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Abstract

The molecular shape of any nonlinear molecule can be strongly influenced by the
coupling between electrons and vibrations (vibronic coupling) via the Jahn-Teller
(JT) interaction within the molecule. This influence appears as a distortion of
the symmetrical shape of the original molecule. In such molecules, the adiabatic
potential energy surface (APES) possesses either a trough of minimum-energy
points or several isoenergetic minima (‘wells’) depending on the nature of the

interactions present.

In the case when coupling is infinite, the wells are very deep and the system will
be locked into one of these distorted states. The vibronic states associated with
these wells are good eigenstates of the system in this limiting static case. However,
real molecules have finite coupling, so the system can migrate from one well to
another in a process that is often referred to as the dynamic JT effect. If the wells
are deep, then the motion must involve quantum mechanical tunnelling. Generally,
the motion between wells gives the illusion that the molecule has rotated and this
type of motion is referred to as pseudorotation. The eigenstates of the general
system can then be approximated by symmetry-adapted states (SAS) which are

a linear combination of the states associated with the wells.

In this thesis, we focus on studying the dynamical nature of the JT effect through
investigating the pseudorotation mechanism in different systems using a simple
method employing the time-evolution operator. This allows us to obtain analyti-
cal expressions for the probabilities that a system that starts off localised in one
initial well, may become localised in another well at some later time. These expres-
sions are plotted versus time to show the pseudorotation regime and a comparison

between different cases of pseudorotation in different molecules is made.

Determination of the rates of pseudorotation leads to a better knowledge of

the strength and nature of the vibronic coupling in the system and is a quantity

ii



that is, in principle, experimentally measurable. Also, more information about

the tunnelling splitting between the SASs can be gained from this study.
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CHAPTER 1

Introduction

The Jahn-Teller (JT) effect is of fundamental importance in many areas of physics
and chemistry and continues to be of great interest to researchers around the world.
This interest extends to both experimental and theoretical aspects of the theory.
The main target of the work presented in this thesis is a study of the dynamical JT
effects in different ions derived from the icosahedral molecule Cgy. This molecule
has a simple but beautiful structure, as shown in Fig. 1.1, which endows it with a
symmetry that is not often found in Nature. This high symmetry makes it highly
susceptible to effects derived from electron-vibration interaction as exemplified by

the JT effect. This symmetry will be discussed in some detail in this thesis.

Figure 1.1: The fullerene Cgy molecule.

One of the characteristic features of the JT effect is that the electron-vibration
interaction lowers the symmetry of the molecule involved. If the interaction is

very strong, we can therefore expect the icosahedral cage to become permanently
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distorted. This is the situation usually described as a static JT interaction. If the
interaction is more moderate, then the effect is referred to as being dynamic. The
reason for this motion is easy to understand. The high symmetry of the molecule
means that there will be several equivalent ways in which the molecule could
distort in order to lower the total energy. Obviously, a certain amount of energy
is required in order for the system to change from one preferred configuration to
another. In real molecules, these barriers are finite and so conversion between the
different distorted forms is permissible. In fact, the nuclear motion which results
from this dynamic picture is unique. In this thesis, we shall generally refer to this
motion as pseudorotation. A more detailed description of pseudorotation is given

in Chapter 3.

The uniqueness of pseudorotation means that if such motion is observed, then
we have a clear indication that the system under observation is susceptible to
a dynamic JT effect. In fact, the rate at which pseudorotation occurs must, in
some way, be related to the strength of the electron-vibration coupling within the
observed system. One of the aims of this thesis is to determine exactly how the
pseudorotation depends on the underlying coupling. A number of systems will be

studied, mostly related to Cgy because of its current high interest.

To date, there have been no direct observations of pseudorotation in any system
derived from Cgy. However, modern experimental techniques are capable of oper-
ation on a femtosecond timescale or faster. On these timescales, the movement of
the nuclei associated with pseudorotation is frozen. Therefore, by making use of
appropriate ultrafast techniques we can hope that pseudorotation in the fullerenes
will soon be observed. The purpose of this work is to put in place the relevant
theory so that observation of pseudorotation in these systems can be used to infer
the strength of the coupling present. An idea of how fast these rates will be can
be gained from similar experiments performed on the neutral Cgy. Using picosec-
ond lasers, Rubtsov et al. [1] used a transient grating technique to determine the
rotational reorientation rates of Cgy in several solvents. The rotation times ranged
from 3.5+1.5ps (in decalin) to 134+2 ps (in o-xylene). Intuitively, we would expect
pseudorotation to be faster than these rates and, therefore, measurable provided
experiments on a femtosecond timescale are used. Suggestions for the types of ex-
periments that could yield the relevant pseudorotation rates have been proposed

[2]. Tt is hoped that such experiments will soon provide the data required. Using
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the theory and results developed here, we therefore hope to be able to interpret
the observed rates in order to derive an improved estimate of the strength and

nature of the electron-vibration coupling in some very important ions.

In Chapter 2 we present a useful discussion of some of the theoretical tools
used throughout the thesis. A brief resumé of the theory of the JT effect is
presented and the general form of the interaction Hamiltonian is derived. The
methods that will be used to solve such Hamiltonians are discussed. In particular,
details are provided of the wunitary shift transformation which is used to help
isolate the lowest manifold of the adiabatic potential energy surface (APES). This
procedure, which is based on a second-quantisation technique as developed by
Bates et al. [3], produces a displacement in the nuclear coordinates. Minimisation
of the energy with respect to the displacement is achieved using the method of
Opik and Pryce [4]. This allows minima and other extremal points on the APES
to be found. Projection operator techniques are also discussed and later used to
find the eigenstates for the dynamical motion of our systems. As most of the work
contained within this thesis relates to icosahedral systems, a discussion of this

symmetry is also provided.

The technique which will be used to study the dynamical behaviour for different
JT systems is introduced in detail in Chapter 3. The method employs the time-
evolution operator to investigate pseudorotation between the available minima
produced by the JT effect. It allows us to derive analytical expressions for the
rate of pseudorotation as a function of the vibronic coupling parameters. As an
illustration of the method, a discussion is given of the application of the technique

to the T"® h JT problem which is relevant to the Cg, anion.

As the icosahedral systems tend to be quite complex and not easy to visualise,
a treatment of the more familiar, and less complicated, 7' ® (e @ t3) JT problem
is given in Chapter 4. The problem of pseudorotation in this cubic symmetry is
discussed as an introduction to the general behaviour to be expected in the study
of the more advanced systems. This problem has been studied over a very long
period of time [5, 6|, and the low dimensionality of it facilitates interpretation of

the results using simple graphical methods.

Some work has already been published on pseudorotation in the Cg, anion [2].
A natural extension of this work is to consider the case of the doubly-charged Cg;

dianion. Therefore, in Chapter 5, a p?> ® h JT Hamiltonian is developed to model
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this ion which includes second order electron-vibration interactions. This is the
first time that this system has been considered at this level of sophistication and
we use the results to discuss the pseudorotation to be expected in this ion. For
this system, the complication that arises due to the presence of two electrons will
be avoided by ignoring the term splitting through the study that appears from
the electron repulsion. Overall, at this level of approximation, it is found that the
APES contains minima of either D5, or D3y symmetry. The expressions for the
energies are derived for these minima and the linear combinations of the states
are formulated for the ion at intermediate coupling strengths. Pseudorotation is

then considered.

A further investigation of the system when the repulsion between the two elec-
trons is included will be presented in Chapter 6. This is done by including the
Hamiltonian that represents the splitting between the resultant electronic terms
'H, and 'A4,. The strength of the Coulomb interaction is not well known and so
a new variable has to be included in the theory in order to obtain an analytical

expressions of the energies for the different states.

In Chapters 7 and 8, our attention moves to the cations of Cgy. These are impor-
tant because it is calculated that the vibronic coupling in these ions is larger than
in the anions [7]. Thus, it may be easier to detect pseudorotation in these systems
compared to their negatively doped counterparts, although they are difficult to
obtain experimentally. Both Cg, and Cij are investigated. Each cation shows
different tunnelling behaviour depending on the distorted symmetry involved. C,
distorts to either pentagonal, D54, or trigonal, Ds,, symmetry, while the ng{ dis-
torts to either Dsy, Dsgq, Doy or Co, symmetries. A study of the pseudorotation
between these more exotically distorted minima is then carried out for the case

where CZi undergoes distortion to Dy, symmetry.

Finally, in Chapter 9, general conclusions are drawn and a summary of the main

results of the thesis are given.



CHAPTER 2
Background theory

The JT effect was explained for the first time in the spring of 1936 by H. Jahn
and E. Teller at the Washington meeting of the American Physical Society. The
background to this theoretical announcement started two years earlier following a
discussion between Teller and Landau concerning the degenerate electronic states
in linear molecules such as CO,. The Landau hypothesis was that a molecule with
orbitally degenerate electronic states would be unstable with respect to symmetry-
lowering distortions of its nuclear configuration. Relying on a PhD thesis of Teller’s
student (R. Renner) which dealt with linear triatomic molecules, Teller was able
to convince Landau that linear molecules were an exception to this general sup-
position. In the following year, Teller met Jahn in London and together they
demonstrated that linear molecules were the only exception to this theory for
the case of orbital degeneracy. The other exception is Kramer’s degeneracy for
spin doublets, which cannot be removed through any nuclear displacement but
will split under an external magnetic field. They finally formulated their theorem
which formally states: “for any non-linear molecular system in a degenerate elec-
tronic state a distortion will occur so as to lower the symmetry and remove the
degeneracy and lower the energy” [8]. One of the most important consequences
of this is that the perfect geometry of the molecule can no longer exist, since the

distorted molecule is the energetically preferred structure.

Later, in 1939, a paper was written by J. Van Vleck devoted to the JT effect [9].
It presented the interaction between a 2-fold degenerate electronic term E and
2-fold degenerate e vibrations. This so-called F ® e interaction was explored for
the first time and it showed that the adiabatic potential energy surface (APES)

has the form of a Mexican hat. In this paper, Van Vleck wrote that “it is a great
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merit of the JT effect that it disappears when not needed.” This announcement
showed the poor understanding at that time of the observable effects that arise as
a consequence of the JT interaction. The misunderstanding of the JT effect lasted
for almost two decades and this was confirmed in 1960 when Low stated in his
book “it is a property of the JT effect that whenever one tries to find it, it eludes

measurements” [10].

In 1950, Abragam and Pryce were the first to reveal the dynamical nature of
the JT distortions by analysing the temperature dependence of the electronic spin

resonance (ESR) spectra of Cu?* compounds [11].

Seven years later, Opik and Pryce developed a method to find the number and
kind of the minimum points or wells of the APES for the T'® (e+t2) interaction [4].

From 1957-1958, Moffit and Thorson [12] and Longuet-Higgins et al. [13] showed
that the wave functions of a molecule exhibiting a JT interaction should be vi-
bronic in nature (i.e.contain both electronic and vibrational parts that can not be
separated). In the same period, Liehr and Ballhausen were the first to include
the quadratic terms of vibronic interactions in the F ® e interaction [14]. They
explored the nature of the warping of the E®e APES (i.e.warping of the Mexican
hat). They found three equivalent minima along the bottom of the trough which
correspond to the three directions of tetragonal distortions of the system. Since
that time, a considerable number of publications have explored many different

kinds of JT systems.

In 1961-1963, Bersuker was the first person to consider the splitting of the lowest,
vibronic energy levels due to the tunnelling of the system between the isoenergetic
distorted configurations [15]. Subsequently, in 1964, O’Brien treated the E ® e
JT problem numerically with the linear and quadratic coupling included and cal-
culated the corresponding energy levels [16]. One year later, a major advance in
this field was achieved by Ham, when he introduced the concept of the vibronic
reduction factor which allows physical properties of electronic origin to be calcu-
lated without fully solving the vibronic coupling problem [17]. In 1972, Englman
published the first book which presents a full understanding of the basics of the
JT theory as a whole [18].

However, during these years virtually all of the research work on the JT effect

was directed towards cubic molecules and crystals. At that time, there was little
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interest in icosahedral systems as only a few examples were known to exist. In
1978, Khlopin et al. were the first to study in detail the JT effect in these systems
and they found solutions to various icosahedral problems [19]. Another important
work on icosahedral systems at that time was by Pooler in 1980 who discussed the

underlying group theory and possible symmetries of the Hamiltonian [20].

In 1985, the interest in icosahedral systems significantly increased due to the
discovery of the Buckminsterfullerene Cgy molecule by Kroto et al. [21]. Since
then, many publications concerning JT effects in this molecule have been written.
In fact, the high degeneracy of the electronic and vibrational states of this molecule
makes it a rich area for JT studies as the latter requires the presence of electronic

degeneracy.

In 1987, Bates and Dunn developed a new technique for studying strongly cou-
pled JT systems which involves making unitary shift transformations [3]. They
applied this method to study the T'® (e + t3) JT system and the results ob-
tained showed a good agreement with those previously obtained by other authors,
with one extra advantage that the states produced were automatically vibronic
in nature. In 1995, the same method was applied by Dunn and Bates [22] to
investigate the more complicated 71, ® hy JT system in the fullerene Cg,. This
was the first time that vibronic states and their energies were written down in
an explicit algebraic form for systems of icosahedral symmetry. This method has
been used almost without exception in this thesis to study several JT interaction

Hamiltonians of interest and will be discussed in more detail in Section 2.3.1.

Any molecular system subject to the JT effect can be described by a general
form of Hamiltonian. This Hamiltonian usually has a complicated form and can-
not be solved directly. Therefore, several approximations are used in order to
simplify this Hamiltonian. Important examples include the adiabatic and har-
monic approximations and these are introduced in Section 2.1. Applying these
approximations leads to a less complicated form of Hamiltonian known as the vi-
bronic (interaction) Hamiltonian from which the JT effect can be studied. This
vibronic Hamiltonian can be solved using the unitary shift transformation. New
positions of the nuclear displacements are produced as a result of this transfor-
mation. In order to locate these positions in the nuclear frame and to find the
corresponding states, a very useful method first used by Opik and Pryce will be

used. This method is discussed fully in Section 2.3.2. Projection operator tech-
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niques and the concept of symmetry-adapted states (SASs) for the system will
be introduced together with a discussion of their usefulness and application in
Section 2.3.3.

2.1 The adiabatic approximation

For an isolated molecule, the vibrational motion of the atoms can be resolved into
fundamental vibrational motions for the entire molecule, called normal modes of
vibration. The normal coordinate () represents the progress of the normal mode

so that it can be followed. The Hamiltonian for such a molecule is of the form

~

H(r,Q) = Tu(r) + Tn(Q) + U(r,Q), (2.1.1)

where
U(r,Q) = Va(r,Qo) + Vv(Q) + V(r, Q), (2.1.2)

and where r and @) represent the electronic and the normal coordinates respec-
tively. The term T};(r) represents the kinetic energy of the electrons, T (Q) is the
kinetic energy of the nuclei, while U(r,Q) includes the electronic V(r, Q) and
nuclear Viy(Q) potential energies. V(r, Q) represents the electron-nuclei interac-
tion. This is the term which concerns us most in this thesis. The corresponding
Schrodinger equation to the above Hamiltonian is very difficult to solve due to
the complexity of its terms. Therefore, it is necessary to introduce some ap-
proximations to solve it. One of these approximations is known as the adiabatic
approximation due to Born and Huang [23]. Under this approximation, the nu-
clear motion is assumed to be slow compared to the electronic motion, because
the nuclei are much heavier than the electrons and can therefore be expected to
move slowly. This assumption allows the electronic Schrodinger equation to be
solved first for the case of static nuclei, whilst regarding the nuclear kinetic energy
Tn(Q) as a small perturbation. The total Hamiltonian in Eq. (2.1.1) can therefore

written as

H(r, Q) = [Tu(r) + Vau(r,Qo)] + {Va(Q) + V(r,Q)}. (2.1.3)

The terms in the square brackets | | describe the electronic motion of the static
nuclei, while the curly brackets {} describe the coupling between the electronic

motion and the nuclear vibrations. It should be noted here that the coordinates
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Qo represents the undistorted high symmetry configuration of the molecule or
ion, while () represents the coordinates of the distorted configuration. Thus the

electronic Schrodinger equation can be written as

[Tel(r) + ‘/el(ra QO)]U’Fi (Ta QO) = EOF(QO)U’Fi (Ta Q0)7 (214)
where ur,(r, Qo) are the electronic eigenvectors which provide an electronic basis
for a matrix representation of the Hamiltonian (2.1.3), Egr are the corresponding
eigenvalues and I'; indexes the set of wave functions. Here, I" identifies an electronic

irrep and ¢ the component of the irrep.

From perturbation theory, corrections to the electronic energies Eor(Qo) can be
made, if the distortion in the nuclear framework and the coupling between the
normal modes and the electrons is dealt with as a perturbation. Therefore, the

vibronic coupling can be studied by solving the energy perturbation equation

{(Ww(Q) + V(r, Q) }ur,(r,Q) = Er,(Q)ur,(r, Q). (2.1.5)

This equation enables us to determine the energy corrections due to the nuclear
distortions and the vibronic coupling. The vibronic interaction removes the elec-
tronic degeneracy and therefore it is convenient to write the ur,(r, @) in the form

of the expansion

ur,(r,Q) =Y ci(Q)ur, (r, Qo). (2.1.6)

i

The states ur, (1, Q) are called static JT eigenvectors or adiabatic eigenvectors. The
energy eigenvalues Er,(Q) are the APESs which contain several stationary points
such as maxima, minima and saddle points. It is assumed that these APESs are
well separated and mixing between them can be ignored when the vibronic coupling
is considered [23, 5|. In this case the vibronic states may be approximated to a

simple product of states

Ur, (1, Q) = ¢r,(Q)ur,(r, Q), (2.1.7)

where ¢r,(Q) describes the nuclear motion of the molecule and the electronic
state ur,(r, Q) of the molecule is the associated states with the APES defined
by Er,(Q). The approximation which led to this equation is called the adiabatic

Born-Oppenheimer approximation [24].
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2.2 The vibronic Hamiltonian

A further approximation called the harmonic approximation can now be made to
simplify the above Hamiltonian in Eq. (2.1.5) in order to find a simple form for
the vibronic Hamiltonian. This can be done by assuming that the amplitudes of
the nuclear vibrations are small compared with the inter-nuclear separation. This
allows the potential V(r, Q) in Eq. (2.1.5) to be expanded as a Taylor series about

the equilibrium configuration )y in the form:

V(r,Q) = V(r,Q) +Z (av@gg) (Qi — Qui) (2.2.1)
' Qo

1 62‘7(7" Q)
) 5; <W>Q (@i = Qoi)(Q5 = Qoj) | + -

Here, V('r’, Qo) represents the electrostatic potential energy experienced by the ac-
tive electron with the nuclei fixed at () = )9 and the sums over ¢ and j are over all
the nuclei in the molecule. It is too complicated to deal with the expansion in the
above equation for real molecules because the sums over the many nuclei become
large. Therefore, it is necessary to use a coordinates system that represent the
whole movement of the framework of the nuclei in the molecule which transform
according to the irrep of the point group of the problem. These coordinates are
called the collective symmetrized coordinates Qr., which will replace the coordi-
nate system used above. Thus, each of the Qr, represents a net displacement of
all the nuclei, and transform as the component ~ of the irrep I' of the molecule’s

point group.

In terms of these coordinates, Eq. (2.2.1) can be rewritten as

. 0
V(r,Q) = V(r,Qu) +Z ( ‘gé@> Qry (2.2.2)
7 Qo

Q)
+ Z Z <8QF1%8QFJ% ) Qo QFZI%QFWJ‘ +..

Tivi j'YJ

or

V(T, Q) ,r QO Z VF"/ T, Q QF’Y +3 Z Z WFZ'YM v ,r Q)Qrz'YzQFJ"/J
FZ i Djyj
e (2.2.3)

10
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Vi (r, Q) and mevpﬂj (r, Q) are called the linear and quadratic coupling constants

respectively.

This equation can be further simplified by expressing the terms me,pm (r,Q)

and Qr,,,Qr,,,; in tensor forms

(e =323 (Wm0, (75 Q)i Ty I0)] (2.24)
and
{Q(P ®F }FW ZZ QF,%QFJVJ< i ]’7]|F'7/>} (2'2'5)

Therefore, the vibronic potential Eq. (2.2.3) can be rewritten in the form

V(r,Q) = V(r,Qo)+ ZVM r, Q)Qry (2.2.6)

+ —ZZ{W i @) QT @ ) bry-

Iy T.T;

The first term in this equation is the potential energy of the electron as mentioned
before in Eq. (2.1.2). Substituting the above potential into Eq. (2.1.2) and then
into the Hamiltonian Eq. (2.1.1) gives

H(r,Q) = He(r, Qo) + Ho(r, Q). (2.2.7)
where the electronic Hamiltonian is given by
He(r, Qo) = Tu(r) + V(r, Qo) (2.2.8)

and the vibronic Hamiltonian as

Ho(r,Q) = ZVW r,Q)Qr, (2.2.9)

+ —ZZ{W i @) {QT @ Ty) ey

Iy I,T;

2.2.1 Basis wave functions

In order to study the JT interaction, we shall use the matrix representation form
of the JT Hamiltonian. As shown above, several assumptions have been made
to simplify the molecular Hamiltonian in order to derive a general form of the

vibronic Hamiltonian from which the JT effect can be studied. Now, the vibronic

11
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Hamiltonian in Eq.(2.2.9) can be expressed as a matrix representation by placing
it between the electronic states ur,(r, Qo) which form the basis for the matrix.

This is written as

<uF¢ |7:‘U|UF]’> = Z(ufz

Vi (r, Q)| ur, ) Qs (2.2.10)

Iy
1 .
+ 5 DO (W @ 1)y fur, ) QT3 @ Ty

F’y FiFj
This matrix element can be simplified further if we exclude the term for the totally
symmetric A mode. The A term which is linear in (Jp, causes an energy shift to
all the electronic levels and can therefore be ignored by redefining the zero of
energy. The other term which is quadratic in ()ry is equal to the elastic energy
of the nuclei %ZM fwi @, where i and w are the reduced mass of the nuclei
and the frequency of vibrations respectively. The elastic energy can be added to
the kinetic energy of the nuclei %ZM iplgw to form the Hamiltonian for a set of

simple Harmonic oscillators
1 1

Hsmo = 3 Z (;Pgw + ,uw%Q%,y) : (2.2.11)

Iy

where Pr, is the linear momentum of the nuclei.

The Wigner-Eckart theorem [25] can be applied to Eq. (2.2.10) so that the

matrix elements on the right can be written as

(ur, | Voo (r, Q) ur,) = (ur|[Ve(r)|lur) (Dyur,|ur,) (2.2.12)

(ur, [W(T; @ Tj)rylur,) = (url[W(T; @ Ty)el[ur) (Dyur, |ur,).
The (up||Vr(r)||up) and (up||W (T; @ T';)p) are called the reduced matrix elements
or respectively the linear and quadratic vibronic coupling coefficients. They mea-

sure the strength of the electron-phonon coupling in both the linear and quadratic

interaction and for simplicity they will be denoted by Vr., and I/VFF i,

Now, the interaction Hamiltonian Eq. (2.2.10) can be rewritten in matrix form

as
7 _ 1 1 o 202\ I 2.2.13
<uFi| U|UFJ'> - 5; ; I‘7+MWFQF7 ( e )
+ Z VF'yQF7<F7uF¢ UI‘j>
I'v#A
1 T,
) Z ZWF QT @ I')ry (Tyur, [ur,).

12
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where [ is the identity matrix. This is called the vibronic Hamiltonian in which
the first term describes a set of simple harmonic oscillators. The second term
represents the linear coupling between the electrons and phonons whilst the third
term represents the quadratic coupling. The (I'yur,|ur,) terms are called the
Clebsch-Gordon (CG) coefficients [26, 27|. These coefficients can be arranged into

square matrices of dimension [I' x T'].

