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Abstract
The molecular shape of any nonlinear molecule can be strongly in�uenced by thecoupling between electrons and vibrations (vibronic coupling) via the Jahn-Teller(JT) interaction within the molecule. This in�uence appears as a distortion ofthe symmetrical shape of the original molecule. In such molecules, the adiabaticpotential energy surface (APES) possesses either a trough of minimum-energypoints or several isoenergetic minima (`wells') depending on the nature of theinteractions present.In the case when coupling is in�nite, the wells are very deep and the system willbe locked into one of these distorted states. The vibronic states associated withthese wells are good eigenstates of the system in this limiting static case. However,real molecules have �nite coupling, so the system can migrate from one well toanother in a process that is often referred to as the dynamic JT e�ect. If the wellsare deep, then the motion must involve quantum mechanical tunnelling. Generally,the motion between wells gives the illusion that the molecule has rotated and thistype of motion is referred to as pseudorotation. The eigenstates of the generalsystem can then be approximated by symmetry-adapted states (SAS) which area linear combination of the states associated with the wells.In this thesis, we focus on studying the dynamical nature of the JT e�ect throughinvestigating the pseudorotation mechanism in di�erent systems using a simplemethod employing the time-evolution operator. This allows us to obtain analyti-cal expressions for the probabilities that a system that starts o� localised in oneinitial well, may become localised in another well at some later time. These expres-sions are plotted versus time to show the pseudorotation regime and a comparisonbetween di�erent cases of pseudorotation in di�erent molecules is made.Determination of the rates of pseudorotation leads to a better knowledge ofthe strength and nature of the vibronic coupling in the system and is a quantityii



that is, in principle, experimentally measurable. Also, more information aboutthe tunnelling splitting between the SASs can be gained from this study.
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Chapter 1
Introduction

The Jahn-Teller (JT) e�ect is of fundamental importance in many areas of physicsand chemistry and continues to be of great interest to researchers around the world.This interest extends to both experimental and theoretical aspects of the theory.The main target of the work presented in this thesis is a study of the dynamical JTe�ects in di�erent ions derived from the icosahedral molecule C60. This moleculehas a simple but beautiful structure, as shown in Fig. 1.1, which endows it with asymmetry that is not often found in Nature. This high symmetry makes it highlysusceptible to e�ects derived from electron-vibration interaction as exempli�ed bythe JT e�ect. This symmetry will be discussed in some detail in this thesis.

Figure 1.1: The fullerene C60 molecule.One of the characteristic features of the JT e�ect is that the electron-vibrationinteraction lowers the symmetry of the molecule involved. If the interaction isvery strong, we can therefore expect the icosahedral cage to become permanently1



Chapter 1: Introductiondistorted. This is the situation usually described as a static JT interaction. If theinteraction is more moderate, then the e�ect is referred to as being dynamic. Thereason for this motion is easy to understand. The high symmetry of the moleculemeans that there will be several equivalent ways in which the molecule coulddistort in order to lower the total energy. Obviously, a certain amount of energyis required in order for the system to change from one preferred con�guration toanother. In real molecules, these barriers are �nite and so conversion between thedi�erent distorted forms is permissible. In fact, the nuclear motion which resultsfrom this dynamic picture is unique. In this thesis, we shall generally refer to thismotion as pseudorotation. A more detailed description of pseudorotation is givenin Chapter 3.The uniqueness of pseudorotation means that if such motion is observed, thenwe have a clear indication that the system under observation is susceptible toa dynamic JT e�ect. In fact, the rate at which pseudorotation occurs must, insome way, be related to the strength of the electron-vibration coupling within theobserved system. One of the aims of this thesis is to determine exactly how thepseudorotation depends on the underlying coupling. A number of systems will bestudied, mostly related to C60 because of its current high interest.To date, there have been no direct observations of pseudorotation in any systemderived from C60. However, modern experimental techniques are capable of oper-ation on a femtosecond timescale or faster. On these timescales, the movement ofthe nuclei associated with pseudorotation is frozen. Therefore, by making use ofappropriate ultrafast techniques we can hope that pseudorotation in the fullereneswill soon be observed. The purpose of this work is to put in place the relevanttheory so that observation of pseudorotation in these systems can be used to inferthe strength of the coupling present. An idea of how fast these rates will be canbe gained from similar experiments performed on the neutral C60. Using picosec-ond lasers, Rubtsov et al. [1] used a transient grating technique to determine therotational reorientation rates of C60 in several solvents. The rotation times rangedfrom 3.5±1.5ps (in decalin) to 13±2ps (in o-xylene). Intuitively, we would expectpseudorotation to be faster than these rates and, therefore, measurable providedexperiments on a femtosecond timescale are used. Suggestions for the types of ex-periments that could yield the relevant pseudorotation rates have been proposed[2]. It is hoped that such experiments will soon provide the data required. Using2



Chapter 1: Introductionthe theory and results developed here, we therefore hope to be able to interpretthe observed rates in order to derive an improved estimate of the strength andnature of the electron-vibration coupling in some very important ions.In Chapter 2 we present a useful discussion of some of the theoretical toolsused throughout the thesis. A brief resumé of the theory of the JT e�ect ispresented and the general form of the interaction Hamiltonian is derived. Themethods that will be used to solve such Hamiltonians are discussed. In particular,details are provided of the unitary shift transformation which is used to helpisolate the lowest manifold of the adiabatic potential energy surface (APES). Thisprocedure, which is based on a second-quantisation technique as developed byBates et al. [3], produces a displacement in the nuclear coordinates. Minimisationof the energy with respect to the displacement is achieved using the method ofÖpik and Pryce [4]. This allows minima and other extremal points on the APESto be found. Projection operator techniques are also discussed and later used to�nd the eigenstates for the dynamical motion of our systems. As most of the workcontained within this thesis relates to icosahedral systems, a discussion of thissymmetry is also provided.The technique which will be used to study the dynamical behaviour for di�erentJT systems is introduced in detail in Chapter 3. The method employs the time-evolution operator to investigate pseudorotation between the available minimaproduced by the JT e�ect. It allows us to derive analytical expressions for therate of pseudorotation as a function of the vibronic coupling parameters. As anillustration of the method, a discussion is given of the application of the techniqueto the T ⊗ h JT problem which is relevant to the C−
60 anion.As the icosahedral systems tend to be quite complex and not easy to visualise,a treatment of the more familiar, and less complicated, T ⊗ (e ⊕ t2) JT problemis given in Chapter 4. The problem of pseudorotation in this cubic symmetry isdiscussed as an introduction to the general behaviour to be expected in the studyof the more advanced systems. This problem has been studied over a very longperiod of time [5, 6], and the low dimensionality of it facilitates interpretation ofthe results using simple graphical methods.Some work has already been published on pseudorotation in the C−

60 anion [2].A natural extension of this work is to consider the case of the doubly-charged C2−
60dianion. Therefore, in Chapter 5, a p2 ⊗ h JT Hamiltonian is developed to model3



Chapter 1: Introductionthis ion which includes second order electron-vibration interactions. This is the�rst time that this system has been considered at this level of sophistication andwe use the results to discuss the pseudorotation to be expected in this ion. Forthis system, the complication that arises due to the presence of two electrons willbe avoided by ignoring the term splitting through the study that appears fromthe electron repulsion. Overall, at this level of approximation, it is found that theAPES contains minima of either D5d or D3d symmetry. The expressions for theenergies are derived for these minima and the linear combinations of the statesare formulated for the ion at intermediate coupling strengths. Pseudorotation isthen considered.A further investigation of the system when the repulsion between the two elec-trons is included will be presented in Chapter 6. This is done by including theHamiltonian that represents the splitting between the resultant electronic terms
1Hg and 1Ag. The strength of the Coulomb interaction is not well known and soa new variable has to be included in the theory in order to obtain an analyticalexpressions of the energies for the di�erent states.In Chapters 7 and 8, our attention moves to the cations of C60. These are impor-tant because it is calculated that the vibronic coupling in these ions is larger thanin the anions [7]. Thus, it may be easier to detect pseudorotation in these systemscompared to their negatively doped counterparts, although they are di�cult toobtain experimentally. Both C+

60 and C2+
60 are investigated. Each cation showsdi�erent tunnelling behaviour depending on the distorted symmetry involved. C+

60distorts to either pentagonal, D5d, or trigonal, D3d, symmetry, while the C2+
60 dis-torts to either D3d, D5d, D2h or C2h symmetries. A study of the pseudorotationbetween these more exotically distorted minima is then carried out for the casewhere C2+

60 undergoes distortion to D2h symmetry.Finally, in Chapter 9, general conclusions are drawn and a summary of the mainresults of the thesis are given.

4



Chapter 2
Background theory

The JT e�ect was explained for the �rst time in the spring of 1936 by H. Jahnand E. Teller at the Washington meeting of the American Physical Society. Thebackground to this theoretical announcement started two years earlier following adiscussion between Teller and Landau concerning the degenerate electronic statesin linear molecules such as CO2. The Landau hypothesis was that a molecule withorbitally degenerate electronic states would be unstable with respect to symmetry-lowering distortions of its nuclear con�guration. Relying on a PhD thesis of Teller'sstudent (R. Renner) which dealt with linear triatomic molecules, Teller was ableto convince Landau that linear molecules were an exception to this general sup-position. In the following year, Teller met Jahn in London and together theydemonstrated that linear molecules were the only exception to this theory forthe case of orbital degeneracy. The other exception is Kramer's degeneracy forspin doublets, which cannot be removed through any nuclear displacement butwill split under an external magnetic �eld. They �nally formulated their theoremwhich formally states: �for any non-linear molecular system in a degenerate elec-tronic state a distortion will occur so as to lower the symmetry and remove thedegeneracy and lower the energy� [8]. One of the most important consequencesof this is that the perfect geometry of the molecule can no longer exist, since thedistorted molecule is the energetically preferred structure.Later, in 1939, a paper was written by J. Van Vleck devoted to the JT e�ect [9].It presented the interaction between a 2-fold degenerate electronic term E and2-fold degenerate e vibrations. This so-called E ⊗ e interaction was explored forthe �rst time and it showed that the adiabatic potential energy surface (APES)has the form of a Mexican hat. In this paper, Van Vleck wrote that �it is a great5



Chapter 2: Background theorymerit of the JT e�ect that it disappears when not needed.� This announcementshowed the poor understanding at that time of the observable e�ects that arise asa consequence of the JT interaction. The misunderstanding of the JT e�ect lastedfor almost two decades and this was con�rmed in 1960 when Low stated in hisbook �it is a property of the JT e�ect that whenever one tries to �nd it, it eludesmeasurements� [10].In 1950, Abragam and Pryce were the �rst to reveal the dynamical nature ofthe JT distortions by analysing the temperature dependence of the electronic spinresonance (ESR) spectra of Cu2+ compounds [11].Seven years later, Öpik and Pryce developed a method to �nd the number andkind of the minimum points or wells of the APES for the T⊗(e+t2) interaction [4].From 1957-1958, Mo�t and Thorson [12] and Longuet-Higgins et al. [13] showedthat the wave functions of a molecule exhibiting a JT interaction should be vi-bronic in nature (i.e.contain both electronic and vibrational parts that can not beseparated). In the same period, Liehr and Ballhausen were the �rst to includethe quadratic terms of vibronic interactions in the E ⊗ e interaction [14]. Theyexplored the nature of the warping of the E⊗e APES (i.e.warping of the Mexicanhat). They found three equivalent minima along the bottom of the trough whichcorrespond to the three directions of tetragonal distortions of the system. Sincethat time, a considerable number of publications have explored many di�erentkinds of JT systems.In 1961-1963, Bersuker was the �rst person to consider the splitting of the lowestvibronic energy levels due to the tunnelling of the system between the isoenergeticdistorted con�gurations [15]. Subsequently, in 1964, O'Brien treated the E ⊗ eJT problem numerically with the linear and quadratic coupling included and cal-culated the corresponding energy levels [16]. One year later, a major advance inthis �eld was achieved by Ham, when he introduced the concept of the vibronicreduction factor which allows physical properties of electronic origin to be calcu-lated without fully solving the vibronic coupling problem [17]. In 1972, Englmanpublished the �rst book which presents a full understanding of the basics of theJT theory as a whole [18].However, during these years virtually all of the research work on the JT e�ectwas directed towards cubic molecules and crystals. At that time, there was little6



Chapter 2: Background theoryinterest in icosahedral systems as only a few examples were known to exist. In1978, Khlopin et al. were the �rst to study in detail the JT e�ect in these systemsand they found solutions to various icosahedral problems [19]. Another importantwork on icosahedral systems at that time was by Pooler in 1980 who discussed theunderlying group theory and possible symmetries of the Hamiltonian [20].In 1985, the interest in icosahedral systems signi�cantly increased due to thediscovery of the Buckminsterfullerene C60 molecule by Kroto et al. [21]. Sincethen, many publications concerning JT e�ects in this molecule have been written.In fact, the high degeneracy of the electronic and vibrational states of this moleculemakes it a rich area for JT studies as the latter requires the presence of electronicdegeneracy.In 1987, Bates and Dunn developed a new technique for studying strongly cou-pled JT systems which involves making unitary shift transformations [3]. Theyapplied this method to study the T ⊗ (e + t2) JT system and the results ob-tained showed a good agreement with those previously obtained by other authors,with one extra advantage that the states produced were automatically vibronicin nature. In 1995, the same method was applied by Dunn and Bates [22] toinvestigate the more complicated T1u ⊗ hg JT system in the fullerene C−
60. Thiswas the �rst time that vibronic states and their energies were written down inan explicit algebraic form for systems of icosahedral symmetry. This method hasbeen used almost without exception in this thesis to study several JT interactionHamiltonians of interest and will be discussed in more detail in Section 2.3.1.Any molecular system subject to the JT e�ect can be described by a generalform of Hamiltonian. This Hamiltonian usually has a complicated form and can-not be solved directly. Therefore, several approximations are used in order tosimplify this Hamiltonian. Important examples include the adiabatic and har-monic approximations and these are introduced in Section 2.1. Applying theseapproximations leads to a less complicated form of Hamiltonian known as the vi-bronic (interaction) Hamiltonian from which the JT e�ect can be studied. Thisvibronic Hamiltonian can be solved using the unitary shift transformation. Newpositions of the nuclear displacements are produced as a result of this transfor-mation. In order to locate these positions in the nuclear frame and to �nd thecorresponding states, a very useful method �rst used by Öpik and Pryce will beused. This method is discussed fully in Section 2.3.2. Projection operator tech-7



Chapter 2: Background theoryniques and the concept of symmetry-adapted states (SASs) for the system willbe introduced together with a discussion of their usefulness and application inSection 2.3.3.2.1 The adiabatic approximationFor an isolated molecule, the vibrational motion of the atoms can be resolved intofundamental vibrational motions for the entire molecule, called normal modes ofvibration. The normal coordinate Q represents the progress of the normal modeso that it can be followed. The Hamiltonian for such a molecule is of the form
Ĥ(r,Q) = T̂el(r) + T̂N(Q) + Û(r,Q), (2.1.1)where

Û(r,Q) = V̂el(r,Q0) + V̂N(Q) + V̂ (r,Q), (2.1.2)and where r and Q represent the electronic and the normal coordinates respec-tively. The term T̂el(r) represents the kinetic energy of the electrons, T̂N(Q) is thekinetic energy of the nuclei, while Û(r,Q) includes the electronic V̂el(r,Q0) andnuclear V̂N (Q) potential energies. V̂ (r,Q) represents the electron-nuclei interac-tion. This is the term which concerns us most in this thesis. The correspondingSchrödinger equation to the above Hamiltonian is very di�cult to solve due tothe complexity of its terms. Therefore, it is necessary to introduce some ap-proximations to solve it. One of these approximations is known as the adiabaticapproximation due to Born and Huang [23]. Under this approximation, the nu-clear motion is assumed to be slow compared to the electronic motion, becausethe nuclei are much heavier than the electrons and can therefore be expected tomove slowly. This assumption allows the electronic Schrödinger equation to besolved �rst for the case of static nuclei, whilst regarding the nuclear kinetic energy
T̂N(Q) as a small perturbation. The total Hamiltonian in Eq. (2.1.1) can thereforewritten as

H(r,Q) = [T̂el(r) + V̂el(r,Q0)] + {V̂N(Q) + V̂ (r,Q)}. (2.1.3)The terms in the square brackets [ ] describe the electronic motion of the staticnuclei, while the curly brackets {} describe the coupling between the electronicmotion and the nuclear vibrations. It should be noted here that the coordinates8



Chapter 2: Background theory
Q0 represents the undistorted high symmetry con�guration of the molecule orion, while Q represents the coordinates of the distorted con�guration. Thus theelectronic Schrödinger equation can be written as

[T̂el(r) + V̂el(r,Q0)]uΓi
(r,Q0) = E0Γ(Q0)uΓi

(r,Q0), (2.1.4)where uΓi
(r,Q0) are the electronic eigenvectors which provide an electronic basisfor a matrix representation of the Hamiltonian (2.1.3), E0Γ are the correspondingeigenvalues and Γi indexes the set of wave functions. Here, Γ identi�es an electronicirrep and i the component of the irrep.From perturbation theory, corrections to the electronic energies E0Γ(Q0) can bemade, if the distortion in the nuclear framework and the coupling between thenormal modes and the electrons is dealt with as a perturbation. Therefore, thevibronic coupling can be studied by solving the energy perturbation equation

{V̂N(Q) + V̂ (r,Q)}uΓi
(r,Q) = EΓi

(Q)uΓi
(r,Q). (2.1.5)This equation enables us to determine the energy corrections due to the nucleardistortions and the vibronic coupling. The vibronic interaction removes the elec-tronic degeneracy and therefore it is convenient to write the uΓi

(r,Q) in the formof the expansion uΓi
(r,Q) =

∑

i

ci(Q)uΓi
(r,Q0). (2.1.6)The states uΓi

(r,Q) are called static JT eigenvectors or adiabatic eigenvectors. Theenergy eigenvalues EΓi
(Q) are the APESs which contain several stationary pointssuch as maxima, minima and saddle points. It is assumed that these APESs arewell separated and mixing between them can be ignored when the vibronic couplingis considered [23, 5]. In this case the vibronic states may be approximated to asimple product of states

ΨΓi
(r,Q) = ψΓi

(Q)uΓi
(r,Q), (2.1.7)where ψΓi

(Q) describes the nuclear motion of the molecule and the electronicstate uΓi
(r,Q) of the molecule is the associated states with the APES de�nedby EΓi

(Q). The approximation which led to this equation is called the adiabaticBorn-Oppenheimer approximation [24]. 9



Chapter 2: Background theory2.2 The vibronic HamiltonianA further approximation called the harmonic approximation can now be made tosimplify the above Hamiltonian in Eq. (2.1.5) in order to �nd a simple form forthe vibronic Hamiltonian. This can be done by assuming that the amplitudes ofthe nuclear vibrations are small compared with the inter-nuclear separation. Thisallows the potential V̂ (r,Q) in Eq. (2.1.5) to be expanded as a Taylor series aboutthe equilibrium con�guration Q0 in the form:
V̂ (r,Q) = V̂ (r,Q0) +

∑

i





(

∂V̂ (r,Q)

∂Qi

)

Q0

(Qi −Q0i)



 (2.2.1)
+

1

2

∑

ij





(

∂2V̂ (r,Q)

∂Qi∂Qj

)

Q0

(Qi −Q0i)(Qj −Q0j)



+ . . .Here, V̂ (r,Q0) represents the electrostatic potential energy experienced by the ac-tive electron with the nuclei �xed at Q = Q0 and the sums over i and j are over allthe nuclei in the molecule. It is too complicated to deal with the expansion in theabove equation for real molecules because the sums over the many nuclei becomelarge. Therefore, it is necessary to use a coordinates system that represent thewhole movement of the framework of the nuclei in the molecule which transformaccording to the irrep of the point group of the problem. These coordinates arecalled the collective symmetrized coordinates QΓγ which will replace the coordi-nate system used above. Thus, each of the QΓγ represents a net displacement ofall the nuclei, and transform as the component γ of the irrep Γ of the molecule'spoint group.In terms of these coordinates, Eq. (2.2.1) can be rewritten as
V̂ (r,Q) = V̂ (r,Q0) +

∑

Γγ





(

∂V̂ (r,Q)

∂QΓγ

)

Q0

QΓγ



 (2.2.2)
+

1

2

∑

Γiγi

∑

Γjγj





(

∂2V̂ (r,Q)

∂QΓiγi
∂QΓjγj

)

Q0

QΓiγi
QΓjγj



+ . . .or
V̂ (r,Q) = V̂ (r,Q0) +

∑

Γγ

V̂Γγ(r,Q)QΓγ +
1

2

∑

Γiγi

∑

Γjγj

ŴΓiγi,Γjγj
(r,Q)QΓiγi

QΓjγj
.(2.2.3)10



Chapter 2: Background theory
V̂Γγ(r,Q) and ŴΓiγi,Γjγj

(r,Q) are called the linear and quadratic coupling constantsrespectively.This equation can be further simpli�ed by expressing the terms ŴΓiγi,Γjγj
(r,Q)and QΓiγi

QΓjγj
in tensor forms

{Ŵ (Γi ⊗ Γj)}Γγ =
∑

γi

∑

γj

[

ŴΓiγi,Γjγj
(r,Q)〈Γiγi Γjγj|Γγ〉

] (2.2.4)and
{Q(Γi ⊗ Γj)}Γγ =

∑

γi

∑

γj

[

QΓiγi
QΓjγj

〈Γiγi Γjγj|Γγ〉
]

. (2.2.5)Therefore, the vibronic potential Eq. (2.2.3) can be rewritten in the form
V̂ (r,Q) = V̂ (r,Q0) +

∑

Γγ

V̂Γγ(r,Q)QΓγ (2.2.6)
+

1

2

∑

Γγ

∑

ΓiΓj

{Ŵ (Γi ⊗ Γj)}Γγ{Q(Γi ⊗ Γj)}Γγ.The �rst term in this equation is the potential energy of the electron as mentionedbefore in Eq. (2.1.2). Substituting the above potential into Eq. (2.1.2) and theninto the Hamiltonian Eq. (2.1.1) gives
Ĥ(r,Q) = Ĥe(r,Q0) + Ĥv(r,Q), (2.2.7)where the electronic Hamiltonian is given by
Ĥe(r,Q0) = T̂el(r) + V̂ (r,Q0), (2.2.8)and the vibronic Hamiltonian as

Ĥv(r,Q) =
∑

Γγ

V̂Γγ(r,Q)QΓγ (2.2.9)
+

1

2

∑

Γγ

∑

ΓiΓj

{Ŵ (Γi ⊗ Γj)}Γγ{Q(Γi ⊗ Γj)}Γγ .2.2.1 Basis wave functionsIn order to study the JT interaction, we shall use the matrix representation formof the JT Hamiltonian. As shown above, several assumptions have been madeto simplify the molecular Hamiltonian in order to derive a general form of thevibronic Hamiltonian from which the JT e�ect can be studied. Now, the vibronic11



Chapter 2: Background theoryHamiltonian in Eq.(2.2.9) can be expressed as a matrix representation by placingit between the electronic states uΓi
(r,Q0) which form the basis for the matrix.This is written as

〈uΓi
|Ĥv|uΓj

〉 =
∑

Γγ

〈uΓi
|V̂Γγ(r,Q)|uΓj

〉QΓγ (2.2.10)
+

1

2

∑

Γγ

∑

ΓiΓj

〈uΓi
|Ŵ (Γi ⊗ Γj)Γγ|uΓj

〉Q(Γi ⊗ Γj)Γγ .This matrix element can be simpli�ed further if we exclude the term for the totallysymmetric A mode. The A term which is linear in QΓγ causes an energy shift toall the electronic levels and can therefore be ignored by rede�ning the zero ofenergy. The other term which is quadratic in QΓγ is equal to the elastic energyof the nuclei 1
2

∑

Γγ µω
2
ΓQ

2
Γγ , where µ and ω are the reduced mass of the nucleiand the frequency of vibrations respectively. The elastic energy can be added tothe kinetic energy of the nuclei 1

2

∑

Γγ
1
µ
P 2

Γγ to form the Hamiltonian for a set ofsimple Harmonic oscillators
HSHO =

1

2

∑

Γγ

(

1

µ
P 2

Γγ + µω2
ΓQ

2
Γγ

)

, (2.2.11)where PΓγ is the linear momentum of the nuclei.The Wigner-Eckart theorem [25] can be applied to Eq. (2.2.10) so that thematrix elements on the right can be written as
〈uΓi
|V̂Γγ(r,Q)|uΓj

〉 = 〈uΓ||V̂Γ(r)||uΓ〉 〈ΓγuΓi
|uΓj
〉 (2.2.12)

〈uΓi
|Ŵ (Γi ⊗ Γj)Γγ|uΓj

〉 = 〈uΓ||Ŵ (Γi ⊗ Γj)Γ||uΓ〉 〈ΓγuΓi
|uΓj
〉.The 〈uΓ||V̂Γ(r)||uΓ〉 and 〈uΓ||Ŵ (Γi⊗Γj)Γ〉 are called the reduced matrix elementsor respectively the linear and quadratic vibronic coupling coe�cients. They mea-sure the strength of the electron-phonon coupling in both the linear and quadraticinteraction and for simplicity they will be denoted by VΓγ and W ΓiΓj

Γ .Now, the interaction Hamiltonian Eq. (2.2.10) can be rewritten in matrix formas
〈uΓi
|Ĥv|uΓj

〉 =
1

2

∑

Γγ

(

1

µ
P 2

Γγ + µω2
ΓQ

2
Γγ

)

I (2.2.13)
+

∑

Γγ 6=A

VΓγQΓγ〈ΓγuΓi
|uΓj
〉

+
1

2

∑

Γγ 6=A

∑

ΓiΓj

W
ΓiΓj

Γ Q(Γi ⊗ Γj)Γγ〈ΓγuΓi
|uΓj
〉.12



Chapter 2: Background theorywhere I is the identity matrix. This is called the vibronic Hamiltonian in whichthe �rst term describes a set of simple harmonic oscillators. The second termrepresents the linear coupling between the electrons and phonons whilst the thirdterm represents the quadratic coupling. The 〈ΓγuΓj
|uΓi
〉 terms are called theClebsch-Gordon (CG) coe�cients [26, 27]. These coe�cients can be arranged intosquare matrices of dimension [Γ× Γ].The terms in the above Hamiltonian can be de�ned as

