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Abstract 
 

Differential interferometric synthetic aperture radar (InSAR) is a well used 

technique for measuring deformations, but often suffers greatly from effects due 

to atmospheric differences occurring between different SAR images.  Recently a 

new set of techniques have been developed called Persistent Scatterer 

techniques, which take advantage of the high number of SAR images available 

to try and model out the atmospheric effects.  To aid this process, all present 

techniques make use of a Digital Elevation Model (DEM) to remove the 

interferometric phase due to topography, but as a consequence this contaminates 

the phase values with an unknown error due to the DEM, which has to be 

modelled out in the processing chain.  In this thesis a new Persistent Scatterer 

(PS) method is proposed that does not use a DEM to remove the topographic 

phase component, but rather one of the interferograms used in the study, and 

hence does not need to calculate topographic height corrections.  This is 

achieved by using the Integer Ambiguity Search (IAS) 3-Pass differential 

technique.  The developed algorithms are then tested and assessed over two test 

sites in central London, UK.   

 

The overall conclusions of the research are summarised below.  The IAS 3-pass 

differential interferometry method gives a differential result that is more 

consistent with 2-pass results than with traditional 3-pass results.  By using the 

IAS 3-pass method, it is possible to do a PS InSAR analysis without recourse to 

a DEM or needing to derive any topographic information.  The developed IAS 

PSInSAR algorithms have been tested using simulated data, which has shown 

that the methods developed can identify small scale target motion over a period 

of a few years.  The IAS PSInSAR algorithms were also tested using real SAR 

data, the results of which are consistent with GPS results of the test site and 

previous independent investigations.   
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1. Subsidence Monitoring 
 

1.1 Subsidence 

 

Subsidence is a type of land deformation that can be described as a sinking of 

the surface.  It is a problem that occurs over the whole world though there are 

many different causes of it.  It is estimated that in the U.K. over the last 10 years 

it has cost insurance companies over £300 million per year (Haynes et al 2001).  

Although usually only small, surface movements can cause great pressure on 

structures both above and below ground.  In urban areas of the U.K. subsidence 

is often caused by either seasonal changes in, for example, clay (Bingley et al 

1999), or mining subsidence (Stow 1996).  Other major causes of subsidence 

could be soil compaction, soil shrinkage, water extraction, seismic and volcanic 

activity (Whittaker and Reddish 1989).  An example of (extreme) subsidence 

can be seen below in Figure 1.1. 

 
Figure 1.1 An example of (extreme) subsidence.  Road collapsed beneath a bus, due to failure of 

weathered chalk above an abandoned mine, in Norwich, U.K. (Waltham 1989) 
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1.2 Measurement Techniques  

 

Subsidence can involve very small movements of the surface over long periods 

of time, for example a slow landslide, or conversely large movements over short 

times, for example resulting from earthquakes.  The method employed to 

measure subsidence depends on the scale of deformation involved, the time 

periods of the subsidence phenomenon and how hazardous the environment is, 

not to mention the “human” factors such as cost and surveying time.  Classical 

methods for subsidence measurement usually require levelling surveys. Over the 

past 10 to 15 years, the methods employed have changed from these traditional 

levelling surveys to more modern satellite based techniques such as the Global 

Positioning System (GPS) and Synthetic Aperture Radar Interferometry 

(InSAR).  This is partly due to the fact that these methods can be available at 

any time of day, in any weather and require less man power (therefore being 

cheaper). 

 

1.2.1 GPS 

 

The Global Positioning System (GPS) consists of a constellation of satellites 

(approx 24), with each one emitting a uniquely coded signal.  A receiver can 

then pick up these signals and calculate the (pseudo-)range from the satellite to 

the receiver using code or carrier phase.  At least 4 satellites must be in view for 

the receiver to calculate its 3-dimensional position.  A more detailed overview 

on GPS for deformation monitoring is given in chapter 6.3.  

 

1.2.2 InSAR 

 

Synthetic Aperture Radar (SAR) is a kind of radar that is often used for Earth 

imaging purposes.  What makes this kind of radar particularly useful is that it 

synthesises a long antenna (which is needed for high azimuth resolution) by 

combining echoes that it has received (Ulaby et al 1982).  This means that the 

antenna size on the satellite can be relatively small with no loss of resolution.   

Satellite Radar Interferometry is a method of using satellite borne radar for 
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measuring distance/motion.  SAR Interferometry (InSAR) is basically the 

combination of the phase measurements from two SAR images to create an 

interference pattern.  This is called the interferogram, and appears as a series of 

“fringes”, which can be related to changes in distance between the Earth surface 

and the radar.  These changes in distance can then be related to topographic 

height, and with further processing techniques give an indication of surface 

motion.  More information on these techniques is given in later chapters of this 

thesis. 

 

1.3 Integrable Monitoring 

 

The two techniques of GPS and InSAR are proving to be very useful in the 

monitoring of subsidence.  The two techniques are complimentary to each other 

as can be seen from the comparisons in Table 1.1 below.  But integrating the 

two techniques together has often proved difficult in the past. 

   

GPS InSAR (ERS/Envisat)

Data Free Cost per SAR image

Temporal Coverage Continuous operation Once every 35 days

Depends on receiver locations 
and if data is publicly 

available 
Archive Data Available back catalogue of 

data from 1992 (ERS)

Requires receiver to be set up 
in fieldField Operatives No man power required

3-Dimensional position vector 1-Dimensional line-of-sight Parameter

Specialist Equipment 
Required by User GPS receiver & antenna None

Global capability - but only at 
receiver site. Resolution 

discrete points

Global - image approx. 
100km * 100km. Resolution 

approx. 25m
Spatial Coverage

 
Table 1.1 Comparison of the two techniques: GPS and SAR Interferometry 

 

Different methods of using the two techniques together have been proposed.  

The “Double Interpolation Double Prediction” method proposed and 

demonstrated by Ge et al (2000), uses the GPS to derive atmospheric and orbital 

corrections for the InSAR data, and then uses the corrected InSAR data to 

‘densify’ the GPS observations.  Williams et al (1998), and Zebker et al (1997), 

present similar techniques of using the GPS to remove, or at least reduce, the 
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atmospheric effects on the SAR data.  An obvious limitation with these 

techniques is that they require the GPS and interferometry data to be gathered at 

the same time.  Fernandez et al (2003), used GPS to ‘fill in the holes’ in the 

InSAR data where the coherence is too low to get good measurements from the 

SAR data.  Another method of integrating the two techniques is by using the 

GPS to ‘validate’ the InSAR data.  Here the GPS time series is simply compared 

to, or overlaid with, the InSAR deformation to compare the measurements, as in 

Colesanti et al (2003b).   

 

Leijen et al (2005), proposed a method for integrating the measurements of 

InSAR with GPS where the two sets of data are processed together in a least 

squares framework.  This is the only approach where a ‘real’ integration of the 

two techniques as deformation measurement tools takes place.  This approach 

may be used with a special method of InSAR called Persistent Scatterer (PS) 

InSAR (see chapter 5).  PS InSAR uses certain pixels within a stack of SAR 

data to generate time series of deformation and to get a good integration result in 

the least squares solution, the 3D position of the PS point data is required to be 

known accurately.     

 

1.4 Research Motivation 

 

Subsidence is a global problem; it widely occurs on every continent, and is 

particularly of interest in built up and highly populated regions.  As previously 

mentioned it can be a very costly thing, especially if buildings or roads are 

located on the subsiding ground.  The detection and monitoring of subsidence 

can also be a very expensive process as well.  A relatively new technique of 

radar interferometry, called Persistent Scatterer Synthetic Aperture Radar 

Interferometry (PSInSAR), may allow much cheaper and easier subsidence 

monitoring.  Current methods of PSInSAR make use of a Digital Elevation 

Model (DEM) as a model of the local topography.  These DEMs are inaccurate 

and introduce an error which must be solved for in the PSInSAR process. 

 

The Integer Ambiguity Search (IAS), developed at the University of 

Nottingham’s Institute of Engineering Surveying and Space Geodesy, gives a 
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method for reconstructing the absolute phase of the radar signal.  Using this 

technique it is possible to calculate the 3-dimensional position (in an Earth 

centred Earth fixed Cartesian coordinate system) of the InSAR data.  It also has 

the potential to enable improvements to be made to the 3-pass differential 

InSAR method. 

 

In this thesis, it is proposed that a PSInSAR framework can be developed to take 

advantage of the IAS method’s 3-pass technique, to allow a PSInSAR analysis 

without needing to model the topographic height.  This is an important potential 

advance, since it removes the source of error relating to the reference surface 

from the processing chain, which could allow a greater certainty in the final 

results.  It will also allow an easier ‘error budgeting’ since there is one less 

source of error. 

 

Another advantage with using the IAS within the PSInSAR framework could 

come with analysing the results.  Because the IAS gives 3-d positions within a 

geodetic frame it should allow for easier integration with other monitoring 

techniques such as GPS.  For example, the integration of GPS and InSAR data 

through a least squares solution will need the data to be in the same coordinate 

system.   

 

At the present time there is much research being done in the field of PSInSAR.  

Many different algorithms have been proposed that follow different processing 

chains or use a different selection of Persistent Scatterers.  No one method is 

considered “the best” and a current European Space Agency research project 

titled “Persistent Scatterer Interferometry Codes Cross-Comparison and 

Certification”, or PSIC4 for short, aims to test the adequacy of the different 

algorithms over the same test site and report the findings to the scientific 

community (Raucoules et al 2005).  The PSIC4 project was commissioned after 

discussions about the uncertainty, accuracy and trustworthiness of PSInSAR 

measurements. 
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The aims and objectives of this PhD project are as follows: 

 

• Validate that the Integer Ambiguity Search method works with real SAR 

data. 

• Test the theory that the Integer Ambiguity Search method can improve 

upon current 3-pass Differential Interferometry by using experimental 

results. 

• Develop a Persistent Scatterer algorithm and processing chain that does 

not output a topographic height model, i.e. it does not need to calculate 

reference surface corrections.  

• Test and validate the developed Persistent Scatterer algorithm and 

processing chain using a suitable test site.  

 

1.5 Outline of the Thesis 

 

The thesis is broadly organised into two sections; conventional SAR 

Interferometry and Persistent Scatterer Interferometry.  The first section consists 

of chapters 2, 3 and 4 and are organised as follows.  Chapter 2 gives an 

introduction to Synthetic Aperture Radar, outlining the basics of radar remote 

sensing and the image geometry.  Chapter 3 then goes a stage further and 

introduces the interferometric techniques of SAR processing.  The steps for 

producing an interferogram are discussed and illustrated along with the 

limitations of SAR Interferometry.  The differential InSAR techniques are also 

introduced and discussed along with their respective limitations.  Chapter 4 then 

introduces the concept of the phase ambiguity, i.e. the fact that the absolute 

phase of the radar signal is unknown, and the process of phase unwrapping.  The 

Integer Ambiguity Search method is discussed and demonstrated using some 

data of London, UK.  The IAS differential interferometry method is also 

discussed, demonstrated and compared to other differential interferometry 

techniques.  A discussion then follows on how, and under which circumstances, 

it is possible to improve a differential InSAR result by using a coarse DEM.   
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The second section of the thesis is dedicated to the methods of Persistent 

Scatterer Interferometry, and consists of chapters 5 to 9.  Chapter 5 gives an 

introduction to Persistent Scatterer Interferometry and outlines the algorithm 

that pioneered the persistent scatterer methods; the Permanent Scatterer 

Technique (Ferretti et al 1999).  It then goes on to describe the IAS Linear 

PSInSAR algorithm and highlight the differences between this and the Ferretti 

algorithm.  Chapter 6 provides an introduction to the test sites that are used to 

test and assess the algorithm.  Two test sites within the City of London have 

been chosen; Greenwich and Westminster.  Chapter 7 describes the software 

that has been developed to implement the PSInSAR algorithms, and then 

demonstrates the algorithms using simulated data.  Chapter 8 shows and 

discusses the results attained from the algorithm when tested on the real SAR 

data at the two test sites.  Chapter 9 then goes on to describe a further PSInSAR 

algorithm for preserving non-linear deformation (Ferretti et al 2000a) and also 

describes the IAS non-linear algorithm.  The IAS non-linear algorithm is then 

tested with simulated data and the results shown before the algorithm is tested 

using the two previous test sites.  The results from the real data are then 

discussed. 

 

Finally, chapter 10 summarises the results of the author’s research and 

concludes the thesis.  A discussion then follows on possible future research with 

the IAS PSInSAR algorithms. 
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2. Synthetic Aperture Radar 
 

2.1 Brief History of Radar 

 

Radar is an acronym for RAdio Detection And Ranging.  The basic use of a 

radar is as a measuring device, whether it be for distance or time.  It operates in 

the microwave portion of the Electromagnetic Wave Scale, usually with 

wavelengths between 1mm and 1m.  It was originally developed in the early part 

of the 20th Century as a method for detecting ships and aircraft for military 

defence purposes (Ulaby et al 1981), but is now also widely used as a method of 

imaging.  A lot of the early advances of radar came during the period leading up 

to (and including) World War II, with Germany, Great Britain and the US all 

developing radar systems (Curlander and McDonough 1991).   The evolution 

from using radar as a location device to an imaging tool came with the 

application of the Side Looking Airborne Radar (SLAR) in the 1950s.  SLARs 

(also known as Real Aperture Radars (RAR)) allowed a much finer resolution 

because they could have a larger antenna due to it being fixed parallel to the 

aircraft.  These were used throughout the 60s and 70s for land mapping 

campaigns.  One such campaign involved mapping 500 000 km2 of the United 

States (Ulaby et al 1981).  From this work in SLAR, the design of Synthetic 

Aperture Radar (SAR) systems was born.  SAR is basically a SLAR which 

includes some further signal processing of the transmitted and received signal. 

 

Using the understanding of airborne radars and with the extent of knowledge on 

space technology, it wasn’t long before research turned to space-borne SAR.  

The first (non-military) experiments of SAR took place in the 1960’s and 70’s 

using rockets and the Apollo 17 lunar orbiter (Curlander and McDonough 

1991); however it wasn’t until the end of the 70’s before a satellite with SAR 

capability was launched; the Seasat mission in 1978 (Elachi 1991). This was 

followed by the Shuttle Imaging Radar missions and Soviet missions of the 

1980’s.  In the early 1990’s, three more satellites bearing SAR were launched: 

the European Space Agency’s (ESA) ERS-1, Japan’s JERS-1 and the Soviet’s 

Almaz-1.  These were quickly followed by Canada’s Radarsat and ESA’s ERS-2 
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in the mid 1990’s, and more recently by ESA’s Envisat and NASA’s Shuttle 

Radar Topography Mission (SRTM).  For more detail on the history of radar 

see, for example, (Curlander and McDonough 1991).  

 

2.2 Radar Basics and Operation 

 

So far, radar has been put into the context of its history.  This section gives an 

introduction to what an Imaging Radar is and identifies some of its properties.  

Throughout this thesis, radar discussions will be restricted to satellite-borne 

radar systems. 

 

Before an in-depth discussion of radar, it is prudent to define the terminology of 

an electromagnetic wave.  The diagram below in Figure 2.1 shows an 

electromagnetic wave, describing the terminology of wavelength, amplitude and 

phase.  Some examples of electromagnetic waves are: light, X-rays, radiowaves, 

microwaves and gamma rays. 

 
Figure 2.1 An electromagnetic wave.  The wavelength is defined as the distance between 

consecutive peaks, the amplitude as the maximum height of the peak and the phase as the 

fractional part of a wavelength, shown in red.  

 

The basic operation of radar is as follows (see Figure 2.2).  Radar is an active 

sensor; it emits a pulse of electromagnetic radiation from the transmitting 

antenna and then listens for the returning echo at the receiving antenna.  Most 
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radar systems use the same antenna for transmitting and receiving.  When the 

return pulse is received various signal parameters are stored.  These can include 

the phase, amplitude and receive time of the return signal as well as the 

polarisation (Skolnik 2001).  The Doppler frequency and the time delay between 

transmit and receive can also be derived from the data.  The time delay,τ , can 

be used to calculate the range distance using the simple 2/τ⋅= cr  equation, 

where r is the range and c the speed of light.   

 
Figure 2.2 Basic operation of a radar.  Signal is transmitted from antenna, bounces off target and 

antenna receives the reflected signal. From (Sowter 2003a) 

 

The return pulses can then be collected together to generate an image if this is 

desired.  The above example in Figure 2.2 is greatly simplified, since with each 

transmitted signal, more than one target is likely to reflect the signal.  For each 

pulse these targets can be arranged in the order in which they were received, 

which in turn can give the range of the targets. A form of image display that has 

been in use since the 1940’s is the plan-position indicator (PPI).  The radar 

antenna is rotated about an axis and the return echoes form a circular image, 

with range given from the centre of the circle (Ulaby et al 1981).  These 

displays are often still used in aeroplanes and ships for navigation purposes. 

 

2.3 Radar for Remote Sensing 

 

2.3.1 What is Remote Sensing? 

 

Remote Sensing is a term used to describe a group of techniques that can give 

information about something without actually physically touching the object.  

Lillesand and Kiefer (2004) define it as: “Remote Sensing is the science and art 

of obtaining information about an object, area, or phenomenon through the 

analysis of data acquired by a device that is not in contact with the object, area, 
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or phenomenon under investigation.”  A simple example would be photography.  

The result (photograph) can give you information of the subject without the user 

(photographer) actually being in contact with the subject.  More obvious 

examples of instruments for remote sensing and Earth monitoring applications 

are: photogrammetry, LiDAR, radar and other satellite imagery techniques.   

 

2.3.2 Why use Radar for Remote Sensing? 

 

The first question that should be answered is why should we use radar as a 

remote sensing tool?  As mentioned previously, radar is an active sensor.  This 

means that it emits its own illumination.  This allows radar to be used at any 

time of day, no matter if there is sunlight or not, giving it an advantage over 

optical techniques.  Another advantage of radar is that the microwave 

wavelengths used allow it to “see” through clouds (Ulaby et al 1981).  This 

allows the interpretation of the radar images no matter if the sky was overcast or 

not.  These two reasons show the benefits of using radar where optical imaging 

might fail, but there is also the reason to use radar because it gives a different 

kind of result, or a complimentary result.  For example a radar image gives 

different information than an optical image (Lillesand and Kiefer 2004).  Also, 

microwaves are able to penetrate vegetation and soil depending on the 

wavelengths used and the water content of the soil.  This thesis concentrates on 

using the SAR Interferometry (InSAR) technique.  As the name suggests, SAR 

Interferometry uses Synthetic Aperture Radar, which is a Side Looking Radar.   

 

2.4 Side Looking Airborne Radar 

 

Side Looking Airborne Radars (SLARs) are the basic radar of remote sensing 

imaging applications.  As their name suggests, they are pointed perpendicular to 

the direction of travel at an angle above the nadir.  A discussion follows on 

SLAR basics including the geometry and resolution of radars.  This then leads 

onto describing the basic operability of SAR. 
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2.4.1 Geometry 

 

The geometry of the Side Looking Radar is best described using a picture, see 

Figure 2.3 below.  The radar antenna is moving in the direction of its velocity 

vector, and viewing/imaging in the direction perpendicular to this.  The radar 

moves in the azimuth direction and views to the range direction.  The satellite 

track or nadir track is the path the satellite follows projected onto the surface in 

the nadir direction.  The look angle is the angle between the satellite nadir and 

the radar beam.  It is common notation to describe the look angle as being 

between the nadir and the centre line of the radar beam.  The azimuth beamwidth 

of the radar is equal to the wavelength divided by the antenna length, and 

determines the size of the area illuminated, in the azimuth direction, of each 

pulse.  The swath width, or size of the illuminated area in the range direction, is 

determined by the elevation beamwidth which is equal to the wavelength 

divided by the antenna width.  This together with the look angle determines the 

area imaged.  The edge of the radar image nearest to the radar is called near-

range, and the furthest is called far-range. 

 
Figure 2.3 Geometry of a Side Looking Radar (Olmsted 1993) 

 

As the radar moves along it flies in a straight line emitting short pulses at a rate 

called the Pulse Repetition Frequency (PRF).  The returns of each one of these 

pulses makes up a range line in the radar image.  The pulse returns are arranged 
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parallel so as to form an image.  Each pixel of this image has two associated 

coordinates: an azimuth time coordinate which gives the time the range line was 

imaged, and a range time coordinate which gives the elapsed time between 

transmitting and receiving the pulse echo.  The range time coordinate may be 

given as a range value (metres) instead.  The term range can be confusing when 

discussing radar images; the terms slant-range and ground-range are used to 

distinguish between distances relating to radar geometry and ground 

respectively.  This is illustrated in Figure 2.4, where S is the satellite, and the 

range between two targets T1 and T2 is shown in both slant range and ground 

range. 

 
Figure 2.4 The geometric difference between slant and ground ranges. 

 

2.4.2 Spatial Resolution 

 

Spatial resolution is defined as the shortest distance between two points such 

that they can be distinguished as separate points in the radar image (Curlander 

and McDonough 1991).  This is obviously a very important aspect of Imaging 

Radars, which would ideally have a resolution high enough to resolve any two 

points.  In practice this is not possible.  The spatial resolution can be described 

in two separate parts; range resolution and azimuth resolution. 
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2.4.2.1 Range Resolution 

 

The range resolution describes the spatial resolution in the range direction, i.e. 

for each pulse, what is the minimum separation (in ground-range) of two targets 

such that they can be resolved in the radar image.  This is equivalent to having 

two separate echoes received at the radar.  For this to occur, the separation of the 

two targets (A and B say) must be such that the pulse cannot travel from point A 

to B and back to A again before the whole pulse has been reflected from A 

(Curlander and McDonough 1991).  That is, the two targets A and B must be 

separated by a distance (in slant range) greater than half the pulse length.  Figure 

2.5a shows this from a geometrical point of view.  Two objects A and B will not 

give two resolvable echoes at the radar S, whereas the two targets C and D will 

be discernable.  Figure 2.5b shows the same thing in terms of the pulse 

responses.  This implies that a shorter pulse width will give a higher spatial 

resolution in the range direction, as Eqn 2.1 shows,  

θ
τ

θ Sin
c

Sin
R

R S
G 2

==     2.1 

where GR  is the resolution (in ground range), SR  the resolution in slant range, 

τ is the pulse length and θ  the incident angle.  But due to the relationship 

between pulse width and pulse energy, this is only true up to certain limits for a 

reliable Signal to Noise Ratio (SNR) (Curlander and McDonough 1991). 

 

Because of the SNR limits, a pulse compression technique is applied such that a 

long, low power pulse can simulate a very short, high powered pulse.  This is 

achieved using frequency modulation, with the returns being processed 

accordingly to remove this effect (Ulaby et al 1982), and gives the updated 

range resolution equation: 

θsin2B
cRG =      2.2 

where B  is the bandwidth of the pulse. 
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Figure 2.5a.  Range resolution: geometry.  A geometrical view of two targets, A and B, that will 

be inseparable in the radar image since they are separated by less than half a pulse length; targets 

C and D will give separate responses in the image because they are separated by greater than 

half a pulse length. 

 
Figure 2.5b.  Range resolution: pulses.  The equivalent of Figure 2.5a in terms of pulses received 

by the radar.  The returns from A and B overlap and so will be detected as one response, 

whereas C and D do not overlap and so will give separate responses. 

 

2.4.2.2 Azimuth Resolution 

 

The azimuth resolution describes the spatial resolution in the azimuth direction.  

For two objects (at the same range value) to be resolved in the azimuth direction 

they need to be in different pulse returns (never in the same one), i.e. they need 

to be separated by at least the size of the illumination on the surface.  This is 

given by the azimuth beamwidth, b, and the slant range, RS, to the surface: 
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L
R

RR S
SA

λ
β ==     2.3 

where l is the radar wavelength and L the size of the radar antenna.  It can be 

seen that a large antenna length and small wavelength will give a better 

resolution, but that the resolution deteriorates with range from the satellite.  

Figure 2.6 shows the azimuth resolution deteriorating as slant range increases. 

 
Figure 2.6 Azimuth resolution.  Different resolutions, Ari, given by slant range Ri and azimuth 

beamwidth b. 

 

The size of antenna is a limiting factor for SLAR, and it is impractical to have a 

large antenna on a satellite.  This is a difficulty for using satellite SLAR as a 

remote sensing tool.  To quote an example from (Curlander and McDonough 

1991), “The Seasat antenna at an altitude of 800km would attain a SLAR 

resolution of 18km”.  That is with an antenna size of approx. 10m.  This 

apparent limitation is overcome by SAR systems (see section 2.5). 

 

2.4.3 Geometrical Distortions 

 

SLAR images have three main geometrical distortions associated with the side 

looking aperture: foreshortening, layover and shadow.  They are described in 

turn below and illustrated in Figures 2.7, 2.8 and 2.9. 

 

Foreshortening is the name given to the phenomenon shown in Figure 2.7.  The 

front slopes of raised features appear shorter than the back slopes in radar 
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images, giving the appearance that they “lean” towards the radar.  This occurs 

when the terrain slope is less than the incident angle (Curlander and 

McDonough 1991). 

 

 
Figure 2.7 Foreshortening: length AB appears much shorter in slant range than in ground range.  

 

Figure 2.8 describes Layover, which occurs when the terrain slope is much 

greater than the incidence angle (Curlander and McDonough 1991).  In the 

image it would appear that the top of the slope is “laying over” the bottom. 

 
Figure 2.8 Layover: point B appears before point A in slant range. 

 

Finally, shadow is shown in Figure 2.9.  This occurs when the terrain blocks the 

signal from hitting anything behind it, and so occurs on steep back slopes and 

results in a dark area on the radar image.   

 
Figure 2.9 Shadow: terrain blocks radar signal 
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2.5 Synthetic Aperture Radar 

 

Synthetic Aperture Radar (SAR) systems are a special case of SLAR that 

overcome the problems of poor azimuth resolution by utilising some further 

signal processing algorithms.  By observing the Doppler shift of a target 

response as the radar moves along track it is possible to synthesise a much larger 

antenna.  The SAR principle is shown in Figure 2.10.  The target T is in each of 

the pulse returns from the radar as it moves along, in the direction of V, the 

distance S metres shown.  From the processing of these returns an antenna 

length of S metres is synthesised, from the real aperture size R.  The azimuth 

resolution limit for this process is (Ulaby et al 1982) 

2
LRA =       2.4 

where L is the antenna length, which seems counter-intuitive that a smaller 

antenna should lead to a better resolution.  This can be partly explained by the 

fact that a smaller antenna size will lead to a larger beamwidth, meaning a target 

will be in more returns and hence a larger aperture can be synthesised.   

 
Figure 2.10 Synthetic Aperture principle.  The target T is in many radar returns, from an antenna 

with length R, moving along the direction V.  Processing can synthesise an antenna length S.  
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This assumes 1-look statistics, that is, that the full size synthetic aperture is 

used.  What is more usual is that a greater number of looks is used, say N.  With 

N-looks it means that the synthetic aperture is split up into N non-overlapping 

segments, to generate N independent images (Ulaby et al 1982).  These are then 

averaged together resulting in an image with lower speckle noise (see section 

2.7) but resulting in a degradation of spatial resolution.  The azimuth resolution 

of an N-look SAR image is given by 

2
NLRA =     2.5 

For a more detailed analysis see Ulaby et al (1982), Curlander and McDonough 

(1991). 

 

2.6 Radar Equation and Backscatter 

 

The part of the reflected radar signal that is received back at the radar is called 

backscatter, and is of obvious importance.  In a radar image, if the backscatter 

of a particular resolution cell is high then the image pixel will be bright; 

alternatively for low backscattering values the pixels will be dark.  There are 

various parameters that can have an effect on the amount of backscatter received 

by the radar: wavelength of the transmitted pulse, polarisation, incidence angle, 

surface roughness and moisture content (Ulaby et al 1986).  The parameter of 

prime importance to radar imaging interpretation is the surface roughness.  

Figure 2.11 shows the backscattering characteristics of various surface types. 
 

The moisture content of the surface target affects the backscatter due to the 

change of the dielectric constant.  The dielectric constant tends to increase as 

the water content increases, which affects the depth of penetration by the radar 

signal (Sabins 1997).  This usually leads to an increase in backscattering.   

 

The surface roughness (which is related to the surface type: forest, water, rock 

etc) is the main (uncontrollable) effect that affects the backscattering.  This is 

best explained in Figure 2.11.   
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Figure 2.11 Surface scattering effects from differing surface roughness (Farr 1993) 

 

Smooth surfaces (such as calm water) act as specular reflectors (Lillesand and 

Kiefer 2004), do not reflect much signal back to the radar and so will appear 

black in the image.  A rough surface acts as a diffuse reflector and will reflect 

more of the signal back to the radar.  These appear as shades of grey in the radar 

image depending on how much backscatter is received.  Typically, bright returns 

will be received from corner reflections, double bounces or surfaces orientated 

such that most of the signal rebounds towards the receiver.   
 

The radar parameters (wavelength, polarisation and look angle) all affect the 

backscatter.  As previously stated, the wavelength of the microwave radiation 

can alter the penetration depth of and cause different responses over vegetated 

and forest areas.  The polarisation (the orientation of the magnetic and electric 

fields) of the radiation can also affect the backscatter due to a different response 

from different surface types (Sabins 1997).   
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To relate the characteristics of the radar parameters and the target, the radar 

equation is used.  The radar equation for a point target is defined as (Curlander 

and McDonough 1991) 

kFTBR
APGSNR 22 )4( π

σ
=     2.6 

where SNR is the signal-to-noise ratio, P is the transmitted power, G is the 

antenna gain, s is the cross sectional area of the scatterer, A is the antenna area, 

R is the target range and k, F, T and B describe the noise in the receiver.  s is 

usually normalised to s0 (sigma-nought) and measured in dB and is the 

parameter of most interest (after the radar design process) giving information 

about the target.  s0, the average radar cross section per unit area, gives the area 

of a scatterer that would return the received power at the antenna (Campbell 

1996). 

 

2.7 Speckle 

 

Speckle is a thermal noise term inherent in all radar images.  On a radar image it 

appears as a grainy texture (Goodman 1976).  It occurs due to the coherent 

nature of radar.  With multiple scatterers in the resolution cell the signal suffers 

constructive and destructive interference and, because of this, if the same 

resolution cell was imaged twice from slightly different geometries, two 

different results could be received (Li and Goldstein 1990).  Speckle has a 

multiplicative effect on the image intensity, that is, the mean and standard 

deviation are linked.  So for a brighter target response, we get more noise.  For 

the phase of a resolution cell however, a zero-mean complex Gaussian number 

represents it (Zebker and Villasenor 1992).  As previously stated speckle can be 

reduced by taking multiple looks or by using some specialised filters (Lopes et 

al 1993). 

 

2.8 Phase of a Resolution Cell 

 

The phase of a resolution cell is constructed from different components.  In the 

most general terms, the phase is made up of two components: geometry and 

scattering (Bamler and Hartl 1998).  The geometrical component is the phase 
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value due to the range from the radar, i.e. the number of cycles from the antenna 

to target and back again.  For the resolution cell this is often equivalent to the 

distance from radar to centre of cell.  The scattering phase component is due to 

the interaction of the radar signal with the targets in the resolution cell.  For 

single point scatterer targets (i.e. one reflector in the resolution cell) the phase 

will relate to this target.  For Gaussian scatterers (i.e. a high number of random 

scatterers in the resolution cell) the phase of a single cell contains no useful 

information (Zebker and Villasenor 1992).   

 

In reality the phase will be made up of extra components, for example there 

could be terms due to atmospheric refraction, thermal and random noise.  

Speckle will also occur since the resolution cell will usually include multiple 

scatterers. 

