
On-Line Recognition of
Connected Handwriting

by

David Malcolm Ford BSc

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy, May 1991

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr Colin Higgins,

for all his suggestions and encouragement during the course of this research and

during the preparation of this thesis. He has been a good friend and colleague

throughout this PhD work.

I also wish to thank the National Physical Laboratory who funded the early part

of this research, especially Hilary Symm, Paul Kenward and Ed Brocklehurst who

provided the preprocessing and feature extraction routines for this work. The

Central Computer and Telecommunications Agency of HM Treasury are also

acknowledged for their input to this project. Many thanks also to the Paper Inter

face research team at Nottingham Polytechnic for the use of thek dictionary with

which this system has been tested.

To my friends and colleagues in the Department of Computer Science, I wish to

extend my thanks for the countless suggestions, advice and assistance I have

received over the years.

Finally, I wish to express my thanks to my parents for their continual encourage

ment, and to my wife, Fiona, without whose endless support, patience and under

standing this research would not have been possible.

11

Table of Contents

Table of Contents iii
List of Tables and Figures viii
Abstract xi

Chapter 1 - Introduction
1.1 Objectives 1
1.2 Background and Motivation 2

1.2.1 The Development of the Human-Computer Interface 2
1.2.2 The Electronic Paper Interface 4
1.2.3 The Need for Handwriting Recognition 6

1.3 Terminology 7
1.4 The Cursive Script Recognition Process 11

1.4.1 Preprocessing 12
1.4.2 Basic Recognition 14
1.4.3 Postprocessing 16

1.5 Scope and Organisation of this Thesis 17

Chapter 2 - Literature Review
2.1 Background 19
2.2 Data Capture and Electronic Paper 20
2.3 Preprocessing 21
2.4 Segmentation and Choice of Features 21

2.4.1 A Maximum/Minimum Approach 22
2.4.2 Absolute Pen Velocity 23
2.4.3 Characterisation of Script 24

2.5 Template Matching 26
2.5.1 Elastic Matching 26
2.5.2 Freeman Coding 27
2.5.3 Feature Matching 29
2.5.4 Rule-Based Matching 30

2.6 Whole Word Recognition 30
2.7 Postprocessing 31

2.7.1 Spelhng Correctors 32
2.7.2 N-Gram Techniques 32
2.7.3 Viterbi Algorithm 32
2.7.4 Dictionary Viterbi Algorithm 33
2.7.5 Modified Viterbi Algorithm 34
2.7.6 Predictor-Corrector Algorithm 34
2.7.7 Dictionary Tree Structure 34

2.8 Higher Level Context 36
2.9 Training 36
2.10 Recognition Rates 37
2.11 Conclusions 38

111

Chapter 3 - ORCHiD System Overview
3.1 Outline of the System 40
3.2 Project Organisation 42
3.3 The Underlying Principles of the ORCHiD System 43

3.3.1 A Representation of the Script Recognition Process 43
3.3.2 A Statistical Approach 44
3.3.3 Retention of Ambiguity 44

3.4 Hardware Configuration 45
3.5 Preprocessing and Stroke Reconnection 45
3.6 Visual Verification and Correction of Preprocessing 47
3.7 Segmentation Algorithm 47

3.7.1 Possible Segmentation Points 47
3.7.2 PSP Deletion 47

3.8 Feature Extraction 49
3.9 Template Matching 50

3.9.1 Template Comparison 50
3.9.2 Segment Normalisation 52
3.9.3 Letter Graph Formation 52

3.10 Dictionary Lookup 52
3.11 Visual Display of Input and Verification of Output 53
3.12 Training 53
3.13 Conclusion 54

Chapter 4 - Segmentation
4.1 Background Leading to the Segmentation Algorithm 55
4.2 Aims for a Good Segmentation Method 57
4.3 The ORCHiD Segmentation Algorithm 60

4.3.1 Possible Segmentation Points 61
4.3.2 PSP Deletion 61

4.3.2.1 Multiple Intersections 62
4.3.2.2 Short Segments 65
4.3.2.3 Serifs 66

4.4 Segment Shapes 66
4.5 Suitability of the Segmentation Method 67

4.5.1 Consistency of Segmentation 68
4.6 Feature Extraction 72
4.7 Independence and Normahty of Features 75
4.8 Implementation Details 79
4.9 Conclusion 82

Chapter 5 - Template Matching
5.1 An Introduction to Statistical Template Matching 83
5.2 The Goodness of Fit Approach 85
5.3 A Probabilistic Approach 88
5.4 Match Probability Calculation 90

IV

5.5 Template Database Description 91
5.6 Distance Measure 93
5.7 Implementation of the Template Matching Process 98

5.7.1 Template Comparison 98
5.7.2 Segment Normalisation 100
5.7.3 Letter Graph Formation 102

5.8 Conclusion 103

Chapter 6 - Candidate Word Verification
6.1 Output from Segmentation Based Recognition Systems 105
6.2 Use of Contextual Information from Dictionary Sources 107

6.2.1 Fixed Letter-Segmentation 107
6.2.2 Ambiguous Letter-Segmentation 107

6.3 Binary N-Gram Graph Reduction 108
6.3.1 Speed of Reduction 109
6.3.2 Output 109

6.4 Tree-Based Dictionary Lookup 110
6.5 Computer Representation of the Dictionary Tree I l l

6.5.1 Discussion of Possible Data Structures 112
6.5.2 Possible Enhancements 113

6.5.2.1 Speed 114
6.5.2.2 Size 115
6.5.2.3 Recognition 115

6.6 Implementation Selected 116
6.7 Size of Data Sti-ucture 117
6.8 Comparison with Binary 4-Gram Graph Reduction 118
6.9 Implementation Details 118

6.9.1 Letter and Letter-Join Graph 119
6.9.2 Multi-Pass Dictionary Search 120
6.9.3 Diacritical Marks 120
6.9.4 Word Frequency 121
6.9.5 Reduction of Candidate Word List 121

6.10 Higher Level Context 121
6.11 Conclusion 122

Chapter 7 - Training
7.1 The Need for Training 124
7.2 Automatic and Manual Training 125
7.3 Theory of Automatic Training 125
7.4 Training the Personal Database 126
7.5 The Training Session 127

7.5.1 User Initialisation 128
7.5.2 Continual Training 128

7.6 Success of Training 129
7.7 Conclusion 129

Chapter 8 - Results
8.1 Discussion of Performance Testing 131
8.2 Experimental Arrangements 131

8.2.1 Hardware 131
8.2.2 Samples Collected 133
8.2.3 Template Databases 133
8.2.4 Verification of Preprocessing 133
8.2.5 Definition of Successful Recognition 134
8.2.6 Dictionary 134

8.3 Test Routines 134
8.3.1 Test I - Untrained Recognition 135
8.3.2 Test II - First Training Session 135
8.3.3 Test in - Second Training Session 136
8.3.4 Test IV - Third Training Session 136
8.3.5 Test V - Extended Training 137

8.4 Analysis of Results 138
8.5 Description of Errors 140

8.5.1 Stylistic of Writing Errors 140
8.5.2 Preprocessing Errors 140
8.5.3 Segmentation Errors 141
8.5.4 Template Matching Errors 141
8.5.5 Dictionary Lookup Errors 142

8.6 Error Rates 143
8.6.1 Discussion 145

8.7 Speed 145
8.9 Summary 146

Chapter 9 - Conclusions and Further Work
9.1 General Conclusions 147

9.1.1 Segmentation 147
9.1.2 Features 148
9.1.3 Template Matching 148
9.1.4 Dictionary Lookup 148
9.1.5 Training 148
9.1.6 Important Aspects of this Research 148

9.2 Recognition Rates 149
9.2.1 A Discussion of Required Recognition Rates 149

9.3 Further Work 150
9.3.1 Improved Letter Template Database 150
9.3.2 Training 151
9.3.3 Data Collection and Preprocessing 152
9.3.4 Context 153
9.3.5 A Pooled Method Approach 154
9.3.6 Feedback 155

9.4 Concluding Remarks 156

VI

Bibliography 157
Glossary 164
Appendix A - A Simple Recognition Demonstrator 166
Appendix B - Example Processing 174
Appendix C - Published Papers 180

vu

List of Tables and Figures

Chapter 1

Figure 1.1 Electronic Paper 5
Figure 1.2 A freehand document and its typeset equivalent 7
Figure 1.3 A text editor manual 8
Figure 1.4 One stroke and many stroke words 9
Figure 1.5 A cursive and block capital A 10
Figure 1.6 Straight line wobble 13
Figure 1.7 Normalised script 13
Figure 1.8 Vertical regions of a script word 14
Figure 1.9 Ambiguous letter segmentation 15

Chapter 2

Figure 2.1 Segmentation Points 22
Figure 2.2 Extra y minima 23
Figure 2.3 No y minimum segmentation point 24
Figure 2.4 Eden and Halle primitives 25
Figure 2.5 James primitives 25
Figure 2.6 Hayes primitives 25
Figure 2.7 Berthod primitives 26
Figure 2.8 Elastic matching 26
Figure 2.9 Freeman coding 27
Figure 2.10 Wright's coding 28
Figure 2.11 Ouladj's modification due to writing degradation 28
Figure 2.12 Possible errors due to Freeman coding 29
Figure 2.13 Viterbi algorithm treUis 33
Figure 2.14 Dictionary tree 35
Table 2.1 Recognition rates 38

Chapter 3

Figure 3.1 The recognition process 41
Figure 3.2 Letters before and after stroke reconnection 46
Figure 3.3 Possible segmentation points 48
Figure 3.4 Irrelevant PSPs 48
Figure 3.5 PSP deletion 49
Figure 3.6 Segment shapes 49
Figure 3.7 Height value of the template distribution 51
Figure 3.8 A sample word comparison array 51
Figure 3.9 A directed letter graph 52

viu

Chapter 4
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figiu-e 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Table 4.1
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Table 4.2
Table 4.3
Figure 4.17
Table 4.4
Table 4.5
Table 4.6
Figure 4.18
Table 4.7

Chapter 5
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Table 5.1
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9

Chapter 6
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

A typical page from a copy-book 56
Cusp deformation 58
Segmentation points with variable position 59
Letter d's based on the same copy book letter 60
Possible segmentation points 62
hrelevant segmentation points 62
Multiple intersections 63
Strokes with same underlying structure 64
Stretching process 65
Segment shapes 66
Sample of the template database 67
Script segmentation 69
Consistency of segmentation 70
Segmentation inconsistencies 71
Segmentation errors 71
Features measured 74
Values of features 75
Observed frequencies 76
Cumulative distribution values 77
Cumulative distribution functions 77
Normahty test results 78
Discrete test 78
Segment features 79
Example segmentation 81
Feature values for a segmented word 81

A simple template matching problem 84
Peleg's normalisation 87
ProbabiHty of X belonging to distribution aor b 90
Letter-joins 93
Approximation to normal distribution 96
Ertors in approximation 97
Matching templates to data sample 98
Sample word comparison array 99
Regions for vertical position of segments 100
A directed letter graph 102

A simple letter graph 106
4-gram reduction time v̂ confusion level 109
Arc deletion 110
Dictionary tree - pictorial representation I l l
Dictionary tree - simple implementation 112

ix

Figure 6.6 Dictionary tree - compact implementation 113
Figure 6.7 Letter graph implementation 114
Figure 6.8 Dictionary tree - tail-end compression 115
Figure 6.9 Size of data structure vs dictionary size 117
Figure 6.10 Comparison - lookup time vs confusion level 119

Chapter 8

Figure 8.1 A handwriting sample 132
Table 8.1 Test I results 135
Table 8.2 Test II results 136
Table 8.3 Test IH results 136
Table 8.4 Test IV results 137
Table 8.5 Test V results 138
Table 8.6 Recognition rate comparison - sample B2 139
Figure 8.2 Recognition results - sample B2 139
Table 8.7 Ertorrates 143

Appendix A

Table A.l Features extracted 169
Figure A.l An example screen 171

Appendix B
Figure B.I Preprocessed data 174
Table B.l Extracted features 175
Table B.2 Candidate allographs 176
Figure B.2 Letter graph 177
Figure B.3 Output 178

Abstract

Computer technology has rapidly improved over the last few years, with
more powerful machines becoming ever smaller and cheaper. The latest
growth area is in portable personal computers, providing powerful facili
ties to the mobile business person. Alongside this development has been
the vast improvement to the human computer interface, allowing non-
computer-literate users access to computing facilities. These two aspects
are now being combined into a portable computer that can be operated
with a stylus, without the need for a keyboard. Handwriting is the obvious
method for entering data and cursive script recognition research aims to
comprehend unconstrained, natural handwriting.

The ORCHiD system described in this thesis recognises connected
handwriting collected on-line, in real time, via a digitising pad. After
preprocessing, to remove any hardware-related errors, and normalising,
the script is segmented and features of each segment measured. A new
segmentation method has been developed which appears to be very con
sistent across a large number of handwriting styles.
A statistical template matching algorithm is used to identify the segments.
The system allows ambiguous matching, since cursive script is an ambigu
ous communications medium when taken out of context, and a probability
for each match is calculated. These probabilities can be combined across
the word to produce a ranked list of possible interpretations of the script
word.
A fast dictionary lookup routine has been developed enabling the some
times very large list of possible words to be verified.
The ORCHiD system can be trained, if desired, to a particular user. The
training routine, however, is automatic since the untrained recognition
system is used as the basis for the trained system. There is therefore very
little start-up time before the system can be used. A decision-directed
training approach is used.

Recognition rates for the system vary depending on the consistency of the
writing. On average, the untrained system achieved 75% recognition.
After some ft-aining, average recognition rates of 91% were achieved, with
up to 96% observed after further training.

XI

To "fio t/Of\a'

Chapter 1

Introduction

1.1. Objectives

The^aim of this research was to produce an on-line handwriting recognition

system that could be used by any person with reasonably neat script. The consti

tuent characters of the script could be connected and relatively unconstrained in

formation and structure. The system would be automatically trained to an

individual's own writing style, if desired, so that the recognition rate would

increase with system usage.

To satisfy this aim, a system was developed called ORCHiD or On-line

Recognition of Connected Handwriting Demonstrator. This research was part of

a larger project, organised by the National Physical Laboratory (NPL), investigat

ing a novel form of computer interface, termed Electronic Paper (EP) (see sec

tion 1.2.2). The Electronic Paper Project included research into suitable

hardware, ergonomics and appUcations software, as well as more basic research

into handwriting recognition.

Research into Cursive Script Recognition (CSR) was carried out at two sites,

NPL and The University of Nottingham. NPL designed and developed the data

collection and low-level processing routines. Nottingham designed the recogni

tion routines, some of which were implemented at NPL, the rest at Nottingham.

Nottingham designed and implemented the post-processing routines. The exact

breakdown of the work is described in section 3.2.

The input script is collected on-line (in real-time, as it is being written), via a

digitising tablet, and stored initially as a time-ordered list of coordinates. Since

the low-level processing routines were not developed at Nottingham, the research

described in this thesis was based on the assumption that the data would be

1: INTRODUCTION 2

preprocessed and segmented into individual words and the baseline of the writing

detected before being submitted to the recognition system. (See sections 1,3 and

1,4 for an explanation of italicised terms.)

ORCHiD recognises words, written with lower case letters, by comparing the

input script to a database of ideal character formations. The method used for this

comparison maps different writing styles to the perfect copy-book styles taught in

schools. The ideal character formations, or allographs, can then be based on

these copy-book styles.

Handwriting is an ambiguous communications medium since the interpreta

tion of the ink marks on the page is often dependent on the context of the sur

rounding writing. For this reason, the ORCHiD system contains an ambiguous

recogniser which provides a weighting that allows its output to be ranked. It also

assumes that every sample word is contained in the system dictionary so that the

output will always be a valid word, rather than a random sequence of letters.

In order to improve recognition accuracy, ORCHiD can be trained to a partic

ular writer, if desired. Apart from a brief initialisation routine, this training can

be carried out fully automatically, so that recognition improves as the system is

used.

The rest of this chapter includes the background and motivation for research

into CSR. A description of the technical terminology is then followed by a brief

introduction to the principle stages that may be present in any CSR system.

Specific details of the ORCHiD system are reserved for the later chapters of this

thesis,

1.2. Background and Motivation

1.2.1. The Development of the Human-Computer Interface

As computer power and size has increased over the years, the interface

between the computer operator and the machine has steadily improved ̂ Origi

nally the computer program and data were either hard-wired into the machine at

the time of manufacture or entered, literally, 'bit by bit' using binary switches or

hand-keys. The computer programmer was typically a dedicated scientist who

interacted with the computer at the very low level of its own machine code.

More practical computer installations, allowing the input and execution of

more complex programs that could access large amounts of data, became

1: INTRODUCTION 3

available with the development of punched card and paper tape readers. Com

puter programming was a very labour intensive process, involving preparation of

the punched cards or paper tape, submission of the program to a computer opera

tor who fed the cards or tape into the machine, and waiting for the program to run

before collecting the output from a line-printer. As high-level language compilers

were developed the computer programmer did not need such a detailed under

standing of the inner workings of the computer, and so a new generation of non

technical computer users emerged. The computer itself, though, remained a mys

terious entity, locked in its own air-conditioned environment, allowing communi

cation only within a very restricted protocol via the operators.

The teletype terminal and the cortesponding software and hardware develop

ments, which provided for the interactive editing, compiling and running of pro

grams stored on magnetic media, greatly improved the perceived usabiUty of

computers. The appearance of the Visual Display Unit computer terminal

allowed for limited real-time graphical output on its character-based screen, and

greatly increased programmer performance. Bit-mapped graphics displays

became available with the option of pointing to objects on the screen with a light

pen.

The computer was now accessible to anybody who could master a keyboard

(provided they had sufficient funds). They could edit, compile and run their pro

grams whenever they could gain access to a terminal and, as Personal Computers

(PCs) were developed and became cheaper, they could have the computer sitting

on their own desk. Traditional office practices were revolutionised, as data

storage and retrieval and document preparation were increasingly carried out by

the originator of the request rather than by specialist secretaries. Keyboard skills

now became especially important, and not surprisingly secretaries found they

could adapt to the new machine that was placed on their desks. However a large

proportion of the population cannot type and many do not wish to leam, perhaps

because of a fear of technology or because they think that typing is demeaning. It

is not yet even standard practice in the UK to teach all schoolchildren how to

type. Many people therefore remained outside of this technological revolution.

This remained the state of the art for a long time, until the appearance of

powerful workstations with high-resolution bit-mapped screens and the Window,

Icon, Mouse and Pointer (WIMP) interface, first successfully exploited in the

Apple Macintosh^-'. This provided a revolution in access to computers for the

1: INTRODUCTION 4

inexperienced keyboard user, as a whole host of applications could be run simply

by manoeuvring the screen cursor with the mouse and by selecting items from

menus or icons, with keyboard use restricted to entering text and numerical data,

1.2.2. The Electronic Paper Interface

A new computer interface is now appearing that will further increase com

puter accessibility for the lay person and improve access for the skilled user.

Everyone learns to manipulate a pen and paper at an early age, whether it be to

write with or just to sketch, and this new interface takes advantage of this skill.

The computer display is replaced by a flat surfaced screen that can be written on

with a special stylus (figure 1.1). The slightest movement of the stylus can be

tracked by the computer, and when it is in contact with the screen, electronic ink

is left on the display. This novel form of computer interface which will be

referred to in this thesis as Electronic Paper has also been named Active Book or

Interactive Tabled'^^'^^'^^'^. The concept of EP includes not only the

hardware device itself, but also the controlling software. Intelligent software

interprets any gestures that are made and acts accordingly. Often a book or per

sonal organiser paradigm is used as the basis of the operating system, with

chapters, table of contents, index, thumb guides, etc. This further enhances the

intuitive nature of such a device.

This new device incorporates all the advantages of the mouse, light pen and

touch screen, but reduces the hand/eye coordination needed to operate a mouse,

increases the accuracy available for a light pen or touch screen, and also provides

an intelligent, natural, software interface.

There are several obvious uses for EP, particularly in an office environ

ment^.

The interface can be used as a jotting pad for notes and sketches. These can

then be tidied up, sent electronically to another site for corrections or anno

tations, and returned for printing or inclusion in other documents. Faxes

could be prepared, sent and received on-line, without the need for paper

copies.

It can be used for the interactive manipulation and annotation of digitally

encoded documents and images.

The executive working outside normal office hours can produce documents

that would normally be sent to a secretary.

I: INTRODUCTION

cordless
link \

microphone /
speaker —-~-~-p=-<^

camera

/ hyper-text
J windows

text
editor

video
window

clock

Figure 1.1 - Electronic Paper

• Two devices connected to each other via a communications channel could

be used for remote, on-line, visual conferences, enabling distant parties to

converse and simultaneously illustrate their ideas with free-hand sketches.

• This device would be ideal to take advantage of the imminent arrival of mul

timedia computing, allowing for video, text and sound to be combined in the

same unit. All of these facilities could then be accessed with natural pen

strokes.

One activity that may especially take advantage of this interface is document

preparation. At present, a large amount of the initial preparation of documents is

done with a pen and paper, drafting out text and sketches that will later be typed

1: INTRODUCTION 6

up, possibly on some form of desk-top publishing system. An EP system could

be used for the initial drafting^, where the text would be automatically converted

from handwriting to typescript and the rough sketches to neat diagrams, without

the need for an intermediate conversion, either by the author or by a secretary.

Subsequent editing of the document could then be carried out directiy on the

screen, with the changes immediately visible ̂ ^'^^'^^. Figure 1,2 shows an origi

nal hand-drafted document and its typeset equivalent. The automatic conversion

would be carried out step by step as each section of the document is drafted.

The editing stage would be even more efficient than using a standard word-

processing package, since the editing commands could be the same as those used

to mark up a paper manuscript^^. For example, the handwritten instruction to

move a paragraph merely requires the gesture of drawing an arrow from within

the paragraph to its destination. With a conventional word processor it is neces

sary to specify the beginning of the paragraph, the end of the paragraph, select the

move command from a range of options, and specify the destination - a large

amount of data must be supplied for what should be an obvious action.

Electronic Paper offers the potential for people to interact with a machine

without the need for training or constant recourse to voluminous instmction

manuals. A few pages will suffice as the manual for EP, with pictures of the few

symbols necessary to operate the device. Varying levels of help could be brought

onto the screen to assist if necessary. Figure 1.3 shows the manual that would be

necessary to operate a text editor^^.

1.2.3. The Need for Handwriting Recognition

In order to take advantage of this new type of interface a means of entering

data into the computer is needed without using a conventional keyboard. Obvi

ously it is possible to display a soft keyboard on the screen and pick off characters

by pointing to them, but ideally some form of handwriting recognition is required.

Speech recognition may be available in the future for automatic conversion of

dictation to typescript, but typically we speak in a less structured manner than we

write, and speech is not the best communications medium for, say, drawing a

diagram.

In countries where the alphabet consists of a very large number of characters

or ideograms, such as China and Japan, some form of handwriting recognition is

especially desirable since a keyboard is, of necessity, very large and impractical.

1: INTRODUCTION

\h^ fHvA

j{J^^

f ^ f c cvr<- 1 ^

f^Z
MH/^

| i

V
_J)CH^ 1 J

J L * ^

Depaitment of Computing
University of Nottingham

27 October 1991

Dear John,
Here are the figures.

red

blue

green

3

7

5

David

Figure 1.2 - A freehand document and its typeset equivalent

This problem is hindering such countries from fully exploiting the technical revo

lution since there is no easy method of entering data into a computer in their

natural language. These languages are not within the scope of this thesis, and so

we will restrict ourselves to languages based on the Roman alphabet.

1.3. Terminology

It is necessary at this stage to define some of the terms used in this thesis to

distinguish this work from similarly titled work.

On-line Recognition

On-line handwriting recognition means that the data is captured as the user

writes, usually on some form of digitising tablet or surface. This has also been

referred to as dynamic or real-time recognition. The digitiser encodes the script

into a time-ordered list of coordinates. Information is available on whether the

1: INTRODUCTION

Delete letter

aa aaj<B aaa aa

Transpose letters

aa i c c c

II

Delete text

aa aaa (xx xxjrx x
xx^bb bbb bb bbb

Insert

aa aaa .bbbb bb bb
A

Pack paragraph

Aaa aa aaaaa.
Aaa aa aaa aa aa

aaa .

Move paragraph

Aaa aa aaaaa. Aa aa
aaaa aa aaa a.

Cccc cccor c ccc c ccc
cc cccc Ice cccc.

Bbbb bl/bbb. Bbb b
bbbb bb bbbb.

Make paragraph

Aaa aa aaaaa. Aa aaa
aaaa. LPbbb bb bbbb
bbbb. Bbb bbb bb.

Delete letters

aa ax. ;t»iut iiaa aa

Move word(s)

Move text

aa aaa (ccc ccccc
cccjbbb bb "ddd

Change case

aa aAAa aa aaa

Overwrite

aa aaa :xxx xxx

Join paragraphs

Aaa aa aaaaa. Aa
aa aaa^^a aaaa.

Bbbb tobbb. Bbbb
bb bbb:~

Delete paragraph

Aaa aa aaaaa. Aa a
aaa aaaaa aa.

Bbbb bbbbh/bb. Bbbb
bbbb bb bfc bbb bb
bbb. X

Figure 1.3 - A text editor manual

1: INTRODUCTION 9

pen is in contact with the writing surface (pen-down) or not (pen-up) and some

digitisers will provide the position of the pen when it is not in contact with the

digitiser. Off-line, or static, recognition uses data supplied after the writing pro

cess is complete, usually in the form of an image or bit-map from a scanner or

similar device. Static recognition is not within the scope of this thesis.

The segment of writing between a pen-down and a pen-up (or between pen-

lifts) is defined to be a stroke. A written word is therefore made up of one or

several strokes (see figure 1.4). Some research groups define a stroke differentiy

to be the pen trace between segmentation points.

one stroke three strokes

0 G

U
Figure 1.4 - One stroke and many stroke words

Connected Handwriting

There are two different types of handwriting which can be considered within

Roman-based languages - separated characters (hand-printing) and cursive

handwriting.

Connected handwriting, or cursive script, is writing with no constraints on

the separation of the individual characters which make up a word, as opposed to

separated characters, where there is some form of gap between each individual

letter, whether temporal, in the form of a pause with the pen off the paper, or

graphical, with a definite blank space on the page. The work described here has

concentrated on words formed from lower case characters only, and assumes that

any capital letters will be separated from the rest of the word before submission to

the system. The term cursive has also been used with respect to single character

recognition systems to indicate that a character is not necessarily constructed of

separate strokes (as in block capitals) - see figure 1.5.

1: INTRODUCTION 10

cursive block capital

Figure 1.5 - A cursive and block capital A

Separated character recognition systems are now commercially available in

several different forms. Although the constraint of separating each character is

perhaps not unreasonable for a limited amount of textual entry, for example mak

ing brief notes or labelling a diagram, most people find this style of handwriting

unnatural and will typically start to run letters together or overlap them. A

separated character system will fail under these circumstances, so the user must

adapt his/her own writing style to accommodate the machine.

Ideally, if computers are to be widely accepted and utilised by the general

population, it should not be necessary to leam a new skill or to adapt a previously

learnt skill in order to use the computer. Cursive script is an appropriate input

medium as the writer can be relatively unconstrained in writing style, and can lift

the pen or run the letters of a word together as desired.

Fixed Recognition or Trainable Recognition?

A perfect script recognition system should be able to recognise any

handwriting presented to it with no intervention by the user. To develop such a

system is not possible at present due to the complexity of the problem, so it is

necessary for either the user to adapt to the system, or the system to the user, or

both.

A faed recognition system has the styles that it is able to recognise "hard

wired" into the recognition algorithm. Anybody wishing to use such a system

must conform to the accepted style(s). This has the advantage that anyone who

writes in the approved style can immediately use the system. However, the

recognition accuracy can only be improved by the user adjusting to the machine.

1: INTRODUCTION 11

For limited applications, such as recognition of separated block capitals, enough

different styles can be programmed in to the system so that this is not a problem.

(An example of such a system is the Pencept Penpad or GRID Gridpad.)

A trainable recognition system is able to leam a particular user's own indi

vidual style. Anybody wishing to use such a system must first enrol by providing

a sample of handwriting which is analysed. This is usually carried out by running

an initialisation or training program. This type of system has the advantage that it

is possible for virtually anybody to use the system with minimal adaptation on the

part of the user. The success of such a system, though, is dependent on how well

the training session has been carried out. It may be unacceptable, however, to

insist that a new user must spend several hours training a system before it can be

used. (An example of a trainable system is the Linus Writetop or Anotech.)

The research described in this thesis attempts to compromise these alterna

tives by providing a system which has fixed recognition built in, so that the user

can immediately write, but which can be subsequendy trained to that particular

user during use.

1.4. The Cursive Script Recognition Process

Computer recognition of cursive script, in general terms, consists of several

distinct stages, some of which are performed sequentially and some which may be

performed in parallel (if the necessary processing environment is available).

These stages can be loosely grouped together under the headings preprocessing,

recognition and postprocessing. Tappert et afi^ provides a survey of on-line

handwriting recognition with a good, brief introduction to the techniques

involved.

Some of the major processes that might be used within an on-line CSR sys

tem are described, in general terms, below. More details and references are pro

vided in Chapter 2. The ORCHiD system incorporates some of these processes, but

not all. Further details specific to this system are detailed in subsequent chapters.

1: INTRODUCTION 12

1.4.1. Preprocessing

Data Capture

For an on-line recognition system it is necessary to collect the data as it is

being written so that the order of the strokes of the pen can be recorded as well as

the position of the pen. The writing is collected using a special pen and writing

surface called a digitiser or digitising tablet. This may provide a number of de

tails about the motion of the pen. Typically, the information is stored as a time-

ordered list of coordinates (or digitiser data points (DDPs)) with an indication of

whether the pen is up or down. However, some digitisers also supply data about

the angle at which the pen is being held, timing information that may be used to

calculate dynamic information on the pen-tip travel, or vertical position of the pen

above the digitising surface.

Cleaning

Deficiencies in the quality of data from digitising tablets can lead to pecu

liarities in the image data stored. Spurious points (or noise) can occur caused by

hardware ertors. The discrete quantisation due to the digitising process can cause

near vertical or horizontal lines to appear as a succession of wobbles (see figure

1.6), Hooks can occur at pen-ups and pen-downs due to erratic upward move

ments of the pen, or they may be deliberately written as ornamentation or serifs.

These, together with other unwanted data (eg noise) from the digitiser, can be

removed in the cleaning process to produce a minimally distorted, digital image.

Word Segmentation

Modem western languages separate text into individual words delimited by

white space. The word is therefore the natural unit of segmentation for handwrit

ing recognition.

Straightening, Deskewing and Scaling

Across the population, there is a wide variety in the size and slope of every

day handwriting. When not forced to write on ruled paper many people will tend

to deviate from the horizontal. For a recognition system to be as generalised as

possible, and work successfully on a variety of handwriting styles, it is preferable

1: INTRODUCTION 13

Eli
Original Digitised

image

Quantisation
level

Figure 1.6 - Straight line wobble

for these consistent variations in the script to be standardised or normalised. The

data can be automatically straightened, deskewed and scaled by the machine so

that all samples are nominally similar in their gross features (see figure 1.7).

1) Original script

3) Deskewed i

2) Straightened

4) Scaled

Figure 1.7 - Normalised script

1: INTRODUCTION 14

Vertical Region Detection

Some recognition systems need to know the position of certain vertical

regions within which the word was written. Typically of interest are the baseline

on which the word was written; the position of the top of small characters (^ , «•,

c-etc), referred to in this thesis as the halfline; the line midway between these two

lines is referred to as the centre-line; the position of the top of tall characters (/ ,

eC, /etc), referred to as iht full-height-line; and the position of the bottom of des

cending letters (^ , *tetc), referred to as the descender-line (see figure 1.8),

full-h«jght-lin9

d*sc«nder-line

Figure 1.8 - Vertical regions of a script word

1.4.2. Basic Recognition

Prerequisite for Successful Recognition

At this stage it is possible to define a somewhat subjective prerequisite for

successful automatic recognition of the handwriting.

The script sample when viewed after preprocessing must be easily

recognisable to a human reader.

Some justification for this requirement is necessary. Handwriting has

developed as a communication medium between humans. Consequently it relies

on a human interpretation of the symbols drawn on the page to overcome the

ambiguities inherent within it. It is therefore not possible for a machine to

achieve comparable recognition rates without access to all of the information that

a human reader has. By insisting that an isolated script sample is legible to a

human, the same amount of information is then available to the recognition sys

tem as to the human reader.

1: INTRODUCTION 15

Segmentation

There are two fundamentally different approaches to the text recognition

problem, whole word recognition and segmentation based recognition.

Whole word recognition takes the preprocessed word and uses global infor

mation about the whole word, as the starting point, to deduce what was written.

Some examples of such a system require the user to train the system with a sam

ple of every word that is likely to be written. This obviously limits the vocabu

lary of such a system and makes training extremely tedious. Other examples

extrapolate information from how one word is written to other similar words.

Segmentation based systems take advantage of the fact that words are made

up of a small number of characters which are then combined to form a word. If it

were simple to split a word accurately into its component characters, then the

recognition problem would reduce to that of separated character recognition.

Unfortunately this is not a trivial task. Characters when joined cursively can be

segmented in different ways to form other characters. For example, the stroke in

figure 1.9 could be inteipreted as 'cw' or 'au'. Different algorithms can be used

to segment the writing into smaller units. These may be possible characters, or

perhaps sub-character components that may be combined at a later stage to form

characters.

Figure 1.9 - Ambiguous letter segmentation - 'cw' or 'au'?

Most of this thesis is given over to describing a segmentation based recogni

tion system. However, a simple whole word recognition system was imple

mented in the early phases of this research, and is described in Appendix A^.

Feature Extraction

Due to the large amount of information available at this stage, the data is

often reduced from the list of coordinates to a list oi features which specify the

writing, without loss of relevant information. Key characteristics of the script are

1: INTRODUCTION 16

detected and measured to provide these features. A feature may be a binary

description of a characteristic, for example "This stroke is a descender", or it may

be a list of numeric values describing a shape, for example "A loop with height 10

units, width 5 units, drawn anticlockwise at position (27,12)", or it may be a

description of the whole word, for example "Estimated number of letters is 5."

These features should describe the writing sample without any loss of

important information. One possible way to test this might be to try to recreate

the word from the feature description and see if it is recognisable to the eye^^.

Template Matching

The feature description of the sample script can now be compared with

information already known to the system about how a word, character or sub-

character element is formed. The topological structure of a character is referred to

as its allograph and the information about this structure, stored by the system, is

referted to as a template. Templates may be stored in a number of different ways,

perhaps as a numerical representation of actual shapes in terms of the features, or

perhaps as a set of rules that specify acceptable values of features. The template

matching stage consists of somehow comparing the sample data with the tem

plates to produce the most likely words or characters that were written. A number

of methods are described in section 2.5.

Output from the Recognition Stage

Depending on the approach used at the template matching stage, various

forms of output can be produced by the recognition stage. A whole word recogni

tion approach may yield the most likely word, or a list of possible words. A seg

mentation approach may produce a sequence of most likely characters, or a

sequence of ordered lists of possible characters that may occur at various loca

tions in a word,

1.4.3. Postprocessing

Contextual Removal of Ambiguity

Cursive handwriting is ambiguous in its interpretation. A character or com

bination of characters may be misrecognised as another character or combination

(eg A-may be mistaken for o , M^ may be mistaken for ow etc) or a word may

1: INTRODUCTION 17

be misrecognised as another word (eg ^ w i s very similar to c^M-and fairly simi

lar to ci^). A human reader uses context at various levels to resolve the ambi

guity. For example, at the letter level a q must be followed by a M in English; at

the word level the letter combination docj does not exist; at the sentence level it

does not make sense to take a clog for a walk. Even higher levels of context may

be necessary to interpret the sentence /T^ fOt*f\U thCf [^k^ I oic^ I cia^],

One needs to know if the text in the rest of the passage is discussing a canine that

has gone astray, a Morris Dancer in stockinged feet or an absent-minded potter.

Because of this inherent ambiguity, a purely computational CSR system can

never be 100% accurate and must also apply context to resolve this ambiguity.

Letter sequence and word level verification are now within the scope of modem

computer power and theory. Context applied at the higher level of sentence syn

tax and semantics is being heavily researched. Further details of the use of con

text are given in section 2.7.

1.5. Scope and Organisation of this Thesis

Cursive script recognition contains problems that still require a large amount

of work before a feasible commercial system becomes available. This thesis

addresses some of the problems, in particular the requirement for a consistent seg

mentation method, a trainable, statistical template based recognition module and

efficient contextual verification of the output.

The ORCHiD system takes data from a separate preprocessing routine and

assumes that this will provide well preprocessed individual words, with the base

line and halfline correctly determined. The segmentation method, developed as

part of this research is described in detail in this thesis, but the implementation of

the segmentation and feature extraction was carried out elsewhere. The rest of

the system, resulting in the output of lists of candidate words, is described in

detail.

The remainder of this thesis is organised into eight further chapters followed

by a bibUography and three appendices.

Chapter 2 contains a review of other relevant work described in the litera

ture.

A brief overview of the complete recognition system is provided in Chapter

3, There is a discussion of the assumptions and scope of the work covered by this

thesis, together with references to the technical descriptions of parts of the system

1: INTRODUCTION 18

not covered in this text. The actual techniques used at each stage of the recogni

tion process are briefly discussed.

Chapters 4, 5, 6 and 7 contain details of the major elements of the system.

Each chapter has three components - a theoretical introduction to the reasoning

behind the methods used, a discussion of the practical considerations to achieve

an approximation to the theoretical ideal, and a resume of the actual output from

this section of the system. Chapter 4 provides technical details of the segmenta

tion algorithm used. The features that are measured from the resulting segments

are described. Chapter 5 discusses the template matching routines that take the

list of features and produce a graph of possible characters. Chapter 6 considers

the application of word level context to reduce the remaining ambiguity. Chapter

7 outiines the approach used to train the system to an individual user.

