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Osteoarthritis and degenerative cartilage diseases affect millions of people. Therefore, 

there is huge interest in developing new therapies to repair, replace and/or regenerate 

cartilage. This necessitates advances in techniques which make earlier non-invasive 

diagnosis and objective quantitative evaluations of new therapies possible. Most 

previous research has focused on the knee and neglected the ankle joint. Hence, the 

aims of this thesis are to describe and quantify the geometric properties of ankle 

cartilage, to evaluate joint contact characteristics and develop techniques which allow 

quantitative measurements to be made in vivo. 

Chapters 3 and 6 describe the application of a high resolution stereophotography system 

for making highly accurate 3-D geometric models from which quantitative 

measurements of cartilage parameters and joint area contact can be made. Chapters 4 

and 5 report the testing of image analysis algorithms designed to segment cartilage 

sensitive MR images. Work focused on initially on a semi-automated 2-D segmentation 

approach and subsequently on a pilot study of 3-D automated segmentation algorithm. 

The stereophotographic studies were highly accurately and demonstrated that ankle 

cartilage thickness is greater than previously reported with the thickest cartilage 

occurring where cartilage injuries are most commonly seen. Furthermore, joint contact 

area is larger than previously believed and corresponds to the regions of the thickest 

cartilage over the talar shoulders. The image analysis studies show that it is possible to 

accurately and reproducibly segment the thin cartilage layers of the ankle joint using a 

semi-automated approach. The feasibility of a fully automated 3D method for future 

clinical use is also shown. 

In conclusion this thesis presents novel methods for examining ankle articular cartilage 

in vitro and in vivo, showing that the thickest cartilage occurs in highly curved regions 

over the shoulders of the talus which correspond to regions of greatest contact. 

Importantly, the image analysis techniques may be used for future clinical monitoring of 

patients sustaining cartilage injuries or undergoing cartilage repair therapies. 
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The articular cartilage of the ankle joint may be injured without an associated fracture or 

ligamentous injury occurring and damage to the articular surface in some instances may 

lead to progressive joint degeneration. Articular cartilage repair and techniques to 

stimulate articular cartilage regeneration are currently extremely topical areas of 

research; however, there is little well defined experimental data on the 3D topographical 

distribution and mechanical properties of the articular cartilage of the ankle especially 

joint under high rate loading. In order for clinicians to evaluate and appropriately treat 

patients with articular cartilage injuries they require an understanding of the injury 

mechanisms and the typical natural history of such injuries. Researchers need to have an 

understanding of cartilage injury mechanisms and properties under varied loading 

conditions if they are to develop new treatment methods and develop safety systems to 

prevent such injuries. Knowledge of the topographical distribution and variation in 

mechanical properties of the ankle articular cartilage are essential if, in future, we are to 

ensure that articular cartilage repair produces tissue with properties similar to the native 

articular cartilage. Limited awareness of articular cartilage injury, difficulty in diagnosis 

and lack of suitable methods for evaluating outcomes of cartilage repair and cartilage 

restorative techniques pose significant obstacles in a rapidly expanding area of research. 

The majority of research relating to articular cartilage properties and injury has 

understandably focused on the knee joint due to the high incidence of injury and 

osteoarthritis, thick articular cartilage layers and relatively simple surgical access which 

makes the knee more amenable to study than other joints. The articular cartilage of the 

ankle joint has been less extensively studied and although similarities do exist between 

the articular cartilages of the knee and the ankle there are important and significant 

differences between the articular cartilages of these joints(Treppo et al., 2000) including 

cartilage thickness, joint congruency, cartilage stiffness, and mechanical forces. 
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1.1. Ankle anatomy 

The ankle is a modified hinge joint consisting of three bones (tibia, fibula, and talus); 

the ligaments bind these bones into a single functional unit, allowing motion to occur. 

The distal inferior articular surface of the tibia is referred to as the tibial plafond and is 

concave antero-posteriorly and medio-laterally. The tibial plafond is wider along its 

anterior boarder than its posterior boarder and the lateral side of the plafond is longer 

than the medial side.  

The medial malleolus represents the most distal projection of the tibia whereas the 

lateral malleolus is the terminal extension of the fibula. The lateral malleolus has a 

broad medial surface for articulation with the lateral facet of the talus. Characteristically 

the fibula extends approximately 1 cm more distally and posterior than the medial 

malleolus, figure 1.1.  

 

Figure 1.1 Anterior view of the left ankle 

A coronal schematic of a left ankle viewed from anteriorly. The fibula is positioned 
slightly posterior to the tibia and extends approximately 1cm more distally. (Adapted 

from Chapman MW: sprains of the ankle instr course lect. 1975; 24; 294-308.) 

The bones forming the articular surfaces of the ankle are held in place by strong 

ligamentous support. Medially, by the deltoid ligament, figures 1.1 and 1.2, which is 

divided into two portions: The superficial deltoid runs from the tip of the medial 
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malleolus distally as a broad ligament inserting onto the navicular, sustentaculum tali, 

and the talus. The deep deltoid is the very strong condensation of capsular fibres that 

extend from the intercollicular notch to the medial surface of the talus as the anterior 

and posterior tibiocalcaneal ligiaments.  

 

Figure 1.2 Medial view of the ankle ligamentous structures. 

The broad, strong deltoid ligament extending from the medial malleolus to the 
navicular, sustentaculum tali, and the talus. (Adapted from Chapman MW: sprains of 

the ankle instr course lect. 1975; 24; 294-308.) 

The lateral ligaments, figure 1.3, are typically not as strong as those on the medial side 

of the ankle; they consist of three components: the anterior talofibular ligament (ATFL), 

calcaneofibular ligament (CFL), and the posterior talofibular ligament (PTFL).  

A number of anatomical features help to maintain the rotatory stability of the ankle 

joint: firstly the collateral and syndesmosis ligaments, secondly, the fit of the talus in 

the mortise and the shape of the articular surfaces under loading conditions; and thirdly 

the ATFL, CFL and PTFL in the loaded ankle. 
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Figure 1.3 Lateral view of the ankle ligamentous structures 

There are a larger number of ligamentous structures on the lateral aspect of the ankle 
but they are not as strong as those on the medial aspect. The three main components are 
the the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and the 

posterior talofibular ligament (PTFL) (Adapted from Chapman MW: sprains of the 
ankle instr course lect. 1975; 24; 294-308.) 

The talus has five articular surfaces, all of which have a weight-bearing function, figure 

1.4. Two thirds of the talar surface is covered with articular cartilage, and the bone has 

no muscle attachments. Principally, the talus consists of three parts, the head, neck, and 

body, the two processes, the lateral and posterior may be considered extra. The head is 

the portion that articulates mostly with the navicular. The body includes the dome of the 

talus articulating in the ankle joint and the posterior facet articulating in the subtalar 

joint. Between the head and the body is the neck, which does not articulate with the 

ankle and sits over the sinus tarsi below.  
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Figure 1.4 Anatomical features of the talus. 

The characteristic anatomical features of the talus from five views: a) Laterally, b) 
medially, c) superiorly d) inferiorly and e) posteriorly. The talus is predominantly 

covered by articular cartilage and has no muscle attachments. (Adapted from 
www.orthoteers.com) 

The body of the talus is arbitrarily divided into five surfaces: lateral, medial, superior, 

inferior, and posterior. The lateral surface consists of the lateral facet which articulates 

with the distal fibula. The lateral facet lies over the lateral process which is a non-

articular component of the talus. The lateral talocalcaneal ligament inserts at the inferior 

tip of the lateral process. Along the anterior border of the triangular lateral process are 

two tubercles for insertion of the anterior talofibular ligament. Along the posteroinferior 

border of this lateral surface lies a groove for the attachment of the posterior talofibular 

ligament. The medial surface of the body presents two areas, superior and inferior. The 

superior portion is occupied by the articular facet which is shaped like a comma, with 

the long axis oriented anteroposteriorly. The inferior portion is non-articular and the site 

of insertion for the deep component of the deltoid ligament. The superior surface of the 

talar body is completely covered with articular cartilage and is shaped like a pulley, 
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with the groove of the pulley (trochlea) slightly closer to the medial border. The 

transverse diameter of the superior surface is greater anteriorly than posteriorly and is 

classically said to resemble a keystone. The inferior surface of the talar body consists of 

the facies articularis calcanea posterior tali. This articular surface is quadrilateral in 

shape and is concave in the long axis while being flat transversely. It articulates with the 

posterior facet of the calcaneus. The posterior surface of the talar body consists of 

posterolateral and posteromedial tubercles that flank the sulcus for the flexor hallucis 

longus tendon. The posterolateral tubercle is larger and more prominent than the 

posteromedial tubercle. An accessory bone, the os trigonum, is sometimes found in 

connection with the posterolateral tubercle.  

1.2. Articular cartilage structure 

Articular cartilage is a highly specialised tissue suited to withstanding high levels of 

repeated loading throughout an average persons life time. Articular cartilage is an 

avascular, aneural tissue with no lymphatic channels and a low cellular density 

(Stockwell, 1979). In fact chondrocytes account for less than 10% of the cartilage 

volume (Stockwell, 1979), however, the cell are synthetically active producing and 

maintaining the organic part of the extracelluar matrix (ECM). The ECM is composed 

of a collagen fibre network, mainly type II collagen, embedded in proteoglycans (PG) 

(Eyre, 1980; Muir, 1983). Typically collagen account for 15 – 22% of cartilage by wet 

weight, PG’s account for 4 – 7 % by wet weight, with the remaining 60 – 85% being 

accounted for mainly by water and inorganic salts (Mow and Ratcliffe, 1997). Collagen 

and PG’s are the main components supporting the mechanical stresses applied to 

articular cartilage and in combination with water they determine the biomechanical 

behaviour of articular cartilage(Ateshian et al., 1997; Maroudas, 1979; Mow and 

Ateshian, 1997; Mow et al., 1980; Mow et al., 1984). 

The collagen within articular cartilage has a highly organised structure that provides a 

fibrous scaffold for the cartilage; it is inhomogeneously distributed which produces the 

layered appearance of articular cartilage (Lane and Weiss, 1975; Mow and Ratcliffe, 

1997). Typically, cartilage is accepted as having 3 zones: the superficial tangential zone; 
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the middle zone and the deep zone, figures 1.5. In the superficial tangential zone the 

collagen fibres are tightly packed and run parallel to the cartilage surface, this layer 

typically accounts for 10 – 20% of the total thickness of the cartilage layer. In the 

transitional (or middle) zone the collagen fibres are more randomly orientated, often 

running obliquely to the cartilage surface, and are less tightly packed. The transitional 

zone forms 40 – 60% of the total cartilage thickness. The radial (or deep) zone accounts 

for approximately 30% of the total cartilage thickness and the collagen fibres are 

radially orientated; this zone includes the calcified cartilage and the tidemark which 

represents the interface between articular cartilage and the calcified cartilage. The 

radially orientated fibres which pass into the calcified cartilage help to securely anchor 

the cartilage to the underlying bone (Bullough and Jagannath, 1983), figure 1.6. The 

varying orientation of the collagen fibres plays an important role by distributing 

different applied stresses evenly over the loaded region of the cartilage (Setton et al., 

1995). The functional integrity of cartilage depends on its biochemical composition. 

The collagen component of the structure is largely responsible for the tensile stiffness of 

articular cartilage during loading (Poole et al., 2001), but collagen fibres provide little 

resistance to compressive loading. The varying orientation of the collagen fibres is 

believed to be partly responsible for the anisotropic material properties of articular 

cartilage (Kempson, 1979; Mow and Ratcliffe, 1997; Woo et al., 1987). 
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Figure 1.5 A photomicrograph of articular cartilage with H & E staining. 

The characteristic zones of articular cartilage are highlighted. In the tangential zone 
fibres run parallel to the surface and chondrocytes are oblong with their long axis 

parallel to the surface. Chondrocytes are ‘round’ and randomly distributed whilst in the 
radial layer they are more columnar and orientated perpendicular to the tidemark. 

(Mag.x 10) 
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Figure 1.6  Schematic representation of articular cartilage structure.  

A characteristic representation of articular cartilage structure and subchondral bone 
showing the layers and variation in collagen orientation from the joint surface to the 

subchondral bone. Adapted with permission from (Imhof et al., 2002) 

Proteoglycans found within articular cartilage are large protein-polysaccharide 

molecules composed of a protein core to which glycosaminoglycans (GAG) molecules 

are attached, figures 1.7 and 1.8. It is the GAG content of articular cartilage which is 

largely responsible for its compressive stiffness(Poole et al., 2001). PG’s form large 

aggregates by binding to a Hyaluronan molecule; these aggregates immobilise the PG’s 

within the collagen network so providing the ECM with more stability and 

rigidity(Muir, 1983; Ratcliffe et al., 1986). 
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Figure 1.7 Schematic of a proteoglycan macromolecule. 

Aggrecans non-covalently bind to HA, stabilised by link proteins to form the 
proteoglycan macromolecule which help to give articular cartilage its compressive 

stiffness. (Adapted from Nordin & Franklin: Basic biomechanics of the musculoskeletal 
system 3rd Edition Lippincott, Williams and Wilkins, 2001) 

 

Figure 1.8 Schematic of the structure of an aggrecan. 

The negatively charged glycosaminoglycans (chondrotin sulphate and keratin sulphate 
chains) covalently bind to the proteoglycan core protein. (Adapted from Nordin & 
Franklin: Basic biomechanics of the musculoskeletal system 3rd Edition Lippincott, 

Williams and Wilkins, 2001) 

Water is the largest component of articular cartilage and it is mostly concentrated near 

the cartilage surface. Water within the articular cartilage plays an essential role as it 
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allows diffusion of gas and nutrients to the chondrocytes within the avascular cartilage. 

Moreover, water plays a significant role in the biomechanical response of articular 

cartilage. The interaction of water with the collagen and PG’s via the Donnan osmotic 

pressure regulates the swelling properties of cartilage(Maroudas, 1968; Maroudas, 

1975). Under load a large proportion of the water within the cartilage may be moved 

and it is the control of this movement which is highly important in determining the 

mechanical behaviour of the cartilage(Ateshian et al., 1997; Hlavacek, 1995). 

1.3. Articular cartilage injury 

The articular cartilage of diarthrodial joints has unique properties which allow the 

smooth, painless movement of synovial joints. However, the articular cartilage may be 

injured by acute impact and/or torsional loading or less severe repetitive loading; 

cartilage injury can in turn lead to degenerative change in the articular cartilage with 

associated joint pain and decreased movement(Buckwalter et al., 2000). The 

mechanisms of articular cartilage injury; the frequency with which they occur and their 

natural progression is poorly understood by researchers and clinicians alike(Buckwalter, 

1992; Buckwalter, 1995; Buckwalter and Mankin, 1997). In many cases articular 

cartilage injuries are associated with another injury which distracts attention from the 

articular cartilage injury e.g. meniscal injury, ligamentous injury, joint capsule injury, 

synovial injury or intra-articular fracture. Buckwalter(Buckwalter, 2002) describes three 

broad classes of severity of articular cartilage injury: 1) damage to the joint surface that 

does not cause visible mechanical disruption of the articular cartilage, but does cause 

chondral damage and may cause subchondral bone injury; 2) Mechanical disruption of 

the articular surface limited to the articular cartilage and 3) mechanical disruption of the 

articular cartilage and bone. Repo and Finlay(Repo and Finlay, 1977) studied articular 

cartilage injuries in explants from renal transplant donors they showed that articular 

cartilage could withstand loads in excess of 25 MPa without injury and suggested that a 

stress greater than that necessary to fracture the femur would be required to produce 

injury. However evidence to support the importance of the first two classes described 

above is provided by several authors(Borrelli, Jr. et al., 2003; Haut, 1989; Haut et al., 
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1995; Rudd et al., 2004). Between them they have demonstrated that articular cartilage 

injury due to impact loading can occur at sub-fracture levels in a variety of joints 

including the knee and ankle. Others have demonstrated that single impact loading 

above physiological levels but below levels required to produce surface disruption can 

damage chondrocytes and have a detrimental effect on the cartilage matrix(Borrelli, Jr. 

et al., 2003; Donohue et al., 1983; Torzilli et al., 1999). The initial effects following 

impact loading are chondrocytes apoptosis and a decrease in the proteoglycan (PG) 

content followed by decreased stiffness and increase permeability of the articular 

cartilage(Borrelli, Jr. et al., 2003; Buckwalter, 1992; Chen et al., 2001; Donohue et al., 

1983; Han et al., 2002; Jeffrey et al., 1997; Loening et al., 2000; Thompson, Jr. et al., 

1991). A causal link between chondrocyte apoptosis and osteoarthritis has been 

suggested by Kim et al(Kim et al., 2000) who found increased numbers of apoptotic 

cells with increasing severity of osteoarthritis. 

Most studies of acute articular cartilage injury have examined the effects of impact 

force or energy; however, Atkinson et al(Atkinson et al., 1998) suggest that shear 

stresses occurring in the articular cartilage may be more significant indicators of 

cartilage injury than impact energy and impact force. 

Chondrocytes have the ability to repair the macromolecular structure of articular 

cartilage through synthesis of new molecules when they sense a change in the cartilage 

matrix(Martin and Buckwalter, 2000), but the repair response of the articular cartilage is 

limited and often fails to completely heal the defect in the articular cartilage surface; the 

point at which damage becomes irreversible is unclear. In most cases large areas of 

chondral repair begin to degenerate relatively rapidly with a decrease in PG content, 

surface fibrillation increased permeability and decreased cell content. The contribution 

of each of these responses to injury in the development and progression of post 

traumatic osteoarthritis remain to be determined. 
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1.4. Ankle injury and osteoarthritis 

Primary osteoarthritis (OA) of the ankle is relatively rare(Dieppe and Kirwan, 1994; 

Funk, 1976), with radiographic changes of osteoarthritis being nearly 10 times more 

frequent in the knee than the ankle, in patients seeking treatment(Cushnaghan and 

Dieppe, 1991; Wilson et al., 1990). The sex distribution of ankle osteoarthritis also 

differs from knee osteoarthritis as ankle OA occurs slightly more frequently in men than 

women as opposed to knee OA which is more common in women(Cushnaghan and 

Dieppe, 1991). The major cause of ankle osteoarthritis is secondary post traumatic 

osteoarthritis which commonly occurs after high energy tibial plafond 

fractures(Buckwalter and Saltzman, 1999; Walter, Jr. and Spector, 1991). This is in 

keeping with the finding of Brown et al(Brown et al., 1988) who reported that the 

sensitivity of a joint to a step off in the articular cartilage was inversely proportional to 

the thickness of the articular cartilage layer of the injured surface. As the ankle joint has 

thin articular cartilage layers it is sensitive to small step off’s and therefore prone to post 

traumatic osteoarthritis. There are also other significant factors in a joints susceptibility 

to the effects of surface incongruity including the modulus of elasticity of the articular 

cartilage, the global congruity of the joint(Huber-Betzer et al., 1990) and the age of the 

patient(Martin et al., 1997; Martin and Buckwalter, 2001). The ability of the articular 

surfaces of the human ankle joint to remodel incongruities is unclear, but several animal 

models have demonstrated a remarkable potential for remodelling incongruities in joint 

surfaces(Llinas et al., 1993; Lovasz et al., 1998). 

For rotational intra-articular ankle fractures (typically lower energy fractures) the rate of 

post traumatic osteoarthritis is substantially increased if ankle mortise widening due to 

the fracture is not adequately corrected(Michelson, 1995). The author speculated that 

the heightened risk of post traumatic osteoarthritis was due to altered joint loading 

characteristics. However, subsequent cadaveric studies have demonstrated that 

relatively normal joint loading occurs under static loading conditions with 50% of the 

tibial surface (posterior malleolus) removed(Macko et al., 1991). The dynamic loading 

characteristics also remain relatively unchanged with large posterior tibial plafond 
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defects(Fitzpatrick et al., 2001). It would therefore seem that altered contact 

characteristics do not fully explain the increased prevalence of osteoarthritis following 

intra-articular fracture of the ankle. 

Axial compression loading of the ankle joint; such as occurs in falls from a height or 

footwell intrusion in motor vehicle collisions; more commonly results in high energy 

fractures of the tibial plafond. Typically these injuries are more challenging to treat and 

have a worse outcome. In assessing the outcomes of intra-articular ankle fractures, it is 

extremely difficult, if not impossible to separate the effect of the injury to the articular 

cartilage at the time of impact from the effects of the treatment. Several studies have 

demonstrated that injury severity is closely correlated with the quality of the surgical 

reduction, i.e. the most severe fractures had the worst reductions(DeCoster et al., 1999; 

Marsh et al., 1997). As it is not possible to separate these two variables there is 

currently no way to know whether it is the initial injury or the quality of the reduction of 

the articular surface that leads to the development of posttraumatic osteoarthritis. As a 

result of this lack of clarity and understanding a report from American Orthopaedic 

Association(Marsh et al., 2002), has called for research into a number of areas including 

methods to measure the accuracy of joint surface reduction; methods to measure the 

severity of injury to the articular cartilage and the effects of acute damage versus 

chronic effects of altered contact stresses. Greater knowledge in these areas will help 

direct future treatment and determine whether it is better to focus research on attempts 

to improve joint mechanics or to improve the biological environment of the damaged 

cartilage. 

1.5. Cartilage MRI 

Magnetic resonance imaging (MRI) of articular cartilage is becoming an increasingly 

useful tool for the assessment and monitoring of articular cartilage injury and 

degeneration. It is an excellent research instrument and there is considerable potential 

for expansion of the role of MRI in clinical practice as it becomes more widely 

available and cost efficient to use(Recht et al., 2001). Magnetic resonance imaging is a 

non invasive, non contact, multi-planar technique capable of producing high resolution, 
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high contrast images in serial contiguous slices. In recent years there has been 

considerable development in the field of articular cartilage imaging and refinement of 

imaging sequences to enhance the visualization of articular cartilage and hence the 

accuracy of quantitative measurements. Extensive work by Eckstein et al(Al Ali et al., 

2002; Eckstein et al., 1994; Eckstein et al., 1995; Glaser et al., 2001; Graichen et al., 

2000) has shown spoiled 3D gradient echo (FLASH) sequences with water excitation to 

be particularly useful, giving high resolution high contrast images of the articular 

cartilage. These images work by selectively obtaining signal from only the protons on 

water, resulting in a “fat suppressed” image, which helps to delineate cartilage from 

bone(Burstein and Gray, 2003). Trattnig et al(Trattnig et al., 1998) and Ba-Ssalamah et 

al(Ba-Ssalamah et al., 2002) have developed sequences with the potential to reduce 

image acquisition time by a factor of 4; however, these sequences currently lack the 

resolution for precise quantitative measurements. Most articular cartilage imaging work 

has concentrated on the knee joint(Cohen et al., 1999; Eckstein et al., 1994; Eckstein et 

al., 2005b; Eckstein et al., 2005c; Faber et al., 2001; Lukasz et al., 1998; Peterfy et al., 

1994; Pilch et al., 1994; Schnier et al., 1997) which displays the thickest articular 

cartilage layers in the human body. However there have been a few notable 

exceptions(Al Ali et al., 2002; Graichen et al., 2000; Nishii et al., 2004; Peterfy et al., 

1995) which have quantitatively examined joints with thinner articular cartilage layers 

(<2mm thick) which are more typical in most joints of the human body. 

Accurate quantification of thin cartilage layers has become possible firstly because the 

development of more powerful magnets has meant higher resolution images can be 

acquired in a given time. Without these developments doubling the resolution in all 

three dimensions would require a 64 fold increase in imaging time if all other 

parameters were to remain the same(Wehrli et al., 1998). Secondly there has been a 

parallel improvement in image analysis and processing techniques. Image interpolation 

means that the sub-pixel resolution inherent in MR images(Seul et al., 2000) can be 

utilised to reduce the percentage error in measurements from MRI data, which is 

essential when working with thin cartilage layers. A variety of image segmentation 

techniques have been used previously including: manual segmentation(Cohen et al., 
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1999; Eckstein et al., 1994; Jonsson et al., 1992; Peterfy et al., 1994; Pilch et al., 1994); 

seed point and region growing algorithms(Eckstein et al., 1998a; Haubner et al., 1997; 

Losch et al., 1997); fully automated 2D shape recognition techniques(Robson et al., 

1995; Solloway et al., 1997); interpolated B splines(Cohen et al., 1999) and most 

recently B-spline snakes(Stammberger et al., 1999b). Other more primitive methods for 

making point measurements have been simple point to point measurements and 

thresholding along a line perpendicular to a surface(Tan et al., 1996). Many of these 

techniques have limitations especially in the noisy images of thin articular cartilage 

layers of highly congruent joints. The B-spline snake approach, is a semi-automated 

technique which appears to be superior to the other techniques used so far. It is precise 

and reproducible(Eckstein et al., 2001a) and hence avoids the subjectivity and labour 

intensiveness of manual segmentation techniques and the inability of fully automated 

processes to detect indistinct boundaries. 

