(z, ν) =
1

pν+2λ + pν+2λ−1
.
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For z = 0, −ν ≤ 0, we have

µ(0,−ν) = 1− 1
pν+1 + pν

.

This theorem allows the computation of the associated zeta-function:

Corollary 2.16. For s in the strip −1 < <s < 1,

Zp(s) =
∫
u∈Qp

|u|sdµp =
(p− 1)2

(p− p−s)(p− ps)
,

and Zp(s) = Zp(−s).

The proof is straightforward. It should be noted that this expression encodes all the

values of µ(0, ν) for ν ∈ Z.

Proof of Theorem 2.15. For shortness, when p is �xed, denote ordp(∗) by v(∗).
As before, we want a recurrence relation among the numbers Fn(i, κ), i ∈ Q+. For

each integral κ, we can con�ne to the case i < pκ. If i = 0, we only consider κ > 0
and call these pairs (i, κ) \admissible". We also include Gn(0,−κ) for κ ≥ 1, where
these values are de�ned in the same manner as Fn, only inverting the inequality,

considering a
b ∈ T

(n), such that v(ab ) ≤ −κ; this is the ratio of fractions in the nth

generation outside this circle. As before, a fraction a
b in the nth generation generates

the fractions a
a+b and

a+b
b in the (n+ 1)st generation. Let τ(i, κ) = ((i− 1) mod pκ, κ).

Then for all admissible pairs (i, κ), i 6= 0, the pair τ(i, κ) is also admissible, and

v(
a+ b

b
− i) = κ⇔ v(

a

b
− (i− 1)) = κ.

Second, if a
a+b = i+ pκu, i 6= 1, u ∈ Zp, and (i, κ) is admissible, then

a

b
− i

1− i
=

pκu

(1− i)(1− i− pκu)
.

Since v( i
1−i) = v(i)− v(1− i), this is 0 unless i is an integer, it equals v(i) if the latter

is > 0 and equals −v(1 − i) if v(1 − i) > 0. Further, this di�erence has valuation

≥ κ0 = κ, if i ∈ Z, i 6≡ 1 mod p, valuation ≥ κ0 = κ − 2v(1 − i), if i ∈ Z, i ≡ 1 mod p,

and valuation ≥ κ0 = κ − 2v(i) if i is not integer. In all three cases, easy to check,

that, if we de�ne i0 = i
1−i mod pκ0, the pair σ(i, κ) =def(i0, κ0) is admissible. For the

converse, let a
b = i0 + pκ0u, u ∈ Zp. Then

a

a+ b
− i0

1 + i0
=

pκ0

(1 + i0 + pκ0u)(1 + i0)
.

If i = i0
1+i0

is a p−adic integer, i 6≡ 1 mod p, this has a valuation ≥ κ = κ0; if i is a

p−adic integer, i ≡ 1(p), this has valuation ≥ κ = κ0 − 2v(i0) = κ0 + 2v(1 − i); if i is
not a p−adic integer, this has valuation ≥ κ = κ0 − 2v(1 + i0) = κ0 + 2v(i). Thus,

v(
a

a+ b
− i) ≥ κ⇔ v(

a

b
− i0) ≥ κ0.
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Let i = 1. If a
a+b = 1+pκu, then κ > 0, u ∈ Zp, and we obtain a

b = −1− 1
pκu , v(ab ) ≤ −κ.

Converse is also true. Finally, for κ ≥ 1,

v(
a+ b

b
) ≤ −κ⇔ v(

a

b
) ≤ −κ,

and

v(
a

a+ b
) ≤ −κ⇔ v(

a

b
+ 1) ≥ κ.

Therefore, we have the recurrence relations:
Fn+1(i, κ) = 1

2Fn(τ(i, κ)) + 1
2Fn(σ(i, κ)), if (i, κ) is admissible,

Fn+1(1, κ) = 1
2Fn(0, κ) + 1

2Gn(0,−κ), κ ≥ 1,
Gn+1(0,−κ) = 1

2Gn(0,−κ) + 1
2Fn(−1, κ), κ ≥ 1.

(2.22)

Thus, we have an in�nite matrix A, which is a change matrix for the Markov chain.

If vn is an in�nite vector-column of F ′ns and G
′
ns, then vn+1 = Avn, and, as before,

vn = An−1v1. It is direct to check that each column also contains exactly two nonzero

entries 1
2 , or one entry, equal to 1. In terms of Markov chains, we need to determine

the classes of orbits. Then in proper rearranging, the matrix A looks like

P1 0 . . . 0 . . .

0 P2 . . . 0 . . .

.

.

.
. . .

.

.

.
.
.
.

0 0 . . . Ps 0
.
.
.

.

.

. . . . 0
. . .


,

where Ps are �nite Markov matrices. Thus, we claim that the length of each orbit is

�nite, every orbit has a representative G∗(0,−κ), κ ≥ 1, the length of it is pκ + pκ−1,

and the matrix is recurrent (that is, every two positions communicate). In fact, from

the system above and form the expression of the maps τ(i, κ) and σ(i, κ), the direct

check shows that the complete list of the orbit of G∗(0,−κ) consists of (and each pair

of states are communicating):

G∗(0,−κ),

F∗(i, κ) (i = 0, 1, 2, ..., pκ − 1),

F∗(p−λu, κ− 2λ) (λ = 1, 2, ..., κ− 1, u ∈ N, u 6≡ 0 mod p, u ≤ pκ−λ).

In total, we have

1 + pκ +
κ−1∑
λ=1

(pκ−λ − pκ−λ−1) = pκ + pκ−1

members in the orbit. Thus, each Pκ in the matrix above is a �nite dimensional

`κ × `κ matrix, where `κ = pκ + pκ−1. For κ = 1, the matrix P1 is exactly the ma-

trix of the system (2.21). As noted above, the vector column (1, 1, ..., 1)T is the left
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eigenvector. As in the previous theorem, it is straightforward to check that this

matrix is irreducible and acyclic (that is, the entries of Pn
κ are strictly positive for

su�ciently large n). In fact, since by our observation, each two members in the or-

bit communicate, and since we have a move G∗(0,−κ)→ G∗(0,−κ), the proof of the

last statement is immediate: there exists n such that any position is reachable from

another in exactly nmoves, and this can be achieved at the expense of the move just

described. Therefore, all entries of Pn
κ are strictly positive. Thus, the claim of the

theorem follows from the Lemma 2.13. �

2.7 Conclusion

We end the Chapter with the following remarks. As is implied by Theorem 2.15, the

measure µp of those rationals in the Calkin-Wilf tree which are invertible elements

of Zp is equal to p−1
p+1 . We follow the line of the Tate thesis [12], and modify this

measure in order Z∗p to have measure 1; accordingly, let us de�ne µ′p = p+1
p−1µp. Thus,

we are lead to the formal de�nition of the zeta function

ζT (s) =
∏
p

∫
u∈Qp

|u|s dµ′p =
∏
p

(
1− 1

p2

)∏
p

1
1− p−s−1

· 1
1− ps−1

=
6
π2
ζ(s+ 1)ζ(−s+ 1).

This product diverges everywhere; nevertheless, if we apply the functional equation

of the Riemann ζ function for the second multiplier, we obtain

ζT (s) =
12
π2

(2π)−s cos
(πs

2

)
Γ(s)ζ(s)ζ(s+ 1).

From the above de�nition it is clear that, formally, this zeta function is the sum of

the form
∑

r∈Q+ µrr
−s, where, if r ∈ Q+, and µr stands for the limit measure of those

rationals in the nth generation of T , which have precisely the same valuation as r at

every prime which appears in the decomposition of r, times the factor
∏

ordp(r)6=0
p+1
p−1 .

Surprisingly, the product ζ(s)ζ(s + 1) is the zeta function of the Eisenstein series

G1(z), which is related to the distribution of rationals in T at the in�nite prime

Q∞ = R. In fact,

∞∫
0

(
G1(iz)−G1(i∞)

)
zs−1 dz = −8π2(2π)−sΓ(s)ζ(s)ζ(s+ 1).

This is a strong motivation to investigate the tree T and the Minkowski question

mark function in a more general - idelic - setting, thus revealing the true connection

between p−adic and real distribution, and clarifying the nature of continued frac-

tions in this direction. We hope to implement this in the subsequent papers.

Unfortunately, currently we left the most interesting question, the explicit de-

scription of the moments of F (x), unanswered. It is desirable to give the function

G(z), and, more generally, dyadic forms Gλ(z), certain modi�ed Fourier series ex-

pansion. This is in part accomplished in Chapter 4, which is a direct continuation of
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thw current one. Among other results, the dyadic zeta function ζM(s) is introduced,

given by ζM(s)Γ(s + 1) =
∞∫
0

xs dF (x), the nature of dyadic eigenfunctions Gλ(s) is

clari�ed, and certain integrals involving F (x) are computed.



Chapter 3

Asymptotic formula for the moments

3.1 Formulation

In this chapter we establish an asymptotic formula for the moments mL, which are

de�ned by (2.3). As said before, this sequence is of de�nite number-theoretic sig-

ni�cance because of (2.4). It is not clear whether there exists a closed form formula

for the moments mL. This would be greatly desirable minding the expression (2.4).

As a matter of fact, we cannot present a precise de�nition of the expression \closed

form". The above limit clearly gives the sequence of explicitly constructed rational

numbers whose limit ismL. Moreover, Chapter 5 is devoted to �nding another such

representation, in a much more fundamental way. On the other hand, one has the

following asymptotic result. Let C = e−2
√

log 2 = 0.189169995269...

Proposition 3.1. The following estimate holds, as L→∞:

C
√
L � mL � L1/4C

√
L.

Both implied constants are absolute.

Though the result of Proposition 3.1 is contained in the next Theorem 3.2, we

indulge in presenting a separate proof for it, since it is considerably shorter and is

less technical.

Thus, the �nal aim of this Chapter is to prove the �rst exact asymptotic term

for the sequence of moments mL. Though from our point of view this is of inferior

signi�cance than the closed form formula, nevertheless, it is of de�nite interest too.

Theorem 3.2. Let mL be de�ned by (2.3). Then the following holds as L→∞:

mL = 4
√

4π2 log 2 · c0 · L1/4C
√
L +O(C

√
LL−1/4).

Here the constant c0 is given by c0 =
∫ 1
0 Ψ(x) dx = 1.030199563382+, where Ψ(x) is

1−periodic function given by Ψ(x) = 2x(1− F (x)).

33
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Remark 1. The periodicity ofΨ(x) is obvious from (2.1). Numerically, 4
√

4π2 log 2·
c0 = 2.356229889908+. The sequence of momentsML (see de�nition (2.4)) is equally

important. These moments represent special values of higher left derivatives ofG(z)
at z = 1; more precisely, formal Taylor expansion at z = 1 is given by (see (2.6))

G(z + 1) =
∞∑
L=1

MLz
L−1.

As is implied by Proposition 2.2, one has the asymptotic formula ML ∼ L! c0
(log 2)L

.

Moreover, in this case there exists exact convergent asymptotic series (see Proposi-

tion 4.8). Though sequences ML and mL are linearly dependent via relations (2.7),

it is nevertheless signi�cant that the same structural constant c0 does manifest in

asymptotic formulae for both of these sequences.

Remark 2. As it is clear from the proof, other terms of asymptotic expansion

can be calculated as well. We con�ne to the �rst term since calculations are stan-

dard (though tedious) with no new ideas being introduced. Note that structural

constants cs =
∫ 1
0 x

sΨ(x) dx do appear in the asymptotic expansion, and the method

used shares some similarities with the Euler-Maclaurin summation.

Remark 3. If we start from the representation of mL via the last integral of (2.3)

(which is the most natural), then to obtain the representation by the �rst integral we

use the second equation in (2.1). Moreover, one of the core stages of the proof relies

on the periodicity of Ψ(x) and so uses the �rst equation in (2.1). Since these two

equations are characteristic only to theMinkowski questionmark function, generally

speaking, our asymptotic formula for the moments of F (x) is unique among similar

results for other probabilistic distributions with proper support on the interval [0, 1].

3.2 Estimate for the moments mL

This section gives the proof of Proposition 3.1. A priori, as it is implied by the fact

that the radius of convergence of G(z) at z = 0 is 1, and by the fact (2.9), for every

ε > 0 and p > 1, one has 1
Lp � mL � (1− ε)L, as L→∞.

Proof of Proposition 3.1. Fix J ∈ N, and choose an increasing sequence of positive
real numbers µj < 1, 1 ≤ j ≤ J. We will soon specify µj in such a way that µj → 0
uniformly as L→∞. An estimate for mL is obtained via the de�ning integral (recall

that F (x) + F (1/x) = 1):

mL = (

µ1∫
0

+
J−1∑
j=1

µj+1∫
µj

+

∞∫
µJ

)
( 1
x+ 1

)L
dF (x) <

F (µ1) +
J−1∑
j=1

( 1
µj + 1

)L
F (µj+1) +

( 1
µJ + 1

)L
.
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This indeed holds: the integrand is bounded by 1 in the �rst integral. In the middle

integrals, we choose the largest value of integrand, and change bounds of integration

to [0, µj+1]. The same is done with the last integral, with bounds being changed

into [0,∞). Now choose µj = 1
cj
√
L
for some decreasing sequence of constants cj.

Functional equation for F (x) implies F (x + n) = 1 − 2−n + 2−nF (x), x ≥ 0. Thus,

1− F (x) � 2−x, as x → ∞ (the implied constants being min and max of the function

Ψ(x); see Figure 4.1, Section 4.6). Using the identity F (x)+F (1/x) = 1, we therefore
obtain

mL � 2−c1
√
L +

J−1∑
j=1

( 1
1

cj
√
L

+ 1

)L
2−cj+1

√
L +

( 1
1

cJ
√
L

+ 1

)L
�

e−
√
Lc1 log 2 +

J−1∑
j=1

e
−
√
L( 1

cj
+cj+1 log 2)

+ e
−
√
L 1
cJ . (3.1)

At this point we need an elementary Lemma.

Lemma 3.3. For given J ∈ N, there exists a unique sequence of positive real numbers

c∗1, ..., c
∗
J , such that

c∗1 =
1
c∗1

+ c∗2 =
1
c∗2

+ c∗3 = ... =
1

c∗J−1

+ c∗J =
1
c∗J
.

Moreover, this sequence {c∗j , 1 ≤ j ≤ J} is decreasing, and it is given by

c∗j =
sin (j+1)π

J+2

sin jπ
J+2

, j = 1, 2, ..., J ⇒ c∗1 = 2 cos
π

J + 2
.

Proof. Indeed, we see that c∗1 = x determines the sequence c∗j uniquely. First,

c2 = x − 1
x = x2−1

x . Let F1(x) = x, F2(x) = x2 − 1. Suppose we have shown that

cj = Fj(x)
Fj−1(x) for a certain sequence of polynomials. Then from the above equations

one obtains

cj+1 = c1 −
Fj−1(x)
Fj(x)

=
xFj(x)− Fj−1(x)

Fj(x)
.

Thus, using induction we see that cj = Fj(x)
Fj−1(x) , where polynomials Fj(x) are given by

the initial values F0(x) = 1, F1(x) = x, and then for j ≥ 1 recurrently by Fj+1(x) =
xFj(x)− Fj−1(x). This shows that Fj(2x) = Uj(x), where U(x) stand for the classical

Chebyshev U−polynomials, given by

Uj(cos θ) =
sin(j + 1)θ

sin θ
.

The last equation c∗1 = 1
c∗J

implies FJ+1(x) = 0. Thus, UJ+1(x/2) = 0, and all possible

values for c∗1 are given by c∗1 = x = 2 cos kπ
J+2 , k = 1, 2, ..., J + 1. Thus,

c∗j =
Fj(x)
Fj−1(x)

=
Uj(x/2)
Uj−1(x/2)

=
sin k(j+1)π

J+2

sin kjπ
J+2

.
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Since we are concerned with only positive solutions, this gives the last statement of

the Lemma. Finally, monotonicity is easily veri�able. Indeed, the system of equa-

tions implies c∗2 < c∗1, and then we act by induction. �

Thus, c∗1 > 2 − b
J2 for some constant b > 0. Let us return to the proof of the

Proposition. For a given J, let c∗j be the sequence in Lemma, and let c∗i = ci
√

log 2.
Thus,

c1 log 2 =
1
c1

+ c2 log 2 =
1
c2

+ c3 log 2 = ... =
1

cJ−1
+ cJ log 2 =

1
cJ
.

Choosing exactly this sequence for the estimate (3.1), and using the bound for c∗1, we

get:

mL � (J + 1)e−
√
Lc1 log 2 < (J + 1)C

√
Le

b
√

log 2

J2

√
L.

Finally, the choice J = [L1/4] establishes the upper bound.

The lower estimate is immediate. In fact, let µ = 1
c
√
L
. Then

mL >

µ∫
0

( 1
x+ 1

)L
dF (x) >

( 1
µ+ 1

)L
F (µ)� 2−c

√
L · e−

√
L 1
c

The choice c = log−1/2 2 establishes the desired bound. �

The constants in Proposition can also be calculated without great e�ort. As was

said before as a Remark 3, it should be noted that, if we start directly from the second

de�nition (2.3) ofmL, then in the course of the proof of Proposition 3.1 we use both

equalities F (x) + F (1/x) = 1 and 2F ( x
x+1) = F (x). Since these two determine F (x)

uniquely, generally speaking, our estimate for mL is characteristic only to F (x). A

direct inspection of the proof also reveals that the true asymptotic \action" in the

second de�nition (2.3) ofmL takes place in the neighborhood of 1. This, obviously, is
a general fact for probabilistic distributions with proper support on the interval [0, 1].
Additionally, calculations show that the sequence mL/(L1/4C

√
L) is monotonically

decreasing. This is indeed the case, and there exists a limit A = limL→∞
mL

L1/4C
√
L
, as

stated in Theorem 3.2.

3.3 Asymptotic formula

This section gives a proof of Theorem 3.2.

3.3.1 Preliminary calculations

We use the notation of Landau to denote by B some absolutely bounded function in

certain neighborhood of a variable; in our case B depends mostly on L and we con-

sider the case L→∞. As a convention, B stands for di�erent function if considered
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in another or even the same formula. Occasionally, this notation is used to denote

dependence on other variables and in each case it should be clear which variable and

which neighborhood is implied in notation B. The main tool of the proof is a variant

of saddle-point method. The latter is used in �nding asymptotic expansion of cer-

tain integrals depending on parameter and it traces its history back from the works

of Laplace. Though in our case certain corrections, amendments and variations are

necessary, the main technique is standard and can be found, for example, in [44].