Chapter 8 contains experimental results from the system and recognition

rates. These results are discussed.

Chapter 9 outiines what further work is needed to enhance the system.

All of the references in this work are detailed in the bibliography.

Appendix A contains details of a simple recognition demonstrator that was

developed half-way through the project.

Appendix B shows an example of a word being processed by the recognition

system.

Appendix C contains copies of papers published by the author relevant to

this work.

Chapter 2

Literature Review

There follows a review of literature and research into the field of on-line cur

sive handwriting recognition and its associated subjects. The review is loosely

divided into the separate processes described in section 1.4. Those areas which

are directly addressed by this thesis (namely segmentation, template matching,

dictionary lookup and tiaining) are discussed in detail; for other areas references

are provided which give a good grounding in that particular area.

2.1. Background

The history of computer recognition of cursive script (CSR) is long and

varied. Lindgren^^ noted that the first research into the field in the 1960's was

carried out by speech recognition research teams as a simplified introduction or

stepping stone to solving their main problem. (Speech recognition has always

been the computer scientist's "dream" machine interface - hence the talking com

puters of contemporary science fiction.) Speech and cursive script have a number

of similarities as communications media, especially the wide variability of spoken

accents and writing styles and the lack of clear segmentation points between

recognitional units (words in speech, letters in script). The problem domain of

recognition is therefore similar and this led speech recognition scientists to inves

tigate cursive script. Few people at that time were interested in handwriting

recognition in its own right.

In the 1970's, theoretical pattern recognition techniques, technology and

computer power had improved sufficiently for the speech recognition research

effort to return to its original goal. Consequently interest in handwriting recogni

tion waned. Towards the end of this decade, however. Computer Aided Design

(CAD) technology was becoming increasingly common and a number of com

panies (eg Numonics, Scriptel, Wacom, Summagraphics, Hitachi) began produc

ing accurate digitising tablets for use with CAD and other applications. These

were initially driven by a puck or mouse, but later had a crude stylus as a pointing

2; LITERATURE REVIEW 20

device (see section 2.2). During this period, research was continuing into Optical

Character Recognition (OCR) and a number of researchers investigated the possi

bility of using the digitising tablet as a method of collecting data for separated

handprinted character recognition. Suen et afi^ provided a survey of separated

character recognition and Tappert et afi^ surveyed the on-line character recogni

tion in particular.

In the 1980's, much research interest was focused on improving the human-

computer interface (HCI), and a novel device was proposed based on a flat screen

display overlaid with a stylus-driven digitiser, commonly referred to as Electronic

Paper (EP)^'^^'^^'^^. An ideal data input method for this type of interface is

obviously some form of handwriting, and interest has subsequently increased.

2.2. Data Capture and Electronic Paper

The technology available for producing digitising tablets has dramatically

improved since the first successful manufactured tablet, the RAND tablet^^. Pres

sure sensitive tablets are available which require no special stylus but are not very

accurate and are susceptible to errors due to objects resting on the digitising sur

face. Electromagnetic or electrostatic digitisers are now the most popular for

handwriting research as they are very accurate. The major drawback with this

type of tablet is a special stylus is required which is usually attached to the tablet

by a cable. The stylus has often been designed for simple menu picking and

drawing operations rather than sensitive handwriting data collection, and is con

sequently rather crude. Ward and Phillips^^ discussed the requirements for a

good stylus, and Meeks and Kuklinski^^ compared the accuracy and stability

aspects of a number of digitisers. Kim and Tappert^^ discussed the effects of

poor digitiser accuracy on handwriting recognition rates.

The construction of a usable Electi-onic Paper style of device is discussed in

Higgins and Duckworth^^ and Pobgee^^. A number of research groups have dis

cussed the underlying advantages of EP^^*^^*^'^^, The Japanese interest in this

field is especially evident since such a device overcomes the impracticality of

Japanese character keyboards. The Far Eastern countries have so far been limited

in potential access to the developments in computer technology since they are

unable to interact with a machine in their own script.

Since EP devices are only recently becoming available, analysis of their sui

tability and practicality has been Umited to simple development systems.

2: LITERATURE REVIEW 21

Rengger^^, Tappert et aP^ and informal observations by the author^ ̂ have shown

that EP will become a very powerful user interface in the future.

2.3. Preprocessing

The raw data collected from the digitiser is often preprocessed to aid the

recognition stage. There are three main elements of the preprocessing stage -

word segmentation, noise reduction, and normaUsation. The word segmentation

provides a sensible unit for the recognition software to act on. Noise reduction

removes confusing data introduced by the hardware. Normalisation produces a

more standardised piece of script for the recognition process. The different

processes are detailed in section 1.4.1. A summary of work in these areas is

given in Brown and Ganapathy^^ and Tappert et aP^.

Word segmentation is either carried out by identifying a spatial separation

within a sample or a temporal separation (or time-out). Noise reduction elim

inates some of the problems caused by inaccurate digitisers, though these prob

lems are lessening with improved technology. Normalisation produces a uniform

sample word for recognition.

2.4. Segmentation and Choice of Features

The segmentation approach (section 1.4.2) is very common in script recogni

tion systems. The ultimate aim of segmentation must surely be to divide the

script into its constituent letters so that the more advanced work into single char

acter recognition can be applied. Unfortunately the nature of cursive script is that

the letter segmentation points can only be cortectly identified when the cortect

letter sequence is known, and the recognition of the characters can only be done

successfully when the segmentation is cortect! Segmentation based CSR systems

must therefore attempt to estimate the letter segmentation and recognise charac

ters with the knowledge that the segmentation may be incorrect, or take an

approach which locates sub-letter segmentation points.

Three techniques are outiined below. The first uses easily locatable features

of the script as possible segmentation points (PSPs) (section 2.4.1). The second

attempts to locate theoretical strokes which have been identified by researchers

investigating the processes used to produce handwriting (section 2.4,2), The third

approach formalises the structure of characters within the script and then seg

ments based on this information (section 2.4.3). Figure 2.1 shows examples of

2: UTERATURE REVIEW 22

some of the segmentations described in the literature, detailed in the following
sections.

Ehrich

Mermelstein elstein 7

OJTT^
Wrighy

Maier

Hayes J

OMX\
Teulings

Figure 2.1 - Segmentation Points

2.4.1. A Maximum/Minimum Approach

Many systems base their choice of segmentation points on local maxima and

minima in the x and y directions, often treating the y minima as most important,

Kim^^ segmented at all local y minima. Ehrich and Koehler^^ used the same

points, but excluded those relating to ornaments or small loops. This yields seg

mentation points that mostiy lie near the baseline. Mermelstein and Eden^^ used

y maxima and minima to segment words, noting that the down-strokes usually

contain more information about the script than the up-strokes. Hayes^^ used all

maxima and minima as PSPs as well as intersections within the script.

2 .• UTERATURE REVIEW 23

Wright^^ developed a handwriting system based on Freeman coding (see

section 2,5.2) and rejected the use of y minima as possible segmentation points in

favour of identifying upward right-pointing strokes which are commonly used as

letter joins. Maier^^ segmented by attempting to identify commonly occurring

letter join strokes or ligatures. These techniques are a form of y minima segmen

tation, however, with the actual location of the segmentation point moved along

the stroke.

There are several problems associated with the use of maxima and minima

as PSPs. Firstly, many y minima, for example, occur in the middle of an allo

graph and so are not letter segmentation points. Ehrich and Koehler's approach

removed some of these PSPs but not all. Secondly, subtle changes in the forma

tion of a letter can add or delete maxima or minima. It is then necessary to use

more than one template to represent the same allograph (see figure 2.2). Thirdly,

if just y minima are used, for example, there can often be no segmentation point

between letters (see figure 2.3). It might therefore seem preferable to include

more PSPs, y maxima for example, but this would cause great deterioration in the

performance of the system. There must be a trade-off with this sort of approach

of consistency of segmentation against performance.

Extra y minimum

/

Figure 2.2 - Extra y minima

2.4.2. Absolute Pen Velocity

Teulings et aP^ segmented the script into strokes at points of zero absolute

velocity. This produces a stroke similar to the hypothetically "correct" sti-oke

defined by psychophysicists^. Kadirkamanathan and Rayner^^, however,

pointed out that the theoretical segmentation points attiibuted to zero pen velocity

are often obscured due to the discrete quantisation of the digitising process. They

used an algorithm which compares the curvature and pen velocity graphs of the

script after it has been smoothed by varying amounts. This produces a more

accurate hypothetical stroke, but the segmentation points are again located at x or

2; LITERATURE REVIEW 24

No segmentation point

Figure 2.3 - No y minimum segmentation point

y maxima or minima depending on the local circumstances.

2.4.3. Characterisation of Script

A more intuitive approach might be to try and characterise or formalise the

characters and constituent elements of cursive script in order to try and locate the

cortect segmentation points. There have been a number of different approaches

to characterising characters within a cursive word. Eden and Halle^^ defined a

rather complex set of primitives from which words can be built up (figure 2.4).

James'̂ ^ produced a simplified but less precise set of primitives (figure 2.5) which

Higgins-'^ simplified still further. Hayes-̂ ^ used i-dots, t-crosses, x-slashes,

ascenders, e-loops, circles, c-shapes, i-spikes, humps and descenders (figure 2.6).

These primitives are all devised with the underlying hypothesis that the initial

segmentation uses minima and maxima. In fact, Higgins and Hayes use these

characterisations as a second level representation within a hierarchical recogni

tion method.

Berthod^ took a more theoretical approach and identified key features of the

script that may be recognised relatively easily (figure 2.7). These included:-

Eden and Halle primitives;

cusps in four directions;

humps, clockwise and anticlockwise;

loops delimited by an intersection;

closures, as occur in the letters ^ , fiC, etc;

2: LITERATURE REVIEW 25

'

1 J
w

p
r\

r\
r\

r\

\ j

\ j

KJ

n

n

r

r

vJ U

Figure 2.4 - Eden and Halle primitives

7 ^

v ^
L >

Figure 2.5 - James primitives

7 ^

L_SwZ

Figure 2.6 - Hayes primitives

• diacritical marks, such as i-dots, t-crosses, x-slashes.

Berthod and Ahyan^ implemented a system based on x and y extrema, cusps,

intersections and inflections.

The segmentation points defined by these script characterisations are often

more difficult to detect but appear to be more consistent between sUght variations

of the same letter. The segmentation described in Chapter 4 of this thesis is based

2: LITERATURE REVIEW 26

cusps humps loop

a
closure

Figure 2.7 - Berthod primitives

on this approach.

2.5. Template Matching

After segmentation of the script, the usual approach is to compare the seg

ments against templates or prototypes of actual characters. There are four main

techniques that predominate for template matching.

2.5.1. Elastic Matching

The elastic matching technique directly compares the segment or stioke with

a prototype or template and calculates a distance metric from the minimum dis

tance that can be calculated between the digitiser data points (DDPs) on the sam

ple stroke and the template stroke. Figure 2.8 indicates the measurements used to

calculate the elastic matching distance. A dynamic programming method, com

mon in speech recognition systems^^, is used to calculate the minimum possible

distance.

Sample Template

Figure 2.8 - Elastic matching

Bmr^^, Tappert^^, Wong and Fallside^ -̂̂ and Kadirkamanathan and

Rayner^^ all used this approach.

2; LITERATURE REVIEW 27

Elastic matching provides a graphical approach to template matching, com

paring sample shapes to ideal templates. Efficient algorithms can be used to cal

culate the distance measurement relatively quickly. The main problem, in a cur

sive script recognition context, is that two letters, similarly structured as far as the

writer is concerned, can look very different when drawn on the page. For exam

ple, a letter & can be written either with a very large loop or with a carefully over

drawn line. These would require separate templates for successful recognition

using an elastic matching technique.

2.5.2. Freeman Coding

Freeman^^ proposed a method for representing a geometric configuration,

such as a stioke within script, by a simple numerical code. A small number of

directions are specified and labelled, as in figure 2.9. A stioke is then encoded by

dividing it into equal length parts, and coding each part by its nearest directional

label. A complex curve can in this way be represented by a short list of digits.

Templates are then stored as Freeman codes and the sample is compared with the

templates and a distance measure calculated.

Code:4456770122677

Figure 2.9 - Freeman coding

Miller^^ segmented a stroke into six parts and encodes these with an 8 direc

tion code so that each stioke is represented by six digits. A simple sum of the

differences between the coded sample and template is used as the distance meas

ure.

Wright^^ used an 8 direction code, but compresses any sequential vectors

in the same direction into one code, and stores a length for each vector. Each

template is stored as a five vector code, by compressing any short vectors into a

neighbouring vector (figure 2.10). A sample segment is similarly compressed,

and for those templates that match the coding precisely, a Cramer Von-Mises

2: LITERATURE REVIEW 28

goodness of fit measure^^ is calculated based on the lengths of the vectors.

Sample

1 /

/

\ ,

,

Representation

Dir:Len
4:1
5:1
6:1
0:2
2:2

Code

Figure 2.10 - Wright's coding

Ouladj et af^ used a 16 direction coding of the script, and then modified this

to a 4 direction coding for the recognition stage. This coding is then modified to

allow for degradation of the writing from the ideal template model (figure 2,11),

and a distance calculated based on the amount of degradation needed for a match.

Code:1267 Code:123567

Extra code to allow for
degradation

Figure 2.11 - Ouladj's modification due to writing degradation

The problem with systems based on Freeman coding is one which is com

mon with any system which measures features on a discrete scale. Errors will

often be introduced due to the discrete quantisation as a feature nears the boun

dary from one discrete value to another. Figure 2.12 shows some examples where

small changes in the shape of a character cause large changes in the Freeman cod

ing.

2; UTERATURE REVIEW 29

Code:10456701 Code:107623456701

Code: 1267 Code:123567

Figure 2.12 - Possible errors due to Freeman coding

2.5.3. Feature Matching

Another technique involves measuring various attributes or features of a

segment and using these to calculate the distance measure during template match

ing. This technique is similar to elastic matching since the segment is not

simplified (as is the case with Freeman coding). It has an advantage over elastic

matching, however, since the shape of the segment is treated as a whole, rather

than as a sequence of points that may change dramatically between samples. It

will also take a fixed amount of time for the comparison whereas elastic matching

is proportional to the number of points in the segment. The main drawback with

this method is that it is essential to measure the cortect features, otherwise vital

information about the segment may be lost.

Teulings et aP^ extract four types of feature from a stioke - the vertical

positions of the endpoints of the stioke, five angles measured between certain

points along the stioke, the size of the area enclosed by the stioke, and informa

tion about pen ups within the stioke. (A stioke as defined in Teulings' work

includes pen motion above the paper.) A Euclidean distance measure is used to

describe the success of the template match.

The work described in Chapter 5 of this thesis uses a feature matching

approach.

2; UTERATURE REVIEW 30

2.5.4. Rule-Based Matching

It is possible to describe characters in terms of a set of rules, and to use these

rules to distinguish between the characters. For example, to distinguish between

an A- and a ^would require a rule that defined the height of the last part of the

character. By defining a set of rules that differentiates between the complete

alphabet or stioke set, a recognition system can be constructed.

Frishkopf and Harmon^^ develop a set of rules based on the vertical extent

of characters below and above the baseline and halfline, the presence of retio-

grade (right-to-left) strokes, the position of cusps, the presence of closures, and

diacritical marks.

The problem with any rule-based recognition system is that it is frequentiy

possible to find a counter-example which does not satisfy the rules. It is therefore

necessary to either restrict the styles which can be recognised or add a large

number of special case rules which seriously degrade the performance. Also such

a system cannot easily be trained to individual users to improve performance.

2.6. Whole Word Recognition

Rather than attempting to solve the problem of segmenting script into letters,

some researchers have investigated the possibility of identifying a word as a sin

gle unit. The problem with this approach is that it is often necessary to provide a

training sample of every single word that the system must recognise. This is

obviously not possible for a large number of words.

Earnest^ ̂ developed a system which identified a small number of easily

recognisable features of the script. These were ascenders, descenders, closures,

t-crosses and centre-line crossings. These features yielded a category code for the

word which identified matching words from a dictionary of ideal template words.

The X coordinates of the features were then used to calculate a match weighting.

Brown and Ganapathy^^ used a larger set of features, including y maxima

and minima, centie-line crossings, ascenders, descenders, t-crosses, i-dots, cusps

and closures. The length of the word was estimated by counting the total number

of centre-line crossings, and the position of each feature was registered with refer

ence to its approximate letter position. A nearest neighbour approach was then

used to identify likely words.

Frishkopf and Harmon^^ examined each x and y maximum and minimum for

vertical position, positive or negative slope and concavity. They generated a

2: UTERATURE REVIEW 31

feature vector of this information which was used for a nearest neighbour com

parison with a dictionary of ideal template words.

Farag^^ developed a simple system based on a Freeman style coding of the

script and a Markov chain model to calculate a weighting when comparing the

sample with a template word. This technique only used a very small template set.

2.7. Postprocessing

As explained in Chapter 1, handwriting is inherently ambiguous at all levels,

and it is impossible to uniquely classify a script sample. This ambiguity can often

be resolved if contextual information at a higher level can constrain the set of

valid output. A dictionary (lexicon) of this information can then be constructed,

and the list produced by the recognition process reduced and validated. Often

very large substitution sets are produced which need to be checked quickly and

efficiently against a large dictionary. This is especially the case with cursive

script recognition systems.

Several different techniques have been proposed to make use of contextual

information.

Statistical information about the transition probabilities between letters can

be used to remove or reduce unlikely letter sequences and produce the required

output (eg Neuhoff^ ,̂ Riseman and Hanson^^, Hull and Srihari^^). This is often

referted to as a bottom-up technique. These techniques are usually very efficient,

but do not guarantee valid output words.

Another approach assumes that the written word comes from a fixed diction

ary and the nearest matching word provides the required output (eg Duda and

Hart^^). This is often referted to as a top-down technique. These techniques

always produce a valid output word but can be inefficient to implement.

Several hybrid methods have been suggested to balance out the advantages

and disadvantages of the two approaches (eg Srihari et afi^, Shinghal and Tous-

saint^2).

Most of the approaches to using contextual information have been based on

constructing a post-processor for systems that produce a single best-match letter

sequence as output. The contextual disambiguation process takes this sequence,

consisting of the most likely letters that span the script, as its input and returns the

most likely written word as its output. There are several techniques which have

been widely reported, the most common are listed below.

2; LITERATURE REVIEW 32

2.7.1. Spelling Correctors

One simple method to verify the output is to use the wealth of research into

spelUng ertor detection and cortection that has been accumulated over the years.

Peterson^^ and PoUock^^ provide good reference lists to the literature. The main

problems that these techniques address are character substitution, omission and

insertion, Kashyap and Oommen'* '̂̂ ^, Wagner and Fischer^^ and Lowrance and

Wagner^ discussed different solutions to this problem. The Levenshtein metric

is frequentiy used to define the distance between two strings based on the number

of cortections that need to be made to convert one string to the other^^-^^

These techniques work reasonably well but do not take into account the

likelihood of a letter being misrecognised, or incortectly substituted.

2.7.2. N-Gram Techniques

The probability of any individual n-letter sequence occurring can be calcu

lated by examining large pieces of text. These probabilities can then be used to

calculate the most likely written word given the output word from the recognition

system, (see Riseman and Ehrich^^). An alternative approach using /i-grams to

reduce a graph of possible letters is discussed in Chapter 6.

2.7.3. Viterbi Algorithm

The Viterbi Algorithm (VA) takes the output word from the recognition sys

tem and calculates the most likely input word, using statistical information on the

sequence of letters in EngUsh and likely ertors from the recognition system. The

algorithm is first described in Viterbi^^. Forney^ ̂ provided a thorough tutorial

intioductibn to the theory behind the algorithm. Neuhoff̂ ^ described how it

could be applied to the problem of text recognition. Various authors have dis

cussed its application, including Riseman and Hanson^^ and Hull and Srihari^^

who compared its performance against a binary w-gram approach.

The VA makes use of a confusion matrix of a priori probabilities observed

from the recognition system, together with the transition probabilities between

characters. In other words, the probability that a given letter may be misrecog

nised as another letter is calculated and stored, togetiier with the probability tiiat it

can be preceded or followed by any other character.

A 26 X / node tiellis is consttoicted, where / is the length of the word, linking

every letter with every other letter (see figure 2.13). On the nodes of the tiellis

2; LITERATURE REVIEW 33

are the confusion probabilities, and on the arcs are the tiansition probabilities,

(Notation: The confusion probability that a written letter X will be misrecognised

as a y is written P{X\Y). The tiansition probability that a letterX may be fol

lowed by a letter Y is written P(X - T).) By tracing a path through this tiellis,

and combining the probabilities on the arcs and nodes included in the padi, the

probability that the tiaced word could have been the original input word can be

calculated. The algorithm finds the most likely path through this trellis, so yield

ing the most likely interpretation of the input word.

Input: d a n

P(a-a) ^ P(a-a)

Output:

Figure 2.13 - Viterbi algorithm trellis

2.7.4. Dictionary Viterbi Algorithm

The VA produces the most likely interpretation of the written word, but does

not guarantee that the word exists. The Dictionary Viterbi Algorithm (DVA),

developed by Srihari et afi^, is an improvement on the VA making use of a

simultaneous full dictionary search, in place of the tiansition probabilities, to

ensure that only a valid word is produced. The dictionary lookup uses a trie

structure to store the dictionary. This is described in section 2.7.7.

2: LITERATURE REVIEW 34

2.7.5. Modified Viterbi Algorithm

Shinghal and Toussaint^^ described another variant of the VA, called the

Modified Viterbi Algorithm (MVA). Here a heuristic depth of search d is set by

the user so that only the d most likely probabilities in each letter position are

checked. The computational overheads of the VA are thus reduced, as only a

d X / trellis needs to be tiaced, but the performance degrades as d is reduced.

2.7.6. Predictor-Corrector Algorithm

Shinghal and Toussaint^^ further improved on the MVA by combining it

with an efficient dictionary lookup algorithm (DA). This is called the Predictor-

Cortector Algorithm (PCA).

The dictionary is partitioned into sub-dictionaries of same-length words.

Each sub-dictionary is then sorted by value, where the value is calculated by com

bining the tiansition probabilities of the letters of the word. This value was found

to be nearly always unique for any sub-dictionary. A binary search is used to see

if the output word from the MVA exists in the dictionary. If so, then that is taken

as the required output. If not, then the DA is employed. A score is calculated for

the nearest/words to where the output word was expected, / i s a heuristic set by

the user. The score is calculated by combining the tiansition probabilities

between the letters with the confusion probabilities. The word with the largest

score is the required output.

Shinghal '̂* described a further enhancement to the PCA, where the n most

likely words from the MVA are checked in decreasing order to see if they exist in

the dictionary. If none of them exist, the DA is employed. The value of n is

determined by experiment.

2.7.7. Dictionary Tree Structure

A dictionary or word-list can be restructured in the form of a tiee, based on

the trie structure suggested by Knuth '̂*. This is shown pictorially in figure 2.14,

where the tiee represents die word list (a, an, and, at, be, bet, but, by}. Each of

these words can be found by tiacing a path from left to right. The '(§)' symbol

represents the start of a word and the '#' symbol represents the end of a word.

The trie can be used as an efficient stincture to store a dictionary for a

variety of applications, but is especially applicable for contextual post-processing

of script recognition systems. The DVA proposed by Srihari et afi^ used a

2; LITERATURE REVIEW 35

Figure 2.14 - Dictionary tree

dictionary trie at the same time as the Viterbi lattice is traced to guarantee that a

valid word is found. Bozinovic and Srihari^ combined a stack-decoding search

algorithm with a rr/e-structured dictionary with a small dictionary of 1027 words.

Bozinovic and Srihari^ used a similar approach but adds a depth of search heuris

tic to limit the computation needed.

Until recently, die availability of computer memory and CPU power has

prevented the use of such a data structure with very large dictionaries, however

these can now be seriously considered. ¥orCr° discussed the development of a

simultaneous graph traversal and dictionary tiee lookup technique (described in

detail in Chapter 6). A number of other research teams have also subsequently

shown that this method is a very efficient and effective way of improving the

2; LITERATURE REVIEW 36

accuracy of text recognition systems^^' ^^' ^^^

2.8. Higher Level Context

Since some ambiguity can remain even after a dictionary verification of the

output from a CSR system, some investigative research is being carried out into

the use of higher level context to reduce the ambiguity still further. This includes

analysis of the syntax and semantics of English sentences^^'^^'^^. A machine

readable dictionary is appended with information about the word which can be

used by the higher level contextual system.

2.9. Training

A number of systems (identified in table 2.1 below) can be tiained to an

individual writer's style. This training usually improves the recognition rates

obtainable by the system. The exact method of training is obviously dependent

on the recognition method but usually involves calculating certain parameters of

writing that vary between different writing styles and different characters. The

problem with training a segmented CSR system is that either the training must be

carried out manually, identifying each character of a word in turn, or automati

cally, in which case the system must decide where each character lies within a

word. The automatic approach is preferable, since this requires least effort on

behalf of the user, but is most complex. For whole word recognition systems

there are other problems, notably that it may be necessary to provide samples of

each word that the system is to recognise.

A manually trained system may be devised that requests the user to write

each character separately to tiain the templates. Unfortunately this is not ideal

since most people write characters differently when in the middle of a word to

when written separately (even when consciously trying not to) and often write

letters differentiy in different locations within the word, depending on the preced

ing and following letters. It is also necessary to take into account the joining

stiokes between letters.

Teulings et aP^ automatically tiained their system by comparing the

features of similar words and deducing which features represented which letters.

For example, the training phase may require the user to write the words ^^ and

«*>. Those features which were the same between these two words would then

be noted as the 'a' template. If the user then writes VA^ and YA^ the 'v'

2; UTERATURE REVIEW 37

template can be identified, and so on. With this approach, care must be taken to

use a sensible tiaining sequence of words. For example, the words AjA'and ftdJi
would not cortectiy identify the 's ' since the ascender of the next letter would

also be the same between the two words.

There is an inherent problem with the completely automatic training of tem

plates. If the automatic system is not 100% accurate at identifying the templates

to be tiained, ertors will occur and templates will be tiained incortecdy. It is pos

sible that these ertors may be compounded and the user will have no knowledge

of the situation, other than falling recognition rates. This problem is discussed in

detail in section 7.3.

2.10. Recognition Rates

It is very difficult to compare recognition rates of CSR systems. The extent

of the recognition process covered by the system - up to letter recognition, or

word recognition, or dictionary verified word recognition - obviously affects the

recognition rates quoted dramatically. The experimental details of the test rou

tines used to generate the statistics also affect the results. A number of research

ers, however, quote results of recognition where the test set is the same as the

training set. This clearly biases the results. A trained system generally produces

better accuracy than a similar untrained system. Some works make use of a dic

tionary verification of results which improves the recognition rates still further,

especially when only a small dictionary is used.

A table of main results published to date is given below. These results are

for on-line cursive script recognition and quote dictionary-verified word recogni

tion rates where applicable. A number of works only quote letter recognition

rates. In these cases an estimate of a six letter word recognition rate is given in

brackets. Some papers only quote word recognition without dictionary

verification. Some of the recognition rates are for the cortect word appearing in

the top few (<5) words in the output list of candidate words. It seems reasonable

to quote these figures as it is often not possible to distinguish between some

words without sentence or higher level context.

2; LITERATURE REVIEW 38

Name

Frishkopf33 (1)

Frishkopf33 (2)

Harmon^^

Earnest^*

Mermelstein^^

Ehrich23

Brown ̂ ^

Bertiiod^

Tappert^ ̂

Higgins^^

Wrightl04

Ouladj^l

Year

61

61

62

62

64

75

80

80

84

85

89

90

Trained

No

Yes

No

No

Yes

No

Yes

Yes

Yes

Yes

No

Yes

Dictionary Size

Letter rate

100

Letter rate

10,000

None

None

None

None

Letter rate

25,000

60,000

110

Word Rate

59 [4]

63

93 [65]

60t

80

71

~70

87

97 [83]

85-93

82-94

94

t This rate is for the correct word appearing in the output list. This list may consist of a large

number of words, 20 on average.

Table 2.1 - Recognition rates

2.11. Conclusions

The recent increase in research into the field of cursive script recognition

does not appear to be reflected in vastiy improved recognition rates. Careful

examination of the experiments, however, show that the more recent work is gen

erally based on more realistic test criteria, for example more sample words from

larger vocabularies, written in less restricted styles. It should, of course, be noted

that even humans cannot achieve 100% recognition of handwriting without the

additional use of context. Neisser^^ conducted an experiment to determine the

human recognition rates for a very limited set of single hand-printed characters,

consisting of the upper case capitals, and the digits 2-9. The best results that were

achieved were 96% recognition. Leedham and Chan^ '̂̂ ^ showed that for uncon-

stiained, upper and lower case separated characters and digits, the human

2; UTERATURE REVIEW 39

recognition rate is as low as 74%. From informal observations it seems that

human recognition of isolated handwritten words is around 95%, though no for

mal study has been identified in the literature. It would therefore seem that this

must be a realistic goal to aim for with an automatic system, without the use of

higher context.

There are still a number of problems that need to be addressed in CSR and

these are discussed in this thesis. These include the need for a consistent segmen

tation method, the use of context to improve recognition, the ability to quickly

and easily train the system to a particular user or writing style, and the further

investigation of whole word recognition approaches.

Chapter 3

ORCHiD System Overview

This chapter provides an overview of the complete recognition system, from

on-line data input, to ascii-coded data output. The system is called ORCHiD or

On-line Recognition of Connected Handwriting Demonstrator. A brief descrip

tion is given of the techniques and algorithms used at each stage of the process.

Further details on each of the stages that are relevant to this thesis, including

technical and experimental results which accounted for the selection of the algo

rithms, are given in the subsequent chapters.

3.1. Outline of the System

There follows a brief summary of the processes and the information avail

able at the various stages of the ORCHiD system. Figure 3.1 shows a diagram of

these processes.

i) The digitiser produces a time ordered list of coordinates, referted to as

Digitiser Data Points (DDPs).

ii) The preprocessing routine takes the raw DDPs and adjusts them to provide a

truer image of the script. Global information is calculated about the word,

including the baseline, halfline and diacritical marks.

iii) The segmentation routine processes the adjusted DDPs and produces a list of

Possible Segmentation Points (PSPs) and refines this to a hst of Definite
Segmentation Points (DSPs). Each segment of the script is then measured

and a list of features is produced.

iv) The template matching routine takes the Hst of features and compares it with

the template database to produces a weighted letter graph of possible

letters and letter-joins (the candidate allographs) that may occur within die

script word.

v) The dictionary lookup routine tiaces the letter graph and a tiee-stiiictured

lexicon of valid output simultaneously to produce a ranked list of candi

date words. Information regarding permissible letter joins is also used at

3: ORCHiD SYSTEM OVERVIEW 41

this stage to reduce the output produced.

vi) The output routine reduces the list of candidate words by comparing the

ranks, applying the diacritical mark information and using a priori informa

tion of the word frequency of English usage. The final candidate word Ust

is displayed to the user for confirmation.

• The training routine trains the template database using the knowledge of the

confirmed output from the user.

Designed and
implemented
at NPL

Designed at
Nottingham,
implemented at
NPL

Designed and
implemented
at Nottingham

prepro

can

handwriting

1
digitiser

raw data (DDPs)

preprocessing

cessed data , . baseline & h

segmentation

features
'

template
matching

letter graph '
dictionary

lookup

didate words

ou put

alfline diacritical mark

template
database

•* lexicon

s

English word
frequency

ascii text

Figure 3.1 - The recognition process

The software has been written in separate modules which can be run

independentiy of the other modules. These modules consist of

• preprocessing, verification, segmentation and feature extraction;

3: ORCHiD SYSTEM OVERVIEW 42

template matching;

dictionary verification;

output sorting and reduction;

output verification or cortection;

template training.

For a research system this modular approach gives the greatest flexibility for

development. Each module can be separately developed and tested. Possible

replacement modules can be tested by inserting them into the complete system at

the appropriate place and comparing them with the original modules. The output

from each stage can be stored in files for later examination.

When the methods and techniques are proved, these separate modules could

be combined within a single process to improve the speed of execution. Under a

UNIXf environment the modules can be piped together to give the impression of a

single process.

3.2. Project Organisation

This research was initiated as part of the Electronic Paper Project

(£PP)8,11,27^ undertaken by the National Physical Laboratory (NPL), The EPP

included investigations into all aspects of the Electronic Paper concept including

the supporting hardware and the intelligent controlling software. Research into

cursive handwriting recognition was split between two sites, NPL and The

University of Nottingham. The work was divided into logical sections as

follows:- the data capture and preprocessing was carried out entirely by the NPL;

the segmentation and feature extraction was specified by Nottingham and imple

mented by the NPL; the template matching, dictionary lookup and automated

tiaining were carried out entirely at Nottingham.

The preprocessing is described in Brocklehurst and Kenward ̂ ,̂ Implemen

tation details of the segmentation and feature extraction is described in Ford and

Symm^^ and Cox and Harris^^.

The Electionic Paper Project was terminated at NPL before the completion

of the handwriting recognition research. The preprocessing software has there

fore remained static while the development of the remainder of the system was

t UNIX is a trademark of Bell Laboratories.

3: ORCHiD SYSTEM OVERVIEW 43

completed. The research described in this thesis has been developed assuming

that a well preprocessed individual word can be supplied to the system. Since a

large proportion of the preprocessing routines are hardware specific (notably to

the digitiser), these need to be rewritten for any new technology that is used in

conjunction with the system. It therefore seems reasonable to base this work on

the assumption that well preprocessed data will be available to the rest of the

recognition system.

3.3. The Underlying Principles of the ORCHiD System

3.3.1. A Representation of the Script Recognition Process

One way of representing the script recognition process is to consider the

input word as a set of data (X) which is acted on by the recognition system (r) to

produce a set of possible output word candidates (Y) [Y = r(X)].

The philosophy used by the ORCHiD system described in this thesis employs

an extension to this model, that is that the set of input data (X) has itself been pro

duced by another process, the writing process (w). In the writing process, the

brain of the writer decides that it wishes to write a word (W) and produces some

form of a mental picture of that word. The motor control part of the brain then

instructs the muscles of the hand, wrist and arm to move in such a way that the

pen draws shapes on to the page that resemble the mental picture, to a greater or

lesser extent. This is our input data (X) described above [X = w (W)]

The image produced on the page deviates from the mental picture in such a

way that the image is still identifiable as the cortect word to a human reader. The

deviations must therefore remain within certain tolerances which will differ

depending on circumstance. For example, an isolated word must be written more

carefully to be successfully recognised than a word within the context of a para

graph.

It can now be seen that the ideal recognition system (r,) would be the

inverse of the writing process [r,- = w~^]

The ORCHiD system attempts to make use of this extra information in the

development of a cursive script recognition (CSR) system.

3: ORCHiD SYSTEM OVERVIEW 44

3.3.2. A Statistical Approach

In order to allow the recognition system to be as generalised as possible it

was decided to use a statistical approach throughout. This has a number of

benefits.

• By using sound statistical principles at each stage of the recognition, all

decisions and probabilistic calculations can use standard techniques and

theories.

• The recognition routines can be data-driven, rather than rule-based, so it is

not necessary to specify in the code particular featiires of characters. The

definition of a template for a character was defined by presenting the system

with a number of samples of that character, and recording the average values

and spread of the samples. This allowed total flexibility of character

definition, so that the system could easily be tiained to recognise new char

acters.

• The template matching algorithm calculates a probability of match for each

segment of the sample word, assuming a multivariate normal distribution for

each segment. (Section 4.7 discusses the normality of features for each seg

ment.) This is a true probabiUty, not an ad hoc weighting, conditional on the

fact that any other template may match the segment. These probabilities are

then combined across the whole word for each candidate word to give a pro

bability that the whole word is cortect.

• The various stages of recognition developed within this system are not lim

ited to cursive script, but might be readily applied to other fields of pattern

recognition. In particular, the template matching and template training rou

tines might be applicable for any trainable recognition system that provides

feature information from an unambiguously segmented data sample, and the

dictionary lookup may be applied to any system that requires lexicon-based

context verification as a postprocessor of the recognition phase.

3.3.3. Retention of Ambiguity

Handwriting is an inherentiy ambiguous communication medium. It is fre

quentiy not possible to classify a character or word without reference to the sur

rounding context. There is a conflict here with any automatic recognition system

that needs to make definite binary decisions about whether some information is

relevant or can be discarded so that the data stored within the program does not

3: ORCHiD SYSTEM OVERVIEW 45

become unwieldy and unmanageable. A successful recognition system will need

to retain ambiguity for as long as possible, so that contextual postprocessors can

apply their additional information to produce more accurate (or more probable)

output.

The ORCHiD system described here attempts to retain as much ambiguity as

possible throughout the whole recognition process. Binary cut-offs are necessary

at certain stages to reduce the processing required, but this is kept to a minimum.

A weighted list of candidate words is produced. At present, the most likely of

these words is displayed as output, but the whole list is available if further contex

tual postprocessors are supplied, for example syntactic or semantic verification.

3.4. Hardware Configuration

Several different hardware configurations have been used at various stages

in the development of this system, taking advantage of the constantly evolving

technology. Initial work was carried out on an ICL Perq 2 graphics workstation,

with input from a Summagraphics digitising tablet with specially adapted stylus.

With the development of the PAD, the Electronic Paper Demonstiator^, handwrit

ing data was captured by its digitising surface and transferred to the Perq via

serial line. The original demonstiation system was developed using this technol

ogy - see Appendix A.