Ba-Ssalamah et al(Ba-Ssalamah et al., 2002) used a fat suppressed multi-shot echo 

planar imaging sequence, to image the ankles of patients with ankle symptoms. They 

showed that the sequence was comparable to fat suppressed gradient recalled images for 

detection of lesions and reduced the image acquisition times by a factor of 4. 

Unfortunately the resolution of this particular sequence (0.5 x 0.5 mm in plane 

resolution) suffered from insufficient resolution for precise quantification of cartilage 

thickness and volume. Similarly the sequence used by Tan et al(Tan et al., 1996) (0.63 x 

0.63 mm in plane resolution) lacked sufficient resolution; this combined with the use of 

a thresholding technique to measure thickness led to errors of ± 100% in their 

measurements. 

Al-Ali et al(Al Ali et al., 2002) have performed high resolution MRI imaging (FLASH 

sequence with water excitation) of the ankle joint and utilised a B-spline snake image 

segmentation program to segment and reconstruct the cartilage layers after interpolation 

of the images to an in plane resolution of 0.125 x 0.125 mm. However, the image data 

was not isotropic (1 mm slice thickness) and the images were acquired sagittally; 

therefore, the authors were unable to produce suitable images or reconstructions of the 
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talar shoulders or malleolar cartilage; additionally the acquisition times for these image 

sequences were very long limiting their application in clinical practice. 

Standard MRI techniques, described above, can be used to provide excellent anatomical 

analysis; however, more advanced techniques are currently being developed which 

allow biochemical and functional imaging of articular cartilage in clinical 

practice(Burstein and Gray, 2003; Kim et al., 2003). Contrast agents such as Gd-DTPA 

are negatively charged and when administered intravenously penetrate articular 

cartilage. As glycosaminoglycans (GAG’s) are also negatively charged the Gd-DTPA 

concentrates in areas of low GAG concentration and is relatively excluded from regions 

of high GAG concentration. Gadolinium Enhanced MRI of Cartilage (dGEMRIC) 

utilises these differences in Gd-DTPA distribution and has been shown to be the “gold 

standard” for measurement of GAG content(Bashir et al., 1999; Trattnig et al., 1999). 

These techniques are still experimental and there are several methodological issues to 

resolve; however, the possibility of combining high quality anatomical and functional 

MRI data could produce a paradigm shift in the diagnosis, monitoring and timing of 

intervention for degenerative conditions of articular cartilage. 

1.6. Quantitative Cartilage Measurements 

In order to characterise the mechanical properties of a diarthrodial joint it is essential to 

have accurate measurements of the articular cartilage thickness and the variation in 

thickness across the surface of the joint. It is also essential to know the range of 

quantitative metrics of the articular cartilage of healthy joints if we are to use cartilage 

thickness and cartilage volume etc. as longitudinal quantitative measures of joint 

degeneration such as occurs in osteoarthritis. 

Most investigations of articular cartilage thickness have dealt with the knee and there 

have been relatively few studies of the ankle and other joints with thin articular cartilage 

layers. A variety of methods have been used to measure the thickness with varying 

accuracy both in vitro and in vivo. In vitro methods include anatomical 

sections(Jurvelin et al., 1987); needle probe measurements(Shepherd and Seedhom, 
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1999); stereophotographic techniques(Ateshian et al., 1991) and ultrasound(Adam et al., 

1998a; Jurvelin et al., 1995). In vivo methods include: X-ray measurements(Hall and 

Wyshak, 1980; Karvonen et al., 1994); computer tomography sections(Eckstein et al., 

1998a); and magnetic resonance imaging(Al Ali et al., 2002; Cohen et al., 1999). The in 

vitro techniques require disarticulation of the joint and/or may alter the thickness due to 

deformation during contact. Whereas, the in vivo techniques with the exception of MRI 

rely on indirect measurement techniques or can only make measurements at a discrete 

number of points. 

Early studies of cartilage thickness often failed to make allowance for the out of plane 

surface curvature of the joint when using 2 dimensional techniques such as anatomical 

sections and X-ray studies. The error in these oblique measurements meant that the 

thickness of the articular layers may have been over-estimated. More recent studies 

have utilised advanced 3D reconstruction techniques which allow precision thickness 

measurements to be made at a perpendicular to the joint surface, hence allowing for 

curvature in all directions and giving true thickness measurements.  

With specific regard to the ankle joint, Athanasiou et al(Athanasiou et al., 1995) took 

osteochondral cores; at 8 sites on the talar surface, 5 sites on the distal tibial surface and 

1 site on the distal fibula from each of 14 cadaveric ankles; they measured the thickness 

at the edge of each core and reported a maximum and mean thickness for the talus of 

1.45mm and 1.22 mm respectively. For the tibia the maximum and mean were 1.3 mm 

and 1.14 mm respectively, the distal fibula was reported to have the thinnest cartilage, 

0.95 mm. The measurements made by Athanasiou et al(Athanasiou et al., 1995) are not 

measurements of the true thickness perpendicular to the surface and may be affected by 

the harvesting process. Shepherd and Seedhom(Shepherd and Seedhom, 1999) used a 

needle probe attached to a load cell displaced at a constant rate; they reported mean 

tibial and talar thicknesses of 1.35 mm and 1.16 mm respectively. Unfortunately the 

needle probe technique is a destructive technique which ruptures the surface preventing 

further testing and Jurvelin et al(Jurvelin et al., 1995) previously reported the change in 

force signal was not very sharp and a subjective evaluation was required; furthermore, 

only discrete individual measurements can be made so it is not possible to produce 
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continuous topographical maps. Adam et al(Adam et al., 1998a) dissected 20 cadaveric 

ankle joints and used A-mode ultrasound (12MHz) to measure cartilage thickness over 

the joint surfaces and provided an example of a thickness distribution map over the talar 

dome. The accuracy of measurements made using this approach is dependent on the 

assumption that sound travelled at a uniform speed through all layers of the articular 

cartilage. Considerable variation in the velocity of sound in human articular cartilage 

has been shown by Yao and Seedhom(Yao and Seedhom, 1999) and similar concerns 

have also been previously expressed by Jurvelin et al(Jurvelin et al., 1995) who saw 

large scatter in their results especially in thin cartilage layers. Using ultrasound Adam et 

al(Adam et al., 1998a) reported a maximum and mean talar cartilage thickness of 

1.73±0.21 mm and 0.93±0.16 mm respectively; in the distal tibia the measurements 

were 1.5±0.19 mm and 1.0±0.17 mm respectively. 

Ateshian et al(Ateshian et al., 1994) developed an analytical stereophotographic 

technique for measuring the thickness of articular cartilage and have applied the 

technique to the knee, but not to thin articular layers such as the ankle joint. This 

technique is a non contact method with which Ateshian et al have been able to make 

very precise measurements (± 90 µm). Unfortunately this method is destructive to the 

cartilage, requires complete dissection of the joint and using the method they described 

it is not possible to make measurements over the entire surface. The stereophotographic 

method described by Ateshian et al(Ateshian et al., 1994) requires the application of 

complex mathematical techniques, including fitting B-splines through the digitised 

points to produce a 3D reconstruction of the surface(Ateshian, 1993) and then calculate 

thickness measurement perpendicular to the joint surface. Despite these limitations the 

stereophotogrammetric analysis approach is an extremely useful method providing a 

gold standard for validating other measurement techniques such as MRI(Cohen et al., 

1999) as well as generating detailed geometric data for input into computational 

models(Anderson et al., 2006). 

MRI is becoming more widely available and offers many benefits over other methods 

for measuring thickness. It is a non contact 3D technique capable of high resolution 

which can be used in vivo. Using surface reconstruction techniques MRI can be used to 
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longitudinally measure changes in thickness and volume in a patient as well as 

producing 3D topographical distribution maps. Initial attempts to make cartilage 

thickness measurements were applied to the knee joint which has the thickest cartilage 

in the body and is relatively easy to segment as it does not have large congruent 

areas(Eckstein et al., 1996; Eckstein et al., 1997; Peterfy et al., 1994). 

The ankle joint represents a greater technical challenge than the knee joint as the 

cartilage layers are thinner, the joint is more congruent and there is a sharp curvature of 

the surfaces at the medial and lateral edges of the talar dome. Attempts to utilise MRI to 

measure the thickness of the cartilage layers of the ankle were firstly limited by the 

achievable resolution of the images and secondly by the techniques for determining the 

cartilage boundaries(Tan et al., 1996). The work of Eckstein and colleagues has been 

essential to the development of quantitative MRI measurements. Al-Ali et al(Al Ali et 

al., 2002) have applied these developments to the human hind foot including the ankle 

joint. Following segmentation they used a Euclidean distance transformation to 

calculate thickness at every voxel on the cartilage surface. In 16 healthy volunteers they 

reported a maximum and mean thickness of the talar dome cartilage of 1.56±0.35 mm 

and 0.89±0.19 mm respectively, and for the distal tibial cartilage 1.54±0.34 mm and 

0.82±0.15 mm respectively. Unfortunately, as mentioned in section 1.5, the imaging 

sequence used by Al-Ali et al(Al Ali et al., 2002) was rather long for clinical practice 

and did not acquire isotropic data; therefore, their measurements do not include the 

malleolar surfaces and a subjective decision was required to determine the edges of the 

talar dome. 

1.7. Ankle joint contact area 

In order to develop a model to help understand the effects of loading on articular 

cartilage and be able to calculate stress within articular cartilage it is essential to 

determine the contact area of the joint. Ankle joint contact area experiments have been 

particularly challenging, as the ankle joint is highly congruent, and has only limited 

access. There have been several reported experimental studies of ankle joint contact 

characteristics with wide variations in methodology and loading conditions resulting in 
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varying reports of the extent and location of the contact area(Calhoun et al., 1994; 

Driscoll et al., 1994; Greenwald et al., 1977; Kimizuka et al., 1980; Kura et al., 1998; 

Macko et al., 1991; Yao and Seedhom, 1991). Techniques applied to measuring human 

ankle joint contact area include; dye injection(Black et al., 1981); silicone 

moulding(Kimizuka et al., 1980); the ‘3S technique’(Yao and Seedhom, 1991); 

stereophotographic proximity analysis(Ateshian et al., 1994), Fuji film(Calhoun et al., 

1994; Christensen et al., 1994) and more recently roentgen stereophotography(Corazza 

et al., 2005). The most widely used technique for measuring joint contact area in the 

ankle has been Fuji film(Calhoun et al., 1994; Choung and Christensen, 2002; 

Christensen et al., 1994; Driscoll et al., 1994; Macko et al., 1991). Ateshian et 

al(Ateshian et al., 1994) published an elegant study comparing a number of different 

techniques for measuring joint contact area in an incongruent and a congruent joint. 

They reported that the dye staining technique consistently overestimated the contact 

area especially in the congruent joint; this may be attributable to surface tension effects 

of the dye, additionally air bubbles may lead to erroneous areas of contact. Silicone 

casting produced the smallest contact areas and this probably occurs for two reasons, 

firstly the silicone ‘film’ cannot be squeezed out of the contact area in a finite time, 

secondly the viscosity of the silicone rapidly increases as it turn from the liquid to solid 

state relatively rapidly. Dye staining and silicone moulding also require extensive joint 

dissection prior to testing which may significantly affect joint stability and hence joint 

contact area. Fuji Film and stereophotography proximity techniques produced consistent 

results in both the congruent and incongruent joints. Fuji film gives the benefit of also 

allowing pressure measurement, but suffers from several problems. 1) It requires the 

insertion of the film which has a finite thickness; 2) it can only measure the contact area 

on one side of the joint i.e. it is difficult to normalise the contact area to the entire joint 

surface area; 3) crinkling and crimping of the film occur and 4) slippage and shearing of 

the film can produce spurious results. Stereophotography proximity experiments do not 

require disruption of the joint prior to testing or during the loading phase and the 

experiments can be performed relatively quickly. Unfortunately this technique requires 

expensive testing equipment and a considerable amount of complex post processing of 

the data is required. 
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Several of the techniques outlined above have been applied to the ankle joint: including 

reversible cartilage staining (Black et al., 1981), Silicone oil-carbon black powder 

suspension squeeze, known as the ‘3S’ technique(Yao and Seedhom, 1993), dye 

injection(Yao and Seedhom, 1991), silicone rubber moulding(Kimizuka et al., 1980), 

and more recently roentgen stereophotography(Corazza et al., 2005). Unfortunately, the 

wide variation in the joint positioning and the loading conditions make direct 

comparison between studies difficult.  

Previous studies of ankle joint contact area have used a range of different joint load 

magnitudes varying from to 490N to 3200 N(Calhoun et al., 1994; Yao and Seedhom, 

1993) and have measured contact area with the ankle joint in variety of 

positions(Calhoun et al., 1994; Christensen et al., 1994; Kimizuka et al., 1980) which 

has substantially influenced the results previously reported. However, these earlier 

studies have not assessed the joint contact area under load at the extremes of ankle 

movement where injury may be more likely to occur 

Calhoun et al(Calhoun et al., 1994) and Driscoll et al(Driscoll et al., 1994), using Fuji 

film, reported that the contact area of the ankle joint was distributed over the central 

region of the talar dome; Kimizuka et al.(Kimizuka et al., 1980) reported a similar 

distribution from silicone rubber moldings. In contrast, studies using reversible 

staining(Greenwald et al., 1977) and roentgen stereophotography combined with a 3-D 

digitiser(Corazza et al., 2005) reported the ankle joint contact area to be located over the 

lateral and medial margins of the talus. 

Unfortunately, these earlier ankle studies were unable to reliably evaluate highly curved 

areas over the shoulders of the talus and accurately quantify the total surface area of the 

joint. 



Aims 

Chapter 2. Aims of the thesis 

The purpose of this thesis is to characterise the geometrical and joint contact properties 

of the articular cartilage layers of the ankle joint in order to further understanding of 

ankle cartilage injuries. Furthermore, this thesis seeks to develop and validate methods 

for in vivo quantification of articular cartilage parameters using magnetic resonance 

imaging and image analysis. 

The specific aims of the thesis are: 

• To describe and test a high resolution stereophotogrammetry system for 

quantifying the geometric parameters of the ankle articular cartilage layers in 

vitro which can be used as an independent standard to validate in vivo 

techniques. 

• To illustrate the topographical distribution of ankle articular cartilage across the 

surface of the talus, tibia and fibula. 

• To test and validate image processing algorithms on high resolution cartilage 

sensitive MR images which can be used for in vivo quantification of articular 

cartilage parameters. 

• To quantify the ankle joint contact area under compressive load throughout the 

range of movement using a stereophotogrammetric system which does not 

require introduction of material, such as Fuji film, into the joint during the 

loading process. 

The studies which make up this thesis will improve understanding of the geometry, 

thickness distribution and variation in contact area distribution of cartilage across the 

ankle joint. Moreover, the results will provide essential experimental results which can 

be used to enhance computational models of the ankle joint which are used to study 

ankle joint injury and development of degenerative conditions such as post traumatic 

osteoarthritis. 
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Chapter 3. Stereophotography experiments 

3.1. Introduction 

As outlined in section 1.6 a variety of techniques have been applied, with varying 

success, to make quantitative measurements of articular cartilage in diarthrodial joints. 

Such quantitative measurements are required in order to characterise the mechanical 

properties of joint articular cartilage, improve the accuracy of computational models, 

such as finite element models, and to provide baseline measurements of metrics which 

may potentially be used to monitor degenerative change such as occur in osteoarthritis. 

In the ankle joint a limited number of studies of the cartilage thickness and other 

quantitative parameters have been performed. These earlier studies have used 

microscope measurements on osteochondral cores(Athanasiou et al., 1995), needle force 

probes(Shepherd and Seedhom, 1999), A mode ultrasound(Adam et al., 1998a) and 

MRI(Al Ali et al., 2002; Tan et al., 1996) to make quantitative measurements. 

Unfortunately these studies provide data on only a small number of discrete sites across 

the joint surface or exclude large areas of the surface which are of considerable clinical 

interest such as the shoulders and malleolar facets of the talus. 

The experiments reported in this chapter seek to address some of the shortcomings 

identified in earlier studies. Therefore, the objectives of this study were first, to describe 

a high resolution stereophotographic technique for quantifying the thin cartilage layers 

of the ankle joint, providing a method to validate other techniques; second, to describe 

the topographical variation of ankle joint articular cartilage across the joint surface; and 

finally, to provide baseline measurements of quantitative parameters of ankle cartilage 

in with joints with no visual signs of degeneration or cartilage defects. 
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3.2. Materials & methods 

3.2.1. Ethical approval 

All specimens used in this set of experiments were acquired in accordance with US state 

and federal laws. Ethical approval for the study was provided by the University of 

Virginia institutional review board and human usage review panel.  

3.2.2. Specimen preparation 

Twelve fresh frozen foot and ankle specimens were harvested from 12 male cadavers, 

with a mean age of 61.5 years (range 51-75 years). From the available medical histories 

there were no reports of trauma to the lower limbs or musculoskeletal disease in the 

ankle(s) of the subjects tested. The specimens were stored at -25ºC. Prior to testing, 

each specimen was allowed to thaw at room temperature for 24 hours. After thawing, 

the ankle joints were disarticulated, and soft tissues were removed from around the 

tibia-fibula complex and the talus. The syndesmosis was left intact. Each specimen was 

visually examined by and stained using the India ink technique to assess for cartilage 

surface lesions and/or degeneration. No cartilage lesions were seen in any of the 

specimens tested, minor localised surface fibrillation was seen in 2 ankles, which is in 

keeping with the findings of Meachim et al(Meachim, 1975) in autopsy specimens. 

The bones were then potted in custom potting cups using a fast-setting resin (R1 

Fastcast, Goldenwest manufacturing inc. CA, USA) taking care to ensure that the 

articular surface was above the level of the potting material, figure 3.1. The talus was 

elevated above the potting material by inserting 3 screws into the inferior surface of the 

talus, leaving part of the screw shafts projecting into the potting material so that the 

screws became rigidly embedded into the resin and fixed the talus in position. During 

preparation the specimens were kept hydrated with phosphate buffered saline containing 

protease inhibitor (Sigma-Aldrich, USA). The potting cups incorporated a flange at their 

rim with photo targets fixed to it, the rigid fixation of the specimen ensured that there 

was no motion of the specimen relative to these targets, figure 3.1.
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Figure 3.1 Potted tibia- fibula complex and talus specimens 

Representative tibia-fibula and talus specimens rigidly fixed into the custom made 
potting cups. The articular surface of the talus has been prepared with a fine white 

power to improve image contrast and optimise the performance of the ATOS system. 
Black and white photo targets are fixed to the flange on the potting cup. 

3.2.3. Advanced Topographic Sensor (ATOS™) 

 

Figure 3.2 The ATOS™ system 

The major components of the ATOS™ system are shown in this photograph including 
the fringe pattern projector, the CCD cameras, the 6 degrees of freedom mounting 

system and the computer processing unit 

The Stereophotogrammetric system (Advanced TOpometric System - ATOS II SO, 

Capture 3-d, CA, USA), consists of two high resolution CCD cameras, a fringe pattern 

projector and digital image processing software, figure 3.2. The ATOS™ system has a 
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measurement noise (accuracy) of ± 2µm and point spacing of 0.03 mm 

(http://www.gom.com/EN/measuring.systems/atos/system/variations).  

The system functions by projecting a fringe pattern onto the specimen and the fixed 

photo targets; the system then uses triangulation and digital image post processing to 

assign 3D coordinates to each pixel, thereby generating a dense point cloud. By 

combining multiple point clouds taken from different views, a full detailed 3D model of 

each surface can be generated, typically yielding on the order of 70,000 points for each 

cartilage or bone surface, figure 3.3. In order to improve image contrast and optimise 

the performance of the ATOS™ system a fine coating of white powder was sprayed 

onto the surface being imaged, figure 3.1. 

 

Figure 3.3 A typical talar data point cloud 

A typical point cloud of the talar surface generated through combination of multiple 
point clouds. The green crosses mark the location of photo targets automatically 

detected by ATOS™ and used to register the point clouds together 
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3.2.4. Data Acquisition 

Each cartilage surface was imaged, and the point cloud data were saved to disk. The 

articular cartilage was then dissolved by submerging the specimen in a 5% sodium 

hypochlorite solution for 6-8 hours to reveal the intact subchondral bone(Ateshian et al., 

1991), figure 3.4. During this process the specimen was not allowed to move relative to 

the photo targets due to the rigid fixation. After removal from the 5% sodium 

hypochlorite the specimen was again visually examined to ensure that all the cartilage 

had been removed. The imaging process was then repeated for the subchondral bone 

surfaces. Finally, the common photo targets were defined and used to spatially register 

the cartilage and subchondral bone surfaces together using software incorporated in the 

ATOS™ system which performs a rigid body rotation and transformation of the 

cartilage surface onto the bone. 

 

Figure 3.4 Talar subchondral bone surface after removal of the articular cartilage. 

A potted talus specimen following immersion in 5% sodium hypochlorite; the articular 
cartilage has been dissolved to reveal the intact subchondral bone surface. 
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3.2.5. Post Processing Technique 

In order to handle the large quantities of point cloud data in an efficient manner it was 

necessary to develop a custom written post processing algorithm. To achieve this it was 

necessary to establish collaboration with Dr Markus Grabner and Mag. Ralph Wozelka 

at the Technical University of Graz, Austria; and I thank them for performing the 

necessary programming and “bug fixing” to develop a suitable algorithm.  

Briefly, the cartilage thickness was measured by performing an octree-based search for 

every point on the cartilage surface to find its nearest neighbour on the corresponding 

bone surface. This is a reasonable approximation since the average distance between 

adjacent points on any surface is small, typically less than 40 micrometers. However, 

care had to be taken at the edges of the surfaces because although the cartilage and bone 

surfaces were registered to each other, their borders did not necessarily match 

identically, since the surfaces were imaged independently. If the boundary of one of the 

meshes were to extend beyond the other, as depicted in, figure 3.5, an incorrectly large 

thickness would be reported for the extended part of the surface. These offending 

regions were identified by inspecting a triangle T = (v1,v2,v3) on M and the nearest 

neighbors vi' of vi (i = 1. . . 3) on M', see figure 3.5, (v3 is not shown in this 2D sketch). 

If all vi', i = 1. . . 3, lie on the boundary of M', triangle T is discarded, steps 1 and 2 in 

figure 3.5. Additionally, in some specimens small amounts of periarticular tissue, e.g. 

fat, joint capsule and/or ligamentous tissue, which could not be completely removed 

caused artefacts, making the cartilage layer appear thicker along parts of the boundary 

figure 3.5. Therefore, any extraneous parts at the periphery had to be identified post hoc 

and repaired To alleviate this problem, we define a maximum thickness d0 and shrink 

both meshes M and M' until the distance between them is not larger than d0 anywhere at 

the boundary. 
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a) different mesh extents 

 

b) diverging meshes 

Figure 3.5 Schematic of the corrective post processing procedure. 

a) Different mesh extents. b) Diverging meshes. Step 1, removal of non-
corresponding regions; step 2, for each vertex on the cartilage surface the nearest 

neighbour on the bone surface is found; step 3 the edges of the meshes are 
“stitched” together. 
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The final step was to “stitch” the cartilage and bone meshes together to form a closed 

volume.  Note that these corrective procedures had no impact on the more central 

portions of the surface models, as they only occur at the periphery. 

The processed triangulated meshes for each cartilage layer were used to measure the 

cartilage surface areas and the bone cartilage interface (BCI) areas. The cartilage 

volumes were determined from the closed polyhedra formed by the combined cartilage 

and bone meshes. In addition, the coefficient of variation was calculated for each 

cartilage layer in order to provide a description of the variation of thickness within a 

cartilage layer. 

3.2.6. Statistical analysis 

The coefficient of variation was calculated for each cartilage layer in order to provide a 

description of the variation of thickness within a cartilage layer. Quantitative parameters 

were statistically analysed for differences between the talar, tibial and fibula layers 

using an ANOVA with a post hoc Tukey test, p < 0.05 was considered significant. 

3.3. Results 

Precise 3-D geometric models and thickness distribution maps were generated for each 

articular cartilage layer, providing complete geometric data including the highly curved 

regions and the peripheries of the surfaces. Representative examples of the 3-D 

thickness distribution maps of the talus, tibia and fibula are shown in figures 3.6, 3.7 

and 3.8. The 3-D models faithfully reproduce the keystone shape of the talus with a 

central groove running anterior-posterior over the superior surface and the concavity of 

the distal tibial surface. Moreover, the thickness distribution maps reveal several 

characteristic patterns. The talus maps displayed two distinct areas over the talar 

shoulders, one anterior-laterally and one posterior medially, where the thickest cartilage 

occurred, figure 3.6. 
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Figure 3.6 Stereophotographic 3-D talus cartilage thickness maps 

Representative 3-D thickness distribution maps of the talar articular cartilage layer, 
viewed from the medial (left) and lateral aspect (right) of a left talus. 