Since 1− F (x) = 2−xΨ(x), identity (2.3) implies

mL =

∞∫
0

( x

x+ 1

)L
d(F (x)− 1) = (F (x)− 1)

( x

x+ 1

)L∣∣∣∞
0

+

L

∞∫
0

2−x
xL−1

(x+ 1)L+1
Ψ(x) dx = L

∞∫
0

2−x
xL−1

(x+ 1)L+1
Ψ(x) dx.

Put c = log 2. The function f(x) = L · log x
x+1 − cx achieves its maximum at x = x0,

where

x0(x0 + 1) =
L

c
⇒ x0 =

−1 +
√

1 + 4L
c

2
⇒ x0 =

√
L

c
− 1

2
+
B√
L
.

Let c0 =
∫ 1
0 Ψ(x) dx, and let us rewrite the expression for mL as

mL = Lc0

∞∫
0

1
x(x+ 1)

ef(x) dx+ L

∞∫
0

(Ψ(x)− c0)
1

x(x+ 1)
ef(x) dx = c0LgL + LrL.

Our speci�c choice in extracting c0 out of Ψ(x) as a dominant ingredient can be mo-

tivated for the following reason. Since 0.9 < Ψ(x) < 1.2 (see Figure 4.1), the main

weight of the integral de�ning mL (as far as Ψ(x) is concerned) befalls on a certain

constant in the range (0.9, 1.2). Moreover, it is easy to verify that for any continuous

periodic function Υ(x) one has

∞∫
−∞

Υ(x)e−Ax
2

dx =
√
πΥ(0)√
A

+O(A−1) as A→∞ (if Υ(x) is smooth),

∞∫
−∞

Υ(x)e−Ax
2

dx =

√
π

1∫
0

Υ(x) dx
√
A

+O(1) as A→ 0 + .

This can be seen empirically from the fact that in the �rst case the dominant weight

of the integral is supported only in the neighborhood of 0, while in the second case

this interval has length tending to in�nity. As it is seen from the next subsection, we

have the second case (a posteriori, the weight of mL is properly supported on the

interval (
√
L/c−L2/7,

√
L/c+L2/7), and hence the correct constant is c0 rather then

Ψ(x0).
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3.3.2 Evaluation of gL.

Choose δ = δ(L) such that δ
L1/4 → ∞ and δ

L1/3 → 0. For example, henceforth we �x

δ = δ(L) = L2/7. Separate the integral de�ning gL into four parts:

gL =

1∫
0

+

x0−δ∫
1

+

x0+δ∫
x0−δ

+

∞∫
x0+δ

1
x(x+ 1)

ef(x) dx = I1 + I2 + I3 + I4.

Evaluation of I3

First, f ′(x0) = 0 and f ′′(x0) < 0. Suppose |x − x0| ≤ δ. Then the Taylor formula

implies that for certain θx ∈ [x0, x] one has

f(x) = f(x0)− α(x− x0)2 + β(x− x0)3 +
f (4)(θx)

24
(x− x0)4.

Direct calculations show that

f ′′(x) = − L(2x+ 1)
x2(x+ 1)2

⇒ f ′′(x0) = −c
2

L
(2x0 + 1)⇒ α =

c3/2√
L

+
B
L3/2

,

β =
f ′′′(x0)

6
=
L(3x2

0 + 3x0 + 1)
3x3

0(x0 + 1)3
=
c2

L
+
B
L3/2

,

f (4)(x) = 6L
( 1

(x+ 1)4
− 1
x4

)
⇒ f (4)(θx) =

B
L3/2

.

In the same fashion,

1
x(x+ 1)

=
1

x0(x0 + 1)
+ γ(x− x0) + σx(x− x0)2,

where

γ = − 2x0 + 1
x2

0(x0 + 1)2
= −2c3/2

L3/2
+
B
L5/2

, σx =
B
L2
.

Now let us evaluate the value of ef(x0). For x→∞, we have

log
x

x+ 1
= −1

x
+

1
2x2

+
B
x3
⇒

L log
x0

x0 + 1
= − L√

L
c −

1
2 + B√

L

+
c

2
+
B√
L

= −
√
cL+

B√
L
.

Further,

−cx0 = −
√
cL+

c

2
+
B√
L
⇒

ef(x0) = exp
(
− 2
√
cL+

c

2
+
B√
L

)
= e−2

√
cL
√

2
(

1 +
B√
L

)
.

We already have obtained all necessary components to evaluate I3. Note that

β(x− x0)3 =
B
L
· L6/7 = o(1),

B
L3/2

(x− x0)4 = o(1).
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Since ey = 1 + y+By2 for y = o(1), in the range (x0− δ, x0 + δ) the function under the

integral can be written as

1
x(x+ 1)

ef(x) =
( 1
x0(x0 + 1)

+ γ(x− x0) +
B
L2

(x− x0)2
)

· exp
(
f(x0)− α(x− x0)2 + β(x− x0)3 +

B
L3/2

(x− x0)4
)

= ef(x0)e−α(x−x0)2 ·(
1 + β(x− x0)3 +

B
L3/2

(x− x0)4 +
B
L2

(x− x0)6
)
·( 1

x0(x0 + 1)
+ γ(x− x0) +

B
L2

(x− x0)2
)

(The bound |x − x0| = BL1/2 was used in merging Bβ
L3/2 (x − x0)7 and B

L3 (x − x0)8 into
B
L2 (x−x0)6). Thus, we have decomposed the function under integral into the sum of

twelve functions. It is important to note that two of these functions

ef(x0)e−α(x−x0)2γ(x− x0) and ef(x0)e−α(x−x0)2 1
x0(x0 + 1)

β(x− x0)3,

thought being comparatively large, are odd function in (x − x0) and consequently

contribute 0 after integration. We are left with evaluating all the rest summands.

This is a routine job. For example,

ef(x0)γβ

x0+δ∫
x0−δ

e−α(x−x0)2(x− x0)4 dx =

ef(x0)γβ
1

α5/2

√
αδ∫

−
√
αδ

y4e−y
2

dy = BL
5/4

L5/2
C
√
L = BL−5/4C

√
L.

Second example:

ef(x0) Bγ
L3/2

x0+δ∫
x0−δ

e−α(x−x0)2 |x− x0|5 dx =

ef(x0) Bγ
L3/2α3

√
αδ∫

−
√
αδ

|y|5e−y2 dy = BL−3/2−3/2+3/2C
√
L = BL−3/2C

√
L.

Another example:

ef(x0) B
x0(x0 + 1)L3/2

x0+δ∫
x0−δ

e−α(x−x0)2(x− x0)4 dx = BL
5/4

L5/2
C
√
L = BL−5/4C

√
L.

Therefore, direct inspection shows that all functions apart from the main term con-

tribute at most BC
√
LL−5/4 into the value of gL. We are left with determining the

magnitude of the main term. Since
√
αδ ∼ c3/4L1/28, this yields

√
αδ∫

−
√
αδ

e−y
2

dy =

∞∫
−∞

e−y
2

dy + B
∞∫

√
αδ

e−y
2

dy =
√
π + B exp(−c3/2L1/14).
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And so, the main term is given by

1
x0(x0 + 1)

ef(x0)

δ∫
−δ

e−αx
2

dx =
(√

π + B exp(−c3/2L1/14)
) 1√

α

1
x0(x0 + 1)

ef(x0) =

c

L

√
2πe−2

√
cL 4
√
Lc−3/4

(
1 +

B√
L

)
.

Thus we obtain the main asymptotic term

I3 = 4
√

4π2 log 2 · L−3/4C
√
L + BL−5/4C

√
L.

Evaluation of I1, I2 and I4

Trivially,

I1 =

1∫
0

xL−1

(x+ 1)L+1
2−x dx = B2−L.

To evaluate I2, we use standard inequality

log
( x

x+ 1

)
< −1

x
+

1
2x2

for x ≥ 1. (3.2)

Thus, since f(x) is increasing function in the interval [1, x0], we have

I2 =

x0−δ∫
1

1
x(x+ 1)

ef(x) dx < log 2 · ef(x0−δ) = Bef(x0−δ).

Further, using (3.2), we have

f(x0 − δ) = L log
( x0 − δ
x0 − δ + 1

)
− c(x0 − δ) < −

L

x0 − δ
+

L

2(x0 − δ)2
− cx0 + cδ =

− L
x0
− cx0 + B + cδ +

( L
x0
− L

x0 − δ

)
=

− L
x0
− cx0 + B + cδ − Lδ

x0(x0 + 1)
− Lδ

( 1
x0(x0 − δ)

− 1
x0(x0 + 1)

)
=

− L
x0
− cx0 + B − Lδ2

x3
0

= −2
√
cL+ B − c3/2L1/14

(recall that δ = L2/7). Therefore,

I2 = BC
√
L exp(−c3/2L1/14) = BL−5/4C

√
L.

In the same vein,

f(x0 + δ) = −2
√
cL+ B − c3/2L1/14.
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Since f(x) is decreasing in the interval [x0,∞), we obtain

I4 =

∞∫
x0+δ

1
x(x+ 1)

ef(x) dx < ef(x0+δ)

∞∫
1

dx
x(x+ 1)

=

BC
√
L exp(−c3/2L1/14) = BL−5/4C

√
L.

Combining all estimates for I1, I2, I3 and I4, we eventually obtain

gL = 4
√

4π2 log 2 · L−3/4C
√
L + BL−5/4C

√
L.

3.3.3 Evaluation of rL.

In this subsection we can be more concise, since the method is the same as we used

to evaluate gL. Recall that

rL =

∞∫
0

(Ψ(x)− c0)
1

x(x+ 1)
ef(x) dx.

Let

Ψ̂(x) =

x∫
0

(Ψ(t)− c0) dt.

De�nition of c0 yields that Ψ̂(x) is bounded (and periodic) function. Using integration
by parts, we can rewrite rL as

rL =

∞∫
0

Ψ̂(x)h(x)ef(x) dx⇒ rL = B
∞∫
0

h(x)ef(x) dx,

where

h(x) =
1
x2
− 1

(x+ 1)2
− 1
x(x+ 1)

f ′(x) = − L

x2(x+ 1)2
+

c

x(x+ 1)
+

2x+ 1
x2(x+ 1)2

.

Note that

h(x0) =
2x0 + 1

x2
0(x0 + 1)2

=
2c3/2

L3/2
+
B
L5/2

.

As a matter of fact, we have completely analogous integral to the one de�ning gL,

with the major di�erence in the estimate h(x0) = BL−3/2, whereas 1
x0(x0+1) = BL−1.

Thus, using the same method to evaluate rL as we did with gL, one gets

rL = BL1/4−3/2C
√
L = BL−5/4C

√
L.

Since mL = c0LgL + LrL, this �nishes the proof of Theorem 3.2. �
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3.3.4 Final remarks

As can be inherited from the proof, the share of integrals I1, I2 and I4 into the exact

value ofmL is of order C
√
L exp(−c3/2L1/14). Thus, standard machinery of asymptotic

expansion shows that all terms for asymptotic series of mL are supported on the

neighborhood (x0 − δ, x0 + δ). More thorough inspection reveals that

mL ∼ L1/4C
√
L ·

∞∑
i=0

Ai
Li/2

.

As was mentioned, every term of this expansion can be obtained by (increasingly

tedious) computations. For example, A1 is a sum of c0 and c1 =
∫ 1
0 xΨ(x) dx, each

multiplied by some explicit constant (constant c1 occurs while extracting the main

term out of the integral rL). The main idea is a classical fact that for any continuous

periodic function Υ(x), a function

Υn(x) def=
∫ x

0

∫ x1

0
...

∫ xn−1

0
Υ(xn) dxn dxn−1...dx1 =

1
(n− 1)!

x∫
0

(x− t)n−1Υ(t) dt

is a sum of certain polynomial and some periodic function (of course, this idea is

the core of the Euler-Maclaurin summation). Nevertheless, from number-theoretic

point of view our main concern is the structure of values mL rather than their mag-

nitude (though dominant) in some small neighborhood of x0, and hence we have

con�ned only in exhibiting such a possibility of asymptotic expansion.

We �nish with providing a table for some values of constants mL. Here m?
L =

mL
4√LC

√
L
. The main result of this Chapter implies that sequence m?

L tends to the limit

c0
4
√

4π2 log 2 = 2.3562298899+. Unfortunately, we do not have yet any evidence that

the closed form expression exists for c0 (as well as for mL with L ≥ 2). Finally,

we remark that the result of Theorem 3.2 should be considered in conjunction with

linear relations mL =
∑L

s=0

(
L
s

)
(−1)sms, L ≥ 0 (Proposition 2.4), which the sequence

mL satis�es, and with the natural inequalities, imposed by the fact that mL is a

sequence of moments of probabilistic distribution with support on the interval [0, 1].
We thus have Hausdor� conditions, which state that for all non-negative integers m

and n, one has

2

1∫
0

xn(1− x)m dF (x) =
m∑
i=0

(
m

i

)
(−1)imi+n > 0.

This is, of course, the consequence of monotonicity of F (x).
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Sequence mL

L mL m?
L

1 0.5000000000 2.643125297
2 0.2909264764 2.577573745
3 0.1863897146 2.533204605
4 0.1269922584 2.509329792
5 0.09016445494 2.496320715
6 0.06592816257 2.488147649
7 0.04929431046 2.481940613
8 0.03751871185 2.476544438
9 0.02897962203 2.471583746

10 0.02266585817 2.466982861
11 0.01792085923 2.462750421
12 0.01430468951 2.458897371
20 0.003008686707 2.438565967
30 0.0006211064464 2.425096683
40 0.0001622371309 2.416702495
50 0.00004937221843 2.410831724

100 0.0000004445933003 2.395743861



Chapter 4

Further properties of integral

transforms: the zeta function

4.1 Four objects

It was shown in Chapter 2 that each generation of the Calkin-Wilf tree possesses a

distribution function Fn(x), and that Fn(x) converges uniformly to F (x). This is, of

course, a well known fact about the Farey tree. The function F (x), as a distribution

function is uniquely determined by the functional equation (2.1)

On the other hand (as was mentioned in the introduction), almost all the results

of other authors reveal the properties of the Minkowski question mark function as

a function itself. Our goal and main motivation of this thesis is to show that in fact

there exist several unique and very interesting analytic objects associated with F (x)
which encode a great deal of essential information about it. Two of these objects

were introduced in Chapter 2. As was already noticed, let us point out that, surpris-

ingly, there are striking similarities and analogies between the results proved here as

well as in Chapter 2, with Lewis'-Zagier's [47] results on period functions for Maass

wave forms. That work is an expanded and clari�ed exposition of an earlier paper by

Lewis [46]. The concise exposition of these objects, their properties and relations

to Selberg zeta function can be found in [76]. The reader who is not indi�erent to

the beauty of the Minkowski question mark function is strongly urged to compare

results in this thesis with those in [47]. Thus, instead of making quite numerous

references to [47] at various stages of the work (mainly in Sections 4.2, 4.6 and 4.7),

it is more useful to give a table of most important functions encountered there, jux-

taposed with analogous object in this work. Here is the summary (some notations

were already introduced, others will be explained in Sections 4.6 and 4.7).

44
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Maass wave form u(z) Ψ(x) Periodic function on the real line

Period function ψ(z) G(z) Dyadic period function

Distribution U(x) dx dF (x) Minkowski's \question mark"

L−functions L0(ρ), L1(ρ) ζM(s) Dyadic zeta function

Entire function g(w) m(t) Generating function of moments

Entire function φ(w) M(t) Generating function of moments

Spectral parameter s 1
2 ; 1 Analogue of spectral parameter

As a matter of fact, the �rst entry is the only one where the analogy is not precise.

Indeed, the distribution U(x) is the limit value of the Maass wave form u(x+ iy) on
the real line (as y → +0), in the sense that u(x + iy) ∼ y1−sU(x) + ysU(x), whereas
Ψ(x) is the same F (x) made periodic. As far as the last entry of the table in con-

cerned, the \analogue" of spectral parameter, sometimes this role is played by 1,
sometimes by 1

2 . This occurs, obviously, because the relation between Maass forms

and F (x) is only the analogy which is not strictly de�ned.

Summarizing, these are the three objects associated with theMinkowski question

mark function.

• Distribution F (x) = Functional equations (2.1) + Continuity.

• Period function G(z) = Three term functional equation (2.13) + Mild growth

condition (as in Theorem 2.6).

• Exponential generating function m(t) = Integral equation (2.15) + boundary

value and diminishing condition on the negative real line (Proposition 2.4).

Each of these objects is characterized by the functional equation, and subject to some

regularity conditions, it is unique, and thus arises exactly from F (x). The objects are
described via the \equality" Function = Equation + Condition. This means that the

object on the left possesses both features; conversely - any object with these prop-

erties is necessarily the function on the left.

As expected, here we encounter the phenomena of \bootstrapping": in all cases,

regularity conditions can be signi�cantly relaxed, and they are su�cient for the

uniqueness, which automatically imply stronger regularity conditions. Here we

show the rough picture of this phenomena. In each case, we suppose that the object
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satis�es the corresponding functional equation. See Chapter 2 for the details.

(i) F (x) is continuous at one point ⇒ F (x) is continuous.

(ii) There exists ε < 1 such that for every z with <z < 0, we have

G(z − x) = O(2εx) as x→∞⇒ G(z) = O(|z|−1) as dist(z,R+)→∞.

(iii) m′(−t) = O(t−1) as t→∞⇒ |m(−t)| � e−
√
t log 2 as t→∞.

Corresponding converse results were proved in Chapter 2. For F (x), this was in fact

the starting point of these investigations, since the distribution of rationals in the

Calkin-Wilf tree is a certain continuous function satisfying (2.1); thus, it is exactly

F (x). The converse result for m(t) follows from Fredholm alternative, since all eigen-

values of the operator of the Section 2.6 are strictly less than 1 in absolute value.

Finally, the converse theorem for G(z) follows from a technical detail in the proof,

which is the numerical estimate 0 < π2

12 −
log2 2

2 < 1; as a matter of fact, it appears

that this is essentially the same argument as in the case of m(t), since this constant

gives the upper bound for the moduli of eigenvalues.