The PAD was integrated with a Sun 3 workstation, and work was transferred

to this processor. The stylus on the PAD was not of sufficient quality for collec

tion of large quantities of handwriting sample data, and so the Pencept Penpad

was used as an input device, connected to the Sun workstation via the serial line.

This opaque digitiser has a very acceptable stylus for data coUection^^.

An ideal hardware configuration for this system might be a commercial elec

tionic paper hardware interface connected to a very powerful reduced instmction

set (RISC) processor with a large amount of memory sufficient to hold the very

large data structures used.

3.5. Preprocessing and Stroke Reconnection

The data is preprocessed by the NPL routines described in the documents

listed above. Diacritical marks, which we will define to mean dots, as occur on

the letters «- and V , and crosses, as might occur on the letters ^ n d / , are

detected by these routines. Descriptive and positional information about them is

3: ORCHiD SYSTEM OVERVIEW 46

extracted and stored to be used later, at the dictionary lookup stage, to eliminate

unlikely words. The stiokes which form these diacritical marks are then removed

from the sample and ignored in all further processing. The existence of diacritical

marks is not ambiguous within this system, but their precise identification is

ambiguous.

After diacritical mark removal all non-connected stiokes within a word are

connected together to produce a sample word with a minimum number of pen-

lifts within it. This stroke reconnection or gap removal is done for several rea

sons. Primarily, reconnection eliminates unintentional gaps from the script

caused by light pen pressure or an insufficiently sensitive digitising tablet, but it

has the advantage that many letters that can be written with numerous stiokes

appear similar to completely cursive variations of the same letter after reconnec

tion (see figure 3.2 for examples).

r\ rs

D b

Figure 3.2 - Letters before and after stroke reconnection

The reconnection is at present carried out by joining the two end-points with

a stiaight line. Some digitisers can provide positional information about the pen

motion when it is not in contact with the digitising surface. This might provide a

more accurate image of the pen motion.

3: ORCHiD SYSTEM OVERVIEW 47

3.6. Visual Verification and Correction of Preprocessing

As mentioned in section 3.2, the preprocessing software has not been fully

developed along with the rest of the recognition system. The preprocessing

software occasionally fails causing incorrect data to be passed onto the rest of die

system. A routine has been implemented that allows the manual cortection of

word-split ertors and baseline and halfline errors which have occurted within the

preprocessing. In this way, only cortectiy preprocessed words are passed on for

recognition.

The prerequisite discussed in section 1.4.2 is thus satisfied.

3.7. Segmentation Algorithm

The segmentation algorithm consists of two parts. Firstly, specific features

of the pen-strokes of the script define Possible Segmentation Points (PSPs).

Secondly, each segment between two PSPs is examined and PSPs may be deleted

to yield a list of Definite Segmentation Points (DSPs). This process is detailed in

Chapter 4.

3.7.1. Possible Segmentation Points

A PSP is recorded at the following points within the sample word (see figure

3.3) :-

Intersections - Wherever a stroke crosses its own path to produce a loop, two

PSPs are recorded with a segment in between.

Cusps - Wherever there is a discontinuity in the slope of the stroke, two superim

posed PSPs are recorded with a zero length segment in between. A cusp is thus

tieated as an infinitessimally small loop.

Points of Inflection - Wherever there is a sign change in the angle of curvature, a

PSP is recorded.

End Points The position of a pen-up or pen-down is tieated as if it was a cusp.

3.7.2. PSP Deletion

This segmentation alone is not perfect, since it is possible to have multiple

intersections which overlap, and short, irtelevant segments caused by wobble of

the pen or pen flicks at pen-ups and pen-downs. We wish to use only those PSPs

that were intentional, and not those that are irtelevant. In figure 3.4, the important

3: ORCHiD SYSTEM OVERVIEW 48

1) intersection ii) cusp

inserted
pseudo-cusp at
pen-down

iii) point of inflection iv) end-point

Figure 3.3 - Possible segmentation points

r^
irrelevant intersections irrelevant inflection points

Figure 3.4 - Irrelevant PSPs

PSPs are indicated in black and the irtelevant PSPs in white.

To identify which intersections are intentional and which are accidental,

every intersection is examined to see if its connecting segment contains any other

intersections. If it does then the segment is repeatedly stietched horizontally with

3: ORCHiD SYSTEM OVERVIEW 49

respect to time until only uninterrupted segments are produced between the inter

sections (see figure 3.5). These PSPs are tiien added to the list of DSPs and die

other accidental PSPs removed.
PSP's DSP's

stretch

Figure 3.5 - PSP deletion

The PSPs bounding short segments are deleted from the list of DSPs if either

the segment preceding or the segment following is not a cusp. Short segments

immediately preceding a pen-up or following a pen-down are regarded as serifs or

flicks of the pen and are deleted.

3.8. Feature Extraction

The segments between DSPs fall into one of three general categories, illus-

tiated in figure 3.6, either a loop, a cusp or a himtp. A number of descriptive

features are measured for each segment. Section 4.6 discusses the selection of

these features.

cusp hump

Figure 3.6 - Segment shapes

3: ORCHiD SYSTEM OVERVIEW 50

3.9. Template Matching

A database of templates is stored containing the allographs for every variety

of letter and letter join recognised by the system. A further personal database for

each user records only the styles which they use, and can be constantiy updated to

match their individual handwriting. Details of the template matching routines are

found in Chapter 5.

The templates for letters and letter-joins are segmented using the same algo

rithm as that used to segment the sample script, in order that the sample and tem

plate segments should match in size and shape. A template can then be several

segments long. For each segment of the template, the mean and standard devia

tion of each feature is stored. The mean and standard deviations are calculated by

presenting a number of samples of the letter to the system and their feature values

analysed. In this way the consistency of each of the features is represented by the

standard deviation.

The template matching process consists of several stages - template com

parison, segment normalisation and letter graph formation.

3.9.1. Template Comparison

Each segment of each template in the template database is compared against

every segment of the sample word. For each feature of each segment of the tem

plate a height value is calculated by evaluating an approximation to the height of

the template's statistical distribution at the sample word's feature value, see figure

3.7.

The height values for a segment are then combined together to give a com

parison score for that segment of that template. These scores are recorded in a

template comparison array, and this artay is located at the appropriate segment

position within the sample word comparison array. Figure 3.8 shows a sample

word comparison artay for a five segment sample D compared with template

database containing three different length templates R, S and T. <t>x,(Oj)

represents the height value when segment j of the sample is compared against

segment / of template X. A further description can be found in section 5.7.1.

3: ORCHiD SYSTEM OVERVIEW 51

Figure 3.7 - Height value of the template distribution

Seg 1 Seg 2 Seg 3 Seg 4 Seg 5

^RADO

<^R,(D2)

<\>RAD3)

<!>/?, (^ 4)

<t>/J,(^5)

<t)5,(01)

^h-.iDO

<t>S2(^2)

<^S,(D2)

-

-

<k2(D2)

^,(D2)

-

-

<^S2iDs)

<t)S,(£>3)

-

<h,iD3)

<k2(D3)

<h,(D^)

-

-

<t)S2(^4)

<^S,iD4)

-

<h^iD4)

<t>7-2(04)

^s.iDs)

<k.iDs)

Figure 3.8 - A sample word comparison array

A number of templates are rejected at this stage if the comparison score for

any segment falls below a threshold.

3: ORCHiD SYSTEM OVERVIEW 52

3.9.2. Segment Normalisation

When comparison scores have been calculated for every template, the scores

for each segment of the sample word comparison artay are normalised across the

segment to give segment-normalised comparison scores.

3.9.3. Letter Graph Formation

The segment-normalised comparison scores of a matching template's consti

tuent segments are combined to give a weight for that template. If any template

weight exceeds an experimentally derived threshold it is accepted as a candidate

allograph. It is placed in the appropriate position on a directed letter graph, con

nected to any other candidate allographs which may precede or follow it in physi

cal location (see figure 3.9). By tiacing the letter graph, candidate words can be

generated and associated candidate word weightings calculated by combining the

weights of each template used. ('@' represents start-of-word, '#' end-of-word.)

Figure 3.9 - A directed letter graph

3.10. Dictionary Lookup

A lexicon of valid words is constiiicted into a rn>-based data stiucture (see

section 2.7.7). The letter graph, produced by the template matching routine, and

die dictionary tiee are tiaced simultaneously with a highly efficient recursive

algorithm that yields every possible valid word candidate tiiat can be formed from

the letter graph. Each word has a weighting associated with it allowing tiie output

word candidate Ust to be ranked. Full details are given in Chapter 6.

3: ORCHiD SYSTEM OVERVIEW 53

The diacritical mark information saved from earlier is now used to reduce

the output list by removing words which do not feature the cortect number of

marks. Even the identification of these marks is ambiguous, so it is necessary to

allow the counts of dots and crosses to vary, ie all dots are allowed to be short

crosses and vice versa. Allowance is also made for a double 't' to be crossed with

just one stioke.

3.11. Visual Display of Input and Verification of Output

The final word candidate list can now be presented to the user for

verification. A final system must be able to make an automatic decision as to

which of the candidate words to propose as the cortect one, or it must decide that

there is nothing to choose between a small number of contenders and present all

of the possibilities for the user to select from.

The word weighting produced by this system cannot be used as a guide to

the quality of the output since it is a relative measure with respect to the other

possible candidate words. If a number of words appear at the top of the candidate

word list with equal likelihood, then their absolute weightings will be lower than

a single word. This does not imply that the quality of the match is any lower.

This can be judged by examining the spread of weightings of the words. If the

top word, or small group of words, is separated from its nearest neighbour by a

large amount, then the match is probably better than if there is a very large group

of words at the top of the list. Within this system at present, all words that have

probabilities greater than a percentage of the top word are displayed.

The output Ust can be further enhanced by including the a priori probabiUty

of a word being written, obtained from a frequency count of English usage.

In the experimental system the output is displayed one word at a time with a

graphical display of the input data. The cortect word can be selected from the

output list, or the cortect word entered if it is omitted from the list.

3.12. Training

Training takes place in two stages, initialisation and continuous training.

Firstiy, a new user is initiaUsed into the system. The system prompts the user to

write a small number of words which contain every letter. From this data a per

sonal database of allographs is selected and created. Later, the user writes any

words from the dictionary. The system attempts recognition and requests

3: ORCHiD SYSTEM OVERVIEW 54

verification or cortection of each word. The personal database is then updated

with the new data. This continues until sufficient recognition accuracy is

attained. This is discussed in Chapter 7.

3.13. Conclusion

An experimental system has been produced which enables a user to write

any number of words from a large vocabulary. Each word is recognised and

presented to the user for confirmation. After confirmation, the system automati

cally ttains the personal database of the user. Further details of the individual

components of the system now follow.

Chapter 4

Segmentation

This chapter describes the segmentation method used by the ORCHiD system.

Section 2.4 described the common segmentation methods and problems that are

associated widi them. Although any segmentation method will include similar

problems, it is the goal of this work to minimise these. It is desirable for a seg

mentation method to produce a consistent set of segments, especially for input

samples with the same underlying stmcture. By studying the way that minor

changes in letter formation affect the image written on the paper, a segmentation

method has been conceived which appears to achieve this consistency and minim

ises the associated problems.

4.1. Background to the Segmentation Algorithm

To develop an automatic handwriting recognition system which can read

most styles of handwriting with no training requires a large collection of data

containing the many differing styles and variations of each character within the

alphabet. (The way in which a particular character is formed is referted to as its

allograph and its computer representation is referted to as a template for that

character). A brief examination of a small number of manuscripts is sufficient to

indicate the wide variety of styles in everyday use. It is clearly impractical, in

terms of storage and computation, to record each individual style separately. It is

therefore necessary to find a way to identify a particular character given a number

of variations in its formation.

The most common method used in schools to teach handwriting is the copy

book method. A page of a typical copy-book might have a carefully drawn exam

ple of how to write a character, perhaps with numbers and artows to indicate the

order and direction in which the stiokes are made, together with guideUnes on

which die pupil can copy the letter. Figure 4.1 shows a typical page as might be

found in a copy-book^^. Children then diligentiy copy each letter repeatedly until

they have mastered how to form the shapes cortectiy. The position, direction and

4: SEGMENTATION 56

order of the pen stiokes is weU specified.

Go over the letters a and d. Then copy them underneath.

H
Figure 4.1 - A typical page from a copy-book

As we grow older and need to write increasing amounts of text more quickly

(and, indeed, as we get more lazy), the near-perfect formation of schoolbook

handwriting degenerates. The precise manner in which each individual letter and

letter combination is formed during this period of deterioration is unique to each

individual and this gives rise to a personal style. Often the quality of the

handwriting continues to deteriorate until a stage is reached when the script is

illegible to anyone with whom the writer needs to communicate. At this stage the

writer is forced to check the decline in standards, if the writing is to be under

stood by anybody else, or leam to type!

There are only a limited number of copy-book styles from which everyone

has learnt to write, and most of these styles overlap considerably across different

copy-books. If we can somehow map the graphical representation of the writing

which appears on the page to the theoretical representation of the copy-book

style that the writer learnt, we can greatiy reduce the number of templates which

need to be stored to just the number of different copy-book styles.

This is perhaps not a completely impossible task, since everyone has a sub

conscious image of the letters they are trying to form as they write. An informal

indication tiiat this is true is to ask anyone to write a word as they were originally

taught, or as they might teach a child to write. Most people will have littie

difficulty with this task, and it is, in fact, a very common occurtence with parents

helping children to learn to write.

4: SEGMENTATION 57

In order to verify this a number of people were asked to write a few words in

their ordinary handwriting, and then in a very neat style, as they were taught at

school or as they might teach a child to write. With very few exceptions the

"standard" copy-book style templates were used, even by those people who had

very unusual writing styles.

In general, the accuracy of letter formation compared to the copy-book stan

dard decreases as writing speed increases. The major feature of the script which

is affected by speed of writing is the cusp or sharp comer. This feature either

becomes smoother until it is just a wiggle or hump, or it becomes more pro

nounced and turns into a loop. These processes also occur in reverse whereby a

loop or hump becomes a cusp. Figure 4.2a shows how this occurs and figure 4.2b

shows this deterioration within the context of letters. As the writing deteriorates

further, whole letters can disappear and become just squiggles or lines which,

taken out of the context of the word, are completely meaningless. In figure 4.2c,

the end of the word conU't^ is illegible when the letters CM are taken out of

context. There is a limit to the quality of handwriting that is legible to even a

human reader, so it is not unreasonable to insist that an automated recognition

system must be presented with reasonably neat handwriting that is relatively easy

for a human to recognise. Hence the prerequisite of section 1.4.2.

We can make use of the above information to develop a segmentation

method that is consistent across a number of writing styles where there are minor

variations in the graphical formation of allographs.

4.2. Aims for a Good Segmentation Method

We can now define some requirements for an ideal segmentation method for

such a cursive script recognition system.

a) The method should segment the script at least at letter boundaries, ie there

should be no more than one actual letter between two adjacent segmentation

points.

It is clearly not possible to insist that segmentation should occur only at

letter boundaries, which would make die subsequent recognition far simpler,

since the letter boundaries may be ambiguous even after the character recog

nition stage. For example it may not be clear whetiier the word Uca^ox do^

was written. (Note: This may not be the case if we were to tieat letter combi

nations as a single unit for recognition, for example it may be desirable to

4: SEGMENTATION 58

a) b)

cusp hump

<=>

c)

Figure 4.2 - Cusp deformation

b)

recognise < ^ or Z% as single entities. A better description of this require

ment might be to say that the algorithm should segment at least at "recogni

tional unit" boundaries. The ORCHiD system does not in fact use multi

character templates, but it would be simple to define and match such tem

plates if so desired.)

This requirement ensures that the template matching stage only involves

comparison of the segment with each template in turn in isolation. It is

never necessary to consider two templates in combination to match to a sin

gle segment.

The segmentation algorithm should base its decision on whether to segment

at a particular Digitiser Data Point (DDP) independently of the other Seg

mentation Points (SP).

4: SEGMENTATION 59

In this way the algorithm will define if a DDP may be a SP or may not.

There is no allowance for the position of a SP to be ambiguous. (For exam

ple, in figure 4.3 the segmentation algorithm should be of the form "If there

exists a segmentation point between X and Y then it shall be at Z" rather

than of the form "If there exists a segmentation point between X and Y tiien

it is either at A or at B, but not both".)

Figure 4.3 - Segmentation points with variable position

This requirement allows the ambiguity in segmentation to be carried forward

for resolution by the later stages of the recognition system. (For example, it

may be desirable to cortectiy identify the letter segmentation and this could

be more successfully done after the template matching stage.) The ambi

guity of the precise location of a SP cannot be carried forward using a sta

tistical system since there is no valid theory known to the author for compar

ing segments of differing lengths. For example, in the diagram, if there is

doubt as to whether the segmentation of the stroke XY should be at points A

or B there is no statistically valid way of comparing the segmented pieces

XA to XB, or AY to BY. (See section 5.2 for a discussion on the statistical

vaUdity.)

c) The segmentation should emphasise the important characteristics of the

handwriting which help to differentiate between the letters, and suppress the

unimportant characteristics.

d) The segmentation should aim to consistently map variations of the same

character onto a single stored letter template.

In this way the number of letter templates that need to be stored will be

reduced. In the terms discussed in section 4.1, we wish to map each written

character back to the writer's mental image of the copy-book character.

4: SEGMENTATION 60

4.3. The ORCHiD Segmentation Algorithm

The algorithm attempts to highlight the deformation of cusps described in

section 4.1 above, since the graphical appearance of the cusp on the page is one

of the main features of individuality between writers. For example, the copy

book letter ^may be as in the right of figure 4.4. Each of the other ^ s are based

on it in some way. If the copy-book ^ i s described in words as

"a cusp, pointing right, on the halfline, joined to an upward pointing

cusp at the full-height-line, directly above the first cusp, by a smooth

curve which touches the baseline,"

and the word cusp is freely interchanged with loop, then the similarity emerges.

-d d
copy-book

letter

Figure 4.4 - Letter d's based on the same copy-book letter

Ouladj et af^ have taken a similar theoretical basis for their recognition sys

tem. Their description of the script, however, is based on Freeman coding, so it is

necessary to apply an additional information source that describes the changes to

the Freeman code as cusps, loops, etc deform (see figure 2.11). The approach

described below provides a measure of deformation of a cusp, loop, etc and so

allows direct comparison between the different types of segment.

The ORCHiD system is primarily a statistically based recognition system. It

is therefore important at each stage to consider the statistical validity of that stage

and its repercussions on subsequent stages. To compare the goodness of fit of a

sample with a number of templates it is essential that the templates have the same

number of featiires as the sample, and that the feature artays are of die same

length otherwise we are comparing variables with differing numbers of dimen

sions. For this reason, item b) above is most important.

4: SEGMENTATION 61

The segmentation algorithm operates in two passes. On the first pass, a Ust

of Possible Segmentation Points (PSPs) is produced which are defined by certain

features of the script. This list is then reduced on the second pass by the applica

tion of a number of criteria to provide a Ust of Definite Segmentation Points

(DSPs).

4.3.1. Possible Segmentation Points

A PSP is recorded at the DDP nearest to specific features of the script.

These four features are as follows and illustiated in figure 4.5.

i) Intersection - Wherever a stioke crosses its own path to form a closed loop

this is defined as an intersection. A PSP is marked at the DDP nearest to the

intersection at the beginning of the loop and nearest to the intersection at the

end of the loop.

ii) Cusp - Wherever there is a discontinuity in the slope of the stroke, ie where

there is a sharp point, this is defined as a cusp. A cusp is tieated as if it were

an intersection with an infinitessimally small loop, and so has two superim

posed PSPs with a zero length segment in between.

iii) Point of Inflection - Wherever there is a sign change in the angle of curva

ture, this is defined as a point of inflection. A PSP is recorded at each point

of inflection.

iv) End Points - Each pen-down or pen-up is replaced by a pseudo-cusp with

the cortesponding two PSPs and zero-length segment.

4.3.2. PSP Deletion

This initial segmentation works well for carefully drawn words, but often

fails in practice due to two features of everyday handwriting.

Firstiy it is common for a number of loops to be drawn that overlap each

other within a word. This causes a large number of superfluous intersections and

loops to be identified which confuse the system.

Secondly stiaight lines within the script often wobble by more than die

threshold set by the cleaning routines during preprocessing and thus produce

irrelevant points of inflection with short segments between them. In figure 4,6,

die important PSPs are indicated in black and the irtelevant PSPs in white.

Methods are needed to alleviate these problems.

4: SEGMENTATION 62

i) intersection ii) cusp

inserted
pseudo-cusp at
pen-down

iii) point of inflection iv) end-point

Figure 4.5 - Possible segmentation points

irrelevant intersections irrelevant inflection points

Figure 4.6 - Inelevant segmentation points

4.3.2.1. Multiple Intersections

Consider the stioke sample between X and Y in figure 4.7a (perhaps a styl

ised letter 'b'). We can see that there are six intersections (A - F) between X and

Y. However if we consider the first half of the stioke, between X and Z, there is

4: SEGMENTATION 63

just one intersection at B (figure 4.7b). Similarly for the second half of the stioke,

between Z and Y, there is just one intersection at F (figure 4.7c). This matches up

with our theoretical view of a copy-book letter 'b' which consists of two cusps

connected by a smooth curve (figure 4.8a).

It can now be seen that the stroke XY consists of the curve XB, the loop

delimited by the intersection at B, the curve BZF, the loop delimited by the inter

section at F, and the curve FY. The intersections at A, C, D and E are incidental

and are not relevant in defining the constituent elements of the stioke. Figure

4.8b shows a stroke with the same underlying structure without the accidental

intersections. We require a computational method for highlighting the relevant

intersections within a piece of script.

a)

b) c)

Figure 4.7 - Multiple intersections

A very simpUfied view of the motion of the pen during cursive writing is to

consider tiiat the fingers move the pen by small amounts in the horizontal and

4: SEGMENTATION 64

b)

Figure 4.8 - Strokes with same underlying structure

vertical directions to form the characters, perhaps as they might form separated

characters, and the whole hand, wrist and arm move slowly from left to right as

the writing progresses^^••'̂ •^^. Multiple intersections within a stioke are caused

when the horizontal motion of the writing hand is fairly slow, so that the script

overlaps itself. If the hand were moving faster in the horizontal direction, or the

paper were moving from right to left, the strokes would not overlap. If we super

impose a time-motion in the horizontal or x direction, we can simulate this

increased speed of hand movement. So if a stroke with multiple intersections is

stretched along the jc-axis with respect to time, by adding an increasing amount to

the X coordinate of each DDP, the irtelevant intersections disappear leaving just

the important intersections. Figure 4.9 shows an example being stietched by

increasing amounts. This can perhaps be visualised by considering the writing as

a piece of string so that the two ends could be pulled apart until there are no over

laps.

In the second pass of the segmentation algorithm, each segment that is

delimited by an intersection, ie the loop part, is examined to see if any other inter

sections occur within it. If so, the local area around the intersection is incremen

tally Stietched along the x-axis until no loops overlap. The remaining intersec

tions are then allowed as Definite Segmentation Points.

The practical implementation also msists that no other PSP can exist within

a loop, so there is a priority ranking for these PSPs. If an inflection point occurs

within a loop, then the loop takes priority and the PSP at the inflection is deleted.

If a cusp occurs within a loop, then the angle made by the entry and exit lines of

4: SEGMENTATION 65

Original Stretch by 1 unit

Stretch by 2 units Stretch by 3 units

Figure 4.9 - Stretching process

the cusp (or its "tightness") is examined and compared with a threshold. A cusp

that is sharper than the threshold takes precedence over the loop intersection, and

a cusp that is less sharp than the threshold gives precedence to the loop intersec

tion. The inappropriate PSP is then deleted.

4.3.2.2. Short Segments

Some of the (non-zero length) segments produced by the segmentation algo

rithm are very short, see examples in figure 4.6. Those segments whose length is

below a threshold are marked as short during the first pass of the segmentation

algorithm. If either the segment directiy preceding or the segment directiy fol

lowing the short segment is not a loop or a cusp, then the segment is considered to

be a wobble and the PSP at the point of inflection which defines the segment is

deleted. The segment is then effectively added on to the preceding or following

segment.

4: SEGMENTATION 66

4.3.2.3. Serifs

Occasionally short segments occur just before a pen-up or immediately fol

lowing a pen-down. These are referted to as serifs or flicks of the pen. They may

be caused by inadequacies of the digitiser or may be deliberate stiokes or flour

ishes within the user's style. They are usually not important for the letter forma

tion and so are deleted by the system.

4.4. Segment Shapes

It can now be seen that the segments between the definite segmentation

points fit into one of three categories (see figure 4.10) - either a closed loop,

where the bounding DSPs occupy the same physical coordinates, but the connect

ing stioke is non-zero in length; or a cusp, where the bounding DSPs occupy the

same physical coordinates, but the connecting stroke is zero in length; or a hump,

where the bounding DSPs are separated.

cusp hump

+ve 0 " -ve

"loopiness" gradient

Figure 4.10 - Segment shapes

It can be seen from the diagram that these segments can be tieated as die

same shape but with differing amounts of "loopiness" and that one shape can

evolve into another shape by either stietching or compressing the coordinates

along the x-axis with respect to time, as in the technique used to remove multiple

intersections described in section 4.3.2.1. By using tiiis method of stietching or

compressing along the Jc-axis locally with respect to time it is possible to adjust

the graphical representation of a word to resemble its theoretical representation as

required in section 4.1.

4: SEGMENTATION 67

4.5. Suitability of the Segmentation Method

The segmentation algorithm reasonably satisfies the aims for a good seg

mentation outlined in section 4.2. Figure 4.11 shows a sample of the template

database yielded when this segmentation is applied. The heavy lines indicate the

segments, the tight lines show connecting stiokes.

•J) b) bb
'0

Figure 4.11- Sample of the template database

Item 4.2 a) is satisfied, in that it is not possible to have more than one char

acter between two segmentation points. Some letters with poorly defined begin

nings and endings, eg •it, Hf, etc, have to be carefully defined however to max

imise the mapping of different styles to the same template. For example, some

writers draw a letter ttwith an upward cusp at the beginning and end of the letter.

Others draw the letter with a smooth curve in and out, while others use some

4: SEGMENTATION 68

combination of these two styles. Since the middle part of the letter is the same in

each case, we define this as the user-independent letter -K-and define special letter

joins which will be user-dependent. Some letter combinations may not requke a

letter-join between them. A database of permissible letter/letter-join combina

tions is thus required.

Item 4.2 b) is clearly satisfied since this was the most important considera
tion when developing the algorithm.

Item 4.2 c) appears to be well satisfied since key characteristics were chosen
to define the segmentation points.

Item 4.2 d) is reasonably well satisfied. The segmentation produces con

sistent segments for well-written, cortectiy preprocessed data from individual

users and across a number of users. This reduces the number of templates needed

for each letter considerably.

A pseudo-cusp is inserted at each pen-up and pen-down in order to assist

with the mapping of different styles to a single template. For example, if a letter

A- is written with a pen-down at the start of the character, insertion of a cusp will

make the letter look like a letter ^ written in the middle of a word.

4.5.1. Consistency of Segmentation

To test the consistency of the segmentation, the word ^ w was written six

times by ten writers and the script segmented using the algorithm. The words

were collected in two sets of three, at the end of more substantial data collections

to ensure that no extra care was taken over their formation. Each letter or letter-

join was then identified to compare the segmentation. Figure 4.12 shows the dif

ferent segmentations of the letters and table 4.1 shows their frequencies.

4: SEGMENTATION 69

a) b) f. c) ^

r
d) \ e) \ f)

11 - ' A

g)

/ r^

N y

k) 1 I)

a A " ^ A
m)

vA
n) Ĵ 0) A

^

r;
V/

C
^ J

Figure 4.12 - Script segmentation

4: SEGMENTATION 70

Letter/join

'd'

d-o

'o'

o-g

'g'

Figure 4.12

a)

b)

c)

d)

e)

f)

g)

none

h)

i)

J)

none

k)

1)

m)

n)

o)

Frequency

53

4

3

48

8

2

1

1

58

2

59

1

41

11

5

2

1

%age

88

7

5

80

13

3

2

2

97

3

98

2

68

18

8

3

2

Table 4.1 - Consistency of segmentation

Discussion

The main inconsistency occurs when a hump becomes thin and crosses tiie

threshold of the cusp detector. The segments then appear to be totally different.

For example, a letter 'a' can consist of three segments, but if the hump becomes

thin then it consists of five segments (figure 4.13). This can be observed in

figures 4.12a)/b), 4.12h)/i) and 4.12k)/m), and in reverse in figure 4.12k)/o),

4: SEGMENTATION 71

'CX
three segments five segments

Figure 4.13 - Segmentation inconsistencies

This inconsistency could be reduced if, perhaps, the cusp detection tiireshold

is adjusted for each user. To overcome this problem the current system allows

these as different templates for the same letter, and this has proved desirable in a

number of other cases, for example rounded 'v's and 'w's compared to pointed

letters.

Some inconsistency occurs when script having a large amount of wobble is

presented to the system. These segments are generally short, however, and are

usually removed by the algorithm described above. An example that has not been

removed can be observed in figure 4.12n). The two occurtences of this segmenta

tion, however, occurted in the same sample from the same writer. Further exam

ples from this writer may show that this segmentation is, in fact, consistent for

this writer.

The segmentation appears to break down when attempting to resolve multi

ple intersections at the start or end of a stroke. Figure 4.14 gives some examples.

In these cases the wrong intersections will be identified for deletion. Figure

4.12c) shows where this has occurted. An improved implementation of the

stietching stiategy might resolve this problem, for example working from right to

left, rather than left to right.

wrong intersections accepted

Figure 4.14 - Segmentation errors

4: SEGMENTATION 72

Clearly, the segmentations for the letter 'g' in figures 4.121) and 4.12k) are

different forms of the letter. Separating these segmentations show diat 4.121) is

100% consistent, and 4.12k) is 84% consistent.

It can be seen that the letters are more consistently segmented than the

letter-joins. This is probably due to more widely varying letter-join styles

between writers, and within a single writer's script.

4.6. Feature Extraction

The coordinate data for each segment must now be reduced to a more

manageable list of features. This list of features must adequately describe die

segment so that no information is lost that might be necessary for the recognition

process. By visually comparing the different graphical forms which the segment

might take it can be seen that the following features may be useful. These are

first described generally and then followed by details of those features extracted

by the ORCHiD system.

The position of die segment - vertically with respect to the baseUne and halfline,

horizontally with respect to the neighbouring segments in some way. The vertical

position is best measured at the point furthest from the bounding segmentation

points, eg the top of a loop or at a cusp, as this is the least variable position across

the different segment types. The horizontal position is more difficult to define in

a consistent way.

The shape enclosed by the segment. This describes whether the segment is

round, flattened or elongated. This can be represented numerically by measuring

the length and breadth of the segment and made size independent by dividing the

two to get the aspect ratio.

The size of the region enclosed by the segment. This can be represented by

measuring its area.

The direction in which the segment is pointing.

The "loopiness" or amount of stretching to give the segment's position gradient in

figure 4,10.

The direction of rotation in which the stioke was written - clockwise or anticlock

wise.

With these points in mind, the following features are measured for each seg

ment, each scaled with respect to the baseline-halfline separation. Figure 4.15

4: SEGMENTATION 73

shows these features for each of the different possible segment shapes.

Vertical Position (M)

Angle (<1))

Entry Angle (©)

Exit Angle (©)

Area

Aspect Ratio (t/d)

Chord Distance (c)

Horizontal Displace
ment

The vertical position of the midpoint of the segment.

The direction in which the segment is pointing. For a

cusp, this is the direction in which the cusp is pointing.

For a loop, it is the angle of the line joining the mid

point to the intersection. For a hump, it is the angle of

the Une joining the midpoint to the point halfway along

the chord joining the segmentation points which define

the segment.

The direction in which the pen was travelling on entry

to the segment.

The direction in which the pen was travelling on exit

from the segment.

The area enclosed by the segment. For a cusp, this

value is zero. For a loop, this is the area enclosed by

the loop. For a hump, this is the area enclosed by the

segment and the chord joining the segmentation points

which define the segment. The area is signed depending

on the direction of the enclosing stroke, clockwise or

anticlockwise.

The ratio t/d, for the depth d and thickness t of the seg

ment. For a cusp, this is defined to be unity (ie a per

fect circle). For a stiaight line, this is defined to be a

predefined large number (ie approaching oo).

The distance between the segmentation points which

define the segment. This will be zero for cusps and

loops.

The horizontal distance between the midpoint of this

segment and the previous but one segment. This was

found by observation to be the most useful horizontal

position information that could be easily measured.

4: SEGMENTATION 74

loop

hump hump

Figure 4.15 - Features measured

Figure 4.16 illustiates the variation of some of these features along the "loopi

ness" gradient.

4: SEGMENTATION 75

+
0

A A r\ ^vy
"loopiness"

+
0

area & direction

up

down

angle (0)

chord (c)

(ang in) - (ang out)

YM position (M)
+

0

Figure 4.16 - Values of features

4.7. Independence and Normality of Features

The statistical template matching method described in Chapter 5 assumes

that the features described above are normally distributed and are independent of

each other. Results are given below for tests of normality for a number of these

4: SEGMENTATION 76

features.

Clearly the features are not independent of each other. For example, die

dkection the segment is pointing in will be dependent on the angles of entry and

exit to the segment. The area of the segment will be zero if the height and width

are zero, and so on. It has been found by experiment, however, tfiat all of the

features add to the information about die segment, and help to differentiate in die

template matching process. The assumption of independence is therefore used to

reduce the complexity of computation of the multivariate normal distiibution (see

section 5.6).

There are a number of problems associated with proving normality of the

feature values. The major problem is the large number of samples needed to

achieve a significant statistical proof. For this reason, a non-parametric test was

chosen to show normality, since the restrictions are generally less strict than for

more formal methods. However these tests are consequentiy more conservative.

The other problem occurs since the feature measurements are on a discrete scale

so that the implementation can use integer arithmetic for efficiency. To compare

this with a continuous normal distribution means that the test will again be con

servative. Despite these restrictions, a number of features have shown reasonable

supportive evidence that they are normally distributed.

The Kolmogorov-Smimov test for normality has been used. This test

involves comparing the cumulative distribution of the sample with the expected

cumulative distribution function (cdf). The test statistic is the maximum distance

between the two cdf's and this must be less than a tabulated value^^.

As an example, 32 samples of the loop of a letter 'e' were examined and the

angle recorded (table 4.2).

Angle
Freq
Angle
Freq

9
1

59
2

24
2

60
2

40
1

61
1

41
1

63
1

43
1

66
1

45
1

68
1

48
1

69
5

50
2
71
1

51
1

76
1

52
1

79
1

55
3
88
1

Table 4.2 - Observed frequencies

The mean and standard deviation are estimated from these values as 56.2

and 16.7, respectively. The expected cumulative frequency is then calculated

from tables to give the observed and expected frequencies in table 4.3.

4: SEGMENTATION 77

Angle

Exp
Obs

Angle

Exp
Obs

9

0.1

1

59

18.2
17

24

0.9
3

60

18.9
19

40

5.3
4

61

19.7
20

41

5.8

5

63

21.1
21

43

7.0

6

66

23.1
22

45

8.1
7

68

24.4
23

48

10.0
8

69

24.9
28

50

11.4
10

71

26.0
29

51

12.1
11

76

28.3
30

52

12.8
12

79

29.3
31

55

15.1
15

88

31.3

32

Table 4.3 - Cumulative distribution values

The maximum distance between these functions can either be seen from the

table, or by plotting the graphs (figure 4.17). This occurs when the angle is

slightly less than 51 and is equal to 11.4 - 8 = 3.4. The test statistic D is equal to

this value, scaled by the number of samples (32) = 0.1063. The 10% significant

value for this test statistic is 0.1416, so there is no evidence to reject the

hypothesis that the sample comes from a normal distribution.

Frequency
32

24

16

0 = 3.4/32 = 0.1063

j : :^
20 40 60 80

Angle

Figure 4.17 - Cumulative distribution functions

Table 4.4 shows the results from a number of tests. The "Templates"

column shows which script letters the features were selected from. More dian

one letter was used to get sufficient samples, with the assumption that the seg

ment being examined would be consistent across the different letters.

4: SEGMENTATION 78

Feature

Horiz disp
Vert pos
Vert pos
Angle
Area

Aspect ratio
Chord dist

Templates
sampled

'e'
'b', 'd', 'h', 'k', 'r, 't '

'e'
'e'

'a','g','o','q'
a , g , o , q
a , g , o , q

Segment
type
loop
top
loop
loop
loop
loop
loop

No. of
samples

32
60
32
32
39
39
39

Reject
level

5%
1.5%
<1%

>10%
>10%

<1%
2%

Table 4.4 - Normality test results

As can be seen from these results, some of the features (area, angle) appear

to be normally distributed, whereas there is less evidence for the other features.

The accepted features, however, take a wider range of values and so provide for a

better test, as described above. Since most of the other features have not been

completely rejected (>1% confidence level) it seems reasonable to assume that

these too may be acceptable if a larger range of values were available.

To verify this, a discrete distribution was generated by taking values of the

normal distribution at the midpoint of die discrete steps of the feature measure

ments. For the sample of 'e' loops (rejected in table 4.4) the expected values of

the vertical position were calculated for the cdf of this distribution (table 4.5).

Since the two discrete distributions coincide, the test statistic is simply die

greatest difference between expected and observed frequencies. In this case the

statistic (1.79 / 32) is 0.0599, which is not significant (die 10% significant level is

0.1416).

Vert pos

Observed

Expected

6

2

1.52

7

9

9.21

8

21

22.79

9

32

30.48

Table 4.5 - Discrete test

4: SEGMENTATION 79

4.8. Implementation Details

Cortectiy preprocessed individual cursive words form the input to the seg

mentation routines as a stieam of coordinates (or DDPs). The baseline and

halfline are provided by die preprocessing routines, diacritical marks, ie dots and

crosses, have been separated from the script, and pen-lifts within the word have

been removed.