 

2.9 Summary 

 

An introduction to radar for remote sensing has been given with an emphasis on 

space-borne radar.  The geometry and the terminology of remote sensing radar 

have been described for side-looking systems.  Synthetic Aperture Radar (SAR) 

has been introduced and its advantages over Real Aperture Radars (RAR) have 

been described.  The Radar Equation and the scattering effects of microwaves 

have been shown, together with a description of speckle and the phase of the 

radar resolution cells. 
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3. SAR Interferometry 
 

3.1 Interference 

 

Interferometry is a technique that studies the interference patterns created from 

two waves.  This is not a new technique.  For example, two classical science 

experiments that demonstrate the interference of (light) waves are Newton’s 

rings and Young’s slits, which were carried out hundreds of years ago.  Figure 

3.1 below helps to show how two waves interfere.  Where the interfering waves 

are in-phase, constructive interference occurs and the amplitude of the resulting 

wave is increased.  Where the waves are out of phase, destructive interference 

occurs and the amplitude of the resulting wave is decreased.   

 
  Figure 3.1: Constructive and destructive interference.  Plots 1 and 2 show two waves which 

cycle in and out of phase.  Plot 3 shows the interference of the two waves, the amplitude 

increases when they are in phase and decreases where they are out of phase.  (Ghiglia and Pritt 

1998 ) 
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3.2 Interferometry 

 
SAR Interferometry (InSAR) is a scientific technique that exploits the phase 

difference between two SAR images.  In other words, the interference pattern 

between the phase of the two SAR images is formed.  This is known as the 

interferogram.  The interferogram (or interferometric phase) contains the data of 

the relative geometries of the two SAR images (Massonnet and Feigl 1998).  

When viewed, the interferogram appears as a series of fringes denoting where 

the interferometric phase completes a full cycle (0-2p radians).   

 

The first InSAR results for Earth Observation were created using airborne radar 

data (Graham 1974).  Here they were concerned with using the phase 

differences to model the topography of the surface.  The interferometric phase is 

a measure of the difference in the phase between the two SAR images, which in 

turn can be related to difference in radar signal path length (see Figure 3.2).  

Using the aircraft positions it is then possible to relate this path difference to 

surface topography.  This is the main application of SAR interferometry: 

topographic mapping/DEM generation (Small 1998) but it is also often used for 

land classification (Askne and Smith 1996). 

 

Early space based InSAR results were achieved using data from the Seasat 

satellite (Goldstein et al 1988) and the Shuttle Imaging Radar (SIR) missions 

(Gabriel and Goldstein 1988).  The SIR missions were the precursors to the 

Shuttle Radar Topography Mission (SRTM) of 2000 (Jordan et al 1996), where 

a SAR on board the space shuttle imaged the Earth to generate a near-global 

DEM from the interferometric analysis of the resulting data.  An important part 

of InSAR history was when the European Space Agency’s ERS-1 satellite was 

launched in 1991, which had an onboard SAR.  This satellite allowed SAR 

images to be acquired and made freely available with near global coverage.  

Having only one antenna on board, interferometric analyses are done using the 

repeat-pass style.  This is where the satellite images the area twice on separate 

orbital passes.  This is different to the SRTM space shuttle mission where the 

SAR had a dual antenna system with a fixed separation.  Here, one antenna 
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transmits whilst both receive the echoes.  The echoes will be received at 

different times at each antenna, related to their baseline separation.   

 

Due to the high grade components of the ERS-1 satellite, the SAR products it 

developed were of high quality.  For interferometry to give the best results the 

satellite positions need to be known accurately.  This led to precise orbits being 

generated for the ERS satellites which had much better accuracy than the 

nominal orbit information (Closa 1998; Reigber et al 1996).  During different 

phases of its lifetime, ERS-1 had different orbital repeat periods.  The nominal 

repeat period was 35 days.  The ice phases saw ERS-1 have a repeat period of 3 

days.  This would allow an improvement to the temporal decorrelation effect 

(see section 3.5) 

 

In 1995 ESA launched a second SAR capable satellite, ERS-2, with the same 

instrument characteristics as ERS-1.  Put into a similar orbit as ERS-1 it allowed 

interferometry to be performed using both sensors; one image from ERS-1, one 

from ERS-2.  ERS-2 was put into an orbit 24 hours behind ERS-1, allowing 

interferometry to be performed with a short temporal baseline, or separation, 

between image observations.  Interferograms made up of two images separated 

by this 1 day baseline are called Tandem pairs. 

 

As previously stated, the main uses for interferometry have been for topographic 

mapping and for land classification.  With further processing, however, it is 

possible to allow the identification of surface changes.  This uses a technique 

known as Differential Interferometry (see section 3.7). 

 

3.3 The Interferometric Configuration 

 

It is necessary for further discussions to now identify the important factors for 

interferometry and discuss the geometric configuration.  Figure 3.2 shows a 

typical spaceborne InSAR configuration.  S1 and S2 denote the satellite 

positions when the first and second SAR images were taken.  The 3 dimensional 

distance between them is called the (geometric) baseline and is denoted as B in 

Figure 3.2.  The perpendicular baseline, B⊥ , is the component of B in the 



 

 39 
 

direction perpendicular to the S1 look direction.  R1 and R2 denote the ranges to 

the target T from satellite positions S1 and S2 respectively.   

 
Figure 3.2 Interferometric Configuration.  Satellites S1 and S2 have ranges to target T R1 and 

R2 respectively.  The separation between the satellites is called the baseline and is denoted by B. 

 

The difference between the two ranges is denoted DR and is related to the 

interferometric phase.  The two way signal travelling this extra distance DR will 

have travelled: 

R∆
λ
2      3.1 

wavelengths, where l is the signal wavelength, then the phase f related to DR 

(the interferometric phase) is given by: 

R∆=
λ
πφ 4      3.2 

There is a maximum value for the baseline after which interferometric analyses 

with baselines greater than this value will give meaningless results, due to the 

fringe rate being too high (>2p per resolution cell).  This is known as the critical 

baseline.  For ERS 1/2 in areas of flat terrain this has a value of approximately 

1.1km (Bamler and Hartl 1998).   
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3.4 Forming the Interferogram 

 

Recall from section 3.2 that the interferogram is the interference pattern between 

two SAR images.  The interferometric processing chain can be split up into 

several different stages.  The processing chain, starting from SLC (Single Look 

Complex) data is outlined below.  SLC data is SAR data which has already been 

focused, i.e. the raw SAR data is passed through some complicated algorithms 

that utilise the range and Doppler information of the data to focus it (Ulaby et al 

1982; Curlander and McDonough 1991).  The data is complex data, i.e. it 

contains information about the phase and the amplitude of the radar signal.  All 

SAR data used in this study were ESA SLC data.  The main steps in generating 

the interferogram are highlighted below in bullet points. 

 

• Coregister the two SAR images 

o Generate coregistration equations 

o Resample the slave image 

• Create the complex interferogram 

• Extract and filter the phase interferogram 

• Flatten the interferogram 

• Generate a coherence image 

 

There is plenty of literature available on forming the interferogram, for example 

(Hanssen 2001) and (Small 1998).  In this study all interferograms have been 

formed using the Doris software available from Delft University (Kampes and 

Usai 1999).  A description of the above steps follows. 

 

3.4.1 Image Coregistration 

 

The first stage of the processing chain is the coregistration of the two SAR 

images.  Because with repeat pass satellite interferometry the two images are 

taken at different times, on slightly different orbits and with different start-stop 

times, they will not be of exactly the same area.  Due to the satellite geometry 

they will almost certainly have some small rotation between them.  This must be 
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addressed since for interferometry it is vital that the two images are registered to 

sub-pixel accuracy (Hanssen 2001) as described below.  The coregistration is 

usually split up into two stages; the first being a coarse coregistration to find the 

approximate line and pixel offset, and the second stage is a fine coregistration to 

get the sub-pixel accurate offsets.   

 

Coarse coregistration is usually performed either using the orbit information 

together with the Range and Doppler equations (see Equations 4.8 and 4.9), or 

by calculating the correlation between the power of the two images at various 

points.  Using either of these techniques can usually give the image row and 

column offsets to within 2 or 3 pixels.   

 

Fine coregistration is usually performed by a cross-correlation technique either 

using the full complex data (coherent registration) or either of the amplitude or 

phase of the signal (incoherent registration).  For a set of windows over the 

images the correlation is calculated, which yields an offset vector for that 

window.  Then these offset vectors can be used to determine a polynomial 

equation to calculate the offsets for every pixel in the slave image.  Just and 

Bamler (1994) suggest that an accuracy of 1/8th of a pixel in coregistration is 

sufficient for interferometry, since it yields a negligible 4% decrease in the 

coherence (assuming relatively small squint angles).  The coherence can be 

described as the correlation between the two SAR images and is discussed in 

section 3.5.   

 

3.4.2 Resampling 

 
This stage uses the coregistration equation derived from the previous step and an 

interpolation kernel to resample the slave image.  This is required so that the two 

SAR images are on the same grid, so they can be easily compared and the 

interferogram formed.  The choice of kernel function depends on how accurate 

the answer needs to be and how much computational time is available.  Hanssen 

and Bamler (1999) suggest that using a 6-point cubic convolution is a good 

method.  It should be pointed out that the resampled slave size is at most the size 

of the overlap between the master and slave images.   
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3.4.3 Interferogram Formation 

 

The interferogram can now be formed using the master and resampled slave 

images.  Because the SAR images are complex (have amplitude and phase 

information) the complex interferogram can be formed by multiplying one SAR 

image with the conjugate of the other.  This results in multiplying the 

amplitudes but differencing the phase information.  Interferometry applications 

are generally only interested in the phase information and the term 

interferogram is used to describe the phase interferogram.  An example of 

which is shown in Figure 3.3.  

 

 
Figure 3.3.  An example of a (phase) interferogram: constructed from an ERS Tandem pair, 

dates 9th and 10th November 1995. 

 

This is a 2-dimensional array or image that holds the phase information of the 

two SAR images.  The phase increases rapidly in the range direction and 

appears as coloured fringes, where each fringe represents the phase value 

modulo 2π .  The rapid increase is due to the natural increase in distance from 

the sensor across the image, which can be modelled by using an ellipsoidal 

Earth model such as the WGS84 ellipsoid. 
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3.4.4 Filtering and Noise Reduction 

 

Noise reduction and filtering techniques are commonly applied to the 

interferogram to “clean up” the product for easier interpretation and future 

processing (such as phase unwrapping).  It is common to apply some filtering 

techniques after the interferogram is formed (a posteriori filtering), but also 

during the coregistration\resampling stages before interferogram construction (a 

priori filtering).   

 

3.4.4.1 A priori filtering 

 

This usually consists of filtering the SAR data in both the azimuth and range 

directions separately with the overall aim of increasing the signal-to-noise ratio.  

As an example this can be achieved using bandpass filtering in the frequency 

domain of the signal to remove non-overlapping parts of the two SAR signals 

(Hanssen 2001). 

 

3.4.4.2 A posteriori filtering   

 

The most commonly used technique here is multilooking (Goldstein et al 1988).  

This reduces the noise in the interferogram by simply averaging the complex 

data.  It is often applied with multiples of a ratio of 1:5 (range : azimuth) as this 

creates almost square pixels (ESA SLC pixel size is approximately 20m in 

(ground) range and 4m in azimuth).   

 

There are other filters that can be applied to the phase information of the 

interferogram.  Two such filters are a spatial convolution and the Goldstein filter 

(Goldstein and Werner 1998).  A spatial convolution filter is equivalent to a 

square boxcar filter, which tend to work well in flat areas (Hanssen 2001) but 

can fail in areas of high fringe rate.  The Goldstein filter, on the other hand, is an 

adaptive filter that filters depending on the fringe rate. 
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3.4.5 Phase Flattening 

 

Usually before filtering or multilooking the phase, it is flattened.  This is where 

a reference phase is subtracted from the phase interferogram.  The reference 

phase is either produced from a digital elevation model of the scene area, or if 

no ground truth is available, a satellite-ellipsoid model.  This is undertaken to 

reduce the fringe rate of the interferogram and is essential for phase unwrapping 

methods because of the need for small phase gradients (see chapter 4).  The 

flattened example from Figure 3.3 is shown below in Figure 3.4, where the 

WGS84 ellipsoid has been used as the Earth model.  Because the reference 

phase used was a flat (i.e. no topography) ellipsoidal model, the resulting 

flattened interferogram shows fringes which, ideally, relate to the changes in 

topography. 

 
Figure 3.4 An example of a flattened interferogram: covering same area as Fig. 3.3; also some 

phase noise filtering has been performed. 

 

3.5 Coherence Image and Decorrelation 

 

The coherence image (or complex correlation) is an important by-product of the 

interferogram formation.  It is basically the result of a correlation test between 

the two SAR images and gives an evaluation of the reliability of the phase 

values (Zebker and Villesenor 1992).  It is calculated thus: 
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where g is the coherence, M and S the complex pixel values for the master and 

slave respectively, and  represents the averaging over a neighbourhood.  

Values for g range between 0 and 1 where a value of 0 means there is no 

correlation and 1 means perfect correlation between the two signals.  If the pixel 

(and surrounding neighbourhood) has a high correlation value then the 

scattering properties of the pixel have not changed much between the two SAR 

images, giving more confidence in the phase value.  Often these areas tend to be 

in urban environments.  Areas of low coherence have low phase reliability.  

Such areas could be due to expanses of water, agricultural activity, or other 

regions that could change between SAR acquisitions.  The coherence image that 

relates to the interferogram from Figures 3.3 and 3.4 is shown below. 

 
Figure 3.5.  An example of a coherence image: corresponding to interferograms from Figs. 3.3 

and 3.4; the river Thames can be easily identified from this image. 

 

The two main types of decorrelation in interferograms are temporal 

decorrelation and geometric decorrelation, and can be minimised by selecting 

suitable SAR images to construct the interferogram from.  In general, temporal 

decorrelation can be minimised by selecting SAR images with a short temporal 

baseline.  For instance, data from the ERS Tandem mission (1 day temporal 
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baseline) will generally have a higher coherence than data from a 35 day repeat.  

This is because during the course of 1 day very little will change to the 

observation area (Zebker et al 1994a).  For larger time periods this is not true, 

for example vegetation can grow changing the scattering characteristics of the 

resolution cell.  Urban areas generally remain coherent over long time frames.   

 

Geometric decorrelation can be minimised in a similar way, by selecting SAR 

images that have small geometric baselines.  As the distance between the SAR 

images grows (i.e. as the baseline increases), the look angles of the SAR differ 

by more and therefore the scattering in the resolution cell differs more (Li and 

Goldstein 1990).   

 

3.6 Limitations of Interferometry 

 

As previously stated, the interferometric phase is related to the topography of 

the scene.  In an ideal world this would be exact and there would be no phase 

corruption.  Unfortunately this is not true and the phase will be erroneous, 

probably due to a number of sources including (but not limited to): speckle 

noise, atmospheric pertubations, temporal decorrelation, geometric decorrelation 

and orbital inaccuracies. 

 

Speckle has been discussed previously and for interferometric purposes is 

usually dealt with by averaging pixels, known as complex multilooking 

(Goldstein et al 1988).   Temporal and geometric decorrelation effects have also 

been discussed in the previous section. 

 

Inaccuracies in the orbit will obviously cause errors to occur in the phase and 

reveal themselves as a phase slope across the image (Zebker et al 1994a).  This 

can be corrected by using ground control to estimate what the correct phase 

should be and modelling the slope.  Also by using precise orbits the phase 

quality will improve due to the higher orbit accuracy.   

 

The size of the geometric baseline has an effect on how sensitive the 

interferogram is to height change.  Larger baselines give an interferogram that is 
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more sensitive to height change, i.e. for larger baseline interferograms, a cycle 

of phase relates to less change in height than for a smaller baseline 

interferogram (Bamler and Hartl 1998).  Due to the baseline decorrelation, a 

trade off between height sensitivity and phase noise must be attained. 

 

Changes in the atmosphere between the two SAR images have a detrimental 

effect on the interferometric phase since these differences will propagate 

through into the interferogram.  For short baseline interferograms used for DEM 

generation this is not too important due to the low height sensitivity (Hanssen 

and Feijt 1996).  But it does become more important for differential 

interferometry techniques (see chapter 3.7), where the magnitude of the error is 

not dependent on baseline (Zebker et al 1997).  Due to the nature of the 

atmosphere, the phase errors it causes are spatially correlated but with a high 

variation both temporally and spatially (Hanssen and Feijt 1996).  This makes it 

virtually impossible to remove the atmospheric anomalies using only a single 

interferogram.  Further discussions on atmosphere effects on interferometry can 

be found in (Hanssen 2001), (Williams et al 1998) and (Zebker et al 1997) 

amongst others. 

 

So far, the limitations discussed have mainly been linked to errors in the phase 

values.  But there are more basic and obvious limitations such as getting the 

data.  The present SAR capable satellites are not dedicated SAR satellites; they 

also have other instruments on board, some of which might not be able to 

operate at the same time as the SAR.  The power consumption of the SAR is 

also a factor as to how long it can operate for.  Moreover, the repeat cycle of the 

satellite is a limiting factor for data collection.  For example the ESA ERS and 

Envisat satellites have a 35 day repeat period, which might not be as often as 

required for a particular study. 
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3.7 Differential Interferometry  

 

Differential interferometry is a technique that looks at differences that have 

occurred in the phase between SAR images.  As previously stated, the 

interferogram contains information about the topography of the scene.  By 

comparing two interferograms, or an interferogram with a digital elevation 

model, information about changes in the surface topography can be derived.  

First demonstrated for spaceborne SAR in 1989 (Gabriel et al 1989) it showed 

that measurements of surface change could be made at the centimetre level.  

Since then, it has been used to successfully study land deformation (Zebker et al 

1994a), earthquakes (Zebker et al 1994b), volcanoes (Massonnet et al 1995), 

glacier motion (Goldstein et al 1993), landslides (Fruneau et al 1996) and 

subsidence (Massonnet et al 1997).  There are two broad techniques of 

differential interferometry: Two-pass and Multi-pass techniques.  These are 

summarised below. 

 

3.7.1 Two-Pass Differential Interferometry 

 

Two-pass differential interferometry, as the name suggests, involves two SAR 

images but also requires a digital elevation model (DEM).  An interferogram is 

formed from the two SAR images which span an event of interest, for example 

an earthquake.  The DEM is then used to remove the phase relating to 

topography from the interferogram to leave the differential phase (Massonnet et 

al 1993), which  is a combination  of the other phase sources including those 

due to deformation, atmosphere and noise.  Any errors present in the phase of 

the interferogram or in the DEM will be passed through into the differential 

phase.   

 

3.7.2 Multiple-Pass Differential Interferometry 

 

The most common form of this involves three SAR images (and is hence called 

3-pass).  From these, two interferograms are formed such that they share a 

common master image (Gabriel et al 1989).  The images are selected such that 

one interferogram spans the event of interest, known as the deformation 
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interferogram, whilst the other interferogram is formed from the two images 

either after or before the event, known as the topographic interferogram.  The 

topographic interferogram is assumed to be a good model for the topography.  

Both interferograms are flattened with respect to an ellipsoid model and the 

topographic interferogram is then unwrapped (see chapter 4).  The topographic 

phase is then scaled by the ratio of the perpendicular baselines and subtracted 

from the deformation interferogram (Zebker et al 1994b)   

topo
topo

defo
defodiff B

B
φφφ

⊥

⊥
−=     3.4 

where diffφ  is the differential phase, defoφ  the deformation interferogram phase, 

topoφ the unwrapped topographic interferogram phase, defoB ⊥  the perpendicular 

baseline of the deformation interferogram and topoB ⊥  the perpendicular 

baseline of the topographic interferogram.  Again, any errors present in the 

respective phases of the two interferograms will be passed into the differential 

phase.  Since the interferograms have been flattened with respect to an ellipsoid 

model, there is likely to be an erroneous phase slope in the differential phase.  

This is due to the altitude difference between the ellipsoid and the topography, 

but it can be removed a posteriori with the use of distributed ground control.   

 

The other multi-pass technique in use is 4-pass, which requires four SAR images 

to construct the two interferograms.  As there is no common image in the two 

interferograms further processing must be undertaken to coregister the two 

interferograms.  This method is only usually used if there is no suitable dataset 

for 3-pass interferometry. 

 

3.7.3 Suitable Configurations 

 

Differential interferometric results can be “improved” or optimised by using the 

best configuration available.  When using a 2-pass method you will get a better 

result by using a more accurate DEM.  Also, better results will be obtained if the 

interferogram phase is clean of temporal and geometric decorrelation noise.   
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When using a 3-pass method, the relative size of the baselines can have a great 

effect.  Examining equation 3.4 shows that if the baseline of the topographic pair 

is greater than that of the deformation pair, then any phase errors in the 

topographic phase will be scaled down in the differential phase.  But this 

baseline should not be so large as to cause much geometric decorrelation in the 

topographic phase. 

 

In most cases, the 2-pass method is usually considered to be the best choice, 

based on the fact that, if an accurate DEM is available then the errors from that 

are likely to be smaller than the atmospheric errors introduced from an 

additional interferogram in the 3-pass method. 

 

3.7.4 Limitations of DInSAR 

 

The limitations of differential InSAR (DInSAR) are mainly due to the quality of 

the input data.  The phase quality is the main limiting factor.  Any noise in the 

interferometric phase will be propagated through into the differential phase.  In 

general the source of largest error will be the atmosphere, which can often 

swamp the phase that is being investigated (Hanssen 1998; Massonnet and 

Rabaute 1993).  For 3-pass DInSAR this is worse because there are two 

interferograms, and therefore 2 atmospheric effects.  For 2-pass DInSAR there is 

only one atmospheric phase error but there is the additional error due to the 

DEM.  This can be minimised by using the most accurate topographic model 

available.   

 

Data availability is also a major limitation to the technique. For areas where no 

DEM exists, 2-pass DInSAR is not an option.  But it can also be difficult getting 

suitable SAR images to form the interferograms.  For example, an earthquake 

could occur in an area that hasn’t been imaged for a number of months or years, 

meaning that large temporal decorrelation is likely to be present in an 

interferogram spanning the event, although this is not such a concern for urban 

areas, or regions of stable reflectivity, which can stay coherent over large time 

scales.   
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3.8 Summary 

 

The principle of SAR interferometry (InSAR) has been introduced, together 

with various applications that it can be used for and the processing algorithms 

used to generate the interferogram.  Various limitations to interferometry and 

noise components of the phase have been discussed.  Differential InSAR has 

been introduced and the two main techniques: 2-pass and 3-pass, have been 

described.  Applications of DInSAR have been identified and the limitations of 

the method have been highlighted. 
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4. Phase Ambiguity 

 

4.1 Introduction 

 

The interferometric phase is ambiguous; it is only known modulo 2π .  In other 

words, the only part of the phase recorded is the fractional part of the 

wavelength.  There is no information on the number of whole wavelengths 

(cycles) that have preceded it.  Figure 4.1 helps explain this; the recorded phase 

is shown in red – but there is no information on the number of whole 

wavelengths that preceded this.  This integer number of cycles, or wavelengths, 

is known as the phase ambiguity and labelled as N in Figure 4.1.  To use the 

interferometric phase for topographic mapping or positioning, it is important to 

be able to relate the phase of one interferogram pixel to another.  This requires 

one of two things: either the integer ambiguity for each pixel must be calculated, 

or if not, the phase should be reconstructed such that it is all relative to a 

particular interferogram pixel.  This process of relative phase reconstruction is 

known as phase unwrapping. 

 
Figure 4.1 The phase ambiguity: the recorded phase isφ but there is no information on N, the 

phase ambiguity. 

 

4.2 Phase Unwrapping 

 

The phase unwrapping problem is simple to describe but, in general, very 

difficult to solve.  In basic terms it is the process of adding the correct integer 

multiple of 2π  to every point on the interferogram (Goldstein et al 1988).  For 
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noiseless phase which is sampled sufficiently, i.e. such that adjacent phase 

differences, or gradients, are less than π , the phase unwrapping process is 

straightforward (Werner et al 2002).   

 

Figure 4.2 shows a 1-dimensional example of phase unwrapping.  The black line 

represents the phase modulo 2π , the wrapped phase, whilst the red line shows 

the unwrapped phase.  A brief overview of phase unwrapping follows; for a 

detailed view including phase unwrapping algorithms see Ghiglia and Pritt 

(1998). 

 
Figure 4.2 Example of 1-dimensional phase unwrapping.  The wrapped phase is shown as the 

black line, the unwrapped phase as the red line.   

 

4.2.1 Two-Dimensional Phase Unwrapping 

 

In 2-dimensions the process is much the same, except that there are phase 

gradients in two orthogonal directions.  The gradients between adjacent pixels 

are calculated, and then they are integrated (or summed) over a path of interest 

(Ghiglia and Pritt 1998).  This results in an unwrapped interferogram where the 

phase values are relative to the pixel at the start of the integration path.  

Unfortunately, in general, this is impossible because of the wrapped nature of 

the phase and sources of phase noise.  For example, the phase gradients could be 

described by an increase in phase, or equally by a decrease in phase.  To 
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overcome this problem an assumption that the phase gradients are less than π  

radians in magnitude is made.  To help meet this assumption the interferometric 

phase is flattened as much as possible.  If a DEM of the area is available then 

this is used, else a model of the ellipsoid can be used.  In regions of high noise, 

such as areas of layover and shadow, the phase unwrapping becomes extremely 

difficult because the noise can “push” the phase gradients over p magnitude, 

giving the appearance of a gradient in the opposite direction.   

 

4.2.2 Residues 

 

The process described above appears trivial but is complicated further by 

residues.  Residues can be caused by zero-magnitudes, phase discontinuities, 

noise, inconsistent phase gradients and aliasing in the complex signal (Ghiglia 

and Pritt 1998).  They can be identified in the phase data by examining closed 

loops of phase (Figure 4.3).  By integrating the gradients of each 2 x 2 group of 

pixels, the sum helps identify if there is a residue located there.  If the sum 

equals zero then there is no residue, but if it equals +2p or -2p then there is a 

positive or negative residue respectively.   

 
Figure 4.3 Identification of phase residues: by summing gradients in closed loops.   

 

Using Figure 4.3 as an example, the sum of the gradients of the left hand group 

of 4 pixels is: 
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Hence there is a residue located between the 4 pixels.  Because the sum equals 

+2p the residue is said to have a positive charge.  Now examining the right hand 

group of 4 pixels the sum is: 
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hence there is no residue here. 

 

If not treated correctly, residues can corrupt the unwrapped phase.  To 

counteract this possibility the path-following methods such as the branch-cut 

phase unwrapping algorithm (Goldstein et al 1988) connect up the residues, 

using branch-cuts, such that the total charge of connected residues is 0.  In other 

words one of two situations must occur: either there are an equal number of 

positive and negative residues connected, or the connected residues are earthed 

(connected to the edge of the interferogram).  This recreates the path 

independent problem provided that no path crosses a branch-cut.  There exist 

other techniques such as least squares phase unwrapping algorithms (Ghiglia 

and Pritt 1998) which do not explicitly deal with the residues.  

 

4.2.3 Phase Unwrapping Conclusions 

 

Phase unwrapping is a complicated task.  Although a multitude of algorithms 

exist for solving the problem (Goldstein et al 1988), (Constantini 1998), (Chen 

and Zebker 2000), (Ghiglia and Pritt 1998), none of them are perfect.  Due to 

the phase noise and terrain effects (e.g. layover), unwrapping of InSAR phase is 

made very difficult.  It remains one of the most important limiting factors for 

InSAR applications.   

 

4.3 Integer Ambiguity Search 

 

In 2003, Sowter (2003a) proposed the Integer Ambiguity Search (IAS) process.  

By assuming low phase noise in the interferogram and using an accurate enough 

ground control point (GCP) it is possible to retrieve the absolute phase 
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ambiguity for an image pixel.  When combined with an unwrapped phase 

interferogram, this can allow the absolute phase of every pixel whose phase is 

relative to the pixel of interest to be reconstructed.  Through this technique it is 

also possible to position the InSAR data in an absolute geodetic reference frame, 

such as an Earth Centred Earth Fixed Cartesian frame of reference.  The process 

is described below. 

 

4.3.1 Integer Ambiguity Search Process 

 

The IAS method for deriving the ambiguity is heavily dependent on the InSAR 

satellite geometry.  By implementing a set of equations that relate the geometry 

and the phase value, together with a ground control point, allows an estimate of 

the ambiguity to be derived.  Consider the InSAR geometry of Figure 4.4, with a 

coordinate system centred at the master satellite position A1. 

 
Figure 4.4. InSAR Geometry centred at master satellite position: A1 (from Sowter et al 2004). 

 

The two satellites, master and slave, and target are at positions A1, A2 and T 

respectively.  The velocity vector of the master satellite is described by SV
r

, the 

baseline vector by B
r

, the master range vector by R
r

 and the angle between the 

baseline and range vector as b.  The satellite positions and velocity can be 

calculated from the orbit data, as can the baseline vector.  Estimates for the 

ranges r and r+d can be obtained from the master and slave row and column 

information.  de can be calculated from the geometry using (Sowter 2003a): 
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)(2

22

δρ
δδ
+
−

=
Be      4.3 

where BB
r

= .  The angle b can then be calculated, by using the cosine rule, as: 

)(2
)(cos

222

δρ
ρδρβ

+
−++

=
BB     4.4 

But it can also be shown that b can be calculated as (see Figure 4.4): 

eeB δδδρδρβ +=+−+= )(cos    4.5 

Recall from chapter 3 the equation for the interferometric phase: 

)(4
21 ρρ

λ
πφ −=abs      4.6 

where absφ  is the full absolute phase, 1ρ  and 2ρ  are the master and slave ranges 

respectively and λ  is the radar wavelength.  Substituting equation 4.6 into 4.5 

gives: 

 eB abs δ
π

λφ
β +=

4
cos      4.7 

Equation 4.7 then describes the connection between the satellite geometry and 

the (absolute) interferometric phase.  

 

Now, still considering the geometry model of Figure 4.4, if the master satellite 

A1 has position vector (0, 0, 0) and the target has position (x, y, z), then the 

range from A1 to the target can be described, by the Range Equation, as: 
22222 )( zyxR ++=+= δρ     4.8 

Also, if we consider the Doppler Equation for zero-doppler data we have: 

0=++=⋅ zVyVxVVR zyx

rr
     4.9 

where the velocity vector ),,( zyx VVVV =
r

. 

 

Finally, we have the equation defined by: 

βδρβ cos)(cos +==⋅=++ BRBRBzByBxB zyx

rr
 4.10 

where ),,( zyx BBBB =
r

, which shall be called the InSAR Equation.  After 

substitution of 4.7 into 4.10 we have a set of three equations that can be used to 

position the InSAR data: equations 4.8, 4.9 and 4.11. 
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)
4

)(( ezByBxB abs
zyx δ

π
λφ

δρ ++=++    4.11 

The only unknowns in this set of equations are the target position (x, y, z) and 

the absolute phase absφ .  Recall, from Figure 4.1, that the absolute phase is 

nabs ∆+= πφφ 2      4.12 

where φ  is the wrapped interferometric phase and n∆ is the integer ambiguity. 

 

Global Navigation Satellite Systems (GNSS) such as the Global Positioning 

System (GPS) have well known algorithms that can aid getting integer 

ambiguities (Dixon 1991).  One such method that uses the carrier phase signal of 

the GPS satellites constitutes a search for the carrier phase integer ambiguity 

around an estimated value.  The IAS is a similar process (Sowter 2003a).  If a 

GCP is known in the vicinity of the target then it can be used to “guide” the 

search to the correct ambiguity value.  Using an estimate for n∆  the set of three 

equations defined above can be solved to get the target position (x, y, z).  By 

comparing the GCP with the solved for target location for different values of 

n∆ , the correct value of n∆  can be found (Figure 4.5), by selecting the value 

which gives the location closest to the GCP. 