One of the aims of this Chapter is to clarify the connections among these three

objects, and to add the �nal fourth satellite, associated with F (x). Henceforth, we

have the complete list:

• Zeta function ζM(s) (see de�nition (4.11) below) = Functional equation with

symmetry s→ −s (4.12) + Regularity behavior in vertical strips.

In this case, we do not present a proof of a converse result. Indeed, the converse

result for G(z) is strongly motivated by its relation to Eisenstein series G1(z) (see

Chapter 2 and its last section). In the case of ζM(s), this question is of small impor-

tance, and we rather concentrate on the direct result and its consequences.

4.2 Three term functional equation, distributions Fλ(x)

In this section, we give a proof of (2.13) di�erent from the one presented in Chapter

2, since it is considerably shorter. For our purposes, it is convenient to work in a

slightly greater generality. Suppose that λ ∈ R has the property that there exists a

function Fλ(x), x ∈ [0,∞), such that

dFλ(x+ 1) =
1
2

dFλ(x), dFλ
(1
x

)
=

1
λ

dFλ(x). (4.1)

We omitted the word \continuous" in the description of the function intentionally.

For a moment, consider Fλ(x) = F (x) with λ = −1. Then F−1(x) is certainly contin-

uous. The reason for introducing λ will be apparent later. Let

Gλ(z) =

∞∫
0

1
x+ 1− z

dFλ(x).
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Since F (x)+F (1/x) = 1, we see that for λ = −1 this agrees with the de�nition (2.10).

This integral converges to an analytic function in the cut plane C \ (1,∞). We have

2Gλ(z + 1) = 2

1∫
0

1
x− z

dFλ(x) + 2

∞∫
1

1
x− z

dF (x) =

2

∞∫
0

1
x
x+1 − z

dFλ
( x

x+ 1

)
+ 2

∞∫
0

1
x+ 1− z

dFλ(x+ 1) =

2
z

∞∫
0

( x+ 1
x+ 1− 1

z

− 1 + 1
)

dFλ
( 1
x+ 1

)
+Gλ(z) =

α

λz
+

1
λz2

Gλ

(1
z

)
+Gλ(z), where α =

∞∫
0

dFλ(x).

For λ = −1 and F−1(x) = F (x), this gives Theorem 2.6. Further, suppose λ 6= −1.
Then

α =

∞∫
0

dFλ(x) =

∞∫
1

dFλ(x) +

1∫
0

dFλ(x) =
α

2
− α

2λ
⇒ α = 0.

Therefore, the last functional equation reads as

2Gλ(z + 1) =
1
λz2

Gλ

(1
z

)
+Gλ(z).

As a matter of fact, there cannot be any reasonable function Fλ(x) which satis�es

(4.1). Nevertheless, the last functional equation is identical to (2.20). Thus, Theo-

rem 2.12 gives a description of all such possible λ. This suggests that we can still �nd

certain distributions Fλ(x). Further, as it was mentioned, −1 is not an-eigen value

of operator from the Section 2.6. Due to the minus sign in front of the operator, this

is exactly the exceptional eigenvalue, which is essential in the Fredholm alternative.

The above proof (rigid at least in case λ = −1), surprisingly, proves that the next

tautological sentence has a certain point: \−1 is not an eigenvalue because it is −1".
Indeed, we obtain a non-homogeneous part of the three term functional equation

only because λ = −1, since otherwise α = 0 and the equation is homogenic.

Distributions Fλ(x) can indeed be strictly de�ned, at least in the space of func-

tions, which are analytic in the disk D = {z : |z − 1
2 | ≤

1
2}, including its boundary.

This space is equipped with a topology of uniform convergence, and a distribution

on this space is any continuous linear functional. Denote this space by Cω. Now,

since

1∫
0

x

1− xz
dFλ(x) = −λ

2
Gλ(z) :=

∞∑
L=1

m
(λ)
L zL−1,
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de�ne a distribution Fλ on the space Cω by 〈zL, Fλ〉 = mλ
L, L ≥ 1, 〈1, Fλ〉 = 0, and for

any analytic function B(z) ∈ Cω, B(z) =
∑∞

L=0 bLz
L, by

〈B,Fλ〉 =
∞∑
L=0

bL〈zL, Fλ〉.

First, 〈∗, Fλ〉 is certainly a linear functional and is properly de�ned, since the func-

tional equation (2.20) implies that Gλ(z) possesses all left derivatives at z = 1; as a
consequence, the series

∑∞
L=1 L

p|m(λ)
L | converges for any p ∈ N (see Proposition 3.1

for the estimates on momentsmL). Second, let Bn(z) =
∑∞

L=0 b
(n)
L zL, n ≥ 1, converge

uniformly to B(z) in the circle |z| ≤ 1. Thus, sup|z|≤1 |Bn(z) − B(z)| = rn → 0. Then

by Cauchy formula,

b
(n)
L =

1
2πi

∮
|z|=1

Bn(z)
zL+1

dz.

This obviously implies that |b(n)
L −bL| ≤ rn, L ≥ 0, and therefore 〈∗, Fλ〉 is continuous,

and hence it is a distribution. Using the condition dFλ(x + 1) = 1
2 dFλ(x), these

distributions can be extended to other spaces. Summarizing, we have shown that

Minkowski question mark function has an in�nite sequence of \peers" Fλ(x) which
are also related to continued fraction expansion, in somewhat similar manner. F (x)
is the only one among them being \non-homogeneous".

4.3 Linear relations among moments ML

In this section we clarify the nature of linear relations among the momentsML. This

was mentioned in Chapter 2, but not done in explicit form. Note that Proposition

2.4 gives linear relations among moments mL: mL =
∑L

s=0

(
L
s

)
(−1)sms, L ≥ 0. These

linear relations can be written in terms of ML. Despite the fact that these relations

form a general phenomena for symmetric distributions, in conjunction with (2.6)

they give an essential information about F (x). Let us denote

q(x, t) = (2− et)ext − (2et − 1)e−xt =
∞∑
n=1

Qn(x)
tn

n!
.

We see that Qn(x) are polynomials with integer coe�cients and they are given by

Qn(x) = 2xn − (x+ 1)n − 2(1− x)n + (−x)n. (4.2)

The following table gives the �rst few polynomials.

n Qn(x) n Qn(x)

1 2x− 3 5 2x5 − 15x4 + 10x3 − 30x2 + 5x− 3
2 2x− 3 6 6x5 − 45x4 + 20x3 − 45x2 + 6x− 3
3 2x3 − 9x2 + 3x− 3 7 2x7 − 21x6 + 21x5 − 105x4 + 35x3 − 63x2 + 7x− 3
4 4x3 − 18x2 + 4x− 3 8 8x7 − 84x6 + 56x5 − 210x4 + 56x3 − 84x2 + 8x− 3
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Moreover, the following statement holds.

Proposition 4.1. Polynomials Qn(x) have the following properties:

(i) Q2n(x) ∈ LQ
(
Q1(x),Q3(x), ...,Q2n−1(x)

)
, n ≥ 1;

(ii) deg Q2n = 2n− 1, deg Q2n−1 = 2n− 1, n ≥ 1;

(iii) Q̂2n(x) :=
Q2n(x) + 3

x
is reciprocal : Q̂2n(x) = x2n−2Q̂2n

(1
x

)
;

(iv)

∞∫
0

Qn(x) dF (x) = 0.

Naturally, it is property (iv) which makes these polynomials very important

in the study of the Minkowski question mark function. Here LQ(∗) denotes the

Q−linear space spanned by the speci�ed polynomials.

Proof. (i) Let qe(x, t) = 1
2

(
q(x, t) + q(x,−t)

)
, and qo(x, t) = 1

2

(
q(x, t) − q(x,−t)

)
.

Direct calculation shows that, if et = T , then

2qe = ext(3− T − 2
T

) + e−xt(3− 1
T
− 2T ), 2qo = ext(1− T +

2
T

)− e−xt(1− 1
T

+ 2T ).

This yields

∞∑
n=1

Q2n(x)
t2n

(2n)!
= qe(x, t) =

T − 1
T + 1

qo(x, t) =
et − 1
et + 1

∞∑
n=0

Q2n+1(x)
t2n+1

(2n+ 1)!
.

The multiplier on the right, e
t−1
et+1 = tanh(t/2), is independent of x, and this obviously

proves the part (i). Also, part (ii) follows easily from (4.2).

(iii) Since Q̂2n(x) = 1
x(3x2n − (x+ 1)2n − 2(x− 1)2n + 3), the proof is immediate.

(iv) In fact, Proposition 2.4 gives (2−et)M(t) = (2et−1)M(−t). For real |t| < log 2,
we have M(t) =

∫∞
0 ext dF (x). This implies

∞∫
0

q(x, t) dF (x) =
∞∑
n=0

tn

n!

∞∫
0

Qn(x) dF (x) ≡ 0, for |t| < log 2,

and this completes the proof. �

Consequently, there exist linear relations among the moments ML. Thus, for

example, part (iv) (in case n = 1 and n = 3) implies 2M1 − 3 = 0 and 2M3 − 9M2 +
3M1 = 3 respectively. The exact values of ML belong to the class of constants,

which can be thought as emerging from arithmetic-geometric chaos. This resembles

the situation concerning polynomial relations among various periods. We will not

present the de�nition of a period (it can be found in [40]). In particular, the authors

conjecture (and there is no support for possibility that it can be proved wrong) that
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\if a period has two integral representations, then one can pass from one formula

to another using only additivity, change of variables, and Newton-Leibniz formula,

in which all functions and domains of integration are algebraic with coe�cients in

Q". Thus, for example, the conjecture predicts the possibility to prove directly that∫∫
x2

4
+3y2≤1

dx dy =
∫ 1
−1

dx
3
√

(1−x)(1+x)2
, without knowing that they both are equal to

2π√
3
, and this indeed can be done. Similarly, returning to the topic of this paper,

we believe that any �nite Q−linear relation among the constants ML can be proved

simply by applying the functional equation of F (x), by means of integration by parts

and change of variables. The last proposition supports this claim. In other words,

we believe that there cannot be any other miraculous coincidences regarding the

values of ML. More precisely, we formulate

Conjecture 4.2. Suppose, rk ∈ Q, 0 ≤ k ≤ L, are rational numbers such that∑L
k=0 rkMk = 0. Let ` =

[
L−1

2

]
. Then

L∑
k=0

rkx
k ∈ LQ

(
Q1(x),Q3(x), ...,Q2`+1(x)

)
.

This conjecture, if true, should be di�cult to prove. It would imply, for example,

that ML for L ≥ 2 are irrational. On the other hand, this conjecture seems to be

much more natural and approachable, compared to similar conjectures regarding

arithmetic nature of constants emerging from geometric chaos, e.g. spectral values

s for Maass wave forms (say, for PSL2(Z)), or those coming from arithmetic chaos,

like non-trivial zeros of Riemann's ζ(s). We cannot give any other evidence, save

the last proposition, to support this conjecture.

4.4 Exact sequence

In this section we prove the exactness of a sequence of continuous linear maps, intri-

cately related to the Minkowski question mark function F (x). Let C[0, 1] denote the

space of continuous, complex-valued functions on the interval [0, 1] with supremum

norm. For f ∈ C[0, 1], one has the identity

1∫
0

f(x) dF (x) =
∞∑
n=1

1∫
0

f
( 1
x+ n

)
2−n dF (x), (4.3)

Indeed, using functional the equation (2.1), we have

1∫
0

f(x) dF (x) =

∞∫
1

f
(1
x

)
dF (x) =

∞∑
n=1

1∫
0

f
( 1
x+ n

)
dF (x+ n),

which is exactly (4.3). Let Cω denote, as before, the space of analytic functions in the

disk D = |z − 1
2 | ≤

1
2 , including its boundary. We equip this space with the topology
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of uniform convergence (as a matter of fact, we have a wider choice of spaces; this

one is chosen as an important example). Now, consider a continuous functional on

Cω given by T (f) =
∫ 1
0 f(x) dF (x), and a continuous non-compact linear operator

[Lf ](x) = f(x) −
∑∞

n=1 f
(

1
x+n

)
2−n. Finally, let i stand for the natural inclusion i :

C→ Cω.

Theorem 4.3. The following sequence of maps is exact:

0→ C i→Cω
(∗)

L→ Cω
(∗∗)

T→C→ 0. (4.4)

Proof. First, i is obviously a monomorphism. Let f ∈ Ker(L). This means that

f(x) =
∑∞

n=1 f
(

1
x+n

)
2−n. Let x0 ∈ [0, 1] be such that |f(x0)| = sup

x∈[0,1]
|f(x)|. Since∑∞

n=1 2−n = 1, this yields f( 1
x0+n) = f(x0) for n ∈ N. By induction, f([0, n1, n2, ..., nI +

x0]) = f(x0) for all I ∈ N, and all ni ∈ N, 1 ≤ i ≤ I; here [?] stands for the (regular)

continued fraction. Since this set is everywhere dense in [0, 1] and f is continuous,

this forces f(x) ≡ const for x ∈ [0, 1]. Due to the analytic continuation, this is valid

for x ∈ D as well. Hence, we have the exactness at the term (∗).
Next, T is obviously an epimorphism. Further, identity (4.3) implies that Im(L) ⊂

Ker(T ). The task is to show that indeed we have an equality. At this stage, we need

the following lemma. Denote [Sf ](x) =
∑∞

n=1 f
(

1
x+n

)
2−n.

Lemma 4.4. Let f ∈ Cω. Then [Snf ](x) = 2T (f)+O(γ−2n) for x ∈ D; here T (f) stands
for the constant function, γ = 1+

√
5

2 is the golden section, and the bound implied by

O is uniform for x ∈ D.

Proof. In fact, lemma is true for any function with continuous derivative. Let x ∈ D.

We have

[Srf ](x) =
∞∑

n1,n2,...,nr=1

2−(n1+n2+...+nr)f([0, n1, n2, ..., nr + x]).

The direct inspection of this expression and (1.1) shows that this is exactly twice

the Riemann sum for the integral
1∫
0

f(x) dF (x), corresponding to the division of unit

interval into intervals with endpoints being [0, n1, n2, ..., nr], ni ∈ N. From the basic

properties of M�obius transformations we inherit that the set [0, n1, n2, ..., nr + x] for
x ∈ D is a circle Dr whose diagonal is one of these intervals, say Ir. For �xed r,

the largest of these intervals has endpoints Fr−1

Fr
and Fr

Fr+1
, where Fr stands for the

usual Fibonacci sequence. Thus, its length is 1
FrFr+1

∼ cγ−2r. Let x0, x1 ∈ Dr, and

supx∈D |f ′(x)| = A. We have

sup
x0,x1∈Dr

|f(x0)− f(x1)| ≤ Acγ−2r.
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Thus, the Riemann sum deviates from the Riemann integral no more than

|[Srf ](x)− 2T (f)| ≤ Acγ−2r
∞∑

n1,n2,...,nr=1

2−(n1+n2+...+nr) = Acγ−2r.

This proves the Lemma. �

Thus, let f ∈ Ker(T ). All we need is to show that the equation f = g − Sg has

a solution g ∈ Cω. Indeed, let g = f +
∑∞

n=1 Snf. By the above lemma, ‖Snf‖ =
O(γ−2n). Thus, the series de�ning g converges uniformly and hence g is an analytic

function. Finally, g − Sg = f ; this shows that Ker(T ) ⊂ Im(L) and the exactness at

the term (∗∗) is proved. �

A generalization of Theorem 4.3 is the following

Proposition 4.5. Let ` ≥ 2 be a �xed positive integer. Then the following sequence

of maps is exact:

0→ C i→Cω
(∗)

L`→ Cω
(∗∗)

T→C→ 0.

Proof. Let f ∈ Ker(L`). This means L`(f) = 0. By Theorem 4.3, this implies that

L`−1(f) ≡ c, where c is a constant function. Thus, on the one hand, T ◦ L`−1(f) =
T (c) = c/2. On the other, using exactness of the sequence (4.4), we obtain T ◦
L`−1(f) = T ◦ L ◦ L`−2(f) = 0. Whence c = 0. Therefore, if ` ≥ 2, L`(f) = 0 implies

L`−1(f) = 0. By induction, this yields L(f) = 0 ⇒ f ≡ const., and this proves the

exactness at the term (∗).
As before, Im(L`) ⊂ Ker(T ). Let f ∈ Ker(T ). We need to show that L`(g) = f has

a solution g ∈ Cω. Indeed, let

g =
∞∑
n=0

(
n+ `− 1

n

)
Snf.

Lemma 4.4 states that this series converges uniformly to an analytic function. Fur-

ther, using Pascal's identity, we obtain

Lg = g − Sg =
∞∑
n=0

(
n+ `− 2

n

)
Snf.

We act by induction, and this gives exactly L`(g) = f. This proves the exactness at

the term (∗∗). �

These results imply that, for example, Q := Im(L) is a linear subspace of Cω of

codimension 1, and that L|Q is an isomorphism.

The eigenfunctions of S acting on the space Cω are given byG?(−x) =
∫ −x
0 Gλ(z) dz+∫ 0

−1Gλ(z) dz (see equations (4.6) and (4.7) in the next section). Thus, the problem

of convergence of Snf is completely analogous to the problem of convergence for

the iterates of Gauss-Kuzmin-Wirsing operator. Let us remind that if f ∈ C[0, 1], it
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is given by [Wf ](x) =
∑∞

n=1
1

(x+n)2
f
(

1
x+n

)
. Dominant eigenvalue 1 correspond to an

eigenfunction 1
1+x . As it was proved by Kuzmin, provided that f(x) has a continuous

derivative, there exists c > 0, such that

[Wnf ](x) =
A

1 + x
+O(e−c

√
n), as n→∞; A =

1
log 2

1∫
0

f(x) dx.

The proof can be found in [36]. Note that this was already conjectured by Gauss,

but he did not give the proof nor for the main neither for the error term. For the

most important case, when f(x) = 1, L �evy established the error term of the form

O(Cn) for C = 0.7. Finally, Wirsing [74] gave the exact result in terms of eigenfunc-

tions of W, establishing the error term of the form cnΨ(x) + O(x(1 − x)µn), where
c = −0.303663... is the sub-dominant eigenvalue (Gauss-Kuzmin-Wirsing constant),

Ψ(x) is a corresponding eigenfunction, and µ < |c|. Returning to our case, we have

completely analogous situation: operator W is replaced by S, and the measure dx is
replaced by dF (x). The leading eigenvalue 1 corresponds to the constant function.