The feature extraction routine outputs a list of features measured for each

segment of the word. The segments are listed sequentially and interspersed with

any diacritical marks. For each segment, the output feature list is shown in table

4,6.

I n t e r n a l
Var iable
L
R
XM
YM
ANG
•^IN
~OUT
AREA
MAXD
THICK
CHORD

Description

Left DDP number of the segment
Right DDP number of the segment
Horizontal position of the middle of the segment
Vertical position of the middle of the segment
Direction the segment is pointing in
Angle of entry to the segment
Angle of exit from the segment
Area enclosed by the segment
Height of the area enclosed
Width of the area enclosed
Distance between start and end points

Table 4.6 - Segment features

There are a number of details to note, specific to the implementation. Many

of these were for coding convenience, since the feature extraction was developed

in Fortran at NPL.

• The features are scaled and the script translated such that the baseline occurs

at y = 0, the halfline at y = 10 and the left-most part of the word is at J: = 0.

• The sign of L and R is used to indicate a number of conditions. If L alone

is negative, this segment is a dot; if R alone is negative, this segment is a

cross; if they are both negative, this is a short segment which may be

ignored depending on the type of segments on either side of it (see section

4.3.2.2 above). A dot or cross segment merely contains positional informa

tion. The pen-down and pen-up on either side can supply other information,

4: SEGMENTATION 80

if required.

• The sign of AREA indicates if the stioke was written clockwise (negative)
or anticlockwise (positive),

• If XM is flagged as negative, this indicates that this segment is an inserted

pseudo-cusp at a pen-up or pen-down. The tianslation during preprocessing

ensures that the actual value of XM is always positive.

• If THICK is flagged as negative, this indicates that the segment might be

considered as a straight Une. The actual value of THICK is always positive,

• The height MAXD and width THICK are divided (MAXD/THICK) to give

the aspect ratio (ASPCT) for all calculations and this ratio is stored in die

template files. (In practice the value stored is this ratio, multiplied by 10 and

truncated.) If both numerator and denominator are zero, then this segment is

a cusp, so the aspect ratio is set to that of a perfect circle, ie unity (ASPCT

= 10). If only the denominator is zero, then the aspect ratio is set to a

predefined large number to represent infinity.

• A value (DISP) is stored in the template to represent the horizontal dis

placement of the segment from its previous but one segment.

Example

There follows an example of how a sample of the word tnM was seg

mented (figure 4.18), and the features thus produced (table 4.7). The columns

marked with '*' are those entries that are calculated from the other table entries,

as described above.

4: SEGMENTATION 81

164

Figiu-e 4.18 - Example segmentation

L

1
12
47
51
62
66
87
97

118
134
139
163
164
197
197
199
225

R

2
47
51
62
66
87
97
118
134
139
163
164
196
197
198
-224
225

XM

-10
14
23
23
22
27
32
41
45
48
50
57
56
-41
-1
13
-26

DISP
*
-
-
13
9
-1
4
10
14
4
7
5
9
6

-16
-
-
-

YM

18
0
18
10
1
8
0
9
3
9
1
8

-15
-15
13
14
15

ANG

90
262
82
177
256
69
243
59
319
90
252
90
300
162
180
0
9

"IN

90
270
90

267
270
63

288
27
270
90

270
90

256
162
180
0
9

"OUT

270
90

254
267
63
270
27
270
90
270
104
270
162
342
0
0

189

AREA

0
183
0
0
0

-24
11
21
43
0
66
0

-200
0
0
0
0

MAXD

0
17
0
0
0
6
1
8
4
0
8
0
13
0
0
0
0

THICK

0
14
0

-16
0
4
9
3
12
0
10
0
25
0
0
0
0

ASPCT

10
8
10
250
10
7
90
4
30
10
13
10
19
10
-
-
-

CHORD

0
13
0
16
0
5
10
0
12
0
9
0
28
0
0
0
0

Table 4.7 - Feature values for a segmented word

A brief explanation of this table appears below. The first column refers to

the values of L and R for the particular segment.

1-2 Pen-down - ;7.yeMrfo-cusp pointing upwards at Y = 18

4: SEGMENTATION 82

12-47 Large area downward pointing hump touching the baseline

47-51 Upward cusp at Y = 18, 13 units right of the previous cusp

51-62 S tiaight line vertically down of length 16

62-66 Downward cusp, near to baseline, beneath previous cusp

66-87 69° upward clockwise hump approaching die halfline

87-97 243° flattened downward hump touching the baseline

97-118 60° upward pointing elongated loop approaching the halfline

118-134 319° downward pointing hump near the baseline

134-139 Upward pointing cusp near the halfline

139-163 252° downward pointing hump approaching the baseline

163-164 Upward pointing cusp near the halfline

164-196 Large area downward pointing clockwise hump through Y = -15

197-197 Pen-up - Pseudo-cusp pointing left at Y = -15

197-198 Pen-down - Pseudo-cusp pointing left at Y = 13

199-224 T-cross-atY = 14

225-225 Pen-up - Pseudo-cusp pointing right at Y = 15

4.9. Conclusion

The segmentation method described here produces a consistent set of seg

ments for a large number of writing styles. By providing a continuous measure

that describes the deformation of everyday handwriting from ideal copy-book

script it is possible to compare different handwriting styles that are based on the

same copy-book style. The ORCHiD segmentation highlights the "loopiness" of

the segments of the writing to provide this measure.

By mapping handwriting to a small number of copy-book styles, the tem

plate database used in the recognition system can be reduced, since a number of

variations can be matched against the same template. This allows a computation

ally intensive matching routine to be used diat would otherwise be impractical.

Features of each segment are measured, the distribution of which can be

approximated by a multivariate normal distribution. These are then suitable for

use within a statistical template matching process.

Chapter 5

Template Matching

This chapter describes the template matching algorithm used by the ORCHiD

system. A number of template matching methods are described in section 2.5 and

their advantages and problems are discussed. The method described here relies

on a consistent segmentation, as described in Chapter 4. It produces an ambigu

ous set of candidate allographs with probabilities. Context can be used to reduce

this ambiguous output (see Chapter 6).

5.1. An Introduction to Statistical Template Matching

It is first necessary to define some terminology. This will be illustiated with

some simple examples from the field of separated, handwritten character recogni

tion.

A template is a definition or computer representation of a real-world object (for

example, a numerical description of what a letter 'd' looks Uke). An allograph is

a subject specific or context specific topological structure of a character. So a

template is used to represent an allograph.

A sample is data representing an object we wish to identify in terms of real-world

objects (for example, some digitised script). This identification is carried out by

comparing the sample with the templates. It may then be possible to make a

discrete choice and classify the sample as being a particular object, but it is often

desirable to allow some ambiguity in the classification. In this case it is necessary

to calculate a match probability or weighting to indicate how well a sample

matches a template.

A feature is some particular aspect of the data, whether it be the sample data or

the template data, which can be measured. This measurement may be taken

either on a continuous scale, for example the angle that a stioke makes with the

.JC-axis, or on a discrete scale, for example it may be possible to make the state

ment "this is a cusp".

5: TEMPLATE MATCHING 84

Let us consider a simple template matching example for a character recogni

tion system where the feature of interest is the vertical position of cusps within

tiie script. For simplicity we will assume that we have just two templates (see

figure 5.1). Template A represents a lower case letter 'a' and its feature descrip

tion is of two cusps with vertical position 10 (units). Template D represents a

lower case letter 'd' and its description is of a cusp with vertical position 10 fol

lowed by a cusp with vertical position 20. If the sample consists of a cusp with

vertical position 10 followed by a cusp with vertical position 13, then we may be

inclined to deduce that the sample is a better match for template A than template

D, since the vertical height of the final cusp of the sample (13) is closer to 10 dian

to 20.

Template Template Sample
A D

20

10

Figure 5.1 - A simple template matching problem

This deduction may not hold, however, if we are aware of some further sta

tistical information about the vertical position of the final cusp in each of the tem

plates. Consider a hypothetical experiment which examined a large number of

samples of the letters 'a' and 'd'. Of 1000 samples of the letter 'a', the vertical

position of the final cusp was found to vary only between 9 and 11, with most of

the samples having a value of 10. However, of 1000 samples of the letter 'd', die

vertical position of the final cusp varied between 13 and 25, with a mean value of

20. Our original deduction about the best-match template now seems less reason

able, since it is much less likely that the vertical position of the cusp in template

A will exceed 11 and more likely that it will be variable in template D. Statistical

theory must be applied to calculate the best match based on the distribution of the

values of the feature for each template. We may know the actual distribution, but

more than likely we will need to estimate the distribution from a large population

of sample data.

Typically a large number of features are measured. The distributions of

each of these features can be estimated separately, but it is often convenient to

5: TEMPLATE MATCHING 85

consider an array of the feature values to be a sample from a multivariate distri

bution covering the whole feature space. The number of features is then referted

to as the number of dimensions. To reduce the theoretical complexities and com

putation of using generalised statistical distributions, it is usual to select features

which yield values with a normal distribution so that the combined distribution is

multivariate normal.

5.2. The Goodness of Fit Approach

In the classical statistical approach to template matching, sample data is

compared to a template and a probability or weighting is produced representing

how well the sample matches that template. The sample may be compared with

several templates and the probabilities used to provide a ranked list of possible

template matches for the sample data. The template might be described by the

expected values of a number of features which could be extracted from the data,

and the statistical distribution of values for these features may either be known, or

can be estimated from a large population. A number of statistical theories are

available which can be applied in this situation to provide a "goodness of fit" rat

ing when comparing a sample to the expected multivariate distribution of the

template. These may be based on traditional Bayesian theory^^, or on non-

parametric statistics, such as Kolmogorov-Smimov or Cramer von Mises^^. The

nonparametric tests are mostly favoured due to their simplicity.

When such a template matching approach is applied to cursive script recog

nition a common methodology is to attempt to segment the script at letter joins

and match the segments to templates of characters. Some methods then take die

closest matching letter in each position as the cortect output, and combine these

letters to form a word. Other methods allow for a number of possibilities in each

letter position. These letter possibilities are then combined in every possible way

to produce a list of possible output words. In this case the probabilities or weight

ings for each letter must also be combined to give a probabiUty or weighting for

each candidate word.

Illustration

Let us consider the following cursive script recognition problem as an exam

ple. The word ^4w-is presented to a segmentation based recognition system. The

segmentation algorithm cortectiy segments the word at the letter boundaries and

J; TEMPLATE MATCHING 86

passes the three resulting segments to the recognition phase. This recognition

phase indicates that the first segment is eidier a letter ^with probability or

"goodness of fit" of 90% or a letter ^̂^ with probability 10%; the second segment

is either a letter o with probability 70% or a letter ft- with probability 30%; and

the third segment is either a letter ^with probability 60% or a letter *n widi pro

bability 40%. It is then perfectly reasonable to multiply diese probabilities in die

usual way and say that there is a (90% x 70% x 60% =) 37.8% probabiUty of the

word being ^ 4 ^ or a (90% x 30% x 40% =) 10.8% probability of it being fU^

and so on for the other six possible combinations of letters.

The Problem with the Classical Approach

Cursive script recognition, however, poses a more complex problem. The

segmentation points between letters are not only difficult to detect but are often

ambiguous without the application of high level contextual information. There

are two possible ways in which allowances can be made for this ambiguity.

Either some form of transformation to the output can be applied which cortects

any ertors that may have occurred in the segmentation stage, for example mistak

ing C4U for /M*, or ambiguous segmentation can be allowed with the assumption

that the later stages of the recognition will resolve the ambiguity.

The first technique requires a detailed study of the performance of the recog

nition system to provide accurate statistics of the likelihood of various ertors

occurring. These ertors may be transliteration errors, where a letter is misrecog

nised as another letter, or segmentation ertors, where the segmentation has

occurted in the wrong place and therefore caused recognition ertors. It is then

possible to take the output from such a recognition system and apply this statisti

cal information to produce the most likely input word for the output produced.

Sections 2.7.3-6 gives details of some of these methods.

The second technique retains as much information as possible throughout

each stage of the recognition process and only rejects it when there is sufficient

evidence, for example if a letter sequence does not make a valid word. In this

way it is never necessary to make arbitiary binary decisions and no assumptions

are necessary about likely ertors that may have been introduced by the system.

The ORCHiD system uses this second approach.

5: TEMPLATE MATCHING 87

Illustration

Continuing with the previous illustiation, if we allow an ambiguous segmen

tation method that provides for the strokes which form the letter ^ t o be made up

of a letter c-and a letter / , then we encounter a problem with the template match

ing approach outlined in section 5.2. Using the same recognition module, it

might return that the first segment matches the ^template with a "goodness of fit"

of 100% and the second segment is a 100% match for the /template. The prob

lem that we encounter is that there is no way to compare the 90% letter ^with,

say, the 100% o.

Peleg^^ attempted to rationalise the match weights by constructing a graph

of letter possibilities, and calculating probabilities normalised for each group of

letters occupying the same space on the graph. Figure 5.2 shows his example

letter graph for the word fctw^with the possible letters and normalised probabili

ties. For the reasons described above, the probability calculations are flawed and

should not be combined across the word to give a word probability.

1 (6 7)
e (3 3 >

e (3 4)
1 (3 0)
r (i a)
s (1 8)

Hayes normalisation group A group C

Figure 5.2 - Peleg's normalisation

Hayes^^ attempted to alleviate the problem by normalising across groups of

letters that span a section of a word. In figure 5.2, the probabilities would be nor-

maUsed within the three groups indicated. As letters are deleted from the graph

(for contextual or other reasons) the probabilities are re-normalised. This mediod

is stiU fundamentally flawed, for the same reasons.

5: TEMPLATE MATCHING 88

The development of any form of statistical cursive script recognition system

based on an ambiguous segmentation method must overcome the problem that

there is no valid theory available for comparing samples taken from multivariate

distributions with different numbers of dimensions. For instance letters may span

differing amounts of the sample text and hence have different numbers of features

associated with them. As stated above, for the word ^4»^we might say that there

is a 90% probability that the first letter is a ^and a 10% probability of it being an

/»-, but we may be 100% certain that the first part of the letter, when considered

on its own, is a c-. How can we now compare the c-with the ^ ? The only way

that the comparison can make sense is if we consider the letter ^with the letter

combination o Aaken together.

5.3. A Probabilistic Approach

In the example above comparing ^with c&, the first part of the letter could

equally belong to the o, cCox ^ . (We will ignore other possibilities for the pur

poses of clarity of explanation.) So there is a 33% probability, say, that it belongs

to any of these three letters. The second part of the letter involves comparing the

ascender of the ^with the /and the second part of the /»•. Assuming that the

two true ascenders are equally likely, then they may have a probability of 45%

each, say, and the /r-may have a probability of 10%. Combining these probabili

ties gives a probability for the ^of 15%, for the ^of 3.3%, for the oof 33% and

for the /of 45%, but for the <::/combined the probabiUty is 15%, which can now

be sensibly compared with the <ŝ and the <».

We can see that although the "goodness of fit" approach to template match

ing produces a meaningful value for how well a sample matches a template and

can be used to compare the matches of equally sized templates, that value cannot

be used to compare the match with a template which is of a different size or has a

differing number of features associated with it. Despite this it is very common to

find letter weights combined to produce a weighting for a word which is statisti

cally meaningless.

The example above shows a method of comparing template matches which

is valid in this situation provided the script between segmentation points is

sufficientiy small that no more than one template can lie within it, no matter how

smaU that template.

5: TEMPLATE MATCHING 89

This provision leads to the concept of using a set of sub-letter templates

which represent die constituent parts of actual characters. The script can be seg

mented, the segments identified by comparison with the sub-letter templates and

the templates combined to produce letters (and consequentiy words). In this way

the start of the letters ^, c-and fC, say, might cortespond to the same sub-letter

template.

A sub-letter template set does not provide for a readily trainable system,

however, since the tt-ainer (ie the ordinary user) must know the details of how

each character breaks down into its constituent sub-letter templates in order to

cortectiy train those templates. For a system that should require no specialist

expertise to operate it, this is clearly unacceptable. The ORCHiD system solves

these problems by using whole letter templates that are automatically segmented

using the same method as the script sample. In this way each letter template is

stored internally as a sequence of sub-letter template segments. So a template for

the letter omay be made up of just one template segment, but the template for the

letter #tv would be made up of several template segments.

The template matching process is carried out at the segment level, so that a

segment of the sample data is compared with a segment of a template and a pro

bability calculated (see section 5.7.1). A match weighting for the whole template

can then be calculated by combining the probabilities of each of its segments.

Section 5.2, however, showed that to sensibly compare two match probabilities,

the matches must span the same portion of the sample script. The most con

venient way to guarantee this is to combine the probabilities for every segment of

a word to get a probability for that word.

[Example: Consider a sample word made up of five segments (ABCDE),

and a template database containing two templates - template I, with two segments

(PQ), and template II, with three segments (RST). There are clearly two ways

that the templates can combine to span the word, either combination a -

(PQ)(RST) or combination b - (RST)(PQ). Let ^ai be the match probability for

template I in combination a, which is calculated as ^AP^BQ^ where O^p is die

match probability of comparing template segment P with sample segment A, and

so on. It can be seen that it is not possible to compare any of die values O^/, Oo//,

Ofc/ or Ofc// directiy, but it is possible to compare the combined probabilities

^al^all with ^bIl^bI^^

5: TEMPLATE MATCHING 90

5.4. Match Probability Calculation

Let us consider a simplified pattern recognition problem. If a sample X can

come from one of just two known univariate disttibutions, a or b, what is the pro

bability that X belongs to a? Assuming diat there is no option of X belonging to

neither, then the probabUity that X belongs to a is simply the ratio of the ordinate

of the probability density function of a at X (simplistically referted to as die

height of a at X) to the sum of the heights of the disttibutions a and b at X (see

figure 5.3). (This is referred to as normalising the heights to 1.0.) This theory is

applicable to any number of disttibutions, and also to multivariate distributions,

provided they have the same number of dimensions.

Figure 5.3 - Probability of X belonging to distribution a or 6

In the script recognition problem, we can assume that the script must match

letters or letter-joins along its whole length, since the writer is not trying to fool

the system by making nonsensical marks or squiggles. (It may be necessary to

allow for stylish flourishes at the beginning or end of a word which hold no mean

ing and for ertors in script formation. This point will not be further discussed at

this stage.) With this additional information about the input which will be

presented to the system it is possible to calculate a more meaningful weighting

than the "goodness of fit" approach, since that method yields a value which is

5: TEMPLATE MATCHING 91

independent of other possible template matches. Provided we try to match every

possible template in every position along the length of the script sample, we can

calculate a real probability for a template occurring at any point within the sam

ple, conditional on the fact that it must be one of these templates. By extending

the theory described in the previous paragraph, the probability calculation

involves calculating the height of the multivariate distribution for each template

at the sample feature values and normaUsing all of these heights to 1.0 - see sec

tion 5.7 below.

As explained in section 5,3, we cannot use letter templates as the base unit

for comparison between possible templates, but we can use the segments formed

when the segmentation algorithm of Chapter 4 is applied to the templates. We

therefore calculate match probabilities for each of the template segments by the

same method as described above. Each template segment is compared with each

sample segment and the height of the template distribution calculated. The seg

mentation algorithm provides us with segments which have the same number of

features, and so their distributions have the same number of dimensions. The

heights can now be normalised for each segment, and the resulting probabilities

combined in the usual way to give a probability for each template as a whole.

Note that with this method a sample segment that matches a template seg

ment very well will contribute a greater influence to the probability of the whole

word than a sample segment that could equally match several template segments.

5.5. Template Database Description

The template database stores a representation of every type of letter and

letter-join recognisable by the system. The system is easily ttainable for any style

of writing or letter formation. This is achieved by using data-driven templates,

whereby any number of samples of a character are averaged together to provide a

new template (see Chapter 7). In this way a fuzzy picture of the character is used

to compare against any new sample data, and a distance measure can be calcu

lated. Samples which define the template can be taken from just a single user, to

give an accurate personalised template, or from a population of users, to give a

less accurate but more generalised template. It is therefore possible to have a user

specific or a generalised recognition system simply by installing a different tem

plate database. As well as storing the mean values for the features of a template,

the number of samples used and the standard deviation of die samples is also

5: TEMPLATE MATCHING 92

available for use in the distance measure and for subsequent tiaining.

This data-driven template approach allows any portion of a handwritten

word to be defined as a template. A simplistic view might therefore be to define a

set of templates for each letter, and combine those letters to form words. Unfor

tunately, this is not practical since letters are formed differently depending on the

preceding and foUowing letters^^. It would therefore be necessary to record dif

ferent types of letters for different positions within different letter combinations,

and ensure the cortect combination of letters at the word formation stage. Since it

is possible to define any portion of the script as a template, it was decided that it

would be easiest to define letter-join templates as well as letter templates. As a

large number of letters either start or end in similar ways, it is not necessary to

have 26 x 26 different letter-joins. Figure 5.4 shows those which were used. It is

possible to ignore letter-joins completely, and simply flag those segments of

script as ligatures. It was found, however, that these strokes can be useful, in

some cases, to reject possible letters and letter combinations. More importantly,

ignoring these Ugatures would have also invalidated the statistical theory

developed above.

The use of letter-joins as templates creates the need for two extra pseudo-

letters to be included in the alphabet to indicate the start of a word (represented

by '(a)') and the end of a word ('#'). Templates therefore exist for letter-joins

from '@' to each letter, and from each letter to '#'.

As described above, a template may consist of a number of segments. For

each segment the mean, standard deviation and number of generating samples can

be calculated for a number of features from the information stored. The standard

deviation provides an indication of the spread of samples for that particular

feature, and so is an indication of its consistency, and hence its usefulness in dis

tinguishing between templates. This is essential in the calculation of the distance

of a sample segment from the template segment.

For each feattire ORCHiD stores the sum of the samples, the sum of die

squares of the samples and the number of samples. The mean and standard devia

tion can easily be calculated from this information. The number of samples mak

ing up a template could also be used as a measure of reliabiUty for that template

since it indicates how often it has been used. Perhaps a further enhancement of

the template matching routine might be to reject templates from die personal tem

plate database when they have not been recentiy used.

5: TEMPLATE MATCHING 93

a. i^ c C

fl cr f l f-

d.. L Z*

r
b k p
s z.
f f y
^ ^ >

S-foLrt

@

0- c
« «

U V

m
-•ir. n < i

la..

m.

. ^ .

• ' • : : < ^ . .

--^.^

/ . .

^ ^ 3

c:y;:;..

k.

• • • • * - > i * ^ .

;̂::F-
^ • ' '

b / 1
1- 1?
^ t
Ji,

^ .

u,
r4
oJi

. ^ .

/ .

A'

M f\

r oc

mi

ej-u

ini

m
•yn

u|^i..

7i

(°

CM'

T
V
n
"f'
w
y.

s^p

^

;"̂ C«

^ : ^

t
r

kL"

:• f

— *

Figure 5.4 - Letter-joins

5,6, Distance Measure

A fixed number of features are measures for each segment. If we assume

that each feature is distributed normally, and that all of the features of a segment

taken together can then be represented by a multivariate normal distribution (see

section 4.7), then the distance we require is the ordinate or height of the probabil

ity density function of the distribution at the sample segment values, see section

5.4. Normalisation of these distances across all of the odier template segments

then gives us the probability that it matches that template, given that it must

match one of the templates.

Calculation of the ordinates of the multivariate normal disttibutions for each

template for every sample segment would be exttemely time-consuming, due to

5: TEMPLATE MATCHING 94

the complexity of the equation (see below), so a simplification is necessary.

Multivariate Normal Distribution

IfX = (xi,X2,'- ,X(i) is a sample from a multivariate normal distribution with

artay of means M = (|j.i ,p.2, • • • ,11,̂) and covariance matrix

V =

~ 2 2'
a i i O l 2 . . .^Id

9 2 2
021 ^22 • • • ^2d

9 2 2

then the ordinate (or height) of the probability distribution function <{) is given by,

g-'/^(X-M)'V-^(X-M)
<1)(X) =

(2K) ̂ ivr^^

where d is the dimensionality, (X-M)' indicates the ttanspose of the array

(X-M), IVI is the determinate of the mattix V, and V~̂ is the inverse of V,

If we assume, for simplicity, that the variables are independent (see section 4.7)

so that the covariance matrix V is diagonal.

V =
Qoi-- 0

ai w . . . 0

0 0 •••oi

then

(1)(X) =
, .=1 Oi

' T~d
(27t) 2 X\(5i

j = l

-%-
(,̂-^ir

a?

,=1 (27C) Oj

Normal Distribution

If ;c is a sample from a (univariate) normal disttibution N(\^,o^), then

u i ^ ^ -Vi

(!)(jc) =

So for the multivariate normal distiibution

d
(l)(X) = fl(t)(Xi)

/•=i

5: TEMPLATE MATCHING 95

/

It can therefore be seen that, provided the features are independent of each

other, the height of the multivariate disttibution is simply the product of the indi

vidual univariate disttibutions. It is computationally expensive to calculate die

ordinate of the normal distribution for every feature of every template segment,

so an approximation is used. This is based on the ordinates of the standard nor

mal distribution A (̂0,1).

Standard Normal Distribution

If z is a sample from a standard normal disttibutionN(Q,\), then
, 2

^l^(z) =
2

VSTT

To calculate (^(x) where x comes from N([i,cP-) from the ordinate values of die
standard normal distribution (^N(Z), make the substitution

x-u.
1 = — ' —

then

(^(x) =

For our purposes, the disttibution is divided into fixed width portions either

side of the mean (see figure 5.5). The ordinate in the centre of each portion is cal

culated and for any sample lying within that portion the centtal ordinate is

returned as the approximation to the real ordinate. The ordinate of a normal dis

tribution more than three standard deviations away from the mean is virtually

zero (< 0.5% of the maximum ordinate at the mean), so this was selected as the

maximum distance from the mean for which ordinates would be calculated. The

intermediate section was divided into half standard deviation portions, since this

provided a reasonable approximation (see below) and involved calculation of just

seven ordinate values. The ordinate values are

(t)(^i) = - ^ = , <^([i-^V2C) = —— , (l)(^l+a) = — —
<J^j2K aV27C (5^{2^t

and so on.

5: TEMPLATE MATCHING 96

1.5 2 2.5 3 3.5

Figure 5.5 - Approximation to normal distribution

Closer approximations could have been used. This one was selected since it

could be implemented exttemely efficiently. This was important since this calcu

lation is needed many times during the execution of the program. The next sec

tion shows that the approximation is, in fact, sufficient.

So for each feature, the distance of the sample from the template mean is

calculated and scaled by the standard deviation. The relevant approximation to

the standard normal disttibution is looked up from the table and divided by the

standard deviation. Each of the values for the features of a segment are then mul

tiplied together to give the approximation to the ordinate of the multivariate nor

mal distribution, which is the distance measure required.

Validity of the Approximation

It is possible to show that this approximation is reasonable if it can be shown

that the area under the curve between the two bounding points of each portion

(j^) is approximately equal to the area under the cortesponding histogram. Table

5,1, exttacted from statistical tables, shows this to be sufficient. The average

ertor across the range -3.25<z<3.25 is approximately 0.2%.

5: TEMPLATE MATCHING 97

[Notation: <I)(z) = \<^(t)dt]

z

<t«(2)

Z

(Kz)
«(z)

0.0

.3989

.5000

1.75

.0401

0.25

.4013

2.0

.0540

0.50

.3521

2.25

.0122

.75

.2266

2.5

.0175

1.0

.2420

2.75

.00298

1.25

.1056

3.0

.0044

1.5

.1295

3.25

.000577

Range

1̂
Approx

%age error

0-.25

.0987

.0997

1.0

.25 - .75

.1747

.1761

0.8

.75-1.25

.1210

.1210

0.0

1.25-1.75

.0655

.0648

1.1

1.75-2.25

.0279

.0270

3.2

2.25 - 2.75

.00922

.00875

5.2

2.75 - 3.25

.002403

.002200

8.4

Table 5.1 - Errors in the approximation

Mathematical Summary

It is now possible to express formally the distance measure used, and the

match probability between a sample segment and a template segment.

Let X be a sample segment feature artay with d elements (xi, • • • ,Xd). Let there

be n template segments Ti to T„ for comparison with the sample segment (each

of dimension d), and assume that these templates come from a multivariate nor

mal distribution. Let the feattire elements of T,- be (r/i, • • • ,tid) and assume that

each tik is normaUy distiibuted with mean p,jt and standard deviation O,A:, and the

distiibutions are independent. Let the ordinate of the disttibution of T,- at X be

(1)T,.(X) and the ordinate of the distiibution of tik at Xk be (Sft^S^k)- Let ^^^(z) be die

ordinate of the standard normal distiibution N(0,1) at z.

Then the distance measure between X and T,- is given by

(t)T,(X)=n<t)r,,(^*)
J k = l

d

= n
k=\

<^N
J

Oik

5: TEMPLATE MATCHING 98

5.7. Implementation of the Template Matching Process

The template matching process consists of several consecutive sub-routines -

template comparison, segment normalisation and letter graph formation.

5.7.1. Template Comparison

In the template comparison stage, each segment of every template is com

pared to each segment of the sample word, and a distance measure calculated.

For example in the simple case of figure 5.6 there are three templates /?, S and T

to be matched against the sample data D. D has been segmented into 5 segments,

D1-D5, andR, S and Tare made up of 1, 2 and 3 segments respectively (Ri,Si-

S2, T-^-Tj^). The following distances are then calculated - /?i to each of D1-D5,

Si toDi-D4, S2 \0D2-Ds, Ti to D1-D3, T2 X0D2-D4, andTs 10 D^-D^. In

this way, each template has been examined in every possible segment position

that it can occupy.

I —A Ri
I —\ Ri

>1 S2 \-
H

S2

Si

Ti T2 T3
I 1 1-

Ti T2
I 1

h
Ti

Figure 5.6 - Matching tempi

S2

T3

T.

Ri

S2

l-i

ates to data sample

The distance measure, which is the approximation to the height of the mul

tivariate distiibution of the template segment at the sample segment, is referted to

as die comparison score for that segment of that template. These scores are

recorded in a template comparison array, and this artay is located at the appropri

ate segment position widiin the sample word comparison array. For example, die

template comparison artay for template S starting at segment 3 of the sample

word would be [(t)5,(£>3),<t>52(̂ 4)l' ^"'̂ ^̂® sample word comparison artay is

file:///0D2-Ds

5: TEMPLATE MATCHING 99

shown in figure 5.7.

Segl

<^R,(Di)

-

-

-

-

^s,(DO
-

-

-

<hriDi)

-

-

Seg 2

-

<^R,iD2)

-

-

-

<\>S2(D2)

<t)5i(^2)

-

-

(|)r2(^2)

<\>T,(D2)

-

Seg 3

-

-

<!);?, (^ 3)

-

-

-

<t>52(^3)

05,(^3)

-

h-.iD^)

^^iD-i)

<l>r,(^3)

Seg 4

-

-

-

^R,(D^)

-

-

-

<^S2(P^)

<1)5,(^4)

-

<l>7-3(̂ 4)

<t)r2(^4)

Seg 5

-

-

-

-

^RSDS)

-

-

-

^s,(Ds)

-

-

<h^(Ds)

Figure 5.7 - Sample word comparison array

The matching template is referted to as a candidate allograph for that posi

tion in the sample word. A few statistical anomalies can produce spurious candi

date allographs. Section 8.5.4 discusses these anomalies and their causes in more

detail. Two criteria are examined to decide whether a candidate allograph has

appeared because of one of these anomalies. Such candidate allographs are then

removed.

1) Within a segment of a sample it is possible that one or two of the features

may match the template very well, the rest matching very poorly. After cal

culation of the comparison score, it is possible that the good match(es) may

outweigh the poor matches and produce a seemingly reasonable score. This

score may, however, be a mathematical anomaly. (For example, consider

eight features measured for a sample segment. If, by chance, one of these

features matches the template feattire exactly, and that feature disttibution

has a very low standard deviation, then the height value for that feature wiU

be very great. If the other features match pooriy, the height values for die

other features will be very low. The comparison score may be reasonable.

5: TEMPLATE MATCHING 100

though, due to the influence of the first feature, even though intuitively it

would be said that this is a poor match overall.) To counteract this anomaly,

a candidate allograph is rejected if a majority of a sample segment's feature

values are more than three standard deviations away from the mean of the

template feature values.

2) It is possible for the statistical method to allow candidate allographs which

should be rejected for other reasons. Two basic elements of each segment

are examined to see if a match between the template and the data is impossi

ble. The area occupied by a script word is divided into horizontal strips, see

figure 5.8. The vertical region in which each sample segment is located is

compared with the expected region for the template segment. If the sample

is located more than one region away from the expected region, the candi

date allograph is deleted. The rotation of the segment is also compared.

Provided neither sample nor template segment is a cusp, if the "clockwise-

ness" is opposite, the candidate allograph is rejected.

Region 6

Region 7

Figure 5.8 - Regions for vertical position of segments

5.7.2. Segment Normalisation

The template comparison scores are normalised to 1.0 across each column of

the sample word comparison array to give segment-normalised comparison

scores. These scores are equivalent to the probability that a sample segment

5: TEMPLATE MATCHING 101

matches the template segment.

We can represent the normalisation process in the formal terms of the for
mulae derived above. If XeT, means the sample segment X is an instance of die
template segment T;, then the match probability P, conditional on the fact that X
must match one of the templates, is given by

(t)T.(X)
P(XeTi\XsTu--,Tn) = ^

Z(t)T/X)
7=1

So, if we substitute the equation for <^. (X) from above we get

Xk-[i-ik

a <^ik

n- „
*=! Oik

a

Xk-[^jk

^jk in-
j=\k=\ ^jk

It should be noted that this normalisation decreases the influence on the

word probabiUty of a segment with a number of equally matched candidate allo

graphs and increases the influence of a segment with a single outstandingly good

match. In this way the influence of each segment on the word probability is lim

ited and the possibility of a single, large segment comparison score overwhelming

the influence of the other segments is minimised.

There is clearly a heavy computational requirement to implement this tem

plate matching method. (If there are n templates in the database, each template

consisting of s segments on average, and there are d segments in the sample data,

then approximately nxsxd comparison scores must be calculated.) To reduce the

computation needed, a candidate allograph is rejected at this stage if any of its

segment normalised comparison scores fall below a threshold. This threshold is

calculated by experiment to provide a reasonable execution time without deleting

any cortect candidate allographs.

The segment-normalised comparison scores are now combined across each

candidate allograph by multiplication to give a weighting. It should be noted that

because these weightings are dependent on the number of segments in an allo

graph, they cannot be used for comparisons between different size candidate

5: TEMPLATE MATCHING 102

allographs.

5.7.3. Letter Graph Formation

A directed graph is constiucted to represent how each candidate allograph

may connect with every other allograph, see figure 5,9. This graph can then be

traced to produce a list of candidate words that might match the sample script.

Figure 5.9 - A directed letter graph

The template matching routine provides a list of candidate allographs, for

each of which is recorded its weighting, calculated from the normalised com

parison scores for each segment of the allograph, and its location within the sam

ple word. The location of the allograph is indicated by the sequence number of

the segmentation points bounding it. Each candidate allograph is placed onto the

graph and connected (with pointers) to those allographs that may precede or fol

low it, as defined by their locations.

On each node of the graph is stored the name of the allograph together with

its weighting. Each path within the graph can be traced (from left to right in

figure 5,9) to produce a candidate word and a probability calculated for how well

the sample matches that candidate word. This probability is calculated simply by

multiplying die weightings of the candidate aUographs making up the candidate

word. Since the number of segments across the whole word is the same, no

matter which combination of allographs is used, these probabilities satisfy the

conditions discussed in section 5.2 and can thus be used to directly compare die

different candidate words. Using these probabilities the candidate words are

ranked.

5: TEMPLATE MATCHING 103

With a system that retains a large amount of ambiguity, such as ORCHiD , die

letter graph can become very large, with many nodes. This is especially the case

since die candidate allographs can represent letter-joins as well as letters.

Although in theory the graph ttacing process described in Chapter 6 does not

drastically suffer with large letter graphs, it is a recursive process which in prac

tice requties a finite amount of time for each caU of the recursion. As the letter

graph gets exttemely large, this extta execution time can become considerable,

especially if the amount of stack required for the recursive calls approaches die

amount of memory available, causing excessive page faulting.

To reduce the size of the graph, a template-join table has been constioicted

which contains a list of which letter-joins are allowable between letters, whether

letters can join directly to another letter without a join, which templates must be

located on a pen-up or pen-down, and so on. As each candidate allograph is

placed on the graph, any other allograph which may connect to it is checked in

the template-join table to ensure the connection is permissible. As well as reduc

ing the size of the letter graph, this method also increases the accuracy of the

recognition system by removing inadmissible allograph sequences that will not be

removed by word-level context.

5.8. Conclusion

A statistical template matching routine has been developed which compares

a sequence of contiguous sample segments with a database of templates. Each

segment is described by a set of numerical features and these allow a probability

of match to be calculated. The match probabilities, when combined across the

whole word, provide a valid weighting for comparison between different possible

combinations of templates.

The template database is constiucted very simply, by storing the average

feature values from any number of samples of a template. This enables training

to be stiaightforward (see Chapter 7). At present only lower case letter templates

have been used but, in theory, capital letters could easily be included by defining

extta templates.

The process is computationally expensive but shows the value of a data-

driven approach to recognition. There are a number of problems associated with

this method, however, and these are discussed further in section 8.5.4. Section

9.3,5 discusses how this method might be combined with different recognition

5: TEMPLATE MATCHING 104

approaches to produce more consistent results.