 
Figure 4.5 Ambiguity search process principle (Sowter 2003a) 
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For this to work some assumptions, or restrictions, have to be made about the 

data.  The most important of these is that the GCP is known accurately enough, 

i.e. to within half the distance that separates the estimated target positions 

(Sowter 2003a), i.e. half of D in Figure 4.5.  If this restriction is not met then an 

incorrect n∆ will be selected.  The uncertainty in positioning the GCP onto the 

correct point in the SAR image must also be taken into account.  The length D 

can be calculated, to first order, by (Sowter 2003a): 

β
λ
sin2B
RD =      4.13 

which is related to the height ambiguity (Massonnet and Feigl 1998). 

 

4.3.2 Benefits of the IAS 

 

The Integer Ambiguity Search (IAS) allows the integer ambiguity to be 

identified.  Through this, the absolute phase at the pixel of interest can be 

reconstructed which allows for absolute positioning of the pixel in a geodetic 

frame.  This has very important implications for InSAR.  Most methods for 

positioning InSAR data into a geodetic frame are two step algorithms.  First the 

phase is converted to height, usually through the use of an approximate 

equation, and then the height values are georeferenced (Small 1998).  By being 

able to position the data absolutely through one set of equations allows a 

cleaner, less error-prone result.  The set of equations used are very simple and 

similar to radargrammetric approaches (Leberl 1990), which are well known and 

have well known error budgets.  The error budgeting is far simpler using a 1 

step group of simple equations than for a more complicated 2 step algorithm. 

 

Though a ground control point (GCP) is needed for the IAS, errors in the GCP 

are not propagated into the positioning accuracy.  This is because it is an integer 

search; so as long as the GCP is within the bounds described from equation 4.13 

the correct integer value will be selected.  Obviously if the GCP is not known to 

this accuracy then integer errors (multiplied by 2p) in the absolute phase will 

occur.  
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Also, because the method allows absolute positioning, this should allow 

integration with other techniques such as GPS to be easier.   Both GPS and the 

IAS methods use similar trilateration based techniques to derive positions, and 

both give results in a geodetic reference frame.   

 

The IAS can also be used for DEM generation techniques and has important 

implications for differential interferometry.  These are described in the next two 

sections. 

 

4.4 DEM Generation Application 

 

Digital Elevation Models can be generated from InSAR data using various 

algorithms (Rodriguez and Martin 1992, Schwabisch 1998a, Small 1998).  One 

method common in the literature uses the height ambiguity formula to convert 

the unwrapped phase values into height, which if required, are then corrected 

using GCPs before being geocoded.  The height ambiguity can be shown to be 

(Hanssen 2001): 

⊥
=

B
R

d
dh θ

π
λ

φ
sin

4
    4.14 

where the left hand side is rate of change of height with respect to phase and θ  

is the look angle.  Multiplying this by the unwrapped phase value gives an 

approximate height.  Because the unwrapped phase values are not likely to be 

absolute, correction of the height with GCPs is required (Zebker et al 1994b).  

The corrected height values are then geocoded using one of many methods e.g. 

(Schwabisch 1998b) and (Hellwich 1999). 

 

The IAS DEM generation technique is an extension to the process described in 

4.3.1.  If the phase is unwrapped prior to doing the ambiguity search, then all the 

phase values in the interferogram are relative to each other (assuming phase 

unwrapping performed correctly).  This suggests that if the ambiguity search is 

performed at a (row, column) of the interferogram, then that ambiguity applies 

to the whole interferogram.  Therefore, using one GCP it is possible to recreate 

the absolute phase for the entire interferogram.  In practice, if a distribution of 

GCP is available it is wise to do an IAS analysis for each point, and accept the 
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modal ambiguity value.  This is because atmospheric, baseline and unwrapping 

errors are likely to appear in the interferogram causing possible erroneous 

results.  The set of equations 4.8, 4.9 and 4.11 can then be solved on a pixel by 

pixel basis for the entire interferogram, resulting in a Earth Centred Earth Fixed 

Cartesian x, y, z value for each pixel.  This can then easily be resampled to the 

required reference frame, e.g. UTM Eastings, Northings and Height.   

 

This process has been tested using ESA ERS SAR data of the London region, 

UK and is the subject of (Sowter et al 2006).  The main results are repeated 

here. 

 

4.4.1 Demonstration over London 

 

London was chosen as the test region because data from a network of GPS 

stations was available for evaluation purposes.  The GPS network was originally 

set up primarily to tie in data from tide gauges to absolute ground levels 

(Bingley et al. 1999).  The GPS station locations relative to the Thames Region 

are shown in Figure 4.6. The topography of the region varies slowly from sea 

level to heights of around 300m.   

 
Figure 4.6 London GPS station location map.  The GPS network is primarily used for the 

absolute fixing of tide gauges and land levels (Sowter et al 2006). 
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An interferogram was generated using two SAR images from the Tandem 

Mission, with dates 9th and 10th November 1995.  These were supplied by 

Infoterra Ltd.   The Doris software was used to process the data together with 

precise orbits from Delft Technical University.  The interferogram was then 

unwrapped using the SNAPHU software from Stanford University (Chen and 

Zebker 2001).   
 

Each of the GPS stations was projected onto the interferogram using a range-

Doppler algorithm together with the satellite orbit data.  One of the GPS points 

was selected as a seed point and the interferometric phase was then interpolated 

using a bilinear interpolation method to get an estimate of the phase at the GPS 

point.  The phase of the interferogram was then “normalised” to this point by 

adding multiples of 2p such that the phase at the GPS seed point equalled its 

wrapped value.  The integer ambiguity was then calculated for this point and 

applied to the phase at each pixel to create the absolute phase interferogram.  As 

a check, the ambiguity was also calculated at each of the other GPS stations 

(without normalising the phase data to them).  In theory, the ambiguity should 

be the same at each point, but in practice this was not the case.  Table 4.1 shows 

the GPS stations and their respective ambiguity value.  It can be seen that, with 

the exception of BARK, the ambiguity values increase as column number 

increases.  This is most likely due to an error in the baseline values, which as 

stated in chapter 3 can cause a phase slope across the interferogram.  The phase 

slope, estimated to be 1.5 fringes, was removed from the interferogram.  The 

position of the InSAR data at each GPS point was then calculated using the 

system of equations described in section 4.3.1, and transformed to map 

coordinates in the OSGB36 datum.   

 

Table 4.2 shows the differences between the GPS derived locations and the 

equivalent located InSAR positions.  It was decided to remove BARK and ERIT 

from further processing due to very low coherence levels.  The BARK GPS 

station is located on a 40m high concrete tower and is foreshortened on the SAR 

image, and so the phase here may not be representative of the geometry.  The 

ERIT GPS station is located on a pier that extends into the River Thames, 

leading to very poor coherence and hence a low confidence in the phase value.   
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GPS Station Interferogram Column Ambiguity
SHEE 150 -1979
GRAI 215 -1979
THUR 290 -1979
GGSC 692 -1979
TILB 784 -1979
ERIT 1042 -1979
BARK 1210 -1980
SILV 1305 -1979
GRPK 1346 -1979
MIPL 1409 -1979
RIDD 1426 -1979
TOPR 1510 -1979
BPGC 1613 -1978
RICH 1907 -1978
SUNB 2049 -1978  

Table 4.1 London GPS station ambiguity information: interferogram column position and their 

ambiguity value. 

 

GPS station Coherence Easting error (m) Northing error(m) Height error(m) Absolute error(m)
SHEE 0.688457 10.759 -2.108 -3.995 11.66875186
GRAI 0.648959 13.476 -2.64 -5.062 14.63543713
THUR 0.398139 30.487 -5.988 -11.639 33.17799925
GGSC 0.459621 -1.21 0.237 0.493 1.327899846
TILB 0.549784 -10.773 2.111 4.447 11.84439357
SILV 0.329762 -4.213 0.826 1.872 4.683591464
GRPK 0.351199 -3.817 0.749 1.706 4.247461124
MIPL 0.440293 5.555 -1.086 -2.503 6.188895701
RIDD 0.535939 8.805 -1.73 -3.981 9.81678593
TOPR 0.349209 9.206 -1.802 -4.2 10.27801732
BPGC 0.388851 31.134 -6.085 -14.391 34.83466753
RICH 0.586853 34.522 -6.769 -16.534 38.87108181
SUNB 0.728588 -11.073 2.174 5.391 12.50601799
Mean 0.496588769 8.681384615 -1.700846154 -3.722769231 14.92930773
St Dev 0.136291758 15.47507368 3.033289299 6.907767466 12.43916958
Table 4.2 Errors between GPS and InSAR positioning: results in OSGB36 Eastings, Northings 

and Heights. 

 

The absolute errors between the two positioning results (GPS and InSAR) can 

be seen to vary in magnitude from approx. 1m up to 40m.  This could be 

explained, for a point such as THUR, to be due to the low coherence value, but 

this is not true of every point.  The Easting errors show a bias of approx. 9m in 

magnitude, which could be due to errors in the satellite-target range since this 

runs in a near east-west direction at this latitude.  This would suggest a slant 

range error of approx. 3.6m in magnitude, which is well within the error budget 

for ERS satellites (Sowter et al 1990). 
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The Northing and height errors are smaller in magnitude than the Easting errors.  

Northing errors will mainly be due to inaccuracies in the orbits and azimuth 

time, whereas height errors will again be affected by slant range errors.  The 

height standard deviation of 6.9m is within broad agreement with other authors 

e.g. (Li and Goldstein 1990). 

 

There are two main problems with using these GPS points to test the accuracy of 

the InSAR positioning.  The first problem being that the majority of the GPS 

points are located along side the River Thames.  This creates coherence 

problems and results in a lower confidence in the phase accuracy.  The second 

problem is that the GPS points are not likely to be representative of the main 

scatterer in the radar resolution cell.  GPS stations are generally located in open 

spaces, away from large structures that could cause problems in the data 

processing.  Obviously, in an urban environment, this is not always easy and so 

some stations will have structures nearby which are more likely to be the 

dominant scatterer of the radar signal.   

 

As well as the GPS data a 3rd party DEM was available, provided by Infoterra 

Ltd., with 50m postings and a claimed RMS of 2.5m.  This was used as a 

reference DEM to see how the IAS generated DEM compared to it.  A map of 

the differences is shown in Figure 4.7.  The majority of the magnitude of errors 

are within 10m, but in some areas this can reach nearly 20m.  There are regions 

where the magnitude of the error is large (20m), i.e. the dark patch on the top 

right and the white patch to the left of the image.  These could be due to 

localised phase unwrapping errors in the interferogram, or maybe phase errors 

due to atmospheric anomalies.  There are also some topographic effects present 

which suggest a slight misregistration between the two DEMs.   

 

In conclusion, therefore, the method of using the IAS to generate a DEM and for 

positioning InSAR data has been demonstrated.  The positioning results 

compared to GPS locations gave errors which are in broad agreement with other 

authors.  The DEM generation method described still contains some of the errors 



 

 65 
 

present in other techniques; primarily due to errors in the phase and the orbit 

data. 

 

 
Figure 4.7 Map of differences between IAS generated DEM and 3rd party DEM.  Errors range 

from +20m to -20m. 

 

4.5 Differential Interferometry Application 

 

4.5.1 Method 

 

The implications of the Integer Ambiguity Search process for differential 

interferometry were first suggested in 2003 (Sowter 2003b).  Suppose the 3-pass 

geometry of Figure 4.8, where P1, P2 and P3 are the master, topographic slave 

and deformation slave satellites respectively; B12 and B13 are the respective 

topographic and deformation baselines; 12β and γβ +12  are the angles between 

the respective baselines and master range vector. 
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Figure 4.8 3-pass differential InSAR geometry (from Sowter 2003b) 

 

Then for each interferogram setup, i.e. the topographic and deformation pairs, 

there is equation 4.7, which when rearranged gives: 
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λ
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λ
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Constructing 13β  as γβ +12  assumes that the three satellites and the target T are 

all in the same plane.  Generally this is not the case and so some processing 

must be done to take this into account.  Using simple vector mathematics it is 

possible to rotate the topographic slave satellite, say, so that it lies in the plane 

P1P3T and calculate γ  from the geometry of this new arrangement.   

 

The difference of the two above equations, equation 4.17, should be equal to 

zero if there is no surface change between the three SAR images (assuming no 

noise or atmospheric errors).  
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When this is non-zero there has been a differential change (Sowter 2003b).  The 

change is assumed to occur in the deformation interferogram, and can therefore 

be given as a change in the range of P3.  This is equivalent to: 

Φ=∂ 134
B

π
λρ      4.18 

or keeping in terms of the phase: 
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where φ∂  is the differential phase. 

 

As with the DEM generation case, the interferograms should be unwrapped so 

that the IAS will result in the absolute phase for each pixel of the 

interferograms.  Obviously a separate IAS analysis must take place for both the 

topographic and the deformation pairs, since they will have different integer 

ambiguity values.   

 

4.5.2 Error Analysis 

 

It now seems appropriate for a brief discussion on possible sources of error and 

their effects.  The main sources of error present in the IAS DInSAR method that 

differ from the traditional 3-pass method are: the integer ambiguity values 12n∆ , 

13n∆  and the angleγ . 

 

It is conceivable that errors in the integer ambiguity values will occur, due to 

phase noise, baseline errors and GCP inaccuracies.  This is more likely to occur 

in large baseline interferograms due to the closer spacing of the ambiguities (see 

equation 4.13).  If a number of GCPs are available it is recommended to 

calculate the ambiguity value at each one, using the unwrapped phase data, and 

use the modal value in the processing.  If an incorrect value is chosen, the effect 

on the final result is different depending on whether it is the topographic or 

deformation ambiguity.  If the error occurs in the deformation ambiguity 13n∆ , of 

magnitude n say, then the effect is just a linear offset of πn2  radians to the 
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differential result (equation 4.19).  This can easily be removed by simply 

wrapping the differential result (then unwrapping if required).  If the error 

occurs in the topographic ambiguity then it is more difficult to mitigate.  This 

time an ambiguity error of magnitude n would result in an error of 1213 /2 BBnπ .  

Because the baseline ratio is unlikely to be an integer value, wrapping the result 

will not remove the effect.  To minimise this effect choosing B12 such that it is 

greater than B13 would help, but as stated above a larger B12 increases the 

uncertainty in the ambiguity. 

 

The other parameter that differs from the traditional 3-pass technique is the 

angleγ ; although it is implicit in the traditional 3-pass equations in the 

perpendicular baseline.  An error inγ , of magnitude dg, appears as a slope error 

in the final differential phase.  This can be thought of as the topographic height 

being offset from its true value, or in other words, as an error of magnitude dr in 

the range vector of P3.  This is described in Figure 4.9 below. 

 
Figure 4.9 Image showing the effect of an error in g.  An error of magnitude dg is equivalent to a 

range change of dr.  

 

The three satellite positions are shown as P1, P2 and P3 with range to target 

vectors R1, R2 and R3 respectively.  An error in g of dg could give an 

appearance of P3 being at P3` causing a range error of dr. 
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4.5.3 Results 

 

The method described above has been tested using ESA ERS data of the 

Landers Earthquake, USA of 1992 (Warren et al 2004).  The general 

deformation of the earthquake was identified, but some erroneous phase fringes 

were present.  These have since been identified as being due toγ  not being 

calculated when all three satellites and target were in the same plane.  Another 

test of the method but with calculatingγ  correctly is shown below, comparing 

the differential interferogram generated from the IAS method with one 

generated from the Doris implementation of the traditional 3-pass method.  The 

data used is of the Bam Earthquake, Iran (Funning et al 2005) collected from the 

ESA Envisat satellite. 

 

The three SAR images that were used to generate the two interferograms are 

dated 11th November 2003 and 3rd December 2003 for the topographic 

interferogram, 11th November 2003 and 7th January 2004 for the deformation 

interferogram.  The earthquake occurred on the 26th December 2003.  The Doris 

software together with precise orbits was used to generate the interferograms; 

and where phase unwrapping has been applied the Stanford SNAPHU software 

has been used.  The topographic interferogram has had some processing applied 

so as to limit the effect of atmospheric errors in the differential result (see 

section 4.6). 

 

Figures 4.10 a) and b) show the traditional 3-pass and the IAS 3-pass results 

respectively.  A qualitative analysis of the two images shows them to be very 

similar (as expected), except that the traditional 3-pass result appears to have an 

extra fringe across the image.  The deformation can clearly be seen as the rapid 

fringes near the centre of the image.  It should be pointed out that no GCPs have 

been used, in post-processing, to correct either result. 
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Figure 4.10a) Traditional 3-pass result: generated using the Doris Software. 

 

 
Figure 4.10 b) Integer Ambiguity Search 3-pass result. 
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For further analysis a 2-pass result was generated using the deformation 

interferogram together with an SRTM DEM of the area.  Because the SRTM 

data gives heights relative to the geoid and the InSAR data is relative to an 

ellipsoid, a correction (NGA WGS84 Geoid Calculator) was applied to the 

SRTM heights before generating the 2-pass results.  This 2-pass result was then 

used as a reference for the two 3-pass results.  By subtracting the 2-pass result 

from each 3-pass result it is possible to see the error between the 3-pass and 2-

pass differential results.  Prior to subtraction, each differential result has been 

unwrapped using the SNAPHU software.  The traditional 3-pass error along a 

profile across the image is shown below in Figure 4.11a.  It can be seen that 

there is a “random” error in the results, but also a systematic error propagating 

as a slope.  The so-called random error is due, primarily, to errors in the DEM 

and topographic phase noise.  This creates a pixel by pixel error which is, in 

general, random in nature.  The slope is caused by errors between the 

topography and the ellipsoid model used to flatten the phase data.  If there was 

no topography, i.e. a perfectly flat area, then the ellipsoid and topography would 

be comparable and the slope would not be present.  The SRTM profile of 

topography is shown in Figure 4.11b. 

 
Figure 4.11a Error between the 2-pass and traditional 3-pass differential results.  Y-axis 

measures phase difference in radians, X-axis distance along the profile used. 
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Figure 4.11b SRTM height profile: along the same profile as used for the above analysis in 

4.10a. 

Figure 4.11c below shows the error between the IAS 3-pass and the 2-pass 

results along the same profile as the previous analysis.  Again the random errors 

are present but the systematic slope error is no longer perceptible.  This is due to 

the IAS method using the absolute phase and not flattening to an ellipsoid 

model.  Therefore the IAS 3-pass method gives a result closer to the 2-pass 

method than the traditional 3-pass method.  This suggests that 2-pass accuracy 

could be attained from 3-pass methods in future, without requiring a DEM but 

rather a set of GCPs.   

 
Figure 4.11c Profile of errors between the IAS 3-pass and 2-pass results.  The Y-axis shows the 

phase error in radians, X-axis the distance along the profile. 
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4.6 DEM “Smoothing” application 

 

This section describes a smoothing application that can be applied to improve 

differential InSAR results with the aid of a rough DEM.  It has previously been 

described in (Sowter and Warren 2005).  It is similar to work done by (Crosetto 

2002) and (van der Kooij 1999) who use related techniques to improve DEM 

generation.   

 

4.6.1 Smoothing method 

 

In the previous chapter, 2-pass and 3-pass methods of differential interferometry 

were described.  But there is another possibility that was ignored; using a DEM 

within a 3-pass framework.  The DEM can be used together with the 

topographic interferogram to help isolate the atmospheric and baseline errors 

within the interferogram.  This allows an “improved” topographic interferogram 

to be used in the 3-pass method. 

 

Consider a 2-pass differential process which gives the following result: 
DEFODEFO

d Τ−+= φεφδφ2    4.20 

where 2δφ  is the differential phase from 2-pass, dφ the phase due to deformation 

only, DEFOε  the phase noise from the deformation interferogram and DEFO
τφ  the 

phase due to a DEM height error of magnitude T (which can be derived from 

equation 4.14).  Similarly a 3-pass process would give: 

TOPO
TOPO

DEFO
DEFO

d B
B

εεφδφ
⊥

⊥−+=3   4.21 

where TOPOB⊥  and DEFOB⊥  are the perpendicular baselines of the topographic and 

deformation interferograms respectively and 3δφ  is the differential phase from 

the 3-pass method. 

 

So for a 2-pass process to be performed on the topographic interferogram would 

result in: 
TOPOTOPOTOPO
Τ−= φεδφ2     4.22 
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since it is assumed there is no deformation in the topographic interferogram.   

 

Now a spatial averaging filter of suitable size, say 500m – 1km, applied to 

equation 4.22 should have little affect on the atmospheric phase due to its spatial 

scale (Hanssen 2001).  Filtering should reduce the standard deviation of the 

random height errors and in turn, this could reduce the contribution of the DEM 

errors in the differential phase.  If this filtered phase is removed from the 

original topographic phase, it results in the screened phase: 
TOPOTOPOTOPOTOPO
Τ+−+Φ= φεεφ    4.23 

where the bar denotes spatial averaged and Φ  represents the phase due to 

topography only.  Using this as input into the 3-pass method gives: 

( )TOPOTOPOTOPO
TOPO

DEFO
DEFO

d B
B

εεφεφδφ −+−+= Τ
⊥

⊥
3   4.24 

For this to give better results than a 2-pass method it has to be shown that the 

last term in equation 4.24 is smaller than the last term of equation 4.20.  To this 

end, consider ε  can be separated into SL εεε +=  where Lε  denotes large scale 

phase errors and Sε  small scale phase errors.  Small scale errors are random 

effects that affect each resolution cell and are related to coherence (Zebker and 

Villasenor 1992).  Large scale errors are due to atmosphere and baseline effects 

and occur over large areas.  As previously stated baseline effects generally result 

in a gentle phase ramp and have a large spatial scale.  The atmospheric effects 

consist of topography correlated and random components; the random 

components being at spatial scales usually no finer than 500m (Hanssen 2001).  

Since the spatial averaging filter was applied with a kernel of approx. 500m, it 

implies: 

SL εεε +=      4.25 

hence 
TOPO
S

TOPO
S

TOPOTOPO εεεε −=−     4.26 

Using equations 4.14, 4.20, 4.24 and 4.26 it can be shown that the screened 3-

pass method is better than the 2-pass method when: 

0Τ>Τ       4.27 

where the boundary value 0Τ is approximately given by: 
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( )TOPO
S

TOPO
STOPO

DEFODEFO

BN
N εε

π
θλρ

−
−

=Τ
⊥4

sin
10    4.28 

where N is given by the NxN DEM postings kernel used to spatially average the 

data, e.g. for a DEM at 100m postings use a 5x5 kernel to filter at scale of 500m.  

r and u are assumed to be similar for both TOPO and DEFO interferograms, 

which is the case for spaceborne InSAR data. 

 

Using 16-look statistics from (Zebker and Villasenor 1992) and typical ERS 

values, Figure 4.12 shows how 0Τ varies when using different baseline and 

coherence values.  It assumes a 3x3 averaging kernel has been used, slant range 

of 1000km and incidence angle of 23o.  It can be seen, for example, that using a 

DEM of 10m accuracy with baseline of 800m and coherence greater than 0.2, it 

is beneficial to use the screened 3-pass.  But for a configuration with DEM 

accuracy 10m, a baseline of 500m and coherence 0.2, it would be better to use 

2-pass. 

 
Figure 4.12 Configurations where IAS 3-pass may be better than 2-pass.  Curves represent T0 

boundary values for different coherence values. Configurations that give T0 above the curve will 

find screened 3-pass to improve upon 2-pass; those below will not.  (Sowter and Warren 2005) 
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4.6.2 Smoothing example 

 

The DEM smoothing method to improve upon 2-pass DInSAR has been tested 

using the data set of Iran described above in section 4.5.  An SRTM 90m 

resolution DEM has also been used.  Interferograms were generated using the 

Doris InSAR processor and precise orbits from Delft Technical University.   

 

The 90m resolution SRTM DEM has an accuracy of approximately 9m RMS in 

vegetated, rolling topography (Kocak et al 2005).  So using Figure 4.12 and a 

topographic baseline of greater than 350m would suggest that, for coherence 

values greater than 0.2, screening would benefit the DInSAR product.  The 

topographic baseline for the data used was approx. 500m.   

 

A 2-pass result was generated from the InSAR data.  This was repeated twice; 

once with the original 90m SRTM DEM, to use as a reference result, and once 

with a degraded 90m SRTM DEM.  The degraded DEM was generated using 

the SRTM DEM with a random noise component added to it with mean 0m and 

standard deviation 10m. A 3-pass result was generated in the same way as 

described in section 4.5, with the topographic interferogram being screened 

using the degraded DEM to remove the estimate of the large scale phase errors.  

Finally, a 3-pass result was generated without phase screening. 

 

A short profile across the area of deformation was used to compare the different 

interferogram results obtained.  These profiles can be seen below in Figure 4.13.  

It can be seen that the profiles from the 2-pass with the good DEM and the basic 

3-pass both follow a similar curve.  The 2-pass result using the degraded DEM 

deviates from this curve greatly, whereas the smoothed 3-pass result more 

closely follows the result of 2-pass with a good DEM.  This suggests that, for 

this case, a smoothed 3-pass result improves upon a 2-pass result that uses the 

same DEM as input.  But it also appears that the basic 3-pass result (with no 

DEM) gives a much smoother curve.  This could be due to the fact that the 

region used was of very high coherence and probably had very little atmospheric 

phase effects, and so the phase screening approach might not be so useful here.   
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Figure 4.13 Spatial profiles of four DInSAR results.  3-pass using a poor DEM shows a much 

more consistent result than for 2-pass using the same DEM. (Sowter and Warren 2005) 

 

4.7 Summary 

 

This chapter introduced the concept of the phase ambiguity relating to SAR 

interferometry.  Algorithms exist to identify the ambiguity relative to a reference 

pixel, but are sensitive to noise in the data and will not always give usable 

results.  The Integer Ambiguity Search (IAS) method has been discussed as a 

way to recreate the absolute phase for pixels close to a nearby GCP, or if prior to 

this the phase has been unwrapped, then the absolute phase for each pixel can be 

recreated.  Absolute positioning using this method has been described and 

demonstrated over the city of London, UK.  The IAS method allowed possible 

improvements to be made upon the 3-pass algorithm and this has been 

demonstrated using data from Iran.  Finally, a smoothing procedure for 3-pass 

interferometry was described, based upon similar procedures used in DEM 

generation.  It was shown that using a 3-pass framework together with the 

smoothing operation enables a better result than 2-pass differential 

interferometry alone, if certain criteria are met.   
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5. Persistent Scatterer Interferometry 
 

5.1 Persistent Scatterers 

 

In 1999, Ferretti et al (1999) demonstrated a new technique of interferometry 

that utilised the whole back catalogue of ERS SAR images for a specific region.  

This technique was named the Permanent Scatterers Technique (Ferretti et al, 

2001).  Rather than using every image pixel, the technique only selects certain 

pixels based upon their phase stability throughout the time evolution of the 

images.  These pixels being called Permanent Scatterers.  In the real world these 

pixels relate to stable, reflective objects such as bare rock, buildings, bridges, 

lamp posts etc, which makes this technique ideal for monitoring in urban areas.  

The terms persistent scatterer and permanent scatterer can be interchanged as 

they generally mean the same, but permanent scatterer tends to be used when 

related to Ferretti’s technique.  For the remainder of this thesis the term 

persistent scatterer (or PS) will be used to describe phase stable pixels. 

 

5.2 Persistent Scatterer Interferometry Review 

 

There are a few different Persistent Scatterer Interferometry (PSInSAR) and 

similar methods being developed at this time.  The most prominent of these are: 

the Permanent Scatterer Technique (Ferretti et al 2000a; Ferretti et al 2001), 

the Coherent Pixel Technique (Mallorqui et al 2003; Dominguez et al 2005), the 

Spatio-Temporal Unwrapping Network (STUN) algorithm (Kampes and Nico 

2005), the Interferometric Point Target Analysis (IPTA) algorithms (Werner et 

al 2003), the Small Baseline Subset (SBAS) (Berardino et al 2002) and the 

Stable Point Network (SPN) (Duro et al 2004).  Even though there are six 

distinct methods listed, the aims of each method are essentially the same and are 

as follows.   

 

A large number of SAR images are needed and should be coregistered to a 

common grid; this is referred to as the stack of data.   Interferograms are formed 

from this stack of SAR images, which are then flattened using a DEM to give 
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the differential phase.  Candidate Persistent Scatterer (PS) points are identified 

by some means (e.g. see Ferretti et al 2001, Mallorqui et al 2003, Hooper et al 

2004) and then used in a joint spatial and temporal analysis to identify an 

estimate of the atmospheric phase screen for each interferogram.  After 

removing this phase screen from the interferograms, an estimate of the 

deformation and error in the DEM can be made by examining both the temporal 

evolution and the geometric baseline variation of each pixel. 

 

Persistent scatterer methods have been successfully used to identify seasonal 

deformation (Colesanti et al 2003a), landslide monitoring (Colesanti et al 

2003b), mining subsidence (Kircher et al 2003), volcanic deformation (Hooper 

et al 2004) and urban subsidence (Ferretti et al 2000b). 

 

5.3 Ferretti Algorithm Overview 

 

An overview of Ferretti’s linear PS algorithm (Ferretti et al 2001) will be given 

here.  It was the first algorithm that followed this persistent scatterer approach 

and is relatively simple.  The method is only suitable for small areas, up to a 

maximum of 5km x 5km, due mainly to assumptions made about the 

atmosphere; namely that it can be modelled effectively as a linear plane.  It 

involves the following steps: 

 

• Generate interferograms 

• Remove topography using a DEM 

• Identify candidate PS points from the SAR amplitude statistics 

• Use these points to model linear deformation and atmospheric effects 

• Generate Atmospheric Phase Screens for each interferogram 

• Remove atmosphere from each interferogram 

• Recreate differential phase interferograms  

• Identify PS points using phase statistics 
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5.3.1 Candidate PS Point Identification 

 

Ferretti’s PS algorithm is a “single master” algorithm.  This means that all the 

interferograms are formed with the same master image, and are therefore all 

coregistered to the same regular grid.  After the SAR images have all been 

coregistered, an analysis on the stack of SAR data can be undertaken.  A large 

number of SAR images are required for PS techniques, usually at least 30.  

Before the SAR amplitude data can be analysed, the data should be 

radiometrically corrected using the ESA calibration factors (Laur et al 2002), so 

that the amplitudes are comparable.  Because, by definition, persistent scatterers 

are phase stable pixels, the phase could be used to identify the PS.  But because 

of the errors present in the phase, e.g. atmospheric and orbit errors, this is 

generally not possible.  The amplitude of the SAR data however is largely 

unaffected by these contributions, and for high SNR the amplitude dispersion 

can be used as a measure of phase stability (Ferretti et al 2001).  The amplitude 

dispersion is calculated on a pixel-by-pixel basis, where the standard deviation 

in the time direction of each pixel’s amplitude is divided by the mean of the 

same set of amplitude values.  This is then tested against a threshold and points 

with a value less than this threshold are selected as candidate PS points.  As a 

by-product of this, the mean amplitude image created from all the SAR images 

is available, which has much better speckle statistics than a single image.  Often 

the mean is calculated from the intensity values (amplitude squared) rather than 

the amplitude itself (Meadows and Laur 1998).  A comparison is shown in 

Figure 5.1 of a mean amplitude image of 31 SAR images and the same region in 

a single SAR image.  It can be seen that the mean image appears much cleaner 

than the single image. 
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Figure 5.1 SAR amplitude vs averaged SAR amplitude.  Left is a single SAR amplitude image 

of a region in London.  Right is the mean amplitude of 31 SAR images of the same region.  Note 

the reduction in speckle. 

