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Munim Choudhury   
Abstract
Peroxisome proliferators (PPs) cause proliferation of peroxisomes and hepatocarcinogenesis in

rodent liver, mediated by Peroxisome Proliferator-Activated Receptor-alpha (PPARα). There

are marked species differences in peroxisome proliferator-induced responses, and the function-

ality of PPARα may be an important determinant factor in species sensitivity to PPs. Primary

hepatocytes were investigated for a highly responsive marker induced by PPs to study the ef-

fects of transfected PPARα. CYP4A1 was highly induced in rat hepatocytes that require hydro-

cortisone for maximal induction. Hepatocytes were cultured in hydrocortisone-deficient media

to determine if reduced endogenous PPARα was associated with lowered induction of

CYP4A1. However, there was residual induction of CYP4A1 by peroxisome proliferators. Pri-

mary hepatocytes from PPARα knock-out (-/-) mice were investigated as they lack endogenous

PPARα. In vitro and in vivo studies demonstrated that Cyp4a10 and 14 were highly inducible

by PPs in the hepatocytes of wild-type but not in -/- mice. However, addition of either mouse or

guinea pig PPARα in -/- hepatocytes did not induce the expression of these marker genes, al-

though both receptors showed trans-activation ability in a reporter assay. The failure of added

PPARα to activate endogenous genes responsive to PPs, whilst at the same time activating ep-

isomal DNA containing response elements of PP-inducible gene, suggests that the endogenous

genes require PPARα to remain in an accessible conformation.

Although hamster is considered to be a partially-responsive species to PPs, their response to PPs

is poorly characterized. Three CYP4A genes (CYP4A17, 18 and 19) were cloned from hamster

liver cDNA, and hepatic CYP4A17 was found to be highly inducible by PPs. In addition, PPA-

Rα was cloned from hamster liver and shows higher identity to rat and mouse PPARα than to

human and guinea pig. Hepatic expression of PPARα mRNA was compared between mouse,

hamster and guinea pig. The level of PPARα transcript was found to correlate well with species

response to PPs, i.e. mouse (highly responsive species) has the highest level and guinea pig
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(non-responsive) the lowest, while hamster (partially-responsive) has an intermediate level.

This is consistent with a model where the level of expression of hepatic PPARα determines spe-

cies response to PPs.

Expression of PPARα and transcriptional coactivators, such as PBP, SRC-1 and CBP/p300,

were confined to mouse liver at the RNA level, but in each case expression showed homogenous

distribution within the liver acinus and was non-inducible by PPs. Mouse PPAR α ligand bind-

ing domain (LBD) was bacterially expressed as a histidine-tagged protein and soluble proteins

were purified using affinity and column chromatography. Functional LBD may serve as a useful

bait in protein-protein interaction studies for the identification of any novel PPARα interacting

coactivator protein.
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Chapter 1 Introduction

Section 1.1 Peroxisome Proliferation: an overview

Section 1.1.1 Peroxisomes and their function
The discovery of peroxisomes as distinct biochemical entities by Christian De Duve and their

subsequent study by other workers has paved the way for better understanding of the metabo-

lism of fatty acids and cholesterol (Baudhuin et al., 1965; De Duve and Baudhuin, 1966). Per-

oxisomes are so called because they contain one or more enzymes that use molecular oxygen to

remove hydrogen atoms from specific organic substrates in an oxidative reaction that produces

hydrogen peroxide. Peroxisomes are single-membrane bound organelles, generally spherical in

shape with a finely granular matrix. They are found in all eukaryotic cells, particularly abundant

in hepatocytes with a diameter of up to 0.5µm (Wilcke et al., 1995). They contain oxidative en-

zymes, such as catalase and urate oxidase, at such high concentrations that in the cells of some

species, rat liver for example, the peroxisomes stand out in electron micrographs because of the

presence of a crystalloid core, largely composed of urate oxidase (Baudhuin et al., 1965). How-

ever, crystalloid cores are absent in human peroxisomes (Usada et al., 1988). Peroxisomes are

detected histochemically by utilizing the peroxidase activity of catalase that converts 3, 3’-di-

aminobenzidine into a brown precipitate at alkaline pH. Peroxisomes are most abundant in liver

and kidney where there can be as many as 600 individual peroxisomes in a single cell, occupy-

ing up to 2% of cell volume (Masters and Crane, 1995). 

Peroxisomes fulfill a crucial role in cellular metabolism, and as many as 50 enzymatic activities

have been identified in mammalian peroxisomes (Mannerts and van Veldhoven, 1993), some of

which are restricted to peroxisomes whereas others have their counterparts in other organelles.

Peroxisomal enzymes are involved in a number of catabolic and anabolic processes, including

fatty acid oxidation, alcohol oxidation, synthesis of cholesterol, bile acids and ether lipids, and
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metabolism of purines, polyamines and amino acids (Van den Bosch et al., 1992; Masters and

Crane, 1992; Masters, 1996).

The importance of peroxisomal functions in maintaining normal tissue homeostasis has been

exemplified by the recognition of a number of fatal inherited diseases involving either a defect

in the biogenesis of peroxisomes or a deficiency of one or more peroxisomal enzymes. Patients

with Zellweger syndrome lack functional peroxisomes and are characterized by a number of

biochemical abnormalities. For example, impairment of the β-oxidation of fatty acids results

from the deficiency of all peroxisomal β-oxidation enzymes, which results in the accumulation

of very long chain fatty acids in tissues and blood (Schutgens et al., 1986; Moser, 1987; Laz-

arow and Moser, 1989). Accumulation of very long chain fatty acids also occurs in X-linked

adrenoleukodystrophy, a single gene disorder associated with a defect in the peroxisomal en-

zyme VLCFA-CoA synthase (Wanders et al., 1988; Lazo et al., 1988). Other peroxisomal dis-

orders of generalized impairment include adrenoleukodystrophy and the infantile type of

Refsum disease (Moser, 1993). In conditions such as the rhizomelic type of Chondrodysplasia

Punctata and Zellweger-like syndrome a limited number of peroxisomal functions are impaired

(Van den Bosch et al., 1992). 

Section 1.1.2 β-oxidation of fatty acids in peroxisomes
A major function of the oxidative reactions carried out in mammalian peroxisomes is the break-

down of fatty acid molecules, particularly very long chain fatty acids which are exclusively me-

tabolized by peroxisomal β-oxidation system. During β-oxidation the alkyl chains of fatty acids

are shortened sequentially by blocks of two carbon atoms at a time that are converted to acetyl-

CoA and exported from the peroxisomes to the cytosol for reuse in biosynthetic reactions. Free

fatty acids must be activated to a CoA derivative before being degraded by β-oxidation. This

esterification reaction is carried out in the cytoplasm by a variety of acyl-CoA synthetases. Fol-
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lowing activation, the acyl-CoA derivatives of fatty acids are carried to the peroxisomes where

they are subjected to oxidation by acyl-CoA oxidases. Acyl-CoA oxidases are multi-subunit fla-

voproteins containing FAD as a prosthetic group that require molecular O2 for the oxidation of

fatty acids, yielding hydrogen peroxide in the process (Van den Bosch et al., 1992; Schultz,

1991). The next two steps of β-oxidation pathway are hydration, followed by dehydrogenation.

A single bifunctional enzyme has been found to carry out these two reactions. Bifunctional en-

zyme of the rat liver peroxisomes has been shown to possess an extra enzymic activity of 3,2-

enoyl-CoA isomerase in addition to 2-enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydro-

genase activities (Palosaari and Hiltunen, 1990). The final step of β-oxidation in peroxisomes

is the thiolytic cleavage of oxo-acyl-CoA (3-ketoacyl-CoA) by CoA-SH catalysed by 3-keoa-

cyl-CoA thiolase. (Figure 1.1 shows an example of peroxisomal β-oxidation of a fatty acids)
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The products of peroxisomal β-oxidation are chain shortened acyl-CoAs, acetyl-CoA, NADH

and hydrogen peroxide (H2O2). Acyl-CoA is able to undergo further cycles of β-oxidation or

they may be utilized for the synthesis of more complex lipids. However, medium chain fatty

acyl-CoAs can be utilized by carnitine acetyl transferases present in the peroxisomes to generate
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carnitine derivatives. The carnitine derivative can be further oxidized by mitochondria to gen-

erate ATP in the process. Hydrogen peroxide is rapidly degraded by catalase present in the per-

oxisome producing O2 and H2O in the process. Catalase utilizes H2O2 to oxidize a variety of

other substrates, including phenol, formic acid, formaldehyde and alcohol (Van den Bosch et

al., 1992; Schultz, 1991; Gibson and Lake, 1993). This type of oxidative reaction is particularly

important in the liver and kidney cells whose peroxisomes detoxify various toxic molecules that

may enter the blood stream. 

Section 1.1.3 Peroxisome Proliferators
Peroxisome proliferators (PPs) are a class of non-genotoxic carcinogens which upon adminis-

tration to some rodents results in profound biochemical and morphological changes of the liver

known as peroxisome proliferation (Reddy et al., 1980; Lock et al., 1982). Peroxisome prolif-

erators are structurally diverse with no easily identifiable common molecular structure or phys-

ical property (see Figure 1.2 for some examples). However, a large number of PPs contain
Page 23



Munim Choudhury   Section 1.1.3
a carboxylic acid moiety or a group that can be converted into one (McGuire et al., 1992) or an

acidic group. The requirement for an acidic group to elicit peroxisome proliferation has been

shown in the case of hypolipidaemic drug LY-171883, where substitution of the tetrazole group

into an analog that can not form an acidic group abolishes its ability to cause peroxisome pro-

liferation (Sakuma et al., 1992). Peroxisome proliferating chemicals constitute a group that has

widespread clinical and industrial use including hypolipidaemic drugs, plasticizers and herbi-

cides (Moody et al 1991; Bently et al., 1993).

Certain pathophysiological conditions such as high-fat diets, cold temperature, starvation and

conditions such as diabetes mellitus also cause peroxisome proliferation in the liver (Reddy and

Lalwani, 1983). When administered to rodents, PPs cause a pleiotropic cellular response, in-
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volving an increase in the number and size of peroxisomes that appears to be most pronounced

in the liver, kidney and heart (Reddy and Chu, 1996; Lock et al., 1989; Reddy and Lalwani,

1983). 

Section 1.1.4 Acute effects of peroxisome proliferators 
Despite the lack of structural homology between PPs, acute exposure to these xenobiotics re-

sults in a series of biochemical and morphological changes in the liver, leading to liver enlarge-

men, hepatomegaly (Styles et al., 1988; Barrass et al., 1993). There is a rapid initial increase in

liver size following administration of a potent PP, with up to 3-fold increase in liver mass by

day three and reaching a maximum size by day fourteen (Marsman et al., 1988; Reddy and La-

lwani, 1991; Eacho et al., 1991). This augmentative liver growth is sustained for the duration of

the exposure and upon cessation of exposure, the liver regresses to its original size and mass

(Cohen and Crasso, 1981).

Peroxisome proliferator-induced hepatomegaly is a consequence of hypertrophic and hyper-

plastic response. Hypertrophy results from an increase in the size of individual hepatocytes due

to an increase in subcellular organelles such as smooth endoplasmic reticulum, Golgi bodies,

mitochondria and peroxisomes (Reddy et al., 1980; Lock et al., 1989). The major organelle af-

fected by PPs, however, is the peroxisome which undergoes significant increase in both size and

number (Moody and Reddy 1978; Reddy et al., 1980; Samboda and Azarnoff, 1966). Treatment

with PPs has been shown to increase the number of peroxisomes to up to 25% of the cytoplasmic

volume of the hepatocyte, compared to untreated cell where less than 2% of cytoplasmic volume

is occupied by peroxisomes (Moody and Reddy, 1976; Nemali et al., 1989). The collective vol-

ume and surface area of the smooth endoplasmic reticulum is increased up to 3-fold by PPs

(Moody and Reddy, 1976).
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Section 1.1.5 Biochemical changes associated with peroxisome proliferation
Concurrent with the increase in size and numbers of peroxisomes, specific peroxisomal en-

zymes are induced (Hawkins et al., 1987; Auwerex et al., 1996; Lazarow and De Duve, 1976;

Lazarow, 1977; Norseth and Thomassen, 1983; Veerkamp and Van Moerker, 1986), including

enzymes of the β-oxidation pathway. However this selective induction of peroxisomal enzymes

is differentially regulated. For example, a marked induction of acyl-CoA oxidase activity (30-

fold) was observed with PPs compared to a modest increase in catalase activity (3-fold) (Reedy

and Lalwani, 1983; Lock et al., 1989). The proliferation of smooth endoplasmic reticulum is

associated with a high level of microsomal lauric acid ω-hydroxylase activity resulting from

high level of induction of cytochrome P-4504A family (Kimura et al., 1989, Bell and Elcombe,

1991a). Induction of CYP4A1 precedes the induction of peroxisomal acyl-CoA oxidase after

administration of the peroxisome proliferator MCP (Bell et al., 1991), suggesting that the in-

duction of peroxisomal and microsomal genes are regulated in a coordinate manner. Due to their

early and high level of induction during peroxisome proliferation, induction of CYP4A1 and

acyl-CoA oxidase by PPs are routinely used as markers of peroxisome proliferation. Table 1.2

shows a list of some of the enzymes induced by PPs.

Enzyme Cellular Localization Reference

Cytochrome P450 4A1 Smooth ER Gibson et al., 1982

Acyl-CoA oxidase Peroxisome Osumi et al., 1984

Bifunctional enzyme Peroxisome Reddy et al., 1986

Thiolase Peroxisome Baumgart et al., 1990

Catalase Peroxisome Pacot et al., 1993

Malic enzyme Cytosolic Sakuma et al., 1992

HMG-CoA Synthase Mitochondrial Rodriguez et al., 1994

Carnitine Palmitoyl-
CoA transferase

Total cellular Sakuma et al., 1992 

Fatty acid binding protein Cytosolic Kaikaus et al., 1993

Urate oxidase Peroxisome Reddy et al.,1988

Table 1.1 Enzymes induced by peroxisome proliferators. 
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Section 1.1.6 Hyperplastic response to peroxisome Proliferators
Peroxisome proliferator-induced hepatomegaly is a consequence of both hypertropic and hyper-

plastic response of the hepatocytes. Hypertrophy results from increase in cell size while hyper-

plastic response is due to an increase in the number of parenchymal cells. The mitogenic effect

of PPs has been shown by the induction of DNA synthesis (Styles et al., 1988; Roberts et al.,

1995; Marsman et al., 1988). Measurement of DNA synthesis by bromodeoxyuridine incorpo-

ration shows that at high doses of MCP (25mg/kg) replicative DNA synthesis is induced to max-

imal between 20-30 hours after dosing (Styles et al., 1988). Induction of DNA synthesis has

been shown predominantly to be localized in the periportal region of the liver acini (Roberts et

al., 1995; Barrass et al., 1993). Further, work by Styles and coworkers (1988) demonstrated that

this induction in DNA synthesis is mainly confined to binucleated hepatocyte population. Their

work also suggest that those responding binucleated hepatocytes undergo amitotic cytokinesis

to form 4N cells following their stimulation to S-phase, since the proportion of 2x2N cells was

reduced while the fraction of 4N cells was increased by MCP treatment. 

The molecular nature of PP-induced liver growth is not well understood. Expression of a num-

ber of immediate early genes, such as the proto oncogenes c-fos, c-myc and c-jun, has been in-

vestigated during PP-induced augmentative liver growth. Work by Coni and coworkers (1993)

and Hasmall and coworkers (1997) demonstrate that expression of proto-oncogenes c-fos and

c-myc is not increased during PP treatment and therefore suggest that the molecular mechanism

of PP-induced direct hyperplasia is different from compensatory hyperplasia induced by partial

hepatectomy or CCl4 (Goldsworthy et al., 94; Coni et al., 1993; Hasmall et al., 1997).

Epoxide hydrolase Cytosolic Schladt et al., 1987

Enzyme Cellular Localization Reference

Table 1.1 Enzymes induced by peroxisome proliferators. 
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Section 1.1.7 Chronic exposure to peroxisome proliferators
Sustained increase in peroxisome proliferation due to long-term administration of PPs results in

the formation of hepatocellular carcinoma in rodents (Lake, 1995; Reedy and Lalwani, 1983).

Many PPs have been found to be carcinogenic in rats and mice but their carcinogenic potential

varies considerably between compounds. For example, potent PPs MCP and Wy-14,643 give

100% incidence of tumours in rat liver after 12 months of exposure whereas the weaker agent

DEHP causes a lower incidence of tumour formation that requires high doses and even longer

exposure periods (over 2 years) (Reedy et al., 1982; Rao et al., 1984; Cattley et al., 1987; Kluwe

et al., 1982).

Section 1.1.8 Peroxisome proliferators are non-genotoxic carcinogens
Classical carcinogens such as aflatoxin are genotoxic mutagens, that is, their direct interaction

with DNA results in DNA lesions (mutation), leading ultimately to tumour formation. Despite

their carcinogenic effect in rodent bioassays, PPs have been shown to be non-mutagenic in the

Ames Salmonella mutagenesis assay (Warren et al., 1980; Reedy and Lalwani et al., 1983; Bent-

ley et al., 1987). The genotoxic potential of PPs has been studied extensively using tests such

as 32P-post labelling assay for DNA adduct formation (Gupta et al., 1985), unscheduled DNA

synthesis (Cattley et al., 1986), chromosomal aberrations (Nilsson et al., 1991) and DNA repair

assay (Butterworth et al., 1989). Taken together, all of these of in vitro and in vivo genotoxic

studies failed to identify PPs as direct mutagens, and PPs are therefore termed non-genotoxic

carcinogens, PPs cause hepatocellular carcinoma without directly damaging the DNA (Ashby

et al., 1994). However, the mechanism by which PPs cause liver cancer is not well understood

and multiple hypotheses have been put forward to explain PP-induced hepatocarcinogenesis.

Each model is based upon a different aspect of the observed effects following dosing with PPs.

Section 1.1.9 The oxidative stress model
In the oxidative stress hypothesis, the indirect effects of PPs cause DNA damage and subsequent
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carcinogenesis (Reddy and Lalwani, 1983). This hypothesis postulates that chronic administra-

tion of PPs produces sustained oxidative stress in rodent hepatocytes due to an imbalance in the

production and degradation of H2O2 (Rao and Reddy, 1987 and 1991; Reedy and Rao, 1989).

The differential induction of peroxisomal enzymes by PPs results in a marked increase in the β-

oxidation enzymes, especially acyl-CoA oxidase. This increase in β-oxidation activity can po-

tentially generate a large increase in the cellular level of hydrogen peroxide since the cyclic ox-

idation of a long chain fatty acid molecules results in the production of several molecules of

H2O2 (Lazarow and De Duve, 1976; Lake, 1993; Reddy and Rao, 1989). This hypothesis further

postulates that cellular defence mechanisms that normally detoxify H2O2 are perturbed in such

a way as to allow a rise in cellular H2O2 levels. The excess H2O2 can diffuse out of the perox-

isome and may react either directly or indirectly, via reactive oxygen species, to form DNA ad-

ducts. Catalase, a peroxidase, that normally neutralizes H2O2 produced during β-oxidation is

only marginally induced by PPs, approximately two to three fold above control values (Nemali

et al., 1988). Rao and Reddy postulated that this induction would not be sufficient to rapidly

metabolize additional hydrogen peroxide produced by the increased level of peroxisomal β-ox-

idation, and this would result in elevated intra-peroxisomal H2O2 levels over a sustained period.

Thus the proposed increase in cellular H2O2 levels and the concurrent rise in reactive oxygen

species like superoxide anion would lead to an increased incidence of DNA adduct formation

and therefore an increased mutation rate. Further, PPs have been shown to reduce the expression

of other enzymes involved in the removal of H2O2, such as superoxide dismutase (Ciriolo et al.,

1982; Elliott and Elcombe, 1987), glutathione-S-transferase (Foliot et al., 1986; Lake et al.,

1989; Furukawa et al., 1985; Tamura et al., 1990b) and glutathione peroxidase (Tamura et al.,

1990a and 1990b; Furukawa et al., 1985).

To accept the oxidative stress hypothesis, evidence is required to demonstrate the transient in-

crease in H2O2 level and its reactivity to DNA by PPs as they are central to the proposed hy-
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pothesis. To substantiate/validate such a hypothesis, a number of experimental investigations

had focused on the effect of PPs on the levels of β-oxidation, production of H2O2 and DNA ad-

duct formation. PPs, in the presence of saturating substrate concentration, have been shown to

cause a small increase in intracellular H2O2 (Lake, 1993) despite the high level of induction of

acyl-CoA oxidase (Foerster et al., 1981; Handler et al., 1988). 

One of the major adducts formed through oxidative damage is 8-hydro-2-deoxyguanosine (8-

OHdG) (Clayson et al., 1994). Treatment with a number of PPs has been reported to increase

levels of 8-OHdG in rat hepatic DNA. However such increases are very small, between 0.5-2.5-

fold (Kasai et al., 1989; Takagi et al., 1990 and 1991; Huang et al., 1994; Catley and Glover,

1993). Most studies of 8-OHdG have utilized whole liver homogenates that contain both nuclear

and mitochondrial DNA, thus making the interpretation of the result more difficult since mito-

chondrial DNA is 16-fold more susceptible to oxidative damage than nuclear DNA (Richter et

al., 1988). Sausen et al. (1995) found that 8-OHdG adducts in DNA isolated from whole liver

homogenate increased up to 2-fold following treatment with Wy-14,643 and clofibric acid, but

the increase was found to be due to an increase in background levels arising from a 3-fold in-

crease in mitochondrial DNA levels. Cattley and Glover (1993) found that when isolated hepat-

ic nuclei were examined, no increase in 8-OHdG levels was found for some PPs tested. Also, a

few studies have examined the effects of PPs on other modified DNA bases and DNA strand

breaks, and concluded that PPs have no significant effect on these parameters (Elliott and

Elcombe, 1987; Tamara et al., 1991). In summary, there is little evidence to support the idea

that oxidative damage to nuclear DNA might be solely responsible for PP-induced hepatocar-

cinogenesis. 

Section 1.1.10 Peroxisome proliferators as tumour promoting agents
Non-genotoxic carcinogens such as phenobarbitone, phorbol esters and dioxin are considered
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to be tumour “promoters” rather than initiators. Since PPs do not produce positive results in ini-

tiation studies it is likely that they could also act as tumour promoters. Keeping in mind the

multi-step nature of carcinogenesis, it is possible that promotion and progression of spontane-

ously initiated cells could be influenced by the action of PPs. To support this, PPs have been

shown to induce hepatocyte cell replication which is clearly important in the promotion and pro-

gression of initiated cells into tumours (i.e. clonal expansion). Non-parenchymal liver cells do

not undergo cell proliferation in response to PPs, and hepatocytes that are stimulated to DNA

synthesis are mainly restricted to the periportal hepatocytes (James and Roberts, 1996, Prince

et al., 1992; Melchiorri et al., 1993; Ohmura et al., 1996; Styles et al., 1988; Lake et al., 1993;

Lalwani et al., 1997). In a number of cases, PPs have been shown to produce a burst of cell rep-

lication in rodent hepatocytes during the initial 2-7 day period of dosing, (Eldridge et al., 1990;

Styles et al., 1988). In some, but not in all, studies PPs have caused a sustained stimulation of

DNA synthesis (Marsman et al., 1988; Eacho et al., 1991; Chem et al., 1994; Price et al., 1992).

The majority of these studies have employed the more sensitive continuous infusion (osmotic

pump), rather than  pulse-labelling techniques, to administer DNA precursor to measure DNA

synthesis. Apart from intrinsic compound potency, dose is an important factor in determining

whether a particular PP can produce either a transient or sustained stimulation of cell replication

in rodent hepatocytes. Thus low doses of Wy-14,643, MCP and nafenopin do not produce a sus-

tained stimulation of replicative DNA synthesis whereas higher doses do produce this effect

(Price et al., 1992; Lake et al., 1993). 

The ability of PPs to act as tumour promoters have been studied in chemically-initiated liver,

and it was found that PPs are efficient promoters of certain genotoxic carcinogen-induced le-

sions (Cattley and Popp, 1989; Ward et al., 1983, 84 and 86; Glauent and Clarke, 1989; Garney

et al., 1987). For example, DEHP has been reported to promote N-nitrosodiethylamine (DEN)
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initiated focal hepatocellular proliferative lesions in mouse (Ward et al., 1986), and co-admin-

istration of DEN and clofibrate in rats resulted in a significant increase in the number of hepatic

tumours formed over rats given DEN alone (Mochizuki et al., 1983). Further evidence to sup-

port the hypothesis that PPs act as tumour promoters of spontaneously initiated cells comes

from age-related susceptibility to increased tumour incidence in rats and mice. There is a high

incidence of pre-neoplastic lesion in the livers of untreated old rats and mice, and are thought

to result from spontaneously initiated cells that accumulate during the life span of the animal.

This suggests that PPs should be a better promoter of hepatocarcinogenesis in older animals. In-

deed, nafenopin and Wy-14,643 produced more liver adenomas and carcinomas in older rats

than younger rats (Cattley et al., 1991; Kraupp-Grasl et al., 1991). 

In addition to cell replication and promotion of initiated cells, PPs have been shown to affect

the apoptotic process of the liver that may play an important role in the promotion of PP-induced

liver carcinogenesis. PPs were found to suppress both spontaneous and TGFβ induced apoptosis

in rat hepatocytes (Bayly et al., 1993; Roberts et al., 1995; James and Roberts, 1996) and in the

FAO hepatoma cell line (Bayly et al., 1993). It is thought that PPs induce liver cancer by induc-

ing cell proliferation and at the same time suppressing apoptosis. Thus, DNA damaged cells that

are normally removed by apoptosis are allowed to survive, and upon PP-induced mitogenic

stimulation they may proliferate (clonal expansion) and accumulate further genetic changes that

may ultimately lead to liver cancer.

Section 1.2 Cytochrome P450 mono-oxygenase system

The cytochrome P450 mixed function mono-oxygenase system is a collection of isoenzymes

that act as terminal electron donors in many mono-oxygenation reactions. All proteins of this

P450 superfamily are haemoproteins that possess an iron protoporphyrin IX as the prosthetic

group and the monomer of the enzyme has a molecular weight of 52-60 kDa. A characteristic
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of all cytochrome P450 proteins is that in the reduced state they bind carbon monoxide giving

an absorption maximum at 450nm. To date over 500 cytochrome P450 genes have been se-

quenced from species as divergent as mammals and bacteria (Unger, 1986). Mammalian P450

enzymes are membrane-bound within the endoplasmic reticulum and are closely associated

with NADPH cytochrome P450 reductase, another component of mixed function oxidase sys-

tem.

A nomenclature system for naming the growing number of newly identified members of the

P450 gene superfamily has been devised which is based on their protein sequence homology

with other P450 enzymes (Nelson et al., 1996). Cytochrome P450 genes are named with the ital-

icized root symbol ‘CYP’ (‘Cyp’ for mouse and Drosophila). Gene families are designated by

numbers and subfamilies are represented by letters followed by a number for the individual

gene. For example, the rat CYP4A1 is the first member of the A subfamily which belongs to the

fourth family of the cytochrome P450 super family. Generally, cytochrome P450 molecules are

defined as being within the same family if there is a minimum of 40% amino acid identity be-

tween the two proteins. Proteins belonging to the same subfamily have >70% amino acid iden-

tity.

Biotransformation of a wide range of xenobiotics as well as many endogenous compounds are

carried out by the P450 enzyme family. They are capable of carrying out diverse monooxygen-

ase activities, the common aspect of all the oxidative reactions being the insertion of one atom

of molecular oxygen into the substrate. Since most xenobiotics are highly lipophilic in nature

the purpose of this phase I reaction is to introduce a functional group into the substrate, render-

ing it more water soluble. Thus, phase I biotransformation plays a crucial role in the disposal of

toxic compounds (both endogenous and foreign) in the body. As well as playing an important

role in the detoxification of many xenobiotics, P450 enzymes can activate a chemical to more
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toxic metabolite as in the case of procarcinogen benzo[a]pyrene which is activated to a carcino-

genic epoxide derivative. Normally phase II biotransformation convert reactive epoxides into

more soluble derivatives such as diols (by hydration). However, the metabolic activation of pro-

carcinogens to carcinogenic epoxides can arise when this second stage (phase II) is prevented

by steric hindrance.

The catalytic cycle of the P450 enzyme is summarised in Figure 1.3. Substrate binding occurs

in the vicinity of the haem region of the enzyme and takes place when the iron is in the oxidised,

ferric state (Fe3+). Substrate binds close to the haem region of the enzyme (step 1). By channel-

ing an electron from NADPH via the NADPH-reductase, the iron atom is reduced from ferric

to ferrous state (step 2). The reduced cytochrome P450-substrate complex then binds molecular

O2 and undergoes a rearrangement (step 3), after which a second electron is transferred from

NADPH via P450-reductase to the complex (step 4). Finally the complex rearranges with inser-

tion of one atom of oxygen into the substrate to yield the product (step 5 and 6) while the other
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oxygen atom is reduced to water.

Section 1.2.1 Cytochrome P450 4A subfamily
Induction of P450 activities is a characteristic feature of a number of xenobiotics and has an im-

portant bearing on the elimination of toxic compounds from the circulation. Orton and Parker

first demonstrated the induction of lauric acid ω-hydroxylase activity in the rat liver following

the administration of clofibrate (Orton and Parker, 1982). Subsequent studies have purified a

microsomal P450 with ω-hydroxylase activity from a number of different species, including rat

liver (Tauburini et al., 1984; Gibson et al., 1982), rabbit intestine (Kaku et al., 1984), rabbit lung

(Willams et al., 1984), human and rat kidney (Kawashima et al., 1992). The CYP4 gene family
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was first identified when rat CYP4A1 was cloned and sequenced, and as the predicted amino

acid sequence was less than 36% identical to other P450 known at the time it was designated as

the first member of the new 4A subfamily (Nebert et al., 1987). Now it is generally accepted

that CYP4A subfamily encodes several cytochrome P450 enzymes that are capable of hydrox-

ylating the terminal ω-carbon and, to a lesser extent, the ω-1 position of saturated and unsatur-

ated fatty acids (Sharman et al., 1989). The enzymes are also active in the ω-hydroxylation of

various prostaglandins (Matsubara et al., 1987; Yamamoto et al., 1984). So far 15 isoenzymes

have been identified as members of this subfamily from a number of species such as rat, mouse,

human, guinea pig and rabbit (see table 1.2.). The genomic sizes of CYP4A subfamily genes are

between 10 to 15kb long and produce mRNAs of around 1.5kb encoding 509 amino acids. Tis-

sue distributions of P4504A vary and many of these genes are expressed at high levels in the

liver and kidney while others are expressed in sex and tissue specific patterns.

P450 4A Gene Species cDNA/Genomic Reference

CYP4A1 Rat cDNA
Genomic

Hardwick et al., 1987
Kimura et al., 1989

CYP4A2 Rat Genomic Kimura et al., 1989

CYP4A3 Rat cDNA Kimura et al., 1989

CYP4A4 Rabbit cDNA
Genomic

Matsubara et al., 1987
Palmer et al., 1993

CYP4A5 Rabbit cDNA Johnson et al., 1990

CYP4A6 Rabbit cDNA
Genomic

Yokotani et al., 1989
Muerhoff et al., 1992

CYP4A7 Rabbit cDNA Yokotani et al., 1989

CYP4A8 Rat cDNA Stromstedt et al., 1990

CYP4A9 Human cDNA Kawashima et al., 1994

Cyp4a10 Mouse cDNA Henderson et al., 1990

CYP4A11 Human cDNA Palmer et al., 1993

Cyp4a12 Mouse cDNA Bell et al., 1993

CYP4A13 Guinea Pig cDNA Bell et al., 1993

Cyp4a14 Mouse Genomic Heng et al., 1997

Table 1.2 Members of the CYP4A subfamily identified in different species.  
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Section 1.2.2 Expression of CYP4A genes
Four members of the CYP4A family have been identified in rat, two of which are genomic

clones (CYP4A1 and CYP4A2) while the other two are cDNA clones (CYP4A3 and CYP4A8).

The CYP4A1 gene, the most extensively studied member of CYP4 family, is constitutively ex-

pressed in the rat liver and kidney. Exposure to PPs such as clofibrate results in a large induction

of this gene, especially in the liver (Kimura et al., 1989). Expression of CYP4A1 in the kidney

was found to be in proximal convoluted tubule while in the liver constitutive and induced ex-

pression was localized mainly in the centrilobular region (Bell et al., 1991). Expression of

CYP4A2 was found to be regulated in a sex specific manner (Waxman et al., 1991). In the male

rat liver, constitutive expression of CYP4A2 occurs at a low level which is highly induced by

clofibrate. In male kidney the gene is expressed constitutively at high levels which are slightly

induced by treatment with PPs (Kimura et al., 1989). CYP4A2 was also detected in male sem-

inal vesicle, prostate, brain cortex, cerebellum and brainstem (Stromsteidt et al., 1994). Expres-

sion of CYP4A2, however, was not detectable in female liver and kidney (Sundseth and

Waxman, 1992). This apparent sex specific expression is regulated by the different growth hor-

mone profiles between the sexes (Waxman et al., 1991). CYP4A3 was found to be expressed in

liver and kidney, and is highly inducible by PPs (Kimura et al., 1989). CYP4A3 was also de-

tected in other extrahepatic tissues, very much similar to CYP4A2 expression. But unlike

CYP4A2, it is not expressed in the seminal vesicle (Stromstedt et al., 1994). CYP4A8 is ex-

pressed mainly in the prostate and kidney but also weak expression was detected in the retina

(Stromstedt et al., 1994 and 1990).

Mouse liver microsomes from both control and MCP treated animals exhibited ω-hydroxylase

activity (Henderson et al., 1990), and immunoblotting detected an immunoreactive band using

an antibody generated against rat CYP4A1. Using a PCR cloning strategy, Bell et al. (1993)

identified Cyp4a cDNAs (Cyp4a10-a homologue of rat CYP4A1) in the mouse liver. Full length
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cDNA was later cloned by screening a mouse liver cDNA library using a full-length rat

CYP4A1 cDNA probe (Henderson et al., 1994). Cyp4a10 was found to be highly induced by

PPs at the transcriptional level in mouse liver and in kidney to a lesser extent (Bell et al., 1993).

Two other murine Cyp4a genes have also been identified that are expressed in the liver. These

are Cyp4a12 and 14 which are homologues of rat CYP4A8 and 2, respectively. Cyp4a14 is

highly inducible by PPs in both male and female mouse liver (Heng et al., 1997). The Cyp4a12

gene is expressed at high levels in the male liver and kidney and was not induced by treatment

with MCP. However, there was a low level of expression of Cyp4a12 mRNA in the female liver

and kidney, which was greatly induced by treatment with MCP (Bell et al., 1993). 

Four CYP4A genes (CYP4A4, CYP4A5, CYP4A6 and CYP4A7) have been identified in rabbit

and the genomic sequences of CYP4A4 and CYP4A6 are known. CYP4A6 is expressed at very

low level in the liver and kidney, and was highly induced by clofibrate treatment (Yokotani et

al., 1989; Roman et al., 1993). In contrast, CYP4A7 was expressed at high constitutive levels

in the liver, kidney and small intestine, but its expression was enhanced only in the liver by clof-

ibrate treatment (Yokotani et al., 1989; Roman et al., 1993). CYP4A5 was found to be ex-

pressed in liver and kidney and was slightly induced in the liver by clofibrate treatment (Roman

et al., 1993). CYP4A13 was isolated as a partial cDNA clone from guinea pig liver and was

found to be non-inducible by PPs (Bell et al., 1993). CYP4A11 was cloned from human (Palmer

et al., 1993b; Imaoka et al., 1993). Expression of CYP4A11 was detected in a number of tissues

including liver, kidney and lung among others (Palmer et al., 1993).

Section 1.2.3 Role of CYP4A in fatty acid metabolism and renal function
Metabolism of arachidonic acid, a fatty acid derivative, results in a number of important biolog-

ical mediators that are involved in the control of inflammation (inflammatory response). Leu-

kotriene B4 is one such mediator produced by lipooxygenase-dependent arachidonic acid
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metabolism (Samuelsson, 1983). Since leukotriene B4 is a potent chemotactic and chemokenet-

ic agent, biological inactivation of leukotriene B4 is very important in the control of inflamma-

tion. CYP4A has been shown to play an important role in the metabolism of leukotriene B4.

Catabolism of leukotriene B4 was found to be induced in primary hepatocytes from clofibrate

treated rats, and studies on animal models shows that the duration of inflammatory response is

prolonged in mice resistant to Cyp4a induction by PPs (Devchand et al., 1996)

Arachidonic acid can also be metabolized by members of the CYP4A protein family to hydrox-

yicosatetraenoic acids (HETEs), epoxyicosatetraenoic acids (EETs) and dihydroxyicosatet-

raenoic acids (DHTs), all of which play important biological roles including platelet

aggregation and renal functions (Fizpatrick and Murphy, 1988). Inhibition of CYP4A activity

by 17-octadecynoic acid, a suicide substrate of CYP4A enzymes, inhibited the formation of 20-

HETE (a hydroxylated product of HETE) as well as EET and DHT (Zouel at al., 1994 and 93).

Microsomes from dog renal arteries were found to produce 20-HETE in response to infusion

with arachidonic acid (Ma et al., 1993). 20-HETE is shown to be a potent vasoconstrictor of

renal arteries and the inhibition of its formation results in an increase in urine flow and sodium

excretion, whereas renal blood flow and glomerular filtration rate were not significantly altered

(Zou et al., 1994).

Section 1.2.4 Role of CYP4A in peroxisome proliferation
Pathophysiological stimuli or drug-induced peroxisome proliferation are associated with high

levels of induction of a number of enzymes, including CYP4A1 (Sharma et al., 1988; Bell and

Elcombe, 1991). Perturbation of hepatic lipid metabolism by PPs is thought to result in peroxi-

some proliferation and, although the mechanism of peroxisome proliferation is not clear, it is

thought that the induction of CYP4A protein plays an important and mechanistic role in perox-

isome proliferation (Lock et al., 1989; Sharma et al., 1988). Following the induction of
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CYP4A1, other genes are induced, particularly those of the β-oxidation pathway (Bell and

Elcombe, 1991). Production of long chain dicarboxylic acids by CYP4A1 (formed through ω-

hydroxylation) has been implicated in peroxisome proliferation. Long chain dicarboxylic acids

have been detected in hepatocyte culture due to the activity of high levels of CYP4A1 (Lock et

al., 1989; Sharma et al., 1988; Aoyama et al., 1990), and long chain dicaboxylic acids has been

shown to induce peroxisomal β-oxidation enzymes (Kaikaus et al., 1993). The coordinate in-

duction of CYP4A1 and peroxisomal acyl-CoA oxidase was studied by Bell and co workers,

which demonstrate that the induction of CYP4A1 mRNA precedes the induction of acyl-CoA

oxidase gene (Bell et al., 1991; Bell and Elcombe, 1991).

Use of primary hepatocyte culture also demonstrated that MCP mediated induction of CYP4A1

mRNA was unaffected by the presence of the protein synthesis inhibitor cyclohexamide, while

the induction of acyl-CoA oxidase was ablated. This suggests that induction of acyl-CoA oxi-

dase required the production of a protein, possibly CYP4A1 (Milton et al., 1991). Further evi-

dence was provided by work which found that the specific inactivator of CYP4A1, 10-

undecynoic acid, inhibited clofibrate-mediated induction of acyl-CoA oxidase mRNA but not

the induction of CYP4AA1 mRNA in hepatocytes (Kaikaus et al., 1993). Taken together, these

studies indicate that the CYP4A1 ω-oxidation pathway, or even the CYP4A1 protein itself,

plays an important part in the induction of β-oxidation by PPs. Generation of CYP4A knock-

out mice will provide further insight into the role of CYP4A family members in peroxisome pro-

liferation and most importantly their physiological role in maintaining tissue homeostasis.

Section 1.3 Cloning of a steroid receptor activated by PPs 

The rapid and co-ordinate transcriptional induction of microsomal and peroxisomal genes by

PPs has long suggested that PPs could act by a mechanism similar to that of steroid hormones.

Initially, a rat liver protein termed peroxisome proliferator binding protein (PPBP), was identi-
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fied in affinity studies using labelled nafenopin (Lalwani et al., 1983 and 1987). Further work

has characterized this PPBP as a member of heat shock protein family HSP70 and the possibility

that this protein could act as receptor in mediating the effects of PPs was unlikely. A more re-

fined search specifically aimed at identification of steroid receptors that could be activated by

PPs has led to the discovery of a steroid receptor termed PPARα (peroxisome proliferator acti-

vated receptor alpha) (Isseman and Green, 1990). PPARα was isolated by screening a mouse

liver cDNA library using a probe based on the consensus sequence of the DNA binding domain

of several nuclear receptors. Full-length PPARα cDNA was found to encode a 468 amino acid

protein with predicted molecular weight of 52 kDa. Analysis of the amino acid sequence dem-

onstrated that PPARα belonged to the steroid hormone receptor superfamily since it had all the

typical characteristics of steroid receptor (Evans et al., 1988). The PPARα amino acid sequence

displayed high homology to the DNA binding region of nuclear steroid hormone receptors such

as the glucocorticoid receptor, estrogen receptor, retinoid X receptor, vitamin D receptor, thy-

roid receptor and retinoic acid receptor. The ability of PPs to activate PPARα was determined

by using a chimeric receptor construct containing regions encoding the putative ligand binding

domain of the identified PPARα and the N-terminal sequence and DNA binding domain of hu-

man estrogen receptor (hER-PPARα) (Isseman and Green, 1990). In the presence of PP, hER-

PPARα was able to transcriptionally activate the expression of a reporter gene under the tran-

scriptional control of estrogen receptor. In this transient transactivation assay a number of struc-

turally dissimilar PPs, such as nafenopin, MCP, clofibrate, Wy-14,643, MEHP and

trichloroacetic acid, were shown to be activators of PPARα.

Section 1.3.1 The steroid hormone receptor superfamily
The actions of many lipophilic hormones are mediated by a group of structurally similar intra-

cellular receptors called steroid hormone receptors (SHRs). SHRs are defined as ligand depen-

dent transcription factors that exert their regulatory function at the gene level. Their immense
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importance as a regulators of vital processes such as development, cell differentiation and organ

physiology has been indicated by the early death of mice mutant for some of these receptors as

in the case of the glucocorticoid hormone receptor (Cole et al., 1995). This group of nuclear re-

ceptors represents the largest known family of transcription factors in eukaryotes, and includes

the estrogen receptor, glucocorticoid receptor, mineralocorticoid receptor, progesterone recep-

tor, retinoid receptor, vitamin D receptor, thyroid receptor and peroxisome proliferator activated

receptor (Mangelsdorf et al., 1983; Evans et al., 1988). Most of the orphan receptors with no

apparent ligand also belong to this group. Sequence comparison and subsequent experimental

analysis has identified a number of modular domains that are characteristic of the steroid recep-

tor superfamily as shown in Figure 1.4.(Evans et al., 1988). 

The N-terminal A/B domain contains a constitutive ligand-independent transactivation function

(AF-1). The DNA binding domain (DBD) or C domain is the most conserved region, which tar-

gets the receptor to specific DNA sequences known as response elements. The DBD also has a

role in receptor-receptor heterodimerisation. Domain D (hinge domain) is concerned with con-

formational alteration of the protein and is believed to be involved in receptor interaction with

coactivators and repressors (i.e. protein-protein interactions). Domain E is the ligand binding

domain (LBD) which may also have transactivating functions (AF-2). This domain functions as

a modular unit whose transcriptional activities are switched on by ligand binding and receptor

dimerisation. No specific functions have yet been attributed to the small variable C-terminal F

domain but it may have a role in protein-protein interactions.
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Section 1.3.2 The PPAR family and tissue-specific expression
Soon after the initial description of mouse PPAR (later termed PPARα), other groups demon-

strated the existence of several types of PPAR in different species. So far, three different sub-

types of PPAR have been identified termed α, β (also known as δ and FAAR) and γ from

Xenopus (Krey et al., 1993), mouse (Isseman and Green, 1990; Chen et al., 1993; Kilewer et

al., 1994; Amni et al., 1995), rat (Bocosc et al., 1995; Xing et al., 1995; Guardiola-Diaz et al.,

1999), human (Jow and Mukhergy, 1994; Green, 1995; Lamb and Tugwood, 1996; Elbrecht et

al., 1996), hamster (Aperlo et al., 1995) and guinea pig (Bell et al., 1998; Tugwood et al., 1998)

(see table 1.3). Two distinct isoforms of PPARγ (PPARγ1 and PPARγ2) have been identified in

mouse, rat and human. Both human and rat PPARγ1 and PPARγ2 are homologues of mouse

PPARγ1 and PPARγ2, respectively, and have been shown to be the products of alternative pro-

moter usage and differential splicing. Differential splicing is also observed for retinoid and thy-

roid hormone receptors and the relative expression of isoforms is important in the regulation of

gene transcription.

PPAR isoform Cloned from Reference

mouse PPARα liver cDNA Issemann & Green, 1990

Xenopus PPARα ovary cDNA Dreyer et al., 1992

rat PPARα liver cDNA Gottlicher et al., 1992

Table 1.3 Members of PPAR family identified from different species. 

DNADNA LigandLigand

A/BA/B DD EE

AF2AF2

FFCC

AF1AF1

Figure 1.4 Functional domains of nuclear hormone receptors.  DNA binding domain is shown by C (DNA) and
ligand binding domain is shown by E (Ligand). AF1 and AF2 represents transactivation function 1 and 2 respectively.
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Expression of the three PPAR subtypes was characterized in several tissues of rat and mouse

(Braisant et al., 1996; Jones et al., 1995). Using specific probes for PPARα, β and γ, Braisant

et al. (1996) have localized the expression pattern of different PPARs in a number of rat tissues

using in situ hybridisation. The highest level of expression of PPARα was found in the liver,

and a moderate to low level in kidney, stomach, brown adipose tissue, heart, small intestine and

retina. PPARβ was expressed at a moderate level in a number of tissues including liver, kidney,

heart, intestine and retina, except in the genital system where high level were observed. Com-

pared to α and β subtypes, PPARγ was expressed at very low levels in most tissues examined

except in the white adipose tissue and the immune system where it was expressed at high levels.

Jones et al. (1995) used a highly specific RNase protection assay to determine the expression

pattern of three PPARs in mouse tissue. Their data demonstrate that PPARα RNA is expressed

at highest levels in the liver, with 20-fold lower levels of PPARβ and virtually negligible levels

of PPARγ. A moderate level of PPARα expression was seen in kidney and brown adipose tissue

and low levels elsewhere. PPARβ was expressed at moderate levels in liver, and low levels in

other tissues. The highest level of expression of PPARγ was found in adipose tissue and very

low levels in other tissues. PPARγ expression has also been examined by other groups in rat,

mouse, hamster and human, and these studies found that PPARγ mRNA expression was highest

human PPARα liver cDNA Dreyer et al., 1993

guinea pig PPARα liver cDNA Tugwood et al., 1998

Xenopus PPARβ ovary cDNA Dreyer et al., 1992

mouse PPARβ brain cDNA Chen et al., 1993

human PPARβ osteosarcoma Schmidt et al., 1992

Xenopus PPARγ liver cDNA Dreyer et al., 1992

mouse PPARγ1 liver cDNA Zhu et al., 1993

mouse PPARγ2 adipocyte cDNA Kliewer et al., 1994

PPAR isoform Cloned from Reference

Table 1.3 Members of PPAR family identified from different species. 
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in adipose tissue (Kliewer et al., 1994; Tontonoz et al., 1994a and 1994b, Aperlo et al., 1995;

Elbrecht et al., 1996; Mukherjee et al., 1997). Tissue-specific expression of PPARs, especially

of PPARα and γ, suggests that they have different physiological roles. The high level of expres-

sion of PPARγ in adipose tissue suggests that this receptor plays an important role in lipid me-

tabolism in this tissue, and recently PPARγ has been linked with adipogenesis as over

expression of PPARγ converts pre-adipocytes into adipocytes. The high expression of PPARα

in the liver correlates well with the fact that PPs have their greatest effect in the liver; its expres-

sion in other tissues indicates that it may have important physiological functions, possibly in lip-

id homeostasis.