The terms in the above Hamiltonian can be defined as

1 1
Mo = 3 > (—PﬁW + uw%%) I, (2.2.14)
Iy H
Hine = Z VFvQF’y<F’7UFi|UFj>a
y#£A
1 T
7_‘quad = 5 Z ZWIFZFJQ(FZ ®F]’)[‘7<F’}/UE|UF].>.
Ty#ATT

Thus, a general form of the total vibronic Hamiltonian may be expressed as

The above form of the Hamiltonian is the one which can apply to any JT system.
The linear interaction Hamiltonian for the T, ® hy JT system will be taken here
as an example of how to construct such a Hamiltonian. Let us start with the

second term in Eq. 2.2.14, this term can be expanded as

<T1:vh€|le> <T1:vh€|T1y> <leh€|T1z>
Hint = V1iQo | (Tyyho|Tie) (TiyhelTy,) (Tiyhe|Tiz) | + -, (2.2.16)
<T1zh€|le> <T1zh€|T1y> <T1zh9|T1z>

where T}, represents the o component of the T electronic states which forms the
bases for the matrix representation, hy is the 8 component of the A vibrational
mode and (T',h|T1.) is a CG coefficient which are given in Ref. [27]. The ellipsis
represents equivalent terms for the other components of {hg, he, hy, hs, he}. Con-
structing the interaction Hamiltonian is straightforward now but care should be
taken when using the tables in Ref. [27] to obtain CG coefficients. Substituting

the CG coefficients, this Hamiltonian becomes

: ot 0 0
’Hintza\/gleG 0 —¢ 0| +..., (2.2.17)
0 0 1

13



CHAPTER 2: BACKGROUND THEORY

where ¢ = (/5 + 1) is the golden mean.

Summing all the components, the linear interaction Hamiltonian for this system
has the form [22],

671Qp+ 22 V2Qs V2Qs
V3 »
Hine = 5 21 V2Qs  —0Qo— T V2Qs . (2.218)
V20 VIQi Q-5

Further details on the construction of such matrices can be found in Refs. [28]
and [29].

2.2.2 The adiabatic potential energy surface (APES)

Assuming that the above vibronic Hamiltonian may be diagonalized, as mentioned
earlier, a set of APESs will be generated. If the coupling is strong, the energy
difference between the APESs will be much greater than the vibrational energy hw.
Therefore, it is assumed that the nuclear motion is confined to the lowest APES
(LAPES). An analysis of this LAPES shows that, when only linear coupling terms
are included, there will be either a continuous equal energy surface (trough) or a
set of distinct minima (wells). If the quadratic coupling terms are included, then
for the case when the energy surface is a trough, the surface of the trough will
warp to give local minima (for example, this happens in the F ® e system). In
the case of wells, the depth of the wells and their separation from each other will
be modified with no change in the behaviour of the system. The work presented
in this thesis assumes the case when the LAPES shows distinct minima through

linear or quadratic coupling.

Up to this point, the wave functions for each case are specified according to
the strengths of the coupling. In infinite coupling where the wells are infinitely
deep, the JT system is localised in one of the wells and therefore the eigenstates
for the system will be the associated well states, and this what is called a static

JT system.

For finite coupling strengths, when the height of the barriers between the wells
is finite, the system will be able to tunnel from one well to another and therefore
the correct eigenstates will be the symmetry-adapted states which are linear com-

binations of the well states. The tunnelling between wells of the system is known

14
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as the dynamical JT effect.

2.3 Computational methods

This section presents some techniques that will be used to treat JT problems in

the case when the APES has the form of distinct minima.

2.3.1 The unitary shift transformation

The interaction Hamiltonian (2.2.13) is still very difficult to diagonalize within the
electronic basis in order to find the well positions (or minima) on the LAPES and
the associated states. The difficulty arises because the vibronic Hamiltonian still
includes both electronic and vibrational terms. An efficient method to deal with
this problem is to use a unitary shift transformation. This method was introduced
by Bates and Dunn [3] and involves applying a transformation operator to the
Hamiltonian in order to displace, or shift, each of the nuclear coordinates @); to
points ); — a;h, where the a; specify the positions of the wells on the APES. The

unitary shift operator is defined as

U:eXp IIZOZJP]
J

where P; is the momentum operator conjugate to ;. These are expressed in

, (2.3.1)

terms of creation and annihilation operators b} and b;, respectively, as follows

0w
Pj_—lhan_u/ : (b]—bj> (2.3.2)

Q, = _\/%Ew (bj + bj) (2.3.3)

where b; and b} act on the states in the following way

bln) = nln—1), (2.3.4)
bin) = Vn+lln+1). (2.3.5)
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The general form of the Schrodinger equation for the system is written as the total

Hamiltonian operating on the untransformed vibronic state as

Hit| ¥y = E|V) (2.3.6)
U'Huu|V) = E UMW)
U'HyuU U = E U
or
H|V) = E |) (2.3.7)

where a tilde indicates the transformed Hamiltonian H = UTH,,U and V) =

UT|®¥"). The untransformed eigenfunctions are therefore
|0y = U |W). (2.3.8)

The advantage of acting by the shift operator is that, the full vibronic Hamiltonian
Eq. (2.2.15) may be split into two terms as

H = U'HuuU = Hy + Ho, (2.3.9)

The 7-21 term contains only values of «; while 7:[2 contains all the other terms
related to (); and P;. As our aim is to determine the ground states of the system
in strong coupling, only the H, term needs to be considered. At this stage, we

ignore the H, terms.

The shift transformation is accomplished as follow

H = UTHtOtU
= U Hior, U] + UTUH,y
= U Hyip, U] + U Hins, U] + U [Hguad, U] + Hior (2.3.10)

Simplifying this Hamiltonian can be achieved readily with the help of the following

commutators

Qj, Pl = ihdjy,

[Q;, U] = —ha;U,
Q;Qk, U] = Uh(hojor, — o;jQr — axQ;)
= —h(hajor + a;Qr + Q) U, (2.3.11)

which can be easily verified by direct calculation. We are only interested in finding

‘H1 and so anything still involving phonon operators can be dropped because they
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will belong to Hs. For example, the first term in Eq. 2.3.10 can be written, using
Eq. (2.3.11), as

1
Ut Hy, U] = §UTZ(§[PJ2,U]+M[ ;,U])
J
1
— 5fwwzz(7~za§—2%~c2j). (2.3.12)
J

Therefore, it will contribute 3h%uw?® Y-, aF to H, and —hjuw? >, iQj to Ho.

Having obtained H;, the values of «; required to minimise the energy (and their
associated eigenfunctions) can be determined by using the minimisation procedure

developed by Opik and Pryce, which will be discussed in the following section.

2.3.2 The method of Opik and Pryce

This method is concerned with identifying the positions of the stationary points
on the APES. According to the approximations discussed previously, we have
produced a Hamiltonian ﬂl(aj) that contains only values of «; and satisfies the
Schrodinger equation

Hi(ay)|¥(r)) = E[(r)), (2.3.13)

where W(r) is the eigenvector (assumed normalised so that (¥ (r)|¥(r)) = 1) which
can be described by c; parameters that represents the direction cosines between
the eigenvector U(r) and the main components of the electronic basis. The energy
of the system is given by the expectation value of 7—21(&]») within the electronic
eigenvector W(r) as

E = (U(r)[Hy (o)W (r)). (2.3.14)

Following the method of Opik and Pryce [4], we minimize this expression for the
energy with respect to the values of a; by setting

oF

- = 2.3.1
5o = " (2.3.15)

_ a% (Cw )Pt w ()

= () TSy

j
A set of equations for o; the positions on the APES in terms of ¢; may be found.

These steps are analogous to those accomplished by Ceulemans and Fowler in
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Ref. [30]. Substituting these as back into Eq. (2.3.14) gives an expression which

is a function of ¢; only namely
E = (W(r)[Hy(c)|(r)). (2.3.16)

By minimising this expression with respect to these parameters as

oFE
8Ci

= 0 (2.3.17)

= o (WO e)

= ) D),

the electronic coefficients can be found and therefore the transformed electronic
eigenvectors |A;0) can be obtained. The values of the a;s can then be calculated
straightforwardly by substituting the electronic coefficients into the equations ob-

tained for the a;s.

The vibronic states which are the eigenstates for the interaction Hamiltonian
‘H;,: before the shift transformation, can be found by multiplying the transformed

electronic eigenvectors |A;0) by the value U, for that state namely
|A":0) = U4|A; 0) = Ua|A)|0), (2.3.18)

where |A) represents the transformed orbital state and |0) denotes that all phonon
modes are in their ground states. The states like (2.3.18) are called the untrans-
formed states (or Glauber states [31]) and they are automatically vibronic as the

shift operators U, contain phonon operators.

2.3.3 Projection operators

In the previous section, it has been shown how the positions of the minima in
the APES can be located by using the Opik-Pryce method and therefore the form
of the associated wave functions at the minima can be found. As mentioned in
Section 2.2.2, if the system has infinite coupling, then the system will be localised
in one of these minima and the vibronic states obtained already for the system
are good eigenstates for the static JT case. However, if the coupling strength
is finite, then the vibronic states associated with the wells are not appropriate

eigenstates for the system as a whole and the correct eigenstates will be a linear
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combination of the well states due to the tunnelling between the wells (see e.g.
Refs [32] and [33]). Therefore, the projection operator technique can be used to
construct the required combination which generates a set of symmetry adapted

states (SASs) from a set of non-symmetrized states.

The general theory of projection operators can be found in Refs. [34]-[35]. For
any point group of symmetry G with irreps I'!, the projection operators pi, for
each of the irreps can be defined as [36]

o= 23" D (myE, (2.3.19)

g Reg

where ¢ is the order of the group G, d; is the dimension of the irreps I', Ris a
symmetry operation of the group G and D! (R)* is the complex conjugate of the
ts'h element of the matrix representation of the symmetry operation R. The effect
of the operator pi, when applied to a state of undefined symmetry acting in a
space of group operators produces either zero or a linear combination of the basis;
for the irreps T (e.g. T for the group I are A, Ty, Ty, G and H). In another
words, a complete basis set of SASs can be obtained by applying the projection
operator for each irrep to an arbitrary function until we obtain all the required
basis states. For example, for the 7' ® h problem it was found that for the case
of Ds; minima, on applying the projection operator with T}, irrep to |A’;0) the

state of well A, the obtained SAS has the form
Thue) = [67(IC:0) + [D50)) + (|E';0) — | F"; 0))], (2.3.20)

where |T},,) is the SAS of T}, irrep. In order to construct the projection operators
for a certain point group, the matrix representations of the symmetry operations
for each irrep are required. For the Cgy molecule, some of the required matrices

are given in Ref. [37].

To find the energies corresponding to the SASs, the matrix elements of the total
Hamiltonian H;,; between all relevant untransformed vibronic states | X’; 0) should

be evaluated first. This can be done by evaluating
MX1X2 = <X17 O|Htot‘Xé; O> (2321)

The energy of the SASs follow from these Mx, x,. Applying this to the above SAS,
we can find that the energy of the state is

(2.3.22)
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The denominator here involves matrix elements of the form (C’;0|H;.|D’; 0),
which can be simplified to S(D’|C")¢ject- The term S refers to the phonon over-
lap (0|U}L,Uc|0) which can be obtained for the different wells D and C' using the

formula

, (2.3.23)

. A ,
C) ==/ —gwa?), (2.3.24)

and j labels the components of the phonon states (e.g. for the h mode j =
{0,¢,4,5,6}). Further information about Eq.(2.3.23) can be found in Ref. [33].

where

2.4 The icosahedral point group

Since our interest in this thesis is to study the dynamic JT systems in different
systems involving Cgq ions, it is very useful to start by considering the symmetry
group to which our fundamental system belongs. This will facilitate identifying
the electronic and vibrational states in JT systems by labelling them with the help
of group theory.

The Cgo molecule belongs to the icosahedral point group (Ij,), which is the
largest symmetry point group allowed in three dimensional space. The molecule
itself possesses the geometry of a truncated icosahedron as shown in Fig. 2.1, with
the 60 carbon atoms located at the vertices. Twelve pentagonal faces replace the
twelve truncated vertices of the icosahedral and twenty hexagonal faces replacing
the twenty triangles. The symmetry group [ of the icosahedron consists of 60
rotation operations, which correspond to the rotation of the icosahedron by an
angle a = 27”

fifteen 2-fold, ten 3-fold and six 5-fold axes of rotation. The 5-fold axes join

about the various n-fold symmetry axes present. In all, there are

two different opposing vertices. The 3-fold axes join the centres of two opposite
triangles, while the 2-fold axes join the mid-points of opposite edges. The rotation
angle « divides the icosahedral rotation operators into five classes. The class C;
contains only the identity operator (F); the classes Cy and Cj3 contain all rotations
about 5-fold symmetry axes and the class C; contains all 3-fold symmetry axes

rotations, while class Cs contains the 2-fold symmetry rotations.
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Figure 2.1: The figure on the left is the geometrical shape of a regular icosahe-

dron which can be truncated to produce the Cgy molecule (right).

E 1205 12C% 20C5 15C, i 1253 125, 20S; 150,

A, +1 0 +1 +1 +1 +1  +1 +1 +1 +1 +1

T, +3 +¢ 1—-¢ 0 -1 43 ¢ 1—¢ 0 -1
Ty, +3 1—¢ +¢ 0 -1 43 1—¢ ¢ 0 -1
G, +4 -1 -1 41 0 +4 -1 -1 +1 0
H, +5 0 0 -1 41 45 0 0 -1 +1
A, 41 41 +1 41 41 -1 -1 -1 -1 -1
Tww +3 +¢ 1—-¢ 0 -1 -3 —¢ é-—1 0  +1
Tow +3 1—¢ +¢6 0 -1 -3 6—-1 —¢ 0  +1
G, +4 -1 -1 41 0 -4 +1 41 -1 0
H, +5 0 0 -1 41 -5 0 0 +1 -1

Table 2.1: Character table for the I}, group, the golden mean ¢ = %(1 +/5).

The Cgy molecule also possesses inversion through its centre as a further class
of symmetry operations. Interchanging any of the sixty carbon atoms with its
opposite atom by inversion leaves Cgy unchanged. Thus, the inversion operator
(7) (or parity operator) can be included as an additional symmetry operator for
the Cgp molecule. Combining this operator with the 60 operations of the group [
produces the full 120 element, icosahedral point group I, with 10 classes included.
The classification of the classes of the full group in terms of their character is
shown in Table 2.1.
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2.4.1 Irreducible representations (irreps)

As mentioned above, identifying the molecule’s symmetry in terms of the symme-
try operations conforms with the mathematical requirements of the molecule. In
other words, using tools provided by group theory to describe and analyse some
of the physical properties of such molecules is a powerful technique to facilitate
understanding of the whole problem. The irreducible representations (irreps) of
the point group are one of these tools. Table 2.1 shows the irreps for the icosa-
hedral point group. In the first column on the left there are ten irreps: two with
one-dimension (A,/,), two with four-dimensions (G,/,), two with five-dimensions
(Hgy/) and four with three-dimensions (71g/14), (Tg/24). All are subscripted ac-
cording to whether the basis states of their matrix representations are even (g) or
odd (u). Each of the irreps is defined by basis functions that transform among
themselves. For example, the irrep T}, related to the components {p,,p,,p.} of
p-orbital. The complete set of basis functions is most conveniently defined in
terms of spherical harmonics wave functions. Therefore, the irreps of the group
I, can be classified in terms of spherical harmonics wave functions as shown in
Table 2.2 [38]. This table tells us that each of the irreps of the group I, can be
expressed as spherical harmonics Y;,, with specific angular momentum quantum

number.

It is convenient to label the electronic and vibrational states of the Cgy molecule
using the irreps of the icosahedral point group. In the following chapters, JT
systems relevant to Cgy molecules and ions will be classified using such irreps
labels. The electronic states will be labelled using uppercase letters, while the
vibrational states will be denoted by lowercase letters. For example, the T"® h
system involves a coupling of an electronic 7" triplet with a set of five dimensional

h-type quintet vibrations.

2.4.2 Electronic structure of Cg,

Since the JT interactions in Cgy ions deal with the electronic structure of the
molecule, it is worthwhile reviewing the electronic structure of the isolated Cgg
molecule. Hiickel molecular orbital (HMO) theory provides a useful starting point
for the energy levels of the undoped Cgq [39], so that we can subsequently consider

its anionic and cationic forms. Fig. 2.2 shows that the ground state of neutral
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[ Irreps of I,

Ty, ® Gy
G, D H,

Ty, ® Ty, ® H,
Ag@Ty© Gy H,
Ty @ Ty Gy @ H,

Ty ® Gy, ®2H,

Ty, ® T, ®2G, © H,
Ay Ty @ Toy ® G, @ 2H,
11 2T, ® T, ® G, @ 2H,
12 A, @ Ty, ®Thy ®2G, ®2H,
13 Ty, @ 215, & 2G, & 2H,
14 Tig @ Thy ®2G, © 3H),
15 A, ® 2Ty, @ 215, ®2G, ®2H,

©O© 00 N O Ot k=W NN = O

—_
(@]

Table 2.2: Spherical harmonic functions Y ,, reduced to irreps of I;. (Based
on Ref. [38] with extension to (=15).

Ceo possesses a closed shell electronic structure with ten electrons in an electronic
quintet orbital, giving an A, ground state. This highest occupied molecular orbital
(HOMO) has the irrep of H, in the I), group. The Cgy molecule in this form does
not exhibit any vibronic interaction because it is non-degenerate and therefore
JT interaction is unexpected for this structure. The lowest unoccupied molecular
orbital (LUMO) is an electronic triplet orbital with 77, symmetry. This is a 3-fold
degenerate orbital and so it can hold up to six electrons. The JT interaction is
possible, therefore, if electrons are added (or removed) from the nuclear species.
Once the isolated Cgp is doped, either cations Cgy or anions Cg, can be formed.
The cation Cgy is formed when n electrons are taken from the HOMO of the
neutral Cgg molecule. The removal of electrons will cause vacancies to appear in
the HOMO. These vacancies or ‘holes’ behave as positively charged particles and

can be coupled to a vibrational mode via JT interaction. The other doped form
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of Cgp occurs by electron addition to form Ci; anions. These are formed when n
electrons are added to the LUMO of Cgy to form electron-doped molecules. These

anions are also coupled to the vibrational modes and thus exhibit JT interactions.

The electronic structure shown in Fig. 2.2 is a good starting point for the theo-
retical analyses presented in this thesis. However, one should be aware of the vast
literature related to the electronic structure of Cgo. A good general reference is
the book by Dresselhaus et al. [40]. Specific works of particular interest include
the paper by Deng and Yang [41] which gives easy access to the functional forms
of the molecular orbitals involved and the band structure calculations of Laouini
et al. [42] which consider the molecular orbitals in the context of the solid state.
Another good paper is that by Green et al. [43] which gives the results of density
functional calculations of the neutral Cgy molecules and its negatively charged

anions.

Energy

T, (LUMO+1)
T,. (LUMO)

—iti—  H, (HOMO)
-1 + %H%Hﬁﬁ% Gg’ Hg

—H— T
3+ —H4— A

Figure 2.2: Hiickel molecular orbital diagram for Cgg showing the first 36 or-

bitals of lower energy [44]|. Only the first 30 are filled in neutral
Ceo.
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2.5 Vibronic coupling in Cg

For any polyatomic molecule composed of n atoms, the motion of each atom can
be resolved into components along the three directions of a Cartesian coordinate
system. Therefore, any molecule consisting of n atoms possesses 3n degrees of
freedom, including vibrations, translations, and rotations. The vibrational mo-
tions of the atoms can always be resolved into fundamental vibrational motions
for the entire molecule, called normal modes of vibration. It is well known that
any non-linear molecule has three translations and three rotations. Then the num-
ber of the normal modes for the non-linear molecules is 3n minus the number of
the non-vibrational motions (translations and rotations). Therefore, a polyatomic

molecule such as Cgy possesses 3n-6 normal modes of vibrations [45].

The Cgy molecule has 180 degrees of freedom, this 180 minus the six modes of
translations and rotations leaves 174 normal modes of vibrations. Group theory
classifies the 180 degrees of freedom as a, + 5ti, + 5o, + 64y + Thy + 2a4 +
4t14 + 4tyg + 6g, + 8hy. There is one ¢y, and one t;, mode that correspond to
the translational and rotational modes. Omitting these two modes from the 180

leaves 174 vibrational modes.

It should be noted here that not all the above modes can couple to the electronic
orbitals to form JT interactions. The modes of interest that concern us must satisfy
specific conditions to be JT normal modes. Suppose that we have an electronic
state within icosahedral symmetry with irrep I' and nuclear coordinates ()5 where
A =1,2,...,|A| which transform as the irrep A. From group theory considerations
these coordinates which are allow to be coupled to the electronic I state correspond
to symmetric Kronecker square [I' ® T'|g which contains A in its decomposition
[46]. Normal modes which satisfy this condition are called JT active modes. For
example, if 77, is the electronic state that is involved in the coupling, the Kronecker
product for this irrep is given by [T} ® T1] = [A ® H|s ® {T1}a. Thus, the
T}, electronic state is allowed to couple only to the 2a, and 8h, normal modes.
Therefore, the JT interaction takes the form of T, ® a, and T3, ® h,. Coupling to
the a, mode is always considered as a trivial coupling and usually neglected, since
the a, mode is only a breathing mode and thus does not resolve the electronic
degeneracies but instead it has the effect of introducing a constant shift in the

energy levels. The coupling to 8k, modes usually reduced to a coupling to only
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one single effective mode. This is because it has been found that, the corrections
that are needed to obtain a good representation of the energy levels when all the
eight modes are included in the problem are quite small and do not do much
change to the energy levels [47]. Therefore, coupling to a single effective mode can
be used with confidence that will produces a good approximation of the energies

of the ground states.
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A discussion of pseudorotation in

JT systems

In light of what has been mentioned previously, it should be apparent by now
that the JT effect is usually treated as a dynamical problem rather than a static
one. Theoretically, this approach can be analysed by studying the tunnelling
between equivalent distorted configurations by finding the appropriate SASs. Ex-
perimentally, the dynamical JT effect could be observed directly via observing the

pseudorotation of the molecule using modern ultrafast spectroscopic techniques.

Although pseudorotation phenomena in molecular systems were known [48]
some time ago, the causes of this phenomena was not defined until recently.
Berry [49] assumed that the APES can be distorted into several equivalent min-
ima with small energy barriers between them and without specifying the origin
of these minima, the pseudorotation was observed as a transition between them.
Pseudorotation can be detected using ultrafast techniques and is expected to be in
a time scale of a few femtoseconds faster than the molecular rotation which itself
occurs on a time scale of few picoseconds. To avoid confusion, distinction should
be made between the real rotation of the molecule and pseudorotation. The latter
is an intramolecular motion in an angular direction in () space which appears in
real space as a fluctuation travelling around the distorted geometric centre of the
cluster [see Fig 3.1.(a)]. The former happens when all atoms in the molecule rotate
simultaneously around a common axis of rotation usually referred to as a proper

axis [see Fig 3.1.(b)].

Pseudorotation in JT systems has three possible forms depending on the shape
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(b)

Figure 3.1: (a) Pseudorotation of a distorted Cgy molecule, and (b) Real ro-
tation of a distorted molecule [50]. One atom is coloured white to

distinguish the two motions.

of the APES which, in turn, depends on the strength of the vibronic coupling
and also on the order of the @’s that are involved in the coupling [52|. The first
kind of pseudorotation is known as free-rotation. This happens when the APES
has a continuous surface of equivalent minimum points (referred to as a trough)
and the system is free to rotate amongst these minima. The motion appears as a
rotation of the distorted nuclear framework [see the second sub-figures in (a) and
(b) of Fig 3.2]. The second type of pseudorotation is called hindered rotation. This
occurs when there are potential barriers between discrete minima which are small
compared to the quanta associated with the radial vibrations. As a result, the
system stays longer at the minima than at the maximum area of the barrier and
the motion will appear as slow changes in the distorted nuclear configuration [see
the third sub-figures in (a) and (b) of Fig 3.2]. The third pseudorotation form is
called pulsating (or fluctuating) motion. This motion takes place when the height
of the potential barrier is larger than the quantum of radial vibration. In this
case, the angular motion cannot be separated from the radial motion and therefore
the dynamical motion of the system will be described by localised vibrations in

the minima accompanied by tunnelling between them. This motion appears as
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o A
el <= 2

N N’

Figure 3.2: (a) Represents the £ ® e system (the black spot) in the LAPES
in @ space with consecutive inclusion of first linear (V7) and then
quadratic V5 coupling. (b) Represent the orientation of a triatomic
molecule X3 in real space. The first sub-figure in (a) and (b) shows
the system when there is no coupling. The second sub-figure in
(a) shows a free rotation of the system around the bottom of the
trough whereas the second sub-figure in (b) shows the correspond-
ing distortion of the X3 molecule in real space. Each of the three
atoms moves freely along a circle of radius p/v/3. The third sub-
figure in (a) represents the hindered rotation where the system is
locked into one of the isoenergetic wells due to the small height of
the potential barriers between them while the third sub-figure in
(b) shows bold points on the circles which indicate the positions of
the wells where atoms are allowed to rest for a longer time before
moving to another position in the real space. This figure is taken
from Ref. [51].
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a periodic change in the orientation of the distorted nuclear configuration and
as a pulse travelling between the equivalent wells in the APES. The APES will
have a shape similar to that in Fig 3.2 part 3(a) but with high walls rather than
the lower walls. This kind of motion leads to what is called tunnelling splitting,
which is one of the most important observables in the JT effect. It has the effect
of splitting the energy levels of the ground states. The mechanism of this effect
happens when there is an APES with a set of n-fold degenerate minima. Tunnelling
between these minima reduces the n-fold degeneracy resulting in new states with
symmetries associated with the point group that the system belongs to. For
example, consider the T3, ® h, system subject to a JT interaction resulting in
minima of Ds; symmetry. Here there are 6 wells in the APES. It is clear that
there are no 6-fold degenerate irreps in the icosahedral point group and that
this degeneracy is only accidental. Tunnelling between wells will remove this

degeneracy producing a triplet 77, and a triplet T5,.