Hvib =
1

2

∑

Γγ

(

1

µ
P 2

Γγ + µω2
ΓQ

2
Γγ

)

I, (2.2.14)
Hint =

∑

Γγ 6=A

VΓγQΓγ〈ΓγuΓi
|uΓj
〉,

Hquad =
1

2

∑

Γγ 6=A

∑

ΓiΓj

W
ΓiΓj

Γ Q(Γi ⊗ Γj)Γγ〈ΓγuΓi
|uΓj
〉.Thus, a general form of the total vibronic Hamiltonian may be expressed as

Htot = Hvib +Hint +Hquad (2.2.15)The above form of the Hamiltonian is the one which can apply to any JT system.The linear interaction Hamiltonian for the T1u ⊗ hg JT system will be taken hereas an example of how to construct such a Hamiltonian. Let us start with thesecond term in Eq. 2.2.14, this term can be expanded as
Hint = V1Qθ









〈T1xhθ|T1x〉 〈T1xhθ|T1y〉 〈T1xhθ|T1z〉
〈T1yhθ|T1x〉 〈T1yhθ|T1y〉 〈T1yhθ|T1z〉
〈T1zhθ|T1x〉 〈T1zhθ|T1y〉 〈T1zhθ|T1z〉









+ . . . , (2.2.16)where T1α represents the α component of the T electronic states which forms thebases for the matrix representation, hθ is the θ component of the h vibrationalmode and 〈T1xhθ|T1x〉 is a CG coe�cient which are given in Ref. [27]. The ellipsisrepresents equivalent terms for the other components of {hθ, hε, h4, h5, h6}. Con-structing the interaction Hamiltonian is straightforward now but care should betaken when using the tables in Ref. [27] to obtain CG coe�cients. Substitutingthe CG coe�cients, this Hamiltonian becomes
Hint =

1

2

√

3

5
V1Qθ









φ−1 0 0

0 −φ 0

0 0 1









+ . . . , (2.2.17)13



Chapter 2: Background theorywhere φ = 1
2
(
√

5 + 1) is the golden mean.Summing all the components, the linear interaction Hamiltonian for this systemhas the form [22],
Hint =

√
3

2
√

5
V1









φ−1Qθ + φ2Qε√
3

√
2Q6

√
2Q5√

2Q6 −φQθ − φ−2Qε√
3

√
2Q6

√
2Q5

√
2Q4 Qθ −

√

5
3
Qε









. (2.2.18)Further details on the construction of such matrices can be found in Refs. [28]and [29].2.2.2 The adiabatic potential energy surface (APES)Assuming that the above vibronic Hamiltonian may be diagonalized, as mentionedearlier, a set of APESs will be generated. If the coupling is strong, the energydi�erence between the APESs will be much greater than the vibrational energy ~ω.Therefore, it is assumed that the nuclear motion is con�ned to the lowest APES(LAPES). An analysis of this LAPES shows that, when only linear coupling termsare included, there will be either a continuous equal energy surface (trough) or aset of distinct minima (wells). If the quadratic coupling terms are included, thenfor the case when the energy surface is a trough, the surface of the trough willwarp to give local minima (for example, this happens in the E ⊗ e system). Inthe case of wells, the depth of the wells and their separation from each other willbe modi�ed with no change in the behaviour of the system. The work presentedin this thesis assumes the case when the LAPES shows distinct minima throughlinear or quadratic coupling.Up to this point, the wave functions for each case are speci�ed according tothe strengths of the coupling. In in�nite coupling where the wells are in�nitelydeep, the JT system is localised in one of the wells and therefore the eigenstatesfor the system will be the associated well states, and this what is called a staticJT system.For �nite coupling strengths, when the height of the barriers between the wellsis �nite, the system will be able to tunnel from one well to another and thereforethe correct eigenstates will be the symmetry-adapted states which are linear com-binations of the well states. The tunnelling between wells of the system is known14



Chapter 2: Background theoryas the dynamical JT e�ect.2.3 Computational methodsThis section presents some techniques that will be used to treat JT problems inthe case when the APES has the form of distinct minima.2.3.1 The unitary shift transformationThe interaction Hamiltonian (2.2.13) is still very di�cult to diagonalize within theelectronic basis in order to �nd the well positions (or minima) on the LAPES andthe associated states. The di�culty arises because the vibronic Hamiltonian stillincludes both electronic and vibrational terms. An e�cient method to deal withthis problem is to use a unitary shift transformation. This method was introducedby Bates and Dunn [3] and involves applying a transformation operator to theHamiltonian in order to displace, or shift, each of the nuclear coordinates Qj topoints Qj−αj~, where the αj specify the positions of the wells on the APES. Theunitary shift operator is de�ned as
U = exp

[

i
∑

j

αjPj

]

, (2.3.1)where Pj is the momentum operator conjugate to Qj . These are expressed interms of creation and annihilation operators b†j and bj , respectively, as follows
Pj = −i~ ∂

∂Qj
= i√~µω

2

(

bj − b†j
) (2.3.2)

Qj = −
√

~

2µω

(

bj + b†j

) (2.3.3)where bj and b†j act on the states in the following way
b |n〉 =

√
n |n− 1〉 , (2.3.4)

b† |n〉 =
√
n + 1 |n+ 1〉 . (2.3.5)
15



Chapter 2: Background theoryThe general form of the Schrödinger equation for the system is written as the totalHamiltonian operating on the untransformed vibronic state as
Htot|Ψ′〉 = E|Ψ′〉 (2.3.6)

U †Htot|Ψ′〉 = E U †|Ψ′〉
U †HtotU U †|Ψ′〉 = E U †|Ψ′〉or

H̃|Ψ〉 = E |Ψ〉 (2.3.7)where a tilde indicates the transformed Hamiltonian H̃ = U †HtotU and |Ψ〉 =

U †|Ψ′〉. The untransformed eigenfunctions are therefore
|Ψ′〉 = U |Ψ〉. (2.3.8)The advantage of acting by the shift operator is that, the full vibronic HamiltonianEq. (2.2.15) may be split into two terms as

H̃ = U †HtotU = H̃1 + H̃2, (2.3.9)The H̃1 term contains only values of αj while H̃2 contains all the other termsrelated to Qj and Pj . As our aim is to determine the ground states of the systemin strong coupling, only the H̃1 term needs to be considered. At this stage, weignore the H̃2 terms.The shift transformation is accomplished as follow
H̃ = U †HtotU

= U †[Htot, U ] + U †UHtot

= U †[Hvib, U ] + U †[Hint, U ] + U †[Hquad, U ] +Htot (2.3.10)Simplifying this Hamiltonian can be achieved readily with the help of the followingcommutators
[Qj, Pk] = i~δjk,
[Qj , U ] = −~αjU,

[QjQk, U ] = U~ (~αjαk − αjQk − αkQj)

= −~ (~αjαk + αjQk + αkQj)U, (2.3.11)which can be easily veri�ed by direct calculation. We are only interested in �nding
H̃1 and so anything still involving phonon operators can be dropped because they16



Chapter 2: Background theorywill belong to H̃2. For example, the �rst term in Eq. 2.3.10 can be written, usingEq. (2.3.11), as
U †[Hvib, U ] =

1

2
U †
∑

j

(

1
µ
[P 2

j , U ] + µω2[Q2
j , U ]

)

=
1

2
~µω2

∑

j

(

~α2
j − 2αjQj

)

. (2.3.12)Therefore, it will contribute 1
2
~

2µω2
∑

j α
2
j to H̃1 and −~µω2

∑

j αjQj to H̃2.Having obtained H̃1, the values of αj required to minimise the energy (and theirassociated eigenfunctions) can be determined by using the minimisation proceduredeveloped by Öpik and Pryce, which will be discussed in the following section.2.3.2 The method of Öpik and PryceThis method is concerned with identifying the positions of the stationary pointson the APES. According to the approximations discussed previously, we haveproduced a Hamiltonian H̃1(αj) that contains only values of αj and satis�es theSchrödinger equation
H̃1(αj)|Ψ(r)〉 = E|Ψ(r)〉, (2.3.13)where Ψ(r) is the eigenvector (assumed normalised so that 〈Ψ(r)|Ψ(r)〉 = 1) whichcan be described by ci parameters that represents the direction cosines betweenthe eigenvector Ψ(r) and the main components of the electronic basis. The energyof the system is given by the expectation value of H̃1(αj) within the electroniceigenvector Ψ(r) as
E = 〈Ψ(r)|H̃1(αj)|Ψ(r)〉. (2.3.14)Following the method of Öpik and Pryce [4], we minimize this expression for theenergy with respect to the values of αj by setting

∂E

∂αj
= 0 (2.3.15)
=

∂

∂αj

(

〈Ψ(r)|H̃1(αj)|Ψ(r)〉
)

= 〈Ψ(r)|∂H̃1(αj)

∂αj
|Ψ(r)〉,A set of equations for αj the positions on the APES in terms of ci may be found.These steps are analogous to those accomplished by Ceulemans and Fowler in17



Chapter 2: Background theoryRef. [30]. Substituting these αs back into Eq. (2.3.14) gives an expression whichis a function of ci only namely
E = 〈Ψ(r)|H̃1(ci)|Ψ(r)〉. (2.3.16)By minimising this expression with respect to these parameters as

∂E

∂ci = 0 (2.3.17)
=

∂

∂ci (〈Ψ(r)|H̃1(ci)|Ψ(r)〉
)

= 〈Ψ(r)|∂H̃1(ci)
∂ci |Ψ(r)〉,the electronic coe�cients can be found and therefore the transformed electroniceigenvectors |A; 0〉 can be obtained. The values of the αjs can then be calculatedstraightforwardly by substituting the electronic coe�cients into the equations ob-tained for the αjs.The vibronic states which are the eigenstates for the interaction Hamiltonian

Htot before the shift transformation, can be found by multiplying the transformedelectronic eigenvectors |A; 0〉 by the value UA for that state namely
|A′

; 0〉 = UA|A; 0〉 = UA|A〉|0〉, (2.3.18)where |A〉 represents the transformed orbital state and |0〉 denotes that all phononmodes are in their ground states. The states like (2.3.18) are called the untrans-formed states (or Glauber states [31]) and they are automatically vibronic as theshift operators UA contain phonon operators.2.3.3 Projection operatorsIn the previous section, it has been shown how the positions of the minima inthe APES can be located by using the Öpik-Pryce method and therefore the formof the associated wave functions at the minima can be found. As mentioned inSection 2.2.2, if the system has in�nite coupling, then the system will be localisedin one of these minima and the vibronic states obtained already for the systemare good eigenstates for the static JT case. However, if the coupling strengthis �nite, then the vibronic states associated with the wells are not appropriateeigenstates for the system as a whole and the correct eigenstates will be a linear18



Chapter 2: Background theorycombination of the well states due to the tunnelling between the wells (see e.g.Refs [32] and [33]). Therefore, the projection operator technique can be used toconstruct the required combination which generates a set of symmetry adaptedstates (SASs) from a set of non-symmetrized states.The general theory of projection operators can be found in Refs. [34]-[35]. Forany point group of symmetry G with irreps Γi, the projection operators ρi
ts foreach of the irreps can be de�ned as [36]

ρi
ts =

di

g

∑

R∈G
Di

ts(R)∗R̂, (2.3.19)where g is the order of the group G, di is the dimension of the irreps Γi, R̂ is asymmetry operation of the group G and Di
ts(R)∗ is the complex conjugate of the

tsth element of the matrix representation of the symmetry operation R̂. The e�ectof the operator ρi
ts when applied to a state of unde�ned symmetry acting in aspace of group operators produces either zero or a linear combination of the basis;for the irreps Γi (e.g. Γi for the group I are A, T1, T2, G and H). In anotherwords, a complete basis set of SASs can be obtained by applying the projectionoperator for each irrep to an arbitrary function until we obtain all the requiredbasis states. For example, for the T ⊗ h problem it was found that for the caseof D5d minima, on applying the projection operator with T1ux irrep to |A′; 0〉 thestate of well A, the obtained SAS has the form

|T1ux〉 = [φ−1(|C ′; 0〉+ |D′; 0〉) + (|E ′; 0〉 − |F ′; 0〉)], (2.3.20)where |T1ux〉 is the SAS of T1ux irrep. In order to construct the projection operatorsfor a certain point group, the matrix representations of the symmetry operationsfor each irrep are required. For the C60 molecule, some of the required matricesare given in Ref. [37].To �nd the energies corresponding to the SASs, the matrix elements of the totalHamiltonianHtot between all relevant untransformed vibronic states |X ′; 0〉 shouldbe evaluated �rst. This can be done by evaluating
MX1X2

= 〈X ′
1; 0|Htot|X ′

2; 0〉. (2.3.21)The energy of the SASs follow from theseMX1X2
. Applying this to the above SAS,we can �nd that the energy of the state is

ET1u =
MCD + . . .

〈T1ux|T1ux〉
. (2.3.22)19



Chapter 2: Background theoryThe denominator here involves matrix elements of the form 〈C ′; 0|Htot|D′; 0〉,which can be simpli�ed to S〈D′|C ′〉elect. The term S refers to the phonon over-lap 〈0|U †
DUC |0〉 which can be obtained for the di�erent wells D and C using theformula

S = exp

[

−1

2

∑

i

(

C
(D)
i − C(C)

i

)2
]

, (2.3.23)where
C

(j)
i = −

√

~µω

2
α

(j)
i , (2.3.24)and j labels the components of the phonon states (e.g. for the h mode j =

{θ, ε, 4, 5, 6}). Further information about Eq.(2.3.23) can be found in Ref. [33].2.4 The icosahedral point groupSince our interest in this thesis is to study the dynamic JT systems in di�erentsystems involving C60 ions, it is very useful to start by considering the symmetrygroup to which our fundamental system belongs. This will facilitate identifyingthe electronic and vibrational states in JT systems by labelling them with the helpof group theory.The C60 molecule belongs to the icosahedral point group (Ih), which is thelargest symmetry point group allowed in three dimensional space. The moleculeitself possesses the geometry of a truncated icosahedron as shown in Fig. 2.1, withthe 60 carbon atoms located at the vertices. Twelve pentagonal faces replace thetwelve truncated vertices of the icosahedral and twenty hexagonal faces replacingthe twenty triangles. The symmetry group I of the icosahedron consists of 60rotation operations, which correspond to the rotation of the icosahedron by anangle α = 2π
n

about the various n-fold symmetry axes present. In all, there are�fteen 2-fold, ten 3-fold and six 5-fold axes of rotation. The 5-fold axes jointwo di�erent opposing vertices. The 3-fold axes join the centres of two oppositetriangles, while the 2-fold axes join the mid-points of opposite edges. The rotationangle α divides the icosahedral rotation operators into �ve classes. The class C1contains only the identity operator (E ); the classes C2 and C3 contain all rotationsabout 5-fold symmetry axes and the class C4 contains all 3-fold symmetry axesrotations, while class C5 contains the 2-fold symmetry rotations.20



Chapter 2: Background theory
Figure 2.1: The �gure on the left is the geometrical shape of a regular icosahe-dron which can be truncated to produce the C60 molecule (right).E 12C5 12C2

5 20C3 15C2 i 12S3
10 12S10 20S3 15σv

Ag +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

T1g +3 +φ 1− φ 0 −1 +3 φ 1− φ 0 −1

T2g +3 1− φ +φ 0 −1 +3 1− φ φ 0 −1

Gg +4 −1 −1 +1 0 +4 −1 −1 +1 0
Hg +5 0 0 −1 +1 +5 0 0 −1 +1

Au +1 +1 +1 +1 +1 −1 −1 −1 −1 −1

T1u +3 +φ 1− φ 0 −1 −3 −φ φ− 1 0 +1

T2u +3 1− φ +φ 0 −1 −3 φ− 1 −φ 0 +1

Gu +4 −1 −1 +1 0 −4 +1 +1 −1 0
Hu +5 0 0 −1 +1 −5 0 0 +1 −1Table 2.1: Character table for the Ih group, the golden mean φ = 1

2(1 +
√

5)..The C60 molecule also possesses inversion through its centre as a further classof symmetry operations. Interchanging any of the sixty carbon atoms with itsopposite atom by inversion leaves C60 unchanged. Thus, the inversion operator(i) (or parity operator) can be included as an additional symmetry operator forthe C60 molecule. Combining this operator with the 60 operations of the group Iproduces the full 120 element, icosahedral point group Ih with 10 classes included.The classi�cation of the classes of the full group in terms of their character isshown in Table 2.1.
21



Chapter 2: Background theory2.4.1 Irreducible representations (irreps)As mentioned above, identifying the molecule's symmetry in terms of the symme-try operations conforms with the mathematical requirements of the molecule. Inother words, using tools provided by group theory to describe and analyse someof the physical properties of such molecules is a powerful technique to facilitateunderstanding of the whole problem. The irreducible representations (irreps) ofthe point group are one of these tools. Table 2.1 shows the irreps for the icosa-hedral point group. In the �rst column on the left there are ten irreps: two withone-dimension (Ag/u), two with four-dimensions (Gg/u), two with �ve-dimensions(Hg/u) and four with three-dimensions (T1g/1u), (T2g/2u). All are subscripted ac-cording to whether the basis states of their matrix representations are even (g) orodd (u). Each of the irreps is de�ned by basis functions that transform amongthemselves. For example, the irrep T1u related to the components {px, py, pz} of
p-orbital. The complete set of basis functions is most conveniently de�ned interms of spherical harmonics wave functions. Therefore, the irreps of the group
Ih can be classi�ed in terms of spherical harmonics wave functions as shown inTable 2.2 [38]. This table tells us that each of the irreps of the group Ih can beexpressed as spherical harmonics Yl,m with speci�c angular momentum quantumnumber.It is convenient to label the electronic and vibrational states of the C60 moleculeusing the irreps of the icosahedral point group. In the following chapters, JTsystems relevant to C60 molecules and ions will be classi�ed using such irrepslabels. The electronic states will be labelled using uppercase letters, while thevibrational states will be denoted by lowercase letters. For example, the T ⊗ hsystem involves a coupling of an electronic T triplet with a set of �ve dimensional
h-type quintet vibrations.2.4.2 Electronic structure of C60Since the JT interactions in C60 ions deal with the electronic structure of themolecule, it is worthwhile reviewing the electronic structure of the isolated C60molecule. Hückel molecular orbital (HMO) theory provides a useful starting pointfor the energy levels of the undoped C60 [39], so that we can subsequently considerits anionic and cationic forms. Fig. 2.2 shows that the ground state of neutral22



Chapter 2: Background theoryl Irreps of Ih
0 Ag

1 T1u

2 Hg

3 T2u ⊕Gu

4 Gg ⊕Hg

5 T1u ⊕ T2u ⊕Hu

6 Ag ⊕ T1g ⊕Gg ⊕Hg

7 T1u ⊕ T2u ⊕Gu ⊕Hu

8 T2g ⊕Gg ⊕ 2Hg

9 T1u ⊕ T2u ⊕ 2Gu ⊕Hu

10 Ag ⊕ T1g ⊕ T2g ⊕Gg ⊕ 2Hg

11 2T1u ⊕ T2u ⊕Gu ⊕ 2Hu

12 Ag ⊕ T1g ⊕ T2g ⊕ 2Gg ⊕ 2Hg

13 T1u ⊕ 2T2u ⊕ 2Gu ⊕ 2Hu

14 T1g ⊕ T2g ⊕ 2Gg ⊕ 3Hh

15 Au ⊕ 2T1u ⊕ 2T2u ⊕ 2Gu ⊕ 2HuTable 2.2: Spherical harmonic functions Yl,m reduced to irreps of Ih. (Basedon Ref. [38] with extension to l=15).C60 possesses a closed shell electronic structure with ten electrons in an electronicquintet orbital, giving an Ag ground state. This highest occupied molecular orbital(HOMO) has the irrep of Hu in the Ih group. The C60 molecule in this form doesnot exhibit any vibronic interaction because it is non-degenerate and thereforeJT interaction is unexpected for this structure. The lowest unoccupied molecularorbital (LUMO) is an electronic triplet orbital with T1u symmetry. This is a 3-folddegenerate orbital and so it can hold up to six electrons. The JT interaction ispossible, therefore, if electrons are added (or removed) from the nuclear species.Once the isolated C60 is doped, either cations Cn+
60 or anions Cn−

60 can be formed.The cation Cn+
60 is formed when n electrons are taken from the HOMO of theneutral C60 molecule. The removal of electrons will cause vacancies to appear inthe HOMO. These vacancies or `holes' behave as positively charged particles andcan be coupled to a vibrational mode via JT interaction. The other doped form23



Chapter 2: Background theoryof C60 occurs by electron addition to form Cn−
60 anions. These are formed when nelectrons are added to the LUMO of C60 to form electron-doped molecules. Theseanions are also coupled to the vibrational modes and thus exhibit JT interactions.The electronic structure shown in Fig. 2.2 is a good starting point for the theo-retical analyses presented in this thesis. However, one should be aware of the vastliterature related to the electronic structure of C60. A good general reference isthe book by Dresselhaus et al. [40]. Speci�c works of particular interest includethe paper by Deng and Yang [41] which gives easy access to the functional formsof the molecular orbitals involved and the band structure calculations of Laouiniet al. [42] which consider the molecular orbitals in the context of the solid state.Another good paper is that by Green et al. [43] which gives the results of densityfunctional calculations of the neutral C60 molecules and its negatively chargedanions.

Figure 2.2: Hückel molecular orbital diagram for C60 showing the �rst 36 or-bitals of lower energy [44]. Only the �rst 30 are �lled in neutralC60.
24



Chapter 2: Background theory2.5 Vibronic coupling in C60For any polyatomic molecule composed of n atoms, the motion of each atom canbe resolved into components along the three directions of a Cartesian coordinatesystem. Therefore, any molecule consisting of n atoms possesses 3n degrees offreedom, including vibrations, translations, and rotations. The vibrational mo-tions of the atoms can always be resolved into fundamental vibrational motionsfor the entire molecule, called normal modes of vibration. It is well known thatany non-linear molecule has three translations and three rotations. Then the num-ber of the normal modes for the non-linear molecules is 3n minus the number ofthe non-vibrational motions (translations and rotations). Therefore, a polyatomicmolecule such as C60 possesses 3n-6 normal modes of vibrations [45].The C60 molecule has 180 degrees of freedom, this 180 minus the six modes oftranslations and rotations leaves 174 normal modes of vibrations. Group theoryclassi�es the 180 degrees of freedom as au + 5t1u + 5t2u + 6gu + 7hu + 2ag +

4t1g + 4t2g + 6gg + 8hg. There is one t1u and one t1g mode that correspond tothe translational and rotational modes. Omitting these two modes from the 180leaves 174 vibrational modes.It should be noted here that not all the above modes can couple to the electronicorbitals to form JT interactions. The modes of interest that concern us must satisfyspeci�c conditions to be JT normal modes. Suppose that we have an electronicstate within icosahedral symmetry with irrep Γ and nuclear coordinates QΛλ where
λ = 1, 2, ..., |Λ| which transform as the irrep Λ. From group theory considerationsthese coordinates which are allow to be coupled to the electronic Γ state correspondto symmetric Kronecker square [Γ ⊗ Γ]S which contains Λ in its decomposition[46]. Normal modes which satisfy this condition are called JT active modes. Forexample, if T1u is the electronic state that is involved in the coupling, the Kroneckerproduct for this irrep is given by [T1 ⊗ T1] = [A ⊕ H ]S ⊕ {T1}A. Thus, the
T1u electronic state is allowed to couple only to the 2ag and 8hg normal modes.Therefore, the JT interaction takes the form of T1u⊗ag and T1u⊗hg. Coupling tothe ag mode is always considered as a trivial coupling and usually neglected, sincethe ag mode is only a breathing mode and thus does not resolve the electronicdegeneracies but instead it has the e�ect of introducing a constant shift in theenergy levels. The coupling to 8hg modes usually reduced to a coupling to only25



Chapter 2: Background theoryone single e�ective mode. This is because it has been found that, the correctionsthat are needed to obtain a good representation of the energy levels when all theeight modes are included in the problem are quite small and do not do muchchange to the energy levels [47]. Therefore, coupling to a single e�ective mode canbe used with con�dence that will produces a good approximation of the energiesof the ground states.

