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Abstract 

Computer technology has rapidly improved over the last few years, with 
more powerful machines becoming ever smaller and cheaper. The latest 
growth area is in portable personal computers, providing powerful facili
ties to the mobile business person. Alongside this development has been 
the vast improvement to the human computer interface, allowing non-
computer-literate users access to computing facilities. These two aspects 
are now being combined into a portable computer that can be operated 
with a stylus, without the need for a keyboard. Handwriting is the obvious 
method for entering data and cursive script recognition research aims to 
comprehend unconstrained, natural handwriting. 

The ORCHiD system described in this thesis recognises connected 
handwriting collected on-line, in real time, via a digitising pad. After 
preprocessing, to remove any hardware-related errors, and normalising, 
the script is segmented and features of each segment measured. A new 
segmentation method has been developed which appears to be very con
sistent across a large number of handwriting styles. 
A statistical template matching algorithm is used to identify the segments. 
The system allows ambiguous matching, since cursive script is an ambigu
ous communications medium when taken out of context, and a probability 
for each match is calculated. These probabilities can be combined across 
the word to produce a ranked list of possible interpretations of the script 
word. 
A fast dictionary lookup routine has been developed enabling the some
times very large list of possible words to be verified. 
The ORCHiD system can be trained, if desired, to a particular user. The 
training routine, however, is automatic since the untrained recognition 
system is used as the basis for the trained system. There is therefore very 
little start-up time before the system can be used. A decision-directed 
training approach is used. 

Recognition rates for the system vary depending on the consistency of the 
writing. On average, the untrained system achieved 75% recognition. 
After some ft-aining, average recognition rates of 91% were achieved, with 
up to 96% observed after further training. 

XI 



To "fio t/Of\a' 



Chapter 1 

Introduction 

1.1. Objectives 

The^aim of this research was to produce an on-line handwriting recognition 

system that could be used by any person with reasonably neat script. The consti

tuent characters of the script could be connected and relatively unconstrained in 

formation and structure. The system would be automatically trained to an 

individual's own writing style, if desired, so that the recognition rate would 

increase with system usage. 

To satisfy this aim, a system was developed called ORCHiD or On-line 

Recognition of Connected Handwriting Demonstrator. This research was part of 

a larger project, organised by the National Physical Laboratory (NPL), investigat

ing a novel form of computer interface, termed Electronic Paper (EP) (see sec

tion 1.2.2). The Electronic Paper Project included research into suitable 

hardware, ergonomics and appUcations software, as well as more basic research 

into handwriting recognition. 

Research into Cursive Script Recognition (CSR) was carried out at two sites, 

NPL and The University of Nottingham. NPL designed and developed the data 

collection and low-level processing routines. Nottingham designed the recogni

tion routines, some of which were implemented at NPL, the rest at Nottingham. 

Nottingham designed and implemented the post-processing routines. The exact 

breakdown of the work is described in section 3.2. 

The input script is collected on-line (in real-time, as it is being written), via a 

digitising tablet, and stored initially as a time-ordered list of coordinates. Since 

the low-level processing routines were not developed at Nottingham, the research 

described in this thesis was based on the assumption that the data would be 
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preprocessed and segmented into individual words and the baseline of the writing 

detected before being submitted to the recognition system. (See sections 1,3 and 

1,4 for an explanation of italicised terms.) 

ORCHiD recognises words, written with lower case letters, by comparing the 

input script to a database of ideal character formations. The method used for this 

comparison maps different writing styles to the perfect copy-book styles taught in 

schools. The ideal character formations, or allographs, can then be based on 

these copy-book styles. 

Handwriting is an ambiguous communications medium since the interpreta

tion of the ink marks on the page is often dependent on the context of the sur

rounding writing. For this reason, the ORCHiD system contains an ambiguous 

recogniser which provides a weighting that allows its output to be ranked. It also 

assumes that every sample word is contained in the system dictionary so that the 

output will always be a valid word, rather than a random sequence of letters. 

In order to improve recognition accuracy, ORCHiD can be trained to a partic

ular writer, if desired. Apart from a brief initialisation routine, this training can 

be carried out fully automatically, so that recognition improves as the system is 

used. 

The rest of this chapter includes the background and motivation for research 

into CSR. A description of the technical terminology is then followed by a brief 

introduction to the principle stages that may be present in any CSR system. 

Specific details of the ORCHiD system are reserved for the later chapters of this 

thesis, 

1.2. Background and Motivation 

1.2.1. The Development of the Human-Computer Interface 

As computer power and size has increased over the years, the interface 

between the computer operator and the machine has steadily improved ̂  Origi

nally the computer program and data were either hard-wired into the machine at 

the time of manufacture or entered, literally, 'bit by bit' using binary switches or 

hand-keys. The computer programmer was typically a dedicated scientist who 

interacted with the computer at the very low level of its own machine code. 