Section 1.3.3 Regulation of PPARα gene expression
It was originally thought that as well as activating PPARα itself, PPs could also induce the ex-

pression of their receptor PPARα. A number of studies were carried out in rat to characterize

the regulation of the PPARα gene by PPs in cultured hepatocytes and cell lines as well as in vivo

tumour and non-tumour liver tissues. Miller et al. (1996) found that long-term administration

of Wy-14,643 resulted in significant induction of PPARα mRNA in both tumour and non-tu-

mour lesions of the rat liver, and the induction of PPARα mRNA was slightly increased in tu-

mour lesions as compared to the surrounding non-lesion liver tissue. However they used a

mouse PPARα probe to determine the expression of rat PPARα in Northern blot analysis. Also

in their study, the expression of albumin mRNA as an internal control was reduced in Wy-

14,643 treated samples. McNae et al. (1994) found that clofibrate and perfluorodecanoic acid

(PFDA) induced PPARα mRNA expression, but other PPs examined in these study had no ef-

fect on PPARα expression. Using an antibody raised against mouse PPARα, Gebel et al. (1992)

detected an immunoreactive protein of 52 kDa in the nuclear extracts of rats treated with fenof-

ibrate but not in control animals. They also reported the induction of a 6kb mRNA species in

fenofibrate-treated rat liver in Northern analysis using a probe derived from mPPARα. Other
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studies have found a small induction in primary hepatocytes and cell lines (Yamada et al., 1995;

Sterchele et al., 1996). Although these studies shows that rat PPARα is inducible by PPs, other

studies conclude that PPs have no effect on the expression of PPARα mRNA (Sterchele et al.

1995; Schoonjan et al., 1996; Jones et al., 1995). For example, Sterchele et al. (1995) found that

in rat liver, PPARα mRNA accumulated after treatment with PFDA. However, this accumula-

tion in PFDA-treated rats appeared to be due primarily to hypophagia as pair-feeding control

and complete caloric restriction result in a large increase in the concentration of this PPARα

mRNA in the absence of PP treatment. In vivo studies where the induction of PPARα mRNA

was reported did not include a pair-fed control group, and therefore the induction observed by

these groups is likely to be due to a stress based induction mechanism, possibly arising from the

dose of the PP used. Using the highly sensitive and specific RNase protection assay Jones et al.

(1995) demonstrated that PPARα mRNA expression was unaffected in the mouse liver treated

with the potent peroxisome proliferator MCP. Recently it has been reported that rat PPARα

mRNA levels are modulated in brown adipose tissue during peroxisome proliferation induced

by cold acclimatization. Here, PPARα mRNA was found to decrease markedly after 5-hour of

cold exposure and was almost undetectable after one day in the cold (Guardiola-Diaz et al.,

1999). However, the PPARα mRNA level increased gradually to normal by four weeks of cold

exposure of the rat.

The involvement of glucocorticoid hormones in lipid metabolism and in energy mobilization in

stress has been recognized. Since PPARα is involved in the direct regulation of genes involved

in fatty acid oxidation, a number of studies have examined the regulation of PPARα genes by

glucocorticoid hormones. Dexamethasone, a synthetic glucocorticoid hormone, was found to

stimulate the expression of PPARα mRNA up to 15 times over control in primary rat hepato-

cytes and to a lesser degree in a hepatoma cell line (6-fold) (Steineger et al., 1994). In the same
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study insulin was found to inhibit the induction of PPARα mRNA. Lamberger et al. (1994) also

found that synthetic glucocorticoid analogue (dexamethasone and hydrocortisone) could induce

the rat PPARα gene in primary hepatocyte cultures, and hydrocortisone was also shown to in-

duce the expression of PPARα at the protein level in rat hepatocytes (Plant et al., 1998). Glu-

cocorticoids induced PPARα mRNA in a dose dependent manner and this was inhibited by

glucocorticoid antagonists. PPARα is also stimulated by stress and follows a diurnal rhythm,

but the pattern is somewhat different from glucocorticoid and its receptor (Lamberger et al.,

1996). The peak release of glucocorticoid hormone occurs at the light/dark switch and the peak

expression of glucocorticoid receptor occurs around midnight (between 11 pm to 2 am). The

peak expression of glucocorticoid receptor is out of synchronization with the circadian rhythm

of PPARα which has been found to peak in the late afternoon (between 5 to 6 pm) (Lamberger

et al., 1996). If glucocorticoid receptors regulate PPARα gene expression then one would ex-

pect synchrony between the expression of glucocorticoid receptor and the expression of PPA-

Rα. The expression of PPARα gene in mice was unaffected by testosterone treatment (Jones et

al., 1995). 

Section 1.3.4 PPARα activators and ligands
Originally PPARα, and indeed other subtypes, were isolated as orphan receptors with no known

natural or synthetic ligands (Isseman and Green, 1990). Peroxisome proliferators (synthetic and

endogenous fatty acids) were shown to be PPARα activators, that is the ability of these chemi-

cals to convert PPARα into a transcriptionally active complex could be demonstrated in reporter

gene assays, and therefore in that sense PPs are not true ligands. Although PPs were thought to

be PPARα ligands, evidence for direct interaction was lacking. Recently, using a high affinity

radiolabelled ligand, thiazolidinedione (a synthetic anti-diabetic drug), a natural ligand for

PPARγ was identified, called prostaglandin J2 (Kliewer et al., 1997). In the past, using this clas-

sical ligand-binding approach, the identification of bona fide PPARα ligands has been hindered
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by the unavailability of a comparable, high-affinity PPARα radioligand which does not produce

unacceptable levels of non-specific binding. Recently a high affinity fibrate ligands GW2331

(Kd = 140 nM) for PPARα has been identified. Using GW2331 radioligand in a competition

binding assay Kliewer et al. (1997) has demonstrated that certain mono and polyunsaturated fat-

ty acids (palmitic acid, oleic acid, petroselenic acid, linolenic acid, linoleic acid, arachidonic

acid and hydroxy eicosatetraenoic acid) are ligands for PPARα. Forman et al 1997 used a

ligand-induced conformational change to identify PPARα ligands indirectly. They have utilized

the electrophoretic mobility shift assay to determine the enhanced binding of PPARα-RXRα

heterodimers (present at low levels) to a PPRE (peroxisome proliferator response element) in-

duced by various PPs. This and number of other studies have demonstrated that certain fatty ac-

ids and their derivatives, hypolipidaemic drugs and leukotriene B4 are ligands for PPARα (Krey

et al., 1997; Dowell et al., 1997; Devchand et al., 1996). The most potent PPARα ligands iden-

tified so far are 8-HETE (IC50 = 500 nM) and leukotriene B4 (Kd = 90 nM) that bind to PPARα

in the nanomolar range. 

Section 1.3.5 Peroxisome proliferator response elements (PPREs)
Steroid receptors are transcription factors and therefore modulate transcription of responsive

genes by directly interacting with DNA sequences in the regulatory region found upstream of

the gene promoter. This protein-DNA interaction, occurs through the DNA-binding domain

(DBD) of the receptor, and is important in the differential regulation of genes whose promoter

regions contain sequence specific motifs for receptor binding in addition to a TATA-box for the

binding of basal transcription machinery. PPARα, being a transcription factor, is thought to reg-

ulate transcription of a number of genes involved in both peroxisome proliferation and the β-

oxidation of fatty acids by binding to specific DNA regulatory elements located in the upstream

promoter region of these genes (Figure 1.5). Investigation of transcriptional regulation at the up-

stream promoter region of a rat acyl-CoA oxidase gene identified the first response element for
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PPARα, termed peroxisome proliferator response element (PPRE) (Osumi et al., 1991; Tug-

wood, 1992; Green, 1992). The Upstream promoter region of a rat acyl-CoA oxidase gene was

cloned in front of a β-globin promoter and linked to a CAT reporter gene. The putative response

element-reporter gene construct was co-transfected in a mouse hepatoma cell line with an ex-

pression plasmid for mouse PPARα. Expression of the reporter gene was higher in the presence

of PPs while the stimulation of the reporter gene was comparatively low in the absence of PPA-

Rα or PP. Through sequential deletion analysis, a small region of the response element was lo-

calized as the minimal PPRE. PPREs have also been identified in a number of other PP-

responsive gene such as rabbit CYP4A6 (Muerhoff et al., 1992), rat CYP4A1 (Aldridge et al.,

1995), rat HMG-CoA synthase (Rodriguez et al., 1994), human fatty acyl-CoA oxidase (see ta-

ble 1.4). PPREs consists of a tandem direct repeat of two hexameric nucleotide motifs (half-

sites) spaced by a single nucleotide, termed direct repeat1 (DR1) (Tugwood et al., 1992). Ex-

amination of rat bifunctional enzyme, human apolipoprotein A-I and rat acyl-CoA synthetase

PPREs revealed a third half-site either two nucleotides 5’ or three nucleotides 3’ to the PPRE.

However, the influence of these half sites on the functioning of the PPRE remains to be eluci-

dated.

Gene Minimal PPRE sequence Reference

Rat CYP4A1 TCCCCT  C  TGACCT Aldridge et al., 1995

Rabbit CYP4A6 (z-element) TCAACT  T  TGCCCT Muerhoff et al., 1992

Rabbit CYP4A6 TGACCC  T  TGCCCA Palmer et al., 1994

Rat acyl-CoA oxidase TGACCT  T  TGTCCT Tugwood et al., 1992

Human fatty acyl-CoA AGGTCA  G  CTGTCA Varanasi et al., 1996

Rat bifunctional enzyme TGAACT  A  TTACCT Zang et al., 1992

Rat acyl-CoA synthase TGACTG  A  TGCCCT Schoonjans et al., 1995

Rat malic enzyme GGACCT  G  TGCCCT Castelein et al., 1994

Rat fatty acid binding protein TGACCT  A  TGGCCT Issemann et al., 1992

Table 1.4 PPRE sequences in peroxisome proliferator responsive genes.  Sequences of functional 
PPRE identified in the promoter region of peroxisome proliferator responsive genes. Minimal PPRE sequence are 
shown that are determined to be functional in reporter assay.
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This DR-1 element was found to be optimal for PPAR binding and transactivation (Isseman et

al., 1993), since separation of half-sites by 0 or 2 nucleotides produce a weak response and no

response at al when the spacing is greater than or equal to 3 nucleotides. Table 1.4 lists some of

the genes regulated by identified PPREs and their sequences. As can be seen from table 1.4, the

sequence specificity of each PPRE is not strict and the sequence of the PPRE can deviate from

the consensus sequence by as many as 5 nucleotides but mutations of one or two nucleotide

within a particular PPRE can diminish or completely abolish its PP responsiveness (Isseman et

al., 1993; Du-Dac et al., 1994; Palmer et al., 1994; Chen et al., 1995). 

Section 1.3.6 PPARα-RXRα heterodimer binds to PPRE
Retinoid X receptor α (RXRα), a promiscuous binding partner for many steroid hormone re-

ceptors, has been shown to be the preferential binding partner for PPARα receptor (Issemann

et al., 1993; Baudet et al., 1993; Greig et al., 1993; Keller et al., 1992 and 1993). In electromo-

bility shift assays, binding of PPARα to its cognate PPRE has been found to occur only in the

presence of its heterodimeric partner RXRα. A detailed study of the binding of PPARα-RXRα

heterodimer to rabbit CYP4A6 PPRE has been carried out. Two distinct elements, termed Z and

X, have been identified as functional elements in the promoter region of the gene (Muerhoff et

al., 1992). The Z element was found to mediate the major portion of the response to PPs by

CYP4A6 reporter construct in reporter assay, binding PPARα-RXRα much more efficiently

Rat acyl CoA binding protein TCACCT  T  TGCACT Elholm et al., 1996

HMG-CoA synthase AGACCT  T  TGGCCC Rodriguez et al., 1994

Human apolipoprotein A-I TGACCC  C  TGCCCT Vu-Dac et al., 1994

Human apolipoprotein C-III TGACCT  T  TGCCCA Hertz et al., 1995

Rat apolipoprotein C-III TGACCT  T  TGACCA Hertz et al., 1995

Human lipoprotein lipase TGCCCT  T TCCCCC Schoonjans et al., 1996

Gene Minimal PPRE sequence Reference

Table 1.4 PPRE sequences in peroxisome proliferator responsive genes.  Sequences of functional 
PPRE identified in the promoter region of peroxisome proliferator responsive genes. Minimal PPRE sequence are 
shown that are determined to be functional in reporter assay.
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than the other CYP4A6 PPRE. However, further work demonstrated that the typical PPRE mo-

tifs may not be sufficient to ensure a peroxisome proliferative response (Palmer et al., 1994).

Deletions within 6 nucleotides 5’ of the DR-1 dramatically diminished PPARα-RXRα binding

but not the RXRα-RXRα homodimer binding. This and a number of other study clearly dem-

onstrate the importance of 5’ flanking sequence of the DR-1 in influencing the binding of PPA-

Rα-RXRα heterodimers in preference to competitors like RXRα homodimers (Colling et al.,

1995; Osada et al., 1997; Ijpenberg et al., 1997). 

Section 1.3.7 Regulation of PPARα-induced transactivation by receptor cross-talk
Transcriptional modulation of PP-responsive genes occurs through the heterodimerisation of

the PPARα with the 9-cis retinoic acid receptor, RXRα, and subsequent binding to the DNA

response element PPRE (Figure 1.5). Recently a number of proteins/receptors have been iden-

tified that are shown to influence this signalling pathway in a reconstituted system (in vitro stud-

ies). This “cross-talk” between PPAR and other cellular proteins (mainly steroid receptors) may

occur by competition for binding to the PPRE or for the heterodimeric partner RXRα or even

PPARα itself. In the case of receptors competing for binding to either PPARα or RXRα, the

concentration of the competing receptor will be crucial in deciding how the signalling pathway

is influenced. An excess of a low competing receptor may titrate out available PPARα or

RXRα, thus preventing the PPARα-RXRα heterodimer from forming. In an artificial system

excess hPPARβ has been shown to repress PP signalling by competing with hPPARα for

RXRα, thus forming hPPARβ-RXRα on a PPRE by displacing PPARα (Jow and Mukherjee,

1995).
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Cross-talk between the orphan receptor RZRα (retinoid Z receptor) and PPARα in the regula-

tion of the peroxisomal hydratase-dehydrogenase (HD) gene has been reported by Winrow et

al. (1998). RZRα has been shown to modulate PPARα-RXRα dependent transactivation in a

response-element dependent manner. Electrophoretic mobility shift analysis showed that RZRα

bound specifically as a monomer to the HD-PPRE and did not form complexes with PPARα or

RXRα on the HD-PPRE. Further, RZRα stimulated ligand-mediated transactivation by PPARα

from an HD-PPRE luciferase reporter gene. RZRα, however, did not bind to the PPRE from an

acyl-CoA oxidase (ACO) gene and had no effect on the PPARα dependent transactivation of an

ACO-PPRE reporter gene. This cooperation between RZRα and PPARα in the regulation of the

expression of the HD-gene, the second enzyme in the peroxisomal β-oxidation pathway, sug-

gests that there are additional factors which may govern the peroxisomal β-oxidation.

Another nuclear orphan receptor TAK1/TR4 has been found to repress the PPARα signalling

pathway. TAK1 was able to bind rat HD-PPRE and ACO-PPRE (Yan et al., 1998). Therefore

Figure 1.5 Cartoon of PPARα and its heterodimerization partner, RXRα , on a PPRE. 
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TAK1 represses PPARα mediated transactivation by directly competing for binding to the

PPRE. Two-hybrid analysis showed that TAK1 does not form heterodimers with either PPARα

or RXRα, indicating that this repression does not involve a mechanism by which TAK1 titrates

out PPARα or RXRα from PPARα-RXRα complexes. Further, TAK1 has been shown to com-

pete with PPARα for RIP140 (a coactivator protein, see later) binding. These observations in-

dicate that the antagonistic effects of TAK1 on PPARα-RXRα transactivation can take place at

least at two levels in the PPARα signalling pathway by competing with PPARα-RXRα for

binding to PPRE as well as to common coactivators such as RIP140.

A significant level of cross-talk exists between the PP and thyroid hormone signalling path-

ways. In rodents PPs and thyroid hormones often regulate the same target genes, and some of

these genes have been shown to carry both thyroid response elements and PPREs (Hertz et al.,

1996; Castelein et al., 1994). Cross-talk between PPAR and thyroid receptor (TR) may occur

by competition for binding to DNA (Miyamoto et al., 1997; Hunter et al., 1996) or for the com-

mon heterodimeric partner RXRα (Juge-Aubry et al., 1995; Chu et al., 1995; Ren et al., 1996;

Hunter et al., 1996) or by formation of PPAR-TR heterodimers (Bogazzi et al., 1994). TR and

TR-RXRα binding to a PPRE has been observed, and high levels of TR could repress PPARα-

RXRα mediated signalling (Miyamoto et al., 1997). This inhibitory action of TR was due to

competition for DNA binding since a mutation in the DNA binding domain of TR abolishes its

ability to repress PPARα-RXRα signalling. Thus binding of the RXRα-TR heterodimer to a

PPRE results in repression of PPARα-RXRα mediated signalling. By binding to TRα or β iso-

form, PPARα can also cross-talk with thyroid hormone signalling in either a positive or nega-

tive manner depending on the nature of response element (DR-2/4) (Bogazzi et al., 1994).

Potential cross-talk between JAK-STAT (Janus Kinase-Signal Transducer and Activator of

Transcription) and PPARα has been described by Zhou and Waxman (1999). Inhibition of clof-
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ibrate-induced peroxisomal β-oxidation by growth hormone (GH) has been described in rats

(Yamada et al., 1994; Sato et al., 1995). This inhibition is thought to occur following binding

of the GH to its membrane-bound receptor, leading to receptor dimerisation. This activity even-

tually leads to the activation of a cytoplasmic transcription factor STAT through JAK2 kinase

mediated phosphorylation. GH inhibition of PPARα activity was dependent upon the presence

of active STAT5b and GH receptor. Since STAT5b was unable to bind HD-PPRE, the inhibi-

tory effect of GH may be due to competition for an essential PPARα coactivator or synthesis of

a more proximal PPARα inhibitor. 

HNF4 and COUP-TF can also bind PPREs (Winrow et al., 1994) and thus are likely to repress

PPAR action by competing for PPRE. Fatty acyl thioester receptor HNF4 are involved in the

transcriptional regulation of hepatic genes (Hertz et al., 1998), and since fatty acids can activate

PPARα to regulate the expression of a number of liver genes, it is likely that cross-talk between

HNF4 and PPARα may occur. COUP-TF II is another steroid hormone receptor shown to re-

press PP-induced gene expression by competing with PPARα-RXRα for PPRE binding (Miya-

ta et al., 199; Baes et al., 1995; Marcus et al., 1996). PPARα-RXRα heterodimers have been

shown to bind estrogen receptor response elements (ERE) and upregulate gene expression of a

reporter gene under the control of the vitellogenin-A-ERE (Nunez et al., 1997). The orphan nu-

clear receptor LXRα can cross-talk with PPARα signalling as it binds either PPARα or RXRα

in solution but not as a heterodimer bound to a PPRE. The expression of LXRα in mammalian

cells blocked PP signalling mediated by PPARα-RXRα heterodimers (Miyata et al., 1996).

Insulin and the PPARγ ligand, TZD, act synergistically to increase the expression of an adipose-

specific gene aP-2 (Zang et al., 1996) in transfection study. Transfection with a dominant neg-

ative MAP-kinase kinase mutation resulted in a decrease in the effects of both insulin and TZD

on PPARγ activity, indicating that mitogen activated protein kinase is involved in the cross-talk
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between PPAR and insulin. Mutational studies on potential MAP-kinase phosphorylation sites

in PPARγ resulted in the repression of EGF stimulated MAP-kinase dependent transcription

(Camp and Tautri, 1997). Immunoprecipitation of endogenous PPARα from rat adipocytes pre-

labelled with [32P]-orthophosphate and treated with phosphatase inhibitors (vanadate and oka-

deic acid) demonstrated that PPARα is a phosphoprotein. Insulin, in the presence of phos-

phatase inhibitor, resulted in an increased level of PPARα phosphorylation (Shalev et al.,

1996), suggesting that the insulin dependent MAP-kinase pathway may be in operation. How-

ever, the involvement of MAP-kinase dependent phosphorylation has not been established yet.

These in vitro studies indicate the potential for cross-talk between steroid hormone receptors

and the PPARα signalling pathway but the significance of which, if any, of these pathways are

important in the modulation of PPARα functioning in vivo remains to be elucidated.

Section 1.3.8 Coactivator proteins in steroid hormone receptor function
Ligand-dependent transcription requires a highly conserved motif termed activating function-2

(AF-2), located at the C-terminus of the ligand binding domain (LBD) (Evans et al., 1988). The

crystal structure of the LBD of a number of steroid receptors, including PPARγ, has been solved

(Bourguet et al., 1995; Brzozowski et al., 1997; Renaud et al., 1995; Wagner et al., 1995; Nolte

et al., 1998). There is evidence that nuclear receptors require the ligand dependent recruitment

of coactivator proteins to effectively stimulate gene transcription which is dependent on allos-

teric alterations in the AF-2 helical domain (Horwitz et al., 1996), and this AF-2 domain is re-

quired for effective interactions with coactivators (Barettino et al., 1994; Danielian et al., 1992).

Transcriptional regulation of nuclear hormone receptors involves the participation of basal tran-

scription factors, including TATA-binding protein and TF-IIB. Other cofactors known as nu-

clear transcription coactivators and corepressors are also required that bridge the association

between nuclear receptors and the basal transcription machinery (Janknecht and Hunter, 1996;

Kamei et al., 1996). The coactivators identified in recent years include CBP/p300 (Arany et al.,
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1994; Chrivia et al., 1993), SRC-1 (Onate et al., 1995; Cavilles et al., 1994), PBP (Zhu et al.,

1997) and RIP140 (Cavilles et al., 1995) among others. Sequence and functional analysis of a

number of coactivators has identified a signature motif LXXLL (where L is leucine and X is any

amino acid) which is necessary and sufficient for the binding of coactivators to nuclear recep-

tors (Heery et al., 1997). Ternary complex containing the PPARγ LBD, rosiglitazone (a PPARγ

ligand) and part of SRC-1 containing LXXLL reveal that glutamate and lysine residues that are

highly conserved in the LBD of nuclear receptors form a charge clamp that contacts backbone

atoms of the LXXLL helices of SRC-1. Screening a mouse liver cDNA library using PPARγ

LBD as bait in a yeast two-hybrid system, PBP and SRC-1 were identified as interacting pro-

teins (Zhu et al., 1996 and 97). SRC-1 and PBP have been shown to bind PPARγ in a ligand

dependent manner, and increased ligand-induced reporter activity of PPARγ (Direzo et al.,

1997; Krey et al., 1997). As well as interacting with PPARγ, both SRC-1 and PBP also interact

with PPARα and increase PPARα dependent transcriptional activity in vitro. Recently a cold-

inducible coactivator protein PGC-1 has been identified from a brown fat cDNA library which

interacts specifically with PPARγ and a number of other nuclear receptors (Puigserver et al.,

1998). Interaction of PGC-1 greatly increases the transcriptional activity of PPARγ but its in-

fluence on PPARα transcriptional activity has not been established. A number of other coacti-

vators such as CBP/p300 and RIP140 have been shown to interact with PPARα. However, so

far no specific coactivator for PPARα or indeed for other steroid receptors has been assigned,

and many of these coactivators interact with a number of steroid receptors. Although SRC-1 was

identified as a PPAR interacting protein, its true physiological role still remains to be deter-

mined since knock-out studies demonstrated that mouse SRC-1 is not essential for PPARα reg-

ulated gene expression and peroxisome proliferation (Qui et al., 1999).

Section 1.3.9 Functional loss of PPARα and its implications
The observations that PPARα is activated by PPs and that PPARα causes transcriptional induc-
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tion of PPRE-containing reporter genes suggest that the pleiotropic effects of PPs are mediated

by PPARα. Direct evidence for the role of PPARα in peroxisome proliferation is provided by

the generation of PPARα null mice by targeted disruption of the LBD of mPPARα (Lee et al.,

1995). Mutant mice lacking functional PPARα protein are viable and fertile, suggesting that it

is not important for development, but are resistant to peroxisome proliferation and hepatocar-

cinogenesis induced by PPs. In knock-out mice, treatment with Wy-14,643 or clofibrate failed

to cause induction of PP responsive genes such as acyl-CoA oxidase, bifunctional enzyme, cy-

tochrome P4504A family and fatty acid binding protein. Studies using PPARα knock-out mice

showed alterations in fatty acid and lipoprotein metabolism, and accumulation of lipid droplets

in the liver treated with PPs. This perturbation of lipid metabolism suggest that PPARα is es-

sential in maintaining the homeostasis of hepatic lipid metabolism (Aoyama et al., 1998; Peters

et al., 1997; Leone et al., 1999). Regulation of genes (e.g. CYP4A) by PPARα involved in the

metabolism of arachidonic acid and other inflammatory mediators has long suggested that PPA-

Rα may be involved in the control of inflammation. This evidence is further supported by stud-

ies using PPARα null mice which demonstrate that PPARα is required for endotoxin-induced

renal expression of the Cyp4a gene, and endotoxin-induced inflammation is prolonged in

knock-out mice (Devchand et al., 1996; Barclay et al., 1999). Further studies using PPARα

knock-out mice will improve our understanding of the molecular mechanism of peroxisome

proliferation and hepatocellular carcinogenesis indued by PPs.

Section 1.4 Species differences in peroxisome proliferation

Widespread use of PPs in the form of hypolipidaemic drugs and industrial and agrochemical

agents means that humans are constantly exposed to the peroxisome proliferating chemicals.

From a toxicological point of view, this human exposure and the fact that PPs are hepatocar-

cinogens in rodents has prompted much research in an effort to understand the underlying mo-

lecular mechanism of species differences in peroxisome proliferation. Since human
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experimentation is not possible, a greater understanding of these species differences and simi-

larities in peroxisome proliferation is required so that animal data could be extrapolated to hu-

mans for risk assessment. 

Section 1.4.1 Peroxisome proliferation in responsive species
It is now well established that marked differences exists in species responses to PPs. All in vitro

and in vivo studies have found that rats and mice are highly responsive to PPs. In the liver of

these animal, PPs have been shown to cause high levels of induction of specific microsomal and

peroxisomal enzyme activities, peroxisome proliferation, induction of DNA synthesis and a

high incidence of hepatocellular carcinoma. These effects have been reproduced in primary

hepatocytes of rats and mice. Treatment of hamster with MCP and Wy-14,643 caused hypolip-

idaemia as well as hepatomegaly (Choudhury et al., 2000). Increases in liver weight have also

been observed after dosing with other PPs such as DEHP, clofibrate and nafenopin (Lake et al.,

1986; 1989a and 1993). This increase in liver weight was associated with proliferation of per-

oxisomes but a concomitant reduction in their size (Gray et al., 1984). There was a small but

significant increase in peroxisomal β-oxidation, lauric acid ω-hydroxylation and a number of

other enzymic activities that are typically induced in rats and mice by PPs (Lake et al., 1986 and

1989a; Lhughermot et al., 1988; Sakuma et al., 1992). However, these observed effects are

much smaller compared to those observed in rats. Nafenopin has been shown to suppress both

spontaneous and TGFβ induced apoptosis in primary hepatocytes isolated from hamster (James

and Roberts et al., 1996). There is conflicting evidence as to whether PPs can induce replicative

DNA synthesis in hamster, since some studies have observed no increase in DNA synthesis

(Price et al., 1992; Lake et al., 1993; James and Roberts, 1996) while others found a small in-

duction using high doses of PPs (Styles et al., 1988). Although this limited response to PPs has

been observed, long-term administration of PPs did not result in liver cancer in hamsters (Tuck-

er and Ortan, 1995; Schmezer et al., 1988; Lake et al., 1993 and 1995). Thus, from comparative
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studies hamster is regarded as partially-responsive to peroxisome proliferation and “non-re-

sponsive” to PP-induced hepatocarcinogenesis.

Section 1.4.2 Peroxisome proliferation in non-responsive species
PPs DEHP, clofibrate, nafenopin and fenofibrate do not induce liver peroxisomal β-oxidation,

do not cause peroxisome proliferation or increase in liver weight in guinea pig (Corma et al.,

1992; Corm-Chu et al., 1995; Rao et al., 1984; Sakuma et al., 1992). However, hypolipidaemic

effects of MCP and Wy-14,643 have been observed in guinea pig (Bell et al., 1998). Some re-

ports indicate a small increase in microsomal P-450 content associated with a small increase in

ω-hydroxylase activity (Lake et al., 1989a; Pacot et al., 1996) while others have found no such

inducibility or increase in P-450 content in guinea pig liver microsomes (Dirven et al., 1993;

Latruffe et al., 1995). CYP4A13, the only identified member of CYP4A subfamily in guinea

pig, has been shown to be non-inducible by MCP at the RNA level (Bell et al., 1993). Consistent

with these in vivo observations, guinea pig primary hepatocyte cultures show little or no evi-

dence of peroxisome proliferation after incubation with PPs (Blauauboer et al., 1990; Dirvan et

al., 1993). However, whereas guinea pig primary hepatocytes showed no evidence of increased

replicative DNA synthesis following PP treatment, these cultures showed evidence of PP-in-

duced suppression of apoptosis (James and Roberts, 1996). Therefore guinea pig is generally

considered as non-responsive to PPs as opposed to rats and mice which are highly responsive.

This difference in responsiveness to PPs between rats and guinea pig is not attributable to dif-

ferences in pharmacokinetics or metabolism since when guinea pigs and rats were dosed with

ciprofibrate, to give equivalent plasma levels, the rats showed peroxisome proliferation but the

guinea pigs did not (Pacot et al., 1996). 

Section 1.4.3 Peroxisome proliferation in primates
Effects of PPs on three species of monkeys (rhesus, cynomolgous and marmoset) have been in-

vestigated, and although some studies report small increases in peroxisome number, liver
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weight and β-oxidation, the majority of studies, however, indicate no increase in these param-

eters (Lake et al., 1989a; Blaaubour et al., 1990; Foxworthy et al., 1990 and 1994; Cornu et al.,

1992; Elcombe and Mitchell, 1986; Reddy et al., 1984; Gray et al., 1984). Long-term exposure

to PPs (up to 6 years) has been shown to have no effect on primates and therefore primates are

considered to be non-responsive species.

A limited amount of information regarding the effects of PPs on human has been obtained

through the use of primary hepatocyte cultures obtained from biopsies and through the use of

transformed liver cell lines. Human primary hepatocytes dosed with most potent PPs showed no

effects on the induction of peroxisomal β-oxidation or fatty acid metabolizing enzymes (Ducles

et al., 1997; Blaabour et al., 1990; Butterworth et al., 1989; Elcombe, 1985; Elcombe and

Mitchell, 1986). However, studies using human hepatoma cell line Hep G2 demonstrated a

small induction in palmitoyl-CoA and acyl-CoA oxidase activity and catalase activity (Duclos

et al., 1997; Latruffe et al., 1995; Chance et al., 1995; Scotto et al., 1995). These small induc-

tions observed in Hep G2 cells are probably biologically insignificant since no such induction

was observed in primary hepatocytes, and the metabolism/biochemistry of primary hepatocytes

mimics more closely to in vivo situation than the Hep G2 transformed cell line. A limited

amount of information regarding the effects of PPs on human has been gained from volunteers

exposed to hypolipidaemic fibrate drugs. Although these drugs are effective hypolipidaemic

agents, morphological examination of liver biopsies from patient treated with gemfibrozil ex-

hibited no changes in peroxisome number or size (De la Inglesia et al., 1982; Blumcke et al.,

1983; Gariot et al., 1987). Bently et al. (1993) found a 30% increase in peroxisomal volume in

the liver of ciprofibrate-treated patients, and Hanefeld et al. (1983) found a 50% increase in per-

oxisome number in the liver of clofibrate-treated patients. Interpretation of these findings is lim-

ited by the fact that examination of all liver lobes could not be performed to exclude any
Page 60



Munim Choudhury   Section 1.4.3
possibilityof intra-regional variation. Also, a large number of data points is required to account

for any inter-individual variation in human population (polymorphism). Epidemiological stud-

ies on patients treated with clofibrate or gemfibrozil for up to 5 years showed no significant rise

in tumour incidence of the liver (Oliver et al., 1978; Frick et al., 1987). It is now generally ac-

cepted that humans are non-responsive to the adverse effects of PPs.

Section 1.5 Aims of the thesis

The pleiotropic effects of PPs, including peroxisome proliferation, are mediated by PPARα

(Lee et al., 1995). However, marked variations in species response to PPs exist, where rats and

mice are highly responsive, human and guinea pig are non-responsive and hamster is partially-

responsive species (Lake et al., 1995). These species differences are not due to the lack of func-

tional PPARα since transcriptionally active PPAR α has been cloned from both responsive and

non-responsive species (Issemann and Green 1990; Tugwood et al., 1998). Further, fibrate-in-

duced hypolipidaemia has been observed in both human and guinea pig (De la Inglesia et al.,

1982; Bell et al., 1998), an action that requires functional PPARα (Peters et al., 1998). 

Qualitative differences of PPARα between species may be an important determining factor in

species response to PPs. Differences in the intrinsic activity of PPARα, arising from differences

in key amino acids for example, may affect their transcriptional activity. Therefore addition of

PPARα to a responsive system with low or zero level of endogenous PPARα will enable a com-

parison of PPARα activities from different species. Thus primary hepatocyte culture systems

from rats and mice will be investigated as a useful model to study the functionality of PPAR α

in the context of peroxisome proliferation.

Differences in PPARα level (quantitative differences) between species may also be a contrib-

uting factor in differing species response to PPs as there are reports of lower levels of PPARα

transcripts in human and guinea pig liver than in mouse (Palmer et al., 1998; Bell et al., 1998;
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Tugwood et al., 1998). It may be that a different threshold level of PPARα exists for PP-induced

hypolipidaemia and for peroxisome proliferation, where hypolipidaemic responses require low-

er PPARα levels, whereas higher levels are required for peroxisome proliferation. If such is the

case then one would expect reduced or zero peroxisome proliferation in non-responsive species

due to their lower level of PPARα. To determine how PPARα level varies between species, he-

patic concentrations of PPARα mRNA will be determined on a comparative basis in species

showing different responsiveness to PPs.

Recently a number of transcriptional coactivators have been identified; as well as interacting

with other steroid receptors, some of these coactivators have been found to enhance the tran-

scriptional activity of PPAR (Zhu et al., 1996; Puigserver et al., 1998, for example). It is not

known which, if any, coactivators are important in peroxisome proliferation. If the expression

of PPARα and any such coactivators are co-localized within the liver lobule of responsive spe-

cies then this may indicate whether such coactivators are likely to be associated with peroxi-

some proliferation. Therefore, transcript localization of the PPARα and a number of its

interacting coactivators will be studied in the mouse liver. There may be specific, as yet uniden-

tified, PPARα coactivators present in responsive species that may play a significant role in per-

oxisome proliferation. Since steroid receptors interact with coactivators through their LBD,

PPARα-LBD could serve as a useful bait in a nuclear-pull down assay to identify any novel in-

teracting proteins that may function as specific PPARα coactivators. This project also aims to

purify functional PPARα-LBD to be utilized in protein-protein interaction studies.
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Chapter 2 Materials & Methods

Section 2.1 Animal Studies

Section 2.1.1 Guinea pigs
Male Dunkin-Hartley Guinea Pigs (400g) were obtained from Harlan-Olac and were kept in a

standard 12 hours dark/light cycle and had acccess to standard laboratory chow and water ad

lib. For RNA extraction, animals were killed by cervical dislocation between 9-10am in the

morning and the livers were removed, weighed and flash frozen in liquid nitrogen.

Section 2.1.2 Mice
S129 PPARα wild type and knock-out mice were obtained from Dr. Frank Gonzalez (USA). A

colony was established and experiments were conducted using these in-house bred animals.

Adult males (25-30g) were kept in a standard 12 hours dark/light cycle and had access to stan-

dard laboratory chow and water ad lib. Mice were dosed daily by intra-peritoneal injection with

25mg/kg body weight of either methylclofenapate or Wy-14,643 in corn oil or vehicle control

(in total volume of 100µl) for 3 consecutive days. At the end of the dosing period animals were

sacrificed by cervical dislocation. Livers were removed, weighed and immediately flash frozen

in liquid nitrogen, and stored at -80 0C until use. 

C57B1/6 mice were obtained from Harlan, UK and were dosed with methylclofenapate for the

study of the expression of coactivator proteins in liver using in situ hybridisation. Animals were

kept under the same conditions as above. Adult males (25-30g) were dosed daily by intra-peri-

toneal injection with methylclofenapate (20mg/kg body weight) in a total volume of 100µl of-

corn oil or vehicle control for 7 consecutive days. At the end of the dosing period animals were

sacrificed by cervical dislocation. Livers were removed, weighed and immediately flash frozen

in liquid nitrogen, and stored at –80 0C until use.
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Section 2.1.3 Hamster

Golden Syrian hamsters were from a colony maintained at Nottingham, and the animals were

individually caged and kept in a standard 12 hours dark/light cycle and had acccess to RM3

pelleted diet and water ad lib. Adult males (150-180g) were dosed daily by intra-peritoneal

injection with methylclofenapate or Wy-14,643 dissolved in sunflower oil (25mg/kg body

weight) or vehicle control (in a total volume of 200 µl for 3 consecutive days. At the end of the

dosing period animals were sacrificed by cervical dislocation. Livers were removed, weighed

and flash frozen in liquid nitrogen, and stored at –80 0C until use.  

Section 2.1.4 Rats
Adult male Wistar Rats (200-250g) were obtained from Harlan UK and were kept in a standard

12 hours dark/light cycle and had access to standard laboratory chow and water ad lib. These

naïve animals were used for the preparation of primary hepatocyte cultures following liver per-

fusion.  

Section 2.2 Primary Hepatocytes: Isolation & Culture

Section 2.2.1 Primary Hepatocyte Isolation 

Composition of Reagents:

Collagenase H: [150 units/mg]

CL-15 Medium (Sigma, UK)

CaCl2: [1M, filtered]

Krebs Ringer Phosphate Buffer (KRPB) and

Krebs Ringer Hydrogen Carbonate Buffer (KRHB):
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Male Wistar rats of 200-250g body weight were used for hepatocyte preparation. Hepatocytes

isolation was performed essentially as described by Mitchell et al. (1984), based on the method

of Rao et al. (1976). All solutions used for liver perfusion were sterile. Ca2+ free Krebs Ringer

Phosphate Buffer (KRPB), pH 7.4 and Krebs Ringer Hydrogen Carbonate Buffer (KRHB), pH

7.4 were freshly made, and during perfusion, the buffers were maintained at 37 0C and gassed

continuously with 95% O2 : 5% CO2.

The animal was terminally anaesthetized with diethyl ether. While the heart was beating, the

exposed liver was cannulated through the hepatic portal vein at one end while another catheter

was inserted through the right atrium to cannulate the superior vena cava. This creates a circu-

lating system so that the liver can be perfused in situ. First, the liver was perfused with KRPB

for 10 minutes, and then with KRHB for 5 minutes, at a flow rate of 40 ml/min. The liver was

then perfused for a further 10-15 minutes with KRHB to which collagenase (14 units/200ml)

and CaCl2 (5mM final) were added. Collagenase digests the connective tissue meshwork that

maintains the liver cells and its archietecture, and therefore allows easy isolation of cells  which

are dissociated from their neighbours. The digested liver is easily recognised due to the drop in

liver pressure. Liver lobes were removed and placed in a sterile beaker containing KRHB. The

Component KRPB (mM) KRHB (mM)

NaCl        ............................... 150 142

KCl          ............................... 4.97 4.37

KH2PO4   .............................. 1.24 1.24

MgSO4     ............................... 0.62 0.62

MgCl2      ............................... 0.62 0.62

NaHCO3 ............................... 3.73 24.0

Na2HPO4............................... 4.84 -----
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tissue was gently minced and passed through a sterilized 120µm gauze using a total volume of

100ml of KRHB. Cells were washed three times with KRHB by centrifuging at 50g for 3 min-

utes in each wash. Finally, cells were resuspended in CL-15 medium and cell viability deter-

mined  by trypan blue exclusion method. Viability of >85% was required to carry out

subsequent experiments. 

Hepatocytes from mouse liver were isolated using essentially the same perfusion procedure as

for rat liver, but with slight modifications. Unlike rats, mice have a gall-bladder, and this must

be removed to prevent contamination of the liver. The gall bladder was ligatured at the start of

the isolation procedure, and removed by cutting below the ligature while pulling away from the

liver. Here only the hepatic portal vein was cannulated, and through which perfusion was car-

ried out and drained through the punctured heart. Perfusion was carried out at a flow rate of

20ml/min, and collagenase treated for 5-10 minutes. 

Section 2.2.2 Viability count and quantification of hepatocytes
The Trypan blue exclusion method was used to determine the viability of the isolated hepato-

cytes. Dead or dying cells with damaged plasma membranes take up the dye and appear blue

under the light microscope. These non-viable cells are easily distinguished from viable cells

which are transparent white in their appearence. The viable fraction and cell concentration of a

hepatocyte isolation can be determined using a haemocytometer. This was done by mixing

100µl of cell suspention with 100µl of Trypan blue, and the total number of blue and white cells

were counted in five squares of a twenty-five square grid slide (improved Neubauer haemocy-

tometer). Using this information, cell viability and concentration was calculated using the fol-

lowing equations:
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Viable fraction =  [1- Total number of blue cells/ Total number of cells]

Viability (%) = Viable fraction X 100

Viable cells (cell/ml) =  [Total number of cell X 2 X  5 X 1x104 ] X Viable fraction 

Section 2.2.3 Hepatocyte Culture
25cm2 Falcon tissue culture flasks were seeded with either 2x106 or 1x106 viable hepatocytes

isolated from rat and mouse liver, respectively, in 4ml of CL-15 medium i.e. Liebowitz L15 me-

dia containing fetal bovine serum (8.3%), tryptose phosphate broth (8.3%), penicillin G (41.3U/

ml), streptomycin sulphate (8.2mg/ml), glutamine (241mg/ml), insulin (10-6M), and hydrocor-

tisone-21-hemisuccinate (10-5M). The flasks were then incubated at 37 0C in a humidified non-

CO2 incubator. The medium was changed four hours later to remove unattached cells and re-

placed with 4ml of fresh medium. Cells were left overnight to form monolayer by completing

attachment. Further changes (4ml of CL-15 medium) were made every 24 hours in following

seeding. 

Section 2.2.4 Dosing of primary hepatocytes
Test compounds were added at 24 hours after seeding and included in all subsequent changes.

Chemical stocks were kept at -20 0C for up to one week while diluted chemicals were pepared

prior to dosing of the cells. The vehicles used for dissolving test chemicals were of tissue culture

grade. The volume of test chemicals and their vehicle control never exceeded more than 1/400th

of the total volume of the media.

Section 2.2.5 Measurement of DNA Synthesis

Composition of reagents:

Test Chemicals: [EGF (10mg/ml) in L-15 medium, MCP (12.2mg/ml) and  Wy-14,643 (12.94mg/ml) in DMSO]

Bromodeoxyuridine (BrdUrd): [3mg/ml in PB buffer]

Phosphate Buffered Saline (PBS): [150mM NaCl, 15mM Na2H2PO4]
Page 67



Munim Choudhury   Section 2.2.5
Phosphate Buffer: [5.76g Na2HPO4, NaH2PO4.2H2O in 1 litre water]

Fixing Solution: [70% Ethanol, 50mM Glycine, pH 2.0]

Denaturing Solution: [0.5M NaOH, 1.5M NaCl]

Neutralising Solution: [0.5M Tris-HCl (pH7.4), 1.5M NaCl]

Antibody: [Primary: mouse monoclonal anti-BrdUrd; Secondary: rabbit anti-mouse (binding site, UK)]

3,3’-Diaminobenzidine Tetrahydrochloride (DAB): [0.5mg/ml in PB]

A known hepatic mitogen, EGF (10ng/ml), was used to demonstrate that the primary culture

was responsive to mitogenic stimulation. To show that PPs act as  liver mitogens, Wy-14,643

and MCP were used to stimulate DNA synthesis. Both test chemicals were dissolved in DMSO

and a concentration of up to 100µM was used to study DNA synthesis. Hepatocytes were ex-

posed to BrdUrd (6µg/ml) between 6 and 30 hours after the start of the exposure to PPs (24-48

hours in the case of EGF). Cells that underwent replicative DNA synthesis incorporate the base

analog BrdUrd which can be detected by immunocytochemistry. 

At the end of the exposure period cells were fixed and prepared for immunocytochemical de-

tection of BrdUrd. The cell monolayer of each flask was rinsed briefly in PBS and then fixed in

3ml of fixing solution for 20 minutes at -20 0C. Cells were washed three times in 3ml of UHP

water and left to air dry. A mouse anti-BrdUrd monoclonal antibody was used which detects

incorporated BrdUrd bases in DNA. Briefly, cells were rehydrated by washing in 3ml of PBST

(PBS with 0.5% Tween-20) for 3 minutes. Cells were then incubated in 3ml denaturing solution

for 30 minutes. Following denaturation, cells were returned to neutral pH by treatment with neu-

tralising solution for 30 minutes, followed by three washes (5 minutes each) with PBST. Cells

were then incubated with primary antibody (1:1600 diluted in PBST) for 2 hours at room tem-

perature followed by three washes of PBST. The cells were then incubated for 1 hour with a

secondary antibody: rabbit anti-mouse conjugated to horseradish peroxidase (1:100 diluted in

PBST) and washed with PBST as before. At the end of incubation period, secondary antibody
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was localised histochemically by incubating with developing solution containing 3,3’-Diami-

nobenzidine Tetrahydrochloride (DAB; 10µg/ml) for 10 minutes. Peroxidase converts DAB

into a brown precipitate that can be visualised as light-brown colour under conventional light

microscopy. Cells that incorporate BrdUrd have brown-stained nuclei. The total number of cells

was counted at X160 magnification (three fields per flask and three flasks per data point) and

also the total number of positive cells in each field. This was expressed as labelling index (LI%):

        Number of positive cells
LI (%) = --------------------------------------- X 100

       Total number of cells

Section 2.2.6 Histochemical staining of peroxisomes
Peroxisomes in the cultured rat hepatocytes could be demonstrated by histochemical staining

(modified from Foxworthy et al., 1990). Catalase within the peroxisomes converts DAB into a

dark-brown precipitate that can be visualised by light microscopy. To show peroxisome prolif-

eration as well as DNA synthesis occuring in the cultured hepatocytes, cells were dosed with

MCP for 48 hours. At the end of the dosing period monolayers were washed twice with 0.1M

sodium cacodylate buffer containing 10% sucrose (4ml per flask). Cells were then fixed for 1

hour with 2.5% glutaraldehyde in 0.1M cacodylate buffer at 4 0C. The fixed cells were washed

twice with 0.1M cacodylate buffer, and then incubated at 37 0C for 2 hours in staining solution

under alkaline conditions (0.2% DAB, 0.05% H2O2, 5mM KCN and 50mM 2-amino-2-methyl

1,3 propandiol, pH 9.7). Cells were washed throughly with UHP water and air-dried.   

Section 2.2.7 Detection of apoptosis in hepatocyte culture
Cell undergoing apoptosis display a number of characteristics, and one such feature is the con-

densation of the chromatin structure. This can be detected as increased intensity of nuclear stain-

ing when the cells are treated with Hoechst 33258 chromatin stain. Cells were dosed

appropriately with MCP or Wy-14,643 and cultured for 48 hours. At the end of the dosing pe-
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riod monolayers were washed briefly in PBS to remove residual medium. Cells were then fixed

in 3ml of fixation solution (75% ethanol, 25% acetic acid) for 60 minutes at -20 0C. Cells were

washed thoroughly with UHP water and air-dried. Prior to staining, cells were rehydrated by

washing three times in 3ml PBS for 3 minutes. Cells were then stained with Hoechst 33258 (8

mg/ml in UHP water) and incubated at room temperature for 10 minutes on a rocking platform.

Flasks were washed thoroughly in UHP water and mountant (20mM citric acid, 50mM

Na2HPO4, 50% glycerol) was added. Cells were viewed under a fluorescence microscope

(350nm-460nm range).  

Section 2.3 Transient Transfection Studies

Section 2.3.1 Preparation of lipofectin reagent 

Composition of reagents:

DOPE: L-a-phosphatidylethanolamine, dioleoyl ( C18:1, [cis]-9 ) (Sigma), (10 mg / ml in chloroform)

DOTMA: (N-[l-(2,3-dioleyloxy)propyl]-N,N,N-trimmethylammonium) 

(kindly provided by Dr Cliff Elcombe, Zeneca CTL)

Nitrogen Gas

Transfection reagent “lipofectin” is a liposome formulation of the synthetic cationic lipid N-[l-

(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), and L-dioleoyl

phophatidylethanolamine (DOPE). This liposome formulation was prepared in the laboratory

but is also available commercially. The lipofectin was prepared as described by several workers

(e.g. Felgner et al., 1987). Briefly, 10mg of DOTMA was mixed and dissolved in 1ml of DOPE

(10mg/ml in chloroform). The solvent was then evaporated to dryness under a constant stream

of nitrogen. This step was carried out in a dark room to prevent direct exposure to light. The

dried solid of DOTMA/DOPE mix was dissolved in 2ml of sterile UHP water and then sonicat-

ed in a 50-60Hz, 80watt Polaron Sonibath until the solution is homogeneous (usually for 5 min-

utes). The  resulting opaque solution was stored in a light-tight vial at 4 0C. Final concentration
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of the DOTMA/DOPE mix was 5mg/ml.