26



Chapter 3
A discussion of pseudorotation inJT systems

In light of what has been mentioned previously, it should be apparent by nowthat the JT e�ect is usually treated as a dynamical problem rather than a staticone. Theoretically, this approach can be analysed by studying the tunnellingbetween equivalent distorted con�gurations by �nding the appropriate SASs. Ex-perimentally, the dynamical JT e�ect could be observed directly via observing thepseudorotation of the molecule using modern ultrafast spectroscopic techniques.Although pseudorotation phenomena in molecular systems were known [48]some time ago, the causes of this phenomena was not de�ned until recently.Berry [49] assumed that the APES can be distorted into several equivalent min-ima with small energy barriers between them and without specifying the originof these minima, the pseudorotation was observed as a transition between them.Pseudorotation can be detected using ultrafast techniques and is expected to be ina time scale of a few femtoseconds faster than the molecular rotation which itselfoccurs on a time scale of few picoseconds. To avoid confusion, distinction shouldbe made between the real rotation of the molecule and pseudorotation. The latteris an intramolecular motion in an angular direction in Q space which appears inreal space as a �uctuation travelling around the distorted geometric centre of thecluster [see Fig 3.1.(a)]. The former happens when all atoms in the molecule rotatesimultaneously around a common axis of rotation usually referred to as a properaxis [see Fig 3.1.(b)].Pseudorotation in JT systems has three possible forms depending on the shape27



Chapter 3: A discussion of pseudorotation in JT systems

Figure 3.1: (a) Pseudorotation of a distorted C60 molecule, and (b) Real ro-tation of a distorted molecule [50]. One atom is coloured white todistinguish the two motions.of the APES which, in turn, depends on the strength of the vibronic couplingand also on the order of the Q's that are involved in the coupling [52]. The �rstkind of pseudorotation is known as free-rotation. This happens when the APEShas a continuous surface of equivalent minimum points (referred to as a trough)and the system is free to rotate amongst these minima. The motion appears as arotation of the distorted nuclear framework [see the second sub-�gures in (a) and(b) of Fig 3.2]. The second type of pseudorotation is called hindered rotation. Thisoccurs when there are potential barriers between discrete minima which are smallcompared to the quanta associated with the radial vibrations. As a result, thesystem stays longer at the minima than at the maximum area of the barrier andthe motion will appear as slow changes in the distorted nuclear con�guration [seethe third sub-�gures in (a) and (b) of Fig 3.2]. The third pseudorotation form iscalled pulsating (or �uctuating) motion. This motion takes place when the heightof the potential barrier is larger than the quantum of radial vibration. In thiscase, the angular motion cannot be separated from the radial motion and thereforethe dynamical motion of the system will be described by localised vibrations inthe minima accompanied by tunnelling between them. This motion appears as28



Chapter 3: A discussion of pseudorotation in JT systems

Figure 3.2: (a) Represents the E ⊗ e system (the black spot) in the LAPESin Q space with consecutive inclusion of �rst linear (V1) and thenquadratic V2 coupling. (b) Represent the orientation of a triatomicmolecule X3 in real space. The �rst sub-�gure in (a) and (b) showsthe system when there is no coupling. The second sub-�gure in(a) shows a free rotation of the system around the bottom of thetrough whereas the second sub-�gure in (b) shows the correspond-ing distortion of the X3 molecule in real space. Each of the threeatoms moves freely along a circle of radius ρ/
√

3. The third sub-�gure in (a) represents the hindered rotation where the system islocked into one of the isoenergetic wells due to the small height ofthe potential barriers between them while the third sub-�gure in(b) shows bold points on the circles which indicate the positions ofthe wells where atoms are allowed to rest for a longer time beforemoving to another position in the real space. This �gure is takenfrom Ref. [51].
29



Chapter 3: A discussion of pseudorotation in JT systemsa periodic change in the orientation of the distorted nuclear con�guration andas a pulse travelling between the equivalent wells in the APES. The APES willhave a shape similar to that in Fig 3.2 part 3(a) but with high walls rather thanthe lower walls. This kind of motion leads to what is called tunnelling splitting,which is one of the most important observables in the JT e�ect. It has the e�ectof splitting the energy levels of the ground states. The mechanism of this e�ecthappens when there is an APES with a set of n-fold degenerate minima. Tunnellingbetween these minima reduces the n-fold degeneracy resulting in new states withsymmetries associated with the point group that the system belongs to. Forexample, consider the T1u ⊗ hg system subject to a JT interaction resulting inminima of D5d symmetry. Here there are 6 wells in the APES. It is clear thatthere are no 6-fold degenerate irreps in the icosahedral point group and thatthis degeneracy is only accidental. Tunnelling between wells will remove thisdegeneracy producing a triplet T1u and a triplet T2u.Pseudorotation in the T1u ⊗ hg JT system has been examined theoretically byHands et al. [2] using a simple technique involving the time-evolution operator.Applying this operator on a well state shows which wells the system is allowed tovisit and which ones cannot be visited during the tunnelling journey and thereforethis allows the dynamics of the pseudorotation to be followed. This theory of thetime-evolution operator will be brie�y discussed in Section 3.1. Application of thetheory to JT systems will be given in further sections. The T1u ⊗ hg JT systemis given in Section 3.3 as an example of how this theory has been applied andtherefore how has the system evolves with time.3.1 The time-evolution operatorThe theory of the time-evolution operator [53, 54] depends on the assumption thatthere is a physical system with an initial state at time t0 de�ned as |ψ(t0)〉. Howdoes this state change to |ψ(t)〉 at any later time t?The two states can be related by means of a linear operator Ut(t, t0) such that
|ψ(t)〉 = Ut(t, t0)|ψ(t0)〉 (t > t0), (3.1.1)where we infer from this equation that the operator Ut(t, t0)) is a unitary operator30



Chapter 3: A discussion of pseudorotation in JT systemsthat satis�es
Ut(t, t0)U

†
t (t, t0) = U †

t (t, t0)Ut(t, t0) = I, (3.1.2)where I is the unit operator, the operator that leaves any state unchanged. Theproblem is to �nd an expression for Ut(t, t0). To do this, we substitute Eq. (3.1.1)into the time-dependent Schrödinger equationi~∂|ψ(t)〉
∂t

= H|ψ(t)〉 (3.1.3)to get i~ ∂
∂t

(Ut(t, t0)|ψ(t0)〉) = H (Ut(t, t0)|ψ(t0)〉) , (3.1.4)or
∂Ut(t, t0)

∂t
= − i

~
HUt(t, t0). (3.1.5)The solution of this di�erential equation depends on whether or not the Hamil-tonian involves time. Generally, all the Hamiltonians in our study do not dependon time and then it can be easily seen that integration of Eq. (3.1.5) leads to

Ut(t, t0) = exp[−iH(t− t0)/~]. (3.1.6)
Ut(t, t0) is known as the time-evolution operator or propagator and it can be usedto follow the temporal evolution of a system for any given initial state.3.2 Time-evolution in JT systemsAs stated earlier, any JT system can be de�ned by a Hamiltonian that has thegeneral form of Eq. (2.2.15). Note that, it has been explained that the SASs repre-sent a good approximation to the true eigenstates of the system in the dynamicalmotion. Therefore, according to this approximation we may write

H|Γi〉 = εi|Γi〉, (3.2.1)where εi is the energy of the ith SAS and |Γi〉 is the ith SAS having the generalform
|Γi〉 =

n
∑

j=1

a
(i)
j |wj〉. (3.2.2)In Eq. (3.2.2), the a(i)

j are a set of real coe�cients appearing in front of each wellin the SAS and |wj〉 is the j th well in the LAPES. Now, from the above equation,31



Chapter 3: A discussion of pseudorotation in JT systemsit is clear that the n expressions for the symmetry-adapted states can be invertedto give expressions for the states associated with the wells as
|wi〉 =

n
∑

j=1

b
(j)
i |Γj〉 (3.2.3)where b(j)i are real coe�cients. Now, in order to study the temporal evolution ofa well state, the time-evolution operator can be applied to the well state as

Ut(t, t0)|wi〉 =

n
∑

j=1

b
(j)
i exp[−iH(t− t0)/~]|Γj〉. (3.2.4)On expanding the exponential as a power series using the identity

exp[−x] = 1− x

1!
+

(−x)2

2!
+ . . . ., (3.2.5)the right hand side of Eq. (3.2.4) is

exp[−iH(t− t0)/~]|Γj〉 = (1− iH(t− t0)
~

+
(−iH(t− t0)/~)2

2!
+ . . .)|Γj〉

= (1− iεi(t− t0)
~

+ . . .)|Γj〉, (3.2.6)where the last equality follows using Eq. (3.2.1). Thus, the temporal evolution ofa well state is given by
Ut(t, t0)|wi〉 =

n
∑

j=1

b
(j)
i exp[−iεj(t− t0)/~]|Γj〉. (3.2.7)From quantum mechanics, the probability Pif that a system initially localised ina well |wi〉 has become localised in another well |wf〉 a time t later is

Pif = |〈wf |Ut|wi〉|2. (3.2.8)Multiplying Eq. (3.2.7) by 〈wf | gives
〈wf |Ut|wi〉 =

n
∑

k=1

b
(k)
f 〈Γk|

n
∑

j=1

b
(j)
i exp[−iεjt/~] |Γj〉 (3.2.9)

=

n
∑

j=1

b
(j)
f b

(j)
i exp[−iεjt/~],
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Chapter 3: A discussion of pseudorotation in JT systemswhere we have taken t0 = 0. On taking the modulus square of Eq. (3.2.9) weobtain
Pif =

n
∑

j=1

b
(j)
f b

(j)
i exp[+iεjt/~]

n
∑

k=1

b
(k)
f b

(k)
i exp[−iεkt/~] (3.2.10)

=
∑

j

∑

k

b
(j)
f b

(j)
i b

(k)
f b

(k)
i exp[−i(εk − εj)t/~].The jth and kth summations generate three conditions for this equation; either

j = k or j < k or j > k. Therefore, the above equation becomes
Pif =

n
∑

j=1

(

b
(j)
f b

(j)
i

)2 (3.2.11)
+

∑

j<k

b
(j)
f b

(j)
i b

(k)
f b

(k)
i exp[−i(εk − εj)t/~]

+
∑

j>k

b
(j)
f b

(j)
i b

(k)
f b

(k)
i exp[−i(εk − εj)t/~].The last term in this equation can be written with j ←→ k

∑

j<k

b
(k)
f b

(k)
i b

(j)
f b

(j)
i exp[i(εj − εk)t/~], (3.2.12)as j and k are dummy variables. Using the identity

2 cos θ = exp[iθ] + exp[−iθ], (3.2.13)the �nal form of the probability is either
Pif =

n
∑

j=1

(

b
(j)
i b

(j)
f

)2 (3.2.14)
+ 2

∑

j<k

b
(j)
i b

(k)
i b

(j)
f b

(k)
f cos[(εj − εk)t/~],or, alternatively,

Pif =

n
∑

j=1

(

b
(j)
i b

(j)
f

)2

+ 2
∑

j<k

b
(j)
i b

(k)
i b

(j)
f b

(k)
f {1− 2 sin2[(εj − εk)t/2~]}. (3.2.15)This equation can be used to study the temporal development of a system initiallylocalised in a particular well. As can be seen from this equation, the temporalevolution of the probability depends on the tunnelling splitting εj − εk betweenthe SASs. This quantity usually given the symbol ∆ and it can be found by takingthe di�erence between the energies of the SASs. For example, for the T1u ⊗ hgsystem the SASs are T1u and T2u and ∆ = ET2u

− ET1u
.33



Chapter 3: A discussion of pseudorotation in JT systems3.3 Application to C−60A simple example of pseudorotation is that described by Hands et al. [2] for the C−
60anion. In this example, the application of Eq. (3.2.15) to the T1u ⊗ hg JT systemwhen distorted to D5d symmetry [22] will be given. In this case, the system isundergoing tunnelling between 6 wells in the APES and therefore six SASs appeardue to this tunnelling. The time-evolution theory outlined above has already beenapplied to this system [2]. The 6 SASs can be written in a matrix representationsuch that
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(3.3.1)where |T1,2ui〉 represents the ith symmetry adapted states and NT1,2u representsthe corresponding normalisation constants, φ is the golden mean and |A′; 0〉 is theuntransformed state for well A. This is a matrix form of Eq. (3.2.2), so that thematrix elements represent the coe�cients a(i)
j . Inverting the above equation gives
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(3.3.2)This matrix represents Eq. (3.2.3). By using the probability expression given inEq. (3.2.15) it has been found that the probability of a system initially localisedin well A being found in an adjacent well, say well B at a time t later is givenby [2]
PAB(t) =

1

5

[

S2 + (1− S2) sin2

(

∆t

2~

)]

, (3.3.3)and the probability that the system remains in well A is
PAA(t) = 1− (1− S2) sin2

(

∆t

2~

)

. (3.3.4)34
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Figure 3.3: Diagram showing the dynamics of the T1u ⊗ hg system initiallylocalised in well A. The continues curve shows the PAA which isthe probability of �nding the system still in well A after a time tand the dashed curve shows the PAB the probability of �nding thesystem in an adjacent well (well B) [50].Here, S is the phonon overlap between adjacent pentagonal wells and is given by
S = exp

[

−6

(

V
′

1

5− 4
√

2V
′

2

)2
]

, (3.3.5)and ∆ is the tunnelling splitting given by the expression
∆ = −~ωS lnS

(1− S2)
(2−

√
2V

′

2 +
√

2/5V
′

3 ). (3.3.6)
V

′

1 is the dimensionless linear coupling parameter and V ′

2 and V ′

3 are the dimen-sionless quadratic parameters respectively. A plot of the above expressions of theprobabilities is shown in Fig. 3.3. It is very obvious from the �gure that, if thesystem is starting o� in well A is being found in well B after a time t varies as
sin2.We note from Eq. (3.3.4) that at t = 0, PAA = 1. In other words, the theoryassumes that initially the system is completely localised in well A. However, thewells are not orthogonal and so there will always be a �nite probability of �ndingthe system in one of the other wells no matter how strongly localised the initialstate. Thus, the results presented should ideally all be renormalised so that atany particular time the sums of probabilities of �nding the system in the wells isequal to unity. 35



Chapter 3: A discussion of pseudorotation in JT systems

1 2 3 4 5 6 7
V1

'

0.2

0.4

0.6

0.8

Rp

Figure 3.4: Dimensionless pseudorotation rates as a function of the linear cou-pling constant V
′

1 for the case of pentagonal minima. Quadraticconstants V
′

2 = 0.3 and V
′

3 = 0.4 have been assumed.As time proceeds the probability of �nding the system localised in that wellstarts to decrease until it reaches the minimum value, simultaneously, the proba-bility of �nding the system in well B increases until reaches the maximum value.In this case, it can be said that the system achieved the maximum occupation ofwell B. Then after a period of time the system travels back to its initial well state.This process will be repeated again starting from the same initial well followingthe same trend. The probabilities of �nding the system in any of the �ve wells areall equal as they are all equivalent as far as A is concerned.The time that the system takes to complete one period of this journey of pseu-dorotation in this particular case is given by
Tp =

2π~

∆
. (3.3.7)This equation shows that there is an inverse relation between the tunnelling split-ting and the period that the system takes to �nish one pseudorotation circuit.We can also de�ne a pseudorotation rate Rp for this system as the inverse of thepseudorotation period Rp = T−1

p = ∆/2π~. A dimensionless pseudorotation ratehas also been de�ned [2]
Rp =

2π

ω
T−1

p =
∆

~ω
(3.3.8)which is more convenient for plotting. This expression has been plotted for the

D5d case [2] as shown in Fig. 3.4. The �gure shows that as the value of the linearcoupling V ′

1 increases a decrease in the pseudorotation rate occurs until tends tozero. Mathematically, that occurs when V ′

1 →∞. This is can be explained more36
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Figure 3.5: The transient grating experiments. E1 and E2 are pump beams,
E3 is the probe pulse, E‖ and E⊥ are the detected di�ractionsignals.clearly by explain the physics behind it. In the limit when V ′

1 →∞, the couplingin this case is considered to be a very strong coupling that will cause the barriersseparating between the wells to become very high associated with deepening ofthe wells. Therefore, the overlap between wells S → 0 and the tunnelling splitting
∆ also tends to zero. Thus, the system will be found localised into either well A,
B, C, D, E, or F .3.4 Experimental TechniquesA suggested technique to observe the pseudorotation experimentally is via theultrafast experiment called the pump-probe spectroscopy [1, 55]. This techniquehas already been successfully used by Rubtsov et al. to measure experimentally therate at which the C60 and C70 molecules rotationally di�use in various liquids [1,55]. E�ectively, it measures how quickly the molecules rotate in solution. Thegeneral idea is explained using the apparatus shown in Fig. 3.5.In Rubtsov et al.'s experiments two pump laser beams (E1, E2 having wave-lengths λ1 = λ2 = 528nm) are applied to the sample so that at t = 0 a strongpulse of photons interacts with the target molecules. This interaction produces adi�raction grating within the sample. As time progresses, this grating degradesbecause of the rotational and translational di�usion of the molecules. Thus, theseexperiments employ what are called transient grating techniques. After a timedelay ∆t (of a few fs or ps) a probe beam (E3 having wavelength λ3 = 1055nm)37



Chapter 3: A discussion of pseudorotation in JT systemsis applied which is used to measure the strength of the grating. If ∆t is small, thegrating is strong and so the e�ect on the probe is strong. As ∆t increases, thegrating deteriorates due to molecular rotation and a weaker interaction with theprobe occurs. The experiment involves varying ∆t and measuring the signal aris-ing from the grating-probe interaction. The resulting trace allows the rotationalmotion to be analysed.If similar pump-probe experiments were performed on solutions containing C60ions, then the resulting signal would be expected to contain contributions fromboth real rotation and pseudorotation. For example, for C−
60 the pseudorotationof the molecule would be expected to degrade the transient grating much morequickly than real rotation. This is simply because the actual amount of atomicmotion required to accomplish pseudorotation is much less than that requiredto achieve real rotation. Thus, a faster decay of the pump-probe signal froma sample of C−

60 ions (compared to neutral C60) would be a clear indication ofpseudorotation. More importantly, a thorough analysis of the decay rates shouldyield a quantitative value for the pseudorotation rate which, in turn, providesinformation about the coupling constants that dictates the pseudorotation rates.
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Chapter 4
T ⊗ (e⊕ t2) JT system in cubicsymmetry

In order to illustrate the ideas of pseudorotation more clearly, we look now at thewell known vibronic T ⊗ (e ⊕ t2) JT system. The APES contains many minimaand tunnelling between equivalent minima may occur resulting in pseudorotation.The interaction in the T ⊗ (e ⊕ t2) system can be predicted from the Kroneckerproduct of the T -orbital with itself as [T ]2 = A+E+T2. The coupling takes placewhen an electron with a T -type orbital couples to two types of vibrational modesnamely e-type with (Qθ, Qε) coordinates and t2-type with (Q4, Q5, Q6) coordinates.Coupling to the a-mode is ignored here as the a-mode is trivially a breathing mode.There are many reasons for studying this system in this thesis. Firstly, this sys-tem has cubic symmetry which is less complicated compared to other molecularsymmetries (such as icosahedral). Therefore, the time evolution of the JT systemcan be interpreted more easily both analytically and pictorially. Also, the prob-lem shows a variety of characteristics that can be divided in three di�erent casesaccording to the magnitude of the coupling strengths. Each case causes di�erentdistortions in the APES and thus a variety of well con�gurations can be investi-gated dynamically. Another reason to investigate the T ⊗ (e ⊕ t2) JT system isthat this system has been studied theoretically in detail for many years by manyauthors, see Refs. [56, 57, 58] for example and therefore the available informationsuch as the SASs in the literature regarding this interaction will be a very goodbase for our new calculations of pseudorotation rates. Thus, investigating the dy-namical behaviour of the T ⊗ (e⊕ t2) system will serve as a good introduction to39



Chapter 4: T ⊗ (e⊕ t2) JT system in cubic symmetrythe more advanced systems having more complicated symmetries.The T ⊗ (e⊕ t2) cubic system has three types of extremal points on the LAPESnamely tetragonal (D4h), trigonal (D3d) and orthorombic (D2h) [59]. The (D4h)points become minima and the system will be represented by a T ⊗ e JT e�ect,when the coupling to the e-mode dominates. The (D3d) points become minimaand the system will be represents as T ⊗ t2, when the t2-mode dominates. Whenthe (D2h) points are minima, the system will be denoted as T ⊗ (e ⊕ t2), whencoupling to both modes (e, t2) is present.In this chapter, the pseudorotation for the T ⊗ (e ⊕ t2) system involving thethree cases will be studied using the theory outlined in Chapter 3 by applying thequantummechanical time evolution operator with the help of a previously obtainedSASs [60] to derive analytical expressions of the pseudorotation probabilities andthe corresponding rates.4.1 The transformed Hamiltonian for T ⊗ (e⊕ t2)The transformed Hamiltonian for this system has been derived by Bates et al. [3]and written in terms of the electronic basis states |x; 0〉, |y; 0〉 and |z; 0〉 in �ve-dimensional space and it takes the form
H̃1 =
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Chapter 4: T ⊗ (e⊕ t2) JT system in cubic symmetrywhere µ is the reduced mass of each oscillator of frequency ω and the Ai are de�nedas
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α6. (4.1.2)
αi represents the ith coordinates of the well in the LAPES, the constants VE and
VT describe the linear coupling to the e and t2 vibrations respectively, VBL is thebilinear (quadratic) constant which describes the coupling to both vibrations. Ithas been found that the bilinear term is the one which plays the most importantrôle in changing the shape of the APES [56] for this system so including anyhigher terms in Q will not add any further information when solving the problem.Minimising this Hamiltonian using the Öpik and Pryce method [4] has producedthe positions of the minimum points (wells) on the APES in Q-space [3]. Asmentioned, under certain condition of the coupling strength, the system becomeslocalised into one of the minima either tetragonal, trigonal or orthorhombic. Inquantum mechanics, if the system is prepared in one of the minima, then thesystem can evolve by tunnelling between the potential wells. The following sectionstake each symmetry in turn.4.1.1 The T ⊗ e JT systemWhen a cubic molecule is dynamically distorted along a C4 axis (see Fig. 4.1),tetragonal wells of D4h symmetry will be generated in the APES consists of threewells intersecting at Qθ = Qε = 0 (see Fig.3.10 Ref. [48]). The system will belocalised in the bottom of one of these wells. The corresponding untransformedground states of these minima are given as [60]

|x′; 0〉, |y′; 0〉, |z′; 0〉. (4.1.3)41



Chapter 4: T ⊗ (e⊕ t2) JT system in cubic symmetryThese states are mutually orthogonal to each other and they are appropriate eigen-states for both the in�nite and �nite coupled T ⊗ e JT system. As a result of this,the system will be found trapped in one of the three equivalent wells and thereforeno tunnelling is taking place between the minima. Thus, since the system is nottunnelling it is not necessary to construct any combinations of SASs.Comparing this case in the T ⊗e JT system to the case in Ref. [51] for the E⊗eJT system, it should be noticed that, although the APES of this system is showingthree wells similar in number to that in the E ⊗ e system, the latter system isfree to pseudorotate between the three wells when the quadratic coupling is takeninto account [51], in this case the system is not allowed to undergo a tunnellingmotion between these wells. This is because the wavefunctions in the three wellsof the T ⊗ e JT system are mutually orthogonal and they are not mixed by thetetragonal displacement[48].
(a) (b) (c)Figure 4.1: (a)Cubic molecule with a distortion axis C4 in real space. (b)Theblack dots show the positions of the orthogonal well states in theAPES in the Q-space. (c)A distorted molecule with D4h symmetrywhen the coupling to the e mode dominates.

4.1.2 The T ⊗ t2 JT SystemIf the molecule is dynamically distorted around a C3 axis by the T ⊗ t2 JT e�ect,trigonal wells of D3d symmetry appear in the APES with four-fold degeneracyFig. 4.2. This degeneracy splits via the tunnelling between the four trigonal wellsand therefore the appropriate eigenstates for the system in this case are the linearcombinations of the ground states localised in the four wells. Using the projectionoperator technique, a triplet T1 and a singlet A2 SASs are produced and given in42



Chapter 4: T ⊗ (e⊕ t2) JT system in cubic symmetryRef. [33] namely

(a) (b) (c)Figure 4.2: (a)Cubic molecule with a distortion axis C3 in real space. (b)Thefour triagonal wells are represented by black dots in the APESin the Q-space. (c)A distorted molecule of D3d symmetry whencoupling with the t2 mode dominates.
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, (4.1.5)are the normalisation constants for the trigonal case, |X ′; 0〉 is the Glauber statede�ned in Eq. (2.3.18) which forms the untransformed state associated with thewell, St is the overlap between the oscillator parts of any two adjacent wells.The superscript and subscript t refer to the trigonal wells. The oscillator overlapbetween any adjacent wells has been found using Eq. (2.3.23) and is given by [33]
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Chapter 4: T ⊗ (e⊕ t2) JT system in cubic symmetrywhere KT is a constant involves the linear coupling constant VT given by
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. (4.1.7)The energy of the T1 SASs states is given by [60]
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, (4.1.8)while for the A2 SASs the energy is
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. (4.1.9)Here, the T1 state is always the lower in energy than the singlet A2 state andtherefore the tunnelling splitting between these states is given by [60]
∆ = EA2

−ET1
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~ωT . (4.1.10)Using the above expressions of the normalised SASs in Eq. (4.1.4) and followingsimilar procedure to that outlined in Chapter 3 , expressions for the normalisedstates that are associated with each of the four trigonal wells are obtained andhave the form:

|A′; 0〉 =
|A2a〉
4N t

A2

+
|T1x〉+ |T1y〉 − |T1z〉

4N t
T1

,

|B′; 0〉 =
|A2a〉
4N t

A2

+
|T1x〉 − |T1y〉+ |T1z〉

4N t
T1

,

|C ′; 0〉 =
|A2a〉
4N t

A2

− |T1x〉 − |T1y〉 − |T1z〉
4N t

T1

,

|D′; 0〉 =
|A2a〉
4N t

A2

− |T1x〉+ |T1y〉+ |T1z〉
4N t

T1

. (4.1.11)Now, in order to study the evolution of the system initially localised in one ofthe minimum wells, the time evolution operator Eq. (3.1.6) is applied to obtainedexpressions of the probabilities of �nding the system in another well at later time
t by using Eq. (3.2.15). These probabilities are:
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Chapter 4: T ⊗ (e⊕ t2) JT system in cubic symmetry
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Figure 4.3: The internal pseudorotation of a moderately coupled T ⊗ t2 with
KT = 1.2~ωT .In this case, it can be seen from Fig. 4.2, that the wells are equally separated andtherefore the phonon overlaps between them are also equal. As this is the situation,there is no need to �nd the probabilities PAC and PAD since they are identical tothat for PAB. From the results above, it is clear that the system is in dynamicalmotion due to the pseudorotation between the di�erent wells. In general, andas can be seen from Eq. (4.1.12) pseudorotation depends on the phonon overlapwhich in turn depends on the separation between the wells.The expressions for the probabilities given in Eq. (4.1.12) are plotted in Fig. 4.3.The diagram clearly shows a sinusoidal pseudorotation behaviour between the wellssimilar to that for the T1 ⊗ hg system in Chapter 3. It tells us that, at time t = 0the probability PAA(t) of �nding the system still localised in well A is unity, whichis an expected result since the system must be found localised in one of the wells.The probability of �nding the system localised in well A is then decreasing withsimultaneous increasing of the probability of �nding the system in well B (or C,D). After the system is fully localised in well B and as the time increasing thesystem begins to migrate back to its original state after completing one revolutionof pseudorotation. The time for this is again given by the formula in Eq. (3.3.7).The dimensionless pseudorotation rate Rp from Eq. (3.3.8) is plotted in Fig. 4.4as a function of linear coupling. As expected, increasing of the strength of thelinear coupling increases the barriers between the wells in the APES which in turnreduces the overlap between the wells. This therefore, decreases the pseudorotationof the system between the wells. The trend continues until in�nite coupling where45