Pseudorotation in the T3, ® hy JT system has been examined theoretically by
Hands et al. [2] using a simple technique involving the time-evolution operator.
Applying this operator on a well state shows which wells the system is allowed to
visit and which ones cannot be visited during the tunnelling journey and therefore
this allows the dynamics of the pseudorotation to be followed. This theory of the
time-evolution operator will be briefly discussed in Section 3.1. Application of the
theory to JT systems will be given in further sections. The T}, ® h, JT system
is given in Section 3.3 as an example of how this theory has been applied and

therefore how has the system evolves with time.

3.1 The time-evolution operator

The theory of the time-evolution operator [53, 54| depends on the assumption that
there is a physical system with an initial state at time ¢y defined as [(to)). How

does this state change to [¢(t)) at any later time ¢?

The two states can be related by means of a linear operator Uy(t,ty) such that

[0(t)) = Us(t, to)[1(t0)) (t > to), (3.1.1)

where we infer from this equation that the operator U(t,()) is a unitary operator
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that satisfies
Uy(t, to) U (t, o) = U (L, to)Up(t, to) = 1, (3.1.2)

where [ is the unit operator, the operator that leaves any state unchanged. The
problem is to find an expression for U;(¢, ). To do this, we substitute Eq. (3.1.1)

into the time-dependent Schrodinger equation

1718'%(;» — H|w(t) (3.1.3)

to get 3
ihoy (Uelt, to)[9(t0))) = H (Ur(t, o) [ (t0))) (3.1.4)
% = —%HUt(t, to). (3.1.5)

The solution of this differential equation depends on whether or not the Hamil-
tonian involves time. Generally, all the Hamiltonians in our study do not depend

on time and then it can be easily seen that integration of Eq. (3.1.5) leads to

U(t, o) is known as the time-evolution operator or propagator and it can be used

to follow the temporal evolution of a system for any given initial state.

3.2 Time-evolution in JT systems

As stated earlier, any JT system can be defined by a Hamiltonian that has the
general form of Eq. (2.2.15). Note that, it has been explained that the SASs repre-
sent a good approximation to the true eigenstates of the system in the dynamical

motion. Therefore, according to this approximation we may write
HIL:) = &l1y), (3.2.1)

where ¢; is the energy of the ith SAS and |I';) is the ith SAS having the general

form

) =" alJw)). (3.2.2)
j=1

In Eq. (3.2.2), the agi) are a set of real coefficients appearing in front of each well

in the SAS and |wj;) is the jth well in the LAPES. Now, from the above equation,
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it is clear that the n expressions for the symmetry-adapted states can be inverted

to give expressions for the states associated with the wells as
wi) = > [Ty (3.2.3)
j=1

where bgj ) are real coefficients. Now, in order to study the temporal evolution of

a well state, the time-evolution operator can be applied to the well state as

Uit to)|wi) = > b exp[—iH(t — to) /h]|T;). (3.2.4)

j=1

On expanding the exponential as a power series using the identity

2
T —T
exp[—z] =1— 1 + ( 2|)

+.o (3.2.5)

the right hand side of Eq. (3.2.4) is

iH(t —to) | (ZiH(t —to)/h)?
o 2! -

lf—t) ey, (3.2.6)

exp[—iH(t —to)/A][T;) = (1—

where the last equality follows using Eq. (3.2.1). Thus, the temporal evolution of

a well state is given by
Uit to)lw) = > b exp[—ie; (t — to) /BI|T;). (3.2.7)
j=1

From quantum mechanics, the probability P;; that a system initially localised in

a well |w;) has become localised in another well |w;) a time ¢ later is
Py = [{wy|Uy|w;)|*. (3.2.8)

Multiplying Eq. (3.2.7) by (w¢| gives

n

SO S0 expl—iest/H) D) (3.2.9)
k=1

=1

(wy|Uywi)

= Z bgcj)bgj) exp[—ig;t/h),

J=1
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where we have taken ¢y = 0. On taking the modulus square of Eq. (3.2.9) we

obtain
Py = Zb(J b(J exp[+ie;t/h] Zb b( exp|—iext/h] (3.2.10)
= ZZ()(J b(/LC b; exp[—i(&?k—é?j)t/h].

The jth and kth summations generate three conditions for this equation; either

j=korj<korj>k. Therefore, the above equation becomes

i (bgﬁbgﬂf (3.2.11)
j=1

+ ) BB expl—i(er —e;)t/h)

Py

i<k
+ PN expl—i(er — )t/h.
i>k

The last term in this equation can be written with j «— k
> 000 expli(e; — ex)t/h), (3.2.12)
i<k

as j and k are dummy variables. Using the identity
2 cos 0 = explif] + exp[—if], (3.2.13)

the final form of the probability is either

Py = i(b@b(j))Q (3.2.14)

+ 22130 DY cos|(e; — ex)t/H],

i<k

or, alternatively,

n N2 , ,
Py=>Y_ (b§ﬂ)b§£>> +2 I (1 — 2sin((e; — ex)t/2H]}. (3.2.15)

j=1 i<k

This equation can be used to study the temporal development of a system initially
localised in a particular well. As can be seen from this equation, the temporal
evolution of the probability depends on the tunnelling splitting ¢; — ¢, between
the SASs. This quantity usually given the symbol A and it can be found by taking
the difference between the energies of the SASs. For example, for the T3, ® h,
system the SASs are 73, and 15, and A = Ep, — Epy,.
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3.3 Application to Cg,

A simple example of pseudorotation is that described by Hands et al. [2] for the Cg,
anion. In this example, the application of Eq. (3.2.15) to the T, ® h, JT system
when distorted to Dsq symmetry [22| will be given. In this case, the system is
undergoing tunnelling between 6 wells in the APES and therefore six SASs appear
due to this tunnelling. The time-evolution theory outlined above has already been
applied to this system [2]. The 6 SASs can be written in a matrix representation

such that

Thuz) / Nr1a 0 0 ¢t o' 1 -1 |A"; 0)

|Tuy) /Nr1a 1 -1 0 0 o' ot | B'; 0)
y

Tvuz)/Nrw | | o7 o7 1 -1 0 0 |C";0)

| Tous) [ Nrou 0 0 1 1 —¢' ¢t | ||D;0)

Touy) / Nr2u —o7t o7t 0 0 1 1 |E'; 0)
y

| Tou2) / Nrou 1 1 —¢t ¢t 0 0 |EF';0)

(3.3.1)

" symmetry adapted states and Nr, ,u represents

where |7} 9,;) represents the
the corresponding normalisation constants, ¢ is the golden mean and |A’; 0) is the
untransformed state for well A. This is a matrix form of Eq. (3.2.2), so that the

matrix elements represent the coefficients ay). Inverting the above equation gives

[ 1450) | [0 ¢ 1 0 -1 ¢ | [ |Tw)/New |
|B’; O> 0 —¢p 1 0 1 10} |T1uy>/NT1u
o) | ¢ 1 0 ¢ ¢ 0 -1 T/ N1
D50y | 204 | 1 0 —¢ ¢ O | | Toue) /Nrau
|E/§ 0) Cb 1 0 -1 Cb |T2uy>/NT2u

i |F7;0) i i —¢ 1 0 1 ¢ 1 L T2uz)/N12u i

(3.3.2)

This matrix represents Eq. (3.2.3). By using the probability expression given in
Eq. (3.2.15) it has been found that the probability of a system initially localised

in well A being found in an adjacent well, say well B at a time ¢ later is given
by [2]

1 At
Pap(t) = = [52 + (1 — S?)sin® (Q—h” : (3.3.3)
and the probability that the system remains in well A is
At
Paa(t) =1 — (1 — S?)sin? (271) : (3.3.4)
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Probability

0.0

time, ¢

Figure 3.3: Diagram showing the dynamics of the T3, ® h, system initially
localised in well A. The continues curve shows the P44 which is
the probability of finding the system still in well A after a time ¢
and the dashed curve shows the P4p the probability of finding the
system in an adjacent well (well B) [50].

Here, S is the phonon overlap between adjacent pentagonal wells and is given by

V/ 2
b [ (5 — a2, ) (339
and A is the tunnelling splitting given by the expression
hwS1n S / /
A=—22002 0 AV +\/2/5V;). (3.3.6)

(1-25?)
Vll is the dimensionless linear coupling parameter and VQ/ and V3/ are the dimen-
sionless quadratic parameters respectively. A plot of the above expressions of the
probabilities is shown in Fig. 3.3. It is very obvious from the figure that, if the
system is starting off in well A is being found in well B after a time t varies as

sin?.

We note from Eq. (3.3.4) that at ¢t = 0, P4a = 1. In other words, the theory
assumes that initially the system is completely localised in well A. However, the
wells are not orthogonal and so there will always be a finite probability of finding
the system in one of the other wells no matter how strongly localised the initial
state. Thus, the results presented should ideally all be renormalised so that at
any particular time the sums of probabilities of finding the system in the wells is

equal to unity.
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T B, ““\““\““\Vl‘
1 2 3 4 5 6 7

Figure 3.4: Dimensionless pseudorotation rates as a function of the linear cou-
pling constant Vl/ for the case of pentagonal minima. Quadratic

constants V; = 0.3 and V, = 0.4 have been assumed.

As time proceeds the probability of finding the system localised in that well
starts to decrease until it reaches the minimum value, simultaneously, the proba-
bility of finding the system in well B increases until reaches the maximum value.
In this case, it can be said that the system achieved the maximum occupation of
well B. Then after a period of time the system travels back to its initial well state.
This process will be repeated again starting from the same initial well following
the same trend. The probabilities of finding the system in any of the five wells are

all equal as they are all equivalent as far as A is concerned.

The time that the system takes to complete one period of this journey of pseu-
dorotation in this particular case is given by
2mh

A

This equation shows that there is an inverse relation between the tunnelling split-

T, = (3.3.7)

ting and the period that the system takes to finish one pseudorotation circuit.
We can also define a pseudorotation rate R, for this system as the inverse of the
pseudorotation period R, = Tp*1 = A/27h. A dimensionless pseudorotation rate

has also been defined |[2]

2 A
Ry =—T, I = — (3.3.8)

which is more convenient for plotting. This expression has been plotted for the
Ds, case 2] as shown in Fig. 3.4. The figure shows that as the value of the linear
coupling V| increases a decrease in the pseudorotation rate occurs until tends to

zero. Mathematically, that occurs when V] — co. This is can be explained more
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Sample Glan
polarizer

y
Ag=1056nm  A,=A)=528nm
Figure 3.5: The transient grating experiments. Fy and E5 are pump beams,
Ej3 is the probe pulse, F) and E, are the detected diffraction

signals.

clearly by explain the physics behind it. In the limit when V, — oo, the coupling
in this case is considered to be a very strong coupling that will cause the barriers
separating between the wells to become very high associated with deepening of
the wells. Therefore, the overlap between wells S — 0 and the tunnelling splitting
A also tends to zero. Thus, the system will be found localised into either well A,
B,C,D,E orF.

3.4 Experimental Techniques

A suggested technique to observe the pseudorotation experimentally is via the
ultrafast experiment called the pump-probe spectroscopy [1, 55]. This technique
has already been successfully used by Rubtsov et al. to measure experimentally the
rate at which the Cgy and C7y molecules rotationally diffuse in various liquids [1,
55]. Effectively, it measures how quickly the molecules rotate in solution. The

general idea is explained using the apparatus shown in Fig. 3.5.

In Rubtsov et al.’s experiments two pump laser beams (FE7, Es having wave-
lengths \; = Ay = 528 nm) are applied to the sample so that at ¢ = 0 a strong
pulse of photons interacts with the target molecules. This interaction produces a
diffraction grating within the sample. As time progresses, this grating degrades
because of the rotational and translational diffusion of the molecules. Thus, these
experiments employ what are called transient grating techniques. After a time

delay At (of a few fs or ps) a probe beam (FEj5 having wavelength A3 = 1055 nm)
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is applied which is used to measure the strength of the grating. If At is small, the
grating is strong and so the effect on the probe is strong. As At increases, the
grating deteriorates due to molecular rotation and a weaker interaction with the
probe occurs. The experiment involves varying At and measuring the signal aris-
ing from the grating-probe interaction. The resulting trace allows the rotational

motion to be analysed.

If similar pump-probe experiments were performed on solutions containing Cg
ions, then the resulting signal would be expected to contain contributions from
both real rotation and pseudorotation. For example, for Cg, the pseudorotation
of the molecule would be expected to degrade the transient grating much more
quickly than real rotation. This is simply because the actual amount of atomic
motion required to accomplish pseudorotation is much less than that required
to achieve real rotation. Thus, a faster decay of the pump-probe signal from
a sample of Cg, ions (compared to neutral Cgy) would be a clear indication of
pseudorotation. More importantly, a thorough analysis of the decay rates should
yield a quantitative value for the pseudorotation rate which, in turn, provides

information about the coupling constants that dictates the pseudorotation rates.
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T ® (e ®ty) JT system in cubic

symmetry

In order to illustrate the ideas of pseudorotation more clearly, we look now at the
well known vibronic T ® (e @ t9) JT system. The APES contains many minima
and tunnelling between equivalent minima may occur resulting in pseudorotation.
The interaction in the T'® (e @ t5) system can be predicted from the Kronecker
product of the T-orbital with itself as [T)> = A+ E+Ty. The coupling takes place
when an electron with a T-type orbital couples to two types of vibrational modes
namely e-type with (Qy, Q) coordinates and to-type with (Q4, Q5, Qg) coordinates.

Coupling to the a-mode is ignored here as the a-mode is trivially a breathing mode.

There are many reasons for studying this system in this thesis. Firstly, this sys-
tem has cubic symmetry which is less complicated compared to other molecular
symmetries (such as icosahedral). Therefore, the time evolution of the JT system
can be interpreted more easily both analytically and pictorially. Also, the prob-
lem shows a variety of characteristics that can be divided in three different cases
according to the magnitude of the coupling strengths. Each case causes different
distortions in the APES and thus a variety of well configurations can be investi-
gated dynamically. Another reason to investigate the T'® (e @ t3) JT system is
that this system has been studied theoretically in detail for many years by many
authors, see Refs. [56, 57, 58| for example and therefore the available information
such as the SASs in the literature regarding this interaction will be a very good
base for our new calculations of pseudorotation rates. Thus, investigating the dy-

namical behaviour of the T'® (e @ t9) system will serve as a good introduction to
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the more advanced systems having more complicated symmetries.

The T'® (e @ t9) cubic system has three types of extremal points on the LAPES
namely tetragonal (Dyy), trigonal (Dsg) and orthorombic (Dsay) [59]. The (Dyy)
points become minima and the system will be represented by a T'® e JT effect,
when the coupling to the e-mode dominates. The (Ds4) points become minima
and the system will be represents as T' ® t5, when the t3-mode dominates. When
the (Dyp,) points are minima, the system will be denoted as T'® (e @ t2), when

coupling to both modes (e, t5) is present.

In this chapter, the pseudorotation for the T'® (e @ t3) system involving the
three cases will be studied using the theory outlined in Chapter 3 by applying the
quantum mechanical time evolution operator with the help of a previously obtained
SASs [60] to derive analytical expressions of the pseudorotation probabilities and

the corresponding rates.

4.1 The transformed Hamiltonian for T'® (e @ t)

The transformed Hamiltonian for this system has been derived by Bates et al. [3]
and written in terms of the electronic basis states |z;0), |y; 0) and |z;0) in five-

dimensional space and it takes the form

—Ag + V3A, V346 V345 |
+“2i2 Z(wiai)2
~ VBAs A —EA. VA,
Hy = +ﬂ7h2 S (wicn)? , (4.1.1)
V345 \/Z§A4 24,
+“Th2 Z(%’%‘)Q
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where p is the reduced mass of each oscillator of frequency w and the A; are defined

as
hVi
A0 = TEO@)
A = e,
2
W WV
A4 = T (1— 2VT (ozg—\/goze)) Qly,
W WV
o = T (1 e+ Ve
_ hVp hVar
A6 = 9 (1— 2VT (—2&9)) Q.

(4.1.2)

«; represents the " coordinates of the well in the LAPES, the constants Vz and
Vr describe the linear coupling to the e and ¢, vibrations respectively, Vg, is the
bilinear (quadratic) constant which describes the coupling to both vibrations. It
has been found that the bilinear term is the one which plays the most important
role in changing the shape of the APES [56] for this system so including any

higher terms in ) will not add any further information when solving the problem.

Minimising this Hamiltonian using the Opik and Pryce method [4] has produced
the positions of the minimum points (wells) on the APES in Q-space [3]. As
mentioned, under certain condition of the coupling strength, the system becomes
localised into one of the minima either tetragonal, trigonal or orthorhombic. In
quantum mechanics, if the system is prepared in one of the minima, then the
system can evolve by tunnelling between the potential wells. The following sections

take each symmetry in turn.

4.1.1 The T'®e JT system

When a cubic molecule is dynamically distorted along a C, axis (see Fig. 4.1),
tetragonal wells of Dy, symmetry will be generated in the APES consists of three
wells intersecting at QQp = Q. = 0 (see Fig.3.10 Ref. [48]). The system will be
localised in the bottom of one of these wells. The corresponding untransformed

ground states of these minima are given as [60]
|2";0),  |y;0), |2;0). (4.1.3)
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These states are mutually orthogonal to each other and they are appropriate eigen-
states for both the infinite and finite coupled T'® e JT system. As a result of this,
the system will be found trapped in one of the three equivalent wells and therefore
no tunnelling is taking place between the minima. Thus, since the system is not

tunnelling it is not necessary to construct any combinations of SASs.

Comparing this case in the T®e JT system to the case in Ref. [51] for the F®e
JT system, it should be noticed that, although the APES of this system is showing
three wells similar in number to that in the F ® e system, the latter system is
free to pseudorotate between the three wells when the quadratic coupling is taken
into account [51], in this case the system is not allowed to undergo a tunnelling
motion between these wells. This is because the wavefunctions in the three wells
of the T"® e JT system are mutually orthogonal and they are not mixed by the

tetragonal displacement[48].

(a) (b) (c)

Figure 4.1: (a)Cubic molecule with a distortion axis Cy in real space. (b)The

black dots show the positions of the orthogonal well states in the
APES in the Q-space. (c)A distorted molecule with Dy, symmetry

when the coupling to the e mode dominates.

4.1.2 The T'®ty JT System

If the molecule is dynamically distorted around a Cj5 axis by the T'® t5 JT effect,
trigonal wells of D3, symmetry appear in the APES with four-fold degeneracy
Fig. 4.2. This degeneracy splits via the tunnelling between the four trigonal wells
and therefore the appropriate eigenstates for the system in this case are the linear
combinations of the ground states localised in the four wells. Using the projection

operator technique, a triplet 77 and a singlet A; SASs are produced and given in
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Ref. [33] namely

(a) (b) ()
Figure 4.2: (a)Cubic molecule with a distortion axis Cg in real space. (b)The
four triagonal wells are represented by black dots in the APES
in the Q-space. (c)A distorted molecule of D3y symmetry when

coupling with the to mode dominates.

Tw.) = Npl[l|A50)+]|B;0)—|C";0) —|D';0)],
Ty,) = Npl[|A;0)—|B;0)+|C";0) —|D';0)],
IT1.) = Nrp[—|A;0)+|B;0)+[C;0) —|D;0)],
|Ase) = NI []4;0)+|B;0)+|C";0) + |D';0)],
(4.1.4)
where
1
N, = —,
24/1+ 2
1
N, = ———r (4.1.5)

2V1-=8,
are the normalisation constants for the trigonal case, | X’;0) is the Glauber state
defined in Eq. (2.3.18) which forms the untransformed state associated with the
well, S; is the overlap between the oscillator parts of any two adjacent wells.
The superscript and subscript t refer to the trigonal wells. The oscillator overlap
between any adjacent wells has been found using Eq. (2.3.23) and is given by [33]
16, Kr )2]

5 G (4.1.6)

S; = exp [—
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where K is a constant involves the linear coupling constant Vi given by

V3hVr

Kr=—71—. 4.1.7
T 2/ 2w ( )
The energy of the 77 SASs states is given by [60]
3 4 ( K2 9475,
Er = hwg + hwp — = [ =% 4.1.8
h E+2 r 9(77/(4.)7“)(34‘515)7 ( )
while for the Ay SASs the energy is
3 4 ( K? 3—175;
Ea, = hwp + hwp — = [ —=% : 4.1.9
A2 B gher 9(th)(1—St> (4.1.9)

Here, the T} state is always the lower in energy than the singlet A, state and

therefore the tunnelling splitting between these states is given by [60]

4St hlSt
A=Fy —FEp, =— hwr. 4.1.1
AT IR T T o8B+ S) T (4.1.10)

Using the above expressions of the normalised SASs in Eq. (4.1.4) and following
similar procedure to that outlined in Chapter 3 , expressions for the normalised
states that are associated with each of the four trigonal wells are obtained and

have the form:

|A2a> |T1J:> + |T1y> — |le>

A0) =
| 7O> 4N1t42 + 4N5—‘1 Y
Ay, Ty — |T; T,
B0) — | 2t>+|1> |1@;>+|1>’
4N}, 4N
‘C/O> _ ‘A2a> N |le> - |T1y> - |T1z>
’ 4N, 4N}, ’
|DI, O> _ ‘A2a> N |T1$> + ‘T1y> + ‘T1z>
’ 4N, 4N}, '

(4.1.11)

Now, in order to study the evolution of the system initially localised in one of
the minimum wells, the time evolution operator Eq. (3.1.6) is applied to obtained
expressions of the probabilities of finding the system in another well at later time

t by using Eq. (3.2.15). These probabilities are:

Paa(t) = 1-— 3(1 —5,)(3 + S;) sin? (%) :

Paplt) = S+ 11—2(1 — 5,)(3 + Sy) sin? @—;) , (4.1.12)
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Figure 4.3: The internal pseudorotation of a moderately coupled T'® t5 with
Kp = 1.2hwr.

In this case, it can be seen from Fig. 4.2, that the wells are equally separated and
therefore the phonon overlaps between them are also equal. As this is the situation,
there is no need to find the probabilities P4 and P4p since they are identical to
that for P4g. From the results above, it is clear that the system is in dynamical
motion due to the pseudorotation between the different wells. In general, and
as can be seen from Eq. (4.1.12) pseudorotation depends on the phonon overlap

which in turn depends on the separation between the wells.

The expressions for the probabilities given in Eq. (4.1.12) are plotted in Fig. 4.3.
The diagram clearly shows a sinusoidal pseudorotation behaviour between the wells
similar to that for the T} ® h, system in Chapter 3. It tells us that, at time ¢t = 0
the probability P44(t) of finding the system still localised in well A is unity, which
is an expected result since the system must be found localised in one of the wells.
The probability of finding the system localised in well A is then decreasing with
simultaneous increasing of the probability of finding the system in well B (or C,
D). After the system is fully localised in well B and as the time increasing the
system begins to migrate back to its original state after completing one revolution

of pseudorotation. The time for this is again given by the formula in Eq. (3.3.7).