Section 2.3.2 Transfection of primary hepatocytes

Composition of reagents:

Lipofectin reagent (DOTMA/DOPE)

Transfection vector (Quiagen purified plasmid DNA)

CL-15* medium (without insulin and serum)

CL-15  medium  (normal)

Primary hepatocytes (24hr old culture)

A previously optimised transfection protocol was followed for the determination of transfection

efficiency (pRSV-β-galactosidase) and transient transfection of PPARα vector constructs

(pSG5-mPARα, pBK-CMV-gpPPARα and cotransfected vector [ACO-PPRE]2.pGL3-LUC).

Primary hepatocytes were isolated 24 hours before the transfection experiment and incubated

overnight at 37 0C. Lipofectin reagent (5µl + 300µl CL-15*/flask) and plasmid DNA (5µg +

300µl CL-15*/flask) were prepared separately by mixing with CL-15* media and incubated at

room temperature for 30 minutes in a class II cabinet. Lipid-DNA complexes were prepared by

gently mixing the above solutions together and incubated at room temperature for a further 15-

20 minutes. Whilst the lipid-DNA complexes were being incubated together, serum-containing

medium in the flasks was removed and cells were incubated with CL-15* medium for 15-20

minutes. At the end of lipid-DNA complex formation, the CL-15* medium of the flask was re-

moved and replaced with lipid-DNA complex solution diluted with 2.4ml of  CL-15* medium.

Flasks were incubated at 37 0C in a humidified non-CO2 incubator for 4 hours. At the end of the

incubation period transfection medium was removed and replaced with 4ml of normal CL-15

medium and cultured for a further 48 hours. 

Section 2.3.3 β-Galactosidase histochemistry

Composition of reagents:
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PBS: [150mM NaCl, 15mM Na2H2PO4]

X-Gal: [40 mg/ml in DMSO]

Fixing Solution: [2% Formaldehyde (v/v), 0.2% Glutaraldehyde(v/v) in PBS]

Developing Reagent: [5mM K3Fe(CN)6, 5mM K4Fe(CN)6, 2mM MgCl2 in PBS]

Histochemical analysis of β-Galactosidase activity was carried out as described by Sanes et al.

(1986) for the determination of transfection efficiency. Culture medium was removed from the

transfected cells and these were washed twice for 2 minutes with phosphate buffed saline (PBS).

Cells were fixed for 5 minutes with 3ml fixing solution at 4 0C and washed with PBS as before.

The monolayer was then overlaid with 3ml of developing reagent containing X-Gal (75µl/flask)

and incubated at 37 0C for 24 hours. Due to their β-Galactosidase activity the transformed cells

develop blue cytoplasm and can be easily distinguished from non-transformed cells. Transfec-

tion efficiency was expressed as the percentage of blue transfected cells. 

Section 2.3.4 Dual luciferase assay

Composition of reagents:

PBS: [150mM NaCl, 15mM Na2H2PO4]

Passive Lysis Buffer [5X] (Promega)

Luciferase Assay Reagent II (Promega)

Stop and Glow Reagent (Promega)

Mouse primary hepatocytes were transfected with appropriate expression vector (pSG5-mPPA-

Rα, pBK-CMV-gpPPARα) along with their reporter vector (ACO-PPRE)2.pGL3-LUC. At the

end of the transfection period, medium from transfected flasks was removed and the monolayer

was washed briefly with 4ml of PBS. To prepare cell extracts for the dual luciferase assay, PBS

was removed and 900µl of passive lysis buffer (1x) was added to eash flask. Flasks were incu-

bated for 5 minutes at room temperature with gentle agitation on a four-way rocker. Lysed cells

were removed from the flask by scraping with a sterile rubber policeman and then transferred
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into a microfuge tube and kept on ice for luciferase assay.  

Cell extracts prepared above using passive lysis buffer were used for dual luciferase assays.

Twenty µl of cell extract was added to 100µl luciferase assay reagent II. Immediately, the lumi-

nescence generated by the firefly luciferase reaction was measured over four 10 second inter-

vals. The firefly luciferase activity was stopped by adding 100µl of Stop & Glo reagent and the

luminescence generated by the Renilla luciferase reaction was measured again over four 10 sec-

ond intervals in a Packard (PICO-LITE) luminometer. The average luminescence for each lu-

ciferase assay was used as the final measurement.

Section 2.4 General Molecular Biology Techniques

Section 2.4.1 E. Coli growth media

Composition of Reagents:

Luria-Bertani (LB) Broth: [the following chemicals were dissolved in and made up to one litre with Ultra High

Pure (UHP) water and autoclaved:  10g Bacto-tryptone, 5g Bacto-yeast extract, 10g NaCl]

LB-Agar was made by dissolving 5g of Bacto-agar in 1 litre of LB-broth and then autoclaved.

To make LB-plates, autoclaved LB-agar medium was cooled to 55 0C, then appropriate antibi-

otic(s) added and poured into 9cm Petri dishes. The following concentrations were used for an-

tibiotics:

antibiotics stock solution concentration used

Tetracycline 5 mg/ml in ethanol 20-50 µg/ml

Ampicillin 100 mg/ml in water 50-100 µg/ml

Chloramphenicol 34 mg/ml in ethanol 25-50 µg/ml

Kanamycin 50 mg/ml in water 10-100 µg/ml
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Section 2.4.2 Preparation of calcium competent E. Coli 

Composition of Reagents:

LB broth + Tetracycline (for XL-1 & XL-2) 

LB Broth + Chloramphenicol (for BL21 [DE3] pLysS)

CaCl2: [0.1M, 0.22mM filtered]

CaCl2/Glycerol: [0.1M CaCl2, 10% Glycerol, 0.22mM filtered]

E. coli strains were stored at -80 0C as 10% glycerol stock and were used to streak fresh LB-

agar plates containing appropriate selection antibiotics and incubated overnight at 37 0C. A sin-

gle colony from an overnight streaked agar plate of either XL-1, XL-2 or BL21(DE3)pLysS

E.coli strains was picked and inoculated in 10ml LB-Broth medium containing appropriate an-

tibiotics. Cultures were grown in an orbital shaking incubator (200 rpm/min) overnight at 37 0C.

Five millilitres of the overnight cultures were used to seed 500ml of LB-Broth medium and

grown at 37 0C in an orbital shaker as before until an optical density of between 0.5-0.6

(OD600nm) was reached. The cultures were chilled on ice for 10 minutes, then centrifuged in a

JA21 rotor at 4000g for 15 min at 4 0C. Pelleted cells were resuspended in 50ml ice-cold sterile

0.1M CaCl2 (10ml per 100ml original culture). This process of cell resuspension and pelleting

was repeated again. Finally cells were resuspended in 20ml of ice-cold 0.1M CaCl2 containing

10% glycerol (2ml per 50ml original culture). Cells were stored at –80 0C as 200µl aliquots. 

Section 2.4.3 Preparation of electro-competent E. Coli 

Composition of Reagents:

LB broth + Tetracycline (for XL-1 & XL-2) 

LB Broth + Chloramphenicol (for BL21 [DE3] pLysS)

Sterile Ultra High Pure (UHP) Water

A single colony from an agar plate (streaked and grown at 37 0C overnight) of either XL-1, XL-

2 or BL21(DE3)pLysS E.coli strains was picked and inoculated in 10ml LB-Broth medium con-
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taining appropriate antibiotics. Cultures were grown in an orbital shaking incubator (200 rpm/

min) overnight at 37 0C. Five millilitres of the overnight cultures were used to seed 500ml of

LB-Broth medium and grown at 37 0C in an orbital shaker as before until an optical density of

between 0.5-0.6 (OD600nm) was reached. The cultures were chilled on ice for 10 minutes, then

centrifuged in a JA21 rotor at 4 000g for 15 min at 4 0C. Pelleted cells were resuspended in 50ml

ice-cold sterile UHP water (10ml per 100ml original culture). This process of cell resuspention

and pelleting was repeated between four and five times with sterile UHP water. Finally cells

were resuspended in 20ml of ice-cold sterile UHP water containing 10% glycerol (2ml per 50ml

original culture). Cells were stored at –80 0C as 200µl aliquots. 

Section 2.4.4 Plasmid transformation into CaCl2 competent E.coli 

Frozen cell aliquots were thawed on ice and mixed gently by flicking the tube. Cells were ali-

quoted into 100µl volumes (pre-chilled tubes and pipette tips were used) and kept on ice. Plas-

mid DNA <50ng in a total volume of 5µl or 10µl of a ligation reaction mixture was added to the

cells and incubated on ice for 10 minutes. The cells were then heat-shocked at 42 0C for 60-90

seconds and then immediately placed on ice for 2 minutes. Following the addition of 900µl of

LB-medium cells were cultured at 37 0C for 60 minutes. Cells were plated on LB-agar plates

containing appropriate antibiotics for the selection of strains and plasmids. Different volumes

of cells were spread  (typically 10, 50 and 200µl) in order to obtain single colonies on the plate.

Plates were incubated overnight at 37 0C.

Section 2.4.5 Plasmid transformation into electro-competent E.coli 
Electroporation cuvettes and the cuvette holder were chilled on ice prior to use. Frozen aliquots

of cells were thawed quickly using hand warmth and then immediately placed on ice. 50µl of

cells were added to 10-25ng of plasmid DNA. For the transformation of ligation product, 1-5µl

of ligation reaction mixture was added to 50µl of cells and put on ice. Cells were then electropo-

rated at 1.8kV using a bio-rad electroporator. One millilitre of LB-broth was immediately added
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and incubated at 37 0C for 1 hour. Either 50 or 100µl of transformed cells were spread on agar

plates containing appropriate antibiotics and incubated overnight at 37 0C. 

Section 2.4.6 Phenol:Chloroform extraction of nucleic acids.
Protein contaminants in DNA and RNA solutions can be effectively removed by phe-

nol:choloroform extraction. One volume of phenol:chloroform (1:1) was added to the sample of

nucleic acid, and then vortexed thoroughly. The samples were centrifuged at 15000 rpm for 5

minutes in a benchtop mini-centrifuge. This allows separation of nucleic acids into the upper

aqueous phase while protein contaminants remain in the interface and organic phase. The aque-

ous phase is carefully removed and retained, which is ethanol precipitated as described below.  

Section 2.4.7 Ethanol precipitation of nucleic acids 

Composition of Reagents:

Absolute Ethanol

Ethanol: [70 %]

Sodium Acetate: [3 M, pH 5.2, 0.22µM filtered] 

Ammonium Acetate: [7 M, 0.22µM filtered]

Autoclaved and DEPC-treated UHP water

The aqueous phase from phenol/chloroform treatments, or diluted nucleic acids needing to be

concentrated, are ethanol precipitated. For the precipitation of DNA 0.1 volume of sodium ac-

etate was added to the aqeous phase while for RNA 0.25 volume of ammonium acetate was

used.  Two volumes of absolute ethanol are added to the solution, mixed and placed on ice or at

-20 0C for 20-30 minutes to precipitate the nucleic acid.  Precipitated nucleic acids were pelleted

by centrifugation at 15000 rpm for 20 minutes. Pellets were washed with 200-500µl of 70% eth-

anol by centrifuging as before. Any residual ethanol traces were removed and the pellets were

air-dried. DNA pellets were resolubilised in UHP water and RNA pellets were resolubilised in

DEPC treated water.
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Section 2.4.8 Restriction digestion of plasmid DNA  
Restriction digestion of plasmid DNA was performed using the optimal buffer supplied by the

manufacturer for the particular enzyme. When double digests were carried out using non-com-

patible buffers, the buffer with the lowest salt concentration was used to perform a single digest

first and then second digest was carried out. Alternatively salts were removed  after the first di-

gest by ethanol precipitation before the second digest could be carried out. Typically 2-10µg

DNA was digested using 1X buffer and 5 units of enzyme in a 50µl volume, and incubated at

37 0C for 2 hours. The reaction mixtures were assembled in an Eppendorf tube in the order

shown below for a single digest:

At the end of incubation period, reaction was terminated by the addition of either sodium acetate

and ehanol for DNA precipitation or by DNA loading buffer. Restriction digest was analysed

by agarose gel electrophoresis.

Section 2.4.9 Agarose gel electrophoresis (non-denaturing )

Composition of Reagents:

TBE [10X]: [ 107.8g Tris Base, 55g Boric Acid, 20ml EDTA (0.5M, pH 8.0) in 1 litre UHP H2O]

TAE [50X]: [242g Tris base, 57.1ml Glacial Acetic Acid, 100ml EDTA (0.5M, pH 8.0) in 1 litre UHP H2O]  

DNA Loading Buffer [10X]: [0.25% Bromophenol Blue (v/v), 0.25% Xylene Cyanol FF (w/v), 

30% Glycerol (v/v), 1X TBE]

component volume (µl)

10X restriction buffer  ............................................ 5.0

DNA (1mg/ml)      ................................................. 10.0

UHP H2O to make final volume of 50µl ............. 33.0

Restriction enzyme  (2 units/µl) ......................... 2.0
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Ethidium Bromide: [10mg/ml]

1 kb+ marker DNA ladder (0.1mg/ml): 75bp-12kbp

TBE was used for normal electrophoresis of DNA while TAE was used for gel purification pur-

poses where DNA bands were excised and purified for subcloning. Agarose was dissolved to an

appropriate concentration (0.7-1.5% w/v) by boiling in 1X TBE, and allowed to cool to approx-

imately 55 0C. Ethidium bromide (10µg/50ml gel volume) was added and the gel mixture

poured into a casting mould, containing an appropriate sized gel comb, on a flat surface. The

gel was allowed to set at room temperature for thirty minutes. Samples were prepared using 1X

DNA loading buffer as a final concentration. After loading of samples and DNA marker the gel

was run in 1X TBE buffer at a constant voltage of 6V/cm until desired resolution was achieved.

DNA bands were visualised by illuminationtion with UV light and photographed.

Section 2.4.10 Agarose gel electrophoresis (denaturing )
For the separation and visualisation of total and polyA+ RNA denaturing agarose gel electro-

phoresis was used. RNA tends to form secondary structures and therefore requires denaturing

condition so that it is separated on the basis of size. Preparation and running of denaturing gels

is the same as non-denaturing gels except that 0.1% (v/v) SDS was included in the gel mixture

before it was poured into the gel cast.

Section 2.4.11 Denaturing polyacrylamide gel electrophoresis

The following formulae were used to calculate the volume of 10X TBE, sequagel diluent and

concentrate required to make a certain percentage of gel.

[1/10 * (total gel volume)]= volume of 10X TBE

[ ( % acrylamide gel need) * ( volume of gel) ] / 25 = volume of sequa gel concentrate 

[volume of gel - ( 1/10th volume of gel + volume of concentrate ) = volume of diluent
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For example, to make a 6% gel of 10ml total volume 2.4ml of concentrate and 6.6ml of diluent

and 1ml of 10X TBE was mixed. To start the polymerisation, 6µl of TEMED and 100µl of 10%

APS were added and mixed. Immediately the gel solution was pipetted in the gel cast without

introducing air bubbles. The comb was inserted into the gel and the gel was allowed to set for

30 minutes. The gel was then placed in the gel tank and 1X TBE was used to fill the anode and

cathode compartments, and pre-run at 50 volts for 30 minutes. Prior to loading, unpolymerised

acrylamide and crystalline urea were thoroughly washed out of each well with running buffer.

The samples were loaded into the wells and separation was carried out at 120 volts until the Xy-

lene cyanol FF dye front had travelled at least 75% through the gel (usually 90 minutes was suf-

ficient for most probes used). The gel was fixed (in 10% methanol and 10% acetic acid) and

dried under vacuum. Dried gel can then be used to obtain autoradiographs or quantified in the

phosphor imager.

Section 2.4.12 DNA gel purification by geneclean

Composition of Reagents:

Agarose gel: [made with 1X TAE] 

Geneclean II kit:  

NaI solution: [6M]

Glassmilk Silica Matrix in UHP water

New Wash Buffer: [NaCl, ethanol, water]

UHP water, autoclaved and filtered

The Geneclean II kit contains “glassmilk” which is a silica matrix that binds single and double

stranded DNA. DNA fragments to be purified from other contaminating fragments were first

separated and resolved on a 1X TAE agarose gel. To minimise UV damage to the DNA, the gel

is kept in its perspex casting tray and is visualised on a UV transiluminator. The band of interest

was excised and weighed in a 1.5ml eppendorf tube. Three volumes (of gel slice) of NaI solution
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were then added to the tube. The gel slice was dissolved by heating the tube to 55 0C for 15 min-

utes. 5µl of glassmilk (1µl per µg DNA) was added to the DNA solution and vortexed thorough-

ly. Ten minutes of incubation at room temperature was sufficient to allow binding of the DNA

to the glassmilk. The glassmilk-DNA complex was then pelleted by centrifugation at 14000 rpm

for 10 seconds and the supernatant was removed. The pellet was washed three times with 500µl

of ice cold New Wash Buffer. After the final wash the glassmilk pellet was resuspended in 10µl

of UHP water and incubated at 55 0C for 3 minutes to elute the bound DNA. DNA in solution

was separated from the glassmilk by brief centrifugation (30 seconds at top speed). The super-

natant was carefully removed and stored at -20 0C until required. 

Section 2.4.13 Alkaline Phosphatase treatment of DNA

Composition of Reagents:

Shrimp Alkaline Phosphatase (SAP) Buffer [10X]: [200mM Tris-HCl (pH 8.0), 100mM MgCl2]

Shrimp Alkaline Phosphatase Enzyme (SAP), (United States Biochemical-USB)

UHP water, 0.22µm filtered

Alkaline phosphatase treatment of linearised plasmid cloning vector was carried out to prevent

it from re-circularising. Restriction digested DNA was first gel-purified by the GeneClean

method and then alkaline phosphase treated. Ten µl of GeneClean product was added to 5µl of

10X SAP buffer and the reaction volume was made up to 49µl with UHP water and the reaction

was initiated by the addition of 1µl SAP enzyme. The reaction was incubated at 37 0C for 30

minutes and then heat inactivated for 15 minutes at 65 0C. The reaction mixture containing

DNA was phenol:chloroform treated and ethanol precipitated and the DNA pellet was resus-

pended in 10µl of UHP water.

Section 2.4.14 DE81 test for nucleotide incorporation 

Compositions of Reagents:

Na2HPO4 : [0.5M]
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DE 81 Filters (Whatman)

Ethanol: [100 %]

Sterilized UHP water

Hi-Safe Liquid Scintillant

To determine the efficiency of transcription, an incorporation test was carried out using DE81

ion-exchange filters. One µl of DNase treated transcription mix (or reaction mix in the case of

DNA ladder) was first diluted 10 fold using DEPC treated water, and then 1µl was spotted onto

each half of a filter, and allowed to air-dry. One half of the filter was washed five times in 0.5M

Na2HPO4, twice in DEPC treated H2O, and twice in absolute ethanol, one minute for each wash.

The half filters were air-dried and counts per minute compared between washed and unwashed

filter halves. To do this, half filters were placed in separate scitillation vials containing 3ml of

scintillation cocktail and counted on a [α32P] program for 1 minute in a Packard 1900 TR liquid

scintillation analyser. Transcription efficiency was expressed as % incorporation (washed/

unwashedX100). 

Section 2.4.15 Labelling of DNA ladder

Composition of reagents:

Labelling Buffer [5X]: [50mM Tris-HCl (pH 7.5), 250mM NaCl, 50mM MgCl2]

dNTP Mix: [10mM of each nucleotide dATP, dTTP, dGTP (Pharmacia)]

100bp or 1kb DNA ladder: [1mg/ml, (Gibco BRL)]  

[α-32P] dCTP: [ 3.3 mM, (Dupont ICN)]

Klenow DNA polymerase: [5U/µl] (Nbl)]

UHP water

The DNA ladder was radiolabelled so that it could be used for sizing double stranded RNA frag-

ments in the RNase protection assay. The klenow fragment of E.coli DNA polymerase  was used

to label 5µg of DNA by filling in the 3’ ends. The reaction was set up  using the following com-
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ponents:

The reaction was then incubated at room temperature for 3 hours, and the incorporation was de-

termined using the DE81 test. 

Section 2.4.16 Extraction and Purification of Nucleic Acids

Section 2.4.16.1 Purification of plasmid DNA by alkaline lysis method

Composition of Reagents:

Solution 1: [25mM Tris-HCl (pH 8.0), 10mM EDTA, 10mg/ml RNase A] 

Solution 2: [0.2M NaOH, 1% SDS (v/v)]

Solution 3: [3M Potassium Acetate, 11.5% Glacial Acetic Acid (v/v)] 

Phenol : chloroform [1:1 (v/v)]

Sodium Acetate: [ 3 M, pH 5.2]

Absolute Ethanol

Ethanol: [70%]

UHP water (0.22µm filtered)

For this crude miniprep, 2ml of overnight bacterial culture was pelleted by centrifugation at

15000 rpm for 2 minutes, and the supernatant discarded. The pellet was resuspended in 100µl

of solution 1. Immediately 200µl of solution 2 (freshly prepared) was added and mixed by gen-

tly inverting the tube several times. The tube was then incubated at room temperature for 5 min-

component volume (µl)

Labelling Buffer      ................................................. 3.0

dNTP Mix.             ................................................ 3.0

DNA Ladder          ................................................. 5.0

[α 32 P] dCTP        ................................................. 5.0

DNA Polymerase    ................................................ 1.0

UHP H2O               ................................................ 13.0
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utes. At the end of incubation period 150µl of ice cold solution 3 was added and mixed by

inverting the tube several times. Proteins were precipitated by incubating the tube on ice for 10

minutes, and pelleted by centrifugation at 15000 rpm for 10 minutes. The supernatant was trans-

ferred to a fresh tube, phenol:chloroform treated and ethanol precipitated (section 2.4.6). The

DNA pellet was washed in 70% ethanol and air-dried to remove any residual ethanol. Finally

the DNA pellet was resuspended in 20µl of UHP water. Purified plasmid DNA was stored at -

20 0C until required.

Section 2.4.16.2 Purification of plasmid DNA on Qiagen Mini- and Maxi-prep columns

Composition of Reagents:

Buffer P1: [50mM Tris-HCl (pH 8.0), 10mM EDTA, 10mg/ml RNase A]

Buffer P2: [200mM NaOH, 1% SDS (v/v)] 

Buffer P3: [3M Potassium acetate (pH 5.5)] 

Buffer QBT: [750mM NaCl, 50mM MOPS (pH 7.0), 15% Isopropanol (v/v), 0.15% Triton X-100 (v/v)]

Buffer QC: [1M NaCl, 50mM MOPS (pH 7.0), 15% Isopropanol (v/v)]

Buffer QF: [1.25M NaCl, 50mM Tris-HCl (pH 8.5), 15% Isopropanol (v/v), 70% Ethanol]

Autoclaved and 0.22µm filtered UHP water

Qiagen tip columns contain diethylaminoethanol (DEAE) anion exchange resin. The negative

charge on the phosphate backbone of DNA causes the DNA to bind to this resin, and is only

eluted from the column resin at high salt concentrations. Impurities such as RNA, protein, car-

bohydrates and small metabolites are washed from the resin in medium salt buffers.

Section 2.4.16.3 Mini-prep method

For sequencing purposes the Qiagen mini-prep method was used. Four millilitres of a 10ml

overnight culture were pelleted by centrifugation at 15000 rpm for 2 minutes. The bacterial pel-

let was resuspended in 0.3ml of buffer P1. Immediately 0.3ml of buffer P2 was added and mixed

thoroughly by inverting the tube several times, and incubated at room temperature for 5 min-
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utes. At the end of incubation period 0.3ml of chilled buffer P3 was added and mixed by inver-

sion as before. The sample was incubated on ice for 10 minutes. The sample was centrifuged at

15000 rpm for 15 minutes, then the supernatant was promptly removed and kept on ice. Mean-

while a Qiagen-tip 20 was equilibrated with 1ml of buffer QBT. The supernatant was applied to

the column and allowed to drain through, using gravity to pull the solution through. The column

was washed four times with 1ml of buffer QC. DNA was eluted with 0.8ml of buffer QF, and

precipitated by the addition of 0.56ml of isopropanol. The solution was centrifuged at 15000

rpm for 30 minutes. The DNA pellet was washed with 1 ml of 70 % ethanol. 20µl of autoclaved

UHP water was used to resolubilise the DNA. The concentration of DNA was determined by

measuring the A260nm of a diluted sample. DNA samples were stored at -20 0C.

Section 2.4.16.4 Maxi-prep method

The Quiagen maxi-prep method was used for the large scale purification of plasmid DNA. This

high quality DNA was used for either sequencing, synthesis of riboprobe or transfection of pri-

mary hepatocytes. An overnight culture of 200ml was pelleted by centrifugation at 7000 rpm in

a JA-10 rotor for 15 minutes. The bacterial pellet was resuspended in 10ml of buffer P1.  Im-

mediately 10ml of buffer P2 was added and mixed thoroughly but gently by inverting the tube

several times, and incubated at room temperature for 5 minutes. Ten mililitres of chilled buffer

P3 was added and mixed as before. The sample was incubated on ice for 20 minutes and then

centrifuged at 12000 rpm in a JA-20 rotor for 15 minutes, then the supernatant was promptly

removed and stored on ice. A Qiagen-tip 500 was equilibrated with 10ml of buffer QBT, and

the supernatant was applied to the column and allowed to drain through under gravity. The col-

umn was washed twice with 30ml buffer QC. DNA was eluted with 15ml of buffer QF, and pre-

cipitated by the addition of 10.5ml (0.7 volume of the eluant) of isopropanol. The solution was

centrifuged at 12000 rpm for 30 minutes in a JA-20 rotor. The DNA pellet was washed with 5

ml of 70% ethanol. Finally the dried pellet, free of residual ehanol,  was resuspended in 500µl
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of filtered UHP water. The concentration of DNA was determined by measuring the A260nm of

a diluted sample. DNA samples were stored at -20 0C.

Section 2.4.17 Extraction and Purification of RNA

Section 2.4.17.1 Preparation of equilibrated Phenol 

Phenol solutions were prepared from the crystalline solid and during the process any contami-

nants were removed and equilibrated to correct the pH for nucleic acid isolation. Five hundred

grams of crystalline solid was melted at 68 0C and then 0.1% (w/v) hydroxyquinoline was add-

ed. An equal volume of 0.5M Tris-HCl (pH 8.0) was added and stirred continuously for 20 min-

utes at room temperature. The mixture was then allowed to separate and the aqueous phase was

discarded. The organic phenolic phase was then eqilibrated with an equal volume of 0.1M Tris-

HCl (pH 8.0) and again stirred for 20 minutes. The mixure was then allowed to separate into

two phases and the aqueous phase removed. The phenol solution was eqilibrated several times

with 0.1M Tris-HCl until the desired pH (8.0) was achieved. The equilibrated phenol solution

with a top layer of 0.1M Tris-HCl (pH 8.0) was stored in the dark at 4 0C.

Section 2.4.17.2 RNA extraction from liver 

Composition of Reagents:

Lysis Buffer: [5M Guanidinium Thiocyanate, 10mM EDTA, 50mM Tris-HCl, 8% 2-Mercaptoethanol (v/v)]

Precipitation Buffer: [4M Urea, 3M LiCl]

SDS-TE Buffer: [0.1% SDS (w/v), 1mM EDTA, 10mM Tris-HCl]

Phenol : Chloroform [1:1 (v/v)]

Ethanol: [90%, made with DEPC-treated water]

DEPC-treated water, autoclaved and filtered

To be utilised in RNase protection experiment, RNA was extracted from hamster liver using the

method of Cathala et al. (1983). Frozen liver tissue (1-1.5g) was placed in RNase free polypro-

pylene tube containing 5ml ice-cold lysis buffer and homoginised for 20-30 seconds using a Sil-
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verstron homogeniser. To the homogenised samples 35ml of  ice-cold precipitation buffer was

added and mixed by gentle inversion for several times. The samples were left to precipitate at 4

0C overnight. Precipitated samples were centrifuged at 12 000g for 90 minutes at 4 0C in a JA20

rotor. The supernatant was removed and the pellet was resuspended in 5ml of ice-cold LiCl

(3M). This was then centrifuged as before for 60 minutes and the supernatant was removed. The

resulting pellet was resolubilised in 5ml of SDS-TE buffer and then mixed with an equal volume

of phenol:chloroform. The sample was placed on ice for 20 minutes, vortexing  for 30 seconds

every 5 minutes. The sample was then frozen at -80 0C for 30 minutes and then thawed on ice.

The sample was centrifuged at 10 000g for 15 minutes at 4 0C in a JA20 rotor. The aqueous

phase was carefully extracted and phenol:chloroform treated as before. The resulting aqueous

phase was ethanol precipitated at -20 0C overnight. Precipitated RNA was centrifuged at

10,000g for 15 minutes at 4 0C in a JA20 rotor. The pellet was washed twice in 5ml of 90%

ethanol, and finally resuspended in 500µl DEPC treated water.

Section 2.4.17.3 Lithium chloride/ urea method

Composition of Reagents:

Lysis Buffer: [3M LiCl, 6M Urea, 10mM Sodium Acetate (pH 5.2)]

SDS: [10% (w/v)]

Aqueous Buffer: [18.8ml DEPC-treated Water, 200ml 1M Tris-HCl (pH 7.4), 1ml 10% SDS (w/v)]

Tris-Bufferd Phenol (pH 8.0)

Chloroform : Isoamyl alcohol [24:1]

Absolute Ethanol

Ethanol: [70%, made with DEPC-treated water]

DEPC-treated Water, filtered and autoclaved

Frozen liver tissue (1-1.5g) was placed in an RNase free polypropylene tube contaning 15ml of

ice-cold lysis buffer and homogenised for 15 seconds, with a cooling period of 15 seconds, for
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60 seconds using a Silverstron Homogeniser. To the homogenate 150µl of 10% SDS was added

and the tube contents were mixed four times by gentle inversion, and left to precipitate at 4 0C

overnight. The precipitated sample was centrifuged at 10 000g for 20 minutes at 4 0C in a JA20

rotor. The supernatant was discarded and the pellet was resuspended in 5ml of aqeuous buffer.

The solution was then transferred to a fresh clean tube containing 2.5ml of Tris buffered phenol

and 2.5ml of chloroform:isoamyl alcohol. The solution was mixed by shaking vigorously on a

rotary shaker for 15 minutes, and then centrifuged for 20 minutes as before. The aqueous phase

was carefully transfered to a clean tube containing 2.5ml of phenol and 2.5ml of chloro-

form:isoamyl alcohol mix. This was mixed and centrifuged as before. The supernatant from this

step was mixed with 5ml of chloroform:isoamyl alcohol, mixed by shaking and centrifuged for

10 minutes as before. The aqueous phase was then removed and ethanol precipitated at -20 0C

overnight. Precipitated RNA was pelleted at 4 0C by centrifugation at 11 000g for 30 minutes

in a JA-20 rotor. The pellet was washed in 70% ethanol, air-dried and resuspended in 250µl

DEPC treated water. Resuspension was aided by incubating the tube at 65 0C for 10 minutes.

RNA to be used immediately was stored at -20 0C, but for long term term storage samples were

kept at -80 0C.

Section 2.4.17.4 Guanidinium thiocyanate method

Composition of Reagents:

Denaturing Solution: [4M guanidinium thiocyanate, 25mM sodium citrate (pH 7.0), 

0.5% sarcosyl (w/v), 0.1M 2-marcaptaethanol]

Sodium Acetate: [2M]

Phenol (water saturated)

Chloroform : isoamyl alcohol [49:1]

Liver tissue (0.1-0.2g) was homogenised in 10ml ice-cold denaturing solution for 30 seconds

using a Silverstron Homogeniser. To the lysate, 0.1 volumes of sodium acetate, 1 volume of
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phenol and 0.2 volumes of chloroform:isoamyl alcohol mixture were added sequentially. The

homogenate was mixed thoroughly by inversion after the addition of each reagent. The final

mixture was vortexed for 30 seconds and incubated on ice for 15 minutes. The aqueous and or-

ganic phases were separated by centrifugation at 10 000g for 20 minutes at 4 0C. The aqueous

phase was carefully transfered to a clean tube and precipitated with 1 volume of isopropanol at

-20 0C for 1 hour. Precipitated RNA was pelleted by centrifugation as before. The resulting pel-

let was washed with 70% ethanol and air-dried. The pellet was then dissolved in 200µl of DEPC

water.  

Section 2.4.17.5 From primary hepatocytes

Composition of Reagents:

Solution B: [4M Guanidinium Thiocyanate, 25mM Sodium Citrate (pH 7.0)]

Solution A: [Solution A was prepared by mixing Tris saturated Phenol, Solution B and 2M Sodium Acetate (pH

4.0)

 in a ratio of 1:1:0.1. Prior to use, 720µl of β-mercaptoethanol was added to 100ml of solution A]. 

RNA was extracted from small amounts of tissue or from primary hepatocytes using the above

method of Chomczynski and Sacchi (1987), as modified by Xie and Rothblum (1991). This

method achieves greater yield on small amounts of tissue, and was therefore used to extract

RNA from primary hepatocytes. At the end of culturing period, the monolayer was washed

twice with cold PBS. The cells were lysed by directly pipetting 900µl of solution A (for 25cm2

flask growth area) on to the cell monolayer, and the monolayer was harvested using a sterile

RNase free cell scraper. The lysed cells were collected in a microfuge tube and placed on ice.

To the lysate 100µl of chloroform:isoamyl alcohol was added and the phases mixed by vortex-

ing for 10 seconds and then incubated on ice for 30 minutes. The aqueous and organic phases

were separated by centrifugation at 14 000g for 20 minutes at 4 0C on a benchtop centrifuge.

The aqueous phase was carefully transfered to a fresh Eppendorf tube and precipitated overnight
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with 800µl (2 volumes) of ethanol at -20 0C. The RNA was pelleted by centrifugation at 14 000g

for 20 minutes at 4 0C. The resulting pellet was washed with 70% ethanol and air-dried. The

pellet was then resuspended in 20µl of DEPC water and stored at -20 0C until required. 

Section 2.4.17.6 Isolation of total RNA for cDNA cloning

Composition of Reagents:

RNA Isolation Reagent (Advanced Biotechnologies)

Chloroform

Isopropanol

Ethanol: [75%]

DEPC-treated water, 0.22µm filtered

Molecular cloning methodologies such as preparation of polyA+mRNA, PCR and 5’ RACE re-

quire high quality RNA which is undegraded and free of protein and DNA contamination. For

this reason Advanced Biotechnologies total RNA isolation kit was used for the extraction of

hamster liver RNA which was subsequently used for the cloning experiment. RNA isolated us-

ing this kit is reported to produce very high quality RNA and is suitable for cloning purposes.

The protocol was followed according to the manufacturer instructions. Briefly, 0.5g of tissue

was homogenized in 6ml of RNA reagent using a Polytron homogenizer. Following homogeni-

zation, the homogenate was stored at 4 0C for 5 minutes to allow complete dissociation of nu-

cleoprotein complexes. Five volumes of chloroform was added and shaken vigorously for 15

seconds and then placed on ice for 5 minutes. The homogenate was centrifuged at 14 000g for

15 minutes at 4 0C. This allows the separation of RNA into the aqueous phase. The aqueous

phase was transfered to a fresh tube containing equal volume of isopropanol and stored at 4 0C

for 10 minutes. Precipitated RNA was pelleted by centrifugation at 14 000g for 10 minutes at 4

0C. The resulting pellet was washed with 70% ethanol and air-dried. The pellet was dissolved
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in 500µl DEPC treated water by brief vortexing and incubation at 60 0C for 10 minutes.   

Section 2.4.18 Purification of polyA+ RNA
Composition of Reagents:

Bind Buffer [5X]: [2.5M NaCl, 50mM Tris-HCl (pH 7.5), 0.5% Sarkosyl (v/v), 5mM EDTA (pH 8.0)] 

DEPC-trated water, 0.22µm filtered

NaOH: [0.1M]

Oligo-dT resin (0.08g) was preswollen in 5ml of DEPC treated water at 4 0C for 1 hour. The

swollen resin was then poured into a 2.5ml syringe barrel stuffed with siliconised and auto-

claved glasswool at the base, and allowed to settle. The settled bed volume was approximately

0.5ml. The column resin was then washed with 20 volumes of 0.1M NaOH, followed by 30 vol-

umes of DEPC treated water and then washed with 10 volumes of 1X Bind buffer. Total RNA,

1.25mg,  was ethanol precipitated and resuspended in 1X bind buffer to give a final concentra-

tion of 0.5mg/ml. Prior to loading, the RNA sample was heated to 65 0C and loaded onto the

centre of the resin-bed. The elute was collected and heated to 65 0C before being loaded onto

the column resin again. This step was repeated once more. To remove unbound RNA, the col-

umn was washed with 5ml of 1X Bind buffer. Finally, bound RNA was eluted from the column

by DEPC treated water. Ten 0.5ml aliquots of water, preheated to 65 0C, were loaded individ-

ually and their respective eluant fractions were collected separately in microfuge tubes. RNA in

each eluant fraction was ethanol precipitated and then resolubilised in 10µl of DEPC treated wa-

ter. Each RNA fraction was analysed on a 0.8% agarose gel (denaturing). The fractions contain-

ing polyA+ RNA were pooled and quantitated.     

Section 2.5 Gene Cloning: PCR Cloning of cDNA

Synthesis of first strand cDNA

Composition of Reagents:

First Strand Buffer [5x]: [250 mM Tris-HCl (pH 8.3), 375mM KCl, 15mM MgCl2, 100mM Dithiothreitol] 
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Superscript II Rnase H-Reverse Transcriptase: [(200U/ml) (Gibco BRL)]

Oligo-dT Primer: [12-18 Nucleotides Long (40µg/ml)]

DTT: [100mM]

dNTP Mix: [contain 10mM of the each nucleotide dATP, dGTP, dTTP and dCTP]

Total RNA of high quality was used for the synthesis of cDNA. Three separate reactions were

carried out using three different amounts of total RNA (1, 2.5 and 5 µg). Appropriate amounts

of RNA were added to tubes containing 500ng of oligo-dT primer and the total volume was ad-

justed to 12µl with DEPC treated water. This was heated to 70 0C for 10 minutes and then

chilled on ice immediately. The tube contents were collected at the bottom by pulse-spin, and

then 4µl of 5X first strand buffer, 2µl of DTT, 1µl of dNTP mix were added. Tubes were heated

to 42 0C for 2 minutes, and the reaction was allowed to proceed by the addition of 1µl of super-

script II enzyme and incubated at 42 0C for 45 minutes. The reaction was stopped by heat inac-

tivating the enzyme at 70 0C for 15 minutes. The tubes were cooled on ice and 2µl of RNase H

was added, and then incubated at 37 0C for 20 minutes. A DE81 incorporation test was carried

out using 2µg RNA  to show that cDNA synthesis has occured. For this, a separate reaction was

carried out using the same  reagents and conditions as above but 1µl of [3H] dCTP was added

to the reaction for the incorporation test.

Section 2.5.1 PCR Amplification of cDNA
cDNA synthesised from reverse transcribed hamster total RNA was used for the PCR amlifica-

tion of putative hamster CYP4A and PPARα gene fragments. To generate CYP4A fragment,

PCR primers were designed from regions of DNA sequence identity by  sequence alignment of

known CYP4A subfamilies of different species. For PPARα, primers were designed fom re-

gions of DNA sequence identity after alignment of PPARα genes from known species. 

Primers ued for CYP4A cloning:
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HMcyp-P1: 5’-AAGCTTGAATTCTTGTCTGACAAGGACCTACGTGCTGAGGTGGACAC-3’

HMcyp-P2:  5’-AAGCTTGGATCCCATCTCACTCATAGCAAATTGTTTCCCAAT-3’

Primers ued for PPARα cloning:

HMppar-P1:  5’-CTCAGTACATGTCCCTGTAGAT-3’

HMppar-P2:  5’-TACGGAGTTCACGCATGTGAAGGCTGCAAGGGCTTCTT-3’

Composition of Reagents:

KlenTaq PCR Buffer: [400mM Tricine-KOH (pH 9.2 at 25 0C), 150mM KOAc, 

35mM Mg(OAc)2, BSA (750mg/ml)] 

KlenTaq Polymerase Mix: [Taq start antibody:Antibody dilution buffer:DNA polymerase (1:4:1,v/v/v)]

dNTP mix: [10mM of each nucleotide: dATP, dGTP, dCTP, dTTP (Pharmacia)]

Autoclaved UHP water 

The “good start” procedure was employed for the PCR reaction. Components were added to a

0.5ml PCR tube sitting on ice in the order shown: 16µl water, 2.5µl KlenTaq PCR buffer, 1.5µl

5’-primer (40 pmol), 1.5µl 3’-primer (40 pmol), 1µl dNTP mix, 2µl cDNA (in the case of pos-

itive controls <50ng of plasmid DNA was used while water was used for negative control),

0.5µl of KlenTaq polymerase mix. The tube contents were gently mixed by tapping and pulse-

centrifuged to collect to the bottom. The reaction mix was then overlaid with 2 drops (~30µl)

of mineral oil to prevent evaporation, and the tubes were transfered directly from ice to the ther-

mal cycler block preeqilibrated to 94 0C. PCR reaction was performed in a Perkin Elmer DNA

thermal cycler using a three step cycle for a total of 25 cycles:

Step 1- denaturation: 94 0C for 1 minute

Step 2- primer annealing: 50 0C for 1 minute 
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Step 3- primer extension: 72 0C for 1 minute  

The following formula was used to calculate annealing temperature of the primers.

81.5 + 16.6(-log [salt +] ) + 0.41 (% GC) - (675/ number of nucleotides in primer)

5µl of each PCR reaction mixture was analysed on a 1% agarose gel, made with 1XTBE,

prestained with syber green and run at 90 volts for 1hour.

Section 2.5.2 Purification of PCR products

Composition of Reagents:

Quaquick PCR Purification Kit:

PB Buffer

PE wash Buffer

Qiaquick Columns

Autoclaved UHP water

Each PCR reaction was diluted with 250µl of PB buffer. The sample was placed in a Qiaquick

spin column and centrifuged for 30 seconds in a bench-top microcentrifuge (13,000 rpm), and

the flow through was discarded. The column was washed with 0.7ml of PE buffer, and then cer-

tifuged at 13,000 rpm for 30 seconds. The flow through was discarded and the column was cen-

trifuged again at 12,000 rpm for a further 30 seconds to remove traces of residual PE wash

buffer. DNA bound to the column was eluted with 40µl of water by centrifugation at 13,000 rpm

for 60 seconds.

Section 2.5.3 Ligation of amlified DNA fragment

Components used:

Ligation kit, supplied by Promega

Cloning Plamid: [pGEM-T and pGEM-T easy vector (50ng/µl): pGEM-5Zf(+) 

digested with EcoRV and 3’ terminal thymidines added] 
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T4 DNA Ligase Buffer (10X): [300mM Tris-HCl (pH 7.8), 100mM MgCl2, 100mM DTT, 5mM ATP] 

T4 DNA Ligase: [10 units/µl in 10mM Tris-HCl (pH 7.4), 50mM KCl, 1mM DTT, 0.1mM EDTA, 50% Glycerol]

Purified PCR products were ligated into either pGEM-T or pGEM-T easy vector. Ligation re-

actions were assembled at room temperature using 1µl of 10X T4 DNA ligase buffer, 1µl

pGEM-T/easy vector, 4µl PCR product, 3µl water and 1µl T4 DNA ligase. The tube contents

were mixed and pulse-spun, and incubated at 4 0C overnight. 

Section 2.5.4 Selection of recombinant plasmids
Ligated PCR products were transformed into electrocompetent E.coli XL-1 blue strain. One µl

of ligation reaction product was used to transform 60µl of XL-1 blue cells. Blue/white selection

was used for the screening of plasmid containing the insert. To do this, 100µl of transformed

cells were plated on a Tet/Amp LB-agar plate containing 0.5mM IPTG and 80µg/ml X-gal.

Cells carrying recombinant plasmid (containing an insert) appear as white colonies whereas

those with non-recombinant plasmid appear as blue colonies on the selection plate. Individual

colonies of 25 white  and 2 blue colonies were picked and inoculated in 5ml of Tet/Amp LB-

broth. Plasmid minipreps were carried out using the alkaline lysis method, and the DNA was

analysed on a 1% agarose gel. Three independent colonies containing plasmids positive for the

insert were Quiagen miniprepped and the inserted fragment was sequenced from both direc-

tions.   

Section 2.5.5 Amplification of 5’-cDNA ends

Gene Specific Primers (GSP):

RACE 1:   5’-GGCATTTGTGGAAGCGGCAGTATTGGC-3’

RACE 2:   5’-CAGCTTCGATCACATTTGTCATACGCCAGC-3’
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RACE 3:   5’-GAAGCCCTTGCAGCCTTCACATGCGTG-3’

Rapid Amplification of 5’-cDNA Ends (RACE) is a procedure for amplification of nucleic acid

sequences from an mRNA template between a defined internal site and unknown sequences at

the 5’-end of the mRNA. Gibco BRL 5’ RACE kit was used for cloning the remainder of the 5’-

end of the putative hamster PPARα gene. Two parallel reactions were carried out using either

1µg of total RNA or polyA+ RNA. One µl of GSP (RACE 1) was added to each tube and the

final volume was adjusted to 15.5µl with DEPC treated water. The tubes were heated at 70 0C

for 10 minutes to denature secondary RNA structures. The tubes were chilled on ice and then

centrifuged briefly. The following components were added to the tubes and then incubated at

48 0C for 1 minute: 2.5µl of 10X PCR buffer, 2.5µl of MgCl2, 1µl of dNTP mix and 2.5µl of

DTT. The reactions was initiated by the addition of 1µl of Superscript II reverse transcriptase

and incubated for a further 50 minutes at 42 0C. The reaction was terminated by heat denaturing

the enzyme at 70 0C for 15 minutes. The tubes were briefly centrifuged and then 1µl of RNase

mix was added to each tube. RNase treatment was carried out for 30 minutes at 37 0C. 

Section 2.5.6 Purification of First strand product
Excess nucleotides and RACE1 primers were removed from the first strand cDNA product

which otherwise will interfere in subsequent reactions, such as the homopolymeric tailing reac-

tion. First strand cDNA product was purified using a Gibco BRL glassmax DNA isolation spin

cartridge. After equilibrating the binding solution (6M NaI) to room temperature, 120µl of this

solution was added to the first strand reaction, and the mixture was transfered to a spin cartridge.

This was then centrifuged for 20 seconds at 13 000g. DNA bound to the column was washed

four times with 0.4ml of cold wash buffer followed by two washes of 70% ethanol by brief cen-

trifugation (20 seconds in each step). Finally, bound DNA was eluted with 40µl of sterilized wa-

ter (preheated to 65 0C) by centrifugation at 13 000g for 25 seconds.
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Section 2.5.7 Homopolymeric tailing of cDNA
Terminal deoxynucleotidyl transferase (TdT) was used to add a homopolymeric tail of dCTP’s

on the 3’-end of the purified cDNA. TdT-tailing was carried out on cDNA made from both total

and polyA+ RNA. The following reaction components were added to each tube: 6.5µl of DEPC-

treated water, 5µl of 5X tailing buffer, 2.5µl of 2mM dCTP was and 10µl of glassmax purified

cDNA. To evaluate the specificity of the subsequent amplification reaction from the oligo-dC

tail, a negative control was included that omits TdT in the reaction.  The tubes were incubated

at 94 0C for 3 minutes, and then chilled on ice for 1 minute. The contents of the tube were col-

lected by brief centrifugation and then 1µl of TdT enzyme was added to each tube and the reac-

tions were incubated at 37 0C for 10 minutes. The reaction was stopped by heat inactivating TdT

at 65 0C for 10 mins.