The tibial cartilage thickness was more evenly distributed; however, the thickest 

cartilage typically occurred in two areas; the central part of the anterior tibial plafond 

and the curved region at the transition between the tibial plafond on the medial 

malleolus, figure 3.7.

 

Figure 3.7 Stereophotographic 3-D tibial cartilage thickness maps 

Representative 3-D thickness distribution maps of the tibial articular cartilage layer, 
viewed from the inferior aspect of a right tibia. 

The fibula showed a characteristic valgus angulation of the distal articular surface and 

had the most homogeneous cartilage thickness of the ankle cartilage layers, figure 3.8.
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Figure 3.8 A stereophotographic 3-D fibula cartilage thickness maps 

A representative 3-D thickness distribution map of the fibula articular cartilage layer, 
viewed from the anterior aspect of a left fibula. 

The articular cartilage thickness was measured at every point on the articular cartilage 

surface; the mean number of measurements per surface was 73236. The mean and 

standard deviations (across the 12 specimens) of spatial mean thickness, maximum 

thickness, cartilage surface area, bone cartilage interface area and volume are shown in 

table 3.1. Since the surface areas and volumes are measured from the triangulated mesh, 

created from the point cloud data, noise in the vertex locations could result in local 

variations in the surface normals which may subsequently affect the measurements. 

While this effect is small for any given vertex the cumulative effect across the total 

surface area maybe considerable; however, the area error is small if the vertex 

displacement is small compared to the triangle edge length. Table 3.2, shows the results 

for different numbers of iterations of a previously described denoising 

method(Fleishman et al., 2003). The results show that while the surface area error due 

to vertex noise is larger than volume error it is still negligibly low; therefore mesh 

denoising was not used for the purposes of these tests. 
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N=12 Talus Tibia Fibula 

Mean thickness (mm) 1.10 ± 0.18 1.16 ± 0.14 0.85 ± 0.13 

Max thickness (mm) 2.38 ± 0.4 2.18 ± 0.19 2.06 ± 0.08 

Cartilage surface area (cm2) 21.56 ± 2.14 13.45 ± 1.28 4.30 ± 0.79 

Bone-cartilage interface area (cm2) 23.6 ± 1.67 12.57 ± 0.79 3.67 ± 0.63 

Volume (ml) 2.44 ± 0.48 1.50 ± 0.28 0.32 ±0.08 

Table 3.1 Stereophotographically determined quantitative cartilage parameters. 

Mean values (± S.D.) for each of the quantitative parameters measured from 12 ankle 
specimens. 

There was no significant difference between the mean articular cartilage thickness of 

talar and tibial cartilage layers. The talar (p<0.01) and the tibial cartilage (p<0.001) 

spatial mean thickness values were significantly greater than the fibula cartilage. For 

maximum cartilage thickness the only significant difference was between the talus and 

the fibula (p < 0.05). 

Number of iterations % Reduction of total 

surface area 

% Reduction in volume 

1 0.23 0.01 

2 0.30 0.02 

3 0.36 0.03 

4 0.40 0.04 

5 0.44 0.05 

Table 3.2 Impact on area and volume of the denoising algorithm 

The effect of different iterations of the denoising algorithm. Reduction in area and 
volume measurements are given in percentage relative to the original unsmoothed mesh. 
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Cartilage surface area and BCI area measurements showed clear significant differences. 

The talus had a significantly larger surface area than both the tibia (p<0.001) and the 

fibula (p<0.001). Even when the tibia and fibula were combined, representing the 

superior half of the ankle joint, the talus had a significantly larger surface area 

(p<0.001). 

The talar cartilage volume was also significantly greater than the combined tibia-fibula 

cartilage volume (p<0.001) and the tibia had a significantly greater volume than the 

fibula (p<0001). This is a clear reflection of the larger area covered by articular 

cartilage on the talus compared with the tibia and fibula. 

As an assessment of the homogeneity/inhomgeneity of the cartilage thickness across the 

joint surface the coefficient of variation was calculated for the superior part of the joint 

(tibia-fibula complex) and the inferior part of joint (the talus). The coefficients of 

variation were very similar for both halves of the joint, 30.21% over the tibia-fibula 

complex cartilage and 30.54% over the talar cartilage. 

3.4. Discussion 

In this study a highly accurate technique for generating 3-D geometric models and 

making quantitative measurements in thin cartilage layers, based on a commercially 

available stereophotography system, ATOS™, has been described. The system allows 

rapid acquisition and processing of large volumes of geometric data with a measurement 

noise (accuracy) of ± 2 µm. The versatility and accuracy of the technique have made it 

possible to study geometrical parameters of thin highly curved cartilage layers to a level 

of detail that has not been previously possible. 

The results show that the mean cartilage thickness ranged from 0.85 ± 0.13 mm in the 

fibula to 1.16 ± 0.14 mm in the tibia, and maximum thickness ranged from 2.06 ± 0.08 

mm in the fibula to 2.38 ± 0.4 mm in the talus. The coefficients of variation show that 

that ankle cartilage thickness has a relatively consistent level of homogeneity 

throughout the joint; the values are lower than those reported in the knee joint(Ateshian 
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et al., 1991), but consistent with other results reported in the ankle joint(Adam et al., 

1998a). 

A variety of techniques have been used previously to measure cartilage thickness in the 

ankle. Using the in vitro needle force probe technique(Athanasiou et al., 1995; Shepherd 

and Seedhom, 1999), mean cartilage thickness values have been reported as 1.22 mm 

and 1.16mm for the talus, 1.18 mm and 1.35 mm for the tibia and 0.95 mm for the 

fibula. Using A-mode ultrasound in an in vitro study the reported mean thickness values 

were lower; 0.95 mm and 1.0 mm for the talus and tibia, respectively. In an MRI based 

study of volunteers(Al Ali et al., 2002) the mean cartilage thickness was at the lower 

limit of values reported in the literature; 0.89 mm and 0.82 mm in the talus and the tibia, 

respectively. 

Unfortunately each of the above techniques has limitations. The needle probe technique 

can only be used at a number of discrete points over the surface and ruptures the surface 

limiting the usefulness of further testing. Furthermore, Jurvelin et al(Jurvelin et al., 

1995) previously reported the change in force signal was not very sharp and a subjective 

evaluation was required when using a needle probe. The accuracy of ultrasound 

measurements is dependent on the assumption that sound travels at a uniform speed 

through all layers of the articular cartilage. However, previous studies(Jurvelin et al., 

1995; Yao and Seedhom, 1999) have shown considerable variation in the velocity, 

especially in thin cartilage layers, which may help to explain the lower mean values 

seen with ultrasonic measurements. 

MRI can avoid many of these limitations, allowing measurements at every voxel and 

calculation of surface areas and volumes. Unfortunately, the earlier MRI study(Al Ali et 

al., 2002) excluded the talar shoulders and malleolar facets as well as the tibial medial 

malleolar and fibular surfaces, because non-isotropic sagittally acquired data were used. 

Therefore, a direct comparison of volume and surface area measurements with the 

current study is not possible.  

During the disarticulation and potting of the specimens they were kept hydrated with 

phosphate buffered saline which theoretically may result in some swelling of the 
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articular cartilage; however, if the cartilage was left untreated it would potentially 

become dehydrated by exposure to the atmosphere and the surface preparation. The 

relatively short preparation time and the rapid data acquisition process for the cartilage 

surface by the ATOS™ system helped to minimise these effects; therefore, it is 

reasonable to believe that the results of the present study realistically represents the 

thickness of the cartilage in the in vivo state. 

Although the reported stereophotography technique is destructive to articular cartilage, 

and thus can only be performed in vitro it is still a very useful technique as it provides 

an independent gold standard for validating the accuracy of other measurement 

techniques, such as MRI(Cohen et al., 1999), which may also be used for in vivo 

studies. 

In the talus the thickness distribution maps indicate the thickest cartilage region occurs 

anterior-laterally and posterior-medially over the shoulders of the talus. This is in 

contrast to earlier studies, which were unable to assess the highly curved regions of the 

joint surfaces, and reported the thickest cartilage to occur in the central region of the 

talar dome(Adam et al., 1998a; Athanasiou et al., 1995; Shepherd and Seedhom, 1999). 

The findings in this set of experiments are in keeping with those of Muller-Gerbl et 

al(Muller-Gerbl and Putz, 1995) who described findings from anatomical sections. The 

results reported here clearly show that the regions of greatest thickness on the talus 

correspond to the most common site of osteochondritis dissecans (OCD) lesions in the 

ankle(O'Farrell and Costello, 1982). Furthermore, the thick cartilage over the anterior 

border of the tibia corresponds to cartilage injury sites seen in the dorsiflexion 

tests(Rudd et al., 2004) which provided a stimulus for developing the experimental 

studies which make up this thesis. It is also interesting to note that the regions of 

greatest cartilage thickness in the ankle joint correspond to regions on the talus and tibia 

where the subchondral bone is most dense(Muller-Gerbl and Putz, 1995). These finding 

may be a response to the prevailing mechanical conditions occurring in the ankle joint. 

Understanding the behaviour of ankle articular cartilage requires a true understanding of 

the 3-D anatomy, including the distribution of cartilage thickness across the joint 
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surface. Additionally, biomechanical knowledge of the joint contact pattern and 

cartilage stiffness distribution across the joint surface is important. As the results of this 

study show that the thickest cartilage occurs where cartilage injuries are most 

commonly seen, investigation of the joint contact characteristics and cartilage 

mechanical properties in these regions is of significant interest. 

Changes in quantitative geometric parameters have been suggested as potentially 

sensitive measures of degenerative change in cartilage layers (Burgkart et al., 2003; 

Gray et al., 2004). The described stereophotography technique offers the possibility to 

validate MRI derived measurement for surface areas and volumes, in addition to 

thickness in thin cartilage layers. Validated MRI techniques offer a powerful tool for 

detecting and monitoring cartilage injury and degenerative change 

The geometric data generated using this technique can be used as input to finite element 

(FE) computational models. As a result the geometric database created from this study 

may be used to generate a representative geometry of the ankle joint and it cartilage 

layers(Cohen et al., 2003). FE models based on representative geometry can be of 

significant benefit for stress and strain analysis(Fitzpatrick et al., 2004) and to aid 

development of improved ankle prostheses (Cheung and Zhang, 2005). 

3.5. Conclusions 

In this chapter a highly accurate technique for acquiring geometric data and making 

quantitative measurements of thin articular cartilage layers has been described and 

applied to the ankle joint. The reported stereophotographic technique may be used as an 

independent standard for validation of the accuracy of in vivo measurements in thin 

cartilage layers using MRI. Furthermore, the 3-D geometric ankle cartilage data will 

help to produce more realistic computational models for biomechanical analysis. 

Finally, the thickness distribution maps produced show that the thickest articular 

cartilage in the ankle occurs at the clinically relevant regions where cartilage lesions 

most commonly occur(O'Farrell and Costello, 1982). 
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Chapter 4. 2-D Semi-automated cartilage 

segmentation study 

4.1. Introduction 

In the western world, osteoarthritis is the most common form of disability. The socio-

economic impact of degenerative joint diseases is huge, in the United States alone the 

cost was approximately $65 billion per year during the 1990’s (Yelin and Callahan, 

1995). This cost is only set to rise with an aging population and rising drug costs. The 

potential impact of chondro-protective treatments and articular cartilage restoration 

techniques are significant.  

Unlike other major joints of the lower limb, the ankle is rarely affected by primary 

osteoarthritis. However, the ankle appears to have a greater predisposition to the 

development of post traumatic osteoarthritis than the hip and knee joints(Marsh et al., 

2002; Marsh et al., 2003). Furthermore, ankle post traumatic osteoarthritis often 

develops in a younger population and more rapidly than in other joints(Buckwalter and 

Saltzman, 1999; Dieppe and Kirwan, 1994; Funk, 1976). Another challenging problem 

in the ankle is osteochondritits dissecans (OCD) of the talar body, which typically 

occurs over the anterior-lateral or posterior-medial shoulders of the talus(O'Farrell and 

Costello, 1982). 

Currently precise evaluation of a patients’ degenerative joint(s), qualitatively and 

quantitatively both pre- and post treatment is technically demanding, especially in 

highly congruent joints with thin articular cartilage, e.g. the ankle joint. However, in 

order to clinically evaluate present and future treatments we must be able to precisely 

and reproducibly image and quantify the articular cartilage of these joints (Burgkart et 

al., 2001; Burgkart et al., 2003; Eckstein et al., 2001a; Eckstein et al., 2002; Peterfy and 

Genant, 1996), especially because quantitative geometric measurements of cartilage 

parameters such as cartilage thickness and volume, have been suggested as sensitive 
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image based biomarkers for detecting and monitoring cartilage degeneration in 

osteoarthritis(Gray et al., 2004). 

Accurate assessment of articular cartilage layers requires the use of three-dimensional 

reconstruction of joints in order to quantify the cartilage parameters independently of 

slice location or orientation. Three dimensional reconstructions are particularly 

important for longitudinal studies of patients in which measurements must be 

reproducible. 

The objectives of the experiments reported in this chapter were firstly to evaluate 

quantitative parameters of the cartilage layers of the entire ankle joint using high 

resolution MRI. Secondly, to test the precision (reproducibility) of the quantitative 

measurements made using a semi-automated directional gradient vector flow (dGVF) 

snake segmentation algorithm which was developed during the course of this thesis in 

collaboration with Prof Scott Acton, Dr Jinshan Tang and Bing Li of the University of 

Virginia, department of Electrical and Electronic Engineering. The final aim was to 

describe the topographical distribution of articular cartilage over the surfaces of the 

ankle joint from the 3D reconstructions generated from the segmented MRI data sets. 

4.2. Material & methods 

4.2.1. Ethical approval 

Ethical approval for this study was provided by the University of Virginia institutional 

review board and human usage review panel. All the experimental components of the 

study were performed at the University of Virginia, Charlottesville, VA, USA; 

therefore, all human cadaveric specimens used in the studies presented in this thesis 

were acquired in accordance with Virginia state law and US federal laws. 

4.2.2. Specimen preparation 

Eight fresh frozen human, male cadaveric lower leg and foot complexes harvested from 

five cadavers, were studied. The mean age was 52.3 years. From the available medical 
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histories there were no reports of trauma to the lower limbs or musculoskeletal disease 

in the ankle(s) of the subjects. Each lower leg specimen was stored at -25ºC. Prior to 

MRI examination, the specimen to be evaluated was removed from the freezer and 

allowed to thaw at room temperature for 24 hours. All specimens were thoroughly 

defrosted so that all water molecules were freely mobile and MRI examinations could 

be performed without difficulty. 

4.2.3. Magnetic Resonance Imaging protocol 

The MR images were acquired using a 1.5 T MR scanner (Magnetom vision, Siemens, 

Erlangen, Germany) with a circularly polarized transmit and receive extremity coil. A 

sagittal spoiled 3D gradient echo sequence, fast low angle shot (FLASH), with selective 

water excitation imaging sequence used was, TR of 18 ms, TE 7.65 ms, flip angle 25°, 

in-plane resolution 0.3 mm x 0.3 mm, slice thickness 0.3 mm, field of view 160 mm, 

and a 5122 matrix. The acquisition time was 17 mins 14 secs. As the image resolution 

was isotropic we were able to reconstruct the images in three perpendicular planes 

(sagittal, coronal and axial). 

In five cadaveric ankles six repeated data sets were acquired with repositioning of the 

ankle and re-shimming of the magnet between acquisitions. In all other specimens, a 

single data set was acquired. 

4.2.4. 2-D Cartilage segmentation algorithm 

Since there are no suitably accurate and reliable image analysis software programs 

commercially available for the purpose of segmenting articular cartilage surfaces it was 

necessary to develop a custom written image segmentation algorithm. To this end I am 

deeply grateful to Prof Scott Acton, Dr Jinshan Tang and Bing Li from the Virginia 

image and video analysis (VIVA) laboratory at the University of Virginia department of 

electrical and electronic engineering for their considerable effort in programming the 

Matlab based image segmentation algorithm. I worked in close collaboration with the 

members of the VIVA team on the algorithm and user interface which went through a 

 56



2-D Semi-automated cartilage segmentation study 

number of stages of development in order to make it stable, user friendly, versatile and 

semi-automated. The work presented in appendix 2 describes the directional Gradient 

Vector Flow (dGVF) snake and anisotropic noise reduction algorithms in detail. The 

algorithm was subsequently improved to allow the snake to curve under itself so 

overcoming a major limitation of the initial version of the program which occasionally 

failed when used for segmenting coronal image of the ankle joint. 

The snake is an active contour that is optimized with respect to curve smoothness and 

collocation with the strong image edges. 

Following image acquisition all image data sets were transferred to and stored on a 

desktop work station for post processing and segmentation. In the initial experiments, 

reported in appendix 2, sagittal images were segmented since the tibia and talar cartilage 

layers surfaces do not have any “over hanging” regions when viewed in this plane; 

however, this meant that the shoulders and malleolar surfaces were excluded from 

analysis. Following further modification of the algorthim so that the dGVF snake could 

handle “overhanging” regions, coronal images were segmented since they allow 

visualisation of all the relevant cartilage, appendix 3. 

4.2.5. Anisotropic diffusion – noise reduction algorithm 

The post processing and segmentation procedure consist of a number of steps. First, the 

image volume is cropped to a smaller volume containing all the cartilage layers of the 

ankle, but excluding unnecessary image data such as from the distal tibial shaft. 

Secondly, the images are linearly interpolated (doubling the number of voxels in each 

row and column of each slice) to an in-plane resolution of 0.15 mm x 0.15 mm. The 

third step was to run an anisotropic diffusion ‘de-noising’ algorithm(Tang et al., 2004). 

For a detailed description of the anisotropic noise reduction algorithm see appendix 2. 

Briefly, the anisotropic diffusion technique preserves the quality of edges within the 

images by using a non linear filtering method that encourages smoothing in 

homogeneous regions, e.g. bone and cartilage substance, while inhibiting smoothing 

across the edges i.e. at the boundaries between cartilage and bone or apposing cartilage 
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surfaces. The anisotropic diffusion algorithm increases the robustness of the dGVF 

snake to noise. In the presence of noise the dGVF snake may produce a boundary which 

requires considerable manual editing. However, the use of the anisotropic diffusion 

algorithm prior to segmentation improves the performance of the dGVF snake by 

enhancing the cartilage and bone boundaries and reduces the need for manual editing, 

figure 4.1.

 

Figure 4.1 Enhanced segmentation performance due to the anisotropic diffusion 
noise reduction algorithm 

A typical coronal MRI slice acquired using the isotropic cartilage sequence. a) Before 
noise reduction and b) after noise reduction using the anisotropic diffusion denoising 

algorithm. The dashed green line represents a very simple approximate initialisation for 
the bone boundary and the solid yellow line represents the boundary detected by the 

dGVF snake 

The fourth step was to segment the talar, tibia and fibula cartilage layers using the semi-

automated directional gradient vector flow (dGVF) snake algorithm(Tang et al., 2004). 

Briefly, a manual initialisation is required for each border in the first image segmented, 

the dGVF snake algorithm is then applied and the resulting contours serve as the 

initialisation for the borders in the next image. This approach takes account of the 3D 

context of the image data and facilitates segmentation in regions where the cartilage 

surfaces are closely apposed. The system is interactive and allows manual editing of the 

segmentation lines in each image if required. After completing the full segmentation the 

final step was to interpolate the data to an isotropic resolution of 0.15mm3 and generate 

3D reconstructions of each cartilage layer. 
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4.2.6. Data analysis 

For ground truth data manual tracings were used in order to evaluate the border 

positioning of the computer aided segmentation. The Pratt figures of merit (FOM)(Pratt, 

1978), calculated using equation 4.1, were computed to assess the computer aided 

border positioning compared to manual segmentation. The FOM is given by 
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Equation 4.1 Pratt figures of merit (FOM) 

In equation 1, IA is the number of boundary pixels delineated by the computer-aided 

segmentation method, IM is the number of boundary pixels delineated by manual 

segmentation. d(i) is the Euclidean distance(Stammberger et al., 1999a) between a 

boundary pixel delineated by the expert and the nearest boundary pixel delineated by 

the dGVF snake segmentation algorithm and α is a scaling constant, with a suggested 

value of 1/9(Pratt, 1978). A FOM = 1 represents a perfect match between the boundary 

pixels delineated by computer-aided segmentation method and the boundary pixels 

delineated by manual segmentation. The relationship between the FOM and the average 

distance between the computer-aided segmentation boundary and a ground truth derived 

boundary is shown in figure 4.2.
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Figure 4.2 A plot of Pratt figure of merit (FOM) vs. “average segmentation error” in 
units of pixel width 

The segmentation error is defined here as the average distance between the computed 
boundary and the ground truth boundary. The error units are pixel widths 

Two image stacks each containing 20 contiguous image slices through the middle of the 

talus in the region of cartilage to cartilage contact were selected from the image data set. 

Each image stack was manually segmented and a 2 week interval lapsed before 

performing the segmentation with the dGVF snake algorithm, in order to ensure there 

was no “training effect”. The FOM values were then calculated using equation 4.1. 

The sagittal image segmentation experiments were performed using the initial version 

of the dGVF snake algorithm which was unable to deal with overhangs; therefore a 

limited subset of the data was segmented. For these experiments four repeated data sets 

from four ankles were segmented as a pilot study of the usability and reproducibility of 

the approach. 
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The coronal image segmentation experiments were performed using the finalised 

version of the dGVF snake algorithm which is capable of dealing with overhanging 

regions. In these experiments the full MRI data set was segmented. 

3D reconstructions were used to make quantitative measurements and visualize the 

thickness distribution of the articular cartilage. Using 3D reconstructions of the cartilage 

layers for thickness calculations ensures measurements are independent of section 

orientation and allow for out-of-plane curvature. Thickness was determined at each 

voxel on the cartilage surface (4444 sites/cm2) using a 3D Euclidean distance 

transformation(Stammberger et al., 1999a). Cartilage surface area and bone cartilage 

interface (BCI) area were measured from the triangulated mesh(Eckstein et al., 2001b) 

and the cartilage volume of each layer was determined by integration of the 

voxels(Peterfy et al., 1994) 

In order to evaluate the precision (reproducibility) of the dGVF approach the mean, 

standard deviation (s.d.) and coefficients of variation (CV%), for each of the 

quantitative parameters studied from the six repeated data sets in five ankles were 

determined. The root mean square (RMS) average(Gluer et al., 1995) of the CV’s and 

s.d. from the individual joints were calculated for each of the parameters measured in 

the talar, tibia and fibula cartilage layers. 

The performance of the anisotropic diffusion algorithm was evaluated quantitatively by 

measuring variance reduction ratio (Acton et al., 1999; Acton and Bovik, 1998). The 

variance reduction ratio is defined as the ratio of variance reduction following noise 

reduction and the original variance in a defined region of interest. A value of 0 means 

no noise reduction and a value of 1 means perfect noise reduction. This test is used in 

order to quantify the improvement given by the anisotropic diffusion process, thus 

avoiding absolute computation of signal and noise power for a given image. For these 

variance reduction computations, five contiguous slices from the central part of the joint 

were selected from every data set. The variance reduction was calculated for two 

regions of interest (ROI’s), one in the bone, one in the cartilage. A total of 165 images 

were evaluated. 
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4.2.7. Statistical analysis 

Statistical analysis was performed using an analysis of variance (ANOVA) with 

repeated measures (mixed model) and post hoc Tukey tests. Results were considered 

significant at the p < 0.05 level. 

4.3. Results 

4.3.1. Sagittal image segmentation experiments 

The precision (reproducibility) of the MRI based cartilage measurements was 

determined by calculating the root mean square average (RMS thickness), standard 

deviation (STD) and coefficient of variation of mean thickness (CV) were determined 

for the tibia and talar cartilage layers from the four repeated image data sets for each of 

the four specimens individually; the results are shown in tables 4.1 and 4.2, 

respectively. 

Specimen No. 1 2 3 4 

RMS Thickness (mm) 1.28 1.44 1.03 1.22 

STD of RMS Thickness (mm) 0.05 0.02 0.03 0.04 

CV of Mean Thickness (%) 4.28 1.24 3.16 3.17 

Table 4.1 Tibial cartilage thickness measurement results 

The RMS mean thickness, STD of the RMS thickness and coefficient of variation from 
four repeated measurements in four different tibia specimens
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Specimen No. 1 2 3 4 

RMS Thickness (mm) 1.31 1.41 1.12 1.36 

STD of RMS Thickness (mm) 0.09 0.05 0.11 0.06 

CV of Mean Thickness (%) 7.00 3.33 10.13 4.34 

Table 4.2 Talar cartilage thickness measurement results 

The RMS mean thickness, STD of the RMS thickness and coefficient of variation from 
four repeated measurements in four different talus specimens. The malleolar surfaces 

were excluded from segmentation using the initial dGVF snake. 