More practical computer installations, allowing the input and execution of 

more complex programs that could access large amounts of data, became 



1: INTRODUCTION 3 

available with the development of punched card and paper tape readers. Com

puter programming was a very labour intensive process, involving preparation of 

the punched cards or paper tape, submission of the program to a computer opera

tor who fed the cards or tape into the machine, and waiting for the program to run 

before collecting the output from a line-printer. As high-level language compilers 

were developed the computer programmer did not need such a detailed under

standing of the inner workings of the computer, and so a new generation of non

technical computer users emerged. The computer itself, though, remained a mys

terious entity, locked in its own air-conditioned environment, allowing communi

cation only within a very restricted protocol via the operators. 

The teletype terminal and the cortesponding software and hardware develop

ments, which provided for the interactive editing, compiling and running of pro

grams stored on magnetic media, greatly improved the perceived usabiUty of 

computers. The appearance of the Visual Display Unit computer terminal 

allowed for limited real-time graphical output on its character-based screen, and 

greatly increased programmer performance. Bit-mapped graphics displays 

became available with the option of pointing to objects on the screen with a light 

pen. 

The computer was now accessible to anybody who could master a keyboard 

(provided they had sufficient funds). They could edit, compile and run their pro

grams whenever they could gain access to a terminal and, as Personal Computers 

(PCs) were developed and became cheaper, they could have the computer sitting 

on their own desk. Traditional office practices were revolutionised, as data 

storage and retrieval and document preparation were increasingly carried out by 

the originator of the request rather than by specialist secretaries. Keyboard skills 

now became especially important, and not surprisingly secretaries found they 

could adapt to the new machine that was placed on their desks. However a large 

proportion of the population cannot type and many do not wish to leam, perhaps 

because of a fear of technology or because they think that typing is demeaning. It 

is not yet even standard practice in the UK to teach all schoolchildren how to 

type. Many people therefore remained outside of this technological revolution. 

This remained the state of the art for a long time, until the appearance of 

powerful workstations with high-resolution bit-mapped screens and the Window, 

Icon, Mouse and Pointer (WIMP) interface, first successfully exploited in the 

Apple Macintosh^-'. This provided a revolution in access to computers for the 
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inexperienced keyboard user, as a whole host of applications could be run simply 

by manoeuvring the screen cursor with the mouse and by selecting items from 

menus or icons, with keyboard use restricted to entering text and numerical data, 

1.2.2. The Electronic Paper Interface 

A new computer interface is now appearing that will further increase com

puter accessibility for the lay person and improve access for the skilled user. 

Everyone learns to manipulate a pen and paper at an early age, whether it be to 

write with or just to sketch, and this new interface takes advantage of this skill. 

The computer display is replaced by a flat surfaced screen that can be written on 

with a special stylus (figure 1.1). The slightest movement of the stylus can be 

tracked by the computer, and when it is in contact with the screen, electronic ink 

is left on the display. This novel form of computer interface which will be 

referred to in this thesis as Electronic Paper has also been named Active Book or 

Interactive Tabled'^^'^^'^^'^. The concept of EP includes not only the 

hardware device itself, but also the controlling software. Intelligent software 

interprets any gestures that are made and acts accordingly. Often a book or per

sonal organiser paradigm is used as the basis of the operating system, with 

chapters, table of contents, index, thumb guides, etc. This further enhances the 

intuitive nature of such a device. 

This new device incorporates all the advantages of the mouse, light pen and 

touch screen, but reduces the hand/eye coordination needed to operate a mouse, 

increases the accuracy available for a light pen or touch screen, and also provides 

an intelligent, natural, software interface. 

There are several obvious uses for EP, particularly in an office environ

ment^. 

The interface can be used as a jotting pad for notes and sketches. These can 

then be tidied up, sent electronically to another site for corrections or anno

tations, and returned for printing or inclusion in other documents. Faxes 

could be prepared, sent and received on-line, without the need for paper 

copies. 

It can be used for the interactive manipulation and annotation of digitally 

encoded documents and images. 

The executive working outside normal office hours can produce documents 

that would normally be sent to a secretary. 
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cordless 
link \ 

microphone / 
speaker —-~-~-p=-<^ 

camera 

/ hyper-text 
J windows 

text 
editor 

video 
window 

clock 

Figure 1.1 - Electronic Paper 

• Two devices connected to each other via a communications channel could 

be used for remote, on-line, visual conferences, enabling distant parties to 

converse and simultaneously illustrate their ideas with free-hand sketches. 

• This device would be ideal to take advantage of the imminent arrival of mul

timedia computing, allowing for video, text and sound to be combined in the 

same unit. All of these facilities could then be accessed with natural pen 

strokes. 