 

5.3.2 Phase Analysis 

 

After generation of the interferograms the differential phase is created.  A 2-pass 

method is used employing the best available DEM of the area.  To reduce the 

amount of data, the differential phase not relating to the PS candidates is 

discarded.  The differential phase is given by: 

nDEMdefoorbatm φφφφφφ ++++=∂    5.1 

where φ∂  is the differential phase and nDEMdefoorbatm φφφφφ ,,,, are phase terms 

due to atmosphere, orbit errors, deformation, DEM errors and noise 

respectively.  The phase of interest is defoφ  whereas the other components can be 

considered as unwanted noise, which need to be removed.  Consider each 

component separately.   
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• atmφ , orbφ  - Spatially correlated and essentially random in time.  These 

two cannot be separated and so the atmospheric phase screen solved for 

is in fact orbatm φφ + .  It is assumed that this atmospheric phase screen can 

be modelled as a simple linear plane, with components in the range and 

azimuth directions, using: zaraaaps 210 ++=φ  where r and z are range 

and azimuth of pixel and 210 ,, aaa are the constant and linear parameters. 

• defoφ  - Correlated in time and depending on type of deformation it could 

be correlated spatially over small regions.  In this method, it is assumed 

that there is only linear deformation occurring and that it can be 

modelled as: vTjdefo λ
πφ 4

=  (Ferretti et al 2001) where v is a linear 

velocity in m/year and Tj is the temporal baseline in years of the jth 

interferogram. 

• DEMφ - Correlated up the stack in terms of the geometric baseline and in 

general is not spatially correlated.  It can be modelled approximately as: 

h
R

B j
DEM ∆=

αλ
π

φ
sin

4
 (Ferretti et al 2001) where jB  is the baseline of 

interferogram j, h∆  the height error of the DEM in metres and α,R  the 

range and incidence angle of the pixel. 

• nφ - Spatially and temporally random noise component, due mainly to 

geometric and temporal decorrelation.  Should be small by definition for 

a persistent scatterer. 

 

Using this information in an iterative algorithm it is possible to fit these models 

to the data to estimate the phase components. 

 

5.3.3 Algorithm Overview 

 

The algorithm employed is a relatively simple iterative one.  It is shown below 

in Figure 5.2 in terms of a flow diagram for ease of description. 
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Figure 5.2 Flow diagram of Ferretti linear algorithm: describing the main iterative algorithm of 

the Ferretti 2-pass linear PS technique. 

 

The final residuals output by the iterative algorithm described are presumed to 

be atmospheric anomalies that do not fit the planar model and random noise.  

These residuals are then spatially interpolated and filtered to remove the random 

noise and estimate the atmosphere at each pixel of the interferogram.  These are 

then removed from each respective interferogram, along with the atmosphere 

phase plane model of each interferogram.  The differential phase is then 

recalculated for each pixel of each ‘atmospheric free’ interferogram and a new 

search for persistent scatterers takes place.  This time instead of the amplitudes 

the phase values are examined.  If they fit a linear temporal model to a certain 

correlation value then they are selected as persistent scatterers.  The linear 

temporal model includes a term related to the deformation velocity and also a 

term modelling the error from the DEM. 
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5.4 Limitations and Advantages of PSInSAR 

 

PSInSAR is a powerful new technique.  With it, it is possible to identify slow, 

long term deformations using certain pixels.  As with all techniques it has 

certain advantages, but it also has its disadvantages.  These are identified and 

described in this section. 

 

Advantages 

• Can identify slow deformation rates (but only up to 1.4cm per 35 days, 

using ERS,  due to sampling restrictions) 

• Spatial array/network of points 

• No requirements to go “into the field” 

• Can “go back in time” i.e. there exists a substantial back catalogue of 

data, from 1991 for ERS. 

• Costs less than long-term GPS or levelling surveying  

• Overcomes the problem that atmospheric anomalies cause in differential 

interferometry. 

 

Disadvantages 

• Reliant on a terrain model – Not such a restraint since SRTM data was 

made available, but still requires the error component to be modelled out 

in the processing chain. 

• Requires large quantities of data – Has implications for the cost of the 

many SAR scenes required.  Also can mean large computational burden 

and processing time.  If the area to be studied has no SAR back 

catalogue (i.e. there is no SAR data for the study area) then the PSInSAR 

method cannot be used until sufficient data has been collected (using 

ESA Envisat satellite takes approximately 3 years to collect 30 images). 

• What actually is a PS? – The physical nature of the scatterer is largely 

unknown, e.g. is it a lamppost, a building or natural bedrock?  Other 

information is required to answer this, such as detailed aerial 

photographs or digital maps.  Even then, due to the spatial resolution of 

the radar images, positioning the scatterer inside the resolution cell is 
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ambiguous.  For certain applications it is important to know what the PS 

is, so that its deformation can be judged to be relevant or not; e.g. people 

measuring tectonic motion may not be interested in scatterers that are not 

indicative of the natural bedrock, such as lampposts or bridge gantries.   

• Persistent Scatterer Positioning – To integrate the PS data with other 

techniques such as GPS or levelling, the 3D position of the PS point is 

needed.  An accurate position estimate from the terrain model is difficult 

due to the errors present, although it has recently been shown, using 

experimental data, that a precision of 1m in the 3D positioning of PS 

points can be attained (Perissin and Rocca 2005).   

• Using a model of deformation to identify PS points – The method of 

identifying PS points by how closely they follow a model is not ideal.  If 

the deformation structure of the pixel is different to that of the model, 

then the pixel might not be identified as a PS point even if it is one.  For 

example, if a pixel shows strong seasonal deformation then it might not 

fit a linear model very well but rather a sinusoidal model (Colesanti et al 

2003a) 

 

5.5 Development of the Linear IAS 3-pass PSInSAR Method 

 

The remainder of this chapter is devoted to the linear IAS 3-pass PSInSAR 

method developed and covers the rational behind it and the development of the 

algorithm. 

 

5.5.1 Motivation 

 

Recall from chapter 4 that the Integer Ambiguity Search (IAS) method allowed 

for the absolute phase to be reconstructed.  This had certain benefits for the 3-

pass differential interferometry method as described in chapter 4.  It was shown 

that the IAS 3-pass method gave a result which was comparable to the 2-pass 

method.  As discussed above, all previous PSInSAR methods make use of a 

Digital Elevation Model to follow a 2-pass methodology and then set about 

modelling the DEM error from the differential phase results.  So by using a 
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DEM a new error source is introduced to the data.  Since the IAS 3-pass method 

allows a differential result similar to the quality of a 2-pass result, it should be 

possible to create a PSInSAR algorithm using 3-pass.   

 

This may give benefits over the traditional 2-pass PSInSAR techniques, namely: 

• No terrain model – By using a 3-pass method to create the differential 

phase, the use of a DEM is by-passed and so the differential phase will 

not contain this error source, and there will be no requirement to 

calculate height corrections.  

• Better positioning – The IAS allows the calculation of the 3D position of 

InSAR data without introducing the errors from using ground control.  

Also, by using the phase value of the data for the positioning, an 

improved estimate of its location is hoped to be achieved.    

 

As the first benefit listed above states, no DEM is needed to calculate the 

differential phase.  But unfortunately, the interferogram that is used as the 

topographic model in the 3-pass method will have errors in the phase due to 

atmosphere anomalies, orbit uncertainties, deformation and decorrelation noise.  

These will propagate through into the differential phase.  But recall that for PS 

points the decorrelation noise is small.  This implies the main error sources in 

the phase of the topographic interferogram are spatially correlated, which in 

general is not true for errors in a DEM.  Therefore by using a 3-pass method 

instead of a 2-pass method in the PSInSAR framework, the DEM error is 

replaced by a spatially correlated error, which could allow benefits in the 

solution of the PS algorithm.  Also, as stated above, this error is not related to 

topography but the atmospheric and deformation phase of the topographic 

interferogram, and can therefore be used as a phase observation within the 

analysis such that there is no loss of degrees of freedom between the 2-pass and 

3-pass PSInSAR methods. 
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5.5.2 The IAS PSInSAR Algorithm 

 

In this research, it was decided to implement the IAS PSInSAR approach within 

a simple method – the Ferretti method.  This would act as an effective 

demonstration that 3-pass DInSAR could be used within a persistent scatterer 

framework.  The Ferretti algorithm was used as the basis because it is a single 

master method.  This is important for a 3-pass framework because the 2 

interferograms used must share the same master image.  Also, in the 2-pass 

method the DEM is the same for each differential result, so too the topographic 

interferogram should be the same for each 3-pass differential interferogram.  By 

following these two “constraints”, the stack of interferograms will have to be 

constructed with the same master image.  Hence Ferretti’s algorithm is a good 

choice to use as the model.  The IAS 3-pass PSInSAR algorithm is summarised 

in the flow diagram below, with the following sections giving a more detailed 

description. 

 
Figure 5.3 Flow diagram of the linear 3-pass IAS PSInSAR method. fE is the topographic phase 

error.  
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5.5.2.1 Interferogram Generation and Candidate PS Point Selection 

 

The foremost stage of the PSInSAR processing is the construction of the 

interferograms.  To do this, a suitable image must first be selected as the master 

image.  The criteria used for the selection are the geometric and temporal 

baselines of the stack of data when a certain image is used as the master.  The 

image used as master should ideally lie in the middle of the temporal stack, such 

that the temporal baselines of the interferograms are minimised.  Also, the 

geometric baselines should be distributed either side of 0m (i.e. both positive 

and negative baselines) with a variety of sizes but with a relatively low mean 

value of the magnitudes.  Interferograms with a geometric baseline greater than 

the critical baseline can be used in a PSInSAR process.  

 

After selection of the master image the interferograms are formed.  They are 

processed much the same as for a traditional InSAR process except no filtering 

of the data occurs.  This is so the phase at the candidate PS points will not be 

affected adversely.  The final interferogram is not multilooked but left at its 

original resolution (20m x 4m ground range for ESA ERS SLC data) again for 

reasons that the phase would not be indicative of the PS point.  The 

interferograms are not flattened with respect to a reference surface at this point.  

An example of an interferogram created in this way is shown below in Figure 

5.4.   

 

After the interferograms have been formed the amplitude images can be 

resampled onto the same master grid to form a stack, and the process for 

identifying candidate PS points can begin.  The method highlighted in (Ferretti 

et al 2001) is used for this and was described above in section 5.3.1.  
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Figure 5.4 Example Interferogram for PSInSAR.  Produced as described above – no 

multilooking or filtering.  Data has been oversampled by a factor of 2 in the range direction.  

 

5.5.2.2 Generation of Differential Interferograms 

 

The formation of the differential phase is the next step in the processing chain.  

The IAS method described in chapter 4 is used to do this, with the same 

interferogram used as the topographic pair for each differential phase result.  

This requires the phase of the interferograms to be unwrapped and the absolute 

phase to be formed.   

 

Due to the fact that the phase interferogram has been formed without any 

filtering of the noise or any multilooking, traditional 2-dimensional phase 

unwrapping algorithms will not work here.  It is, however, possible to use a 

DEM such as the SRTM data to aid in the unwrapping without a floating point 

error being passed on.  Consider the phase of the wrapped absolute 

interferogram and the DEM respectively: 

( )Wrapped
nOrbAtmDefoTopo

Wrapped φφφφφφ ++++=    5.2 

ETopoSimulated φφφ +=       5.3 
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where Wrappedφ  is the wrapped interferogram phase, nOrbAtmDefoTopo φφφφφ ,,,, are 

the phase components due to topography, deformation, atmosphere, baseline 

orbital errors and decorrelation noise respectively, Simulatedφ  is the simulated 

phase from a DEM and Eφ  is the error in the topography from the DEM.  If, first 

of all, Eφ  is considered to be less than π  in magnitude, then subtracting 

equation 5.3 from 5.2 and re-wrapping the result gives: 

( )Wrapped
nOrbAtmDefoE φφφφφφ ++++−=    5.4 

If equation 5.3 is now added back onto equation 5.4, the result is: 

( )Wrapped
nOrbAtmDefoTopo

SUW φφφφφφ ++++=    5.5 

where SUWφ  is the semi-unwrapped interferogram phase, so called because only 

the topographic phase has been unwrapped.  The IAS can then be performed on 

this using a GCP derived from the DEM if necessary, to construct the absolute 

phase estimate.  An example of an interferogram unwrapped in this way is 

shown in Figure 5.5a, with a cross section along a row of the image (Figure 

5.5b). 

If Eφ  is not less than π in magnitude then equation 5.4 will be the same as 

before, but when the simulated phase is added back onto it equation 5.5 will 

become: 

( )Wrapped
nOrbAtmDefoTopo

SUW n φφφφπφφ ++++∆+= 2   5.6 

where n∆ is an integer number.  This term comes from the fact that Eφ  was 

wrapped in equation 5.4 and then had the absolute (i.e. unwrapped) value Eφ  

added back onto it in equation 5.5. 

 

Therefore it can be concluded that this technique of unwrapping the phase will 

not introduce a floating point error due to the DEM inaccuracy, but may 

introduce an integer error.  This is likely to be more of a problem for the large 

baseline interferograms where a complete phase cycle relates to a smaller 

surface height change, meaning errors in the DEM will relate to a larger phase 

value. 
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Figure 5.5a.  Semi-unwrapped Interferogram.  As figure 5.4 but (semi-) unwrapped using the 

method described in the text. 

 
Figure 5.5b Cross section of  semi-unwrapped interferogram: along a line of constant azimuth of 

interferogram shown in Figure 5.5a  

 

After unwrapping the interferograms a suitable pair should be selected as the 

topographic pair for the differential phase production.   
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Recall the differential phase equation from chapter 4: 
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where the subscripts 12 related to the topographic pair and 13 to the deformation 

pair.  The second term on the right hand side of the equation says that the 

topographic phase is scaled by the ratio of the baselines.  If the topographic 

baseline is larger than the deformation baseline, then the topographic phase will 

be scaled down, and therefore any errors in the phase will be scaled down too.  

Conversely, if the topographic baseline is less than the deformation baseline 

then the topographic phase is scaled up.  If the interferogram with the largest 

baseline is selected as the topographic pair, then in every differential phase 

interferogram the topographic phase errors are scaled down and will therefore 

have an effect of less than π in the result.  This minimises the effect of the 

errors but makes it harder to identify the magnitude of this error for removal.  If 

the interferogram with the smallest baseline is selected as the topographic pair, 

then the error term in the differential phase will be scaled up for each 

interferogram.  Since this will cause a greater effect in the differential phase, it 

makes it easier to identify for removal.  This is demonstrated in Figure 5.6 

below.  Figure 5.6a shows the effect of an error of 0.5 radians when the baseline 

ratio is always less than 1, i.e. when the topographic baseline is the largest in the 

set.  Figure 5.6b shows the effect of the same error but when the interferogram 

with the smallest baseline is chosen as the topographic pair.   

 

There are other effects that might influence the choice of topographic 

interferogram, such as the temporal baseline of the interferogram.  

Interferograms with a large temporal baseline will most likely have a larger 

deformation signal component, and therefore a larger topographic error 

component since this interferogram should only contain phase due to 

topography.  This factor is not as important as the geometric baseline though, 

since if a large temporal baseline interferogram with a small geometric baseline 

is chosen, the error due to deformation is easier to remove from the differential 
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phase.  After selection of a suitable topographic interferogram the differential 

phase can be generated. 

 
Figure 5.6a Effect of an error in large baseline topographic interferogram.  The effect of an error 

of 0.5 radians in the topographic interferogram when it is the interferogram with the largest 

baseline 

 
Figure 5.6b Effect of an error in small baseline topographic interferogram.  The effect of an error 

of 0.5 radians in the topographic interferogram when it is the interferogram with the smallest 

baseline. 

 

5.5.2.3 Removal of the Topographic Phase Error 

  

Suppose the topographic interferogram was made purely of topographic phase, 

that is, there was no phase due to atmosphere, orbital errors or deformation.  
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 Then the differential phase would be: 
13131313
norbatmdefo φφφφφ +++=∂     5.8 

where again 13 relates to the deformation pair.  If this was the case the algorithm 

could proceed by looking for strong temporal (deformation) and spatial (APS) 

trends in the stack of data.   

 

Now consider that the topographic phase is not perfect: 
121212
Etopo φφφ +=      5.9 

where 12
Eφ is the phase error term made up of the sum of the atmospheric, orbital, 

deformation and decorrelation phase components.  Then, using this as the 

topographic phase, will give the differential phase as: 

12

12

1313131313
Enorbatmdefo B

B
φφφφφφ ++++=∂    5.10 

ignoring the final term of equation 5.7 which implicitly depends on the 

topographic phase for the construction of angle 12β .  Recall the unwrapping 

regime described previously.  It only unwrapped the topographic component of 

the phase so the first four terms in equation 5.10 from the deformation 

interferogram are still wrapped.  That is, equation 5.10 can be written as: 

( ) 12

12

1313131313
E

wrapped
norbatmdefo B

B
φφφφφφ ++++=∂    5.11 

The differential phase from the IAS method is not automatically wrapped 

modulo 2π , so if πφ >∂  it is due to the last term of equation 5.11.   

 

For each interferogram in the stack of data there is an equation 5.11, which in 

general terms can be written as: 

( ) j
E

j

iwrappedi
n

i
orb

i
atm

i
defo

i

B
B

φφφφφφ ++++=∂      jiNi ≠≤≤ ,1  5.12 

where j is the topographic pair and i the N-1 deformation pairs.  For the same PS 

pixel on each interferogram the j
Eφ  term will be the same, the only difference 

being the value of iB  that scales it.  Therefore to estimate j
Eφ  we may do a linear 

regression to the data up the stack in terms of the baselines, where the gradient 

of the resulting fit is the estimate for j
Eφ .  This can then be removed from the 
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topographic phase and the differential phases recalculated.  It is necessary to 

recalculate the differential phase with the new topographic phase estimate rather 

than subtract the baseline scaled j
Eφ  from each differential interferogram 

because the topographic phase is used to construct the angle 12β  in equation 5.7.  

Figure 5.7 below demonstrates the above procedure.  Figures 5.7a and 5.7b 

show the same data, the differential phase, plotted against time and baseline 

ratio respectively.  Figures 5.7c and 5.7d show the differential phase data after 

correction for the estimated topographic error j
Eφ , plotted against time and 

baseline ratio respectively.  The actual value of the topographic error here is 

1.603 radians whereas the value estimated and removed is 1.535 radians.  

 

 
Figure 5.7 Estimation and removal of topographic phase error. a) and b) show the original phase 

data plotted against time and the baseline ratio respectively, c) and d) show the corrected phase 

data plotted against time and baseline ratio respectively.  Note the change in scale of the phase. 
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5.5.2.4 The Iterative Procedure: Atmospheric Estimation 

 

With the differential phases corrected for the j
Eφ  term, the main iterative 

procedure can begin.  This is essentially the same as the algorithm presented in 

(Ferretti et al, 2001).  As outlined before, it is required to separate estimates of 

the atmospheric phase screen from phase due to a linear velocity.  It is best 

explained using the bullet points below. 

 

• For each interferogram, estimate the three parameters required for a 

linear phase ramp fit: caraa 210 ++  where r and c are pixel row and 

column values.  This is done by finding the values of 1a  and 2a  that 

maximise the complex phase equation  

)(

1

21
1 carai

M

m

i
j ee

M
+−

=

∆ ⋅=Γ ∑ φ     5.13 

where M is the number of candidate PS and φ∆  the iterative differential 

phase, for each interferogram.  The parameter 0a  is attained from the 

argument of jΓ . 

• Remove this phase plane estimate from the differential phases, but also 

keep the unchanged differential phases ( 0φ∆  say). 

)( 21001 caraa ++−∆=∆ φφ    5.14 

• For each candidate PS point, estimate a linear velocity component using 

the data up the stack.  This is done similarly to 5.13 by maximising a 

complex phase equation, weighted by the value of jΓ  from 5.13: 

)4(

1

1
1 vTii

N

j
j

jee
N

λ
π

φγ
−∆

=

⋅⋅Γ= ∑    5.15 

where N is the number of differential interferograms, jT  is the temporal 

baseline and v  the velocity estimate. 

• Sum up the total velocity estimates from previous iterations and remove 

the linear velocity phase component from the original differential phase 

values old
0φ∆ : 
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v
oldnew φφφ −∆=∆ 00     5.16 

where vφ is the phase due to the sum of all previous velocity estimates v . 

 

This loop is repeated until the magnitude of the velocity estimates of the current 

iteration are 0 (or less than a certain threshold).  This results in an estimate for 

the planar APS from equation 5.13 and also, if the velocity and j
Eφ  have been 

identified correctly, the residual differential phase components 0φ∆  with the 

velocity removed should be phase due to atmosphere that doesn’t fit the plane 

model and decorrelation noise (see equation 5.10). 

 

5.5.2.5 Generation of the APS 

 

At present, the atmospheric phase estimations are only available for the 

candidate PS points.  They need to be spatially interpolated such that there is an 

estimate for each pixel of the interferogram.  Also the decorrelation noise has to 

be separated from the APS to get the best estimate.   This is done here by 

implementing a Kriging interpolation (Cressie 1993).  Kriging is an 

interpolation routine that uses the spatial statistics of the sample data as well as 

the distance between points to generate weights.  This can be achieved using a 

semi-variogram, which is a parameter of the data set and describes the relative 

variance between points separated by a certain distance (Cressie 1993).    

Kriging can act as either an exact interpolator or a smoothing interpolator.  Since 

the data at the points being interpolated are expected to contain a random 

decorrelation noise component, using Kriging as a smoothing interpolator 

should reduce the magnitude of this random noise.  Meyer et al (2005) suggest 

that Kriging is the optimal method for estimating the atmosphere from the 

residuals of a Persistent Scatterer stack. 

 

5.5.2.6 Generate the Topographic Pair APS 

 

The above method only gives the atmospheric phase screens for the N-1 

deformation interferograms.  But the j
Eφ  error term from the topographic pair 
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also contains an atmospheric component, which may be separated and 

interpolated to generate the APS for the topographic interferogram. Consider the 

components of the topographic phase error term: 
j

n
j

defo
j

atm
j

E φφφφ ++=     5.17 

where the baseline orbital error component has been grouped with the 

atmospheric term for easier analysis.  A linear velocity to model the deformation 

phase term has already been estimated from the stack of differential 

interferograms, so this can be used to remove the j
defoφ  term leaving the 

atmospheric phase and decorrelation noise terms.  As with the deformation 

interferograms, these remaining terms can be interpolated and smoothed to form 

an APS for the topographic interferogram.   

 

5.5.2.7 Final Persistent Scatterer Analysis 

 

The atmospheric phase screens for each interferogram can be removed from the 

original interferograms and the final persistent scatterer search can begin.  The 

differential phases are reconstructed from the updated interferograms and a 

topographic error term is estimated and removed as before but from every 

interferogram pixel.  For each pixel in the interferogram a linear velocity is 

fitted to the stacked data, with the ensemble phase coherence – a goodness of fit 

parameter related to the phase dispersion (Ferretti et al 2001) – used to identify 

the point as a persistent scatterer or not.  The ensemble phase coherence, jγ , is 

calculated using equation 5.18 

∑
=

∂=
N

n

n
jj i

N 1

)*exp(1 φγ      5.18 

where N is the number of interferograms and n
jφ∂  is the differential phase of 

interferogram n at pixel j.  If the ensemble phase coherence is above a certain 

threshold then the point is flagged as a PS point.  Since the topographic error 

term contains the deformation phase, this can be used within the stack of data as 

an extra observation for the linear fit, giving N observations.  Hence there is no 

loss of degrees of freedom between the 3-pass and the 2-pass PSInSAR 

methods.   
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5.6 Differences Between Ferretti’s 2-Pass and IAS 3-Pass  

 

The following bullet points highlight the differences between the two algorithms 

described above: Ferretti’s 2-pass and the IAS 3-pass algorithms.   

 

• Input data – The obvious difference here is that the 2-pass algorithm uses 

a DEM which introduces a new error source that must be removed, 

whereas the 3-pass algorithm uses an interferogram in place of the DEM.  

This too introduces an error term but due to the nature of it (i.e. it 

containing spatially correlated atmosphere and a deformation term) it can 

be estimated and removed before the latter part of the processing chain.   

• If there are N+1 SAR images available for the analysis, then the 2-pass 

method will have N differential interferograms whereas the 3-pass 

method will only have N-1.  This reduces the number of observations 

available for the initial candidate PS point analysis (see Table 5.1).   

• Another difference, albeit small, is how the velocity and topographic 

error terms are identified in the iterative loop.  The 2-pass algorithm uses 

a 2-dimensional periodogram to identify both velocity and topographic 

error terms together.  The 3-pass method identifies an initial topographic 

error estimate from a linear fit to the differential data which contains the 

unwrapped baseline scaled topographic error.  Then the velocity is 

estimated in the iterative loop before a final update to the topographic 

error estimate is made. 

• The topographic error term is treated differently between the two 

methods.  The 2-pass topographic error comes from the DEM, and when 

identified can be used to correct the DEM to make it more accurate at the 

PS points locations.  With the 3-pass method the error term is from 

interferogram errors and not topography (see equation 5.17), which can 

be separated after the initial candidate PS point analysis by utilising the 

estimate of the deformation velocity and Kriging the residuals.  In the 

same way with the deformation interferograms, the atmospheric phase 

screen can be removed from the topographic pair.  In the final PS 
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analysis this error will therefore be mainly deformation and decorrelation 

noise, and can be fed into the linear velocity fit as another observation. 

 

2-Pass 3-Pass
Number of Interferograms N N

Number of APS solved N N

Height corrections required Yes No

Number of Differential 
Interferograms N N-1

Number of Velocity 
Observations Available 

(post APS removal)
N N

 
Table 5.1 Comparison of terms solved for in 2-pass and 3-pass PSInSAR methods 

 

5.7 Summary 

 

The relatively new technique of persistent scatterer interferometry has been 

introduced, and described with respect to the Permanent Scatterer method of 

Ferretti et al (2001).  The advantages for using this methodology for surveying 

purposes have been outlined, along with some disadvantages.  Two major 

disadvantages of the method are: the calculation of topographic height 

corrections and the positioning accuracy of the PS points for integration with 

other data.  A 3-pass PSInSAR method has been introduced, with the aim of 

overcoming these two disadvantages.  The methodology of the technique has 

been described and differences from Ferretti’s method have been highlighted.    
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6. Data and Test Site 
 

6.1 Introduction 

 

The previous chapter introduced a new algorithm for Persistent Scatterer 

Interferometry based on the IAS 3-pass technique.  This chapter discusses the 

data and the test site used to test the algorithm.  The selection of the test site has 

been based on various criteria.  The first criterion was that the region should 

contain a large urban area.  This is important for selecting the PS points.  

Secondly, there should be a suitable amount of SAR imagery available, usually 

greater than 30 images are needed for a PS analysis (Ferretti et al 2001).  The 

images should also be regularly acquired, e.g. there should not be large gaps in 

the data stack.  This is to aid the processing since missing samples in the time 

series analysis will hinder the data fitting.  The third criterion for selecting the 

test region was whether additional data was available or an analysis of the 

region had been previously performed.  Additional data could mean either data 

from other surveying techniques such as the Global Positioning System (GPS), 

levelling surveys to compare the deformation found with the PSInSAR method 

or data from aerial/satellite imagery of the region to aid in the identification of 

PS points.   

 

Taking into account the criteria listed it was suggested that London be used as 

the test site.  London is a large urban area and has been regularly imaged by the 

ERS 1/2 satellites.  There is also a GPS network that monitors the Thames 

Region which incorporates London.  Large areas of the City of London have had 

extensive surveying performed, including previous InSAR and PSInSAR 

analyses (NPA Group Ltd; Vexcel Corp.).  There is also an extensive amount of 

high-resolution aerial imagery available for London. 

 

The remainder of this chapter discusses the London region in more depth, gives 

an overview of GPS for land deformation surveying and also describes the GPS 

network in the Thames Region.  The chapter finishes with a description of the 

SAR data used within the project. 



 

 102 
 

6.2 London 

 

The city of London is located in the South Eastern corner of the United 

Kingdom, approximately at latitude of 51.5 degrees North and longitude 0 

degrees.  It is a large urban metropolis that covers approximately 1,500 square 

kilometres of land.  The land cover of London includes residential, business, 

commercial, park and agricultural land in the periphery.  The geography of 

London is fairly flat.  There are few hills in the city and most of these are below 

30 metres in height.   

 

Previous recent studies of London using SAR interferometry have identified 

some areas that show subsidence.  One such area is a piece of land in the 

Westminster region of London, where an extension to the Underground Rail 

Network was constructed in the late 1990s.  At least three different research 

teams have identified this area of subsidence; groups at NPA Ltd, Vexcel and 

Lawerence Livermore National Laboratory, showing subsidence magnitudes of 

a few cm in total over 3 or 4 years.   

 

There may be other areas of London showing subsidence or heave that occur 

due to the underlying geology.  The geology of the London and Thames region 

is predominantly clay, chalk, sand and peat (Environment Agency Report 2006) 

(See Figure 6.1).  Clay has a seasonal shrink/swell effect where in the wet 

months the clay swells, and in the dry months it shrinks.  Vegetation also affects 

the shrink/swell since trees extract large quantities of water causing shrinkage 

(Bingley et al 1999).  This shrink/swell can also cause an overall subsidence 

effect.  Previous studies of the London Clay have reported 12mm of heave over 

a 3 year period (Driscoll 1983; Driscoll 1984), and magnitudes up to 50mm 

have been reported elsewhere.   
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Figure 6.1  Solid Geology of the London Basin (From Environment Agency Report 2006) 

 

6.3 Global Positioning System 

 

The following section gives an introduction of the Global Positioning System 

(GPS) for land deformation monitoring.  A comprehensive discussion on GPS is 

out of scope of this thesis.  For a more informative and in-depth description of 

GPS see one of the many books on the subject, for example (Hofmann-

Wellenhof et al, 2001).  It should also be noted that much of this section has 

appeared previously in Warren 2003. 

 
6.3.1 GPS Overview 

 

GPS is a continuous all weather satellite-based positioning system originally 

designed by the US Department of Defense (DoD) in the 1970s for military 

purposes, but civilians also have access to it.  It consists of a constellation of 24 

satellites in 6 orbital planes, which each emit a coded signal on the L1 and L2 

frequencies (L1=1575.42 MHz, L2=1227.60 MHz).  This constellation was 

chosen so as to have at least 4 satellites visible anywhere in the world at any 

time, which is the minimum required number of satellites to get a good position 
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estimate.  There is also a ground control segment that monitors and maintains 

the satellites and uplinks new improved data to the satellites. 

 

A receiver on the ground can then use the coded signals to calculate the 

pseudorange from the satellite to the receiver, and then position itself relative to 

a global geodetic reference frame.  To get a good 3-dimensional position 

estimate at least four satellites must be in view due to uncertainties in the 

receiver clocks.  If there are two receivers available then the carrier phase can be 

used to enable a more precise and accurate relative position, via a post-

processing technique.  The L1 and L2 carrier signals have wavelengths of 19cm 

and 24cm respectively, which give this method a resolution of a few mm.  The 

carrier phase is more difficult to process and measure than the code 

pseudoranges, and has the added difficulty of introducing an integer ambiguity.  

This arises due to the receiver only being able to measure the phase of the signal 

and not the number of wavelengths between satellite and receiver.   