Chapter 4: T ⊗ (e⊕ t2) JT system in cubic symmetry
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Figure 4.4: Dimensionless pseudorotation rate as a function of the couplingconstant for the case of trigonal minima.the system achieves the zero pseudorotation. Here, the system becomes lockedinto one of the four trigonal wells showing static behaviour.A previous calculation given in Ref. [59] for multi-dimensional tunnelling sys-tems like T ⊗ t2 gives the most probable tunnelling path that the system is takingduring the tunnelling. By calculating what is termed the path of steepest descent,the minimum energy path is obtained. Further details can be found in Ref. [61].However, it has been found that, when the t2 mode in the T ⊗ (e + t2) systemdominates, the system has two possible types of classical paths of steepest descentconnecting the D3d triagonal wells. The �rst one is via the D2h saddle point, whilethe other one is via the D4h saddle point. There is no interchanging between thesetwo types of tunnelling paths when t2 dominates and the system shows that thepath via the D2h saddle point is always the one favoured [59]. The calculationsshows that the tunnelling integral along the path via the D2h saddle point alwayshas a smaller value than that along the path via a D4h saddle points. This isclearly shown in both Fig. 4.5 and table 1 in Ref. [59]. This situation can also bededuced from Fig. 4.2.(b) which shows the trigonal wells in the APES separated bytwo di�erent saddle points. The D4h saddle points have higher potential barriersat large distances from the minima than the D2h saddle points. The tunnellingsplitting between the energies of the system is found to be related to the tunnellingpath integral via the relation [62]
∆ = ~ω exp[−IT ] (4.1.13)where ω is the frequency of the vibration of the particle in the well and IT is46



Chapter 4: T ⊗ (e⊕ t2) JT system in cubic symmetry

Figure 4.5: The ratio of the action integrals I2/I1 as a functions of VT /VEwith di�erent choices of VE when t2 mode dominates. I1 and I2are the action integral of the path via a D4h and D2h saddle pointsrespectively. As shown in the �gure I2 is always bigger than I1 [59].
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Figure 4.6: The �gure shows the tunnelling splitting ∆ changes as a functionof the tunnelling path integral IT .
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Chapter 4: T ⊗ (e⊕ t2) JT system in cubic symmetrythe tunnelling path integral. Fig. 4.6 shows the variation of ∆ as a function of
IT . There is a relation between the pseudorotation rate of the molecule and thetunnelling splitting via Rp = ∆/2π~. Thus, this equation with Eq. (4.1.13) showthat, as the path integral becomes larger, the pseudorotation rate of the systembecomes smaller and thus the system then takes a longer time to travel from onewell to another. Since the time that a system takes to pseudorotate is expectedto be of the order of femtoseconds, the tunnelling path that the system takes willbe expected to be via the saddle points which have a lower potential barriers andsmaller separations between the minima.Thus, this shows another good reason for studying the pseudorotation rate ofthe system as it gives valuable information of the favoured tunnelling path that istaken when it pseudorotates.4.1.3 The T ⊗ (e+ t2) JT SystemIn this case, when the coupling to e and t2 modes are both involved, a distortionin the direction of C2 axis via the T ⊗ (e + t2) JT e�ect occurs, the system isthen said to experience orthorhombic D2h symmetry (see Fig. 4.7). The APESfor this symmetry contains six wells. These wells are presented in Fig. 4.7.(b)and divided into non-orthogonal and orthogonal wells. For each well state, thereare four nearest neighbour wells of non-orthogonal states and one next nearestneighbour well of an orthogonal state. It has been found that, in the in�nitecoupling limit, the system is found to be relaxing into one of the six orthorhombicwells [3] and no tunnelling occurs between them. When the coupling is �nite, thesystem starts to tunnel and movement between the wells takes place. This processleads the system to have states that are linear combination from those localised inthe wells that the system visits during the tunnelling. These states [3] have beenfound to be the triplets T1 and T2 given by
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Chapter 4: T ⊗ (e⊕ t2) JT system in cubic symmetry

(a) (b) (c)Figure 4.7: (a)Cubic molecule with a distortion axis C2 in real space. (b)Theblack dots represents the positions of the orthorhombic wells in theAPES in the Q-space. (c)A distorted molecule with D2h symmetry.
|T1x〉 = No
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. (4.1.16)The superscript and subscript letter o refers to the orthorhombic case, |x′; 0〉 isthe Glauber form of the state associated with the x orthorhombic well and So isthe phonon overlap between the oscillators part of any two of the orthorhombicwells that do not have orthogonal orbits and given by [33]
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. (4.1.19)The energies of the triplets states are [60]
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), (4.1.20)for i = 1 and 2. The the energy gap between T1 and T2 is [60]
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. (4.1.21)In order to study the evolution of the system with respect to time, the associatedstates with each of the six orthorhombic wells must be derived �rst of all. Theseare obtained by inverting the relations given in Eq. (4.1.14). Again following thesame procedure as outlined at the end of Chapter 3 for the T ⊗h system, the wellstates are
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. (4.1.22)The time evolution of this system when it is initially localised in one of the or-thorhombic wells can be studied by deriving the probabilities of �nding the system50



Chapter 4: T ⊗ (e⊕ t2) JT system in cubic symmetryin another well after a time t. This can be done trivially by applying Eq. (3.2.15),with the result that these probabilities are
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Pab(t) = 0, (4.1.24)
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. (4.1.25)The system here is behaving in a di�erent way from that when the t2 modedominates. It is clear from the results that, if the system starts in a given well,then it is only possible to be found localised later in a time t in the non-orthogonalstate wells. For example, if the system is initially localised in well a, then it can befound later only in either well c, d, e or f . Finding the system localised in well b isforbidden as indicated in Eq. (4.1.23) because it is orthogonal to well a. Thus, ifthe system is localised into one well then it has the opportunity to be found at anywell after later time except the orthogonal one. This behaviour seems to be thatexperimentally exhibited by the carbonyl compound Fe(CO)4 [63, 64]. Isotopicallysubstituted carbon monoxide was used to investigate the change in geometry thatoccurs as we progress between di�erent equivalent distorted minima [65]. It wasfound that starting from one particular minima the system could migrate to anadjacent minima but not directly to the minima opposite.Fe(CO)4 is distorted from the high symmetry tetrahedral geometry into a C2vgeometry which can be achieved in six equivalent ways [66], see Fig. 4.8. The �gureshows six C2v equivalent minima. At the centre of the �gure is a dot representingthe system in its undistorted tetrahedral geometry Td. One of the lowest energypaths for the conversion AA-EE is also shown. The direct conversion from the AAto EE does not occur. The experimental observation is that indirect conversionvia AE actually occurs.The internal dynamics for this system are shown in Fig. 4.9. The system showsregular tunnelling when it starts o� in well a and moves towards well c then backto well a again completing one period of pseudorotation Tp. The probabilitiesof �nding the system in the wells d, e or f have the same expression as thatfor well c. The process of pseudorotation repeats itself as time progresses and,as there is only one tunnelling level for this system, it is safe to use the sameequation Eq. (3.3.8) to represents the pseudorotation rate. This equation is plottedin Fig. 4.10 to show the changes of the pseudorotation rate while the coupling51
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Figure 4.8: (a) Structure of singlet [Fe(CO)4], determined by electron di�rac-tion [64]. The two CO molecules above and below the iron atomare the axial molecules (A) and the other two are the equatorialmolecules (E). (b) Showing the allowed paths connecting C2v min-ima [66].strength is increasing. The �gure shows decreasing in the pseudorotation rate ofthe system as the coupling constant increases in a similar manner as that for the
T ⊗ t2 system. The pseudorotation between the wells in this system follows twopaths similar to that for the T ⊗ t2 system, one path is via the D3d saddle pointsand the other via the D4h saddle points (see Fig. 4.7.(b)). As the heights of the
D4h saddle points are very large compared to those of D3d, the system is thenexpected to follow the D3d path rather than the D4h path.4.2 SummaryIn general, for any JT system when the vibronic coupling is in�nite, the vibronicstates obtained are good eigenstates for the system in its static limit. But, whenthe coupling is �nite, the obtained states should be manipulated so that it cansuit the dynamical situation of the system. In the case when the system shows
D4h tetragonal wells, the states obtained are mutually orthogonal and they forma good eigenstates for all in�nite and �nite coupled T ⊗ e systems. Therefore,there is no need to �nd any linear combination of the states in the wells. Thesystem here shows no pseudorotation between the wells and it stays in the statethat it starts in. When the system is localised in one of the D3d trigonal wells,then the probabilities of �nding it at time t later in any of the other three wells52
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Chapter 4: T ⊗ (e⊕ t2) JT system in cubic symmetryare equal. The summation of the probabilities is∑D
X=A PAX(t) = 1 +

S2
t

3
which istime independent as expected. In this case, the system is allowed to pseudorotatefreely between wells following the smallest classical path via the D2h saddle points.When the system containsD2h orthorhombic wells, tunnelling only occurs betweenthe non orthogonal well states while transitions between the orthogonal well statesare impossible. Again, the summation of the probabilities is∑f

X=a Pax(t) = 1+S2
oas expected also time independent.According to these transitions between the wells in both the T⊗t2 and T⊗(e⊕t2)JT systems, the molecule which exhibits such an intramolecular rotation will thenshow a motion of the distortion of the outer nuclear framework which appearsas a periodic change in the orientation of the distorted nuclear con�guration.Such a molecule is the Methane cations CH+

4 modelled with T ⊗ (e + t2) JTsystem. The rovibronic structure of this molecule has been investigated in whichthe pseudorotation could potentially be measured (for further information seeRef. [67]).

54



Chapter 5
The Quadratic p2 ⊗ h JTInteraction: A model for C2−

60Fullerene derivatives form very interesting materials due to the many unexpectedelectronic properties that they possess. These molecules can exhibit unusual be-haviour especially when they are doped with the alkali impurities to produce thealkali doped fullerenes AnC60. For example, the A3C60 salts are metals with ahalf-�lled LUMO that show superconductivity at low temperatures [68]. Suchcompounds are K3C60 and Rb3C60 which become superconductors at tempera-tures below 18K and 28K respectively [69]. On the other hand, the A2C60 and theA4C60 compounds such as Na2C60 and Cs4C60, which are related to each other byelectron-hole symmetry [70], are non-magnetic insulators. This behaviour in thelatter compounds is somewhat unexpected and surprising as well because, accord-ing to band theory calculations [71, 72], the electrons occupy the LUMO (T1u)which is just partially �lled. Therefore, these compounds would be expected tobe metals rather than insulators. This is the case because the Coulomb repulsionbetween the two electrons and the JT interactions open band gaps cooperatively,and are non-magnetic because the JT coupling overcomes the known Hunds's ruleordering [73, 74]. Hund's �rst rule states that for a given electron con�gurationthe term with maximum spin multiplicity (high-spin) has the lowest energy. Ithas been found that compounds containing negative ions like Cn−
60 where n = 2, 4disobey this rule when they undergo JT distortions as the energy gained from thisdistortion is large enough to reverse the situation from a high-spin to a low-spinground state [75]. 55



Chapter 5: The Quadratic p2 ⊗ h JT Interaction: A model for C2−
60The C2−

60 system has therefore a singlet spin ground state (1Ag,
1Hg) and a close-lying triplet excited state (3T1) [76]. Although this electronic structure has beencon�rmed experimentally for this ion, many theoretical studies on C2−

60 systemsstill deal with it as if Hund's rule remains valid. These studies give values for theenergies of the molecular terms some of which are (given in meV): (-114.1, 114.1,456.6) in Ref. [77], (-275, 175, 848), (-117, 73, 359) and (-122, 77, 375) in Ref. [78]for the 3T1,
1Hg,

1Ag terms respectively.Many spectroscopic experiments such as ESR, NMR, X-ray di�raction and neu-tron scattering [70, 79] have shown the distorted symmetries of the molecular struc-ture for the doubly doped C60 molecule. It has been predicted that the di�erentproperties between the body centred tetragonal A4C60 and the face cubic centredA3C60 systems for example, are due to their di�erent structures [80, 73]. As thereis a strong correlation between the distorted molecular structure and the pseu-dorotation of the dynamical JT e�ect, studying the pseudorotation phenomenonin such systems will be a good step to understand some of their underlying prop-erties. Also, as vibrational spectroscopy is exclusively sensitive to the distortedmolecules due to the splitting between the energy levels, it can detect the motionof the atoms when the distortion of the molecular framework takes place. Thesespectroscopic results can be compared with the theoretical calculations which canlead to an estimate of the vibronic coupling strength.In this chapter, the JT e�ect in the fullerene anion C2−
60 will be investigatedin detail by analysing the LAPES when a higher order (quadratic) coupling isincluded in the problem. Section 5.1 shows how the C2−

60 doubly doped anion isformed when the two electrons occupy the T1u LUMO and obey Hund's rule. Also,the electronic states for the system which form the bases for the matrix represen-tation of the interaction Hamiltonian are derived using the tables of Fowler andCeulemans [27]. This is achieved by considering the Coulomb repulsion betweenthe two electrons. This ion was investigated in an earlier work [81, 82], but onlyusing a linear coupling Hamiltonian. At this level of approximation, the APEStakes the form of a two-dimensional trough with an equipotential energy surfaceupon which the system moves freely around the trough whilst performing a freepseudorotation [83].However, including quadratic terms in the problem, causes the equipotentialenergy points on the trough to be warped to form minima. These minima are56



Chapter 5: The Quadratic p2 ⊗ h JT Interaction: A model for C2−
60found to have either D5d or D3d symmetry in the absence of Coulomb interactionsdepending upon the values of the mixing angle β which mixes the two sets of theCG coe�cients corresponding to the two hg modes. The work leading to theseresults is given in Section 5.2.1. The minimisation of the complicated Hamiltonianis dealt with using advanced computer programmes (Mathematica, Maple) whichapply the shift transformation technique outlined in Chapter 2 to obtain analyticalexpressions for the energy and the corresponding vibronic eigenstates for the sys-tem in its static limit. It should be noted that, since the JT interaction is assumedto be stronger than the Coulomb interaction, for simplicity the e�ect of the termsplitting which arises from Coulomb repulsion will be neglected through this chap-ter, although the e-e interaction is not negligible in the doubly doped fullerenes.Studying the system when performing dynamical motion is accomplished usingthe projection operator technique in order to �nd the linear combination of thewells that the system is visiting whilst tunnelling. The SASs produced as a resultof this tunnelling and the corresponding energies for both D5d or D3d minima aregiven in Section 5.2.2. Since the system is undergoing tunnelling between wells, itis undergoing a pseudorotation motion as well. The probabilities that the systemcan be found at a later time t when it is initially prepared in one particular wellare derived in Section 5.3. Also in this section the behaviour of the system whileit pseudorotates between wells is also discussed.5.1 The JT E�ect in C2−

60Before discussing the JT interaction in the C2−
60 anion it is worthwhile to re-examinethe electronic structure of the C2−

60 molecule. The electronic structure for theisolated C60 molecule is given in Chapter 2. When the C60 molecule is dopedwith two electrons, these electrons occupy the empty triplet T1u (LUMO) Fig. 5.1,forming the C2−
60 anion. From group theory, coupling to 2ag and 8hg modes isexpected. This is obviously a very complicated problem to solve analytically.Therefore, the model is approximated to that in which coupling to a single e�ective

hg mode is only taken into account as discussed earlier in Section 2.5. The couplingproblem reduces to that of a single hg mode and termed the p2⊗h JT e�ect usingthe notation used in Ref. [82]. In this notation, the superscript denotes thattwo electrons occupy a p-type electronic orbital coupled to an hg-type vibrational57



Chapter 5: The Quadratic p2 ⊗ h JT Interaction: A model for C2−
60

Figure 5.1: Diagrammatic representation of the doubly occupied T1u LUMOof C60 pertinent to the p2 ⊗ h system of interest. The electronsmay couple to produce both high- and low-spin terms and Hund'srule is thought to be obeyed. The energies shown are taken fromRef. [78]. The energy di�erence δ between the low-spin basis states
{

1Ag,
1Hg

} amounts to 298 meV.mode. The notation p is used here because of the analogy between the p atomicorbital and the T1u molecular orbital.Representing this system via the interaction Hamiltonian is quite complicated.The di�culty appears when we start constructing the electronic bases for theinteraction Hamiltonian. Both the spin and the orbital angular momenta shouldbe considered �rst for both electrons. Then coupling between the orbital states andthe spin states should follow. This will produce rather complicated bases stateswhich in turn will lead to cumbersome work in constructing the Hamiltonian.Another di�culty arises when the quadratic terms of the normal mode coordinates
QiQj are included in the problem. This arises because the hg mode appears twicein the Kronecker product asH⊗H = [A+G+2H ], which means that the quadraticterms of the coordinates can be included in the problem with two independentsets of coe�cients [27]. This therefore produces two more types of interactionHamiltonians as will as the linear interaction Hamiltonian.
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Chapter 5: The Quadratic p2 ⊗ h JT Interaction: A model for C2−
605.1.1 Electronic basis states and the linear interaction Hamil-tonianIn order to �nd the linear interaction Hamiltonian that represents the coupling,the basis is chosen by considering the Coulomb repulsion between the two electronsin the T1u orbital. Such an interaction will give rise to terms that are obtainedfrom coupling the spin and orbital angular momenta of the two electrons together.To obtain these terms for the C2−

60 system, we �rst consider the coupling betweenthe spin angular momenta. The total spin states can either be triplet symmetricstates with S = 1, or singlet anti-symmetric states with S = 0. Both spin stateswill be further coupled to the orbital states for the two electrons. The orbitalstates can be found using the Kronecker product T ⊗ T = [A+H ]S ⊕ {T}A. Theanti-symmetric part of the Kronecker product couples to the symmetric tripletspin states to give the high-spin term 3T1g, while the symmetric part couples tothe anti-symmetric singlet spin states to give the low-spin terms 1Ag and 1Hg.These terms are presented in Fig. 5.1. The �rst diagram in Fig. 5.1 shows theHOMO and the LUMO of the C60 molecule when the two added electrons occupythe LUMO. The other diagram shows the relative energies of electronic states [78]following the usual Hund's rule. The term δ represents the energy splitting (termsplitting) between the low-spin terms {1Ag,
1Hg}.The JT coupling of the high-spin 3T1g term to the hg mode has been investigatedin detail by Dunn and Bates [22] by studying the analogous T1u⊗ hg JT problem.Therefore, only the coupling of the low-spin terms {1Ag,

1Hg} to the hg vibrationswill be considered in this work.The next step is to �nd the wave functions associated with these terms whichform a basis for the matrix of the interaction Hamiltonian. These wave functionsare a result of multiplying the spin states by the orbital states. The resulting wavefunctions must be anti-symmetric in order to obey Pauli's exclusion principle.The spin wave functions can be derived following the basic quantum mechanicsrules. For example, if we consider two electrons with spins (s1 = s2 = 1
2
) and(ms1

= ms2
= ±1

2
), coupling between the two spins gives a maximum value of thespin (S=1) with (MS = 1, 0,−1). One of the spin states can be represented in a
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Chapter 5: The Quadratic p2 ⊗ h JT Interaction: A model for C2−
60bra-ket notation for the values (S = 1,MS = 1) as

|S,MS〉 = |s1, ms1
〉|s2, ms2

〉, (5.1.1)
|1, 1〉 = |1

2
,
1

2
〉|1

2
,
1

2
〉.By operating on this state with the lowering spin operator de�ned as

S−|s,ms〉 = ~

√

s(s+ 1)−ms(ms − 1) |s,ms − 1〉, (5.1.2)we obtain
S− = (S1− + S2−)|1

2
,
1

2
〉|1

2
,
1

2
〉 (5.1.3)which leads to a state of the form

|1, 0〉 = 1√
2

[

|1
2
,
1

2
〉|1

2
,−1

2
〉+ |1

2
,−1

2
〉|1

2
,
1

2
〉
]

. (5.1.4)The process is repeated again giving
|1,−1〉 = |1

2
,−1

2
〉|1

2
,−1

2
〉. (5.1.5)The wave function associated with the triplet spin can be written now in a similarway by dropping the spin quantum number s and using the notations |+〉 and |−〉to represent ms = +1

2
and ms = −1

2
respectively. Thus, we obtain

|Ms = 1〉 = |+〉|+〉,

|Ms = 0〉 =
1√
2
[|+〉|−〉+ |−〉|+〉],

|Ms = −1〉 = |−〉|−〉,

(5.1.6)and for the singlet spin (S=0) the spin wave function is written as
|Ms = 0〉 =

1√
2
[|+〉|−〉 − |−〉|+〉]. (5.1.7)Now, the orbital wave functions for the CG coe�cients for the product T1 ⊗ T1are derived using the tables of Fowler and Ceulemans [27]. This produces the
60



Chapter 5: The Quadratic p2 ⊗ h JT Interaction: A model for C2−
60following states

|Aa〉 =
1√
3

[|T1x〉1|T1x〉2 + |T1y〉1|T1y〉2 + |T1z〉1|T1z〉2] ,

|T1x〉 =
1√
2
[|T1y〉1|T1z〉2 − |T1z〉1|T1y〉2],

|T1y〉 =
1√
2
[−|T1x〉1|T1z〉2 + |T1z〉1|T1x〉2],

|T1z〉 =
1√
2
[|T1x〉1|T1y〉2 − |T1y〉1|T1x〉2],

|Hθ〉 =
φ−1

2
|T1x〉1|T1x〉2 −

φ

2
|T1y〉1|T1y〉2 +

1

2
|T1z〉1|T1z〉2, (5.1.8)

|Hε〉 =
φ2

2
√

3
|T1x〉1|T1x〉2 −

φ−2

2
√

3
|T1y〉1|T1y〉2 −

√
5

2
√

3
|T1z〉1|T1z〉2,

|H4〉 =
1√
2
[|T1y〉1|T1z〉2 + |T1z〉1|T1y〉2],

|H5〉 =
1√
2
[|T1x〉1|T1z〉2 + |T1z〉1|T1x〉2],

|H6〉 =
1√
2
[|T1x〉1|T1y〉2 + |T1y〉1|T1x〉2],where |Aa〉, |T1x〉. . . etc are the electronic orbital states. The term |T1x〉1|T1x〉2tells us that both electrons occupy the state |T1x〉.Now, the overall states must be anti-symmetric. Therefore, the triplet (sym-metric) spin wave functions must be multiplied by the anti-symmetric orbital wavefunctions while, the singlet (anti-symmetric) spin states must be multiplied by thesymmetric orbital wave functions. Therefore, the �nal resulting basis states can
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Chapter 5: The Quadratic p2 ⊗ h JT Interaction: A model for C2−
60be written as

|1Aa;Ms = 0〉 =
1√
6
[|T1x〉+1 |T1x〉−2 + |T1y〉+1 |T1y〉−2 + |T1z〉+1 |T1z〉−2
−|T1x〉−1 |T1x〉+2 − |T1y〉−1 |T1y〉+2 − |T1z〉−1 |T1z〉+2 ]

|3T1x;Ms = 1〉 =
1√
2
[|T1y〉+1 |T1z〉+2 − |T1z〉+1 |T1y〉+2 ]

|3T1y;Ms = 1〉 =
1√
2
[−|T1x〉+1 |T1z〉+2 + |T1z〉+1 |T1x〉+2 ]

|3T1z;Ms = 1〉 =
1√
2
[|T1x〉+1 |T1y〉+2 − |T1y〉+1 |T1x〉+2 ]

|3T1x;Ms = 0〉 =
1

2
[|T1y〉−1 |T1z〉+2 − |T1z〉−1 |T1y〉+2 ]

|3T1y;Ms = 0〉 =
1

2
[−|T1x〉−1 |T1z〉+2 + |T1z〉−1 |T1x〉+2 ]

|3T1z;Ms = 0〉 =
1

2
[|T1x〉−1 |T1y〉+2 − |T1y〉−1 |T1x〉+2 ]

|3T1x;Ms = −1〉 =
1√
2
[|T1y〉−1 |T1z〉−2 − |T1z〉−1 |T1y〉−2 ]

|3T1y;Ms = −1〉 =
1√
2
[−|T1x〉−1 |T1z〉−2 + |T1z〉−1 |T1x〉−2 ]

|3T1z;Ms = −1〉 =
1√
2
[|T1x〉−1 |T1y〉−2 − |T1y〉−1 |T1x〉−2 ] (5.1.9)

|1Hθ;Ms = 0〉 =
1

2
√

2
[φ−1|T1x〉+1 |T1x〉−2 − φ|T1y〉+1 |T1y〉−2 + |T1z〉+1 |T1z〉−2

− φ−1|T1x〉−1 |T1x〉+2 + φ|T1y〉−1 |T1y〉+2 − |T1z〉−1 |T1z〉+2 ]

|1Hε;Ms = 0〉 =
1

2
√

6
[φ2|T1x〉+1 |T1x〉−2 − φ−2|T1y〉+1 |T1y〉−2 −

√
5|T1z〉+1 |T1z〉−2

− φ2|T1x〉−1 |T1x〉+2 + φ−2|T1y〉−1 |T1y〉+2 +
√

5|T1z〉−1 |T1z〉+2 ]

|1H4;Ms = 0〉 =
1

2
[|T1y〉+1 |T1z〉−2 − |T1z〉+1 |T1y〉−2 − |T1y〉−1 |T1z〉+2 − |T1z〉−1 |T1y〉+2 ]

|1H5;Ms = 0〉 =
1

2
[|T1x〉+1 |T1z〉−2 + |T1z〉+1 |T1x〉−2 − |T1x〉−1 |T1z〉+2 − |T1z〉−1 |T1x〉+2 ]

|1H6;Ms = 0〉 =
1

2
[|T1x〉+1 |T1y〉−2 + |T1y〉+1 |T1x〉−2 − |T1x〉−1 |T1y〉+2 − |T1y〉−1 |T1x〉+2 ]In these expressions, |T1x〉+1 |T1y〉−2 represents the product state where electron1 is in the |T1x〉 orbital with spin +1

2
and electron 2 is in the |T1y〉−2 orbital withspin −1

2
. Only the low-spin basis is used to derive the matrix representation of theJT interaction Hamiltonian whereas, the high-spin bases will be ignored in thisproblem because of the analogy between the coupling problem of this term withthe T1u ⊗ hg coupling as was previously mentioned.The total Hamiltonian for the system may be given in the form of a 6×6 matrix.62



Chapter 5: The Quadratic p2 ⊗ h JT Interaction: A model for C2−
60It has the general form

Htotal = Hvib +HJT +HTS, (5.1.10)where Hvib is the Hamiltonian that has been de�ned in Eq. (2.2.14), HJT is theJT interaction Hamiltonian which has the general form
HJT = V1H1(Q) + V2H2(Q2) + V3H3(Q2), (5.1.11)where Vi are the vibronic coupling constants, which determine the relative impor-tance of each contribution to the coupling, and Hi are the interaction matrices.Finally, HTS is the term splitting Hamiltonian that arise from Coulomb interac-tion. In this section the e�ect of this Hamiltonian will be ignored and the problemwill be achieved without the inclusion of the term splitting δ. Using the above ba-sis states with the tables in Ref. [27], the linear interaction matrix for the systemtakes the form