One activity that may especially take advantage of this interface is document 

preparation. At present, a large amount of the initial preparation of documents is 

done with a pen and paper, drafting out text and sketches that will later be typed 
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up, possibly on some form of desk-top publishing system. An EP system could 

be used for the initial drafting^, where the text would be automatically converted 

from handwriting to typescript and the rough sketches to neat diagrams, without 

the need for an intermediate conversion, either by the author or by a secretary. 

Subsequent editing of the document could then be carried out directiy on the 

screen, with the changes immediately visible ̂ ^'^^'^^. Figure 1,2 shows an origi

nal hand-drafted document and its typeset equivalent. The automatic conversion 

would be carried out step by step as each section of the document is drafted. 

The editing stage would be even more efficient than using a standard word-

processing package, since the editing commands could be the same as those used 

to mark up a paper manuscript^^. For example, the handwritten instruction to 

move a paragraph merely requires the gesture of drawing an arrow from within 

the paragraph to its destination. With a conventional word processor it is neces

sary to specify the beginning of the paragraph, the end of the paragraph, select the 

move command from a range of options, and specify the destination - a large 

amount of data must be supplied for what should be an obvious action. 

Electronic Paper offers the potential for people to interact with a machine 

without the need for training or constant recourse to voluminous instmction 

manuals. A few pages will suffice as the manual for EP, with pictures of the few 

symbols necessary to operate the device. Varying levels of help could be brought 

onto the screen to assist if necessary. Figure 1.3 shows the manual that would be 

necessary to operate a text editor^^. 

1.2.3. The Need for Handwriting Recognition 

In order to take advantage of this new type of interface a means of entering 

data into the computer is needed without using a conventional keyboard. Obvi

ously it is possible to display a soft keyboard on the screen and pick off characters 

by pointing to them, but ideally some form of handwriting recognition is required. 

Speech recognition may be available in the future for automatic conversion of 

dictation to typescript, but typically we speak in a less structured manner than we 

write, and speech is not the best communications medium for, say, drawing a 

diagram. 

In countries where the alphabet consists of a very large number of characters 

or ideograms, such as China and Japan, some form of handwriting recognition is 

especially desirable since a keyboard is, of necessity, very large and impractical. 
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Depaitment of Computing 
University of Nottingham 

27 October 1991 

Dear John, 
Here are the figures. 
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blue 

green 

3 

7 

5 

David 

Figure 1.2 - A freehand document and its typeset equivalent 

This problem is hindering such countries from fully exploiting the technical revo

lution since there is no easy method of entering data into a computer in their 

natural language. These languages are not within the scope of this thesis, and so 

we will restrict ourselves to languages based on the Roman alphabet. 

1.3. Terminology 

It is necessary at this stage to define some of the terms used in this thesis to 

distinguish this work from similarly titled work. 

On-line Recognition 

On-line handwriting recognition means that the data is captured as the user 

writes, usually on some form of digitising tablet or surface. This has also been 

referred to as dynamic or real-time recognition. The digitiser encodes the script 

into a time-ordered list of coordinates. Information is available on whether the 
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Delete letter 

aa aaj<B aaa aa 

Transpose letters 

aa i c c c 

II 

Delete text 

aa aaa (xx xxjrx x 
xx^bb bbb bb bbb 

Insert 

aa aaa .bbbb bb bb 
A 

Pack paragraph 

Aaa aa aaaaa. 
Aaa aa aaa aa aa 

aaa . 

Move paragraph 

Aaa aa aaaaa. Aa aa 
aaaa aa aaa a. 

Cccc cccor c ccc c ccc 
cc cccc Ice cccc. 

Bbbb bl/bbb. Bbb b 
bbbb bb bbbb. 

Make paragraph 

Aaa aa aaaaa. Aa aaa 
aaaa. LPbbb bb bbbb 
bbbb. Bbb bbb bb. 

Delete letters 

aa ax. ;t»iut iiaa aa 

Move word(s) 

Move text 

aa aaa (ccc ccccc 
cccjbbb bb "ddd 

Change case 

aa aAAa aa aaa 

Overwrite 

aa aaa :xxx xxx 

Join paragraphs 

Aaa aa aaaaa. Aa 
aa aaa^^a aaaa. 

Bbbb tobbb. Bbbb 
bb bbb:~ 

Delete paragraph 

Aaa aa aaaaa. Aa a 
aaa aaaaa aa. 

Bbbb bbbbh/bb. Bbbb 
bbbb bb bfc bbb bb 
bbb. X 

Figure 1.3 - A text editor manual 
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pen is in contact with the writing surface (pen-down) or not (pen-up) and some 

digitisers will provide the position of the pen when it is not in contact with the 

digitiser. Off-line, or static, recognition uses data supplied after the writing pro

cess is complete, usually in the form of an image or bit-map from a scanner or 

similar device. Static recognition is not within the scope of this thesis. 