A letter graph is produced as the output from this section which can be

tiaced to produce a ranked list of candidate words that match the sample. There

will be a large number of these words since the method only deletes possibilities

that are exttemely unlikely. Many of these words will not be valid in the

language so it is necessary to verify each of the candidate words against a lexicon

or dictionary.

Chapter 6

Candidate Word Verification

This chapter discusses the use of word level context to reduce a set of ambi

guous template matches and verify the output. Some methods previously used are

discussed in section 2.7. A ranked list of valid candidate words is produced and

this is further reduced by application of diacritical mark information and a priori

word probabilities.

6.1. Output from Segmentation Based Recognition Systems

The output from typical segmentation based text recognition systems can

fall into one of two main categories:

(a) a single word can be produced consisting of the most Ukely letters which

span the written sample; or

(b) a list of possible letters in each segmentation position can be produced,

together with a weighting of their likelihood.

Recognition systems belonging to type (a) have made a binary decision at

this stage as to where letter segmentation occurs - this will be referted to as fixed

letter-segmentation. Those belonging to type (b) retain aU of the possible seg

mentation points and will be referted to as ambiguous letter-segmentation. No

decision has been made at this stage as to exactly where the letters occur in die

written word.

Example

With a fixed letter-segmentation recognition system, the most likely word is

produced as output. For example, if the word <4^was presented to the system,

the letter matching algorithm may make a mistake in the second letter position

and produce the output ft- ^ - ^ • U is then the task of any contextual post

processor to cortect the output and produce the most likely real word.

An ambiguous letter-segmentation system produces a Ust of possible candi

dates in each segment position, together with a certainty weight to indicate die

6: CANDIDATE WORD VERIFICATION 106

closeness of the match. For example, if the word f^ was presented to the sys

tem, it may produce two options for the second character, perhaps an /i-with high

certainty weight of 60 or an c widi a lower certainty weight of 40.

In cursive script recognition systems, individual characters are permitted to

run into each other, with the problem that segmentation of the script into letters is

ambiguous. For example, if the word ^^M-is written cursively, there is the possi

bility that the word may be c ^ , where the segmentation after the first letter is

ambiguous.

One way to represent the output from such a system is as a directed graph

(Hayes^^, Peleg^^, Higgins and Whittow^^). Figure 6.1 shows a simpUfied letter

graph that might be produced by a recognition system acting on the input script

^ w , The '(§)' symbol represents the start of a word and the '#' symbol

represents the end of a word. The graph is ttaversed from left to right, yielding a

list of all possible combinations of letters that the original data might represent, ie

eUc^, cU>&, c^^-, cicc^, cl(», c^^- The certainty weights can be attached

to each letter on the graph and combined as the graph is ttaced to produce a rank

ing for each word that is produced.

Figure 6.1 - A simple letter graph

Such a letter graph may produce a large number of words if diere is a lot of

ambiguity, and many of these words wiU not be valid. It is therefore necessary to

develop an efficient method of verifying each of these words.

6: CANDIDATE WORD VERIFICATION 107

6.2. Use of Contextual Information from Dictionary Sources

Since a cursive script recognition (CSR) system will usually be required to

recognise real words, rather than random sequences of letters, it is possible to

define a dictionary or lexicon of valid words. Information can be extracted from

this and used to resttict and verify the output from the system. If such a lexicon is

used, however, it is essential that every word that is required to be recognised is

included within it.

6.2.1. Fixed Letter-Segmentation

Most of the past approaches to using contextual information have been

based on consttucting a post-processor for the output from fixed letter-

segmentation recognition systems. The output from such a system is a single

word, consisting of the most likely letters that span the sample script. The con

textual disambiguation process takes that word as its input and returns the most

likely written word as its output, using contextual and other information to make

this decision. Several techniques are discussed in Chapter 2 most of which are

based on the Viterbi Algorithm.

6.2.2. Ambiguous Letter-Segmentation

The problem with all of the systems based on the Viterbi Algorithm is that

they do not allow for incortect letter segmentation. For example if the word <4»

is misrecognised as c^cf-then the algorithm cannot produce the correct word and

the system will fail. An ambiguous letter-segmentation retains all of the possible

segmentation points within the letter graph representation.

For an ambiguous script recognition system, the contextual disambiguation

process takes a letter graph as its input, and produces as its output a list of words

which have been checked, in some way, against a lexicon of dictionary informa

tion. One simple way to do this is to ttace every path through the graph and

check each resulting word against a list of valid words. This is not practical since

the letter graph is usually very large with many paths. Even the most efficient

dictionary searching algorithms will take a significant amount of processing time

to verify a very large list of words.

Commercial speU-checking software cannot be used since, for efficiency, die

algorithms they employ usually rely on the input words either being cortect, or

6: CANDIDATE WORD VERIFICATION 108

very close approximations to real words. Often a hash-coding is used on the word

to be checked and a flag set in the hash-table if that word is valid. The hash-code

is usually designed so that encodings of slight mis-spelUngs will not coUide with

cortect spellings, but completely random sequences of letters may often be

accepted as valid words. The UNIX spell facility is an example of such a system.

A much more efficient and reliable technique is required.

6.3. Binary N-Gram Graph Reduction

This technique makes use of the existence or non-existence of n-letter

sequences in English. Higgins^^ reported that four is the ideal length of gram to

use, since only approximately 5% of 4-grams are vaUd in English, and the number

of possible grams, 26"* = 456 976, can be reasonably stored as a binary array

occupying just under 56 Kbytes of memory. A much larger percentage of 3-

grams are valid, and 5-grams would require about 1.5 Mbytes of memory for the

binary artay with littie gain in context.

The letter graph is supplemented by adding an extia start and stop node at

the beginning and end of the graph. This is so that the opening two and three

letter sequences can be checked using the same 4-gram approach.

The graph reduction process can be implemented in many different ways,

see Whittow and Higgins^^^. An efficient technique has been selected, which

uses a similar letter graph stmcture and ttacing algorithm as will be discussed in

section 6.4, for the purposes of comparison with die dictionary ttee search algo

rithm. This technique involves recursively ttacing each path tiirough die letter

graph, maintaining pointers to the last four letters accessed. At each step die

curtent four letter sequence is compared against the list of valid 4-grams. If the

sequence is valid, then the three arcs connecting the four letters are marked. The

three arcs are marked differently depending on which letter positions within die

sequence they connect (first two, middle two or last two letters). An arc which

has been in each of the three connecting positions of a four letter sequence is

flagged as used. After the tiaversal is complete, the graph is stiipped of all

unused links, die arc-markings are cleared, and the process repeated until no more

links are removed. In this way a much reduced letter graph is produced, which

can be more readily checked against a dictionary using a stiaightforward

approach.

6: CANDIDATE WORD VERIFICATION 109

6.3.1. Speed of Reduction

The speed of graph reduction for the technique described above is dependent

on the number of possible paths through the graph, which is in turn dependent on

the length of the word and on the confusion level of the letter graph. This is

defined to be the number of letter options at each letter position.

To test the speed of reduction of this technique in a controlled way, simu

lated letter graphs were generated for the word "test". The confusion level at each

letter position could be varied and was uniform across the graph. (This is not the

case in a real letter graph.) The plot in figure 6.2 shows how the time taken for

the reduction greatly increases as the confusion level increases, as expected.

4000-

3000-

Time
(ms) 2000-

1000

- 0 - .
1
5

Confusion Level

10

Figure 6.2 - 4-gram reduction time vs confusion

6.3.2. Output

4-gram graph reduction produces a much reduced letter graph, but on ttaver-

sal invalid words will still be produced. In a sequence of letters each individual

gram may be permissible but this will not guarantee that the whole word is valid.

Also, an arc in the letter graph can only be deleted if no valid gram uses it. A

remaining arc wUl then still allow invalid grams to pass through it. (Figure 6.3

shows a subgraph of a letter graph, where die gram ebcf may be invalid but abed

valid. The arc marked '*' must therefore remain in the graph, so the invalid gram

will still be present when die graph is tiaced.) It is therefore still necessary to

check each word against a dictionary to guarantee validity. This wiU incur die

overhead of additional processing time.

6: CANDIDATE WORD VERIFICATION 110

Figure 6.3 - Arc deletion

The «-gram approach is a fast graph reduction technique with small memory

requirements but the overheads required to verify the final list of candidate words

can be large. A new approach was investigated to see if it would be more suc

cessful^^.

6.4. Tree-Based Dictionary Lookup

A dictionary or word-list is resttuctured in the form of a ttee, based on the

trie structure suggested by Knuth^^. This is shown pictorially in figure 6.4, where

the ttee represents the word list {a, an, and, at, be, bet, but, by}. Each of these

words can be found by ttacing a path from left to right. The '(§)' symbol

represents the start of a word and the '#' symbol represents the end of a word.

The ORCHiD system efficientiy ttaces a letter graph, such as that shown in

figure 6.1, using a recursive procedure. Such a procedure might take the head-

node of the graph on which it is to act as its parameter and call itself recursively,

passing each subgraph that the head-node points to as a parameter, in turn. This

will carry out a depth-first ttace of the graph. Using a ttee sttiicture, the diction

ary can be tiaced simultaneously. As each arc of the letter graph is tiaced, if the

cortesponding arc exists in the dictionary ttee, then the word is valid up to that

point. When the end-of-word marker is reached in the graph and ttee, the word

tiaced out exists in the dictionary. An invalid word in the letter graph will be

rejected as soon as an arc cannot be found in the dictionary ttee. It is not neces

sary to continue tiacing the graph past this point. This is advantageous since it

limits the time taken to search the dictionary, and allows the dictionary to be very

large without seriously reducing the performance.

By using these similar data stiiictures, the letter graph and dictionary ttee

complement each other perfectly. The graph can be tiaced extiemely quickly and

efficientiy, without foUowing any irtelevant paths.

6: CANDIDATE WORD VERIFICATION 111

Figure 6.4 - Dictionary tree - pictorial representation

All valid words that exist in the letter graph can be produced in this way and

become candidate words (with a weighting as described in section 5.7.3). No

information is thrown away at this stage which may prove useful later on if, for

example, more than one recognition routine is used in parallel and the outputs

combined.

6.5. Computer Representation of the Dictionary Tree

A dictionary structured in this way can be accessed very quickly. It has the

disadvantage of requiring a large amount of memory, since the data stmcture

remains resident while the program is running. This is probably the reason for its

rejection as a suitable method in the past, but as computer memory is becoming

6: CANDIDATE WORD VERIFICATION 112

larger and more readily available this is no longer a major problem. A number of

different ways to constmct this data stmcture within a computer program are con

sidered below.

6.5.1. Discussion of Possible Data Structures

Knutĥ "* suggests a static data sttiicture for the dictionary ttee. This consists

of a flag to indicate whether a word can end here and an artay of 26 element

integer artays together with 26 boolean flags. Each column position points to the

column containing the next letter in a valid word, and a cortesponding flag to

indicate if a word can end at that point. This artay is very sparse and would take

up a large amount of memory. Nowadays, dynamic memory allocation allows

more efficient data stmctures to be used.

A simple dynamic data sttucture might consist of a ttee of linked nodes,

where each node contains 26 pointers to possible successor nodes (see figure 6.5).

In this particular layout, the letter is implied by the position of the pointer in the

artay. Such a stmcture will be exttemely sparse and have huge memory require

ments.

Figure 6.5 - Dictionary tree - simple implementation

A more compact dynamic sttucture is shown in figure 6.6. In this diagram

each large square represents a node of the tiee consisting of a key letter, at a cer

tain level, and two pointers. The upper pointer points to a list of those letters, at

6: CANDIDATE WORD VERIFICATION 113

the next level, diat are permitted to follow this letter. The lower pointer points to
the remaining list of letters at the curtent level which can occupy die same letter
position.

@

f

b -

1

t -

u —

y -

f ^

f ^

f ^

f ^

f ^

Figure 6.6 - Dictionary tree - compact implementation

Figure 6.7 shows the implementation for a letter graph which complements

the dictionary ttee implementation above. These two data stmctures can be

tiaced simultaneously and implemented efficiently with very similar code. In the

diagram a node consists of a letter and a pointer to a list of arcs which, in turn,

point to possible successor nodes.

6.5.2. Possible Enhancements

The final choice of intemal representation involves consideration of die

tiade off needed between access speed and memory requirements. There are

several different stiuctures which can be used depending on the most important

criterion.

6: CANDIDATE WORD VERIFICATION 114

Nodes: |@| , I fd

Arcs:

Figure 6.7 - Letter graph implementation

6.5.2.1. Speed

The list of letters, at the next level, which can follow a particular letter in the

dictionary ttee is defined as its sub-list. The search method for a stmcture similar

to figure 6.6 can be speeded up by reducing the time taken to search for a letter or

search-key in a sub-list. The sub-Ust of letters can be ordered in several ways. If

the letters are in a random order, it is necessary to search to the end of the list if

the search-key cannot be found. However, if the ordering is known it is only

necessary to search as far as the expected position of the letter.

Several different orderings are possible. Alphabetical ordering has the

advantage of allowing the ASCII code to imply position in a list. Sorting on fre

quency of occurtence in English, or frequency of generation from the recognition

system may produce a faster search, but may require extta memory to store a

representation of the order. Actual speed will be dependent on the letter graph

itself; a graph which contains many valid words wiU take a different amount of

time to tiace than a similarly sized graph with many invalid words. For example,

a Ust optimised for finding a commonly occurring letter will not be optimised to

show that an infrequent letter is not present - in fact, it will be the worst possible

ordering.

6: CANDIDATE WORD VERIFICATION 115

6.5.2.2. Size

The size of the data stmcture can be reduced by using tail-end compression.

If the end of a word is unique and is not common with any other word, then the

dictionary stmcture can be reduced by constmcting a special end-of-word node

which contains the rest of the word as a string. This removes the need for extra

nodes and pointers (see figure 6.8). The disadvantage of this sttucture is that the

dictionary cannot easily be maintained. For example, to add an extta word may

involve unpacking the tail of an existing word, adding the new word, then repack

ing the two new tails. Also, since the code needed to search a tail will be dif

ferent to that needed to search the tiee, switching lookup code would degrade the

speed of lookup.

Figure 6.8 - Dictionary ttee - tail end compression

6.5.2.3. Recognition

This technique was originally developed for use as a post-processor for a

cursive script recognition system. Often handwritten script samples have very

poor quality sections where either the word has been written badly, or has been

poorly digitised. A recognition system may not be able to identify, in any way,

what has been written in these sections and may insert a wild card, representing

every possible character, into the letter graph in that place. Altematively, it may

be clear that a segment has, for example, a descender, but no other information is

6: CANDIDATE WORD VERIFICATION 116

obvious, so a descender subset wild card, representing every letter with a des

cender, could be inserted. If the poor section occurs at the end of the word, the

performance of the ttee stmcture described above will not be adversely affected,

since most of the paths through the letter graph will be rejected before the highly

ambiguous section is reached. However, if it is at the beginning of the word, then

there wiU be a large amount of ambiguity at the beginning of the graph, resulting

in a large amount of wasted computation.

If the dictionary ttee was also stmctured in reverse, starting at the end of

words and working towards the beginning, it would be possible, in these cases, to

verify the letter graph backwards, and so speed up the process. Similarly, if both

ends of the original data sample are poor, it may be possible to work from the

middle outwards. An ideal data stmcture might have multiple linkages, starting at

each letter position, so that the dictionary search would always begin at the least

ambiguous part of the graph. It is intended that the properties of such a stmcture

might be investigated in future implementations but the data stmctures will be

very large.

It should be noted that a dictionary lookup system based on a letter graph

will fail if the correct letter is not in the letter graph - hence the need for wild

cards when no letters are obvious candidates. It is not always clear where the

wild card should be inserted, however (see section 6.11). A fixed letter-

segmentation recognition system does not suffer from this problem since it is pos

sible to change one letter to another.

6.6. Implementation Selected

While the suitability of the data sttoicture was assessed, the implementation

selected for ORCHiD used a simple approach, for ease of coding. The data sttuc

ture is an exact representation of figure 6.6. Lists are ordered alphabetically, and

the tiee is linked only from start to finish. After verification that the method was

suitable, it was intended that it would be refined but it was discovered diat die

performance of this prototype was more than adequate for die system. The size of

the data sttucture was within the limits of available memory, even with a large

dictionary, and the execution time was fast, even for very large letter graphs,

(Some of die more complex generated test graphs could be checked in much less

than one second, but the number of patiis could not be counted even with several

hours of computing time.)

6: CANDIDATE WORD VERIFICATION 117

To test the performance of this implementation, a 210 000 word dictionary

was used. This is probably much larger than would be needed in a practical sys

tem, A substitution set was used to generate simulated letter graphs of possible

output from typed input words. A test set of 2100 letter graphs was verified using

the system running on a Sun 3/160 with 8 Mbytes of main memory, timeshared

with other users. The average real time needed per word was 0,45 seconds, and

the actual CPU time used by the system averaged 0.19 seconds per word. In a

practical system the lookup process would be quicker, since the times quoted

above include routines to set up the data stmcture for the dictionary, to time the

program and to calculate and print various analytical results.

6.7. Size of Data Structure

The size of the dictionary data stmcture can be measured by counting the

number of nodes in the ttee. Experiments have been carried out using different

sized word lists to investigate the effect of dictionary length against data stmcture

size. As can be seen from the graph in figure 6.9, this is roughly a linear function

of dictionary size.

Number
of

Nodes
(000s)

800-

600-

400-

200-

50 100 150 200

Number of Words
(000s)

Figure 6.9 - Size of data structure vs dictionary size

It seems that a dictionary of 60 000 words will probably be sufficient for a

usable script recognition system. This would allow for a vocabulary of about

20 000 root words with plurals and verb endings. (The Lancaster-Oslo/Bergen

corpus of British English"*^ consists of samples of everyday text, with a total of 5

6: CANDIDATE WORD VERIFICATION 118

million words. 50 000 individual words were identified in these texts,) Assuming

that a node consists of a character and two pointers, it can be seen from the graph

that such a dictionary would require approximately 2.4 Mbytes of memory in our

implementation. This is not an unreasonable amount of memory to expect in

modem computer workstations.

The size of the data stmcture for a particular dictionary is dependent on the

compactness of the dictionary, ie whether the words have common roots. Adding

a word which has the same root as a word already in the dictionary increases the

size by less than adding a unique word since fewer extta nodes are needed. This

means that the dictionary can contain all participles of verbs, plurals etc without

drasticaUy increasing its size, avoiding the need to constiiict these words by a

mle-driven system.

To investigate the effect of compactness on dictionary size, two sub-

dictionaries of 21 000 words were selected from a word list of 210 000 words;

one by selecting the first word from each group of 10, the other by selecting the

first 10 words from each group of 100. As expected, the first of these was less

compact and used 181 138 nodes, the other more compact dictionary used only

98 981 nodes.

6.8. Comparison with Binary 4-Gram Graph Reduction

The graph in figure 6.10 shows the time taken for the graph reduction and

the dictionary lookup, plotted against confusion level of the input graph, again for

the word "test". It can be seen that with very small graphs the two techniques are

comparable, but, as the ambiguity increases, the dictionary lookup is considerably

faster. It should also be remembered that the 4-gram output still needs to be

verified against a dictionary.

The ORCHiD template matching routine, described in Chapter 5, retains a

large amount of ambiguity widiin the letter graph it produces. This often pro

duces a confusion level of 10 or more. It can be seen that with this level of confu

sion the dictionary tiee method is far superior to the 4-gram method.

6.9. Implementation Details

A few practical details of the implementation are discussed below, together

with the differences between the theoretical and the actual implementation. The

template matching stage produces a graph of candidate allographs, but does not

6: CANDIDATE WORD VERIFICATION 119

Time
(ms)

4000^

3000-

2000-

1000-

- 0 - K

• 4-Gram

X Tree

X «

•
X

r
5

Confusion Level

"T~
10

Figure 6.10 - Comparison - lookup time vs confusion level

produce wild-card entries if the quality of match is poor.

6.9.1. Letter and Letter-Join Graph

The graph produced by the recognition stage contains letter-joins as well as

letters on the nodes of the graph. This greatly increases the size of the graph. It is

possible to consttoict the dictionary ttee including letter-joins and simply use the

lookup algorithm as it stands. This, however, would greatly increase the memory

requirements and the system would become unwieldy. It would also be difficult

to incorporate the contextual information indicating which allographs are permit

ted to connect to which other allographs.

A template-join table is used to identify which templates are allowed to con

nect to which other templates. For example, some letters may join directly to

other letters without any linking stioke and some letters must join to other letters

with specific letter-joins. As the graph is ttaced, the table can be consulted to see

if two templates can be joined, and if so the dictionary ttee can be checked.

To further improve the efficiency of the dictionary lookup stage, however,

the template-join table is checked as the letter graph is being constmcted, rather

than as it is being ttaced. In this way, the table need only be accessed once for

each arc of the graph, rather than every time the arc is ttaversed. If a letter tem

plate can link to another template already on the graph, then it is placed on die

graph. If a letter-join template can link to a letter template on the graph, and can

6: CANDIDATE WORD VERIFICATION 120

be followed by another letter, then the probability weight for the letter-join is
placed on the arc joining the letters. In this way a tme letter graph is consttiicted,
with additional probabilities for the connecting sttokes located on the arcs of die
graph.

6.9.2. MuIti-Pass Dictionary Search

The dictionary search routine is applied to the letter graph and the output

automatically examined. If all candidate words produced have a probability

below a threshold then the dictionary search routine is appUed again with wild

card letter-join templates inserted between each letter. These wild-cards are used

since letter-joins often contain few distinguishing features and are sometimes not

identified at the recognition stage.

The use of two passes improves the speed of the system, since most words

are identified in the first pass, yet allows for greater accuracy if no word is an out

standing match.

6.9.3. Diacritical Marks \̂

The information about diacritical marks, such as dots and crosses, stored

during the preprocessing is used to reduce the output list and increase the accu

racy of the system. Firstly, any letter that requires a dot or cross is checked to see

if such a mark is nearby in the sample word. If not, then that letter is removed

from the letter graph before the dictionary search takes place. Secondly, the can

didate word list produced by the dictionary lookup is checked to ensure that every

word contains the same number of diacritical marks as were detected in the script.

This information can only be used with care since most people are not par

ticularly accurate in the location and formation of these marks, if they remember

them at all. A number of common problems can be identified.

• Frequentiy a dot will become extended into a line, or a Une will be very

short and recognised as a dot. It is therefore not possible to insist that a 't'

has a line through it and an 'i' has a dot above it.

• The diacritical mark will often not be directly above its cortesponding letter.

It is important to allow some tolerance in the position of these marks.

• A double 't' within a word is usually crossed with one stioke. Allowance

must be made for this.

6: CANDIDATE WORD VERIFICATION 121

Different writers place marks on different letters. Some cross an T, for

instance, while others do not make a separate line through a 't'. For this reason,

parameters can be passed to the ORCHiD system to indicate the level of impor

tance to be placed on these marks depending on the writer.

6.9.4. Word Frequency

A dictionary of 60 000 words is used for this system. This provides a rea

sonable vocabulary but includes a number of less common words which may

appear in the output list. In order to improve the accuracy of any recognition sys

tem it seems reasonable to increase the weight associated with those items that

are more likely to be presented to the system. We know the frequency of word

occurtence in EngUsh from a number of studies'* '̂̂ ^. We can therefore attempt

to incorporate the a priori probabilities of a word occurring into our statistical

probability produced by the recognition system.

6.9.5. Reduction of Candidate Word List

The candidate word list contains a number of words ranked by their proba

bility. A practical CSR system, which could be incorporated within other applica

tions, will need to present the user with either a single word, or a very smaU

number of options (if it is not possible to decide between them). It is therefore

necessary to greatly reduce the output list to just a few words.

Words that are similar or ambiguous in appearance are recognised with simi

lar probability weightings, and so appear close together in the ranked list. The top

words in the Ust are examined. If the probability associated with the top word is

considerably higher than its nearest contender, that word is presented as the

cortect word. If, however, the probability of the next word is relatively close to

the top word, then a group of words is presented. The group consists of all those

words at the top of the list whose probabilities are close to their neighbours.

6.10. Higher Level Context

It is possible to apply even higher level context to further improve recogni

tion rates. The candidate words can be compiled into a word graph which

represents an entire sentence or phrase. Sentence and phrase semantics and syn

tax can be appUed to reduce this word graph to a smaller list of candidate sen

tences, which can be ranked in the same way as the letter graph produces a ranked

6: CANDIDATE WORD VERIFICATION 122

list of candidate words. This technique can also be used to remove word segmen
tation ambiguity that can arise in some handwriting styles which have very
separated characters.

This context is not within the scope of this thesis but will be further dis
cussed in Chapter 9.

6.11. Conclusion

Whereas a large amount of work has been done in the field of contextual

post-processing of text recognition systems, not many of die techniques suggested

successfuUy address the problems caused by ambiguous letter-segmentation,

common to cursive script recognition. The ttee-based dictionary lookup tech

nique described here is an ideal application of letter and word context for verify

ing the output from text recognition systems and allows for ambiguous letter-

segmentation of the script. It is exttemely fast and efficient, can be used with a

large dictionary or word list and produces all possible output words, with no loss

of information that can occur when arbittary cut-offs are applied. The dictionary

contains every word which can be recognised by the system, without the need for

prefix and suffix generation. It is simple to add extta words to the dictionary

without greatly increasing its size. The technique is especially appropriate for

very ambiguous letter graphs, typically produced by cursive script recognition

systems.

The performance is superior to n-gram graph reduction techniques, and is in

fact a superset of the n-gram approach, since all possible values of n are effec

tively applied during the recursive tiaversal.

An efficient implementation of the dictionary ttee has been produced.

Curtentiy the output is presented to the user, along with the image of the prepro

cessed word, for verification. This verification can then be used to further train

the system (see Chapter 7).

In theory, wdd card substitution can be used in areas where the script is very

poorly written or badly digitised. These can be of great value and help to

improve the recognition rates, especially where there is a small area of uncer

tainty within a script word. In this implementation, wild card letter-joins are

inserted into the letter graph if no reasonable candidate words can be found from

the original graph. Wild card letters are not used, however. With a sub-letter

segmentation method, as described in Chapter 4, it would be necessary to insert a

6: CANDIDATE WORD VERIFICATION 123

wild card segment and then relate that segment to candidate aUographs that con

tain it. This is a non-trivial task.

Chapter 7

Training

This chapter discusses the methods used to ttain the ORCHiD system, eidier

to a single user or to multiple users. The system can be automatically ttained

with minimal human intervention. There are a number of problems associated

with automatic training however and these are discussed below.

7.1. The Need for Training

As has been discussed in section 1.3, a completely unttained cursive script

recognition (CSR) system is desirable but very difficult to develop. To produce a

practical system with maximum recognition rates and minimal adjustment of

writing style on behalf of the user, a recognition system that can be ttained in

some way is necessary. A ttained system has the added advantage that it can also

more easily allow for more unusual writing styles.

The problem with a ttained recognition program is that there is a consider

able period of time while the ttaining process is being completed during which

the system cannot be used. This problem is especially acute if CSR is the only

data input method within a larger computer system. With no other method of

data entry the whole system is inoperable until tiaining is complete. Other factors

must be considered with a tiained system. If the ttaining period is lengthy the

user may get frustiated and reject CSR in favour of another data entry method. If,

however, the tiaining session is not sufficientiy comprehensive, the recognition

accuracy may not be acceptable to the user, who might again reject the system in

favour of a more reliable method. ORCHiD attempts to solve this problem by sup

plying a system that can be used almost immediately, yet which can also be

ttained whilst it is in use, if desired to give improved recognition rates.

7; TRAINING 125

7.2. Automatic and Manual Training

With the majority of ttainable separated character recognition systems a

Q-aining session is performed before the system is used. This ttaining session

requires die user to supply a number of samples of each character that the system

is to recognise. There may, however, be a method for on-going adaptation by

adding characters to the ttaining set while the system is in use. This is a manual

ttaining approach since the user defines the sttucture of a character.

A CSR system cannot easily be ttained in this way. Either the user would

have to supply samples of every word which might be written, or indicate to the

system where each letter starts and finishes within a cursive word. The first

approach is clearly impractical for systems which must recognise words from a

large vocabulary. The second approach relies heavily on the user specifying the

letters cortectiy. Since the definition of letters, in terms of the recognition sys

tem, is heavily dependent on the underlying recognition model, such as segmenta

tion and feature exttaction, this requires the user to have detailed knowledge of

how the system works. This is clearly impractical for anything other than a

development system.

It may be possible to request the user to provide samples of each letter

separately and build a CSR system ttained on these samples. The problem with

this approach is that most people write characters differently in cursive writing to

separated hand-printing and even form letters differently in different parts of a

word. Observations have shown that this inconsistency occurs even if the user is

consciously attempting to write uniformly.

An automatic ttaining system, which decides on where each individual tem

plate lies within a word and tiains it accordingly, greatiy simplifies the tiaining as

far as the user is concemed. If desired, it also allows for continuous ttaining all

of the time that the system is being used.

7.3. Theory of Automatic Training

In statistical terms, the ttaining of a template is equivalent to estimating die

parameters (mean and standard deviation) of the disttibution that the template

represents. Bayesian theory shows that with increasing numbers of samples these

parameters can be estimated more accurately. In order to do this, however, die

samples must be cortectiy identified, ie the system must be manually tiained. The

theory associated with this supervised learning is dien sti^ightforward^^.

7; TRAINING 126

As discussed above, an automatically ttained system is preferable. This is

referted to as unsupervised learning, since the precise classification of the sam

ples presented is not known prior to ttaining. The theory underlying this

approach is complex, especially if no a priori assumptions are made about possi

ble classification of the samples. A decision-directed approximation is commonly

used where an automatic classifier attempts to label the samples^^. These labels

are then used to tiain the classifier itself. Further samples are labelled by the

classifier and the ttaining is repeated until sufficient recognition accuracy is

obtained.

There are two main advantages to this approach. Firstiy the classifier can be

quickly designed using a small number of labelled samples and then allowed to

"fine-tune" itself on a much larger set of unlabelled samples. Secondly, if the sys

tem is to recognise patterns that may evolve slowly over a period of time, it can

be constantly updated and honed.

The main drawback of such a system is that a classification ertor will cause

the classifier to be incorrectly ttained. There are two possible outcomes from this

mistake - either sufficient samples will be correctly identified to "cancel out" the

incortect sample (on average), or the ertor will be more likely to occur and

further contaminate the classifier. The only way to reduce the likelihood of this

ertor occurring is to ensure the initial classifier is reasonably accurate.

Despite the possible problems with the decision-directed approximation,

most experimental evidence shows that this procedure works well in practice.

The ORCHiD ttaining stage is an implementation of such a technique. The initial

classifier uses of a set of prototype or general templates to label samples, and

these templates are modified during the subsequent ttaining period. The system

described by Teulings et aP^, however, does not require a general template data

base since it generates the prototype templates automatically by judicious selec

tion of tiaining words (see section 2.9).

7.4. Training the Personal Template Database

As described in section 5.5, the ORCHiD template database consists of statist

ical information about the population of samples presented to the system. This

statistical information consists of the sum of feature values, the sum of squares of

feature values and the number of samples so far included. From this information

it is possible to calculate the mean and standard deviation of die feature values to

7: TRAINING 127

be used during template matching. To adjust a template during tt-aining simply

requires die addition of a sample or samples of the template to the template data

base, and die relevant statistical calculations. The complex part of the training

stage is tiierefore the automatic identification of templates and theti location

within the script - the allograph segmentation.

The ttaining routine used utilises the same basic procedures as the recogni

tion system so that ttaining can be carried out during use. The writing is col

lected, preprocessed, segmented and the features exttacted in exactiy the same

way as during recognition.

Two template databases can be accessed during the ttaining routine - the

user's personal database and the general database. By superimposing the per

sonal database on top of the general database, a complete set of possible tem

plates can be constmcted. The sample features are matched against this com

bined database using the same algorithms as the recognition stage, but with less

severe thresholds so that more candidate allographs are produced. These allo

graphs are constructed into a letter graph, as in section 5.7.3.

The cortect classification of the script word (the identified word) is known to

the training routine - either it has been supplied by the user during the recognition

verification stage, or the system prompted the user to write that particular word

during an initialisation process. The ttaining routine can now apply this informa

tion to identify and locate the correct templates within the sample word. The dic

tionary lookup routine described in Chapter 6 is applied to the letter graph but

with just one word in the dictionary ttee - the identified word. The highest

weighted path through the graph is assumed to be cortect allograph segmentation

and the templates are thus ttained.

7.5. The Training Session

There are two stages to ttaining the system. The first stage involves the sys

tem selecting the particular styles of character formation that the writer uses from

a generalised set of characters. This subset is then further ttained to the indivi

dual during the second stage of ttaining by adjusting the template feature values.

7; TRAINING 128

7.5.1. User Initialisation

During the user initialisation stage a personal database is consttiicted that

contains a template or templates for every letter of the alphabet.

The system prompts the user to write a small number of words that contain

every character in the alphabet. These sample words are preprocessed, seg

mented and features exttacted. Candidate allographs are produced using the gen

eral template database and a letter graph is consttiicted. Wild-card letter-joins are

inserted at each segment of the sample word to ensure that templates are not

missed. The allograph segmentation is identified in the way described above

using the training word that the user was requested to write in the dictionary tt-ee.

The cortectiy identified templates are now copied across to the personal tem

plate database and ttained with the new sample data. The statistical information

stored in the general database is scaled during copying so that it appears as if only

a few samples have been used to ttain the template. In this way the new sample

data, specific to the user, will quickly influence the average feature values of the

template.

Any words for which the system has failed to identify the allograph segmen

tation cortectiy are requested again from the user, until the system has recognised

each word at least once.

7.5.2. Continual Training

Once initialisation is complete and the user's personal database contains at

least one template for each letter, further ttaining of the templates can take place.

As well as improving the letter templates, the letter-join templates are identified

and trained during the continual ttaining process.

The user writes any number of words from the dictionary. The recognition

system is applied to these sample words. The user is shown the results and asked

to verify the correcdy recognised words, or type in any corrections for erroneous

recognition. The system then reapplies the recognition routines using the per

sonal and the general database combined to produce the letter graph. The cortect

allograph segmentation is identified using the information provided during

verification and the personal database tiained accordingly.

At present this recognition system is a stand-alone demonsttator, but this

mediod of verification and continual ttaining could be incorporated into any sys

tem without the user being unduly aware of it. For example, as soon as the user

7; TRAINING 129

has accepted and saved a page of recognised text this can be assumed to be
verification and tiaining can take place.

7.6. Success of Training

The automatic training routines work effectively, and greatly simplify the
tiaining process. There are, however, two main problems with this automatic
training approach.

The problem associated with decision-dtiected leaming, described in section

7.3, occurs within this system. Allograph segmentation is not always correct and

consequently templates are incorrectly trained. Observation of the templates over

a period of training shows that the errors are usually cancelled out by cortect

ttaining, but occasionally a spurious template is produced. There are no simple

cures to this problem other than to delete the adulterated template from the data

base when it has been identified. This identification is difficult during normal

usage, especially for the naive user. Section 9.3.1 also discusses this problem.

If a template is not in the general or the personal database, perhaps because

it is an unusual allograph, then it must be identified and ttained manuaUy. This is

a difficult process for the unttained user, as has been mentioned above. A solu

tion might be to investigate the fully automatic approach of Teulings (described

in section 2.9) that requires no initial knowledge about character formation. The

drawback with using this technique for ttaining is that a much longer training

period is needed before the system can be used. Perhaps a hybrid method, com

bining these two techniques, would provide the best remedy, where the general

database approach is used to ttain most letters, and Teulings' approach for

unrecognised letter formations.

7.7. Conclusion

The simple format used to store templates for letters and letter-joins pro

vides for an easily ttained recognition system. An unusual allograph can be

catered for by incorporating several samples into a new template. Other symbols

could be trained other than lower case characters, for example capital letters,

digits etc.

The automatic allograph segmentation enables the system to o^in itself

without any intervention by the user. This is not without its own problems, not

ably the problem of incortect classification described above, however these do not

7; TRAINING 130

seem to seriously affect the final results of the ttaining. Some possible enhance

ments to the tiaining routine are discussed in section 9.3,2.

Chapter 8

Results

This chapter contains details of performance tests carried out on the ORCHiD
system. Details are provided of recognition rates and speed of execution of die
system, together with an analysis of these results and a discussion of some of die
causes of ertors.

8.1. Discussion of Performance Testing

There are a number of problems associated with adequately testing the

recognition performance of a CSR system. The most important problem to over

come is the collection of a sufficientiy large amount of high quality data to pro

vide significant results. Any volunteer providing sample data must be prepared to

spend a considerable length of time writing with the equipment. This is espe

cially the case with an interactive ttainable system since the data collected must

be processed before collection of the next set of data. This lengthens the collec

tion process.

To test a trained system in a reliable way, it is necessary to collect two sets

of sample data, one for training and one for testing. Some research papers quote

results where the test set was also used to ttain the system. This is unreliable,

since a practical CSR system will always be required to recognise unseen script.

8.2. Experimental Details

Three sets of tests have been carried out. These check the performance of

the system with no tiaining, after minimal ttaining to a particular writer using a

small sample of writing, and after a more extended ttaining period.

8.2.1. Hardware

Samples of handwriting were collected using a Pencept Penpad opaque

digitising tablet, connected to a Sun 3/140 via a serial line. This was selected as

the input device since it has the least inttiisive and most accurate pen action, and

8: RESULTS 132

provided a familiar feel to the writer.

Special forms were used to collect the data (figure 8.1 is a reduced image of

a completed form). These were mled with baseline, full-height-line and halfline

to assist the NPL preprocessing software by ensuring some uniformity. Each word

was read to the subject one at a time, at a reasonable pace, to ensure a natural

handwriting style. The subjects were asked to write relatively neatly and an

example line of script was shown at the top of the collection form for guidance.