H1(Q) =
√

2



























0 Qθ Qε Q4 Q5 Q6

Qθ f1 f2

√
3

4φ
Q4

−
√

3φ
4
Q5

√
3

4
Q6

Qε f2 −f1
φ2

4
Q4

−1
4φ2Q5

−
√

5
4
Q6

Q4

√
3

4φ
Q4

φ2

4
Q4 f3 −

√

3
8
Q6 −

√

3
8
Q5

Q5
−
√

3φ
4
Q5

−1
4φ2Q5 −

√

3
8
Q6 f4 −

√

3
8
Q4

Q6

√
3

4
Q6

−
√

5
4
Q6 −

√

3
8
Q5 −

√

3
8
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

























,

where,
f1 =

3
√

3Qθ +
√

5Qε

8
,

f2 =

√
5Qθ − 3

√
3Qε

8
,

f3 =

√
3Qθ + φ3Qε

4φ
,

f4 =
−
(√

3φ3Qθ +Qε

)

4φ2
.Studying this linear Hamiltonian by itself produces a continuous trough with ra-dius ρ = 2K and minimum energy of EJT = −2K2 [83], where K is de�ned as

K =
√

2√
5
V1. Each point on the trough corresponds to a di�erent distorted con�gu-ration. The system in this case is rotating around the trough in two perpendiculardirections in a free pseudorotation; at the same time it is vibrating across the63



Chapter 5: The Quadratic p2 ⊗ h JT Interaction: A model for C2−
60trough in the other three perpendicular directions. However, this system has beeninvestigated in detail and the corresponding energy and eigenstate have been ob-tained in Ref. [81].5.1.2 The quadratic interaction Hamiltonians for C2−

60In the previous section, the linear interaction Hamiltonian was constructed usingthe basis states arising from the coupling between 1A and 1H terms. The quadraticinteraction matrices can be written by making simple substitutions in the linearmatrix of the form
H2(Q2) = H1(Q 7→ A), (5.1.12)
H3(Q2) = H1(Q 7→ B), (5.1.13)where the individual components in the linear interaction matrix are mapped sothat, for example, for H2, Qθ 7→ Aθ, Qε 7→ Aε. . . etc with

Aθ =
1

2
√

6

(

3Q2
θ − 3Q2

ε −Q2
4 −Q2

5 + 2Q2
6

)

,

Aε =
−1

2
√

2

(

2
√

3QθQε −Q2
4 +Q2

5

)

,

A4 =
−1√

6

(

QθQ4 −
√

3QεQ4 + 2
√

2Q5Q6

)

, (5.1.14)
A5 =

−1√
6

(

QθQ5 +
√

3QεQ5 + 2
√

2Q4Q6

)

,

A6 =
2√
6

(

QθQ6 −
√

2Q4Q5

)

,and
Bθ =

1

2
√

2

(

2QθQε +
√

3Q2
4 −
√

3Q2
5

)

,

Bε =
1

2
√

2

(

Q2
θ −Q2

ε +Q2
4 +Q2

5 − 2Q2
6

)

,

B4 =
1√
2

(

Qε +
√

3Qθ

)

Q4, (5.1.15)
B5 =

1√
2

(

Qε −
√

3Qθ

)

Q5,

B6 = −
√

2QεQ6.where the Ai and Bi components are derived again using the tables given inRef. [27]. 64



Chapter 5: The Quadratic p2 ⊗ h JT Interaction: A model for C2−
60As already discussed, H2 andH3 arise due to the fact that the Kronecker product

H ⊗ H contains the H irrep twice. The relative strength of these two quadraticterms are governed by the quadratic coupling constants V2 and V3. Unfortunately,no attempts to calculate these parameters have so far appeared in the literaturefor the appropriate modes of C2−
60 and therefore, they will be treated as general aspossible in this thesis.It is well known that by including higher order coupling terms in such problems,it causes the trough of minimum energy points to be warped to form minima.The symmetry of those minima is unknown until the APES associated with theHamiltonian given in Eq. (5.1.10) is investigated. This can be conveniently doneby using the shift transformation technique which will be discussed in the nextsection.5.2 The unitary shift transformation and energyminimisationThe Hamiltonian given in Eq. (5.1.10) can be investigated in order to �nd theminima in the ground APES by applying the theory of the shift transformationthat was outlined in Section 2.3.1. The transformation has the e�ect of displacingeach of the coordinates Qi by an amount equal to −~αi and the outcome ofthis process is that the transformed Hamiltonian H̃ is a function of the unknownconstants αi. The six eigenvalues of this Hamiltonian are, therefore, also functionsof these constants. The symmetry of the system, however, means that there arealways several minima {α(j)

min}, the number of which indicates the symmetry of thedistorted ion. However, the aim in this section is to provide analytic expressionsfor the constants α(j)
min and the energies associated with each minimum. This canbe accomplished by investigating the H̃ using a numerical minimisation program.The general idea of this programme is relatively simple and depends on allowingthe parameters α to vary in order to minimise the lowest eigenvalue, to indicatea minimum in the APES. The transformed Hamiltonian H̃(ai) is a function ofthe parameters aθ, aε, a4, a5, a6, where ai are dimensionless values de�ned as ai =

µ~ω2

V1

αi; we set up these parameters by initial arbitrary numbers a0
i , then theprogramme can be run in order to �nd the eigenvalues corresponding to these65
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60parameters. The lowest energy among these eigenvalues is then our current energy

E(a0
i ). The programme can be run again after we let one of the values of a0

i to varyby a small factor κ as a0
i −→ a0

i +κ and then we calculate the energy E(a0
i +κ). Ifthe new energy is found to be lower, then the programme will be adjusted to moveto a new point until it achieves the lowest energy corresponding to the changingof that parameter. The same procedure will be repeated for each parameters a0

isuccessively. Eventually, if there are no further changes in ai which lead to afurther lowering of the energy, then the �nal achieved energy can be accepted tobe the true energy of the minimum.This approach is especially useful here as it allows us to investigate the e�ect ofthe two quadratic interaction matrices H̃2 and H̃3 separately. Thus, to account forthe general coupling problem, it is useful to de�ned the vibronic coupling constantsin their polar form by:
V2 = Vtot cosβ,

V3 = Vtot sin β, (5.2.1)where Vtot is a positive number representing the overall magnitude of the quadraticcoupling. The mixing angle β has the e�ect of mixing the two sets of CG coe�-cients that appear in the Kronecker product H ⊗ H . If we select representativevalues for the coupling constants, we can minimise the energy numerically usingthe above outlined method. The numerical minimaisation routine obtained fromthis method is represented as {#} for the D3d symmetry and {�} for the D5dsymmetry in Fig. 5.2, where we have assumed dimensionless coupling constantsamounting to
V ′

1 =
−V1
√

µ~ω3
= 1,

V ′
tot =

Vtot

µω2
= 0.1. (5.2.2)5.2.1 The adiabatic potential energy surface (APES)Fig. 5.2 illustrates the symmetry of the minima in the APES as a function of themixing angle β. It shows that, when 0 . β . 0.641, the APES of the systemhas D5d symmetry lower in energy than the D3d symmetry. In the region where

0.641 . β . 3.78, the D3d symmetry becomes lower in energy than the D5d66
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Figure 5.2: Energies and symmetry of the minima found by numerically min-imising the transformed Hamiltonian H̃1 as a function of the mix-ing angle β. The values used for the dimensionless coupling con-stants are V ′
1 = 1 and V ′

tot = 0.1 and the energy di�erence due toCoulombic interactions has been ignored (δ = 0). The energy isgiven in units of ~ω and the lines represent analytical expressionsof the energy for both types of minima.
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60symmetry and therefore the system prefers to be con�ned to D3d minima. In therange when β & 3.78, the system localises again D5d minima.The problem has also been investigated theoretically by applying a simplemethod summarised as follow. Let �rst assume that the problem will be investi-gated for the D5d case. Here, one of the D5d minimum points {aθ, aε, a4, a5, a6}takes the general form as {0, 2ζ, 0, 0,√6ζ}, where ζ represents the required valueto minimised the energy. The ratio aε

a6

=
√

2√
3
, by substituting this value with

aθ = a4 = a5 = 0 in the transformed Hamiltonian which is a function of aiproduces a Hamiltonian as a function of the a6 alone. The eigenvalues and thecorresponding eigenstates can then be found. The lowest eigenvalues which is afunction of the a6 will be chosen. Minimising this value with respect to a6 andthen solving the equation when it is equal to zero for a6. Since the value of a6 isobtained, the value of aε is then equal to √
2√
3
a6. Substituting the a6 again in theeigenvalue expression results an analytical expression for the D5d symmetry of thefollowing form

E (D5d) =
−2
√

5√
5 + 8V ′

tot sin β
(V ′

1)
2
~ω (5.2.3)Similarly, by following the previous steps for the D3d case, an analytical expressionfor the minimum energy is found as

E (D3d) =
−6

3 + 8V ′
tot cosβ

(V ′
1)

2
~ω. (5.2.4)An interesting observation here is that when these expressions are plotted forthe same previous values of V ′

1 and V ′
tot, it shows a perfect �t to the dashedand dotted lines which represent the numerical values that were obtained fromthe minimisation programme, as shown in Fig. 5.2. Either D5d or D3d minimaoccur only if one of the conditions is satis�ed either √5V2 > 3V3 or √5V2 < 3V3respectively. For example, when V3 = 0, H2 produces D5d minima in the APESprovided that V2 > 0. However, if V2 < 0, it will produce D3d minima. This canbe seen very clearly in Fig. 5.3, when V3 = 0 we should be looking only along the

V2 axis. Similarly, when V2 = 0, H3 by itself produces D3d minima in the APES if
V3 > 0 and D5d minima if V3 < 0. This is obvious from Fig. 5.3 when we look alongthe V3 axis. Overall, only minima of D5d or D3d symmetry have been obtained.A critical mixing angle β can be found when the two energies of both symmetriesbecome equally (i.e when E (D5d) = E (D3d)) from this a mixing angle is foundto be β = tan−1(

√
5/3). This angle divided the region into two parts as shown68
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Figure 5.3: Diagrammatic representation of the symmetry of the minima as afunction of the mixing angle. At the origin, the quadratic constantsare zero and so there is a continuous two-dimensional trough ofminima with energy Etrough = −2 (V ′
1)

2
~ω. The minima are of

D3d symmetry in the range 0.641 . β . 3.78, and D5d elsewhere.in Fig. 5.3 where the di�erent symmetries are allowed to exist. The upper halfrepresents the region of the D3d symmetry where 0.641 . β . 3.78. The lower halfrepresents the D5d region for the rest values of β. It is also noticeable that when
β = 0, V3 −→ 0 and the energy of the D5d minima is equal to −2 (V ′

1)
2
~ω. Thisis independent of the quadratic coupling strength V ′

tot (provided that V ′
tot . 0.4,above which the quadratic part outweighs the contribution from Hvib and theminimisation routine diverges to −∞ as α → ∞). This energy is identical tothe energy of the two-dimensional trough obtained in the absence of quadraticcoupling, even though quadratic coupling is present and is undoubtedly warpingthe APES. A rationalisation of this behaviour may be made by considering thenature of the warping produced by the quadratic term only, as shown in Fig. 5.4.When β = 0 (top part of Fig. 5.4), D5d minima are obtained with an energy of

−2 (V ′
1)

2
~ω. Changing the value of V ′

tot has no e�ect on this minimum energy,but it will a�ect the `height' of the D3d `hills' between the minima, thus, warpingis increased but the minima stay at the same energy. A similar argument can beused to explain why the D3d minima produced when β = π/2 also have an energyof −2 (V ′
1)

2
~ω [Eq. (5.2.3)] provided the value of V ′

tot is not excessive.
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Figure 5.4: Warping of the spherical APES obtained from the linear couplingmodel by the quadratic interaction Hamiltonians. The cases showncorrespond to β = 0 (top) and β = π/2 (bottom). For clarity, andlater use, the minima are labelled {A, B, . . ., F, a, b, . . ., j}.5.2.2 Well positions and electronic statesThe values of the minimum points for the wells can be obtained using the theoret-ical method outlined above when it was required to obtain the analytical resultsfor the energies. The rest of the minimum points of the wells can therefore beobtained easily by applying the symmetry operators on one of the minimum pointand this can be worked for both symmetries. These values with the correspondingeigenvectors are obtained and tabulated in Tables 5.1 and 5.2. In order to re-duce the complexity of the problem, we shall present results for two speci�c cases,exemplifying the behaviour in the presence of D5d and D3d minima as follow.
D5d minimaTable 5.1 gives the positions of the pentagonal wells ofD5d symmetry and the asso-ciated electronic states. The vibronic states can be easily found using Eq. (2.3.18).
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60Table 5.1: Electronic states and well positions for the D5d symmetry case.Term splitting has been ignored and ζ = −

√
2√

5+8V ′

tot
sin β

.Label Shift, α
a Electronic stateA (−

√
3ζ,−ζ,

√
6ζ, 0, 0) (−1√

3
, −1√

5
, −1√

15
,
√

2√
5
, 0, 0)B (−

√
3ζ,−ζ,−

√
6ζ, 0, 0) (−1√

3
, −1√

5
, −1√

15
, −

√
2√

5
, 0, 0)C (

√
3ζ,−ζ, 0,

√
6ζ, 0) (−1√

3
, 1√

5
, −1√

15
, 0,

√
2√
5
, 0)D (

√
3ζ,−ζ, 0,−

√
6ζ, 0) (−1√

3
, 1√

5
, −1√

15
, 0, −

√
2√

5
, 0)E (0, 2ζ, 0, 0,

√
6ζ) (−1√

3
, 0, 2√

15
, 0, 0,

√
2√
5
)F (0, 2ζ, 0, 0,−

√
6ζ) (−1√

3
, 0, 2√

15
, 0, 0,−

√
2√
5
)

a In units of V1/~µω
2.

D3d minimaTable 5.2 presents the positions of the trigonal wells of D3d symmetry and thecorresponding electronic states.5.2.3 Symmetry-adapted statesThe general theory outlining the use of projection operators in order to �nd theSASs is found in Section 2.3.3. A speci�c application to JT systems has also beenmade before in Refs. [84] and [22].SASs for D5d minimaSymmetry adapted states of H and A symmetry are obtained after using theprojection operator technique. These six states are linear combination of the six
71
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Table 5.2: Electronic states and well positions for the D3d symmetry case.Term splitting has been ignored and η = −2
√

3
3+8V ′

tot
cos β

.Label Shift, α
a Electronic statea ( 1√

2
η,−

√

3
2
η, η, 0, 0) (−1√

3
, 1

3
, −1√

3
,
√

2
3
, 0, 0)b ( 1√

2
η,−

√

3
2
η,−η, 0, 0) (−1√

3
, 1

3
, −1√

3
, −

√
2

3
, 0, 0)c ( 1√

2
η,
√

3
2
η, 0, η, 0) (−1√

3
, 1

3
, 1√

3
, 0,

√
2

3
, 0)d ( 1√

2
η,
√

3
2
η, 0,−η, 0) (−1√

3
, 1

3
, 1√

3
, 0, −

√
2

3
, 0)e (−

√
2η, 0, 0, 0, η) (−1√

3
, −2

3
, 0, 0, 0,

√
2

3
)f (−

√
2η, 0, 0, 0,−η) (−1√

3
, −2

3
, 0, 0, 0, −

√
2

3
)g (0, 0, η, η, η) (−1√

3
, 0, 0,

√
2

3
,
√

2
3
,
√

2
3
)h (0, 0, η,−η,−η) (−1√

3
, 0, 0,

√
2

3
, −

√
2

3
, −

√
2

3
)i (0, 0,−η, η,−η) (−1√

3
, 0, 0, −

√
2

3
,
√

2
3
, −

√
2

3
)j (0, 0,−η,−η, η) (−1√

3
, 0, 0, −

√
2

3
, −

√
2

3
,
√

2
3
)

a In units of V1/~µω
2.
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60well states given by

|Hθ〉 =
NH

2
[|A′; 0〉+ |B′; 0〉 − |C ′; 0〉 − |D′; 0〉] ,

|Hε〉 =
NH

2
√

3
[|A′; 0〉+ |B′; 0〉+ |C ′; 0〉+ |D′; 0〉 − 2|E ′; 0〉 − 2|F ′; 0〉] ,

|H4〉 =
NH√

2
[ −|A′; 0〉+ |B′; 0〉], (5.2.5)

|H5〉 =
NH√

2
[ −|C ′; 0〉+ |D′; 0〉],

|H6〉 =
NH√

2
[ −|E ′; 0〉+ |F ′; 0〉],

|Aa〉 =
NA√

6
[ |A′; 0〉+ |B′; 0〉+ |C ′; 0〉+ |D′; 0〉+ |E ′; 0〉+ |F ′; 0〉],where NH and NA are normalisation constants given by

NH =

√
5

√

5− Sp

,

NA =
1

√

1 + 5Sp

. (5.2.6)Here, Sp is the phonon overlap between any two pentagonal wells and given by
Sp = exp[−6V

′2
1 ζ

2]. (5.2.7)
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60SASs for D3d minimaFor D3d minima, ten SASs of H,G and A symmetry are obtained. They are linearcombinations of the ten well states and given by

|Hθ〉 =
NH√

12
[ |a′; 0〉+ |b′; 0〉+ |c′; 0〉+ |d′; 0〉 − 2|e′; 0〉 − 2|f ′; 0〉],

|Hε〉 =
NH

2
[−|a′; 0〉 − |b′; 0〉+ |c′; 0〉+ |d′; 0〉],

|H4〉 =
NH√

6
[ |a′; 0〉 − |b′; 0〉+ |g′; 0〉+ |h′; 0〉 − |i′; 0〉 − |j′; 0〉],

|H5〉 =
NH√

6
[ |c′; 0〉 − |d′; 0〉+ |g′; 0〉 − |h′; 0〉+ |i′; 0〉 − |j′; 0〉],

|H6〉 =
NH√

6
[ |e′; 0〉 − |f ′; 0〉+ |g′; 0〉 − |h′; 0〉 − |i′; 0〉+ |j′; 0〉],

|Ga〉 =
NG

2
√

15
[2(|a′; 0〉+ |b′; 0〉+ |c′; 0〉+ |d′; 0〉+ |e′; 0〉+ |f ′; 0〉)

−3(|g′; 0〉+ |h′; 0〉+ |i′; 0〉+ |j′; 0〉)], (5.2.8)
|Gx〉 =

NG√
12

[2( |a′; 0〉 − |b′; 0〉)− (|g′; 0〉+ |h′; 0〉) + |i′; 0〉+ |j′; 0〉],

|Gy〉 =
NG√
12

[2( |c′; 0〉 − |d′; 0〉)− |g′; 0〉+ |h′; 0〉 − |i′; 0〉+ |j′; 0〉],

|Gz〉 =
NG√
12

[2( |e′; 0〉 − |f ′; 0〉)− |g′; 0〉+ |h′; 0〉+ |i′; 0〉 − |j′; 0〉],

|Aa〉 =
NA√
30

[ |a′; 0〉+ |b′; 0〉+ |c′; 0〉+ |d′; 0〉+ |e′; 0〉+ |f ′; 0〉

+|g′; 0〉+ |h′; 0〉+ |i′; 0〉+ |j′; 0〉].where NH , NG and NA are normalisation constants given by
NH =

1
√

1 + 5
9
St − 2

9
S2

t

,

NG =
1

√

1− 10
9
St − 2

9
S2

t

,

NA =
1

√

1
3

+ 5
9
St + 2

9
S2

t

. (5.2.9)
St is the phonon overlap between any two adjacent trigonal wells and is of theform

St = exp[−V ′2
1 η

2]. (5.2.10)74
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605.2.4 Energies of the SASsThe energy of the SASs can be found by taking the matrix elements of the totalHamiltonian divided by the norm of the states; Mathematically

EΓ =
〈Γi|Htotal|Γi〉
〈Γi|Γi〉

. (5.2.11)
|Γi〉 is the SAS of Γ symmetry and the subscript i refers to the ith component.These calculations are not trivial in this system, since the total HamiltonianEq. (5.1.10) consists of four di�erent 6×6 Hamiltonians. For example, to �nd theenergy of the states |Hθ〉 in Eq. (5.2.5) for the pentagonal case, Eq. (5.2.11) iswritten as

EH =
〈Hθ|Hvib|Hθ〉+ 〈Hθ|H1|Hθ〉+ 〈Hθ|H2|Hθ〉+ 〈Hθ|H3|Hθ〉

〈Hθ|Hθ〉
. (5.2.12)As the |Hθ〉 is a normalised state, the denominator of this equation is equal tounity. The �rst term in Eq. (5.2.12) can be expanded as

〈Hθ|Hvib|Hθ〉 =
N2

H

4
[〈A′; 0|Hvib|A′; 0〉+ 〈A′; 0|Hvib|B′; 0〉 − 〈A′; 0|Hvib|C ′; 0〉

− 〈A′; 0|Hvib|D′; 0〉+ . . .]. (5.2.13)The term 〈A′; 0|Hvib|A′; 0〉 is the matrix element of Hvib for the well state A.
〈A′; 0|Hvib|B′; 0〉 is the matrix element between the well states A and B. Theseterms can be written in more simpli�ed forms as S〈A′|Hvib|B′〉, where S is thephonon overlap between the oscillators in the wells found using Eq. (2.3.23). Theother terms in Eq. (5.2.12) can be similarly expanded. The calculations are cum-bersome since they need to be undertaken for each Hamiltonian in Eq. (5.1.10)and will not be discussed further. Below are expressions of the energies obtainedfor the two cases of D5d and D3d minima.

D5d minimaThe matrix elements of the total Hamiltonian Eq. (5.1.10) for D5d minima arepresented in Table 5.3. Substituting them into Eq. (5.2.12) yields the energies ofthe H and A pentagonal SASs. They are found to be
Ep

H =
HAA − 1

5
SpHAB

1− 1
5
Sp

,

Ep
A =

HAA + SpHAB

1 + Sp
. (5.2.14)75
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Table 5.3: The matrix elements for the D5d minima.Hamiltonian 〈A′; 0|H |A′; 0〉/~ω 〈A′; 0|H |B′; 0〉/~ω

Hvib 5V ′2
1

ζ2 + 5

2
−V ′2

1
ζ2 + 5

2

H1 2
√

10V ′2
1 ζ 2

√
10V ′2

1 ζ

H2 0 6V ′2
1

V ′
2
ζ2

H3 −
√

10(1 +
√

5

2
ζ)V ′2

1 ζ −
√

10

4
(1 +

√

5

2
ζ)V ′2

1 ζ

Htotal

√
10V ′2

1
ζ + 5

2
[(− 9

4
+ 6V ′

2
)ζ + 7

4

√
10]V ′2

1
ζ + 5

2Note: The electronic and the phonon overlaps are not included in the calculated matrix elements.
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Figure 5.5: Energies of the SASs derived for D5d minima ignoring the dif-ferences between the term energies. It has been assumed that
V ′

1 = 10V ′
tot and the mixing angle is β = 0 (V ′

3 = 0). The dottedcurve represents the H state and the solid curve represents the Astate.
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60Table 5.4: The matrix elements for the D3d minima.

〈a′; 0|H |a′; 0〉/~ω 〈a′; 0|H |b′; 0〉/~ω 〈a′; 0|H |c′; 0〉/~ω

Hvib
3

2
V ′2

1
+ 5

2

1

2
V ′2

1
η2 + 5

2
− 1

2
V ′2

1
η2 + 5

2

H1 2
√

3V ′2
1 η 2

√
3V ′2

1 η 2
√

3V ′2
1 η

H2 −
√

3(1 +
√

3

2
η)V ′2

1
η 3V ′2

1
V ′

2
η2 V ′2

1
V ′

2
η2

H3 0 1√
5
V ′2

1 V ′
3η2 1√

5
V ′2

1 V ′
3η2

Htotal

√
3V ′2

1 η + 5

2
(1

2
+ 3V ′

2 +
V ′

3√
5

+ 2
√

3

η
)V ′2

1 η2 + 5

2
(−1

2
+ V ′

2 +
V ′

3√
5

+ 2
√

3

η
)V ′2

1 η2 + 5

2Note: The electronic and the phonon overlaps are not included in the calculated matrix elements.It should be noted that HAA = 〈A′; 0|Htotal|A′; 0〉, HAB = 〈A′; 0|Htotal|B′; 0〉. . . etc.Also the matrix element HAB is equal to the HAC , because the wells in the pen-tagonal case are equally separated.The energies of the SASs for theD5d case are plotted in Fig. 5.5 for the particularmixing angle β = 0 (i.e V ′
3 = 0). The �gure shows the energies of the symmetry-adapted states (divided by ~ω to create a dimensionless quantity), relative to EJTas a function of the dimensionless linear coupling parameter V ′

1 . The �gure showsthat the ground state is of A symmetry. In the strong coupling limit, the energiestend to 5
2
~ω representing �ve harmonic oscillators of the hg mode as expected. Atzero coupling (i.e V ′

1 = 0), the A and H states are degenerate with an energy of
5
2
~ω.