The dimensionless pseudorotation rate R, from Eq. (3.3.8) is plotted in Fig. 4.4
as a function of linear coupling. As expected, increasing of the strength of the
linear coupling increases the barriers between the wells in the APES which in turn
reduces the overlap between the wells. This therefore, decreases the pseudorotation

of the system between the wells. The trend continues until infinite coupling where
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Figure 4.4: Dimensionless pseudorotation rate as a function of the coupling

constant for the case of trigonal minima.

the system achieves the zero pseudorotation. Here, the system becomes locked

into one of the four trigonal wells showing static behaviour.

A previous calculation given in Ref. [59]| for multi-dimensional tunnelling sys-
tems like T'® t, gives the most probable tunnelling path that the system is taking
during the tunnelling. By calculating what is termed the path of steepest descent,
the minimum energy path is obtained. Further details can be found in Ref. [61].
However, it has been found that, when the ¢ mode in the T'® (e + t5) system
dominates, the system has two possible types of classical paths of steepest descent
connecting the D3, triagonal wells. The first one is via the D, saddle point, while
the other one is via the Dy, saddle point. There is no interchanging between these
two types of tunnelling paths when ¢5 dominates and the system shows that the
path via the Dy, saddle point is always the one favoured [59]. The calculations
shows that the tunnelling integral along the path via the Dy, saddle point always
has a smaller value than that along the path via a Dy, saddle points. This is
clearly shown in both Fig. 4.5 and table 1 in Ref. [59]. This situation can also be
deduced from Fig. 4.2.(b) which shows the trigonal wells in the APES separated by
two different saddle points. The Dy, saddle points have higher potential barriers
at large distances from the minima than the D,, saddle points. The tunnelling
splitting between the energies of the system is found to be related to the tunnelling

path integral via the relation [62]
A = hwexp[—Ir] (4.1.13)
where w is the frequency of the vibration of the particle in the well and I is
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Figure 4.5: The ratio of the action integrals I5/I; as a functions of Vp/Vg

with different choices of Vg when ¢5 mode dominates. I; and I

are the action integral of the path via a D4, and Dyj, saddle points
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Figure 4.6: The figure shows the tunnelling splitting A changes as a function

of the tunnelling path integral Ir.
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the tunnelling path integral. Fig. 4.6 shows the variation of A as a function of
Ir. There is a relation between the pseudorotation rate of the molecule and the
tunnelling splitting via R, = A/27h. Thus, this equation with Eq. (4.1.13) show
that, as the path integral becomes larger, the pseudorotation rate of the system
becomes smaller and thus the system then takes a longer time to travel from one
well to another. Since the time that a system takes to pseudorotate is expected
to be of the order of femtoseconds, the tunnelling path that the system takes will
be expected to be via the saddle points which have a lower potential barriers and

smaller separations between the minima.

Thus, this shows another good reason for studying the pseudorotation rate of
the system as it gives valuable information of the favoured tunnelling path that is

taken when it pseudorotates.

4.1.3 The T® (e +ty) JT System

In this case, when the coupling to e and ¢, modes are both involved, a distortion
in the direction of Cy axis via the T'® (e + t2) JT effect occurs, the system is
then said to experience orthorhombic Dy, symmetry (see Fig. 4.7). The APES
for this symmetry contains six wells. These wells are presented in Fig. 4.7.(b)
and divided into non-orthogonal and orthogonal wells. For each well state, there
are four nearest neighbour wells of non-orthogonal states and one next nearest
neighbour well of an orthogonal state. It has been found that, in the infinite
coupling limit, the system is found to be relaxing into one of the six orthorhombic
wells [3] and no tunnelling occurs between them. When the coupling is finite, the
system starts to tunnel and movement between the wells takes place. This process
leads the system to have states that are linear combination from those localised in
the wells that the system visits during the tunnelling. These states [3] have been
found to be the triplets T} and 75 given by
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(a) (b) ()
Figure 4.7: (a)Cubic molecule with a distortion axis Cs in real space. (b)The
black dots represents the positions of the orthorhombic wells in the

APES in the Q-space. (¢)A distorted molecule with Doy, symmetry.

Tw.) = Nzl[ld';0)+[6;0) 4 1€50) — [f50)],
|Ty,) = Ng[ld’;0) —10;0) + |c;0) + |d’;0)],
Ti.) = Ng[|c50) —|d';0) + [ 0) +]f0)],

(4.1.14)
Tor) = Np,[ld’;0) +[0;0) = |€5;0) + [ 0)],
Toy) = Np,[ —la’;0) +[0';0) + |c; 0) + |d'; 0)],
To:) = Np,[—[d50) +d;0) +[€50) + [/ 0)],
(4.1.15)
where the normalisation constants are defined as
NG =
2v1+5,
1
N7, = 72\/1—75'0'
(4.1.16)

The superscript and subscript letter o refers to the orthorhombic case, |2’;0) is
the Glauber form of the state associated with the x orthorhombic well and S, is
the phonon overlap between the oscillators part of any two of the orthorhombic

wells that do not have orthogonal orbits and given by [33]

oo |3 (1) - (12)] (a11)

Here, K and K are constants involving the linear coupling parameters Vg and
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Vr as
VAV
Kgp=——= 4.1.18
and
Ky = MV (4.1.19)
2/ 2pwrp
The energies of the triplets states are [60]
3 5 . K*% K2
Er, = hwp+ —hwp —4N7 (1 — (=1)'28,| —2% + [1 — 2(-1)'S,]—F
T; E+2 T TZ([ ( ) QSO]E,Q}E+[ ( )SO]ELUT
VL K% K2
214 — (=18, ,
2 = DSl )
(4.1.20)

for i =1 and 2. The the energy gap between 77 and Ty is [60]

A=FEp —Ep =

So (3 Kb P Kb K Ve
)

2 C(4121
1-52) Chwp  “hor hwEthVEVT) 2

In order to study the evolution of the system with respect to time, the associated
states with each of the six orthorhombic wells must be derived first of all. These
are obtained by inverting the relations given in Eq. (4.1.14). Again following the
same procedure as outlined at the end of Chapter 3 for the T'® h system, the well

states are

wroy = T+ 1T | [Ta) — [Ty)

’ ANG, ANg
- 0) T1e) — [Thy) | [Tox) + [Toy)

’ ANY, ANg
|C/. 0) _ |T1y> + |le> |T2y> B |ng>

’ ANg, ANg
droy = ) =T | [T) + [T)

’ ANg, ANg
|e/‘ 0) |T1x> + |T1Z> N |T2m> - |T2Z>

’ ANY, ANg
|f/‘ 0) _ |T1w> — |le> |T2m> + |T2Z>

’ ANG, ANg

(4.1.22)

The time evolution of this system when it is initially localised in one of the or-

thorhombic wells can be studied by deriving the probabilities of finding the system
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in another well after a time ¢. This can be done trivially by applying Eq. (3.2.15),
with the result that these probabilities are

Pot) = 1—(1—52)sin? (%) : (4.1.23)
Pu(t) = 0, (4.1.24)
P,.(t) = % + %(1 — 52%) sin? (%) : (4.1.25)

The system here is behaving in a different way from that when the ¢, mode
dominates. It is clear from the results that, if the system starts in a given well,
then it is only possible to be found localised later in a time ¢ in the non-orthogonal
state wells. For example, if the system is initially localised in well a, then it can be
found later only in either well ¢, d, e or f. Finding the system localised in well b is
forbidden as indicated in Eq. (4.1.23) because it is orthogonal to well a. Thus, if
the system is localised into one well then it has the opportunity to be found at any
well after later time except the orthogonal one. This behaviour seems to be that
experimentally exhibited by the carbonyl compound Fe(CO), [63, 64]. Isotopically
substituted carbon monoxide was used to investigate the change in geometry that
occurs as we progress between different equivalent distorted minima [65]. It was
found that starting from one particular minima the system could migrate to an

adjacent minima but not directly to the minima opposite.

Fe(CO), is distorted from the high symmetry tetrahedral geometry into a Cs,
geometry which can be achieved in six equivalent ways [66], see Fig. 4.8. The figure
shows six Cy, equivalent minima. At the centre of the figure is a dot representing
the system in its undistorted tetrahedral geometry T;. One of the lowest energy
paths for the conversion AA-EE is also shown. The direct conversion from the AA
to EE does not occur. The experimental observation is that indirect conversion

via AE actually occurs.

The internal dynamics for this system are shown in Fig. 4.9. The system shows
regular tunnelling when it starts off in well a and moves towards well ¢ then back
to well a again completing one period of pseudorotation 7,. The probabilities
of finding the system in the wells d,e or f have the same expression as that
for well c¢. The process of pseudorotation repeats itself as time progresses and,
as there is only one tunnelling level for this system, it is safe to use the same
equation Eq. (3.3.8) to represents the pseudorotation rate. This equation is plotted
in Fig. 4.10 to show the changes of the pseudorotation rate while the coupling
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(a) (b)

oC
#O i
169° Fe%s’ Ae}<g
CO
oC

Figure 4.8: (a) Structure of singlet [Fe(CO)4|, determined by electron diffrac-
tion [64]. The two CO molecules above and below the iron atom
are the axial molecules (A) and the other two are the equatorial
molecules (E). (b) Showing the allowed paths connecting C, min-

ima [66].

strength is increasing. The figure shows decreasing in the pseudorotation rate of
the system as the coupling constant increases in a similar manner as that for the
T ® ty system. The pseudorotation between the wells in this system follows two
paths similar to that for the T'® t5 system, one path is via the D3y saddle points
and the other via the Dy, saddle points (see Fig. 4.7.(b)). As the heights of the
Dy, saddle points are very large compared to those of Ds4, the system is then

expected to follow the D3, path rather than the Dy, path.

4.2 Summary

In general, for any JT system when the vibronic coupling is infinite, the vibronic
states obtained are good eigenstates for the system in its static limit. But, when
the coupling is finite, the obtained states should be manipulated so that it can
suit the dynamical situation of the system. In the case when the system shows
Dy, tetragonal wells, the states obtained are mutually orthogonal and they form
a good eigenstates for all infinite and finite coupled 7" ® e systems. Therefore,
there is no need to find any linear combination of the states in the wells. The
system here shows no pseudorotation between the wells and it stays in the state
that it starts in. When the system is localised in one of the D3, trigonal wells,

then the probabilities of finding it at time ¢ later in any of the other three wells
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Figure 4.9: Internal dynamics of a moderately coupled T'® (e +t2) with K7 =
1.4th,KE = hwE and VBL = 0.04VEVT.
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Figure 4.10: Pseudorotation rate as a function of the coupling constant for the

T ® (e + t2) system.
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are equal. The summation of the probabilities is S.5_ , Pax(t) = 1+ %’? which is
time independent as expected. In this case, the system is allowed to pseudorotate
freely between wells following the smallest classical path via the D5, saddle points.
When the system contains Dy, orthorhombic wells, tunnelling only occurs between
the non orthogonal well states while transitions between the orthogonal well states
are impossible. Again, the summation of the probabilities is Zﬁ(:a P.(t) =1+ 52

as expected also time independent.

According to these transitions between the wells in both the T®t; and T'®(e®ts)
JT systems, the molecule which exhibits such an intramolecular rotation will then
show a motion of the distortion of the outer nuclear framework which appears
as a periodic change in the orientation of the distorted nuclear configuration.
Such a molecule is the Methane cations CHf modelled with T ® (e + t5) JT
system. The rovibronic structure of this molecule has been investigated in which

the pseudorotation could potentially be measured (for further information see
Ref. [67]).

54



CHAPTER b5

The Quadratic p?®@ h JT
Interaction: A model for C%O_

Fullerene derivatives form very interesting materials due to the many unexpected
electronic properties that they possess. These molecules can exhibit unusual be-
haviour especially when they are doped with the alkali impurities to produce the
alkali doped fullerenes A,,Cgy. For example, the A3Cqy salts are metals with a
half-filled LUMO that show superconductivity at low temperatures [68]. Such
compounds are K3Cgy and Rb3Cgg which become superconductors at tempera-
tures below 18K and 28K respectively [69]. On the other hand, the A;Cgy and the
A4Cgo compounds such as NayCgy and Cs;Cgp, which are related to each other by
electron-hole symmetry [70], are non-magnetic insulators. This behaviour in the
latter compounds is somewhat unexpected and surprising as well because, accord-
ing to band theory calculations [71, 72|, the electrons occupy the LUMO (73,)
which is just partially filled. Therefore, these compounds would be expected to
be metals rather than insulators. This is the case because the Coulomb repulsion
between the two electrons and the JT interactions open band gaps cooperatively,
and are non-magnetic because the JT coupling overcomes the known Hunds’s rule
ordering [73, 74]. Hund’s first rule states that for a given electron configuration
the term with maximum spin multiplicity (high-spin) has the lowest energy. It
has been found that compounds containing negative ions like Cg; where n = 2,4
disobey this rule when they undergo JT distortions as the energy gained from this
distortion is large enough to reverse the situation from a high-spin to a low-spin

ground state [75].

%)



CHAPTER 5: THE QUADRATIC p? ® h JT INTERACTION: A MODEL FOR Cgy

The CZ; system has therefore a singlet spin ground state (*A,,' H,) and a close-
lying triplet excited state (*T7) [76]. Although this electronic structure has been
confirmed experimentally for this ion, many theoretical studies on CZ; systems
still deal with it as if Hund’s rule remains valid. These studies give values for the
energies of the molecular terms some of which are (given in meV): (-114.1, 114.1,
456.6) in Ref. [77], (-275, 175, 848), (-117, 73, 359) and (-122, 77, 375) in Ref. [78]

for the 3T,' H,,' A, terms respectively.

Many spectroscopic experiments such as ESR, NMR, X-ray diffraction and neu-
tron scattering [70, 79] have shown the distorted symmetries of the molecular struc-
ture for the doubly doped Cgg molecule. It has been predicted that the different
properties between the body centred tetragonal A;Cgy and the face cubic centred
A3Cgp systems for example, are due to their different structures [80, 73]. As there
is a strong correlation between the distorted molecular structure and the pseu-
dorotation of the dynamical JT effect, studying the pseudorotation phenomenon
in such systems will be a good step to understand some of their underlying prop-
erties. Also, as vibrational spectroscopy is exclusively sensitive to the distorted
molecules due to the splitting between the energy levels, it can detect the motion
of the atoms when the distortion of the molecular framework takes place. These
spectroscopic results can be compared with the theoretical calculations which can

lead to an estimate of the vibronic coupling strength.

In this chapter, the JT effect in the fullerene anion C3, will be investigated
in detail by analysing the LAPES when a higher order (quadratic) coupling is
included in the problem. Section 5.1 shows how the C3, doubly doped anion is
formed when the two electrons occupy the 77, LUMO and obey Hund’s rule. Also,
the electronic states for the system which form the bases for the matrix represen-
tation of the interaction Hamiltonian are derived using the tables of Fowler and
Ceulemans [27]. This is achieved by considering the Coulomb repulsion between
the two electrons. This ion was investigated in an earlier work [81, 82|, but only
using a linear coupling Hamiltonian. At this level of approximation, the APES
takes the form of a two-dimensional trough with an equipotential energy surface
upon which the system moves freely around the trough whilst performing a free

pseudorotation [83].

However, including quadratic terms in the problem, causes the equipotential

energy points on the trough to be warped to form minima. These minima are
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found to have either D5, or D3y symmetry in the absence of Coulomb interactions
depending upon the values of the mixing angle 3 which mixes the two sets of the
CG coefficients corresponding to the two h, modes. The work leading to these
results is given in Section 5.2.1. The minimisation of the complicated Hamiltonian
is dealt with using advanced computer programmes (Mathematica, Maple) which
apply the shift transformation technique outlined in Chapter 2 to obtain analytical
expressions for the energy and the corresponding vibronic eigenstates for the sys-
tem in its static limit. It should be noted that, since the JT interaction is assumed
to be stronger than the Coulomb interaction, for simplicity the effect of the term
splitting which arises from Coulomb repulsion will be neglected through this chap-
ter, although the e-e interaction is not negligible in the doubly doped fullerenes.
Studying the system when performing dynamical motion is accomplished using
the projection operator technique in order to find the linear combination of the
wells that the system is visiting whilst tunnelling. The SASs produced as a result
of this tunnelling and the corresponding energies for both D54 or D3y minima are
given in Section 5.2.2. Since the system is undergoing tunnelling between wells, it
is undergoing a pseudorotation motion as well. The probabilities that the system
can be found at a later time ¢ when it is initially prepared in one particular well
are derived in Section 5.3. Also in this section the behaviour of the system while

it pseudorotates between wells is also discussed.

5.1 The JT Effect in ng

Before discussing the JT interaction in the Cj, anion it is worthwhile to re-examine
the electronic structure of the C%; molecule. The electronic structure for the
isolated Cgy molecule is given in Chapter 2. When the Cgg molecule is doped
with two electrons, these electrons occupy the empty triplet 77, (LUMO) Fig. 5.1,
forming the CZ, anion. From group theory, coupling to 2a4 and 8hy modes is
expected. This is obviously a very complicated problem to solve analytically.
Therefore, the model is approximated to that in which coupling to a single effective
hg mode is only taken into account as discussed earlier in Section 2.5. The coupling
problem reduces to that of a single h, mode and termed the p* ® h JT effect using
the notation used in Ref. [82|. In this notation, the superscript denotes that

two electrons occupy a p-type electronic orbital coupled to an hy-type vibrational
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e} A
T, 4— 4— — 375| ‘A _
" ‘ 5 *  low-spin
D> 77 1 1H basis
H, Afl7 jfl7 :IJV 4JV j[l7 -122 °T,,
2—
C,, terms

Figure 5.1: Diagrammatic representation of the doubly occupied 71, LUMO
of Cgo pertinent to the p? ® h system of interest. The electrons
may couple to produce both high- and low-spin terms and Hund’s
rule is thought to be obeyed. The energies shown are taken from
Ref. [78]. The energy difference § between the low-spin basis states
{1Ag, 1Hg} amounts to 298 meV.

mode. The notation p is used here because of the analogy between the p atomic

orbital and the 73, molecular orbital.

Representing this system via the interaction Hamiltonian is quite complicated.
The difficulty appears when we start constructing the electronic bases for the
interaction Hamiltonian. Both the spin and the orbital angular momenta should
be considered first for both electrons. Then coupling between the orbital states and
the spin states should follow. This will produce rather complicated bases states
which in turn will lead to cumbersome work in constructing the Hamiltonian.
Another difficulty arises when the quadratic terms of the normal mode coordinates
Q;Q; are included in the problem. This arises because the h, mode appears twice
in the Kronecker product as HQ H = [A+G+2H ], which means that the quadratic
terms of the coordinates can be included in the problem with two independent
sets of coefficients [27]. This therefore produces two more types of interaction

Hamiltonians as will as the linear interaction Hamiltonian.
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5.1.1 Electronic basis states and the linear interaction Hamil-

tonian

In order to find the linear interaction Hamiltonian that represents the coupling,
the basis is chosen by considering the Coulomb repulsion between the two electrons
in the T3, orbital. Such an interaction will give rise to terms that are obtained
from coupling the spin and orbital angular momenta of the two electrons together.
To obtain these terms for the CZ; system, we first consider the coupling between
the spin angular momenta. The total spin states can either be triplet symmetric
states with S = 1, or singlet anti-symmetric states with S = 0. Both spin states
will be further coupled to the orbital states for the two electrons. The orbital
states can be found using the Kronecker product T'® T = [A+ H]s ® {T'} 4. The
anti-symmetric part of the Kronecker product couples to the symmetric triplet
spin states to give the high-spin term ®7},, while the symmetric part couples to
the anti-symmetric singlet spin states to give the low-spin terms 'A, and 'H,,.
These terms are presented in Fig. 5.1. The first diagram in Fig. 5.1 shows the
HOMO and the LUMO of the Cgy molecule when the two added electrons occupy
the LUMO. The other diagram shows the relative energies of electronic states [78|
following the usual Hund’s rule. The term 0 represents the energy splitting (term

splitting) between the low-spin terms {'A,,' H,}.

The JT coupling of the high-spin T3, term to the i, mode has been investigated
in detail by Dunn and Bates [22] by studying the analogous 71, ® hy JT problem.
Therefore, only the coupling of the low-spin terms {'A,,' H,} to the h, vibrations

will be considered in this work.

The next step is to find the wave functions associated with these terms which
form a basis for the matrix of the interaction Hamiltonian. These wave functions
are a result of multiplying the spin states by the orbital states. The resulting wave

functions must be anti-symmetric in order to obey Pauli’s exclusion principle.

The spin wave functions can be derived following the basic quantum mechanics
rules. For example, if we consider two electrons with spins (s; = sy = %) and
(ms, = m,, = £3), coupling between the two spins gives a maximum value of the

spin (S=1) with (Mg = 1,0, —1). One of the spin states can be represented in a
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bra-ket notation for the values (S =1, Mg = 1) as

|S’MS> = |817m81>|827m82>7 (5].].)
11,11
L1 = |= =)= =),
LD 272>|272>

By operating on this state with the lowering spin operator defined as

S_|s,mg) = hin/s(s + 1) — my(my — 1) |s,mg — 1), (5.1.2)
we obtain
1 1.1 1
- Z Iy Z Z 1.
S (Sl—+52—)|272>|2a2> (5 3)
which leads to a state of the form

1 (11,1 1 1 1,11

1,0)=— ||z, %)z, —= — =)= =) 5.1.4
10 =5 135055 * I35l 3) (5.1.4)
The process is repeated again giving
1 1.1 1
L,-1)=|=,—=)|=,—2)- 1.

The wave function associated with the triplet spin can be written now in a similar
way by dropping the spin quantum number s and using the notations |+) and |—)

to represent mg = +% and my = —% respectively. Thus, we obtain

M, = 1) = [+) ),
1
2
M, = —1) = [-)]-),

| M, = 0) = —=[|H)|=) + [=)+)]; (5.1.6)

S5

and for the singlet spin (S=0) the spin wave function is written as

1

V2

Now, the orbital wave functions for the CG coefficients for the product 77 ® T}

| M, = 0) [0 [=) = 1=)I+H)] (5.1.7)

are derived using the tables of Fowler and Ceulemans [27]. This produces the
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following states
[Aa) =
Th.) =
Thy) =
Th.) =
[Hp) =
|He) =
|Hy) =
|H5) =

|Hg) =

where |A,), |T1z)- - -

[|T1$> (Tyz)o + [Thy)|Thy)2 + |Ti2)1|Ti2)o]
[\T1y> Th2)2 — |Th2)1]|Thy)e],

[—|Th2)1|Ti2)2 + |T12)1|Thx)s],

5l 5=~

[|T193> Thy)2 — [Tayh|Tiz)a],

Sl

| Tya) | Tz — —|T1?/> Tiy)2 + o |T12>1|T12>2> (5.1.8)

%w‘

NG
—\/—|T19€>1|T19€>2 — —\/—|le>1|le>2 - 2—\/§|T12>1|T12>2,

[\T1y> Th2)2 + [ Thiz)1 [Thy)al,

Sl

HT155> T12)2 + |Th2)1]|Thx)s,

Sl

[|T1$>1|T1?/>2 + |Thy)1|Thx)],

Sl

etc are the electronic orbital states. The term |Tix);|Tix)o

tells us that both electrons occupy the state |77z).