Figure 8.1 - A handwriting sample

The data was collected, inspected, preprocessed and the preprocessed data

verified and cortccted on a Sun 3/140 workstation. The recognition processing

was carried out on a Sun 4/330 fileserver.

8: RESULTS 133

8.2.2. Samples Collected

Four samples of handwriting were collected from eleven writers. The sam

ples consisted of two sets of words which were written twice.

Samples Al and A2 consisted of the words :-

the' f*uc^ Ucivrv fo» ju^rviped iyift^ A- ^ M ^ 4 ^ wicU fV\M

Samples Bl and B2 consisted of the words

ty\4>^j»e<^itie' u^ ^HTrty^M^^ iv^ ^ttte^ ^MI UU^ el kow

tke4^ M/oiA t/u^ a^»pite^ U nt/w^j ^ cMU expeAt^ fii^ iueii

A^ e/vtA^ M^ con^Mii^ i^.dcM' doo'doff'dc«'

Sample set A was chosen to include every letter of the alphabet at least once.
Sample set B provided a list of more common words within the context of a sensi
ble sentence sttucture. The repeated word 'dog' was used to check the con
sistency of the segmentation and the normality of the exttacted features (see sec
tions 4.5.1 and 4.7).

8.2.3. Template Databases

The general template database has been constmcted by presenting large

numbers of handwriting samples to the system from a variety of writers. This

database is probably not exhaustive, but includes many of the more common writ

ing styles. Personal databases have been constmcted and tiained from this gen

eral database.

8.2.4. Verification of Preprocessing

This was carried out by hand before recognition. Ertors in preprocessing,

such as incortect word segmentation or incortect baseline identification, were

cortected using the verification software. Any poorly digitised images were dis

carded.

The consistency of occurtence of diacritical marks varies greatiy between

users. The writers were not forced to make these marks, since this would affect

their natural flow of writing. For this reason the information provided by the

diacritical marks was not used in the first two sets of tests.

8: RESULTS I34

8.2.5. Definition of Successful Recognition

The only true definition of successful recognition must surely be that the

cortect word is identified and is the most sttongly weighted of all of the candidate

words. As has been explained in previous chapters, the ambiguity of cursive

handwriting implies diat 100% recognition is unUkely for single words taken in

isolation, even for human readers. For this reason, we define successful recogni

tion to be that the cortect word appears towards the top of the ranked candidate

word list. This is a common practice for workers in this field.

Results are quoted for successful recognition if the cortect word is within the
top ten words of the candidate word Hst, together with some results for recogni
tion in the first position.

8.2.6. Dictionary

A dictionary containing 60 000 words was used to verify the output. This

contained most of the words likely to be written, including plurals and verb con

jugations as well as word roots (see section 6.7).

8.3. Test Routines and Results

As stated in section 8.1, it is very costiy and time-consuming to gather large

quantities of data to exhaustively test an interactively tiained system. It is there

fore necessary to devise tests that will show the tiends of such a system and then

prove its potential performance with a smaller data set. The tests below show the

performance of the unttained system on a large quantity of data (test I), the ttend

in performance for the system after minimal ttaining (test II, HI and IV), and the

performance after further ttaining (test V). Since the ttained system requires

some of the sample data for the ttaining process, the later tests are, of necessity,

based on smaller test samples.

For each test, details are given below of the test sample, the ttaining sample

and the template database used. The expected results are briefly discussed, fol

lowed by the observed recognition rates. More specific details for sample B2 are

also given, which are discussed later. An analysis of all of these resuUs is given

in section 8.4.

8: RESULTS 135

8.3.1. Test I - Untrained Recognition

The recognition system was applied to all of the samples using the general

template database. This shows the average recognition rates for the system with

no Q-aining. There will be a wide variety of rates between different samples

depending on the number of non-standard letter formations used. Clearly if a

subject uses an unusual aUograph diat is not in the general template database dien

the system cannot recognise a word containing that allograph.

Sample

Al
A2
Bl
B2

Overall

Rate(%) for writer
1

94
82
89
85
88

2
76
82
85
89
84

3
53
53
63
67
59

4
59
53
81
78
70

5
65
76
67
72
70

6
73
59
78
77
73

7
71
82
85
85
82

8
76
77
96
81
85

9
44
50
72
63
60

10
71
71
85
81
78

11
82
56
85
81
78

Average
rate(%)

69
69
80
78
75

Table 8.1 - Test 1 results

For sample B2, the average position of the word in the output list was 1.509, and

the cortect word was top of the list 61% of the time.

8.3.2. Test n - First Training Session

A personal template database was created for each subject. This was created

automatically by the system (Chapter 7) using sample Al to identify and train

each template. The database was then amended as necessary by hand where the

automatic ttaining system had not succeeded in identifying a template (section

7.6), This minimaUy ttained system was applied to samples A2, Bl and B2.

Test II provides recognition rates when a personal database is used that has

been tt-ained once on a limited set of letters and letter-joins taken from sample set

A. The recognition rate will be reduced compared with test I, since a number of

the writer's templates will not have occurted in the initial tiaining set and so will

not have been tt-ansferted to the personal database. This will be especially

apparent for samples from set B where the particular letter-join templates will not

be included in the database.

8: RESULTS 136

Sample

A2
Bl
B2

Overall

Rate(%) for writer
1

89
48
52
59

2
76
56
44
56

3
53
44
44
46

4
59
48
67
58

5
59
26
20
32

6
53
63
54
57

7
76
56
48
58

8
62
59
70
64

9
38
36
44
40

10
65
59
59
61

11
63
63
65
64

Average
rate(%)

63
50
51
53

Table 8.2 - Test n results

For sample B2, the average position of the word in the output list was 1.790.

8.3.3. Test III - Second Training Session

Sample A2 was used to further tiain the personal template database for the
subject. The training set was created automatically but not adjusted by hand. The
system was then applied to samples Bl and B2.

Test ni provides recognition rates when a personal database is used that has

been further ttained using a Umited set of letters and letter-joins taken from sam

ple set A. There may be a slight improvement on the results of test II, due to

improved ttaining of the letter templates, but the letter-join templates used in set

B, but not set A, will stiU not be incorporated into the personal database.

Sample

Bl
B2

Overall

Rate(%) for writer
1

52
59
56

2
59
52
56

3
59
59
59

4
59
67
63

5
52
36
44

6
70
62
66

7
67
52
59

8
67
70
69

9
44
48
46

10
59
59
59

11
78
73
75

Average
rate(%)

61
58
59

Table 8.3 - Test III results

For sample B2, the average position of the word in the output list was 1.688.

8.3.4. Test IV - Third Training Session

Sample B1 was used to further tiain the personal template database for die

subject. The tiaining set was created automatically but not adjusted by hand. The

system was then applied to sample B2.

8: RESULTS 137

Test IV provides recognition rates after a ttaining session with a set of words

that contain the same letters and letter-joins (sample Bl), The rates should now be

considerably improved on test III since most of the letter-joins used in set B

should now be incorporated into the personal template database. This improve

ment in recognition should continue with further ttaining.

Sample

B2

Rate(%) for writer
1

85
2
85

3
63

4
78

5
76

6
73

7
70

8
96

9
63

10
78

11
85

Average
rate(%)

78

Table 8.4 - Test IV results

For sample B2, the average position of the word in the output Ust was 1.462, and

the cortect word was top of the list 64% of the time.

8.3.5. Test V - Extended Training

A number of subjects interactively ttained the system for a short period of

time. Sample set B2 was used to test the accuracy of the system after this training

session. Diacritical mark information was used by the recognition system if this

was consistent for that writer.

Test V provides recognition rates after a further ttaining session. The recog

nition rates should now be much improved on unttained recognition. The per

sonal database for writer 1 was ttained using a much larger collection of data and

gives an indication of the performance that might be expected of the system when

in constant use. Training should not only improve the likelihood of the cortect

word appearing in die output list but should also improve its position within the

list, with the ideal being that the cortect word should appear at the top.

Table 8.5 shows recognition rates for four subjects, both with and without

ttaining. The occurrences when the correct word was top of the output Ust are

also shown.

8: RESULTS 138

Writer

1

2

10

11

average

Unttained system

Top 10

rate(%)

88

84

78

78

82

Top

word

74

72

67

58

68

Trained system

Top 10

rate(%)

96

89

89

88

91

Top

word

85

78

78

81

81

Table 8.5 - Test V results

The average position of the cortect word was 1.240.

8.4. Analysis of Results

The results from test I show that the average unttained recognition rate for

the system is 75%, though there is quite a considerable variation between dif

ferent subjects (59-88%).

To compare the recognition rates before and during ttaining it is necessary

to consider sample B2 alone, since this is the only sample used throughout all of

the tests (table 8.1).

8: RESULTS 139

Test

I

II

ni

IV

V

Rate(%)

78

51

58

78

91

First position

rate(%)

61

39

44

64

81

Ave position

1.509

1.790

1.688

1.462

1.240

Table 8.6 - Recognition rate comparison - sample B2

Table 8.6 shows that the unttained recognition rate is reasonable (78%). The

recognition rate drops, as expected (section 8.3.2), between tests I and II, but with

the inttoduction of ttaining from samples taken from set Bl , with the same words

as set B2 (test IV), the rates climb considerably, back to the level for unttained

recognition. (Figure 8.2 shows the individual results for each subject.) In fact the

rate for 1st position recognition and the average position are improved on the

unttained rate showing that the recognition is improving with ttaining, as

expected.

100

80

60

40

20

Writer i Average

Figure 8.2 - Recognition results - sample B2

8: RESULTS 140

After some further ttaining, the accuracy improves considerably (test V) to

produce 91% recognition on average. This rate can be improved further with

extra training. The template database for writer 1 was ttained for a much longer

period and achieved 96% recognition for sample B2, with 85% recognised in first

place.

These results appear to follow the expected ttends discussed in sections

8.3.1-5. The system can achieve good recognition rates after just a small amount

of training and very good rates with further ttaining. The exact performance of

the system, however, is dependent on the consistency of the writing style.

8.5. Description of Errors

Recognition ertors occur due to a number of reasons. These are described

below and the occurtence rates are given in section 8.6.

8.5.1, Stylistic or Writing Errors

i) Within a sample of a subject's handwriting it is common for mistakes to be

made during word formation, especially in longer words. With a segmenta

tion based system, which looks for individual letters within a word, it is very

difficult to allow for these ertors. This may not be the case with a whole

word recognition system, say, which looks at the overall shape of the word,

rather than carefully analysing each section.

ii) Some writers have pronounced stylish flourishes within their script. These

can be tiained into the ORCHiD system, but will not be present in the

untrained system. Those samples that showed a marked improvement in

recognition after ttaining (figure 8.2, writers 5 «& 8) generally featured such

flourishes.

8.5.2. Preprocessing Errors

iii) The results of the preprocessing phase are verified before die recognition

phase is initiated but occasionally incorrectiy preprocessed script is passed

on due to human ertor.

iv) The algorithm for joining separated stiokes within a word is very elementary

- the individual stiokes are simply connected by a stiaight line. This is

sufficient for most puiposes, but with very separated handwriting styles tiiis

is an additional source for ertors to occur. Ideally, the script should be

8: RESULTS 141

reconnected in an intelligent way with curves reflecting the directions that

the pen is moving at pen-up and pen-down. If pen motion information is

available from the digitiser when not in contact with the writing surface, this

could be used to reconnect the sttokes.

v) The detection of diacritical marks (dots and crosses) is not ertor-free. Some

times the classification is ambiguous (a short line, for instance). Sometimes

a diacritical mark is not detected at all and the sttoke is reconnected into the

word, causing ertors in the recognition.

Preprocessing errors iii), iv) and v) could be reduced with further develop

ment of the preprocessing routines. As these areas were not within the scope of

this research, recognition ertors due to these problems can be ignored in the

analysis of this work.

vi) Another problem associated with preprocessing is the problem of handwrit

ing of inconsistent height. The detection of the halfline is made more

difficult if taU letters are not appreciably larger than short letters, and in

some writing styles the height of letters varies considerably. Any handwrit

ing recognition system will be hindered to some extent by this factor.

8.5.3. Segmentation Errors

vii) The inconsistencies of segmentation described in section 4.5.1 can cause

misrecognition. It should be noted that even though there are inconsistencies

between the practical segmentation and die theoretical segmentation, the

ertors are in fact consistent within themselves. For example, in the case

iUustrated in figure 4.13, if a cusp is detected at the baseline, giving rise to

five segments instead of three, that segmentation is consistent with similarly

segmented sttokes. Most of the problems can thus be rectified by the inclu

sion of extta templates for the other possible segmentations.

viii) The segmentation occasionally fails due to ertors in the implementation.

8.5.4. Template Matching Errors

ix) The templates are constt^cted simply by averaging a number of samples

from each class. Match probabilities are calculated using the estimated dis

tribution of these samples. A number of ertors can be inttoduced in this

way, primarily as a result of approximating the disttibution of the features as

multivariate normal. Firstly, the distiibution of a template feature may be

8: RESULTS 142

adequately approximated by a normal distiibution, but in practice limits may

be placed on its possible range of values, for example the vertical position of

an ascender should never faU below the halfline of a word. Secondly, one

sample feature may match the template very well. If the estimated distribu

tion for that feature has a low standard deviation, the comparison score will

be greatly influenced by that feature, possibly producing a high comparison

score even if the other features match poorly. This may occur especially if

only a few samples have been used to generate the template.

Generally, these errors will not result in a correct template match being

rejected but in an incorrect template match being accepted. This will reduce

the weight associated with the cortect template match, however, due to the

normalisation process.

x) Theoretically, the template matching algorithm will not reject a cortect

match since all of the ambiguities should be retained (ie every letter should

occur in every position in the letter graph, even if its probability is very

low). In practice, for efficiency, cut-offs are required to reduce the computa

tion necessary by reducing the number of template matches retained in the

system. If a correct template match has a low probability, it is therefore pos

sible that it may not appear in the candidate allograph list.

xi) If a particular letter formation is unusual, it is possible that a template may

not exist in the database for it. The system will fail unless that template is

intioduced and trained.

8.5.5. Dictionary Lookup Errors

xii) No ertors occur due to the dictionary lookup itself (excluding words not in

the dictionary). If the cortect candidate allographs are included in the letter

graph the cortect word will be output, together with a reliable probabUity

based on the probabilities of its constituent components. It has been noted,

however, that letter-joins are less reliably identified than letters. Ertors can

occur, therefore, if the system is mnning with high thresholds to increase its

speed of operation. In this situation, wild-card letter-joins are not included

in the letter graph, so words may be missed if die less consistent letter-joins

are not cortectiy identified.

xiU) A number of ertors have been caused due to mistakes in the template-join

table, that specifies which templates may connect to which others. These are

8: RESULTS 143

especially noticable with very separated handwriting styles, where the stroke

reconnection algorithm has inttoduced spurious data.

8.6. Error Rates

The B2 samples recognised by the unttained system (test I) were examined

to identify the cause of any ertors. Out of these samples (266 words), 164 words

(62%) were correcdy identified with the highest probability. The other 102 (38%)

are detailed in table 8.2.

Ertor type

Word near top

Omitted letter template

Omitted join template

Poor template match

Stylish flourish

No wild-card search

Failed segmentation

Preprocessing failed

Join-table ertor

Writing ertor

No of words

27

23

20

13

6

3

3

3

2

2

%age

9.9

8.4

7.6

4.9

2.3

1.1

1.1

1.1

0.8

0.8

Ertor group

A

C

C

C

A

A

B

A

B

A

Table 8.7 - Error rates

The different ertor types are discussed below. Ertor group A consists of

those ertors which may be ignored since either the cortect word is weighted very

close to the top word, or the ertor is not caused directly by the ORCHiD system.

Ertor group B consists of those ertors caused by mistakes in the programming or

implementation, and ertor group C consists of those ertors due to non-training of

the database.

8: RESULTS 144

Word near top

The probabilities of words in this group were sufficiently close to the top-

ranked word for no clear decision to be made between them.

Omitted letter template

The cortect letter template was not present in the candidate allograph list.

This could be due to causes x) or xi) identified above.

Omitted join template

The correct letter-join template was not present in the candidate allograph

list. This could be due to causes x) or xi) identified above. This number does not

include those omitted letter-joins inferred by the use of wild-cards. Wild-card

letter-joins are only inserted with a maximum length of four segments, so longer

omitted joins will be counted here.

Poor template match

The cortect candidate allograph occurred in the allograph list, but with a low

probability. This may be due to cause ix).

Stylish flourish

An unusual style was not included in the template database (cause i).

No wild-card search

There were a large number of segments in the word, such that including all

wild-card letter-joins would have caused lengthy processing (cause xii) above). If

this were done, however, the word would be cortectiy identified.

Failed segmentation

The segmentation failed due to ertors in the implementation (cause viii).

Preprocessing failed

An ertor occurted in the preprocessing that was not identified during die

verification stage. This could have been due to cause iii), iv) or v).

8: RESULTS 145

Join-table error

The cortect templates were identified but ertors in the template-join table

caused the word to be rejected (cause xiii).

Writing error

The word was incortectiy formed (cause ii).

8.6.1. Discussion

It can be seen from these results that, for this sample, 62% of words were

identified with the highest probability, 15.2% of words were either close to the

top-rank or could be ignored due to some allowable ertor (group A), 1.9% of

ertors were due to implementation mistakes (group B), and 20.9% of ertors were

due to lack of training or some other unidentified ertor (group C). It can be seen

from the test results of the trained system that this last group can be reduced by at

least a half after ttaining to bring overall recognition rates up to >90%.

8.7. Speed

Various factors affect the speed of recognition of the ORCHiD system.

The preprocessing speed depends on the amount of sample data collected.

The NPL routines preprocess a large block of data rather than a single word at a

time. Preprocessing time is proportional to the amount of data being processed.

Consequently sample data less than the size of a block is processed more quickly.

The template matching speed is affected by the number of segments in a

word (s) and the number of templates in the database (t). Since the speed is pro

portional to the number of template comparisons, and the number of comparisons

is approximately equal to s xt, this is a linear function. The matching routine is

therefore quicker when trained, since less templates will be in the template data

base.

The dictionary lookup speed is less easily determined since the major factor

is the number of successful matches between the letter graph and the dictionary.

On average, the number of entties in the candidate allograph list and the number

of words in the dictionary will affect the speed, especially since larger data stt^c-

tures may occupy more than the physical memory available to the processor and

cause page faults. It is therefore preferable to keep the size of these stmctures to

a minimum. The letter graph is kept smaller by the use of a probability direshold

8: RESULTS 146

below which a candidate allograph is rejected, and by only inserting wild-card

letter-joins if the probabilities associated with the output do not exceed another

threshold. It should be noted, however, that it is sometimes possible for a small

letter graph and dictionary to produce more matches than a large one, and hence

take a longer lookup time.

The speed of recognition of the ttained system was tested with a large set of

data containing 107 words of varying length (2-13 letters). The process of tem

plate matching, dictionary lookup and output sorting took 629 seconds on a time-

shared Sun 4/330, including file access for sample data and writing output, but

excluding template and dictionary database loading. This gives an average of

5.88 seconds per word. The thresholds were set such that 90% recognition was

achieved.

The system could not be described as mnning in real-time on the current

hardware, but processor speeds are constantly improving and it seems likely that

there will soon be sufficient power available to process even very complex recog

nition systems within real time. The ORCHiD system was developed as a research

platform and so was not designed with speed of execution as its main criterion.

For example, the system stores intermediate data in files that can be examined

after processing. This requires many disc accesses during the recognition pro

cess, slowing down the overall performance time.

8.8. Summary

The unttained recognition system achieved an average recognition rate of

75% using a large test sample (960 words). After a short initialisation period for

a particular writer, the system can be automatically ttained during use to improve

the recognition accuracy. After ttaining, recognition rates of 96% were achieved.

Average processing time after preprocessing for the ttained system is 5.88

seconds per word.

Chapter 9

Conclusions and Further Work

9.1. General Conclusions

The ORCHiD system developed during this research is a practical implemen

tation of a ttainable recognition system for lower case cursive script. Handwrit

ing data is collected online and preprocessed, with the baseline and halfline

detected, by the NPL routines. After segmentation, segment features are meas

ured and compared with a database of templates. Possible letters and letter-joins

are combined to produce possible words which are verified against a lexicon of

valid words. Although the system presently recognises only lower case script, the

template matching routine could be easily extended to include recognition of

upper case characters.

A summary of each section of the research is given below, together with an

indication of which areas are innovative.

9.1.1. Segmentation

The basic elements of the segmentation method were first described by

Berthod^ and Higgins^^. The suggestions encompassed by these works have been

fully developed and extended in this thesis to provide a practical segmentation

method of direct relevance to cursive script recognition (CSR). A number of

problems have been resolved by examination of the underlying stmcture of the

writing. The way in which different features of script evolve into other features

(as writing accuracy deteriorates) has led to the development of the x-axis stietch

ing technique. This resolves the problem of multiple intersections within the

script, and provides a measure for comparing graphically different segments

based on the same underlying letter formation.

The segmentation is very consistent across a number of different handwrit

ing styles, enabling a reduced number of templates to be stored.

9; CONCLUSIONS AND FURTHER WORK 148

9.1.2. Features

A number of feature measurements are taken for each segment. There is a

fixed number of features per segment allowing a valid statistical template match

ing approach since the dimensionality of the artay of vectors for each segment is

the same. The distribution of the features can be approximated by a multivariate

normal distribution, for ease of calculation.

9.1.3. Template Matching

A new algorithm for template matching has been developed, based on a pro

babilistic method using conditional probabilities. The use of segmented templates

enables valid statistical combinations across a word and allows comparison

between different possible words.

9.1.4. Dictionary Lookup

The use of a tiee stmcture, first proposed by Knutĥ "*, was rejected for a

number of years due to the large requirements of computer resources. This

research has shown that in an efficient implementation this stmcture is ideal for

reducing the number of candidate words, and verifying them simultaneously.

9.1.5. Training

The system has been designed in such a way that the adjustment of tem

plates to tiain the system to an individual writer is a very simple process. A new

template can be added by presenting a number of samples. Training can be

automatic, and concurtent with system use. Initial ttaining can be kept to a

minimum before the system can be used.

9.1.6. Important Aspects of this Research

The most important developments described in this thesis include:-

• the use of the copy-book model to reduce the number of templates required

(section 4.1);

• the ;c-axis stietching technique to compare handwriting samples that have

evolved from the same copy-book base-style (section 4,4);

• the use of data-driven templates providing a simple method for the addition

and ttaining of unusual allographs (section 5.5);

9: CONCLUSIONS AND FURTHER WORK 149

• the calculation of a statistically valid probability of matching for a candidate
word (section 5.6); and

• the very efficient dictionary lookup method (sections 6.4 and 6.5).

9.2. Recognition Rates

The system achieves fair recognition rates for unttained recognition (75%)

and good recognition rates after some tiaining (91% on average). It is difficult to

compare results between different research groups due to the differences between

systems and experimental results quoted (section 2.10). Table 2.1 shows results

quoted for some of the research teams. The work of Higgins (85-93%)^^, Wright

(82-94%)^^ and Ouladj (94%)'71 appear as the best quoted results to date, due to

the less restricted test data used. It should be noted that Wright's figures are for

untrained recognition, Higgins used test samples from only two writers and

Ouladj's work uses a very small dictionary. The recognition rates reported in this

thesis seem to be at least comparable with these results.

9.2.1. A Discussion of Required Recognition Rates

At present no system has been able to achieve anywhere near 100% recogni

tion without the application of syntactic and semantic contextual knowledge.

Even with the use of higher level context, 100% recognition has not been

achieved, since this is only of value if the correct word is contained in the candi

date word list. An omitted word cannot usually be inferted automatically. With

this in mind it is necessary to ask if 100% recognition will ever be attained, or

indeed is it necessary before CSR will be used in earnest?

Let us consider some of the possible uses of CSR. Handwriting will not be

used as a mass text entry medium, since a skilled typist can type much faster than

a neat handwriter can write. It could be argued that in the long term speech

recognition may well be available for the non-keyboard user to enter large

amounts of text into a computer. So when would handwriting be used? It would

be used for many of those applications where we curtently use handwriting on

paper, but in conjunction with a portable electionic paper notebook. For example

one could take notes in situations where a keyboard or speech input would be

obttiisive or impractical. Diagrams and sketches diat have been prepared with

pen-based drawing packages could be annotated without having to set down die

pen, (One of the problems with curtent mouse-driven systems is that the mouse

9; CONCLUSIONS AND FURTHER WORK 150

has to be released to type at the keyboard.) It should be noted that even if speech

recognition were available it is not necessarily the best text input method, since

we do not speak in the same way as we write.

Within the applications listed above it is unlikely that the user will wish to

use cortect sentence constmction, so the gains in recognition accuracy achievable

from the use of sentence context may be lost. We can, however, still see a use for

a CSR system that is not 100% accurate in an electtonic paper environment.

Such an environment will provide an editing mode which allows for the rapid
cortection of mistakes by simple gestures, eg crossing out a word. If the CSR

system were combined with such an editing environment, then it would be possi

ble to simply cortect for any misrecognition during proof-reading by touching the

incortect word and having the next likely word appear instantiy, say. In this way,

the smaU amount of misrecognition can be easily cortected.

9.3. Further Work

There are a number of related areas which would benefit from further inves

tigation. Some of the areas detailed below are of direct application to the work

described in this thesis while others are concemed with cursive script recognition

in general, especially with respect to producing a feasible commercial system.

Improvements of direct relevance to this work include developing an

enhanced set of general templates, for the unttained recogniser, and devising a

more efficient ttaining scheme. CSR systems in general may be improved with

the use of an accurate Electtonic Paper (EP) device for data collection, the use of
higher level context, when appropriate, and development of a combined recogni

tion system, with a number of different recognition methods providing a com

bined result.

9.3.1. Improved Letter Template Database

The accuracy of the curtent unttained system is limited by the quality of the

generalised set of templates. The system is prone to ertor if a spurious template

has accidentally been inttoduced into the system. The curtent template database

was constmcted simply by incorporating a large number of samples as they were

encountered. This was mainly carried out automatically and so it is likely that a

few inaccurate templates have been intioduced (see section 7.6).

9: CONCLUSIONS AND FURTHER WORK 151

It would be a useful exercise to constmct a theoretical set of ideal templates

to use as die general template database. This might be carried out by considering

what would be reasonable values for each of the features of a template segment.

Some of the features would be easy to specify theoretically (vertical position, for

example) whereas others may have to be calculated from a large number of care

fully identified samples (area, for example). In this way it could be ensured that

no spurious templates are inttoduced.

By using such a carefully selected general template database, the recognition

rates should be improved for careful handwriting that is relatively standard. This

improvement will occur since the less common templates will no longer influence

the probability of the cortect templates. Writers with more unusual styles will be

excluded, however, without some initial tiaining.

9.3.2. Training

The automated ttaining routine described in Chapter 7 works reasonably

well, but suffers from a fundamental flaw. If a writing style contains a peculiar

allograph that does not exist in the general template database, there is no method

to automatically insert it into the personal database. The allograph must be

identified and included by hand. This, at present, requires more detailed

knowledge of the system than is desirable for an average user.

A less restrictive method of automated ttaining is that described by Teulings

et aP^ detailed in section 2.9. This method selects templates by requesting the

user to write similar words and analysing the differences between the extracted

features. This has the advantage that no previous knowledge of possible template

formations is necessary. All templates can be deduced by judicious selection of a

tiaining set of words. The problem with this approach is that the training set will

need to be quite large to allow every template to be exttacted, and hence the tiain

ing session will be lengthy.

A more reasonable method might be to combine these two approaches. The

method described in this thesis could be used initially. Any templates that have

not then been successfully identified could invoke a Teulings training session

with a smaller set of tiaining words that concenttated only on the missing tem

plates.

Another area associated widi the template database that should be investi

gated is the continuous assessment of the database. As a personal database is

9: CONCLUSIONS AND FURTHER WORK 152

continually ttained, it will increase in size as additional variations in letter forma

tions are encountered. This will cause the system to slow down as an increasing

number of templates must be matched against each sample.

To reduce this problem it would be desirable to have a process which

assesses the database and removes any unwanted templates. These might

include:-

• templates that have not been used for a long time, for instance if the user's

style has evolved and changed;

• templates that have only occurred rarely, as might be produced in ertor by

the automatic training routine;

• templates that are not significantly different from another template. During

a training period it is possible that an allograph cannot be classified with any

of the curtent templates and so it is stored as a new template. In the course

of further training, all of the templates may be adjusted and this new tem

plate might be ttained so that it is now sufficiently similar to another tem

plate that they may be amalgamated.

9.3.3. Data Collection and Preprocessing

A number of benefits will be gained by using an EP device (section 1.2.2)

for data collection.

• A more accurate sample of script will be collected. With a traditional

opaque digitising tablet and monitor the writer cannot easily tell if the script

is being successfully digitised - for example the writing may be too fast, or

be written without sufficient pressure to trigger the pen switch, or there may

be hardware glitches. It is therefore necessary for the writer to watch the

monitor screen as the writing is taking place. This is a very unnatural way to

write and there is often a time-lag between the digitiser recording the data

and the output on the graphical display, causing coordination problems for

the writer. With the direct feedback of an EP device, the writer will

immediately see the data that the machine is recording, and wiU know if die

digitising process is successful. If necessary the pen ttace (electtonic ink)

could be thickened to force the user to write sufficientiy large for successful

digitising. (Compare this with using a thick nibbed felt pen which nattirally

makes people write bigger.)

9: CONCLUSIONS AND FURTHER WORK 153

• At least in early systems, the handwriting could be consttained to aid the

recognition hardware and software in such a way that is not intmsive to the

user. For example, guide lines could be drawn on the writing surface for the

user to write on and as a guide to the size of writing. The spacing of these

lines might be user adjustable, but would assist the preprocessing software in

locating the various vertical regions of the script. Guide lines should not be

intmsive since real paper is commonly mled to assist writing,

• An EP device provides instant feedback to the user on the machine's

interpretation of gestures drawn onto the device and the consequent actions

that it has carried out. Just as the characters appearing on a conventional

computer display indicate to a typist any miskeying, so any misrecognised

script will appear very quickly on the EP display. Since users of EP will

(probably) want the machine to work for them, it seems only natural that

they will try to accommodate the machine by adapting their writing style, at

least to some extent. (This process may even take place subconsciously.)

This user adaptation, together with the system leaming a writer's style,

might considerably improve recognition rates.

Further experiments to evaluate all of these different aspects should be car

ried out when suitable hardware (and software) becomes available.

9.3.4. Context

The dictionary verification method described in this thesis is an efficient

implementation of a word level contextual disambiguation process. The output

from this process, however, is still ambiguous, resulting in a number of possible

candidate words for each sample word. Higher levels of orthographic context,

such as the syntax and semantics of phrase and sentence stmcture, will further

improve the recognition rates within certain applications, by removing unlikely

word combinations. Ambiguous word segmentation may also be resolved at this

level. This is an area of Artificial Intelligence (outside the scope of this thesis)

which should be studied further^ ̂ •̂ .̂

The use of context has its problems, however, since it enforces a stmcture on

the writer. For example, insisting on valid dictionary words prevents the user

from writing the word <»<̂ ;̂ (perhaps a coded filename) since this might be recog

nised and automatically interpreted as 'dog', say. The use of sentence level con

text prevents the user from writing ZSi^ 25^ c ^ ^ ^ MffiiiU , since die

9: CONCLUSIONS AND FURTHER WORK 154

system might automatically substitute the word 'dog' for 'clog' as this is a more

meaningful interpretation. It would therefore be impossible to use such a system

to write this paragraph!

There are also dangers in relying too heavily on context to cortect for poor

recognition. If a letter has been completely missed within a word during the

recognition phase then simple dictionary context cannot find the cortect word,

SimUarly, if a word has not been recognised within a sentence, a sentence level

context approach cannot verify the sentence. It may be possible to insert a wild

card letter, for example, into a word and produce a small list of possible values

for that letter by comparison with a dictionary, but it is much less practical to gen

erate a Ust of words to complete a sentence. To resolve this type of problem we

must use the methods described in sections 2.7,3-6 where substitution sets of

likely errors are examined to decide what word or sentence was written.

Context can be a great assistance in allowing for the shortfalls of the recog

nition phase, but should not be relied on in preference to improving the recogni

tion phase.

9.3.5. A Pooled Method Approach

The data-driven recognition system described in this thesis has shown that

such a method can be used for unconsttained script recognition, but it is always

prone to produce the occasional peculiar output due to mathematical anomalies

(see section 5.7.1). At the other extteme, a completely mle-based system could

be used which defines general mles for letter or word formation independent of

writing style. However, this approach suffers from peculiarities that occur within

the wide variety of handwriting styles in common usage. No matter how care

fully a mle has been devised, there will always be an exception or an ambiguity to

be resolved. It seems evident that no recognition system based on just one of

these techniques will be completely successful. In the short term, a successful

CSR system will need to be:-

a) easily tiainable, so that the user does not need to leam a new skill to operate

the device; and

b) subject to a number of built-in, all-encompassing mles to remove any pecu-

Uar anomalies from the output.

The best way of achieving this may be to have a number of different recog

nition modules that may independentiy analyse the data and then pool the output

9: CONCLUSIONS AND FURTHER WORK 155

from each of the modules to produce an aggregate set of output. For efficiency it

may be possible to use a simple but fast method to quickly analyse the data and, if

this does not produce conclusive results, to bring in more complex recognition

modules.

One method which could take advantage of these ideas is a blackboard sys-

fgfji25,44 fijjg jypg Qf system contains a shared data area, the blackboard, where

a number of different processes (knowledge sources) can locate data on which

they can operate, and where they place their output.

An efficient CSR system could be developed using a blackboard approach to

continually reduce a lexicon of candidate words by examining smaller and

smaUer features of a word. For example, ascenders and descenders might be used

to reduce the dictionary of valid words. Another process might then examine this

word list to decide what other features of the word would most profitably be con

sidered next. Some of these processes might be ttainable to a particular user, oth

ers might contain fixed general mles that must be satisfied. In this way, the prob

lems of using any one fixed method (discussed above) may be alleviated by incor

porating both data-driven and rule-based systems.

9.3.6. Feedback

As each stage of the recognition process is completed, information is pro

duced that may have been of use to the previous stages of recognition, had that

information been available. For example, if one of the stages in the recognition

process cannot produce reasonable output, then it is possible that its input data is

suspect. If each of the preceding processes are adjusted in turn, perhaps by mov

ing a threshold, until reasonable output can be achieved, the overall recognition

rates of the system may be improved.

Future recognition systems (especially blackboard systems) may be able to

make use of this continual flow of information backwards and forwards between

each individual process. Each process will need to retain details of each action it

has applied to the data, so that it can undo and reapply the action using the addi

tional information supplied to it. A few possible examples follow. If a peculiar

set of features is extracted from the data, this may indicate that the preprocessing

has erted and should be cortected before continuing with the recognition process.

If a word is identified, then the letter segmentation is clear and can be passed back

to the segmentation phase for future reference. The dictionary lookup phase

9: CONCLUSIONS AND FURTHER WORK 156

could be dynamically linked to the template matching phase and pass back infor
mation as to which template to try to match next.

Within the ORCHiD system, some feedback is curtentiy used by die template

matching routine, since the templates are adjusted during ttaining to incorporate

previously observed samples. The dictionary lookup routine uses feedback to

improve its performance by only including wild-card letter-joins if the output

word probabilities are low. A closer "feedback-loop" between the template

matching stage and the dictionary lookup stage would be useful. As a candidate

allograph is rejected by the dictionary verification, the relevant probabilities for

the other allographs occupying the same segments could be recalculated. This is

similar to the method used by Hayes^^ (see section 5.2) but, unlike Hayes'

method, this wUl still produce valid probabilities conditional on the other possible

allographs in the letter graph. This was not incorporated within the system due to

implementation difficulties and time consttaints.

9.4. Closing Remarks

A working CSR system has been produced. The techniques developed as

part of the ORCHiD system could provide an important constituent element of any

future CSR development. In particular, two fundamental principles for CSR have

been identified and successfully incorporated during development. Firstly, the

principle of retaining ambiguity wherever possible is exttemely important within

a CSR system. Secondly, an adaptive system that can be ttained to an individual

will remain a necessity for any practical system in the near future and may pro

vide a useful security measure for personal identification in the long term.

This system has shown that these principles can be adhered to within an

effective CSR system. The unttained ORCHiD system achieves acceptable recog

nition rates with fairly neat handwriting (75%) and it is particularly successful

after tiaining, when recognition rates of 96% were achieved.

Bibliography

1. Baecker, R. M. and Buxton, W. A. S., "A Historical and Intellectual Per
spective," in Readings in Human-Computer Interaction, Morgan Kaufmann
Publishers, 1987.

2. Berthod, M.,' 'On-Line Analysis of Cursive Writing,'' in Computer Aruilysis
and Perception - Visual Signals, ed. R. De Mori, vol. 1, pp. 55-81, CRC
Press.

3. Berthod, M. and Ahyan, S., "On Line Cursive Script Recognition: A Stmc-
tural Approach with Leaming," CH1499-3/80/000O-0723S0O.75c,1980
IEEE, pp. 723-725, 1980.

4. Boes, U., Doster, W., Fogaroli, G., Lobl, H., and MasUn, G., "The Role of
Paper in the Automated Office," Esprit Project 295 - The Paper Interface,

5. Bozinovic, R. and Srihari, S. N., "A String Cortection Algorithm for Cur
sive Script Recognition," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 4, no. 6, pp. 655-663, November 1982.

6. Bozinovic, R. and Srihari, S. N., "Off-Line Cursive Script Word Recogni
tion," IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 11, no. 1, pp. 68-83, January 1989.

7. Brocklehurst, E. R,, Ford, D. M., and Symm, H. J., "Feature Extraction for
Cursive Script Recognition," NPL Report DITC 130/88, 1988.