The segment of writing between a pen-down and a pen-up (or between pen-

lifts) is defined to be a stroke. A written word is therefore made up of one or 

several strokes (see figure 1.4). Some research groups define a stroke differentiy 

to be the pen trace between segmentation points. 

one stroke three strokes 

0 G 

U 
Figure 1.4 - One stroke and many stroke words 

Connected Handwriting 

There are two different types of handwriting which can be considered within 

Roman-based languages - separated characters (hand-printing) and cursive 

handwriting. 

Connected handwriting, or cursive script, is writing with no constraints on 

the separation of the individual characters which make up a word, as opposed to 

separated characters, where there is some form of gap between each individual 

letter, whether temporal, in the form of a pause with the pen off the paper, or 

graphical, with a definite blank space on the page. The work described here has 

concentrated on words formed from lower case characters only, and assumes that 

any capital letters will be separated from the rest of the word before submission to 

the system. The term cursive has also been used with respect to single character 

recognition systems to indicate that a character is not necessarily constructed of 

separate strokes (as in block capitals) - see figure 1.5. 
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cursive block capital 

Figure 1.5 - A cursive and block capital A 

Separated character recognition systems are now commercially available in 

several different forms. Although the constraint of separating each character is 

perhaps not unreasonable for a limited amount of textual entry, for example mak

ing brief notes or labelling a diagram, most people find this style of handwriting 

unnatural and will typically start to run letters together or overlap them. A 

separated character system will fail under these circumstances, so the user must 

adapt his/her own writing style to accommodate the machine. 

Ideally, if computers are to be widely accepted and utilised by the general 

population, it should not be necessary to leam a new skill or to adapt a previously 

learnt skill in order to use the computer. Cursive script is an appropriate input 

medium as the writer can be relatively unconstrained in writing style, and can lift 

the pen or run the letters of a word together as desired. 

Fixed Recognition or Trainable Recognition? 

A perfect script recognition system should be able to recognise any 

handwriting presented to it with no intervention by the user. To develop such a 

system is not possible at present due to the complexity of the problem, so it is 

necessary for either the user to adapt to the system, or the system to the user, or 

both. 

A faed recognition system has the styles that it is able to recognise "hard

wired" into the recognition algorithm. Anybody wishing to use such a system 

must conform to the accepted style(s). This has the advantage that anyone who 

writes in the approved style can immediately use the system. However, the 

recognition accuracy can only be improved by the user adjusting to the machine. 
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For limited applications, such as recognition of separated block capitals, enough 

different styles can be programmed in to the system so that this is not a problem. 

(An example of such a system is the Pencept Penpad or GRID Gridpad.) 

A trainable recognition system is able to leam a particular user's own indi

vidual style. Anybody wishing to use such a system must first enrol by providing 

a sample of handwriting which is analysed. This is usually carried out by running 

an initialisation or training program. This type of system has the advantage that it 

is possible for virtually anybody to use the system with minimal adaptation on the 

part of the user. The success of such a system, though, is dependent on how well 

the training session has been carried out. It may be unacceptable, however, to 

insist that a new user must spend several hours training a system before it can be 

used. (An example of a trainable system is the Linus Writetop or Anotech.) 

The research described in this thesis attempts to compromise these alterna

tives by providing a system which has fixed recognition built in, so that the user 

can immediately write, but which can be subsequendy trained to that particular 

user during use. 

1.4. The Cursive Script Recognition Process 

Computer recognition of cursive script, in general terms, consists of several 

distinct stages, some of which are performed sequentially and some which may be 

performed in parallel (if the necessary processing environment is available). 

These stages can be loosely grouped together under the headings preprocessing, 

recognition and postprocessing. Tappert et afi^ provides a survey of on-line 

handwriting recognition with a good, brief introduction to the techniques 

involved. 

Some of the major processes that might be used within an on-line CSR sys

tem are described, in general terms, below. More details and references are pro

vided in Chapter 2. The ORCHiD system incorporates some of these processes, but 

not all. Further details specific to this system are detailed in subsequent chapters. 
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1.4.1. Preprocessing 

Data Capture 

For an on-line recognition system it is necessary to collect the data as it is 

being written so that the order of the strokes of the pen can be recorded as well as 

the position of the pen. The writing is collected using a special pen and writing 

surface called a digitiser or digitising tablet. This may provide a number of de

tails about the motion of the pen. Typically, the information is stored as a time-

ordered list of coordinates (or digitiser data points (DDPs)) with an indication of 

whether the pen is up or down. However, some digitisers also supply data about 

the angle at which the pen is being held, timing information that may be used to 

calculate dynamic information on the pen-tip travel, or vertical position of the pen 

above the digitising surface. 