Now, the overall states must be anti-symmetric. Therefore, the triplet (sym-

metric) spin wave functions must be multiplied by the anti-symmetric orbital wave

functions while, the singlet (anti-symmetric) spin states must be multiplied by the

symmetric orbital wave functions. Therefore, the final resulting basis states can
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be written as

| Aa; M, = 0)
‘3T1:v; M, = 1>
PTyy; My = 1)
|3T1z; M, =1)
‘3T1:v; M, = 0>
*T1,; My = 0)
|3T1z; M, = 0>
|3T1x; M, = —1>
PThy; My = —1)
|3T1z; M, = —1)
\'Hy; M, = 0)
|'He; M = 0)
|"Hy; My = 0)
' Hs; M, = 0)
' Hg; My = 0)

_6[‘T13€>T|T135>2_ + |Twy)T | Thy)z +
—|Tx)7 |The)s — Tyt | Thy)s —
1

T ITIRN — [Ty T
1

—[—|T15E>T|T12>5L + |Ty2){ | Tix)

[\]

[|T190> Tvy)s — |Twy)i | Tix)3]

Sl -

1 B _
§[|T1y>1 Tv2)3 — |Th2)7 [ Thy)s )
1 _ _
5[—|T1$>1 ITv2)3 + |Tv2)1 |Thz)s ]
1 _ _
§[|T1~”C>1 Tvy)3 — Ty | Th)3]

1

Hle> Tiz)y — |Thz)y [Thy)s ]

[ Tyw)y [Thz)y + |Thz)y [Thz)

s~

[|T190> Thy)s — | Thy)y [Thz), ]

Sl

(o~ Tha) | | Thx)y

22

¢~ Tha)y [Tha)s + 6|Tay)y |Thy)s

1

Sog T T~

o2 Thy)f

T12){|Thz)5

T12)7 | Ti2)5]

5]

2

(5.1.9)

— o|Tw){ |Twy)y + |Thz)] [T12)y

— |Tv2)7 |T12)3]

Thvy)y

—V5|Tv2) |T12);5

¢*|Tha)y [Thw)y + ¢ %\ Ty Tiy)3 + V5| Thz)y [Thz)s ]

1 _ _
§[|T1?/>T|T12>z — |Ti2) | Tvy)s —
1 _ _

§[|T1~’C>1+\T12>2 + |Th2) | Thx)y —

1 _
SUTo) [ Thy)s + | Ti) [ Tha),

Twy)y | Thz)s

| Thx)7 | Thz)y —

= |Tiz)y |Thy)s —

—[T12)1 | Tiy)3 ]

T12)7 |Thz)s ]

Tiy)y | Tiz)s ]

In these expressions, |Tix)]|T1y), represents the product state where electron

1 is in the |77 ) orbital with spin +3 and electron 2 is in the [Tiy);

orbital with

spin —%. Only the low-spin basis is used to derive the matrix representation of the

JT interaction Hamiltonian whereas, the high-spin bases will be ignored in this

problem because of the analogy between the coupling problem of this term with

the 11, ® hy coupling as was previously mentioned.

The total Hamiltonian for the system may be given in the form of a 6 x 6 matrix.
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It has the general form
Htotal - Hvib + 7_{JT + HTSa (5110)

where H,; is the Hamiltonian that has been defined in Eq. (2.2.14), Hr is the

JT interaction Hamiltonian which has the general form
Hyr = ViH1(Q) + VaHa(Q?) + VaHs(Q?), (5.1.11)

where V; are the vibronic coupling constants, which determine the relative impor-
tance of each contribution to the coupling, and H,; are the interaction matrices.
Finally, Hyg is the term splitting Hamiltonian that arise from Coulomb interac-
tion. In this section the effect of this Hamiltonian will be ignored and the problem
will be achieved without the inclusion of the term splitting 6. Using the above ba-
sis states with the tables in Ref. [27], the linear interaction matrix for the system

takes the form

(0 Q@ Qe Qs Q|
Q h o BQi Qs Qs
N Qe fa —fl ¢—2Q4 4;12@5 _\/EQG
MOV o0 o 2o n lee ies |
Qs 42Q; Qs —2e £ /e
| Qs L %@6 ~J30s —\iQn —(fs+ 1) |
where,
. 3\/§Q0+\/5Qe
ho= < ,
_ \/5Q9_3\/§Qe
fr = < ,
f _ \/§Q9+¢3Qe
3 — 4¢ )
f . _(\/§¢3Q9+Qe)
4 = 40? .

Studying this linear Hamiltonian by itself produces a continuous trough with ra-
dius p = 2K and minimum energy of E;r = —2K? [83], where K is defined as
K = Lng. Each point on the trough corresponds to a different distorted configu-
ration. The system in this case is rotating around the trough in two perpendicular

directions in a free pseudorotation; at the same time it is vibrating across the
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trough in the other three perpendicular directions. However, this system has been
investigated in detail and the corresponding energy and eigenstate have been ob-
tained in Ref. [81].

5.1.2 The quadratic interaction Hamiltonians for CZ;

In the previous section, the linear interaction Hamiltonian was constructed using
the basis states arising from the coupling between ' A and ' H terms. The quadratic
interaction matrices can be written by making simple substitutions in the linear

matrix of the form

Ho(QY) = Hi(Qr A, (5.1.12)
H3(Q%) = Hi(Q— B), (5.1.13)

where the individual components in the linear interaction matrix are mapped so

that, for example, for Hy, Qg — Ay, Q. — A....etc with

Ay = M(:%Qg 307 - Q- Q3 +2Q7)
A= = (23000~ Qi+ 33).
Ay = 7(@0@4-[@ Q4+2\/_Q5Q6> (5.1.14)
s = 7(Q9Q5+f Qs +2v2Q4Qs )
Ay = = (00~ V20:05)
and
By = F<2Q9QE+\[Q4 \/§Q§>,
B = s (G- G+ @3- 202),
By = E<QE+\/§Q9) Qu, (5.1.15)
By = —= (@~ V@) Qs
Bs = _ﬁQeQG-

where the A; and B; components are derived again using the tables given in
Ref. [27].

64



CHAPTER 5: THE QUADRATIC p? ® h JT INTERACTION: A MODEL FOR Cgy

As already discussed, Hs and H3 arise due to the fact that the Kronecker product
H ® H contains the H irrep twice. The relative strength of these two quadratic
terms are governed by the quadratic coupling constants V5 and V3. Unfortunately,
no attempts to calculate these parameters have so far appeared in the literature
for the appropriate modes of CZ; and therefore, they will be treated as general as

possible in this thesis.

It is well known that by including higher order coupling terms in such problems,
it causes the trough of minimum energy points to be warped to form minima.
The symmetry of those minima is unknown until the APES associated with the
Hamiltonian given in Eq. (5.1.10) is investigated. This can be conveniently done
by using the shift transformation technique which will be discussed in the next

section.

5.2 The unitary shift transformation and energy
minimisation

The Hamiltonian given in Eq. (5.1.10) can be investigated in order to find the
minima in the ground APES by applying the theory of the shift transformation
that was outlined in Section 2.3.1. The transformation has the effect of displacing
each of the coordinates (J; by an amount equal to —ha; and the outcome of
this process is that the transformed Hamiltonian 7 is a function of the unknown
constants «;. The six eigenvalues of this Hamiltonian are, therefore, also functions
of these constants. The symmetry of the system, however, means that there are

()

always several minima {c,: }, the number of which indicates the symmetry of the

distorted ion. However, the aim in this section is to provide analytic expressions
()

for the constants «,;, and the energies associated with each minimum. This can
be accomplished by investigating the H using a numerical minimisation program.
The general idea of this programme is relatively simple and depends on allowing
the parameters « to vary in order to minimise the lowest eigenvalue, to indicate
a minimum in the APES. The transformed Hamiltonian #(a;) is a function of
the parameters ay, a., a4, as, ag, where a; are dimensionless values defined as a; =
phw?

H—ai; we set up these parameters by initial arbitrary numbers af, then the

programme can be run in order to find the eigenvalues corresponding to these
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parameters. The lowest energy among these eigenvalues is then our current energy

E(a?). The programme can be run again after we let one of the values of a? to vary
0

by a small factor k as a) — a + k and then we calculate the energy E(al + k). If
the new energy is found to be lower, then the programme will be adjusted to move

to a new point until it achieves the lowest energy corresponding to the changing
0

of that parameter. The same procedure will be repeated for each parameters a;
successively. Eventually, if there are no further changes in a; which lead to a
further lowering of the energy, then the final achieved energy can be accepted to

be the true energy of the minimum.

This approach is especially useful here as it allows us to investigate the effect of
the two quadratic interaction matrices Hy and Hs separately. Thus, to account for
the general coupling problem, it is useful to defined the vibronic coupling constants

in their polar form by:

VYZ - V;OtCOSﬁ,
Vi = Vieesin, (5.2.1)

where V. is a positive number representing the overall magnitude of the quadratic
coupling. The mixing angle 3 has the effect of mixing the two sets of CG coeffi-
cients that appear in the Kronecker product H ® H. If we select representative
values for the coupling constants, we can minimise the energy numerically using
the above outlined method. The numerical minimaisation routine obtained from
this method is represented as {O} for the D3y symmetry and {0} for the Dsq4
symmetry in Fig. 5.2, where we have assumed dimensionless coupling constants

amounting to

.4
I JR— —
‘/1 - MF 3 - 17
Vio
Ve = —%5 =01 (5.2.2)
W

5.2.1 The adiabatic potential energy surface (APES)

Fig. 5.2 illustrates the symmetry of the minima in the APES as a function of the
mixing angle 5. It shows that, when 0 < < 0.641, the APES of the system
has D54 symmetry lower in energy than the D3y symmetry. In the region where

0.641 < 0 < 3.78, the D3y symmetry becomes lower in energy than the Dsy
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' T T
..... . i 2
. E(D ho=—— " (V' |
( 3‘1)/ 3+8Vu'ncosﬂ( ')\//——
L 7
/ -
/7
/
/
/ -
/ .
/
> , i
2 R ,
GCJ -2.4 - X ) i
() Minimisation routine: ®\ .b/
4 O D5d Q@ ,(j : |
28 & D3d Qa~ .EZJ
.h
| 25 2/ . h |
E D ha):— V' . A
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-3.2 : : .
0 JT

mixing angle, B (radians)

Figure 5.2: Energies and symmetry of the minima found by numerically min-
imising the transformed Hamiltonian H; as a function of the mix-
ing angle 3. The values used for the dimensionless coupling con-
stants are V{ = 1 and V{,, = 0.1 and the energy difference due to
Coulombic interactions has been ignored (6 = 0). The energy is
given in units of Aw and the lines represent analytical expressions

of the energy for both types of minima.
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symmetry and therefore the system prefers to be confined to D3z minima. In the

range when 3 2 3.78, the system localises again D5y minima.

The problem has also been investigated theoretically by applying a simple
method summarised as follow. Let first assume that the problem will be investi-
gated for the D5, case. Here, one of the Ds; minimum points {ay, a, ay, as, ag}
takes the general form as {0,2¢,0,0,v/6¢}, where ¢ represents the required value

[¢73

to minimised the energy. The ratio = = %, by substituting this value with
ag = a4 = as; = 0 in the transformed Hamiltonian which is a function of a;
produces a Hamiltonian as a function of the ag alone. The eigenvalues and the
corresponding eigenstates can then be found. The lowest eigenvalues which is a
function of the ag will be chosen. Minimising this value with respect to ag and
then solving the equation when it is equal to zero for ag. Since the value of ag is
obtained, the value of a. is then equal to %a@ Substituting the ag again in the
eigenvalue expression results an analytical expression for the Ds; symmetry of the

following form

25 g, (5.2.3)
V5 + 8V sin 3

Similarly, by following the previous steps for the D3, case, an analytical expression

E (Dsq) =

for the minimum energy is found as

-6 )
E(D3y) = ————— (V/)" hw. 5.2.4
(D) = 5757705 ) (52.4)

An interesting observation here is that when these expressions are plotted for
the same previous values of V| and V/,, it shows a perfect fit to the dashed
and dotted lines which represent the numerical values that were obtained from
the minimisation programme, as shown in Fig. 5.2. Either Dj; or D3; minima
occur only if one of the conditions is satisfied either v/5V, > 3Vs or v/5Vs < 3V4
respectively. For example, when V3 = 0, Hy produces Dsq minima in the APES
provided that V5 > 0. However, if V5 < 0, it will produce D34 minima. This can
be seen very clearly in Fig. 5.3, when V3 = 0 we should be looking only along the
V5 axis. Similarly, when V5, = 0, Hs by itself produces D3y minima in the APES if
V3 > 0 and D54 minima if V3 < 0. This is obvious from Fig. 5.3 when we look along
the V5 axis. Overall, only minima of Ds; or D3y symmetry have been obtained.
A critical mixing angle  can be found when the two energies of both symmetries
become equally (i.e when E (Dsy) = E (D3q)) from this a mixing angle is found
to be 8 = tan~'(v/5/3). This angle divided the region into two parts as shown
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D, minima ¥4 tan™'(\5/3)"\

»

trough

D, minima

Figure 5.3: Diagrammatic representation of the symmetry of the minima as a
function of the mixing angle. At the origin, the quadratic constants

are zero and so there is a continuous two-dimensional trough of

minima with energy Firouen = —2 (Vl’)Qhw. The minima are of

D3, symmetry in the range 0.641 < 8 < 3.78, and Dj,4 elsewhere.

in Fig. 5.3 where the different symmetries are allowed to exist. The upper half
represents the region of the D3y symmetry where 0.641 < 3 < 3.78. The lower half
represents the Dsy4 region for the rest values of 3. It is also noticeable that when
B3 =0, Vs — 0 and the energy of the Ds; minima is equal to —2 (V})* hw. This
is independent of the quadratic coupling strength V. (provided that Vi, < 0.4,
above which the quadratic part outweighs the contribution from H.;, and the
minimisation routine diverges to —oo as @ — o0). This energy is identical to
the energy of the two-dimensional trough obtained in the absence of quadratic
coupling, even though quadratic coupling is present and is undoubtedly warping
the APES. A rationalisation of this behaviour may be made by considering the
nature of the warping produced by the quadratic term only, as shown in Fig. 5.4.
When 3 = 0 (top part of Fig. 5.4), Ds; minima are obtained with an energy of
—2(V/)? hw. Changing the value of V., has no effect on this minimum energy,
but it will affect the ‘height’ of the D3, ‘hills’ between the minima, thus, warping
is increased but the minima stay at the same energy. A similar argument can be
used to explain why the D3; minima produced when 3 = 7/2 also have an energy
of =2 (V!)? hw [Eq. (5.2.3)] provided the value of V/., is not excessive.
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y
Iinear coupling

only

Figure 5.4: Warping of the spherical APES obtained from the linear coupling
model by the quadratic interaction Hamiltonians. The cases shown
correspond to 3 = 0 (top) and § = 7/2 (bottom). For clarity, and
later use, the minima are labelled {A; B, ..., F,a, b, ..., j}.

5.2.2 Well positions and electronic states

The values of the minimum points for the wells can be obtained using the theoret-
ical method outlined above when it was required to obtain the analytical results
for the energies. The rest of the minimum points of the wells can therefore be
obtained easily by applying the symmetry operators on one of the minimum point
and this can be worked for both symmetries. These values with the corresponding
eigenvectors are obtained and tabulated in Tables 5.1 and 5.2. In order to re-
duce the complexity of the problem, we shall present results for two specific cases,

exemplifying the behaviour in the presence of D54 and D3y minima as follow.

D54 minima

Table 5.1 gives the positions of the pentagonal wells of Ds; symmetry and the asso-

ciated electronic states. The vibronic states can be easily found using Eq. (2.3.18).
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Table 5.1: Electronic states and well positions for the Ds; symmetry case.

2

Term splitting has been ignored and ¢ = ATV sng
tot S

Label Shift, o Electronic state
A (—V/3¢, —¢,V6¢,0,0) (5,51, 5L, 22,0,0)
B (V3¢ —¢, =8¢, 0,0) (=4, =4, 5L, =2,0,0)
C (V3¢,—¢,0,V6¢,0) (54, L, 5L.0,%2,0)
D (86, ~¢,0, V¢, 0) (35 0. 5£.0)
E (0,2¢,0,0,v6¢) (5£,0,%,0,0,%2)
F (0,2¢,0,0, —V6¢) (4,0, 20,0, —2)

2 In units of V; /huw?.

D3, minima

Table 5.2 presents the positions of the trigonal wells of Ds; symmetry and the

corresponding electronic states.

5.2.3 Symmetry-adapted states

The general theory outlining the use of projection operators in order to find the

SASs is found in Section 2.3.3. A specific application to JT systems has also been
made before in Refs. [84] and [22].

SASs for Ds; minima

Symmetry adapted states of H and A symmetry are obtained after using the

projection operator technique. These six states are linear combination of the six
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Table 5.2: Electronic states and well positions for the Ds; symmetry case.

Term splitting has been ignored and n =

—2v/3
348V, cos 3°

Label Shift, a® Electronic state
a (L, —/31.7,0,0) (5.4, 54,%42,0,0)
b (L5, /31, -,0,0) (544,55, =2.0,0)
¢ (L5, /42,0,,0) (51, 4,0,42,0)
d (L51,/47,0,,0) (5.4, 5.0,52,0)
e (—v/21,0,0,0,7) (54,72,0,0,0,%2)
f (—v/21,0,0,0, —n) (5£,72,0,0,0,=2)
(0,0,7,m,m) (75,0,0,, 5, %)
(0,0,7,=n, =) =1,0,0,L2, =2 =¥2)
i (0,0, =n,7, =) =1,0,0,52, 2 =v2)
j (0,0, =1, =, 7) 700,52, =2, %)

2 In units of V;/huw?.
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well states given by

Ny

[Hy) = E(1450) + |B50) — [C'0) — D' 0)],
N
|H.) = % [|A;0) + | B';0) + |C";0) + |D; 0) — 2|E'; 0) — 2|F"; 0)],
N
|Hy) = 7; [ —|4;:0) + |B';0)]. (5.2.5)
NH / /
|Hs) = NG} [ —[C";0) + D' 0)],
NH / /
He) = [~1E0)+ [P0
N
|A,) = 72 [|A’:0) + |B’;0) + |C";0) + | D" 0) + | E"; 0) + | F"; 0)],
where Ny and N4 are normalisation constants given by
Ny = L’
Vo =5,
1
Np= ——e. (5.2.6)
/1458,

Here, S, is the phonon overlap between any two pentagonal wells and given by

S, = exp[—6V,2¢%. (5.2.7)
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SASs for Ds;; minima

For D3, minima, ten SASs of H, G and A symmetry are obtained. They are linear

combinations of the ten well states and given by

N

|Hy) = \/—% [ |a’;0) + [b;0) + |5 0) + |d; 0) — 2]¢’; 0) — 2| f'; 0)],
N

[He) = =5F [=1a'50) = [1/:0) + |¢:0) + |d';0)],
N

|Hy) = 7;’ [ Ja’;0) — b3 0) + |g; 0) + |1';0) — |i';0) — |55 0)],
NH ’ / ’ / ./ -/

|Hs) = 75HCN%%dﬂ%Hgﬂ%ﬂhﬂ%Hum—b;W,
NH / / / !/ -/ -/

|He) = ;@[km%ﬁf&%ﬂgﬂ%ﬁhﬂ%ﬁu®+wﬂm,
N,

Ga) = %ESBWﬁ®+MHD+WM>HJﬂ>H€N>Hfmﬂ

=3(|g;0) + [1;0) + [i;0) + |55 0))], (5.2.8)

Gy) = M;Pﬂdﬂ%—Wﬂﬁ—Odﬂ%ﬂﬁﬂ»+Wﬂ%ﬂfﬂ%

=3

|Gy) = %ED(Wﬁ%ﬁJﬂD—WHD+WHD—Wﬂ%Hfﬂﬁ
_ & ¢ 0) — | £ 2 ‘. i) — |4

G.) = wﬁp(lﬂ>|fﬂﬂ 9';0) + |’ 0) + [i"; 0) — |5 0)],
_ & /. /. /. /. /. /.

|Aa) = %ﬁ[MJD+%ﬁ%+kﬁ%Hdﬁ%Heﬂ%Hfﬁ>

+|g';0) + |15 0) + |7';0) + |55 0)].

where Ny, Ng and N4 are normalisation constants given by

1
NH = )
/1425, — 257
1
NG = )
V128, - 257
1
Na (5.2.9)

- 1 5 2 .
\/§+§St+§5?

Sy is the phonon overlap between any two adjacent trigonal wells and is of the
form

S, = exp[—V| 7. (5.2.10)
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5.2.4 Energies of the SASs

The energy of the SASs can be found by taking the matrix elements of the total
Hamiltonian divided by the norm of the states; Mathematically

<Fi|Htotal|Pi>
=7 2.11
PR (5.2.11)

IT;) is the SAS of I' symmetry and the subscript i refers to the i’ component.
These calculations are not trivial in this system, since the total Hamiltonian
Eq. (5.1.10) consists of four different 6 x 6 Hamiltonians. For example, to find the
energy of the states |Hy) in Eq. (5.2.5) for the pentagonal case, Eq. (5.2.11) is

written as

B — (Ho|Huin|Ho) + (Ho|H1|Hy) + (Ho|Ha|Ho) + (Hp|H3|Hy)
= L (52.12)
(Ho|Hyp)

As the |Hy) is a normalised state, the denominator of this equation is equal to

unity. The first term in Eq. (5.2.12) can be expanded as

N2
(H9|Hmb\He> = TH[<A/;O|Hvib|A/; 0) + <AI;O|Hvib|B/; 0) - <A/; O‘Hvib|0/; 0)

— (A5 0[Hy| D' 0) + .. . (5.2.13)

The term (A’;0|H,u|A’;0) is the matrix element of H,; for the well state A.
(A’;0|Hyip|B'; 0) is the matrix element between the well states A and B. These
terms can be written in more simplified forms as S{A’|H,i|B’), where S is the
phonon overlap between the oscillators in the wells found using Eq. (2.3.23). The
other terms in Eq. (5.2.12) can be similarly expanded. The calculations are cum-
bersome since they need to be undertaken for each Hamiltonian in Eq. (5.1.10)
and will not be discussed further. Below are expressions of the energies obtained

for the two cases of Ds; and D3y minima.

D5, minima

The matrix elements of the total Hamiltonian Eq. (5.1.10) for Ds; minima are
presented in Table 5.3. Substituting them into Eq. (5.2.12) yields the energies of

the H and A pentagonal SASs. They are found to be

Hax— +SpHasp
1-15,

Hps+ S,Hap

E, = . 5.2.14
4 1+8S, ( )

B, =
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Table 5.3: The matrix elements for the D5; minima.

Hamiltonian (A";0|H|A’;0) /hw (A’;0|H|B'; 0)/hw
Hoiv 5V/2¢? + 5 SV 4

Hy 2v/10V/%¢ 2/ TOV/2C

s 0 6VLViC?

I R e fionee
Hrota VIOVEC+ 3 (=3 +6V)C+ SVI0VC + 3

Note: The electronic and the phonon overlaps are not included in the calculated matrix elements.

(E-Eyp)/hw
3.0r

290
280
270

260

250"
240

2.3F

0.0 0.5

1.0

P co R
15 2.0 25 3.0

Vl'

Figure 5.5: Energies of the SASs derived for D54 minima ignoring the dif-
ferences between the term energies. It has been assumed that
V/ = 10V{,; and the mixing angle is § = 0 (V4 = 0). The dotted
curve represents the H state and the solid curve represents the A

state.
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Table 5.4: The matrix elements for the D3; minima.

(a/;0|H|a'; 0) / hw (a’; 0[H|b'; 0) /Tw (a';0|H|c'; 0) / hw
Hvib %V{Q + g %V{QUQ 4 g 7%‘/1/2772 4 g
Ha 2V3V%1 2V3V{%n 2V3V{%
Hy VB PV V{2Vin? V2Vin?
Hs 0 EVIPVin? VPV
Huowr V3V +E GASV AR EEVER LS (S AV 2V

Note: The electronic and the phonon overlaps are not included in the calculated matrix elements.

It should be noted that Hsa = (A’; 0| Hiptar|A’;0), Hap = (A’; 0| Hyprat| B'; 0). . . ete.
Also the matrix element H,p is equal to the Hyc, because the wells in the pen-

tagonal case are equally separated.

The energies of the SASs for the D5, case are plotted in Fig. 5.5 for the particular
mixing angle § = 0 (i.e V§ = 0). The figure shows the energies of the symmetry-
adapted states (divided by hw to create a dimensionless quantity), relative to E
as a function of the dimensionless linear coupling parameter V. The figure shows
that the ground state is of A symmetry. In the strong coupling limit, the energies
tend to ghw representing five harmonic oscillators of the o, mode as expected. At

zero coupling (i.e V/ = 0), the A and H states are degenerate with an energy of
5
Shw.