 

6.3.2 GPS for Land Deformation 

 

GPS is a useful tool for measuring land deformations.  Much work has been 

completed in the past on using GPS for detecting small movements.  This 

includes work on structural deformation (see for example Ashkenazi and 

Roberts 1997, Wieser and Brunner 2002) and more general land 

deformation/subsidence (e.g. Ashkenazi et al 1993, Maciaszek and Szewczyk 

2001).   

 

Networks have been set up around the world to try to model and understand the 

Earth’s deformations.  The Southern Californian Integrated GPS Network 

(SCIGN) is a GPS network situated in Southern California, with emphasis 

around the city of Los Angeles.  By July 2001 the network had a total of 250 

operating GPS stations (Hudnut et al 2001).  The SCIGN work hopes to further 

understanding of earthquake faults, provide the potential for estimating 

earthquakes, and to measure permanent crustal deformation. 
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Japan also has implemented a large GPS monitoring network due to seismic and 

volcanic activity on the islands (Imakiire and Nakahori 2001).  The GPS Earth 

Observation Network (GEONET) consists of approximately 1000 continuous 

GPS stations, with an average spacing of 25-30km, to give nationwide coverage 

of Japan.  It is capable of measuring crustal deformation and detecting co-

seismic movement, which are helpful towards the study of geodynamics and 

earthquake monitoring.  The accuracy when using dual frequency data is 

reported as being better than 2mm horizontally and 6mm in height (Rizos et al 

2000).  

 

6.3.3 GPS Limitations 

 

Potentially there are many limitations to the accuracy of relative carrier phase 

GPS, the main ones being due to systematic biases in the observation equation.  

These can be classified into three general groups: satellite based, atmospheric 

and station based. 

 

6.3.3.1 Satellite Based 

 

These are problems due to errors in the satellite coordinates. They can be 

effectively mitigated through the post processing technique due to the 

observable used (the double differenced observable) and the use of the final 

precise ephemeris available from the International GNSS Service (IGS). 

 

6.3.3.2 Atmospheric 

 

The atmosphere interacts with the signal and affects its propagation path.  The 

atmosphere can be considered made up of two parts, the ionosphere and the 

troposphere.  The ionosphere has the effect of advancing the carrier phase by an 

amount dependant on the signal frequency.  The effect of the ionosphere can be 

mitigated by using dual frequency receivers and forming the ionospherically 

free observable. 
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The lower part of the atmosphere is known as the troposphere and it has the 

effect of delaying and refracting the signal.  It can be considered to be made up 

of a ‘wet’ part and hydrostatic part, with the ‘wet’ part being the hardest to 

model due to difficulties modelling the water vapour.  The effect of the 

troposphere cannot be mitigated by using a dual frequency observable as was 

the case with the ionosphere.  There exist models of the troposphere, such as the 

Saastamoinen model (Saastamoinen 1973), which can be used with effective 

post processing techniques to get an estimate of the total tropospheric delay; 

however the tropospheric delay is one of the major limiting factors to GPS and 

is an area of ongoing research. 

 

6.3.3.3 Station Related 

 

These errors and biases are due to the receiver and the surrounding region.  

Antenna phase centre variations arise due to the fact that the physical, geometric 

centre of the antenna is not usually identical as the electronic centre.  This offset 

can change depending on the signal strength and frequency, elevation and the 

azimuth of the satellite.  The IGS supply models of the phase centre variations, 

which can be used during the processing of the data to model the effect.   

 

Tidal forces such as Earth Body tides, which is a ‘stretching’ of the Earth 

resulting from the gravitational pull of the Sun and Moon, and Ocean Tide 

Loading also have an effect on GPS positioning, since they result in a 

displacement of the Earth’s surface.  These effects can be modelled using the 

coefficients supplied by the IERS, and corrections can be applied to the receiver 

coordinates. 

 

Multipath is another of the major limiting factors.  It is a station specific 

problem, but also gives different effects depending on the GPS satellite 

positions.  This means there is no particular model to mitigate it, but there are 

techniques that can aid in its removal.   Multipath is caused by signals being 

reflected before they reach the antenna (Figure 6.2).  Therefore the path length 

of the multipath signal is greater than the direct path from satellite to receiver.  

The consequence being that the receiver gives a noisier position estimate.  These 
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effects can be minimised by selecting a suitable place to set up the station, 

(avoiding trees and structures that may reflect the signals), using choke ring 

antennas and observing for long periods of time.  

 
Figure 6.2 Multipath effects on GPS.  Paths 1 and 3 are indirect from satellite to receiver, 

bouncing off structures before being received and giving false distances.  Path 2 is direct from 

satellite to receiver, giving correct distance. 

 

Cycle slips are also a major limiting factor to the accuracy of GPS.  These occur 

when the receiver loses lock on a satellite, for example because of an 

obstruction (e.g. a tree).  So when the receiver locks on to the satellite again a 

new integer ambiguity is created.  This causes problems in the processing stage 

because the least squares processing method assumes there is only one integer 

ambiguity for each satellite.  Cycle slips can be detected in a pre-processing step 

of the data by examining the double-difference phase residuals over time, and 

they can then be corrected.  

 

Another major limitation of GPS is a problem arising from the geometry of the 

satellites, known as Dilution of Precision (DOP).  To get high quality 

observations good satellite geometry is required.  This means, ideally, that the 

satellites should be spread evenly around the receiver.  For example if the 

satellites are all to the south of the receiver then this will give a high (bad) DOP 

value, whereas if there are some to the north, some to the south and one directly 

above the receiver, this will give a much better (lower) DOP value. 

 

A further limitation of GPS is that it is only feasible on sparse networks.  Due to 

the high cost of dual frequency CGPS stations it would not be a viable option to 
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cover vast areas with thousands of these.  This means subsidence with small 

spatial scales may not get detected by the GPS network.  

 

6.3.4 Summary of GPS for Deformation Detection 

 

An overview of GPS has been given, concentrating on its application to land 

deformation monitoring.  It is a satellite technique that can position points on 

Earth to high accuracy using the carrier phase information of the satellite signal.  

For long term monitoring of land movements accuracies of less than 1mm are 

feasible.  It is a method that is available 24 hours every day and is used world 

wide to high precision.  The GPS observations result in 3-dimensional 

position/movement vectors for the point where the GPS station is located.   

 

Various limitations exist that need to be overcome at the processing stage.  

These range from atmospheric biases, motions due to tidal forces, errors in the 

satellite coordinates, detection and mitigation of cycle slips, and errors due to 

the receiver and its location.  For most of these limitations there exist models 

that can be applied to effectively eliminate any biases, or techniques that can be 

used to reduce the effect of any biases.  But other limitations such as multipath 

or interference effects are hard to eliminate and separate from detected small 

movements and can only be minimised by careful selection of GPS station 

location. 

 

6.4 Thames Regional GPS Network 

 

A GPS network in the Thames Region was set up in 1997 for an Environment 

Agency project to monitor changes in ground level and tie the results into tidal 

sea levels (Bingley et al 1999).  The initial network consisted of three 

continuous GPS (CGPS) stations and 22 stations that were monitored 

episodically.  A map of the station locations was given as Figure 4.6.  The 

CGPS record data 24hrs a day at 30 second intervals, while the episodic GPS 

stations were surveyed every 3 months for a 9hr period between 9am and 6pm.  

A processing strategy was designed where the three CGPS stations were 

processed together with continuous data from the International GNSS Service 
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(IGS) global GPS network.  This was followed by the episodic GPS being 

processed together with the corresponding 24hr data from the three CGPS 

stations, and finally the results of these two stages were combined.  In other 

words, the episodic data are monitored relative to the CGPS stations, which in 

turn are monitored relative to the IGS stations used in the project.  No GPS 

station is presumed stable, but rather the IGS stations have a known velocity 

which is assumed to be correct.  More details on the processing and design of 

the GPS network can be found in Bingley et al 1999.   

 

6.5 SAR Data 

 

After deciding on the test site, the SAR data was ordered.  It was decided that 

the satellite to be used should either be the European Space Agency’s Envisat or 

ERS satellites.  This is because these satellites have better orbital data and are 

the best to use for interferometric purposes.  To get a stack of at least 30 SAR 

images meant that Envisat could not be used, since it was only launched in 2002 

and a data stack large enough did not exist.  This left the ERS 1/2 satellites.  

Because the SAR instruments on board the two satellites are virtually identical 

to each other, it is possible to combine radar images from the two of them 

without problems.  The latter part of the ERS 2 mission has been frustrated with 

problems with the onboard gyroscopes, with failures occurring in early 2000 and 

the gyros being completely switched off by the start of 2001.  This affected the 

Doppler values of the radar image and made interferometry with these SAR 

images more difficult.  Therefore it was decided to use data acquired prior to 

2000 to avoid these issues.  The GPS network mentioned above was set up at the 

start of 1997, and so to be consistent with this it was decided to use SAR data 

from the start of 1997 to the end of 1999, which equated to 31 SAR images.  

Table 6.1 shows the dates of the SAR data used together with their orbit, frame 

number and satellite. 
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Satellite Orbit Frame Date
ERS-2 8923 2565 03-Jan-97
ERS-2 9424 2565 07-Feb-97
ERS-1 29598 2565 13-Mar-97
ERS-2 9925 2565 14-Mar-97
ERS-2 10426 2565 18-Apr-97
ERS-2 10927 2565 23-May-97
ERS-2 11428 2565 27-Jun-97
ERS-2 11929 2565 01-Aug-97
ERS-2 12430 2565 05-Sep-97
ERS-1 32604 2565 09-Oct-97
ERS-2 12931 2565 10-Oct-97
ERS-2 13432 2565 14-Nov-97
ERS-2 13933 2565 19-Dec-97
ERS-2 14434 2565 23-Jan-98
ERS-2 14935 2565 27-Feb-98
ERS-2 15436 2565 03-Apr-98
ERS-2 15937 2565 08-May-98
ERS-2 16438 2565 12-Jun-98
ERS-2 16939 2565 17-Jul-98
ERS-2 17440 2565 21-Aug-98
ERS-2 17941 2565 25-Sep-98
ERS-2 18943 2565 04-Dec-98
ERS-2 19444 2565 08-Jan-99
ERS-2 20446 2565 19-Mar-99
ERS-2 20947 2565 23-Apr-99
ERS-2 21448 2565 28-May-99
ERS-2 21949 2565 02-Jul-99
ERS-2 22450 2565 06-Aug-99
ERS-2 22951 2565 10-Sep-99
ERS-2 23452 2565 15-Oct-99
ERS-2 24454 2565 24-Dec-99  

Table 6.1 SAR data used in the project. 

 

6.6 Test sites 

 

A SAR image covers an area of approximately 100km x 100km, which is too 

large an area to test the algorithms with.  Within the SAR images, two small 

separate test sites were identified: the Greenwich area and the Westminster area.    

 

6.6.1 Greenwich 

 

The Greenwich test site is an area of approximately 5km by 5km, and 

encompasses two of the episodic GPS stations in the aforementioned network: 

GRPK and SILV.  The GRPK station is located in Greenwich Park and SILV is 

located in Silvertown, north of the Thames Barrier.  These are shown on Figure 
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6.3 below.  The area is bisected by the River Thames and also contains an 

airstrip and a large park.  Large parts of the region are residential, commercial 

and industrial. 

 
Figure 6.3 Google Earth image of the Greenwich test site: with the 2 GPS points shown. 

 

6.6.2 Westminster 

 

The Westminster test site corresponds to an area approximately 5km by 5km in 

size.  The test site comprises of regions of residential, commercial and park 

land, and is bisected by the River Thames.  Although there were no GPS stations 

in this region, it was selected as a test site because of the engineering works of 

the Jubilee line extension on the Underground Rail Network.  Through a PS 

analysis of this region it is expected that the subsidence due to these works can 

be identified.  An aerial image of the test site is shown below in Figure 6.4. 
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Figure 6.4 Google Earth image of the Westminster test site. 

 

6.7 Summary  

 

The reasons for selecting test data have been explained and why the City of 

London was selected as the test area.  Within the city, two separate test sites 

have been selected, Greenwich and Westminster, and the sites described.  A 

brief outline of using GPS for land deformation has been given and a regional 

GPS network has been introduced.  The SAR data used in the project has been 

displayed in the form of a table showing the ERS satellite orbit and frame 

numbers together with the dates of acquisition. 
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7.  Persistent Scatterer Software Developments 
 

7.1 Introduction 

 

At the start of this project there was very little persistent scatterer software 

available.  The different software that was available were very much “black 

box” systems in that the software code was usually not made accessible nor 

changeable.  This makes it difficult to adapt the software to your specific needs.  

It was clear that a set of tools for persistent scatterer interferometry would need 

to be developed.  The advantages of developing our own software are clear: we 

have complete control of what it does and how it represents the results.  It is also 

easy to add future functionality to the software such as new improved 

algorithms or further elements of research.  The collection of tools that have 

been developed is imaginatively titled “3-Pass Persistent Scatterer Processor” 

or 3PaPS.  It is split into two parts; the first being written in C++ and the second 

being a collection of MATLAB scripts.  There is also a set of HTML help files 

that describe the software which can be easily amended or added to by users of 

the software.  A description of the software developed and its usage follow. 

 

7.2 3PaPS  

 

The 3PaPS collection of tools allows a 3-pass persistent scatterer process to be 

applied to a stack of Synthetic Aperture Radar images.  As it stands, the use of 

3PaPS is very much a linear process without much choice in the algorithms 

used.  It is hoped that future research projects will add to the functionality of the 

tools giving greater depth in the choice of algorithms implemented.  The 

software is divided into two main stages: 

• Identification of candidate PS points and the generation of differential 

phase (C++) 

• Analysis of the differential phase data (MATLAB) 

 

The front end of the 3PaPS software is shown below in Figure 7.1.  It uses a 

Windows GUI (Graphical User Interface) instead of DOS prompts for ease of 
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usability for the novice user.  The buttons on the main window are split into 

three sections:  

• Pre-processing 

• Processing  

• MATLAB Scripts.   

 

 
Figure 7.1 Front end of the 3PaPS processor software. 

 

Each section has its own role to play in the processing of the data and shall be 

discussed below.  Another important piece of software that is used in the 

processing chain is for the Kriging of the atmospheric phase screens.  This is 

achieved in MATLAB using scripts from the GLOBEC Kriging Software 

Package, EasyKrig v3.0, from the Woods Hole Oceanographic Institute (Chu 

2004).  This is freely available for non-commercial purposes.   
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7.2.1 Pre-Processing Stage 

 

The pre-processing stage is used to get the input data for the 3PaPS processing 

into a suitable format.  Examples of the input data would be: orbit data, radar 

parameters and intererogram parameters.  The method implemented in the 

3PaPS software is designed to take input from the Doris (Kampes and Usai 

1999) software, since this was the interferometric processing software available 

to the author.  To use inputs from another interferometric processor, a new 

function should be added to the 3PaPS software to read the data from the new 

format. 

 

There are two stages to the pre-processing which should be run in sequence. 

• Select Paths – Use this to identify where the Doris output files are 

located on the computer Hard Drive, and also to select a location for the 

outputs of 3PaPS. 

• Save Parameters – After the Doris output files have been identified, this 

step in the processing will extract the relevant data from the files and 

save it in the 3PaPS format.  

 

After the pre-processing stage, a series of files will be output from 3PaPS which 

contain certain information on each interferogram such as: orbital data, 

interferogram size, radar wavelength, pulse repetition frequency and range 

sampling rate. 

 

7.2.2 Processing Stage 

 

With the input data in the format required for the 3PaPS software, the 

processing stage can proceed.  This stage can be broadly divided into three 

steps, which again, should be run in sequence. 

• PS Identify – This step is dedicated to identifying candidate PS points 

from the amplitudes of the SAR images.  The GUI for this step is shown 

below in Figure 7.2.    As input it takes the number of SAR images in the 

stack, which have been cropped and resampled to the master SAR image 
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grid.  The size of the images, as number of rows and columns is also 

needed.  The location of the folder which contains the resampled SAR 

images is needed, together with a file that contains details about the 

calibration constants for each SAR image.  This is required so as to make 

the amplitude values of the SAR images comparable.  The outputs of this 

step are binary raster files that contain the amplitude for each 

interferogram, a file of the mean amplitude of the stack and a file that 

lists the identified candidate PS point’s row and column location. 

 
Figure 7.2 GUI for the 3PaPS PS Identify stage of processing 

 

• Unwrap Phase – This step is concerned with unwrapping the phase 

interferograms.  The process requires a DEM as input to aid in the 

unwrapping of the noisy interferograms.  The DEM height values are 

converted to phase, and registered to the interferogram grid, to generate 

simulated interferograms.  Using the simulated interferograms, the real 

interferograms are unwrapped using the process described in chapter 5.  

The user interface for this step is shown in Figure 7.3.  The outputs for 

this stage include the simulated interferograms, the unwrapped 

interferograms and the SAR coregistered DEM. 
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Figure 7.3 GUI for the 3PaPS Unwrap Phase stage of processing 

 

• Differential – The final step in the Processing stage of the 3PaPS 

software is concerned with calculating the 3-pass differential phase 

interferograms.  The user interface is shown in Figure 7.4.  This step 

takes the number of PS candidates, the coregistered DEM and the 

unwrapped phase interferograms as input.  One of the input 

interferograms is selected (by the user) as the reference interferogram, 

which is used as the topographic pair for each 3-pass differential result.  

This step can be carried out at the candidate PS points only or the full 

interferogram.  This should only be carried out at the candidate PS points 

for the first run, and then when the atmospheric phase screen has been 

removed from the interferograms, it should be re-run for the full 

interferogram.  If “RemoveDPhi” is checked then an estimate of the 

topographic error is calculated and removed from the differential phase.  

The outputs of this stage are the differential phase files and, if selected, 

the topographic error estimate and correlation fit. 
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Figure 7.4 GUI for the 3PaPS differential phase stage of processing. 

 

7.2.3 MATLAB Scripts 

 

The final part of the processing is undertaken using scripts written for use in 

MATLAB.  They have been tested with and are compatible with MATLAB 

version 6.5.  The scripts are generated by selecting the “MATLAB Script” 

button on the main window of the 3PaPS application.  The scripts are primarily 

for the temporal analysis of the data that was described in the previous chapter.  

When the “MATLAB Script” button is selected, the graphical user interface 

shown in Figure 7.5 is displayed.  The scripts that are checked will be generated 

and output to the computer Hard Drive.   

 

A brief description of the function of each script follows. 

• Atmospheric Periodogram – Script which takes in the differential phase 

stack at the candidate PS points and tries to fit a planar model to each 

interferogram layer to represent the atmospheric phase screen (see 

equation 5.13).  This is run iteratively in conjunction with Velocity 

Periodogram. 

• Velocity Periodogram – Script which tries to model a constant linear 

velocity to the stack of differential phase data at each candidate PS point 

(see equation 5.15). 
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Figure 7.5 GUI for the 3PaPS MATLAB script generation. 

 

• Save Data for Easykrig – Script which saves the phase residuals from the 

iterative algorithm into a format suitable for Easykrig. 

• Extract Data from Easykrig – Script that takes the Kriged atmospheric 

phase screen from the Easykrig software format and saves it as binary 

data. 

• Remove Atmosphere from Interferograms – Script that subtracts the 

atmospheric phase screen from the original phase interferograms. 

• Full Interferogram Velocity Periodogram – Script that uses a 

periodogram on the stacked, full differential interferogram data to 

estimate a constant linear velocity for each pixel of the interferogram.  

As well as the velocity estimate, a goodness-of-fit parameter is given and 

also the standard deviation of the data to the linear velocity fit. 

• Full Interferogram DPhi Periodogram – Optional script that will 

implement a periodogram to estimate if there is a residual topographic 

phase error in the differential phase stack.  An estimate is given for each 

pixel of the interferogram.   

• View Data – A script that will plot the time series for the given point of 

interest, together with a straight line velocity fit to the data.  
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7.3 Software Testing with Simulated Data 

 

The 3-pass IAS PSInSAR algorithms developed were first tested using 

simulated data.  This simulated data has been created from four components: 

topography, deformation, atmosphere and random noise.  The sum of these 

components has been wrapped and called the simulated interferogram.  These 

have then been used with the 3-pass IAS PSInSAR method to test the 

algorithms.  The approximate size of the simulated data is 5km x 5km. 

 

7.3.1 Topography 

 

The simulated topographic phase data has been generated from a SRTM 90m 

Digital Elevation Model (Jordan et al 1996) and ESA ERS-1,-2 precise orbit 

data (Scharroo et al 1998).  The DEM has been oversampled and interpolated to 

the same pixel size as the range oversampled ESA SLC data (i.e. 10m x 4m 

pixel size).  An example of the simulated topographic phase is shown in Figure 

7.6.   

 
Figure 7.6:  Simulated topographic absolute phase interferogram: in radar coordinates, where X-

axis is azimuth direction, Y-axis range direction and units are interferogram column and row 

number. 
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The simple equation 

( )jitopo ρρ
λ
πφ −=

4     7.1 

was then used to convert the DEM heights to topographic phase, where iρ  and 

jρ  are the ranges from the radar position in orbits i and j to the DEM pixel.   

 

Thirty simulated topographic phase interferograms were made in this way.  

Table 7.1 below shows the temporal and spatial baselines used; these are 

dictated by the actual ERS orbits used to simulate the phase. 

 

Number Baseline (m) Time (days)
1 157.4 -455
2 594.8 -420
3 464.1 -386
4 336.4 -385
5 827.0 -350
6 123.1 -315
7 83.9 -280
8 194.7 -245
9 720.6 -210

10 342.3 -176
11 559.3 -175
12 219.7 -140
13 114.1 -105
14 -47.5 -70
15 -745.8 -35
16 804.0 35
17 1127.6 70
18 -551.8 105
19 -357.7 140
20 663.2 175
21 -250.1 245
22 -867.4 280
23 228.6 350
24 264.3 385
25 753.9 420
26 408.9 455
27 696.8 490
28 -484.7 525
29 48.2 560
30 202.0 630  

Table 7.1: Baseline distribution of simulated SAR data.  The distribution of the spatial and 

temporal baselines of the simulated interferograms used in the analysis. 
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7.3.2 Deformation 

 

The second component of the interferometric phase is the phase due to a 

deformation.  For simplicity, here this is considered to behave as a linear motion 

with a constant velocity throughout the time period covered by the 

interferograms.  The equation used to calculate the deformation phase was: 

),(
4

cridefo vT
λ
πφ =     7.2 

where iT  is the temporal baseline (in years) of interferogram i and ),( crv is the 

constant linear velocity (in metres per year) at interferogram pixel (r,c).  The 

velocities used to generate the deformation field range from 0 to 20mm/yr in the 

form of a subsidence bowl.  This is similar to known subsidence patterns that 

occur, for example with mining subsidence (Raucoules et al 2003).  The 

deformation phase for simulated interferogram 1 is shown below in Figure 7.7, 

together with a cross-section of the velocities along range line 300. 

 
Figure 7.7: Simulated deformation phase.  The image on the left shows the deformation phase 

component (in radians) for simulated interferogram 1 created using equation 7.2 with velocities 

ranging from -20 – 0mm/yr.  The image on the right shows a cross section of the velocities used 

along range line 300. 

 

7.3.3 Atmosphere 

 

The third component of the interferometric phase is due to the differences 

between the atmospheric delay in the two SAR images.  The atmospheric phase 

anomalies are spatially correlated but temporally random.  Each simulated 

interferogram atmosphere was generated by using a very simple model, where a 

sparse grid of values are created from a Normal distribution with mean 0 and 
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variance 4.8mm.  The sparse grid is then interpolated on to the regular 

interferogram grid resulting in a smooth phase image.   The value used for the 

variance has been reported in (Goldstein 1995) for atmospheres over an area of 

approximately 20km x 20km in the Mojave Desert.  Although the values are 

from a desert they are suitable for the purpose of the simulation.  One of the 

generated atmospheric phase screens is shown below in Figure 7.8. 

 
Figure 7.8: Simulated atmospheric phase: for one of the interferograms, scale in radians. 

 

7.3.4 Decorrelation Noise 

 

The fourth component that makes up the simulated interferogram phase is the 

decorrelation noise.  This has been created by using a Normal distribution with 

mean 0 and variance π /6 radians.  This variance is approximately equal to 40o 

which is in agreement with models used in similar studies 

(Worawattanamateekul at al 2004).  The same distribution has been used to 

create a spatially random noise component for each interferogram.  An example 

is shown in Figure 7.9. 
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Figure 7.9: Simulated phase noise.  Spatially random noise component added on to the synthetic 

interferogram to represent decorrelation noise, scale in radians. 

 

7.3.5 Total Simulated Interferogram 

 

Each of the four components above were generated and summed together, 

before being wrapped to create a synthetic interferogram.  Figure 7.10 below 

shows the wrapped sum of the four components in the figures above which 

correspond to simulated interferogram 1 from Table 7.1.  The geometric 

baseline is 157 metres and the temporal baseline is 455 days.   

  

7.4 Processing 

 

The simulated data has been processed using the 3PaPS software based on the 

IAS 3-pass PSInSAR algorithm described in section 5.5 and 7.2.  Real SAR data 

(see chapter 6) corresponding to tables 6.1 and 7.1 was used to identify 

candidate PS points for the simulated trial.  The simulated interferograms have 

then been unwrapped and the differential phase at each candidate PS point has 

been generated and an estimate of the topographic interferogram phase error 

removed.  The processing was undertaken three separate times using a different  
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Figure 7.10: Wrapped simulated interferogram.  Consists of four components: topography, 

deformation, atmosphere and random noise.  Scale in radians. 

 

topographic interferogram to observe the effects this has in the processing.  The 

interferograms selected as the topographic interferograms for the test were 

numbers 1, 7 and 17 from Table 7.1.  This selection gives a good combination of 

geometric and temporal baselines.  Interferogram 1 has a relatively short 

geometric baseline of 157m which should allow for any topographic error to be 

estimated easier, but a large temporal baseline of 455 days (hence a large 

deformation phase component).  Interferogram 7 also has a relatively short 

geometric baseline of 84m and a shorter temporal baseline of 280 days.  

Interferogram 17 has a large geometric baseline of 1.1km and a short temporal 

baseline of 70 days.  The processing of the data with each topographic 

interferogram is identical and is as follows.  The differential phases are 

generated and an estimate for the topographic phase error is removed.  Estimates 

of the planar APS and linear velocity have then been calculated using the 

iterative approach, and removed, to result in phase residuals that relate to 

atmospheric perturbations and random decorrelation noise.  The residuals have 

been interpolated and smoothed using the Easykrig software and the 

atmospheric phase screens produced were removed from the simulated 
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interferograms.  Finally, the differential phase was generated for each pixel of 

each interferogram and an estimate of the linear velocity produced.   

 

7.5 Results 

 

Some results of the above processing will now be shown.  The distribution of 

the initial candidate PS points is shown below, in Figure 7.11, overlaid upon the 

mean amplitude image of the real SAR data.  It can be seen that there is a wide 

distribution of points across the image, with only the areas of Greenwich Park 

and the Thames River showing a lack of candidate points.  This is to be 

expected due to the reflective properties of water and vegetation and their 

respective coherence over time (see chapter 2). 

 
Figure 7.11 Distribution of candidate PS points.  Distribution is shown against the mean 

amplitude image created from the amplitudes of the stack of real SAR data. 

 

7.5.1 Topographic Interferogram 1 

 

The first processing was undertaken using interferogram 1 as the topographic 

interferogram.  The first stage of the verification of the processing was to 

examine the atmospheric phase screen estimates achieved from the Kriging step 

to see if they matched up with the simulated atmospheres.  Figure 7.12 shows 

thumbnails of the 29 atmospheric phase screens, estimated from the Kriging 

step.  Figure 7.13 shows the true atmospheric phase screens of the simulated 

data.  Both sets of images are shown using the same colour scale and so can be 

qualitatively compared with each other.  It can be seen that the Kriged APS and 

the true APS are broadly similar in shape and structure.  That is, where there is 
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red or blue in the true APS there is red or blue in the estimated APS.  The shades 

of colour are darker in the Kriged atmospheres which suggest there could be an 

overestimation in some areas, causing a larger magnitude in the APS. 

 
Figure 7.12 Thumbnail images of the Kriged estimated atmospheric phase screens: for the 

simulated interferograms.   

 
Figure 7.13 Thumbnail images of the true atmospheric phase screens: for the simulated 

interferograms.  
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 The Kriged atmosphere is not expected to be identical to the simulated 

atmosphere due to the sampling effect and the interpolation errors that are 

introduced from the Kriging.  This can be seen as the ‘roughness’ in the 

estimated APS. 

 

The topographic interferogram error, at this stage, consists of all the phase 

components other than topography.  The comparison of the actual values and the 

estimated values can be seen in Figure 7.14.  For each candidate PS the 

difference of the true and estimated values is plotted.  The errors between the 

two have mean 0.0015 radians and standard deviation 0.0675 radians.  

 
Figure 7.14 Simulation 1: Estimated topographic phase error.  The top image shows the actual 

topographic error term, the middle image the estimated error and the bottom image shows the 

difference between them.  The error distribution has mean 0.0015 rads and standard deviation 

0.0675 rads.  

 

Using the estimate of the linear velocity up the stack, it is possible to remove the 

component due to deformation from the topographic error term.  This leaves the 

phase components due to atmosphere and random decorrelation noise.  These 

then can be Kriged to give an estimate for the atmospheric phase screen of the 
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topographic interferogram.  This estimate together with the actual simulated 

atmosphere of the topographic interferogram is shown below in Figure 7.15.   

   
Figure 7.15 Simulation 1: Topographic APS.  The image on the left is the actual (simulated) 

atmosphere of the topographic interferogram, the image on the right is the Kriged estimate of the 

atmospheric phase screen for the same interferogram. 

 

Again the two images show qualitatively similar results albeit that the values of 

the estimated atmospheric phase error are larger than the simulated values.   

 

After the removal of the atmospheric phase screens from the interferograms, the 

differential phase is recalculated and a velocity estimate is derived for each 

image pixel.  The decision whether the point is a PS or not is based on the value 

of the goodness of fit of the velocity estimate, i.e. the ensemble phase 

coherenceγ .  Figure 7.16 below shows the derived estimated velocity for each 

pixel, together with a cross-section plot of range line 300.  This can be 

compared with the previous Figure 7.7 that shows the true simulated velocity of 

range line 300. 

 
Figure 7.16 Simulation 1: Estimated velocities.  The image on the left shows the estimated 

velocity (m/yr) derived from the PS analysis.  The image on the right shows a cross section of 

velocities along the range line 300. 

 



 

 130 
 

It can be seen that the shape of the deformation field broadly matches that of the 

simulated velocities that were used to create the interferogram data.  From the 

cross-section plots of the velocities it can also be seen that the estimated values 

follow closely the true velocity values.  The difference between the derived 

velocity field and the true velocity field is shown below in Figure 7.17.  The 

mean of the differences is -0.59mm/yr with a standard deviation of 0.63mm/yr. 

 
Figure 7.17 Simulation 1: Error in the estimated velocities.  Difference between the true velocity 

field and the estimated velocity field.  The standard deviation of the error is 0.63mm/yr. 

 

The larger errors appear to be located in a ring corresponding to the deformation 

area where velocities are approximately 9-15mm/yr.  This also corresponds to 

regions where discontinuities due to phase wrapping occur.   Figure 7.18 below 

shows the cross sections of the wrapped deformation phase component of the 

differential phase along range line 300 for certain interferograms.  It can be seen 

that the discontinuities occur in the region of higher noise present in Figure 7.17.   