Section 2.5.8 PCR of dC-tailed cDNA
PCR amplification of dC-tailed cDNA was carried out by employing the “hot start” procedure

to improve the specificity of the reaction. All the reaction components were from RACE kit ex-

cept the custom made internal genespecific primer and Taq polymerase (red hot polymerase

mix, Advanced Biotechnologies). Components were added to 0.5ml PCR tubes sitting on ice in

the order shown: 33.5µl water, 5µl PCR buffer, 3µl MgCl2, 1µl 10mM dNTP mix, 1µl nested

GSP2 (RACE1), 2µl anchor primer, 5µl dC-tailed cDNA. The contents of the tubes were mixed

by gentle tapping and pulse-centrifuged to collect to the bottom. The tubes were then transfered

to a thermal cycler block preeqilibrated at 94 0C. Taq polymerase mix (0.5µl) was added direct-

ly to the tube sitting on the heat block and the reaction was overlaid with 2 drops (~30µl) of

mineral oil to prevent evaporation. Two negative controls were included where one contained

cDNA that underwent a dC-tailing reaction with TdT omitted while the other contained no cD-

NA. PCR reactions were performed in a Perkin Elmer DNA thermal cycler using a three step

cycle for a total of 20 cycles:
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Step 1- denaturation: 94 0C for 1 minute

Step 2- primer annealing: 65 0C for 1 minute 

Step 3- primer extension: 72 0C for 1 minute  

5µl of each PCR reaction was analysed on a 1% agarose gel, made with 1XTBE. PCR products

from this first round were diluted 50-fold, and then 5µl of this was reamplified using GSP

(RACE 2) and anchor primer for 25 cycles using the same reaction condition as above. PCR

reaction products were analysed on a 1% agarose gel, made with 1XTBE. PCR products were

purified using Qiagen Qiaquick PCR purification spin columns. A third round of  PCR was per-

formed using  GSP (RACE 3) and the amplified products were purified as above.

Section 2.5.9 Cloning of putative 5’-cDNA RACE products
Purified RACE products were ligated into pGEM-T easy vector. The ligated products were

transformed into electrocompetent E.coli XL2/blue cells. Blue/white selection was used to se-

lect for plasmids containing an insert. Individual colonies (25 white and 2 blue) were picked and

inoculated in 5ml Tet/Amp LB-broth. Plasmid minipreps were carried out using the alkaline ly-

sis method. Restriction digests were performed on all the plasmids DNA using  EcoRI enzyme

to determine the size of the cloned insert. Restriction digests were analysed on a 1% agarose gel.

A diagramatic representation of the PPARα cDNA cloned into the cloning vector and the prim-

ers used for sequencing is outlined in Figure 2.1.

Section 2.6 DNA Sequencing and analysis

Quiagen purified DNA was sent to the Biomedical Synthesis and Analysis unit (Queens Medi-

cal Centre, Nottingham) for sequencing. An ABI prism dye terminator cycle sequencing kit

(Perkin Elmer) was used for the PCR stage of the sequencing protocol, and the sequencing re-

actions were analysed on a 373A DNA sequencer (Perkin Elmer). Initially, T7 and SP6 primers
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were used to obtain the first part of the sequence of the cloned DNA from both directions. Prim-

ers (“custom-made”) were then designed from this and used for subsequent sequencing to ob-

tain the full sequence of the cloned fragment. A list of primers used for this oligonucleotide-

directed sequencing of hamster PPARα and CYP4A cDNA are shown in Table 2.1 and Table

2.2.

SP6

PR5

5’
3’

3’
5’

hmPPARα cDNA (1069 bp 3’end) 
polylinker polylinker

PR 2

PR 3PR 1T7

PR 4

A

T7

SP6

5’
3’

3’
5’

(hmPPARα cDNA 5’race products) 
polylinker polylinker

B

Figure 2.1 Sequencing strategy for hamster PPARα.  1069 bp sequence from the 3’ end of hamster PPARα cDNA
was cloned into pGEMT vector by PCR (A) and was sequenced with designed sequencing primers as indicated. The remainin
5’ end of the PPARα cDNA (B) was cloned using 5’RACE strategy. For 5’RACE gene specific primers were designed from
the 1069 bp cloned fragment and the amplifiied fragment was cloned in pGEMT-Easy vector for sequencing. Primers used f
sequencing are shown by arrows in the diagram and individual primer sequences are shown in Table 2.1 below. Cloned frag
ments are shown by solid lines.
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Sequence chromatograms were viewed using CHROMAS software, and the raw DNA sequenc-

es were edited using GCG sequence analysis software (Winconsin Package, version 9.0). With-

in the GCG programme TED and SEQED were used for sequence editing; PILEUP, GAP and

BESTFIT were used for sequence alignment and comparision; GELSTART, GELENTER,

GELMERGE and GELASSEMBLE were used for the generation of consensus sequence; and

MAP and TRANSLATE were used for obtaining protein sequences from consensus DNA se-

primer name primer sequence (5’ to 3’)

T7 TAATACGACTCACTATAGGGCGA

PR1 TCAACATGAATAAGGTCAAGGCC

PR2 ACATGGAGACCTTGTGTATGGCTGAG

PR3 CATAGGATACATTGAGAAGATGC

SP6 GTATTCTATAGTGTCACCTAAAT

PR4 GTGCACGATACCCTCCTGCATCT

PR5 TTGCGAAGCCTGGGATGGCCTTG

Table 2.1 Sequence primers used for hamster PPARα.  The sequence of the primers used for 
sequencing cloned hamster PPARα cDNA are showns on the right, and their name on the left.

primer used primer sequence (5’ to 3’) clone number

T7 TAATACGACTCACTATAGGGCGA all clones

PR6 AAATGGAGAGTACAACTGTGGCA 3, 4, 5, 8, 9

SP6 GTATTCTATAGTGTCACCTAAAT all clones

PR7 GATCCTCCATTACCTGGAATCAC 3, 4, 5, 8, 9

PR8 CATCAGGGAAGGTGACAGGTGTG 1, 6, 12-14, 15-18

PR9 ACCTGGGATCACCTGGACCAGAT 1, 6, 12-14, 15-18

Table 2.2 Sequence of primers for hamster CYP4A cDNA.  The sequence of the primers used for 
sequencing cloned hamster CYP4A cDNA are showns on the right, and their name and clone number on the left.
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quences. Protein sequence alignments and phylogenetic analysis was done using GCG,

CLUSTALW 1.6 (Thompson et al., 1994), SAGA for optimised alignments (Notredame and

Higgins 1996), Puzzle 4 for maximum likelihood analysis (Strimmer and von Haeseler, 1996),

Genedoc (Nicholas and Nicholas 1997), and Treeview computer programs. Raw DNA sequenc-

es were inspected and edited using GCG sequence analysis software. The software programs

used were, TED, SEQED, BESTFIT, GENASSEMBLE and MAP (Wisconsin Package Version

9.0).

Section 2.7 Gene Expression Studies

Section 2.7.1 RNase Protection Assay

Section 2.7.1.1 Template Generation

Composition of Reagents:

Ammonium Acetate: [7M]

Phenol:Chloroform [1:1 (v/v)]

Template DNA: [1mg/ml]

Proteinase K: [100mg/ml]

Ethanol: [70%]

Plasmid (pGEM7) containing rat or mouse CYP4A cDNA was used to generate the template for

protection assay. Plasmid was linearised with NcoI which has a unique restriction site within

the CYP4A1 sequence. When this linearised template is transcribed from a T7 promoter, a

200bp antisense probe is generated. To generate the template, 10µg of DNA was digested to

completion (as determined by agarose gel) using NcoI. This was first proteinase K (10 µg/µl)

treated for 1 hour at 37 0C in the presence of 0.1% SDS then phenol:chloroform treated, vor-

texed and centrifuged. DNA in the top aqueous layer was precipitated with two volumes of ab-

solute ethanol and 0.25 volumes of 7M ammonium acetate. This was left on ice for 20 minutes

and then centrifuged. The resulting pellet was washed with 70% ethanol and resuspended in
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10µl of DEPC-treated H2O.

Section 2.7.1.2 RNA transcription in vitro

RNA probes were prepared by incorporating radiolabelled [α32P] CTP as the base analogue in

the transcription reaction. The following reaction components were mixed at room temperature

for transcription:

To begin the reaction 1µl of T7 RNA polymerase was added and incubated at 37 0C for 1 hour.

At the end of incubation period the DNA template was removed by the addition of 1µl (10 Units/

µl) DNaseI and incubated for further 15 minutes. Incorporation of radioactivity was determined

by the DE-81 test. After DNase treatment, labelled probe was phenol:chloroform treated, etha-

nol precipitated, and centrifuged (as for template). The resulting pellet was resuspended in 15µl

deionised formamide.

Section 2.7.1.3 Probe Hybridisation

Composition of reagents:

Total RNA: [10µg/µl]

Yeast tRNA: [10 µg/µl in DEPC-treated water]

RNA probe, [α32 P] CTP labelled

component volume (µl)

[5X] Transcription Buffer  ................................................. 4.0

100 mM DTT ........................................................................ 1.0

RNA Guard  .................................................................. 1.0

5 mM A, G & UTP mix  ................................................... 4.0

DEPC-treated H2O  ......................................................... 13.0

[α 32P] CTP  ................................................................... 5.0

100 mM Cold CTP  ......................................................... 1.0

DNA (1µg/µl)  ................................................................ 1.0
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Hybridisation Buffer: [80% Formamide, 40mM PIPES (pH 6.7), 5M NaCl, 0.4M EDTA]

RNase Buffer: [0.35 NaCl, 10mM Tris-HCl (pH 7.5), 5mM EDTA (pH 7.5)]

RNase A: [10 mg/ml ]

Proteinase K: [100mg/ml ]

SDS: [10% w/v]

Phenol:chlorofom: [1:1 (v/v)]

Sodium acetate: [7M, pH5.2]

Protection Gel Load Buffer: [90% Formamide (v/v), 1X TBE,  

0.25% Xylene Cyanol (w/v)], 0.2% Bromophenol Blue (w/v)]  

Gel Running Buffer: [10X TBE]

Denaturing Urea-Acrylamide Gel: [6%]

Fixing Solution: [10% Methanol, 10% Glacial Acetic Acid]

Samples were prepared by precipitating 30µg total RNA by the ethanol/ammonium acetate pre-

cipitation method. To show the specificity of the hybridised probe, two lots of 30 mg of yeast

tRNA were also precipitated and incubated in the presence or absence of RNase A following

hybridisation reaction with the probe. These are termed tRNA+ve (yeast tRNA treated with

RNase A) and tRNA-ve (yeast tRNA treated without RNase A). RNA pellets were stored at -20

0C until use. For hybridisation reactions, probe was diluted in the range of 1:100 to 1:500, de-

pending on the percentage incorporation, in hybridisation buffer. Thirty µl of this buffer was

used to hybridize 30µg of RNA sample. RNA pellets were resuspended by brief vortexing and

then heated to 85 0C for 3 minutes to denature RNA secondary structure. Hybridisation was car-

ried out overnight at 45 0C. After overnight incubation, samples were treated for 1 hour at 37

0C with 300µl RNase buffer containing 10mg/ml RNase A. RNase A was omitted from the

tRNA-ve sample. The samples were then incubated at 37 0C for one hour. Following RNase

treatment, samples were treated with Proteinase K (10mg/ml) in the presence of 0.1% SDS for

45 minutes at 50 0C. Samples were then phenol:phloroform treated, and the aqueous phase was
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ethanol precipitated with 7M ammonium acetate. The resulting pellet was resuspended in 10ml

of protection load buffer by vigorous vortexing. Prior to loading on the gel, samples were heated

at 85 0C for 3 minutes, cooled on ice and then briefly centrifuged to collect the tube contents.

Samples were run on a 6% denaturing polyacrylamide gel, using 1X TBE buffer, at 120 volts

for 90 minutes, after which the gel was placed in fixing solution for 30 minutes and dried on a

vaccumm gel dryer. For visualisation of signal, Kodak X-ray Hyper film was exposed to the gel

at -80 0C and developed. The same gel was also used to quantify protected bands using a Bio-

Rad molecular imager. To develop the exposed film the following steps were performed: soaked

in 1X developer for 2 minutes, washed in water for 2 minutes , fixed in 1X fixing solution for 1

minute,  and then allowed to air dry.

Section 2.8 In situ Hybridization

Section 2.8.1 Tissue preparation and sectioning
Localisation of PPARα and steroid receptor-coactivator proteins mRNA in the liver mouse liver

was carried out using in situ hybridisation as described by Srinathsinghhji et al. (1990). Control

and MCP (20mg/kg) treated liver were obtained as described in section 2.4.17. Liver sections

were taken from lobes and frozen in Tissue-Tec and isopropanol on ice (by dropping in small

volume of Tissue-Tec then placed on weighting boat on isopropanol on ice). Tissue-Tec con-

taining liver lobes was frozen at -70 0C for cryo-sectioning. Slides were prepared 24 hours be-

fore sectioning by coating with Poly-L-Lysine (5mg/ml) and baked for 2 to 3 hours, and the

slides were stored in a metal rack covered in aluminium foil until use. Cryo-sections of 1µm

thickness were cut with a cryotome, placed on poly-L-lysine coated slides and stored in 95%

ethanol at 4 0C. Sections were usually prepared 24 hours prior to the hybridisation experiment.

Section 2.8.2 Probe Labelling and Hybridisation
Sense and anti-sense oligo-probes of 45 nucleotides in length were designed from 5’-end of re-

spective mouse gene concerned and syntheiszed by John Kyte (Biomedical Synthesis and Anal-
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ysis unit, QMC, Nottingham). Sense and antisense oligo-probes used are listed in Table 2.3. 

A Boehringer Mannheim TDT (terminal deoxynucleotidyl transferase) labelling kit was used to

label both sense and anti-sense probes. Terminal transferase from calf thymus was used to label

the 3’ ends of single stranded oligo probes with radioactively labelled [α35S] dATP. The fol-

lowing components were mixed in a 0.5ml microfuge tube and incubated at 37 0C for 1 hour:

The reaction was terminated by the addition of 40µl H2O 

Primer Sequence (5’ to 3’)

PBP sense CCATACACTGATCCAGCTGACCTTATTGCAGATGCTGCTGGAAGC

PBP antisense GCTTCCAGCAGCATCTGCAATAAGGTCAGCTGGATCAGTGTATGG

SRC-1 sense AGCTCACAGCTGGATGAGCTCCTCTGTCCACCAACAACAGTAGAA

SRC-1 antisense TTCTACTGTTGTTGGTGGACAGAGGAGCTCATCCAGCTGTGAGTC

CBP/p300 sense GCAGGAGAGCAAGTACATAGAGGAGCTGGCAGAGCTCATCTCTGC

CBP/p300 antisense GCAGAGATGGACTCTGCCAGCTCCTCTATGTACTTGCTCTCCTGC

GS sense CAGTCTGAAGGCTCCAACAGCGACATGTACCTCCATCCTGTTGCC

GS antisense GGCAACAGGATGGAGGTACATGTCGCTGTTGGAGCCTTCAGACTG

RIP-140 antisense GAGGAAGGACTGGCCTCGTTGTCAGTGGTCACGGCTCCATCTGTC

PGC-1 antisense CTAGAGCTGAATGACTGAAGCAAAGAGGCCAGCAATGTGCTATCC

Table 2.3 List of oligo primers used for in situ hybridisation. 

component volume (µl)

[5X] TdT buffer  .............................................................. 2.0

CoCl2  ................................................................................... 1.0

TdT enzyme (25 units/µl)  ..................................................... 1.0

dATP [α35S] (12.5 mCi/ml)  ............................................. 1.0

Oligo-probe (4 ng/µl)  ..................................................... 2.5

DEPC-treated H2O  ......................................................... 2.5
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Section 2.8.2.1 Purification of the pobe

Non-incorporated dATP was removed from the reaction mix using a Sephadex G-50 column.

The matrix was prepared by suspending 5g of Sephadex G-50 in 100ml of TENS solution (5.84g

NaCl, 1.58g Tris, 0.37g EDTA dissolved in 1 litre H2O and adjusted to pH 8.0), stood overnight,

DEPC treated and autoclaved. The Sephadex column was made by plugging the bottom of a 2ml

syringe barrel with autoclaved siliconised glasswool and Sephadex suspension was poured and

allowed to set. The tube was spun briefly at 2000g to drain residual liquid. Before the addition

of the diluted reaction mix to the column 1µl was removed for sintillation counting (represent-

ing total radioactivity in the reaction). The probe preparation was added to the top of the column

and spun at 2500 rpm at 4 0C for 10 minutes. Incorporation of radioactivity in the probe was

measured by scintillation counting of 1µl of this spun sample and comparing this to the total

radioactivity of the reaction. Two µl of 1M DTT was added to the purified probe and kept on

ice until required. 

Section 2.8.2.2 Hybridisation

composition of reagents 

Hybridisation Buffer:

To make 10ml of hybridisation buffer following components were added and warmed to 50 0C and then 1 gram of

dextran sulphate gradually added and mixed to homogeineaty.
Page 105



Munim Choudhury   Section 2.8.2
Slides containing tissue sections were removed from ethanol and air-dried in a fume hood.

Probes were diluted in hybridisation buffer to a final radioactivity of 150,000 cpm/50µl. Fifty

µl of diluted probe was applied to the tissue section of each slide and then overlaid with the un-

derside of NESCO film to prevent evaporation of the hybridisation solution. The slides were

placed inside a sterile humidified (with DEPC-treated H2O) bioassay dish and incubated over-

night at 42 0C in sterile oven free from RNase contamination.

Section 2.8.2.3 Stringency Washes

Following hybridisation a series of washes with decreasing salt concentrations were performed

with gentle agitation on four-way rocker to remove any non-hybridised probe. Slides were first

washed for 20 minutes at room temperature in 1x SSC/0.5% β-mercaptoethanol [SSC = 1.75.3g

NaCl, 88.2g Sodium Citrate per litre DEPC-treated H2O, adjusted to pH 7.0]. Two 35 minutes

washes were then carried out at 55 0C in 1x SSC, and then one wash with 0.1x SSC at room

temperature. Slides were dehydrated by dipping first in 70% ethanol and then in 95% ethanol

for 10 seconds and then air-dried. 

component volume (ml)

100% Deionised Formamide      ......................................................... 5.0

20x SSC   .......................................................................................... 2.0

0.5M Sodium Phosphate     ................................................................ 0.5

0.1M Sodium Pyrophosphate   .................................................... 0.1

[10x] Denharts   ................................................................................. 0.5

Salmon sperm (10mg/ml)    ............................................................... 0.2

Polyadenylic Acid (5mg/ml)   ............................................................. 0.2

Sodium Heparin (120mg/ml)  ........................................................... 0.01

1M DTT    ........................................................................................ 0.2

DEPC-treated H2O  .......................................................................... ~1.29
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Section 2.8.2.4 Emulsion Autoradiography

In order to detect radioactive signal on the tissue section, dried slides were coated with silver

grain emulsion (Kodak liquid autoradioraphy emulsion) by dipping in the emulsion briefly in

the dark and then air-dried. Coated slides were placed in a light-proof box and exposed at 4 0C

until optimal signal could be detected. After an appropriate length of exposure, slides were de-

veloped as for normal autoradiography by placing in developer for 5 minutes, 2 minutes in wa-

ter, 5 miuntes in fixer and 20 minutes in water. Soon after fixation, tissue sections were stained

with haematoxylin for 10 minutes, washed in running water for 10 minutes and then dehydrated

in a series of alcohols: 70%, 90% and 100% ethanol for 1 minute each. Slides were dried at room

temperature and coverslip was placed in between tissue sections and oil-based mountant. Slides

were viewed under light-field microscopy for the detection of signal that appears as black silver

grains over the cell nuclei.

Section 2.9 Protein Methodologies

Section 2.9.1 Bradford Assay

Composition of Reagents:

Bradford reagent: 

the following chemicals were dissolved in and made up to 1 litre with UHP water and filtered through Whatman

paper.

Serva blue G 100 mg

85% Phosphoric acid 100 ml

95% ethanol 50  ml

1M NaOH

Bovine Serum Albumin (2mg/ml)

Protein standards were prepared using Bovine Serum Albumin (BSA) to cover a protein con-

centration range of 0-40µg/ml. For assay purposes, 30µl of protein sample was mixed with 50µl
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of 1M NaOH and then 950µl of Bradford reagent was added. The solution was vortexed thor-

oughly and incubated at room temperature for 5 minutes. Their absorbance was measured im-

mediately at 590nm using a plastic cuvette. Each sample and protein standard were assayed in

triplicate and the mean values were used. A linear plot (r2>0.95) of BSA standard was used to

determine the concentration of protein samples.

Section 2.9.2 SDS-Polyacrylamide gelelctrophoresis (SDS-PAGE)

Composition of Reagents:

SDS-PAGE Loading Buffer[5X]: [250mM Tris-HCl (pH 6.8), 0.5M DTT, 10% SDS (w/v), 

0.5% Bromophenol Blue (w/v), 50% glycerol (v/v)]

Electrophoresis Buffer: [25mM Tris-HCl (pH 8.3), 250mM Glycine, 0.1% SDS (w/v)]

Coomassie Blue: [0.25g Coomassie Brillant Blue R250 in 90ml Methanol:Water (1:1), 10ml Glacial acetic acid]

Destaining Solution: [30% methanol, 10% glacial acetic acid]

SDS-PAGE, first described by Laemmli 1970, separate proteins by molecular weight under de-

naturing conditions. Interaction of SDS with the amino acid chain of the protein results in a net

negative charge, and therefore proteins are separated according to the length of the protein i.e.

molecular weight. A 12% gel  (resolution range 12-75 kDa) was used to separate the protein of

interest which has a molecular weight of 33.3 kDa. Protein gels were perepared and run using a

Bio-Rad Mini-PROTEAIN II electrophoresis kit as instructed by the manufacturer. Resolving

and stacking gel mixes were premade separately by adding the following components and

stored at 4 0C until required, with the exception of 10% APS, which was added to the required

gel volume on the day of use prior to pouring into the gel plate:

Composition of a 12% Resolving & 5% Stacking Gel mix (100ml):
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Polymerisation of resolving gel was initiated by the addition of 10% APS, and the solution was

immediately poured into the assembled gel plates. Soon after the pouring of the gel solution, it

was overlaid with 300µl of 0.1% SDS and left to polymerise at room temperature for 30 min-

utes. SDS was decanted off the surface and cleaned with water. Stacking gel mix (containing

SDS) was applied to the top of the resolving gel and a comb was inserted at the top of the gel

plate. The gel was left to polymerize for 30 minutes.

Protein samples were prepared by mixing with 1x loading buffer and denatured by boiling in

water for five minutes and then placed on ice. Appropriate amounts of protein samples were

loaded into the gel and electrophoresis was carried out using eletrophoresis buffer for 60 min-

utes. Initially a voltage of 20mA/gel was applied until the sample had fully entered the stacking

gel, after which the current was increased to 75mA/gel.

Section 2.9.3 Coomassie staining     
For visualisation of the resolved protein bands Coomassie blue staining was employed. Imme-

diately after electrophoresis, the gel was immersed in Coomassie staining solution and stained

for 2-3 hours with gentle agitation. The gel was then destained with several changes of  destain-

component
resolving gel 

(ml)
stacking gel 

(ml)

30% acrylamide/0.8% bisacrylamide (37.5:1)
................

40 17

1.5M Tris-HCl (pH 8.8)   ............................................... 25 ---

1.0M Tris-HCl (pH 6.8)   ............................................... --- 13

Autoclaved UHP H2O  .................................................. 33 68

10% SDS   ..................................................................... 1.0 1.0

TEMED  ....................................................................... 0.04 0.04

10% APS   .................................................... ................. 1.0 1.0
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ing solution until the protein bands were clearly visible. Gels were placed onto Whatman 3MM

chromatography paper and dried under a vacum at 80 0C for 60 minutes using Bio-Rad 583 gel

dryer.

Section 2.9.4 Immunoblotting

Composition of reagents:

Methanol

Blocking Solution: [10% Marvel dried milk powder made with 1X TTBS]

1X TBS: [20mM Tris-HCl (pH 7.6), 500 mM NaCl]

1X TTBS: [1X TBS containing 0.1% Tween-20 (v/v)] 

Transfer Buffer: [25 mM Tris-HCl, 192 mM glycine, 20% methanol (v/v), 0.1% SDS (w/v)]

Primary Antibody: [Rabbit Anti-mouse PPARα polyclonal antibody]

Secondary Antibody: [Goat Anti-rabbit IgG (H+L) conjugated to horseradish peroxidase]

ECL Western Blotting detection kit (Amersham Life Science)

1X Developer Solution; 1X Fixing Solution (Ilford)

Section 2.9.5 Electrophorectic transfer of proteins
Protein samples (1-20µg) were first resolved by SDS-PAGE on a 12% gel and then transfered

onto the nitrocellulose filter for immunoblotting according to the modified method of Towbin

et at (1979). The gel was first soaked in transfer buffer for 10 minutes and then placed onto two

sheets of whatman paper pre-wetted with transfer buffer. An appropriate sized PVDF mem-

brane (millipore), pre-soaked in methanol for 2 minutes and then in transfer buffer for 10 min-

utes, was placed on top of the gel, carefully removing any air bubbles. Two more sheets of pre-

wetted whatman paper were placed on the membrane to sandwich the gel and the membrane.

The sandwiched gel was placed into a blotting cassette and electrotransfer of protein to the

membrane was carried out in a Transblot cell containing transfer buffer at 4 0C for 1 hour at a

constant voltage of 90V.
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Section 2.9.6 Probing of transferred protein with antibody
After transfer of protein, the membrane was placed in blocking solution and incubated at room

temperature overnight. The blot was then incubated with primary antibody: rabbit anti-mouse

PPARα antibody (1:20000 dilution with 1X TTBS containing 10% Marvel) for 2 hours with

continuous agitation. The blot was washed four times with ample amounts of 1X TTBS, 5 min-

utes for each wash. After washing in TTBS the blot was incubated with secondary antibody:

goat anti-rabbit IgG-HRP antibody (1:40000 dilution with 1X TTBS containing 10% Marvel)

for 1 hour with continuous agitation. The blot was then washed with TTBS as before and devel-

oped using the ECL kit as instructed by the manufacturer. The blot was exposed to Hyperfilm

(Amersham Life Science) and then developed. 

Section 2.9.7 Expression of bacterially expressed recombinant protein
Mouse PPARα-LBD, also termed LBDwt, encoding the region from amino acid residue 194 to

468, and subcloned into pET15b vector and transformed in BL21[DE3]PLysS bacterial strain

was a kind gift from Dr Colin Palmer (Dundee); Additionally, a mutant version of this LBD pro-

tein was also obtained, named G-mutant or LBDmut (where glycine is substituted for glutamine

at residue 282) (Hsu et al., 1995). Two types of negative control were used for the expression

study: one control was the non-transformed bacterial strain BL21(DE3)PLysS, while the other

was bacterial strain BL21(DE3)PLysS transformed with the same expression plasmid but with-

out the insert.  

Section 2.9.8 Induction of His-tagged Protein

Composition of reagents:

IPTG: [1M]

Antibiotics: [50µM Ampicillin and 30µM Chloramphenicol

LBD transformed BL21(DE3)pLysS

SDS-PAGE Loading Buffer[5X]: [250mM Tris-HCl (pH 6.8), 0.5M DTT, 10% SDS (w/v), 0.5% 

Bromophenol blue (w/v), 50% Glycerol (v/v)] 
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Tris-EDTA: [50mM Tris-HCl, 5mM EDTA]

Small scale culture was used to determine the inducibility and solubility of the recombinant pro-

tein. Fifty µl of overnight culture (from a single colony) was used to innoculate 15ml of LB-

broth, containing appropriate concentration of antibiotics (Amp+Cm), and cultured at room

temperature (shaking at 100 rpm/min) for ~15 hours or at 37 0C for 4 to 5 hours to reach the log

phase of growth. LBD protein expression was induced by adding an appropriate concentration

of IPTG and incubated for further 4 hours. Duplicate samples were taken at various time points

of induction. Samples were centrifuged for 1 minutes at 14 000g, and one set of pellets were

resuspended in 50µl of 1X SDS-PAGE Loading Buffer (SDS-PAGE LB) and incubated at 100

0C for 3 minutes. The protein samples were resolved on a 12% SDS-PAGE gel.  Protein solu-

bility was determined using the other set of samples. To each pellet 50µl of Tris-EDTA (pH 8.0)

buffer was added and the resuspended cells were freeze-thawed 3/4 times, sonicated and centri-

fuged for 5 minutes at 14 000g. The pellets were resuspended in 25µl of 1X SDS-PAGE LB,

and the supernatant was transfered to a fresh tube and mixed with equal volume of 5X SDS-

PAGE LB. Samples were resolved in 12% polyacrylamide gels and the resolved protein bands

were visualised by Coomassie blue staining.

Section 2.9.9 Affinity Chromatography

Composition of reagents:

IPTG-induced his-tagged LBD protein (500ml culture)

The following buffers were diluted to 1X prior to use in the Ni2+ affinity chromatography

Component 
Binding 

Buffer [8X]
Elute 

Buffer [4X]
Wash 

Buffer [8X]
Strip 

Buffer [4X]
Charge 

Buffer [8X]

Imidazole 40mM 4M 480mM ----

NaCl 4.0M 2M 4M 2M ----

Tris-HCl (pH 7.9) 160mM 80mM 160mM 80mM ----

EDTA ---- ---- ---- 400mM ----
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Nickel affinity column chromatography was used to purify histidine tagged mPPARα LBD pro-

tein. IPTG induced cultures (500ml) were harvested by centrifugation at 4000g for 20 minutes

and the cell pellet was resuspended in 10ml ice-cold binding buffer (1X). The Novagen PET

purification system using a Ni2+ resin was followed according to the manufacturer instructions.

Using a sonicator, resuspended cells were sonicated (50% power output) 5 times (30 seconds

for each pulse) with a cooling period of 30 seconds between pulses. To prevent overheating,

sample tubes were kept on ice during sonication and the sonicator probe was cooled in sterile

ice-cold water following each pulse. Soluble proteins were separated from cell debris by cen-

trifugation at 20 000g for 20 minute at 4 0C. Affinity columns were prepared prior to purifica-

tion using His.Bind resin (Novagen) charged with the divalent cation Ni2+. Supernatant

containing soluble proteins was filtered through a 0.45 micron membrane and then loaded on to

the column. The column was washed with 10 volumes of 1X binding buffer followed by 6 vol-

umes of 1X wash buffer. Bound proteins were eluted from the column with 6 volumes of 1X

elution buffer. All wash and eluant fractions were collected as small volumes for analysis by

SDS-PAGE. Following the last elution step the column was washed with 3 volumes of 1X strip

buffer and then recharged with 5 volumes of 1X charge buffer. The proteins eluted from the sol-

uble fraction were dialysed to remove any small molecular weight proteins and to reduce the

concentration of solutes such as salt and imidazole. Dialysis was carried out in a dialysis tube

(with exclusion limit of 6,000 MW) for ~15 hours at 4 0C with five changes of 0.1M Tris-HCl

(pH 8.0). Protein samples were then run on ion-exchange column chromatography, by FPLC

(Fast Protein Liquid Chromatography). 

NiSO4 ---- ---- ---- ---- 400mM

Component 
Binding 

Buffer [8X]
Elute 

Buffer [4X]
Wash 

Buffer [8X]
Strip 

Buffer [4X]
Charge 

Buffer [8X]
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Section 2.9.10 FPLC Chromatography

Composition of reagents:

Buffer A: [0.1M Tris-HCl, pH 8.0]

Buffer B: [1M NaCl in 0.1M Tris-HCl, pH 8.0]

Eluted his-tagged LBD protein samples from the Ni2+ column were further purified from con-

taminating proteins and solutes and concentrated using ion-exchange FPLC chromatography.

Dialysed proteins were passed through a weak cation exchanger (Econo-S, pH range 2-10) us-

ing Buffer A and Buffer B at a pH just over one unit above the isoelectric point of the LBD pro-

tein (pH 6.6). Protein samples (1 ml per run) were separated using isocratic flow conditions of

0-50% Buffer B for 10 minutes with a flow rate of 1ml/min. Protein separation were monitored

using UV detector and eluted fractons (protein peaks) were collected according to their reten-

tion time on the chromatogram.

Section 2.10 Data Presentation and Analysis

Section 2.10.1 Illustration
Tissue sections on which in situ hybridisation was carried out were analysed using a Carl Zeiss

light microscope. For illustrative purposes images were captured using Media Grabber software

on an Apple Mac computer and then manipulated in Photoshop (Adobe, version 5.5) for presen-

tation using the frame maker capability(Adobe, version 5.5). Pictures presented for peroxisome

proliferation and DNA synthesis studies were photographed directly from the tissue culture

flasks using Fuji-Sensia film. Pictures presented for apoptosis was viewed using a fluorescence

microscope and photographed using Fuji-Sensia film.  

Section 2.10.2 Statistical Analysis
Data presented for hamster CYP4A induction and mouse, hamster and guinea pig PPARα ex-

pression were analysed using Student’s t-test with a confidence limit of 95% using the computer

package Sigma Plot (version 5.0). Values are considered significant if p< 0.05 (i.e. the null hy-
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pothesis was rejected at p< 0.05).
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Chapter 3 Results

Section 3.1 In vitro study of peroxisomal events

The pleiotropic responses to peroxisome proliferators are mediated by the steroid receptor PPA-

Rα (Lee et al., 1990). It is intriguing that this phenomenon of peroxisome proliferation is ob-

served in species such as mouse and rat but not in guinea pig  or human even though they all

express PPARα in the liver. If peroxisome proliferation is mediated by PPAR α then such spe-

cies differences could reflect either variation in the level or the function of PPARα. It was hoped

to develop an in vitro system to study the physiological responses induced by PPARα from spe-

cies displaying varying level of responsiveness to peroxisome proliferators. Following their

transfection, the response of different forms of exogenous PPARα (mouse, guinea pig and two

variants of human PPARα) could be studied in such a system by studying their effects on DNA

synthesis as a marker of peroxisome proliferation.

Section 3.2 Primary rat hepatocyte culture system

Hepatocytes from male Wistar rats were isolated by an in situ, two-step collagenase perfusion

assay as described in Section 2.2. This isolation procedure, originally described by Mitchell et

al., 1984, has been established in our laboratory as described  by NJ Horley and NJ Plant (PhD

theses). Although the cell viability varied between individual isolation procedures, the typical

viability was greater than 86% as determined by Trypan blue exclusion method. A typical iso-

lation procedure yielded 4x108 viable hepatocytes from a 200-250g male rat. A uniform mono-

layer of hepatocytes was formed 24 hours after seeding 2x106 cells per flask (25 cm2 growth

area), and the hepatocytes were cultured and maintained as described previously by NJ Plant

(PhD thesis).

Section 3.2.1 DNA synthesis in primary hepatocyte culture
A high level of DNA synthesis has been observed in rats and mice exposed to peroxisome pro-
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liferators that act in a dose dependent manner and represent a good marker of peroxisome pro-

liferation (Styles et al., 1988). Previous studies have demonstrated that rat primary hepatocyte

cultures respond well to peroxisome proliferators, especially in the induction of specific mi-

crosomal and peroxisomal genes and their enzymic activities (Mitchell et al., 1984; Bell and

Elcombe 1991). This hepatocyte culture system has been shown to respond well to peroxisome

proliferator-induced DNA synthesis to a level that is comparable to in vivo studies (Plant et al.,

1998). Using this system, it was hoped to study further aspects of peroxisome proliferation, in

particular DNA synthesis. Initially, induction of DNA synthesis has been studied in an attempt

to reproduce such data.

Section 3.2.1.1 Mitogenic stimulation by epidermal growth factor 

Primary hepatocytes are known to respond well to the hepatic mitogen epidermal growth factor

(EGF) (Michalopoulos 1990), and thus EGF was used in the first instance to demonstrate that

the cultured hepatocytes were responsive to mitogens, that is they were capable of undertaking

Figure 3.1 Immunochemical detection of BrdUrd labelled cells.  Hepatocytes were seeded at a plating density of
2x106 cells per 25-cm2 flask and cultured for 24 hours before EGF (10ng/ml) was added in the medium. DNA synthesis was
measured by incorporation of BrdUrd at 24-48 hours after the addition of EGF. Incorporated BrdUrd was detected by immuno
cytochemistry as described in methods. Labelled cells stain their nuclei as dark-brown (as shown by solid arrow)
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DNA synthesis. This replicative DNA synthesis was measured by incorporation of BrdUrd into

DNA during S-phase, which was then visualised by immunocytochemistry. EGF, at a concen-

tration of 10ng/ml, caused a large increase in the number of labelled cells as demonstrated in

Figure 3.1. Induction of DNA synthesis was expressed as the labelling index (%), and the quan-

tified data shows that the EGF gave a labelling index of 9.8% (+/- 1.9) while the control gave a

0.95%  (+/- 0.3). A labelling index of 10-fold above control (p<0.01) was observed with EGF

(Figure 3.3). This demonstrates that the cell culture system is capable of supporting high level

induction of DNA synthesis.

Section 3.2.1.2 PP-induced DNA synthesis in primary rat hepatocyte culture

Peroxisome proliferators have been shown to induce liver DNA synthesis in a dose dependent

manner both in vitro and in vivo (Styles et al., 1988; Plant et al., 1998) which reflects their po-

tency in causing peroxisome proliferation. Having found that EGF caused a high level of induc-

Figure 3.2 Peroxisome proliferator-induced DNA synthesis in rat hepatocytes.  Hepatocytes were seeded at a
plating density of 2x106 cells/flask and cultured for 24 hours. Cells were then exposed to (a) control medium, (b) vehicular con-
trol DMSO, (c) 100µM MCP and (d) 100µM Wy-14,643. DNA synthesis was measured by incorporation of BrdUrd 6-30 hours
after dosing. Incorporated BrdUrd was detected by immunocytochemistry as described in methods. Labelled cells stain their
nuclei as dark-brown (as shown by solid arrow).

A B

C D
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tion of DNA synthesis (Figure 3.1 and Figure 3.3), the system was then tested with two potent

peroxisome proliferators MCP and Wy-14,643 for their ability to induce DNA synthesis. Figure

3.2 shows the effect of MCP and Wy-14,643 on DNA synthesis, as measured by BrdUrd la-

belled cells. 

The labelling indices from the experiments shown in Figure 3.2 were quantified, as shown in

Figure 3.3. The basal level of DNA synthesis of the culture (i.e. untreated control) was 0.95%

(+/- 0.3) while both MCP and Wy-14,643 induced this DNA synthesis to 2.4% (+/- 0.56) and

3.1 (+/- 0.55), respectively. A maximum of 3-fold induction (p<0.01) was observed with Wy-

14,643, while MCP gave a 2.5-fold induction (p<0.01) in DNA synthesis. These experiments

Figure 3.3 Induction of DNA synthesis in primary rat hepatocyte cultures.  Twenty-four hours after seeding
hepatocytes were exposed to the test chemicals 10ng/ml EGF, 100µM MCP, 100µM Wy-14,643 or 10µl DMSO. DNA synthe-
sis was measured by the incorporation of BrdUrd between 6-24 or 24-48 hours after dosing with peroxisome proliferators MCP
and Wy-14,643, and EGF, respectively. DNA synthesis was determined by immunocytochemical localization of BrdUrd as de-
scribed in methods. Data are expressed as labelling index where four fields (~1200 cells) were counted for two flasks and the
experiment was repeated on at least on three occasions.  Statistical significance was determined by Student’s t-test, and values
significantly different from control are indicated by ** = p<0.001 and * = p<0.01. Error bars shown represents the standard
deviation from the mean.
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were repeated on more than five occasions with no success in obtaining higher levels of induc-

tion. This level of induction of DNA synthesis by peroxisome proliferators is much lower than

previously reported (Plant et al., 1998). Therefore the culture conditions were varied in order to

obtain higher levels of DNA synthesis.

The influence of media components such as fetal calf serum and hydrocortisone on the level of

DNA synthesis was investigated. When these components were omitted individually from the

medium there was a general reduction in the total number of cells undergoing DNA synthesis

observed (Figure 3.4). However, the level of induction of DNA synthesis by MCP and Wy-

14,643 was not affected. In the case of EGF, there was a slight reduction in the level of induction

    + CO2           Complete Medium       - FCS                - Hyd

Figure 3.4 Effect of medium components and culture conditions on DNA synthesis.  Hepatocytes were seed-
ed at a plating density of 2x106/flask, and cultured for 24 hours in complete CL-15 medium or medium with components re-
moved as indicated. Generally, hepatocytes were cultured in a humidified non-CO2 conditions unless otherwise indicated. Cells
were exposed to the test chemicals 10ng/ml EGF, 100µM MCP, 100µM Wy-14,643 or 10µl DMSO. DNA synthesis was mea-
sured by the incorporation of BrdUrd between 6-24 or 24-48 hours after dosing with peroxisome proliferators MCP and Wy-
14,643, and EGF, respectively. DNA synthesis was determined by immunocytochemical localization of BrdUrd as described in
methods. Data are expressed as labelling index where four fields (~1200 cells) were counted for two flasks and the experiment
was repeated on at least two occasions.
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of DNA synthesis. When cells were cultured in humidified conditions with 5% CO2, there was

a general increase in the total number of cells undergoing DNA synthesis with up to 35 % of

cells in S-phase when exposed to EGF. Since this culture condition also caused an increase in

control values, the level of induction  of DNA synthesis by peroxisome proliferators remained

unaffected. In view of the low induction of DNA synthesis by PPs, it would not be possible to

perturb expression of PPARα and then measure the effect on DNA synthesis.

Section 3.2.2 Effect of peroxisome proliferators on apoptosis
In addition to mitogenic stimulation, suppression of apoptosis by peroxisome proliferators has

been observed in hepatocytes (James and Roberts 1996). If the level of suppression is large in

Figure 3.5 Suppression of apoptosis by peroxisome proliferators.  Hepatocytes were seeded at a plating density
of 2x106 cells per 25-cm2 flask and cultured for 24 hours before MCP (100µM) was added to the medium. Cells were exposed
to MCP for 48 hours, and then fixed as described in methods. Fixed cells were stained with Hoescht 33258 for the detection o
apoptosis. A, B and C represent control hepatocytes, showing apoptotic cells (red arrow) as viewed under fluorescent micros-
copy, and D represent MCP treated hepatocytes, showing mitosis (yellow arrow).  

D C

A B
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primary hepatocytes then apoptosis could be used as a marker of peroxisome proliferation when

investigating the effects of PPARα by peroxisome proliferators. Figure 3.5 shows the effect of

the peroxisome proliferator MCP on apoptosis in primary rat hepatocytes. A low basal level of

apoptosis was found in rat primary hepatocytes, which was suppressed by the peroxisome pro-

liferator MCP. The quantified data, using two independent experiments, shows that there was a

40% reduction in apoptosis (control= 1.5%, MCP= 0.59%) observed following the treatment of

hepatocytes with 100µM MCP. Thus, rat primary hepatocyte culture underwent peroxisome

proliferator-induced suppression of apotosis. However, this level of supression is not big

enough to use apoptosis as a marker of peroxisome proliferation in the study of PPARα func-

tion.

Section 3.2.3 Induction of CYP4A1 in primary rat hepatocyte culture
Cytochrome P4504A1 (CYP4A1) is an early marker of peroxisome proliferation which is high-

ly induced in rats following administration of peroxisome proliferators (Bell et al., 1991). The

level of induction of CYP4A1 is much higher than DNA synthesis and apoptosis, and therefore

offers an alternative system to study how PPARα induces physiological responses. Therefore

the induction of CYP4A1 by peroxisome proliferators was investigated in rat primary hepato-

cyte culture maintained in normal and hydrocortisone-deficient media.

Section 3.2.3.1 Extraction of in vitro and in vivo RNA

Total RNA was isolated from untreated rat liver and kidney using the method of Chomczynski

and Sacchi as described in Methods. The approximate yields of total RNA from one gram of

liver and kidney were 1.2 and 0.5mg, respectively. RNA from primary rat and mouse hepato-

cytes was isolated using the method of Rothblum et al. and gave a typical yield of 50µg of total

RNA per flask initially seeded with 2x106 cells for rats, while for mouse 30µg of RNA was ob-

tained per flask seeded with 1x106 cells.
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Total RNA from PPARα wild-type and knock-out mice treated with corn oil, MCP and Wy-

14,643 were extracted using the LiCl/urea method. After three days of treatment with peroxi-

some proliferators MCP and Wy-14,643 hepatomegaly was observed only in wild type mice.

Approximately 1.5-1.8mg of RNA was extracted from one gram of liver tissue processed.

RNA from hamster liver was a generous gift from S Chahal (Nottingham University) and was

used in the RNase protection assay. Hamster total liver RNA and guinea pig liver RNA were

extracted using the method of Cathala et al. (1983). Hepatomegaly was observed in hamsters

dosed with peroxisome proliferators, with up to 20% increase in liver weight (see Choudhury et

al., 2000). An RNA yield of 1.5mg per gram of liver was obtained using the Cathala purification

protocol. RNA used in PCR cloning of hamster CYP4A and PPARα was purified with a com-

mercial kit (Advanced Biotechnology) with a yield of 1mg per gram of liver tissue. Figure 3.6

shows the integrity of RNA as analysed by agarose gel electrophoresis. . 

Section 3.2.3.2 Expression and induction of rat CYP4A1 in liver and kidney

Expression of CYP4A1 mRNA was investigated in male rat liver and kidney using a ribonu-

Figure 3.6 Agarose gel electrophoresis of total liver RNA.  Analysis of a typical RNA extraction from mouse liv-
er. RNA was extracted from 1g of tissue using the method of Chomczynski and Sacchi as described in methods, and resuspended
in 500µl DEPC-treated water. One µl of sample from each preparation (samples 1-6) was run on a 0.8% agarose gel (containing
0.1% SDS ) at 70v for 2 hours using 1xTBE. Intact 28S and 18S rRNA bands are shown by the arrow. 

  1         2         3          4          5           6

28S

18S
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clease protection assay (RNase protection). Initially, RNase protection assay was developed and

optimised using RNA extracted from tissue samples as CYP4A1 is easily detectable in vivo due

to its high level of  expression. Cloning vector pGEM7 containing a CYP4A1 cDNA insert was

used as a template to generate the riboprobe encompassing the 3’ end of the RNA, and an anti-

sense riboprobe was generated by transcribing from the T7 promoter using an NcoI restriction

digested template as shown in Figure 3.7. This results in a 230bp transcript of which 190bp cor-

responds to the CYP4A1 cDNA insert.

Hybridisation of riboprobe to total tissue RNA resulted in a specific protected fragment which

is detected in a denaturing urea/polyacrylamide gel. The specificity of the fragment was shown

by hybridisation of the riboprobe to yeast tRNA in the absence (RNase -ve) and presence

(RNase +ve) of RNase A. No protected fragment is present after treatment of yeast tRNA hy-

bridised to the probe with RNase A. As expected, the expression of CYP4A1 was detected in

both liver and kidney, and the constitutive level of expression of CYP4A1 in liver was higher

compared to kidney (Figure 3.8). CYP4A1 was induced in both liver and kidney, however the

level of induction was much greater in liver when compared to kidney. The temperature of hy-

bridisation and amount of RNase A was varied: optimal conditions for hybridisation and the de-

tection of the protected fragment were found to be 30 µg of RNA hybridised to the probe at 42

T7

ClaI

EcoRI

CYP4A1 cDNA 1.2kb

anti-sense 

sense 

NcoI Probe = 230bp

Figure 3.7 Diagramatic representation of CYP4A1 template.  A 1.2kb fragment corresponding the 3’ untrans-
lated region of the rat CYP4A cDNA (residues 965-2157) was subcloned into the EcoRI/ClaI site of the polylinker region of
pGEM7 cloning vector. Anti-sense riboprobe can be generated by in vitro transcription of NcoI cut template from T7 promot-
er, resulting in 232bp length probe of which 190bp corresponds to CYP4A1 insert.

pGEM7
SP6
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0C and 10µg/ml RNase A treatment following hybridisation (data not shown). Using these op-

timised conditions, expression of CYP4A1 was detected in primary rat hepatocyte culture in

control and MCP treated RNA samples (Figure 3.8). Induction of CYP4A1 mRNA by MCP was

evident in primary rat hepatocyte culture when compared to control. Therefore this system

shows a highly inducible response (induction of CYP4A1) to peroxisome proliferators in vitro. 