8. Brocklehurst, E. R., "The NPL Electtonic Paper Project," NPL Report
DITC 133/88, 1988.

9. Brocklehurst, E. R. and Stevens, M. J., "Software Modules for Electronic
Paper," NPL Report DITC 127/88, 1988.

10. Brocklehurst, E. R. and Kenward, P. D., "Preprocessing for Cursive Script
Recognition," NPL Report DFTC 132/88, 1988.

11. Brocklehurst, E. R., "The NPL Electtonic Paper Project," International
Journal of Man-Machine Studies, vol. 34, pp. 69-95, 1991.

12. Brown, M. K. and Ganapathy, S., "Cursive Script Recognition," Proc Int
Conf on Cybernetics & Society, pp. 47-51, Cambridge, MA, USA, October
1980,

13. Brown, M. K. and Ganapathy, S., "Preprocessing Techniques for Cursive
Script Word Recognition," Pattern Recognition, vol. 16, no. 5, pp. 447-458,
1983,

BIBUOGRAPHY 158

14. Burt, D. J„ "Designing a Handwriting Reader," IEEE Transactions on Pat
tern Analysis and Machine Intelligence, vol. 5, no. 5, pp. 554-559, Sep
tember 1983,

15. Cox, M. G. and Harris, P. M., "An Algorithm for Loop Detection in Cursive
Script Recognition," NPL Report DITC 120/88, 1988.

16. Davis, M. R. and Ellis, T. O., "The Rand Tablet: a Man-Machine Graphical
Communication Device," Proc FJCC, pp. 325-331, 1964.

17. Dooijes, E. H., "A Description of Handwriting Dynamics," Simulation of
Systems '79, pp. 727-731, 1980.

18. Doster, W. and Oed, R., "Word Processing with On-Line Script Recogni
tion," IEEE Micro, pp. 36-43, 1984.

19. Duda, R. O. and Hart, P. E., "Experiments in the Recognition of Hand-
Printed Text: Part II - Context Analysis," AFIPS Conference Proceedings,
vol. 33, pp. 1139-1149,1968.

20. Duda, R. O. and Hart, P. E., in Pattern Classification and Scene Analysis,
John Wiley & Sons, 1973.

21. Earnest, L. D., "Machine Recognition of Cursive Writing," Information
processing 1962 (Proc. M P Congr.), pp. 462-466, 1962.

22. Eden, M. and Halle, M., The Characterization of Cursive Writing.

23. Ehrich, R. W. and Koehler, K. J., "Experiments in the Contextual Recogni
tion of Cursive Script," IEEE Transactions on Computers, vol. 24, no. 2, pp.
182-194, Febmary 1975.

24. Elliman, D. G. and Lancaster, I. T., "A Review of Segmentation and Con
textual Analysis Techniques for Text Recognition," Pattern Recognition,
vol. 23, no. 3/4, pp. 337-346, 1990.

25. Engelmore, R. and Morgan, T., in Blackboard Systems, Addison Wesley,
1988.

26. Farag, R. F. H„ "Word-Level Recognition of Cursive Script," IEEE Tran
sactions on Computers, vol. 28, no. 2, pp. 172-175, February 1979.

27. Ford, D. M., Higgins, C. A., and Brocklehurst, E. R., "The Electionic Paper
Project," Proceedings of the Third International Symposium on Handwrit
ing and Computer Applications, Montteal, 1987.

28. Ford, D. M., "Cursive Script Recognition using Dictionary Information,"
Intemal Report, September 1987.

29. Ford, D. M. and Higgins, C. A., "Electtonic Paper Project Final Report -
Cursive Script Recognition," Nottingham University Computer Science
Technical Report TR0018, 1988.

30. Ford, D. M. and Symm, H. J., "Segmentation and Reduction Analysis for
Cursive Script Recognition," NPL Report DITC 131/88, 1988.

31. Forney, G, D. Jr., "The Viterbi Algorithm," Proceedings of the IEEE, vol.
61, no. 3, pp. 268-278, March 1973.

BIBUOGRAPHY I59

32. Freeman, H., "On the Encoding of Arbitiary Geometiic Configurations,"
IRE Transactions on Electronic Computing, vol. 10, pp. 260-268, June 1961.

33. Frishkopf, L. S. and Harmon, L. D., "Machine Reading of Cursive Script,"
4th London Symposium on Information Theory, pp. 300-316, 1961.

34. Gon, J. J. Denier van der and Thuring, J. P., "The Guiding of Human Writ
ing Movements," Kybernetik, vol. 2, pp. 145-148, 1965.

35. Gould, J. D. and Alfaro, L., "Revising Documents with Text Editors,
Handwriting-Recognition Systems, and Speech-Recognition Systems,"
Human Factors, vol. 26, no. 4, pp. 391-406, 1984.

36. Harmon, L. D., "Automatic Recognition of Print and Script," Proceedings
of the IEEE, vol. 60, no. 10, pp. 1165-1176, October 1972.

37. Hayes, K. C, "Reading Handwritten Words Using Hierarchical Relaxa
tion," Computer Graphics and Image Processing, vol. 14, pp. 344-364,
1980.

38. Higgins, C. A., "Automatic Recognition of Handwritten Script," PhD
Thesis (CNAA), Brighton Polytechnic, 1985.

39. Higgins, C. A. and Whittow, R., "On-Line Cursive Script Recognition,"
First IFIP Conference on Human-Computer Interaction - INTERACT 84, pp.
139-143, 1985.

40. Higgins, C. A. and Duckworth, R. J., "The PAD (Pen and Display) - A
Demonsttator for the Electtonic Paper Project," in Computer Processing of
Handwriting, ed. G. Leedham & R. Plamondon, pp. 111-132, World
Academic Press, 1990.

41. Higgins, C. A. and Ford, D. M., "Stylus Driven Interfaces - An Evaluation
of Electionic Paper," CCTA Report, February 1991.

42. Hull, J. J. and Srihari, S. N., "Experiments in Text Recognition with Binary
n-Gram and Viterbi Algorithms," IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 4, no. 5, pp. 520-530, Septemljer 1982.

43. Apple Computer Inc, in Human Interface Guidelines: The Apple Desktop
Interface, Addison-Wesley, 1987.

44. Jagannathan, V., Dodhiawala, R., and Baum, L. S., in Blackboard Architec
tures and Applications, Academic Press, 1989.

45. James, P., The Structure of Cursive Handwriting, October 1975.

46. Johansson, S., Manual of Information to Accompany the Lancaster-
Oslo/Bergen Corpus of British English, For Use with Digital Computers,
University of Oslo, 1978.

47. Kadirkamanadian, M. and Rayner, P. J. W., "A Scale-Space Filtering
Approach to Sttoke Segmentation of Cursive Script," in Computer Process
ing of Handwriting, ed. G. Leedham & R. Plamondon, pp. 133-166, World
Academic Press, 1990.

48. Kashyap, R. L. and Oommen, B. J., "An Effective Algorithm for Stting
Cortection Using Generalized Edit Distances - I. Description of die

BIBUOGRAPHY 160

Algorithm and Its Optimality," Information Sciences, vol. 23, no. 2, pp.
123-142, 1981.

49. Kashyap, R. L. and Oommen, B. J., "An Effective Algorithm for Stiing
Cortection Using Generalized Edit Distances - II. Computational Complex
ity of the Algorithm and Some Applications," Information Sciences, vol. 23,
no. 3, pp. 201-217, 1981,

50. Keenan, F. G. and Evett, L, J.,' 'Lexical Sttucture for Natural Language Pro
cessing," Proc, First Int Workshop on Language Acquisition, UCAI-89,
1989.

51. Keenan, F. G., "The use of linguistic knowledge in a handwriting recogn-
tion system," Intemal Report, Nottingham Polytechnic, 1990.

52. Kim, J. and Tappert, C. C, "Handwriting Recognition Accuracy versus
Tablet Resolution and Sampling Rate," 7th Int Conf on Pattem Recognition
Vol, 2, pp. 917-918,1984.

53. Kim, Y. T., "Syntax Directed On-Line Recognition of Cursive Writing,"
TR4-8 AD 770-241, University of Utah, Salt Lake City, 1973.

54. Knuth, D. E., in Sorting & Searching, The Art of Computer Programming,
vol. 3, pp. 481-487, Addison-Wesley, 1973.

55. Krishnaiah, P. R. and Kanal, L. N., "Classification, Pattern Recognition and
Reduction of Dimensionality," in Handbook of Statistics, vol. 2, North-
Holland Publishing Company, 1982.

56. Krishnaiah, P. R. and Sen, P. K., "Nonparametric Methods," in Handbook
of Statistics, vol. 4, North-Holland Publishing Company, 1984.

57. Kucera, H. and Francis, W. N., Computational Analysis of Present-day
American English, Brown University Press, Providence RI.

58. Leedham, C. G. and Chan, W. L., Recognition of Unconstrained, Separated
Handwritten Characters, Department of Electtonic Systems Engineering,
University of Essex, 1988.

59. Lindgren, N., "Machine Recognition of Human Language, Part Ill-Cursive
Script Recognition," IEEE Spectrum, pp. 104-116, May 1965.

60. Lowrance, R. and Wagner, R. A., "An Extension of the String-to-Soing
Cortection Problem," Journal of the ACM, vol. 22, no. 2, pp. 177-183,
1975.

61. Maier, M., "Separating Characters in Scripted Documents," Eighth Intema-
tional Conference on Pattem Recognition, pp. 1056-1058, Paris.

62. Meeks, M. L. and Kuklinski, T. T., "Measurement of Dynamic Digitizer
Performance," in Computer Processing of Handwriting, ed. G. Leedham &
R. Plamondon, World Scientific Press, 1990.

63. Mermelstein, P. and Eden, M., "A System for Automatic Recognition of
Handwritten Words," Proceedings - FaU Joint Computer Conference, 1964
Vol. 26, pp. 333-342, 1964.

BIBUOGRAPHY 161

64. Miletzki, U., Doster, W., Fogaroli, G., Lobl, H., and Moulds, P„ "Paper
Interfaces for Office Systems," ESPRIT '86: Results and Achievements, pp.
373-387, Elsevier Science PubUshers B.V. (North-Holland), 1987,

65. MiUer, G. M., "Real-Time Classification of Handwritten Script Words,"
Information Processing 71, pp. 218-223, North-Holland Publishing Com
pany, 1972.

66. Morasso, P, , ' 'Understanding Cursive Script as a Trajectory Formation Para
digm," in Graphonomics: Contemporary Research in Handwriting, ed. H.
S. R. Kao, G. P. van Galen, R. Hoosain, pp. 137-167, Elsevier Science Publ.,
1986.

67. Neave, H. R., Elementary Statistics Tables, George Allen &. Unwin, 1981.
68. Neisser, U. and Weene, P., "A Note on Human Recognition of Hand-

Printed Characters," Information and Control, vol. 3, pp. 191-196, 1960.
69. Neuhoff, D. L., "The Viterbi Algorithm as an Aid in Text Recognition,"

IEEE Transactions on Information Theory, pp. 222-226, March 1975.
70. Okuda, T., Tanaka, E., and Kasai, T., "A Method for the Cortection of Gar

bled Words Based on the Levenshtein Metric," IEEE Transactions on Com
puters, vol. 25, no. 2, pp. 172-177, February 1976.

71. Ouladj, H., Petit, E., Lemoine, J., Gaudaire, M., and Lorette, G., "A
Prediction-Verification Sttategy for Automatic Recognition of Cursive
Handwriting," in Computer Processing of Handwriting, ed. G. Leedham &
R. Plamondon, pp. 187-206, World Scientific Press, 1990.

72. Peleg, A., "Ambiguity Reduction in Handwriting with Ambiguous Segmen
tation and Uncertain Interpretation," Computer Graphics and Image Pro
cessing, vol. 10, pp. 235-245,1979.

73. Peterson, J. L., "Computer Programs for Detecting and Cortecting Spelling
Ertors," Communications of the ACM, vol. 23, no. 12, pp. 676-687,
December 1980.

74. Pobgee, P. J., "A Prototype System for Interactive Input of Cursive Infor
mation," NPL Report DITC 125/88, 1988.

75. Pollock, J. J., "Spelling Ertor-Detection and Cortection by Computer -
Notes and Bibliography," Journal of Documentation, vol. 38, no. 4, pp.
282-291, 1983.

76. Rengger, R. E., "Exploring Experimentally Derived UsabUity Metrics by a
Laboratory Evaluation of Electionic Paper," NPL Report DITC 119/88,
1988.

77. Riseman, E. M. and Ehrich, R. W., "Contextual Word Recognition Using
Binary Digrams," IEEE Transactions on Computers, vol. 20, no. 4, pp.
397-403, April 1971.

78. Riseman, E. M, and Hanson, A. R., "A Contextual Postprocessing System
for Ertor Cortection Using Binary n-grams," IEEE Transactions on Com
puters, vol. 23, no. 5, pp. 480-493, 1974.

BIBUOGRAPHY 162

79. Rose, T. G., "The use of natural language semantics as an aid to handwrit
ing recognition," Internal Report, Nottingham Polytechnic, 1991.

80. Sakoe, H., "Two-Level DP-Matching - A Dynamic Programming-Based
Pattem Matching Algorithm for Connected Word Recognition," IEEE Tran
sactions on Acoustics, Speech, and Signal Processing, vol. 27, no, 6, pp.
588-595, December 1979.

81. Sankoff, D., in Time Warps, String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison, ed. D. Sankoff & J. B. Kruskal,
Addison-Wesley, 1983.

82. Shinghal, R. and Toussaint, G. T., "A Bottom-up and Top-down Approach
to Using Context in Text Recognition," International Journal of Man-
Machine Studies, vol. 11, pp. 201-212, 1979.

83. Shinghal, R. and Toussaint, G. T., "Experiments in Text Recognition with
the Modified Viterbi Algorithm," IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 1, no. 2, pp. 184-192, April, 1979.

84. Shinghal, R., "A Hybrid Algorithm for Contexttial Text Recognition," Pat
tern Recognition, vol. 16, no. 2, pp. 261-267, 1983.

85. Smith, P. and Williams, J., New Nelson Handwriting, Thomas Nelson and
Sons.

86. Srihari, S. N., Hull, J. J., and Choudari, R., "Integrating Diverse Knowledge
Sources in Text Recognition," ACM Transactions on Office Information
Systems, vol. 1, no. 1, pp. 68-87, January 1983.

87. Stevens, M. J., "A Text Editor Driven by Hand-Drawn Symbols," NPL
Report DITC 124/88, 1988.

88. Suen, C. Y., Berthod, M., and Mori, S., "Automatic Recognition of Hand
printed Characters - The State of the Art," Proc of the IEEE, vol. 68, no. 4,
pp. 469-478, April 1980.

89. Takeda, Y., Tanabe, N., Aono, Y., and Tokumitsu, Y., "A New Data Tablet
Superimposed by a Plasma Panel," Innovative Telecommunications, vol. 4,
PP.G5.4.1-5, 1981.

90. Tappert, C. C, "Cursive Script Recognition System by Elastic Matching,"
IBM Journal of Research and Development, vol. 26, no. 6, pp. 765-771,
November 1982.

91. Tappert, C. C, "Adaptive On-Line Handwriting Recognition," 7th Int Conf
on Pattem Recognition Vol. 2, pp. 1004-1007, 1984.

92. Tappert, C. C, Fox, A. S., Kim, J., Levy, S. E., and Zimmerman, L L.,
"Handwriting Recognition on Transparent Tablet Over Flat Display," SID
International Symposium Digest of Technical Papers, pp. 308-312, 1986.

93. Tappert, C. C, Suen, C. Y., and Wakahara, T., "On-Line Handwriting
Recognition - A Survey," Proc 9th International Conference on Pattem
Recognition, pp. 1123-1132, 1988.

BIBUOGRAPHY 163

94. Teulings, H., Schomaker, L. R. B., Gerritsen, J., Drexler, H„ and Albers, M„
"An Online Handwriting-Recognition System based on UnreUable
Models," in Computer Processing of Handwriting, ed. G. Leedham & R,
Plamondon, pp. 167-185, World Scientific Press, 1990.

95. Viterbi, A. J., "Ertor Bounds for Convolutional Codes and an Asymptoti-
caUy Optimum Decoding Algorithm,'" IEEE Transactions on Information
Theory, vol. IT-13, pp. 260-269, April 1967.

96. Vredenbregt, J. and Koster, W, G., "Analysis and Synthesis of Handwrit
ing," Philips Technical Revue, vol. 32, pp. 73-78, 1971.

97. Wagner, R, A. and Fischer, M. J., "The Stting-to-Stting Cortection Prob
lem," Journal of the ACM, vol. 21, no. 1, pp. 168-173, 1974.

98. Ward, J. R. and Phillips, M. J., "Digitiser Technology: Performance Charac-
teristice and the Effects on the User Interface," IEEE Computer Graphics
and Applications, pp. 31-44, April 1987.

99. Welbourn, L. K. and Whittow, R. J., "A Gesture Based Text and Diagram
Editor," in Computer Processing of Handwriting, ed. G. Leedham & R.
Plamondon, World Academic Press, 1990.

100. WeUs, C, Evett, L., Whitby, P., and Whittow, R., "The Use of Ortho
graphic Information for Script Recognition," in Computer Processing of
Handwriting, ed. G. Leedham & R. Plamondon, World Academic Press,
1990.

101. WeUs, C, Evett, L., Whitby, P., and Whittow, R., "Fast Dictionary Look-up
for Contextual Word Recognition," Pattern Recognition, vol. 23, no. 5, pp.
501-508, 1990.

102. Whittow, R. and Higgins, C. A., "The Application of n-Grams for Script
Recognition," Proceedings of the Third Intemational Symposium on
Handwriting and Computer Applications, pp. 92-94, Montteal, Canada, July
1985.

103. Wong, K. H. and Fallside, F., ' 'Dynamic Programming in the Recognition of
Connected Handwritten Script," Second Conference on Artificial IntelU-
gence Applications, pp. 666-670, Miami Beach, USA, 1985.

104. Wright, P., "Algorithms for the Recognition of Handwriting in Real-Time,"
PhD Thesis (CNAA), Trent Polytechnic, 1989.

Glossary

Active Book
Allograph
Baseline
Candidate allograph

Candidate word
Centre-line
Copy-book

CSR
Cursive script
Data-driven system

DDP

Decision-directed
Descender-line
Diacritical mark
Digitiser
DSP
Electronic Paper

EP
Feature
Freeman coding
Full-height-line

Halfline

HCI
Interactive Tablet

Ligature
Letter-join

Example of EP.

Topological stmcture of a character.

See figure 1.8.

Possible character identified by template matching rou

tine.

Possible output word identified by recognition system.

See figure 1.8.

Handwriting teaching book.

Cursive script recognition.

Natural, connected handwriting (section 1.3).

Handwriting samples define templates (cf rule-based

system).

Digitiser data point - the time-ordered list of coordi

nates provided by the digitiser.

Method for automatic training (see section 7.3).

See figure 1.8.

Cross through 't', dot over 'i ', for example.

Pen-driven computer input device.

Definite segmentation point.

Interactive display/digitiser operated with a stylus (sec

tion 1.2.2).

Electronic Paper.

Descriptive value of a segment (section 3.8).

Method for describing a sttoke (section 2.5.2),

See figure 1.8.

See figure 1.8.

Human computer interface.

EP

Letter-join.

Portion of script connecting letters (figure 5,4).

GLOSSARY 165

N-gram

Noise

Normalisation

NPL
Off-line recognition
On-line recognition
ORCHiD

PAD
PC
Pen-down
Pen-up
Preprocessing

PSP
Postprocessing

Rule-based system

Segmentation

Serif

SP
Stroke
Template
Training

Trie

VA

Viterbi algorithm

Wild-card

WIMP

N letter sequence occurring in a lexicon of words (sec

tion 6.3).

Ertors in data caused by hardware inadequacies (sec

tion 1.4.1).

Standardisation and scaling of a sample (section 1.4.1).

National Physical Laboratory, Teddington.

Data collected statically, after writing (section 1.3).

Data collected dynamically, in real-time (section 1.3).

On-line Recognition of Connected Handwriting

Demonsttator described in this thesis.

Pen And Display - NPL EP demonsttator.

Personal computer.

Point where pen touches writing surface.

Point where pen leaves writing surface.

Adjustment of raw data to remove noise and normalisa

tion (section 1.4.1).

Possible segmentation point.

Use of additional information to improve recognition

(section 1.4.3).

Predefined mles identify different characters (cf data-

driven system).

Division of script into smaller units for recognition

(section 1.4.2).

Stylistic or accidental pen-flick at beginning or end of a

stroke.

Segmentation point.

Portion of script hctv/een pen-down and pen-up.

Intemal representation of a character (section 5.1).

Adjusting recognition system for a particular user

(Chapter 7).

Data removal tiee (section 2.7.7).

Viterbi algorithm.

Method for optimaUy ttacing a graph (section 2.7.3).

A "match-all" character (section 6.5.2.3).

Window, Icon, Mouse and Pointer computer interface.

Appendix A

A Simple Recognition Demonstrator

A.l. Introduction

Early on in the development of the project it was decided that a simple

demonstiation system would provide a useful illusttation of the concept of cursive

script recognition, and prove the feasibility to a limited extent. A system was

developed based on the work completed to date.

At this stage in the development of the recognition process, features were

extracted from the script which could be described as graphical features, ie global

features evident from examining the "image" of the script. With this type of

information available, it was decided that a whole word recognition approach

would be most profitable in producing a reasonable result for demonsttation pur

poses.

A limited dictionary of accepted words was analysed and sorted according to

the global features which were expected. The features exttacted from the sample

script were then compared against the dictionary to produce the output list of can

didate words.

A simple real-time demonsttator was produced which was publicly demon-

stiated on the BBC TV programme Tomorrow's World (March 1988). It would

recognise a fairly fixed style, but it was found that most people could adapt their

style to achieve at least some recognition.

A.2. Hardware

This system was implemented on several combinations of hardware. Since

the aim of this system was to produce real time recognition, the speed of proces

sor and digitiser provided a number of constiaints on the capabilities of the recog

nition software.

APPENDIX A 167

Perq with Opaque Tablet

The software was originally developed on a Perq 2 workstation, running

PNX UNIX , and the Perq proprietary window system. This worked successfully

but was slow due to the limitations of the Perq's centtal processor unit. The max

imum usable dictionary size was 300 words, with the digitiser producing 60 coor

dinates per second over a parallel port.

Perq Connected to PAD

A prototype hardware, called the PAD"*̂ was developed for the Electtonic

Paper Project. Performance with this hardware was comparable with the Perq and

opaque tablet. The host computer received only about 20 coordinates per second

from the digitiser due to the slow speed of the RS232 connection. The low coor

dinate rate meant that the preprocessing had to be modified.

Sun 3 Workstation and Optical Mouse

The software was ported to a Sun 3 workstation, under the SunView window

system. This was a successful implementation working much faster than the

Perq, An 800 word dictionary was installed, and this produced a reasonable

response. The optical mouse produces 40 coordinates per second.

Sun 3 connected to PAD

The PAD was integrated directly with the Sun via the VME bus. This was

the optimal configuration for the system. The PAD digitiser produced about 50

coordinates per second.

A.3. Preprocessing

A single word was presented to the system. The raw data was preprocessed

to stiaighten, deskew and smooth the handwritten sample. The baseline and

halfline were detected. Details of the preprocessing are available in Brocklehurst

and Kenward ̂ .̂

A.4. Feature Extraction

A number of primitive features were detected by the feature exttaction rou

tines at this time. These included pen-ups, pen-downs, cusps, intersections,

Stiaight lines, humps, i-dots and t-crosses. From these primitive features, a

APPENDIX A 168

number of basic features were identified, namely pen-ups, pen-downs, cusps in

four directions (up, down, left and right), i-dots, t-crosses and four types of loop

(or near loop). These loops, or closures, included not only loops delimited by

intersections but also sttokes which nearly meet (as in a letter 'o'). They could

either be written clockwise or anti-clockwise and pointing upwards or down

wards.

These basic features were reduced further to produce a more consistent set

of features that could be used for recognition. Two processes were used to define

this feature set. Firstiy the dictionary was analysed to see which features would

help to reduce the possible list of candidate words. Secondly the extracted

features were examined for consistency when the same letters or word were writ

ten.

Analysis of the dictionary subject to different feature sets showed that the

most useful features were ascenders, descenders, i-dots and t-crosses. (Experi

mental details are available in Ford and Higgins^^). The information about posi

tion of cusps provided further reduction of the dictionary, as did the information

about loops between the baseline and halfline (loops outside this region are either

ascenders or descenders).

It was discovered that the direction of cusps occurring in the region between

the baseline and halfline was not very consistent. For example, the initial cusp of

a letter 'c' could be written pointing upwards, rightwards, or downwards. The

occurtence of cusps is also ambiguous. Loops can also be ambiguous if the ends

do not actually meet. Downward pointing clockwise loops that occurted between

the baseline and halfline were found to be very inconsistent, since they were gen

erally poorly written cusps.

Combining the above information led to the features of table A.l being used

within this system.

APPENDIX A 169

Feature

ascender

descender

o-loop

b-loop

e-loop

i-dot

t-cross

wild

Description

sttoke rising above halfline

sttoke descending below

baseline

downward pointing,

anti-clockwise loop

upward pointing,

clockwise loop

upward pointing,

anti-clockwise loop

none of the above

Example letters

b d f h k l t

f g j p q y z

a d g o q

bkp

e

ij

t

c m n r s u v w x

Table A.l - Features extracted

Any basic feature that occurred considerably above the halfline was defined

as an ascender (excluding i-dots and t-crosses), and any considerably below the

baseline was defined as a descender. Any basic feature that did not fit into any of

these categories was defined as wild.

An estimate of the number of letters in the word was calculated by counting

the centie-line crossings and dividing by the average number of crossings per

letter. Each of the features detailed above was identified together with its approx

imate letter position within the word and a likelihood weighting.

These features do not provide a unique description of the word, since they

are ambiguous in their definition. For this reason more than one feature could be

reported at any location within the word. For example, a cusp may be a tighdy

written e-loop and so both these possibilities would be reported with appropriate

weight. A loose, non-closed o-loop might not be a loop at all, in which case it

would be reported as wild.

APPENDIX A 170

Details of the implementation of the feature exttaction routines are given in
Brocklehurst et al?

A.5. Dictionary Lookup

The list of possible features is constmcted into a directed graph, similar to

the letter graph described in section 5.7.3, but with weighted features attached to

each node instead of letters.

The dictionary is coded into features using a substitution set for each letter.
In this way, ideal letters are described in terms of features but each letter is then

specified in a fixed style. Two data stmctures are constmcted from this coded

dictionary. Firstly a dictionary ttee is produced using features instead of letters in

a similar way to the letter ttee described in section 6.4. Secondly a number of

short Usts of dictionary words are produced sorted on word length, i-dot count and

t-cross count. These can be accessed quickly by a three dimensional artay of

pointers.

A comparison of the graph and ttee is carried out producing a list of possible

feature-coded words. These are then verified by cross-checking in the array-

indexed lists. The estimate of word length was found to be in error by up to two

letters in either direction, so this was allowed for at this stage. Allowances were

also made for missing diacritical marks, for example, i-dots becoming elongated

into t-crosses, and vice versa, and the use of a single sttoke to cross a double 't'.

Three values are combined to give a certainty weighting for a particular

word - the combined value of probabilities from each of the segments in the word,

the difference in actual and estimated word length, and the combined distance of

the letter positions of actual features from their estimated positions. This allows

the output list of candidate words to be ranked.

Two dictionaries were installed, with 300 and 800 words. The most com

mon words in English usage have been selected, the 800 word dictionary account

ing for about 60% of all usage. In theory it is possible to install any size of dic

tionary, but this would be at the expense of speed of execution of die program.

The accuracy of the results would also be reduced, since more words would be

permissible.

APPENDIX A 171

A.6. Example

The word 25^ was written into the system. Figure A.l shows the screen

displaying the raw data collected from the digitiser, the preprocessed word and

the candidate words output from the system.

iini!wi!]nwiwiiii™«fiiwiiiiBi».iijiiiB.iiiiiiiii]iiiin«'ii.iiiiminirini

Pra-procasBlng

Processing f o f f e a t u r e s I n f o n w H o n

erf l e t t e r s ea t lmated = 3

no (rf f e a t u r e s = 18

NE>a-VORD EXIT

u u

iorti Ninber 1 :

> thus the
> than then
> l a t e l o t
> t h i n
> t * k e las t l o s t
> those
> Mhat
> l a t e r taken
> e t t t t »hort t t i r t

!f .L.f^
I '

\A m

Figure A.l - An example screen

The following list of features was exttacted.

APPENDIX A

Feature
ascend
o-loop
wild
ascend

wild
wild
wild
b-loop
wild
o-loop
wild
wild
e-loop
o-loop
wild
wild
t-cross

Height
23
13
13
27
14
0
6
6
6
7
7
6
4
6
6
3

17

Position
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
1

%
100
29
71
99

100
99
95
42
58
41
59

100
90
47
53

100
100

L
1
2
2

26
27
38
39
39
39
48
48
57
65
65
65
78
80

R
2

26
26
27
38
39
48
57
57
65
65
65
65
78
78
80
92

Basic Feature
pen-down

up cusp

down cusp

pen-up

172

F e a t u r e details the type of feature to be looked for in the dictionary.

Height is the scaled vertical position.

P o s i t i o n is the estimated letter position within the word, based on the estimate
of word length and the horizontal position.

% is the weighting associated with the feature.

L and R are the coordinate pair numbers of the start and end of the feature.

These are used to determine which features connect to which other features.

Bas i c F e a t u r e indicates what basic feature (if any) defined this feature.

These features were then combined and any matching words in the diction

ary displayed in ranked order of likelihood. The output list can be seen in figure

A.l under the heading "Matched Words".

A.7. Evaluation and Conclusions

This system expected writing in a style loosely based on the author's own

hand, but most people had few problems in conforming to this style. It could be

tailored to slightly differing styles by installing different coded dictionaries. A

large proportion of users could write and have their script successfully recog

nised, but there were problems with the preprocessing, especially detection of the

base-line of short words and the half-line in non-linear and non-uniform writing.

The writing samples were completely unconsttained in this system. The system

was slow in operation and response time increased with a larger dictionary.

APPENDIX A 173

Despite its limitations, this system served its goal of demonsttating the feasi

bility of cursive script recognition. The underlying methods were, however,

unsuitable for further extension to a more sophisticated system.

Appendix B

Example Processing

This appendix shows the processing of an example word through the ORCHiD
system.

B.l. Preprocessed Data

Figure B.l shows the collected sample after preprocessing and cortection of
any ertors.

pH,HiUI„,l«IIMMIIHIUM<JJI.JIIjami«Bl

Correcting baseline and/ar ha l f l ine
Select uords for correction - touch QUIT box to f i n i sh

>' i k

Figure B.l - Preprocessed data

APPENDIX B 175

B.2. Features Extracted

The script is segmented and features are measured for each segment. These
are shown in table B.l.

L
1
-3
10
34
36
50
51
69
80
93
103
103
105
119

R
2

-10
34
36
50
51
69
80

93
102
103

104
-118
119

XM
-4
5
8
9

10
10

12
16
21
23

-26
-1
6

-12

DISP

-
-
-
5
2
1
2
6
9
7
5
-
-
-

YM
14
15
3
20
11
2
9
1
8
1
3
12
12
12

ANG
124
45

277

90
185
270
90

246
72

292
37

180
0

351

"IN
124
304
270
90

275
270
79

279
37
315
37
180
0

351

"OUT
304
80
90

270
275
90

256
37

315
37

217
0
0

171

AREA
0
0

56
0
0
0

-23
8
8
5
0
0
0
0

MAXD
0
0

14
0
0
0
6
2
6

1
0
0
0
0

THICK
0
0
6
0

-17
0
4
4
1
6
0
0
0
0

ASPCT C
10
_
4
10
250
10
7
20
2
60

250
_
_
-

HORD
0
0
6
0
17
0
4
5
0
6
0
0
0
0

Table B.l - Extracted features

A fuU description of these feature values is given in section 4.8. A brief

description identifying the entries specific to this example is given below.

1-2 Cusp at top of't' (pen-down)

3-10 Short segment which is deleted

10-34 Join between 't' and 'h'

34-69 The letter'h'

6 9-80 Join between 'h' and 'e'

80-93 Loop of the'e'

93-103 Tail of the 'e' (pen-up)

103-119 Cross through the 't'

B.3. Templates Matched

The segment features are compared against the template database and a Ust

of candidate aUographs produced, together with a probabiUty for the match.

APPENDIX B 176

i.2
U.2

0.3
aa2
c.l
e.l
i.l
u.2
0.2
a#2
a#6

6
6
6
7
8
8
8
8
8
9
10

7
8
9
8
9
9
9
10
11
11
11

279
233
146
199
108
196
206
172
129
364
171

i.l 1 2 691
1.1 1 2 1096
t.l 1 2 1318
d.2 1 4 550
ahl 2 3 399
Ihl 2 3 542
1.1 3 4 1426
t.l 3 4 1630
h.l 3 7 539
lal 4 6 128

Table B.2 - Candidate allographs

Table B.2 shows a selection of the allographs matched for the example

word. The first column indicates the template name - "i.l" meaning template 1

for a letter 'i ', "ahl" meaning template 1 for a letter join between an 'a' shape and

an ascender (see figure 5.4). Columns two and three indicate the segment posi

tions of the beginning and end of the allograph within the sample word - the first

allograph "i.l" occupies segment 1, for example. The fourth column is the scaled

match probability for the template - see section B.4 for details of its calculation.

The information that there is a t-cross at the beginning of the word is used to

eliminate any 't' allographs at the end of the word. This ensures that all 't's are

crossed.

The actual candidate allograph list is much larger than this, containing some

450 elements. The letter graph is now consttiicted from this list.

B.4. Letter Graph

A letter graph is dynamically constiucted from the candidate allograph list.

A letter allograph is placed on the graph if a valid letter-join allograph exists

which can precede it and join it to an entty already on the graph. The probability

for die letter allograph is placed with it on the node and the probability for die

letter-join allograph is placed on the connecting arc (see figure B.2). By ensuring

letter/letter-join connectivity at this stage, the graph ttacing routine is much more

efficient.

Match probabilities are calculated for each segment individually. These are

combined by simple multiplication to provide probabilities for larger portions of

the script. This means that the probability for a two segment portion of script will

APPENDIX B 111

364

364

364

<^n
02
129

30

>
364

3-

Figure B.2 - Letter graph

more than likely be less than for one segment. (If each segment matches with

probability 0.3, say, the two segment probability will be 0.3x0.3 = 0.09.) For

efficiency, it is often desirable to ignore candidate allographs with very low pro

babilities. In order to compare these, the probability is scaled by taking the /ith

root, where n is the number of segments. (This is the geometric mean of the pro

babilities.) The fourth column of table B.2 contains this geometric mean (multi-

pUed by 10 000).

B.5. Candidate Words

The letter graph and dictionary ttee are now ttaced simultaneously to pro

vide a list of candidate words. A match probability is calculated for each word

(see below). Figure B.3 shows the output that is presented to the user for

verification. In a practical system, the word 2Jfe-is clearly the most Ukely, and the

other possibilities would not be presented.

The word probability is calculated by multiplying the probabilities for each

individual segment of the word. For the purposes of display to the user, the

geometiic mean is again calculated. This is the first number displayed in figure

B.3. The number in parentheses is the ratio of die actual probability to the proba

bility of the first word in the list. This is the value used to decide whedier more

than one candidate word should be displayed to the user. (Extta candidate words

have been displayed in this example for clarity of explanation.)

APPENDIX B 178

1 T-CrocG0s 0 1-OotG
th« 61S (1.00)
the 347 (0.00)
d1« 2Be (0.00)
Ih 20e (O.OO)
di 134 (O.OQ)

Figure B.3 - Output

For example, the word tho would be made up of tl(1318), join(542),

hl(539), join(199), o2(129). Its probability is therefore calculated as

.1318 X .0542 X .0539^ x .0199 x .0129^ = 2.576 x lO^̂ ^

The geometric mean, multiplied by 10000 is therefore

(2.576x10-^^) '̂̂ ^ X 10000 = 347.6

The probability of any word that is among the 800 most frequently used in

the English language is increased by a small factor, depending on its frequency.

This ensures that more common words will be recognised more often. The proba

bility for the word uie-has therefore been increased, since this is the most likely

word.

A check of the number of diacritical marks in each candidate word is made

to ensure compatibility widi the recognised number of marks. Allowance is

made, however, for ambiguity in the recognition of these marks, hence die

appearance of the word ^ i n the output list.

APPENDIX B 179

B.6. Training

After verification of the cortect word by the user, the personal template data

base can be adjusted to include the new data. This provides an automatic method

for ttaining the system.

Appendix C

Published Papers

Copies of relevant papers published by the author follow.

194

THE ELECTRONIC PAPER PROJECT

D M Ford & Dr C A Higgins E R Brocklehurst
Department of Computer Science National Physical Laboratory

University of Nottingham Teddington
England England

1. INTRODUCTION
The National Physical Laboratory (NPL) has originated and led a coordinated UK research

effort designed to exploit the potential of a novel form of computer interface. This interface
consists of a high resolution, large area, flat panel display overlain with a transparent digitiser
which is activated by a stylus. The combination of such a display and digitiser offers the oppor
tunity to develop a new human-computer interface which subsumes and exceeds the mouse, light
pen and touch panel.

Work has been in progress for five years. A demonstrator has been built which requires
only the natural strokes of pen on paper as its input. Initial experiments with the demonstrator
have shown the tremendous potential of such an interface.

This paper documents the concept of Electronic Paper, together with the hardware develop
ments and ergonomic factors involved. This is followed by a description of the research and
software developments made by the team. The main areas of research currently in progress are
hand-printed character and symbol recognition, cursive script recognition and free-hand editing
of text. Future work will include the detailed study of the ergonomic aspects related to the
device, together with improvements to the hardware.