D3d minimaThe matrix elements of the Hamiltonian between the states associated with thewells for D3d minima are given in Table 5.4. In this table, 〈a′; 0|H|a′; 0〉 is thematrix element for the same well and 〈a′; 0|H|b′; 0〉 and 〈a′; 0|H|c′; 0〉 for the ad-jacent ones. Here, 〈a′; 0|H|a′; 0〉 = Haa, 〈a′; 0|H|b′; 0〉 = Hab. . . etc; the matrixelement Hab is di�erent from the matrix element Hac due to the di�erences inthe separations between the triagonal wells as will be discussed in the followingsection. Therefore extra care should be taken when calculating the energy for thiscase. The energies of the H,G and A trigonal SASs are found to be77
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Figure 5.6: Same as in Fig. 5.5, but for the D3d wells arising when β = π/2 (
V ′

2 = 0).The dotted curve represents the H state, the solid curverepresents the A state and the dashed one represents the G state.
Et

H =
Haa + 5

9
StHab − 2

9
S2

tHac

1 + 5
9
St − 2

9
S2

t

,

Et
G =

Haa − 10
9
StHab + 1

9
S2

tHac

1− 10
9
St + 1

9
S2

t

, (5.2.15)
Et

A =
1
3
Haa + 5

9
StHab + 2

9
S2

tHac

1
3

+ 5
9
St + 2

9
S2

t

.These energies for theD3d minima are plotted as shown in Fig. 5.6 for the mixingangle, β = π/2 (i.e V ′
2 = 0). It shows the energies of the SASs relative to EJT as afunction of the dimensionless linear coupling parameter V ′

1 . The �gure shows thatthe ground state is of A symmetry. In fact, the behaviour of the A and H statesis rather similar irrespective of whether they arise from combinations of D5d orof D3d wells. Also the �gure shows the expected trend of the energies where alltend to 5
2
~ω again behaving as a �ve dimensional harmonic oscillator. At zero JTcoupling, the states of the A and H symmetry are degenerate which represents thesymmetries of the terms of the anion with which we started the problem. It is alsoseen that, in the case of the D3d minima, the additional wells give rise to a SAS of

G symmetry which forms the �rst excited vibronic state, sometimes referred to asthe tunnelling state. If these states are observed spectroscopically, this additionalfour-fold degenerate state could be used as an indicator of the symmetry of theion. 78
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605.3 Pseudorotation in C2−

60 anion without CoulombinteractionThe method outlined in Chapter 3 related to the time evolution of the system willbe used here. The theory is applied to both D5d and D3d symmetries in order toinvestigate the dynamical motion of the ion. The calculations of the probabilitieswill start by inverting equations (5.2.5) and (5.2.8) to obtain the states of the wellsin terms of the SASs; then by using Eq. (3.2.9), the probabilities of the systemsinitially localised in a speci�c well and found later in another well will be derived.The results are as follows.5.3.1 D5d SymmetryThe unnormalised states associated with the pentagonal wells are
|A′; 0〉 =

|Aa〉√
6NA

+
|Hθ〉
2NH

+
|Hε〉

2
√

3NH

− |H4〉√
2NH

,

|B′; 0〉 =
|Aa〉√
6NA

+
|Hθ〉
2NH

+
|Hε〉

2
√

3NH

+
|H4〉√
2NH

,

|C ′; 0〉 =
|Aa〉√
6NA

− |Hθ〉
2NH

+
|Hε〉

2
√

3NH

− |H5〉√
2NH

,

|D′; 0〉 =
|Aa〉√
6NA

− |Hθ〉
2NH

+
|Hε〉

2
√

3NH

+
|H5〉√
2NH

,

|E ′; 0〉 =
|Aa〉√
6NA

− |Hε〉√
3NH

− |H6〉√
2NH

,

|F ′; 0〉 =
|Aa〉√
6NA

− |Hε〉√
3NH

+
|H6〉√
2NH

, (5.3.1)where NA and NH are the normalisation constants which are de�ned earlier inthe chapter. The above states may be normalised by multiplying them with thenormalisation constant
N =

1
√

1 + 2Sp√
3

. (5.3.2)Now, the above states are used to �nd the probabilities of the system which aregiven by
PAA(t) = 1− 1

(3 + 2Sp)2

[

(5− Sp)(1 + 5Sp) sin2

(

∆t

2~

)]

, (5.3.3)
PAB(t) =

1

25(3 + 2Sp)2

[

169 S2
p + 5(5− Sp)(1 + 5Sp) sin2

(

∆t

2~

)]

,79
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Figure 5.7: Internal dynamics of the D5d symmetry with V ′
tot = 0.1, V ′

1 = 1.5.The dashed curve represents the PAA and the solid one representsthe PAB .where ∆ is the energy di�erence between the energies of the SASs and given by
∆ = − 6 Sp lnSp

(5− Sp)(1 + Sp)
(1− V ′

tot). (5.3.4)The pseudorotational dynamics for this case is illustrated in Fig. 5.7 for a mod-erately strong coupling V ′
1 = 1.5. An interesting observation is that PAA > 4

9
atall times and the probability of �nding the system initially localised in well A toremain in the same well later never drops below 4

9
. The �gure shows that, at t = 0the system migrates from well A and starts to appear in well B (or in any of theadjacent wells C, D, E or F). After a time t = π~

∆
,the probability of �nding the sys-tem in well B reaches its maximum value. When t = 2π~

∆
, the system has returnedback to its initial state after completing one pseudorotational period Tp = 2π~

∆
.The dimensionless pseudorotational rate Rp can be found using Eq. (3.3.8).Another interesting feature here is that, the sum of the probabilities of being inany of the six well states at time t is

F
∑

X=A

PAX = 1 +
169S2

p

5(3 + 2Sp)2
. (5.3.5)This sum is independent of time as expected, and as V ′

1 −→∞ the separation wallsbetween wells becomes higher and the phonon overlap Sp tends to zero. Therefore,the summation tends to one as expected as the system must be localised in one80



Chapter 5: The Quadratic p2 ⊗ h JT Interaction: A model for C2−
60of the wells. Overall, the system in this case pseudorotates between all wells in aregular pattern similar to that in the C−

60 with some di�erences due to the speci�ccircumstances for each problem.5.3.2 D3d SymmetryFor this case the unnormalised states associated with the trigonal wells are foundto be as
|a′; 0〉 =

√
3|Aa〉√
10NA

+

√
2|Hθ〉 −

√
6|Hε〉+ 2|H4〉

2
√

6NH

+
3|Ga〉+

√
5|Gx〉

3
√

15NG

,

|b′; 0〉 =

√
3|Aa〉√
10NA

+

√
2|Hθ〉 −

√
6|Hε〉 − 2|H4〉

2
√

6NH

+
3|Ga〉 −

√
5|Gx〉

3
√

15NG

,

|c′; 0〉 =

√
3|Aa〉√
10NA

+

√
2|Hθ〉+

√
6|Hε〉+ 2|H5〉

2
√

6NH

+
3|Ga〉+

√
5|Gy〉

3
√

15NG

,

|d′; 0〉 =

√
3|Aa〉√
10NA

+

√
2|Hθ〉+

√
6|Hε〉 − 2|H5〉

2
√

6NH

+
3|Ga〉 −

√
5|Gy〉

3
√

15NG

,

|e′; 0〉 =

√
3|Aa〉√
10NA

− 2
√

2|Hθ〉 − 2|H6〉
2
√

6NH

+
3|Ga〉+

√
5|Gz〉

3
√

15NG

, (5.3.6)
|f ′; 0〉 =

√
3|Aa〉√
10NA

− 2
√

2|Hθ〉+ 2|H6〉
2
√

6NH

+
3|Ga〉 −

√
5|Gz〉

3
√

15NG

,

|g′; 0〉 =

√
3|Aa〉√
10NA

+
|H4〉 − |H5〉+ |H6〉√

6NH

− 3|Ga〉+
√

5(|Gx〉+ |Gy〉+ |Gz〉)
2
√

15NG

,

|h′; 0〉 =

√
3|Aa〉√
10NA

+
|H4〉 − |H5〉 − |H6〉√

6NH

− 3|Ga〉+
√

5(|Gx〉 − |Gy〉 − |Gz〉)
2
√

15NG

,

|i′; 0〉 =

√
3|Aa〉√
10NA

− |H4〉 − |H5〉+ |H6〉√
6NH

− 3|Ga〉 −
√

5(|Gx〉+ |Gy〉 − |Gz〉)
2
√

15NG

,

|j′; 0〉 =

√
3|Aa〉√
10NA

− |H4〉+ |H5〉 − |H6〉√
6NH

− 3|Ga〉 −
√

5(|Gx〉 − |Gy〉+ |Gz〉)
2
√

15NG

.The NA, NG and NH are the normalisation constants for the SASs. These statescan be normalised by multiplying them by the normalisation constant
N =

1
√

1− 2S2
t

15

. (5.3.7)
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Chapter 5: The Quadratic p2 ⊗ h JT Interaction: A model for C2−
60The probabilities of the system to evolve to another well at a later time t are foundto be

Paa(t) = 1− F1 [15 F2 − 12 F3 + 20 F4] ,

Pab(t) =
F1

9

[

9S2
t (25 + 4St)

2 − 45 F2 − 72 F3 + 40 F4

]

,

Pac(t) =
F1

9
[45 F2 + 2 F3 + 5 F4] ,where F1, F2, F3 and F4 are de�ned by

F1 =
1

9(15− 2S2
t )

2
,

F2 = (27 + St(60 + 37St − 4S3
t )) sin2

(

∆1t

2~

)

,

F3 = (1 + St)(3 + 2St)(−9 + 2St(5 + St)) sin2

(

∆2t

2~

)

, (5.3.8)
F4 = (−9 + 2St(5 + St))(−9 + St(−5 + 2St)) sin2

(

∆3t

2~

)

,where ∆1, ∆2 and ∆3 are the energy di�erences between the SASs A, G and Hwhich are given by
∆1 = −2St lnSt(−15− 24St − 10S2

t +
√

5(3 + 4St(3 + 2St))Vtot′)

−27 + St(−60− 37St + 4S3
t )

~ω,

∆2 = −5St lnSt(15 + 6St − 5S2
t +
√

5(−3 + St(−3 + 4St))Vtot′)

(−9 + St)(−1 + St)(1 + St)(3 + 2St)
~ω,

∆3 = −3St lnSt(−45 + 18St − 5S2
t +
√

5(9 + St(−9 + 4St))Vtot′)

(−9 + St)(−1 + St)(−9 + St(−5 + 2St))
~ω.(5.3.9)It can be inferred from the above expressions for the probabilities that, theinterwell dynamics in the trigonal case is more complicated than that for thepentagonal case. In the trigonal distortion, there are two tunnelling splittingsbetween the states involved rather than one compared to the pentagonal distortion.The wells here can be classi�ed as nearest-neighbour {b, g, h} and next nearest-neighbour wells {c, d, e, f, i, j} when we start o� in well a. The system in thisapproach is allowed to tunnel to either one of the wells in the �rst set or to onein the second set. This can be seen clearly from Fig. 5.8. The regime of thistrend is as follow; when the time equals zero, the system is initially prepared inwell a and the probabilities of �nding it in well b and c are very small. As timeprogresses, the system starts to evolves with a decreasing probability of �nding it82
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Figure 5.8: Internal dynamics of the D3d symmetry with V ′
tot = 0.1, V ′

1 = 1.5.The dotted curve represents the Paa; the dashed curve representsthe Pab and the solid curve represents the Pac.
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Figure 5.9: Plot for the Paa for a long-term variation as a function of t. Thevibronic coupling constants have been takes as V ′
tot = 0.1, V ′

1 = 1.5.
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Figure 5.10: Plot for the Pab for a long-term variation as a function of t. Thevibronic coupling constants have been takes as V ′
tot = 0.1, V ′

1 =

1.5.
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Figure 5.11: Plot for the Pac for a long-term variation as a function of t. Thevibronic coupling constants have been takes as V ′
tot = 0.1, V ′

1 =

1.5.
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Chapter 5: The Quadratic p2 ⊗ h JT Interaction: A model for C2−
60still localised in well a and increasing of that for both wells b and c. Here, the�gure shows that on average, the system is more likely to be in well b than well

c as the rate of increase in Pac is smaller than Pab. This is an expected situationas well b is the nearest-neighbour and well c is the next nearest-neighbour to well
a. With time increasing, the system has occupied well b and then well c. Aftera period of time, the system has migrated back to its original well state. It canbe seen from the �gure that, after the system completes one revolution the stateis no more identical to the initial state and this can be seen clearly if the processextended over a period of time as in Fig. 5.9, 5.10 and 5.11. The �gures showplots of Paa, Pab and Pac displayed over a longer period of time. The state behavesin such a way that the system reoccurs in the initial state again, an increasinglylarge percentage of it gets �left behind� in the other wells which leads to a decreasein the rate of the Paa in the second reoccurrence. From the �gures, the expectedtime that the system could repeat this circuit again is v 285ωt.5.4 Summary and DiscussionIn this chapter, an approximate model applicable to C2−

60 anions has been devel-oped. This model has been treated using numerical and analytical techniques toinvestigate the minima on the APES. Including the quadratic coupling led to havetwo di�erent kinds of minima : one with D5d symmetry, and the other with D3dsymmetry. The results which has been obtained from the numerical and theo-retical methods for these two cases show perfect consistency. Also, the energiesand the corresponding eigenstates for both the static and the dynamic JT interac-tion have been found analytically and plotted as a function of the linear vibroniccoupling constant. The plotted energy levels showed an agreement with thoseobtained previously by O'Brien in Ref. [47].The pseudorotation of the dynamical systems has also been studied for bothcases and the probabilities of �nding the systems at time t later have been de-rived using the time evolution operator. The system involving the D5d minimapseudorotates freely between all wells in a regular pattern, while the D3d minimabehave di�erently due to the complicated shape of the APES.If we assume that the ion is treated as if the hg(2) mode is the only mode ofimportance at ∼ 429 cm−1 (∼ 53.2 meV) as this is thought to be the most strongly85
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60coupled mode in some Refs. [85]. Manini et al. [7] have calculated a JT energy forthis mode in C60 of 6.3 meV, together with a linear coupling constant g = 0.489.Comparing theories suggests that in terms of our parameters, V ′

1 = 1
2
g = 0.245.To check this, it is noted that EJT ≈ −2 (V ′

1)
2
~ω and so it is calculated, using theabove quantities, EJT = 6.4 meV, in good agreement with the value calculated byManini et al. [7].This work has been partially published in Ref. [86].
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Chapter 6
A further investigation of the C2−

60anion with e-e repulsion included
In this chapter, we will investigate the previous problem analytically when theterm splitting that appears as a result of the e-e repulsion is included in theproblem. Including this term complicates the calculations when it is required toobtain analytical expressions for the positions of the minima and the correspondingenergies. Nevertheless, the insertion of this term could be important. There aresuggestions that it is even stronger than the JT interaction in the doubly-dopedions which add to the Coulomb repulsion to localise electrons although this is notclear [87].6.1 A general review of the systemIn the previous chapter the electronic basis states have been derived for the low-spin terms {A,H} when the term splitting has been ignored. When this term istaken into account, splitting between the basis states of these terms occurs leadingto a removal of the degeneracy between them. The Hamiltonian which representsthis problem has the general form as in Eq. (5.1.10), where the term splitting
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Chapter 6: A further investigation of the C2−
60 anion with e-erepulsion includedHamiltonian HTS is represented by

HTS =

























δ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

























. (6.1.1)
This form of the matrix ensures that in the absence of the JT interaction, theelectronic states are such that there is an energy di�erence δ between the |A〉state and the |H〉 state, as shown in Fig. 5.1. The transformed Hamiltonianfor this problem is a function of the values of (ai) which specify the positionsof the wells. These values itself are functions of the term splitting δ. It is alsofound numerically that, for each well, the �rst components of the correspondingelectronic state also varies as a function of δ. For example, the electronic state forwell E of the D5d case has the form{−√5

6
X1, 0,

√

2
3
, 0, 0, 1}, where X1 representsthe variation of the �rst components with respect to the inclusion of the termsplitting. From the theoretical point of view this is quite reasonable as Coulombrepulsion splits the A state away from the H state, while the H state keeps thesame position unchanged. Again for simplicity, the problem will be considered foreach case of symmetry separately.6.2 D5d minimaFollowing the same procedures that were outlined in the previous chapter butincluding the term splitting this time, it is found that the minimum points havethe form shown in Table. 6.1. In this table, σ1 and X1 are unknowns depend onthe value of δ. These values can be found by considering one of the minima andsubstituting the shifts and the corresponding electronic state into the eigenvalueequation H̃ψelect = EJTψelect. In this expression, ψelect is the electronic stateand EJT is the energy of the minimum, which coincides with the JT energy. Theunknowns σ1 and X1 have been chosen to simultaneously obey both this eigenvalueequation and the requirement that σ1 should minimise EJT . Practically, to �ndthe values of σ1 and X1 we start the evaluation by choosing a minimum point (saythe minima for well E for the sake of simplicity), and substitute both the positions88



Chapter 6: A further investigation of the C2−
60 anion with e-erepulsion includedTable 6.1: The shifts and their associated electronic states if the minima haveD5d symmetry and term splitting is included. σ1 and X1 are de-scribed in the text.Label Shift, α

a Electronic stateA −2σ1√
10

(

−
√

3,−1,
√

6, 0, 0
)

(

−
√

5
6
X1,

−1√
2
, −1√

6
, 1, 0, 0

)B −2σ1√
10

(

−
√

3,−1,−
√

6, 0, 0
)

(

−
√

5
6
X1,

−1√
2
, −1√

6
,−1, 0, 0

)C −2σ1√
10

(√
3,−1, 0,

√
6, 0
)

(

−
√

5
6
X1,

1√
2
, −1√

6
, 0, 1, 0

)D −2σ1√
10

(√
3,−1, 0,−

√
6, 0
)

(

−
√

5
6
X1,

1√
2
, −1√

6
, 0,−1, 0

)E −2σ1√
10

(

0, 2, 0, 0,
√

6
)

(

−
√

5
6
X1, 0,

√

2
3
, 0, 0, 1

)F −2σ1√
10

(

0, 2, 0, 0,−
√

6
)

(

−
√

5
6
X1, 0,

√

2
3
, 0, 0,−1

)

a In units of V1/~µω
2, so that σ1 is dimensionless.of the minima and the corresponding electronic state in the eigenvalue equation

H̃ψelect = EJTψelect. (6.2.1)Next we take the �rst component of the vector obtained from the product H̃ψelectand divide by the �rst component of ψelect itself to give
EJT1 =

5X1δ + 2 V
′2
1 σ1(−10 + 8

√
5 V

′

3σ1 + 5X1σ1)

5X1
, (6.2.2)and then apply the same procedure on the second component which gives

EJT2 =
2σ1 V

′2
1 (−5X1 + 4

√
5X1 V

′
3 σ1 + 5 σ1 − 5 + 4

√
5 V ′

3 σ1)

5
. (6.2.3)For ψelect to be a proper eigenfunction, we must have EJT1 = EJT2, then Eq. (6.2.2)and Eq. (6.2.3) give

2 ∆σ1(4 V
′
3 σ1 −

√
5) =

√
5P (X1) (6.2.4)where ∆ is de�ned as

∆ =
(V ′

1)
2
~ω

δ
(6.2.5)and

P (X1) =
X1

(X1 + 2)(X1 − 1)
. (6.2.6)89



Chapter 6: A further investigation of the C2−
60 anion with e-erepulsion includedNow, we need to �nd value of σ1 to minimise EJT , in order to satisfy thecondition ∂EJT

∂σ1

= 0. Applying this to Eq. (6.2.3), an expression of ∂X1

∂σ1

is found as
∂X1

∂σ1
= −X1(8 V

′
3 σ1 −

√
5) + 2

√
5 σ1 −

√
5 + 8 V ′

3 σ1

σ1(4 V ′
3 σ1 −

√
5)

. (6.2.7)Di�erentiating Eq. (6.2.4) with respect to σ1 produces
2 ∆(8 V ′

3 σ1 −
√

5) =
√

5
∂P (X1)

∂X1

∂X1

∂σ1
. (6.2.8)Then substituting Eq. (6.2.7) into Eq. (6.2.8) we �nd

σ1 =

√
5( P (X1)

(∂P (X1)/∂X1)
+X1 + 1)

2
√

5 + 8 V ′
3(

P (X1)
(∂P (X1)/∂X1)

.+X1 + 1)
(6.2.9)On using the de�nition of P (X1) and simplifying it we get

σ1 =

√
5 F (X1)√

5 + 8 V ′
3 F (X1)

, (6.2.10)where F (X1) is the function
F (x) =

1 + 2x

2 + x2
. (6.2.11)With these expressions, EJT has the general form

E
(D5d)
JT =

X2
1

2 +X2
1

δ − 2
√

5(F (X1))
2

(
√

5 + 8 V ′
3 F (X1))

(V ′
1)

2
~ω. (6.2.12)for the case when V ′

3 = 0

σ1 = F (X1), (6.2.13)and therefore
E

(D5d)
JT =

X2
1

2 +X2
1

δ − 2(F (X1))
2 (V ′

1)
2
~ω. (6.2.14)Now, X1 must satisfy a certain condition in order to ensure that the above ex-pression of EJT is the lowest energy of the system. To con�rm that the conditionin Eq. (6.2.4) must be satis�ed, we have

2 ∆σ1(4 V
′
3 σ1 −

√
5)−

√
5P (X1) = 0 (6.2.15)and so

(X1 + 2)(X1 − 1)2 ∆σ1(4 V
′
3 σ1 −

√
5)−

√
5X1 = 0, (6.2.16)90



Chapter 6: A further investigation of the C2−
60 anion with e-erepulsion includedusing Eq. (6.2.10)

2 ∆(X1+2)(X1−1)

( √
5 F (X1)√

5 + 8 V ′
3 F (X1)

)(

4
√

5 F (X1)V
′
3√

5 + 8 V ′
3 F (X1)

−
√

5

)

−
√

5X1 = 0,(6.2.17)
10 ∆ F (X1)(−4 V ′

3 F (X1)−
√

5)(X1 + 2)(X1 − 1)

−
√

5X1(
√

5 + 8 V ′
3F (X1))

2 = 0. (6.2.18)When V ′
3 = 0, this becomes

2 ∆ F (X1)(X1 + 2)(X1 − 1) +X1 = 0, (6.2.19)on substituting into Eq. (6.2.11)
2 ∆(1 + 2X1)(X1 + 2)(X1 − 1) +X1(2 +X2) = 0, (6.2.20)yields the cubic equation
(1 + 4∆)X3

1 + 6∆X2
1 + 2(1− 3∆)X1 − 4∆ = 0. (6.2.21)Here the (real) root must be taken which yields the lowest energy. If ∆ → ∞,so that the di�erence between the term energies is negligible compared to theJT energy, then Eq. (6.2.21) has a solution X1 = 1, which implies that σ1 = 1and E

(D5d)
JT = −2 (V ′

1)
2
~ω, as found earlier. On the other hand, as ∆ → 0,i.e. if the di�erence between the term energies overwhelms the JT energy, thenEq. (6.2.21) has the real solution X1 = 0, which implies that σ1 = 1/2 and

E
(D5d)
JT = −1

2
(V ′

1)
2
~ω, which will be negligible compared to δ.6.3 D3d minimaIn this case, the above procedure can be repeated but this time the minima shownin Table 6.2 will be used. The value of σ2 is found in a similar way to σ1, to be

σ2 =
3F (X2)

3 + 8V ′
2 F (X2)

. (6.3.1)Therefore, the JT energy is found to have the general form
E

(D3d)
JT =

X2
2

2 +X2
2

δ − 6(F (X2))
2

(3 + 8 V ′
2 F (X2))

(V ′
1)

2
~ω. (6.3.2)91
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Table 6.2: The shifts and their associated electronic states if the minima haveD3d symmetry and term splitting is included. σ2 and X2 are de-scribed in the text.Label Shift, α
a Electronic statea −2σ2√

6

(

1,−
√

3,
√

2, 0, 0
)

(

−
√

3
2
X2,

1√
2
,−
√

3
2
, 1, 0, 0

)b −2σ2√
6

(

1,−
√

3,−
√

2, 0, 0
)

(

−
√

3
2
X2,

1√
2
,−
√

3
2
,−1, 0, 0

)c −2σ2√
6

(

1,
√

3, 0,
√

2, 0
)

(

−
√

3
2
X2,

1√
2
,
√

3
2
, 0, 1, 0

)d −2σ2√
6

(

1,
√

3, 0,−
√

2, 0
)

(

−
√

3
2
X2,

1√
2
,
√

3
2
, 0,−1, 0

)e −2σ2√
6

(

−2, 0, 0, 0,
√

2
)

(

−
√

3
2
X2,−

√
2, 0, 0, 0, 1

)f −2σ2√
6

(

−2, 0, 0, 0,−
√

2
)

(

−
√

3
2
X2,−

√
2, 0, 0, 0,−1

)g −2σ2√
6

(

0, 0,
√

2,
√

2,
√

2
)

(

−
√

3
2
X2, 0, 0, 1, 1, 1

)h −2σ2√
6

(

0, 0,
√

2,−
√

2,−
√

2
)

(

−
√

3
2
X2, 0, 0, 1,−1,−1

)i −2σ2√
6

(

0, 0,−
√

2,
√

2,−
√

2
)

(

−
√

3
2
X2, 0, 0,−1, 1,−1

)j −2σ2√
6

(

0, 0,−
√

2,−
√

2,
√

2
)

(

−
√

3
2
X2, 0, 0,−1,−1, 1

)

a As for Table 5.1, these are given in units of V1/~µω
2.
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2 = 0

σ2 = F (X2), (6.3.3)and
E

(D3d)
JT =

X2
2

2 +X2
2

δ − 2F (X2))
2 (V ′

1)
2
~ω (6.3.4)where F is the same function as given in Eq. (6.2.11) and X2 obeys exactly thesame equation as X1 in Eq. (6.2.21).6.4 Symmetry-adapted statesThe SASs for both cases can be obtained using the projection operator, in asimilar manner to that presented earlier. Combinations of the vibronic states

|Γ′; 0〉 associated with each minimum are taken to formulate these SASs using thede�nition of the wells presented in Tables 6.1 and 6.2.Once again, the two separate cases treated in the previous section will be con-sidered, when either V ′
2 = 0 or V3 = 0.6.4.1 Energies of the SASs from D5d minimaIn this case, again the states of A andH symmetry result from taking combinationsof the six wells; these states have the same form as that in Eq. (5.2.5), but withdi�erent de�nition of the vibronic state. The corresponding energies are given by
Ep

A =
HAA −G(X1)SpHAB

1−G(X1)Sp

,

Ep
H =

5HAA +G(X1)SpHAB

5 +G(X1)Sp
, (6.4.1)where G(x) is the function

G(x) =
2− 5x2

2 + x2
, (6.4.2)and Sp is the phonon overlap between any two adjacent pentagonal wells given by

Sp = exp
[

−12
5

(σ1V
′
1)

2
]

. (6.4.3)In Eq. (6.4.1), HXY = 〈X ′; 0|Htotal|Y ′; 0〉/〈X ′; 0|Y ′; 0〉 are the matrix elementsof the total Hamiltonian between wells X and Y. Thus, we can derive closed93
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60 anion with e-erepulsion includedexpressions for these quantities in the form:

HAA =
X2

1

2 +X2
1

δ +
[

5
2
− 2 (σ1V

′
1)

2
]

~ω,

HAB =
5X2

1

5X2
1 − 2

δ +

{

5
2
− σ1 (V ′

1)
2

[

2
5
σ1 +

4 (4X1 − 1)

5X2
1 − 2

− 72σ1V
′
tot

4 (5X2
1 − 2)