 

Due to the relatively simple construction of the simulated interferograms, a lot 

of persistent scatterers are identified.  This is most likely because of the simple 

treatment of decorrelation noise as a spatially and temporally random noise with 

relatively low standard deviation.  For example, in areas of vegetation (or other 

low coherent areas) the decorrelation noise would be much larger than this. 
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Figure 7.18 Simulation 1: Discontinuities in wrapped interferograms.  Cross-sections of the 

wrapped deformation phase component of the simulated interferograms.  Cross-sections are 

taken along range line 300 for interferograms 1, 5, 10, 15, 20, 25 and 30. 

 

This reduces the confidence in the underlying interferometric phase value.  The 

persistent scatterer points have been selected by thresholding the ensemble 

phase coherence,γ , at 0.8.  Here, this results in 94% of the points being selected 

as PS points. 

 

A time series of a point outside the deformation zone and a point inside the 

deformation zone is shown in Figure 7.19.  The straight line is a fit of the linear 

velocity to the data.   

 
Figure 7.19 Simulation 1: time series plots.  The plot on the left shows a PS point outside the 

deformation zone, with estimated velocity 0.4mm/yr and γ =0.937.  The plot on the right shows 

a PS point in the deformation zone with estimated velocity -19.6mm/yr and γ =0.907. 
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7.5.2 Topographic Interferogram 7 

 

Similarly the above procedure has been applied to the data using interferogram 7 

as the topographic interferogram.  Figure 7.20 shows the error between the 

estimated topographic phase error and the actual topographic phase error for the 

candidate PS points.  The error is between ± 0.15 radians for every point, with a 

mean of 0.002 radians and a standard deviation of 0.0252 radians.  It is 

noticeable that the spread of errors is larger in the deformation zone which could 

imply that where the topographic error is larger there is more uncertainty in 

estimating it.  But a plot of the estimated topographic phase error against its 

correlation coefficient, shown in Figure 7.21, does not support this assertion.  It 

shows that smaller phase estimates have a smaller correlation and hence more 

uncertainty.  So instead of this it could mean that because there is a larger 

velocity component here, it is more difficult to estimate the topographic error as 

accurate as when there is no velocity component in the phase.     

 
Figure 7.20 Simulation 2: Estimated topographic phase error.  The mean is 0.002 radians with a 

standard deviation of 0.0252 radians.  
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Figure 7.21 Simulation 2: Topographic phase error vs. correlation (coefficient of the data fit). 

 

The final velocity map is shown below in Figure 7.22 together with the error 

between this and the actual velocities.  The mean of the errors is 0.4mm and 

they have a standard deviation of 0.55mm.  The range of the errors spread from 

a minimum of -2mm to 14mm.  This includes every pixel not just the persistent 

scatterers.  When only the persistent scatterers are used, the mean is 0.39mm 

with a standard deviation of 0.54mm and a range spreading from -2mm to 

3.2mm, based on the 91.8%  persistent scatterer coverage. 

 
Figure 7.22 Simulation 2: Estimated velocities and velocity error.  The image on the left is the 

final velocity map of every pixel (not just PS points), whilst the image on the right is the error 

between these velocities and the true velocities.   

 

Plots of the two persistent scatterers corresponding to the ones in Figure 7.19 are 

shown in Figure 7.23.  Qualitatively they both appear similar to, and both give 
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the same velocity estimates, as the corresponding graphs of Figure 7.19.  The 

values of γ  are close enough to be effectively the same too.  So at these two PS 

points, changing the topographic interferogram has had no significant effect.   

 
Figure 7.23 Simulation 2: time series plots: of same 2 persistent scatterers from Figure 7.18.  

The plot on the left shows the point outside the deformation zone, with estimated velocity 

0.4mm/yr and γ =0.926.  The plot on the right shows the point in the deformation zone with 

estimated velocity -19.6mm/yr and γ =0.909.  

 

7.5.3 Topographic Interferogram 17 

 

The procedure has been repeated using interferogram 17 as the topographic 

interferogram.  The error between the estimated topographic phase error and the 

actual topographic phase error is shown in Figure 7.24, and the correlation of the 

estimates is shown in Figure 7.25.  It can be seen that the error is approximately 

between -1.5 and +2.4 radians, with a mean of 0.117 radians and a standard 

deviation of 0.4347 radians.  For the points corresponding to the deformation 

zone, i.e. points approximately between 1700 and 2700, the spread of this error 

term is larger as can be seen from Figure 7.24. 

 

From Figure 7.25 it can be seen that the correlation of the fit of the topographic 

phase error is weak, with the vast majority of points having a correlation 

magnitude of less than 0.6.  This suggests there is lower confidence in the 

knowledge of the estimated values. 
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Figure 7.24 Simulation 3: Estimated topographic phase error.  The mean is 0.117 radians with a 

standard deviation of 0.4347 radians. 

 
Figure 7.25 Simulation 3: Topographic phase error vs. correlation (coefficient of the data fit). 

 

The final velocity map and the error of the velocities are shown below in Figure 

7.26.  As with the previous examples, the shape and magnitude of the final 

velocity map appears good.  When examining the velocity errors it can be seen 

that some large errors occur.  The mean of the errors is 0.51mm with a standard 

deviation of 0.59mm and a spread ranging from -2mm to +53mm.  Again it is 

stressed that this includes every pixel and not just PS points.  When only PS 

points are examined the mean becomes 0.48mm with a standard deviation of 
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0.56mm and the range of errors from -2mm to 15.2mm.  Here PS points are 

identified with 92% coverage. 

   
Figure 7.26 Simulation 3: Estimated velocities and velocity error.  The image on the left shows 

the final velocity map from the analysis, whilst the image on the right shows the error between 

these estimated velocities and the true ones. 

 

As before, the two PS points’ time series are plotted and shown below in Figure 

7.27.  They give the same velocity estimates as the previous cases, albeit with 

slightly lower γ  values.  Recall that the PS points are selected based on having 

a γ  value greater than 0.8.  Therefore PS point 2, with a γ  value of 0.800, was 

only just included as a persistent scatterer here. 

 
Figure 7.27 Simulation 3: time series plots: of same two persistent scatterers as previously.  The 

plot on the left shows the point outside the deformation zone, with estimated velocity 0.4mm/yr 

and γ =0.860.  The plot on the right shows the point in the deformation zone with estimated 

velocity -19.6mm/yr and γ =0.800. 
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7.5.4 Comparisons 

 

The results of the three processing tests above will now be compared with each 

other to see if earlier ideas on the selection of the topographic interferogram 

were correct, or if there should be a more definitive selection criteria.  The 

results are summarised in Table 7.2 below.   

 

1 7 17

Min -0.1986 -0.1484 -1.5087
Max 0.3945 0.1465 2.3774
Mean 0.0015 0.0021 0.117

Min -11.7 -2 -2
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Mean 0.59 0.4 0.51
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Table 7.2 Summary of the results from sections 7.5.1 - 7.5.3. 

 

Firstly, examining the topographic phase error shows what was predicted in 

chapter 5.  Namely, that with larger baseline topographic interferograms it is 

harder to initially estimate the topographic phase error accurately.  It can be seen 

that using interferograms 1 and 7 as the topographic pairs, which both have 

short geometric baselines, that the estimate of the topographic phase error is 

good.  The errors in the estimates lie within a narrow range of 0.3 radians for 

case 7 and 0.5 radians for case 1 with both cases having mean value 

approximately 0 and low standard deviations.  However, case 17 with the large 
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geometric baseline shows much worse errors in the estimates, with errors in a 

range of almost 4 radians and a standard deviation greater than 0.4 radians. 

 

Examining the errors in the derived velocity estimates at the PS points also 

suggests that using a smaller baseline interferogram is better.  The errors in 

cases 1 and 7 lie within a range of approximately -2mm/yr to 3.5mm/yr, whereas 

with case 17 the maximum error in the velocity reaches 15.2mm/yr.  The 

percentage of PS points identified is relatively similar for all pairs, as are the 

mean and standard deviations of the ensemble phase coherence valuesγ .  The 

results do however show that there is a slight bias present, with the mean of the 

velocity errors being approximately 0.5mm/yr for each case.  

 

In conclusion, the overall number of PS points identified and their “goodness” is 

similar for the three cases shown.  But to get a good initial estimate of the 

topographic phase error it is important to use a small baseline topographic 

interferogram.  Since this estimate is fed back into the algorithm it is important 

to get a good estimate and so it is suggested that a topographic interferogram 

with a small baseline is used. 

  

7.6 Summary 

 

This chapter has introduced the 3PaPS software package and described its use 

for generating IAS 3-pass PSInSAR results.  By following a modular approach 

to the software design and using well known languages (C++ and MATLAB) it 

should make the software easier to update or improve in future developments.  

A simple simulated set of data has been constructed and used to test the 

algorithms in the 3PaPS software.  The data has been used within three 

scenarios, where each case uses a different topographic interferogram.  The 

atmospheric phase screen estimated by the 3PaPS software agrees well with the 

actual atmospheric phase in the simulated case shown.  It was shown that to get 

a good initial estimate of the topographic phase error a small baseline pair is 

needed as the topographic interferogram.  But all three test cases produced a 

similar amount of PS points with similar ensemble coherence values, so there is 
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no conclusive evidence that larger baselines are any worse overall.  Still, to get a 

good estimate of the topographic phase error it is important to use a small 

baseline interferogram. 
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8.  Linear IAS 3-Pass PSInSAR Results 
 

8.1 Introduction 

 

The linear IAS 3-pass PSInSAR algorithms have been tested with simulated 

data; in this chapter they are tested on some real data.  The data set and test sites 

used for the analysis have been described previously in chapter 6.  The 

following sections give an overview of the processing of the data and the results 

from the two test sites used.  The results are discussed and possible 

improvements to the algorithm and the linear IAS 3-pass PSInSAR technique 

are considered.  For further details on the processing algorithms refer to chapter 

5. 

 

8.2 Formation of Interferograms 

 

The processing of the data has been performed on a desktop PC with 1GB of 

internal RAM and a Pentium 4 2.4GHz processor.  The interferograms were 

generated using the Doris InSAR software operated in the Cygwin environment, 

which is a UNIX-type environment.  All other processing is done under the 

Microsoft Windows XP environment.   

 

The first stage of the processing is to select a SAR image as the master image 

for each interferogram.  Based on its temporal and geometrical position being 

relatively central in the stack of images, the SAR image acquired on 3rd April 

1998 was selected for use as the master image.   

 

Using Doris, together with precise orbits where available, the stacks of 

interferograms for the two test sites were generated.  Two of the SAR images 

did not have precise orbits available, namely the two images acquired by the 

ERS-1 satellite.  This is because during these acquisition dates (between July 

1996 and July 1998) the satellite was not tracked by any laser systems and so it 

is impossible to generate precise orbits for these dates.   
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The interferograms were generated without any filtering procedures or 

mutlilooking of the interferogram pixels, so as not to ‘contaminate’ the phase 

values of any persistent scatterers.  The original SAR data has been oversampled 

in range by a factor of two to reduce anti-aliasing in the interferogram creation 

stage.  The data was not oversampled in the azimuth direction because Doris 

does not include an option for this; the pixel resolution is already much finer in 

azimuth than in range and, in general, the phase gradient in the range direction is 

much greater than in the azimuth direction, so it is more critical to oversample in 

the range direction than azimuth.  After interferogram formation the data is 

compressed back to the original size by discarding the extra columns created 

from the oversampling procedure. 

 

8.3 Greenwich 

 

The first test site used is the Greenwich area.  The pre-processing step of the 

3PaPS software was run to extract the required information from the Doris 

generated outputs and saved to a collection of files.  A stack is created from the 

master SAR image and the resampled slave SAR images (i.e. the slave images 

that have been sampled onto the same image grid as the master SAR image).  

From this stack the candidate PS points are selected and the temporal average of 

the amplitudes created.  Figure 8.1 below shows the image created from the 

mean amplitude values with the candidate PS points overlaid.  The 2411 

candidate PS points are spread over the image and located in the regions where  

 
Figure 8.1 Greenwich: candidate PS points.  Mean amplitude image of the Greenwich test site 

with candidate PS points overlaid. 
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they are expected, i.e. bright amplitude urban areas, and absent from the river 

and vegetated areas. 

 

Using the 3PaPS software, together with MATLAB, a SRTM Digital Elevation 

Model was cropped and transformed into a simulated phase interferogram in 

radar coordinates for each interferogram in the stack.  This was then used as 

described in chapter 5 to aid the unwrapping of the topographic phase 

component of each interferogram, resulting in an estimate for the absolute phase 

of the interferograms.   

 

An interferogram must be selected as the topographic interferogram before the 

differential phase can be calculated.  Based on the results of chapter 7 it was 

decided that the interferogram should have a short geometric baseline.  

Interferogram 14 was initially chosen as the topographic interferogram because 

of its short geometric and temporal baselines, but it would not generate stable 

differential results with all of the interferograms1.  Interferogram 7 was selected 

as a second choice because it too has a short geometric baseline and relatively 

short temporal baseline.  The differential phase was then generated at the 

candidate PS points for each interferogram, and an initial estimate for the 

topographic phase error Eφ  was made.  Figure 8.2 below shows the estimates of 

Eφ  for each candidate PS point against the correlation coefficient of the data fit.  

From this we can conclude that the estimates of Eφ  are likely to be good due to 

82% of them having a correlation greater than 0.8. 

 

After removal of the initial topographic phase error term the iterative procedure 

described in chapter 5 was undertaken.  The outputs of this step (atmospheric 

and decorrelation phase noise) were imported into the Easykrig software 

package for interpolation.  In the Easykrig package a semi-variogram was 

created from the actual data and a model was fit to this using least squares 

techniques.  The basic model used was a spherical equation since this matched  

                                                 
1 This has since been identified as a software bug and solved. 
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Figure 8.2 Greenwich: Topographic phase error vs. correlation.  Graph of Eφ estimates against 

correlation coefficient of the least squares fit of Eφ to the data. 

 

the shape of the data semi-variogram well.  Equation 8.1 below describes the 

spherical model  
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where h is the lag, c0 is the nugget, cS is the sill and aS is the range and  

denotes magnitude.  The lag is the distance between the two points in question, 

the sill is the maximum value of the semi-variogram (i.e. the semi-variogram 

value as h tends to infinity), the nugget represents sub-scale variation or 

measurement error and is the semi-variogram value at h=0 and the range is a 

scalar that controls the correlation between points.  (Cressie 1993) gives a 

detailed overview of semi-variogram estimation and fitting as well as a thorough 

description of the kriging technique.  Figure 8.3 below shows a graph of the 
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semi-variogram model (line) together with the data semi-variogram (circles) 

given by the Easykrig package.  The model has a nugget = 0.28, sill = 0.99 and 

range = 0.33.   

 
Figure 8.3 Greenwich: Kriging semi-variogram.  Graph of the actual data semi-variogram 

(circles) together with the model semi-variogram (solid line) given by the Easykrig package.   

 

The Kriging output is given on a grid with pixel size approximately 300m x 

300m which is then interpolated back to the original size.   This has the effect of 

spatially smoothing the phase data such that the decorrelation noise is reduced 

whilst the atmospheric phase noise is left unchanged, due to spatial scales of 

approx. 0.5 - 1km (Hanssen 2001).  The smoothed and interpolated atmospheric 

phase screens (see Figure 8.4a) are then removed from each respective 

interferogram.  The same procedure was applied to the topographic phase error 

minus the velocity estimates, to give an atmospheric phase screen for the 

topographic interferogram (see Figure 8.4b).  The differential phase was then 

created for every image pixel. 

 

An estimate of Eφ  for each point is derived from a linear least squares fit, and 

since the atmospheric phase has been removed from the topographic 

interferogram, Eφ  is assumed to be mainly due to deformation.  This is then fed 

back into the stack of the differential phase as a deformation observation.  A 

second estimate of Eφ is then made using a periodogram method, in case a 

residual, possibly wrapped, effect remains.  From the stack of data and by using 



 

 145 
 

 
Figure 8.4a Greenwich: Wrapped Atmospheric Phase Screens of the 29 deformation 

interferograms.  Scale in radians. 

 
Figure 8.4b Greenwich: Wrapped Atmospheric Phase Screen for the topographic interferogram 

(interferogram 7). 

 

a periodogram, velocities together with a corresponding γ  value are calculated.  

The data has then been geocoded into a WGS84 UTM Zone 31 coordinate 

system using the IAS technique together with the topographic interferogram 

after removal of atmospheric and deformation phase terms. 
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The final PS points have been selected using a γ  threshold of 0.8.  These are 

shown in Figure 8.5 and overlaid onto the geocoded mean amplitude image 

where the colour of the PS points is related to their respective velocities.  The 

two purple triangles correspond to the two GPS points in the region.  Table 8.1 

also shows the number of PS points within each of the velocity bounds. 

 

 
Figure 8.5 Greenwich: PS point velocity map.  Background image is the mean amplitude of the 

SAR data, geocoded to a WGS84 UTM Zone 31 coordinate system.  PS points are shown as 

coloured dots, with the colour related to their velocity. 
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Table 8.1 Greenwich: Classification of PS points in relation to their velocity V in mm/yr. 
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The PS point coverage appears to be mainly south of the river.  There are few 

regions north of the river with a high density of PS points.  The region around 

Greenwich Park is also absent of PS points.  This could be due to a lower 

number of candidate PS points being available in these areas, and so accurate 

atmospheric phase estimation is more difficult.  Hence the incorrect atmospheric 

phase is removed, the differential phase is less stable (temporally) and points 

with high γ  are fewer.  Or it could purely be due to the area being vegetation 

and there being no PS points there because of the scattering properties of 

vegetation. 

 

It can be seen that the majority of the 5,716 PS points of Figure 8.5 have a 

velocity of between ± 2mm/yr, with only a few points of a higher magnitude.  

These few points appear to be scattered about the image ‘randomly’ and not 

confined to local areas.  This suggests that if they are showing accurate 

deformation information it is likely to be localised to that scatterer and not a 

wide reaching subsidence problem.  The majority of the points however show 

that there is no significant motion occurring.  The limits of the velocity subsets 

in Figure 8.5 (e.g. ± 2mm/yr) have been chosen to reflect the confidence of the 

final results.  Because only a small set of 31 SAR images have been used in the 

study, the accuracy and precision of the velocity estimates are lower than what 

could be achieved if the full set of available SAR images is used.  Studies by 

other people using a similar amount of SAR images have attained precisions of 

± 2mm/yr (Worawattanamateekul et al 2004), and so these bounds have been 

used here.  The values within the table are shown in millimetre intervals to give 

a more detailed view of the data set.  

 

A feature of points can be seen in the bottom right corner of the image that lie 

on a straight line.  This area corresponds to that shown below in Figure 8.6, an 

image from the Google Earth package.  The PS points have been added onto this 

image to try and find what physical features they agree with.  It can be seen that 

there is a dual carriageway, railway track and houses that are in the area and run 

parallel to the PS points.   
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Also, a PS point in the docklands near the London City Airport is shown in 

Figure 8.7.  The point is located out in the water, which suggests that a  

 
Figure 8.6 Greenwich: Aerial image of straight-line feature of PS points (in the bottom right 

corner of Figure 8.5).  PS points colour does not represent velocity here. 

 

geocoding error has occurred.  To try and account for this error the geocoded 

mean amplitude image (Figure 8.5), which is geocoded using the same equations 

as the PS points, has been overlaid onto the aerial image, using visual tie points 

such as the river bank and barrier to place it correctly.  Figures 8.8, 8.9 and 8.10 

show 3 areas where the radar image is overlain on the aerial image, with the PS 

points located on the radar image shown as green/blue filled circles as in Figure 

8.5.  Using these images we can see where the PS points should be located on 

the aerial image. 

 

It can be seen from Figure 8.8 that the geocoded PS points on the aerial image 

are offset by a vector mainly in the West direction with a slight North bias, with 

a magnitude of approximately 100m.  The PS point from Figure 8.7 appears that 

it should be located on the south side of the Connaught Swing Bridge, and could 

be related to the large operator’s tower structure. 
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Figure 8.7 Greenwich: Aerial image of Docklands PS point (just west of the London City 

Airport). 

 
Figure 8.8 Greenwich: Aerial image with PS points overlain (of the London Docklands region).  

Red squares denote PS points as geocoded onto the aerial image, green and blue circles denote 

corrected PS location using the radar image. 
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It can also be seen that the two points in the river at the south of Figure 8.8 

should be located on the pier.  The offset between the two sets of data appears to 

be approximately 100m for each point, with the error vector being in a West and 

North direction.  

 

From Figure 8.9 the PS point locations appear that they should be in the road.  

In the centre of the dual carriageway there are streetlamps at regular intervals, 

which could be what the PS points are related to.  This is further supported by 

the fact that the buildings either side of the road do not continue as far as the line 

of PS points.   

 
Figure 8.9 Greenwich: Aerial image with PS points overlain.  Geolocated PS points are shown 

as red squares, the coloured circles represent the PS locations on the mean amplitude radar 

image. 

 

Figure 8.10 shows an aerial image of Charlton Athletic Football Club’s stadium.  

It can be seen that the PS point locations derived from the mean amplitude radar 

image appear to relate to the stadium structure.  Again, the offset between the 

two sets of PS points is in the region of 100m. 
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Figure 8.10 Greenwich : Aerial image with PS points overlain.   

 

Unfortunately there are no PS points close to the GPS points to do a meaningful 

comparison with.  The GPS data, shown below in Figure 8.11, does however 

independently agree with the overall trend of the PS data, that there is no 

significant motion occurring over the time period.  The error bars on the GPS 

relate to the standard deviation of the observations and are typically a few cm in 

magnitude.    
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Figure 8.11 Greenwich: GPS time series (for the two GPS stations, SILV and GRPK).  Both 

show that there is no significant motion occurring over the 3 year time period (Bingley et al 

1999).  

 

A time series for the docklands PS point (the point from Figure 8.7) is shown 

below in Figure 8.12.  The scale on the y-axis shows deformation in metres 

(relative to the master SAR image) plotted against time (relative to the master 

SAR image) in years. 
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Figure 8.12 Greenwich: PS point time series (of the “Docklands PS point”).  It shows no 

significant motion over the time period.  The red line shows the linear velocity fit to the data and 

observation 3 appears as an outlier in the data. 

 

8.4 Westminster 

 

The second test site was of the Westminster area.  Similarly for the first test site 

the pre-processing step of the 3PaPS software was run to extract the required 

information from the Doris generated outputs.  The candidate PS points were 

selected from a stack of the SAR amplitude data, and the mean amplitude image 

created.  Figure 8.13 below shows the image created from the mean amplitude 

values with the candidate PS points overlaid.  The 2389 candidate points are 

spread across the image giving a good coverage.  

 
Figure 8.13 Westminster: Candidate PS points.  Mean amplitude image of the Westminster test 

site with candidate PS points overlaid. 
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As before, the interferograms were unwrapped and an estimate for the absolute 

phase generated.  The same interferogram has been chosen as the topographic 

interferogram here, since the same data is used except that it is of a different 

area.  The differential phase was then generated at the candidate PS points for 

each interferogram, and an initial estimate for the topographic phase error Eφ  

was made.  Figure 8.14 below shows the estimates of Eφ  for each candidate PS 

point against the correlation coefficient of the data fit.  From this we can 

conclude that the estimates of Eφ  are likely to be good due to 95% of them 

having a correlation greater than 0.8. 

 

Figure 8.14 Westminster: Topographic phase error vs. correlation.  Graph of Eφ estimates 

against correlation coefficient of the least squares fit of Eφ to the data. 

 

After removal of the initial topographic phase error term the iterative procedure 

was undertaken.  The outputs of this step (atmospheric and decorrelation phase 

noise) were imported into the Easykrig software package for interpolation.  As 

before, a spherical semi-variogram model was used, except with different values 

for the parameters.  Figure 8.15 below shows a graph of the semi-variogram 

model (line) together with the data semi-variogram (circles) given by the 
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Easykrig package.  The model has a nugget = 0.29, sill = 1.03 and range = 

0.108.   

 
Figure 8.15 Westminster: Kriging semi-variogram.  Graph of the actual data semi-variogram 

(circles) together with the model semi-variogram (solid line) given by the Easykrig package.   

 

The Kriging output is given on a grid with pixel size approximately 300m x 

300m which is then interpolated back to the original size.  The smoothed and 

interpolated atmospheric phase screens (Figure 8.16a) have been removed from 

each respective interferogram.  The same procedure was applied to the 

topographic phase error minus the velocity estimates, to give an atmospheric 

phase screen for the topographic interferogram (Figure 8.16b).  The differential 

phase is then created for every image pixel. 

 

An estimate of Eφ  for each point is derived from a linear least squares fit, and 

since the atmospheric phase has been removed from the topographic 

interferogram Eφ  is assumed to be mainly due to deformation.  This is then fed 

back into the stack of the differential phase as a deformation observation.  An 

estimate of any residual topographic phase error, using a periodogram 

technique, is then performed.  From the stack of data and by using a 

periodogram, velocities together with a corresponding γ  value are calculated.  

The data has then been geocoded into a WGS84 UTM Zone 31 coordinate 

system using the IAS technique together with the topographic interferogram 

after removal of atmospheric and deformation phase terms. 
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Figure 8.16a Westminster: Wrapped Atmospheric Phase Screens for the 29 deformation 

interferograms.  Scale in radians. 

 
Figure 8.16b Westminster: Wrapped Atmospheric Phase Screen for the topographic 

interferogram (interferogram 7). 

 

The final PS points have been selected using a γ  threshold of 0.8.  These are 

shown in Figure 8.17 and overlaid onto the geocoded mean amplitude image 

where the colour of the persistent scatterers is related to their respective 

velocities.  Table 8.2 shows the number of persistent scatterers within each of 

the velocity bounds. 
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Figure 8.17 Westminster: PS point velocity map.  Background image is the mean amplitude of 

the SAR data, geocoded to a WGS84 UTM Zone 31 coordinate system.  PS points are shown as 

coloured dots, with the colour related to their velocity. 
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Table 8.2 Westminster: Classification of PS points (in relation to their velocity V in mm/yr). 

 

The majority of PS points are green, showing a velocity of ± 2mm/yr, which 

suggests there is no significant motion at these points.  There is also a scattering 

of points with velocities greater than this.  However, unlike test site 1, some of 

these points show patterns.  For example, south of the river there is a large 

cluster of blue pixels and west of the river next to the park there is a smaller 

cluster of blue pixels, each showing velocities of less than -2mm/yr.  There is 

also a small cluster of red points south of the river near the east of the image.  
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The clusters of blue points are located on parts of the Jubilee Rail extension.  

Unfortunately there were no PS points found on most of the rail extension 

except for these two clusters.  Figure 8.18 shows the velocity map for every 

pixel (not just PS points) overlaid upon the mean amplitude image.  It is possible 

to see from this image that there is a blue line where there is a deformation 

velocity of less than -2mm/yr, which travels across the image East to West.  

This is where the Jubilee line extension runs. 

 
Figure 8.18 Westminster: Velocity map for every pixel (overlaid upon the mean amplitude 

image).  The blue line that runs East to West south of the Thames shows deformation that has 

occurred on the Jubilee Rail Line extension. 

 

The two clusters of PS points lie on this blue line.  A time series plot for one of 

these points is shown below in Figure 8.19.  It shows a deformation velocity of 

approximately -5mm/yr. 
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Figure 8.19 Westminster: PS point time series (for a point on the Jubilee Line Extension).  

Estimated deformation velocity is approximately -5mm/yr. 

 

The PS points have been imported into the Google Earth package and do not 

show any definite geolocation errors.  Unlike the Greenwich park area there are 

no linear features of PS points in Westminster to investigate.  It is out the scope 

of this thesis to do an in-depth positioning test of the PS point locations, but it 

may be useful to use a tool such as Google Earth to get an overview of the PS 

point locations.  There are no points geolocated in regions which are 

unexpected, i.e. there are no points geolocating to the river or grassy areas.  An 

image of Buckingham Palace is shown in Figure 8.20 with PS points overlaid.  

There are no PS points located on the open grassy areas but are on the buildings 

or trees around the outskirts of the park. 

 
Figure 8.20 Westminster: Aerial image with PS points overlain.   
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8.5 Conclusions 

 

8.5.1 Test Site 1: Greenwich 

 

The results of the Greenwich test area show that there is very little deformation 

occurring at any of the PS points, with 98.6% of the PS points showing a 

velocity of between ± 2mm/yr.  This is within the bounds expected for the noise 

of the PS analysis and so no significant deformation can be derived.  The two 

GPS sites located in the region also show that there is no significant motion 

occurring in the area.   

 

A geolocation error is present in the data and appears to be a constant bias of 

approximately 100m, with the majority of the error in the West direction and a 

smaller error in the North direction.    

 

8.5.2 Test Site 2: Westminster 

 

The results of the Westminster test area show that, for the majority of PS points, 

there is no deformation occurring: 98.9% of the PS points showing a velocity 

between ± 2mm/yr.  Some of the PS points in the region of the Jubilee Line 

Extension do show a deformation that is similar to previous studies.  

Unfortunately the majority of the area of the Jubilee Line Extension is free from 

PS points.  A geolocation of the points does not show a large error as occurred 

with the Greenwich test area.        

 

8.5.3 Algorithm Performance 

 

The IAS 3-Pass PSInSAR algorithm has performed reasonably well in these two 

test areas.  It has identified approximately 1.5% of the pixels as PS points for 

Greenwich and 4% for Westminster.  This agrees well with other algorithms that 

typically find 100 PS points (or more) per square km (Bovenga et al 2004, 

Zirnig et al 2004).  In Figure 8.5 of Greenwich there are large regions that exist 

without any PS points identified. It is unclear as to whether this is because the 

atmosphere has not been estimated so well here, due to a smaller number of 
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candidate PS points, or whether there is some other reason for it such as urban 

regeneration.  Obviously the park will have very few PS points located there due 

to the scattering properties of the park land.  If a lot of building work is 

occurring during the period of the analysis then PS points may not exist there 

because the scattering characteristics of the area will constantly be changing.  

This will certainly be true for the Greenwich peninsular region since the 

Millennium Dome was being constructed during the time frame of the SAR 

acquisitions. 

 

For the Westminster region, there is a fairly consistent spatial coverage of PS 

points identified.  But very few points on the Jubilee Line Extension have been 

identified.  This could mean that: the implemented algorithms have trouble 

identifying PS points with a large deformation velocity; that there are simply no 

PS points in that region; or that some error has occurred in the processing of the 

phase data introducing some noise.   

 

Of the PS points that have been identified, the vast majority of them suggest that 

there is no motion occurring in the region, within a tolerance of 2mm/yr, which 

is what was expected prior to the study.  The GPS stations that have been used 

in the study also suggest that there is no significant motion occurring at the 

Greenwich test site over the same period.   

 

It has been shown that a 3-Pass PSInSAR approach using the Integer Ambiguity 

Search (IAS) is possible.  By using this method, the use of a DEM as a 

topographic model has been avoided and therefore the error associated with the 

inaccuracies of the DEM has been removed from the analysis.  It has, however, 

been ‘replaced’ with an atmospheric phase error term which must be removed in 

a similar fashion to the DEM error term of the 2-Pass PSInSAR technique.  By 

estimating this term and using the estimated deformation velocity from the stack 

of N-1 differential phases from the initial candidate PS point analysis, it is 

possible to have N observations (1 from each of the N interferograms) in the 

final search for PS points.  Therefore, the IAS 3-Pass PSInSAR method solves 

for N atmospheric phase screens and uses N observations in the final PS 
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analysis, whereas the 2-Pass method solves N atmospheric phase screens and a 

topographic height correction term and uses N observations in the final analysis.   