When considering all four ankles together the RMS CV of mean thickness for cartilage 

thickness was 2.96% and 6.20%, for the tibia and talus, respectively. For cumulative 

values (tibia and talus combined), the RMS CV mean thickness was < 4.6%. The mean 

RMS thickness was 1.24 ± 0.17 mm in the tibia and 1.30 ± 0.13 mm in the talus, table 

4.3.

 Tibia Talus 

RMS CV of Mean Thickness (%) 2.97 6.20 

Mean RMS Thickness (mm) 1.24 1.30 

STD of Mean RMS thickness 0.17 0.13 

RMS STD 0.04 0.08 

Inter-subject variability/Technical precision 4.42 1.56 

Table 4.3 Mean morphological values for all specimens 

Mean morphological values and inter-subject variability / technical precision ratios for 
all talus and tibia specimens. The malleolar surfaces were excluded from segmentation 

using the initial dGVF snake.  

The inter-subject variability (i.e. the STD of mean RMS thickness across the four 

specimens) was compared to the technical precision(Gluer et al., 1995), (i.e. the RMS 
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STD for repeated thickness measurements in all specimens), of the segmentation 

approach; the ratios were 1.56 and 4.42 for the talus and tibia, respectively, table 4.3. 

The ratios reflect that the mean articular cartilage thickness has a relatively low inter-

subject variability, particularly for talar cartilage. 

4.3.2. Coronal image segmentation experiments 

Once the dGVF snake algorithm had been modified to handle overhanging regions the 

finalised version was used to segment coronal images from all MRI sets. Segmentation 

of coronal images allowed all region of ankle cartilage to be segmented including the 

malleolar surfaces and the highly curved regions over the talar shoulders. 

The mean number of images segmented (± s.d.) per data set was 110 ± 6. From the eight 

ankles imaged, the mean values (± s.d.) for thickness, maximum thickness, cartilage 

surface area, cartilage bone interface area and volume are shown in table 4.4. The 

results show that for each of the parameters measured the talar cartilage had the largest 

values and the fibula cartilage gave the lowest values 

 Mean 
thickness 
(mm ± s.d.) 

Max 
thickness 
(mm ± s.d.) 

Cartilage 
area       
(cm2 ± s.d.) 

BCI area 
(cm2 ± s.d.) 

Cartilage 
volume    
(ml ± s.d.) 

Talus 1.34 ± 0.14 2.67 ± 0.25 28.03 ± 2.56 24.53 ± 2.16 3.32 ± 0.55 

Tibia 1.21 ± 0.14 2.44 ± 0.58 15.30 ± 1.69 14.87 ± 1.48 1.72 ± 0.25 

Fibula 0.91 ± 0.08 1.68 ± 0.18 4.21 ± 0.63 3.75 ± 0.56 0.35 ± 0.06 

Table 4.4 Quantitative cartilage measurements using the final dGVF snake 

Absolute mean values (± S.D.), from the eight subjects, for each of the quantitative 
parameters measured for the talar, tibial and fibula cartilage layers. Measurements made 

using the final dGVF snake include all parts of the ankle cartilage layers 

There were significant differences between the talus, tibia and fibula for all quantitative 

parameters: mean thickness p < 0.001, maximum thickness p < 0.005, cartilage surface 

area p < 0.001, cartilage bone interface area p < 0.001 and cartilage volume p < 0.001. 
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In order to compare the superior part of the ankle joint (tibia-fibula complex) to the 

inferior part of the ankle joint, with which it articulates, the values for surface areas and 

volume in the talar cartilage were compared to the combined tibia and fibula values. 

The talar cartilage layer has a significantly larger cartilage surface area p < 0.001, 

cartilage bone interface p < 0.001 and cartilage volume p = 0.002, than the superior part 

of the joint with which it is articulated. 

The mean FOM value for the border positioning between the manually defined borders 

and the borders obtained with dGVF snake segmentation algorithm was 0.88 ± 0.06. 

From figure 4.2 it can be seen that a FOM = 0.9 represents approximately a one pixel 

(0.15 mm) “average” Euclidean distance between the boundary pixels delineated by 

computer-aided segmentation method and the boundary pixels delineated by manual 

segmentation. Figure 4.3 shows a sample image with an expert traced border and the 

corresponding border detected by the dGVF snake algorithm. 

 

Figure 4.3 dGVF snake vs manual segmentation 

Talar cartilage borders detected by the dGVF snake (solid red line) and manual 
segmentation (dashed yellow line), with an FOM value of 0.937. 

When evaluating the precision of the approach using the six repeated data sets from five 

ankles, table 4.5 the RMS average coefficient of variation (min – max) ranged from 

2.82% (1.21% – 4.21%) for the talar cartilage bone interface area to 9.62% (5.08% - 
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12.0%) for the fibula volume. Segmentation of the talar cartilage was the most precise 

in terms of all measured parameters followed by the tibial cartilage; the fibula gave the 

largest mean CV’s for all the parameters assessed. 

 Mean 

thickness % 

Max 

thickness % 

Cartilage 

area % 

BCI area % Volume % 

Talus 3.49 

(2.67 – 4.75) 

4.47 

(3.26 – 6.24) 

3.23 

(2.01 – 4.48) 

2.82 

(1.21 – 4.21) 

4.95 

(2.57 – 7.48) 

Tibia 4.57 

(3.26 – 5.75) 

6.33 

(3.77– 11.35) 

4.51 

(2.41 – 7.71) 

3.99 

(2.27 – 6.96) 

5.04 

(3.29 – 6.98) 

Fibula 4.67 

(2.62 – 7.40) 

7.44 

(4.14 – 9.51) 

9.28 

(7.29– 11.96) 

9.46 

(8.21– 11.10) 

9.62 

(5.08– 12.00) 

Table 4.5 Reproducibility of segmentation using the dGVF snake algorithm 

Mean coefficients of variation (min – max) from the six repeated measurements in five 
subjects for each of the quantitative parameters. 

 

Figure 4.4 Talus thickness distribution map generated from MRI segmentation 

A typical 3D thickness distribution map of a talar cartilage layer in context with the 
original 3D MRI data. 
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The colour 3D thickness distribution maps of each segmented cartilage layer show, 

clear characteristic thickness distributions. In all the tali studied there were two distinct 

areas, one anterior-laterally and one posterior-medially, over the talar shoulders where 

the thickest cartilage occurred, figure 4.4. For the tibial cartilage layers the cartilage 

thickness appeared to be more evenly distributed; however, two areas, the central part of 

the anterior tibial plafond and the curved region at the transition between the tibial 

plafond on the medial malleolus, were typically thicker than the other regions, figure 

4.5. The fibula cartilage was typically more homogeneous, but slight valgus angulation 

of the distal articular surface was seen, as shown in figure 4.6.

 

Figure 4.5 A tibia thickness map derived from MR segmentation 

A typical tibial cartilage 3D thickness distribution map generated from MRI 
segmentation using the dGVF snake algorithm 
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Figure 4.6 A tibia thickness map derived from MR segmentation 

A typical tibial cartilage 3D thickness distribution map generated from MRI 
segmentation using the dGVF snake algorithm 

The evaluation of the anisotropic diffusion denoising algorithm showed that the 

technique produced marked enhancement of the images with a clear improvement in the 

definition of the edges in the images, as can be clearly seen in figure 4.1. The variance 

reduction ratios were 0.98 ± 0.01 and 0.74 ± 1.38 for the bone and cartilage, 

respectively. 

4.4. Discussion 

The objectives of this study were to: evaluate the quantitative geometric parameters of 

the cartilage layers of the ankle joint; test the precision of our segmentation technique 

and describe the topographic distribution of the cartilage over the ankle joint surfaces. 

This is the first study to quantify the articular cartilage of the entire ankle joint, 

including the fibula and highly curved regions over the talar shoulders and the medial 

malleolus, using MRI. 

When studying the entire cartilage layers from the coronal segmentation experiments 

the results showed that the mean thickness ranged from 0.91 ± 0.08 mm in the fibula to 
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1.35 ± 0.14 mm in the talus and maximum thickness ranged from 1.68 ± 0.18 mm in the 

fibula to 2.69 ± 0.25 mm in the talus. The figure of merit values show that the border 

positioning achieved with the dGVF snake, relative to manual segmentation, is better 

than the border positioning obtained with standard snake techniques(Tang et al., 2006). 

Furthermore, the high FOM values obtained are encouraging since the images analysed 

were in the middle of the joint and showed extensive cartilage to cartilage contact which 

represents some of the most challenging regions to segment in the ankle joint, figure 

4.3. However, in some images the dGVF snake failed and it was necessary to manually 

edit the borders detected by the dGVF snake; this typically occurred where there were 

large areas of continuous cartilage to cartilage contact with indistinct borders. 

The results show that the coefficients of variation for the quantitative geometric 

parameters studied varied from 2.82% - 9.62% in the different cartilage layers. The 

inter-subject variability in this study was slightly smaller than reported by Al Ali et 

al(Al Ali et al., 2002); what is more, it was notably larger than the variability seen in the 

serial measurements. 

Quantitative MRI of thin congruent cartilage layers has, to date, been challenging 

because of the trade-off between maintaining an acceptable scan time and signal to 

noise ratio (SNR) whilst obtaining a sufficient resolution required for accurate 

quantitative measurements. The scan time, 17 mins 14 secs, used for this set of 

experiments is relatively long; however, Al Ali et al used a longer sequence on 

volunteers and reported no motion artefacts and suggested that the scan time is 

acceptable for routine in vivo use(Al Ali et al., 2002). It is reasonable to believe the 

scan time used in this study is acceptable for research use; however it is unclear whether 

this would be well tolerated by symptomatic patients, who may experience discomfort 

and have difficultly remaining motionless. After discussion with a number of colleagues 

and musculoskeletal radiologist it was felt that it was acceptable to sacrifice some of the 

SNR by using one image acquisition in order to obtain high resolution, isotropic image 

data and maintain a suitable scan time. By using isotropic image data reconstructions 

can be made in all three planes whilst the resolution was sufficiently high to avoid 

partial volume effects. Furthermore, the variance reduction ratio values show that it is 
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possible to effectively counteract the reduced SNR by applying the anisotropic diffusion 

algorithm to enhance the images whilst preserving edges with the image. Through the 

combination of the anisotropic diffusion algorithm and the dGVF snake segmentation 

algorithm it has been possible to segment images that others believed lacked sufficient 

definition for reliable segmentation(Al Ali et al., 2002). 

The coefficients of variation achieved in this set of experiments are approaching those 

observed in quantitative studies of knee articular cartilage(Eckstein et al., 1998b; 

Hyhlik-Durr et al., 2000; Kshirsagar et al., 1998; Peterfy et al., 1994; Stammberger et 

al., 1999a), which is very encouraging. Unfortunately, the CV values for the fibula are 

slightly higher due to the much smaller area and thickness of the layer which makes 

measurements more sensitive to small variations. 

Further improvements in precision will be possible in the future through a number of 

technological advancements. Current and ongoing development of higher field strength 

can be observed and a new clinical standard at 3.0 Tesla seems to be being 

established(Craig et al., 2005; Eckstein et al., 2005a; Eckstein et al., 2005c; Schibany et 

al., 2005; Schmitt et al., 2004). High-field MRI allows increased resolution while 

maintaining the same scan time. In addition, the development of parallel imaging allows 

shorter scan times. Multi-element coils can reduce the scan time by a factor of 2-

4(Heidemann et al., 2004). Furthermore, there has been renewed interest in SNR 

efficient imaging sequences for cartilage, including forms of steady-state precession as 

well as driven equilibrium and TSE imaging. These new sequences offer the possibility 

to acquire 3D data sets with isotropic voxels, which provides excellent segmentation 

possibilities(Hargreaves et al., 2003; Menzel and et al, 2005). 

The values for mean and maximum cartilage thickness of the talus, tibia and fibula 

measured using this approach are greater than those previously reported using a number 

of different techniques including A-mode ultrasound(Adam et al., 1998a), MRI(Al Ali 

et al., 2002; Tan et al., 1996) and force-needle probes(Athanasiou et al., 1995; Shepherd 

and Seedhom, 1999). However it is important to note that these studies excluded the 

highly curved regions over the talar shoulders, which have been shown to be the site of 
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maximum cartilage thickness in anatomical sections(Muller-Gerbl and Putz, 1995) as 

well as in the stereophotography experiments(Millington et al., 2004), chapter 3. 

Notably, the values obtained using this MRI segmentation approach are in keeping with 

values found using the high resolution stereophotography technique that should be 

considered as a reference standard for the “true” cartilage thickness (Millington et al., 

2004), chapter 3. 

The 3D thickness distribution maps demonstrate a characteristic distribution pattern 

which is most marked in the talus. It is widely believed that the thickest cartilage in the 

ankle occurs at the centre of the talar dome and tibial plafond(Adam et al., 1998b; 

Athanasiou et al., 1995; Shepherd and Seedhom, 1999), but MRI segmentation 

generated thickness maps clearly show the thickest cartilage occurred over the anterior-

lateral and posterior-medial shoulders of the talus which corresponds to the most 

common site of OCD lesions in the ankle joint (O'Farrell and Costello, 1982) and 

corresponds to measurements from anatomical sections(Muller-Gerbl and Putz, 1995) 

and those from the stereophotography experiments in chapter 3. Furthermore, the thick 

cartilage over the anterior border of the tibia corresponds to cartilage injury sites seen in 

dorsiflexion testing(Rudd et al., 2004), which formed part of the rational for this thesis. 

4.5. Conclusions 

These 2-D semi-automated cartilage segmentation studies have quantified the geometric 

parameters of the talar, tibial and fibula cartilage layers. They have demonstrated that 

the mean and maximum thickness of each layer of ankle cartilage exceed the 

measurements previously reported(Adam et al., 1998a; Al Ali et al., 2002; Athanasiou 

et al., 1995; Shepherd and Seedhom, 1999; Tan et al., 1996). Additionally, it has been 

shown that by using the dGVF snake segmentation algorithm combined with the 

anisotropic diffusion denoising algorithm it is possible to extract the cartilage layers 

more precisely than previously achieved(Al Ali et al., 2002) in the ankle joint. Finally, 

the 3D thickness distribution maps generated from the segmentation have shown a 

characteristic pattern with the thickest cartilage occurring over the anterior-lateral and 
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posterior-medial talar shoulders, where OCD lesions commonly occur(O'Farrell and 

Costello, 1982). 
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Chapter 5. Preliminary 3-D fully automated 

cartilage segmentation study 

5.1. Introduction 

As outlined in section 4.1 osteoarthritis and degenerative cartilage diseases affect 

millions of people and the treatment and socio-economic costs are enormous(Yelin and 

Callahan, 1995). As a result, new articular cartilage therapies have very significant 

practical implications and applications for future patient management and care. 

Therefore there is huge research and commercial interest in developing new therapies to 

repair, replace and/or regenerate injured or degenerate cartilage. This drive to develop 

new therapies necessitates advances in techniques which make earlier non-invasive 

diagnosis possible and allow objective and quantitative evaluation of new therapies. 

Gray et al.(Gray et al., 2004) have suggested that quantitative geometric measurements 

of cartilage parameters such, as cartilage thickness and volume, are potentially sensitive 

image based biomarkers for detecting and monitoring cartilage degeneration in 

osteoarthritis. This belief forms the basis for one of the major study areas in the 

National Institute of Health (NIH), USA osteoarthritis initiative 

(http://www.niams.nih.gov/ne/oi/). However; to date all techniques used, including the 

dGVF snake reported in Chapter 4, have been limited, being tedious and labour 

intensive, requiring slice by slice and border by border segmentation or editing. As such 

the previously reported 2D approaches are impractical for routine clinical use and have 

only been utilised in a research setting.(Cohen et al., 1999; Eckstein et al., 2005c; 

Eckstein and Glaser, 2004; Solloway et al., 1997) 

A clinically useable, accurate and reproducible quantitative 3-D analysis tool for 

cartilage images has the potential to produce a paradigm shift in the early diagnosis and 

detection of osteoarthritis, degenerative diseases and cartilage injury. Non-invasive 

monitoring methods will be particularly useful for clinical trials yielding new treatments 

developed by the pharmaceutical and biotechnology industries. Furthermore, automated 

quantitative analysis of 3-D cartilage images has the potential to significantly enhance 
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large epidemiological trials, such as the Osteoarthritis Initiative, which seek to identify 

risk factors for osteoarthritis and cartilage degenerative diseases. What is more, the 

development of automated 3D cartilage image analysis with quantitative measurements 

and 3D mapping of cartilage layers has the potential to significantly aid pre-operative 

planning and post operative monitoring of patients undergoing cartilage reparative and 

restorative therapies. 

The specific objectives of this study were first to demonstrate that a 3D graph search 

algorithm can detect multiple cartilage surfaces automatically and simultaneously; 

second to assess segmentation errors and demonstrate sub-pixel accuracy of the 

cartilage segmentation and morphological measurements compared to existing 

independent standards and finally to evaluate the reproducibility of the algorithm. 

5.2. Material & methods 

5.2.1. Ethical approval 

Ethical approval for this study was provided by the University of Virginia institutional 

review board and human usage review panel. All the MR images used in this study were 

acquired at the University of Virginia, Charlottesville, VA, USA; therefore, all human 

cadaveric specimens used in the study were acquired in accordance with Virginia state 

law and US federal laws. Furthermore, ethical approval was also provided by the 

University of Iowa USA for the use of the anonymous MR data in the development of 

the automated 3D image analysis algorithm. 

5.2.2. MRI data sets 

The MRI data sets acquired for the 2-D segmentation studies reported in chapter 4 were 

re-used for this study. To recap, the MR images were acquired using a 1.5 T MR 

scanner (Magnetom vision, Siemens, Erlangen, Germany) with a circularly polarized 

transmit and receive extremity coil. A sagittal spoiled 3D gradient echo sequence, fast 

low angle shot (FLASH), with selective water excitation imaging sequence used was, 
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TR of 18 ms, TE 7.65 ms, flip angle 25°, in-plane resolution 0.3 mm x 0.3 mm, slice 

thickness 0.3 mm, field of view 160 mm, and a 5122 matrix, figure 5.1. The acquisition 

time was 17 mins 14 secs. As the image resolution was isotropic we were able to 

reconstruct the images in three perpendicular planes (sagittal, coronal and axial). 

 

Figure 5.1 A high resolution isotropic cartilage sensitive MR image stack 

A sample image stack acquired using the sagittal 3D gradient echo sequence, fast low 
angle shot (FLASH), with selective water excitation. Since the images have isotropic 

voxels 3D reconstructions can be made in the coronal and axial planes 

5.3. 3-D segmentation algorithm 

The 3-D segmentation algorithm used in this study was developed by Prof Milan Sonka 

and his graduate student Kang Li at the University of Iowa. The basis for this 

collaboration originated from a meeting with Prof Sonka at which I presented my earlier 

2-D segmentation work and outlined ongoing and future projects related to articular 

cartilage imaging.  
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The proposed algorithm used in this study represents a non-trivial modification and 

advancement of a 3-D approach previously developed at the University of Iowa for 

segmenting tubular structures in medical images, e.g. blood vessels (Li et al., 2004). 

The proposed algorithm is described in greater detail in appendix 4. Briefly, the method 

allows segmenting multiple interrelated surfaces in volumetric images and facilitates 

subsequent quantitative analysis. The general strategy of the method is to achieve the 

final segmentation in two stages. The initial stage provides approximate segmentation 

of the three dimensional object, in this case the subchondral bone, and the final 

segmentation is achieved by accurate and simultaneous segmentation of the multiple 

surfaces of interest i.e. the subchondral bone and cartilage surfaces. The outputs of the 

algorithm are triangulated meshes that are ready for visualization and quantitative 

measurement, figure 5.2.

a)  
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b)  

Figure 5.2 Triangulated output meshes 

a) Presegmentation triangulated mesh generated using the level set methods this serves 
as the initialisation for the 3D automated segmentation algorithm. b) Segmentation 

triangulated mesh, the bone surface mesh is shown in white and the cartilage mesh is 
shown in red 

The method consists of the following three main steps, figures 5.3 and 5.4: 

1. Bone surface pre-segmentation. A level set based algorithm is used. Starting 

from several seed spheres placed within the bone of interest, the method uses the 

image derived edge and regional information to evolve a smooth surface toward 

the bone boundary. The pre-segmented subchondral bone surface serves as an 

initialization to the subsequent segmentation. 

2. Mesh generation and optimization. The pre-segmentation results in an implicit 

surface that is the zero level set of a 4-D function embedded in a volumetric 

digital grid. An iso-surfacing algorithm (e.g., marching cubes) is used to convert 

the implicit surface into an explicit triangulated mesh. The mesh is optimized by 
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removing or merging isolated and redundant triangles. The resolution of the 

mesh can be increased or decreased using progressive level of detail approaches 

when necessary. 

3. Co-segmentation of the cartilage and bone surfaces. The mesh generated by the 

second step is used to initialize a graph in a narrow band around the pre-

segmented bone surface. The novel multi-surface graph search algorithm, 

appendix 4, is used to simultaneously obtain the precise positions of the bone 

and cartilage surfaces based on two cost functions separately designed for the 

two surfaces while considering specific geometric constraints. 

Steps 1 and 3 represent innovative approaches within the field of medical image 

analysis, in particular articular cartilage segmentation; step 2 utilises well established 

standard techniques in the field of graphics, therefore only steps 1 and 3 are outlined in 

more detail in appendix 4. 

 

Figure 5.3 Processing blocks of the automated 3D segmentation approach 

5.3.1. Independent Standard. 

In order to assess the accuracy of the proposed approach we compared the results of the 

computer segmentation to two different independent standards: 1) phantom images with 

different levels of noise and 2) comparison to manual tracing. 

Noisy phantom image data modelling cartilage layers across a joint were generated to 

allow validation of the quantitative indices in a phantom environment for which the 
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ground truth was known. Three volumetric phantoms were generated containing a 

simplified rendering of a bone and its cartilage. Each 3-D phantom data set consisted of 

20 image slices. Three different levels of Gaussian noise were introduced (none, 

medium, high). Thus, a total of 9 phantoms (3x3) consisting of 180 image slices were 

used. In the data sets, all parameters were known by design and so the output of the 

segmentation algorithm could be easily compared to the true result. 

From the 8 MR image data sets, 55 coronal or sagittal slices were randomly selected for 

manual tracing. The selection of coronal as well as sagittal slices allows assessment the 

performance of the inherently 3D segmentation method using 2D manual tracings.  

5.3.2. Comparisons with the Independent Standard. 

Computer segmentation of the talus bone and its cartilage surfaces was initialised and 

performed on the entire 3D volume for each data set, image phantoms and ankle MRI 

volumes. Consequently, the segmented surfaces were available for the entire closed 3D 

object. The automated borders detected in the 55 slices where manual tracings were 

available were further analysed. 

The automated segmentation method locally failed in 5 of the 55 image slices due to 

local pre-segmentation errors. The segmentation accuracy was assessed in the remaining 

50 image slices by computing signed, unsigned, and RMS surface positioning errors. 

The positioning errors were defined as the shortest distances between the manually 

traced borders and the computer determined surfaces in the coronal and sagittal MR 

slices for which the independent standard was available. The errors are reported on a per 

slice basis as mean ± standard deviation. 

5.3.3. Reproducibility 

To assess the reproducibility of the 3D automated cartilage segmentation, the method 

was independently initialized 5 times in each joint and the mean and maximum cartilage 

thicknesses were determined for each of the 8 talus cartilage layers. The reproducibility 
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was assessed by calculating mean ± standard deviation of differences between the 

average values obtained in the 5 reproducibility runs and the individual results. 

5.4. Validation Indices 

To assess the performance of this proof-of-concept implementation of the algorithm we 

used the following validation indices: 

5.4.1. Approximate Bone Segmentation Indices.  

a)  b)  c)  

Figure 5.4 Visualisation of the 3D automated segmentation processing steps 

a) Interactive initialization of the bone segmentation – defining which bone(s) shall be 
segmented using seed spheres. b) Result of the approximate bone segmentation (green). 
c) Accurate bone and cartilage surfaces of an ankle obtained by simultaneous optimal 

detection of two surfaces in 3D (red and yellow, respectively). Note that during 
development optimisation concentrated on the ankle joint, not on the sub-talar joint. 