Cleaning 

Deficiencies in the quality of data from digitising tablets can lead to pecu

liarities in the image data stored. Spurious points (or noise) can occur caused by 

hardware ertors. The discrete quantisation due to the digitising process can cause 

near vertical or horizontal lines to appear as a succession of wobbles (see figure 

1.6), Hooks can occur at pen-ups and pen-downs due to erratic upward move

ments of the pen, or they may be deliberately written as ornamentation or serifs. 

These, together with other unwanted data (eg noise) from the digitiser, can be 

removed in the cleaning process to produce a minimally distorted, digital image. 

Word Segmentation 

Modem western languages separate text into individual words delimited by 

white space. The word is therefore the natural unit of segmentation for handwrit

ing recognition. 

Straightening, Deskewing and Scaling 

Across the population, there is a wide variety in the size and slope of every

day handwriting. When not forced to write on ruled paper many people will tend 

to deviate from the horizontal. For a recognition system to be as generalised as 

possible, and work successfully on a variety of handwriting styles, it is preferable 
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Eli 
Original Digitised 

image 

Quantisation 
level 

Figure 1.6 - Straight line wobble 

for these consistent variations in the script to be standardised or normalised. The 

data can be automatically straightened, deskewed and scaled by the machine so 

that all samples are nominally similar in their gross features (see figure 1.7). 

1) Original script 

3) Deskewed i 

2) Straightened 

4) Scaled 

Figure 1.7 - Normalised script 
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Vertical Region Detection 

Some recognition systems need to know the position of certain vertical 

regions within which the word was written. Typically of interest are the baseline 

on which the word was written; the position of the top of small characters ( ^ , «•, 

c-etc), referred to in this thesis as the halfline; the line midway between these two 

lines is referred to as the centre-line; the position of the top of tall characters ( / , 

eC, /etc), referred to as iht full-height-line; and the position of the bottom of des

cending letters ( ^ , *tetc), referred to as the descender-line (see figure 1.8), 

full-h«jght-lin9 

d*sc«nder-line 

Figure 1.8 - Vertical regions of a script word 

1.4.2. Basic Recognition 

Prerequisite for Successful Recognition 

At this stage it is possible to define a somewhat subjective prerequisite for 

successful automatic recognition of the handwriting. 

The script sample when viewed after preprocessing must be easily 

recognisable to a human reader. 

Some justification for this requirement is necessary. Handwriting has 

developed as a communication medium between humans. Consequently it relies 

on a human interpretation of the symbols drawn on the page to overcome the 

ambiguities inherent within it. It is therefore not possible for a machine to 

achieve comparable recognition rates without access to all of the information that 

a human reader has. By insisting that an isolated script sample is legible to a 

human, the same amount of information is then available to the recognition sys

tem as to the human reader. 
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Segmentation 

There are two fundamentally different approaches to the text recognition 

problem, whole word recognition and segmentation based recognition. 

Whole word recognition takes the preprocessed word and uses global infor

mation about the whole word, as the starting point, to deduce what was written. 

Some examples of such a system require the user to train the system with a sam

ple of every word that is likely to be written. This obviously limits the vocabu

lary of such a system and makes training extremely tedious. Other examples 

extrapolate information from how one word is written to other similar words. 

Segmentation based systems take advantage of the fact that words are made 

up of a small number of characters which are then combined to form a word. If it 

were simple to split a word accurately into its component characters, then the 

recognition problem would reduce to that of separated character recognition. 

Unfortunately this is not a trivial task. Characters when joined cursively can be 

segmented in different ways to form other characters. For example, the stroke in 

figure 1.9 could be inteipreted as 'cw' or 'au'. Different algorithms can be used 

to segment the writing into smaller units. These may be possible characters, or 

perhaps sub-character components that may be combined at a later stage to form 

characters. 

Figure 1.9 - Ambiguous letter segmentation - 'cw' or 'au'? 

Most of this thesis is given over to describing a segmentation based recogni

tion system. However, a simple whole word recognition system was imple

mented in the early phases of this research, and is described in Appendix A^. 

Feature Extraction 

Due to the large amount of information available at this stage, the data is 

often reduced from the list of coordinates to a list oi features which specify the 

writing, without loss of relevant information. Key characteristics of the script are 
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detected and measured to provide these features. A feature may be a binary 

description of a characteristic, for example "This stroke is a descender", or it may 

be a list of numeric values describing a shape, for example "A loop with height 10 

units, width 5 units, drawn anticlockwise at position (27,12)", or it may be a 

description of the whole word, for example "Estimated number of letters is 5." 

These features should describe the writing sample without any loss of 

important information. One possible way to test this might be to try to recreate 

the word from the feature description and see if it is recognisable to the eye^^. 