Section 3.2.3.3 Effects of hydrocortisone on the inducion of CYP4A1 in hepatocytes

Glucocorticoid hormone has been shown to modulate PPARα at the transcriptional level in a

primary rat hepatocyte culture system (Lamberger et al., 1996). Since peroxisome proliferators

induce the expression of CYP4A gene through transcriptional activation of PPARα, reducing

Figure 3.8 Expression of and induction of CYP4A1 gene in rat tissue.  RNase protection assay was performed
on control (C) and MCP (M) treated total RNA of rat liver and kidney (25 mg/kg for 24hrs) and primary hepatocytes (48hrs
exposure to 100µM MCP). Anti-sense riboprobe were generated as described in the text. A 230bp lengh probe (solid arrow)
was generated which gave a 190bp protected fragment (solid arrow with an asterisk) representing the CYP4A1 sequence. Total
RNA was extracted as described in methods, and 30µg of RNA of each sample was used to hybridise [α-32P] CTP labelled
probe. The specificity of the probe was determined by inclusion of two control yeast tRNA samples hybridised to the probe.
One sample was treated without RNase A (-ve), while the other was treated with RNase A (+ve).  Following hybridisation and
RNase A treatment, precipitated RNA samples were resolved in a 6% denaturing urea/acrylamide gel by running in 1xTBE for
2 hours at 120v.  Gels were fixed, dried and exposed to Hyperfilm at -80 0C for 15 hours.     

ladder (bp)   M  C           C    M       M    C   +ve   Probe dilution    -ve
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the level of PPARα may affect the transcriptional induction of CYP4A by peroxisome prolifer-

ators. Thus the induction of CYP4A1 mRNA in primary hepatocytes, maintained in normal CL-

15 medium  and in hydrocortisone deficient medium, was investigated following exposure to

MCP for 48 hours. Figure 3.9 demonstrates that the level of induction of CYP4A1 following

treatment with MCP is reduced in cells cultured in hydrocortisone-deficient medium when com-

pared to cells maintained in medium containing hydrocortisone. Quantification of the protected

fragment on a phosphor imager shows that MCP caused up to 14-fold induction of  CYP4A1

compared to control in hepatocytes maintained in normal medium (Figure 3.10). This level of

induction was reduced to 2.3-fold when cultured in hydrocortisone deficient media, and the ex-

periment was repeated on more than two occasions. The culture conditions were varied, with a

view to maximising the difference in induction of CYP4A1 between cultures with and without
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hydrocortisone. 

Figure 3.9 Effects of hydrocortisone on induction of CYP4A1.  Isolated hepatocytes were seeded at a density of
2x106 cells per flask in CL-15 medium containing hydrocortisone. Four hours after seeding the medium was replaced with fresh
medium containing either hydrocortisone (+Hyd) or no hydrocortisone (-Hyd) as indicated. Twenty-four hours after seeding
cells were dosed with 100 µM MCP or DMSO and cultured for a further 48 hours. RNase protection were carried out using a
CYP4A1 antisense riboprobe as described in methods. Total RNA was extracted as described in methods, and 30µg of RNA of
each sample was hybridised to the CYP4A1 probe. The specificity of the probe was determined by inclusion of two control
yeast tRNA samples and hybridised to the probe. One sample was treated without RNase A (-ve), while the other was treated
with RNase A (+ve).  Following hybridisation and RNase A treatment, precipitated RNA samples were resolved on a 6% de-
naturing urea/acrylamide gel by running in 1xTBE for 2 hours at 120v.  Gels were fixed, dried and exposed to Hyperfilm at -
80 0C for 12 hours. Full-length probe is indicated by arrow while protected fragment is shown by arrow with asterisk placed
next to it.
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Section 3.2.3.4 Effects of culture conditions on the induction of CYP4A1 

Induction of CYP4A1 in primary hepatocyte culture was investigated following exposure to

MCP for 24, 48 and 72 hours.  MCP (10-100µM) induced CYP4A1 in a dose dependent manner

and 100µM MCP was found to give high levels of CYP4A1 induction (data not shown) which

Figure 3.10 Induction of rat CYP4A1.  Isolated hepatocytes were seeded at a density of 2x106 cells/flask in CL15 me-
dium containing hydrocortisone. Four hours after seeding the medium was replaced with fresh medium containing either hy-
drocortisone or no hydrocortisone as indicated. Twenty-four hours after seeding cells were dosed with MCP or DMSO and
cultured for a further 48 hours. RNase protection were carried out using a CYP4A1 antisense riboprobe as described in methods.
Thirty micrograms of RNA was used for each sample. Protected bands were quantified using a phosphor imager and the results
are expressed as percentage induction over control, and represent mean value of a least two separate experiments.
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was used for subsequent studies. Twenty-four hours of dosing resulted in a 40-fold induction of

Figure 3.11 Effects of dosing period in the induction of CYP4A1.  Isolated hepatocytes were seeded in normal
CL-15 medium at a density of 2x106 cells/flask. Four hours after seeding the medium was replaced with fresh medium contain-
ing either hydrocortisone (A, C) or no hydrocortisone (B, D) as indicated by + and -, respectively. Twenty-four hours after seed-
ing cells were dosed with 100µM MCP or 10µl DMSO and cultured for a further 24 (A, B), 48 or 72 hours (C, D) as indicated.
For 24hr dosing study, one sets of flasks were cultured for 48 hours following seeding before being exposed to MCP or DMSO
(indicated by asterisk). RNase protection were carried out using a CYP4A1 anti-sense riboprobe as described in methods. Total
RNA was extracted as described in methods, and 30µg of RNA of each sample was hybridised to the probe overnight. The spec-
ificity of the probe was determined by inclusion of two control yeast tRNA samples hybridised to the probe. One sample was
treated without RNase A (-ve), while the other was treated with RNase A (+ve). Following hybridisation and RNase A treat-
ment, precipitated RNA samples were resolved in a 6% denaturing urea/acrylamide gel by running in 1xTBE for 2 hours at
120v. Gels were fixed, dried and exposed to hyperfilm at -80 0C for 15 hours. Protected bands were quantified using a phosphor
imager and the results are expressed as fold induction. L = 1kb ladder shown in base pair. Full-length probe is indicated by un
filled arrow while protected band is shown by filled arrow.

A B

C D

    c  d   m  m   c +ve        L                                           m  m      L   c   d   m   m   c

+24hr   +24hr*   probe    -24hr     -24hr*

                      c d m  m c  L                                                               c  m   m  d  c

-72hr probe      -48hr  +72hr  +48hr      -ve

    +24hr    probe

1kb
ladder

200

300

500

  probe  +ve   +ve

-ve
Page 129



Munim Choudhury   Section 3.2.3
CYP4A1 in medium containing hydrocortisone (Figure 3.11 and Figure 3.12). However, there

was also an increase in CYP4A1 induction observed in hydrocortisone-deficient medium (16-

Figure 3.12 Induction of CYP4A1 after different dosing periods.  Isolated hepatocytes were seeded at a density of
2x106 cells/flask in CL-15 medium containing hydrocortisone. Four hours after seeding the medium was replaced with fresh
medium containing either hydrocortisone or no hydrocortisone as indicated. Twenty-four hours after seeding cells were dosed
with 100µM MCP or 10µl DMSO and cultured for a further (A) 48 (B) or 72 (C) hours. RNase protection were carried out using
a CYP4A1 antisense riboprobe as described in methods. Thirty micrograms of RNA was used for each sample. Protected bands
were quantified using a phosphor imiger and the results are expressed as fold induction as percentage of control, and represent
mean value of a least two separate experiments. The ratio of the fold induction by MCP in normal : hydrocortisone-deficient
media is shown in (D).
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fold induction), which resulted overall in a differential induction of 2.8-fold by MCP between

normal and hydrocortisone-deficient media. Exposure of hepatocytes, 48 hours after seeding,

with MCP for 24 hours, resulted in no increase in the overall CYP4A1 induction when com-

pared between normal and hydrocortisone-deficient media for the same dosing period (Figure

3.11, quantified data not shown). Dosing periods of 48 and 72 hours reduced the level of induc-

tion seen in hydrocortisone-deficient medium. Although a reduction in CYP4A1 induction was

observed in hepatocytes maintained in normal medium after dosing with MCP for 48 hours (14-

fold) and 72 hours (9-fold), there was an increase in the overall induction by MCP between nor-

mal and hydrocortisone-deficient media. A maximum 7-fold overall induction of CYP4A1 was

achieved in hepatocytes dosed with MCP for 48 hours in normal medium when compared to

CYP4A1 induction in hydrocortisone-deficient medium for the same exposure period. Expo-

sure of hepatocytes to different dosing periods did not significantly improve the ratio of induc-

tion by MCP in normal versus hydrocortisone deficient media (Figure 3.12 D). 

It was hoped that the induction of CYP4A1 could be used as a more sensitive measure of per-

oxisome proliferation (compared to DNA synthesis) that could be related to the activity of PPA-

Rα from various species following their transfection of primary hepatocytes maintained in

hydrocortisone-deficient media. Although the measurement of induction of CYP4A1 is more

sensitive than DNA synthesis, the difference in induction of this marker gene by MCP between

normal and hydrocortisone-deficient media is only 7-fold. However, this level of differintial in-

duction between the presence and absence of hydrocortisone was insufficient for further study.

Thus, making the hypothesis that the decreased expression of PPARα in hydrocortisone defi-

cient cells was responsible for the reduced induction of CYP4A1, it follows that transient trans-

fection of 100% of hepatocytes with mouse PPARα would return all cells to inducibility i.e. 9-
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fold above control levels, versus 2.5-fold above control levels in the hydrocortisone deficient

group. Since transfection efficiencies are routinely 5-20%, the highest possible level of expres-

sion anticipated would be 3.6-fold above control- which is very close to the background level

of 2.3-fold above control. It would be difficult to draw significant conclusions about any differ-

ence in induction of this scale.

Section 3.3 Expression of Cyp4a genes in PPARα wild-type and -/- mice

The availability of PPARα knock-out mice offers an alternative system to study the activity of

PPARα. This system is ideal due to the zero level of PPARα in hepatocytes, and therefore offers

a more sensitive system to study peroxisome proliferation following transient transfection of

PPARα from different species. So far three members of the Cyp4a family have been identified

in mouse (Hendrson et al., 1994; Bell et al., 1993; Heng et al., 1997), some of which are induc-

ible by peroxisome proliferators. Initially, the expression and induction of Cyp4a gene family

members, such as Cyp4a10, 12 and 14, were studied in S129 PPARα wild type and knock-out

mice in vivo. This will determine which members of the Cyp4a family in this mouse strain are

highly inducible by PPs, and so could be utilised as a marker of peroxisomal events in primary

hepatocytes.

After three consecutive days of dosing with peroxisome proliferators MCP and Wy-14,643

(25mg/kg) in male S129 PPARα wild-type mice, hepatomegaly was observed in all animals.

This suggests that peroxisome proliferation has occured in these animals, which was absent in

similarly treated PPARα knock-out mice. RNase protections were performed on total RNA us-

ing riboprobes for each member of the Cyp4a gene family (4a10, 12 and 14).

Cyp4a10, 12 and 14 cDNA clones were cloned in the pGEM7 cloning vector (Figure 3.13).

Probes were designed from the 3’ half of each gene and were shown to be specific for their re-

spective genes (Bell et al., 1993). To demonstrate specificity, the RNase protection assay was
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evaluated which successfully discriminated between the Cyp4a10 and 12 transcripts under the

conditions used (Bell et al., 1993).  Cyp4a10 and 12 anti-sense probes were transcribed from

the SP6 promoter of EcoRI digested templates, which gave 200 bp and 487 bp full length probe,

and 155 bp and 401 bp protected fragments, respectively. The antisense probe for Cyp4a14 was

transcribed from the T7 promoter, producing a full length transcript of 220 bp and a protected

fragment of 200 bp.

Section 3.3.1 Induction of murine Cyp4a gene family

Section 3.3.1.1 Effects of PPs on Cyp4a10 expression  

Expression of Cyp4a10 gene has been studied previously in male and female mice, and shown

to be highly induced (Bell et al., 1993). Here, the expression and induction of this gene was

studied in male S129 PPARα wild-type and knock-out mice. Using the Cyp4a10 probe, RNase

protection was carried out on total liver RNA from control and MCP treated mice. The RNase

protection assay detected a protected fragment in the liver RNA which was specific, since no

protected band was present in the RNase A-treated yeast tRNA. RNase protection assays were

  

EcoRI (4a12 probe)

BamHI

Cyp4a12 (or 10) cDNA 

anti-sense 

sense 

EcoRI (4a10 probe) 

Figure 3.13 Cartoon of Cyp4a10, 12 (A) and 14 (B) templates.  Fragments corresponding to the 3’ ends of the
Cyp4a cDNAs were cloned into the polylinker region of  pGEM7 cloning vector. Anti-sense riboprobe of Cyp4a10 is gener-
ated by in vitro transcription of EcoRI cut template from SP6 promoter, resulting in 200 bp length probe of which 150bp cor-
responds to Cyp4a10 insert. Anti-sense riboprobe of Cyp4a12 is generated by in vitro transcription of EcoRI cut template from
SP6 promoter, resulting in 487 bp length probe of which 401 bp corresponds to Cyp4a12 insert. Anti-sense riboprobe of
Cyp4a14 is generated by in vitro transcription of BamHI cut template from T7 promoter, resulting in 220 bp length probe of
which 200 bp corresponds to Cyp4a14 insert
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performed using the Cyp4a10 probe on liver RNA of control and MCP treated male PPARα

wild-type and knock-out mice (Figure 3.14). Constitutive expression of Cyp4a10 mRNA was

detected in the liver of control wild-type mice. However, Cyp4a10 was expressed at very low

levels in the liver of knock-out mice treated with the vehicular control corn oil. This level was

detected only after prolonged exposure of autoradiographs, and as a result, this level of expres-

sion could not be quantified and compared against the control level of wild-type mice. Treat-

ment of wild-type mice with MCP and Wy-14, 643 (25mg/kg) led to a large induction of up to

31 and 41.3-fold, respectively, of Cyp4a10 in the liver RNA (Figure 3.17). There was no change

in the expression of Cyp4a10 in knock-out mice following treatment with either MCP or Wy-

14,643.

Section 3.3.1.2 Effects of PPs on Cyp4a14 expression  

Expression of the Cyp4a14 gene has been studied previously in male and female mice, and

shown to be highly inducible (Bell et al., 1993). Here, the expression and induction of this gene

Figure 3.14 Cyp4a10 expression in PPARαααα  wild-type and knock-out mice.  Male S129 PPARα wild-type and
knock-out mice were treated with either MCP, Wy-14,643 (25mg/kg) or corn oil for three consecutive days, and their liver RNA
extracted as detailed in methods. Either 2 or 3 animals are used per treatment group (numbered). RNase protection assay were
performed on 30µg of RNA using Cyp4a10 probe. Yeast tRNA treated with (+ve) or without (-ve) RNase A is also included in
the assay. Protection assays were run on a 6% gel and visualised by autoradiography. The position of full-length probe is indi-
cated by filled arrow, and the position of the potected fragment by an arrow with an asterisk placed next to it. +/+ and -/- rep -
resents wild-type and knock-out mouse liver RNA, respectively. The position of 100bp ladder (L) fragments and their sizes are
shown in base pairs. 

+ve  -ve

RNase

 L
Probe

1   2   1  2   3
+/+        -/-
corn oil

 1     2       1     2     1    2    1    2
+/+           -/-          -/-       +/+

        

MCPWy-14,643

*

100 bp
ladder

100

200

300
Page 134



Munim Choudhury   Section 3.3.1
was studied in male S129 PPARα wild-type and knock-out mice. Using the Cyp4a14 probe,

RNase protection was carried out on liver RNA from control and MCP treated mice. The RNase

protection assay detected a protected fragment in the liver RNA which was specific to the probe

since no protected band was present in the RNase A-treated yeast tRNA. Expression of

Cyp4a14, as with Cyp4a10, was detectable in the control male liver of wild-type mice, and was

detectable in knock-out mice only after prolonged exposure of autoradiographs (Figure 3.15).

Therefore the constitutive level of expression of Cyp4a14 in the liver RNA of knock-out mice

is low when compared to control wild-type mice. Administration of MCP and Wy-14,643 led

to no change in the level of Cyp4a14 in the male liver of knock-out mice, but gave a large in-

duction of Cyp4a14 (80-fold and 41-fold respectively) in the liver of wild-type mice (Figure

3.17). Thus, Cyp4a10 and 14 are expressed in PPARα wild-type mice, and are induced more

than 30-fold after treatment with the peroxisome proliferators MCP and  Wy-14,643. 

Figure 3.15 Cyp4a14 expression in PPARα  wild-type and knock-out mice.  Male S129 PPARα wild-type and
knock-out mice were treated with either MCP, Wy-14,643 (25mg/kg) or corn oil (100µl) for three consecutive days, and their
liver RNA extracted as detailed in methods. Either 2 or 3 animals are used per treatment group (numbered). RNase protection
assay were performed on 30µg of RNA using an anti-sense  riboprobe of Cyp4a14, labelled with [α32P] CTP. Yeast tRNA treat-
ed with (+ve) or without (-ve) RNase A are also included in the assay. Protection assays were run on a 6% gel and visualised
by autoradiography. The position of full-length probe is indicated by filled arrow, and the position of the potected fragment by
an arrow with an asterisk placed next to it. +/+ and -/- represents wild-type and knock-out mouse liver RNA, respectively. L =
100bp ladder. Full-length probe is indicated by unfilled arrow while protected band is shown by filled arrow.
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Section 3.3.1.3 Effects of PPs on Cyp4a12 expression  

Expresion of Cyp4a12 has been studied previously in male and female mice, and shown to be

regulated in a sex specific manner (Bell et al., 1993). Here, the expression and induction of this

gene was studied in male S129 PPARα wild-type and knock-out mice. Using the Cyp4a12

probe, RNase protection was carried out on liver RNA from control and MCP treated mice. The

RNase protection assay detected a protected fragment in the liver RNA which was specific to

the probe since no such protected band was present in the RNase A-treated yeast tRNA.

Cyp4a12 was readily detectable in the liver RNA of both control wild-type and knock-out mice.

However, there was a four fold reduction in the expression of Cyp4a12 mRNA in the liver of

A

-ve     +ve  L                   1 2 3        1 2 3
   -/-            +/+

         Corn oil                          Wy-14,643          MCP

*

Figure 3.16 Cyp4a-12 expression in PPARα α α α +/+ and -/- mice.  Male S129 PPARα wild-type and null mice were
treated with either (A) corn oil (100µl) or (B) MCP or Wy-14,643 (25mg/kg) for three consecutive days, and their liver RNA
extracted as detailed in methods. Three animals are used per treatment group (numbered 1-3). RNase protection assay were per-
formed on 30µg of RNA using an anti-sense  riboprobe of Cyp4a12. The specificity of the probe was determined by inclusion
of two control yeast tRNA samples and hybridised to the probe. One sample was treated without RNase A (-ve), while the other
was treated with RNase A (+ve). Following hybridisation and RNase A treatment, precipitated RNA samples were resolved in
a 6% denaturing urea/acrylamide gel by running in 1xTBE for 3 hours at 320v. Gels were fixed, dried and exposed to hyperfilm
at -80 0C for 15 hours. Protected bands were quantified using a phosphorimager. The position of full-length probe is indicated
by filled arrow, and the position of the potected fragment by an arrow with an asterisk placed next to it. +/+ and -/- represents
wild-type and knock-out mouse liver RNA, respectively. The position of 100bp ladder (L) fragments and their sizes are shown
in base pairs.
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knock-out mice when compared to wild-type (Figure 3.16 and 17). Upon administration of

MCP or Wy-14,643, there was no change in the expression of Cyp4a12 mRNA in both wild-

type and knock-out mice. 

In vivo studies demonstrated that Cyp4a10 and 14 were highly inducible by peroxisome prolif-

erators in the liver of male PPARα wild-type mice. In contrast, PPARα null mice are refractory

to Cyp4a induction by peroxisome proliferators, and the constitutive level of expression of

theseCyp4a genes is much lower in knock-out mice than wild-type mice. Treatment of both

wild-type and knock-out mice with peroxisome proliferators had no effect on the expression of

Cyp4a12 in the male liver. 

Figure 3.17 Induction of Cyp4a10 and 14 in +/+ mice.  Groups of two male mice were dosed with either 100µl
corn oil or 25mg/kg  MCP or Wy-14,643 for three consecutive days. RNase protection were performed on the extracted liver
RNA from each animal using anti-sense riboprobe derived from Cyp4a10 and 14 cDNA clone, as detailed in methods. Pro-
tected bands were resolved on a 6% gel, and the bands were quantified using a phosphor imager on the linear range of the
signal. Mean values of each treatment group were calculated and expressed as percentage of control.
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Section 3.3.2 Primary mouse hepatocyte culture system 
Hepatocytes from male S129 PPARα wild-type and knock-out mice were isolated by two-step

collagenase perfusion assay as described for rat with slight modifications. Unlike rat, a gall

bladder is present in mouse which is ligated during perfusion and removed at the end of perfu-

sion to avoid any contamination. Cell viability of 80% was routinely obtained and was used for

subsequent experiments. Mouse hepatocytes are larger in diameter than rat hepatocytes, and it

was found that a 1x106 cells per flask was optimal for obtaining a uniform monolayer. A typical

isolation procedure yielded 3x107 viable hepatocytes from 25-30g male S129 mice.

Section 3.3.2.1 Induction of Cyp4a genes in primary mouse hepatocytes

Induction of Cyp4a10 and Cyp4a-14 by MCP  was determined in primary mouse hepatocyte

culture. Hepatocytes were isolated and cultured as detailed in section 2.2 . Hepatocytes were ex-

Figure 3.18 Expression of Cyp4a14 in hepatocytes of PPARα  +/+ and -/- mice.  Hepatocytes were isolated from
PPARα wild-type (+/+) or knock-out (-/-) mice and seeded at a density of 1x106 cells/flask in CL-15 medium. Twenty-four
hours after seeding cells were dosed with either 100µM MCP (m), 100µM Wy-14,643 (w), or no chemicals (c), and cultured
for a further 48 hours. RNase protection were carried out on extracted RNA using an anti-sense riboprobe of Cyp4a14 as de-
scribed in methods. The specificity of the probe was determined by inclusion of two control yeast tRNA samples and hybridised
to the probe. One sample was treated without RNase A (-ve), while the other was treated with RNase A (+ve). The position of
full-length probe is indicated by filled arrow, and the position of the potected fragment by an arrow with an asterisk placed next
to it. Following hybridisation and RNase A treatment, precipitated RNA samples were resolved in a 6% denaturing urea/acry-
lamide gel by running in 1xTBE for 2 hours at 120v.  Gels were fixed, dried and exposed to hyperfilm at -80 0C for 15 hours.
Protected bands were quantified using a phosphor imager. Position of the full-length probe is shown by the solid arrow while
the protected fragment is indicated by a solid arrow with an asterisk placed next to it.  

        c   w   m       +ve      -ve          probe            c  w   m               c   m
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posed to MCP for 48 hours and RNase protection assays were performed on total RNA. Figure

3.18 shows a typical protection gel obtained for Cyp4a14. Constitutive expression of Cyp4a14

was detectable in hepatocytes isolated from wild-type mice, which is induced by 9.5-fold and

6.6-fold after dosing with 100µM MCP and Wy-14,643, respectively (Figure 3.19). The vehic-

ular control DMSO had no effect on the expression of Cyp4a14, showing that the induction was

specifically due to the effects of MCP and Wy-14,643. As with the in vivo data, Cyp4a14 was

not detectable in control or MCP treated hepatocytes of PPARα knock-out mice. Similar results

were obtained with a Cyp4a10 probe in primary hepatocytes isolated from wild-type and knock-

out mice (data not shown).

Figure 3.19 Induction of Cyp4a14 in primary mouse hepatocytes.  Isolated hepatocytes were seeded at a density
of 1x106 cells/flask in CL-15 medium. Twenty-four hours after seeding cells were dosed with 100µM MCP, 100µM Wy-
14,643, 10µl DMSO or no chemicals (control) and cultured for a further 48 hours. RNase protection were carried out on ex-
tracted RNA using an anti-sense riboprobe of Cyp4a14 as described in methods. Thirty micrograms of RNA of each sample
was used to hybridise [α-32P] CTP labelled probe with high specific activity. Protected bands were resolved on a 6% gel, and
the bands were quantified using a phosphor imager within the linear range of the signal. Results are expressed as  as percentage
of control, and represent mean value of a least two independent experiments. 
Page 139



Munim Choudhury   Section 3.3.2
Section 3.3.2.2 Transient transfection of mouse hepatocytes

A liposome-based method of transfection was used for the delivery of the eukaryotic expression

vectors containing PPARα genes into primary hepatocytes. Synthetic cationic lipid was used as

a means of transfecting primary hepatocytes with foreign DNA. A non-commercial form of li-

pofectin termed DOTMA/DOPE (DDP) was prepared in the laboratory, and this formulation

has been used successfully before to transfect primary rat hepatocytes and human embryonic

kidney 293 cell line (NJ Horley, AR Bell, PhD theses). This established protocol was used as a

guideline for further optimisation of transfection of rat and mouse hepatocytes. A plasmid con-

taining a β-galactosidase gene (pRSV-β-gal) was used for the optimization protocol as this plas-

mid constitutively expresses the β-galactosidase enzyme which can be detected histochemically

(Sanes et al., 1986). To determine the optimal transfection conditions, either the amount of

DNA or lipofectin were varied while the other was kept constant and the transfection efficiency

was determined. Transfection efficiency was expressed as the percentage of cells stained posi-

tive blue after histochemical staining with X-gal  as shown in Figure 3.20 (chromogenic assay).

Figure 3.21 (A) shows 

Figure 3.20 Transfection of pRSV-β-GAL in (A) rat and (B) mouse hepatocytes.  Isolated hepatocytes were
seeded and cultured in CL-15 medum for 24 hours prior to transfection. Hepatocytes were transfected with 6µg of DNA (pRSV-
β-GAL) complexed with 10µg of lipofectin reagent (DDP) for 4 hours by incubating at 37 0C in insulin and serum-free CL-15
medium. Cells were cultured for a further 24-30 hours in CL-15 medium before being fixed and stained for β-galactosidase
activity. Transfected cells expressing β-galactosidase gene are stained blue after histochemical staining with X-gal chromogenic
reagents as indicated by arrow.   

      Transfected Rat Hepatocytes B  Transfected Mouse HepatocytesA
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the effects of varing the amount of DNA on transfection efficiency, and Figure 3.21 (B) shows

the effects of varying the amount of lipofectin on transfection efficiency. Generally, higher

transfection efficiency was obtained with rat hepatocytes compared to mouse for the range of

concentrations of DNA and lipofectin reagents used. The optimal conditions for transfection

Figure 3.21 Optimisation of transfection efficiency (A) DNA and (B) lipofectin reagent.  Isolated hepatocytes
were seeded and cultured in CL-15 medium for 24 hours prior to transfection. As indicated, hepatocytes were transfected with
either (A) 10µg of lipofectin reagent (DDP) complexed with variable amounts of DNA (pRSV-β-GAL) or (B)10µg of DNA
complexed with variable amounts of lipofectin reagent for 4 hours by incubating at 37 0C in insulin and serum-free CL-15 me-
dium. Cells were cultured for a further 24-30 hours in CL-15 medium before being fixed and stained for β-galactosidase activity.
Transfected cells expressing β-galactosidase gene are stained blue after histochemical staining with X-gal. Data are expressed
as % transfection efficiency, where four fields were counted for two flasks for each data point, and represents the mean value
of two independent experiments.
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were found to be 6µg DNA and 6-10µg DDP. Under these conditions transfection efficiencies

of 18% and 12% were observed for rat and mouse primary hepatocyte cultures, respectively.

Using these optimised conditions, hepatocytes from PPARα knock-out mice were transfected

with eukaryotic expression vector containing PPARα receptor genes.

Section 3.3.2.3 Transfection of PPARα in primary mouse hepatocytes

Primary hepatocyte cultures developed from PPARα knock-out mice have been used to study

how different forms of PPARα induce their physiological responses to peroxisome prolifera-

tors. Following their transfection, the trans-activating ability of mouse and guinea pig PPARα

was examined by studying the expression of mouse endogenous Cyp4a10 and 14 genes in pri-

mary hepatocytes of PPARα knock-out mice. Hepatocytes were transfected with either mouse

or guinea pig PPARα and cultured for a further 48 hours in the presence of peroxisome prolif-

erators MCP or Wy-14,643. RNase protection was performed on total RNA extracted from

post-transfected cells using anti-sense riboprobes of Cyp4a10 or 14. As expected Cyp4a14 ex-

pression was undetectable in both control and PP-treated non-transfected hepatocytes from

PPARα knock-out mice (-/-). However, there is no evidence of Cyp4a14 expression when these

cells were transfected with either mouse or guinea pig PPARα and treated with PPs (Figure

3.22). RNA preparations from hepatocytes (in vitro) and livers of control and MCP-treated

wild-type mice were used as positive controls. As shown in Figure 3.22, expression and induc-

tion of Cyp4a14 was detectable in these control and MCP-treated samples, respectively, using

the same probe. No protected bands were detectable in -/- hepatocytes transfected with either

mouse or guinea pig PPARα even when gels were exposed for much longer period (14 days,

data not shown). A 4-fold higher amount of probe was used for the protection of MCP and Wy-

14,643 treated RNA to look for any evidence of the Cyp4a14 protected fragment while mini-

mising background level of radioactivity in control samples. As shown in Figure 3.22 C, both

control vector and mouse PPARα transfected hepatocytes, treated with MCP and Wy-14,643
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gave similar results; showing a smear of radioactivity in the track, including the position of ex-

pected protected fragment. It was concluded that this did not represent a protected fragment

since a similar track profile was observed in tRNA samples protected with the same amount of

probe. Similar results were also observed with guinea pig PPARα-transfected -/- hepatocytes

with high levels of probes in the treated samples (Figure 3.22  E).  

Figure 3.22 Effect of transfected PPARα  on expression of Cyp4a14 in hepatocytes.  Isolated hepatocytes from
PPARα wild-type (+/+) and knock-out mice (-/-) were seeded at a density of 1x106 cells/flask. Following seeding, -/- hepato-
cytes were transfected with no DNA (control) or 3mg of either mouse PPARα (mouse, B & C), guinea pig PPARα (g/pig, D &
E) or their control vector (vector) complexed with lipofectin reagent as described in methods. pRSET-β plasmid DNA was add-
ed to each flask to make the final amount of DNA 6µg per flask. Cells were dosed with 100µM of MCP (m) or Wy-14,643 (w),
10µl of DMSO (d) or no chemicals (c) and cultured for a further 48 hours. RNase protection were carried out on extracted RNA
from (+/+) or (-/-) hepatocytes using an anti-sense riboprobe of Cyp4a14, and 30µg of RNA of was used per protection. In A,
B and C, higher amounts of probes (4-fold) were used in MCP and Wy-14,643 than for control and DMSO samples to reduce
back ground noise in control samples. The specificity of the probe was determined by inclusion of two control yeast tRNA sam-
ples hybridised to the probe and treated with (+ve) or without (-ve) RNase A. Following hybridisation and RNase A treatment
precipitated RNA samples were resolved in a 6% denaturing gel and exposed for 15hr (A, D-E) or 48hr (B-C). As a positive
control, non-transfected cells treated with MCP (100 µM) (A, +/+ nt-vitro) and MCP-treated (25mg/kg) in vivo (D, +/+ nt-vivo)
were used. The position of 100bp ladder (L) fragments and their sizes are shown in base pairs. The position of full-length probe
is indicated by filled arrow, and the position of the potected fragment by an unfilled arrow.
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Section 3.3.2.4 Expression of transfected PPARα in mouse hepatocytes 

Addition of exogenous PPARα (mouse and guinea pig) in primary hepatocyte of PPARα

knock-out mice resulted in no detectable changes in the trans-activating activity of PPARα, as

measured by the induction of their responsive genes Cyp4a10 and 14 (Figure 3.23). To elimi-

nate the possibility that the transfected PPARα gene is not being expressed, the expression of

PPARα in the post-transfected hepatocytes was examined. Using an anti-sense riboprobe for the

guinea pig PPARα gene, RNase protection was carried out on RNA derived from hepatocytes

transfected with guinea pig PPARα. Figure 3.23 demonstrates that guinea pig PPARα mRNA

is expressed in hepatocytes following their transfection. As expected, no protected bands were

observed in the RNA of non-transfected and pBK-CMV vector transfected hepatocytes. As the

Figure 3.23 Guinea pig PPARα  mRNA after transfection into hepatocytes of -/-  mice.  Isolated hepatocytes
were seeded at a density of 1x106 cells/flask in CL-15 medium. Twenty-four hours after seeding cells were transfected with
either 3µg of gpPPARα-pBK-CMV expression vector (1) or 3µg of pBK-CMV vector alone (2) or no DNA (3) complexed
with 10µl of lipofectin reagent for 4 hours by incubating at 37 0C in insulin and serum-free CL-15 medium. Cells were cul-
tured for a further 48 hours in CL-15 medium. RNase protection were carried out on extracted RNA using an anti-sense ribo-
probe of gpPPARα as described in methods. Thirty micrograms of RNA of each sample was used to hybridise [α-32P] CTP
labelled probe. The specificity of the probe was determined by inclusion of two control yeast tRNA samples and hybridised
to the probe. One sample was treated without RNase A (-ve), while the other was treated with RNase A (+ve). The position
of full-length probe is indicated by filled arrow, and the position of the potected fragment by an arrow with an asterisk placed
next to it. Following hybridisation and RNase A treatment, precipitated RNA samples were resolved in a 6% denaturing urea/
acrylamide gel by running in 1xTBE for 2 hours at 120v.  Gels were fixed, dried and exposed to Hyperfilm at -80 0C for 15
hours. 

   1      2     3                              

*

probe -ve
total RNA

+ve
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probe was synthesised from the same expression vector containing guinea pig cDNA insert that

was also used for transfection, the protected fragment has the same size as the full-length probe

due to the presence of polylinker sequence present both in the full-length probe and in the ex-

pressed gpPPARα mRNA. The protected fragment is specific as shown by its absence in tRNA

samples hybridised to the probe and  subjected to RNase treatment.  The data presented here

clearly demonstrate that, at least for guinea pig PPARα, PPARα RNA is expressed following

transfection into hepatocytes derived from knock-out mice. 

Having found that PPARα is expressed in transfected hepatocytes, the trans-activating activity

of PPARα was assessed by its ability to induce a firefly luciferase reporter gene regulated by a

PPRE response element in its promoter region. Two copies of the PPRE response element (rec-

ognised by the PPARα receptor) from rat acyl CoA-oxidase gene were placed in the promoter

region of the luciferase gene. Previously this reporter construct has been used successfully to

demonstrate the functionality (transcriptional activity) of human and guinea pig PPARα (Bell

et al., 1998). Figure 3.24A demonstrates that luciferase activity is observed only in the presence

of co-transfected mouse PPARα, giving  8-fold induction over control, and its activity is further

increased to 14-fold in the presense of MCP. Increasing the amount of transfected PPARα re-

sults in the the increased activity of luciferase gene. Control vector pSG5 is unable to increase

luciferase activity. Since the luciferase activity is increased in cells transfected with PPARα,

but not with vector, this must be due to expression of PPARα. Similar results were obtained,

albeit at lower levels of activity, with guinea pig PPARα co-transfected with firefly luciferase

reporter gene containing PPRE response elements (Figure 3.24B).
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Figure 3.24 Effect of PPARα on reporter gene in hepatocytes of -/-  mice.  Hepatocytes were seeded at a density
of 1x106 cells/flask in CL-15 medium. Twenty-four hours after seeding cells were co-transfected with either (A) mPPARα-
pSG5 (0.05 and 0.25µg) expression vector or equal amount of pSG5 vector, or (B) gpPPARα-pBK-CMV (0.05µg) or equal
amount of pBK-CMV with 0.1µg of (ACO-PPRE)2-pGL3-Luc and 0.001µg pRL-CMV, complexed with 10µl of lipofectin re-
agent. pRSET-β plasmid DNA was added to each flask to make the final amount of DNA 6µg per flask, and incubated at 37 0C
for 4 hours in insulin and serum-free CL-15 medium. Cells were dosed with 100µM MCP, 10µl DMSO or no chemicals (con-
trol) and cultured for a further 24-30 hours in CL-15 medium. Cell extracts were harvested and assayed for Firefly luciferase
activity and Renilla luciferase activity. Firefly reporter gene activity was normalised against Renilla luciferase activity. Data
presented are mean value of  two separate experiments.  

A

B
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Section 3.4 Peroxisome proliferation in primary rat hepatocytes 

Induction of peroxisome proliferation by MCP was investigated in rat primary hepatocytes us-

ing histochemical staining for the peroxisomal enzyme catalase. Hepatocytes were exposed to

MCP (100µM) for 48 hours and then fixed and prepared for histochemistry. As shown in Figure

3.25, histochemical staining revealed that treatment with MCP (Figure 3.25 C and D) signifi-

cantly increased the peroxisomal staining when compared to untreated controls (Figure 3.25 A

and B). It is possible to utilise this simple histochemical staining of peroxisome as an end point

in the study of the effects of  exogenous PPARα following their transfection in primary to hepa-

tocytes. By normalising for transfection efficiency, using β-galactosidase staining, this system

may offer an alternative apporoach to study the effects of transfected PPARα from different
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species.

Section 3.5 PCR cloning of hamster CYP4A genes

Studies in hamster of peroxisomal events such as peroxisome proliferation (Lake et al., 1986;

Gray et al., 1984), DNA synthesis (Lake et al., 1993), and induction of peroxisomal and mi-

crosomal enzyme activity (Lake et al., 1986 and 1989; Sakuma et al., 1992) show that hamster

is partially responsive to peroxisome proliferation. There has been no study regarding the in-

ducibility of CYP4A gene(s) by peroxisome proliferators. Induction of CYP4A is an early

marker of peroxisome proliferation and offers a more sensitive measure of responsiveness to

peroxisome proliferation in hamster. RNase protection assays could be utilised to study the ex-

Figure 3.25 Peroxisome proliferation in rat primary hepatocytes.  Isolated hepatocytes were seeded at a density
of 2x106 cells per flask. Twenty-four hours after seeding cells were dosed with either 100 µM MCP (C, D) or 10µl DMSO (A,
B) and cultured for a further 48 hours. Cells were then fixed and stained for peroxisomes by histochemical staining of peroxi-
somal catalase as described in methods. Results are illustrated as viewed under low (A, C) and high (B, D) magnification of
light microscopy. Magnification = x400 (A, C), x 800 (B, D). 

A B

C D
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pression and inducibility of CYP4A genes in hamster. As a prerequisite for such a study, cloning

of CYP4A is required since no hamster CYP4A genes have been cloned. Once cloned (partial

or full length cDNA), specific probes could be designed for RNase protection assay.

hmCypPR1

hmCypPR2

Figure 3.26 Design of PCR primers from  alignment of CYP4A proteins.  Forward (hmCypPR1) and reverse
(hmCypPR2) primers for the cDNA cloning of putative hamster CYP4A genes were designed by aligning the amino acid se-
quences of rat 4A1, 4A2 and 4A3 (P08516, P20816 and P24464 respectively), mouse 4a10 and 4a14, rabbit 4A6 (P14580) and
human 4A11 (Q02928) using the pileup tool within the GCG sequence analysis program, and displayed using GeneDoc. The
amino acid position of rabbit 4A6 are shown at the top of the alignment while the amino acid position on the left of the alignment
corresponds to individual CYP4A genes. Black shading represent 100%, dark-grey represent 80% and light-grey represent 60%
conservation of the aligned region. The regions of amino acid identity used to design PCR primers are underlined.
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The CYP4A family has been identified in a number of species including human, mouse and

guinea pig, and using this sequence information PCR primers were designed. By aligning the

CYP4A proteins, primers CypPR1 and CypPR2 were designed from regions of high identity.

Primers CypPR1 correspond to amino acid sequence 305-316 (925-959bp of CYP4A1 mRNA;

B

A

Figure 3.27 cDNA (A) and amino acid (B) sequence of hamster CYP4A17.  Three independent clones derived
from PCR amlification of hamster liver cDNA using hmCypPR1 and hmCypPR2 primers were sequenced on both strands by
oligo-primer walking. Full contig of individual clone was obtained using GELMERGE and GEL ASSEMBLE within GCG se-
quence analysis program. Final consensus sequence was obtained by analysing the full sequence of the three clones using PILE
UP, TED and GeneDoc programe. The deduced amino acid sequence was obtained from the cDNA sequence by using
TRANSLATE within GCG program.

       1  AAGCTTGGAT CCCATCTCAC TCATAGCAAA TTGTTTCCCA ATGCAGTTCC 

      51  TTGCTCCTCC CGAGAAGGGC AGGAATGAGT GGCTGTGTCG GGGAGAATCT 

     101  GCTGCAAACC TGGAAGGGTC AAACACCTCT GGGTTTGGCC ACACCTTCGG 

     151  GTTGTGGTGG AGTGCGTAAA TGGAGAGTAC AACTGTGGCA CCTTTGGGTA 

     201  AAGAGCGCCC ATCAGGGAAG GTGACAGGTG TGCTGAGCTC TCTGACAATG 

     251  GTTGGGGCAG GTGGGTAGAG CCTCAGGGAC TCCTTGATGC ACATGGTAGT 

     301  GTAGGGCATC TGGTCCAGGT GATTCCAGGT AATGGAGGAT CCATCTCCCA 

     351  GGAGGCTCTG AACTTCCTCC CTGCATCTCT GCCGGTATTC AGGGTGAGTG 

     401  GCCAGAGCAT AGAAGATCCA GGAGACTCCA CTGGCTGTGG TGTCATGTCC 

     451  CTCAAACATG AATGTGTCCA CCTCAGCACG TAGGTCCTTG TCAGACAAGA 

     501  ATTCAAGCTT 

       1  KLEFLSDKDL RAEVDTFMFE GHDTTASGVS WIFYALATHP EYRQRCREEV 

      51  QSLLGDGSSI TWNHLDQMPY TTMCIKESLR LYPPAPTIVR ELSTPVTFPD 

     101  GRSLPKGATV VLSIYALHHN PKVWPNPEVF DPSRFAADSP RHSHSFLPFS 

     151  GGARNCIGKQ FAMSEMGSKL 
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accession number M14972) at the 3’ end of the gene, while CypPR2 represents amino acid se-

quence 437-446 (1381-1410bp) at the 5’ end of the rat CYP4A1 gene. Figure 3.26 shows the

amino acid alignment of the regions of the CYP4A genes used to design the PCR primers.

First strand cDNA was synthesised from total hamster liver RNA using oligo-dT primers. When

these cDNA products were subjected to PCR the amplification using CypPR1 and CypPR2

primers, an amplified fragment of the expected size, 500bp, was detected by agarose gel elec-

trophoresis (Figure 3.28, lane 3 and 4). The same PCR reaction conditions also detected a 510bp

fragment when rat CYP4A1 cDNA (in pSG5) was used as a template (Figure 3.28, lane 2) and

this was absent in the negative control reaction with no template DNA added (lane 1). This 

Figure 3.28 PCR of CYP4 genes from hamster liver.  PCR reactions were performed using hmCypPR1 and
hmCypPR2 primers on hamster liver cDNA, derived from MCP treated total RNA (lane 3-4). All PCR reactions include 1.5mM
MgCl2 (lane 1, 2, 4) except lane 3 where 2.5mM MgCl2 was used. Lane 1 is negative control in which no template DNA was
added. Lane 2 is amplification reaction using of pSG5-mPPAR-a plasmid DNA. Five ml of each reaction was analysed on a 1%
agarose gel, run on 1xTBE at 90v for 90 minutes. Syber-Green was added to all samples prior to loading and the resolved DNA
bands were visualised using a dark-reader. Molecular size of the DNA ladder are shown in base pairs.
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demonstrates that the amplified fragment was specific to the hamster cDNA template. The am-

plified DNA fragment was purified from the reaction cocktail using a Qiaspin-quick column

and subcloned into pGEM-T cloning vector. At least three independent clones containing the

500bp insert were purified and sequenced  to obviate the artefacts arising from potential errors

arising during the PCR process. Each clone was sequenced on both strands. Initial primers for

sequencing were based on the T7 and SP6 promoter sequence of the pGEM-T vector, and the

full-length sequence was obtained by oligo-walking process. The complete sequence of 510bp

was analysed using the FASTA homology search in gene data bank (SRS) which revealed that

the amplified fragment has high sequence similarity, but not identity to rat and mouse CYP4A

genes (see later) and CYP4A genes from other species. Figure 3.27 shows the completed nucleic

acid sequence and the deduced amino acid of this hamster CYP4A gene.

Section 3.6 Identification of multiple hamster CYP4A genes

Section 3.6.1 Restriction analysis of putative CYP4A clones 
The cDNA and deduced amino acid sequence of the hamster CYP4A cDNA is highly similar to

rat and mouse CYP4A genes. As there are multiple members of the CYP4A family present in

rats and mice, it is possible that other CYP4A genes of CYP4A family may also be present in

hamster. This possibility was investigated by restriction analysis of a number of clones contain-

ing the 510 bp insert derived from initial PCR reaction of hamster liver cDNA. A total of 50

clones were analysed by restriction digestion using EcoRI and BamHI double digests. These

two restriction sites are unique in the primer/polylinker region of the cloning vector, and there-

fore should release the cloned fragment intact provided that there are no BamHI and EcoRI re-

striction sites present within the cloned fragment. However, if these restriction sites are present

in the cloned fragment then a restriction pattern will be evident which is suggestive of differ-

ences of their sequence. Figure 3.29 shows the agarose gel electrophoresis analysis of the re-

striction pattern of 18 clones obtained using BamHI and EcoRI double digests. 
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The restriction pattern obtained can be grouped into five classes of clones as shown in Table

3.1.Three clones from group A (clones 3, 4, & 9), four clones from group B (clones1, 13, 15 and

  

Group Clone number Genes

A 3, 4, 7, 8, 9, 11 hm4Ai/CYP4A17

B 1, 13, 15 16, 17, 18 hm4Ai/CYP4A18

C 6, 14 hm4Ai/CYP4A19

D 5 mispliced mRNA

E 12 mispliced mRNA

Table 3.1 Grouping of hamster CYP4A clones by restriction digestion.  A total of 25 putative
hamster CYP4A clones were analysed by restriction digestion using BamHI and EcoRI. According to their
restriction pattern clones were placed into five groups. Sequencing of clones from group A, B and C shows that
they are different genes. These genes are named for identification purposes as shown. Clones 5 and 12 are
mispliced varients of group A clones. 

Figure 3.29 Restriction analysis of hamster CYP4A clones.  A total of 18 putative CYP4A clones in pGEM-T, de-
rived from PCR of hamster liver cDNA using hmCypPR1 and hmCypPR2 primers, were double restriction digested with Bam-
HI and EcoRI for 1hour at 37 0C. Products were then phenol:chloroform treated as described in methods and run on 1.2%
agarose gel (pre-stained with ehidium bromide) at 90v for 90 minutes. Restriction digested individual clones are numbered from
1 to 18 as shown, and uncut plasmids are represented by an asterisk placed next to the clone number. Uncut pGEM-T vector
without the insert is labelled as lane A. Molecular sizes of the 1 Kb+ DNA ladder are shown in base pairs.  
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16), two clones from group C (clones 6 & 14), one clone from D and E (clones 5 & 12 respec-

tively) were sequenced once on both strands. Sequence data were analysed using TED, BEST-

FIT, SEQED, TRANSLATE tools within GCG programme, and the final sequence of a single

contig for each clone was obtained using GELMERGE and GELASSEMBLE PROGRAMME.

Sequence analysis of the cDNAs and their deduced amino acids revealed the existence of a fur-

ther two new genes of CYP4A family in hamster and two mis-spliced RNAs. Group A repre-

Figure 3.30 cDNA (A) and amino acid (B) sequence of hamster CYP4A18.  Four independent clones derived
from PCR amlification of hamster liver cDNA using hmCypPR1 and hmCypPR2 primers were sequenced on both strands by
oligo-primer walking. Full contig of individual clone was obtained using GELMERGE and GEL ASSEMBLE within GCG se-
quence analysis program. Final consensus sequence was obtained by analysing the full sequence of the three clones using PILE
UP, TED and GeneDoc programmes. The deduced amino acid sequence was obtained from the cDNA sequence by using
TRANSLATE within the GCG programme.

A

B

       1  AAGCTTGAAT TCTTGTCTGA CAAGGACCTA CGTGCTGAGG TGGACACATT 

      51  CATGTTTGAA GGTCATGATA CCACAGCCAG TGGAATATCC TGGATTTTTT 

     101  ATGCTCTGGC CACACACCCT GAATACCAAC AGAGATGCAG GGAAGAGGTA 

     151  CAGAGCATCC TGGGAGATGG AACCTCTGTC ACCTGGGATC ACCTGGACCA 

     201  GATGCCCTAC ACTACCATGT GCATCAAGGA GGCCCTGAGG CTCTACCCAC 

     251  CAGTACCAAG TGTGAGTCGA GAGCTCAACA CACCTGTCAC CTTCCCTGAT 

     301  GGACGCTCCT TACCTAAAGG TATCACAGTT GCAATCTCCA TTTATGGCCT 

     351  TCACCATAAT CCAAGTTTGT GGCCAAACCC TGAGGTGTTT GACCCATCGA 

     401  GATTTGCACC AGATTCTTCT CGGCACAGCC ATGCTTTCCT GCCCTTCTCA 

     451  GGAGGAGCAA GAAACTGCAT TGGGAAACAA TTTGCTATGA GTGAGATGGG 

     501  ATCCAAGCTT 

       1  KLEFLSDKDL RAEVDTFMFE GHDTTASGIS WIFYALATHP EYQQRCREEV 

      51  QSILGDGTSV TWDHLDQMPY TTMCIKEALR LYPPVPSVSR ELNTPVTFPD 

     101  GRSLPKGITV AISIYGLHHN PSLWPNPEVF DPSRFAPDSS RHSHAFLPFS 

     151  GGARNCIGKQ FAMSEMGSKL
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sents the first CYP4A gene isolated as discussed previously while group B and C represents

another two genes. These two genes are termed hmCYP4Aii/CYP4A18 (group B) and

hmCYP4Aiii/CYP4A19 (group C) for descriptive purposes (Table 3.1). Clones in group D and

E corresponds to mispliced mRNA as will be discussed later (Section 3.6.3). The cDNA and

deduced amino acid sequences of CYP4A18 and CYP4A19 are shown in Figure 3.30 and Figure

3.31, respectively. 