As outlined in figures 5.2 and 5.3 approximate bone segmentation is necessary for 

automated initialization of the multiple-surface segmentation method. Therefore, the 

mean and maximum unsigned distances between the approximate bone segmentation 

surface and the true bone surface known from the independent standard was determined 

for each segmented bone and reported in mm. Similarly, the agreement between the 

normals of the manually-traced and automatically determined bone surfaces were 

assessed at 1 mm intervals along the manually traced independent standard borders of 

the respective bone. Mean and standard deviation, as well as maximum difference 

between the directions of the border normals are reported in degrees. 
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5.4.2. Surface Positioning Errors. 

The signed and unsigned mean surface positioning errors of the identified surfaces were 

determined between the corresponding points – the first point being from a computer 

detected surface and the second point from the independent standard surface, that were 

closest to each other using the Euclidean metric. The positioning errors were determined 

for each point on the computer-detected surfaces as the distances between 

corresponding surface points. These errors were determined across the talar dome 

surface, the sub-talar cartilage surface regions were excluded from analysis as the 

segmentation algorithm was not optimised to segment these regions. The surface 

positioning errors are reported as means ± standard deviations in pixels and in mm.  

5.4.3. Cartilage Morphology Indices. 

Similarly, the signed and unsigned mean measurement errors of the morphologic 

indices were determined in comparison to the indices derived from the independent 

standard. The errors of cartilage thickness are reported as means ± standard deviation in 

pixels as well as in mm. 

5.5. Results 

All experiments were performed on a workstation with dual 3.0GHz processors and 

4GB of RAM. For each data set, we used 3 seed-spheres inside the bone region to 

initialize the pre-segmentation.  

The phantom experiments showed that the proposed algorithm was able to accurately 

detect the bone and cartilage surfaces. The segmentation was successful in all 9 

phantoms; the achieved segmentation performance is shown in tables 5.1 and 5.2
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 Distance Mean Distance 
Maximum 

Mean 
Angular 
Difference 

Maximum 
Angular 
Difference 

Approximate 
Bone 
segmentation 

1.69 ± 0.31 pixels 2.09 ± 0.24 pixels 1.16 ± 1.03º 3.13 ± 1.23º 

Table 5.1 Performance of approximate segmentation used for initialisation in 
phantoms 

To make the segmentation process more efficient, the MR volume was cropped to 

include only the talus and unnecessary regions such as the distal tibial shaft so forming 

smaller volumes of approximately 250×250×150 voxels each. The pre-segmentation 

was performed on 2-times down-sampled copies of the cropped images, while the final 

segmentation was performed on the original full-resolution images, figure 5.4.

Mean error Bone surface Cartilage surface Cartilage thickness 

Signed - 0.06 ± 0.35 pixels 0.04 ± 0.41 pixels 0.24 ± 0.22 pixels 

Unsigned 0.33 ± 0.13 pixels 0.37 ± 0.17 pixels 0.27 ± 0.19 pixels 

Table 5.2 Performance of the 3D graph searching segmentation algorithm in 
phantoms 

For each ankle data set, the average execution times of the pre-segmentation and 

segmentation stages were about 200 seconds and 70 seconds, respectively. The surface 

positioning errors (distance and angular) of the approximate computer-segmentation, 

which served as the initialisation, compared to the manual tracings are shown in table 

5.3. The surface positioning errors and cartilage thickness errors of the final 

segmentation of the talus bone and its cartilage surface are shown in table 5.4.
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Approximate 
Bone 
segmentation

Distance 
Mean 

Distance 
Maximum 

Mean Angular 
Difference 

Maximum 
Angular 
Difference 

Pixels 1.35 ± 0.88 2.26 ± 1.08 4.65 ± 4.54º 11.11 ± 6.27º 

mm 0.41 ± 0.26 0.68 ± 0.33 mm -- -- 

Table 5.3 Performance of approximate segmentation used for initialisation on ankle 
MR data sets 

 

Mean error Bone surface Cartilage surface Cartilage thickness 

Signed (pixels) 0.12 ± 1.04 0.41 ± 1.27 - 0.20 ± 1.11 

Unsigned (pixels) 0.86 ± 0.60 1.00 ± 0.89 0.85 ± 0.74 

Signed (mm) 0.04 ± 0.31 0.12 ± 0.38 - 0.06 ± 0.33 

Unsigned (mm) 0.26 ± 0.18 0.30 ± 0.27 0.26 ± 0.22 

Table 5.4 Performance of the 3D graph searching segmentation algorithm on ankle 
cartilage MR data sets 

Error measurements reported in pixels and mm, compared to ground truth manual 
segmentation. Unsigned values indicated the sub-pixel accuracy of the method, whilst 

the signed values indicated that the method is unbiased. 

Examples of the achieved computer-segmentation are shown in figure 5.5 and a 

comparison between the computer segmentation and manually-traced bone and cartilage 

contours are shown in figure 5.6. 
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a)    b)    c) 

   

Figure 5.5 Examples of segmentation in the talo-tibia joint contact region 

a) Original image (enlarged portion shown). b) Accurate bone and cartilage surfaces of 
an ankle obtained by simultaneous optimal detection of two surfaces in 3D (red and 

yellow, respectively). c) Comparison of the approximate segmentation (green) and the 
final accurate bone segmentation (red) shows the segmentation improvement achieved 

by the optimal border detection step. In this figure, only the talus bone and cartilage 
borders are shown for clarity. 

 

Figure 5.6 A comparison of 3D automated and manual segmentation 

Typical borders detected by automated (purple and blue) and manual segmentation (red 
and yellow). Sagittal and coronal ankle MR images are shown in order to allow a 

comparison between the 2D manual segmentation and the optimal graph searching 
algorithm which is inherently 3D. 
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The mean cartilage thickness measurements achieved a signed error of 0.08 ± 0.07mm, 

and an unsigned error of 0.09 ± 0.06mm. All border positioning errors show sub-voxel 

accuracy (voxel size 0.3 x 0.3 x 0.3 mm3). 

In the reproducibility experiment, the initializing spheres were modified from the 

original settings by adding up to 10% of random variation to their radii and 2 to 5 

voxels of random translations to each coordinate of their positions. The Bland-Altman 

plots of the signed differences between each individual measurement and the average 

measurements are shown in figure 5.7 demonstrating that repeated measurement of 

cartilage thickness with varying initialisation is unbiased and reproducible. 

a)  

b)  

Figure 5.7 Bland-Altman plots of cartilage thickness measurement reproducibility. 
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5.6. Discussion 

The Bland Altman plots from the reproducibility tests of the segmentation algorithm 

following repeated initialisations using different seed sphere sizes and positions clearly 

display that the approach is both reproducible and unbiased. 

Traditional approaches to the problem of cartilage segmentation, such as, manual 

segmentation(Cohen et al., 1999; Eckstein et al., 1994; Jonsson et al., 1992; Peterfy et 

al., 1994) , seed and region growing algorithms(Eckstein et al., 1998b; Haubner et al., 

1997; Losch et al., 1997), b-splines(Cohen et al., 1999) and b-spline snakes(Al Ali et 

al., 2002; Graichen et al., 2000) are not suitable for clinical use as they are slow, labour 

intensive and potentially prone to error. The 3D graph searching method used in this 

study has been shown to be fully automated, fast, accurate and reproducible. 

A drawback of the algorithm described is the need to set the size and position of the 

seed sphere and the necessity to perform the pre-segmentation step. However in the 

algorithms current format this is essential to ensure the algorithm produces good 

accurate results; moreover, even when this step is included the whole process is 

significantly faster and less labour intensive than earlier methods. Additionally, further 

work is required to optimise the system for use in other joints such as the hip and 

shoulder and to develop a user interface that is widely acceptable and easy for clinicians 

to use. 

Over the past decade a number of surgical interventions have been developed in an 

attempt to produce a durable cartilage repair(Brittberg et al., 1994; Hangody et al., 

1998; Minas and Nehrer, 1997). In parallel there have been considerable advances in 

anatomical and functional MRI, such that MRI can provide information regarding the 

biochemical and biomechanical status of articular cartilage, including the 

glycosaminoglycan content and collagen organisation(Bashir et al., 1997; Mosher et al., 

2000; Nieminen et al., 2004; Trattnig et al., 1999). However, until now accurate 3D 

visualisation and objective measurement of articular cartilage properties, in a clinically 

useable timeframe, at injury sites and the properties of repair/graft sites has not been 
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possible. The ability to combine these new functional techniques with the reported 

algorithm offers a potentially powerful set of tools for pre-operative assessment of 

cartilage injuries sites as well as the post operative monitoring of patients undergoing 

cartilage repair and restorative therapies. This area holds a lot of promise for cartilage 

repair surgery planning; with on going work to co-register biochemical and 

biomechanical sequences, such as dGEMRIC, with high resolution 3D sequences. 

5.7. Conclusions 

This study evaluates the feasibility with regard to accuracy and reproducibility of a fully 

automated 3D multi-surface segmentation algorithm on cartilage sensitive MRI images. 

The results indicate that both the pre-segmentation steps and the final segmentation 

process are fast, accurate and reproducible. 

The reported 3D approach addresses a number of the existing challenges in articular 

cartilage segmentation and quantification; what is more this approach carries substantial 

promise for the future utility for automated quantitative 3D analysis of articular 

cartilage in a clinical setting. 
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Chapter 6. Ankle joint contact area measurement 

study 

6.1. Introduction 

Knowledge of the joint contact area under physiological loads and throughout the range 

of motion is essential for understanding the biomechanics of the ankle joint, furthermore 

it is beneficial for understanding the pathogenesis of joint degeneration as well as 

improving prosthetic design and ligament reconstruction surgery. Importantly, cartilage 

restoration and repair therapies, such as mosaicoplasty and autologous chondrocyte 

implantation (ACI), are becoming more common for talar articular cartilage 

lesions(Hangody et al., 2001; Hangody, 2003; Mandelbaum et al., 2003; Whittaker et 

al., 2005). Lesions occurring on the talus that are amenable to surgical treatment 

commonly occur over the anterior-laterally or posterior-medial talar shoulders(O'Farrell 

and Costello, 1982); therefore the joint contact characteristics in these regions under 

different loading conditions are of particular interest. 

As highlighted in section 1.7 there have been several reported experimental studies of 

ankle joint contact characteristics with wide variations in methodology and loading 

conditions resulting in varying reports of the extent and location of the contact 

area(Calhoun et al., 1994; Corazza et al., 2005; Driscoll et al., 1994; Greenwald et al., 

1977; Kimizuka et al., 1980; Kura et al., 1998; Macko et al., 1991; Yao and Seedhom, 

1991). 

The most common approach to measuring ankle joint contact area has been Fuji film. 

Calhoun et al(Calhoun et al., 1994) and Driscoll et al(Driscoll et al., 1994) used Fuji 

film and reported that the contact area of the ankle joint was located over the central 

region of the talar dome; Kimizuka et al.(Kimizuka et al., 1980) reported a similar 

distribution from silicone rubber mouldings. In contrast, studies using reversible 

staining(Greenwald et al., 1977) and roentgen stereophotography combined with a 3-D 
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digitiser(Corazza et al., 2005) reported the ankle joint contact area to be located over the 

lateral and medial margins of the talus. 

There has been considerable variation in parameters during joint contact area tests, most 

notable has been variation in the joint load magnitudes ranging from to 490N to 3200 

N(Calhoun et al., 1994; Yao and Seedhom, 1993) and variation in the joint loading 

positions(Calhoun et al., 1994; Christensen et al., 1994; Kimizuka et al., 1980) these 

factors have substantially influenced the results previously reported. However, these 

earlier studies have not assessed the joint contact area under load at the extremes of 

ankle movement where injury may be more likely to occur. 

The specific objectives of this study were first to measure the joint contact area in intact 

ankle joints under a physiological load in a variety of positions including neutral and the 

extremes of dorsiflexion, supination, pronation and plantar flexion. Second, to describe 

the distribution of the contact area across the joint surfaces and last, to demonstrate a 

technique which allows analysis of the entire ankle joint surface with greater accuracy 

and fewer limitations than other techniques. 

6.2. Materials & methods 

6.2.1. Ethical approval 

Ethical approval for each of the sets of experiments reported in this thesis study was 

provided by the University of Virginia institutional review board and human usage 

review panel. All the experimental components of my research were performed at the 

University of Virginia, Charlottesville, VA, USA; therefore, all human cadaveric 

specimens used in the studies presented in this thesis were acquired in accordance with 

Virginia state law and US federal laws. 
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6.2.2. Specimen preparation 

10 lower leg specimens (6 right and 4 left legs) were obtained from 9 fresh frozen 

cadavers, mean age 64.6 years (6 male, 3 female). From the available medical histories 

there were no reports of trauma to the lower limbs or musculoskeletal disease in the 

ankle(s) of the subjects. The specimens were stored at -25ºC; prior to testing each 

specimen was allowed to thaw at room temperature for 24 hours. A normal range of 

movement and ligamentous stability were confirmed by physical examination prior to 

testing. 

Each lower leg specimen was transected approximately 20 cm proximal to the ankle 

joint. The soft tissues were stripped from the proximal tibia and fibula and the two 

bones were then rigidly fixed into a potting cup using a fast setting resin (R1 Fastcast, 

Goldenwest manufacturing inc. CA, USA) with the leg in an anatomically neutral 

position. 

Two Steinmann pins were inserted into the tibia approximately 1 cm proximal to the 

joint line, via minimal incisions, a further two pins were inserted into each of the talar 

neck and the distal fibula. 45º bevelled frames with mounted photo targets were then 

rigidly fixed to Steinmann pins using polymethylmetharcrylate (PMMA). The range of 

movement was once again examined to ensure that the reference frames did not come 

into contact with each other or impinge the range of motion at the ankle joint. The foot 

was then rigidly mounted to a foot plate using three screws into the calcaneous, one 

screw into the distal part of the first metatarsal, and taping across the forefoot, figure 6.1

 90



Ankle joint contact area measurement study 

 

Figure 6.1 A lower leg specimen mounted in the test rig in 20˚ plantarflexion. 

Bevelled frames with the mounted photo targets are rigidly attached to each of the 
bones. The foot is rigidly attached to the foot plate by screws in the calcaneus the first 

metatarsal Additionally, the forefoot was tapped to the foot plate prior to the application 
of load. 

6.2.3. Specimen Loading 

In the next step the foot plate was rigidly fixed to the base of the test fixture. The 

actuator of the hydraulic materials testing machine (Tinius Olson, USA) was lowered 

and the base of the potting cup was positioned flat against the actuator plate. This 

configuration ensured that the axial compressive load was applied along the vertical axis 

of the tibia and fibula. For testing in positions other than neutral, a 20º angled 

aluminium block was incorporated between the foot plate and the base of the test rig, 

figure 6.1

Each ankle was tested in five positions: neutral, 20º plantar flexion, 20º supination, 20º 

pronation, and 20º dorsiflexion which reflect the more extreme ends of movement. The 
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specimen was steadily loaded over 3 minutes to a peak load of 1000N, the actuator was 

then held in a stationary position, for approximately 20 secs whilst the photo targets 

were imaged using the stereophotogrammatric system. The load was then released and 

the specimen was repositioned. The process was repeated for each of the joint positions 

studied. 

6.2.4. Modification of the Stereophotography Technique 

At peak load the photo targets were imaged and formed the spatial co-ordinate frame for 

the subsequent registration of the tibia, talus and fibula surfaces together. Once the 

loading studies were completed the ankle joint was disarticulated and the joint surfaces 

were examined for signs of surface fibrillation or degeneration using the India ink 

technique. Each articular surface was then imaged relative to the photo targets rigidly 

fixed to the relevant bone, using the ATOS™ system. 

The surfaces of the three ankle bones were then realigned into the positions assumed in 

each of the joint loading configurations. This was performed using software 

incorporated into the ATOS™ system. First the photo targets associated with an 

individual cartilage surface were identified and then the same photo targets in the 

loaded configuration were identified. An automated transformation to position the photo 

targets and the associated surface into the loaded joint position was performed and the 

point cloud data was saved. The procedure was performed for each bone hence, 

providing the relative positions of the joint surfaces when under load. The procedure 

was repeated for each of the five joint positions evaluated. 

6.2.5. Post Processing Technique  

The force applied to the cartilage layers during the loading phase causes cartilage 

deformation to occur; however, the force is then removed, the ankle joint is 

disarticulated and the joint surfaces are independently imaged with the 

stereophotography system in the undeformed state. When the undeformed surfaces of 

the talus, tibia and fibula are transformed into the common co-ordinate system formed 
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by the photo targets in the loaded state the undeformed cartilage surfaces overlap. This 

overlapping region is a good approximation of the true contact area according to the 

Winkler elastic foundation model (Johnson, 1985). However, determining the 

overlapping regions is not straightforward since the surfaces are not closed, so heuristics 

must be applied to decide which part of the surface should be considered in contact (i.e., 

overlapping) with the opposite surface. 

 

Figure 6.2 Contact area post processing steps. 

1) Values of ε1 and ε2 are set to allow for the surface uncertainty and the maximum 
deformation; 2) the direction from one surface to the other is determined, which is the 

surface normal vector (n) in non-overlapping regions and (-n) in overlapping regions; 3) 
Regions of the surface extending beyond the border of the opposing surface are 

excluded. 

We define two constants ε1 and ε2 and treat all triangles on mesh A with a distance of 

less than ε1 from the corresponding triangle on the opposite mesh B as part of the 

contact area. Moreover, overlapping regions are considered in contact for distances up 

to ε2 to account for a certain amount of deformation, figure 6.2. We set ε1 > 0 since in 

the deformed state a greater area of cartilage will be in contact with its opposing surface 

than compared to the overlap of undeformed surfaces; furthermore ε1 allows for a small 

amount of uncertainty in the surface due to the surface preparation. To ensure that only 

valid solutions are yielded, and erroneous results at the peripheries of the joint surfaces 

are avoided, the value of ε2 should not exceed the maximum expected value of overlap. 

The values of ε2 may theoretically be up to the combined cartilage thickness of the 

opposing surfaces. For this study the parameters are set as ε1=0.03mm and ε2=1mm. To 

distinguish overlapping and non-overlapping regions, the surface normal vector n is 

examined. In the non-overlapping case, n points towards the opposite surface, while the 

opposite surface is found in the negative direction -n in the overlapping case, figure 6.2. 
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Finally, to make the processing more efficient regions that extend beyond the opposite 

surface's border and therefore cannot be in contact with each other are disregarded, as 

previously described(Millington et al., 2007b), figure 6.2.

Since the surface areas and contact areas are measured from the triangulated mesh, 

created from the point cloud data, noise in the vertex locations could result in local 

variations in the surface normals which may subsequently increase the size of the 

measured area. While this effect is small for any given vertex the cumulative effect 

across the total surface area or joint contact area maybe considerable; however the area 

error is small if the vertex displacement is small compared to the triangle edge length. 

To assess whether vertex location noise produced a marked effect on the joint contact 

area measurement the change in joint contact area following consecutive iterations of a 

previously described denoising method(Fleishman et al., 2003) was assessed 

6.3. Results 

The results of multiple iterations of the denoising method show that the contact area 

error due to vertex location noise is negligibly low; therefore mesh denoising was not 

used for the purposes of these tests, table 6.1.

Number of iterations % Reduction of total 
surface area 

Normalised contact area 
(%) 

0 - 39.86 

1 0.23 39.83 

2 0.30 39.83 

3 0.36 39.84 

4 0.40 39.82 

5 0.44 39.83 

Table 6.1 Impact of the denoising algorithm on surface area and normalised contact 
area measurements. 

The effect of noise reduction on surface area and normalised contact area measurements 
for consecutive iterations of the noise reduction algorithm. Reductions in total surface 

area a reported relative to the initial mesh. 
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The absolute size of the joint surface area for each bone, the talo-tibia joint contact area, 

talo-fibula contact area and total joint contact area were calculated for each joint 

position. In order to compensate for variations in the size of the joint contact area 

caused by differences in the size of the limbs of the specimen donors the normalised 

joint contact area was also calculated. 

The joint surface area measurements are shown in table 6.2. The mean talo-tibia contact 

area was greatest in dorsiflexion 7.34 cm2 ± 1.69 cm2 and was significantly larger than 

in plantar flexion (P < 0.05) which showed the smallest joint contact area 4.39 cm2 ± 

1.41 cm2. When considering the talo-fibula contact area, the maximum joint contact 

occurred in dorsiflexion, 2.02 cm2 ± 0.78 cm2, and the minimum joint contact area 

occurred in pronation, 0.77 cm2 ± 0.49 cm2, respectively (P<0.05). Mean total talar, 

tibia and fibula contact areas for the different loading positions are shown in figure 6.3. 

The total talar contact area in dorsiflexion and neutral were both significantly larger 

than the total contact area in plantarflexion, P < 0.005 and P < 0.05, respectively. 

Furthermore, the total contact area in dorsiflexion was significantly larger than in 

pronation, P < 0.05. 

Bone Mean surface 
area, cm2

Standard 
deviation, cm2

Minimum 
surface area, cm2

Maximum 
surface area, cm2

Talus 20.0 2.3 16.3 24.1 

Tibia 10.4 1.2 8.7 12.8 

Fibula 3.0 0.5 2.4 4.0 

Table 6.2 Absolute joint surface area measurements 

Mean, standard deviation and range of joint surface areas for each bone in the ankle 
joint, N=10 

The joint contact area for each measurement was normalised to the joint surface area 

appropriate bone i.e. the talus, tibia or fibula of the respective specimen. The mean 

normalised total talar, tibia and fibula contact areas for the different loading positions 

are shown in figure 6.4. The normalised plantarflexion contact area was significantly 

smaller than in dorsiflexion, P < 005, neutral, P< 0.05 and supination, P < 0.05. The 
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normalised dorsiflexion contact area was also significantly greater than in pronation, P< 

0.05. 

The results show that as the ankle joint rotated in the sagittal plane and moved from 

plantar flexion to dorsiflexion the tibio-talar normalised contact area increased by 

15.74% ± 7.95%; whereas, when the ankle rotated in the coronal plane moving from 

pronation to supination the tibio-talar normalised contact area increased by only 5.02% 

± 6.86% 

 

Figure 6.3 Bar chart of the mean joint contact area (cm2) 

The mean joint contact area (cm2) over the surface of each of the talus, tibia and fibula 
in the five different loading positions tested. Error bars represent ± 1 S.D. 
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Figure 6.4 Bar chart of mean normalised joint contact area. 

Mean normalised joint contact area over the surface of the talus, tibia and fibula in each 
of the five loading positions tested. Error bars represent ± 1 S.D. 

Characteristic patterns of joint contact were seen in each of the respective loading 

positions; typical examples of the shape and location of the joint contact area in each of 

the five positions tested are shown in figure 6.5 Notable features are the broad contact 

area in dorsiflexion distributed over the especially over the medial and lateral talar 

shoulders. However, in 20˚ plantarflexion the contact area on the tibia is narrower and 

more centrally located as the talus is narrower posteriorly. When the limbs were loaded 

in supination typically the area where the greatest overlap of the surfaces and therefore 

the region of greatest deformation under load occurred at the site where the medial talar 

shoulder contacts the tibial plafond. In supination the contact area was more medially 

located than in neutral or pronation, figure 6.5. In contrast the region of maximum 

 97



Ankle joint contact area measurement study 

cartilage surface overlap in pronation occurred at the site corresponding to the contact 

between the lateral talar shoulder and the tibial plafond. The region of contact in 

eversion was clearly more laterally located than in neutral loading, figure 6.5. 

 

Figure 6.5 Typical talar-tibia joint contact distribution patterns. 

Representative examples of talar-tibia joint contact distribution patterns displayed on 
the talar and tibial surfaces in each of the five loading positions tested. a) dorsiflexion, 
b) pronation, c) supination, d) neutral and e) plantarflexion. Colour coding shows the 
extent of overlap, in mm, of the surfaces in the loaded position indicating the areas of 

greatest cartilage deformation 
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The contact pattern between the talus and fibula displayed a relatively consistent 

pattern; there was noticeable difference, as anticipated, between pronation and 

supination. Under loading in 20º of supination the contact area occurred over the 

proximal part of the fibula surface, mainly centrally and anteriorly, figure 6.6. The 

corresponding contact on the talar surface over the anterior superior aspect of the lateral 

talar facet, figure 6.6. When the specimens were loaded in the pronated position the 

contact area was distributed over the inferior part of the fibula surface where it has a 

valgus angulation figure 6.7. The corresponding contact area on the talar surface 

occurred slightly posteriorly over the distal valgus angulated part of the lateral talar 

facet, figure 6.7.

 

Figure 6.6 Talo-fibula contact distribution in 20˚ supination. 

Characteristic joint contact distribution pattern between the talus and fibula in 20˚ 
supination displayed on the talar and fibula surfaces. 
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Figure 6.7 Talo-fibula contact distribution in 20˚ pronation.  