]}

~ω, (6.4.4)where V ′
tot is the dimensionless quadratic coupling constant de�ned in Eq. (5.2.2).6.4.2 Energies of the SASs from D3d minimaThe SASs here having A, G and H symmetries and also have the same formas these given in Eq. (5.2.8) but again with di�erent meanings of the well stateincluded in the form.The energies of these states are found to be

Et
A =

Haa + 3g1(X2)StHab − 6g2(X2)S
2
tHac

1 + 3g1(X2)St − 6g2(X2)S2
t

,

Et
G =

Haa − 2g1(X2)StHab − g2(X2)S
2
tHac

1− 2g1(X2)St − g2(X2)S2
t

,

Et
H =

Haa + g1(X2)StHab + 2g2(X2)S
2
tHac

1 + g1(X2)St + 2g2(X2)S2
t

, (6.4.5)where g1(x) and g2(x) are the functions
g1(x) =

2 + 3x2

3 (2 + x2)
,

g2(x) =
2− 3x2

3 (2 + x2)
, (6.4.6)and St is the phonon overlap between nearest neighbours, respectively,

St = exp
[

−4
3
(σ2V

′
1)

2
]

, (6.4.7)
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60 anion with e-erepulsion includedThe matrix elements in Eq. (6.4.5) are found as

Haa =
X2

2

2 +X2
2

δ +
[

5
2
− 2 (σ2V

′
1)

2
]

~ω,

Hab =
3X2

2

3X2
2 + 2

δ +

{

5
2

+ σ2 (V ′
1)

2

[

2
3
σ2 −

4 (4X2 + 1)

3X2
2 + 2

+
4
√

5σ2V
′
tot

3 (3X2
2 + 2)

]}

~ω,

Hac =
3X2

2

3X2
2 − 2

δ +

{

5
2
− σ2 (V ′

1)
2

[

2
3
σ2 +

4 (2X2 − 1)

3X2
2 − 2

− 4
√

5σ2V
′
tot

3 (3X2
2 − 2)

]}

~ω. (6.4.8)As a corollary to these expressions, it is noted that the JT energy relative to the
D3d minima in the APES can be found most simply using

EJT = Haa − 5
2
~ω. (6.4.9)The JT energy of the D5d minima can be found from HAA in Eq. (6.4.4) using ananalogous expression.6.5 DiscussionEquations (6.4.1) and (6.4.5) can be used to obtain plots of the energies of the SASsfor the two cases considered. This, of course, requires knowledge of the couplingconstants and Coulombic term energies. It can also be used to provide a moregraphical interpretation of the results for particular values of these parameters.Let us �rst assume that the quadratic coupling constant is small compared to itslinear counterpart, to the extent that V ′

1 = 10V ′
tot. If δ is zero, then the energies ofthe SASs arising from the combination of theD5d andD3d wells as a function of thedimensionless linear coupling parameter V ′

1 , are as shown previously in Figs. 5.5and 5.6 respectively.For the case where δ is non-zero, a particular example, δ = 0.5~ω will be taken,which should make the A state higher in energy than the H state in the absenceof JT coupling, in the spirit of the variation shown in Fig. 5.1. Keeping the otherparameters as before, the resulting plots are as shown in Figs. 6.1 and 6.2. It is95
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60 anion with e-erepulsion includedimmediately apparent that in both �gures, in the limit as V ′

1 → 0, the A statedoes attain an energy exceeding that of the H state in a good agreement with thatobtained by O'Brien [47] and [81] when the term splitting is taken into account.The H state continues to be the lowest in energy until the limit V ′
1 . 0.5. Fromthe �gures, the crossover between the H state and the A state is predicted to occurat values of V ′

1 ≈ 0.45 for the D5d case, whereas, V ′
1 ≈ 0.5 for the D3d case. Alsoit can be seen that, at zero coupling, the A state starts from a relative energy of

3.5~ω while the H state starts from 2.5~ω in both �gures. The separation betweenthe A state and the H state occurs due to the inclusion of the term splitting. Ifthe term splitting set to be zero, then the relative energies of both states are 2.5 asshown in Figs. 5.5 and 5.6 again for both cases. All states tend to the correct limitin strong coupling as expected in our theory. The G state in the D3d symmetry isagain the �rst excited vibronic state or the tunnelling state which can be used asan indicator of the symmetry of the ion spectroscopically. It should be noted herethat by changing the values of either the term splitting or the quadratic couplingwill makes only a trivial changes in the plotted energies which can be ignored andregard the situation as that appeared in Figs. 6.1 and 6.2 for di�erent values ofboth parameters.
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Figure 6.1: Energies of the SASs derived from D5d minima when δ = 0.5~ω. Ithas been assumed that V ′
1 = 10V ′

tot. The dotted curve representsthe H state and the solid curve represents the A state.
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Figure 6.2: As for Fig. 6.1, but for the D3d wells arising. The dotted curverepresents the H state, the solid curve represents the A state andthe dashed one represents the G state
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Chapter 7
The H ⊗ h JT system: A model forC+

60Hole-doped derivatives of C60 have received less attention compared to their electron-doped counterparts. Although they are di�cult to be produced experimentally,nevertheless, they have the ability to exhibit di�erent but interesting properties.Such properties include the superconductivity at high temperatures that is pre-dicted to exceed 50 K [7] higher than that for the electron-doped C60 [88, 89]. Su-perconductivity in these ions is not completely understood, but it is believed thatthe strong intramolecular JT coupling is related to this behaviour [90]. There-fore investigation of the nature of the JT e�ect in these ions is of paramountimportance.When electrons are removed from the Hu HOMO of the neutral C60 molecule,holes which behave as positively charged particles are produced. The resultantcation is denoted by Cn+
60 , where n refers to the number of holes generated. If onlyone electron is removed from the Hu orbital, a vacancy will be produced which,in turn can be modelled in the same way as an electron. The cation which resultsfrom this removal is the C+

60. This cation involves the Hu ⊗ (2ag + 6gg + 8hg)JT interaction, in which the vacant hole in the Hu orbital is coupled to 2ag,
6gg and 8hg modes of vibration. The coupling to ag modes will be ignored asmentioned earlier. However, previous theoretical calculations [7, 91] indicate that,in C+

60, the coupling to the hg modes is much stronger than that to the gg modes,particularly the coupling to the hg(1) mode (∼ 261 cm−1) which is believed to bethe strongest. [7]. Therefore, we can restrict our investigation of the C+
60 cation99



Chapter 7: The H ⊗ h JT system: A model for C+
60by considering the Hu ⊗ hg JT model.The total Hamiltonian of this system consists of two types of interaction Hamil-tonians. This situation arises as the hg mode appears twice in the Kroneckerproduct H ⊗ H = [A + G + 2H ], which means that the linear coupling involvestwo independent sets of coe�cients that can be constructed just as with quadraticcoupling in the p2 ⊗ h system [27]. The �rst coupling is labelled as Hu ⊗ ha andthe interaction Hamiltonian corresponding to this coupling has been derived fromthe CG coe�cients in the �rst column of the H⊗H table in Ref. [27]. The secondcoupling is referred to as Hu ⊗ hb where the interaction Hamiltonian has beenderived from the CG coe�cients in the second column of the same table.In this Chapter, the time evolution operator is used to investigate the dynamicalnature of the Hu ⊗ hg JT system in the C+

60 ion. Analytical expressions for theprobabilities of �nding the system in di�erent con�gurations at a later time t isobtained as a function of the vibronic coupling parameters.7.1 Pseudorotation in the H ⊗ h JT systemFor the Hu ⊗ hg JT coupling problem, the Hamiltonian of the system takes theform
H = Hvib +H1(Q) +H2(Q), (7.1.1)whereH1(Q) andH2(Q) are the linear interaction Hamiltonians. It has been foundthat, after the minimisation procedure of the total Hamiltonian of the system, theion is distorted and produces an ion with either D3d or D5d geometry [30, 82,92], depending on the relative contributions of H1 and H2 in Eq. (7.1.1). The

H1 represents the interaction that produces the trigonal D3d wells, whereas H2generates the D5d pentagonal symmetry.Pseudorotation takes place between the di�erent con�gurations. The SASs rep-resenting the state of the system in this motion are found in Refs. [93, 92] forboth cases of D3d and D5d symmetry. Each case is investigated separately in thefollowing sections.
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(a)
D

H

A

(b)Figure 7.1: (a) A pictorial representation of the pentagonal wells and (b)the energies of the corresponding symmetry-adapted states formedfrom these well states. The well labels in (a) correspond to thosede�ned in Ref. [92].7.1.1 The D5d minimaThe D5d wells are represented pictorially in Fig. 7.1.(a). The �gure shows thepentagonal wells which are separated equally and labelled as {A,B,C,D,E, F}.There are six SASs for the system when there is tunnelling between these wells,�ve of which are of H symmetry and one with A symmetry. They are given by [93]
|Hθ〉 =

NH

2
[ |A′; 0〉+ |B′; 0〉 − |C ′; 0〉 − |D′; 0〉],

|Hε〉 =
NH

2
√

3
[|A′; 0〉+ |B′; 0〉+ |C ′; 0〉+ |D′; 0〉 − 2|E ′; 0〉 − 2|F ′; 0〉],

|H4〉 =
NH√

2
[|A′; 0〉 − |B′; 0〉],

|H5〉 =
NH√

2
[|C ′; 0〉+ |D′; 0〉], (7.1.2)

|H6〉 =
NH√

2
[−|E ′; 0〉+ |F ′; 0〉],

|Aa〉 =
NA√

6
[ |A′; 0〉+ |B′; 0〉+ |C ′; 0〉+ |D′; 0〉+ |E ′; 0〉+ |F ′; 0〉],where

NH =

√
5

√

5 + Sp

, (7.1.3)
NA =

1
√

1− Sp

,
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Figure 7.2: A plot of tunnelling splittings (∆) between the A and H symmetry-adapted states as a function of the dimensionless linear couplingconstant V
′

1 .are the normalisation constants and Sp is the phonon overlap between any twowells and is given by
Sp = exp[−12

25
V

′2
1 ]. (7.1.4)

V
′

1 is the dimensionless linear coupling constant. Fig. 7.1.(b) depicts the energiesof the states and shows that the A state is lying by an amount ∆ above the Hground state given by
∆ = − 6 Sp lnSp

(1− Sp)(5 + Sp)
~ω. (7.1.5)The variation of the tunnelling splitting as a function of V ′

1 is shown in Fig. 7.2.The states corresponding to the pentagonal wells are found to be
|A′; 0〉 =

|Aa〉√
6NA

+
|Hθ〉
2NH

+
|Hε〉

2
√

3NH

+
|H4〉√
2NH

,

|B′; 0〉 =
|Aa〉√
6NA

+
|Hθ〉
2NH

+
|Hε〉

2
√

3NH

− |H4〉√
2NH

,

|C ′; 0〉 =
|Aa〉√
6NA

− |Hθ〉
2NH

+
|Hε〉

2
√

3NH

− |H5〉√
2NH

,

|D′; 0〉 =
|Aa〉√
6NA

− |Hθ〉
2NH

+
|Hε〉

2
√

3NH

+
|H5〉√
2NH

,

|E ′; 0〉 =
|Aa〉√
6NA

− |Hε〉√
3NH

− |H6〉√
2NH

,

|F ′; 0〉 =
|Aa〉√
6NA

− |Hε〉√
3NH

+
|H6〉√
2NH

. (7.1.6)The probabilities of �nding the system in a particular well at time t can be readily102
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Figure 7.3: Inter-well dynamics for a pentagonal system initially localised inwell A. The continuous curve represents PAA and the dashed curverepresents PAB . The value of the Phonon overlap used is Sp =

0.05.derived using Eq. (3.2.9). These take the form
PAA(t) = 1− 1

9
(1− Sp)(5 + Sp) sin2

(

∆t

2~

)

, (7.1.7)and
PAB(t) =

S2
p

25
+

1

45
(1− Sp)(5 + Sp) sin2

(

∆t

2~

)

. (7.1.8)From symmetry considerations, the other probabilities of �nding the system inthe other wells C,D,E and F are equal to PAB. Therefore multiplying PAB by 5the total probability of the form
F
∑

X=A

PAX = 1 +
S2

p

5
. (7.1.9)Again and as expected, the pseudorotation mechanism in this case is similar tothat of the D5d case in the (p2 ⊗ h) system. Fig. 7.3 shows that the probabilityof �nding the system in well A subsequently when it is initially localised in well

A never drops below 4
9
in agreement with that for the (p2 ⊗ h) system. FromEq. (7.1.9), it can also be noticed that the sum of the probabilities tends to oneas the phonon overlap Sp −→ 0. This is expected as the walls separating the wellsin the APES are in�nite (i.e.V ′

1 =∞) so that the system must be found locked inone of the pentagonal wells as expected.The system completes one pseudorotation of period Tp equal to 2π~

∆
. The rateat which the system is pseudorotating is the inverse value of Tp and is varyingwith the coupling constant V ′

1 in a similar manner as that in Fig. 7.2.103



Chapter 7: The H ⊗ h JT system: A model for C+
607.1.2 The D3d minimaThe D3d minima are shown in Fig. 7.4.(a). The �gure shows a pictorial represen-tation of the trigonal wells and the separating distances between them. There aretwo distances separating the wells into two sets corresponding to well a; the �rstset includes the nearest-neighbours {e, g, j} while the second set contains the nextnearest-neighbours {b, c, d, f, h, i}. At �nite coupling, the system is pseudorotatingbetween these wells having SASs given by [93]

|Hθ〉 =
NH

2
√

3
[− |e′; 0〉 − |f ′; 0〉 − |g′; 0〉 − |h′; 0〉+ 2|i′; 0〉+ 2|j′; 0〉],

|Hε〉 =
NH

2
[|e′; 0〉+ |f ′; 0〉 − |g′; 0〉 − |h′; 0〉],

|H4〉 =
NH√

6
[− |a′; 0〉 − |b′; 0〉+ |c′; 0〉+ |d′; 0〉 − |e′; 0〉+ |f ′; 0〉],

|H5〉 =
NH√

6
[− |a′; 0〉+ |b′; 0〉 − |c′; 0〉+ |d′; 0〉 − |g′; 0〉+ |h′; 0〉],

|H6〉 =
NH√

6
[− |a′; 0〉+ |b′; 0〉+ |c′; 0〉 − |d′; 0〉+ |i′; 0〉 − |j′; 0〉],

|Ga〉 =
NG√
15

[−3

2
( |a′; 0〉+ |b′; 0〉+ |c′; 0〉+ |d′; 0〉)

+ (|e′; 0〉+ |f ′; 0〉+ |g′; 0〉+ |h′; 0〉+ |i′; 0〉+ |j′; 0〉], (7.1.10)
|Gx〉 =

NG

2
√

3
[ |a′; 0〉+ |b′; 0〉 − |c′; 0〉 − |d′; 0〉 − 2|e′; 0〉+ 2|f ′; 0〉],

|Gy〉 =
NG

2
√

3
[ |a′; 0〉 − |b′; 0〉+ |c′; 0〉 − |d′; 0〉 − 2|g′; 0〉+ 2|h′; 0〉],

|Gz〉 =
NG

2
√

3
[ |a′; 0〉 − |b′; 0〉 − |c′; 0〉+ |d′; 0〉+ 2|i′; 0〉 − 2|j′; 0〉],

|Aa〉 =
NA√
10

[ |a′; 0〉+ |b′; 0〉+ |c′; 0〉+ |d′; 0〉+ |e′; 0〉+ |f ′; 0〉

+ |g′; 0〉+ |h′; 0〉+ |i′; 0〉+ |j′; 0〉],where
NA =

1
√

1 + St − 2S2
t

,

NG =

√
3

√

3− St + 2S2
t

,

NH =

√
3

√

3 + St + 2S2
t

(7.1.11)
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(b)Figure 7.4: (a) A pictorial representation of the trigonal wells and (b) the en-ergies of the corresponding symmetry-adapted states formed fromthe well states. The well labels in (a) correspond to those de�nedin Ref. [93].are the SASs normalisation constants. St is the phonon overlap between theadjacent trigonal wells a and b and is given by
St = exp[− 4

27
V

′′2
1 ]. (7.1.12)The energy separations between the SASs are shown in Fig. 7.4.(b) and given by

∆1 =
2(1− 8St − 2S2

t )St lnSt

(1− St)(1 + 2St)(3 + St + 2S2
t )

~ω, (7.1.13)and
∆2 = − 3(3 + 6St − S2

t )St lnSt

(1− St)(3 + St)(3 + St + 2S2
t )

~ω. (7.1.14)
∆1 represents the separation between the A and H SASs and ∆2 represents theseparation between G and H SASs. These expressions are plotted in Fig. 7.5.The �gure shows the variation of the tunnelling splittings as a function of thedimensionless linear coupling constant V ′′

1 . It also shows the value of the couplingconstant (V ′′

1 ≈ 3.77) for the H − A crossover (∆1 = 0) [94].
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Figure 7.5: Tunnelling splittings between the A (∆1) and G (∆2) symmetry-adapted states and the H state (zero energy) as a function of thedimensionless linear coupling constant V
′′

1 .The expressions for the well states in terms of the SASs are found to be:
|a〉 =

|Aa〉√
10NA

− |H4〉+ |H5〉+ |H6〉√
6NH

− 3|Ga〉
2
√

15NG

+
|Gx〉+ |Gy〉+ |Gz〉

2
√

3NG

,

|b〉 =
|Aa〉√
10NA

− |H4〉 − |H5〉 − |H6〉√
6NH

− 3|Ga〉
2
√

15NG

+
|Gx〉 − |Gy〉 − |Gz〉

2
√

3NG

,

|c〉 =
|Aa〉√
10NA

− |H4〉 − |H5〉+ |H6〉√
6NH

− 3|Ga〉
2
√

15NG

+
|Gx〉 − |Gy〉+ |Gz〉

2
√

3NG

,

|d〉 =
|Aa〉√
10NA

+
|H4〉+ |H5〉 − |H6〉√

6NH

+− 3|Ga〉
2
√

15NG

− |Gx〉+ |Gy〉 − |Gz〉
2
√

3NG

,

|e〉 =
|Aa〉√
10NA

− |Hθ〉
2
√

3NH

+
|Hε〉√
3NH

− |H4〉√
6NH

+
|Ga〉√
15NG

− |Gx〉√
3NG

,

|f〉 =
|Aa〉√
10NA

− |Hθ〉
2
√

3NH

+
|Hε〉
2NH

− |H4〉√
6NH

+
|Ga〉√
15NG

+
|Gx〉√
3NG

,

|g〉 =
|Aa〉√
10NA

− |Hθ〉
2
√

3NH

− |Hε〉
2NH

− |H5〉√
6NH

+
|Ga〉√
15NG

− |Gy〉√
3NG

, (7.1.15)
|h〉 =

|Aa〉√
10NA

− |Hθ〉
2
√

3NH

− |Hε〉
2NH

+
|H5〉√
6NH

+
|Ga〉√
15NG

+
|Gy〉√
3NG

,

|i〉 =
|Aa〉√
10NA

+
|Hθ〉√
3NH

+
|H6〉√
6NH

+
|Ga〉√
15NG

+
|Gz〉√
3NG

,

|j〉 =
|Aa〉√
10NA

+
|Hθ〉√
3NH

− |H6〉√
6NH

+
|Ga〉√
15NG

− |Gz〉√
3NG

,These states are normalised after multiplying them by the normalisation constant
N =

√
15

√

15 + 2St − 2S2
t

. (7.1.16)Using Eq. (3.2.9) implies that the probabilities of �nding the system in wells a, b106
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60or e at time t are, respectively,

Paa(t) = 1− 15F1 sin2

(

∆1t

2~

)

− 20F2 sin2

(

∆2t

2~

)

− 12F3 sin2

(

(∆2 −∆1)t

2~

)

Pab(t) =
1

9
F4 + 5F1 sin2

(

∆1t

2~

)

+
10

9
F2 sin2

(

∆2t

2~

)

− 2F3 sin2

(

(∆2 −∆1)t

2~

)

Pae(t) =
1

9
F5 − 5F1 sin2

(

∆1t

2~

)

+
40

9
F2 sin2

(

∆2t

2~

)

+ 8F3 sin2

(

(∆2 −∆1)t

2~

)(7.1.17)where the Fn are functions of St and given by:
F1 = (1− St)(1 + 2St)(3 + St + 2S2

t )(15 + 2St − 2S2
t )

−2

F2 = (1− St)(3 + 2St)(3 + St + 2S2
t )(15 + 2St − 2S2

t )
−2

F3 = (1− St)
2(1 + 2St)(3 + 2St)(15 + 2St − 2S2

t )
−2

F4 = S2
t (1− 16St)

2(15 + 2St − 2S2
t )

−2

F5 = S2
t (11 + 4St)

2(15 + 2St − 2S2
t )

−2. (7.1.18)Once again the probabilities of �nding the system in wells {c, d, f, h, i} and wells
{g, j} are equal to Pab and Pae respectively. The sum of the probabilities of beingin any of the ten well states at time t is

j
∑

x=a

Pax(t) = 1 +
2

3
F4 +

1

3
F5. (7.1.19)The probability sum is time independent and tend to unity in the in�nite couplingas expected and as discussed earlier.As in the p2 ⊗ h system, the system here in the D3d case shows a similar com-plicated inter-well dynamics. This is again because it can migrate to two di�erentsets of equivalent wells.The temporal evolution of the system is plotted in Fig. 7.6 for three particu-lar values of the phonon overlap corresponding to values of the coupling constantbetween that for the crossover. In the �rst diagram, St = 2SX

t (V ′′

1 ≈ 3.09) andthe system is more weakly coupled than at the H − A crossover (see Ref. [94]).Pseudorotation here is clearly fairly rapid with �ve reoccurrences of the initial lo-calisation occurring within the time period shown. In between the reoccurrences,the probability of �nding the system in well a becomes quite small and the systemis delocalised over the other wells. The situation is complicated with regard to the107
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Figure 7.6: Inter-well dynamics for a trigonal system initially localised in well
a. The variation for three di�erent values of the phonon overlapare illustrated, where SX

t is the phonon overlap between adjacentwells at the H-A cross-over.
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Chapter 7: The H ⊗ h JT system: A model for C+
60pseudorotational period but it does seem sensible to continue to use the de�nitionused for the pentagonal case. That is we de�ne the pseudorotational period be-tween trigonal wells Tt to be the time at which the �rst reoccurrence occurs. Fromthe �rst �gure, this occurs when Tt ≈ 11.5. Prior to the �rst reoccurrence, thesystem becomes predominately localised in the nearest-neighbour wells {e, g, j}and then, afterwards, in the next-nearest-neighbour wells {b, c, d, f, h, i}.For coupling corresponding to the crossover point, V ′′

1 ≈ 3.77, the situation isas shown in the second diagram in Fig. 7.6. Clearly, the dynamics is much moreregular now and perfect reoccurrences of the initial state are observed. Pseu-dorotation is slower than before and only three reoccurrences occur in the periodshown. The pseudorotational period in this instance will be given exactly by
TX

t = 2π~ω/∆2 ≈ 19.05 (when SX
t = 0.121). It is clear from this �gure that, forthis unique value of the linear coupling constant, the times taken for the systemto pseudorotate to wells {e, g, j} and {b, c, d, f, h, i} are identical and are given by

TX
t /2.Finally, the third diagram in Fig. 7.6 shows the dynamics for the case when St =

SX
t /2 and the vibronic coupling constant V ′′

1 ≈ 4.35 exceeds that at the crossover.The rate of pseudorotation has again decreased and only one reoccurrence is visiblein the plot. At the minima in Paa, the system is delocalised over the other wellsto degrees that vary with the minimum considered.7.2 DiscussionIn this chapter, the quantum mechanical time evolution operator has been usedto study the evolution of the C+
60 cation modelled as a H ⊗ hg JT system. Due tothe JT coupling, the molecule shows a lowering of the symmetry into two di�erentspecies of symmetries D5d and D3d. These symmetries have 6 and 10 wells intheir APESs respectively. The probabilities of �nding the system evolving intoanother well when is initially prepared in one particular well at a later time t hasbeen found for each of these cases, using the SASs that describe the tunnellingstate of the JT system in the dynamic motion. These resulting expressions areplotted versus the time to show the pseudorotation dynamics of the system. Ineach symmetry, the system has shown di�erent pseudorotation regimes due to thedi�erences in the separations between the wells. At the D5d distortion, a regular109



Chapter 7: The H ⊗ h JT system: A model for C+
60pattern of pseudorotation between the wells has been observed and no unexpectedsituation arises. For the D3d case, the expressions for the probabilities has beenplotted for di�erent values of the coupling constants including that where thecrossover between the H and A states occur. The system shows di�erent patternsof pseudorotation for each value with a decreasing of the rate of pseudorotationas the coupling increases.If we accept the dominance of the hg(1) mode with ~ω = 261cm−1 and make useof the linear coupling constant V ′

1 = 1.52 which has been computed using densityfunctional theory (DFT) [7] we can estimate the rate at which pseudorotation willoccur between pentagonal wells. Using Eq. (7.1.4) the phonon overlap is Sp = 0.33together with Tp = 2π~

∆
and Eq. (7.1.5), thus the estimated period for the systemto complete one pseudorotation circuit is Tp = 208 fs. Thus, we can expect thatin order to detect pseudorotation between the D5d wells in C+

60, experiments mustbe performed on a femtosecond time scale. In addition, the inter-well dynamicsare expected to be quite simple and follow the trends shown in Fig. 7.3.This work has been published in Ref. [95]
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Chapter 8
The (h+)2 ⊗ h JT system: A modelfor C2+

60In this Chapter, the time evolution of the (h+
u )2 ⊗ hg JT system is investigatedby applying the same method as those described in previous chapters. Beforestudying the evolution of the system, it is useful to summarise �rstly some of themain features of this system.As mentioned previously, when electrons are removed from the Hu the HOMOof the neutral C60 molecule, a number of holes is generated. The removal of twoelectrons from this orbit produces two positive holes and therefore the dicationC2+