However strange, Wirsing did not notice that eigenvalues of W are in fact eigenval-

ues of certain Hilbert-Schmidt operator. This was later clari�ed by Bobenko [7].

Recently, Gauss-Kuzmin-L �evy theorem was generalized by Manin and Marcolli in

[48]. The paper is very rich in ideas and results; in particular, in sheds a new light

on the theorem just mentioned.

Concerning spaces for which Theorem 4.3 holds, we can investigate the space

C[0, 1] as well. However, if f ∈ C[0, 1] and f ∈ Ker(T ), the signi�cant di�culty

arises in proving uniform convergence of the series
∑∞

n=0 Snf. Moreover, operator

S, acting on the space C[0, 1], has additional point spectra apart from λ. Indeed, let

Pn(y) = yn+
n−1∑
i=0

aiy
i be a polynomial of degree nwhich satis�es yet another variation

of three term functional equation

2Pn(1− 2y)− Pn(1− y) =
1
δn
P (y)

for certain δn. The comparison of leading terms shows that δn = (−1)n

2n+1−1
, and that

indeed for this δn there exists a unique polynomial, since each coe�cient aj can be

uniquely determined with the knowledge of coe�cients ai for i > j. Thus,

P1(y) = y − 1
4 , P2(y) = y2 − 3

5y + 1
15 ,

P3(y) = y3 − 21
22y

2 + 3
11y −

7
352 , P4(y) = y4 − 30

23y
3 + 14

23y
2 − 45

391y + 37
5865 .

The equation for Pn implies that

δnPn(y) =
∞∑
n=1

1
2n
Pn

(1− y
2n

)
. (4.5)

Then we have
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Proposition 4.6. The function Pn(F (x)) is the eigenfunction of S, acting on the space
C[0, 1], and eigenvalue (−1)n

2n+1−1
belongs to the point spectra of S.

Proof. Indeed,

[S(Pn ◦ F )](x) =
∞∑
n=1

1
2n
Pn ◦ F

( 1
x+ n

)
(2.1)
=

1
2n
Pn

(
1− F (x+ n)

)
(2.1)
=

∞∑
n=1

1
2n
Pn

(
2−n − 2−nF (x)

)
(4.5)
= δnPn(F (x)). �

Thus, operator S behaves di�erently in spaces C[0, 1] and Cω. We postpone the

analysis of this operator in various spaces for the future.

4.5 Integrals which involve F (x)

In this section we calculate certain integrals. Only rarely it is possible to express

an integral involving F (x) in closed form. In fact, all results we possess come from

the identity M1 = 3
2 , and any iteration of identities similar to (4.3). The following

theorem adds identities of quite a di�erent sort.

Theorem 4.7. Let Gλ(z) be any function, which satis�es the hypotheses of Theorem

2.12. Then

(i)
λ

λ+ 1

1∫
0

Gλ(−x) dx =

1∫
0

Gλ(−x)F (x) dx;

(ii) −
1∫

0

log x dF (x) = 2

1∫
0

log(1 + x) dF (x) =

1∫
0

G(−x) dx;

(iii)

1∫
0

G(−x)(1 + x2) dF (x) =
1
4

;

(iv)

1∫
0

Gλ(−x)
(

1− x2

λ

)
dF (x) = 0.

Proof. We �rst prove identity (i). By (2.20), for every integer n ≥ 1, we have

2Gλ(−z − n+ 1)−Gλ(−z − n) =
1

λ(z + n)2
Gλ

(
− 1
z + n

)
.

Divide this by 2n and sum over n ≥ 1. By Theorem 2.6, the sum on the left is

absolutely convergent. Thus,

Gλ(−z) =
∞∑
n=1

1
λ2n(z + n)2

Gλ

(
− 1
z + n

)
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Let G?λ(x) =
∫ x
0 Gλ(z) dz. In terms of G?λ(x), the last identity reads as

−G?λ(−x) =
∞∑
n=1

1
λ2n

G?λ

(
− 1
x+ n

)
−
∞∑
n=1

1
λ2n

G?λ

(
− 1
n

)
. (4.6)

In particular, setting x = 1, one obtains

∞∑
n=1

1
λ2n

G?λ

(
− 1
n

)
= (

1
λ
− 1)G?λ(−1). (4.7)

Now we are able to calculate the following integral (we use integration by parts in

Stieltjes integral twice).

1∫
0

Gλ(−x)F (x) dx = −
1∫

0

d
dx
G?λ(−x)F (x) dx = −1

2
G?λ(−1) +

1∫
0

G?λ(−x) dF (x)
(4.6)
=

−1
2
G?λ(−1) +

1
2

∞∑
n=1

1
λ2n

G?λ

(
− 1
n

)
− 1
λ

∞∑
n=1

1∫
0

G?λ

(
− 1
x+ n

)
2−n dF (x)

(4.3),(4.7)
=

−1
2
G?(−1) +

1
2

(
1
λ
− 1)G?λ(−1)− 1

λ

1∫
0

G?λ(−x) dF (x) = −G?(−1)− 1
λ

1∫
0

Gλ(−x)F (x) dx.

Thus, the same integral is on the both sides, and this gives

1∫
0

Gλ(−x)F (x) dx = − λ

λ+ 1
G?λ(−1).

This establishes the statement (i).
Now we proceed with second identity. Integral (2.10) and Fubini theorem imply

1∫
0

G(−z) dz = 2

1∫
0

1∫
0

x

1 + xz
dz dF (x) = 2

1∫
0

log(1 + x) dF (x).

Lastly, we apply (4.3) twice to obtain the needed equality. Indeed,

I =

1∫
0

log(1 + x) dF (x)
(4.3)
=

∞∑
n=1

1
2n

1∫
0

log
(

1 +
1

x+ n

)
dF (x) =

∞∑
n=1

1
2n

1∫
0

log(x+ n) dF (x)− I (4.3)
= −

1∫
0

log x dF (x)− I.

This �nishes the proof of (ii).
In proving (iii), we can be more concise, since the pattern of the proof goes along

the same line. One has

G(−z) = −
∞∑
n=1

1
2n(z + n)2

G
(
− 1
z + n

)
+
∞∑
n=1

1
2n(z + n)

.
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Thus,

1∫
0

G(−x) dF (x) = −
∞∑
n=1

1∫
0

1
2n(x+ n)2

G
(
− 1
x+ n

)
dF (x) +

∞∑
n=1

1∫
0

1
2n(x+ n)

dF (x)
(4.3)
= −

1∫
0

x2G(−x) dF (x) +

1∫
0

x dF (x).

Since
∫ 1
0 x dF (x) = m1

2 = 1
4 , this �nishes the proof of (iii). Part (iv) is completely

analogous. �

Part (iii), unfortunately, gives no new information about the sequence mL. In-

deed, the identity can be rewritten as

∞∑
L=1

mL(−1)L−1(mL−1 +mL+1) =
1
2
,

which, after regrouping, turns into the identity m0m1 = 1
2 .

Concerning part (iv), and taking into account Theorem 4.3, one could expect

that in fact Ker(T ) is equal to the closure of vector space spanned by functions

Gλ(−x)(1− x2

λ ). If this is the case, then these functions, along with G(z)(1+x2), pro-
duce a Schauder basis for Cω. Thus, if xL =

∑
λ a

(λ)
L Gλ(−x)(1− x2

λ ), then a(−1)
L = 2mL.

We hope to return to this point in the future.

Concerning (i), note that the values of both integrals depend on the normaliza-

tion of Gλ, since it is an eigenfunction. Replacing Gλ(z)by cGλ(z) for some c ∈ R, we

deduce that the left integral is equal to 1 or 0. Then (i) states that
1∫
0

F (x)Gλ(−x) dx =

λ
λ+1 or 0 (apparently, it is never equal to 0). The presence of λ+1 in the denominator

should come as no surprise, minding that λ is the eigenvalue of the Hilbert-Schimdt

operator. The Fredholm alternative gives us a way of solving the integral equation

in terms of eigenfunctions. Since |λ| ≤ λ1 = 0.25553210... < 1, the integral equation is

a posteriori solvable, and λ+1 appears in the denominators. Curiously, it is possible

to approach this identity numerically. One of the motivations is to check its validity,

since the result heavily depends on the validity of almost all the preceding results

in Chapter 2. The left integral causes no problems, since Taylor coe�cients of Gλ(z)
can be obtained at high precision as an eigenvector of a �nite matrix, which is the

truncation of an in�nite one. On the other hand, the right integral can be evaluated

with less precision, since it involves F (x), and thus requires more time and space

consuming continued fractions algorithm. Nevertheless, the author of this thesis

have checked it with completely satisfactory outcome, con�rming the validity.

Just as interestingly, results (i) and (iv) can be though as a re
ection of a \pair-

correlation" between eigenvalues λ and eigenvalue −1 (see Section 4.2 for some
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remarks on this topic). Moreover, minding properties of distributions Fµ(x) (here µ
simply means another eigenvalue), the following result can be obtained. Given the

conditions enforced on Fµ by (4.1), identity (4.3) is replaced by (rigid for f ∈ Cω)

1∫
0

f(x) dFµ(x) = − 1
µ

∞∑
n=1

1∫
0

f
( 1
x+ n

)
2−n dFµ(x).

Then our trick works smoothly again, and this yields an identity

1∫
0

Gλ(−x)(λ+ µx2) dFµ(x) = 0.

This fact, consequently, is an interesting example of \pair correlation" between

eigenvalues of the Hilbert-Schmidt operator in Section 2.6. Using de�nition of dis-

tribution Fµ, the last identity is equivalent to

∞∑
L=1

(−1)L
(
m

(µ)
L m

(λ)
L+1λ−m

(λ)
L m

(µ)
L+1µ

)
= 0,

and thus is a property of \orthogonality" of Gλ(z). This expression is symmetric

regarding µ and λ. As could be expected, it is void in case µ = λ. As a matter of

fact, the proof of the above identity is fallacious, since the de�nition of distributions

Fλ does not imply properties (4.1) (these simply have no meaning). Nevertheless,

numerical calculations show that the last identity truly holds. We also hope to return

to this topic in the future.

4.6 Fourier series

Minkowski question mark function F (x), originally de�ned for x ≥ 0 by (1.1), can

be extended naturally to R simply by the functional equation F (x+ 1) = 1
2 + 1

2F (x).
Such an extension is still given by the expression (1.1), with the di�erence that a0

can be negative integer. Naturally, the second functional equation is not preserved

for negative x. Thus, we have

2x+1(F (x+ 1)− 1) = 2x(F (x)− 1) for x ∈ R.

So, 2x(F (x) − 1) is a periodic function, which we will denote by −Ψ(x). Figure 4.1

gives the graph of Ψ(x) for x ∈ [0, 1]. Thus, F (x) = −2−xΨ(x) + 1. Since F (x) is

singular, the same is true for Ψ(x): it is di�erentiable almost everywhere, and for

these regular points one has Ψ′(x) = log 2 · Ψ(x). As a periodic function, it has an

associated Fourier series expansion Ψ(x) ∼
∞∑

n=−∞
cne

2πinx. Since F (x) is real function,

this gives c−n = cn, n ∈ Z. Let for n ≥ 1, cn = an + ibn, and a0 = c0
2 . Here we list

initial numerical values for c?n = cn(2 log 2 − 4πin) (see the next Proposition for the
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Figure 4.1: Periodic function Ψ(x)

reason of this normalization).

c?0 = 1.428159, c?3 = +0.128533− 0.026840i, c?6 = −0.262601 + 0.004128i,
c?1 = −0.521907 + 0.148754i, c?4 = −0.140524− 0.021886i, c?7 = +0.198742− 0.013703i,
c?2 = −0.334910− 0.017869i, c?5 = +0.285790 + 0.003744i, c?8 = −0.008479 + 0.024012i.

It is important to note that we do not pose the question about the convergence

of this Fourier series. For instance, the authors of [62] and [58] give examples

of singular monotone increasing functions f(x), whose Fourier-Stieltjes coe�cients∫ 1
0 e

2πinx df(x) do not vanish, as n → ∞. In [62], the author even investigated

f(x) =?(x). In our case, the convergence problem is far from clear. Nevertheless,

in all cases we substitute −2−xΨ(x) instead of (F (x)− 1) under an integral. Let, for

example, W (x) be a continuous function of at most polynomial growth, as x → ∞,

and let ΨN (x) =
N∑

n=−N
cne

2πinx. Then

∣∣∣ ∞∫
0

W (x)
(

(F (x)− 1) + 2−xΨN (x)
)

dx
∣∣∣� ∞∑

r=0

|W (r)|2−r ·
1∫

0

|2x(F (x)− 1) + ΨN (x)|dx.

Since 2x(F (x) − 1) ∈ L2[0, 1], the last integral tends to 0, as N → ∞. As it was said,

this makes the change of (F (x)−1) into −2−xΨ(x) under integral legitimate, and this

also justi�es term-by-term integration. Henceforth, we will omit a step of changing

Ψ(x) into ΨN (x), and taking a limit N →∞.

A general formula for the Fourier coe�cients is given by

Proposition 4.8. Fourier coe�cients cn are related to special values of exponential
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generating function m(t) through the equality

cn =
m(log 2− 2πin)
2 log 2− 4πin

, and cn = O(n−1).

Proof. We have (note that F (1) = 1
2 ):

cn = −
1∫

0

2x(F (x)− 1)e−2πinx dx = − 1
log 2− 2πin

1∫
0

(F (x)− 1) dex(log 2−2πin) =

1
log 2− 2πin

1∫
0

ex(log 2−2πin) dF (x) =
m(log 2− 2πin)
2 log 2− 4πin

.

The last assertion of proposition is obvious. �

This proposition is a good example of intrinsic relations among the three func-

tions F (x),G(z) andm(t). Indeed, the momentsmL of F (x) give Taylor coe�cients of

G(z), which are proportional (up to the factorial multiplier) to Taylor coe�cients of

m(t). Finally, special values of m(t) on a discrete set of vertical line produce \Fourier

coe�cients" of F (x).

Next proposition describes explicit relations among Fourier coe�cients and the

moments. Additionally, in the course of the proof we obtain the expansion of G(z)
for negative real z in terms of incomplete gamma integrals.

Proposition 4.9. For L ≥ 1, one has

ML = L!
∑
n∈Z

cn
(log 2− 2πin)L

. (4.8)

Proof. Let z < 0 be �xed negative real. Then integration by parts gives

G(z + 1) =

∞∫
0

x

1− xz
d(F (x)− 1) =

∞∫
0

1
(1− xz)2

2−xΨ(x) dx =

∞∑
n=−∞

cn

∞∫
0

1
(1− xz)2

2−xe2πinx dx =
∞∑

n=−∞
cnVn(z),

where

Vn(z) =

∞∫
0

1
(1− xz)2

e−x(log 2−2πin) dx =
1

log 2− 2πin

∞(log 2−2πin)∫
0

1
(1− yz

log 2−2πin)2
e−y dy.
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Since by our convention z < 0, the function under integral does not have poles for

<y > 0, and Jordan's lemma gives

Vn(z) =
1

log 2− 2πin

∞∫
0

1
(1− yz

log 2−2πin)
e−y dy =

1
log 2− 2πin

· V
( z

log 2− 2πin

)
, where V (z) =

∞∫
0

1
(1− yz)2

e−y dy.

The function V (z) is de�ned for the same values of z as G(z + 1) and therefore is

de�ned in the cut plane C \ (0,∞). Consequently, this implies

G(z + 1) =
∑
n∈Z

cn
log 2− 2πin

· V
( z

log 2− 2πin

)
. (4.9)

The formula is only valid for real z < 0. The obtained series converges uniformly,

since |1− y z
log 2−2πin | ≥ 1 for n ∈ Z and z < 0. Since

V
(1
z

)
= −ze−z

∞∫
1

1
y2
eyz dy,

this gives us the expansion of G(z + 1) on negative real line in terms of incomplete

gamma integrals. As noted before, and this can be seen from (2.9), the function G(z)
has all left derivatives at z = 1. Further, (L− 1)−fold di�erentiation of V (z) gives

V (L−1)(z) = L!

∞∫
0

yL−1

(1− yz)L+1
e−y dy ⇒ V (L−1)(0) = L!(L− 1)!.

Comparing with (4.9) and (2.9), this gives the desired relation among moments ML

and Fourier coe�cients, as stated in the Proposition. �

It is important to compare this expression with the �rst equality of (2.6). Indeed,

since m(t) is entire, that equality via Cauchy residue formula implies the result ob-

tained as Proposition 2.2, i.e.

ML ∼
m(log 2)
2 log 2

( 1
log 2

)L
L! (4.10)

It is exactly the leading term in (4.8), corresponding to n = 0.

4.7 Associated zeta function

Recall that for complex c and s, cs is multi-valued complex function, de�ned as

es log c = es(log |c|+i arg(c)). Henceforth, we �x the branch of the logarithm by requiring

that the value of arg c for c in the right half plane <c > 0 is in the range (−π/2, π/2).
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Thus, if s = σ + it, and if we denote rn = log 2 + 2πin, then |r−sn | = |rn|−σet arg rn ∼
|rn|−σe±πt/2 as n → ±∞. Minding this convention and the identity (4.8), we intro-

duce the zeta function, associated with Minkowski question mark function.

De�nition 4.10. The dyadic zeta function ζM(s) is de�ned in the half plane <s > 0
by the series

ζM(s) =
∑
n∈Z

cn
(log 2− 2πin)s

, (4.11)

where cn are Fourier coe�cients of Ψ(x), and for each n, (log 2−2πin)s is understood
in the meaning just described.

Then we have

Theorem 4.11. ζM(s) has an analytic continuation as an entire function to the whole
plane C, and satis�es the functional equation

ζM(s)Γ(s) = − ζM(−s)Γ(−s). (4.12)

Further, ζM(L) = ML
L! for L ≥ 1. ζM(s) has trivial zeros for negative integers:

ζM(−L) = 0 for L ≥ 1, ζM(0) = 1, and ζM
′(−L) = (L − 1)!(−1)LML. Additionally,

ζM(s) is real on the real line, and thus ζM(s) = ζM(s). The behavior of ζM(s) in
vertical strips is given by estimate

| ζM(σ + it)| � t−σ−1/2 · eπ|t|/2

uniformly for a ≤ σ ≤ b, |t| → ∞.