 

As stated in chapter 5, there are problems associated with the implemented 

algorithm.  The main problem being that it can only be used on small regions of 

approximately 5km by 5km in size.  This is due to the assumption that the 

atmospheric phase error can be effectively modelled as a linear phase plane, 

leaving only small perturbations.  For larger regions this assumption fails 

because of the spatial scales of the atmospheric phase, and further parameters 

would have to be introduced to the atmospheric model.  Another problem with 

the method arises with the treatment of the phase residuals from the iterative 

routine.  By interpolating and smoothing the residuals to give the atmospheric 

phase screens, any deformation that does not fit the linear model used will be 

mistakenly included in the atmospheric phase screen.  These problems were 

raised in Ferretti et al (2000a), where a new algorithm was introduced to 

overcome these limitations.  This “Non-Linear” method is described in the next 

chapter together with an IAS 3-Pass version of the algorithm.   

 

8.5.4 Algorithmic Improvements 

 

Before discussing the “Non-Linear” method, some other improvements to the 

linear method can already be proposed.  As it stands the algorithm follows the 2-

Pass PSInSAR method fairly closely.  By making a few changes to the 

algorithm procedure it could improve the results, as follows.   

 

8.5.4.1 Changing Topographic Interferogram 

 

One possible improvement could come from changing the topographic 

interferogram at the midpoint of the processing, i.e. after the candidate PS point 

analysis.  It has been shown that using a small baseline topographic 

interferogram allows for easier identification of the topographic phase errors.  

This is because the baseline ratio used in the 3-Pass method will usually be 

greater than 1, and therefore increase the magnitude of the topographic error 

term in the differential phase.  Recall the differential phase equation 4.19: 
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In the same way, if the topographic interferogram has a large baseline then the 

topographic phase error term will be multiplied by a scalar that has magnitude 

less than 1, i.e. the topographic phase error term will have less of an effect in the 

differential phase.  So it might be an improvement to use a small baseline 

interferogram to identify the topographic phase error and the atmospheric phase 

screens for the interferograms, and then swap to a large baseline interferogram 

to calculate the differential phase for the full test site and do the final analysis.   

 

8.5.4.2 A 4-Pass Method 

 

Using a 3-Pass framework means that the interferograms are restricted to having 

the same master image, and therefore limits the way in which the interferograms 

can be formed.  By implementing a 4-Pass technique, this restriction would be 

removed and would allow greater freedom in generating interferograms, e.g. 

only using small baseline interferograms.  This would obviously mean the 

algorithms would need complete reworking, but it would allow a DEM-free 

PSInSAR method that could follow in similar veins to the Small Baseline Subset 

approach or the Coherent Scatterer approach.  A 4-Pass version of the Integer 

Ambiguity Search DInSAR technique is shown in Appendix A.   

 

8.6 Summary 

 

The Linear IAS 3-Pass PSInSAR process has been tested using real SAR data of 

two test sites in the City of London.  The results have been shown and 

discussed, and in general show that there is little significant deformation 

occurring, which has also been shown by the GPS in the region.  The Jubilee 

Line Extension deformation has been identified at some points, but the majority 

of the line is absent of PS points and so the deformation cannot be fully 

identified reliably here.  The full deformation map of every interferogram pixel 

has been shown and the Jubilee Line deformation can be identified on this map.  
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There is no reliability measure on these deformations and it is used purely to 

check if the Jubilee Line deformation is noticeable above the surrounding 

deformation estimates.  The performance of the algorithm has been acceptable, 

giving a similar percentage of coverage of persistent scatterers to other 

techniques, and showing believable velocity estimates.  Some possible 

algorithmic improvements have been described that could be implemented at a 

later date. 
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9. Nonlinear Deformation Detection 
 

9.1 Introduction 

 

A Persistent Scatterer technique has been described which works well for 

linearly deforming scatterers in small confined areas.  This is good for certain 

studies, but many users of subsidence maps need larger areas to be examined 

and also want to know about subsidence that does not fit a constant velocity 

model.  In 2000, Ferretti et al (2000a) published a paper that addressed these 

two problems and demonstrated a second persistent scatterer approach.  This 

will be called Ferretti’s Non-Linear PSInSAR technique in this thesis.  This 

PSInSAR approach will be described in the forthcoming section, followed by a 

section dedicated to the Non-Linear IAS 3-Pass method.  The Non-Linear 3-

Pass PSInSAR method will then be demonstrated using both simulated data and 

real SAR data over the previously described test sites of chapter 6.  These results 

will be discussed and conclusions about the method drawn. 

 

9.2 Ferretti’s Non-Linear PSInSAR Technique 

 

This section aims to describe the important differences between Ferretti’s Non-

Linear method and the method described earlier in chapter 5.  This algorithm is 

described in full in Ferretti et al 2000a, and is summarised in the flow diagram 

of Figure 9.1.  The basic steps involve forming the stack of SAR images, 

generating differential phase interferograms and selecting the candidate PS 

points as before.  Then phase increments between nearby candidate PS points 

are estimated by examining the difference in the PS differential phase, and 

removing estimates of the linear deformation and DEM error, which can be 

derived as before by examining the stack of data.  This results in the unwrapped 

phase residuals at each PS point (i.e. the unwrapped differential phase minus the 

effects of a linear velocity and DEM error).  Using these unwrapped values a 

filtering process is carried out which aims to separate and remove any non-linear 

deformation from the phase residuals.  The resulting phase residuals are then 

spatially smoothed and interpolated to generate atmospheric phase screens for 
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each interferogram.  The algorithm then continues as per the linear method; that 

is the APSs are removed from the interferograms, the differential interferograms 

are regenerated and a final examination of the phase data up the stack identifies 

persistent scatterers and their respective deformation velocity. 

 

 
Figure 9.1 Flow diagram of the Ferretti Non-Linear algorithm described in (Ferretti et al 

(2000a)) 
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The main differences between this algorithm and the linear one are: 

• Unwrap the Phase Data – A filtering regime is applied to the differential 

phase data to try and separate the atmospheric phase noise from any 

possible nonlinear target motion.  To this end the phase data must be 

unwrapped both spatially and temporally.  Because of the noise present 

in the interferogram phase this can only be performed using the 

candidate PS points, because of their low noise properties.  The 

differential phase of nearby pixels is differenced so that the spatially 

correlated atmospheric and orbital baseline effects are minimised.  This 

gives equation 9.1.   

iiiPP wtKbK ∆+∆+∆=∂−∂=∂∆ νεφφφ 21    9.1 

where 1Pφ∂  and 2Pφ∂  are the differential phases at nearby PS candidate 

points  P1 and P2, εK∆ and νK∆ are constants proportional to the 

difference of DEM error and mean velocity of the targets respectively, ib  

and it  are the geometric and temporal baselines of interferogram i and 

iw∆ is the sum of the phase terms due to difference in APS, nonlinear 

motion and noise.  

  

Using a periodogram technique, relative velocity and DEM error terms 

can be estimated from the temporal stack of differential phase 

differences φ∂∆ .  That is, by using the stack of φ∂∆ , best estimates for 

εK∆ and νK∆ are found.  Using these estimates together with the 

assumption that π<∆ iw  the phase data can be unwrapped. 

 

• Filtering Regime – A filtering regime is applied to the unwrapped phase 

data (after removing the trends due to DEM error and mean velocity) to 

attempt to separate nonlinear deformation from atmospheric phase.  The 

mean (up the stack) of the de-trended phase data, iw  gives an estimate of 

the atmospheric phase error of the master SAR image.  By removing the 

mean the temporal data is ‘whitened’ i.e. assumed to be random with 

mean 0.  Nonlinear motion is assumed to be slow and temporally 
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correlated, so low-pass filtering the whitened phase residuals gives an 

estimate of the non-linear phase residue.  Removing this estimate and 

adding the temporal mean back on gives the estimate for the atmospheric 

phase noise.  This is summarised in Equation 9.2,   

[ ] [ ]( )LPSPACEHPTIMEii xwxwxwx )()()()( +−=α    9.2 

where ix)(α is the atmospheric phase error at point x for interferogram i, 

)(xw  is the temporal mean of the unwrapped, de-trended phase residuals 

for point x, and the subscripts HPTIME and LPSPACE mean temporal high-

pass and spatial low-pass filtering respectively.  As with the linear case, 

the residuals ix)(α  are interpolated and smoothed using the kriging 

interpolator. 

 

In this way, the iterative procedure of the linear method has been replaced with a 

network approach.  Unfortunately phase residuals need to be unwrapped here, 

but this is made possible due to the temporal framework and the candidate PS 

points (i.e. points with low decorrelation noise).  However this does require a 

stable reference point and all velocity estimates will be relative to this.   

 

9.3 Non-Linear IAS 3-Pass Method 

 

The Non-Linear IAS 3-Pass PSInSAR algorithm is based upon the Ferretti 

algorithm described above.  An in-depth discussion of the algorithm follows.  

The early stages of the algorithm are as with the linear one.  That is, the 

differential phase and candidate PS points are calculated as before (see chapter 

5).  Because a higher number of candidate PS points than needed are found, an 

algorithm to reduce the number of points is run.  This step is required to 

optimise the algorithm so that needless data processing does not take place.  The 

reduction algorithm is based upon an algorithm described in Kampes and Nico 

(2003).  A grid is placed over the interferogram and for each grid cell the ‘best’ 

of the PS candidate points from that grid cell is selected.  The criterion for 

selecting the best point is based upon which candidate has the highest ratio of 

mean to standard deviation of amplitude values.  Using an algorithm like this 
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reduces the number of candidate PS points but retains a uniform spread of points 

over the image.   

 

The initial stage in the processing requires the construction of a network.  This is 

done using a Delaunay triangulation (Bern and Eppstein 1992; Delaunay 1934) 

of the PS candidate points.  The Delaunay triangulation (usually) results in a 

unique triangular network which maximises the minimum angle of all the angles 

of the triangles.  An example of a Delaunay triangulation of a set of points is 

shown in Figure 9.2.   

 
Figure 9.2 Example Delaunay triangulation.  10 points connected using a Delaunay 

Triangulation. 

 

After creation of the network, an algorithm is run to remove any sides of the 

triangles which are greater than a certain length.  This is because we are only 

interested in points which are close to each other, so that the difference in the 

phases reduces the effect of the atmospheric and orbital baseline phase errors.   

 

Using the network the differential phase values of connected PS points are 

subtracted from each other.  This reduces the effect of the spatially correlated 

phase error terms to leave, for each pair of PS points, 
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where the orbital baseline errors have been coupled with the atmospheric phase 

errors for easier representation.  Using the temporal stack of these values, an 

estimate for the i
Eφ∆ term is made by using a periodogram technique.  This is 

repeated for every connected pair of candidate PS points in the network and 

results in an estimate for the relative topographic phase error term for each pair.  

These are then unwrapped from a reference point using a least squares network 

adjustment model (see Appendix B) to get an estimate for i
Eφ , the topographic 

phase error term at the candidate PS points for each interferogram i.  This is then 

removed from the candidate PS point’s differential phase and the differences on 

the network are created again.  This gives 
i
n

i
atm

i
defo

i
adj φφφφ +∆+∆=∂∆     9.4 

where i
adjφ∂ is the adjusted differential phase where i

Eφ∆  is assumed to be 0.  An 

equivalent procedure is now applied to the i
defoφ∆  term to get a mean linear 

velocity estimate at each of the candidate PS points.  Removing this mean 

velocity estimate from the candidate PS points and recreating the differential 

phase differences on the network results in 
i
n

i
atm

i
defoNL

i
adj φφφφ +∆+∆=∂∆ _     9.5 

where i
defoNL _φ∆  is due to deformation that does not fit the linear model. 

 

The values of i
adjφ∂∆ should now be small and so the assumption that 

πφ <∂∆ i
adj  is likely to hold.  The values of i

adjφ∂∆ are integrated (unwrapped) on 

the network, from a stable reference point, using a least squares network 

adjustment technique, where the goodness-of-fit parameter for the linear 

velocity fit is used to weight the observations.  This results in an estimate for the 

unwrapped atmospheric phase screen plus nonlinear deformation and noise for 

each of the candidate points.   

 

Before the estimates are smoothed and interpolated to create an atmospheric 

phase screen for each interferogram, a filtering regime is applied to try and 

separate the nonlinear deformation term from the atmosphere term.  As with the 
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Ferretti technique this consists of removing the temporal mean of each point and 

applying a low-pass filter up the stack to identify any nonlinear motion.  

Temporally, the nonlinear motion is assumed to be a low frequency, slowly 

varying term, whilst the atmosphere is assumed to be random with mean zero.  

Removing the estimated nonlinear term and adding the temporal mean back onto 

the stack results in the estimate for the atmospheric phase screen at the candidate 

points.  This is then interpolated and smoothed using the kriging technique to 

get the APS for each of the full interferograms.  The technique now follows as 

per the linear technique, by removing the APS from the interferograms and 

examining each pixel to identify PS points.  This algorithm is summarised below 

in the flow diagram of Figure 9.3. 

 

9.4 Simulated data 

 

As with the Linear IAS 3-pass PSInSAR method this algorithm has been first 

tested using simulated data.  The data used is the same as that described in 

chapter 7.  There has been no non-linear deformation added to the data, as this 

test was to examine if the results were similar to those attained using the Linear 

method.  The algorithms were implemented using a mixture of C++ programs 

and MATLAB scripts.  Interferogram 7 has been used in this analysis as the 

topographic interferogram. 

 

9.4.1 Network Creation  

 

The first stage of the processing is to generate the network of candidate PS 

points.  Starting from the original collection of candidate PS points (see Figure 

7.11), this is reduced to a much smaller number of candidate PS points, but 

which is still of sufficient size to estimate the atmospheric phase screens.  This 

modified candidate PS point network is shown below in Figure 9.4, where a grid 

size of approximately 100m by 100m has been used to reduce the network size.  

The candidate PS points are then ‘connected’ to neighbouring points via a 

Delaunay triangulation.  The MATLAB Delaunay triangulation routine has been 
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Figure 9.3 Flow diagram of the Non-Linear IAS 3-pass PSInSAR algorithm. 

 
Figure 9.4 Reduced network of candidate PS points.  Compare to original one shown in Figure 

7.11. 
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used to do this.   A 2-dimensional array is created in MATLAB to store the 

indices of the candidate points for each respective pair that makes up the edges 

of the triangles.  Then, any edges that are greater than a certain length are 

removed from the analysis.  The length used as a cut off point was 900m, since 

it resulted in a good network with all points still connected in some way and is 

within the spatial distances of the atmosphere.  This ‘new’ network is shown in 

Figure 9.5 along with the original network.  The differential phase at connecting 

candidate points is differenced from each other to create the differential phase 

differences.   

 
Figure 9.5 Simulation: Delaunay triangulation.  Image on the left shows the original Delaunay 

triangulation of the reduced network.  The image on the right shows the triangulation after the 

removal of lengths greater than 900m 

 

9.4.2 Trend Modelling 

 

Temporal trends due to the topographic phase error term and the linear (mean) 

velocity terms need to be removed from the differences.  The magnitude of the 
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topographic phase error term dominates the velocity term and so is removed 

first.  This is performed as with the Linear algorithm, by fitting a best estimate 

to the phase data.  Figure 9.6 shows the differential phase differences of two 

candidate PS points plotted against the baseline ratio.  The best fit to this data is 

shown as the straight line, the gradient of which gives the estimate for the 

relative topographic phase error. 

 
Figure 9.6 Simulation: Difference in differential phase (between two candidate PS points) vs. 

baseline ratio.  The best (linear) fit is shown as the straight line, the gradient of which gives the 

estimate of the relative topographic phase error for these candidate points.  

 

An estimate is derived for each ‘edge’ of the network and is then unwrapped 

from one of the candidate PS points, which is assumed to have a topographic 

phase error of 0.  A simple least squares network adjustment model is used to 

achieve this, with the goodness-of-fit parameter of the estimates used as weights 

for the observations.  This gives a value of the error at each candidate point 

rather than the relative value between points.  If the true value at the reference 

candidate point is not 0 then an offset will be present which applies to each 

candidate point, but this is not important here since these values are not directly 

being used to correct the topographic interferogram.  The estimated error of each 
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candidate point is removed from the original differential phase at these points 

and the differential phase differences on the network are recreated.  With the 

dominating topographic phase error now removed, a similar approach is 

followed to remove any relative linear deformation terms.  Figure 9.7 shows the 

temporal plot of the differential phase differences between two candidate PS 

points.  The estimated linear velocity fit is shown as the straight line. 

 
Figure 9.7 Simulation: Difference in differential phase (between two candidate PS points) vs. 

time.  The straight line shows the estimated velocity fit to the data. 

 

The relative velocities are unwrapped using the same technique as for the 

topographic phase error, resulting in an estimate for the velocity at each 

candidate point.  The velocities are unwrapped from a point which is assumed to 

be stable.  Here, a point outside the deformation zone was used.  The phase due 

to these velocities is removed from the differential phases at the candidate points 

and the differential phase differences are recalculated again.  The estimated 

velocity at each candidate PS point is shown below in Figure 9.8 as crosses 

together with the true velocity at the points, shown as circles.  The error in the 

estimation is shown in Figure 9.9. 
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It can be seen that the errors in the velocity estimation are small, with all errors 

lying between ± 2mm/yr, having a mean of 0.1mm/yr and a standard deviation 

of 0.6mm/yr.   

 
Figure 9.8 Simulation: Estimated velocities at candidate PS points.  The estimated velocity 

(crosses) and true velocity (circles) at each candidate PS point in m/yr. 

 
Figure 9.9 Simulation: Velocity error.  Error between the estimated velocity and the true velocity 

at the candidate PS points. 
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9.4.3 Atmosphere and Nonlinear Deformation Separation 

 

The differential phase differences are integrated (unwrapped) around the 

network to create the unwrapped atmospheric and nonlinear deformation phase.  

A least squares approach has been used with the velocity goodness-of-fit 

parameter used as weights for the differential phase differences.  A low-pass 

temporal filter has then been used on the unwrapped phase values to identify any 

possible nonlinear motion.  The filter used has been a simple triangular filter of 

length 350 days (which corresponds to approximately 10 samples).  Tests with 

this filter and a rectangular filter of length 350 days on noisy data showed that 

the triangular filter was the better choice (see Appendix C).  Three sets of data 

were used: a sinusoid with period 1 year, a parabola and a shear, all with a 

Gaussian random noise with standard deviation 1 radians added on.  The 

triangular filter succeeded in attaining a good estimate of the sinusoid and 

parabola but failed on the shear, whilst the rectangular filter failed on both the 

sinusoid and shear.  Ferretti et al 2000a use a triangular filter in their algorithm.  

Figure 9.10 shows the mean-zero unfiltered and filtered result for one of the 

candidate PS points.  The filtered phase does show variations from the desired 0 

radians that reflects the problem of using filters with short kernels; trends can be 

identified that do not exist in the data.   

 
Figure 9.10 Simulation: Phase time series.  Image on top shows the unfiltered time series of the 

unwrapped phase residues, whilst the image on the bottom shows the triangular filtered result. 
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The low-pass filtered result is removed from the time series to give the estimate 

for the atmospheric phase, which is then imported into the EasyKrig software 

for kriging and generation of the atmospheric phase screens.  The kriged 

estimated APS are shown below in Figure 9.11 with the true APS of the 

simulated data shown in Figure 9.12, with both sets of figures using the same 

colour scale for comparison. 

 
Figure 9.11 Simulation: Kriged APS for the 29 deformation interferograms.   

 
Figure 9.12 Simulation: True APS for the 29 deformation interferograms.   
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It can be seen that, qualitatively, the majority of the estimated APS show 

agreement with the true ones.  Since the APS have been estimated from only 

486 candidate PS points, it is expected that some deviations between true and 

estimated APS will occur.  The true and estimated APS for interferogram 7 (the 

topographic interferogram) are shown below in Figure 9.13.  It can be seen that 

this has not been estimated very well.  This is likely due to the magnitude of the 

phase values been quite small (approximately 0 - 0.4 radians), and the 

topographic phase error estimation is more difficult with small magnitudes.  

Because a large deformation phase was present on the topographic 

interferogram, the magnitude of the topographic phase error at these points was 

larger and has been estimated well.  Hence there is no deformation signal 

present on the estimated APS.   

 
Figure 9.13 Simulation: APS for the topographic interferogram.  Image on the left is the actual 

APS of interferogram 7, the image on the right is the estimated Kriged APS. 

 

The atmospheric phase screens are removed from the interferograms and the 

differential phase is then recalculated before each pixel is examined to identify 

the persistent scatterers.   

 

9.4.4 Results 

 

As with the previous Linear Algorithm the ensemble phase coherence,γ , has 

been used as an indicator for selecting PS points.  The value of 0.8 has been 

used here, with points with a value greater than this being selected as PS points.  

Again because of the rather simplified simulated data we get a large number of 

PS points selected; 95.8% of the interferogram pixels haveγ >0.8.  Figure 9.14 
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shows the error between the estimated velocity and the true velocity for each 

interferogram pixel.  The mean of the error at the PS points is 0mm/yr with a 

standard deviation of 0.5mm/yr. 

 
Figure 9.14 Simulation: Error in velocities.  Error between the estimated and true velocities for 

every image pixel (including points which are not PS points).  Errors have mean=0mm/yr and 

standard deviation=0.5mm/yr. 

 

As before, it can be seen that the errors appear larger in the deformation zone 

where the discontinuities in the phase wrapping occur.  Figure 9.15 shows the 

time series for the same two PS points used in the Linear Algorithm analysis.  

The point in the deformation zone gives a velocity of -20mm/yr and the point 

outside the deformation zone gives a velocity of -0.4mm/yr. 

 

The results appear good; PS points have been identified and the error in the 

velocities is small.  The estimated atmospheric phase screens, on the whole, look 

similar to their true phase screens.  The final results are similar to those attained 

using the linear method albeit that here the Non-Linear Algorithm has identified 

an extra 4% of the interferogram pixels as PS points. 
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Figure 9.15 Simulation: PS point time series.  The image on the left shows the time series for a 

PS point outside the deformation zone and the image on the right shows the time series for a PS 

point in the deformation zone.  The points are the same as the ones used in the linear analysis.   

 

9.5 Real Data   

 

The same two test sites as for the previous Linear Algorithm have been used to 

test this algorithm’s performance with real data.  The same set of SAR data and 

interferograms have also been used. 

 

9.5.1 Greenwich 

 

The first stage of the processing was to generate the network of candidate PS 

points.  This is shown below in Figure 9.16, where the value of 900m was used 

as a cut-off point for the lengths of the network edges.  This value of 900m was 

used because it is short enough for the two end points’ atmospheric phase 

component to be spatially correlated, and long enough for all the points of the 

network to be connected to another.   

 

The differential phase on the network was then differenced along each edge and, 

using the temporal stack of differences, any relative topographic phase error is 

estimated, unwrapped and removed from the points.  Since all points are equally 

likely to have no topographic phase error term, a point near the top left corner of 

the image was used as a reference for the unwrapping.  Recall an initial 

topographic phase error is removed from all points when the differential phase is 
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first generated, and so the residual topographic phase should be small at the 

points. 

 
Figure 9.16 Greenwich: Delaunay triangulation (of the network of candidate PS points).  Image 

on the left shows the original Delaunay triangulation whilst the image on the right shows the 

triangulation after removing lengths of greater than 900m. 

 

9.5.1.1 Data Set 1 – Reference Point (14,101) 

 

After the removal of the topographic phase error, the stack of differential phase 

differences was examined for any relative velocity components.  These were 

then unwrapped from a reference point.  The reference point should be known to 

be stable.  Ideally it would have known ground truth available at that point, such 

that is available from GPS collocated with a corner reflector (to give a bright 

radar return).  Since this is not available in this test site, the reference point 
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selected here is at the top centre of the image in Figure 9.16 at coordinates (14, 

101).  This has been selected because it is the first point algorithmically (closest 

to 0, 0), which simplifies the implemented unwrapping algorithm.  Section 

9.5.1.2 shows results when a point has been selected based upon the linear 

results of chapter 8.  If the reference point is not stable then any deformation 

errors will be propagated through onto every point.  For example, if the stable 

point is in fact subsiding at 5mm/yr, then this velocity will be added onto all the 

others as an offset, giving the impression that the whole region is moving.  The 

unwrapped velocities are shown below in Figure 9.17.  The unwrapped 

velocities appear to show a slight negative bias, which suggests that maybe the 

point used as the reference point is not stable.  But this could also be errors that 

have propagated along the network whilst unwrapping.  The least squares 

unwrapping technique employed here is very simple and prone to unwrapping 

errors, which will increase further from the reference point.  

 

The phase due to the velocity at each candidate PS point is removed and the 

stack of differential phase differences is regenerated.  These are then unwrapped 

(from the same reference point as the velocities) to give an estimate for the 

atmospheric phase noise and deformation that does not match the linear model.  

The temporal mean value at each point has been calculated and removed from 

the stack of data so that it has mean zero at each point.  The stack of data has 

been filtered using a Triangular filter with kernel length 350 days to get the low 

frequency component of the phase residuals, and then the filtered data has been 

removed from the stack of data (equivalent to a high pass filter). 

 

The temporal means have then been added back onto the stack of data to result 

in the estimates for the atmospheric phase screen (plus decorrelation noise) at 

each PS candidate point.  As before, these have been interpolated using the 

EasyKrig software to result in an APS for each of the deformation 

interferograms.  These APSs are shown below in Figure 9.18.  It can be seen 

that all the APS contain similar shapes/structures, which could mean that the 

image selected as the master SAR image has a strong dominant atmospheric 

effect.  But this could also be due to some uncompensated error source that has 
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Figure 9.17 Greenwich: Unwrapped velocities (at the candidate PS points).  The velocities have 

been unwrapped from a point which has been assumed stable. 

 

propagated through into the atmospheric phase screens.  It is interesting to note 

that the APSs below do not all agree with those from the Linear analysis of 

chapter 8.  Comparing Figures 8.4 and 9.18 it can be seen that, qualitatively, the 

APS agree well for interferograms 13, 14, 27, 29 and 30 only.  Others such as 4, 

12 and 28 appear to show some resemblance in their structures though not in 

their phase values. 

 

As before, the topographic interferogram atmospheric phase error estimates 

have also been smoothed and interpolated to create an APS.  This is shown 

below in Figure 9.19.  It too shows the same shape/structure that appears in the 

APSs in Figure 9.18.  It also appears similar to the topographic APS derived 

from the Linear algorithm (Figure 8.4b). 
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Figure 9.18 Greenwich: Wrapped Atmospheric Phase Screens for the 29 deformation 

interferograms.  Interferogram 7 is the topographic interferogram and not shown here. 

 

 
Figure 9.19 Greenwich: Wrapped Atmospheric Phase Screen for the topographic interferogram 

(interferogram 7). 

 

The APSs have been removed from the interferograms and the differential phase 

has been recreated.  The same analysis as for the Linear Algorithm takes place 

for each pixel to determine whether it is a PS point or not, i.e. the temporal data 

is fit to a linear model.  The value of the ensemble coherence used for the 
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identification process was 0.7.  A value of 0.8 was initially used but only a few 

PS points were identified, so the threshold value was lowered.  This could 

suggest that the constant mean linear velocity model that has been used to 

identify the points is not suitable here.  For example, if seasonal deformation is 

expected it might be more appropriate to use a sinusoidal velocity model to 

identify the PS points (Colesanti et al 2003b).  But the higher noise level (i.e. 

lower ensemble coherence values) could also be attributed to errors that could 

have occurred in the processing, such as in the atmospheric phase estimation or 

unwrapping stages.   

 

Figure 9.20 below shows the results of this analysis, with the PS points overlaid 

upon the mean amplitude image.  It can be seen that, as before, there are a large 

number of green PS points but this time there are also many red points; these 

have a velocity greater than 2mm/yr. There are also a few blue PS points, with 

velocities of less than -2mm/yr, whose coverage appears to be random except 

for a cluster in the central northern part of the image.  Table 9.1 shows the 

persistent scatterer classification information.  7,053 PS points have been 

identified, which corresponds to 1.7% of the number of image pixels.  Of these 

points, over 75% of them show no significant motion (green PS points).  Out of 

the 1,506 red PS points, only 140 show a velocity greater than 3mm/yr; from the 

140 blue PS points, 42 show velocities less than -3mm/yr.  Because the 

ensemble coherence threshold has been lowered to 0.7 we have less confidence 

in the results than we would have if the threshold was higher.  Therefore it 

might be suitable to change the bounds of the PS classification and use a value 

closer to ± 3mm/yr to represent points with no significant motion.  The image of 

Figure 9.21 shows the results when using classification 2 from Table 9.1.    

      V>3 140
V>2 1506 2<V≤3 1366
1<V≤2 2434 1<V≤2 2434
0<V≤1 1925 0<V≤1 1925
-1<V≤0 867 -1<V≤0 867
-2<V≤-1 181 -2<V≤-1 181
V≤-2 140 -3<V≤-2 98

V≤-3 42
Total 7053 Total 7053
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Table 9.1 Greenwich: Classification of PS points for velocity maps 1 and 2. 
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Figure 9.20 Greenwich: Velocity map 1.  PS points overlaid upon the mean amplitude image, 

geocoded to a UTM zone 31 grid.  The colour of the PS points represents the proposed linear 

mean velocity using classification 1 from Table 9.1. 

 

It can be seen that this gives an image which is more in agreement with the 

results of the Linear analysis, i.e. the majority of the points showing no 

significant motion.  It is interesting to note that the two methods identify 

different points as persistent scatterers.  The Non-Linear method is identifying 

more points (almost an extra 25%) but at a lower ensemble phase coherence 

value, and appears to give an approximate uniform coverage (excluding the river 

and park land), whilst the Linear method appears to give points in concentrated 

areas, and very few north of the river.  The ‘straight line’ feature of points from 

Figure 8.9 is not identified in the Non-Linear method, but the Non-Linear 

method does pick-up points in Greenwich Park and on the Thames Barrier.  But 
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Figure 9.21 Greenwich: Velocity map 2.  PS results of Figure 9.20 shown using the new 

classification boundaries, classification 2 from Table 9.1. 

 

it should be emphasised that although the results show more points have been 

selected covering more areas with the Non-Linear method, the value of the 

ensemble coherence is lower and hence there is less confidence in the results.  

 

9.5.1.2 Data Set 2 – Reference Point (154, 8) 

 

The above analysis has been repeated but with selecting a different PS point as 

the reference for phase unwrapping.  In this analysis a point was selected from 

the results of section 8.3 which showed a mean velocity of 0mm per year, and 

which also appeared as a candidate PS point in the nonlinear analysis.  This 

point was then considered stable and used as the reference point.  The PS point 
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used has row and column location (154, 8).  All of the above processing was 

identical apart from this one change.  The final results from this analysis are 

shown below in Figure 9.22 and Table 9.2.  It can be seen that these results 

differ greatly from those attained in the above analysis of section 9.5.1.1.  The 

most striking difference is that far more PS points have been identified; 21,260 

compared to the 7,053 for the previous analysis, with PS points occurring in 

most regions of the image.  The majority of the PS points are showing no 

significant motion, with approximately 2.5% of the points showing a velocity 

less than 3mm/yr.  The reason for why there is such an increase in PS points 

between the two is unclear.  An examination of the time series for some points 

may help.  Four plots are shown in Figure 9.23 below; each plot represents a 

time series of a PS point from data set 1.  The points have been selected at 

random but such that they are not located near each other.  The first thing to note 

about these graphs is that the points all appear to have a similar overall shape or 

signature.  This appears to be due to the temporal filtering stage which occurs 

just after the unwrapping stage.  All the PS points appear to have a similar shape 

after the filtering.  This could be due to effects that are occurring at the reference 

point, i.e. deformation, or more likely, it could be edge effects of the filtering 

due to a small number of observations; 30 observations using a filter with 

window length 350 days (approx. 10 data points).  But this could be the reason 

as to why using the 2nd data set reference point we identify many more PS 

points.  Since we use a straight line fit to identify PS points, if the time series 

deviates largely from a linear straight line then the PS identification will fail.   
 