Template Matching 

The feature description of the sample script can now be compared with 

information already known to the system about how a word, character or sub-

character element is formed. The topological structure of a character is referred to 

as its allograph and the information about this structure, stored by the system, is 

referted to as a template. Templates may be stored in a number of different ways, 

perhaps as a numerical representation of actual shapes in terms of the features, or 

perhaps as a set of rules that specify acceptable values of features. The template 

matching stage consists of somehow comparing the sample data with the tem

plates to produce the most likely words or characters that were written. A number 

of methods are described in section 2.5. 

Output from the Recognition Stage 

Depending on the approach used at the template matching stage, various 

forms of output can be produced by the recognition stage. A whole word recogni

tion approach may yield the most likely word, or a list of possible words. A seg

mentation approach may produce a sequence of most likely characters, or a 

sequence of ordered lists of possible characters that may occur at various loca

tions in a word, 

1.4.3. Postprocessing 

Contextual Removal of Ambiguity 

Cursive handwriting is ambiguous in its interpretation. A character or com

bination of characters may be misrecognised as another character or combination 

(eg A-may be mistaken for o , M^ may be mistaken for ow etc) or a word may 
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be misrecognised as another word (eg ^ w i s very similar to c^M-and fairly simi

lar to ci^). A human reader uses context at various levels to resolve the ambi

guity. For example, at the letter level a q must be followed by a M in English; at 

the word level the letter combination docj does not exist; at the sentence level it 

does not make sense to take a clog for a walk. Even higher levels of context may 

be necessary to interpret the sentence /T^ fOt*f\U thCf [ ^k^ I oic^ I cia^ ], 

One needs to know if the text in the rest of the passage is discussing a canine that 

has gone astray, a Morris Dancer in stockinged feet or an absent-minded potter. 

Because of this inherent ambiguity, a purely computational CSR system can 

never be 100% accurate and must also apply context to resolve this ambiguity. 

Letter sequence and word level verification are now within the scope of modem 

computer power and theory. Context applied at the higher level of sentence syn

tax and semantics is being heavily researched. Further details of the use of con

text are given in section 2.7. 

1.5. Scope and Organisation of this Thesis 

Cursive script recognition contains problems that still require a large amount 

of work before a feasible commercial system becomes available. This thesis 

addresses some of the problems, in particular the requirement for a consistent seg

mentation method, a trainable, statistical template based recognition module and 

efficient contextual verification of the output. 

The ORCHiD system takes data from a separate preprocessing routine and 

assumes that this will provide well preprocessed individual words, with the base

line and halfline correctly determined. The segmentation method, developed as 

part of this research is described in detail in this thesis, but the implementation of 

the segmentation and feature extraction was carried out elsewhere. The rest of 

the system, resulting in the output of lists of candidate words, is described in 

detail. 

The remainder of this thesis is organised into eight further chapters followed 

by a bibUography and three appendices. 

Chapter 2 contains a review of other relevant work described in the litera

ture. 

A brief overview of the complete recognition system is provided in Chapter 

3, There is a discussion of the assumptions and scope of the work covered by this 

thesis, together with references to the technical descriptions of parts of the system 
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not covered in this text. The actual techniques used at each stage of the recogni

tion process are briefly discussed. 

Chapters 4, 5, 6 and 7 contain details of the major elements of the system. 

Each chapter has three components - a theoretical introduction to the reasoning 

behind the methods used, a discussion of the practical considerations to achieve 

an approximation to the theoretical ideal, and a resume of the actual output from 

this section of the system. Chapter 4 provides technical details of the segmenta

tion algorithm used. The features that are measured from the resulting segments 

are described. Chapter 5 discusses the template matching routines that take the 

list of features and produce a graph of possible characters. Chapter 6 considers 

the application of word level context to reduce the remaining ambiguity. Chapter 

7 outiines the approach used to train the system to an individual user. 

Chapter 8 contains experimental results from the system and recognition 

rates. These results are discussed. 

Chapter 9 outiines what further work is needed to enhance the system. 

All of the references in this work are detailed in the bibliography. 

Appendix A contains details of a simple recognition demonstrator that was 

developed half-way through the project. 

Appendix B shows an example of a word being processed by the recognition 

system. 

Appendix C contains copies of papers published by the author relevant to 

this work. 



Chapter 2 

Literature Review 

There follows a review of literature and research into the field of on-line cur

sive handwriting recognition and its associated subjects. The review is loosely 

divided into the separate processes described in section 1.4. Those areas which 

are directly addressed by this thesis (namely segmentation, template matching, 

dictionary lookup and tiaining) are discussed in detail; for other areas references 

are provided which give a good grounding in that particular area. 

2.1. Background 

The history of computer recognition of cursive script (CSR) is long and 

varied. Lindgren^^ noted that the first research into the field in the 1960's was 

carried out by speech recognition research teams as a simplified introduction or 

stepping stone to solving their main problem. (Speech recognition has always 

been the computer scientist's "dream" machine interface - hence the talking com

puters of contemporary science fiction.) Speech and cursive script have a number 

of similarities as communications media, especially the wide variability of spoken 

accents and writing styles and the lack of clear segmentation points between 

recognitional units (words in speech, letters in script). The problem domain of 

recognition is therefore similar and this led speech recognition scientists to inves

tigate cursive script. Few people at that time were interested in handwriting 

recognition in its own right. 