As we will see, these properties are immediate (subject to certain regularity con-

ditions) for any distribution f(x) with a symmetry property f(x) + f(1/x) = 1. Nev-

ertheless, it is a unique characteristic of F (x) that the corresponding zeta function

can be given a Dirichlet series expansion, like (4.11). We do not give the proof of the

converse result, since there is no motivation for this. But empirically, we see that

this functional equation is equivalent exactly to the symmetry property. Addition-

ally, the presence of a Dirichlet series expansion yields a functional equation of the

kind f(x+1) = 1
2f(x)+ 1

2 . Generally speaking, these two together are unique for F (x).

Note also that the functional equation implies that ζM(it)Γ(1 + it) =
∞∫
0

xit dF (x) is

real for real t. Figures 4.2-4.4 shows its graph for 1.5 ≤ t ≤ 270. Further calcula-

tions support the claim that this function has in�nitely many zeros on the critical

line <s = 0. On the other hand, numerical calculations of contour integrals reveal

that there exist much more zeros apart from these.

We need one classical integral.
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Figure 4.2: ζM(it)Γ(1 + it), 1.5 ≤ t ≤ 90.

Figure 4.3: ζM(it)Γ(1 + it), 90 ≤ t ≤ 180.
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Figure 4.4: ζM(it)Γ(1 + it), 180 ≤ t ≤ 270.

Lemma 4.12. Let A be real number, arctan(A) = φ ∈ (−π
2 ,

π
2 ), and <s > 0. Then

∞∫
0

xs−1e−x cos(Ax) dx =
1

(1 +A2)s/2
cos(φs)Γ(s).

The same is valid with cos replaced by sin on both sides.

This can be found in any extensive table of gamma integrals or tables of Mellin

transforms.

Proof of Theorem 4.11. Let for n ≥ 0, arctan 2πn
log 2 = φn. We will calculate the

following integral. Let <s > 0. Then integrating by parts and using Lemma 4.12,

one obtains

∞∫
0

xs d(F (x)− 1) = s

∞∫
0

xs−12−xΨ(x) dx = s
∑
n∈Z

cn

∞∫
0

xs−12−xe2πinx dx

= s
∞∑
n=0

∞∫
0

xs−1
(

2an cos(2πnx)− 2bn sin(2πnx)
)

2−x dx =

2sΓ(s)
∞∑
n=0

| log 2 + 2πni|−s
(
an cos(φns)− bn sin(φns)

)
= sΓ(s)

∑
n∈Z

cn
(log 2− 2πin)s

.

Note that the function
∫∞
0 xs dF (x) is clearly analytic and entire. Thus, sΓ(s) ζM(s)

is an entire function, and this proves the �rst statement of the theorem. Since

F (x) + F (1/x) = 1, this gives
∫∞
0 xs dF (x) =

∫∞
0 x−s dF (x), and this, in turn, implies

the functional equation. All other statements follow easily from this, our previous
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results, and known properties of the Γ−function. In particular, if s = σ + it,

| ζM(s)Γ(s+ 1)| ≤
∞∫
0

|xs| dF (x) = ζM(σ)Γ(σ + 1),

and the last statement of the theorem follows from the Stirling's formula for Γ−function:
|Γ(σ + it)| ∼

√
2πtσ−1/2e−π|t|/2 uniformly for a ≤ σ ≤ b, as |t| → ∞. �

At this stage, we will make some remarks, concerning the analogy and di�er-

ences with the classical results known for the Riemann zeta function ζ(s) =
∞∑
n=1

1
ns .

Let θ(x) denote the usual theta function: θ(x) =
∑
n∈N

eπin
2x, =x > 0. The following

table summarizes all ingredients, which eventually produce the functional equation

both for ζ(s) and ζM(s).

Function ζ(s) ζM(s)

Dirichlet series exp. Periodicity: θ(x+ 2) = θ Periodicity: F ′(x+ 1) = 1
2F
′(x)

Functional equation θ(ix) = 1√
x
θ( ix) F ′(x) = −F ′( 1

x)

Since F (x) is a singular function, its derivative should be considered as a dis-

tribution on the real line. For this purpose, it is su�cient to consider a distri-

bution U(x) as a derivative of a continuous function V (x), for which the scalar

product 〈U, f〉, de�ned for functions f ∈ C∞(R) with compact support, equals to

−〈V, f ′〉 = −
∫
R
f ′(x)V (x) dx. Thus, both θ(x) and 2xF ′(x) are periodic distributions.

This guarantees that the appropriate Mellin transform can be factored into the prod-

uct of Dirichlet series and gamma factors. Finally, the functional equation for the

distribution produces the functional equation for the Mellin transform. The di�er-

ence arises from the fact that for θ(x) the functional equation is symmetry property

on the imaginary line, whereas for F ′(x) we have the symmetry on the real line in-

stead. This explains the unusual fact that in (4.11) we have the summation over the

discrete set of the vertical line, instead of the summation over integers.

We will �nish by proving another result, which links ζM(s) to the Mellin trans-

form of G(−z + 1). This can be done using expansion (4.9), but we rather chose a

direct way. Let
∞∫
0

G(−z + 1)zs−1 dz = G∗(s). Symmetry property of Theorem 2.6 im-

plies that G(−z + 1) has a simple zero, as z →∞ along the positive real line. Thus,

basic properties of Mellin transform imply that G∗(s) is de�ned for 0 < <s < 1. For
these values of s, we have the following classical integral:

∫ ∞
0

zs−1

1 + z
dz

z
1+z
→x

=

1∫
0

xs−1(1− x)−s dx = Γ(s)Γ(1− s) =
π

sinπs
.
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Thus, using (2.10), we get

G∗(s) =

∞∫
0

∞∫
0

xzs−1

1 + xz
dF (x) dz =

∞∫
0

∞∫
0

zs−1

1 + z
x1−s dz dF (x) =

π

sinπs

∞∫
0

x1−s dF (x).

This holds for 0 < <s < 1. Due to the analytic continuation, this gives

Proposition 4.13. For s ∈ C \ Z, we have an identity

G∗(s) = ζM(s− 1)Γ(s) · π

sinπs
.

Therefore, G∗(s) is a meromorphic function, G∗(s+ 1) = −G∗(−s+ 1), and
ress=LG

∗(s) = (−1)LML−1. This is, of course, the general property of the Mellin

transform, since formally G(z + 1) =
∑∞

L=0MLz
L−1. Thus, G(z + 1) ∼

M∑
L=0

MLz
L−1 in

the left neighborhood of z = 0.

4.8 Concluding remarks

4.8.1 Dyadic period functions in H

As noted in Chapter 2, one encounters the surprising fact that in the upper half

plane H, the equation (2.13) is also satis�ed by i
2πG1(z), where G1(z) stands for the

Eisenstein series (see page 18). Let f0(z) = G(z)− i
2πG1(z), whereG(z) is the function

in Theorem 2.6. Then for z ∈ H, f0(z) satis�es the homogeneous form of the three

term functional equation (2.13); moreover f0(z) is bounded, when =z →∞. Thus, if

f(z) = f0(z),

− 1
(1− z)2

f
( 1

1− z

)
+ 2f(z + 1) = f(z).

Therefore, denote by DPF0 the C−linear vector space of solutions of this three term

functional equation, which are holomorphic in H and are bounded at in�nity, and

call it the space of dyadic period functions in the upper half-plane. Consequently,

this space is at least one-dimensional. If we abandon the growth condition, then

the corresponding space DPF is in�nite-dimensional. This is already true for periodic

solutions. Indeed, if f(z) is a periodic solution, then f(z) = 1
z2
f(−1/z). Let P (z) ∈

C[z], and suppose that j(z) stands, as usually, for the j−invariant. Then any modular

function of the form j′(z)P (j(z)) satis�es this equation. Additionally, there are non-
periodic solutions, given by f0(z)P (j(z)). Therefore, G(z) surprisingly enters the

profound domain of classical modular forms and functions for PSL2(Z). Moreover,

in the space DPF, one establishes the relation between real quadratic irrationals (via

G(z), Minkowski question mark function F (x) and continued fraction algorithm),

and imaginary quadratic irrationals (via j−invariant and its special values). Hence,
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it is greatly desirable to give the full description and structure of spaces DPF0 and

DPF.

4.8.2 Where should the true arithmetic zeta function come from?

Here we present some remarks, concerning the zeta function ζM(s). This object

is natural for the question mark function - its Dirichlet coe�cients are the Fourier

coe�cients of F (x), and its special values at integers are proportional to the mo-

ments ML. Moreover, its relation to G(z), m(t) and F (x) is the same as the role of

L−series of Maass wave forms against analogous objects [76]. Nevertheless, one

expects richer arithmetic object associated with Calkin-Wilf tree, since the latter

consists or rational numbers, and therefore can be canonically embedded into the

group of ��deles AQ. The p−adic distribution of rationals in the n−th generation of

Calkin-Wilf tree was investigated in Section 2.6. Surprisingly, Eisenstein seriesG1(z)
yet again manifest, as in case of R (see previous subsection). Nevertheless, there is

no direct way of normalizing moments of the n−th generation in order for them to

converge in the p−adic norm. There is an exception. As can easily be seen,∑
a0+a1+...+as=n

[a0, a1, .., as] = 3 · 2n−2 − 1
2
,

and thus we have a convergence only in the 2−adic topology, namely to the value

−1
2 . The investigation of p−adic values of moments is relevant for the following

reason. Let us apply F (x) to each rational number in the Calkin-Wilf tree. What we

obtain is the following:

1
2

1
4

iiiiiiiiiiiiiii 3
4

UUUUUUUUUUUUUUU

1
8

rrrrrrr 5
8

LLLLLLL
3
8

rrrrrrr 7
8

LLLLLLL

1
16

���
9
16

999
5
16

���
13
16

999
3
16

���
11
16

999
7
16

���
15
16

999

Using (2.1), we deduce that this tree starts from the root 1
2 , and then inductively

each rational r produces two o�springs: r
2 and r

2 + 1
2 . One is therefore led to the

following

Task. Produce a natural algorithm, which takes into account p−adic and real

properties of the above tree, and generates Riemann zeta function ζ(s).

We emphasize that the choice of ζ(s) is not accidental. In fact, R−distribution
of the above tree is a uniform one with support [0, 1]. Further, there is a natural

algorithm to produce \characteristic function of ring of integers of R” (that is, e−πx
2
)
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from the uniform distribution via the central limit theorem through the expression

∫
R

f(x)e−πx
2

dx = lim
N→∞

1
2N

1∫
−1

dx1...

1∫
−1

dxNf
(x1 + ...+ xN√

2
3πN

)
.

(For clarity, here we take the uniform distribution in the interval [−1, 1]). This for-

mula and this explanation and treatment of e−πx
2
as \characteristic function of the

ring of integer of R" is borrowed from [30], p. 7. Further, the operator which is

invariant under uniform measure has the form [Uf ](x) = 1
2f
(
x
2

)
+ 1

2f
(
x
2 + 1

2

)
. Indeed,

for every f ∈ C[0, 1], one has
∫ 1
0 [Uf ](x) dx =

∫ 1
0 f(x) dx. The spectral analysis of U

shows that its eigenvalues are 2−n, n ≥ 0, with corresponding eigenfunctions being

Bernoulli polynomials Bn(x) [27]. These, as is well known from the time of Euler,

are intricately related with ζ(s). Moreover, the partial moments of the above tree

can be de�ned as
∑2N

i=1

(
2i−1
2N

)L
. These values are also expressed in term of Bernoulli

polynomials. As we know, there are famous Kummer congruences among Bernoulli

numbers, which later led to the introduction of the p−adic zeta function ζp(s). Thus,
the real distribution of the above tree and its spectral decomposition is deeply re-

lated to the p-adic properties. This justi�es the choice in the task of ζ(s).
Therefore, returning to Calkin-Wilf tree, one expects that moments can be p−adically
interpolated, and some natural arithmetic zeta function can be introduced, as a \pre-

image" of ζ(s) under map F .



Chapter 5

Explicit series for the dyadic period

function

5.1 Introduction and main results

We wish to emphasize that the main motivation for previous research was clari�ca-

tion of the nature and structure of the moments mL. It was greatly desirable to give

these constants (emerging as if from geometric chaos) some other expression than

the one obtained directly from the Farey (or Calkin-Wilf) tree, which could reveal

their structure to greater extent. This is accomplished in the current Chapter. Thus,

the main result can be formulated as follows.

Theorem 5.1. There exist canonical and explicit sequence of rational functionsHn(z),
such that for {<z ≤ 1

2}
⋃
{|z| ≤ 1}, one has an absolutely convergent series

G(z) =

∞∫
0

1
x+ 1− z

dF (x) =
∞∑
n=0

(−1)nHn(z), Hn(z) =
Bn(z)

(z − 2)n+1
,

where Bn(z) is the polynomial with rational coe�cients of degree n − 1. For n ≥ 1
it has the following reciprocity property:

Bn(z + 1) = (−1)nzn−1Bn

(1
z

+ 1
)
, Bn(0) = 0.

The following table gives initial polynomials Bn(z).

68
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n Bn(z) n Bn(z)

0 −1 4 − 2
27z

3 + 53
270z

2 − 53
270z

1 0 5 4
81z

4 − 104
675z

3 + 112
675z

2 − 224
2025z

2 −1
6
z 6 − 8

243z
5 + 47029

425250z
4 − 1384

14175z
3 − 787

30375z
2 + 787

60750z

3
1
9
z2 − 2

9
z 7 16

729z
6 − 1628392

22325625z
5 + 272869

22325625z
4 + 5392444

22325625z
3 − 238901

637875z
2 + 477802

3189375z

Example. In fact, apparently the true region of convergence of the series in ques-

tion is the half plane <z ≤ 1. Take, for example, z0 = 2
3 + 4i. Then by (2.13) and

symmetry property one has

G(z0) =
1
2
G(z0 − 1)− 1

2(z0 − 1)2
G
( 1
z0 − 1

)
− 1

2(z0 − 1)
=

− 1
2(z0 − 2)2

G
(z0 − 1
z0 − 2

)
− 1

2(z0 − 1)2
G
( 1
z0 − 1

)
− 1

2(z0 − 2)
− 1

2(z0 − 1)
.

Both arguments under G on the right belong to the unit circle, and thus we can

use Taylor series for G(z). Using numerical values of mL, obtained via the method

described on page 18, we obtain: G(z0) = 0.078083++0.205424+i, with all digits exact.

On the other hand, the series in Theorem 5.1 for n = 60 gives

60∑
n=0

(−1)nHn(z0) = 0.078090+ + 0.205427+i.

Finally, based on the last integral in (2.10), we can calculate G(z) as a Stieltjes in-

tegral. If we divide the unit interval into N = 3560 equal subintervals, and use

Riemann-Stieltjes sum, we get an approximate value G(z0) ≈ 0.078082+ + 0.205424i.
All evaluations match very well.

With a slight abuse of notation, we will henceforth write f (L−1)(z0) instead of
∂L−1

∂zL−1 f(z)
∣∣
z=z0

.

Corollary 5.2. The moments mL can be expressed in the closed form by the conver-

gent series of rational numbers:

mL = lim
n→∞

22−n
∑

a1+a2+...+as=n

[0, a1, a2, ..., as]L =

=
1

(L− 1)!

∞∑
n=0

(−1)nH(L−1)
n (0).

The speed of convergence is given by the following estimate:
∣∣∣H(L−1)

n (0)
∣∣∣� 1

nM
, for

every M ∈ N. The implied constant depends only on L and M .
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Thus, m2 =
∑∞

n=0(−1)nH′n(0) = 0.290926476+. Regarding the speed, numerical

calculations show that in fact the convergence is geometric. For example, Theorem

5.1 in case z = 1 gives

M1 = G(1) = 1 + 0 +
∞∑
n=0

1
6

(2
3

)n
=

3
2
,

which we already know. Geometric convergence would be the consequence of the

fact that analytic functions mL( p) extend beyond p = 1 (see below). This is sup-

ported by the phenomena represented in Theorem 5.4. Meanwhile, we are able to

prove only the given rate. Theorem 5.1 gives a convergent series for the moments

ML as well. This is exactly the same as the series in the Corollary 5.2, only one needs

to use a point z = 1 instead of z = 0. To this account, Proposition 5.14 suggests the

following prediction, which is highly supported by numerical calculations, and which

holds for L = 1.

Prediction 5.3. For L ≥ 1, the series

ML( p) =
1

(L− 1)!
·
∞∑
n=0

( p− 2)nH(L−1)
n (1)

has exactly 2− 1
L√2

as radius of convergence.

The following two tables give starting values for the sequence H′n(0).

n H′n(0) n H′n(0) n H′n(0)

0
1
4

5 − 7
2 · 34 · 52

10 − 8026531718888633
212·39·57·74·11·172

1 0 6 − 787
28 · 35 · 53

11 797209536976557079423
211·310·58·75·112·173·31

2
1
48

7
238901

27 · 36 · 54 · 7
12 4198988799919158293319845971

214·311·59·76·113·13·174·312

3 − 1
72

8 − 181993843
210 · 37 · 55 · 72

13 −12702956822417247965298252330349561
210·312·510·77·114·132·175·313

4
53

8640
9

12965510861
26 · 38 · 56 · 73 · 17

14 7226191636013675292833514548603516395499899
216·313·511·78·115·133·176·314
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n H′n(0)

15 −129337183009042141853748450730581369733226857443915617
215·314·512·79·116·134·177·315·43·127

16 31258186275777197041073243752715109842753785598306812028984213251
218·315·513·710·117·135·178·316·432·1272

17 −3282520501229639755997762022707321704397776888948469860959830459774414444483
212·316·514·711·118·136·179·317·433·1273·257

The 
oat values of the last three rational numbers are

−0.000025804822076, 0.000018040274062, and − 0.000010917558446

respectively. The alternating sum of the elements in the table is
∑N

n=0(−1)nH′n(0) =
0.2909255862+ (where N = 17), whereas N = 40 gives 0.2909264880+, and N = 50
gives 0.2909264784+. Note that the manifestation of Fermat and Mersenne primes

in the denominators at an early stage is not accidental, minding the exact value of

the determinant in Lemma 5.21, Section 5.7 (see below).