Ds; minima

The matrix elements of the Hamiltonian between the states associated with the
wells for D3; minima are given in Table 5.4. In this table, (a’;0|H|a’;0) is the
matrix element for the same well and (a’; 0| H|b';0) and (a’; 0|H|c’;0) for the ad-
jacent ones. Here, (a’;0|H|a’;0) = H,q, (a’;0|H|b';0) = Hgp. .. etc; the matrix
element H,, is different from the matrix element H,. due to the differences in
the separations between the triagonal wells as will be discussed in the following
section. Therefore extra care should be taken when calculating the energy for this

case. The energies of the H, G and A trigonal SASs are found to be
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(E-Eyp)/hw

35k
3.0/
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200
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Figure 5.6: Same as in Fig. 5.5, but for the D3y wells arising when g = 7/2 (
Vg = 0).The dotted curve represents the H state, the solid curve

represents the A state and the dashed one represents the G state.

Et o Haa + gStHab - %SEHac
H 5 _2Q2 )
1438, — 25;

10 1 Q2
By = eo gféHab tgft Hoc. (5.2.15)
— 105, 1 L5
%Haa + gStHab + %SEHac
1 5 2
5+ 35S+ 557

These energies for the D3; minima are plotted as shown in Fig. 5.6 for the mixing
angle, 3 = /2 (i.e V; = 0). It shows the energies of the SASs relative to E;r as a
function of the dimensionless linear coupling parameter V;. The figure shows that
the ground state is of A symmetry. In fact, the behaviour of the A and H states
is rather similar irrespective of whether they arise from combinations of D54 or
of D34 wells. Also the figure shows the expected trend of the energies where all
tend to ghw again behaving as a five dimensional harmonic oscillator. At zero JT
coupling, the states of the A and H symmetry are degenerate which represents the
symmetries of the terms of the anion with which we started the problem. It is also
seen that, in the case of the D3; minima, the additional wells give rise to a SAS of
G symmetry which forms the first excited vibronic state, sometimes referred to as
the tunnelling state. If these states are observed spectroscopically, this additional
four-fold degenerate state could be used as an indicator of the symmetry of the

ion.
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5.3 Pseudorotation in C%a anion without Coulomb

interaction

The method outlined in Chapter 3 related to the time evolution of the system will
be used here. The theory is applied to both Ds; and D34 symmetries in order to
investigate the dynamical motion of the ion. The calculations of the probabilities
will start by inverting equations (5.2.5) and (5.2.8) to obtain the states of the wells
in terms of the SASs; then by using Eq. (3.2.9), the probabilities of the systems
initially localised in a specific well and found later in another well will be derived.

The results are as follows.

5.3.1 Dj5; Symmetry

The unnormalised states associated with the pentagonal wells are

g = A ) i) Ay
7 \/GNA 2Ny 2\/§NH \/ENH’
oy = Ml 1) 1
7 V6N, 2Ny 23Ny 2Ny’
gy = A | IH) 1y
7 V6Na  2Nw  2¢/3Ny 2Ny’
D0y — [Aa)  [Ho) |H) |Hs)
7 V6Na  2Nu  2¢/3Ny 2Ny
gy _ A IH) i)

V6N4s 3Ny 2Ny
/. _ |Aa> . |He> |H6>
|F';0) = JGN.  VaNn + N (5.3.1)

where N4 and Ny are the normalisation constants which are defined earlier in

the chapter. The above states may be normalised by multiplying them with the

normalisation constant

N—— 1 (5.3.2)

1+ 22

Now, the above states are used to find the probabilities of the system which are

given by
Paat) = 1-— m {(5 — S,)(1+58,) sin? (%ﬁ)} , (5.3.3)
Pap(t) m {169 S245(5 — Sp)(1 + 55,) sin® (%)} ,
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P(t)
1.0k

]

0.8~

0.6
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Figure 5.7: Internal dynamics of the Dy symmetry with V,, = 0.1, V{ = 1.5.

t

The dashed curve represents the P44 and the solid one represents
the PAB-

where A is the energy difference between the energies of the SASs and given by

6 S,InS,
(5 - Sp)(l + Sp)

The pseudorotational dynamics for this case is illustrated in Fig. 5.7 for a mod-

A= —

(1= VL. (5.3.4)

erately strong coupling V/ = 1.5. An interesting observation is that Py > % at
all times and the probability of finding the system initially localised in well A to
remain in the same well later never drops below %. The figure shows that, at £ = 0
the system migrates from well A and starts to appear in well B (or in any of the
adjacent wells C, D, E or F). After a time t = %,the probability of finding the sys-
tem in well B reaches its maximum value. When ¢ = %i, the system has returned

back to its initial state after completing one pseudorotational period 7, = %i.

The dimensionless pseudorotational rate R, can be found using Eq. (3.3.8).

Another interesting feature here is that, the sum of the probabilities of being in

any of the six well states at time ¢ is

i P 1+ 1695, (5.3.5)
AX — - - .O.
= 5(3 +25,)?

This sum is independent of time as expected, and as V| — oo the separation walls
between wells becomes higher and the phonon overlap S, tends to zero. Therefore,

the summation tends to one as expected as the system must be localised in one
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of the wells. Overall, the system in this case pseudorotates between all wells in a
regular pattern similar to that in the Cg, with some differences due to the specific
circumstances for each problem.

5.3.2 D33 Symmetry

For this case the unnormalised states associated with the trigonal wells are found

to be as

a0) = V3l4a) n V2|Hy) — VO|H,) + 2|Hy) L 3lG) + V5|Gy)
’ V10N, 2V6Ny 3V15Ng

|b,‘ 0> _ \/§|Aa> + \/§|H0> - \/6|HE> - 2|H4> + 3|Ga> - \/6|Gm>
’ V10N, 2v/6 Ny 3VI5Ng

0y = V3[4a) | V2IHy) + VOIH,) +2|Hs) | 3|Ga) + V5|Gy)
’ V10N, 2v/6Ngy 3V15Ng

|d" 0) — \/§|Aa> + \/i‘H9> + \/G\HJ - 2|H5> + 3‘Ga> - \/5|Gy>
’ V10N, 2v/6Ng 3V15Ne
: V3|A.)  2v2|Hy) — 2|Hs) | 3|Ga) + V5|G)

le;0) = V0N, N + N (5.3.6)

l0) = V3|Ad)  2v2[Hy) +2|H;) | 3|Ga) — V5IG)
’ V10N, 2v/6Ny 3VI5Ng

:0) = \/§|Aa>+\H4>—\H5>+|H6>_3|Ga>+x/5<|Gx>+le>+\Gz>>
’ V10N, V6Ny 2v/15Ng ’

W:0) = V3| Aa) o |Ha) = |Hs5) = |He) _ 3[Ga) + V5(IGe) = |Gy) — G=))

V10N, V6N 2v/15Ng
gy = Y3 ) )+ H) 3G,) — V(G2 + G [62)
’ V10N, V6N 2V 15Ng 7
750y = VB3|Aa)  |Ha) +|Hs) — |Hs)  3]Ga) — V5(IG.) = |G,) +1G2))
’ V10N, V6Ny 2V15Ng '

The N4, Ng and Np are the normalisation constants for the SASs. These states

can be normalised by multiplying them by the normalisation constant

1

N=—. 5.3.7
= (5.3.7)
15
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The probabilities of the system to evolve to another well at a later time ¢ are found

to be

Po(t) = 1—F[156 Fy—12 F3 +20 Fy],
F

Py(t) = 31 [9S2(25 + 4S;)? — 45 Fy — 72 F3 +40 Fy]
F

P.(t) = 31 [45 Fy+2 F3+5 Fy],

where F, F,, F3 and Fj are defined by
1
9(15 — 252)2’

At
Fy = (274 5,(60 + 375, — 45)) sin? (2—%) ,

Fy = (1+8)(3+25)(=9+25,(5+5;))sin’ (%) , (5.3.8)

Ast
Fy = (=9+2S(5+5)) (=9 + Si(=5 + 25,)) sin” (2—2) :

where A;, Ay and Aj are the energy differences between the SASs A, G and H

which are given by

A _2StlnSt(—15—24St—IOSer\/5(3+4St(3+25t))140t,)hw
b —27 4 S,(—60 — 375, + 4S?) ’

A, _ _DSInS(15+ 65, — 557 + V5(=3 + Si(=3 + 45,)) Vior) Foo
2 (=94 S)) (=1 + S)(1+ 5,)(3+ 25, ’

A 35, InSy(—45 + 185, — 557 + V/5(9 + S,(—9 + 4St))th/)hw
3 (=94 S)) (=1 + S,) (=9 + Sy (=5 + 25,)) '

(5.3.9)

It can be inferred from the above expressions for the probabilities that, the
interwell dynamics in the trigonal case is more complicated than that for the
pentagonal case. In the trigonal distortion, there are two tunnelling splittings
between the states involved rather than one compared to the pentagonal distortion.
The wells here can be classified as nearest-neighbour {b, g, h} and next nearest-
neighbour wells {c,d, e, f,i,j} when we start off in well a. The system in this
approach is allowed to tunnel to either one of the wells in the first set or to one
in the second set. This can be seen clearly from Fig. 5.8. The regime of this
trend is as follow; when the time equals zero, the system is initially prepared in
well a and the probabilities of finding it in well b and ¢ are very small. As time

progresses, the system starts to evolves with a decreasing probability of finding it
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0 20 40 60 80 100
Figure 5.8: Internal dynamics of the D3y symmetry with V,, = 0.1, V{ = 1.5.
The dotted curve represents the P,,; the dashed curve represents

the P, and the solid curve represents the P,.
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Figure 5.9: Plot for the P,, for a long-term variation as a function of . The

vibronic coupling constants have been takes as V/, = 0.1, V{ = 1.5.
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P(t)
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Figure 5.10: Plot for the P, for a long-term variation as a function of ¢. The

vibronic coupling constants have been takes as V,,, = 0.1, V{ =

1.5.
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Figure 5.11: Plot for the P,. for a long-term variation as a function of t. The

vibronic coupling constants have been takes as V., = 0.1, V{ =

1.5.
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still localised in well a and increasing of that for both wells b and c¢. Here, the
figure shows that on average, the system is more likely to be in well b than well
c as the rate of increase in P,. is smaller than P,,. This is an expected situation
as well b is the nearest-neighbour and well ¢ is the next nearest-neighbour to well
a. With time increasing, the system has occupied well b and then well c. After
a period of time, the system has migrated back to its original well state. It can
be seen from the figure that, after the system completes one revolution the state
is no more identical to the initial state and this can be seen clearly if the process
extended over a period of time as in Fig. 5.9, 5.10 and 5.11. The figures show
plots of P,,, P, and P,. displayed over a longer period of time. The state behaves
in such a way that the system reoccurs in the initial state again, an increasingly
large percentage of it gets “left behind” in the other wells which leads to a decrease
in the rate of the P,, in the second reoccurrence. From the figures, the expected

time that the system could repeat this circuit again is v 285wt.

5.4 Summary and Discussion

In this chapter, an approximate model applicable to Cg; anions has been devel-
oped. This model has been treated using numerical and analytical techniques to
investigate the minima on the APES. Including the quadratic coupling led to have
two different kinds of minima : one with Ds; symmetry, and the other with D3y
symmetry. The results which has been obtained from the numerical and theo-
retical methods for these two cases show perfect consistency. Also, the energies
and the corresponding eigenstates for both the static and the dynamic JT interac-
tion have been found analytically and plotted as a function of the linear vibronic
coupling constant. The plotted energy levels showed an agreement with those

obtained previously by O’Brien in Ref. [47].

The pseudorotation of the dynamical systems has also been studied for both
cases and the probabilities of finding the systems at time ¢ later have been de-
rived using the time evolution operator. The system involving the Ds; minima
pseudorotates freely between all wells in a regular pattern, while the D3; minima

behave differently due to the complicated shape of the APES.

If we assume that the ion is treated as if the h,(2) mode is the only mode of

importance at ~ 429 cm ™! (~ 53.2 meV) as this is thought to be the most strongly
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coupled mode in some Refs. [85]. Manini et al. [7] have calculated a JT energy for
this mode in Cgg of 6.3 meV, together with a linear coupling constant g = 0.489.
Comparing theories suggests that in terms of our parameters, V] = %g = 0.245.
To check this, it is noted that £, ~ —2 (V{)* hw and so it is calculated, using the
above quantities, E;r = 6.4 meV, in good agreement with the value calculated by

Manini et al. 7).

This work has been partially published in Ref. [86].
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CHAPTER 6

A further investigation of the C%O_

anion with e-e repulsion included

In this chapter, we will investigate the previous problem analytically when the
term splitting that appears as a result of the e-e repulsion is included in the
problem. Including this term complicates the calculations when it is required to
obtain analytical expressions for the positions of the minima and the corresponding
energies. Nevertheless, the insertion of this term could be important. There are
suggestions that it is even stronger than the JT interaction in the doubly-doped
ions which add to the Coulomb repulsion to localise electrons although this is not
clear [87].

6.1 A general review of the system

In the previous chapter the electronic basis states have been derived for the low-
spin terms {A, H} when the term splitting has been ignored. When this term is
taken into account, splitting between the basis states of these terms occurs leading
to a removal of the degeneracy between them. The Hamiltonian which represents

this problem has the general form as in Eq. (5.1.10), where the term splitting
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Hamiltonian Hrg is represented by

Hrg = (6.1.1)

S O O O O
o O o o O

oS O O O o O
o O O O o O
oS O O O o O
o O O O o O

0 0

This form of the matrix ensures that in the absence of the JT interaction, the
electronic states are such that there is an energy difference ¢ between the |A)
state and the |H) state, as shown in Fig. 5.1. The transformed Hamiltonian
for this problem is a function of the values of (a;) which specify the positions
of the wells. These values itself are functions of the term splitting 6. It is also
found numerically that, for each well, the first components of the corresponding
electronic state also varies as a function of §. For example, the electronic state for
well E of the D54 case has the form{—\/gXl, 0, %, 0,0,1}, where X; represents
the variation of the first components with respect to the inclusion of the term
splitting. From the theoretical point of view this is quite reasonable as Coulomb
repulsion splits the A state away from the H state, while the H state keeps the
same position unchanged. Again for simplicity, the problem will be considered for

each case of symmetry separately.

6.2 Ds; minima

Following the same procedures that were outlined in the previous chapter but
including the term splitting this time, it is found that the minimum points have
the form shown in Table. 6.1. In this table, o1 and X; are unknowns depend on
the value of 9. These values can be found by considering one of the minima and
substituting the shifts and the corresponding electronic state into the eigenvalue
equation ﬂwelect = FEjrWeect- In this expression, ¥eect is the electronic state
and E;r is the energy of the minimum, which coincides with the JT energy. The
unknowns o; and X; have been chosen to simultaneously obey both this eigenvalue
equation and the requirement that o; should minimise E ;7. Practically, to find
the values of o and X; we start the evaluation by choosing a minimum point (say

the minima for well E for the sake of simplicity), and substitute both the positions
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Table 6.1: The shifts and their associated electronic states if the minima have
Ds5g symmetry and term splitting is included. o7 and X; are de-

scribed in the text.

Label Shift, a* Electronic state
A 201 (\/3,-1,1/6,0,0) (=/2X1, 24 24.1,0,0)
B 221 (—y/3,-1,-+/6,0,0) (/51,24 2. 1,0,0)
C 221 (1/3,-1,0,/6,0) (=/2x1 &5 .0,1,0)
D 291 (1/3,-1,0,-+/6,0) (—\/gxl,%,;—%,o,—m)
E 221.(0,2,0,0, V) (=/3%1,0./2,0,0.1)
F 221 (0,2,0,0, ~/5) (=/3%1,0.4/2.0,0,-1)

2 In units of V;/huw?, so that oy is dimensionless.

of the minima and the corresponding electronic state in the eigenvalue equation

7:Z,lvz)elect - EJT,QZ)elect- (621)

Next we take the first component of the vector obtained from the product ’Flwelect
and divide by the first component of 1)gec; itself to give

5X10 +2 V,%01(—10 + 85 Vyou + 5X,01)
5X, ’

B = (6.2.2)

and then apply the same procedure on the second component which gives

200 V{2(=5X1 + 45X, Vi oy +5 01 — 5445 Vi o)
for = 5 . (6.23)

For t)eect to be a proper eigenfunction, we must have E;r1 = E o, then Eq. (6.2.2)
and Eq. (6.2.3) give

2 Aoy (4 V] o1 —V5) = V5P(X)) (6.2.4)
where A is defined as .
A= W) he (6.2.5)
)
and
P(X,) = X1 (6.2.6)

(X1 +2)(X; - 1)
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Now, we need to find value of o; to minimise E;r, in order to satisfy the

condition 85” = 0. Applying this to Eq. (6.2.3), an expression of aXl is found as
6X1__X1(8V3/<71—\/5)+2\/601—\/5+8V3/01 (6.2.7)
doy o1(4 V] oy —/5) ' o
Differentiating Eq. (6.2.4) with respect to o; produces
IP(X,) 0X,
2 A8 Vy 01 —V5H)=+V5H —. 6.2.8
( 3 01 f) \/_ 8X1 80'1 ( )
Then substituting Eq. (6.2.7) into Eq. (6.2.8) we find
P(X1)
Vi(@ri/ax + X+ (6.2.9)
X0 2.
T2+ Vi@ + X1+ 1)
On using the definition of P(X;) and simplifying it we get
o F(X
_ VA EX)) : (6.2.10)
VB +8 VI F(X))
where F'(X;) is the function
Fl) = 12 (6.2.11)
2+ o
With these expressions, F;r has the general form
X2 2v/5(F(X,))?
B — L5 Vi <, V) (V{)? hw. (6.2.12)
24+ X3 (V5 +8Vy F(X1))
for the case when V3 =0
g1 — F(X1)7 (6213)
and therefore )
X 2
(Dsa) o 1X125 —2(F (X1))* (V)" hw. (6.2.14)

Now, X; must satisfy a certain condition in order to ensure that the above ex-
pression of E;7 is the lowest energy of the system. To confirm that the condition

in Eq. (6.2.4) must be satisfied, we have
2 Aoy (4 V] oy —V5) —VBEP(X,) =0 (6.2.15)
and so

(X1 4+2)(X; —1)2 Aoy (4 Vi o1 —V5) —V5Xy =0, (6.2.16)
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using Eq. (6.2.10)

2A<X1+2><X1—1>< V5 FXy) ) ( ””(XW?”') —\/5> VEX, =0,

VE+8 VY F(X)) ) \V5+8 V] F(X,

(6.2.17)
10 A F(X1)(—4 Vi F(X,) — V5) (X1 4 2)(X; — 1)
—V5X, (V5 +8 VIF(X,))? = 0. (6.2.18)
When V5 = 0, this becomes
2A F(X)(X1+2) (X, —1)+ X, =0, (6.2.19)
on substituting into Eq. (6.2.11)
2 A(142X ) (X +2)(X; — 1)+ X1 (2+ X?) =0, (6.2.20)
yields the cubic equation
(14+4A)X7 +6AX7 +2(1 — 3A)X; —4A = 0. (6.2.21)

Here the (real) root must be taken which yields the lowest energy. If A — oo,
so that the difference between the term energies is negligible compared to the
JT energy, then Eq. (6.2.21) has a solution X; = 1, which implies that oy = 1
and EL(]?M) = —2(V/)* hw, as found earlier. On the other hand, as A — 0,
i.e. if the difference between the term energies overwhelms the JT energy, then
Eq. (6.2.21) has the real solution X; = 0, which implies that o; = 1/2 and
EL(]?M) =-1 (V{)? hw, which will be negligible compared to 4.

6.3 Ds3; minima

In this case, the above procedure can be repeated but this time the minima shown

in Table 6.2 will be used. The value of o5 is found in a similar way to o1, to be

3F(Xs)

= . 6.3.1
727 358V F(Xy) (6.3.1)
Therefore, the JT energy is found to have the general form
X2 F(X5))?
EWs) = 225 SUE(X,)) (VY)? hw. (6.3.2)

T T4 X2 (3+8V] F(Xy))
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Table 6.2: The shifts and their associated electronic states if the minima have
D34 symmetry and term splitting is included. o9 and Xy are de-
scribed in the text.

Label Shift, a* Electronic state

a 202 (1,-1/3,1/2,0,0) (=/8%2 &5 —/4.1,0,0)
b =222 (1, /3, ~+/2,0,0) (—\/;XQ,E,—\/;—L(),O)
¢ =202 (1,1/3,0,/2,0) (—\@XQ,%, 3,0,1,())
d =202 (1,1/3,0, /2, 0) (-/3% 5. /5.0,-1,0)
e *322 (=2,0,0,0,2) (/3% —v2,0,0,0,1)
£ 202 (-2,0,0,0, ~v/2) (—\/gxg,—\/?,o,o,o,—Q
g ~202 (0,0, v/2. V2, v/2) <—\/§X2,0,0, 1.1, 1)

h (0 0,72, —v2, —/2) <—\/§X2,0,0,1,—1,—1>
i 222 (0,0, ~v/2, V2, —/2) (=/3%2,0.0,-1,1,-1)
i 222 (0,0, ~v/2, ~v2,v/2) (—\/gxg,o,o,—1,—1,1>

2 As for Table 5.1, these are given in units of V; /Auw?.
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For the case when V =0

09 = F(XQ), (633)
and
(D34) ‘X22 2 v N2
B = 5 — 2P (X)) (W) he (6.3.4)

where F' is the same function as given in Eq. (6.2.11) and X, obeys exactly the
same equation as X in Eq. (6.2.21).

6.4 Symmetry-adapted states

The SASs for both cases can be obtained using the projection operator, in a
similar manner to that presented earlier. Combinations of the vibronic states
II'’; 0) associated with each minimum are taken to formulate these SASs using the

definition of the wells presented in Tables 6.1 and 6.2.

Once again, the two separate cases treated in the previous section will be con-
sidered, when either VJ =0 or V3 = 0.

6.4.1 Energies of the SASs from Ds5; minima

In this case, again the states of A and H symmetry result from taking combinations
of the six wells; these states have the same form as that in Eq. (5.2.5), but with

different definition of the vibronic state. The corresponding energies are given by

Hya— G(X1)S,Hap

EY =

A 1-G(Xx)S,

5Haa + G(X1)S,Hap
EY, = F 6.4.1

where G(x) is the function
2 — 5z’

=" 6.4.2
G(SL’) 2+ g2 ’ ( )

and S, is the phonon overlap between any two adjacent pentagonal wells given by

S, = exp [—% (011/1')2] . (6.4.3)

In Eq. (6.4.1), Hxy = (X';0|Hiota|Y';0)/(X';0]Y”; 0) are the matrix elements

of the total Hamiltonian between wells X and Y. Thus, we can derive closed

93



CHAPTER 6: A FURTHER INVESTIGATION OF THE CZ, ANION WITH E-E
REPULSION INCLUDED

expressions for these quantities in the form:

X? 9
Har = 50+ 3 -2 e,
5X72 ) 44X, — 1)
Hip = sagd + (-0 00 B+ )
720’1‘/,5,1:
— |t hw 6.4.4
1(5X7 —2) ’ (6.4.4)

!/

where V., is the dimensionless quadratic coupling constant defined in Eq. (5.2.2).

6.4.2 Energies of the SASs from Dj3; minima

The SASs here having A, G and H symmetries and also have the same form
as these given in Eq. (5.2.8) but again with different meanings of the well state

included in the form.
The energies of these states are found to be

Hao + 391(X2) S Hop — 692(X2)5152Hac
1+ 391(X2)S; — 692(X5)S? ’
Hao — 261(X2)SiHap — 92(X2)S7 Hac
1 —291(X32)S; — g2(X3)S? ’
Haa + 91(X2) S Hap + 292(X5) 7 Hac

B, — , 6.4.5
" 1+ g1(X2)S; + 292(X3)S? (6.45)

B, =

where g1(x) and go(z) are the functions

(0) = 25
) = ————
gl 3 (2 + xz)’
2 — 3x2
= - = 6.4.6

and S; is the phonon overlap between nearest neighbours, respectively,

Sy = exp [—% (02\/1')2} , (6.4.7)
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The matrix elements in Eq. (6.4.5) are found as

X2
Hoo = 520+ 3= 2(02V)’] o,
2
3X2 2 44X, +1)
Hy = —2§ il VY 2, — 2 ° 7
b T 3XI 42 +{2+UZ( D757 T X7 1o
4\/50-2‘/;/% ﬁw,
3(3X2 +2)
3X2 . o [, 4(2X, — 1)
H,e = 3)(227_25+{§—02(V1/) 302 + 3XZ_2
4505 Vi

3(3X2—2)

} o (6.4.8)

As a corollary to these expressions, it is noted that the JT energy relative to the

D34 minima in the APES can be found most simply using
Ejr = Hyo — 3hw. (6.4.9)

The JT energy of the Ds; minima can be found from H4y4 in Eq. (6.4.4) using an

analogous expression.