In the 1970's, theoretical pattern recognition techniques, technology and 

computer power had improved sufficiently for the speech recognition research 

effort to return to its original goal. Consequently interest in handwriting recogni

tion waned. Towards the end of this decade, however. Computer Aided Design 

(CAD) technology was becoming increasingly common and a number of com

panies (eg Numonics, Scriptel, Wacom, Summagraphics, Hitachi) began produc

ing accurate digitising tablets for use with CAD and other applications. These 

were initially driven by a puck or mouse, but later had a crude stylus as a pointing 
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device (see section 2.2). During this period, research was continuing into Optical 

Character Recognition (OCR) and a number of researchers investigated the possi

bility of using the digitising tablet as a method of collecting data for separated 

handprinted character recognition. Suen et afi^ provided a survey of separated 

character recognition and Tappert et afi^ surveyed the on-line character recogni

tion in particular. 

In the 1980's, much research interest was focused on improving the human-

computer interface (HCI), and a novel device was proposed based on a flat screen 

display overlaid with a stylus-driven digitiser, commonly referred to as Electronic 

Paper (EP)^'^^'^^'^^. An ideal data input method for this type of interface is 

obviously some form of handwriting, and interest has subsequently increased. 

2.2. Data Capture and Electronic Paper 

The technology available for producing digitising tablets has dramatically 

improved since the first successful manufactured tablet, the RAND tablet^^. Pres

sure sensitive tablets are available which require no special stylus but are not very 

accurate and are susceptible to errors due to objects resting on the digitising sur

face. Electromagnetic or electrostatic digitisers are now the most popular for 

handwriting research as they are very accurate. The major drawback with this 

type of tablet is a special stylus is required which is usually attached to the tablet 

by a cable. The stylus has often been designed for simple menu picking and 

drawing operations rather than sensitive handwriting data collection, and is con

sequently rather crude. Ward and Phillips^^ discussed the requirements for a 

good stylus, and Meeks and Kuklinski^^ compared the accuracy and stability 

aspects of a number of digitisers. Kim and Tappert^^ discussed the effects of 

poor digitiser accuracy on handwriting recognition rates. 

The construction of a usable Electi-onic Paper style of device is discussed in 

Higgins and Duckworth^^ and Pobgee^^. A number of research groups have dis

cussed the underlying advantages of EP^^*^^*^'^^, The Japanese interest in this 

field is especially evident since such a device overcomes the impracticality of 

Japanese character keyboards. The Far Eastern countries have so far been limited 

in potential access to the developments in computer technology since they are 

unable to interact with a machine in their own script. 

Since EP devices are only recently becoming available, analysis of their sui

tability and practicality has been Umited to simple development systems. 
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Rengger^^, Tappert et aP^ and informal observations by the author^ ̂  have shown 

that EP will become a very powerful user interface in the future. 

2.3. Preprocessing 

The raw data collected from the digitiser is often preprocessed to aid the 

recognition stage. There are three main elements of the preprocessing stage -

word segmentation, noise reduction, and normaUsation. The word segmentation 

provides a sensible unit for the recognition software to act on. Noise reduction 

removes confusing data introduced by the hardware. Normalisation produces a 

more standardised piece of script for the recognition process. The different 

processes are detailed in section 1.4.1. A summary of work in these areas is 

given in Brown and Ganapathy^^ and Tappert et aP^. 

Word segmentation is either carried out by identifying a spatial separation 

within a sample or a temporal separation (or time-out). Noise reduction elim

inates some of the problems caused by inaccurate digitisers, though these prob

lems are lessening with improved technology. Normalisation produces a uniform 

sample word for recognition. 

2.4. Segmentation and Choice of Features 

The segmentation approach (section 1.4.2) is very common in script recogni

tion systems. The ultimate aim of segmentation must surely be to divide the 

script into its constituent letters so that the more advanced work into single char

acter recognition can be applied. Unfortunately the nature of cursive script is that 

the letter segmentation points can only be cortectly identified when the cortect 

letter sequence is known, and the recognition of the characters can only be done 

successfully when the segmentation is cortect! Segmentation based CSR systems 

must therefore attempt to estimate the letter segmentation and recognise charac

ters with the knowledge that the segmentation may be incorrect, or take an 

approach which locates sub-letter segmentation points. 