As will be apparent later, the result in Theorem 5.1 is derived from the knowledge

of p−derivatives of G( p, z) at p = 2 (see below). On the other hand, since there are

two points ( p = 2 and p = 0) such that all higher p−derivatives ofG( p, z) are rational
functions in z, it is not completely surprising that the approach through p = 0 also

gives convergent series for the moments, though in this case we are forced to use

Borel summation. At this point, the author does not have a strict mathematical

proof of this result (since the function G( p, z) is meanwhile de�ned only for < p ≥ 1),
though numerical calculations provide overwhelming evidence for its validity.

Theorem 5.4. (Heuristic result). De�ne the rational functions (with rational coe�-

cients) Qn(z), n ≥ 0, by

Q0(z) = − 1
2z
, and recurrently by Qn(z) =

1
2

n−1∑
j=0

1
j!
· ∂

j

∂zj
Qn−j−1(−1) ·

(
zj − 1

zj+2

)
.

Then

mL = lim
n→∞

22−n
∑

a1+a2+...+as=n

[0, a1, a2, ..., as]L =

=
1

(L− 1)!

∞∑
r=0

( ∞∑
n=0

Q(L−1)
n (−1)
n!

·
r+1∫
r

tne−t dt
)
.

Moreover,

Qn(z) =
(z + 1)(z − 1)Dn(z)

zn+1
, n ≥ 1,
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where Dn(z) are polynomials with rational coe�cients (Qp integers for p 6= 2) of
degree 2n− 2 with the reciprocity property

Dn(z) = z2n−2Dn

(1
z

)
.

Note the order of summation in the series formL, since the reason for introducing

exponential function is because we use Borel summation. For example,

“1− 2 + 4− 8 + 16− 32 + ...” Borel=
∞∑
r=0

( ∞∑
n=0

(−2)n

n!
·
r+1∫
r

tne−t dt
)

=
1
3
.

The following table gives initial results.

n Dn(z) n Dn(z)

1 1
4 4 1

8(2z6 − 3z5 + 6z4 − 3z3 + 6z2 − 3z + 2)
2 1

4(z2 + 1) 5 1
4(z8 − 2z7 + 4z6 − 7z5 + 4z4 − 7z3 + 4z2 − 2z + 1)

3 1
4(z4 − z3 + z2 − z + 1) 6 1

8(2z10 − 5z9 + 12z8 − 20z7 + 37z6−
−20z5 + 37z4 − 20z3 + 12z2 − 5z + 2)

The next table gives Q′n(−1) = 2(−1)nDn(−1) explicitly, which appear in the series

de�ning the �rst non-trivial moment m2. Also, since these numbers are p−adic in-
tegers for p 6= 2, there is a hope for the successful implementation of the idea from

the Section 4.8; that is, possibly one can de�ne moments mL as p−adic integers as
well.

n Q′n(−1) n Q′n(−1) n Q′n(−1) n Q′n(−1)

0 1
2 8 1417

4 16 206836175
64 24 1685121707817

32

1 −1
2 9 −8431

8 17 −339942899
32 25 −92779913448103

512

2 1 10 50899
16 18 1125752909

32 26 80142274019997
128

3 −5
2 11 −9751 19 −15014220659

128 27 −1111839248032133
512

4 25
4 12 30365 20 25188552721

64 28 7740056893342455
1024

5 −16 13 −3069719
32 21 −170016460947

128 29 −13515970598654393
512

6 43 14 1227099
4 22 1153784184807

256 30 47354245650630005
512

7 −971
8 15 −31719165

32 23 −983668214037
64 31 −665632101181145115

2048

The �nal table in this section lists 
oat values of the constants

ϑr =
∞∑
n=0

Q′n(−1)
n!

·
r+1∫
r

tne−t dt, r ∈ N0,

∞∑
r=0

ϑr = m2,

appearing in Borel summation.
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r ϑr r ϑr

0 0.2327797875 6 0.0004701146
1 0.0471561089 7 0.0004980015
2 0.0085133626 8 0.0004005270
3 0.0005892453 9 0.0002722002
4 −0.0001872357 10 0.0001607897
5 0.0002058729 11 0.0000812407

Thus,
∑11

r=0 ϑr = 0.2909400155+ = m2 + 0.000013539+.

5.2 p−question mark functions and p−continued fractions

In this section we introduce a family of natural generalizations of the Minkowski

question mark function F (x). Let 1 ≤ p < 2. Consider the following binary tree,

which we denote by Q p. We start from the root x = 1. Further, each element

(\root") x of this tree generates two \o�springs" by the following rule:

x 7→ px

x+ 1
,

x+ 1
p

.

We will use the notation T p(x) = x+1
p , U p(x) = px

x+1 . When p is �xed, we will some-

times discard the subscript. Thus, the �rst four generations look like

1
1

p
2

hhhhhhhhhhhhhhhhhh 2
p

VVVVVVVVVVVVVVVVVV

p2

p+2

ssssss
p+2
2 p

FFFFF
2 p
p+2

xxxxx
p+2
p2

KKKKKK

p3

p2+ p+2

ssss
p2+ p+2
p2+2 p

p2+2 p
3 p+2

yyy
3 p+2
2 p2

CCC
2 p2

3 p+2

{{{
3 p+2
p2+2 p

EEE
p2+2 p

p2+ p+2
p2+ p+2

p3

KKKK

(5.1)

We refer the reader to the paper [23], where authors consider a rather similar con-

struction, though having a di�erent purpose in mind (see also [9]). Denote by Tn( p)
the sequence of polynomials, appearing as numerators of fractions of this tree. Thus,

T1( p) = 1, T2( p) = p, T3( p) = 2. Directly from the de�nition of this tree we inherit

that

T2n( p) = pTn( p) for n ≥ 1,

T2n−1( p) = Tn−1( p) + p−εTn( p) for n ≥ 2,

where ε = ε(n) = 1 if n = 2k and ε = 0 otherwise. Thus, the de�nition of these poly-

nomials is almost the same as it appeared in [38] (these polynomials were named
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Stern polynomials by the authors), with the distinction that in [38] everywhere one

has ε = 0. Naturally, this di�erence produces di�erent sequence of polynomials.

There are 2n−1 positive real numbers in each generation of the tree Q p, say a
(n)
k ,

1 ≤ k ≤ 2n−1. Moreover, they are all contained in the interval [ p − 1, 1
p−1 ]. Indeed,

this holds for the initial root x = 1, and

p− 1 ≤ x ≤ 1
p− 1

⇔ p− 1 ≤ px

x+ 1
≤ 1,

p− 1 ≤ x ≤ 1
p− 1

⇔ 1 ≤ x+ 1
p
≤ 1

p− 1
.

This also shows that the left o�spring is contained in the interval [ p − 1, 1], while
the right one - in the interval [1, 1

p−1 ]. The real numbers appearing in this tree have

intrinsic relation with p−continuous fractions algorithm. The de�nition of the latter

is as follows. Let x ∈ ( p− 1, 1
p−1). Consider the following procedure:

R p(x) =


T −1(x) = px− 1, if 1 ≤ x < 1

p−1 ,

I(x) = 1
x , if p− 1 < x < 1,

STOP, if x = p− 1.

Then each such x can be uniquely represented as p−continuous fraction

x = [a0, a1, a2, a3, ....] p,

where ai ∈ N for i ≥ 1, and a0 ∈ N ∪ {0}. This notation means that in the course

of iterations R∞p (x) we apply T −1(x) exactly a0 times, then once I, then we apply

T −1 exactly a1 times, then I, and so on. The procedure terminates exactly for those

x ∈ ( p− 1, 1
p−1), which are the members of the tree Q p (\ p-rationals"). Also, direct

inspection shows that if procedure does terminate, the last entry as ≥ 2. Thus, we

have the same ambiguity for the last entry exactly as is the case with ordinary con-

tinued fractions. At this point it is straightforward to show that the nth generation

ofQ p consists of x = [a0, a1, ..., as] p such that
∑s

j=0 aj = n, exactly as in the case p = 1
and tree (1.2).

Now, consider a function X p(x) with the following property: X p(x) = x, where x

is a rational number in the Calkin-Wilf tree (1.2), and x is a corresponding number

in the tree (5.1). In other words, X p(x) is simply a bijection between these two

trees. First, if x < y, then x < y. Also, all positive rationals appear in the tree (1.2)

and they are everywhere dense in R+. Moreover, T and U both preserve order, and

[ p − 1, 1
p−1) is a disjoint union of T [ p − 1, 1

p−1) and U [ p − 1, 1
p−1). Now it is obvi-

ous that the function X p(x) can be extended to a continuous monotone increasing

function

X p(?) : R+ → [ p− 1,
1

p− 1

)
, X p(∞) =

1
p− 1

.

Thus,

X p

(
[a0, a1, a2, a3...]

)
= [a0, a1, a2, a3...] p.
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As can be seen from the de�nitions of both trees (1.2) and (5.1), this function satis�es

functional equations

X p(x+ 1) =
X p(x) + 1

p
,

X p

( x

x+ 1

)
=

pX p(x)
X p(x) + 1

, (5.2)

X p

(1
x

)
=

1
X p(x)

.

The last one (symmetry property) is a consequence of the �rst two. We are not aware

whether this notion of p−continuous fractions is new or not. For example,

1 +
√

1 + 4 p

2 p
= [1, 1, 1, 1, 1, 1, ...] p = X p

(1 +
√

5
2

)
,

√
3 = [4, 2, 1, 10, 1, 1, 2, 1, 5, 1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 7, 4, ...] 3

2
,

2 = [4, 1, 1, 2, 1, 1]√2.

Now �x p, 1 ≤ p < 2. The following proposition follows immediately from the

properties of F (x).

Proposition 5.5. There exists a limit distribution of the nth generation of the tree

Q p as n→∞, de�ned as

Fp(x) = lim
n→∞

2−n+1#{k : a(n)
k < x}.

This function is continuous, Fp(x) = 0 for x ≤ p − 1, Fp(x) = 1 for x ≥ 1
p−1 , and it

satis�es two functional equations:

2Fp(x) =

{
Fp( px− 1) + 1, if 1 ≤ x ≤ 1

p−1 ,

Fp( x
p−x), if p− 1 ≤ x ≤ 1.

(5.3)

Additionally,

Fp(x) + Fp

(1
x

)
= 1 for x > 0.

The explicit expression for Fp(x) is given by

Fp([a0, a1, a2, a3, ...] p) = 1− 2−a0 + 2−(a0+a1) − 2−(a0+a1+a2) + ....

We will refer to the last functional equation as the symmetry property. As was

said, it is a consequence of the other two, though it is convenient to separate it.

Proof. Indeed, as it is obvious from the observations above, we simply have

Fp

(
X p(x)

)
= F (x), x ∈ [0,∞).
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Therefore, two functional equations follow from (5.2) and (2.1). All the other state-

ments are immediate and follow from the properties of F (x). �

Equally important, consider the binary tree (5.1) for p > 2. In this case analogous
proposition holds.

Proposition 5.6. Let p > 2. Then there exists a limit distribution of the nth genera-

tion as n→∞. Denote it by f p(x) This function is continuous, f p(x) = 0 for x ≤ 1
p−1 ,

f p(x) = 1 for x ≥ p− 1, and it satis�es two functional equations:

2f p(x) =

{
f p( px− 1) if 1 ≤ x ≤ p− 1,
f p( x

p−x) + 1 if 1
p−1 ≤ x ≤ 1,

and

f p(x) + f p

(1
x

)
= 1 for x > 0.

Proof. The proof is analogous to the one of Proposition 5.5, only this time we

use equivalences

p− 1 ≤ x ≤ 1
p− 1

⇔ 1 ≤ px

x+ 1
≤ p− 1,

p− 1 ≤ x ≤ 1
p− 1

⇔ 1
p− 1

≤ x+ 1
p
≤ p− 1. �

For the sake of uniformity, we introduce Fp(x) = 1 − f p(x) for p > 2. Then

Fp(x) satis�es exactly the same functional equations (5.3), with a slight di�erence

that Fp(x) = 1 for x ≤ 1
p−1 and Fp(x) = 0 for x ≥ p − 1. Consequently, we will

not separate these two cases and all our subsequent results hold uniformly. To this

account it should be noted that, for example, in case p > 2 the integral
∫ 1

p−1 ? d?
should be understood as −

∫ p−1
1 ?d?. Figure 5.1 gives graphic images of typical cases

for Fp(x).

5.3 Complex case of the tree T p

After dealing the case of real p, 1 ≤ p <∞, let us consider a tree (5.1), when p ∈ C.

Fact 5.7. Fix p, < p ≥ 1, p 6= 1. Then all members of Q p belong to a compact set.

Moreover, for | p− 2| ≤ 1 this set is contained in the half plane <z > −1
2 .

As a consequence, since this set is invariant under z → 1
z , for | p− 2| ≤ 1 this set

is contained outside the circle |z + 1| ≤ 1.

We want to extend the de�nition of X( p, x), given for a positive p in the previous

Section, to complex values of p. Thus, as before, let us de�ne X( p, x) = x for x ∈



5.3. Complex case of the tree T p 77

p = 1.2, x ∈ [0.2, 3] p = 3, x ∈ [0.5, 2]

p = 10, x ∈ [0.1, 9] p = 25, x ∈ [0, 10]

Figure 5.1: Functions Fp(x)
.
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Figure 5.2: I p, p = 0.4 + 1.8i

Q1, where x is a corresponding element of the tree Q p. Then Fact 5.7 after some

preliminary calculations implies

Fact 5.8. Fix < p ≥ 1. Then the function X( p, x) : Q+ → C is uniformly continuous

function, and consequently it can be extended by continuity to X( p, x) : [0,∞) ∪
{∞} → C. Therefore, the curve X( p, [0,∞]) (denote it by I p) is a closed set in C.
As a consequence, 0 /∈ I p for p 6= 1.

This curve I p has a natural fractal structure: it decomposes into two parts,

namely
I p+1

p and
p I p

I p+1 , with a single common point z = 1. Additionally, I p = 1
I p

.

Thus, each point z on this curve has a unique representation of p−continued fraction

of the form z = [a0, a1, a2, ...] p, where a0 ∈ N0, and ai ∈ N for i ≥ 1. For this reason,

the curve is not self intersecting (except for p = 2, since in this case I2 is a single

point). Figures 5.2-5.6 show the images of I p (we take sixteen generations of Q p)

for certain characteristic values of p. They are indeed all continuous curves, at least

for < p ≥ 1!

Now we will pass to the next level. Namely, it appears that the function X( p, x) :
[0,∞]→ C has a derivative in p, < p ≥ 1, and it is a continuous and bounded function

for p 6= 1. On the other hand, the point p = 1 must be treated separately. It appears

that there exist all derivatives at p = 1 as well, though this time they are contin-

uous functions only for irrational x. This is a generic situation: higher derivatives
dT

d pT
X( p, x) for T ≥ 2, < p ≥ 1, are also continuous functions only for x ∈ R+ \ Q+.
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Figure 5.3: I p, p = 0.1 + 2i.

Luckily, this will have a small impact on the analyticity ofmL( p) in the disc | p−2| ≤ 1
(Proposition 5.11).

Fact 5.9. Let x, y ∈ Q+ be elements in (1.2), and x and y be the corresponding

rational functions in (5.1). Suppose < p0 ≥ 1, p0 6= 1. Then, as x varies over [0,∞],
complex numbers d

d px| p= p0 belong to compact set. Moreover, if x, y → α, x, y ∈ Q+,

α ∈ R+, then
d

d px| p= p0 and
d

d py| p= p0 tend to the same �nite limit.

For example, Figure 5.7 shows the image of the curve d
d pX( p, x)| p=1.5+0.5i, x ∈

[0,∞].

We are left to tackle the case p = 1.

Fact 5.10. There exists SN (x) = dN

d pN
X( p, x)| p=1. This function is continuous for

irrational x. Moreover, SN (x)�N xN+1 for x ≥ 1, and SN (x)�N 1 for x ∈ (0, 1).

Surprisingly, all straightforward attempts to prove the Fact 5.7 fail. Facts 5.8, 5.9

and 5.10 are almost direct corollaries of the latter. As a matter of fact, the investiga-

tions of the tree Q p deserves a separate paper. I am very grateful to my colleagues

Je�rey Lagarias and Stefano Isola, who sent me various references, also informing

about the intrinsic relations of this problem with: Julia sets of rational maps of

the Riemann sphere; iterated function systems; forward limit sets of semigroups;

various topics from complex dynamics and geometry of discrete groups. Thus, the

problem is much more subtle and involved than it appears to be. This poses the
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Figure 5.4: I p, p = 1 + 0.9i. This is a continuous curve!

deep question on the limit set of the semigroup, generated by transformations U p

and T p, or any other two \conjugate" analytic maps of the Riemann sphere (say,

two analytic maps A and B are \conjugate", if A(α) = α, B(β) = β, A(β) = B(α) = γ

for some three points α, β and γ on the Riemann sphere. We construct the same

tree, starting from the root γ. The limit set should be some curve with endpoints α,

β). The case of one rational map is rather well understood, and it is treated in [5].

On the other hand, the main Theorem 5.1 of this chapter is not directly related to

these topics. Therefore, we believe that graphic images of the curves I p (and their

\derivatives") should certainly convince the reader that the last four propositions

do certainly hold. Hence we do not present the strict proofs of the last four propo-

sitions, with an intention to investigate this problem in a separate paper.

With all these preliminary results, we formulate the main proposition of this

section, which is crucial in the �nal stage in the proof of Theorem 5.1. Let us de�ne

mL( p) = 2

1∫
0

XL( p, x) dF (x) = lim
n→∞

22−n
∑

a1+a2+...+as=n

[0, a1, a2, .., as]Lp.

Proposition 5.11. The function mL( p) is analytic in the disc | p− 2| ≤ 1, including its
boundary. In particular, if in this disc

m̂L( p) :=
mL( p)

pL
=
∞∑
v=0

ηv,L( p− 2)v,
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Figure 5.5: I p, p = 1.2 + 3i

then for any M ∈ N, one has an estimate ηv,L � v−M as v →∞.

Proof. The function X( p, x) possesses a derivative in p for < p ≥ 1, p 6= 1, and
these are bounded and continuous functions for x ∈ R+. Therefore mL( p) has a

derivative. For p = 1, there exists dM

d pM
X( p, x)� xM+1, and it is a continuous func-

tion for irrational x. Additionally, F ′(x) = 0 for x ∈ Q+. This proves the analyticity

of mL( p) in the disc | p − 2| ≤ 1. Then an estimate for the Taylor coe�cients is the

standard fact from Fourier analysis. In fact,

ηv,L =

1∫
0

m̂L(2 + e2πiϑ)e−2πivϑ dϑ.