6.5 Discussion

Equations (6.4.1) and (6.4.5) can be used to obtain plots of the energies of the SASs
for the two cases considered. This, of course, requires knowledge of the coupling
constants and Coulombic term energies. It can also be used to provide a more

graphical interpretation of the results for particular values of these parameters.

Let us first assume that the quadratic coupling constant is small compared to its
linear counterpart, to the extent that V/ = 10V{,,. If ¢ is zero, then the energies of
the SASs arising from the combination of the D5y and D3y wells as a function of the
dimensionless linear coupling parameter V/, are as shown previously in Figs. 5.5

and 5.6 respectively.

For the case where ¢ is non-zero, a particular example, 6 = 0.5hw will be taken,
which should make the A state higher in energy than the H state in the absence
of JT coupling, in the spirit of the variation shown in Fig. 5.1. Keeping the other

parameters as before, the resulting plots are as shown in Figs. 6.1 and 6.2. It is
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immediately apparent that in both figures, in the limit as V/ — 0, the A state
does attain an energy exceeding that of the H state in a good agreement with that
obtained by O’Brien [47] and [81] when the term splitting is taken into account.
The H state continues to be the lowest in energy until the limit V] < 0.5. From
the figures, the crossover between the H state and the A state is predicted to occur
at values of V| =~ 0.45 for the Ds, case, whereas, V] =~ 0.5 for the D3, case. Also
it can be seen that, at zero coupling, the A state starts from a relative energy of
3.5hw while the H state starts from 2.5Aw in both figures. The separation between
the A state and the H state occurs due to the inclusion of the term splitting. If
the term splitting set to be zero, then the relative energies of both states are 2.5 as
shown in Figs. 5.5 and 5.6 again for both cases. All states tend to the correct limit
in strong coupling as expected in our theory. The G state in the D3y symmetry is
again the first excited vibronic state or the tunnelling state which can be used as
an indicator of the symmetry of the ion spectroscopically. It should be noted here
that by changing the values of either the term splitting or the quadratic coupling
will makes only a trivial changes in the plotted energies which can be ignored and
regard the situation as that appeared in Figs. 6.1 and 6.2 for different values of

both parameters.
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(E-E, )/ o
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0.0 0.5 1.0 1.5 2.0 25

Figure 6.1: Energies of the SASs derived from D54 minima when § = 0.5/w. It

has been assumed that V] = 10V{,,. The dotted curve represents

the H state and the solid curve represents the A state.
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Figure 6.2: As for Fig. 6.1, but for the D3; wells arising. The dotted curve
represents the H state, the solid curve represents the A state and

the dashed one represents the G state
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CHAPTER 7

The H ® h JT system: A model for
C—I—
60

Hole-doped derivatives of Cgq have received less attention compared to their electron-
doped counterparts. Although they are difficult to be produced experimentally,
nevertheless, they have the ability to exhibit different but interesting properties.
Such properties include the superconductivity at high temperatures that is pre-
dicted to exceed 50 K [7] higher than that for the electron-doped Cg [88, 89]. Su-
perconductivity in these ions is not completely understood, but it is believed that
the strong intramolecular JT coupling is related to this behaviour [90]. There-
fore investigation of the nature of the JT effect in these ions is of paramount

importance.

When electrons are removed from the H, HOMO of the neutral Cgy; molecule,
holes which behave as positively charged particles are produced. The resultant
cation is denoted by Cfy, where n refers to the number of holes generated. If only
one electron is removed from the H, orbital, a vacancy will be produced which,
in turn can be modelled in the same way as an electron. The cation which results
from this removal is the Cf;. This cation involves the H, ® (2a, + 6g, + 8h)
JT interaction, in which the vacant hole in the H, orbital is coupled to 2a,,
6g, and 8h, modes of vibration. The coupling to a, modes will be ignored as
mentioned earlier. However, previous theoretical calculations |7, 91| indicate that,
in Cf,, the coupling to the h, modes is much stronger than that to the g, modes,
particularly the coupling to the h,(1) mode (~ 261 cm™') which is believed to be

the strongest. [7]. Therefore, we can restrict our investigation of the Cg, cation
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by considering the H, ® hy JT model.

The total Hamiltonian of this system consists of two types of interaction Hamil-
tonians. This situation arises as the h, mode appears twice in the Kronecker
product H ® H = [A + G + 2H], which means that the linear coupling involves
two independent sets of coefficients that can be constructed just as with quadratic
coupling in the p? ® h system [27]. The first coupling is labelled as H, ® h, and
the interaction Hamiltonian corresponding to this coupling has been derived from
the CG coefficients in the first column of the H ® H table in Ref. [27]. The second
coupling is referred to as H, ® h, where the interaction Hamiltonian has been

derived from the CG coeflicients in the second column of the same table.

In this Chapter, the time evolution operator is used to investigate the dynamical
nature of the H, ® h, JT system in the Cf, ion. Analytical expressions for the
probabilities of finding the system in different configurations at a later time ¢ is

obtained as a function of the vibronic coupling parameters.

7.1 Pseudorotation in the H ® h JT system

For the H, ® h, JT coupling problem, the Hamiltonian of the system takes the
form

H = Hop + H1(Q) + H2(Q), (7.1.1)

where H;(Q) and Hz(@Q) are the linear interaction Hamiltonians. It has been found
that, after the minimisation procedure of the total Hamiltonian of the system, the
ion is distorted and produces an ion with either D3, or Dsq geometry [30, 82,
92|, depending on the relative contributions of H; and Hs in Eq. (7.1.1). The
‘H1 represents the interaction that produces the trigonal D3y wells, whereas H,

generates the D5, pentagonal symmetry.

Pseudorotation takes place between the different configurations. The SASs rep-
resenting the state of the system in this motion are found in Refs. [93, 92| for
both cases of D3; and D5, symmetry. Each case is investigated separately in the

following sections.
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(a) (b)

Figure 7.1: (a) A pictorial representation of the pentagonal wells and (b)

the energies of the corresponding symmetry-adapted states formed
from these well states. The well labels in (a) correspond to those

defined in Ref. [92].

7.1.1 The Ds; minima

The Ds4 wells are represented pictorially in Fig. 7.1.(a). The figure shows the

pentagonal wells which are separated equally and labelled as {A, B,C, D, E, F'}.

There are six SASs for the system when there is tunnelling between these wells,

five of which are of H symmetry and one with A symmetry. They are given by [93]

| Ho)
| He)
|Ha)
| Hs)
| He)
| Aa)

where

Nur
2

N,
" {JAG0) + | B 0) + |C'50) + | D' 0) — 2| E'; 0) — 2| F"; 0],

|A";0) + |B';0) — |C";0) — |D";0)],

2¢/3
Ny
— [|A";0) — |B’; 0)],
NG [|A;0) — |B';0)]
Nit e 0y 1 1D 0y (7.1.2)
\/§ b) b) b] . .
Ny
— [—|E";0) + |F; 0)],
ﬁ[ |[E'50) + [F7;0)]
N
ZA AL 0) + [B:0) 4 |C70) + [D';0) + |E'; 0) + |[F'; 0],
V6
Ny = Y5 (7.1.3)
5+5,
1
Ny = :
4 -3,
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T N S S R \\\\\\\\\\\\\\\Vl'
1 2 3 4 5 6 7

Figure 7.2: A plot of tunnelling splittings (A) between the A and H symmetry-
adapted states as a function of the dimensionless linear coupling

constant Vll :

are the normalisation constants and S, is the phonon overlap between any two
wells and is given by
12
S, = eXp[—% V3. (7.1.4)

V] is the dimensionless linear coupling constant. Fig. 7.1.(b) depicts the energies
of the states and shows that the A state is lying by an amount A above the H
ground state given by
6.5,InS
A=— PP . (7.1.5)
(1 - Sp)(5 + Sp)

The variation of the tunnelling splitting as a function of V| is shown in Fig. 7.2.

The states corresponding to the pentagonal wells are found to be

R R 7 S A N A
7 V6N,  2Nm  2¢/3Ny 2Ny’
oy~ A ) IH) )
7 V6N, 2Ng  2¢/3Ny 2Ny’
|C/O> — |Aa> _|H0> |He> . |H5>
7 V6N,  2Ng  2¢/3Ny 2Ny’
‘D/' O> — |Aa> . |H0> |He> |H5>
7 \/GNA 2Npg 2\/§NH \/QNH’
gy A 1H) i

VB6N4s  V3Ny  V2Ny

/. _ ‘Aa> o |H€> |H6>
Fi0) = e et e (7.1.6)

The probabilities of finding the system in a particular well at time ¢ can be readily
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0.2

- T~ ~

P S R Y t
1 2 3 4 5 6

Figure 7.3: Inter-well dynamics for a pentagonal system initially localised in
well A. The continuous curve represents P 4 and the dashed curve
represents P4p. The value of the Phonon overlap used is S, =

0.05.

derived using Eq. (3.2.9). These take the form

1 A
Paa(t) =1—=(1-5,)(5+S,) sin® (—t) : (7.1.7)
9 2h
and = A
_ 2 L w2 [(2F
Pup(t) = o + 45(1 Sp)(5+S,) sin THE (7.1.8)

From symmetry considerations, the other probabilities of finding the system in
the other wells C',D,F and F' are equal to Psg. Therefore multiplying P4g by 5
the total probability of the form

2

ZF S
X=A

Again and as expected, the pseudorotation mechanism in this case is similar to
that of the Dsq case in the (p? @ h) system. Fig. 7.3 shows that the probability
of finding the system in well A subsequently when it is initially localised in well
A never drops below % in agreement with that for the (p?> ® h) system. From
Eq. (7.1.9), it can also be noticed that the sum of the probabilities tends to one
as the phonon overlap S, — 0. This is expected as the walls separating the wells
in the APES are infinite (i.e.V; = 00) so that the system must be found locked in
one of the pentagonal wells as expected.

The system completes one pseudorotation of period T}, equal to %L. The rate

at which the system is pseudorotating is the inverse value of 7}, and is varying

with the coupling constant V| in a similar manner as that in Fig. 7.2.
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7.1.2 The D3; minima

The D3q minima are shown in Fig. 7.4.(a). The figure shows a pictorial represen-
tation of the trigonal wells and the separating distances between them. There are
two distances separating the wells into two sets corresponding to well a; the first
set includes the nearest-neighbours {e, g, j} while the second set contains the next
nearest-neighbours {b, ¢, d, f, h,i}. At finite coupling, the system is pseudorotating
between these wells having SASs given by [93]

Nu , ,
Hp) = —= [=1€50) = |f0) = [g"0) — |n"; 0) + 2|4"; 0) + 2[5"; 0)],
[Ho) = 55 [=1€50) = 15,00 = 1g550) = 1500 + 21" 0) + 21775 0)]
N

|H) = 5 [l€';0) 4+ [f;0) — |g';0) — |"; 0)],
NH /. /. /. /. /. /.
‘H4> = %[_ |a’70>_|b70>+‘670>+|d70>_|€70>+|f70>]7
NH / / ’ ’ / /
|Hs) = %[— a’; 0) + |b';0) — |c;0) 4+ |d'; 0) — |g; 0) + |n'; 0)],
NH ’ ’ / i ./ -/
|He) = %[— a’; 0) + |V 0) + |5 0) — [d; 0) + [, 0) — |55 0)],
Neg = 3
G, = —=[—=(]d;0) +t/;0) +|;0) + |d;0
\)m[2(|>|>|>|>)
+ (1€50) +1/50) +1g50) +[2750) +1050) + 1775 0)1, L
(1e';0) + | f50) +1g50) + |’ 0) 4 |i; 0) + |57 0)] (7.1.10)
Ng
G,) = —=[]d;0)+[b;0) —|;0) — |d';0) — 2|e; 0) + 2| f'; 0)],
|>2\/§[|>|>|>|>|>|f>]
N,
G,) = Q—jg [ |a;0) — [6/;0) + |/ 0) — |d'; 0) — 2|¢/; 0) + 2|A'; 0)],
N¢ . .
G.) = —=[|d;0) —|b;0) —|c;0) + |d;0) + 2|i;0) — 2|5"; 0)],
|>2\/§[|>|>|>\>\>U>]
N
A = 71% [ [a';0) + V5 0) + |’ 0) + [d'; 0) + |€/; 0) + | f; 0)
+ 1¢5;0) + [1/;0) + |i;0) + |57 0)],
where
N, = ! :
V1+S — 257
3
NG = \/_ 5
V3= 8, + 252
Ny = v3 (7.1.11)
V3+ S+ 25?7
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(a) (b)

Figure 7.4: (a) A pictorial representation of the trigonal wells and (b) the en-
ergies of the corresponding symmetry-adapted states formed from
the well states. The well labels in (a) correspond to those defined
in Ref. [93].

are the SASs normalisation constants. S; is the phonon overlap between the

adjacent trigonal wells a and b and is given by

4 "
Sy = exp[—2—7V1 7] (7.1.12)

The energy separations between the SASs are shown in Fig. 7.4.(b) and given by

2(1 — SSt — QSf)St In St
(1—S)(1+28)(3+ S; +252)

Ay = (7.1.13)

and
3(3 + 6St — Sg)St In St

(1 =513+ S1)(3+ S; +25?)
A represents the separation between the A and H SASs and A, represents the

Ay = — o (7.1.14)

separation between G and H SASs. These expressions are plotted in Fig. 7.5.
The figure shows the variation of the tunnelling splittings as a function of the
dimensionless linear coupling constant Vl". It also shows the value of the coupling
constant (V" = 3.77) for the H — A crossover (A; = 0) [94].
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L L L L L L L L L L Vl“

Figure 7.5: Tunnelling splittings between the A (A1) and G (Ag) symmetry-
adapted states and the H state (zero energy) as a function of the

. . . . "
dimensionless linear coupling constant V; .

The expressions for the well states in terms of the SASs are found to be:

[Aa)  [Ha) + [Hs) +|Hs)  3|Ga) | [Ge) +[Gy) +1G2)

= N, VoNa  2/Ne | 2V3Ng
b = [Aa) _ [Ha) = |H5) = [He) _ 3|Ga) | [Go) = |Gy) = |G2)
V10N, V6Ny 2V15Ng 2V3Ng
) = [Aa)  _ |Ha) = |H5) + [Ho) _ 3|Ga) | [Go) = |Gy) +1G2)
V10N4 V6Ny 2V15Ng 2V3Ng
) = |A) | [Ha) +1Hs) = |Hs) | 3[Ga) _ |Ga) +1Gy) —|G2)
V10N 4 V6N 2v/15Ng 2v/3Ng ’
|6> _ |Aa> _ |H0> + |He> o |H4> + |Ga> _ |Gx>
VIONs 23Ny 3Ny 6Ny  V15Ng  V/3Ng'
‘f> — |Aa> _ |H0> |He> _ |H4> + |Ga> |GJ:>
VI0Ns 23Ny  2Np  V6Ng  V15Ng  V3Ng'
‘g> — |Aa> _ |H0> . |He> _ |H5> |Ga> . |Gy> ’ (7115)
VION4  2v3Ny 2Nm 6Ny V15N V3Ng
‘h) — ‘Aa> _ ‘H9> o |H6>_'_ |H5> + ‘Ga> + |Gy>
VIONs  2V3Ny  2Nw 6Ny V15N V3Ng'
oo A H) | IHY | 1G |G
VIONs  V3Ny  V6Ny  V15Ng  V3Ng'
| Aa) [Hy)  |He) Ga)  |G2)

) = + + :
U= TN, VAN VoNy T VIBNe | vaNG

These states are normalised after multiplying them by the normalisation constant

B V15
V15 + 28, — 252

(7.1.16)

Using Eq. (3.2.9) implies that the probabilities of finding the system in wells a, b

106



CHAPTER 7: THE H @ h JT SYSTEM: A MODEL FOR C{,

or e at time ¢t are, respectively,

A Ay — A
Po(t) = 1—15Fsin® (2—7:) — 20F; sin ( ) — 12F;sin’ <(227hl)t

2h
! At Ay — Ayt
Palt) = g sFsnt (G )+ g Fasint (G0) — 2pasie (1220

1 At Aot Ay — Ayt
Pae(t) = §F5 — 5P sin’ (—1) _F2 sin® —ﬁ> + 8Fysin’ ((2271))

2h h
(7.1.17)

where the F), are functions of S; and given by:

Fi o= (1—S)(1+25)(3+S;+257)(15+ 25, — 25}) 72

Fy = (1—S8)(3+25)(3+ S, +257)(15+ 25, —257)7?

Fy = (1—5)%(1+25)(3+2S,)(15+ 2S5, —25%) 2

Fy, = S*(1—-16S,)%*(15+ 2S5, —25%)72

Fy = S?11448,)(15+ 2S5, — 2832 (7.1.18)

Once again the probabilities of finding the system in wells {c, d, f, h,7} and wells
{g,j} are equal to P,;, and P,. respectively. The sum of the probabilities of being

in any of the ten well states at time ¢ is

J
2 1
> Put)=1+ SFi+ 3 Fs (7.1.19)

r=a

The probability sum is time independent and tend to unity in the infinite coupling

as expected and as discussed earlier.

As in the p? ® h system, the system here in the Ds,; case shows a similar com-
plicated inter-well dynamics. This is again because it can migrate to two different

sets of equivalent wells.

The temporal evolution of the system is plotted in Fig. 7.6 for three particu-
lar values of the phonon overlap corresponding to values of the coupling constant
between that for the crossover. In the first diagram, S, = 25X (V, ~ 3.09) and
the system is more weakly coupled than at the H — A crossover (see Ref. [94]).
Pseudorotation here is clearly fairly rapid with five reoccurrences of the initial lo-
calisation occurring within the time period shown. In between the reoccurrences,
the probability of finding the system in well a becomes quite small and the system

is delocalised over the other wells. The situation is complicated with regard to the

107



CHAPTER 7: THE H @ h JT SYSTEM: A MODEL FOR C{,
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Figure 7.6: Inter-well dynamics for a trigonal system initially localised in well

a. The variation for three different values of the phonon overlap

are illustrated, where S is the phonon overlap between adjacent

wells at the H-A cross-over.
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pseudorotational period but it does seem sensible to continue to use the definition
used for the pentagonal case. That is we define the pseudorotational period be-
tween trigonal wells T} to be the time at which the first reoccurrence occurs. From
the first figure, this occurs when T, ~ 11.5. Prior to the first reoccurrence, the
system becomes predominately localised in the nearest-neighbour wells {e, g, j}

and then, afterwards, in the next-nearest-neighbour wells {b, ¢, d, f, h,i}.

For coupling corresponding to the crossover point, V1" ~ 3.77, the situation is
as shown in the second diagram in Fig. 7.6. Clearly, the dynamics is much more
regular now and perfect reoccurrences of the initial state are observed. Pseu-
dorotation is slower than before and only three reoccurrences occur in the period
shown. The pseudorotational period in this instance will be given exactly by
TX = 2rhw/Ay &~ 19.05 (when S* = 0.121). It is clear from this figure that, for
this unique value of the linear coupling constant, the times taken for the system
to pseudorotate to wells {e, g, 7} and {b, ¢, d, f, h,i} are identical and are given by
X )/2.

Finally, the third diagram in Fig. 7.6 shows the dynamics for the case when S; =
SX /2 and the vibronic coupling constant V| ~ 4.35 exceeds that at the crossover.
The rate of pseudorotation has again decreased and only one reoccurrence is visible
in the plot. At the minima in P,,, the system is delocalised over the other wells

to degrees that vary with the minimum considered.

7.2 Discussion

In this chapter, the quantum mechanical time evolution operator has been used
to study the evolution of the C{, cation modelled as a H ® h, JT system. Due to
the JT coupling, the molecule shows a lowering of the symmetry into two different
species of symmetries Dsq and Dsy. These symmetries have 6 and 10 wells in
their APESs respectively. The probabilities of finding the system evolving into
another well when is initially prepared in one particular well at a later time ¢ has
been found for each of these cases, using the SASs that describe the tunnelling
state of the JT system in the dynamic motion. These resulting expressions are
plotted versus the time to show the pseudorotation dynamics of the system. In
each symmetry, the system has shown different pseudorotation regimes due to the

differences in the separations between the wells. At the Dy, distortion, a regular
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pattern of pseudorotation between the wells has been observed and no unexpected
situation arises. For the D3, case, the expressions for the probabilities has been
plotted for different values of the coupling constants including that where the
crossover between the H and A states occur. The system shows different patterns
of pseudorotation for each value with a decreasing of the rate of pseudorotation

as the coupling increases.

If we accept the dominance of the h,(1) mode with hw = 261cm ™" and make use
of the linear coupling constant V; = 1.52 which has been computed using density
functional theory (DFT) [7] we can estimate the rate at which pseudorotation will
occur between pentagonal wells. Using Eq. (7.1.4) the phonon overlap is S, = 0.33
together with 7, = %ﬁ and Eq. (7.1.5), thus the estimated period for the system
to complete one pseudorotation circuit is 7, = 208 fs. Thus, we can expect that
in order to detect pseudorotation between the D54 wells in C,, experiments must
be performed on a femtosecond time scale. In addition, the inter-well dynamics

are expected to be quite simple and follow the trends shown in Fig. 7.3.

This work has been published in Ref. [95]
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CHAPTER 8

The (hF)? @ h JT system: A model
for C%E)L

In this Chapter, the time evolution of the (h))? @ h, JT system is investigated
by applying the same method as those described in previous chapters. Before
studying the evolution of the system, it is useful to summarise firstly some of the

main features of this system.

As mentioned previously, when electrons are removed from the H, the HOMO
of the neutral Cgy molecule, a number of holes is generated. The removal of two
electrons from this orbit produces two positive holes and therefore the dication
Cal is produced. The modes of vibrations allowed to couple in order to form JT
coupling in this molecule are the same as that for the C, cation. Therefore, JT
interactions for this system is the coupling of the two holes of H, symmetry to
the a4, g4 or hy normal modes of vibrations. Again, the coupling between the
holes and the a, and g, vibrational modes will not be considered here, because it
has been shown that these modes do not result in any significant distortions [7].
Therefore, we will only concentrate on the coupling involving the two holes of H,

symmetry and the h, normal mode and the problem will be denoted as (h})?® h,,.

As in Chapter 7, the interaction Hamiltonian consists of two different Hamilto-
nians due to the two sets of CG coefficients. One of them is represented by H,
and the coupling parameters are taken from the first column of CG coefficients for
H ® H table in Rf.[27]. The second coupling represented by H, is derived using

the second column in the same table.

The geometry of the distorted ion can be deduced from the study the structure of
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the APES and finding the number of the minima and the corresponding positions.
As before, the pseudorotation of the system between these minima is studied using
the time evolution operator and is applied to one of the wells as will be seen in

the following section.

8.1 The (h")?® h JT system

The total Hamiltonian for this system takes the form
Hiot = Hoi + Hrs + Hyr, (8.1.1)

The interaction Hamiltonian has been derived previously in Ref. [96]. This Hamil-
tonian involves coupling between the spin and the orbital angular momentum of
the two holes. Coupling of the spin angular momentum of the two holes gives
either singlet spin states (S = 0) or triplet spin states (S = 1). The coupling of
the orbital states can be predicted from the Kronecker product of the H, orbital
by itself H @ H = [A® G @ 2H]|s ® {T) ® To ® G}4. The symmetric part of
the Kronecker product couples to the singlet spin states to give rise to low-spin
terms and the anti-symmetric part couples to the triplet spin state to generate
the high-spin terms. Thus, the allowed terms are 'A'G. H, ' H,3 T2 T5,2 G,
where the superscript represents the spin multiplicity (25 4 1). The calculations
by Nikolaev et al. [78| indicate that the high-spin terms are lower in energy than
the low-spin terms satisfying Hund’s rule. As there is no coupling between the
terms which have different spins, only the high-spin terms {37},® T5,* G} will be
considered here. These terms are of different energies due to Coulomb interaction
between the two holes. In this thesis we will treat these terms as degenerate to

make our analysis generally applicable.