Figure 3.31 cDNA (A) and amino acid (B) sequence of hamster CYP4A19.  Two independent clones derived
from PCR amlification of hamster liver cDNA using hmCypPR1 and hmCypPR2 primers were sequenced on both strands by
oligo-primer walking. Full contig of individual clone was obtained using GELMERGE and GEL ASSEMBLE within GCG se-
quence analysis program. Final consensus sequence was obtained by analysing the full sequence of the three clones using PILE
UP, TED and GeneDoc programmes. The deduced amino acid sequence was obtained from the cDNA sequence by using
TRANSLATE within the GCG programme

A

B

       1  AAGCTTGAAT TCTTGTCTGA CAAGGACCTA CGTGCTGAGG TGGACACATT 

      51  CATGTTTGAG GGCCATGACA CCACAGCCAG TGGAGTCTCC TGGATCTTCT 

     101  ATGCTCTGGC CACTCACCCT GAATACCAGC AGAGATGCAG GGAAGAAGTT 

     151  CAGAGCCTCC TGGGAGATGG GTCCTCCATT ACCTGGGATC ACCTGGACCA 

     201  GATGCCCTAC ACTACCATGT GCATCAAGGA GTCCCTGAGG CTCTACCCAC 

     251  CTGTCCCAAC CATTGTCAGA GAGCTCAGCA CACCTGTCAC CTTCCCTGAT 

     301  GGGCGCTCTT TACCAAAAGG TATCCCAGTC ACACTCTCCA TTTATGCACT 

     351  CCACCACAAC CCGGAGGTGT GGCCAAACCC AGAGGTGTTT GACCCCTCCG 

     401  GGTTTGCAGC AGATTCTCCC CGACACAGCC ACTCATTCCT GCCCTTCTCA 

     451  GGAGGAGCAA GGAACTGCAT TGGGAAACAA TTTGCTATGA GTGAGATGGG 

     501  ATCCAAGCTT 

       1  KLEFLSDKDL RAEVDTFMFE GHDTTASGVS WIFYALATHP EYQQRCREEV 

      51  QSLLGDGSSI TWDHLDQMPY TTMCIKESLR LYPPVPTIVR ELSTPVTFPD 

     101  GRSLPKGIPV TLSIYALHHN PEVWPNPEVF DPSGFAADSP RHSHSFLPFS 

     151  GGARNCIGKQ FAMSEMGSKL
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Section 3.6.2 Sequence analysis of hamster CYP4A genes
The three CYP4A genes in hamster were analysed using the PILEUP tool within the GCG pro-

gramme. Figure 3.32 shows the aligned amino acid sequences of these genes. It is evident that

these genes vary from each other in their amino acid sequences. There are six putative substrate

binding sites present in rat CYP2 (Gotoh 1992) which are also found in mouse Cyp4a14 by se-

quence comparison. Sequence alignment of hamster CYP4A genes with these rat and mouse

genes shows that two of these substrate binding sites are present in the partially-cloned hamster

CYP4A genes (Figure 3.32, SRS 4 and 5). The region of conserved cysteine residue present in

the haem binding region of the P450 protein family has also been identified in hamster CYP4A

genes. The percentage similarity between these partial CYP4A genes were calculated using the

BESTFIT programme within GCG, and the results are summarised in Table 3.2. . 

Figure 3.32 Alignment of three CYP4A proteins from hamster. . Deduced amino acid sequences of three hamster
CYP4A genes were aligned using PILEUP and highlighted using BOXSHADE. Regions enclosed in a dashed box denote pu-
tative substrate binding sites (two out of six) and were inferred from the proposed substrate recognition sites (SRS) in CYP2
(Gotoh, 1992) and Cyp4a14. Two facing arrow heads shows the region of conserved Cysteine residue present in haem binding
region of the P450 protein family. Also, the stretch of 16 amino acids that has been identified as the signature for CYP4A family
are shown by two double arrow-headed line within SRS4.  The amino acid positions are shown at the top as well as left of the
alignment. Black shading represent 100% conservation of the aligned region. Hamster CYP4A 17, 18 and 19 are represented
by hmCYP4Ai, hmCYP4Aii and hmCYP4Aiii, respectively.

SRS 4

SRS 5
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The results show that these three CYP4A genes isolated from hamster liver are highly similar

to each other but differ in percentage similarity and identity at amino acid level.

A comparison was made between rat CYP4A1, CYP4A3 and CYP4A8 against the three

CYP4A genes isolated from hamster. Table 3.3 and 3.4 shows the summary of the similarity

between hamster CYP4A genes with orthologous sequence of CYP4A genes from other species

as analysed by the BESTFIT programme within the GCG package. From this Table, hamster

CYP4A17 and CYP4A19 are most similar to rat CYP4A1; but hamster CYP4A18 is equally

similar to all three rat genes. 

hmCYP4A genes CYP4A17 CYP4A18 CYP4A19

CYP4A17 --- 88 95

CYP4A18 --- 89

CYP4A19 ---

Table 3.2 Identity of hamster CYP4A proteins.  The deduced amino acid sequence of hamster
CYP4A genes (partial) were compared with each other using BESTFIT tool within GCG sequence analysis
programe. These three genes are different from each other as shown by percentage identity at amino acid
level.

hamster rat CYP4A genes mouse CYP4A genes

CYP4A17

    4A1         4A2/3      4A8

91     91     80      81    81     83

  4a10          4a12        4a14

90    91     82    83     80   81

CYP4A18 88     85     89     87    85     83 86    85     86    83     90   88

CYP4A19 93     93     82      82    83     84 91    92     83    84     81   82

Table 3.3 Comparision of hamster and rat CYP4A genes.  Nucleotide sequence and their deduced
amino acid sequence of hamster CYP4A genes (partial) were compared with rat CYP4A genes using BESTFIT
tool within GCG sequence analysis programe. Because the  hamster CYP4A genes were partially cloned,
comparision were made using orthologous sequence of rat CYP4A genes: CYP4A1 (m14972), CYP4A3
(m33936), CYP4A8 (m37828). Percentage identity between rat and hamster CYP4A genes both at nucleotide
(bold type) and amino acid sequence (normal) are shown in the table.
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Section 3.6.3 Presence of mispliced CYP4A mRNA species in hamster
As shown in Section 3.6, PCR derived clones from hamster liver cDNA were grouped according

to their restriction digest pattern, and sequence analysis of these clones revealed the presence of

three CYP4A genes that are expressed in hamster liver. The sequence of clone 5 contains a long-

er insert while clone 12 contains a shorter insert than the predicted 510bp amplified fragment,

but sequence comparison with the three identified hamster CYP4A genes shows that clones 5

and 12 have 100% identity to CYP4A17 and CYP4A19, respectively, suggesting that clones 5

and 12 are derived from hamster CYP4A17 and CYP4A19, respectively. The possibility that

these two clones could be the product of mispliced mRNA was investigated by comparing their

nucleotide sequence with rat cDNA and genomic CYP4A1 sequence. When the sequence of

clone 5 was analysed by comparing with the rat CYP4A1 sequence, an extra 65 bp was found

to be present after the intron/exon junction of exon 9 of CYP4A1 (Figure 3.33, A). These 65

nucleotides show over 74% identity with intron 10 of the CYP4A1 gene. However, when the

sequence of clone 12 was analysed, a 65 bp region was found to be missing that constitutes the

whole of exon 10 (Figure 3.33, B). Therefore the sequence comparision of clones 5 and 12 with

hamster rabbit human guinea pig

4A17

  4A4           4A5/6          4A7

   82               83              81

4A11

84

4A13

79

4A18    83               83              83 84 82

4A19    82               84              83 84 80

Table 3.4 Comparision of hamster CYP4A proteins with other species. The deduced amino acid
sequence of hamster CYP4A genes were compared with rabbit, human and guinea pig CYP4A genes using
BESTFIT tool within GCG sequence analysis programe. Because the  hamster CYP4A genes were partially
cloned, comparision were made using orthologous sequence of rabbit, human and guinea pig genes. Percentage
identity between these CYP4A genes are shown in the table.
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rat CYP4A1 suggests that the mRNAs of clone 5 and 12 were mispliced, resulting in truncated

mRNAs which have either an extra intron sequence (intron 10) or a missing exon (exon 10),

respectively. These data show the presence of mispliced CYP4A mRNA species in hamster liv-

er treated with MCP. 

rat cyp4a1

hamster 
clone 12

rat cyp4a1

hamster
clone 5

A

B

Figure 3.33 Mis-spliced CYP4A mRNA species in MCP-treated hamster liver.  Sequence of clone 5 (A), de-
rived from CYP4A17, and Clone 12 (B), derived from CYP4A19 were compared with known rat CYP4A1 genomic and cDNA
sequence, respectively, and was found to contain intron sequence in clone 5 and missing exon in clone 12 due to their misipliced
mRNA. Extra or missing sequences are shown by the use of solid boxes and the position where misplicing has occured in intron
exon junctions are shown by a solid arrow.

intron 10exon  9

exon 10intron 10

 exon 11exon  10

exon  9 exon  10
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Section 3.6.4 Peroxisome proliferator-induced CYP4A induction in hamster liver
Hamster shows an intermediate level of response to peroxisome proliferators and has been con-

sidered to be a partially-responsive species (Lake et al., 1988). These previous studies include

peroxisomal events such as induction of microsomal enzyme activities. Having cloned three

hamster CYP4A genes, the induction of one such gene by peroxisome proliferators MCP and

Wy-14,643 was investigated at mRNA level by means of the RNase protection assay. Dosing

of hamster for three consecetive days with either MCP or Wy-14,643 (25mg/kg) resulted in a

20% increase in liver weight (hepatomegaly) as described by Choudhury et al. (2000). Total

RNA extracted from the liver of these treated animals was investigated for the induction of

CYP4A using RNase protection assays with a riboprobe derived from CYP4A17 (Figure 3.34). 

 

Figure 3.35 shows a typical protection gel obtained using MCP or Wy-14,643 treated liver RNA

hybridised to the riboprobe. A specific protected band of the expected size was detected in ham-

ster liver RNA which was absent in tRNA sample hybridised to the probe and treated with

RNase A (+ve lane). Therefore the protected band was due to the presence of CYP4A17 mRNA

in hamster liver. The expression of CYP4A17 was detectable in the control liver (corn oil treat-

ed) which is induced following exposure to peroxisome proliferators MCP and Wy-14,643

(25mg/kg for 3 days). When these protected bands were quantified on a phosphor imager a 17-

T7

hmCYP4A17 cDNA 510bp

anti-sense 

Sense 

DdeI Probe = 346bp

Figure 3.34 Cartoon of hamster CYP4A17 template.  A 510bp fragment corresponding the 3’ end of the hamster
CYP4A17 cDNA (corresponding to rat CYP4A1 cDNA 925-1410) was cloned into the polylinker region of  pGEM-T vector.
Anti-sense riboprobe can be generated by in vitro transcription of DdeI cut template from T7 promoter, resulting in 346bp
length probe of which 300bp corresponds to CYP4A1 insert.

pGEM-T
SP6
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fold induction (P <0.005) was observed in the Wy-14,643 treated sample. Treatment with MCP

resulted in slightly higher induction of CYP4A (21-fold, P <0.0005) compared to Wy-14,643

(Figure 3.36). Therefore CYP4A is constitutively expressed in hamster liver and is induced over

17-fold by treatment with peroxisome proliferators. 

Section 3.7 Cloning of hamster PPARα cDNA

PPARα is central to peroxisome proliferation and subsequent carcinogenesis as demonstrated

by knock-out studies (Lee et al., 1995). Species differences in responsiveness to peroxisome

proliferators are well documented and may be a reflection in the level and activity of PPARα

receptors in different species. To determine the correlation between species response to perox-

Figure 3.35 CYP4A induction in hamster liver by MCP and Wy-14,643.  Male Syrian golden hamster were
treated with either MCP, Wy-14,643 (25mg/kg) or corn oil (100µl) for three consecutive days, and their liver RNA extracted
as detailed in methods. Three animals are used per treatment group (numbered). RNase protection assay were performed on
30µg of RNA using an anti-sense  riboprobe of CYP4A, labelled with [α-32P] CTP. Yeast tRNA treated with (+ve) or without
(-ve) RNase A are also included in the assay. Protection assays were run on a 6% gel and visualised by autoradiography. The
position of full-length probe is indicated by filled arrow, and the position of the potected fragment by an unfilled arrow. 

ProbeMCPWy-14,643     +ve     Control -ve

1  2  3         1   2   3         1  2   3
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isome proliferators and the PPARα level in the liver, a comparative study of the constitutive lev-

el of expression of PPARα mRNA was carried out in species with differing responses to

peroxisome proliferators: mouse representing a highly responsive group and guinea pig as non-

responsive, while hamster represents the partially responsive group. Since no hamster PPARα

has been cloned previously, it was nescessary to clone and sequence PPARα from this species

so that a specific probe could be generated for the RNase protection assay.

PCR cloning of hamster PPARα was carried out from total liver RNA using primers HMppar-

P1 and HMppar-P2. These primers were designed from regions of identity in aligned amino acid

sequences of mouse (x57638), rat (M88592), human (L02932), guinea-pig (O35507) and Xeno-

pus (M84161) PPARα. Figure 3.37 shows the amino acid alignment of the regions of the PPA-

Rα receptors used to design the PCR primers. Primer pparP-1 was designed from the DNA-

Figure 3.36 Induction of hamster CYP4A by MCP and Wy-14,643. Groups of three male hamsters were dosed
with either 100µl corn oil or 25mg/kg  MCP or Wy-14,643 for three consecutive days. RNase protection were performed on the
extracted liver RNA from each animal using anti-sense riboprobe derived from CYP4A cDNA clone, as detailed in methods.
Protected bands were resolved on a 6% gel, and the bands were quantified using a phosphor imager on the linear range of the
signal. Mean radioactivity values of each treatment group were calculated and expressed as arbitary units. The error bars shown
represent the standard deviation from the mean. Values significantly different from control where * * = p<0.0005 and * =
p<0.005.

**

*
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binding domain, and corresponds to 325-MNKDGML-331, while ppar-P2 was designed from

C-terminal end of the receptor that corresponds to 463-IYRDMY-468-XX (X= 3’non-coding

triplet). Total liver RNA was used for the synthesis of first-strand cDNA using oligo-dT prim-

ers. When this cDNA was used as a template in the PCR reaction, using ppar-P1 and ppar-P2

primers, a 1.5 kb fragment was amplified  (Figure 3.38, lanes 1-2). 

Using this PCR condition a similar sized fragment was also amplified when mouse PPARα

cDNA (in pSG5 plasmid) was used as a template, but was absent when no template DNA was

added in the reaction. This demonstrates that the amplified fragment obtained using hamster liv-

er cDNA is derived from expressed hamster PPARα gene. Sequencing was undertaken to verify

this. The amplified fragment from hamster cDNA was purified from the PCR reaction cocktail

and subcloned into pGEM-T cloning vector. DNA fragments from  three independent clones

containing the insert were sequenced on both strands. Initially sequencing primers were de-

mPPAR-α
rPPAR-α
hPPAR-α

xPPAR-α
gpPPAR-α

mPPAR-α
rPPAR-α
hPPAR-α
gpPPAR-α
xPPAR-α

Figure 3.37 Design of PCR primers from alignment of PPARα proteins. Forward (HMppar-P1) and reverse
(HMppar-P2) primers for the cDNA cloning of putative hamster PPARα genes were designed by aligning the amino acid se-
quences of mouse, rat, human, guinea-pig and Xenopus PPARα (denoted as m, r, h, gp and x, respectively) using the pileup tool
within the GCG sequence analysis program, and displayed using GeneDoc. The amino acid position of mouse PPARα are
shown at the top of the alignment while the amino acid position on the right of the alignment corresponds to individual PPAR α
proteins. Black shading represent 100%, dark-grey represent 80% and light-grey represent 60% conservation of the aligned re-
gion. The regions of amino acid identity used to design PCR primers are underlined.

HMppar-P1

   HMppar-P2
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signed from the SP6 and T7 promoter sequence of the vector, and subsequent primers were de-

signed for sequencing as the new sequence became available (oligo-walking process).

Sequences obtained using multiple primers were assembled into a single contig using the

GELMERGE and GELASSEMBLE tool within the GCG programe. The double stranded se-

quence was analysed for homology to known PPARα cDNA sequences. DNA sequence analy-

sis of the cloned 1069 bp hamster PCR product demonstrated that it showed sequence similarity

but not identity to mouse, rat, human, guinea-pig and Xenopus PPARα cDNA sequences.

Section 3.7.1 Cloning of 5’ end of hamster PPARα .
The PCR strategy employed using HMpparP-1 and P-2 primers enabled the cloning of a partial

hamster PPARα cDNA that includes complete 3’ end of the cDNA, and therefore required ad-

   1     2      3      4     5    6    Ladder

0.5kb

1.0kb

1.5kb

2.0kb

1.6kb

Figure 3.38 PPARα amplified from hamster liver cDNA.  PCR reactions were performed using HMmppar-P1 and
HMppar-P2 primers on hamster liver cDNA, derived from MCP treated total RNA (lane 1-2). All PCR reactions include 1.5mM
MgCl2 (lane 2-6) except lane 1 where 2.5mM MgCl2 was used. Lane 5 and 6 are negative controls where, RNA and no template
DNA was added, respectively. Lane 3 and 4 are amplification reactions of pSG5-mPPARα and pBK-CMV-gpPPARα plasmid
DNA, respectively. Five µl of each reaction was analysed on a 1% agarose gel, run on 1xTBE at 90v for 90 minutes. Syber-
Green was added to all samples prior to loading and the resolved DNA bands were visualised using a dark-reader. Molecular
size of the DNA ladder are shown in kilobase pairs.
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ditional cloning of the 5’-cDNA end for cloning of  full-length PPARα cDNA. A 5’-rapid am-

plification of cDNA ends (RACE) method was utilised for the cloning of the remainder of the

hamster PPARα cDNA containing the N-terminal coding region. A commercial RACE kit from

Gibco BRL was used for the 5’-RACE. Three gene-specific  primers, termed RACE 1, RACE

2 and RACE 3, were designed from the completed sequence of the 1069 bp fragment of putative

hamster PPARα as shown in Figure 3.38. First strand cDNA was synthesized from both total

and polyA+ RNA of hamster liver using the gene-specific primer RACE 1 (corresponding to nu-

cleotides 116-142 of the 1069 bp hmPPARα clone). The first strand cDNA was dC-tailed by

terminal deoxynucleotidyl transferase method and then purified. This putative dC-tailed  5’cD-

NA end of hmPPARα was amplified by using a second gene-specific primer RACE 2 (corre-

sponding to nucleotides 58-89  of the 1069 bp hmPPARα clone), which is 5’ upstream of RACE

500
400

300

Figure 3.39 5’RACE products from hamster PPARα cDNA.  Gibco, BRL RACE-Kit was used for the cloning of
5’cDNA ends of hamster PPARα. Both total (lane 3 and 6) and polyA+ (lane 4 and 7) RNA were used in the amplification re-
actions and were performed as described in methods. Gene-specific primer race1 was used for the synthesis of first-strand
cDNA which were then subjected to first round of amplification using a second gene-specific primer race2 (lane2). A second
round of amplification was performed on the PCR products derived from the first round using either race2 (lane 3-4) or race3
(lane 6-7). Lane 1 and 8 represent negative control where no template DNA was added. Lane 5 and 9 represent positive control
for 5’RACE reaction for which template DNA was provided in the kit, and the PCR reaction amplify a 500bp fragment.  

1000

500

300

1000

Ladder     1     2     3     4     5                 6        7        8       9     Ladder
Page 165



Munim Choudhury   Section 3.7.1
1, and 5’ RACE anchor primer from the RACE kit. Due to the low levels of products formed,

the amplified products were not detectable when analysed by gel electrophoresis (Figure 3.39

lane 2). Reamplification of this reaction product (diluted 50-fold) using RACE 2 and Universal

Amplification Primer produced a number of amplified fragments, one of which is 350 bp in size

as shown in Figure 3.39, lane 3-4. This reaction products were further reamplified using a third

gene-specific primer RACE 3 (corresponding to nucleotides 9-39 of the 1069 bp hmPPARα

clone), 5’upstream of RACE 2, and Universal Amplification Primer. Figure 3.39, lane 6-7

shows the amplified reaction products obtained.

 The PCR product obtained using RACE 2 primer was cloned into pGEM-T Easy vector. Re-

striction digests were performed using EcoRI to release the insert from the plasmid. Analysis of

the digest (Figure 3.40) shows that the clones vary in their insert size. Assuming the full-length

open reading frame of hamster PPARα cDNA is approximately 1407 bp, then the predicted

RACE product with RACE 2 primer is 400 bp. Therefore, three clones were selected according

to their expected insert size for sequencing. These clones had 100% identity to 1069 bp frag-

ments of 5’-end of hamster PPARα over 100 bp that incorporate GSP primers (RACE 1, 2 and

3) as outlined below.

Analysis of the sequence obtained from these clones shows that they are highly similar but not

identical to the 5’-end of rat and mouse PPARα (90% identity). One of the clones shows identity

to the transcription start site of the open reading frame of rat PPARα while the other two clones

1409 bp1

1069 bp fragment

5’ RACE fragment

R1
R 2

R3

5’ 3’

GSP Primers (R= RACE)
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contain sequence 100 bp short of the start site. Therefore full-length hamster PPARα cDNA has

been cloned by two-stage PCR strategy, where the 1069 bp fragment was cloned initially using

a primer derived from consensus of known PPARα sequences and the remaining 5’-end was ob-

tained by employing a 5’-RACE strategy.

Section 3.7.2 Hamster PPARα cDNA and deduced amino acid sequence
The cloned sequence of putative hamster PPARα was analysed using the TED, BESTFIT, SE-

QED, TRANSLATE tools within the GCG programe, and the final sequence of single contig

was obtained using GELMERGE and GELASSEMBLE programmes. The DNA sequence and

deduced amino acid sequence of the assembled cDNA are shown in Figure 3.41 and Figure

3.42, respectively. Translation of the full-length hamster PPARα (1407 bp) gives an open read-

ing frame of 468 amino acid of predicted molecularweight 52.4 kDa and an isoelectric point

6.95. Comparision of the predicted protein sequence of the cloned hamster cDNA with known

PPARα receptors demonstrates that the cDNA encodes a PPARα protein.

igure 3.40 Restriction analysis of 5’-clones of hamster PPARα .  A total of 12 clones derived from 5’RACE reac-
ion (cloned in pGEM-T Easy vector) were restriction digested with EcoRI. Products were then phenol:chloroform treated as
escribed in methods and run on 1.2% agarose gel (pre-stained with ethidium bromide) with 1xTBE at 90v for 90 minutes. Re-
triction digested individual clones are numbered from 1 to 12 as shown, and uncut plasmids are represented by an asterisk
laced next to the clone number. Molecular sizes of the 1 Kb+ DNA ladder are shown in base pairs.

    Ladder   1*   1     2     3      4     5      6                 7     8      9    10   11   12   12*   Ladder 

500

100
200

400

500

100
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Figure 3.41 cDNA sequence of hamster PPARα.  Three independent clones derived from PCR amlification of ham-
ster liver cDNA using HMpparP-1 and P-2 primers were sequenced on both strands by oligo-primer walking. Full contig of
individual clone was obtained using GELMERGE and GEL ASSEMBLE within GCG sequence analysis programmes. Final
consensus sequence was obtained by analysing the full sequence of the three clones using PILEUP, TED and GeneDoc pro-
grame.

       1  ATGGTGGACA CAGAGAGTCC CATCTGTCCC CTCTCCCCAC TTGAAGCGGA 

      51  TGACCTGGAG AGTCCCTTAT CGGAAGAATT CTTACAAGAA ATGGGAAACA 

     101  TTCAAGATAT TTCTCAGTCC CTTGAGGAGG AAAGTTCCGG AAGCTTTAGT 

     151  TTCACGGACT ACCAGTACTT AGGAAGCTGT CCAGGCTCCG AGGGCTCTGT 

     201  CATCACAGAC ACTCTGTCTC CAGCGTCCAG CCCCTCATCA GTCAGCTGCC 

     251  CCGTGATCCC CGCCAGCACA GACGAGTCCC CTGGCAGTGC GCTGAACATT 

     301  GAGTGTCGAA TATGTGGGGA CAAGGCCTCA GGCTACCACT ACGGAGTCCA 

     351  TGCATGTGAA GGTTGCAAGG GTTTCTTTCG GCGAACTATT CGGCTAAAGC 

     401  TGGCGTATGA CAAATGTGAT CGAAGCTGTA AGATTCAGAA AAAGAACAGG 

     451  AATAAATGCC AATACTGCCG CTTCCACAAA TGCCTGTCTG TTGGGATGTC 

     501  ACACAATGCG ATTCGTTTTG GACGCATGCC AAGATCTGAG AAAGCAAAAC 

     551  TGAAAGCAGA GATTCTCACG TGTGAACACG ATCTGGAAGA TTCGGAAACT 

     601  GCCGACCTCA AATCTCTGGC CAAGAGAATC CACGAGGCCT ACCTGAAGAA 

     651  CTTCAACATG AATAAGGTCA AGGCCCGGGT CATCCTGGCA GGAAAGACCA 

     701  GCAATAACCC GCCCTTCGTT ATACATGACA TGGAGACCTT GTGTATGGCT 

     751  GAGAAGACGC TTGTGGCCAA GATGGTGGCC AATGGCATCC AAAATAAGGA 

     801  GGCAGAAGTC CGGATCTTCC ACTGCTGCCA GTGCATGTCT GTGGAGACTG 

     851  TCACCGAGCT CACAGAATTC GCCAAGGCCA TCCCAGGCTT CGCAAACTTG 

     901  GACTTAAATG ACCAAGTTAC CTTGCTAAAG TACGGTGTGT ATGAAGCCAT 

     951  ATTCACAATG CTGTCCTCCT TGATGAACAA AGACGGAATG CTGATCGCGT 

    1001  ATGGCAATGG CTTCATCACA AGGGAGTTCC TAAAGAACCT GAGGAAGCCA 

    1051  TTCTGTGACA TCCTGGAACC GAAGTTTGAT TTTGCTATGA AGTTCAATGC 

    1101  CCTAGAACTG GATGACAGTG ACATTTCCCT TTTTGTGGCT GCTATAATTT 

    1151  GCTGTGGAGA TCGGCCTGGC CTTCTAAACA TAGGATACAT TGAGAAGATG 

    1201  CAGGAGGGTA TCGTGCACGT GCTCAAACTC CACCTGCAGA GCAACCATCC 

    1251  AGATGATACC TTTCTCTTCC CGAAGCTTCT TCAAAAAATG GTGGACCTTC 

    1301  GGCAGCTGGT CACGGAGCAT GCGCAGCTCG TGCAGGTCAT CAAGAAGACC 

    1351  GAGTCTGACG CAGCGCTGCA CCCGCTTCTG CAGGAGATCT ACAGGGACAT 

    1401  GTACTGA
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Section 3.7.3 Sequence analysis of the PPARα amino acid sequence
The partial amino acid sequence of hamster PPARα was compared with other known PPARs,

including other subtypes β and γ, using BESTFIT within the GCG sequence analysis program.

Hamster PPARα shows high identity to other alpha subtypes, particularly to rat and mouse

PPARα (97%), but has less identity to mouse gamma (65%) and beta (67%) subtypes. Table 3.5

gives a breakdown of the percent amino acid identity between individual protein domains of

hmPPARα and other known isoforms. The DNA binding domain of hmPPARα is identical to

rat PPARα and also shows very high degree of identity to mouse human and guinea pig PPARα.

The ligand binding domain shows highest identity to rat and mouse, and the hinge region shows

high identity to rat, mouse and human PPARα when compared the corresponding region in

hamster PPARα. The most 5’-end of PPARα receptor corresponds to the A/B transactivation

domain, which is known to show wide variation between species, and the analysis shows that

Figure 3.42 Deduced amino acid sequence of hamster PPARα.  Three independent clones derived from PCR am-
lification of hamster liver cDNA using HMpparP-1 and HMpparP-2 primers were sequenced on both strands by oligo-primer
walking. Full contig of individual clone was obtained using GELMERGE and GEL ASSEMBLE within GCG sequence analysis
program. Final consensus sequence was obtained by nalysing the full sequence of the three clones using PILEUP, TED and
GeneDoc programmes. Stop codon in protein sequence is represented by an asterisk. The deduced amino acid sequence was
obtained from the cDNA sequence by using TRANSLATE within the GCG program. The predicted amino acid sequence was
compared to known PPARα amino acid sequences and was found to have high similarity, indicating that it encodes a PPARα
receptor.

       1  MVDTESPICP LSPLEADDLE SPLSEEFLQE MGNIQDISQS LEEESSGSFS 

      51  FTDYQYLGSC PGSEGSVITD TLSPASSPSS VSCPVIPAST DESPGSALNI 

     101  ECRICGDKAS GYHYGVHACE GCKGFFRRTI RLKLAYDKCD RSCKIQKKNR 

     151  NKCQYCRFHK CLSVGMSHNA IRFGRMPRSE KAKLKAEILT CEHDLEDSET 

     201  ADLKSLAKRI HEAYLKNFNM NKVKARVILA GKTSNNPPFV IHDMETLCMA 

     251  EKTLVAKMVA NGIQNKEAEV RIFHCCQCMS VETVTELTEF AKAIPGFANL 

     301  DLNDQVTLLK YGVYEAIFTM LSSLMNKDGM LIAYGNGFIT REFLKNLRKP 

     351  FCDILEPKFD FAMKFNALEL DDSDISLFVA AIICCGDRPG LLNIGYIEKM 

     401  QEGIVHVLKL HLQSNHPDDT FLFPKLLQKM VDLRQLVTEH AQLVQVIKKT 

     451  ESDAALHPLL QEIYRDMY
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such is the case for hamster PPARα when compared to the β and γ isoforms (Table 3.5). 

The amino acid sequences of hmPPARα, rPPARα (m88592), mPPARα (x57638), huPPARα

(y07619), gpPPARα (aj000222) and xPPARα (m84161) have been aligned for comparision us-

ing PILEUP within GCG sequence analysis program and displayed using GeneDoc. Figure 3.43

shows this comparative analysis in terms of the differences in the amino acid sequence of hmP-

PARα to the aligned sequences. At amino acid positions 50 and 135 (of hamster sequence) the

rat and hamster PPARα differ from the other PPARα, and there are seven other positions (po-

sition in hamster sequence: 8, 44, 53, 64, 83, 90, 95, 195, 211, 258, 279, 324, 332, 396, 431)

where hamster, rat and mouse have identical amino acid sequence but are different from rest of

the PPARα. Of these 15 changes, 11 are conserved between human and guinea pig PPARα,

with the remaining 4 being non-conserved. There are 6 amino acid positions (amino acid posi-

tion of hamster sequence: 52, 196, 263, 264, 272, 400) where the hamster PPARα differs from

rat and mouse PPARα but the sequences are conserved between human and guinea pig. A com-

domain
(aa region)

A/B
(1-101)

DBD
(102-166)

Hinge
(167-280)

LBD
(281-468)

rPPARα 93 100 97 99

mPPARα 95 98 95 99

huPPARα 84 98 95 94

gpPPARα 79 98 82 93

xPPARα 53 91 84 87

mPPARβ 41(30) 87 57 71

mPPARγ 70(10) 83 50 69

Table 3.5 Similarity between hamster PPARα and other PPARs.  The amino acid sequence of
cloned hamster PPARα was compared with other PPARs using BESTFIT tool within GCG sequence analysis
program. Percentage identity of putative DBD (DNA binding domain), LBD (ligand binding domain), A/B
(transactivation domain) and Hinge region are shown. Sequences of rPPARα (rat, m88592), mPPARα (mouse,
x57638), huPPARα (human, y07619), gpPPARα (guinea pig, aj000222), xPPARα (xenopus, m84161), mPPARβ
(mouse, p35396) and mPPARγ (mouse, p37238) were obtained from EMBL/SWISSPROT gene databank. The
figures in brackets next to the percentage identities are the length of amino acid stretch over which the identity
was matched.
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parision of the charge properties of these 6 differences reveals that at two positions a change in

the charge property has occured. At position 196 in hmPPARα, negatively charged glutamine

Figure 3.43 Alignment of hamster PPARα   with known PPARα proteins.  PPARα sequence of rat (rPPAR,
m88592), mouse (mouPPAR, x57638), human (huPPAR, y07619), guinea pig (gpPPAR, aj000222) and xenopus (xePPAR,
m84161) were compared with hamster PPARα sequence at amino acid level using PILEUP tool within GCG programe. The
alignment were displayed using GeneDoc program. Amino acid conservation are shown by shading where light grey = 100%,
dark-grey = 80% and black = 60% consevation. The amino acid position of mouse PPARα are shown at the top of the alignment
while the amino acid position on the right of the alignment corresponds to individual PPARα proteins.
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is present in hamster while positively charged lysine occupies the corresponding position in rat

and mouse PPARα. Negatively charged glutamic acid at position 264 of rat and mouse PPARα

is replaceded by the polar uncharged group glutamine in hmPPARα (position 264).

Section 3.7.4 Phylogenetic analysis of PPARα genes
The phylogeny of PPARα genes was analysed by the maximum likelihood method of analysis.

All PPARα protein sequences, including hamster, were aligned using CLAUSTALW for input

into Puzzle 4 programme. Mouse PPARβ and γ were used as out groups as the divergence of β/

γ from α predates the human/Xenopus split. Figure 3.44 shows the best tree from this maximum

likelihood method. The tree was rooted with PPARγ and visualised by Treeview. All PPARα

proteins cluster, and β and γ branch outside this clade. Hamster PPARα is placed between guin-

ea pig and rat/mouse gene, and like rat, mouse and human, hamster PPARα has a slow rate of

evolution compared to guinea pig which is evolving rapidly as shown by a longer branch.

0.1

pparg

pparb

xppar

hppar

gppar

hmfullb

mppar

rppar

Figure 3.44 Phylogenetic relationship of PPARα proteins.  Deduced amino acid sequences of all PPARα were
aligned and analysed by using CLUSTALW and then converted to phylip format. Phylogenetic tree was produced using Max-
imum-likelyhood method of analysis by puzzle 4 with mouse PPARβ (pparb) and γ (pparg) were added as outgroups. The tree
output was visulised with treeview and rooted with PPARg as an outgroup. The horizontal length of each branch is proportional
to the estimated number of amino acid substitutions (synonymous substitution rate, KS = 0.1). The branches are defined as xppar
= xenopus, hppar = human, gppar = guinea pig, hmfull b= hamster, mppar = mouse and rppar = rat PPARα.
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Section 3.7.5 Expression of PPARα in mouse, hamster and guinea pig Liver
Constitutive expression of PPARα mRNA in the liver of mouse, hamster and guinea pig was

investigated using the RNase protection assay. Total RNA extracted from the liver of untreated

control animals (4 animals of each species) was investigated for the expression of PPARα

mRNA using species specific riboprobes. Probes were designed from 3’-end of the gene and

synthesised from ApaI cut templates so that they all give roughly similar sized protected frag-

ments in the RNase protection assay (Figure 3.45).

RNase protection assays were carried out using anti-sense probes of PPARα from each species,

and probes of equal  specific activity was used in the hybridisation reaction so that species com-

parisions could be made. Figure 3.46 shows a typical protection gel obtained using untreated

liver RNA from mouse (Figure 3.46, C), hamster (Figure 3.46, A) and guinea pig (Figure 3.46,

B) hybridised to their respective riboprobes. A specific protected band of the expected size was

detectable in the liver RNA of each species which was absent in yeast tRNA sample hybridised

hmPPARα cDNA (338-1407) 

anti-sense 

sense 

ApalI probe = 267 bp

T7T3

ApalI probe = 293 bp

A

B

gpPPARα cDNA (1-1404 bp)
pBK-CMV

Figure 3.45 Cartoon of hamster (A), mouse (B) and guinea-pig (C) PPARα templates. A 1.1kb fragment
corresponding the 3’ end of the hamster and mouse cDNA was subcloned into the polylinker region of  pGEM-T vector. Anti-
sense riboprobe of mouse and hamster PPARα was generated by in vitro transcription of ApalI cut template from SP6 pro-
moter, resulting in 267bp length probe of which 196bp corresponds to PPARα insert. Full-length guinea pig PPARα in pBK-
CMV was used to generate anti-sense riboprobe by transcribing from T7 promoter using ApalI cut template, resulting in
293bp length probe of which 196bp corresponds to PPARα insert. 

T7 SP6
mPPARα cDNA (1-1407 bp) 

C

SP6T7

anti-sense

ApalI probe = 267 bp

pGEM-T

pGEM-T

sense

anti-sense

sense
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to the probe and treated with RNase A (+ve lane). Therefore the protected band was due to the

presence of PPARα mRNA in the liver of each species.

The level of PPARα mRNA expression in mouse, hamster and guinea pig liver was quantified

using a phosphor imager. It was possible to make a species comparision on the expression of

PPARα as the mouse, hamster and guinea pig PPARα probes used in the protection assay had

Figure 3.46 PPARα  mRNA in hamster (A), guinea pig (B) and mouse (C) liver.  Total RNA was extracted from
untreated male hamster, guinea pig and mouse liver as detailed in methods. Four animals of each species are used (numbered)
For each species, RNase protection assay were performed on 30µg of RNA per animal using an anti-sense riboprobe, labelled
with [α-32P] CTP, of PPARα of that species. Mouse, guinea-pig and hamster probes used in the protection were adjusted so
that the same specific activity was present for all probes in the hybridisation reactions. Yeast tRNA treated with (+ve) or without
(-ve) RNase A are also included in the assay. Protection assays were run on a 6% gel and visualised by autoradiography. All
protection gels were exposed together for the same length of exposure on the same autorad film. The position of full-length
probe is indicated by filled arrow, and the position of the potected fragment by an unfilled arrow.

A B

C

-ve  +ve   1  2  3  4         probeprobe     -ve  +ve   1  2  3  4 

-ve   +ve         1   2    3   4

guinea-pighamster

  mouse
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identical specific activity. All protection gels were exposed together for the same length of ex-

posure on the same cassette, and the bands were quantified using a phosphor imager within the

linear range of the signal. As shown in Figure 3.47, a higher level of expression of PPARα

mRNA was found to be present in mouse liver than hamster and guinea pig liver. The level of

expression of mouse PPARα was 14-fold (P< 0.0005) and 5-fold (P< 0.005) higher when com-

pared to guinea pig and hamster PPARα, respectively. PPARα is expressed at a higher level in

hamster than in guinea pig (3-fold, P< 0.005). Therefore, the constitutive expression of PPARα

in the liver of mouse, hamster and guinea pig shows the same rank order as their response to

peroxisome proliferators.

Figure 3.47 Comparative hepatic expression of PPARα .  Total liver RNA was extracted from groups of four un-
treated male animals from each species (hamster, guinea-pig and mouse). For each species, RNase protection assay were per-
formed on 30µg of RNA per animal using an anti-sense riboprobe, labelled with [α-32P] CTP, of PPARα of that species. Mouse,
guinea-pig and hamster probes used in the protection were adjustd so that they so that same specific activity were present for
all probes in the hybridisation reactions. Protection assays were run on a 6% gel and visualised by autoradiography. All protec-
tion gels were exposed together on the same autorad cassettee, and the bands were quantified using a phosphor imager on the
linear range of the signal. Mean radioactivity values of each group were calculated and expressed as arbitary units. The error
bars shown represent the standard deviation from the mean. Values significantly different from guinea pig where * = p<0.005
and ** = p<0.0005

*

**
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Section 3.8 The mPPARα ligand binding domain (mPPARα-LBD)

PPARα is a transcription factor and therefore regulates its responsive genes transcriptionally. It

is possible that PPARα, like other steroid receptors, may require specific coactivator protein(s)

for its transcriptional activity. The expression of such coactivator proteins in tissue and species

specific patterns may be crucial in determining species responsiveness to peroxisome prolifer-

ators. As steroid receptors interact with coactivator and other proteins of the transcription ma-

chinery via their ligand binding domain it is possible to isolate novel protein(s) that may

function as coactivators using the mouse PPARα ligand binding domain (mPPARα-LBD) in

protein-protein interaction studies. Recombinant expression and purification of mPPARα-LBD

was undertaken so that it could be utilised in protein-protein interation studies, specifically a nu-

clear pull-down assay.  

Section 3.8.1 Induction of mPPPARα-LBD protein 
Mouse PPARα-LBD (amino acids 194-468), subcloned into pET15b prokaryotic expression

vector, was obtained from Dr C. Palmer (Dundee). As well as wild-type LBD (mPPARα−LB-

Dwt), a mutant version of this LBD protein was also obtained, termed G-mutant where glycine

is subsituted for glutamine at residue 282 (mPPARα-LBDG-mut). Mouse PPARα-LBD (both

wild-type and G-mutant) was bacterially expressed following transformation into E.coli strain

BL21(DE3)pLysS. Small scale cultures of transformed BL21 (DE3) pLysS cells were grown to

an optical density (O.D600nm) of 0.5, and the expression of LBD was induced by the addition of

0.5mM IPTG to the medium. Induction of proteins was analysed by SDS-PAGE, and Figure

3.48 shows a typical protein gel obtained using induced and uninduced total cell extracts. Com-

parision of the protein banding patterns revealed the presence of an induced band only in mP-

PARα-LBD transformed cell extracts treated with IPTG. The induced band is easily

recognisable one hour after the addition of IPTG, and it appers to be between 30-35 kDa when

compared with known molecular size markers. This value is in agreement with the predicted
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molecular weight of the LBD protein (33.3 kDa).

Section 3.8.1.1 Effect of temperature on protein solubility

The solubility of the induced protein was determined using small scale cultures. BL21(DE3)

pLysS-pET15b-mPPARα (both wild-type and G-mutant) were grown at 37 0C and induced

with 0.5mM IPTG after the culture had reached the log phase of the growth (O.D600nm= 0.5).

To separate soluble and insoluble protein fractions, the cell pellet was resuspended in Tris buff-

er, freeze-thawed several times and then sonicated as detailed in Methods. Soluble and insoluble

proteins were separated by centrifugation and then analysed by SDS-PAGE as shown in Figure

3.49. The protein gel shows that most, if not all, of the induced proteins are present in an insol-

uble form. The effect of lower temperatures (30 0C and 25 0C) on the solubility of the induced

protein was investigated using BL21(DE3)pLysS-pET15b-mPPARα-LBDwt. Cells cultured at

Figure 3.48 Induction of mPPARα-LBD in E. coli.  Total cell extracts of induced and uninduced BL21 (DE3) pLysS-
pET15b-mPPARα-LBDwt (A) and BL21 (DE3) pLysS-pET15b-mPPARα-LBDG-mut (B) were analysed by 12% SDS-PAGE
gel, stained with Coomasie blue. Cells were cultured at 37 0C and induced with 0.5mM IPTG. Samples were taken at 0 (U), 1,
2 and 3 hour (+IPTG) time points following induction and analysed as shown. BL21 (DE3) pLysS (non-transformed, NT) was
used as negative control. Size of the molecular weight markers are shown in kDa, and the positions of the induced band is shown
by the large arrow.
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these lower temperatures require longer periods of growth (12-18 hours) to reach the log phase

(O.D600nm= 0.5). Figure 3.49 demonstrates that at lower temperatures IPTG induction of LBD

protein is still achieved, and the soluble fraction of the induced protein is marginally increased

when compared to induction at 37 0C.

Section 3.8.1.2 Effect of IPTG concentration on protein solubility

Having found that growth at lower temperatures marginally increased the solubility of induced

LBD protein, the effect of IPTG concentration on the solubility of induced protein at 25 0C were

investigated using mPPAR-α-LBDwt. Figure 3.50a shows that five hours of exposure to 0.5mM

IPTG concentration produced a higher induction when compared to 0.05mM and 0.1mM IPTG,

for the same induction period. Solubility tests demonstrate that IPTG at 0.5mM improved the

solubility of the induced protein marginally, although most of the induced protein still segre-

Figure 3.49 Solubility of mPPARα-LBD; effect of temperature.  BL21 (DE3) pLysS carrying the expression plas-
mid pET15b-mPPARα-LBDwt (A, C, D) and pET15b-mPPARα-LBDG-mut (B) were grown and induced at either 37 0C (A, B),
30 0C (C) or 25 0C (D). Cells were collected at different time points (shown in hours) following their induction with 0.1mM
IPTG. The soluble (supernatant) and insoluble (pellet) protein fractions were separated by freeze-thaw, sonication and centrif-
ugation as described in methods. Samples were analysed by loading and resolving on a 12% SDS-PAGE gel stained with Coo-
masie blue. Size of molecular weight markers are shown in kDa, and position of the induced band is shown by the large arrow.  
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gates into the insoluble fraction. 

Section 3.8.2 Affinity purification of mPPARα-LBD protein
Solubility tests demonstrate that cell growth and induction at a lower temperature (25 0C) with

0.5mM IPTG improves the solubility of the induced protein. Using these optimised conditions,

the soluble fraction of the induced proteins was purified by affinity purification from a large

scale culture (1 litre) of BL21(DE3)pLysS-pET15b-mPPARα-LBD (wild-type and G-mutant).

The cloning strategy included a stretch of six consecutive histidine residues at the N-terminal

end of the LBD (his6-tagged mPPARα-LBD), which has been utilised for the affinity purifica-

tion of the induced protein. The soluble protein fraction was passed through the His.Bind metal

chelation resin column (with immobilised Ni2+) and the fractions collected. Figure 3.51 shows

Figure 3.50 Effect of IPTG on induction and solubility of mPPARα-LBD.  BL21 (DE3) pLysS-pET15b-mPPA-
Rα-LBDwt were grown at 25 0C and induced with either 0.05mM (B), 0.1mM (C) or 0.5mM (D) IPTG. Cells were collected at
different time points (shown in hours) following their induction with IPTG. The soluble (s) and insoluble (p) protein fractions
were separated by freeze-thaw, sonication and centrifugation as described in methods. Samples were analysed by loading and
resolving on a 12% SDS-PAGE gel stained with Coomasie blue. Total cell extracts of induced cells are shown in A, where U=
uninduced cells and C= non-transformed BL21 (DE3) pLysS. The size of the molecular weight markers are shown in kDa, and
position of the induced band is shown by the arrow. 
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the SDS-PAGE analysis of the fractions collected at different stages of his-tag purifiction. Muti-

ple bands were visible in the earlier eluted fractions (fractions E1-E3) but were absent from the

final collected fractions where only one band of the expected molecular size (for LBD protein)

was detectable as shown in lane Ef/Ef*.

Using this affinity purification procedure 200µg of protein was purified from one litre of cul-

ture. Western immunobloting was performed on the induced total cell extract and on the histi-

dine purified samples of mPPARα-LBD (both wild-type and G-mutant). Using a polyclonal

rabbit-anti-mousePPARα antibody a protein band was detected both in induced total cell ex-

tracts and in the affinity-purified fraction of this induced sample (Figure 3.52). This demon-

strates that both mPPARα-LBDwt and mPPARα-LBDG-mut proteins were successfully purified

by affinity purification using Ni2+ immobilised His.Bind resin.

Figure 3.51 Affinity purification of mPPARα-LBD.  Large scale growth and induction of BL21(DE3)pLysS carry-
ing the expression plasmid pET15b-mPPARα-LBDwt and pET15b-mPPARα-LBDG-mut (*) were carried out at 25 0C. Cells
were grown to log phase and then induced with 0.5mM IPTG. Following freeze-thaw and sonication, soluble and insoluble pro-
teins were separated by centrifugation. Total soluble proteins (supernatant) were passed through the Ni2+ column and fractions
were collected at various stages of purification. Collected fractions were analysed by 12% SDS-PAGE gel, stained with Coo-
masie blue. Lanes are: U= uninduced and I= induced total cell extract, Ef = final elute fraction, St= total supernatant before
passed through the column and Un= unbound supernatant after passed through the column, E1-3 eluted fractions collected at
different stages of purification, where 1 represent the first collected fraction, ST= fraction collected after stripping with high
concentration of salt solution, M= molecular marker. The position of the induced band is shown by the arrow.