60 is produced. The modes of vibrations allowed to couple in order to form JTcoupling in this molecule are the same as that for the C+
60 cation. Therefore, JTinteractions for this system is the coupling of the two holes of Hu symmetry tothe ag, gg or hg normal modes of vibrations. Again, the coupling between theholes and the ag and gg vibrational modes will not be considered here, because ithas been shown that these modes do not result in any signi�cant distortions [7].Therefore, we will only concentrate on the coupling involving the two holes of Husymmetry and the hg normal mode and the problem will be denoted as (h+

u )2⊗hg.As in Chapter 7, the interaction Hamiltonian consists of two di�erent Hamilto-nians due to the two sets of CG coe�cients. One of them is represented by Haand the coupling parameters are taken from the �rst column of CG coe�cients for
H ⊗ H table in Rf.[27]. The second coupling represented by Hb is derived usingthe second column in the same table.The geometry of the distorted ion can be deduced from the study the structure of111



Chapter 8: The (h+)2 ⊗ h JT system: A model for C2+
60the APES and �nding the number of the minima and the corresponding positions.As before, the pseudorotation of the system between these minima is studied usingthe time evolution operator and is applied to one of the wells as will be seen inthe following section.8.1 The (h+)2 ⊗ h JT systemThe total Hamiltonian for this system takes the form

Htot = Hvib +HTS +HJT , (8.1.1)The interaction Hamiltonian has been derived previously in Ref. [96]. This Hamil-tonian involves coupling between the spin and the orbital angular momentum ofthe two holes. Coupling of the spin angular momentum of the two holes giveseither singlet spin states (S = 0) or triplet spin states (S = 1). The coupling ofthe orbital states can be predicted from the Kronecker product of the Hu orbitalby itself H ⊗ H = [A ⊕ G ⊕ 2H ]S ⊕ {T1 ⊕ T2 ⊕ G}A. The symmetric part ofthe Kronecker product couples to the singlet spin states to give rise to low-spinterms and the anti-symmetric part couples to the triplet spin state to generatethe high-spin terms. Thus, the allowed terms are 1A,1G,1Ha,
1Hb,

3 T1,
3 T2,

3G,where the superscript represents the spin multiplicity (2S + 1). The calculationsby Nikolaev et al. [78] indicate that the high-spin terms are lower in energy thanthe low-spin terms satisfying Hund's rule. As there is no coupling between theterms which have di�erent spins, only the high-spin terms {3T1,
3 T2,

3G} will beconsidered here. These terms are of di�erent energies due to Coulomb interactionbetween the two holes. In this thesis we will treat these terms as degenerate tomake our analysis generally applicable.The interaction Hamiltonian can be written in terms of the CG coe�cientsas [97]
Hint = VHhaHa + VHhb

Hb, (8.1.2)where VHha and VHhb
are the coupling constants de�ned in polar form by
VHha = V sin β; VHhb

= V cosβ, (8.1.3)where V is a measure of the combined coupling strength and β represents a mixingangle of the two sets of CG coe�cients. The matrix representation of each of the112



Chapter 8: The (h+)2 ⊗ h JT system: A model for C2+
60interaction Hamiltonians (Ha,Hb) can be written in a basis derived using thewavefunctions associated with the high-spin term. This corresponding matrix isof the order 10× 10 and it has been investigated in Ref. [98].Applying the minimisation procedures to this Hamiltonian produces minimain the APES of either D5d, D3d, D2h or C2h symmetry as β varies (see Fig.2 inRef. [97]). A study by Manini et al. [7] shows that the C2+

60 ion is favoured to belocalised in a D2h well. This result has been con�rmed again by Hands et al. [99].Therefore, only the D2h distortion will be considered here in the investigation ofthe pseudorotation motion.The APES has been found to have a D2h minima in the range where 1.35 6 β 6

1.79 [98]. There are 15 equivalent wells represented by{A,B,C,D, . . .} in Fig. 8.1.These wells are located in the centres of the C-C double bonds which is the midpoint of two joined hexagons in real space. The corresponding positions of thesewells and the associated electronic states in the Q-space are given in Table 8.1[98, 97].From the results shown in Table 8.1, it should be noted that the separationsbetween the wells in the Q-space divides them into two sets such that each wellhas 8 nearest-neighbours and 6 next-nearest neighbours. For example, well {A}has {B,C,D,E, J,K, L,M} as the nearest-neighbour wells and {F,G,H, I,N,O}as the next-nearest neighbours. This situation should not be necessary consistentwith that appearing in Fig. 8.1. The �gure shows a 4 nearest-neighbour wells, 8next-nearest and 2 furthest-neighbour wells for each well. This inconsistency issimply due to the di�erences between the real space and the Q space.8.2 Pseudorotation in D2hWhen the system is pseudorotating, the 15-fold degeneracy of the ground statessplit and produce SASs of T1g, T2g, Gg and Hg symmetry. These states havebeen obtained in Ref.[98] and are given in Appendix A for completeness. Theyare inverted so that a state for each well is obtained as a linear combination ofthe SASs as in Eq. (3.2.2). The matrix which represents the a(i)
j coe�cients inEq. (3.2.2) is a 15× 15 matrix which is
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(a)

(b)Figure 8.1: (a) The location of the C-C double bonds in the fullerene C60. (b)An icosidodecahedron formed by connecting the mid points on thedouble bonds. The vertices are labelled as A,B,C, . . . , Oas presented in Table 8.1.
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Table 8.1: Well positions and the associated electronic states of the 15 minimaof the D2h symmetry grouped according to their equivalence withrespect to the minimum A when the term splitting set to zero (seeRef. [97]).Label position electronic stateA −3
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Taking the inverse of this matrix and multiplying it by the column matrix con-taining the SASs produces 15 normalised well states:.
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Chapter 8: The (h+)2 ⊗ h JT system: A model for C2+
60The �rst set of nearest-neighbour wells are:

|A′; 0〉 =

√
3(|T1z〉+ |T2z〉) + 2|Gz〉√

15N1

+
|H6〉√
3N2

,

|B′; 0〉 =
(φ− 1)(|T1x〉 − |T2z〉) + (|T1y〉+ |T2y〉) + φ(|T1z〉 − |T2x〉)

2
√

5N1

−
√

5|Ga〉+ |Gx〉+ 3|Gy〉 − |Gz〉
2
√

15N1

+
|Hθ〉+

√
3|Hε〉+

√
2(|H4〉 − |H6〉)

2
√

6N2

,
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2
√

5N1

+

√
5|Ga〉 − |Gx〉+ 3|Gy〉+ |Gz〉
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√
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√
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− |Hθ〉 −
√

3|Hε〉+
√

2(|H5〉+ |H6〉)
2
√

6N2

,

|K ′; 0〉 =
(|T1x〉+ |T2x〉)− φ(|T1y〉 − |T2z〉)− φ−1(|T1z〉)− |T2y〉

2
√

5N1

−
√

5|Ga〉+ 3|Gx〉+ |Gy〉 − |Gz〉
2
√

15N1

+
|Hθ〉 −

√
3|Hε〉+

√
2(|H5〉 − |H6〉)

2
√

6N2

,

|L′; 0〉 =
−(|T1x〉+ |T2x〉)− φ(|T1y〉 − |T2z〉)− φ−1(|T1z〉 − |T2y〉)

2
√

5N1

+

√
5|Ga〉+ 3|Gx〉 − |Gy〉+ |Gz〉

2
√

15N1

− |Hθ〉 −
√

3|Hε〉 −
√

2(|H5〉 − |H6〉)
2
√

6N2

,

|M ′; 0〉 =
−(|T1x〉+ |T2x〉) + φ(|T1y〉+ |T2z〉)− φ−1(|T1z〉+ |T2y〉)

2
√

5N1

−
√

5|Ga〉 − 3|Gx〉 − |Gy〉 − |Gz〉
2
√

15N1

+
|Hθ〉 −

√
3|Hε〉 −

√
2(|H5〉+ |H6〉)

2
√

6N2

.
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Chapter 8: The (h+)2 ⊗ h JT system: A model for C2+
60The second set of the next-nearest neighbour wells are:

|F ′; 0〉 =
(φ+ 2)(|T1x〉+ |T2y〉) + (φ−1 − 2)(|T1y〉+ |T2x〉)−

√
5(|T1z〉+ |T2z〉)

10N1

−
√

5|Ga〉 − |Gx〉 − |Gy〉 − 3|Gz〉
2
√

15N1

−
√

2|Hθ〉+ |H4〉+ |H5〉
2
√

3N2

,

|G′; 0〉 =
−(φ+ 2)(|T1x〉 − |T2y〉) + (φ−1 − 2)(|T1y〉 − |T2x〉)−

√
5(|T1z〉+ |T2z〉)

10N1

+

√
5|Ga〉 − |Gx〉+ |Gy〉+ 3|Gz〉

2
√

15N1

+

√
2|Hθ〉+ |H4〉 − |H5〉

2
√

3N2

, (8.2.1)
|H ′; 0〉 = −(φ+ 2)(|T1x〉+ |T2y〉) + (φ−1 − 2)(|T1y〉+ |T2x〉) +

√
5(|T1z〉+ |T2z〉)

10N1

−
√

5|Ga〉+ |Gx〉+ |Gy〉 − 3|Gz〉
2
√

15N1

−
√

2|Hθ〉 − |H4〉 − |H5〉
2
√

3N2

,

|I ′; 0〉 =
(φ+ 2)(|T1x〉 − |T2y〉)− (φ−1 − 2)(|T1y〉 − |T2x〉)−

√
5(|T1z〉+ |T2z〉)

10N1

+

√
5|Ga〉+ |Gx〉 − |Gy〉+ 3|Gz〉

2
√

15N1

+

√
2|Hθ〉 − |H4〉+ |H5〉

2
√

3N2

,

|N ′; 0〉 =

√
3(|T1y〉+ |T2y〉) + 2|Gy〉√

15N1

+
|H5〉√
3N2

,

|O′; 0〉 =

√
3(|T1x〉+ |T2x〉) + 2|Gx〉√

15N1

+
|H4〉√
3N2

.where
N1 =

1
√

(1 + SAC

2
)
, (8.2.2)and

N2 =
1√

1− SAC

. (8.2.3)
SAC is the phonon overlap between the adjacent wells such as A and C and givenby [97]

SAC = exp[−27

64
(V

′

)2]. (8.2.4)The straightforward calculations of the probabilities of �nding the system in aparticular well at time t using Eq. (3.2.9), are
PAA(t) = 1− 4

9
((2− SAC − S2

AC) sin2[
∆t

2~
]),

PAC(t) =
1

144
(9S2

AC + 8(2− SAC − S2
AC) sin2[

∆t

2~
]),

PAO(t) = 0. (8.2.5)118
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Figure 8.2: Diagram showing the dynamics in the D2h symmetry when thesystem is initially localised in well Awhere PAC(t) and PAO(t) are the probabilities that a system initially localised inwell A migrates to well C or well O respectively. For completeness, the phononoverlap between non-adjacent wells such as wells A andO for example, is calculatedand given by
SAO = exp[−27

32
(V

′

)2]. (8.2.6)The energy di�erence ∆ between the SASs T1, T2, G and H is evaluated to be
∆ = − 3SAC lnSAC

(1− SAC)(2 + SAC)
~ω. (8.2.7)The results from Eq. (8.2.5) are plotted in Fig. 8.2. The D2h case shows similar-ity with the D3d distortions, since there are two sets of wells associated with thedi�erences in their separations the Q-space. The system in this case is pseudoro-tating freely between the wells in the �rst set when it is initially prepared in well

A. However, pseudorotation to the other wells in the other set is forbidden. This isdue to the orthogonality between the electronic states associated with those wells.In the D3d case, the system was free to pseudorotate to both sets with no zeroelectronic overlap. This means that, in the D2h case when the system starts o�from well A, it never visits any of the wells {F,G,H, I,N,O} during its journeyand the pseudorotation trend follows the plotted curve of Eq. (8.2.5) as shown inFig. 8.2. From the �gure, it is very obvious that the system is completing oneperiod of pseudorotation when Tp = 2π~

∆
. The pseudorotation rate is the inverse ofthe period Tp and is shown in Fig. 8.3 as a function of the linear coupling constant119
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V
′. The �gure shows that, as the value of the linear coupling constant increases,the rate of the pseudorotation decreases. This situation is expected and agreeswith the basic idea of the JT interaction which shows that in strong coupling limitwhen the barrier height between the wells is large, the system will be con�ned inone of the wells and no pseudorotation dynamics will occur. This situation canalso be inferred from the sum of the probabilities written as:

O
∑

X=A

PAX = 1 + 2S2
AC , (8.2.8)this expression tends to one as V ′ −→ ∞. This means that the system must befound localised into one of the wells as expected.8.3 SummaryIn this chapter, the pseudorotaton dynamics for the (h+

u )2 ⊗ hg JT system whendistorted to D2h symmetry has been studied using the method outlined in Chap-ter 3. The probabilities of �nding the system migrating to another well has beenplotted in order to follow the progress of the trend.The results showed that, when the system is localised in one of the D2h wellsthen it can pseudorotate only to the nearest-neighbours since the pseudorotationbetween the other wells is forbidden due to the orthogonality between well states.120



Chapter 8: The (h+)2 ⊗ h JT system: A model for C2+
60The e�ect of the term splitting has been neglected throughout this calculation.If this term is included then a di�erent picture of the well separations than thatused in this problem will appear and therefore a di�erent situation of pseudorota-tion dynamics will occur. The inclusion of this term will complicate the problemwhich is already complicated due to its high dimension. This problem will be aninteresting point to be studied in the future work.
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Chapter 9
Conclusions

The main purpose of this thesis has been to study the dynamical nature of someJT systems involving di�erent ions. The investigation has been accomplishedthrough studying the pseudorotation between equivalent minima in the APESunder the assumption that the JT interaction overwhelms the other interactionswithin the molecule. The pseudorotation phenomenon is a characteristic feature ofJT systems and the method that has been used in this thesis to study this internalrotation can be applied to any real system undergoing dynamical JT interaction.The thesis began with a brief introduction representing the motivation of thisstudy and outlined the subjects contained in each chapter in the thesis. Chapter 2began with a historical review of the origin of the JT e�ect and the researchstudies related to this subject. Also there are a description of the approximationsthat led to the construction of the interaction Hamiltonian which describes theelectron-phonon coupling. The chapter provided the mathmatical tools that areessential in order to produce a simple expression for the vibronic Hamiltonianunder consideration. This Hamiltonian has been simpli�ed in order to �nd asolution using the shift transformation technique and the method of Öpik andPryce [4] which is used to �nd the location of the distinct minima on the APES.A general idea of the icosahedral point group to which our systems belong and themethod of how to specify the electronic orbital and the vibrational modes thatinvolved in the interaction was also discussed in the same chapter.The theory of the time evolution operator was introduced in the following chap-ter. This method used the quantum mechanical concept of the time evolutionoperator to study the progress of a system at a time t in the strong JT coupling122



Chapter 9: Conclusionslimit where the minima are considered to be su�ciently deep with high barriersbetween them. The method has been applied to di�erent systems having di�erentdistortion symmetries.In Chapter 4, the pseudorotation in the T ⊗ (e⊕ t2) JT system has been stud-ied using the method discussed in Chapter 3. This system shows three di�erentexamples of coupling depending on the coupling strength of the T electronic stateto the e and t2 vibrational modes. The �rst case involving the T ⊗ e couplingshowed no tunnelling performed by the system since the well states in that systemare mutually orthogonal. The second case was the T ⊗ t2 coupling distorted toa D3d symmetry. This system showed equal transitions between the four wells.The last case was for D2h symmetry when the coupling to the e and t2 modes isinvolved. Here, the system was allowed to tunnel only between the non-orthogonalelectronic states localised in the wells with strictly forbidden tunnelling betweenthe orthogonal ones. Studying the pseudorotation of this system has been usedas an introduction to study the pseudorotation of di�erent but more sophisticatedicosahedral JT systems.In Chapter 5 a model for the C2−
60 anion has been developed when the quadraticcoupling term is included in the problem. This problem was treated using all thetechniques that have been outlined in Chapter 2. The Hamiltonian of the problemalso has been written as a function of the mixing angle β which represents a mixingof the two di�erent sets of CG coe�cients. The APES obtained showed two kindsof minima having D5d and D3d symmetry depending on the value of the mixingangle. Both systems have been investigated in the static and dynamic regimes by�nding the positions of the minimum points on the APES and the correspondingstates. The inter-molecular motion of the system has been determined using themethod outlined in Chapter 3. The system showed equal transitions between the

D5d wells as the separations between them are equal. The D3d revealed morecomplicated pseudorotation since the system has the opportunity to migrate totwo distinct types of wells leading to two di�erent tunnelling splittings.A further investigation of this model was continued when the Coulomb inter-action between the electrons is taken into account in Chapter 6. The inclusionof this term complicates the analytical expressions of both the states and thecorresponding energies.Chapter 7 dealt with the H⊗hg JT system for the C+
60 cation. The probabilities123



Chapter 9: Conclusionsof the system while is pseudorotating was plotted for both cases of D5d and the
D3d symmetries. The system showed a regular pseudorotation between wells ofthe D5d case similar to that in the p2⊗h system. In the D3d distortion, the systemagain showed a complicated situation due to the two di�erent separation distancesbetween wells. The probabilities for this case have been plotted for di�erent valuesof the coupling constants when the H−A crossover between the two SASa occurs.The system showed tunnelling behaviour of similar regime as that appeared in theC2−

60 .The study of inter-well dynamics of the (h+
u )2 ⊗ h system was the subject ofChapter 8. This system involves wells of D2h symmetry which consist of twoequivalent sets of wells in the APES similar to that in D3d symmetry. The systemshowed here that pseudorotation is only allowed between the nearest-neighbourwells. The orthogonality between the other wells (next-nearest neighbour) madethe electronic overlap between them tends to zero and therefore no migration forthe system to those wells occurs.Although the theory presented in this thesis for studying the internal motiondepends on many approximations, such as ignoring the presence of exited vibronicstates, nevertheless the theory still can be accepted as a �rst approximation to adescription of the dynamics that occur in JT systems undergoing pseudorotation.In this study, the term splitting which appeared as a result of Coulomb inter-action in both C2−

60 and C2+
60 systems has been neglected and the calculations wereachieved by regarding the JT interaction as overwhelming the other interactionsin the problem. Neglecting the term splitting led to have a degenerate groundstate in both system. If this term is included, then a shift in the energy betweenthe SASs occurs and the degeneracy of the ground state will be removed. Thiscould lead to have a more accurate picture of the APES and therefore a clearerview of the sets of wells between which the system is allowed to pseudorotate willappear. This indeed will lead to have a very complicated system to be studiedsince the C2+

60 system for example has more than one tunnelling splitting term.Investigation of such problems needs an advanced computer programs to solvethe problem numerically rather than analytically which could be an interestingproblem to focus on for the future work.Pseudorotation can be observed experimentally in NMR spectra, isotopic sub-stitution experiments, central-atom nuclear quadrupole resonance spectra and124



Chapter 9: Conclusionsother spectroscopic measurements [48]. The distorted geometry of the moleculewhilst pseudorotating could be viewed if measurements on a very short time scaleare made. This time scale is estimated from electron paramagnetic resonance(EPR) [100] data and it appears to be of the order of picoseconds, while fromthe strength of the vibronic coupling [101] it is estimated to be of the order offemtoseconds. A multiple-pulse technique or the �pumb-probe� which producespulses on the femtosecond time-scale to freeze the nuclear dynamics in real time(see for example [102]), has already been used in measuring how quickly the ro-tation of the C60 and C70 molecules in various solutions. As the pseudorotationinvolves movement of the nuclei in JT systems, the nuclear dynamics should bethen observable using such ultrafast techniques. An idea of such experiments thatcapable of measuring pseudorotation in the fullerene ions has been discussed inChapter 3 using what is called transient grating techniques.To our knowledge, pseudorotation motion of some molecules such as the Na3has already been detected using the two-photon ionisation (TPI) experiment [103]and showed a fairly rapid pseudorotation. The period of this pseudorotation wasfound to be of the order of 3 ps. However, experiments have been conducted totry to measure the rate of pseudorotation in C−
60, C2−

60 and C3−
60 . As always, ex-perimental realisation of a theoretically simple process was found to be di�cult.Some preliminary results have been presented in a recent PhD thesis [104] withsubsequent publication to follow. One of the conclusions from the work is that theexperiments seem to point to reorientational dynamics faster than 2 ps duration(and faster, depending on the technique used). This is interesting if con�rmedbecause Rubtsov et al. [1, 55] found that the C60 in decalin has a reorentationalrelaxation time of 3.5 ps, which, they point out, is close to the rotation rate asso-ciated with free gaseous C60 (other rotation rates were much slower). A relaxationof 2 ps, therefore, could be a strong indicator that pseudorotation is occurring. Abetter estimate of the actual time is called for, however, if this rate is to be useful.Nevertheless, if a time can be measured that can reasonably be assigned to pseu-dorotation, then it could be equated with the time taken for a C−

60 to `hop' fromone well to another. Hence, the expermental time could provide vital evidence forthe likely magnitudes of V1, V2 and V3. However, temperature dependent studiesmay be required if a true attempt is to be made to isolate V2/V3 from V1.
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Appendix A
The SASs arising from the D2h wellsin the C2+

60 cation
|T1x〉 =

N1

2
√

5
[2 |b′; 0〉+ φ|d′; 0〉 − φ|e′; 0〉+ φ|f ′; 0〉 − φ|g′; 0〉+ φ−1|h′; 0〉

− φ−1|i′; 0〉 − φ−1|j′; 0〉+ φ−1|k′; 0〉+ |l′; 0〉+ |m′; 0〉 − |n′; 0〉 − |o′; 0〉],

|T1y〉 =
N1

2
√

5
[2 |c′; 0〉+ φ−1|d′; 0〉+ φ−1|e′; 0〉 − φ−1|f ′; 0〉 − φ−1|g′; 0〉 − |h′; 0〉

− |i′; 0〉+ |j′; 0〉+ |k′; 0〉 − φ|l′; 0〉+ φ|m′; 0〉+ φ|n′; 0〉 − φ|o′; 0〉],

|T1z〉 =
N

2
√

5
[2 |a′; 0〉 − |d′; 0〉 − |e′; 0〉 − |f ′; 0〉 − |g′; 0〉+ φ|h′; 0〉+ φ|i′; 0〉

+ φ|j′; 0〉+ φ|k′; 0〉 − φ−1|l′; 0〉 − φ−1|m′; 0〉 − φ−1|n′; 0〉 − φ−1|o′; 0〉],(A.0.1)
|T2x〉 =

N1

2
√

5
[2 |b′; 0〉 − φ−1|d′; 0〉+ φ−1|e′; 0〉 − φ−1|f ′; 0〉+ φ−1|g′; 0〉 − φ|h′; 0〉

+ φ|i′; 0〉+ φ|j′; 0〉 − φ|k′; 0〉+ |l′; 0〉+ |m′; 0〉 − |n′; 0〉 − |o′; 0〉],

|T2y〉 =
N1

2
√

5
[2 |c′; 0〉 − φ|d′; 0〉 − φ|e′; 0〉+ φ|f ′; 0〉+ φ|g′; 0〉 − |h′; 0〉 − |i′; 0〉

+ |j′; 0〉+ |k′; 0〉+ φ−1|l′; 0〉 − φ−1|m′; 0〉 − φ−1|n′; 0〉+ φ−1|o′; 0〉],

|T2z〉 =
N1

2
√

5
[2 |a′; 0〉 − |d′; 0〉 − |e′; 0〉 − |f ′; 0〉 − |g′; 0〉 − φ−1|h′; 0〉 − φ−1|i′; 0〉

− φ−1|j′; 0〉 − φ−1|k′; 0〉+ φ|l′; 0〉+ φ|m′; 0〉+ φ|n′; 0〉+ φ|o′; 0〉], (A.0.2)
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Appendix A: The SASs arising from the D2h wells in the C2+
60 cation

|Ga〉 =
N1√
12

[ |d′; 0〉 − |e′; 0〉 − |f ′; 0〉+ |g′; 0〉+ |h′; 0〉 − |i′; 0〉

+ |j′; 0〉 − |k′; 0〉 − |l′; 0〉+ |m′; 0〉 − |n′; 0〉+ |o′; 0〉],

|Gx〉 =
N1

2
√

15
[4 |b′; 0〉+ |d′; 0〉 − |e′; 0〉+ |f ′; 0〉 − |g′; 0〉 − |h′; 0〉+ |i′; 0〉

+ |j′; 0〉 − |k′; 0〉 − 3|l′; 0〉 − 3|m′; 0〉+ 3|n′; 0〉+ 3|o′; 0〉],

|Gy〉 =
N1

2
√

15
[4 |c′; 0〉 − |d′; 0〉 − |e′; 0〉+ |f ′; 0〉+ |g′; 0〉+ 3|h′; 0〉+ 3|i′; 0〉

− 3|j′; 0〉 − 3|k′; 0〉 − |l′; 0〉+ |m′; 0〉+ |n′; 0〉 − |o′; 0〉],

|Gz〉 =
N

2
√

15
[4 |a′; 0〉+ 3|d′; 0〉+ 3|e′; 0〉+ 3|f ′; 0〉+ 3|g′; 0〉+ |h′; 0〉+ |i′; 0〉

+ |j′; 0〉+ |k′; 0〉+ |l′; 0〉+ |m′; 0〉+ |n′; 0〉+ |o′; 0〉], (A.0.3)
|Hθ〉 =

N2

2
√

6
[2 |d′; 0〉 − 2|e′; 0〉 − 2|f ′; 0〉+ 2|g′; 0〉 − |h′; 0〉+ |i′; 0〉

− |j′; 0〉+ |k′; 0〉+ |l′; 0〉 − |m′; 0〉+ |n′; 0〉 − |o′; 0〉],

|Hε〉 =
N2

2
√

2
[−|h′; 0〉+ |i′; 0〉 − |j′; 0〉+ |k′; 0〉 − |l′; 0〉+ |m′; 0〉 − |n′; 0〉+ |o′; 0〉],

|Hx〉 =
N2

2
√

3
[2 |b′; 0〉 − |d′; 0〉+ |e′; 0〉 − |f ′; 0〉+ |g′; 0〉+ |h′; 0〉 − |i′; 0〉

− |j′; 0〉+ |k′; 0〉,

|Hy〉 =
N2

2
√

3
[2 |c′; 0〉+ |d′; 0〉+ |e′; 0〉 − |f ′; 0〉 − |g′; 0〉+ |l′; 0〉 − |m′; 0〉

− |n′; 0〉+ |o′; 0〉],

|Hz〉 =
N2

2
√

3
[2 |a′; 0〉 − |h′; 0〉 − |i′; 0〉 − |j′; 0〉 − |k′; 0〉 − |l′; 0〉 − |m′; 0〉

− |n′; 0〉 − |o′; 0〉].
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