The function m̂L(2 + e2πiϑ) ∈ C∞(R), hence the iteration of integration by parts im-

plies the needed estimate. �

De�nition 5.12. We de�neMinkowski p−questionmark function Fp(x) : I p → [0, 1],
by

Fp(X( p, x)) = F (x), x ∈ [0,∞].
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Figure 5.6: I p, p = 1.5 + 0.5i

5.4 Properties of integral transforms of Fp(x)

For given p, < p ≥ 1, we de�ne

χn =
p + pn−1 − 2
pn−1( p− 1)

, In = [χn, χn+1] = X( p, [n, n+ 1]) for n ∈ N0.

Complex numbers χn stand for the analogue of non-negative integers on the curve

I p. In other words, χn = Un( p − 1). We consider In as part of the curve I p

contained between the points χn and χn+1. Thus, χ0 = p − 1, χ1 = 1, and the

sequence χn is \increasing", in the sense that χj as a point on a curve I p is between

χi and χk if i < j < k. Moreover,
∞⋃
n=0

In
⋃
{ 1

p−1} = I p.

Proposition 5.13. Let ω(x) : I p → C be a continuous function. Then∫
I p

ω(x) dFp(x) =
∞∑
n=0

1
2n+1

∫
I p

ω
( x

pn−1(x+ 1)
+

pn − 1
pn+1 − pn

)
dFp(x).

Proof. Indeed, using (5.3) we obtain:∫
I p

ω(x) dFp(x) =
∞∑
n=0

∫
In

ω(x) dFp(x) =
∞∑
n=0

∫
T n( I0)

ω(x) dFp(x) x→T
nx=

∞∑
n=0

1
2n

∫
I0

ω(T nx) dFp(x) x→Ux=
∞∑
n=0

1
2n+1

∫
I p

ω(T nUx) dFp(x),



5.4. Properties of integral transforms of Fp(x) 83

Figure 5.7: d
d pX( p, [0,∞])| p= p0, p0 = 1.5 + 0.5i

and this is exactly the statement of the proposition. �

For L, T ∈ N0 let us introduce

BL,T ( p) =
∞∑
n=0

1
2n+1 pTn

( pn − 1
pn+1 − pn

)L
.

For example,

B0,T ( p) =
pT

2 pT − 1
, B1,T ( p) =

pT

(2 pT − 1)(2 pT+1 − 1)
,

B2,T ( p) =
pT (2 pT+1 + 1)

(2 pT+2 − 1)(2 pT+1 − 1)(2 pT − 1)
,

B3,T ( p) =
pT (4 p2T+3 + 4 pT+2 + 4 pT+1 + 1)

(2 pT+3 − 1)(2 pT+2 − 1)(2 pT+1 − 1)(2 pT − 1)
,

B4,T ( p) =
pT (2 pT+2 + 1)(4 p2T+4 + 6 pT+3 + 8 pT+2 + 6 pT+1 + 1)

(2 pT+4 − 1)(2 pT+3 − 1)(2 pT+2 − 1)(2 pT+1 − 1)(2 pT − 1)
.

As it is easy to see, BL,T ( p) are rational functions in p for L, T ∈ N0. Indeed,

BL,T ( p) =
1

( p− 1)L
·
∞∑
n=0

1
pTn2n+1

(
1− 1

pn

)L
=

1
2( p− 1)L

·
L∑
s=0

(−1)s
(
L

s

) ∞∑
n=0

1
2n pn(s+T )

=

pT

( p− 1)L
·
L∑
s=0

(−1)s
(
L

s

)
ps

2 ps+T − 1
=

pTRL,T ( p)
(2 pT+L − 1)(2 pT+L−1 − 1) · ... · (2 pT+1 − 1)(2 pT − 1)

,
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where RL,T ( p) are polynomials. This follows from the observation that p = 1 is a

root of numerator of multiplicity not less than L.

As in case p = 1, our main concern are the moments of distributions Fp(x), which
are de�ned by

mL( p) = 2
∫
I0

xL dFp(x) =
∫
I p

( px

x+ 1

)L
dFp(x) = 2

1∫
0

XL( p, x) dF (x),

ML( p) =
∫
I p

xL dFp(x).

Thus, if supz∈I p
|z| = ρ p > 1, which is �nite for < p ≥ 1, p 6= 1 (see Section 5.3), then

|ML( p)| ≤ ρLp.

Proposition 5.14. Functions ML( p) and mL( p) are related via rational functions

BL,T ( p) in the following way:

ML( p) =
L∑
s=0

ms( p)BL−s,s( p)
(
L

s

)
.

Proof. Indeed, this follows from the de�nitions and Proposition 5.13 in case

ω(x) = xL. �

Let us introduce, following Chapter 2 in case p = 1, the following generating

functions:

m p(t) =
∞∑
L=0

mL( p)
tL

L!
= 2

∫
I0

ext dFp(x) =
∫
I p

exp
( pxt

x+ 1

)
dFp(x);

G p(z) =
∞∑
L=1

mL( p)
pL

zL−1 =
∫
I p

1
x+ 1− z

dF p(x) =

∞∫
0

1
X( p, x) + 1− z

dF (x).(5.4)

The limit situation p = 2 is particularly important, since all these functions can

be explicitly calculated, and it provides the case where all the subsequent results can

be checked directly and the starting point in proving Theorem 5.1. Thus,

m2(t) = et, G2(z) =
1

2− z
.

By the de�nition, expressions mL( p)/ pL are Taylor coe�cients of G p(z) at z = 0.
Di�erentiation of L − 1 times under the integral de�ning G p(z), and substitution

z = 1 gives

G
(L−1)
p (1) = (L− 1)!

∫
I p

1
xL

dFp(x) = ML( p)⇒ G p(z + 1) =
∞∑
L=0

ML( p)zL−1, (5.5)
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with a radius of convergence equal to ρ−1
p . As was proved in Chapter 2 andmentioned

before, in case p = 1 (ρ1 = ∞) this must be interpreted that there exist all left

derivatives at z = 1. The next proposition shows how symmetry property re
ects in

m p(t).

Proposition 5.15. One has

m p(t) = e ptm p(−t).

Proof. Indeed,

m p(t) =
∫
I p

exp
( pxt

x+ 1

)
dFp(x) =

∫
I p

exp
(

pt− pt

x+ 1

)
dFp(x) =

e pt

∫
I p

exp
(
− pt

x+ 1

)
dFp(x)

x→ 1
x= e ptm p(−t). �

This result allows to obtain linear relations among momentsmL( p) and the exact

value of the �rst (trivial) moment m1( p).

Corollary 5.16. One has

m1( p) =
p

2
, M1( p) =

p2 + 2
4 p− 2

.

Proof. Indeed, the last propositions implies

mL( p) =
L∑
s=0

(
L

s

)
(−1)sms( p) pL−s, L ≥ 0.

For L = 1 this gives the �rst statement of the Corollary. Additionally, Proposition

5.14 for L = 1 reads as

M1( p) =
p

2 p− 1
·m1( p) +

1
2 p− 1

,

and we are done. �

5.5 Three term functional equation

Theorem 5.17. The functionG p(z) can be extended to analytic function in the domain

C \ ( I p + 1). It satis�es the functional equation

1
z

+
p

z2
G p

( p

z

)
+ 2G p(z + 1) = pG p( pz), for z /∈ I p + 1

p
. (5.6)
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Its consequence is the symmetry property

G p(z + 1) = − 1
z2
G p

(1
z

+ 1
)
− 1
z
.

Moreover, G p(z)→ 0 if dist(z, I p)→∞.

Conversely - the function satisfying this functional equation and regularity property

is unique.

Proof. Let w(x, z) = 1
x+1−z . Then it is straightforward to check that

w(
x+ 1

p
, z + 1) = p · w(x, pz),

w(
p

x+ 1
, z + 1) = − p

z2
w(x,

p

z
)− 1

z
.

Thus, for < p ≥ 1, p 6= 2,

2G p(z + 1) = 2
∫
I0

w(x, z + 1) dFp(x) + 2
∫

I p\I0

w(x, z + 1) dFp(x) =

2
∫
I p

w(
px

x+ 1
, z + 1) dFp

( px

x+ 1

)
+ 2

∫
I p

w(
x+ 1

p
, z + 1) dFp

(x+ 1
p

)
=

∫
I p

w(
p

x+ 1
, z + 1) dFp(x) +

∫
I p

w(
x+ 1

p
, z + 1) dFp(x) = −1

z
− p

z2
G p

( p

z

)
+ pG p( pz).

(In the �rst integral we used a substitution x → 1
x ). The functional equation holds

in case p = 2 as well, which can be checked directly. The holomorphicity of G p(z)
follows exactly as in case p = 1, see Chapter 2, Proposition 2.5. All we need is the

�rst integral in (5.4) and the fact that I p is a closed set.

As was mentioned, the uniqueness of function satisfying (5.6) for p = 1 was

proved in Chapter 2, Proposition 2.7. Thus, the converse implication follows from

analytic continuation principle for the function in two complex variables ( p, z) (see
Lemma 5.22 below, where the proof in case p = 2 is presented. Similar argument

works for general p). �

Corollary 5.18. Let p 6= 1, and C be any closed smooth contour which circumvents

the curve I p + 1 once in the positive direction. Then

1
2πi

∮
C

G p(z) dz = −1.

Proof. Indeed, this follows from functional equation as well as from symmetry

property. It is enough to take a su�ciently large circle C = {|z| = R} such that C−1+1
is contained in a small neighborhood of z = 1, for which (C−1 + 1) ∩ ( I p + 1) = ∅.
This is possible since 0 /∈ I p (see Fact 5.7). �
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We �nish with providing an integral equation for m p(t). We indulge in being

concise since the argument directly generalizes the one used in Chapter 2, Theorem

2.9, to prove the integral functional equation for m(t) (in our notation, this is m1(t)).

Proposition 5.19. Let 1 ≤ p < ∞ be real. Then the function m p(t) satis�es the

boundary condition m p(0) = 1, regularity property m p(−t)� e−
√
t log 2, and the inte-

gral equation

m p(−s) =

∞∫
0

m′p(−t)
(

2esJ0(2
√

pst)− J0(2
√
st)
)

dt, s ∈ R+.

For instance, in the case p = 2 this reads as

2es
∞∫
0

e−tJ0(2
√

2st) dt = 2ese−2s = e−s + e−s = e−s +

∞∫
0

e−tJ0(2
√
st) dt,

which is an identity (see [72]).

Proof. Indeed, the functional equation for G p(z) in the region <z < −1 in terms of

m′p(t) reads as

1
z

=

∞∫
0

m′p(−t)
( 2
z + 1

e
pt
z+1 +

1
z
etz − 1

z
e
t
z

)
dt.

Now, multiply this by e−sz and integrate over <z = −σ < −1, where s > 0 is real.

All the remaining steps are exactly the same as on the page 19. �

Remark. If p 6= 1, the regularity bound is easier than in case p = 1. Take, for

example, 1 < p < 2. Then

|m p(t)| ≤

1
p−1∫

p−1

∣∣∣ exp
( pxt

x+ 1

)∣∣∣ dFp(x) <

1
p−1∫

p−1

et dFp(x) = et.

Thus, Proposition 5.15 gives |m p(−t)| < e(1− p)t. The same argument shows that for

p > 2 we have |m p(−t)| < e−t.

5.6 Approach through p = 0: into the realm of unknown

Let us rewrite the functional equation for G p(z) = G( p, z) as

1
z

+
p

z2
G
(

p,
p

z

)
+ 2G( p, z + 1) = pG( p, pz). (5.7)

With a slight abuse of notation, we will use the expression ∂s

∂ psG(0, z) to denote
∂s

∂ psG( p, z)
∣∣
p=0

for s ∈ N0. Though the function G( p, z) is de�ned only for < p ≥ 1,
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z /∈ ( I p+1), assume that we are able to prove that it is analytic in p in a certain wider

domain containing a disc | p| < $, $ > 0. These are only formal calculations, but

they unexpectedly yield Theorem 5.4 (see Section 5.1), and numerical calculations

do strongly con�rm the validity of it.

Thus, substitution p = 0 into (5.7) gives G(0, z) = 1
2(1−z) . Partial di�erentiation

of (5.7) with respect to p yields

1
z2
G( p,

p

z
) +

p

z2

∂

∂ p
G( p,

p

z
) +

p

z3

∂

∂z
G( p,

p

z
) + 2

∂

∂ p
G( p, z + 1) =

G( p, pz) + p
∂

∂ p
G( p, pz) + pz

∂

∂z
G( p, pz).

Consequently, after substitution p = 0, we get

1
z2
G(0, 0) + 2

∂

∂ p
G(0, z + 1) = G(0, 0)⇒ ∂

∂ p
G(0, z) =

(z − 1)2 − 1
4(z − 1)2

.

In the same fashion, di�erentiating the second time, we obtain ∂2

∂ p2G(0, z) = (z−1)4−1
2(z−1)3

.

In general, direct induction shows that the following \chain-rule" holds:

∂n

∂ pn

(
pG( p, pz)

)
=
∑
i+j=n

(
n

j

)
p

∂i ∂j

∂ pi ∂zj
G( p, pz)zj +

∑
i+j=n−1

n

(
n− 1
j

)
∂i ∂j

∂ pi ∂zj
G( p, pz)zj , (5.8)

where in the summation it is assumed that i, j ≥ 0. Thus, di�erentiating (5.7) n ≥ 1
times with respect to p, and substituting p = 0, we obtain:

2
∂n

∂ pn
G(0, z + 1) =

∑
i+j=n−1

n

(
n− 1
j

)
∂i ∂j

∂ pi ∂zj
G(0, 0)

(
zj − 1

zj+2

)
.

Let

1
n!
· ∂n

∂ pn
G(0, z) = Qn(z).

Then

2Qn(z + 1) =
n−1∑
j=0

1
j!

∂j

∂zj
Qn−j−1(0)

(
zj − 1

zj+2

)
.

Consequently, we have a recurrent formula to compute rational functions Q(z). Let
Qn(z) = Qn(z + 1). Thus,

Qn(z) =
(z + 1)(z − 1)Dn(z)

zn+1
, n ≥ 1,

where Dn are polynomials of degree 2n − 2 with the reciprocity property Dn(z) =
z2n−2Dn

(
1
z

)
(this is obvious from the recurrence relation which de�nesQn(z)). More-

over, the coe�cients of Dn are Qp integers for any prime p 6= 2. These calculations

yield the following formal result.
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Proposition 5.20. (Heuristic result). One has

G( p, z)“ = ”
∞∑
n=0

pn ·Qn(z − 1) =
∞∑
n=0

pn
z(z − 2)Dn(z − 1)

(z − 1)n+1
.

This produces the \series" for the second and higher moments of the form

m2( p) = p2 ·
∞∑
n=0

pnQ′n(−1).

In particular, inspection of the table in Section 5.1 (where the initial values for

Q′n(−1) are listed) shows that this series for p = 1 does not converge. However, the

Borel sum is properly de�ned and it converges exactly to the value m2. This gives

empirical evidence for the validity of Theorem 5.4. The principles of Borel summa-

tion also suggest the mysterious fact that indeed G( p, z) analytically extends to the

interval p ∈ [0, 1].

Additionally, numerical calculations reveal the following fact: the sequence
n
√
|Q′n(−1)| is monotonically increasing (apparently, tends to∞), while 1

n log |Q′n(−1)|−
log n monotonically decreases (possibly, tends to −∞). Thus,

An < |Q′n(−1)| < (cn)n,

for c = 0.02372 andA = 3.527, n ≥ 150. We do not have enough evidence to conjecture

the real growth of this sequence. If c = c(n)→ 0, as n→∞, then the function

Λ(t) =
∞∑
n=0

Q′n(−1)
n!

tn

is entire, and Theorem 5.4 is equivalent to the fact that

∞∫
0

Λ(t)e−t dt = m2.

5.7 Closed form formula: approach through p = 2

In this section we provide rigid calculations which yield explicit series for G( p, z) in
terms of powers of ( p − 2) and certain rational functions. The function G( p, z) is

analytic in {| p− 2| ≤ 1}×{|z| ≤ 1}. This follows from results is Section 5.3, Fact 5.7,

integral representation (5.4), and also from (5.5) and explanation afterwards. Thus,

for {| p− 2| < 1} × {|z| < 1} it has a Taylor expansion

G( p, z) =
∞∑
L=1

∞∑
v=0

ηv,L · zL−1( p− 2)v. (5.9)
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Moreover, the function G(2 + e2πiϑ, e2πiϕ) ∈ C∞(R × R), and it is double-periodic.

Thus,

ηv,L =

1∫
0

1∫
0

G(2 + e2πiϑ, e2πiϕ)e−2πivϑ−2πi(L−1)ϕ dϑ dϕ, v ≥ 0, L ≥ 1.

A standard trick from Fourier analysis (using iteration of integration by parts) shows

that ηv,L �M (Lv)−M for anyM ∈ N. Thus, (5.9) holds for ( p, z) ∈ {| p−2| ≤ 1}×{|z| ≤
1}.

Our idea is a simple one. Indeed, let us look at (5.4). This implies the Taylor

series for mL( p)/ pL =
∑∞

v=0 ηv,L( p − 2)v, convergent in the disc | p − 2| ≤ 1. Due

to the absolute convergence, the order of summation in (5.9) is not essential. This

yields

G( p, z) =
∞∑
v=0

( p− 2)v
( ∞∑
L=1

ηv,L · zL−1
)
.

Therefore, let

1
n!

∂n

∂ pn
G( p, z)

∣∣∣
p=2

= Hn(z) =
∞∑
L=1

ηn,L · zL−1.

We already know that H0(z) = 1
2−z . Though mL( p) are obviously highly transcen-

dental functions, the series for Hn(z) is in fact a rational function in z, and this is

the main point of our approach. Moreover, we will show that

Hn(z) =
Bn(z)

(z − 2)n+1
,

where Bn(z) is a polynomial with rational coe�cients of degree n− 1 with the reci-

procity property Bn(z+ 1) = (−1)nzn−1Bn(1
z + 1), Bn(0) = 0. We argue by induction

on n. First we need an auxiliary lemma.