2. THE CONCEPT OF ELECTRONIC PAPER
Electronic Paper will consist of a flat panel display that can be written on with a stylus.

The movement of the stylus is traced onto the screen, and the gestures interpreted and under
stood. Electronic Paper will be more than an input/output device - it will also include intelli
gence at a functional level. An interaction with the machine will involve pointing to an object,
drawing a symbol or character, or writing. This leads to a very user-natural interface, since
compound actions can be expressed very simply with a few handwritten symbols. For example,
the handwritten instruction to move a paragraph merely requires the gesture of drawing an arrow
from within the paragraph to its destination. With a conventional word processor it is necessary
to specify the beginning of the paragraph, the end of die paragraph, select the move command
from a range of options, and specify the destination - a large amount of data must be supplied for
what should be an obvious action.

Electronic Paper offers the potential for people to interact with a machine without the need
for training or recourse to instruction manuals. The manual for Electronic Paper will consist of
just a small number of pages, with pictures of the few symbols necessary to operate the device.

There are several obvious uses for Electronic Paper, particularly in an office environment.
• The interface can be used as a jotting pad for notes and sketches. These can then be tidied

up, sent electronically to another site for corrections or annotations, and returned for print
ing or inclusion in other documents.

• It can be used for the interactive manipulation and annotation of digitaUy encoded docu
ments and images.

• The executive working outside normal office hours can produce documents ttiat would nor
mally be sent to a secretary.

• Two devices connected to each other via a telephone line could be used for remote, on-line,
visual communications, enabling distant parties to converse and simuUaneously iUustrate
their ideas with free-hand sketches.

- 195

3. HARDWARE DESIGN
The hardware for Electronic Paper relies on two crucial pieces of technology. The first, the

transparent digitiser, has already been developed sufficientiy to be incorporated in a flat panel
display. The second is the flat panel display itself The Japanese efforts to develop flat screen
TV should ensure their availability at compedtive prices.

The PAD (Pen And Display), a prototype, has been built which demonstrates the potential
of the interface. The hardware was specified as the result of joint discussions between NPL, the
Central Computer and Telecommunications Agency (CCTA) of the British Government, and
DataSystems UK Ltd. It has been designed and built by DataSystems UK Ltd.

The PAD consists of a flat AC plasma display panel, the Thomson TH7617, and a Scriptel
SPD-1212 transparent digitiser. These are controlled by a Motorola 68000 processor. The
display is 310mm (12 in) square, witii a resolution of 3.4 pixels per mm (86 per inch). The
digitiser has a resolution of 0.025mm (0.001 in) and an accuracy of 0.64mm (0.025 in). The
prototype is at present desk-bound but it is hoped that the final product wiU be about 300mm (12
in) square, and 50mm (2 in) deep. Future designs should be light enough to be carried or used on
the lap. The size and weight is very dependent on current flat screen technology.

The prototype operates in a stand-alone (executive toy) mode, where it simply mimics the
operations of pen on paper, or it can be driven by a host computer via a serial line. Work is in
progress to link the PAD directiy to a SUN workstation, via the VME bus. This will enable the
PAD to act as another window to the SUN operating system, or to replace the current CRT and
mouse completely.

4. ERGONOMIC FACTORS
From initial observations of volunteers using the PAD it appears that this interface has

considerable potential. Most users can get used to using the device after just a few minutes of
practice, and are soon able to manipulate the stylus with considerable accuracy.

Problems that must be considered before construction of a final product include parallax,
reflection, stylus design, screen colour, contrast and the presentation of the device itself and the
information on the screen. The parallax problem is the most severe at present due to the con
stmction method of the PAD. It was built using "off-the-shelf components. The digitiser is
6mm (0.24 in) thick and the display glass with filter is 9mm (0.36 in) thick, leading to a total
glass thickness of about 15mm (0.6 in) between the display pixels and the surface. Conse
quently, standing directly over the display increases the accuracy of pointing. The thickness of
the digitiser could be reduced, since it was originally designed to be self-supporting.

Some work has already been done on the problems of parallax on a similar device, see
Tappert et al.^

5. SOFTWARE
Work is in progress on many of the modules concemed with the project, at several UK sites.

These include NPL, and the Universities of Nottingham and Essex. Several programs have been
completed and transferred onto the PAD for testing, including a free-hand text editor, for cortec
tion of documents, and table and histogram drawing programs. Projects are underway research
ing into hand-printed character recognition and cursive script recognition. When all of the indi
vidual modules are complete, they wiU be fused together by a control program which will take
the input data stream of coordinates and distinguish between cursive script, single characters,
punctuation, symbols, editing cortections or diagrams.

5.1. Free-hand Editing
Two editors have been developed at present. A simple editor was developed at Trent

Polytechnic for small corrections to unrecognised cursive script, for example to join incorrectiy
segmented words. The second, developed at NPL, is a more powerful general text editor for
correction of typescript. This recognises commonly used correction marks, as specified by BSI
standard BS5261(1976), and makes the necessary adjustments to the text. Thus, for example, a
word may be deleted simply by striking it out with a line.

- 196-

5.2. Tables and Histograms
Programs have been developed which enable tables and histograms to be roughly sketched

free-hand on the PAD. These are then tidied up, lines are straightened, comers joined, and after
editing with simple deletion and insertion symbols, the final diagram saved to file.

5.3. Hand-printed Character Recognition
Work is continuing at Essex University on recognition of any single character on the

QWERTY keyboard, together with the option of a small number of user-definable characters, for
example mathematical symbols.

5.4. Cursive Script Recognition
This is being developed at two sites. NPL are developing the pre-processing and feature

extraction routines. Nottingham University are researching into whole word recognition, based
on the extracted features, and dictionary lookup techniques. Much work is being channelled into
appropriate feature set selection to find a compromise between easily recognised features at the
feature extraction level, and features which are of most use to distinguish between words at the
dictionary lookup level. See Higgins.^

Most researchers into cursive script recognition use a database of samples on which to test
their routines. This database is usually collected on an opaque tablet, with either a real time
visual check on a VDU screen, or is checked after coUection. This has proved inconvenient and
cumbersome, the subject requires a substantial practice time with the equipment, and the data so
coUected is unnatural and unsaUsfactory. The interactive feedback provided by Electronic
Paper, with the "ink" displaying the digitised image on the writing surface, means that the
volunteer can dramatically improve the standard of his/her writing. In the near future we will be
implementing a cmde recognition system on the PAD. This will then be used to carry out experi
ments to discover to what extent a subject will adapt his/her handwriting style to assist the
machine in recognition. For example, if the subject writes the word "had", and the computer
recognises this as "naa", he/she may increase the height of ascenders. If this correction comes
naturally, it will increase our chances of successful recognition.

6. CONCLUSIONS
NPL has shown the feasibility of Electronic Paper as an input/output device. Several

modules are complete and are being field-tested; the recognition projects are making progress.
The natural way in which a user can interact with the computer holds great potential for future
developments, especially in a modem, electronic office environment.

References

1. TAPPERT, C. C , FOX, A. S., KiM, J., LEVY, S. E., AND ZIMMERMAN, L. L., "Handwriting
Recognition on Transparent Tablet Over Flat Display," SID Intemational Symposium, pp.
308-312, May. 1986.

2. HIGGINS, C. A., "Automatic Recognition of Handwritten Script," PhD Thesis, CNAA,
1985.

This paper was presented at the Third Intemational Symposium on Handwriting and Com
puter Applications, Montreal 1987.

Computer Processing of Handwriting
Eds. R. Plamondon & C. G. Leedham
© World Scientific Publishing Co., 1990, pp.. 291-312

A TREE-BASED DICTIONARY SEARCH TECHNIQUE AND COMPARISON
WITH N-GRAM LETTER GRAPH REDUCTION

DAVID M FORD and COLIN A FnGGINS

Department of Computer Science, University of Nottingham, Nottingham NG7 2RD,United
Kingdom

Segmentation methods are commonly used in automatic handwriting
recognition systems. Pre-processed input data is divided into smaller
segments, which are then recognised, perhaps by comparing with pre
defined templates, and these recognised pieces recombined to form the
required output. Recognition of any one segment is often ambiguous,
resulting in a substitudon set of possible templates. The segmentation itself
may also tie ambiguous.

Higher level context can be used to resolve some of this ambiguity by
defining a set of valid output which can he expected from the system. This
context can be applied at various levels ranging from legal letter sequences,
to valid words, to correct sentence semantics. The letter and word context
can be applied using a purely computational approach, whereas the
sentence level semantics require techniques from the field of Artificial
Intelligence.

This paper discusses the application of letter and word context, and in
particular demonstrates a dictionary lookup technique which is applicable
to many forms of automatic script recognition. A comparison is made
between this method and a binary M-gram approach.

1. Introduction

In many syntactical and statistical handwriting recognition systems, unique
classification is impossible and an ambiguous substitution set may be
produced. This ambiguity can often be resolved if contextual information at a
higher level can define a limited set of valid output. A dictionary or lexicon
of this information can then be constructed, and the Ust produced by the
recognition process reduced and validated. Often very large substitution sets
are produced which need to be checked quickly and efficiently against a large

291

292 D. M. Ford and C. A. Higgins

dictionary. This is especiaUy the case with cursive script recognition systems.

A number of different techniques have been proposed to make use of
contextual information.

Statistical information about the transition probabilities between letters can
be used to remove or reduce unlikely letter sequences and produce the
required output (e.g. Neuhoff (1975); Riseman and Hanson (1974); Hull and
Srihari (1982)). This is often referred to as a bottom-up technique. These
techniques are usually very efficient, but do not guarantee valid output
words.

Another approach assumes that the written word comes from a fixed
dictionary and the nearest matching word provides the required output (e.g.
Duda and Hart (1968)). This is often referred to as a top-down technique.
These techniques always produce a valid output word but can be inefficient to
implement.

A number of hybrid methods have been suggested to balance out the
advantages and disadvantages of the two approaches (e.g. Srihari et al. (1983);
Shinghal and Toussaint (1979)). Some of these techniques are briefly
discussed below.

A technique incorporating the advantages of both top-down and bottom-up
approaches is presented here. This appears to be ideally suited to input data
which can be represented as a directed letter graph, for example as is produced
by cursive script or character recognition systems. Each node of the letter
graph contains information concerning the match of a segment to a particular
template, together with links to any possible succeeding nodes. The data
structures used for the dictionary and graph are directly comparable, leading
to a very efficient technique. An algorithm is designed and implemented,
and experiments are reported which investigate the characteristics and
suitability of this technique. Different internal structures for the dictionary
are discussed and compared.

Experiments have been carried out to compare the performance of this
algorithm with a method which has been used previously to reduce the letter
graph using binary M-grams. Results are presented which show that the new
technique is usually much faster than a 4-gram system, and a manifold
increase in performance is achieved with very large graphs.

A Tree-Based Dictionary Search Technique and Comparison with N-Gram 293

2. Typical Output from Segmentation Based Text Recognition
Systems

There are two main approaches to the problem of text recognition. The first
involves attempting to recognise a complete word as a whole unit - whole
word recognition. The second involves segmenting the word into smaUer
units which are then recognised - segmentation based recognition. Only the
second of these will be discussed in this paper.

A typical segmentation based text recognition system operates in several
distinct stages. Firstly, the raw data, whether it be a scanned image or a time-
ordered sequence of coordinates from an on-line digitising tablet, is pre-
processed to smooth, straighten and normalise the script. Secondly, a list of
possible segmentation points is produced and thirdly, features are extracted
from the segments which allow recognition to take place. The segmentation
and subsequent recognition may be achieved at the letter level, or at the sub-
letter level, where more than one segment may be combined to produce a
single letter.

The letter-matching routine can fall into one of two main categories:

(a) those which produce a single word as output consisting of the most
Ukely letters which span the written sample;

(b) those which produce a list of possible letters in each segmentation
position together with a weighting of their likelihood.

Recognition systems belonging to type (a) make a binary decision at this
stage as to where letter segmentation occurs - we will refer to this as a fixed
letter-segmentation. Those belonging to type (b) may retain aU of the possible
segmentation points for future use and will be referred to as ambiguous
letter-segmentation (no decision has been made at this stage as to exactly
where the letters occur in the written word).

Example

With a fixed letter-segmentation recognition system, the most likely word is
produced as output. For example, if the word dog was presented to the sys
tem, the letter matching algorithm may make a mistake, for instance, in the
second letter position and produce the output d-a-g. It is then the task of any

294 D. M. Ford and C. A. Higgins

contextual post-processor to correct the output and produce the most likely
real word.

An ambiguous letter-segmentation system produces a list of possible
candidates in each segment position, together with a certainty weight to
indicate the closeness of the match. For example, if the word dog was
presented to the system, it may produce two options for the second character,
perhaps an 'a' with high certainty weight of 60 or an 'a' with a lower certainty
weight of 40.

In cursive script recognition systems, individual characters are permitted to
run into each other, with the problem that segmentation of the script into
letters is ambiguous. For example, if the word dog is written cursively, there
is the possibility that the word may be clog, where the segmentation after the
first letter is ambiguous.

One way to represent the output from such a system is as a directed graph
(Hayes (1980); Higgins and Whitrow (1985); Peleg (1979)). Figure 1 shows a
simplified letter graph that might be produced by a recognition system acting
on the input word dog. The '©' symbol represents the start of a word and the
'#' symbol represents the end of a word. The graph is traversed from left to
right, yielding a list of all possible combinations of letters that the original
data might represent, i.e. {dcig, dog, dag, clcig, clog, clag}. The certainty
weights can be attached to each letter on the graph and combined as the graph
is traced to produce a ranking for each word that is produced.

Figure 1 - A simple letter graph

A Tree-Based Dictionary Search Technique and Comparison with N-Gram 295

3. Use of Contextual Information from Dictionary Sources

3.1 Fixed Letter-Segmentation

Most of the approaches to using contextual information have been based on
constructing a post-processor for the output from fixed letter-segmentation
recognition systems, ie the output from the recognition stage is a single, most
likely word. The contextual disambiguation process takes a word, consisting
of the most likely letters that span the word, as its input and returns the most
likely written word as its output. There are several techniques which have
been widely reported, the most common are listed below.

3.1.1 N-Gram Techniques

The probability of any individual ?z-letter sequence occurring can be
calculated by examining large pieces of text. These probabilities can then be
used to calculate the most likely written word given the output word from
the recognition system, (see Riseman and Ehrich (1971)).

3.2.2 Viterbi Algorithm

The Viterbi Algorithm (VA) takes the output word from the recognition
system and, using statistical information on the sequence of letters in English
and likely errors from the recognition system, calculates the most likely input
word. Viterbi (1967) first described the algorithm. Forney (1973) provides a
thorough tutorial introduction to the theory behind the algorithm. Neuhoff
(1975) described how it could be applied to the problem of text recognition.
Various authors have discussed its application, including Riseman and
Hanson (1974) and Hull and Srihari (1982) who compared its performance
against a binary n-gram approach.

The VA makes use of a confusion matrix of a priori probabilities observed
from the recognition system, together with the transition probabilities
between characters. In other words, the probability that a given letter may be
mis-recognised as another letter is calculated and stored, together with the
probabiUty that it can be preceded or foUowed by any other character.

A 26 x / node trellis is constructed, where / is the length of the word. Unk
ing every letter with every other letter (see Figure 2). On the nodes of the trel-

296 D. M. Ford and C. A. Higgins

lis are the confusion probabilities, and on the arcs are the transition
probabilities. [Notation: The confusion probability that a written letter X will
be mis-recognised as a Y is written P(X I Y). The transition probabiUty tiiat a
letter X may be followed by a letter Y is written P(X - Y).] By tracing a path
through this trellis, and combining the probabilities on the arcs and nodes
included in tiie path, the probability that the traced word could have been the
original input word can be calculated. The algorithm finds the most Ukely
path through this trellis, so yielding the most likely interpretation of the
input word.

input: d a g

, ^ P(a-a) ^ P(a-a)
P(a I d)) ^ --^P(a I a)) ^ - j ^

Output:

Figure 2 - Viterbi Algorithm Trellis

3.2.3 Dictionary Viterbi Algorithm

The VA produces the most likely interpretation of the written word, but
does not guarantee that the word exists. The Dictionary Viterbi Algorithm
(DVA), developed by Srihari et al. (1983), is an improvement on the VA
making use of a simultaneous full dictionary search, in place of the transition
probabilities, to ensure that only a valid word is produced. (A similar
technique was used by the HARPY speech understanding system, using words
and sentences in place of letters and words, see Lowerre and Reddy (1980).)
The dictionary lookup uses a trie structure to store the dictionary. This is
described in Section 3.2.2.

A Tree-Based Dictionary Search Technique and Comparison with N-Gram 297

3.1.4 Modified Viterbi Algorithm

Shinghal and Toussaint (1979a) describe another variant of the VA, caUed
the Modified Viterbi Algorithm (MVA). Here a heuristic depth of search d is
set by the user so that only the d most likely probabilities in each letter
position are checked. The computational overheads of the VA are thus
reduced, as only adxl trelUs needs to be traced, but the performance degrades
as d is reduced.

3.2.5 Predictor-Corrector Algorithm

Shinghal and Toussaint (1979b) further improve on the MVA by combiiung
it with an efficient dictionary lookup algorithm (DA). This is called the
Predictor-Corrector Algorithm (PCA).

The dictionary is partitioned into sub-dictionaries of same-length words.
Each sub-dictionary is then sorted by value, where the value is calculated by
combining the transition probabilities of the letters of the word. This value
was found to be nearly always unique for any sub-dictionary. A binary search
is used to see if the output word from the MVA exists in the dictionary. If so,
then that is taken as the required output. If not, then the DA is employed. A
score is calculated for the nearest / words to where the output word was
expected. / is a heuristic set by the user. The score is calculated by combining
the transition probabilities between the letters with the confusion
probabilities. The word with the largest score is the required output.

Shinghal (1983) describes a further enhancement to the PCA, where the n
most likely words from the MVA are checked in decreasing order to see if
they exist in the dictionary. If none of them exist, the DA is employed. The
value of n is determined by experiment.

3.2 Ambiguous Letter-Segmentation

The problem with aU of the systems based on the VA is that they do not
allow for incorrect letter segmentation. For example if the word dog is mis
recognised as clog then the algorithm cannot produce the correct word and
the system will fail. An ambiguous letter-segmentation retains all of the
possible segmentation points within the letter graph representation.

For an ambiguous script recognition system, the contextual disambiguation
process takes a letter graph as its input, and produces as its output a list of

298 D. M. Ford and C. A. Higgins

words which have been checked, in some way, against a lexicon of dictionary
information. One simple way to do this is to trace every path through the
graph and check each resulting word against a list of valid words. This is not
practical since the letter graph is usually very large with many paths. Even
the most efficient searching algorithms will take a significant amount of
processing time to verify a very large list of words. (Commercial spell-
checking software cannot be used since, for efficiency, the algorithms they
employ usually rely on the fact that the input words will either be correct, or
very close approximations to real words. Completely random sequences of
letters may often be accepted as valid words, eg UNIX+ spell.) A much more
efficient technique is needed.

Two main practical techniques are described and compared below.

3.2.2 Binary N-Gram Graph Reduction

A list of valid n-letter sequences is produced by analysing a dictionary of
allowable words. This list can be used to reduce the size of the letter graph by
removing invalid portions. Section 7.1 gives details of one such method.

3.2.2 Dictionary Tree

A dictionary or word-list is restructured in the form of a tree, based on the
trie structure suggested by Knuth (1973). This is shown pictorially in Figure 3,
where the tree represents the word list {a, an, and, at, be, bet, but, by}. Each of
these words can be found by tracing a path from left to right. The '@' symbol
represents the start of a word and the T symbol represents the end of a word.

The trie can be used as an efficient structure to store a dictionary for a
variety of applications, but is especially applicable for contextual post
processing of script recognition systems. The DVA proposed by Srihari et al.
(1983) used a dictionary trie at the same time as the Viterbi lattice is traced to
guarantee that a valid word is found. Bozinovic and Srihari (1982) combined
a stack-decoding search algorithm with a frze-structured dictionary with a
small dictionary of 1027 words. Bozinovic and Srihari (1989) used a similar
approach but added a depth of search heuristic to Umit the computation
needed.

^ UNIX is a trademark of Bell Laboratories

A Tree-Based Dictionary Search Technique and Comparison with N-Gram 299

Figure 3 - Dictionary Tree - Pictorial Representation

Our method shows that a letter graph, such as that shown in Figure 1, can be
efficiently traced using a recursive procedure. Such a procedure might take
the head-node of the graph on which it is to act as its parameter and call itself
recursively, passing each sub-graph that the head-node points to as a
parameter. This will carry out a depth-first trace of the graph. Using a tree

300 D. M. Ford and C. A. Higgins

Structure, the dictionary can be traced simultaneously. As each arc of the
letter graph is traced, if the corresponding arc exists in the dictionary tree,
then the word is valid up to that point. When the end-of-word marker is
reached in the graph and tree, the word tiaced out exists in the dictionary. An
invaUd word in the letter graph will be rejected as soon as an arc cannot be
found in the dictionary tree. It is not necessary to continue tracing the graph
past this point. This is advantageous since it limits the time taken to search
the dictionary, and allows the dictionary to be very large without seriously
reducing the performance.

All valid words that exist in the letter graph can be produced in this way
with a weighting of their likelihood. No information is thrown away at this
stage which may prove useful later on, for example, if more than one
recognition routine is used in parallel and the outputs combined.

4. Computer Representation of the Dictionary Tree

A dictionary structured in this way can be accessed very quickly. It has the
disadvantage of requiring a large amount of memory, since the data structure
remains resident while the program is running. This is probably the reason
for its rejection in the past, but as computer memory is becoming larger and
more readily available this is no longer a major problem. We consider a
number of different ways to construct this data structure within a computer
program.

4.1 Discussion of Possible Data Structures

Knuth (1973) suggests a static data structure for the dictionary tree. This
consists of a flag to indicate whether a word can end here and an array of 26
element integer arrays together with 26 boolean flags. Each column position
points to the column containing the next letter in a valid word, and a
corresponding flag to indicate if a word can end at that point. This array is
very sparse and would take up a large amount of memory. Nowadays,
dynamic memory allocation allows more efficient data structures to be used.

A simple dynamic data structure might consist of a tree of linked nodes,
where each node contains 26 pointers to possible successor nodes (see
Figure 4). In this particular layout, the letter is implied by the position of the

A Tree-Based Dictionary Search Technique and Comparison with N-Cram 301

pointer in the array. Such a structure will be extremely sparse and have huge
memory requirements.

Figure 4 - Dictionary Tree - Logical Representation

A more compact dynamic structure is shown in Figure 5. In this diagram
each large square represents a node of the tree consisting of a key letter, at a
certain level, and two pointers. The upper pointer points to a list of letters, at
the next level, that are permitted to follow this letter. The lower pointer
points to the remaining list of letters, at the current level, which can occupy
the same letter position. This diagram is a representation of the tree shown
in Figure 3.

Figure 6 shows an internal representation for the letter graph in Figure 1. A
node consists of a letter and a pointer to a list of arcs which, in turn, point to
possible successor nodes.

302 D. M. Ford and C. A. Higgins

@

t
-

f ^

f ^

t
#-^

t —

f ^

t
#1—

t
y -

f ^

Figure 5 - Dictionary Tree - Physical Implementation

Nodes: r@

Arcs:

Figure 6 - Letter Graph - Physical Implementation

A Tree-Based Dictionary Search Technique and Comparison with N-Gram 303

4.2. Possible Enhancements

The final choice of internal representation involves consideration of the
trade off needed between access speed and memory requirements. There are
several different structures which can be used depending on the most
important criterion.

4.2.2 Increased Speed of Access

We define the list of letters, at the next level, which can follow a particular
letter in the dictionary tiee as its sub-list. The search method for a structure
similar to Figure 5 can be speeded up by reducing the time taken to search for
a letter in a sub-list. The sub-list of letters can be ordered in several ways. If
the letters are in a random order, it is necessary to search to the end of the list
if the key cannot be found. However, if the ordering is known it is only
necessary to search as far as the expected position of the letter.

Several different orderings are possible. Alphabetical ordering has the
advantage of allowing the ASCII code to imply position in a list. Sorting on
frequency of occurrence in English, or frequency of generation from the
recognition system may produce a faster search, but may require extra
memory to store a representation of the order. Actual speed will be
dependent on the letter graph itself; a graph which contains many valid
words will take a different amount of time to trace than a similarly sized
graph with many invalid words. For example, a list optimised for finding a
commonly occurring letter will not be optimised to show that an infrequent
letter is not present in fact, it wUl be the worst possible ordering.

4.2.2 Reduced Size of Data Structure

The size of the data structure can be reduced by using tail-end compression.
If the end of a word is unique and is not common with any other word, then
the dictionary structure can be reduced by constructing a special end-of-word
node which contains the rest of the word as a string, without the need for
extra nodes and pointers (see Figure 7). The disadvantage of tiiis structure is
that the dictionary cannot easily be maintained. For example, to add an extra
word may involve unpacking the tail of an existing word, adding the new
word, then re-packing the two new tails. Also, since the code needed to
search a tail wiU be different to that needed to search the tree, switching
lookup code would degrade the speed of lookup.

304 D. M. Ford and C. A. Higgins

^) \ '

F\r

> •

©<<
t#

(^y<^

ut#

y#

d#

t#

Figure 7 - Dictionary Tree - Tail End Compression

4.2.3 Improved Performance

Our technique was originally developed for use as a post-processor for a
cursive script recognition system. Often handwritten script samples have
very poor quality sections where either the word has been written badly, or
has been poorly digitised. A recognition system may not be able to identify, in
any way, what has been written in these sections and may insert a ivild card,
representing every possible character, into the letter graph in that place.
Alternatively, it may be clear that a segment has, for example, a descender, but
no other information is obvious, so a descender subset wild card, representing
every letter with a descender, could be inserted. If the poor section occurs at
the end of the word, the performance of the tree structure described above
will not be adversely affected, since most of the paths through the letter graph
will be rejected before the highly ambiguous section is reached. However, if it
is at the beginning of the word, then there will be a large amount of
ambiguity at the beginning of the graph, resulting in a large amount of wasted
computation.

If the dictionary tree was also structured in reverse, starting at the end of
words and working towards the beginning, it would be possible, in these

A Tree-Based Dictionary Search Technique and Comparison with N-Gram 305

cases, to verify the letter graph backwards, and so speed up the process.
Similarly, if both ends of the original data sample are poor, it may be possible
to work from the middle outwards. An ideal data structure might have
multiple linkages, starting at each letter position, so that the dictionary search
would always begin at the least ambiguous part of the graph. It is intended
that the properties of such a structure will be investigated in future
implementations.

It should be noted that a dictionary lookup system based on a letter graph
will fail if the correct letter is not in the letter graph hence the need for wild
cards when no letters are obvious candidates. A fixed letter-segmentation
recognition system does not suffer from this problem since it is possible to
change one letter to another.

5. Implementation Selected

For our implementation, we initially chose a simple approach, for ease of
coding, to ascertain whether this data structure was suitable in practice. The
data structure is an exact representation of Figure 5. Lists are ordered
alphabetically, and the tree is linked only from start to finish. It was
discovered that its performance and size were perfectly adequate for our
requirements, even with very large ambiguous letter graphs.

To test the performance of this implementation, a 210,000 word dictionary
was used. This is probably much larger than would be needed in a practical
system. A substitution set was used to generate simulated letter graphs of
possible output from typed input words. A test set of 2,100 letter graphs was
verified using the system running on a SUN 3/160 with 8 Mbytes of main
memory, timeshared with other users but with light loading. The average
real time needed per word was 0.45 seconds, and the actual CPU time used by
the system averaged 0.19 seconds per word. In a practical system the lookup
process would be quicker, since the times quoted above include routines to set
up the data structure for the dictionary, to time the program and to calculate
and print various analytical results.

6. S ize of Data Structure

The size of the dictionary data structure can be measured by counting the
number of nodes in the tree. Experiments have been carried out using differ-

306 D. M. Ford and C. A. Higgins

ent sized word lists to investigate the effect of dictionary length against data
structure size. As can be seen from the graph in Figure 8, this is roughly a
linear function of dictionary size.

Number
of

Nodes
(000$)

800-

600-

4 0 0 -

200-

1^
50 100 150 200

Number of Words
(000s)

Figure 8 - Size of Data Structure vs. Dictionary Size

For example, it seems that a dictionary of 60,000 words will probably be
sufficient for a usable script recognition system. (This would allow for a
vocabulary of about 20,000 root words with plurals and verb endings.)
Assuming that a node consists of a character and two pointers, it can be seen
from the graph that such a dictionary would require approximately 2.4 Mbytes
of memory in our implementation. This is not an unreasonable amount of
memory to expect in modern computer workstations.

The size of the data structure for a particular dictionary is dependent on the
compactness of the dictionary, ie whether the words have common roots.
Adding a word which has the same root as a word already in the dictionary
increases the size by less than adding a unique word. This means that the
dictionary can contain all participles of verbs, plurals etc without drastically
increasing its size, avoiding the need to construct these words by a rule-
driven system.

A Tree-Based Dictionary Search Technique and Comparison with N-Gram 307

To investigate the effect of compactness on dictionary size, two sub-
dictionaries of 21,000 words were selected from a word list of 210,000 words;
one by selecting the first word from each group of 10, the other by selecting
the first 10 words from each group of 100. As expected, the first of these was
less compact and used 141,138 nodes, the other more compact dictionary used
only 98,981 nodes.

7. Comparison with Binary 4-Gram Graph Reduction

7.1 The Graph Reduction Process

This technique makes use of the existence or nonexistence of four-letter
sequences in English. Higgins (1985) reported that four is the ideal length of
gram to use, since only approximately 5% of 4-grams are valid in English, and
the number of possible grams, 26̂ ^ = 456,976, can be reasonably stored as a
binary array occupying just under 56 Kbytes of memory. A much larger
percentage of 3-grams are valid, and 5-grams would require about 1.5 Mbytes
of memory for the binary array without much gain in context.

The letter graph is supplemented by adding an extra start and stop node at
the beginning and end of the graph. This is so that the opening two and three
letter sequences can be checked using the same 4-gram approach.

The graph reduction process can be implemented in many different ways,
see Whitrow and Higgins (1985). We have selected an efficient technique,
which uses a similar letter graph structure and tracing algorithm to the
dictionary tree search algorithm, for the purposes of comparison. This
technique involves recursively tracing each path through the letter graph,
maintaining pointers to the last four letters accessed. At each step the current
four letter sequence is compared against the list of valid 4-grams. If the
sequence is valid, then the arcs connecting tiie letters are marked. The three
arcs are marked differentiy depending on which letters of the sequence they
connect. An arc which has been in each of the three connecting positions of a
four letter sequence is marked as used. After the traversal is complete, the
graph is stripped of aU unused links, the arc-markings are cleared, and the
process repeated until no more links are removed. In this way a much
reduced letter graph is produced, which can be more readily checked against a
dictionary using a straightforward approach.

308 D. M. Ford and C. A. Higgins

7.1.1 Speed of Reduction

The speed of graph reduction for the technique described above is
dependent on the number of possible paths through the graph, which is in
turn dependent on the length of the word and on the confusion level of the
letter graph. This is defined to be the number of letter options at each letter
position. The graph in Figure 9 shows how the time taken for the reduction
greatiy increases as the confusion level increases. The graph shows the time
taken when reducing various possible letter graphs generated from the input
word "test", with increasing ambiguity at each letter position.

4000-

3000-

2000-

1000-

0-

Time
(ms)

10
Confusion Level

Figure 9 - 4-Gram Reduction Lookup Time vs. Confusion

7.2.2 Output

4-gram graph reduction produces a much reduced letter graph, but this
will usually still contain invalid words when all of the paths are traced. In a
sequence of letters each individual gram may be permissible but this will not
guarantee that the whole word is valid. Also, an arc in the letter graph can
only be deleted if no valid gram uses it. A remaining arc will then still allow
invalid grams to pass through it. (Figure 10 shows a sub-graph of a letter
graph, where the gram ebcf may be invalid but abed valid. The arc marked
'*' must therefore remain in the graph, so the invalid gram will still be pre-

A Tree-Based Dictionary Search Technique and Comparison with N-Gram 309

sent when the graph is traced.) It is therefore still necessary to check each
word against a dictionary to guarantee vaUdity. This will incur the overhead
of additional processing time.

Figure 10 - Arc Deletion

Time
(ms)

4000-

3000-

2000-

1000-

0 -

. 4-Gram

Tree

"T"
10

Confusion Level

Figure 11 - Comparison - Lookup Time vs. Confusion Level

310 D. M. Ford and C. A. Higgins

7.2 Speed Comparison with Dictionary Tree

The graph in Figure 11 shows the time taken for the graph reduction and
the dictionary lookup, plotted against confusion level of the input graph,
again for the word "test". It can be seen that with very small graphs the two
techniques are comparable, but, as the ambiguity increases, the dictionary
lookup is considerably faster. It should also be remembered that the 4-gram
output still needs to be verified against a dictionary.

8. Conclusions

Whereas a large amount of work has been done in the field of contextual
post-processing of text recognition systems, not many of the techniques
suggested successfully address the problems caused by ambiguous letter-
segmentation, which are common with cursive script. The tree-based
dictionary lookup technique described here is an ideal application of letter
and word context for the output from text recognition systems and allows for
ambiguous letter-segmentation of the script. It is extremely fast and efficient,
can be used with a large dictionary or word list and produces all possible
output words, with no loss of information that can occur when arbitrary cut
offs are applied. The dictionary contains every word which can be recognised
by the system, without the need for prefix and suffix generation. It is simple
to add extra words to the dictionary without greatly increasing its size. The
technique is especially appropriate for very ambiguous letter graphs, typically
produced by cursive script recognition systems. WUd card substitution can be
used in areas where the script is very poorly written or digitised.

The performance is superior to «-gram graph reduction techniques, and is
in fact a super-set of the n-gram approach, since all possible values of n are
effectively applied simultaneously.

References

Bozinovic, R. and Srihari, S.N., "A String Correction Algorithm for Cursive
Script Recognition," IEEE Transactions on Pattern Analysis and Machine
hitelligence 4 no. 6, November 1982, pp. 655-663.

A Tree-Based Dictionary Search Technique and Comparison with N-Gram 311

Bozinovic, R. and Srihari, S.N., "Off-Line Cursive Script Word Recognition,"
/£££ Transactions on Pattern Analysis and Machine Intelligence 11 no. 1,
January 1989, pp. 68-83.

Duda, R.O. and Hart, P.E., "Experiments in the Recognition of Hand-Printed
Text: Part II - Context Analysis," AFIPS Conference Proceedings, 33, 1968, pp.
1139-1149.

Forney, G.D.Jr., "The Viterbi Algorithm," Proceedings of the IEEE 61 no. 3
March 1973 pp. 268- 278.

Hayes, K.C., "Reading Handwritten Words Using Hierarchical Relaxation,"
Computer Graphics and Image Processing 14 1980 pp. 344-364.

Higgins, CA. and Whitrow, R., "On-line Cursive Script Recognition," First
IFIP Conference on Human-Computer Interaction - INTERACT 84, 1985, pp.
139-143.

Higgins, C.A., "Automatic Recognition of Handwritten Script," PhD Thesis,
CNAA, 1985.

HuU, J.J. and Srihari, S.N., "Experiments in Text Recognition with Binary n-
Gram and Viterbi Algorithms," IEEE Transactions on Pattern Analysis and
Machine Intelligence 4 no. 5 September 1982 pp. 520-530.

Knuth, D.E., in Sorting & Searching, The Art of Computer Programming, 3
Addison-Wesley, 1973, pp. 481-487,.

Lowerre, B. and Reddy, R., "The HARPY Speech Understanding System," in
Trends in Speech Recognition, ed. W. Lea, 1980, pp. 340-360.

Neuhoff, D.L., "The Viterbi Algorithm as an Aid in Text Recognition," IEEE
Transactions on Information Theory March 1975 pp. 222-226.

Peleg, A., "Ambiguity Reduction in Handwriting with Ambiguous
Segmentation and Uncertain Interpretation," Computer Graphics and Image
Processing 10 1979 pp. 235-245.

Riseman, E.M. and Ehrich, R.W., "Contextual Word Recognition Using
Binary Digrams," IEEE Transactions on Computers 20 no. 4 April 1971 pp.
397-403.

Riseman, E.M. and Hanson, A.R. "A Contextual Post-processing System for
Error Correction Using Binary n-grams," IEEE Transactions on Computers, 23
no. 5 1974 pp. 480-493.

312 D. M. Ford and C. A. Higgins

Shinghal, R. and Toussaint, G.T., "Experiments in Text Recognition with the
Modified Viterbi Algorithm," IEEE Transactions on Pattern Analysis and
Machine Intelligence 1 no. 2 1979a pp. 184-192.

Shinghal R. and Toussaint, G.T.,"A Bottom-up and Top-down Approach to
Using Context in Text Recognition," International Journal of Man-Machine
Studies 11 1979b pp. 201-212.

Shinghal, R., "A Hybrid Algorithm for Contextual Text Recognition," Pattern
Recognition 16 no. 2 1983 pp. 261-267.

Srihari, S.N., Hull, J.J. and Choudari, R., "Integrating Diverse Knowledge
Sources in Text Recognition," ACM Trajisactions on Office Information
Systems 1 no. 1 January 1983 pp. 68-87.

Viterbi, A.J., "Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm," IEEE Transactions on Information Theory
IT-13 April 1967 pp. 260-269.

Whitrow, R. and Higgins, C.A., "The Application of n-Grams for Script
Recognition," Proceedings of the Third Internatiotial Symposium on
Handwriting and Computer Applications, Montreal, Canada, July 1987, pp. 92-
94.