 U*  U   M     I*   I     Ef    Ef*       St     St*    M     Un  ST  ST*       E1   E1*  E2   E2*  E3   E3*  
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Section 3.8.3 FPLC purification of mPPARα-LBD protein
Eluted his-tagged LBD protein samples from the Ni2+ column were further purified from con-

taminating proteins and solutes and concentrated using ion-exchange FPLC chromatography.

Eluted protein samples from the Ni2+column were first dialysed in 0.1M Tris-HCl (pH 8.0) at

4 0C for 15 hours (five changes). This removed most of the contaminating small molecular

weight proteins and solutes such as imidazole and NaCl. Dialysed proteins were passed through

a weak cation exchanger (Econo-S, pH range 2-10) using buffer A (0.1M Tris-HCl, pH 8.0) and

buffer B (1M NaCl in 0.1M Tris-HCl pH 8.0) at a pH one unit above the isoelectric point of

LBD protein (pH 6.6). Using isocratic elution, a single peak was observed as shown in the FPLC

chromatogram (Figure 3.53). The identity of this eluted protein fraction could be determined

immunochemically but the presence of a single peak suggests that it is most likely to be LBD.

Moreover, immunoreactivity towards his-tagged purified LBD protein samples was demon-

strated using the anti-mouse PPARα antibody (Figure 3.52). The eluted protein fractions re-

quire desalting and then ligand binding studies to demonstrate functional LBD protein.

Figure 3.52 Detection of mPPARα-LBD by Western blotting.  Total cell extracts (A) and affinity purified (B) mP-
PARα-LBDwt (lbdwt) and mPPARα-LBDG-mut (lbdG-mut), induced with 0.5mM IPTG, were resolved on a 12% SDS-PAGE gel
and then transfered by electroblotting onto PVDF membrane as detailed in methods. Transfered proteins on the membrane were
probed with rabbit anti-mousePPARα antibody (1 : 30,000 dilution). A goat anti-rabbit-IgG, conjugated to horseradish perox-
idase, antibody (1 : 40,000) was used to detect anti-mousePPARα antibody. Immunoreactive mPPARα-LBD protein bands on
the membrane were visualised using ECL chemiluminescent detection kit and exposing to Hyperfilm as described in the meth-
ods.

lbdG-mut lbdwt         lbdwt              lbdG-mut       

      Affinity purifiedTotal cell extract
A B
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Section 3.9 Localisation of RNA in mouse liver

Recently, using the yeast two-hybrid screening method, a number of coactivator proteins have

been identified for the steroid receptor superfamily. Some of them are specific coactivator pro-

teins for a particular receptor as in the case of PPAR-γ, which has a cold-inducible coactivator

protein PGC-1 (PPAR gamma coactivator protein-1) (Puigserver et al., 1998). Most coactivator

proteins have been shown to interact with a number of steroid receptors. Although PPARα is

typical in this respect, so far no coactivator proteins have been found to be specific for PPARα.

It is possible that some of these coactivators may be important in peroxisome proliferation me-

diated by PPARα. Determination of the expression of PPARα and any such coactivator proteins
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Figure 3.53 FPLC of PPARα-LBDwt.  His-tag purified proteins were dialysed overnight in TRIS-HCl solution to re-
move contaminating small molecular weight solutes. Protein samples were then run on a weak cation exchanger (Econo-S, Bio-
rad) FPLC column with isocratic flow using buffer A (0.1M Tris-HCl, pH 8.0) and buffer B (1M NaCl in 0.1M Tris-HCl, pH
8.0). Samples were eluted from the column using a flow rate of 1ml/min and a gradient of 0-50% buffer B over 10 minutes (from
2 minutes to 12 minutes). 
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in the liver acini may provide a clue as to which, if any, of the coactivators are important in the

functioning of PPARα-mediated peroxisomal events that show zonal distribution. Also the ef-

fect of a peroxisome proliferator (MCP) on the local expression of both PPARα and  “general”

coactivator proteins for steroid receptors has been examined by in situ hybridisation.

Section 3.9.1 Region-specific distribution of  mPPARα mRNA
Expression and spatial distribution of mPPARα in the liver acini has been investigated using in

situ hybridisation. To determine the expression of each gene, sense and anti-sense oligo-nucle-

otides (45 nucleotides in length) were designed from the 5’-end of the gene and were synthe-

sized using automated sequencer (Biomedical Synthesis and Analysis unit, QMC, Nottingham).

Using a FASTA search on Genebank, the probe for each gene was checked to ensure that the

designed probe shows only 100% homology to the particular mouse gene of interest.

Cryostat sections of frozen liver were treated with 35S ATP labelled sense and anti-sense probes

and hybridised at 42 0C overnight. Hybridized probes were detected by coating the tissue sec-

tions (for appropriate length of time) with emulsion and then developed as detailed in Methods.

Hybridization to α-35S-labelled probes was visulized by bright-field microscopy, revealing pos-

itive signals as black silver grains. Expression of glutamine synthase was used as a reliable pos-

itive control which is highly expressed in the liver and shows distinct centrilobular distribution

pattern (Moorman et al., 1994). Figure 3.54 shows the distribution of glutamine synthase ex-

pression in the liver which is illustrated at high and low power magnification as observed under

bright-field microscopy. As expected, sense control was unable to detect any mRNA messages

while anti-sense probe specifically detected the expression of GS-mRNA in the centrilobular

region (Figure 3.54 A,C, labelled C) of  the liver acini. Expression of mPPARα mRNA was de-

tected in the liver, and due to its low abundance, the radioactive signal was observed under high

magnification only (Figure 3.55). The expression of mPPARα mRNA was localised in the nu-
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clei but showed no specific pattern of distribution, i.e. mouse PPARα has panlobular distribu-

tion. Dosing of mouse with MCP caused no observable change in the expression of liver PPARα

when compared to untreated liver (not shown).

Figure 3.54 Distribution of glutamine synthase mRNA in mouse liver.  Specific centrilobular distribution of
glutamine synthase mRNA in the mouse liver were determined using in situ hybridisation. Radiolabelled anti-sense (A, C, E)
and sense (B, D, F) probes were prepared as detailed in methods and hybridised to frozen liver sections of untreated mice. Hy-
bridised probes in the tissue sections were localised by overlaying the sections with emulsion and then developed after 6 weeks
of exposure in the dark at 4 0C. Hybridisation to a-35S-labelled probe was visualised by bright-field microscopy, revealing pos-
itive signals as black silver grain (shown by the use of an arrow). For illustration purposes, results are presented in the picture
format as viewed under light microscope using magnification: x200 (A, B): x800 (C, D): x2000 (E, F).

A B

C D

E F

anti-sense probe sense probe

C

CP

P

C

P

C C
Page 184



Munim Choudhury   Section 3.9.2
Section 3.9.2 Expression of co-activator proteins in the liver
The expression and distribution, at the mRNA level, of a number of coactivator proteins which

have been shown to interact and enhance or modulate transcriptional activity of PPARα in vitro

has been investigated in the mouse liver. These coactivators include PBP (peroxisome prolifer-

ator binding protein), SRC-1 (steroid receptor coactivator-1), CBP/p300 (CREB binding pro-

tein), PGC-1 (PPAR gamma binding protein-1) and RIP-140 (receptor interacting protein).

Anti-sense probes for each gene were used for the detection of their mRNAs using in situ hy-

bridisation while sense probe was used as a control. As shown in Figure 3.56, using anti-sense

probes, low level expression of PBP, SRC-1 and CBP/300 was detectable in the liver but their

expression was not confined to a particular pattern in the liver acini. As expected no signal was

obtained using sense controls (not shown). Dosing of mouse with MCP caused no observable

change in the expression of liver PBP, SRC-1 and CBP/300 mRNA when compared to untreated

liver (not shown). The expression of the coactivator PGC-1 and RIP-140 mRNAs were not de-

tectable in either untreated and MCP treated mouse liver. 

Figure 3.55 In situ hybridisation with anti-sense (A) and sense (B) PPARα.  Radiolabelled anti-sense probes
were prepared as detailed in methods and hybridised to frozen liver sections of untreated mice. Hybridised probes in the tissue
sections were localised by overlaying the sections with emulsion and then developed after 6 weeks of exposure in the dark at 4
0C. Hybridisation to α-35S-labelled probe was visualised by bright-field microscopy, revealing positive signals as black silver
grain (shown by the use of an arrow). For illustration purposes, results are presented in the picture format as viewed under light
microscope (x2000 magnification).

A Banti-sense probe sense probe
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Figure 3.56 Localisation of coactivator mRNA expression in mouse liver. In situ hybridisation for the localisa-
tion of mRNAs for coactivator protein (A) PBP, (B) CPB/300, (C) SRC-1 and (D) PGC-1. Radiolabelled anti-sense probes were
prepared as detailed in methods and hybridised to frozen liver sections of untreated mice. Hybridised probes in the tissue sec-
tions were localised by coating the sections with emulsion and then developed after 6 weeks of exposure in the dark at 4 0C.
Hybridisation to α-35S-labelled probe was visualised by bright-field microscopy, revealing positive signals as black silver
grains (shown by the use of an arrow). For illustration purposes, results are presented in the picture format as viewed under light
microscope (x2000 magnification).
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Chapter 4 Discussion

Section 4.1 The role of PPARα in peroxisome proliferation

Understanding species differences in response to peroxisome proliferators at the molecular lev-

el is fundamental to the evaluation of human risk from peroxisome proliferator-induced hepa-

tocarcinogenesis. The discovery of the steroid receptor PPARα (Isseman and Green, 1990) and

subsequent demonstration that the pleiotropic effects of PPs are mediated by PPARα (Lee et al.,

1995; Cattley et al., 1991) has greatly increased our understanding of the molecular mecha-

nisms of peroxisome proliferation and subsequent carcinogenesis. It is perplexing to find that

functional PPARα is expressed in both responsive and non-responsive species (Gottlicher et al.,

1992; Bell et al., 1998) since it was originally considered that species non-responsiveness to PPs

may be due to the lack of PPARα. This suggest that there are other factors involved in deter-

mining species response to PPs. 

To investigate if an intrinsic property of PPARα is a determining factor in species response, the

effects of PPARα from different species on peroxisome proliferation could be studied in an in

vitro system following their transfection. Primary hepatocytes from responsive species such as

rat or mouse are a useful model system to study such PPARα induced effects. This primary

hepatocytes have all the necessary components to respond to PPs fully. However, since the en-

dogenous level of PPARα is sufficient for the process of peroxisome proliferation to occur in

rat hepatocytes, perturbation (reduction) of the PPARα level is required to study the effects of

transfected PPARα in the system. Therefore the rat primary hepatocyte system was investigated

first for a highly inducible marker of peroxisome proliferation and then evaluated as a potential

model system to study the effects of transfected PPARα. 

Section 4.1.1 Peroxisome proliferation in rat primary hepatocytes
Primary hepatocyte culture provides a powerful investigative tool to study peroxisome prolifer-
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ation. Many studies have used rat primary hepatocytes to investigate the effects of PPs due to

their responsive nature. These studies have shown that PPs causes an increase in peroxisome

number and increase in peroxisomal β-oxidation (Lake et al., 1984; Gray et al., 1982; Foxwor-

thy and Eacho, 1986) and DNA synthesis (Plant et al., 1998). A rat primary hepatocyte culture

system has been developed in our laboratory that is shown to respond well to PPs. In particular,

increase in peroxisomal β-oxidation enzyme activities (Mitchell et al., 1994), and induction of

acyl-CoA oxidase and CYP4A1 mRNA (Bell et al., 1991) have been observed in response to

PPs at levels comparable to in vivo data. Therefore this primary hepatocyte culture system is

capable of modeling the increase in specific enzyme levels by PPs and could be used to study

other aspects of peroxisome proliferation.

Section 4.1.2 Induction of DNA synthesis in rat primary hepatocytes
The hyperplastic response to PPs has been shown to result in liver enlargement and is important

in PP-induced hepatocarcinogenesis (Lock et al., 1988). This hyperplastic response is due to

transient or sustained increase in of cell replication. PPs induce cell replication, as measured by

DNA synthesis, in a dose dependent manner (Styles et al., 1988), and up to 16-fold induction in

DNA synthesis has been observed in vivo (Price et al., 1992). This high level of DNA synthesis

has been reproduced in primary rat hepatocytes, and PPs are found to act in a dose dependent

manner (Plant et al., 1998). Using this replicative DNA synthesis as a marker of peroxisome

proliferation, it would be desirable to study the effect of exogenously added PPARα  in hepa-

tocyte cultures. Rat primary hepatocytes were investigated to see if such high levels of DNA

synthesis could be reproduced. As shown in Figure 3.1, rat primary hepatocytes undergo DNA

synthesis following exposure to the mitogen EGF, thus demonstrating that primary cultures are

capable of undergoing mitogenic stimulation. EGF has been shown to cause a high level of rep-

licative DNA synthesis both in vitro and in vivo (Michalopoulos, 1990) and the results obtained

here are consistent with these observations.
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Section 4.1.3 Peroxisome proliferator-induced DNA synthesis
The ability of two potent PPs MCP and Wy-14,643 to cause hepatic DNA synthesis has been

investigated in primary rat hepatocytes. As can be seen from Figure 3.3, between 2 and 3 fold

induction of DNA synthesis was observed following exposure to these chemicals. In agreement

with previous studies the labelling period (BrdUrd incorporation) used for studying the stimu-

lation of DNA synthesis by PPs (6-30 hour) was different from that used for EGF (24-48 hour).

PPs stimulate DNA synthesis rapidly and therefore may use a different pathway from EGF-in-

duced DNA synthesis. This difference in response may be due to the type of receptor they bind

to and activate. Since PPARα is a transcription factor, its activation by PPs may result in rapid

expression of genes involved in mitogenesis. The EGF receptor, on the other hand, is a cell sur-

face receptor that, upon binding to its ligand, transduces the signal through a cascade of second-

ary messenger pathways that eventually result in nuclear localisation of the signal and altered

gene expression. 

Although MCP and Wy-14,643 have been shown to be mitogenic in primary hepatocytes, a

maximum of 3-fold induction of DNA synthesis was observed for Wy-14,643, and this level of

induction is lower than in vivo. Using both BrdU and 3H labelling, a high level of DNA synthe-

sis has been observed in rat liver dosed with potent PPs (Marsman et al., 1988). Previously, this

primary hepatocyte culture system has been used to show a ten-fold induction in DNA synthesis

by Wy-14, 643 (Plant et al., 1998). However, the lower level of induction observed in this study

has been reported by most studies of primary rat hepatocytes (Bieri et al., 1994; Marsman et al.,

1993; James and Roberts, 1994). In conclusion, the rat primary hepatocyte system used in this

study is responsive to mitogenic stimulation by both EGF and PPs, but the levels of DNA syn-

thesis observed are much lower than those seen in in vivo studies.

Section 4.1.4 Influence of culture components on DNA synthesis
A number of factors have been shown to influence the level of DNA synthesis in primary rat
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hepatocyte culture. Insulin for example has been shown to augment DNA synthesis in fetal

hepatocytes (Gruppuso et al., 1994), and calcium has been shown to influence both peroxisome

proliferator and EGF-induced DNA synthesis in cultured rat hepatocytes (Zhang and Farrell,

1995; Bennett and Willams, 1993). In this study hepatocytes were cultured in complex CL-15

medium which may contain components that can affect the response of hepatocytes to PP-in-

duced DNA synthesis. For example, the fetal calf serum used in CL15 medium may contain

growth inhibitory as well as stimulatory factors and therefore may affect PP-induced DNA syn-

thesis. However, removal of serum from the media marginally decreased the level of DNA syn-

thesis caused by PPs and EGF. This is not surprising since previous studies have demonstrated

that in the presence of chemically defined serum-free media human hepatocytes can proliferate

following exposure to EGF (Runge et al., 1999). Moreover, Plant et al. (1998) found that PPs

exert their mitogenic stimulation in primary rat hepatocytes cultured in chemically-defined (se-

rum-free) media.

Previously it has been shown that EGF-induced DNA synthesis in primary hepatocytes requires

the presence of CO2 (Mitaka et al., 1991). Maintenance of cells in 5% CO2 resulted in a higher

percentage of cells undergoing DNA synthesis induced by EGF or the PPs MCP or Wy-14,643.

This increase in cell replication was not confined to EGF and PP-treated cells, as there was a

rise in DNA synthesis in untreated control hepatocytes. The pH of the CL-15 medium drops

when hepatocytes are maintained in 5% CO2 which drastically reduces cell viability and re-

sponse to mitogens. Thus, addition of 20mM sodium bicarbonate is required to buffer the drop

in pH caused by CO2. However, bicarbonate has been shown to cause DNA synthesis in primary

hepatocytes maintained in the presence of CO2 (Mitaka et al., 1991). Therefore the increase in

DNA synthesis under CO2 conditions found in this study is likely to be due to the effect of bi-

carbonate.
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Removal of hydrocortisone from the media dramatically reduces EGF and PP-induced DNA

synthesis (Figure 3.4). Hydrocortisone has been shown to be necessary for PP-induced mitoge-

nesis (Plant et al., 1998). These authors showed that PP-induced DNA synthesis was prevented

in hydrocortisone-deficient medium and this effect was reversed when dexamethasone was add-

ed to the medium. As PPARα is regulated by glucocorticoids (Lamberger et al., 1984) and since

PPARα mediates PP-induced DNA synthesis (Holden et al., 2000), it is not surprising to see

that the induction of DNA synthesis by PPs is inhibited in hydrocortisone-deficient medium. 

Varying the culture conditions and the media components did not result in a higher level of in-

duction of DNA synthesis caused by PPs (Figure 3.4). Other parameters such as cell density

may play an important role in PP-induced DNA synthesis. Cell density is important for cell-cell

interaction and communication. At high cell density (confluent) proliferative responses to HGF

and EGF in rat and human hepatocytes, respectively, were inhibited (Greuet et al., 1997; Take-

hara et al., 1992). However, the cell density used in this study has been determined previously

to be optimal for DNA synthesis. Further, the same culture conditions have been used to dem-

onstrate suppression of apoptosis (Section 3.2.2) and peroxisome proliferation (Section 3.4) and

a high level of CYP4A1 induction (Section 3.2.3) by MCP.

Section 4.1.5 Suppression of apoptosis by MCP
PPs have been shown to supress the basal level of apoptosis in rat hepatocytes (Roberts et al.,

1995) and this suppression of apoptosis has been proposed as a complement to the induction of

DNA synthesis in the mechanism of PP-induced hepatocarcinogenesis. Since PPARα mediates

the effects of PPs, suppression of apoptosis could be used as a marker of peroxisome prolifera-

tion to study the effects of transfected PPARα from different species. Therefore, the effects of

MCP on rat primary hepatocyte cultures was investigated for their ability to suppress apoptosis.

Using Hoechst 33258 staining, the basal (spontaneous) level of apoptosis was found to be 1.3%
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(Figure 3.5). MCP reduced this incidence of apoptosis by as much as 40%. This level of sup-

pression is lower than previously reported both in primary rat hepatocytes and in hepatoma cell

lines (Bayly et al., 1994; Plant et al., 1998; James and Roberts, 1996). For example, Plant et al.

(1998) found a 70% reduction in apoptosis induced by 100µM MCP and James and Roberts

(1996) found even greater reduction (4-fold) by nafenopin. However, the basal rate of apoptosis

was much higher in the primary rat hepatocytes used by James and Roberts (1996) in their study.

This could be attributable to the difference in culture media used which may have a significant

effect on the ability of hepatocytes to respond to PPs. In view of such low a level of suppression

induced by PPs it is not possible to perturb the PPARα level and then study the effects of exog-

enously added PPARα on apoptosis as a marker of peroxisome proliferation. Although the pri-

mary hepatocytes used in this study are capable of undergoing peroxisome proliferation (Figure

3.25), it is not clear why they respond poorly to PP-induced induction of DNA synthesis and

suppression of apoptosis.

Section 4.1.6 Induction of CYP4A1 mRNA as marker of peroxisome proliferation 
Treatment of rats with PPs has been shown to cause an increase in the activity of lauric acid hy-

droxylase in the liver (Kimura et al., 1989), which was later demonstrated to be preceded by an

increase in the amount of CYP4A1 mRNA produced (Bell et al., 1991; Bell and Elcombe,

1991). This transient induction of CYP4A1 is early, rapid and occurs at a high level (Bell et al

1991). Therefore PP-induced induction of CYP4A1 represents an early marker of peroxisome

proliferation. Induction of CYP4A1 mRNA is mediated by PPARα which trans-activates the

CYP4A gene by interacting with a response element PPRE found upstream of the gene (Tug-

wood et al., 1992). High level induction of CYP4A1 was demonstrated in primary hepatocytes,

and the early and rapid induction seen in vivo has also been reproduced in vitro (Bell and

Elcombe, 1991). In the absence of high levels of induction of DNA synthesis or suppression of

apoptosis, the study of CYP4A1 induction in primary hepatocytes represented a better proposi-
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tion to study the functionality of PPARα. A highly specific and sensitive RNase protection as-

say was used to detect the expression and induction of CYP4A1. As well as CYP4A1, other

CYP4A members are expressed in rat liver (Hardwick et al., 1987; Kimura et al., 1989a and

1989b; Aoyama et al., 1990). Therefore, a probe was designed from the 3’ end of the mRNA

that contains non-coding sequences so that it will be more likely to discriminate CYP4A1 from

other members of the CYP4A subfamily in the liver. Using such a probe, a protected fragment

of 190bp was detected which was specific to rat liver RNA (Figure 3.8). Initially the RNase pro-

tection assay was optimised using in vivo MCP-treated liver and kidney RNA samples as

CYP4A1 is highly induced in animal studies. Using the optimised conditions, constitutive ex-

pression of CYP4A1 was detected in both liver and kidney, although liver has a higher level of

CYP4A1 mRNA. CYP4A1 mRNA was induced in both liver and kidney following exposure to

MCP (25mg/kg), and higher level expression was seen in the liver compared to kidney (Figure

3.8). Although the level of induction was not quantified it is evident from the autoradiograph

that CYP4A1 is highly induced, in agreement with previous findings (Hardwick et al., 1987;

Bell et al., 1991 and 1992). Therefore induction of CYP4A1 was demonstrated in rat liver and

kidney using the specific RNase protection assay.

Section 4.1.7 CYP4A1 induction in primary hepatocytes
Expression of CYP4A1 was examined in RNA extracted from cultured rat hepatocytes using

the RNase protection assay. Expression of CYP4A1 was very low in control hepatocytes and

was detectable only after prolonged exposure to autoradiographic film, whereas CYP4A1 was

readily detectable in liver RNA (Figure 3.8). This low steady-state level of CYP4A1 in primary

hepatocytes has been reported previously (Bell and Elcombe, 1991). However, CYP4A1 was

induced in primary hepatocytes following 48-hours of exposure to 100µM MCP. This level of

induction was readily detectable and was comparable to in vivo control liver and kidney (Figure

3.8). MCP induced the expression of CYP4A1 mRNA by as much as 14-fold (Figure 3.8 and
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Figure 3.10). This high-level response is suitable for further study. However, it is necessary to

lower, or eliminate, the expression of the endogenous PPARα in order to study the effect of add-

ed PPARα. The requirement for a low level of endogenous PPARα is proposed due to the ob-

servation that during peroxisome proliferation PPARα levels are not induced and therefore the

constitutive level of PPARα is sufficient to promote peroxisome proliferation. Thus it is unlike-

ly that additional transfected PPARα, in the presence of a normal constitutive level of PPARα,

will have any additive effects on the marker of peroxisome proliferation (in this case CYP4A1)

or indeed the process of peroxisome proliferation itself.

Section 4.1.8 Modulation of CYP4A1 expression
Administration of the synthetic glucocorticoid hormone dexamethasone has been shown to re-

sult in an increase in PPARα mRNA expression in rat liver (Steineger et al., 1994). Using rat

hepatocyte culture, Lamberger et al. (1994) demonstrated that glucocorticoids dexamethasone

and hydrocortisone can modulate PPARα level by stimulating PPARα mRNA synthesis in a

dose dependent manner. Further, the level of PPARα protein has been found to be down-regu-

lated in primary hepatocytes cultured in hydrocortisone-deficient medium (Plant et al., 1998).

These data show that the level of PPARα can be reduced in primary hepatocytes maintained in

hydrocortisone-deficient medium, and this, in theory, could affect the induction of CYP4A1

based on the assumption that in rat hepatocytes PPARα regulates the transcriptional induction

of this gene. Thus, induction of CYP4A1 by PPs was investigated in rat hepatocytes maintained

in normal CL-15 and hydrocortisone-deficient media. Figure 3.9 demonstrates that the level of

induction of CYP4A1 is reduced in hepatocytes cultured in hydrocortisone-deficient medium,

although hepatocytes in the absence of hydrocortisone are still capable of responding to PP-in-

duced CYP4A1 induction. These data demonstrate that hydrocortisone is required for the max-

imal induction of CYP4A1 in primary rat hepatocyte cultures. This requirement of

hydrocortisone for the maximal induction of CYP4A1 seen in primary hepatocytes may be due
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to the indirect effect of hydrocortisone which is required for maximal expression of PPARα

(Lamberger et al., 1994), as PPARα is known to mediate the transcriptional induction of

CYP4A (Lee et al., 1995).

Forty-eight hours of dosing with MCP resulted in a maximum of 14-fold induction of CYP4A1

in the presence of hydrocortisone. However, the level of induction was reduced to 2.5-fold in

hydrocortisone-deficient medium (Figure 3.9). This low level of induction of CYP4A1 seen in

hydrocortisone-deficient medium probably reflects the presence of residual PPARα still present

in hepatocytes. Effects of culture conditions, namely duration of seeding period before dosing

and duration of MCP exposure on CYP4A1 induction, were investigated with a view to maxi-

mizing the difference in induction of CYP4A1 between cultures with and without hydrocorti-

sone. Initially cells were seeded for four hours in the presence of hydrocortisone which was later

replaced with either normal or hydrocortisone-deficient medium as appropriate. This initial re-

quirement of hydrocortisone in the medium was necessary for the maintenance of cell monolay-

er, and therefore hydrocortisone may still be present in hepatocytes at residual levels even when

cells are incubated in hydrocortisone-deficient media. Culturing cells for two days before being

exposed to MCP for twenty-four hours did not increase the difference in induction between cul-

tures with and without hydrocortisone when compared to the induction seen in one day old cul-

tures with same dosing period (Figure 3.11 A and B). CYP4A1 induction was elevated to greater

than 40-fold following 24 hours of exposure of MCP (Figure 3.12 A). Similar levels of induc-

tion of CYP4A1 have been observed previously in primary hepatocyte cultures (Bell and

Elcombe 1991). However, induction of CYP4A1 in hydrocortisone-deficient medium was also

significantly high (16-fold) so that the induction ratio by MCP in normal as compared to hydro-

cortisone-deficient media did not improve significantly. A comparision of dosing periods of 24,

48 and 72 hours of hepatocytes (cultured for 24 hours prior to dosing) found that 48 hours of
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dosing gives a maximal 7-fold increase in overall induction of by MCP between normal and hy-

drocortisone-deficient media (Figure 3.11 and Figure 3.12D), i.e. MCP induced CYP4A1 in

normal medium by 14.2-fold but by only to 2.3-fold in hydrocortisone-deficient medium. It was

hypothesised that decreased expression of PPARα in hydrocortisone-deficient cells is respon-

sible for the reduced induction of CYP4A1. 

This differential induction between normal and hydrocortisone-deficient media is insufficient

for the study of the effects of transfected PPARα using induction of CYP4A1 as a marker of

peroxisome proliferation. This is simply because a transfection efficiency of 100% hepatocytes

with PPARα is required to produce maximal inducibility (14-fold) of CYP4A1. Since transfec-

tion efficiencies of 5-20% (Figure 3.20) are routinely observed, the highest possible level of ex-

pression would be very close to the background level. For example, a 20% transfection

efficiency of hepatocytes that give 2.3 and 14-fold induction, respectively, of CYP4A1 in nor-

mal and hydrocortisone-deficient media would result in 3.6-fold above control, which is very

close to the background level of 2.3-fold control. It would be very difficult to draw significant

conclusions about any difference in induction of this scale.

Section 4.1.9 Endogenous versus reporter gene activation to study of PPARα function
One possibility is that species differences in peroxisome proliferation may be due to differences

in the level of PPARα as there is evidence that mouse has a higher level of PPARα compared

to guinea pig (Bell et al., 1998). The functionality of guinea pig or human PPARα has been

demonstrated in transient transfection studies where the trans-activating ability of transfected

PPARα was measured by the expression of a reporter gene containing a minimal PPRE re-

sponse element in its promoter region. Although this simple in vitro study demonstrates basic

functionality of PPARα, its usefulness as a measure of true trans-activating ability in the context

of peroxisome proliferation is incomplete. This is because the majority of the studies have found
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a lowl level, in most cases roughly equal, of induced reporter activity for all studied PPARα

(whether from responsive or non-responsive species) using a minimal PPRE (see Table 4.1).

However, such genes are known to be highly inducible only in responsive species. As can be

seen from Table 4.1 most studies have reported only low-level induction of reporter gene ex-

pression under the control of minimal rat acyl-CoA PPRE (2-4 fold) whereas the induction of

acyl-CoA gene in rat liver is over 13-fold (Bell et al., 1991) Similarly rat CYP4A1 and rabbit

CYP4A4 genes are highly induced in liver as opposed to a small induction of reporter gene ex-

pression under the control of their respective PPRE (Table 4.1). This probably reflects the com-

plex nature of the regulatory regions (promoter) of PPAR responsive genes whose activity may

also be influenced by the interaction of cis and trans acting elements. 

Receptor PPRE used 
Induction 

(n-fold over control) 
Reference

mPPARα ACO-PPRE
ACO-PPRE
ACO-PPRE
ACO-PPRE

2.5
2

100
14

Marcus et al., 1993
McNae et al., 1994
Kliewer et al., 1994                   
Issemann et al., 1993 

mPPARα HD-PPRE
CYP4A6-PPRE

2
2

Marcus et al., 1993
Johnson et al.,1996

rPPARα ACO-PPRE
HD-PPRE

4
4.5

Marcus et al., 1993
Marcus et al., 1993

hPPARα ACO-PPRE
ACO-PPRE

9
5

Mukerjee et al., 
1994
Pineau et al., 1996

hPPARα CYP4A6z-PPRE 3.7 Pineau et al., 1996

xPPARα ACO-PPRE
HD-PPRE
CYP4A6z-PPRE

3
6.4
4.7

Krey et al., 1993
Krey et al., 1993
Krey et al., 1993

gpPPARα ACO-PPRE
ACO-PPRE

6
6

Bell et al., 1998
Tugwood et al., 
1998

Table 4.1 Induction of reporter genes. A A literature review of various PPARα mediated induction of
reporter containing minimal PPRE in the promoter region of reporter genes. Maximum induction of reporter genes
obtained with a number of peroxisome proliferator responsive genes are shown. Mouse (m), rat (r), human (h), xenopus
(x) and guinea pig (gp) PPARα are shown. Genes containing PPRE are shown by ACO (acyl-CoA oxidase), HD
(hydratase dehydrogenase), CYP4A6 (cytochrome P450 4A6). 
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Mouse Cyp4a genes are physically linked on chromosome 4 (Henderson et al., 1994; Kimura

et al., 1989; Heng et al., 1997). Although these genes are inducible by peroxisome proliferators,

they show different levels of regulation and inducibility and therefore are under complex con-

trol within the same locus. The influence of a cis-acting regulatory region called the LCR (locus

control region), in addition to promoters and enhancers, on the expression of β-globin genes is

well studied in the case of the β-globin multigene locus (Dillon and Grosveld, 1993). Using

transgenic and stable cell line transfection approaches they showed that the LCR is required for

the expression of the β-globin genes at close to physiological levels (Collis et al., 1990; Gros-

veld et al., 1987). The fact that mouse Cyp4a genes are physically linked at a single chromo-

somal locus suggests that their regulation may be complex and may include large flanking

sequences (both 5’ and 3’). It is therefore of interest to study the induction of PP-responsive en-

dogenous genes (Cyp4a) as opposed to minimal PPRE-reporter genes to determine the true ac-

tivity of PPARα. 

Transient transfection has been shown to give variable results, however stable transfection has

been found to express genes reproducibly at physiological levels which are directly proportional

to transgene copy number (Collis et al., 1990). Also, the mode of transfection has been shown

to influence the stability of ectopically expressed mRNA (Nanbu and Nagamine, 1997). Thus,

to study the functionality/activity of PPARα on a comparative basis it will be more informative

to study the induction/expression of endogenous genes as a marker of peroxisome proliferation.

Transfection of PPARα in primary hepatocytes from responsive species provides an ideal sys-

tem for this study.

Section 4.2 Characterization of the induction of murine Cyp4a genes

In rat primary hepatocytes, it proved to be difficult to perturb endogenous PPARα level and then

examine the effects of transfected PPARα. The availability of PPARα knock-out mice has pro-
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vided an ideal system in which to study PPARα function, since there is a zero background level

of PPARα in the hepatocytes of knock-out mice. Therefore any induction of marker Cyp4a

genes would be due to the activity of transfected PPARα. Members of the murine Cyp4a sub-

family show different levels of inducibility by PPs and some are induced in a tissue and sex spe-

cific manner. In addition, strain differences in peroxisome proliferation have been observed

(Hiratsuka et al., 1996). Since induction of Cyp4a has been postulated to be the primary event

during peroxisome proliferation it is important to determine which members of the Cyp4a gene

family in S129 mice liver are highly inducible by PP treatment as high inducibility of that par-

ticular enzyme is most likely to play an important role in their tissue specific responses to per-

oxisome proliferation. 

Section 4.2.1 Induction of murine Cyp4a family
Expression and induction of the Cyp4a gene family has been determined in male S129 mice us-

ing control, MCP and Wy-14,643 treated liver RNA. Since members of Cyp4a subfamily show

high sequence similarity to each other, RNase protection was employed which has high speci-

ficity (Myers et al., 1985) and is therefore likely to discriminate between the Cyp4a10, 12 and

14 genes. Probes used for the protection of Cyp4a10 and 12 have been shown to be specific for

their respective genes (Bell et al., 1993). For the protection of Cyp4a14 mRNA, probes were

synthesised from the untranslated region of the gene which is highly divergent from other

Cyp4a genes and therefore is most likely to be specific for the Cyp4a14 gene.

Constitutive expression of Cyp4a10 and 14 was detectable in the liver RNA of control PPAR α

wild-type mice (Figure 3.14, Figure 3.15). In contrast, constitutive expression of Cyp4a10 and

14 mRNA was reduced in the control liver of PPARα knock-out mice such that it was only de-

tectable only after prolonged exposure of autoradiographs. This reduction seen in knock-out

mice was below the limit of accurate measurement, and, as a result, it was not possible to quan-
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titatively compare against the control level in wild-type mice. Cyp4a10 mRNA was highly in-

duced following treatment with MCP (31-fold) and Wy-14,643 (41-fold) in the liver of PPARα

wild-type mice (Figure 3.17), but their expression was unaffected by PPs in the knock-out mice.

As with Cyp4a10, Cyp4a14 was highly induced by MCP and Wy-14,643 in the liver of wild-

type mice but was unaffected in the liver of PPARα knock-out mice (Figure 3.15). MCP and

Wy-14,643 gave greater induction of Cyp4a14, 80 and 41 fold respectively, when compared to

Cyp4a10 induction (Figure 3.17). These observations have been reported by Barclay et al.

(1999) where, using Northern blot analysis, Cyp4a10 and 14 were found to be highly induced

in wild-type mice following treatment with clofibrate, while expression was non-inducible in

knock-out mice. Other studies have also demonstrated high level induction by PPs of hepatic

CYP4A1 in rat (Bell et al., 1991) and Cyp4a10 and 14 in other mouse strains (Bell et al., 1993;

Heng et al., 1997). The reduced expression of Cyp4a10 and 14 seen in the liver of male knock-

out mice suggests that some involvement of PPARα in the constitutive expression of these two

genes in the male liver of this mouse strain. The high inducibility of Cyp4a10 and 14 by PPs in

PPARα wild-type mice and their lack of inducibility in knock-out mice strongly suggest that

PPARα mediates the transcriptional induction of these two members of the murine Cyp4a fam-

ily.

Constitutive expression of Cyp4a12 was found to be high in the male liver of both PPARα wild-

type and knock-out mice (Figure 3.16). However compared to wild-type control mice, a 4-fold

reduction of Cyp4a12 was observed in knock-out mice. MCP and Wy-14,643 had no effect on

the hepatic expression of Cyp4a12 in male PPARα wild-type and knock-out mice. These find-

ings confirm a previous report where Cyp4a12 was shown to be regulated differently from other

Cyp4a isoforms (Bell et al., 1993). This study demonstrated that Cyp4a12 is expressed consti-

tutively at high levels in male liver and kidney and is non-inducible by MCP. By contrast, the
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Cyp4a12 gene is expressed at low levels in both liver and kidney of female mice and treatment

of these animals with MCP induced Cyp4a12 mRNA to levels comparable with those in the

male. Similarly, sex differences in the expression of murine renal Cyp4a proteins and lauric acid

hydroxylase activity have been described (Henderson et al., 1990; Henderson and Wolf, 1992),

as well as in the expression of CYP4A2 in rat that shows sex specific regulation similar to

Cyp4a12 (Sundseth and Waxman, 1992). Generally, the observed low constitutive expression

of all three murine Cyp4a genes in PPARα knock-out mice (compared to control wild-type)

suggest that PPARα may play a significant role in the constitutive expression of these genes.

High level inducibility of Cyp4a10 and 14 by PPs in wild-type mice and their lack of inducibil-

ity in knock-out mice demonstrates that PPARα is involved in the transcriptional regulation of

these two murine genes. Although the enzymatic activity of Cyp4a14 has not been determined

yet, the high inducibility of both Cyp4a10 and 14 by PPs and their low constitutive expression

tend to suggest that they may play an important role in peroxisome proliferation in the mouse

liver. In contrast, the lack of inducibility of Cyp4a12 in the liver and its high constitutive level

suggest that Cyp4a12 may have a house keeping function and is less important in peroxisome

proliferation in the liver.

In vivo studies demonstrated that Cyp4a14 is highly inducible by PPs in the liver of S129 mice.

This high level of induction of Cyp4a14, compared to other member of Cyp4a family suggest

that Cyp4a14 would be a better marker to study peroxisome proliferation. To study Cyp4a14 as

a marker of peroxisome proliferation, its level of induction was determined in mouse primary

hepatocyte cultures. As with the in vivo study, Cyp4a14 was inducible (Figure 3.17 and Figure

3.18) by MCP and Wy-14,643 in hepatocytes isolated from PPARα wild-type mice and its ex-

pression was undetectable in both control and PP-treated hepatocytes from knock-out mice.
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Section 4.2.2 Effects of transfected PPARα in the hepatocytes knock-out mice
To study the function of PPARα from different species in the context of peroxisome prolifera-

tion, a primary hepatocyte culture system has been developed using S129 PPARα knock-out

mice. This system is ideal to study the effects of exogenously added PPARα since mouse (being

a responsive species) contains all the molecular components required for peroxisome prolifera-

tion but lacks functional PPARα in this strain. Therefore, in theory, any induction of Cyp4a14

by transfected PPARα (in the presence of PPs) would be detectable so long as transfection ef-

ficiency is at a reasonable level. A maximum transfection efficiency of 15% was observed in

mouse hepatocytes (Figure 3.21) which is high enough to detect PPARα induced Cyp4a14 in-

duction, at least for mouse PPARα, provided that it has similar activity to the endogenous re-

ceptor.

However, any expression of Cyp4a14 observed after transfection of PPARα would simply iden-

tify the activity of the receptor and would not discriminate whether the observed effect is due to

the basal or induced activity of the PPARα. This is particularly relevant in the case of PPARα

from non-responsive species such as guinea pig. If the non-responsive nature of guinea pig is

due to the lack of high levels of PPARα in the liver (quantitative differences) then transfected

gpPPARα would also produce Cyp4a14 induction. This is also consistent with the possibility

that the guinea pig lacks other component(s) required for Cyp4a14 induction which are present

in mice but absent in guinea pig hepatocytes.

Primary hepatocytes of PPARα knock-out mice were transfected with either mouse or guinea

pig PPARα and then treated with PPs to induce the expression of Cyp4a genes. Expression of

Cyp4a14 was investigated in the total RNA of PPARα post transfected hepatocytes by the

RNase protection assay. As expected, Cyp4a14 expression was undetectable in both control and

PP-treated non-transfected hepatocytes from PPARα knock-out mice (-/-). However, there is no
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evidence of Cyp4a14 expression when these cells were transfected with either mouse or guinea

pig PPARα and treated with PPs (Figure 3.22). These experiments were repeated on several oc-

casions but with similar findings, i.e. transfected mouse or guinea pig PPARα had no effect on

the expression of Cyp4a14 in the hepatocytes of knock-out mice. It was envisaged that the in-

duction of Cyp4a14 would be attainable following the addition of mPPARα in the hepatocytes

of knock-out mice, since hepatocytes from the wild-type mice (i.e. in the presence of endoge-

nous PPARα) are capable of responding to PP-induced Cyp4a14 induction.

The possibility that transfected PPARα is not being expressed from the expression vector was

investigated in the case of gpPPARα by RNase protection assays using a specific probe. Figure

3.23 demonstrates that the expression of gpPPARα mRNA was detectable in RNA from gpP-

PARα-transfected hepatocytes but not in the case of non-transfected or vector alone. Although

the expression of mPPARα mRNA was not determined in mPPARα post-transfected hepato-

cytes, it is likely that PPARα is expressed following their transfection. This vector has previ-

ously been used in transfection studies (Isseman and Green, 1990). Having established that the

transfected PPARα (at least for guinea pig) is being expressed it is still a possibility that non-

functional PPARα protein is being synthesised. Trans-activating ability of PPARα was as-

sessed by co-transfection of a luciferase reporter gene containing a PPRE response element

linked to the promoter region. This reporter assay demonstrates that transfected mouse and

guinea pig PPARα are capable of inducing the expression of this luciferase gene, thus providing

evidence of trans-activating ability on episomal DNA (Figure 3.24). 

Having found that transfected PPARα is being expressed and has trans-activating ability active

in the PPRE reporter assay it is tempting to speculate that the functioning of the exogenous re-

ceptor (from the expression vector) may differ from that of the endogenous receptor in such a

way as to account for the induction of Cyp4a14 by endogenous PPARα and lack of induction
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by the transfected PPARα. However, there is no such report of whether  transiently expressed

PPARα from expression vector differs in its functioning from chromosomally expresed PPA-

Rα. The other possibility is that the transfection eficiency of primary hepatocytes may have a

major influence in the outcome of such studies. This is simply because transfection of all the

hepatocytes (100% transfection efficiency) from knock-out mice would be required to achieve

the maximum 9.5-fold induction of Cyp4a14 observed in the hepatocytes from the wild-type

mice, assuming that transfected PPARα are equally as transcriptionally active as endogenous

receptors. However, although the transfection efficiency varied between experiments, a trans-

fection efficiency of between 10 and 15% has been achieved in primary hepatocytes. It is quite

posible that transfected PPARα (at least from mouse) had resulted in the induction of Cyp4a14,

but due to the low number of hepatocytes being transfected, this level of induction is rather low

and below the sensitivity of the detection by RNase protection assay. However, the level of in-

duction of Cyp4a14 seen in wild-type hepatocytes suggests that even low-level induction by

transfected PPARα (due to low transfection efficiency), would produce an easily detectable

Cyp4a14 protected fragment in knock-out hepatocytes. It may be more appropriate to study the

function of PPARα by stable transfection since stable transfection has been found to express

genes reproducibly at physiological levels (Collis et al., 1990). PPARα could be stably trans-

fected in to cell lines responsive to PPs with low levels of endogenous PPARα or into immort-

alised hepatocytes from PPARα knock-out mice. Oncogene immortalisation of rat hepatocytes

has been succesfully used in other applications (MacDonald and Willett, 1997).

PPARα mediated activation of PPRE-containing reporter genes in transient transfection assay

should be treated with caution. This is because the minimal PPRE used in this assay is in a total

artificial system that lacks its normal milieu, and the results obtained with minimal PPRE are

contentious. Episomal DNA (transiently transfected plasmid DNA) is considered to be in a ‘na-
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ked’ conformation since the packaging of DNA within the confines of the cell nucleus require

chromatin which represents the natural environment of regulated genes in eukaryotic cells.

Moreover, there may be other flanking regions important in determining the physiological level

of expression of PP-responsive genes. One case where this has been shown to be important is

the cluster of β-like globin genes. A locus control region (LCR), containing a number of sepa-

rate regulatory element, present in the β-globin locus (Grosveld et al., 1987), is important for

high level, developmental, and tissue specific expression of the β-globin like genes (Dillon and

Grosveld, 1991; BlomVan Assendelft et al., 1989; Talbot et al., 1989). Furthermore, in the ab-

sence of complete LCR elements, “position effects” are observed in transgenic experiments

(Townes et al., 1985; Kollias et al., 1986).

It is unclear why reintroduction of PPARα into knock-out hepatocytes, in the presence of PPs,

did not result in any observable changes in Cyp4a14 expression, since it was assumed that, like

wild-type cells, hepatocytes of knock-out mice would respond to PPs following the addition of

functional PPARα. It is tempting to speculate that gene silencing of the Cyp4a locus may have

occurred in the PPARα knock-out mice such that constitutive expression of Cyp4a is permissi-

ble (e.g. Cyp4a12) but PPARα-mediated induction by PPs is non-permissible. This scenario

may be envisaged if PPARα is important developmentally for maintaining Cyp4a in an active

expressible/inducible configuration. Absence of PPARα in -/- mice during ontogeny may have

resulted in the modification of the PPRE-containing promoter region of Cyp4a genes. Chroma-

tin-mediated regulation of gene expression has been well studied in the case of homeotic selec-

tor genes (Akram, 1987) and gene silencing has been shown to be repressed by an evolutionarily

conserved chromodomain protein-group of genes called the polycomb group (Jurgens, 1985; for

review see Jones et al., 2000). Reversible histone acetylation and DNA methylation are impor-

tant in the regulation of mammalian gene expression, and their activity on expressible genes re-
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sults in DNase I hypersensitive sites in their promoter regions (for reviews see Kingston and

Narliker, 1999; Bird and Wolffe, 1999). It would be interesting to examine DNaseI hypersensi-

tive sites in the Cyp4a locus in both PPARα knock-out and wild-type mice to see if both are in

an active conformation.

Another possible mechanism for the inability of transfected PPARα to induce endogenous

Cyp4a in the hepatocytes of PPARα knock-out mice may due to the binding of trancated PPA-

Rα in the Cyp4a promoter. This tranctated protein may be produced in the knock-out mice with

a C-terminal deletion (LBD) but has intact DBD. Therefore, trancated proten has the ability to

bind PPRE containig PP-responsive genes but lacks trans-activating function, as result, it may

act as a dominant negative manner by excluding added PPARα (full-length) from binding to its

responsive genes. This might resemble v-erbA/thyroid hormone receptor (THR) interaction.

Expression of  viral oncogene v-erbA, an altered THR, abolishes the responsiveness to thyroid

hormone since v-erbA can bind to thyroid hormone response element but unlike THR is unable

to bind thyroid hormone (Sap et al., 1989; Wahlstrom et al., 1996).

Section 4.3 Hamster response to peroxisome Proliferators

Based on biochemical and morphological studies of the liver, hamster is regarded as less or par-

tially-responsive to peroxisome proliferating chemicals when compared to rats and mice (Lake

et al., 1989; Price et al., 1992; Grey et al., 1984 and references therein). Comparative studies

using potent PPs show a small level of induction of β-oxidation and ω-hydroxylation activities

(2-fold)  in syrian hamster, compared to high level induction in rat (Lake et al., 1989 and 1993;

Price et al., 1992). However, while several groups have reported an induction of peroxisomal

β-oxidation (Lake et al., 1989; Lhuguenot et al., 1988), other groups have found no such in-

crease in β-oxidation activity in hamster liver caused by PPs (Sakuma et al., 1992). Similarly,

conflicting results have been reported in relation to PP-induced DNA synthesis in hamster. For
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example, Styles et al. (1988) observed induction of DNA synthesis while Price et al. (1992)

found no such induction even though both groups used potent peroxisome proliferators in their

study. In addition, varying levels of induction of ω-hydroxylase activity have been observed in

hamster treated with nafenopin, where one reports a 3-fold (Lake et al., 1989) induction while

another have found up to 10-fold induction in lauric acid 12-hydroxylase activity (Price et al.,

1992). It is therefore not clear to what extent hamster are responsive to PPs. Where studied, PP-

induced transcriptional induction of CYP4A correlates well with species response to peroxi-

some proliferation. For example, high level induction of CYP4A mRNA occurs in rat and

mouse liver (Bell et al., 1991 and 1993; Henderson et al., 1994; Heng et al., 1997) while it is

non-inducible by PPs in non-responsive guinea pig (Bell et al., 1993), reflecting the species re-

sponse to peroxisome proliferation. Thus, transcriptional induction of CYP4A represents a good

marker of peroxisome proliferation. To study hamster response to PPs, a cloning project was

undertaken to isolate expressed CYP4A genes (cDNA) from hamster liver so that specific

probes could be used to determine CYP4A induction.