A representative example of the joint contact between the talus and fibula in 20˚ 
pronation, displayed on the talar and fibula surfaces 

6.4. Discussion 

In this study a modification of the stereophotogrammetric technique, previously used to 

determine cartilage thickness and distribution, is reported for measuring and describing 

joint contact area in the ankle joint. The objective of the study was to quantitatively 

evaluate the joint contact area under loading in different joint positions and to describe 

the joint contact area distribution across the joint surfaces in neutral, dorsiflexion, 

plantarflexion, pronation and supination. The system allows rapid acquisition and 

processing of large volumes of geometric data with high measurement accuracy (± 2 

µm). The versatility and accuracy of the technique has enabled us to study the joint 

contact characteristics of the highly congruent ankle joint without having to disrupt the 

joint integrity prior to the loading phase 

The results show that the largest talo-tibia and talo-fibula contact area occurred in 

dorsiflexion, 7.34 cm2 ± 1.69 cm2 and 2.02 cm2 ± 0.78 cm2, respectively. The smallest 

talo-tibia contact area occurred in plantarflexion, 4.39 cm2 ± 1.41 cm2 and the smallest 

talo-fibula contact area occurred in pronation, 0.77 cm2 ± 0.49 cm2; both are 

significantly smaller than in dorsiflexion (P < 0.05) 
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Direct comparison to earlier studies is difficult due to the variety of load magnitudes 

and joint positions used. The mean normalised total talar contact area was considerably 

higher than in the study by Calhoun et al(Calhoun et al., 1994) who reported the 

maximum normalised contact as 15% at 10º dorsiflexion. Moreover the total talar 

contact area measured in this study exceeds values reported using the ‘3S 

technique’(Yao and Seedhom, 1991) and Fuji film(Christensen et al., 1994). 

Unfortunately the earlier techniques have a limited ability to accurately measure the 

contact area over a surface with a complex 3D topography; where as the 

stereophotography approach allows easy evaluation of the entire surface and 

measurement of surface and contact areas by triangulation. 

In comparison to the knee joint the total talar contact area is greater than that seen in the 

patello-femoral joint(Gold et al., 2004; Nakagawa et al., 2003; Patel et al., 2003), but 

smaller than in the tibio-femoral joint(Fukubayashi and Kurosawa, 1980; Kurosawa et 

al., 1980); however, the differences are not so pronounced as previously believed. 

In pronation it was found that the mean talo-fibula contact area was significantly 

smaller than in dorsiflexion. In contrast to earlier studies(Calhoun et al., 1994; Kura et 

al., 1998) the talo-fibula contact area in pronation was smaller than in supination; 

however, the difference was not statistically significant. This was an unexpected 

finding, but is explained by examining the distribution pattern of the talo-fibula contact 

area over the joint surfaces. When the ankle joint is loaded in pronation the fibula tip 

comes into contact with the distal angulated section of the lateral talar facet which 

forces the distal fibula more laterally. This results in a small localised contact between 

the distal part of the fibula surface and the distal part of the lateral talar facet, figure 6.7. 

In supination the distal part of the lateral talar facet assumes a more vertical orientation, 

this combined with the compressive load and the ligamentotaxis pulling the fibula 

inferiorly result in a larger contact area between the lateral talar shoulder region and the 

broader proximal part of the fibula joint surface, figure 6.6

The regions where the greatest surface overlap were measured, corresponding to the 

regions where the greatest cartilage deformation occurred and therefore presumably the 
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greatest load transfer, correspond to the shoulders of the talar cartilage. This is 

interesting as the cartilage thickness and the subchondral bone mineral density are 

highest over the talar shoulders(Millington et al., 2007b; Millington et al., 2007c; 

Muller-Gerbl and Putz, 1995) and these findings may be a response to the prevailing 

mechanical conditions occurring in the ankle joint.  

The distribution of the contact area over the joint surfaces seen in this study support the 

finding of earlier studies using roentgen stereophotography and reversible 

staining(Corazza et al., 2005) and reversible staining(Greenwald et al., 1977) which 

indicated that joint contact was predominantly over the margins of the talar dome. 

However, our results differ from studies which required the insertion of Fuji film into 

the joint space and reported that the contact area to be over the central talar 

dome(Calhoun et al., 1994; Driscoll et al., 1994; Kimizuka et al., 1980). Fuji film 

studies of highly curved and congruent joints must be interpreted with caution as the 

Fuji film itself can alter the joint mechanics and is prone to crinkling in highly curved 

areas, such as the talar shoulders. 

It is important to bear in mind that in this study, as in many of the earlier studies, the 

fixation of the foot and the tibia constrain movements in particular rotation of the tibia 

which occurs during dorsiflexion and plantar flexion in the gait cycle(Mann, 1993). 

This restriction of rotation could have prevented the ankle joint from obtaining maximal 

congruence in dorsiflexion and plantar flexion; hence, the joint contact area reported my 

still be an under estimation of the in vivo situation. 

Given that cartilage surfaces deform in regions of contact it should be appreciated that 

the “true” in vivo contact area is not directly measured by this technique since a 

proximity analysis of the non-deformed surfaces is used to determine the joint contact 

area. However, by varying the surface proximity value which is considered to represent 

joint contact between zero and the maximum cartilage thickness it theoretically possible 

to determine the full range of possible contact areas. Additionally, the technique used in 

this study can only be used in vitro and it is important to appreciate that in cadaveric 

 102



Ankle joint contact area measurement study 

experiments there is no muscle tension and the stiffness of ligamentous tissue is 

different from that of living people. 

Despite these shortcomings, the reported stereophotogrammetric technique has the 

advantage that during the loading phase of the study no extensive dissection of the joint 

structures is required and no foreign material is inserted into the joint, which may alter 

the joint contact pattern. Moreover, the described method allows accurate 3-D 

reconstructions of the entire articular surface of each bone in the joint, facilitating joint 

contact analysis in highly curved regions and automating quantitative measurements. 

The versatility of the technique addresses many of the difficulties associated with 

previous methods used for measuring ankle joint contact area.  

The in vitro method described in this study will be helpful for comparative studies and 

validation of loading devices and image analysis algorithms which are being developed 

for measuring joint contact area from MR images. In future it will be particularly 

interesting to remove the constraints on tibial rotation during loading and assess the 

effect on contact area. Furthermore, it will be interesting to assess sex differences as it 

has been show there are differences in the bone sizes and radii of curvature between 

men and women, with a greater potential for adduction in women(Ferrari et al., 2004); 

unfortunately this was not possible in this study due to the small numbers of specimens 

and is beyond the scope of this thesis. Importantly this method provides useful input 

data for computational models of the ankle joint which facilitate in depth analysis of 

joint biomechanics. 

6.5. Conclusions 

This study has demonstrated a modification of the high resolution stereophotographic 

technique reported in Chapter 3, that does not violate the joint structures or require 

insertion of foreign material into the joint during loading and allows analysis of the 

entire ankle joint surface. The finding of the study show that the largest contact area 

occurred in dorsiflexion, the smallest contact area occurred in plantarflexion, but in all 

cases the contact area appears to be larger than previously reported. Furthermore, the 
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contact distribution was located more over the talar shoulders where the cartilage is 

thickest, see Chapter 3 and Chapter 4(Millington et al., 2007b; Millington et al., 2007c) 

the subchondral bone most dense and OCD lesions most commonly occur(O'Farrell and 

Costello, 1982) as opposed to contact over the centre of the talar dome and tibial 

plafond as reported in some earlier studies. 
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Chapter 7. General discussion 

The impetus to undertake the research presented in this thesis came from a series of 

high rate forced dorsiflexion tests of cadaveric ankle joints to evaluate fracture 

tolerance(Rudd et al., 2004). In a number of the ankles tested articular cartilage surface 

injuries were seen in the absence of a fracture. As a result it was decided that it would 

be interesting and beneficial to assess and validate methods which would allow in vivo 

assessment and quantification of ankle articular cartilage using MRI. Additionally, it 

was felt that an evaluation of ankle joint contact area would offer insights which would 

improve our current understanding of joint contact characteristics.  

This thesis has sought to characterise the geometrical and joint contact properties of the 

articular cartilage layers of the ankle joint in order to further our understanding of ankle 

mechanics and ankle cartilage injuries. There has been a particular emphasis on the 

development and testing of methods forming the basis for in vivo quantification of 

articular cartilage parameters using magnetic resonance imaging and image analysis. 

More specifically the research presented in this thesis aimed to 1) Describe and test a 

high resolution stereophotogrammetry system for quantifying the geometric parameters 

of the ankle articular cartilage layers in vitro which can be used as an independent 

standard to validate in vivo techniques. 2) Illustrate the topographical distribution of 

articular cartilage across the surface of the talus, tibia and fibula. 3) Test and validate 

image processing algorithms on high resolution cartilage sensitive MR images which 

can be used for in vivo quantification of articular cartilage parameters and 4) Quantify 

the ankle joint contact area under compressive load throughout the range of movement 

using a stereophotogrammetric system which does not require introduction of material, 

such as Fuji film, into the joint during the loading process. 

Chapter 3 reports the use of a highly accurate stereophotography system for making 

morphometric measurements of ankle articular cartilage; chapter 4 used a 2-D semi-

automated dGVF snake segmentation algorithm on cartilage sensitive MR images in 
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order to make similar morphometric measurements. In both studies 3-D thickness 

distribution maps were generated. 

The stereophotography results showed the mean thickness of the talar and tibial 

cartilage to be 1.1 ± 0.18 mm and 1.16 ± 0.14 mm, respectively; whilst the maximum 

talar and tibial cartilage thickness was 2.38 ± 0.4 and 2.18 ± 0.19, respectively. 

Segmentation of the MRI data sets using the 2-D semi-automated dGVF snake 

algorithm measured the mean thickness of the talar and tibial cartilage as 1.34 ± 0.14 

mm and 1.21 ± .014, respectively; the maximum thickness of the talar and tibial 

cartilage was 2.67 ± 0.25 mm and 2.44 ± 0.58 mm, respectively. The average MRI 

based mean and maximum thickness measurements were greater than those made using 

the stereophotography method, but the difference is not statistically significant, 

additionally the differences were sub-voxel in size. The results of both studies, in 

particular the MRI segmentation study results, represent the upper part of the range of 

results reported in the literature(Adam et al., 1998a; Al Ali et al., 2002; Athanasiou et 

al., 1995; Shepherd and Seedhom, 1999; Tan et al., 1996). However, these earlier 

studies did not examine the entire cartilage surface and notably excluded the highly 

curved regions which the studies in this thesis have identified as the regions of greatest 

thickness. 

Thickness distribution maps generated using both stereophotography and MRI 

segmentation, consistently showed the maximum sites of cartilage thickness on the talus 

occurring over the talar shoulders where as in the tibia the maximum thickness was 

along the anterior border and in the region between the tibial plafond and the medial 

malleolus. These finding correlate with the sites identified as having the highest density 

subchondral bone(Muller-Gerbl and Putz, 1995), the most common site of OCD lesions 

in the ankle joint(O'Farrell and Costello, 1982) and being major joint contact 

regions(Millington et al., 2007a). A number of earlier studies indicated that the greatest 

cartilage thickness occurs over the centre of the talar dome(Adam et al., 1998a; 

Athanasiou et al., 1995; Shepherd and Seedhom, 1999), but these studies did not 

analyse the highly curved regions of the ankle joint bones. 
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With regard to the reproducibility of the MRI segmentation algorithms both the 2-D 

semi-automated dGVF snake algorithm and the 3-D graph search algorithm have been 

show to be very reproducible and unbiased. Specifically, the 2-D algorithm has 

demonstrated coefficients of variation approaching those achieved in studies of knee 

articular cartilage(Eckstein et al., 1998b; Hyhlik-Durr et al., 2000; Kshirsagar et al., 

1998; Peterfy et al., 1994; Stammberger et al., 1999a) which is thicker and less 

challenging to segment than ankle cartilage. 

The measurements of ankle joint contact area reported in chapter 6 follow a similar 

pattern to previous studies when considering contact area with respect to joint 

position(Calhoun et al., 1994; Corazza et al., 2005; Driscoll et al., 1994). Tibio-talar 

contact area was largest in dorsiflexion and smallest in plantar flexion; however, direct 

comparison with previous studies is difficult due to the variety of load magnitudes, joint 

positions and methods for reporting the measurements. Nonetheless the contact areas 

measured appear to be larger than previously reported in each of the joint position 

studied. The existing literature provides a spectrum of opinion in relation to the 

distribution of the joint contact area, some studies report the contact area to be located 

over the central talar dome(Calhoun et al., 1994; Driscoll et al., 1994; Kimizuka et al., 

1980), where as others report the contact area to be mainly over the medial and lateral 

margins of the talus(Corazza et al., 2005; Greenwald et al., 1977). The reported 

stereophotographic method for measuring joint contact area supports the finding of the 

latter studies, indicating that the major regions of joint contact area occur over the edges 

and shoulders of the talar dome. As highlighted earlier the distribution corresponds to 

the regions with the highest subchondral bone density(Muller-Gerbl and Putz, 1995) 

and greatest cartilage thickness(Millington et al., 2007b; Millington et al., 2007c) which  

may be a reflection of prevailing mechanical conditions in the ankle joint. 

During the course of this research a number of novel techniques and solutions to 

problems have been developed which have useful applications within the fields of 

articular cartilage, ankle biomechanics and image analysis research. 
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The stereophotography based experiments represent a modification of techniques used 

in many industrial processes (http://www.gom.com); therefore the approaches described 

in Chapters 3 and 6 benefit from the availability of commercially available systems 

which are extremely versatile and highly accurate (www.capture3d.com). An important 

benefit of using this approach is that it allows a full geometric assessment of the entire 

joint surface and the subchondral bone and a full set of morphological measurements, 

which is not possible with many previously described techniques. The versatility and 

accuracy of the approach means it can be used as a gold standard against which to 

compare MRI. Furthermore, the format in which the data is acquired is easily exportable 

and can be converted to other standard formats for use with other software. 

The anisotropic diffusion, noise reduction algorithm used in the 2-D semi automated 

segmentation process is an important step in the area of articular cartilage segmentation. 

Previously the low SNR achieved with high resolution isotropic MRI data meant that 

they were considered unsuitable for segmentation and quantitative measurement(Al Ali 

et al., 2002). Therefore, larger voxel sizes were used to improve SNR, but this 

potentially sacrifices the accuracy and increases the error in quantitative measurements 

made from the data. By using an anisotropic diffusion noise reduction algorithm the 

image quality can be enhanced without losing the anatomical features of the cartilage 

layers, so allowing successful segmentation of high resolution isotropic image data sets. 

The ability to use these higher resolution isotropic data sets potentially reduces error in 

quantitative measurements and means that partial volume effects are smaller and 3-D 

multi-planar reconstructions can be properly utilised. 

The image analysis algorithms used in chapters 4 & 5, provide progressive steps in 

automation of the cartilage segmentation process. Notably, these algorithms function in 

thin articular cartilage layers, even in congruent joints with extensive cartilage to 

cartilage contact. Additionally; the 2-D semi-automated algorithm, in particular, has 

enhanced the reproducibility of cartilage segmentation, the fully automated 3-D 

approach has the possibility to further improve reproducibility by reducing the 

variability associated with user input. 
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Whilst appreciating the benefits of the methods and results reported it is important to 

acknowledge the limitations of the techniques used and the results obtained in these 

studies. The limitations of the individual studies have been discussed in each of the 

relevant chapters, but are summarised here. 

The stereophotography based techniques for studying ankle cartilage geometry and 

ankle joint contact area can, unfortunately, only be used in vitro as they ultimately 

require disarticulation of the joint in order to make morphometric measurements of 

cartilage volume etc. require the cartilage to be dissolved to reveal the subchondral 

bone. A generally limiting feature restricting the wider use of this technique is the 

considerable expense of high spec commercial stereophotography systems, or the need 

to collaborate with experts in the field who are capable of building a customised 

individual system as well as performing the programming required to calibrate the 

system and handle the data processing. The technique described for imaging the surface 

requires that they be prepared with a fine white powder and it is extremely difficult to 

exactly quantify the effects this has on the true measurements, but it is believed to be 

negligible, and since both the cartilage and bone are treated in the same fashion the 

effects on thickness measurements should be negated. This could potentially be avoided 

by using a laser scanning system which does not require routine surface preparation, but 

laser scanners may suffer from scatter on “glistening” surfaces. A potentially greater 

problem may result if delays occur in the experimental process as the cartilage layer 

may become dehydrated, despite protective measures, so altering quantitative 

measurements. 

A notable drawback of the work presented in this thesis is the lack of spatial registration 

of the stereophotography generated models of the cartilage layers and the MRI 

segmentation derived models. As a result it is has not been possible to determine surface 

positioning error for the segmentation lines, which would allow exact quantification of 

surface errors and identify regions in which the segmentation algorithms consistently 

perform well or poorly. However, the development of a suitable reliable, automated 

spatial registration algorithm is beyond the scope of this thesis, but is a major area of 
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interest for future developments, since such an algorithm will enhance studies of 

cartilage changes in patients over time which requires repeated longitudinal imaging. 

With regard to the MRI image analysis based studies the imaging sequenced used is 

rather long, 17 mins 14 s; whilst being suitable for research purposes it is likely to be 

too long for routine clinical use. Nevertheless, being able to acquire high resolution 

isotropic image data that is suitable for segmentation is an important advance and with 

the continuing rapid development in MRI technology acquisition times will be 

significantly reduced. 

Whilst isotropic data sets allow multi-planar reconstructions when using the 2-D semi-

automated algorithm not all the image plane are suitable for complete segmentation and 

in the ankle joint it was only the coronal images which allowed full segmentation to be 

performed. Sagittal and axial films experience noticable partial volume effects at sites 

of marked curvature which make it impossible to perform complete, accurate 

segmentation. An additional limitation of the 2-D semi-automated approach is the need 

for high performance processors as well as the CPU required to run the Matlab™ based 

code and calculate the morphometric parameters from the reconstructions of the 

cartilage layers. This could potentially be improved by programming the algorithm in a 

different computer language. Furthermore, although the algorithm represents an 

improvement on earlier methods, it is still slow, tedious and, in challenging cases, rather 

labour intensive which limits its widespread usability. Hence, the pilot study in chapter 

5 was performed in the hope of addressing some of these concerns. 

The automated 3-D graph searching algorithm is an exciting advance in the field of 

cartilage image analysis, but it must be remembered that the work presented in chapter 5 

is only a pilot study. Again, as with the 2-D semi-automated algorithm, the 3-D 

approach requires a computer with a high performance processor and considerable CPU 

in order to function appropriately. However, with further development and better 

optimisation of the algorithm parameters alongside to continuous improvements in 

computer technology, this is does not represent a significant obstacle. In its current 

format the algorithm parameters have only been optimised to the basic shape of the 
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ankle joint bones i.e. talus, tibia and fibula, therefore, unlike the 2-D dGVF snake 

algorithm, it is not immediately transferable for use in other joints such as the knee. 

Again, with further development work this limitation will be relatively straightforward 

to overcome. As only basic optimisation has been carried out so far the algorithm user 

must carefully select the position of the initialising seed spheres in order to ensure the 

algorithm functions correctly and this is further hampered as the program only has a 

rudimentary user interface which must be significantly enhanced before it will be 

suitable for widespread use. 

The modified stereophotography technique used for the joint contact studies, in Chapter 

6, is affected by many of the technical limitations previously highlighted. When 

considering the modification for the joint contact study a key point to realize is that the 

technique makes an indirect measurement of the joint contact area. Since the photo 

targets are imaged in the loaded position, when the articular cartilage is deformed due to 

load, the load is then removed, the joint disarticulated and the surfaces re-imaged in the 

non-deformed state; therefore, the contact area is determined indirectly from the area of 

surface overlap. 

Specific limitations of the study reported in Chapter 6, as opposed to limitations of the 

stereophotographic technique, include: The fixation of the tibia, fibula and foot during 

loading which constrains the rotation of the bones that occurs during movement of the 

ankle joint and so may prevent the bones reaching maximal congruity leading to an 

underestimation of the true contact area. The absence of muscle tension or loading, 

which would occur in the in vivo situation, may subtly alter the relative position of the 

bones in a given foot position. These two points can be addressed relatively easily in 

future studies by modifying the test rig, using specimens with an intact knee joint and 

using mechanical pulley systems to tension relevant muscles. 

One final general limitation of the studies presented in this thesis is the relatively small 

numbers of specimens used in the studies; however, this is a well established, 

longstanding problem in research of this nature due to the limited supply of suitable 

cadaveric specimens.  
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Each of the studies carried out for this thesis are interlinked as each represents a step in 

the process of developing and validating MRI based, non invasive, in vivo methods for 

objectively evaluating geometrical, biochemical and biomechanical properties of 

articular cartilage. The work presented here focuses on initial image analysis algorithm 

testing and the development of methods which may act as independent gold standards 

for validating MRI measurements. 

The stereophotography based study, Chapter 3, provides baseline data with regard to 

ankle articular cartilage geometric parameters. This links to subsequent studies as the 

method allows validation of MRI image analysis algorithms since cadaveric specimens 

can be imaged and the segmentation data compared to stereophotographic 

reconstructions once they have been spatially registered. 

The image analysis studies, Chapters 4 & 5, represent advances on previous methods 

used to segment articular cartilage in 3-D MR data sets. Validated 2-D segmentation 

allows quantitative in vivo assessment of articular cartilage and provides an essential 

stepping stone in the development of fully automated 3-D segmentation methods. The 

ability to accurately segment cartilage layers provides the possibility to longitudinally 

monitor geometric parameters and to create to 3-D reconstructions of cartilage layers 

which can enhance the clinical assessment of a cartilage lesion. 

The joint contact area study in Chapter 6 is a novel modification of the method reported 

in Chapter 3 and has made it possible to study joint contact area without disrupting the 

joint prior to or during loading. It provides new information about the distribution of 

contact across the joint surfaces in the ankle which is useful for development of realistic 

computational models of the ankle for predictive studies. More importantly, the method 

offers an independent standard for the initial validation of MRI based measurements, 

which is vital in view of the development of MR compatible joint loading devices. 

In summary each of the studies presented represents a small advance in the current 

knowledge. The cartilage thickness maps generated from stereophotography and MRI 

show that the maximum thickness occurs at the edges of the talar dome over the 

shoulders of the bone, helping to clarify the variable picture obtained from reviewing 
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earlier studies which were unable to accurately analyse highly curved regions. The 

image analysis methods applied and tested are a progression on previously reported 2-D 

segmentation methods. The combined noise reduction and 2-D semi automated 

approach demonstrated that it is possible to precisely segment high resolution isotropic 

MR images which have an SNR previously believed to be too low for segmentation 

purposes(Al Ali et al., 2002). The 3-D fully automated study is a further step in the field 

of cartilage image analysis and highlighted the unique potential of using an optimised 

graph searching algorithm for articular cartilage segmentation; it represents a significant 

step in the development of a clinically applicable suite of tools for analysing articular 

cartilage in vivo using MRI. Finally, by using a stereophotography based technique 

which allowed assessment of the entire joint surface without having to disrupt the joint 

before or joint loading, we have established that ankle joint contact area is notably 

larger than previously reported and that the major areas of contact correspond to the 

areas of thickest cartilage and most dense subchondral bone. 
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Chapter 8. Thesis conclusions 

Ankle articular cartilage injuries can occur at sub-fracture load magnitude(Rudd et al., 

2004) and may lead to subsequent joint degeneration. Articular cartilage repair and 

techniques to stimulate articular cartilage regeneration are extremely topical areas of 

research. However, there is little well defined experimental data on the 3-D 

topographical distribution and mechanical properties of the articular cartilage of the 

ankle. This knowledge is essential so that cartilage repair and/or regeneration techniques 

can be successfully implemented and monitored non-invasively in the ankle joint. The 

studies reported in this thesis represent a small step forward in our understanding of 

ankle cartilage geometry and the development of techniques for making accurate non-

invasive quantitative measurements using MRI. Furthermore the data generated 

provides a baseline geometric dataset which can be used to enhance computational 

models of the ankle joint for studying ankle biomechanics and injury. 

The experimental studies reported in this thesis have achieved the intended aims and 

provide information which helps to improve our current understanding of the geometry, 

cartilage thickness distribution and variation in contact area across the ankle joint.  

A highly accurate stereophotography technique for acquiring geometric data and 

making quantitative measurements of thin articular cartilage has been described and 

applied to the ankle joint. A further modification of the stereophotography experimental 

technique has also been reported which allows measurement of ankle joint contact area 

under load in a number of positions without disrupting the joint before or during 

loading. These stereophotography methods provide an independent standard against 

which MRI measurements can subsequently be compared.  