Let Q[z]n−1 denote the linear space of dimension n of polynomials of degree ≤
n− 1 with rational coe�cients. Consider the following linear map Ln−1 : Q[z]n−1 →
Q[z]n−1, de�ned by

Ln−1(P )(z) = P (z + 1)− 1
2n+1

P (2z) +
(−1)n+1

2n+1
P
(2
z

)
zn−1.

Lemma 5.21. For n ∈ N, det(Ln−1) 6= 0. Accordingly, Ln−1 is the isomorphism.

Remark. Let m =
[
n
2

]
. Then it can be proved that indeed det(Ln−1) =

∏m
i=1(4i−1)

2m2+m
.

Proof. Suppose P ∈ ker(Ln−1). Then the rational function H(z) = P (z)
(z−2)n+1 satis-

�es the three term functional equation

H(z + 1)−H(2z) + H
(2
z

) 1
z2

= 0, z 6= 1. (5.10)

Also, H(z) = o(1), as z →∞. Now the result follows from the following
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Lemma 5.22. Let Υ(z) be any analytic function in the domain C \ {1}. Then if H(z)
is a solution of the equation

H(z + 1)−H(2z) + H
(2
z

) 1
z2

= Υ(z),

such that H(z)→ 0 as z →∞, H(z) is analytic in C \ {2}, then such H(z) is unique.

Proof. All we need is to show that with the imposed diminishing condition,

homogeneous equation (5.10) admits only the solution H(z) ≡ 0. Indeed, let H(z)
be such a solution. Put z → 2nz + 1. Thus,

H(2nz + 2)−H(2n+1z + 2) +
1

(2nz + 1)2
H
( 2

2nz + 1

)
= 0.

This is valid for z 6= 0 (since H(z) is allowed to have a singularity at z = 2). Now

sum this over n ≥ 0. Due to the diminishing assumption, one gets (after additional

substitution z → z − 2)

H(z) = −
∞∑
n=0

1
(2nz − 2n+1 + 1)2

H
( 2

2nz − 2n+1 + 1

)
.

For clarity, put z → −z and consider a function Ĥ(z) = H(−z). Thus,

Ĥ(z) = −
∞∑
n=0

1
(2nz + 2n+1 − 1)2

Ĥ
( 2

2nz + 2n+1 − 1

)
.

Consider this for z ∈ [0, 2]. As can be easily seen, then all arguments on the right also

belong to this interval. We want to prove the needed result simply by applying the

maximum argument. The last identity is still insu�cient. For this reason consider

its second iteration. This produces a series

Ĥ(z) =
∞∑

n,m=0

1
(2n+m+1z + 2n+m+2 − 2nz − 2n+1 + 1)2

Ĥ
(
ωm ◦ ωn(z)

)
,

where ωn(z) = 2
2nz+2n+1−1

. As said, ωm ◦ ωn(z) ∈ [0, 2] for z ∈ [0, 2]. Since a function

H(z) is continuous in the interval [0, 2], let z0 ∈ [0, 2] be such that M = |Ĥ(z0)| =
supz∈[0,2] |Ĥ(z)|. Consider the above expression for z = z0. Thus,

M = |H(z0)| ≤
∞∑

n,m=0

∣∣∣ 1
(2n+m+1z0 + 2n+m+2 − 2nz0 − 2n+1 + 1)2

Ĥ
(
ωm ◦ ωn(z0)

)∣∣∣ ≤
M

∞∑
n,m=0

1
(2n+m+2 − 2n+1 + 1)2

= 0.20453+M.

This is contradictory unlessM = 0. By the principle of analytic continuation, H(z) ≡
0, and this proves the Lemma. �
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Remark. Direct inspection of the proof reveals that the statement of Lemma

still holds with a weaker assumption that H(z) is real-analytic on (−∞, 0].

Now, let us di�erentiate (5.7) n times with respect to p, use (5.8) and afterwards

substitute p = 2. This gives

n∑
j=1

2
j!

∂j

∂zj
Hn−j(2z)zj +

n−1∑
j=0

1
j!

∂j

∂zj
Hn−j−1(2z)zj −

n∑
j=1

2
j!

∂j

∂zj
Hn−j

(2
z

) 1
zj+2

−
n−1∑
j=0

1
j!

∂j

∂zj
Hn−j−1

(2
z

) 1
zj+2

=

2Hn(z + 1)− 2Hn(2z) + 2Hn

(2
z

) 1
z2
. (5.11)

We note that this implies the reciprocity property

Hn(z + 1) = − 1
z2

Hn

(1
z

+ 1
)
, n ≥ 1.

A posteriori, this clari�es how the identity F (x)+F (1/x) = 1 re
ects in the series for

G(z), as stated in Theorem 5.1: reciprocity property (non-homogeneous for n = 0
and homogeneous for n ≥ 1) is re
ected in each of the summands separately, whereas

the three term functional equation heavily depends on inter-relations among Hn(z).

Now, suppose we know all Hj(z) for j < n.

Lemma 5.23. The left hand side of the equation (5.11) is of the form

l.h.s. =
Jn(z)

(z − 1)n+1
,

where Jn(z) ∈ Q[z]n−1.

Proof. First, as it is clear from the appearance of l.h.s., we need to verify that z

does not divide a denominator, if l.h.s. is represented as a quotient of two co-prime

polynomials. Indeed, using the symmetry property in (5.7) for the term G( p, p
z ), we

obtain the three term functional equation of the form

− 1
p− z

− p

( p− z)2
G
(

p,
p

p− z

)
+ 2G( p, z + 1) = pG( p, pz).

Let us perform the same procedure which we followed to arrive at equation (5.11).

Thus, di�erentiation n times with respect to p and substitution p = 2 gives the

expression of the form

l.h.s.2 = 2Hn(z + 1)− 2Hn(2z)− 2Hn

( 2
2− z

) 1
(2− z)2

,

where lh.s.2 is expressed in terms of Hj(z) for j < n. Nevertheless, this time the

common denominator of l.h.s.2 is of the form (z − 1)n+1(z − 2)n+2. As a corollary, z
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does not divide it. Finally, due to the reciprocity property, for n ≥ 1 one has

Hn

( 2
2− z

) 1
(2− z)2

= −Hn

(2
z

) 1
z2
.

This shows that actually l.h.s. = l.h.s.2, and therefore if this is expressed as a quo-

tient of two polynomials in lowest terms, the denominator is a power of (z − 1).
Finally, it is obvious that this exponent is exactly n+ 1, and one easily veri�es that

deg Jn(z) ≤ n − 1. (Possibly, Jn(z) can be divisible by (z − 1), but this does not

have an impact on the result). �

Proof of Theorem 5.1. Now, using Lemma 5.21, we inherit that there exists a

unique polynomial Bn(z) of degree ≤ n− 1 such that Bn(z) = 1
2L
−1
n−1(Jn)(z). Sum-

marizing, Hn(z) = Bn(z)
(z−2)n+1 solves the equation (5.11). On the other hand, Lemma

5.22 implies that the solution of (5.11) we obtained is indeed the unique one. This

reasoning proves that for | p− 2| ≤ 1, |z| ≤ 1 we have the series

G( p, z) =
∞∑
n=0

( p− 2)n ·Hn(z).

This �nally establishes the validity of Theorem 5.1. Note also that each summand

satis�es the symmetry property. The series converges absolutely for any z, |z| ≤ 1,
and if this holds for z, the same does hold for z

z−1 , which gives a half-plane <z ≤ 1
2 . �

Curiously, one could formally verify that the function de�ned by this series does

indeed satisfy (5.6). Indeed, using (5.11), we get:

2G( p, z + 1) = 2H0(z + 1) + 2
∞∑
n=1

( p− 2)nHn(z + 1) =

2H0(z + 1) +
∞∑
n=1

( p− 2)n
(

n∑
j=0

2
j!

∂j

∂zj
Hn−j(2z)zj +

n−1∑
j=0

1
j!

∂j

∂zj
Hn−j−1(2z)zj −

n∑
j=0

2
j!

∂j

∂zj
Hn−j

(2
z

) 1
zj+2

−
n−1∑
j=0

1
j!

∂j

∂zj
Hn−j−1

(2
z

) 1
zj+2

)

Denote n − j = s. Then interchanging the order of summation for the �rst term of

the sum in the brackets, we obtain:

2
∞∑
n=1

( p− 2)n
n∑
j=0

1
j!

∂j

∂zj
Hn−j(2z)zj = 2

∞∑
s=0

∞∑
j=0

( p− 2)j+s
1
j!

∂j

∂zj
Hs(2z)zj − 2H0(2z) =

2
∞∑
s=0

( p− 2)sHs(2z + ( p− 2)z)− 2H0(2z) = 2G( p, pz)− 2H0(2z).

The same works for the second sum:

∞∑
n=1

( p− 2)n
n−1∑
j=0

1
j!

∂j

∂zj
Hn−j−1(2z)zj = ( p− 2)G( p, pz).
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We perform the same interchange of summation for the second and the third sum-

mand respectively. Thus, this yields

2G( p, z + 1) = pG( p, pz)− p

z2
G
(

p,
p

z

)
+ 2H0(z + 1)− 2H0(2z) +

2
z2

H0

(2
z

)
=

pG( p, pz)− p

z2
G
(

p,
p

z

)
− 1
z
.

On the other hand, it is unclear how one can make this argument to work. This

would require rather detailed investigation of the linear map Ln−1 and recurrence

(5.11), and this seems to be very technical.

5.8 Appendices

5.8.1 Numerical calculations

Unfortunately, the Corollary 5.2 is not very useful in �nding exact decimal digits of

m2. In fact, the vector (m1,m2,m3...) is the solution of an (in�nite) system of linear

equations, which encodes the functional equation (2.13). Namely, if we denote cL =∑∞
n=1

1
2nnL

= LiL(1
2), we have a linear system for ms which describes the coe�cients

ms uniquely (see page 18):

ms =
∞∑
L=0

(−1)LcL+s

(
L+ s− 1
s− 1

)
mL, s ≥ 1.

Note that this system is not homogeneous (m0 = 1). We truncate this matrix at

su�ciently high order to obtain 
oat values. By a lucky chance, the accuracy of this

calculation can be checked on the test value m1 = 0.5. This approach yields (for the

matrix of order 325):

m2 = 0.2909264764293087363806977627391202900804371021955943665492...

m3 = 0.1863897146439631045710466441086804351206556532933915498238...

m4 = 0.1269922584074431352028922278802116388411851457617257181016...

with all 58 digits exact (note that 3m2 − 2m3 = 0.5). In fact, the truncation of matrix

at an order 325 gives rather accurate values for mL for 1 ≤ L ≤ 125, well in corre-

spondence with Theorem 3.2. Higher numerical moments tend to deviate from this

expression rather quickly.

Kinney [37] has proved that the Hausdor� dimension of growth points of ?(x) is
equal to

α =
1
2

( 1∫
0

log2(1 + x) d?(x)
)−1

.
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Based on the calculations of Lagarias, the author in [24] reproduces the following

estimates: 0.8746 < α < 0.8749. We have (note that ?(1− x)+?(x) = 1):

A :=

1∫
0

log(1 + x) d?(x) =

1∫
0

log
(

1− 1− x
2

)
d?(x) +

1∫
0

log 2 d?(x) =

−
∞∑
L=1

1
L · 2L

1∫
0

(1− x)L d?(x) + log 2 = −
∞∑
L=1

mL

L · 2L
+ log 2.

Thus, we are able to present much more precise result:

α =
log 2
2A

= 0.874716305108211142215152904219159757...

with all 35 digits exact. Additionally, the constant c0 in Theorem 3.2 (and Proposition

2.2) is given by

c0 =

1∫
0

2x(1− F (x)) dx =
m(log 2)
2 log 2

=
1
2

∞∑
L=0

mL

L!
(log 2)L−1.

This series is fast convergent, and we obtain

c0 = 1.03019956338269462315600411256447867669415885918240...

5.8.2 Rational functions Hn(z)

The following is MAPLE code to compute rational functions Hn(z)=h[n] and coe�-

cients H′n(0)=alpha[n] for 0 ≤ n ≤ 50.

> restart;

> with(LinearAlgebra):

> U:=50:

> h[0]:=1/(2-z):

> for n from 1 to U do

> j[n]:=1/2*simplify(

> add( unapply(diff(h[n-j],z$j),z)(2*z)*2/j!*(z^(j)),j=1..n)+

> add( unapply(diff(h[n-j-1],z$j),z)(2*z)*1/j!*(z^(j)),j=1..n-1)+

> unapply(h[n-1],z)(2*z) ):

> k[n]:=simplify((z-1)^(n+1)*(unapply(j[n],z)(z)-

> unapply(j[n],z)(1/z)/z^2)):

> M[n,1]:=Matrix(n,n):M[n,2]:=Matrix(n,n): M[n,3]:=Matrix(n,n):

> for tx from 1 to n do for ty from tx to n do

> M[n,1][ty,tx]:=binomial(n-tx,n-ty)

> end do: end do:
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> for tx from 1 to n do M[n,2][tx,tx]:=2^(n-tx) end do:

> for tx from 1 to n do M[n,3][tx,n+1-tx]:=2^(tx-1) end do:

> Y[n]:=M[n,1]-1/2^(n+1)*M[n,2]+(-1)^(n+1)/2^(n+1)*M[n,3]:

> A[n]:=Matrix(n,1):

> for tt from 1 to n do A[n][tt,1]:=coeff(k[n],z,n-tt) end do:

> B[n]:=MatrixMatrixMultiply(MatrixInverse(Y[n]),A[n]):

> h[n]:=add(z^(n-s)*B[n][s,1](s,1),s=1..n)/(z-2)^(n+1):

> end do:

>

> for n from 0 to U do alpha[n]:=unapply(diff(h[n],z$1),z)(0) end do;

It causes no complications to compute h[n] on a standard home computer for

0 ≤ n ≤ 60, though the computations heavily increase in di�culty for n > 60.

5.8.3 Rational functions Qn(z)

This program computes Qn(z) =q[n] and the values

Q′n(−1) =beta[n] for 0 ≤ n ≤ 50.

> restart;

>q[0]:=-1/(2*z);

>N:=50:

>q[1]:=simplify(1/2*unapply(q[0],z)(-1)*(1-1/z^2)):

> for n from 1 to N do

> q[n]:=1/2*simplify(

> add(unapply(diff(q[n-j-1],z$j),z)(-1)/j!*(z^(j)-1/z^(j+2)),j=1..n-1)+

> unapply(q[n-1],z)(-1)*(1-1/z^2)

> ):

end do:

> for w from 0 to N do beta[w]:=unapply(diff(q[w],z$1),z)(-1) end do;

5.8.4 Summatory function of the Calkin-Wilf tree

In this thesis we were interested in the properties of the nth generation of the Calkin-

Wilf tree (1.2) as a whole, without taking into account the order of rationals in this

generation. Let xi, i ≥ 1, be the sequence of rational numbers in this tree, read
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line-by-line. In this appendix our main interest is a summatory function

S(N) =
N∑
n=1

xn.

Since M1 = 3
2 , this implies S(2N − 1) ∼ 3

2 · 2
N . Moreover, as was proved by Reznick

[59], one has a stronger result:

S(N) =
3
2
·N +O((logN)2).

As a matter of fact, since x2N−1 = N , there does not exist a continuous approximation

to S(N) − 3
2N . Figure 5.8 shows the point-plot of the set {N,S(N) − 3

2N} for 1 ≤
N ≤ 216. Due to this reason, our main object of future investigation will be the

Figure 5.8: S(N)− 3
2N, 1 ≤ N ≤ 216.

\smoothed" version of S(N). Therefore, let us introduce

S (N) =
N∑
n=1

(N − n+ 1) · xn.

Using Abel summation formula we immediately obtain the �rst asymptotic term:

S (N) ∼ 3
4 · N

2. To extract other terms, we use numerical calculations. We take

N = 224. Denote
(
S (2N ) − 3

4N
2
)

= R(N). In fact, these calculations reveal that

there exists constants A and B such that there exists a �nite positive limit

lim
N→∞

2−ANN−BR(N).

Let us try to interpolate. For example, our aim to �nd c, α and β, such that R(2N ) =
c · αN · Nβ is an equality for N = 22, 23 and 24. This gives α = 2.000541765...,
β = 1.518618751..., c = −0.2932455601... Based on these calculations, it ought to be

deduced that indeed α = 2 (this is one would anticipate). The following Figure 5.9

gives the point-plot of the set

{log2(N),
(
R(N) + 0.27639833 ·N · (log2(N))1.5409112498

)
N−1}, 26 ≤ N ≤ 216

This lead to the following
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Figure 5.9:
(
R(N)− cN(log2N)B

)
N−1, 26 ≤ N ≤ 216.

Prediction 5.24. There exists constants c < 0, B > 0 and a continuous 1−periodic
function Ψ(x), such that

S (N) =
3
4
N2 + cN(log2N)B +N ·Ψ(log2N) + o(N).

Moreover, the function Ψ(x) is nowhere di�erentiable, it possesses fractal structure
(the point x = log2

3
2 divides it in \quasi-similar" parts), and the points log2

`
2T
, ` is

odd integer, 2T < ` < 2T+1, serve as local extrema.

As could be expected, this prediction is void for the function S(N). Though it

certainly gives the following

S(N) = S (N)−S (N − 1) =

=
3
2
N + c(log2N)B + d(log2N)B−1 +NΨ(log2 x)

∣∣∣N
N−1

+ o(N) =
3
2
N + o(N).

Thus, all \interesting" terms are devoured by a mysterious 
uctuation o(N).

If this prediction is true, the picture we would obtain is completely analogous

to the results known for q−ary expansion digit summatory function (Delange), and

arbitrary q−multiplicative function (Grabner). We hope to prove this prediction in

the future.



The list of publications

Four publications, which are the basis of the current thesis, are given in the bibliog-

raphy. Here we list the rest of them.

• A generalization of the R�odseth-Gupta theorem on binary partitions, Lith.

Math. J. 43 (2) (2003), 103-110.

• Dirichlet series associated with strongly q−multiplicative functions, Ramanu-

jan J. 8 (1) (2004), 13-21.

• Prime and composite numbers as integer parts of powers (with A. Dubickas),

Acta Math. Hungar. 105 (3) (2004), 249-256.

• Functional equation related to quadratic and norm forms, Lith. Math. J. 45

(2) (2005), 123-141.

• A curious proof of Fermat's little theorem, Amer. Math. Monthly (to appear).
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