      V>3 18
  2<V≤3 114
  1<V≤2 359
  0<V≤1 1938
 -1<V≤0 10639
 -2<V≤-1 5383
 -3<V≤-2 2282
       V≤-3 527
Total 21260
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Table 9.2 Greenwich: Classification of PS points for velocity map 3. 
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Figure 9.22 Greenwich: Velocity map 3.  Results of the analysis using candidate PS (154, 8) as 

the reference point for the phase unwrapping. 

 

The triangular filter that has been used to low-pass filter the phase has been 

tested on 2 sets of randomly generated data with mean 0 and standard deviation 

1.  The unfiltered and filtered results are shown in Figure 9.24.  It can be seen 

that these random time series generate a nonlinear signature in the filtered result.  

It is proposed that the filter is creating these effects due to the number of 

observations and the size and shape of the kernel used.  The Slutsky Effect 

(Slutsky 1927; Kedem 1984) also suggests that filtering and differencing on time 

series can give rise to sinusoidal-like effects due to the expected number of 

crossings on the axis. 
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Figure 9.23 Greenwich: Time series plots for four PS points (in data set 1).  The points have 

been randomly selected but such that they are not nearby each other.  Each plot shows a similar 

shape as the others suggesting that there might be a bias in the data.  The ensemble phase 

coherence values of the points are 0.707, 0.776, 0.803 and 0.713 respectively. 
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Figure 9.24 Greenwich: Filtered results.  Random noise time series’ and their triangular low-

pass filtered results. 

 

The reference points used for unwrapping are assumed stable.  Therefore any 

signature at these points from the temporal filtering is considered to be due to 

the effects described above, and should be removed so that the assumption of 

stability holds.  The filtered time series of the reference point of data set 1, as 

shown in Figure 9.25, has been removed from every point prior to PS 

identification.  Note how the shape of this filtered signature follows a similar 

shape to the time series of Figure 9.23.  After removing this, the PS points 

identified are shown in Figure 9.26 together with Table 9.3.  This clearly shows 

that more PS points have been identified. 
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Figure 9.25 Greenwich: Low-pass filtered phase time series of the reference point.  This has 

been removed from every interferogram pixel before identification of PS points. 

 

 
Figure 9.26 Greenwich: Velocity map 4.  PS points of data set 1 identified after removal of the 

reference point post-filtering signature. 
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      V>3 18
  2<V≤3 127
  1<V≤2 792
  0<V≤1 3233
 -1<V≤0 10024
 -2<V≤-1 3513
 -3<V≤-2 1457
       V≤-3 390
Total 19554
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Table 9.3 Greenwich: Classification of PS points for velocity map 4. 

 

Recall the 2 GPS stations GRPK and SILV that were shown in chapter 8.  They 

exhibited no significant motion over the time period of the study.  Their 

locations are shown in Figure 9.26 as the two labelled triangles.  Examining 

their time series together with those of nearby persistent scatterers, as in Figure 

9.27 below, shows that the PS results agree with what the GPS suggests, i.e. that 

no significant motion is occurring.  The deformation of the PS points in the 

study is relative to the stable reference PS point as was discussed above, whilst 

the GPS results have been plotted relative to their mean deformation. 
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Figure 9.27 Greenwich: Comparison of GPS and PS point time series.  The time series of the 

GPS stations plotted together with the time series of a nearby PS point.  The image on the left 

relates to the SILV GPS station whilst the image on the right relates to the GRPK GPS station.   

The data suggests that there is no significant motion occurring at the sites. 

 

9.5.2 Westminster 

 

The same analysis as in section 9.5.1 has been applied to test site 2, the 

Westminster area.  The network of candidate PS points used in the analysis is 

shown below in Figure 9.28.  The image on the left is the original network 

whilst the image on the right shows the network with edges greater than 900m 

removed. 
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Figure 9.28 Westminster: Delaunay triangulation.  The network of candidate PS points used in 

the analysis.  The image on the left shows the original network.  The image on the right shows 

the same network with edges greater than 900m removed.  

 

The phase unwrapping has been done using reference point (11, 1) which is the 

first point algorithmically.  The unwrapped velocities are shown in Figure 9.29 

below.  The majority of the points show velocities of between ± 2mm/year, but 

there are also a few points showing velocities of around -4 and -6 mm/year.   

 

As with the Greenwich test site, the APS have been generated next and are 

shown in Figure 9.30a.  Again it can be seen that some of the APSs agree with 

those of the Linear Algorithm shown in Figure 8.16, but some of them differ 

significantly.  The APS of interferograms 3, 4, 6, 8, 10, 12, 13, 14, 19, 21, 23, 

28, 29 and 30 all agree well with the Linear Algorithm’s APSs, with some of the 
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Figure 9.29 Westminster: Unwrapped velocities (of the candidate PS points, unwrapped from 

point (11, 1)) 

 

other APSs agreeing to some extent.  This is noticeably more than agreed 

between the Linear and Non-linear Greenwich park test sites.  Without 

additional data of the atmosphere it is impossible to say which atmospheres 

between the Linear and Non-Linear algorithms are most accurate.  The 

topographic interferogram APS is shown in Figure 9.30b.  It appears similar to 

the APS from the Linear algorithm (Figure 8.16b).   

 

The APSs have been removed from the interferogram data and PS points have 

been identified as before; using a linear mean velocity fit and this time an 

ensemble phase coherence of 0.8.  The results are shown in Figure 9.31 overlaid 

upon the mean amplitude image of the test site.  The PS classification 

information is shown in Table 9.4. 
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Figure 9.30a Westminster: Wrapped Atmospheric Phase Screens for the 29 deformation 

interferograms. 

 

 
Figure 9.30b Westminster: Wrapped Atmospheric Phase Screen for the topographic 

interferogram (interferogram 7). 
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Figure 9.31 Westminster: Velocity map 1.  Mean amplitude image of the Westminster test site 

with PS points overlaid. 

 

     V>2 15
 1<V≤2 148
 0<V≤1 1149
-1<V≤0 5751
-2<V≤-1 2452
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Table 9.4 Westminster: Classification of PS points for velocity map 1. 

 

The PS coverage is good, with points occurring in many regions of the test site.  

The majority of the PS points are green showing no significant motion, but there 

are also quite a few blue PS points, with velocities less than -2mm/yr.  

Deformation due to the Jubilee Line extension can clearly be seen south of the 

Thames as the line of blue PS points going in a westerly direction and crossing 

the river.  A time series of one of the PS points on the Jubilee Line is shown 

below in Figure 9.32.  There are also other points suggesting deformation 

around the image; there is a line of PS points in the top left corner of the image, 
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a group on the right hand side of the image and south of the Thames there 

appears to be a random coverage.    

 
Figure 9.32 Westminster: PS point time series (for a point located on the Jubilee Line 

Extension).  The linear fit shows a mean velocity of -6.4 mm/yr. 

 

9.5.2.1 Using Methods of 9.5.1 

 

Using the same procedure as in section 9.5.1, the results have been re-processed 

at a PS candidate point which appeared as a stable point in the Linear Algorithm 

analysis.  The signature of the reference point from the filtering step has been 

removed from every pixel before identification of PS points takes place.  The 

reference point selected has row and column location (336,219).  The result is 

shown in Figure 9.33 and Table 9.5.  Again the area of deformation due to the 

Jubilee Line extension can clearly be seen, though with fewer PS points, and 

also the deformation at the top left corner of the image is identified.  But there 

also appears to be some large areas that suggest uplift is occurring, represented 

by the red dots.  Because these were absent from the previous analysis (Figure 

9.31) it is suggested that these are caused by errors in the phase unwrapping, 

which in turn passes through into the APSs.   
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Figure 9.33 Westminster: Velocity map 2.  PS points identified after removal of reference point 

filter signature phase.  Reference point used to unwrap is (336,219). 
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Table 9.5 Westminster: Classification of PS points for velocity map 2. 

 

The APSs for this set of data are shown in Figure 9.34.  The only difference in 

the generation of these APSs and the ones shown previously in Figure 9.30 is 

the reference point used in the phase unwrapping stage.  Comparing the two sets 

of images it can be seen that, although the structure of the APSs is largely the 

same the average value of them has changed.  For example, APS 1 in Figure 

9.30 has values largely less than 0 radians, whilst in Figure 9.34 APS 1 has 

many areas greater than 2 radians.  On many of the APSs there is a circular area 

in the bottom right of the images that appears as tightly wrapped fringes; this 
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corresponds to the Buckingham Palace/Green Park/St James’s Park area of the 

test site.  Because there are only two candidate PS points in this region (both 

relating to Buckingham Palace) the APS estimation here is limited and could 

cause this anomaly.  To see what could be causing the areas of uplift it is easier 

to view the differences between the APSs. 

 
Figure 9.34 Westminster: Wrapped Atmospheric Phase Screens for the 29 deformation 

interferograms (where the reference point for the phase unwrapping is (336,219)).  

 

These are shown in Figure 9.35 below.  From these it is much easier to see that 

the mean value of each APS has changed but that the structure remained 

virtually the same.  The main differences occur at the aforementioned Green 

Park region and at regions in the top left and bottom centre of the images.  The 

top left region corresponds with the large area of red PS points north of the 

Jubilee Line, whilst the bottom centre region corresponds with the cluster of red 

points on the east of Figure 9.33.  It is proposed that it is these differences in the 

estimated APS that has caused the large regions of red PS points in Figure 9.33.  

The APS anomalies are likely to have been caused by phase unwrapping errors. 
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Figure 9.35 Westminster: Differences in the Atmospheric Phase Screens for the 29 deformation 

interferograms (Figures 9.30 & 9.34). 

 

9.6 Summary 

 

A method of PSInSAR, demonstrated by Ferretti, has been discussed and the 

differences between this and the previous Linear Algorithm have been 

highlighted.  The method has been used as a basis for the development of the 

Non-Linear IAS 3-pass PSInSAR Algorithm, which uses a 3-Pass framework 

rather than the 2-Pass framework of Ferretti.  The 3-Pass algorithms have been 

tested using the same simulated data as in chapter 7.  The results look promising 

and similar to those attained in chapter 7 using the Linear Algorithm.  The 

algorithm has then been tested using real data, using the same configurations as 

in chapter 8 for the Linear Algorithm and over the same test sites.  The results 

from this have highlighted the importance of the various stages in the processing 

chain. 

   

• Choice of Reference Point – Different results have been attained when 

using different reference points.  It is important that the point selected is 

stable, i.e. suffering from no deformation.  Ideally a candidate PS point 
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with known deformation history should be used, e.g. a corner reflector 

with GPS observations. 

• Phase Unwrapping – Due to the noisy interferograms phase unwrapping 

is difficult, and can only be achieved over the sparse network of 

candidate points using many interferograms (Ferretti et al 2000a).  Even 

so, errors still occur and can easily pass through into the APS estimates 

and cause erroneous measurements to be made.  Errors from phase 

unwrapping will often increase in magnitude as points get further away 

from the reference point.     

• Choice of Filter – When filtering the data to retrieve the low-pass 

temporal phase component, different results will be got from different 

filters.  The triangular filter was seen to give a non-linear signature on 

purely random data, and therefore is likely to give erroneous results on 

the real data.  A rectangular convolution was found to be inappropriate 

for identifying the non-linear motion.  The filter signature of the 

reference point should be removed, since this is assumed stable and 

therefore deviations from ‘stability’ are considered errors due to the 

filter. 

 

The results attained from the Non-Linear Algorithm, in general, agree well with 

those from the Linear Algorithm; the majority of PS points are showing that 

there is no significant deformation occurring, yet in the area of known 

subsidence some deformation is being detected.  The quantitative values of the 

measured deformation cannot be validated properly without further ground 

measurements being available for comparisons.  The two GPS stations used in 

the Greenwich test area suggest that no significant motion is occurring, which 

support the PS point results in the area. 
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10. Conclusions and Recommendations for Future Work 
 

10.1 Introduction 

 

The thesis has introduced a novel Persistent Scatterer method, with the 

developed algorithms implemented into a software framework.  Using the 

software, the IAS PSInSAR method has been demonstrated over two test sites in 

the City of London, UK.  The purpose of this chapter is to highlight the 

conclusions and give recommendations for future work in this area of research. 

 

10.2 Integer Ambiguity Search 

 

In chapter 4 the Integer Ambiguity Search (IAS) was introduced and the results 

of using it in three applications were shown:  

1. Target Positioning 

It has been shown that it is possible, using a ground control point (GCP), to 

reconstruct the absolute phase of the radar signal.  Using this we can position the 

InSAR data into a geodetic data frame and get a 3-dimensional target position.  

If the interferogram has been phase unwrapped then it is possible to use this 

technique to generate a DEM from only one GCP. 

2. Differential Interferometry 

The method also has implications for differential interferometry.  A re-working 

of Zebker’s 3-pass DInSAR equations has been shown, taking advantage of the 

absolute phase rather than the flattened phase.  By using the so called IAS 3-

Pass method, the floating point offset due to elevation differences that was 

present in the traditional 3-Pass equations is no longer present.  The IAS 3-Pass 

method was shown to give a result closer to a 2-Pass result than a traditional 3-

Pass did with no post-processing applied. 

3. Improved Differential Interferometry using a DEM  

It was also shown in chapter 4 how, by using a coarse DEM to remove 

atmospheric anomalies from the topographic phase interferogram, it was 

possible under certain configurations to get better differential results using 3-
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Pass than 2-Pass using the same coarse DEM.  This is similar to methods 

employed in DEM generation routines.   

 

10.3 Linear PSInSAR Algorithm 

 

Using the Ferretti algorithm as a guide, a Persistent Scatterer Interferometry 

algorithm has been designed using an IAS 3-Pass method.  This replaces the 

need for a DEM in constructing the differential interferograms and therefore 

DEM errors are not present in the differential phase, which in turn means that 

topographic height corrections do not need to be derived.  In the atmospheric 

phase estimation stage of the algorithm, there is one less observation than there 

would be in a 2-Pass algorithm, but in the final velocity estimation there is the 

same and hence no loss of degrees of freedom.  The IAS 3-Pass method has a 

clear benefit in that no topographic height error is present or needs to be 

modelled out. 

 

Software has been created that implements the 3-Pass PSInSAR algorithms 

which allows for easier adaptation for future improvements and error budgeting.  

The software has been tested using simulated interferometric phase data before 

running it over the real SAR data. 

 

The results of the real SAR data test were presented in chapter 8.  The results of 

the Greenwich test site suggest that there is no significant motion occurring.  

The two GPS stations that are in the Greenwich area independently suggest that 

there is no significant motion also.  A few points suggest that there is 

deformation occurring with velocities greater than 2mm/yr.  These appear to be 

randomly distributed around the image and could be due to noise.  The 

Westminster test site identified many more PS points, most of which suggested 

there was no significant motion occurring in the region.  There are a few clusters 

of PS points suggesting deformation with velocities greater than 2mm/yr which 

correspond to areas of known subsidence, i.e. the Jubilee Line extension, but 

also a few PS points in areas outside of the extent of the Jubilee Line.  There 

also appears to be a cluster of points showing uplift south of the Thames. 
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In general, the results show what was expected in these regions – that no overall 

relative motion is occurring.  In the area of known deformation, some PS points 

have been identified which do show a deformation.  These results show that a 3-

Pass PSInSAR methodology is possible and gives promising results.  Without 

further ground truth data a proper validation of the results is impossible.  The 

restrictions on the size of the processing area mean this algorithm is not suitable 

for mapping large areas. 

 

10.4 Non-Linear PSInSAR Algorithm 

 

To avoid the restrictions on the size of the area to be processed, a non-linear 

algorithm based upon Ferretti’s non-linear algorithm has been implemented.   

Again, it is based upon the IAS 3-pass algorithm and therefore does not require 

the use of a DEM to remove the topography nor does it introduce a topographic 

height error.  The results of chapter 9 raise some interesting points.  The first to 

note is that there are differences between the linear and non-linear results.  

Examining the Greenwich test site first shows the overall deformation given by 

the two methods agrees; there is no significant motion detected.  But the number 

of PS points identified and their locations differs.  In the non-linear case, the 

threshold for identifying PS points was lowered from 0.8 to 0.7 due to the low 

number of PS points identified at 0.8; the PS velocity classification boundaries 

were correspondingly increased.  This could be a side-effect of the APSs being 

different for both methods; for some of the interferograms the APS agree 

between the two methods but for some they do not.  Without additional 

information about the atmospheric delay it is impossible to say which APS 

result is closest to the correct result.  Further work is needed to discover why 

this is, but it may be to do with the phase unwrapping in the non-linear method.  

With the use of extra data sources it could be possible to examine which of the 

APS results are good or even use the data to aid the atmospheric estimation.  

Data sources that could be useful for this are Met Office GPS ZTD/IWV data 

and Advanced Very High Resolution Radiometer (AVHRR) imagery data 

(Leighton et al 2005) or Medium Resolution Imaging Spectrometer (MERIS) or 

Moderate Resolution Imaging Spectroradiometer (MODIS) data (Moisseev et al 
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2003; Li 2005).  GPS IWV or ZTD data is unlikely to be dense enough to use 

alone. 

 

By phase unwrapping from different reference points, different results are 

attained.  This could be due to both the behaviour of the reference scatterer over 

time and also phase errors that occur in the unwrapping process.  An important 

assumption in the process is that the reference point is stable, i.e. no deformation 

is occurring there.  If this does not hold then the deformation propagates through 

into the other PS points as the deformation at these points is measured relative to 

the reference point.  The differences between Figures 9.21 and 9.22 are clear to 

see; although both show in general that no significant motion is occurring, 

Figure 9.21 has clusters of points with a velocity greater than +3mm/yr whilst 

Figure 9.22 has clusters of points with a velocity less than -3mm/yr.  Without 

extensive ground truth and surveys of the region it is impossible to say which of 

the results are better.   

 

Another interesting outcome of the results is shown in Figure 9.23; that points 

from the same data processing set exhibit similar time series trends.  This 

appears to be due to the temporal filtering stage giving erroneous results.  The 

reference point, which must be assumed stable, is showing artefacts after the 

filtering stage suggesting some kind of sinusoidal motion.  Tests have shown 

this type of signature is produced even from random data (Figure 9.24), and so it 

is assumed to be errors from the filter and must be removed.  The signature from 

the reference point is removed from every other point (and itself) prior to PS 

identification.  This resulted in almost tripling the number of PS points that was 

identified.   

 

For the Westminster test site the PS analysis has highlighted the area of known 

deformation.  It also helped to highlight that errors in the APS estimation can 

cause errors in the velocity estimations, causing apparently deforming zones.  

The PS measured deformation rates of the Jubilee Line Extension vary between 

approximately -2mm/yr and -7mm/yr.   To do a quantitative analysis on the 

measurements of the deformation more ground truth is required.   
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These results highlight the importance of both needing a stable reference 

scatterer and applying a suitable filter to remove any non-linear motion. 

 

10.5 Overall Conclusions 

 

A recap of the original project aims and objectives follows together with a 

discussion on whether each one has been met or not. 

• Validate that the Integer Ambiguity Search (IAS) method works with real 

satellite SAR data – In chapter 4 the IAS has been tested with real data of 

the London region, UK, and the results have been reported.  The 

resulting DEM from the process has accuracies similar to those reported 

elsewhere.  A precise measurement validation could be achieved if the 

InSAR and GPS/levelling data can be tied together, e.g. using corner 

reflectors with known phase centres.   

• Test the theory that the Integer Ambiguity Search method can improve 

upon current 3-pass Differential Interferometry by using experimental 

results – In chapter 4 the results of an IAS differential analysis have been 

reported.  The results show that the IAS method eliminates the need to 

post-process 3-Pass data to remove the floating point offset which is 

caused by height discrepancies between the modelled and true surfaces.  

The IAS 3-Pass and 2-Pass results are equivalent except for errors in 2-

Pass being DEM related, errors in 3-Pass being related to topographic 

interferogram.  In general, DEM errors will be smaller in magnitude. 

• Develop a Persistent Scatterer algorithm and processing chain that does 

not output a topographic height model, i.e. it does not need to calculate 

reference surface corrections – A novel 3-Pass PSInSAR method has 

been proposed in chapter 5 and in chapter 9, in which a reference surface 

error correction term is absent. A DEM has been used to aid in phase 

unwrapping the interferograms.  This is done in a way such that the 

floating point DEM error does not propagate through into the phase 

values, although it is possible to get errors of integer multiples of 2π .  

This will be more problematic for large baseline interferograms or if a 

coarse DEM is used.  
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• Test and validate the Persistent Scatterer Algorithm using a suitable test 

site – The developed algorithms have been tested first using simulated 

data so as to check how accurate the derived results were.  The results 

attained, shown in chapter 7, demonstrate that the algorithms appeared to 

work well on the simulated test data, and the derived APSs largely 

agreed with the input atmospheres.  Two test sites encompassing areas of 

London have been selected to test the two 3-Pass PSInSAR algorithms 

using real SAR data, the results for which have been presented and 

discussed in chapters 8 and 9.  Results have successfully been achieved 

from a 3-Pass PSInSAR method, showing that it is possible to get results 

without introducing a topographic height error.  In chapter 8 GPS data 

from two stations have been shown for one of the test sites.  From the 

GPS no significant motion can be detected, which agreed with the PS 

results in that area.  In chapter 9 there are PS points located nearby to the 

two GPS stations.  A time series plot of each GPS station’s data together 

with the data from a nearby PS point have been shown and both plots 

suggest that no significant motion is occurring.   

 

It is also prudent here to mention the accuracy and precision of PS InSAR.  At 

the moment there is no one parameter that can give a definite measurement of 

the accuracy and precision of the individual PS points, due to the complex 

nature of the various processes involved in deriving the PS results.  Factors that 

could affect the precision and/or accuracy of the results range from the initial 

processing of the raw SAR data to SLC format to the interferometric processing 

and the choice of filters, unwrapping techniques and interpolation methods used 

in the processing of the data.  Also the amount of data used in the study, the area 

under study, the radar, the weather and the quality of any reference points used 

can affect the quality of the results.  A full error budgeting of the PS techniques 

is a key process to try and identify a sufficient parameter to describe the quality 

of the results.  The quality of results is one question that arose from the PSIC4 

validation study (Crosetto and Engdahl 2006). 
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10.6 Future directions 

 

There is much future research that is needed in the field of PSInSAR.  As far as 

the IAS 3-Pass PSInSAR algorithms go, future research should be focussed in 

two directions:  

 

• Improving the algorithms 

o Adding 4-Pass capability – With a 4-Pass PSInSAR framework 

differential interferograms can be formed without the constraint 

of a single master image.  This gives greater freedom to choose 

how to construct the interferogram pairs, e.g. only select 

baselines (temporal or geometric) under a certain size.  This may 

allow specific algorithms to be used for different regions, which 

could give better results. 

o Less phase unwrapping – At present the algorithm needs to 

unwrap all the interferograms before generating the 3-Pass 

results.  With a small change to the software it would be possible 

to generate results with only unwrapping the topographic 

interferogram.  This would reduce the possibility of 2π  phase 

errors being introduced but would mean that a linear method of 

finding the topographic phase error is no longer suitable; a 

periodogram method would be needed. 

o Further research on atmospheric estimation – The atmospheric 

estimation is key to getting good results.  The simplistic filtering 

regime employed should be reworked to better estimate the 

temporal non-linear motion.  The network adjustment phase 

unwrapping routine could also be updated to a more robust phase 

unwrapping algorithm.   

o Extend the software – The software has been written to test the 

algorithm over small areas.  It should be reworked so that larger 

areas can be examined.  Also, further functionality could be 

introduced into the software including a choice of different 

algorithms for sections of the processing. 
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• Better PS position information 

o The IAS allows 3-D positions of InSAR data to be attained in a 

geodetic reference frame.  With an estimate from each 

interferogram, this allows N separate estimates of the PS position 

to be derived.  By averaging these estimates we could get an 

improved estimate by reducing the random errors. 

o Integration of PSInSAR data with GPS is much desired.  To do a 

full integration it is required that precise observations are 

available for both the GPS and InSAR data.  The IAS uses the 

phase of the scatterer to derive its full 3-D position, whereas 2-

Pass methods use a PS height-corrected DEM.  The IAS method 

should be more appropriate for integration since it derives the full 

3-D position and not just the height position. 
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Appendix A – 4-Pass IAS Geometry 
 

The main difference between 3-Pass and 4-Pass DInSAR is that there is no 

common SAR image in the 4-Pass technique.  However, the interferograms will 

have to be generated onto a common grid so that the phase can be differenced.  

The difficulty with 4-Pass in the IAS framework is in constructing the 

deformation pair baseline declination angle.  Recall, from chapter 4, that the 

interferometric phase can be calculated by the equation: 
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where Dβ  is constructed via Tβ  and the angle between the two baselines, as 

shown in Figure 4.6 repeated here as Figure A1, with subscripts D and T 

replaced with 13 and 12 respectively. 

 
Figure A1 Geometry of the IAS 3-Pass technique 

 

To calculate the 4-Pass differential phase the same equation A2 can be used 

with Dβ  again calculated using Tβ  and the angle between the two baselines.  

This can be accomplished by a series of rotations and translations such that the 
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4-Pass geometry resembles that of the 3-Pass, i.e. all satellites are in the plane 

with the two masters coincident.  Suppose, without loss of generality, that the 

geometry of Figure A2 is appropriate, where MT, ST and MD, SD are the 

satellites of the topographic and deformation pairs respectively. Tβ  and Dβ  are 

the respective baseline declination angles and P is the target.  Essentially there 

are 2 planes, PMTST and PMDSD, which bisect at point P.  One such way to 

proceed would be to apply a rotation to PMDSD about P such that the result is 

that all MD, MT, P and ST lie in a plane.  Then a second rotation, applied this 

time to SD about MD such that all satellites are in the same plane along with P.  

 
Figure A2 4-Pass Satellite Geometry 

Then translate the vector MDSD such that MD and MT are coincident and apply 

a rotation such that vectors MTP and MDP are coincident also, as shown in 

Figure A3.  Now we have geometry similar to that of 3-Pass and can proceed 

with the calculation of Dβ  and the differential phase. 

 
Figure A3 Final 4-Pass geometry (now equivalent to the 3-Pass geometry). 
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Appendix B – Phase Unwrapping 
 

The unwrapping of the phase residuals in the Non-Linear IAS 3-pass PSInSAR 

technique is performed using a least squares technique.  It is similar to a simple 

network adjustment.  The problem and model are described below. 

 

Problem: 

Consider a collection of n points in a triangular network with unknown phase 

values.  If there are m observations of the gradients (phase differences) between 

the n points, estimate the phase values of the n points.  

 

Solution: 

The problem can be described by Figure B1.  Here we have 5 points connected 

in a triangular network with unknown phase values x0, x1, x2, x3, x4.  There are 7 

observations of the phase differences, li, where li = xj - xk with i = 1, 2, …, m and 

j,k∈{0,1,…,n} where j≠ k.  We need to estimate the 5 values of xi using the 7 

observations li.  

 
Figure B1 Description of the phase unwrapping problem. 

 

To start the unwrapping we need a stable reference point. Consider, without loss 

of generality, that x0 is stable and has been observed with value l0.  Then a 

system of equations can be formed such that: 

ikji lxxv
lxv

−−=
−=
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ˆ 000   
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where ix̂ are estimates of ix  and iv  are residuals to be minimised.  This system of 

equations can be easily described in matrix notation as: 

lxAv −= ˆ  

where v, x̂  and l are vectors of the residuals, estimates and observations 

respectively.  A is the design matrix made up of 1’s and 0’s.   

 

To minimise v in this equation we use the simple least squares solution which 

can be solved easily.  The solution to the problem, when introducing weights to 

the observations, is given by: 

WlAWAAx TT 1)(ˆ −=  

where superscript T denotes matrix transpose and W is the matrix of weights. 
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Appendix C – Filter Tests 
 
 

As mentioned in chapter 9, the filtering of the data is an important step.  Some 

tests have been completed using different filters to examine which perform best.  

The first set of tests was mentioned in chapter 9; a rectangular and a triangular 

filter have been used on different data sets to try and identify the original signal 

buried in noise.  The variance of the noise used here was 1 radian.  The second 

set of tests were to proceed through the processing chain using a triangular filter, 

rectangular filter and no filter to see what the PS coverage was like.  The results 

of the tests follow. 

 

The first test was to see how well a triangular filter and rectangular filter could 

work on retrieving the signal from 3 different data sets; a sinusoidal signal with 

period 1 year, a sinusoidal signal with period 6 years and a signal with a sudden 

shift.  The results for these tests are shown below. 

 
Figure C1 Filtering a noisy sinusoidal signal of period 1 year.  The top graph shows the original 

signal, the second graph shows the original signal + noise, the third graph shows the filtered 

signal using a triangular filter and the bottom graph shows the filtered signal using a rectangular 

filter. 
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It can be seen from Figure C1 that out of the 2 filtered results the triangular filter 

gives the better result, at least showing a sinusoidal result, whereas the 

rectangular filtered result is unrecognisable.   

 
Figure C2 Filtering a noisy sinusoidal signal of period 6 years.  The top graph shows the original 

signal, the second graph shows the original signal + noise, the third graph shows the filtered 

signal using a triangular filter and the bottom graph shows the filtered signal using a rectangular 

filter. 

 

Figure C2 shows the results of filtering a noisy sinusoid on period 6 years.  Both 

filters have identified a similar shape as to the true signal, but the triangular 

filter has produced a smoother result than the rectangular one.   

 

Figure C3 shows that neither of the filters identify the shift present in the 

original phase signal, but both smooth the noise significantly.  From the 3 sets of 

results we can conclude that the triangular filter has been a better performer 

overall, since it identified the two sinusoidal signals reasonably well but failed 

on identifying the phase shift.  The rectangular filter only identified the larger 

period sinusoid signal.  Since the PS points may show seasonal deformation, it is 

important to be able to identify sinusoids of period 1 year, so it is recommended 

that the triangular filter is used and not a rectangular filter. 
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Figure C3 Filtering a noisy signal with a sudden shift.  The top graph shows the original signal, 

the second graph shows the original signal + noise, the third graph shows the filtered signal 

using a triangular filter and the bottom graph shows the filtered signal using a rectangular filter 

 

Three further tests have been completed; the full processing chain has been 

performed using a different filter: a triangular filter of length 350 days, a 

rectangular filter of length 350 days and no filter.  The final PS location map of 

each test is shown below in Figure C4.  The filtered signature at the reference 

point has not been removed from the results here, which may explain why doing 

no filtering appears to identify more PS points.  The rectangular filter identifies 

more PS points than the triangular filter, which is likely due to the signature of 

the reference point.  A rectangular filter, because of its equal weights, will 

produce a ‘flatter’, more linear signature than the triangular filter.  Using no 

filter will mean that any non-linear motions are passed through into the 

atmospheric phase screens which will then be smoothed and lost. 
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(i)  

(ii)  

(iii)  
Figure C4 Final PS point location maps for the 3 filtering tests. (i) shows the PS point locations 

when a triangular filter has been used to identify the non-linear motion. (ii) shows the PS point 

locations when a rectangular filter has been used to identify the non-linear motion. (iii) shows 

the PS point locations when no temporal filtering takes place. 
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