The interaction Hamiltonian can be written in terms of the CG coefficients
as [97]
Hint = Vin,Ha + Vi, Hs, (8.1.2)

where Vi, and Vi, are the coupling constants defined in polar form by
Vith, = Vsin3; Vip, =V cos 3, (8.1.3)

where V' is a measure of the combined coupling strength and [ represents a mixing

angle of the two sets of CG coefficients. The matrix representation of each of the
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interaction Hamiltonians (H,,H,) can be written in a basis derived using the
wavefunctions associated with the high-spin term. This corresponding matrix is

of the order 10 x 10 and it has been investigated in Ref. [98|.

Applying the minimisation procedures to this Hamiltonian produces minima
in the APES of either D5y, D3g, Do, or Cy, symmetry as 3 varies (see Fig.2 in
Ref. [97]). A study by Manini et al. [7] shows that the CZ; ion is favoured to be
localised in a Dy, well. This result has been confirmed again by Hands et al. [99].
Therefore, only the D5, distortion will be considered here in the investigation of

the pseudorotation motion.

The APES has been found to have a Dy, minima in the range where 1.35 < 3 <
1.79 |98]. There are 15 equivalent wells represented by{A, B,C, D, ...} in Fig. 8.1.
These wells are located in the centres of the C-C double bonds which is the mid
point of two joined hexagons in real space. The corresponding positions of these
wells and the associated electronic states in the ()-space are given in Table 8.1
[98, 97].

From the results shown in Table 8.1, it should be noted that the separations
between the wells in the ()-space divides them into two sets such that each well
has 8 nearest-neighbours and 6 next-nearest neighbours. For example, well {A}
has {B,C,D, E, J, K, L, M} as the nearest-neighbour wells and {F, G, H, I, N, O}
as the next-nearest neighbours. This situation should not be necessary consistent
with that appearing in Fig. 8.1. The figure shows a 4 nearest-neighbour wells, 8
next-nearest and 2 furthest-neighbour wells for each well. This inconsistency is

simply due to the differences between the real space and the () space.

8.2 Pseudorotation in Dy,

When the system is pseudorotating, the 15-fold degeneracy of the ground states
split and produce SASs of Ti,, Ty, G, and H, symmetry. These states have
been obtained in Ref.[98] and are given in Appendix A for completeness. They
are inverted so that a state for each well is obtained as a linear combination of
the SASs as in Eq. (3.2.2). The matrix which represents the agi) coefficients in
Eq. (3.2.2) is a 15 x 15 matrix which is
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J Y

(b)
Figure 8.1: (a) The location of the C-C double bonds in the fullerene Cg. (b)
An icosidodecahedron formed by connecting the mid points on the
double bonds. The vertices are labelled as A, B,C,...,0
as presented in Table 8.1.
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Table 8.1: Well positions and the associated electronic states of the 15 minima

of the Dyj, symmetry grouped according to their equivalence with

respect to the minimum A when the term splitting set to zero (see

Ref. [97]).
Label position electronic state

A =2(0,v/2,0,0,0) \/16(0,0,1,0,0,1,0,0,0, %)

B I_§)<_\/67 \/57 _2\/3707_2\/5) %\/%(qp 7¢ ¢7177¢17_\/§7:/_%7_\/§7%)
C I_g<_\/67\/§72\/§7072\/§> %\/%(¢ -1 ¢7_¢ _177(;7\/§777§7\/§7%>
D R(-v6vZ2v3,0,-2v3) /i -16.6.-1,3 /5 5. VB &)
B RVEVE-250-2v8) L[5 Le0120/5 55 )

J I_é;(\/67\/§7072\/§7_2\/§> %\/ %(17 _(;717_(;7(257 \/§7 377% %

K 2(/6v202v32v8) L/3(1,-6,2L1 ,¢,¢>, —\/3 V3,2 L)

L I—g<\/é, \/5707_2\/37 _2\/3) %\/ %(_17_¢ 71 E \/ga \/377%7%>
M I_g’(\/gv \/5707_2\/572\/§) %\/%<_17¢7 _¢17 17 _(;7(257_\/%7 \/57%7%)
F 8 ( \/_ \/_ \/_ 0) %\/ %(Qb,_?},_]-, _(élagb)_l)_\/gv%?%?\/g)
G ?3( \/5,—\/§,—\/§,0) %\/ %(QZ))%)_L ;17¢7_17_\/§7%7%7\/§)
T RV Y XUBE 1YY SIS T SR Y W)
I _3( \/§7 \/ga \/gvo) %\/ %(gbaéa_]-a%a_gba_la %7%7\_/_:1;7\/3)
N (V6. -v2,0,0,0) V10(0,1,0,0,1,0,0,0, 7,0)

O %3<_\/67_\/§707070) \/ %(17070717070707_707())
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(020 ¢ % ¢ —¢ L L L L 1 1 -1 1]
00 2 % % —7} =L 1 11 1 - ¢ b —9
200 -1 -1 -1 -1 ¢ ¢ ¢ ¢ *7}*7}*7}*7}
020 5 5 F 5 -6 ¢ ¢ —¢ 1 1 -1 -1
002 —p - ¢ ¢ -1 -1 1 1 é *7}*7} %
2 00 -1 -1 -1 —1*7}*7}*7} *7} b o o &
o000 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1
A 040 1 -1 1 -1 -1 1 1 -1 -3 -3 3 3
004 -1 -1 1 1 3 3 -3 -3 -1 1 1 -1
400 3 3 3 3 1 1 1 1 1 1 1 1
000 2 -2 -2 2 -1 1 -1 1 1 -1 1 -1
ooo0o o0 O 0O O -1 1 -1 1 -1 1 -1 1
020 -1 1 -1 1 1 -1 -1 1 0 0 0 0
002 1 1 -1 -1 0 0 0 0 1 -1 -1 1
200 0 0 0O 0 -1 -1 -1 -1 -1 -1 -1 -1

Taking the inverse of this matrix and multiplying it by the column matrix con-

taining the SASs produces 15 normalised well states:.
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The first set of nearest-neighbour wells are:

|45 0)

| B’; 0)

|C";0)

|D";0)

|E';0)

|J'; 0)

|K7; 0)

|L';0)

| M’; 0)

V15N, V3N,
(¢ = D([Tha) — [T2) + (1Thy) + [Toy)) + 6(|T12) — |T22)
25N,
V5|Ga) +1G.) +3|G,) — |G.) N |Hp) + V3|H.) + V2(|Hy) — |Hg))
2v/15NV, 2v/6 N, ’
(¢ = D(|The) — |T22)) — ([Thy) + [T3y)) + 0(|T12) — [T3))
25N,
V5|Ga) = |G.) +3|Gy) +1G.)  |Ho) + V3|He) — V2(|Hy) — |He))
2v/15N; 2v/6N, ’

(@ = D(Tha) +1T52)) + (1Thy) + |T5y)) = ¢(1Thz) + |T5a))

25N,
V5|Ga) = |Ga) = 3|Gy) = |G) N |Hp) + v/3|He) — V2(|Hy) + \He>>’

215N, 26N,

_ @ = D(Th) +|T5:)) = (Ty) + [Toy)) = ¢(|Th2) + [T50))

25N,
V5|Ga) +1Ga) = 3|Gy) +G.)  [Hy) + V3|Ho) + V2(|Ha) + |Hs))
2v/15N; 2v/6N, ’
(|The) + [Tox)) + (1 Thy) + T22)) — ¢~ (ITh2) + |Toy))
25N,
V5|Ga) = 3|Ga) +1Gy) +1G.)  |Hy) — V3|Ho) + V2(|Hs) + |He))
2v/15N, 2v/6N, ’
(IThe) + [ To2) = ¢(|Thy) — [T52)) — 07" (1Th2)) — |Thy)
2v/5N,
V5|Ga) +3G.) +1G,) — |G.) N |Hy) — v/3|H.) + v2(|H5) — |He))
2v/15NV, 2v/6 N, ’
—(1The) + |T2x) = (| Thy) — |T22)) — ¢~ (|The) — [Thy)
2v/5N;
V5|Ga) +3|G.) = |Gy) +1G2)  |Hg) — V3|He) — V2(|H5) — |He))
2v/15NV; 2v/6N, ’
—(1Tha) + [ Tox)) + (| Thy) + 1T22)) — ¢~ (ITh2) + |Toy))
2v/5N;

_ VBIGa) = 81Gy) —|Gy) — |G2) | [He) = V3IH) — V2(|H:) + | He))

215N, 2v/6 N,
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The second set of the next-nearest neighbour wells are:

(6 +2)(IT1w) + |Toy) + (67" = 2)(IT1y) + |Tow) — V5(ITh2) +[T52))

[£7.0) 10N,
_ VB[GL) = |G.) = 1Gy) = 3|G.)  V2|Hy) + |Hy) + | Hs)
215N, 2v/3N, ’
.. —(¢+ 2)(|Tw) — |Tay)) + (7' = 2)(|Tyy) — |T2e)) — VB(|T12) + |T32))
G50 10V,
V5|Ga) — |G.) + |Gy) +3|G.) . V2|Hp) + |Hy) — |Hs)
+ 2 JTEN, + > 73N, , (8.2.1)
oy @0+ 2)(The) +[T3y) + (07! = 2)(|Thy) + |Tae)) + VB(|T12) + | T2:))
|H750) 10V,
_ \/5|Ga> + ‘Gm> + ‘Gy> — 3|Gz> _ \/§|H€> — ‘H4> — ‘H5>
215N, 2v/3N, ’
Loy @4 2)(|Tw) — |Tyy) — (07 — 2)(|Thy) — [Tos)) — V5(|T1:) + T52))
1750 10V,
+ VB|Ga) + |1Gy) — |G,) +3]G.) + V2|Hy) — |Hy) + |Hs)
2v/15N; 2v/3N, ’
.. V3(ITy) + [Ty) + 2|G,) | |Hs)
V50) V15N, AN,
1050) = VIEN AN,
where
Ny (8.2.2)
(1+232)
and .
N, = N (8.2.3)

Sac is the phonon overlap between the adjacent wells such as A and C' and given

by [97]
Saic = eXp[—z—Z(V/)Q]. (8.2.4)

The straightforward calculations of the probabilities of finding the system in a

particular well at time ¢ using Eq. (3.2.9), are

4 o At
Paalt) = 1- 5((2 — Sac — Sie) SIDQ[ﬁ]),
1 AL
PAC(t) = m(95,240 + 8(2 — Sac — 5310) sz[Q_h])’
Pao(t) = 0. (8.2.5)
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0.2

2 a4 6 8 10 12
Figure 8.2: Diagram showing the dynamics in the Do, symmetry when the

system is initially localised in well A

where Pac(t) and Pao(t) are the probabilities that a system initially localised in
well A migrates to well C' or well O respectively. For completeness, the phonon
overlap between non-adjacent wells such as wells A and O for example, is calculated
and given by

Sao = exp[—%(v’)ﬂ. (8.2.6)
The energy difference A between the SASs 77,75, G and H is evaluated to be

3SAC In SAC

8= (1= Sac)(2+ Sac)

he. (8.2.7)

The results from Eq. (8.2.5) are plotted in Fig. 8.2. The Dy, case shows similar-
ity with the D3, distortions, since there are two sets of wells associated with the
differences in their separations the (J-space. The system in this case is pseudoro-
tating freely between the wells in the first set when it is initially prepared in well
A. However, pseudorotation to the other wells in the other set is forbidden. This is
due to the orthogonality between the electronic states associated with those wells.
In the D34 case, the system was free to pseudorotate to both sets with no zero
electronic overlap. This means that, in the Dy, case when the system starts off
from well A, it never visits any of the wells {F, G, H, I, N,O} during its journey
and the pseudorotation trend follows the plotted curve of Eq. (8.2.5) as shown in
Fig. 8.2. From the figure, it is very obvious that the system is completing one
period of pseudorotation when 7}, = 2%%. The pseudorotation rate is the inverse of

the period 7}, and is shown in Fig. 8.3 as a function of the linear coupling constant
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0.8+
0.6
0.4

0.2+

0.0 . . . . . . . . ; T

Figure 8.3: Plot of the pseudorotation rate R, for the Dy, distortion as a

function of the linear coupling constant.

V'. The figure shows that, as the value of the linear coupling constant increases,
the rate of the pseudorotation decreases. This situation is expected and agrees
with the basic idea of the JT interaction which shows that in strong coupling limit
when the barrier height between the wells is large, the system will be confined in
one of the wells and no pseudorotation dynamics will occur. This situation can

also be inferred from the sum of the probabilities written as:

o
> Pux =1+25%. (8.2.8)
X=A
this expression tends to one as V' — oo. This means that the system must be

found localised into one of the wells as expected.

8.3 Summary

In this chapter, the pseudorotaton dynamics for the (h})* ® h, JT system when
distorted to Dy, symmetry has been studied using the method outlined in Chap-
ter 3. The probabilities of finding the system migrating to another well has been
plotted in order to follow the progress of the trend.

The results showed that, when the system is localised in one of the Dy, wells
then it can pseudorotate only to the nearest-neighbours since the pseudorotation

between the other wells is forbidden due to the orthogonality between well states.
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The effect of the term splitting has been neglected throughout this calculation.
If this term is included then a different picture of the well separations than that
used in this problem will appear and therefore a different situation of pseudorota-
tion dynamics will occur. The inclusion of this term will complicate the problem
which is already complicated due to its high dimension. This problem will be an

interesting point to be studied in the future work.
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Conclusions

The main purpose of this thesis has been to study the dynamical nature of some
JT systems involving different ions. The investigation has been accomplished
through studying the pseudorotation between equivalent minima in the APES
under the assumption that the JT interaction overwhelms the other interactions
within the molecule. The pseudorotation phenomenon is a characteristic feature of
JT systems and the method that has been used in this thesis to study this internal

rotation can be applied to any real system undergoing dynamical JT interaction.

The thesis began with a brief introduction representing the motivation of this
study and outlined the subjects contained in each chapter in the thesis. Chapter 2
began with a historical review of the origin of the JT effect and the research
studies related to this subject. Also there are a description of the approximations
that led to the construction of the interaction Hamiltonian which describes the
electron-phonon coupling. The chapter provided the mathmatical tools that are
essential in order to produce a simple expression for the vibronic Hamiltonian
under consideration. This Hamiltonian has been simplified in order to find a
solution using the shift transformation technique and the method of Opik and
Pryce [4] which is used to find the location of the distinct minima on the APES.
A general idea of the icosahedral point group to which our systems belong and the
method of how to specify the electronic orbital and the vibrational modes that

involved in the interaction was also discussed in the same chapter.

The theory of the time evolution operator was introduced in the following chap-
ter. This method used the quantum mechanical concept of the time evolution

operator to study the progress of a system at a time ¢ in the strong JT coupling
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limit where the minima are considered to be sufficiently deep with high barriers
between them. The method has been applied to different systems having different

distortion symmetries.

In Chapter 4, the pseudorotation in the T'® (e @ t3) JT system has been stud-
ied using the method discussed in Chapter 3. This system shows three different
examples of coupling depending on the coupling strength of the T" electronic state
to the e and ty vibrational modes. The first case involving the T'® e coupling
showed no tunnelling performed by the system since the well states in that system
are mutually orthogonal. The second case was the T' ® t, coupling distorted to
a Ds3g symmetry. This system showed equal transitions between the four wells.
The last case was for Dy, symmetry when the coupling to the e and 5 modes is
involved. Here, the system was allowed to tunnel only between the non-orthogonal
electronic states localised in the wells with strictly forbidden tunnelling between
the orthogonal ones. Studying the pseudorotation of this system has been used
as an introduction to study the pseudorotation of different but more sophisticated

icosahedral JT systems.

In Chapter 5 a model for the ng anion has been developed when the quadratic
coupling term is included in the problem. This problem was treated using all the
techniques that have been outlined in Chapter 2. The Hamiltonian of the problem
also has been written as a function of the mixing angle # which represents a mixing
of the two different sets of CG coefficients. The APES obtained showed two kinds
of minima having Ds; and D3z symmetry depending on the value of the mixing
angle. Both systems have been investigated in the static and dynamic regimes by
finding the positions of the minimum points on the APES and the corresponding
states. The inter-molecular motion of the system has been determined using the
method outlined in Chapter 3. The system showed equal transitions between the
D5y wells as the separations between them are equal. The Dj; revealed more
complicated pseudorotation since the system has the opportunity to migrate to

two distinct types of wells leading to two different tunnelling splittings.

A further investigation of this model was continued when the Coulomb inter-
action between the electrons is taken into account in Chapter 6. The inclusion
of this term complicates the analytical expressions of both the states and the

corresponding energies.

Chapter 7 dealt with the H ®h, JT system for the C{, cation. The probabilities
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of the system while is pseudorotating was plotted for both cases of Ds; and the
D3y symmetries. The system showed a regular pseudorotation between wells of
the Ds4 case similar to that in the p? @ h system. In the Ds, distortion, the system
again showed a complicated situation due to the two different separation distances
between wells. The probabilities for this case have been plotted for different values
of the coupling constants when the H — A crossover between the two SASa occurs.
The system showed tunnelling behaviour of similar regime as that appeared in the
Cey -

The study of inter-well dynamics of the (h})* ® h system was the subject of
Chapter 8. This system involves wells of Dy, symmetry which consist of two
equivalent sets of wells in the APES similar to that in D3, symmetry. The system
showed here that pseudorotation is only allowed between the nearest-neighbour
wells. The orthogonality between the other wells (next-nearest neighbour) made
the electronic overlap between them tends to zero and therefore no migration for

the system to those wells occurs.

Although the theory presented in this thesis for studying the internal motion
depends on many approximations, such as ignoring the presence of exited vibronic
states, nevertheless the theory still can be accepted as a first approximation to a

description of the dynamics that occur in JT systems undergoing pseudorotation.

In this study, the term splitting which appeared as a result of Coulomb inter-
action in both C%; and CgJ systems has been neglected and the calculations were
achieved by regarding the JT interaction as overwhelming the other interactions
in the problem. Neglecting the term splitting led to have a degenerate ground
state in both system. If this term is included, then a shift in the energy between
the SASs occurs and the degeneracy of the ground state will be removed. This
could lead to have a more accurate picture of the APES and therefore a clearer
view of the sets of wells between which the system is allowed to pseudorotate will
appear. This indeed will lead to have a very complicated system to be studied
since the CZJ system for example has more than one tunnelling splitting term.
Investigation of such problems needs an advanced computer programs to solve
the problem numerically rather than analytically which could be an interesting

problem to focus on for the future work.

Pseudorotation can be observed experimentally in NMR spectra, isotopic sub-

stitution experiments, central-atom nuclear quadrupole resonance spectra and
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other spectroscopic measurements [48]. The distorted geometry of the molecule
whilst pseudorotating could be viewed if measurements on a very short time scale
are made. This time scale is estimated from electron paramagnetic resonance
(EPR) [100] data and it appears to be of the order of picoseconds, while from
the strength of the vibronic coupling [101] it is estimated to be of the order of
femtoseconds. A multiple-pulse technique or the “pumb-probe” which produces
pulses on the femtosecond time-scale to freeze the nuclear dynamics in real time
(see for example [102]), has already been used in measuring how quickly the ro-
tation of the Cgy and C;y molecules in various solutions. As the pseudorotation
involves movement of the nuclei in JT systems, the nuclear dynamics should be
then observable using such ultrafast techniques. An idea of such experiments that
capable of measuring pseudorotation in the fullerene ions has been discussed in

Chapter 3 using what is called transient grating techniques.

To our knowledge, pseudorotation motion of some molecules such as the Nag
has already been detected using the two-photon ionisation (TPI) experiment [103]
and showed a fairly rapid pseudorotation. The period of this pseudorotation was
found to be of the order of 3 ps. However, experiments have been conducted to
try to measure the rate of pseudorotation in Cg,, Cay and Ciy. As always, ex-
perimental realisation of a theoretically simple process was found to be difficult.
Some preliminary results have been presented in a recent PhD thesis [104| with
subsequent publication to follow. One of the conclusions from the work is that the
experiments seem to point to reorientational dynamics faster than 2 ps duration
(and faster, depending on the technique used). This is interesting if confirmed
because Rubtsov et al. [1, 55] found that the Cgy in decalin has a reorentational
relaxation time of 3.5 ps, which, they point out, is close to the rotation rate asso-
ciated with free gaseous Cgo (other rotation rates were much slower). A relaxation
of 2 ps, therefore, could be a strong indicator that pseudorotation is occurring. A
better estimate of the actual time is called for, however, if this rate is to be useful.
Nevertheless, if a time can be measured that can reasonably be assigned to pseu-
dorotation, then it could be equated with the time taken for a Cg, to ‘hop’ from
one well to another. Hence, the expermental time could provide vital evidence for
the likely magnitudes of Vi, V5 and V3. However, temperature dependent studies

may be required if a true attempt is to be made to isolate V5 /V3 from Vj.
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The SASs arising from the Dy; wells

in the C%E)L cation

N
Tiz) = ﬁ[z 1/50) + o|d’; 0) — ¢le/; 0) + ¢ f';0) — d|g’; 0) + ¢~ |1'; 0)
— <;5’1|i’; 0) — qb’l\j/; 0) + ¢*1|k';0> + |[I';0) + |m'; 0) — |n';0) — |05 0)],
N
Tvy) = ﬁ@ |;0) + ¢~ Hd';0) + ¢ He';0) — ¢ f50) — ¢ Mg’ 0) — | 0)
— [i50) + 1550) + |£50) — @|U; 0) + ¢|m/; 0) + ¢p|n'; 0) — ¢|o'; 0)],
Tiz) = %[2 a5 0) — |0} — |¢/;0) — |0} — |g;0 + GII'; 0) + |3 0)
+ 0|55 0) + |k 0) — ¢ M5 0) — ¢ m';0) — ¢ '3 0) — ¢ o' 0)],
(A.0.1)
Toz) = ;V—f;[z 6:0) — 6715 0) + 675 0) — o[£ 0) + 67 1g'50) — 6|A; 0)
+ ¢ld50) + 9|55 0) — 9|k 0) + |1 0) + [m/; 0) — [n;0) — |05 0)],
N
Ty) = 5 el2 150) = 91d30) = 9I¢'s0) + 6110 + o' 0) ~ 130)  I:0)
+ [550) + K5 0) + oI5 0) — o7 m/;0) — o705 0) + 703 0)],
T22) = STEl2 f50) = [30) = [¢50) = |F0) = lg50) = 67! 50) — 7' [150)

— G7750) = 7K 0) + BJL50) + 6lm's0) + 6’ 0) + Blo50)), (A0.2)
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|Ga)

|Gx)

|Gy)

|Gz)

| HO)

|He)

|Hz)

|Hy)

|Hz)

+

_I_

T30 — [¢0) = 1750) +19/0) + 130} = |50

Ij"0> |K/;0) — |I';0) + [m/; 0) — [n'; 0) + |0; 0)],

2\/—[4 |0';0) + |d'; 0) — |€/;0) 4| £';0) — |g’; 0) — ["; 0) + |i'; 0)

17" 0> |K';0) = 3|I;0) — 3|m/; 0) + 3[n"; 0) + 3]0"; 0)],

2\/—[4 |3 0) — |d;0) — [€/;0) + | f;0) + |g; 0) + 3|’ 0) + 3[i"; 0)
3[5%0) = 3|K';0) — [;0) + |m"; 0) + [n'; 0) —[0; 0)],

Sl 150 +310) + 31¢50) + 317%0) + 3lg50) + 1':0) + [150)
17%50) + [K"50) + [I';0) + [m/; 0) + [n"; 0) + [0; 0)], (A.0.3)
Ny .

2\[[2 |d';0) — 2]e’;0) — 2[f;0) +2|¢";0) — |[B";0) + |5 0)

|J 0> + [K50) + |I%; 0) — |m; 0) + [ 0) — |03 0)],

2 [ |15 0) + [¢'50) — |55 0) + [K/;0) — |I'; 0) + |m; 0) — |n; 0) + |05 0)],
2f
N,

2\/3[2 |0;0) — |d’;0) +€/;0) — [f;0) + |¢';0) + |h'; 0) — |45 0)
|J'" 0) + [&; 0),
7[2 |;0) 4 |d';0) +1€¢;0) — | f;0) = |g';0) +|I'; 0) — |m; 0)
n';0) + |03 0],

Ny . .
——[2 |a’;0) — |R;0) — |i';0) — |5:0) — |K';0) —|I';0) — |m/;0
2\/5[ |a’;0) — [A";0) — [7';0) — |55 0) — [k 0) — [I/; 0) — |m; 0)

[n’;0) — |0'; 0)].
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