Section 4.3.1 Cloning of hamster CYP4A cDNA
To date no CYP4A genes have been cloned from hamster, although hamster has inducible lauric

acid hydroxylase activity in liver microsomes. For the cloning of putative hamster CYP4A

gene(s), two primers, HMCyp-P1 and HMCyp-P2, were designed from the aligned protein se-

quences of known rat, mouse, human and rabbit CYP4A genes (Figure 3.26). These primers

were designed from high regions of identity and include the haem-binding region (HMCyp-P2)

and the highly conserved 13 amino acids of the I-helix in the CYP4A family (HMCyp-P1).

These primers were expected to amplify a cDNA fragment of around 500bp if hamster has ex-

pressed CYP4A genes. Figure 3.28 shows that a 500bp amplified fragment was obtained from

MCP-treated hamster liver cDNA using the forward HMCyp-P1 and the reverse HMCyp-P2

primers. Sequence analysis of the complete double strand of this amplified fragment confirmed
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the cloning of partial hamster hepatic CYP4A cDNA since they showed >80% identity to rat

and mouse CYP4A genes as well as other species at the nucleic acid level (Table 3.3).

Section 4.3.2 Cloning of three CYP4A cDNAs in hamster
Three members of the CYP4A family in mouse (Cyp4a10, 12 and 14) and four members in rat

(CYP4A1, 2, 3 and 8) have been identified. Phylogenetic analysis suggests that in rat and mouse

these multiple members are the result of a recent gene duplication event (Heng et al., 1997). The

possibility that multiple members of the CYP4A family may also exist in hamster was investi-

gated. Following the initial cloning of 500bp amplified hamster cDNA product, 18 recombinant

transformed colonies were picked at random and their plasmid DNAs were analysed by double

restriction digests with EcoRI and BamHI, since these sites are present in the primers (Figure

3.29). These clones were grouped as shown in Table 3.1. Three clones from group A (clones 3,

4 and 9) and B (clones 1, 13 and 16) and two clones from group C (clones 6 and 14) have been

sequenced on both strands. The consensus sequences from all these groups show that they have

high similarity with other known CYP4A genes at the cDNA and amino acid level (>80%).

Consensus sequences of group A, B and C were compared with each other and, as shown in Ta-

ble 3.2, they are highly similar to each other but differ in percentage identity at amino acid level.

This demonstrate that the three groups represent three different cDNA clones and were desig-

nated CYP4A17, CYP4A18 and CYP4A19 relating to clones of groups of A, B and C respec-

tively (Dr Nelson, personal communication).

Section 4.3.3 Sequence analysis of hamster CYP4A genes
CYP4A17, CYP4A18 and CYP4A19 are highly similar to each other, but CYP4A18 is equally

similar to all rat and mouse CYP4A genes at both cDNA and amino acid level, while CYP4A17

and 19 (which are highly similar to each other) are most similar to rat CYP4A1 (91% and 93%

identity, respectively) and its mouse homologue Cyp4a10 (90% and 91%, respectively). How-

ever, CYP4A17, 18 and 19 are equally similar to rabbit, human and guinea pig (>80% identity)
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(Table 3.3, Table 3.4). Thus, the high identity of hamster CYP4A genes with other members of

CYP4A subfamily demonstrates that they are also members of this subfamily. The high simi-

larity between rat CYP4A1 and the hamster CYP4A17 and 19 suggest that the common ancestor

to CYP4A1 and CYP4A17 and 19 must have existed before hamster and rat split in the evolu-

tionary tree. Furthermore, the high similarity of CYP4A17 with CYP4A19 suggests that

CYP4A17 may have evolved from CYP4A19 by a gene duplication event after the separation

of rat/mouse and hamster from their common ancestor. Phylogenetic analysis of rat and mouse

CYP4A genes shows a similar relationship between mouse Cyp4a14 and rat CYP4A2 and

CYP4A3. Phylogeny of rat and mouse CYP4A shows that both CYP4A3 and its homologue

Cyp4a14 existed before speciation, and in rat gene duplication of CYP4A3 has given rise to

CYP4A2 after the formation of the rat and mouse lineages. Approximately equal similarity of

hamster CYP4A18 to all rat and mouse CYP4A genes indicates that the duplication event giving

rise to all rat and mouse genes must have happened after the common ancestor of rat and mouse

CYP4A and hamster CYP4A split up. 

Since all hamster genes were partial clones it was not appropriate to assess the phylogenetic tree

of the evolutionary relationship to rat and mouse CYP4A genes. FromTable 3.4, Table 3.3 it can

be seen that rat, mouse and hamster CYP4A genes are approximately equally similar to the rab-

bit, human and guinea pig CYP4A genes. Unlike rat and mouse, guinea pig CYP4A13 gene is

equally similar to all hamster genes. Guinea pig CYP4A13 shares much lower identity (80%)

to rat and mouse CYP4A genes when compared to the high identity of hamster CYP4A genes

(up to 93%) with rat and mouse genes. The guinea pig CYP4A13 gene shows similar identity

with all three hamster CYP4A genes as do rabbit CYP4A genes. This is interesting since rat,

mouse, guinea pig and hamster belong to the same mammalian order Rodentia yet guinea pig

appears similar to rabbit. Taxonomic classification, based on comparative morphology, places
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guinea pig in the order Rodentia (Novacek, 1992) while molecular analysis of mitochondrial

DNA has argued in favour of the inclusion of guinea pig in a new mammalian order distinct

from myomorphs (such as rat mouse) of the order Rodentia (D’Erica et al., 1996, Cao et al.,

1997).

Mouse Cyp4a genes have been localized to chromosome 4 (Bell et al., 1993; Handerson et al.,

1994) which also contains the Cyp4b subfamily (Heng et al., 1997). Moreover, all three mouse

Cyp4a genes are shown to be physically linked and are phylogenetically related to the Cyp4b

subfamily (Heng et al., 1997). A comparision of amino acid identity of all members of CYP4A

subfamilies shows that the members of CYP4A subfamily are considerably less conserved

across species (as low as 72%) compared to the CYP4B gene subfamily despite being in tandem

on the same chromosome (data not shown). This implies that the evolution of the CYP4A genes

is particularly rapid compared with the neighbouring CYP4B subfamily. It would be interesting

to see if all hamster CYP4A genes are co-localised on the same chromosome and are physically

linked. 

Section 4.3.4 Functions of putative hamster P4504A proteins
Amino acid sequences of the three identified partial hamster CYP4A genes were compared with

each other and with rat CYP4A1 (Figure 3.32). PCR primers used to amplify CYP4A genes

from hamster liver cDNA were designed from highly conserved exons (8 and 11/12) of the

CYP4A family. Exons 11 and 12 encode the well-known RNCIG motif which is characteristic

of P450 proteins. The conserved cysteine residue is involved in the binding of an iron atom

present in the prosthetic group as evident from the crystal structure of the bacterial CYP101 pro-

tein (Poulos et al., 1986). The RNCIG motif is a crucial feature in the P450 protein and has been

proposed to be a signature for the cytochrome P450 superfamily of enzymes (Gonzalez, 1989).

This motif is present in all partial hamster CYP4A proteins, indicating that they are P450 pro-
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teins. Further, comparison of CYP2 with partial hamster CYP4A proteins reveal the existence

of two of the six substrate recognition motifs (SRS4 and 5, Figure 3.32) proposed by Goto

(1992) based on analysis of amino acid and coding nucleotide sequences. Previously a stretch

of 13 amino acids present in exon 8 was identified among CYP4 family and was proposed as a

signature motif for the CYP4 family (Bradley et al., 1991). Exon 8 of each of the three hamster

CYP4A genes putatively encodes this motif present within a stretch of 16 amino acids: LRAE-

VDTFMFEGHDTT. Therefore the presence of  this CYP4 motif further identified the putative

hamster genes as members of the CYP4 family, and their high similarity with other CYP4A

genes indicates that they are members of CYP4A the subfamily. It is likely that these putative

hamster P4504A proteins are capable of ω-hydroxylating fatty acids as do other members of this

subfamily (Hardwick et al., 1987; Johnson et al., 1990; Kimura et al., 1989a and b). The induc-

ibility of ω-hydroxylase activity in hamster liver microsomes (Lake et al., 1989; Price et al.,

1992), together with the fact that hamster CYP4A gene(s) are induced by PPs (Figure 3.34),

suggests that P450s encoded by these genes are responsible for this fatty acid oxidation.

Section 4.3.5 Evidence of mis-spliced CYP4A mRNA in MCP-treated hamster liver
While screening putative hamster cDNA clones for the presence of multiple CYP4A genes two

clones (clone 5 and 12) showed different restriction patterns from the clones of groups A, B and

C (Table 3.1). Clone 5 is derived from CYP4A17 but contains an extra 65bp sequence. Bestfit

analysis of clone 5 with rat CYP4A1 cDNA places this extra sequence between exon 9 and 10

of CYP4A1 cDNA. This suggested the possibility that the mRNA from which clone 5 is derived

is likely to be a mis-spliced variant of CYP4A17, i.e. the extra sequence starts in the exon 9/

intron 10 boundary and ends at the intron 10/exon 10 boundary. Translation of clone 5 with all

possible reading frames shows that premature termination of the protein sequence will occur

and therefore the extra 65bp results in the open reading frame going out of frame. While the se-

quence of clone 5 shows 91% identity with CYP4A1, the extra 65bp sequence has 73% identity
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(over 25bp) with intron 10 of the CYP4A1 sequence. Poor intron identity for corresponding

gene positions in different species is expected since there is less functional constraint, and as a

result less conservation of the nucleotide sequences is expected to occur during evolution (Van

Den Berg et al., 1978). On the evidence of this sequence analysis it is proposed that clone 5 is

a mis-spliced derivative of the hamster CYP4A17 gene. Clone 12 is derived from the CYP4A19

gene but is shorter than the expected 510 bp nucleotides. Sequence comparision with rat

CYP4A1 indicates that this missing sequence comprises 65 nucleotides, representing the whole

of exon 10. It is proposed that clone 12 represents a mis-spliced mRNA derived from hamster

CYP4A19 where the whole of exon 10 is missing.

It is not clear why CYP4A17 and 19 are being wrongly processed. For the cloning of hamster

genes, the cDNA that was used for the amplification reactions was derived from MCP treated

hamster liver RNA and it was subsequently shown that CYP4A17 is induced over 30-fold in the

hamster liver following treatment with MCP (Figure 3.36). The removal of introns from pre-

mRNA is catalysed by the spliceosome, a dynamic complex composed of numerous small nu-

clear RNA and protein components (Kramer, 1996). Splicing and 3’end processing appear to be

rate limiting for the release of mRNA from the site of transcription (Custodio et al., 1999). Thus

it could be speculated that mis-splicing of CYP4A17 and 19 pre-mRNA into mature mRNA

may be due to the constraints placed on the post-transcriptional processing machinery as a result

of the high level of transcriptional induction of these genes. Spliceosome assembly occurs on

each substrate pre-mRNA de novo and requires conserved recognition sequences located at the

exon-intron boundries. Mutated splice sites in MCAD (medium-chain acyl-CoA) genes, as with

a number of other genes in disease conditions, have been found to result in exon skipping and

intron insertion (Zhang et al., 1992). To examine if any alteration has occurred at the intron-

exon boundaries (especially around intron 10) in CYP4A genes, the genomic sequence of  ham-
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ster CYP4A is required.

A member of CYP2A gene subfamily (CYP2A7) has been found to be alternatively spliced in

human liver (Ding et al., 1995). This varient of CYP2A7 clone was shown to have the whole of

exon 2 missing but contains a 10 bp sequence from intron1, resulting in a truncated protein. Al-

though in some human liver RNAs this abrerantly spliced P450 was the predominant species

expressed, it is not known whether this may affect the functioning of the normal CYP2A7 pro-

tein. Alternative splicing of CYP2B6 has been reported (Miles et al., 1990). Thus mis-splicing

is a relatively common event in CYP RNA processing. In relation to the normal transcripts, the

relative levels of CYP4A17 and 19 variants were not determined. However, they are expressed

at much lower levels compared to the normal transcripts since these two variants were identified

following screening of 50 initial PCR derived clones. If CYP4A induction by PPs is important

in the mechanism of peroxisome proliferation then the relative expression of mispliced species

may be relevant in species response to PPs. In the case of PPAR α, a truncated form of the re-

ceptor (lacking exon 6) has been detected in human liver (Palmer et al., 1998; Roberts et al.,

1998; Gervois et al., 1999) but this has not been reported in rodent species responsive to perox-

isome proliferators (Gervois et al., 1999). If the truncated PPARα competes with wild-type

PPARα then it may have an important bearing on species response to peroxisome proliferators.

It is interesting to note that so far there have only been reports of mispliced variants of PPARα

and CYP4A in non-responsive species and partially-responsive species (in this study), respec-

tively. Whether this has any bearing on species response to peroxisome proliferators remains to

be determined.

Section 4.3.6 Induction of hamster CYP4A by peroxisome proliferators
Induction of CYP4A1 precedes the induction of other genes, especially those of the peroxisomal

β-oxidation pathway, during peroxisome proliferation (Bell et al., 1991). The concomitant rise
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in lauric acid hydroxylase activity in rat and mouse liver has been associated with an increase

in dicaboxylic acids, metabolites of fatty acids that are ω-hydroxylated by the CYP4A proteins.

Dicaboxylated fatty acids have been implicated in peroxisome proliferation. It has been postu-

lated that CYP4A induction represents a primary event in peroxisome proliferation (Lock et al.,

1989), and therefore the level of CYP4A mRNA represents a good marker of peroxisome pro-

liferation as it is easily measured and occurs as a primary event in the response to peroxisome

proliferators. Hamsters have been described as partially responsive to PPs (Lake, 1995  and ref-

erences therein). However, variable levels of induced ω-hydroxylase activity in the hamster liv-

er microsome has been reported (Lake et al., 1989; Price et al., 1992). It is therefore not clear

from enzymatic studies to what extent hepatic P4504A genes are induced by PPs. From enzy-

matic activity it is not possible to deduce whether this increase in activity is due to the activation

of nascent protein, production of protein from stable mRNA pools, transcription of new mRNA,

or indeed, if a CYP4A protein is involved. However, studies on rat show that treatment of PPs

causes an increase in lauric acid hydroxylase activity in the liver (Kimura et al., 1989) which is

preceded by an increase in the amount of CYP4A mRNA. It could be speculated that in hamster

liver the increase in lauric acid hydroxylase activity is similarly associated with increase in the

level of CYP4A mRNA. 

Expression and induction of CYP4A mRNA was investigated in RNA from MCP and Wy-

14,643 treated male hamster liver. Constitutive expression of CYP4A17 was detectable in the

hamster liver RNA using a CYP4A17 riboprobe (Figure 3.35). Following three consecutive

days of treatment (25mg/kg), high level induction of CYP4A17 was observed in the liver by

both MCP (21-fold) and Wy-14,643 (17-fold) (Figure 3.36). This level of induction at the

mRNA level is much higher than the reported induction of lauric acid hydroxylase activity

(Price et al., 1992) by PPs. If the increase in enzymic activity is caused by the CYP4A17 level
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then it is possible that differences between the induction of CYP4A17 mRNA and its protein

activity are due to the better specificity of the RNAse protection assay.

CYP4A genes in non-responsive species, such as guinea pig, have been shown to be non-induc-

ible by PPs (Bell et al., 1993) while over 1000-fold induction of Cyp4a14 has been reported in

mouse liver, a highly responsive species (Heng et al., 1997). Therefore when compared with the

level of induction of PP-induced CYP4A genes in other species, CYP4A17 in hamster shows

an intermediate level of induction by PPs. Further, in this study CYP4A has also been shown to

be highly inducible in rat hepatocyte culture (Figure 3.8) and mouse liver (Figure 3.17), and

their level of induction is much higher than hamster CYP4A17.

Multiple members of the CYP4A subfamily have been identified in rats and mice, and some of

them are expressed in a tissue specific manner while others are regulated in a sex specific man-

ner. For example, rat CYP4A1 and 3 are expressed at low constitutive levels in liver and kidney

and are highly induced in the liver by PPs. CYP4A2 on the other hand is expressed at low levels

in the liver but at a higher level in the male kidney and is induced by PPs. In female rats,

CYP4A2 is undetectable. It would be interesting to see if hamster CYP4A genes show similar

tissue specific expression especially in liver and kidney and if any such genes are regulated in

a sex specific manner.

Section 4.4 Cloning of hamster PPARα .

The response of hamster to peroxisome proliferators suggests that hamster is likely to have ex-

pressed and functional PPARα. To study the level of expression of hamster PPARα (hmPPA-

Rα) on a comparative basis with other responsive and non-responsive species, cloning of

hmPPARα was undertaken. By aligning rat, mouse, human, guinea pig and Xenopus PPARα

amino acid sequences forward (HMppar-P1) and reverse (HMppar-P2) primers, representing

DNA-binding domain and C-terminal end respectively, were designed from regions of absolute
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identity. Using these primers, a fragment of around 1.2kb long was amplified from hamster liver

cDNA derived from total RNA (Figure 3.38). Analysis of the complete double strand DNA se-

quence of this fragment confirmed that a partial hmPPARα cDNA of 1069bp had been cloned.

In order to clone the remaining 5’-end of the PPARα cDNA, a 5’-rapid amplification of cDNA

ends (RACE) system was used. Using gene specific primers and universal amplification primers

several 5’-cDNA fragments were amplified (Figure 3.39). Several independent clones derived

from the amplified cDNA fragment were sequenced. One of the clones was found to contain the

full-length of the 5’-cDNA end that includes the initiation codon, while two other clones were

found to contain most but not all of the 5’-cDNA end, terminating about 100bp from the putative

initiation codon (Figure 3.41).

Section 4.4.1 Sequence analysis of hamster PPARα .
The complete cDNA sequence of putative hmPPARα, like rat and mouse PPARα cDNA, is

1404bp long. The predicted molecular weight of this 468 amino acid hmPPARα was deter-

mined to be 52.4 kDa with an isoelectric point of 6.95. Comparision of the hmPPARα protein

sequence with other known PPARα shows that it has high similarity to rat (97% identity) and

mouse (96%) PPARα and has 95% identity to human and guinea pig PPARα. The high simi-

larity of putative hmPPARα with other PPARα from different species, and the lower similarity

(70%) to PPARβ and γ isoforms shows that the cloned cDNA is a PPARα isoform. This finding

is further supported by a detailed modular domain comparision of known PPARα, β and γ se-

quences with that of hmPPARα (Table 3.5). The DBD of hmPPARα is identical to rat PPARα

and has very high identity (98%) to mouse, human and guinea pig PPARα. The corresponding

amino acid sequence of PPARβ and γ isoforms has much less similarity to the PPARα isoform.

A characteristic feature of PPAR receptors, which places them as a distinct subfamily from oth-

er steroid hormone receptors, is that PPARs have only three amino acids in the D box of the zinc

finger of the DNA binding domain while others have five amino acids in the D box (Laudet  et
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al., 1992; Motojima et al., 1993). The identity of hmPPARα with other PPAR member in the D

box region provides further evidence that the cloned hamster cDNA is a member of the PPAR

subfamily. Although α and γ overlap for some ligand/activator, both receptors have distinct high

specificity ligands, a feature which is reflected in their LBD regions that share much lower iden-

tity (69%). The LBD of hmPPARα is almost identical (99%) to the rat and mouse PPARαLBD

sequences, which provides strong evidence that the cloned cDNA is PPARα isoform.

The hinge domain and the A/B domain of PPARα are less conserved and show the greatest

amount of variation between receptors from different species. A similar trend is observed when

hmPPARα is compared with PPARα from other species, i.e. the DBD and LBD region show

high levels of similarity while the hinge and A/B domain share much lower similarity. 

Alignment of hamster amino acid sequence with rat, mouse, hamster and guinea pig has identi-

fied a number of amino acid positions where the hamster sequence differs from human and guin-

ea pig (Figure 3.43). The importance of conservation of key amino acids in the functioning

PPARα has been reported by cloning of a naturally occurring variant form of PPARα from hu-

man liver, termed hPPARα-6/29 (Tugwood et al., 1996). This human receptor has a number of

amino acid changes from published hPPARα sequences, including a threonine to methionine

change at position 71, a lysine to methionine change at position 123 and a valine to alanine

change at position 444. Although this human variant is able to bind to a PPRE, it is unable to

transcriptionally activate PPRE-regulated reporter gene in response to PPs (Roberts et al.,

1998). Further, hPPARα-6/29 can act as dominant negative regulator of mouse PPARα-medi-

ated transcription in vitro and prevent PP-induced suppression of apoptosis in rat primary hepa-

tocytes. Myers et al. (1997) found that restoration of methionine 123 and alanine 444 in

hPPARα-6/29 to the wild-type amino acids restored PP-induced trans-activation. However,

these amino acid polymorphisms are not present in hmPPARα. 
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A change in the charge properties of hmPPARα has been found at amino acid position 196 in

r/mPPARα, where a positively charged lysine is replaced by a negatively charged glutamic acid

in hmPPARα while a negatively charged glutamic acid at 264 of r/mPPARα is replaced by the

polar uncharged group glutamate in hmPPARα (Figure 3.43). Changes in charge properties

may affect the tertiary structure of the receptor and may have important consequences in its

functioning. For example, changes in tertiary structure may affect the interaction of PPARα

with other proteins such as its heterodimerisation partner RXRα or proteins of the transcription

machinery or coactivators. Alteration of a single amino acid at position 282 of mPPARα

(glutamate to glycine) has been found to alter the trans-activation ability of this receptor in re-

sponse to PPs (Hsu et al., 1995; Muerhoff et al., 1992). This glutamate to glycine substitution

in mPPARα (mPPARαG-mut) does not effect its binding to PPRE but, unlike the wild-type re-

ceptor, it displayed lower intrinsic transactivation (in the absence of added PPs) in a reporter

assay. This difference in transactivation may be due to the lower affinity of G-mutant receptor

for endogenous ligands since the mPPARαG-mut displayed higher EC50s for prixinic acid and

eicosatetraenoic acid than the wild-type mPPARα (Hsu et al., 1995).

Comparison of all available PPARα sequences shows that, unlike rat, mouse and human PPA-

Rα, guinea pig PPARα has a single amino acid deletion at position 448 which lies in the ligand

binding domain. This loss of a charged group may affect ligand binding by the receptor (weaker

interaction) as well as changes in transactivation resulting in weaker interactions with other pro-

teins in the transcriptional complex. Investigation into mPPARα function has found that the last

C-terminal 20 amino acids are not necessary for heterodimerisation with RXRa but could add

to the stability of the heterodimeric complex when bound to DNA (Dowell et al., 1997). Since

only guinea pig PPARα has this lysine deletion residing within the C-terminal region it is likely

that such a deletion may affect gpPPARα rather than rat, mouse, human or hamster PPARα.
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Section 4.4.2 Hamster PPARα function
Cloning of full-length PPARα cDNA from total hamster liver RNA demonstrates that hamster

expresses PPARα in liver. However, this does not demonstrate that hamster has functional

PPARα. Following the cloning of PPARα from other species, transcriptional activation of a re-

porter gene (e.g. luciferase) containing a PPRE response element in its promoter region has been

used to demonstrate PPARα functionality in vitro (Bell et al., 1998). However, in the absence

of functional studies for the cloned hamster PPARα, several lines of evidence suggest that ham-

ster has a functional PPARα. Hypolipidaemic actions of PPs have been observed in hamster

where MCP and Wy-14,643 have been found to lower blood lipid and cholesterol levels

(Choudhury et al., 2000). Since knock-out studies demonstrate that the hypolipidaemic action

of PPs is mediated by PPARα in mice and is associated with peroxisome proliferation (Peters

et al., 1997), it is likely that the observed PP-induced hypolipidaemia in hamster is also medi-

ated by PPARα. Induction of Cyp4a10 and 14 transcription and their enzymic activities has

been shown to be highly induced in mouse liver by PP treatment (Bell et al., 1993; Heng et al.,

1997), which is again mediated by PPARα since mouse lacking functional PPARα are resistant

to this effect (Barclay et al., 1999). An increase in lauric acid ω-hydroxylase activity has been

observed in hamster liver treated with PPs (Lake et al., 1989; Price et al., 1992). Rat CYP4A1

has been shown to encode this enzymic activity (Hardwick et al., 1987; Kimura et al., 1989),

suggesting that the PP-induced ω-hydroxylase activity in hamster liver is due to the induction

of CYP4A. In this study (Figure 3.36) CYP4A transcriptional induction by PPs has been dem-

onstrated in hamster liver. Finally, peroxisome proliferation has been observed in hamster liver

(Gray et al., 1984; Lake et al., 1986), an effect that require functional PPARα (Lee et al., 1990).

These lines of evidence together indicate that hamster is likely to have a functional PPARα.

Section 4.4.3 Molecular phylogeny of PPARα genes
A molecular phylogenetic tree of all known PPARα was constructed to gain insight into the
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evolution of hamster PPARα in relation to rat, mouse, human and guinea pig PPARα. The tree

was constructed using the maximum likelihood method: since there is evidence that orthologous

genes for rodents evolve faster than man (Wu and Li, 1985), it was important to choose a meth-

od for phylogenetic analysis which is robust to genes evolving at different rates. Thus, for phy-

logenetic inferences based on a small data set, maximum likelihood is the method of choice

since it has solid statistical background and maximum-persimony method has been found to be-

have badly in some situations (Felsenstein, 1978; Hasegawa and Fujiware, 1993). In this study

clastalW (NJ method) has been found to give a different tree as it can not take account of the

rapid evolution of the guinea pig (data not shown). 

Alignment of mammalian PPARα protein sequences was done in tandem with evolutionarily

distant Xenopus PPARα, and mouse PPARβ and γ as well. PPARγ and β were included in the

analysis as they are related to PPARα but have diverged early in evolution. Therefore PPARγ

and β were used as out groups to root the analysis and give it phylogenetic perspective. The phy-

logenetic tree presented in Figure 3.44 shows that rat, mouse and hamster form a clade where

hamster has branched off first from the muroid lineage (i.e. diverged early in evolution from rat

and mouse) but the rate of evolution is small as shown by the branch length. Guinea pig di-

verged before the branching of hamster and rat-like rodents and guinea pig PPARα between hu-

man (primate) and other members of rodentia family (rat, mouse and hamster). A similar

branching order of rat, mouse, human, hamster and guinea pig has been observed with the 11-

β hydroxylase gene using neighbour-joining method (Bulow et al., 1996), and with α-1 antipro-

teinase (Nakatani et al., 1995). Figure 3.44 demonstrates that mouse, rat, hamster and guinea

pig form a clade after early splitting from human lineage. From the molecular evolutionary point

of view, the guinea pig is unique among mammals, since a number of proteins such as insulin,

lipoprotein lipase and glucagon have evolved several fold faster than their respective ortholo-
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gous proteins in other mammals (Li et al., 1992). Comparision of the branch lengths indicates

that guinea pig PPARα is also evolving more rapidly than human, mouse or rat PPARα genes.

The phylogenetic position of guinea pig is rather controversial. Traditional views of the phylo-

genetic relationship of caviomorph and myomorph forming a rodentia clade (monophyla) is

based on comparative morphology (Luckell and Haortaby 1985). However, biochemical com-

parisons suggest that guinea pig is distant from other rodents (Nogachi et al., 1994), and on the

basis of molecular phylogenetic analysis of a number of proteins, Graur et al. (1991) suggested

that the mammalian order rodentia is polyphyletic and guinea pig-like rodents may be an out-

group with evolutionary origin separate from that of rat-like rodents. However, using maxi-

mum-likelihood method of analysis (as opposed to maximum-parsimony by Graur), C ao et al.

(1994) and Kuma and Miyata (1994) re-examined the same phylogeny and demonstrated weak-

ness in the analysis of Graur and coworkers. Further, phylogenetic analysis of partial mitochon-

drial DNA using several method of analysis shows strong support for rodent monophyly (Frye

and Hedge, 1995). Recently, however, D’Erica and coworkers (1996) have challenged the tra-

ditional view of rodent monophyly using complete guinea pig mitochondrial genome in their

analysis, which supports rodent polyphyly and places guinea pig closer to lagomorph (rabbit)/

primates than to myomorphs. Although their tree was supported by all three major methods of

protein phylogeny (i.e ML, MP and NJ), the statistical significance of the ML tree was not eval-

uated as pointed out by Cao et al. (1997). On the basis of these lines of evidence, rodent mono-

phyly could not be dismissed and inclusion of a larger gene database in the phylogeny may

provide a better answer.

Section 4.4.4 Hepatic expression of PPARα in species with differing responses to PPs
In view of the finding that functional PPARα is present in both species responsive and non-re-

sponsive to peroxisome proliferators and since PPARα is non-inducible by PPs, it was suggest-
Page 221



Munim Choudhury   Section 4.4.4
ed that their differing responses may be due to the relative level of PPARα present in the liver.

That is, quantitative differences in PPARα levels may be responsible for species responsiveness

to peroxisome proliferators. Although previous studies have reported low levels of PPARα tran-

script in guinea pig liver as compared to higher in mouse liver (Palmer et al., 1998; Tugwood

et al., 1998), there is no direct comparision with hamster. In the absence of a specific hamster

PPARα probe it was not possible to compare the level of hepatic PPAR α transcript in various

species. Following the cloning of hmPPARα cDNA it was possible for the first time to investi-

gate the expression of PPARα mRNA level in the livers of different species displaying varying

levels of response to peroxisome proliferators. As shown in Figure 3.46, PPARα mRNA is con-

stitutively expressed in the liver of mouse, hamster and guinea pig. Mouse has a higher level of

expressed PPARα mRNA than hamster and guinea pig, and guinea pig has the lowest level, as

shown quantitatively in Figure 3.47. Hamster has an intermediate level of PPARα i.e. higher

than guinea pig but lower than mouse. Thus, these data demonstrate that the level of expressed

PPARα transcript in the liver correlates well with the species sensitivity to PPs; high levels of

expression are found in the highly responsive species mouse, intermediate levels in the partially

responsive species hamster and low levels in the non-responsive species guinea pig. 

In reporter assays (using the minimal rat Acyl-CoA PPRE) human, mouse and guinea pig PPA-

Rα have been found to have comparable trans-activation abilities in liver cells. In human, in ad-

dition to functional PPARα, another inactive variant has been cloned from hepatic cDNA.

Therefore, in human at least, the quantity of functional PPARα may be a critical factor in de-

termining species responsiveness since the active pool of PPARα may be depleted due to ex-

pression of an inactive competing form. Recently it has been observed that over expression of

both human and guinea pig PPARα (transient transfection) results in increased activity of cya-

nide-insensitive palmitoyl-CoA oxidation in guinea pig hepatocytes to levels similar to those
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from transfected mouse PPARα in the same system (MacDonald et al., 1999), suggesting that

the quantity of PPARα may play a significant role in the lack of response to PPs especially in

guinea pigs. It remains to be seen if transfected gpPPARα is also able to induce CYP4A13

mRNA and peroxisome proliferation in guinea pig primary hepatocytes, given that induction of

CYP4A is highly induced in responsive species by PPs. 

Compared to other tissues, PPARα is highly expressed in the liver where PPs have their greatest

effects (Jones et al., 1995; Braissant et al., 1996). Studies on rat and mouse demonstrated that

PPARα is the predominating subtype present in the liver with β and γ present at very low levels

(Jones et al., 1995). Although knock-out studies demonstrated that the process of peroxisome

proliferation is mediated by PPARα, the relative amounts of other subtypes in the liver may be

an important determinant in species responsiveness to PPs. For example, Kliewer and cowork-

ers (1994) have shown that, like PPARα, β and γ are also capable of heterodimerisation with

RXRa and coexpression of α with either β or γ has resulted in repression of PPARα-mediated

transactivation (Klewer et al., 1994; Jow and Mukerjee et al., 1995). Thus, in addition to lower

levels of PPARα, higher levels of either γ or β or both relative to α may be present in species

that are less sensitive to PPs. If such is the case then this may also be responsible for observed

species differences in peroxisome proliferation. Therefore the relative levels of all isoforms

need to be determined in responsive and non-responsive species.

PPARα 's ability to mediate peroxisome proliferation may assume greater significance when

comparing between responsive and non-responsive species. Keller et al. (1997) found that by

changing a number of amino acids in the ligand binding domain of human PPARα to the corre-

sponding sequence of mouse PPARα resulted in a transactivation profile similar to mPPARα

when induced by Wy-14,643 in a reporter assay. In addition, substitution of critical amino ac-

id(s) in PPARα has been found to give either weaker (Shu et al., 1995) or no transactivation of
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PPRE-regulated reporter genes even though these PPARαs are capable of binding to the PPRE

as heterodimers with RXRα. Since PPARα sequences differ between responsive and non-re-

sponsive species, such differences in critical amino acids may result in weaker interaction and/

or functioning of PPARα in non-responsive species. However, trans-activation assays reveal no

apparent difference in the ability to drive ligand-dependent gene activation between PPARα

from different species.

The nature of the PPRE may also be responsible for species differences in peroxisome prolifer-

ation. Human Acyl-CoA oxidase gene contains an inactive PPRE in its promoter region

(Woodyatt et al., 1999) as opposed to an active PPRE in rat (Tugwood et al., 1992). Differences

in PPRE sequence between rat and human apolipoprotein A-I gene is also responsible for spe-

cies-specific regulation of their expression where, in contrast to rat, human apo-PPRE is active

and is inducible by fibrates. In addition, the repression of rat apo-PPRE was characterized to be

due to the presence of a negative regulatory element close to PPRE that are regulated by RevRa.

This type of receptor cross-talk may have influence on PPARα functioning in the case of HNF4

and COUP-TF. HNF4, a liver enriched transcription factor, is able to bind the rat Acyl-CoA

PPRE and suppress PP-dependent gene activation (Nishiyama et al., 1998). 

Having found an inactive PPRE in Acyl-CoA genes, encoding an enzyme highly induced during

peroxisome proliferation, it will be interesting to see if other PP-responsive genes in human

have active PPRE. It may be that PPARα regulated genes in humans that are relevant to perox-

isome proliferation have lost (or inactivated) their functional PPREs whereas those relevant for

hypolipidaemic actions have retained them. If this is the case then it would easily explain why

PPs induce hypolipidaemia and at the same time do not promote peroxisome proliferation in hu-

mans and guinea pigs. Therefore a better understanding of the promoter regions (including

PPREs) of all PP-responsive genes in human is important and completion of human genome
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project will provide some insight into whether such genes contain PPREs in their promoter re-

gion. Thus it seems that species responsiveness to peroxisome proliferation is a complex pro-

cess which may be an interplay between a number of factors including the nature of the response

element (PPRE), qualitative and quantitative differences in PPARα, and the presence of cross-

talking proteins (receptors and coactivators) in the liver. 

Section 4.5 Distribution of PPARα and  interacting coactivator proteins

Within the liver lobule or acinus, the functional unit of liver, a number of metabolic functions

have been found to be distributed in a gradient manner which may be a reflection of their met-

abolic activity (Oinonen and Lindros, 1998). Zonation of some functions is confined mainly to

the periportal cells while others are restricted to the centrilobular region of the acini. The effects

of PPs are also known to be expressed differentially across the liver lobule: PP-induced DNA

synthesis occurs predominantly in the periportal region of the liver lobule (Barrass et al., 1993)

whereas induction of CYP4A1 and acyl-CoA oxidase occurs in the perivenous region. Since the

expression of PPARα was determined using RNA extracted from homogenised liver tissue it is

not known if PPARα expression is restricted to certain populations of hepatocytes (region-spe-

cific distribution). Distribution of PPARα transcripts was determined in the liver of both control

and MCP-treated mice, and was found to be homogenous through out the liver lobule and was

unaffected by MCP treatment (Figure 3.55). This lack of association between PPARα expres-

sion and the regional distribution of peroxisome proliferation events suggests that cell specific

factors may be involved in PPARα-mediated effects such as induction of DNA synthesis or

CYP4A by PPs in distinct regions of the liver acini.

Coactivator proteins are important in the functional association between nuclear receptors and

general transcription machinery, and their presence has been found to modulate receptor activ-

ity (Chakravarti et al., 1996). This integrator function for a number of coactivator proteins has
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been found to enhance the transcriptional activity of PPARα as well as other nuclear receptors

(Dowell et al., 1997; Zhu et al., 1997). Although no specific coactivators for PPARα have been

identified, there is a possibility that some of these general coactivators may influence PPARα

function in the liver and their high level expression and co-localisation with PPARα in respon-

sive species may be the determining factor in species response to PPs. Distribution of mRNAs

encoding a panel of coactivators that are known to interact with PPARα has been studied in the

liver of control and MCP treated mice. Coactivator protein PBP was identified using PPARγ as

a bait in yeast two-hybrid assay (Zhu et al., 1997) and was found to be expressed in the liver. In

this study, compared to other studied coactivators, PBP was found to be the most abundantly

expressed coactivator. However, as with PPARα, its distribution is not confined to a particular

region of the liver acini i.e. uniform distribution. Expression of both CBP/p300 and SRC-1 was

found to be low compared to PBP and did not show region-specific distribution. Recently

knock-out studies demonstrated that SRC-1 is not essential for PPARα-regulated gene expres-

sion and indeed the whole process of peroxisome proliferation (Qui et al., 1999). It will be in-

teresting to see how the disruption of PBP gene effects PPARα functioning given that PBP is

the most abundantly expressed coactivator amongst those studied here. Expression of RIP-140

and PGC-1 was undetectable in the liver, and like PBP, SRC-1 and CBP/p300, their expression

was unaffected by MCP treatment. Although MCP shows no effect at the mRNA level, the pos-

sibility that it could affect coactivator expression post-transcriptionally cannot be ruled out. Pre-

vious studies found that PGC-1 is undetectable in the mouse liver but expressed in heart, kidney,

brain and brown fat, and is highly induced in the brown fat following cold exposure of mouse

(Puigserver et al., 1998). PGC-1 has been shown to interact with PPARγ but there is no report

of whether it also can interact with PPARα. Given that PGC-1 is not expressed in the liver even

after PP treatment it is unlikely that this coactivator is physiologically important in the function

of PPARα. RIP-140 has been found to be expressed in a number of cell lines including the liver
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derived HepG2 using Northern analysis (Cavailles et al., 1995). The failure to detect this coac-

tivator in the liver sections may be due to its low abundance and lack of sensitivity of the in situ

hybridisation techniques. Although a number of coactivators are known to interact with and en-

hance the transcriptional activity of PPARα in vitro, their biological significance in PPARα

functioning and in peroxisome proliferation has yet to be determined. 

Section 4.6 Heterologous expression and purification of mPPARα-LBD

PPARα is a ligand-dependent transcription factor, and like other nuclear receptor-family dis-

plays a modular structure including a central DBD and a carboxy terminal domain that mediates

ligand binding, dimerisation and transactivation functions. Ligand-dependent transcription re-

quires a highly conserved motif, termed activating function-2 (AF-2), located at the C-terminus

of the LBD (Evans et al., 1988). The structure of the LBD of RXRα, RARγ, TR and ER has

been solved (Bourguet et al., 1995; Wagner et al., 1995; Renaud et al., 1995; Brzozwski et al.,

1997), and has provided evidence of their high degree of conformational similarity and identi-

fied regions involved in ligand binding and transactivation functions. Recently the crystal struc-

ture of PPARγ LBD has been solved, providing important insights into the functioning of the

receptor (Nolte et al., 1998). For example, the structure revealed a large binding pocket which

may explain the diversity of ligands for γ, and also glutamate and lysine residues are found to

form a ‘charge clamp’ that are involved in the interaction of coactivator proteins. To understand

how these various functions of the PPARα-LBD operate and interact at molecular level requires

both functional and structural analysis. Therefore purification of functional PPARα-LBD will

be useful to study the structural and functional aspects of this domain.

PPARα-LBD was expressed from prokaryotic expression vector pET5b in BL21 (DE3)pLysS

cells. A stretch of six histidine residues was placed at one end of the LBD so that the expressed

protein can be purified by one step affinity chromatography on Ni2+ containing resins. As well
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as wild-type LBD (PPARα-LBDwt) a mutant form of the protein, termed G-mutant (PPAR α-

LBDG-mut) was also expressed from pET5b vector. Both wild-type and G-mutant LBD proteins

were inducible by IPTG (Figure 3.48), however almost all of the induced proteins were found

in the insoluble fraction when induced at 37 0C(Figure 3.49 A and B). To increase the solubility

of the induced protein, effects of IPTG concentration and growth temperature of the culture

were investigated. Altering the growth temperature of the culture may affect the physicochem-

ical properties of the induced protein such that low temperature may increase the fraction of sol-

uble protein. Figure 3.49 shows that induction at lower temperature (25 0C) marginally

increased the solubility of the induced protein. LBD of PPARγ has been expressed similarly

from pRSET vector transformed in BL21(DE3) cells (Nolte et al., 1998). IPTG concentration

of 0.5mM also marginally improved the solubility of the induced protein cultured at 25 0C (Fig-

ure 3.50). The soluble fraction of his-tagged LBD protein was purified successfully using Ni2+

containing resin (Figure 3.51). SDS-PAGE shows that a single purified band of expected size

(~30kDa) was eluted from the column. A single band of expected molecular size was also de-

tected in Western blotting analysis using a polyclonal rabbit anti-mouse PPARα antibody (Fig-

ure 3.52). Thus, using affinity chromatography, soluble his-tagged PPARα-LBD (wild-type and

G-mutant) were purified. For further purification of the LBD, eluted proteins were dialysed to

remove imidazole and then FPLC purified using a Econ-S column (Pharmacia). A single peak

(of protein) was eluted from the FPLC run as shown in the chromatogram (Figure 3.53). Al-

though the identity of this peak was not further characterised, the presence of a single peak sug-

gest that it is likely to be LBD protein. To demonstrate that the purified LBD protein is still

functionally active, ligand binding studies could be performed with high-affinity radiolabelled

ligand a in classical ligand binding assay (Kliewer et al., 1997) or a scintillation proximity assay

(Nichols et al., 1998).
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Functionally active PPARα-LBD in pure form could be utilised to study the structure and func-

tion of this domain. In addition to solving crystal structure, LBD protein could be used to search

for a bona fide cellular ligand using recently identified high-affinity ligands (with Kd in the na-

nomolar range) that have been shown to bind and activate PPARα but are not themselves true

physiological ligands (Forman et al., 1997; Kliewer et al., 1997; Devchand et al., 1996). Yeast

two-hybrid assays have been used to identify cofactors (such as PBP, SRC-1 and PGC-1) for

PPAR receptors using PPARγ as a bait (Zhu et al., 1996 and 1997; Puigserver et al., 1998).

However, these coactivators have also been shown to interact with other nuclear receptors, in-

cluding PPARα, and, therefore, may represent coactivators for the steroid receptor family in

general. PPARα-LBD protein could be used to search for a novel, specific coactivator(s) in nu-

clear pull-down assay (protein-protein interaction assay or far-Western blot). This may be a bet-

ter approach since the LBD region differs considerably between all three PPAR isoforms, and

inclusion of a mutant receptor LBD in the assay may aid in assessing the potential significance

of any interactions. Also, coactivators have been found to contain the signature motif LXXLL

(where L is leucine and X is any amino acids) that specifically interact with nuclear receptors

via the LBD. RIP-140 has been isolated as an ER interacting protein using  the ER-hormone

binding domain in nuclear pull-down assay (Cavailles et al., 1994).

Section 4.7 Conclusions

The pleiotropic effects of PPs are mediated by PPARα as demonstrated by global PPARα

knock-out studies. Since PPARα is expressed in species both responsive and non-responsive to

PPs, it is likely that the functional activity of PPARα may play a significant role in determining

species response. In the present study, primary hepatocyte culture has been used as an investi-

gative tool to examine the functionality of PPARα from different species. Although rat hepato-

cytes were found to be responsive to PPs, their usefulness for studying of the effects of added

PPARα (exogenous) is hampered by the presence of endogenous level of PPARα protein.
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Hepatocytes from PPARα knock-out mice has been used to overcome this problem, since they

lack any background activity of PPARα. This hepatocyte system clearly demonstrates that the

transcriptional induction of Cyp4a genes require PPARα. However, addition of PPARα back

into the system did not result in the induction of endogenous Cyp4a marker genes. This may be

a consequence of gene silencing effects which may have occurred in the absence of PPARα dur-

ing development. Examining the promoter activity of Cyp4a in PPARα wild-type and knock-

out mice-for example, by locating DNaseI hypersensitive sites- may provide a clue as to wheth-

er this is the case. The PPARα knock-out has been generated by disruption of the protein’s

ligand binding domain, and, therefore, truncated PPARα is still present in the cell. Since these

truncated proteins possess DNA binding domain, it is possibile that they may act as a dominant

negative manner by binding to PPRE elements in the promoters of the PP-responsive genes such

as Cyp4a. This type of interference may explain why the addition of full-length mouse PPARα

back into the hepatocytes of knock-out mice did not induce Cyp4a mRNA in the presence of

PPs. This could be demonstrated by binding of nuclear proteins, isolated from knock-out hepa-

tocytes, to PPRE using electromobility gel shift and supershift assays.

In this study, level of hepatic PPARα transcripts has been found to correlate with species sen-

sitivity to PPs, where high levels were associated with responsive species and lower levels with

non-responsive species. However, the relative levels of other PPARα isoforms in the liver may

also be an important determinant factor of species response to PPs, since there is evidence that

both PPARβ and γ represses PPARα activity in vitro. Therefore, it is important to determine the

relative levels of all three isoforms in the livers of both responsive and non-responsive species.

In addition, an improved understanding of such complex receptor “cross-talk” may be achieved

through the generation of tissue specific knock-outs of these isoforms, and assessing their con-

tribution to PPARα-mediated peroxisome proliferation.
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Investigation of hamster response to PPs demonstrated the presence of expressed PPARα and

PPARα-responsive CYP4A genes in the liver; both the hepatic PPARα level and the inducibil-

ity of CYP4A correlate well with hamster’s partial responsiveness to PPs. The presence of mul-

tiple CYP4A genes in rat, mouse and hamster, and the selective induction of some of these

genes in the liver by PPs, together suggest that the induction of these genes may be important

in the process of peroxisome proliferation. Regulatory regions of these and other PP-responsive

genes are mainly studied in rat and, and it is therefore important to understand the nature of the

response elements of the corresponding genes in other species such as mouse, hamster and guin-

ea pig. Constitutive and tissue-specific expression patterns vary between the CYP4A genes, and

therefore it is likely that they may have different physiological functions. For example, renal

CYP4A has been implicated in inflammation and maintenance of vascular tone. Therefore

greater understanding of the catalytic functions of their protein products is required. In future

studies, generation of knock-out mice for these genes will be important to delineate their role in

tissue physiology.

As well as the level of PPARα activity, there may be other factors that determine species re-

sponse to PPs. Therefore it is necessary to explore other possibilities such as factors affecting

the PPARα trans-activating function as well as PPARα expression. In the latter case, PPAR α

expression has been shown to be hormonally regulated but was largely unaffected by PP treat-

ment, as shown in this study. A number of coactivators have been shown to enhance PPARα

activity but so far no specific coactivator has been implicated as critical for PPARα function or

peroxisome proliferation. Therefore, it is still possibile that specific coactivator(s), as yet uni-

dentified, may exist for PPARα which could be critical determinants of  species response to

PPs. The PPARα ligand binding domain purified in this study should serve as a useful bait for

the isolation of any novel coactivator(s) of PPARα in protein-protein interaction studies.
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Finally, there remains the problem of clarifying the exact mechanism by which treatment with

PPs in rodents results in peroxisome proliferation and ultimately in liver cancer. There may be

further, as yet uncharacterised, molecular components that could be critical for species sensitiv-

ity to PPs. Using microarray technology, the expression pattern of genes in the liver of both

PPARα wild-type and knock-out (treated with and without PPs) should identify target genes

(both novel and previously characterised) that may be implicated in peroxisome proliferation.
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