With regard to image analysis techniques for making MRI based measurements, the 

development and testing of a semi-automated 2-D directional gradient vector flow snake 

has been reported. Subsequent attempts have been made to increase the degree of 

automation and speed of the image segmentation process and pilot testing of a fully 

automated 3-D graph searching algorithm has been reported. 
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In the stereophotography experiments reported in chapter 3 quantitative measurements 

of thin articular cartilage layers indicate that ankle cartilage is thicker than previously 

believed and the thickness distribution maps show that the thickest articular cartilage in 

the ankle occurs over the talar shoulders where cartilage lesions most commonly 

occur(O'Farrell and Costello, 1982). The accuracy of the stereophotographic technique 

means it may be used as an independent gold standard for validation of the accuracy of 

in vivo measurements in thin cartilage layers using MRI. 

The 2-D semi-automated cartilage segmentation studies, in chapter 4, quantified the 

geometric parameters of the talar, tibial and fibula cartilage layers from non-invasive 

MRI scans of intact ankle joints. These studies showed that by using the dGVF snake 

segmentation algorithm combined with an anisotropic diffusion denoising algorithm it 

is possible to extract the cartilage layers more precisely than previously achieved(Al Ali 

et al., 2002) in the ankle joint. In keeping with the stereophotography studies in chapter 

3 the mean and maximum thickness of each layer of ankle cartilage exceeded the 

measurements previously reported and the same characteristic cartilage thickness 

distribution was observed. 

The image segmentation study reported in chapter 5 evaluates the feasibility with regard 

to accuracy and reproducibility of a fully automated 3D multi-surface segmentation 

algorithm on cartilage sensitive MRI images. The results indicate that both the pre-

segmentation steps and the final segmentation process are fast, accurate and 

reproducible. 

The reported 3D approach addresses a number of the existing challenges in articular 

cartilage segmentation and quantification; what is more, this approach carries 

substantial promise as a future utility for automated quantitative 3D analysis of articular 

cartilage in a clinical setting. 

Finally, in Chapter 6, a modification of the high resolution stereophotographic 

technique reported earlier in Chapter 3, was developed and used to study ankle joint 

contact area across the entire joint surface in a variety of positions. The technique offers 

an advantage over other techniques in that it does not violate the joint structures or 
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require insertion of foreign material into the joint during loading. The results of the joint 

contact measurement experiments show that the largest contact area occurred in 

dorsiflexion whilst the smallest contact area occurred in plantarflexion. Importantly the 

study showed that in all joint positioins the contact area appears to be larger than 

previously reported. Furthermore, the contact distribution was located more extensively 

over the talar shoulders where the cartilage is thickest, see Chapter 3 and Chapter 

4(Millington et al., 2007b; Millington et al., 2007c) and the subchondral bone most 

dense. This also coincides with the location where clinically most talar OCD lesions 

occur(O'Farrell and Costello, 1982) as opposed to contact over the centre of the talar 

dome and tibial plafond as reported in some earlier studies. 

As with the results from the stereophotography experiments in Chapter 3, the results 

provide essential experimental data which again can be used to enhance computational 

models of the ankle joint which are used to study ankle joint injury, development of 

degenerative conditions such as post traumatic osteoarthritis, ankle biomechanics and 

potential effects of new therapies 
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Chapter 9. Future work 

The research presented in this thesis shows the development of a series of new 

techniques and tools for analysing articular cartilage. Furthermore it has sought to 

answer a number of points regarding the cartilage distribution and joint contact 

characteristics of the ankle. By addressing these questions and through the development 

of new approaches a number of new and interesting research areas have been 

highlighted. The in vitro techniques reported in this thesis may be used for the future 

validation of in vivo techniques which are clinically useful. Moreover, the results of this 

thesis have helped to form the basis of a number of successful grant applications which 

will fund on going research into the following areas. 

1. Further development of 3D automated segmentation 

2. In vivo joint contact area measurement 

3. Development of automated spatial registration tools 

4. Evaluation of the NIH osteoarthritis initiative data set 

5. Mechanical cartilage stiffness mapping 

6. Validation of functional MRI measurements 

7. Follow-up and monitoring of cartilage lesion and cartilage repair tissue 

8. Pre-operative planning for autologous chondrocyte transplantation 

9. Development and refinement of ankle finite element models 
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Appendix 1. Stereophotography study 
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Appendix 2. 2-D segmentation algorithm development 
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Appendix 3. 2-D Quantitative segmentation study 
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Appendix 4. Automated 3-D segmentation study 

 
 146



Appendix 4 

 147



Appendix 4 

 148



Appendix 4 

 149



Appendix 4 

 150



Appendix 4 

 151



Appendix 4 

 152



Appendix 4 

 153



Appendix 4 

 154



Appendix 4 

 155



Appendix 4 

 156



Appendix 4 

 

 157



Appendix 5 

Appendix 5. Ankle Joint contact area study 

 158



Appendix 5 

 

 159



Appendix 5 

 160



Appendix 5 

 

 161



Appendix 5 

 162



Appendix 5 

 

 163



Appendix 5 

 164



Appendix 5 

 

 165



Appendix 5 

 166



References 

Chapter 10. References 

Acton, S. T., Bovik, A. C., (1998). Order statistics in image processing. In: 
Balakrishnan, N., Rao, C. R. (Eds.), Handbook of Statistics 17: Order Statistics 
and Their Applications. Elsevier Science, New York, pp. 603-641. 

Acton, S. T., Wei, D., Bovik, A. C., (1999). Image enhancement. In: Webster, J. (Ed.), 
Encyclopedia of Electrical and Electronics Engineering. Wiley - Interscience, New 
York. 

Adam, C., Eckstein, F., Milz, S., Putz, R., (1998a). The distribution of cartilage 
thickness within the joints of the lower limb of elderly individuals. J.Anat. 193 ( 
Pt 2), 203-214. 

Adam, C., Eckstein, F., Milz, S., Schulte, E., Becker, C., Putz, R., (1998b). The 
distribution of cartilage thickness in the knee-joints of old-aged individuals -- 
measurement by A-mode ultrasound. Clin.Biomech.(Bristol., Avon.) 13, 1-10. 

Al Ali, D., Graichen, H., Faber, S., Englmeier, K. H., Reiser, M., Eckstein, F., (2002). 
Quantitative cartilage imaging of the human hind foot: precision and inter-subject 
variability. J.Orthop.Res. 20, 249-256. 

Anderson, D. D., Goldsworthy, J. K., Shivanna, K., Grosland, N. M., Pedersen, D. R., 
Thomas, T. P., Tochigi, Y., Marsh, J. L., Brown, T. D., (2006). Intra-articular 
contact stress distributions at the ankle throughout stance phase-patient-specific 
finite element analysis as a metric of degeneration propensity. 
Biomech.Model.Mechanobiol. 5, 82-89. 

Ateshian, G. A., (1993). A B-spline least-squares surface-fitting method for articular 
surfaces of diarthrodial joints. J.Biomech.Eng 115, 366-373. 

Ateshian, G. A., Kwak, S. D., Soslowsky, L. J., Mow, V. C., (1994). A 
stereophotogrammetric method for determining in situ contact areas in diarthrodial 
joints, and a comparison with other methods. Journal of Biomechanics 27, 111-
124. 

Ateshian, G. A., Soslowsky, L. J., Mow, V. C., (1991). Quantitation of articular surface 
topography and cartilage thickness in knee joints using stereophotogrammetry. 
Journal of Biomechanics 24, 761-776. 

Ateshian, G. A., Warden, W. H., Kim, J. J., Grelsamer, R. P., Mow, V. C., (1997). 
Finite deformation biphasic material properties of bovine articular cartilage from 
confined compression experiments. Journal of Biomechanics 30, 1157-1164. 

Athanasiou, K. A., Niederauer, G. G., Schenck, R. C., Jr., (1995). Biomechanical 
topography of human ankle cartilage. Ann.Biomed.Eng 23, 697-704. 

 167



References 

Atkinson, T. S., Haut, R. C., Altiero, N. J., (1998). Impact-induced fissuring of articular 
cartilage: an investigation of failure criteria. J.Biomech.Eng 120, 181-187. 

Ba-Ssalamah, A., Schibany, N., Puig, S., Herneth, A. M., Noebauer-Huhmann, I. M., 
Trattnig, S., (2002). Imaging articular cartilage defects in the ankle joint with 3D 
fat-suppressed echo planar imaging: comparison with conventional 3D fat-
suppressed gradient echo imaging. J.Magn Reson.Imaging 16, 209-216. 

Bashir, A., Gray, M. L., Boutin, R. D., Burstein, D., (1997). Glycosaminoglycan in 
articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR 
imaging. Radiology 205, 551-558. 

Bashir, A., Gray, M. L., Hartke, J., Burstein, D., (1999). Nondestructive imaging of 
human cartilage glycosaminoglycan concentration by MRI. Magn Reson.Med. 41, 
857-865. 

Black, J. D., Matejczyk, M. B., Greenwald, A. S., (1981). Reversible cartilage staining 
technique for defining articular weight-bearing surfaces. Clinical Orthopaedics 
and Related Research 265-267. 

Borrelli, J., Jr., Tinsley, K., Ricci, W. M., Burns, M., Karl, I. E., Hotchkiss, R., (2003). 
Induction of chondrocyte apoptosis following impact load. J.Orthop.Trauma 17, 
635-641. 

Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., Peterson, L., (1994). 
Treatment of deep cartilage defects in the knee with autologous chondrocyte 
transplantation. N.Engl.J.Med. 331, 889-895. 

Brown, T. D., Anderson, D. D., Nepola, J. V., Singerman, R. J., Pedersen, D. R., Brand, 
R. A., (1988). Contact stress aberrations following imprecise reduction of simple 
tibial plateau fractures. J.Orthop.Res. 6, 851-862. 

Buckwalter, J. A., (1992). Mechanical injuries of articular cartilage. In: Finerman, G. 
(Ed.), Biology and biomechanics of te traumatised synovial joint. American 
Academy of Orthopaedic Surgeons, Park Ridge, IL, pp. 83-96. 

Buckwalter, J. A., (1995). Osteoarthritis and articular cartilage use, disuse, and abuse: 
experimental studies. J.Rheumatol.Suppl 43, 13-15. 

Buckwalter, J. A., (2002). Articular cartilage injuries. Clinical Orthopaedics and Related 
Research 21-37. 

Buckwalter, J. A., Mankin, H. J., (1997). Articular cartilage .2. Degeneration and 
osteoarthrosis, repair, regeneration, and transplantation. Journal of Bone and Joint 
Surgery-American Volume 79A, 612-632. 

Buckwalter, J. A., Martin, J., Mankin, H. J., (2000). Synovial joint degeneration and the 
syndrome of osteoarthritis. Instr.Course Lect. 49, 481-489. 

 168



References 

Buckwalter, J. A., Saltzman, C. L., (1999). Ankle osteoarthritis: distinctive 
characteristics. Instr.Course Lect. 48, 233-241. 

Bullough, P. G., Jagannath, A., (1983). The morphology of the calcification front in 
articular cartilage. Its significance in joint function. J Bone Joint Surg.Br. 65, 72-
78. 

Burgkart, R., Glaser, C., Hinterwimmer, S., Hudelmaier, M., Englmeier, K. H., Reiser, 
M., Eckstein, F., (2003). Feasibility of T and Z scores from magnetic resonance 
imaging data for quantification of cartilage loss in osteoarthritis. Arthritis Rheum. 
48, 2829-2835. 

Burgkart, R., Glaser, C., Hyhlik-Durr, A., Englmeier, K. H., Reiser, M., Eckstein, F., 
(2001). Magnetic resonance imaging-based assessment of cartilage loss in severe 
osteoarthritis: accuracy, precision, and diagnostic value. Arthritis Rheum. 44, 
2072-2077. 

Burstein, D., Gray, M., (2003). New MRI techniques for imaging cartilage. Journal of 
Bone and Joint Surgery 85-A Suppl 2, 70-77. 

Calhoun, J. H., Li, F., Ledbetter, B. R., Viegas, S. F., (1994). A comprehensive study of 
pressure distribution in the ankle joint with inversion and eversion. Foot Ankle Int. 
15, 125-133. 

Chen, C. T., Burton-Wurster, N., Borden, C., Hueffer, K., Bloom, S. E., Lust, G., 
(2001). Chondrocyte necrosis and apoptosis in impact damaged articular cartilage. 
J.Orthop.Res. 19, 703-711. 

Cheung, J. T., Zhang, M., (2005). A 3-dimensional finite element model of the human 
foot and ankle for insole design. Arch.Phys.Med.Rehabil. 86, 353-358. 

Choung, D., Christensen, J. C., (2002). Mosaicplasty of the talus: a joint contact 
analysis in a cadaver model. J.Foot Ankle Surg. 41, 65-75. 

Christensen, J. C., Driscoll, H. L., Tencer, A. F., (1994). 1994 William J. Stickel Gold 
Award. Contact characteristics of the ankle joint. Part 2. The effects of talar dome 
cartilage defects. J.Am.Podiatr.Med.Assoc. 84, 537-547. 

Cohen, Z. A., McCarthy, D. M., Kwak, S. D., Legrand, P., Fogarasi, F., Ciaccio, E. J., 
Ateshian, G. A., (1999). Knee cartilage topography, thickness, and contact areas 
from MRI: in-vitro calibration and in-vivo measurements. Osteoarthritis.Cartilage. 
7, 95-109. 

Cohen, Z. A., Mow, V. C., Henry, J. H., Levine, W. N., Ateshian, G. A., (2003). 
Templates of the cartilage layers of the patellofemoral joint and their use in the 
assessment of osteoarthritic cartilage damage. Osteoarthritis.Cartilage. 11, 569-
579. 

 169



References 

Corazza, F., Stagni, R., Castelli, V. P., Leardini, A., (2005). Articular contact at the 
tibiotalar joint in passive flexion. Journal of Biomechanics 38, 1205-1212. 

Craig, J. G., Go, L., Blechinger, J., Hearshen, D., Bouffard, J. A., Diamond, M., van 
Holsbeeck, M. T., (2005). Three-tesla imaging of the knee: initial experience. 
Skeletal Radiol. 34, 453-461. 

Cushnaghan, J., Dieppe, P., (1991). Study of 500 patients with limb joint osteoarthritis. 
I. Analysis by age, sex, and distribution of symptomatic joint sites. 
Ann.Rheum.Dis. 50, 8-13. 

DeCoster, T. A., Willis, M. C., Marsh, J. L., Williams, T. M., Nepola, J. V., Dirschl, D. 
R., Hurwitz, S. R., (1999). Rank order analysis of tibial plafond fractures: does 
injury or reduction predict outcome? Foot Ankle Int. 20, 44-49. 

Dieppe, P., Kirwan, J., (1994). The localization of osteoarthritis. British Journal of 
Rheumatology 33, 201-203. 

Donohue, J. M., Buss, D., Oegema, T. R., Jr., Thompson, R. C., Jr., (1983). The effects 
of indirect blunt trauma on adult canine articular cartilage. Journal of Bone and 
Joint Surgery 65, 948-957. 

Driscoll, H. L., Christensen, J. C., Tencer, A. F., (1994). Contact characteristics of the 
ankle joint. Part 1. The normal joint. J.Am.Podiatr.Med.Assoc. 84, 491-498. 

Eckstein, F., Adam, C., Sittek, H., Becker, C., Milz, S., Schulte, E., Reiser, M., Putz, R., 
(1997). Non-invasive determination of cartilage thickness throughout joint 
surfaces using magnetic resonance imaging. Journal of Biomechanics 30, 285-289. 

Eckstein, F., Charles, H. C., Buck, R. J., Kraus, V. B., Remmers, A. E., Hudelmaier, M., 
Wirth, W., Evelhoch, J. L., (2005b). Accuracy and precision of quantitative 
assessment of cartilage morphology by magnetic resonance imaging at 3.0T. 
Arthritis Rheum. 52, 3132-3136. 

Eckstein, F., Charles, H. C., Buck, R. J., Kraus, V. B., Remmers, A. E., Hudelmaier, M., 
Wirth, W., Evelhoch, J. L., (2005a). Accuracy and precision of quantitative 
assessment of cartilage morphology by magnetic resonance imaging at 3.0T. 
Arthritis Rheum. 52, 3132-3136. 

Eckstein, F., Gavazzeni, A., Sittek, H., Haubner, M., Losch, A., Milz, S., Englmeier, K. 
H., Schulte, E., Putz, R., Reiser, M., (1996). Determination of knee joint cartilage 
thickness using three-dimensional magnetic resonance chondro-crassometry (3D 
MR-CCM). Magn Reson.Med. 36, 256-265. 

Eckstein, F., Glaser, C., (2004). Measuring cartilage morphology with quantitative 
magnetic resonance imaging. Semin.Musculoskelet.Radiol. 8, 329-353. 

 170



References 

Eckstein, F., Heudorfer, L., Faber, S. C., Burgkart, R., Englmeier, K. H., Reiser, M., 
(2002). Long-term and resegmentation precision of quantitative cartilage MR 
imaging (qMRI). Osteoarthritis.Cartilage. 10, 922-928. 

Eckstein, F., Hudelmaier, M., Wirth, W., Kiefer, B., Jackson, R., Yu, J., Eaton, C., 
Schneider, E., (2005c). Double Echo Steady State (DESS) Magnetic Resonance 
Imaging of Knee Articular Cartilage at 3 Tesla - a Pilot Study for the 
Osteoarthritis Initiative. Ann.Rheum.Dis. 

Eckstein, F., Reiser, M., Englmeier, K. H., Putz, R., (2001a). In vivo morphometry and 
functional analysis of human articular cartilage with quantitative magnetic 
resonance imaging--from image to data, from data to theory. Anat.Embryol.(Berl) 
203, 147-173. 

Eckstein, F., Schnier, M., Haubner, M., Priebsch, J., Glaser, C., Englmeier, K. H., 
Reiser, M., (1998a). Accuracy of cartilage volume and thickness measurements 
with magnetic resonance imaging. Clinical Orthopaedics and Related Research 
137-148. 

Eckstein, F., Sittek, H., Milz, S., Putz, R., Reiser, M., (1994). The morphology of 
articular cartilage assessed by magnetic resonance imaging (MRI). Reproducibility 
and anatomical correlation. Surg.Radiol.Anat. 16, 429-438. 

Eckstein, F., Sittek, H., Milz, S., Schulte, E., Kiefer, B., Reiser, M., Putz, R., (1995). 
The potential of magnetic resonance imaging (MRI) for quantifying articular 
cartilage thickness -- a methodological study. Clin.Biomech.(Bristol., Avon.) 10, 
434-440. 

Eckstein, F., Westhoff, J., Sittek, H., Maag, K. P., Haubner, M., Faber, S., Englmeier, 
K. H., Reiser, M., (1998b). In vivo reproducibility of three-dimensional cartilage 
volume and thickness measurements with MR imaging. AJR Am.J.Roentgenol. 
170, 593-597. 

Eckstein, F., Winzheimer, M., Hohe, J., Englmeier, K. H., Reiser, M., (2001b). 
Interindividual variability and correlation among morphological parameters of 
knee joint cartilage plates: analysis with three-dimensional MR imaging. 
Osteoarthritis.Cartilage. 9, 101-111. 

Eyre, D. R., (1980). Collagen: molecular diversity in the body's protein scaffold. 
Science 207, 1315-1322. 

Faber, S. C., Eckstein, F., Lukasz, S., Muhlbauer, R., Hohe, J., Englmeier, K. H., 
Reiser, M., (2001). Gender differences in knee joint cartilage thickness, volume 
and articular surface areas: assessment with quantitative three-dimensional MR 
imaging. Skeletal Radiol. 30, 144-150. 

 171



References 

Ferrari, J., Hopkinson, D. A., Linney, A. D., (2004). Size and shape differences between 
male and female foot bones: is the female foot predisposed to hallux abducto 
valgus deformity? J.Am.Podiatr.Med.Assoc. 94, 434-452. 

Fitzpatrick, D. C., Otto, J. K., McKinley, T. O., Marsh, J. L., Brown, T. D., (2001). 
Dynamic contact stress aberrations after simulateed posterior malleolar fracture of 
the ankle. In Transactions of the orthopaedic trauma association. Orthopaedic 
Trauma Association, San Diego, CA. 

Fitzpatrick, D. C., Otto, J. K., McKinley, T. O., Marsh, J. L., Brown, T. D., (2004). 
Kinematic and contact stress analysis of posterior malleolus fractures of the ankle. 
Journal of Orthopaedic Trauma 18, 271-278. 

Fleishman, S., Drori, I., Cohen-Or, D., (2003). Bilateral mesh denoising. In 
SIGGRAPH. Assoc. for Computing Machinary, San Diego. 

Fukubayashi, T., Kurosawa, H., (1980). The contact area and pressure distribution 
pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta 
Orthop.Scand. 51, 871-879. 

Funk, F. J., (1976). Osteoarthritis of the Foot and Ankle. In American Academy of 
Surgeons 

Symposiums on Osteoarthritis. CV Mosby , St Louis MO. 

Glaser, C., Faber, S., Eckstein, F., Fischer, H., Springer, V., Heudorfer, L., 
Stammberger, T., Englmeier, K. H., Reiser, M., (2001). Optimization and 
validation of a rapid high-resolution T1-w 3D FLASH water excitation MRI 
sequence for the quantitative assessment of articular cartilage volume and 
thickness. Magn Reson.Imaging 19, 177-185. 

Gluer, C. C., Blake, G., Lu, Y., Blunt, B. A., Jergas, M., Genant, H. K., (1995). 
Accurate assessment of precision errors: how to measure the reproducibility of 
bone densitometry techniques. Osteoporos.Int. 5, 262-270. 

Gold, G. E., Besier, T. F., Draper, C. E., Asakawa, D. S., Delp, S. L., Beaupre, G. S., 
(2004). Weight-bearing MRI of patellofemoral joint cartilage contact area. J.Magn 
Reson.Imaging 20, 526-530. 

Graichen, H., Springer, V., Flaman, T., Stammberger, T., Glaser, C., Englmeier, K. H., 
Reiser, M., Eckstein, F., (2000). Validation of high-resolution water-excitation 
magnetic resonance imaging for quantitative assessment of thin cartilage layers. 
Osteoarthritis.Cartilage. 8, 106-114. 

Gray, M. L., Eckstein, F., Peterfy, C., Dahlberg, L., Kim, Y. J., Sorensen, A. G., Smith, 
R. L., (2004). Toward imaging biomarkers for osteoarthritis. Clinical 
Orthopaedics and Related Research S175-S181. 

 172



References 

Greenwald, A. S., Matejczyk, M. B., Keppler, L., Black, J. D., Moran, J. M., Porritt, D., 
Beck, R. D., Wilde, A. H., (1977). Articular cartilage contact areas of the ankle. 
Orthopaedic Research Society, Las Vegas, Nevada. 

Hall, F. M., Wyshak, G., (1980). Thickness of articular cartilage in the normal knee. 
Journal of Bone and Joint Surgery 62, 408-413. 

Han, B., Cole, A. A., Shen, Y., Brodie, T., Williams, J. M., (2002). Early alterations in 
the collagen meshwork and lesions in the ankles are associated with spontaneous 
osteoarthritis in guinea-pigs. Osteoarthritis.Cartilage. 10, 778-784. 

Hangody, L., (2003). The mosaicplasty technique for osteochondral lesions of the talus. 
Foot Ankle Clin. 8, 259-273. 

Hangody, L., Feczko, P., Bartha, L., Bodo, G., Kish, G., (2001). Mosaicplasty for the 
treatment of articular defects of the knee and ankle. Clin.Orthop.Relat Res. S328-
S336. 

Hangody, L., Kish, G., Karpati, Z., Udvarhelyi, I., Szigeti, I., Bely, M., (1998). 
Mosaicplasty for the treatment of articular cartilage defects: application in clinical 
practice. Orthopedics 21, 751-756. 

Hargreaves, B. A., Gold, G. E., Beaulieu, C. F., Vasanawala, S. S., Nishimura, D. G., 
Pauly, J. M., (2003). Comparison of new sequences for high-resolution cartilage 
imaging. Magn Reson.Med. 49, 700-709. 

Haubner, M., Eckstein, F., Schnier, M., Losch, A., Sittek, H., Becker, C., Kolem, H., 
Reiser, M., Englmeier, K. H., (1997). A non-invasive technique for 3-dimensional 
assessment of articular cartilage thickness based on MRI. Part 2: Validation using 
CT arthrography. Magn Reson.Imaging 15, 805-813. 

Haut, R. C., (1989). Contact pressures in the patellofemoral joint during impact loading 
on the human flexed knee. J.Orthop.Res. 7, 272-280. 

Haut, R. C., Ide, T. M., De Camp, C. E., (1995). Mechanical responses of the rabbit 
patello-femoral joint to blunt impact. J.Biomech.Eng 117, 402-408. 

Heidemann, R. M., Griswold, M. A., Muller, M., Breuer, F., Blaimer, M., Kiefer, B., 
Schmitt, M., Jakob, P. M., (2004). [Feasibilities and limitations of high field 
parallel MRI]. Radiologe 44, 49-55. 

Hlavacek, M., (1995). The role of synovial fluid filtration by cartilage in lubrication of 
synovial joints--IV. Squeeze-film lubrication: the central film thickness for normal 
and inflammatory synovial fluids for axial symmetry under high loading 
conditions. J Biomech. 28, 1199-1205. 

 173



References 

Huber-Betzer, H., Brown, T. D., Mattheck, C., (1990). Some effects of global joint 
morphology on local stress aberrations near imprecisely reduced intra-articular 
fractures. Journal of Biomechanics 23, 811-822. 

Hyhlik-Durr, A., Faber, S., Burgkart, R., Stammberger, T., Maag, K. P., Englmeier, K. 
H., Reiser, M., Eckstein, F., (2000). Precision of tibial cartilage morphometry with 
a coronal water-excitation MR sequence. Eur.Radiol. 10, 297-303. 

Imhof, H., Nobauer-Huhmann, I. M., Krestan, C., Gahleitner, A., Sulzbacher, I., 
Marlovits, S., Trattnig, S., (2002). MRI of the cartilage. Eur.Radiol. 12, 2781-
2793. 

Jeffrey, J. E., Thomson, L. A., Aspden, R. M., (1997). Matrix loss and synthesis 
following a single impact load on articular cartilage in vitro. 
Biochim.Biophys.Acta 1334, 223-232. 

Johnson, K. L., (1985). Contact mechanics. Cambridge University Press, Cambridge. 

Jonsson, K., Buckwalter, K., Helvie, M., Niklason, L., Martel, W., (1992). Precision of 
hyaline cartilage thickness measurements. Acta Radiol. 33, 234-239. 

Jurvelin, J., Kiviranta, I., Arokoski, J., Tammi, M., Helminen, H. J., (1987). Indentation 
study of the biochemical properties of articular cartilage in the canine knee. Eng 
Med. 16, 15-22. 

Jurvelin, J. S., Rasanen, T., Kolmonen, P., Lyyra, T., (1995). Comparison of optical, 
needle probe and ultrasonic techniques for the measurement of articular cartilage 
thickness. Journal of Biomechanics 28, 231-235. 

Karvonen, R. L., Negendank, W. G., Teitge, R. A., Reed, A. H., Miller, P. R., 
Fernandez-Madrid, F., (1994). Factors affecting articular cartilage thickness in 
osteoarthritis and aging. J.Rheumatol. 21, 1310-1318. 

Kempson, G. E., (1979). Mechanical properties of articular cartilage. In: Freeman, M. 
A. (Ed.), Adult articular cartilage. Pitman Medical, Tunbridge Wells, England, pp. 
333-414. 

Kim, H. A., Lee, Y. J., Seong, S. C., Choe, K. W., Song, Y. W., (2000). Apoptotic 
chondrocyte death in human osteoarthritis. J.Rheumatol. 27, 455-462. 

Kim, Y. J., Jaramillo, D., Millis, M. B., Gray, M. L., Burstein, D., (2003). Assessment 
of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced 
magnetic resonance imaging of cartilage. Journal of Bone and Joint Surgery 85-A, 
1987-1992. 

Kimizuka, M., Kurosawa, H., Fukubayashi, T., (1980). Load-bearing pattern of the 
ankle joint. Contact area and pressure distribution. Arch.Orthop.Trauma Surg. 96, 
45-49. 

 174



References 

Kshirsagar, A. A., Watson, P. J., Tyler, J. A., Hall, L. D., (1998). Measurement of 
localized cartilage volume and thickness of human knee joints by computer 
analysis of three-dimensional magnetic resonance images. Invest Radiol. 33, 289-
299. 

Kura, H., Kitaoka, H. B., Luo, Z. P., An, K. N., (1998). Measurement of surface contact 
area of the ankle joint. Clin.Biomech.(Bristol., Avon.) 13, 365-370. 

Kurosawa, H., Fukubayashi, T., Nakajima, H., (1980). Load-bearing mode of the knee 
joint: physical behavior of the knee joint with or without menisci. 
Clin.Orthop.Relat Res. 283-290. 

Lane, J. M., Weiss, C., (1975). Review of articular cartilage collagen research. Arthritis 
Rheum. 18, 553-562. 

Li, K., Wu, X., Chen, D., Sonka, M., (2004). Globally Optimal Segmentation of 
Interacting Surfaces with Geometric Constraints. IEEE Computer Society 
Conference On Computer Vision And Pattern Recognition Vol 1, 394-399. 

Llinas, A., McKellop, H. A., Marshall, G. J., Sharpe, F., Kirchen, M., Sarmiento, A., 
(1993). Healing and remodeling of articular incongruities in a rabbit fracture 
model. Journal of Bone and Joint Surgery 75, 1508-1523. 

Loening, A. M., James, I. E., Levenston, M. E., Badger, A. M., Frank, E. H., Kurz, B., 
Nuttall, M. E., Hung, H. H., Blake, S. M., Grodzinsky, A. J., Lark, M. W., (2000). 
Injurious mechanical compression of bovine articular cartilage induces 
chondrocyte apoptosis. Arch.Biochem.Biophys. 381, 205-212. 

Losch, A., Eckstein, F., Haubner, M., Englmeier, K. H., (1997). A non-invasive 
technique for 3-dimensional assessment of articular cartilage thickness based on 
MRI. Part 1: Development of a computational method. Magn Reson.Imaging 15, 
795-804. 

Lovasz, G., Llinas, A., Benya, P. D., Park, S. H., Sarmiento, A., Luck, J. V., Jr., (1998). 
Cartilage changes caused by a coronal surface stepoff in a rabbit model. Clinical 
Orthopaedics and Related Research 224-234. 

Lukasz, S., Muhlbauer, R., Faber, S., Englmeier, K. H., Reiser, M., Eckstein, F., (1998). 
[Sex-specific analysis of cartilage volume in the knee joint--a quantitative MRI-
based study]. Anat.Anz. 180, 487-493. 

Macko, V. W., Matthews, L. S., Zwirkoski, P., Goldstein, S. A., (1991). The joint-
contact area of the ankle. The contribution of the posterior malleolus. Journal of 
Bone and Joint Surgery 73, 347-351. 

Mandelbaum, B. R., Gerhardt, M. B., Peterson, L., (2003). Autologous chondrocyte 
implantation of the talus. Arthroscopy 19 Suppl 1, 129-137. 

 175



References 

Mann, R. A., (1993). Biomechanics of the foot and ankle. Surgery of the foot and ankle. 
C.V. Mosby Co, St Louis, pp. 3-43. 

Maroudas, A., (1968). Physicochemical properties of cartilage in the light of ion 
exchange theory. Biophys.J 8, 575-595. 

Maroudas, A., (1975). Biophysical chemistry of cartilaginous tissues with special 
reference to solute and fluid transport. Biorheology 12, 233-248. 

Maroudas, A., (1979). Physiochemical properties of articular cartilage. In: Freeman, M. 
A. (Ed.), Adult articular cartilage. Pitman Medical, Tunbridge Wells, England, pp. 
215-290. 

Marsh, J. L., Buckwalter, J., Gelberman, R., Dirschl, D., Olson, S., Brown, T., Llinias, 
A., (2002). Articular fractures: does an anatomic reduction really change the 
result? Journal of Bone and Joint Surgery 84-A, 1259-1271. 

Marsh, J. L., Weigel, D. P., Dirschl, D. R., (2003). Tibial plafond fractures. How do 
these ankles function over time? Journal of Bone and Joint Surgery 85-A, 287-
295. 

Marsh, J. L., williams, T., Nepola, J. V., DeCoster, T. A., Hurwitz, S., Dirschl, D., 
(1997). Tibial plafond fractures: Does articular reduction and/or injury pattern 
predict outcome? Orthopaedic Transactions 21, 563. 

Martin, J. A., Buckwalter, J. A., (2000). The role of chondrocyte-matrix interactions in 
maintaining and repairing articular cartilage. Biorheology 37, 129-140. 

Martin, J. A., Buckwalter, J. A., (2001). Roles of articular cartilage aging and 
chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop.J. 21, 1-
7. 

Martin, J. A., Ellerbroek, S. M., Buckwalter, J. A., (1997). Age-related decline in 
chondrocyte response to insulin-like growth factor-I: the role of growth factor 
binding proteins. J.Orthop.Res. 15, 491-498. 

Meachim, G., (1975). Cartilage fibrillation at the ankle joint in Liverpool necropsies. 
J.Anat. 119, 601-610. 

Menzel, M., et al, (2005). Proceedings of the 13th international society of magnetic 
resonance in medicine meeting. 

Michelson, J. D., (1995). Fractures about the ankle. Journal of Bone and Joint Surgery 
77, 142-152. 

Millington, S., Grabner, M., Wozelka, R., Hurwitz, S., Crandall, J., (2007a). A 
stereophotographic study of ankle joint contact area. J Orthop.Res. 

 176



References 

Millington, S. A., Grabner, M., Hurwitz, S. R., Crandall, J. R., (2004). A 
stereophotographic study of ankle cartilage thickness; distribution and surface 
topography. Osteoarthritis and Cartilage 12, S64. 

Millington, S. A., Grabner, M., Wozelka, R., Anderson, D. D., Hurwitz, S. R., Crandall, 
J. R., (2007b). Quantification of ankle articular cartilage topography and thickness 
using a high resolution stereophotography system. Osteoarthritis Cartilage 15, 
205-211. 

Millington, S. A., Li, B., Tang, J., Trattnig, S., Crandall, J. R., Hurwitz, S. R., Acton, S. 
T., (2007c). Quantitative and topographical evaluation of ankle articular cartilage 
using high resolution MRI. J Orthop.Res. 25, 143-151. 

Minas, T., Nehrer, S., (1997). Current concepts in the treatment of articular cartilage 
defects. Orthopedics 20, 525-538. 

Mosher, T. J., Dardzinski, B. J., Smith, M. B., (2000). Human articular cartilage: 
influence of aging and early symptomatic degeneration on the spatial variation of 
T2--preliminary findings at 3 T. Radiology 214, 259-266. 

Mow, V. C., Ateshian, G. A., (1997). Lubrication and wear of diarthrodial joints. In: 
Mow, V. C., Hayes, W. C. (Eds.), Basic biomechanics. Lippincott-Raven, 
Philadelphia, pp. 275-315. 

Mow, V. C., Ratcliffe, A., (1997). Structure and function of articular cartilage and 
meniscus. In: Mow, V. C., Hayes, W. C. (Eds.), Basic orthopaedic biomechanics. 
lippincott-Raven, Philadelphia, pp. 113-177. 

Mow, V. C., Holmes, M. H., Lai, W. M., (1984). Fluid transport and mechanical 
properties of articular cartilage: a review. J Biomech. 17, 377-394. 

Mow, V. C., Kuei, S. C., Lai, W. M., Armstrong, C. G., (1980). Biphasic creep and 
stress relaxation of articular cartilage in compression? Theory and experiments. 
J.Biomech.Eng 102, 73-84. 

Muir, H., (1983). Proteoglycans as organizers of the intercellular matrix. 
Biochem.Soc.Trans. 11, 613-622. 

Muller-Gerbl, M., Putz, R., (1995). Functional anatomy of the ankle joint. In: Heim, U. 
(Ed.), Saunders, Philadelphia, pp. 3-25. 

Nakagawa, S., Kadoya, Y., Kobayashi, A., Tatsumi, I., Nishida, N., Yamano, Y., 
(2003). Kinematics of the patella in deep flexion. Analysis with magnetic 
resonance imaging. Journal of Bone and Joint Surgery 85-A, 1238-1242. 

Nieminen, M. T., Toyras, J., Laasanen, M. S., Silvennoinen, J., Helminen, H. J., 
Jurvelin, J. S., (2004). Prediction of biomechanical properties of articular cartilage 

 177



References 

with quantitative magnetic resonance imaging. Journal of Biomechanics 37, 321-
328. 

Nishii, T., Sugano, N., Sato, Y., Tanaka, H., Miki, H., Yoshikawa, H., (2004). Three-
dimensional distribution of acetabular cartilage thickness in patients with hip 
dysplasia: a fully automated computational analysis of MR imaging. Osteoarthritis 
Cartilage 12, 650-657. 

O'Farrell, T. A., Costello, B. G., (1982). Osteochondritis dissecans of the talus. The late 
results of surgical treatment. J.Bone Joint Surg.Br. 64, 494-497. 

Patel, V. V., Hall, K., Ries, M., Lindsey, C., Ozhinsky, E., Lu, Y., Majumdar, S., 
(2003). Magnetic resonance imaging of patellofemoral kinematics with weight-
bearing. Journal of Bone and Joint Surgery 85-A, 2419-2424. 

Peterfy, C. G., Genant, H. K., (1996). Emerging applications of magnetic resonance 
imaging in the evaluation of articular cartilage. Radiol.Clin.North Am. 34, 195-
213, ix. 

Peterfy, C. G., van Dijke, C. F., Janzen, D. L., Gluer, C. C., Namba, R., Majumdar, S., 
Lang, P., Genant, H. K., (1994). Quantification of articular cartilage in the knee 
with pulsed saturation transfer subtraction and fat-suppressed MR imaging: 
optimization and validation. Radiology 192, 485-491. 

Peterfy, C. G., van Dijke, C. F., Lu, Y., Nguyen, A., Connick, T. J., Kneeland, J. B., 
Tirman, P. F., Lang, P., Dent, S., Genant, H. K., (1995). Quantification of the 
volume of articular cartilage in the metacarpophalangeal joints of the hand: 
accuracy and precision of three-dimensional MR imaging. AJR Am.J.Roentgenol. 
165, 371-375. 

Pilch, L., Stewart, C., Gordon, D., Inman, R., Parsons, K., Pataki, I., Stevens, J., (1994). 
Assessment of cartilage volume in the femorotibial joint with magnetic resonance 
imaging and 3D computer reconstruction. J.Rheumatol. 21, 2307-2321. 

Poole, A. R., Kojima, T., Yasuda, T., Mwale, F., Kobayashi, M., Laverty, S., (2001). 
Composition and structure of articular cartilage - A template for tissue repair. 
Clinical Orthopaedics and Related Research S26-S33. 

Pratt, W., (1978). Digital Image Processing. Wiley, New York, pp. 495-501. 

Ratcliffe, A., Tyler, J. A., Hardingham, T. E., (1986). Articular cartilage cultured with 
interleukin 1. Increased release of link protein, hyaluronate-binding region and 
other proteoglycan fragments. Biochem.J 238, 571-580. 

Recht, M., Bobic, V., Burstein, D., Disler, D., Gold, G., Gray, M., Kramer, J., Lang, P., 
McCauley, T., Winalski, C., (2001). Magnetic resonance imaging of articular 
cartilage. Clinical Orthopaedics and Related Research S379-S396. 

 178



References 

Repo, R. U., Finlay, J. B., (1977). Survival of articular cartilage after controlled impact. 
Journal of Bone and Joint Surgery 59, 1068-1076. 

Robson, M. D., Hodgson, R. J., Herrod, N. J., Tyler, J. A., Hall, L. D., (1995). A 
combined analysis and magnetic resonance imaging technique for computerised 
automatic measurement of cartilage thickness in the distal interphalangeal joint. 
Magn Reson Imaging 13, 709-718. 

Rudd, R., Crandall, J., Millington, S. A., Hurwitz, S. R., Hoglund, N., (2004). Injury 
Tolerance and Response of the Ankle Joint in Dynamic Dorsiflexion. Stapp Car 
Crash Journal 48, 1-26. 

Schibany, N., Ba-Ssalamah, A., Marlovits, S., Mlynarik, V., Nobauer-Huhmann, I. M., 
Striessnig, G., Shodjai-Baghini, M., Heinze, G., Trattnig, S., (2005). Impact of 
high field (3.0 T) magnetic resonance imaging on diagnosis of osteochondral 
defects in the ankle joint. Eur.J.Radiol. 55, 283-288. 

Schmitt, F., Grosu, D., Mohr, C., Purdy, D., Salem, K., Scott, K. T., Stoeckel, B., 
(2004). [3 Tesla MRI: successful results with higher field strengths]. Radiologe 
44, 31-47. 

Schnier, M., Eckstein, F., Priebsch, J., Haubner, M., Sittek, H., Becker, C., Putz, R., 
Englmeier, K. H., Reiser, M., (1997). [Three-dimensional thickness and volume 
measurements of the knee joint cartilage using MRI: validation in an anatomical 
specimen by CT arthrography]. Rofo 167, 521-526. 

Setton, L. A., Gu, W. Y., Lai, W. M., et al, (1995). Predictions of the swelling induced 
pre-stress in articular cartilage. In: Selvadurai, A. P. S. (Ed.), Mechanics of porous 
media. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 299-322. 

Seul, M., O'Gormal, L., Sammon, M. J., (2000). Practical algorithms for image analysis. 
Cambridge.Cambridge University Press 101-105. 

Shepherd, D. E., Seedhom, B. B., (1999). Thickness of human articular cartilage in 
joints of the lower limb. Ann.Rheum.Dis. 58, 27-34. 

Solloway, S., Hutchison, C., Waterton, J., Taylor, C., (1997). The use of active shape 
models for making thickness measurements of articular cartilage from MR 
images. Magn Reson Med 36, 943-952. 

Stammberger, T., Eckstein, F., Englmeier, K. H., Reiser, M., (1999a). Determination of 
3D cartilage thickness data from MR imaging: computational method and 
reproducibility in the living. Magn Reson.Med. 41, 529-536. 

Stammberger, T., Eckstein, F., Michaelis, M., Englmeier, K. H., Reiser, M., (1999b). 
Interobserver reproducibility of quantitative cartilage measurements: comparison 
of B-spline snakes and manual segmentation. Magn Reson.Imaging 17, 1033-
1042. 

 179



References 

Stockwell, R. S., (1979). Biology of cartilage cells. Cambridge University Press, 
Cambridge. 

Tan, T. C., Wilcox, D. M., Frank, L., Shih, C., Trudell, D. J., Sartoris, D. J., Resnick, 
D., (1996). MR imaging of articular cartilage in the ankle: comparison of available 
imaging sequences and methods of measurement in cadavers. Skeletal Radiol. 25, 
749-755. 

Tang, J., Millington, S. A., Acton, S. T., Crandall, J. R., Hurwitz, S. R., (2006). Surface 
Extraction and Thickness measurement of the articular Cartilage from MR images 
using Directional Gradient Vector Flow Snakes. IEEE transaction on biomedical 
engineering 53, 896-907. 

Tang, J. S., Millington, S. A., Acton, S. T., Crandall, J., Hurwitz, S. R., (2004). Ankle 
cartilage surface tracking using directional gradient vector flow snakes. IEEE 
International Conference on Image Processing 4, 2745-2748. 

Thompson, R. C., Jr., Oegema, T. R., Jr., Lewis, J. L., Wallace, L., (1991). 
Osteoarthrotic changes after acute transarticular load. An animal model. Journal of 
Bone and Joint Surgery 73, 990-1001. 

Torzilli, P. A., Grigiene, R., Borrelli, J., Jr., Helfet, D. L., (1999). Effect of impact load 
on articular cartilage: cell metabolism and viability, and matrix water content. 
J.Biomech.Eng 121, 433-441. 

Trattnig, S., Huber, M., Breitenseher, M. J., Trnka, H. J., Rand, T., Kaider, A., Helbich, 
T., Imhof, H., Resnick, D., (1998). Imaging articular cartilage defects with 3D fat-
suppressed echo planar imaging: comparison with conventional 3D fat-suppressed 
gradient echo sequence and correlation with histology. J.Comput.Assist.Tomogr. 
22, 8-14. 

Trattnig, S., Mlynarik, V., Breitenseher, M., Huber, M., Zembsch, A., Rand, T., Imhof, 
H., (1999). MRI visualization of proteoglycan depletion in articular cartilage via 
intravenous administration of Gd-DTPA. Magn Reson.Imaging 17, 577-583. 

Treppo, S., Koepp, H., Quan, E. C., Cole, A. A., Kuettner, K. E., Grodzinsky, A. J., 
(2000). Comparison of biomechanical and biochemical properties of cartilage 
from human knee and ankle pairs. J.Orthop.Res. 18, 739-748. 

Walter, J. H., Jr., Spector, A., (1991). Traumatic osteoarthrosis of the ankle joint 
secondary to ankle fractures. J.Am.Podiatr.Med Assoc. 81, 399-405. 

Wehrli, F. W., Hwang, S. N., Song, H. K., (1998). New architectural parameters derived 
from micro-MRI for the prediction of trabecular bone strength. Technol.Health 
Care 6, 307-320. 

 180



References 

Whittaker, J. P., Smith, G., Makwana, N., Roberts, S., Harrison, P. E., Laing, P., 
Richardson, J. B., (2005). Early results of autologous chondrocyte implantation in 
the talus. J.Bone Joint Surg.Br. 87, 179-183. 

Wilson, M. G., Michet, C. J., Jr., Ilstrup, D. M., Melton, L. J., III, (1990). Idiopathic 
symptomatic osteoarthritis of the hip and knee: a population-based incidence 
study. Mayo Clin.Proc. 65, 1214-1221. 

Woo, S. L. Y., Mow, V. C., Lai, W. M., (1987). Biomechanical properties of articular 
cartilage. Handbook of bioengineering. McGraw-Hill, New York, p. 4.1-4.44. 

Yao, J. Q., Seedhom, B. B., (1991). A new technique for measuring contact areas in 
human joints--the '3S technique'. Proc.Inst.Mech.Eng [H.] 205, 69-72. 

Yao, J. Q., Seedhom, B. B., (1993). Mechanical conditioning of articular cartilage to 
prevalent stresses. British Journal of Rheumatology 32, 956-965. 

Yao, J. Q., Seedhom, B. B., (1999). Ultrasonic measurement of the thickness of human 
articular cartilage in situ. Rheumatology.(Oxford) 38, 1269-1271. 

Yelin, E., Callahan, L. F., (1995). The economic cost and social and psychological 
impact of musculoskeletal conditions. National Arthritis Data Work Groups. 
Arthritis Rheum. 38, 1351-1362. 

 181


	Table of Contents
	Declaration
	Acknowledgments
	Funding
	List of Tables
	List of Figures
	List of Abbreviations
	Research Publications Related to this Thesis
	Abstract
	Chapter 1. Introduction
	1.1. Ankle anatomy
	1.2. Articular cartilage structure
	1.3. Articular cartilage injury
	1.4. Ankle injury and osteoarthritis
	1.5. Cartilage MRI
	1.6. Quantitative Cartilage Measurements
	1.7. Ankle joint contact area

	Chapter 2. Aims of the thesis
	Chapter 3. Stereophotography experiments
	3.1. Introduction
	3.2. Materials & methods
	3.2.1. Ethical approval
	3.2.2. Specimen preparation
	3.2.3. Advanced Topographic Sensor (ATOS™)
	3.2.4. Data Acquisition
	3.2.5. Post Processing Technique
	3.2.6. Statistical analysis

	3.3. Results
	3.4. Discussion
	3.5. Conclusions

	Chapter 4. 2-D Semi-automated cartilage segmentation study
	4.1. Introduction
	4.2. Material & methods
	4.2.1. Ethical approval
	4.2.2. Specimen preparation
	4.2.3. Magnetic Resonance Imaging protocol
	4.2.4. 2-D Cartilage segmentation algorithm
	4.2.5. Anisotropic diffusion – noise reduction algorithm
	4.2.6. Data analysis
	4.2.7. Statistical analysis

	4.3. Results
	4.3.1. Sagittal image segmentation experiments
	4.3.2. Coronal image segmentation experiments

	4.4. Discussion
	4.5. Conclusions

	Chapter 5. Preliminary 3-D fully automated cartilage segmentation study
	5.1. Introduction
	5.2. Material & methods
	5.2.1. Ethical approval
	5.2.2. MRI data sets

	5.3. 3-D segmentation algorithm
	5.3.1. Independent Standard.
	5.3.2. Comparisons with the Independent Standard.
	5.3.3. Reproducibility

	5.4. Validation Indices
	5.4.1. Approximate Bone Segmentation Indices. 
	5.4.2. Surface Positioning Errors.
	5.4.3. Cartilage Morphology Indices.

	5.5. Results
	5.6. Discussion
	5.7. Conclusions

	Chapter 6. Ankle joint contact area measurement study
	6.1. Introduction
	6.2. Materials & methods
	6.2.1. Ethical approval
	6.2.2.  Specimen preparation
	6.2.3. Specimen Loading
	6.2.4. Modification of the Stereophotography Technique
	6.2.5. Post Processing Technique 

	6.3. Results
	6.4. Discussion
	6.5. Conclusions

	Chapter 7. General discussion
	Chapter 8. Thesis conclusions
	Chapter 9. Future work
	Chapter 10. References