Three techniques are outiined below. The first uses easily locatable features 

of the script as possible segmentation points (PSPs) (section 2.4.1). The second 

attempts to locate theoretical strokes which have been identified by researchers 

investigating the processes used to produce handwriting (section 2.4,2), The third 

approach formalises the structure of characters within the script and then seg

ments based on this information (section 2.4.3). Figure 2.1 shows examples of 
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some of the segmentations described in the literature, detailed in the following 
sections. 

Ehrich 

Mermelstein elstein 7 

OJTT^ 
Wrighy 

Maier 

Hayes J 

OMX\ 
Teulings 

Figure 2.1 - Segmentation Points 

2.4.1. A Maximum/Minimum Approach 

Many systems base their choice of segmentation points on local maxima and 

minima in the x and y directions, often treating the y minima as most important, 

Kim^^ segmented at all local y minima. Ehrich and Koehler^^ used the same 

points, but excluded those relating to ornaments or small loops. This yields seg

mentation points that mostiy lie near the baseline. Mermelstein and Eden^^ used 

y maxima and minima to segment words, noting that the down-strokes usually 

contain more information about the script than the up-strokes. Hayes^^ used all 

maxima and minima as PSPs as well as intersections within the script. 
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Wright^^ developed a handwriting system based on Freeman coding (see 

section 2,5.2) and rejected the use of y minima as possible segmentation points in 

favour of identifying upward right-pointing strokes which are commonly used as 

letter joins. Maier^^ segmented by attempting to identify commonly occurring 

letter join strokes or ligatures. These techniques are a form of y minima segmen

tation, however, with the actual location of the segmentation point moved along 

the stroke. 

There are several problems associated with the use of maxima and minima 

as PSPs. Firstly, many y minima, for example, occur in the middle of an allo

graph and so are not letter segmentation points. Ehrich and Koehler's approach 

removed some of these PSPs but not all. Secondly, subtle changes in the forma

tion of a letter can add or delete maxima or minima. It is then necessary to use 

more than one template to represent the same allograph (see figure 2.2). Thirdly, 

if just y minima are used, for example, there can often be no segmentation point 

between letters (see figure 2.3). It might therefore seem preferable to include 

more PSPs, y maxima for example, but this would cause great deterioration in the 

performance of the system. There must be a trade-off with this sort of approach 

of consistency of segmentation against performance. 

Extra y minimum 

/ 

Figure 2.2 - Extra y minima 

2.4.2. Absolute Pen Velocity 

Teulings et aP^ segmented the script into strokes at points of zero absolute 

velocity. This produces a stroke similar to the hypothetically "correct" sti-oke 

defined by psychophysicists^. Kadirkamanathan and Rayner^^, however, 

pointed out that the theoretical segmentation points attiibuted to zero pen velocity 

are often obscured due to the discrete quantisation of the digitising process. They 

used an algorithm which compares the curvature and pen velocity graphs of the 

script after it has been smoothed by varying amounts. This produces a more 

accurate hypothetical stroke, but the segmentation points are again located at x or 
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No segmentation point 

Figure 2.3 - No y minimum segmentation point 

y maxima or minima depending on the local circumstances. 

2.4.3. Characterisation of Script 

A more intuitive approach might be to try and characterise or formalise the 

characters and constituent elements of cursive script in order to try and locate the 

cortect segmentation points. There have been a number of different approaches 

to characterising characters within a cursive word. Eden and Halle^^ defined a 

rather complex set of primitives from which words can be built up (figure 2.4). 

James'̂ ^ produced a simplified but less precise set of primitives (figure 2.5) which 

Higgins-'^ simplified still further. Hayes-̂ ^ used i-dots, t-crosses, x-slashes, 

ascenders, e-loops, circles, c-shapes, i-spikes, humps and descenders (figure 2.6). 

These primitives are all devised with the underlying hypothesis that the initial 

segmentation uses minima and maxima. In fact, Higgins and Hayes use these 

characterisations as a second level representation within a hierarchical recogni

tion method. 

Berthod^ took a more theoretical approach and identified key features of the 

script that may be recognised relatively easily (figure 2.7). These included:-

Eden and Halle primitives; 

cusps in four directions; 

humps, clockwise and anticlockwise; 

loops delimited by an intersection; 

closures, as occur in the letters ^ , fiC, etc; 
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Figure 2.4 - Eden and Halle primitives 

7 ^ 

v ^ 
L > 

Figure 2.5 - James primitives 

7 ^ 

L_SwZ 

Figure 2.6 - Hayes primitives 

• diacritical marks, such as i-dots, t-crosses, x-slashes. 

Berthod and Ahyan^ implemented a system based on x and y extrema, cusps, 

intersections and inflections. 

The segmentation points defined by these script characterisations are often 

more difficult to detect but appear to be more consistent between sUght variations 

of the same letter. The segmentation described in Chapter 4 of this thesis is based 
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cusps humps loop 

a 
closure 

Figure 2.7 - Berthod primitives 

on this approach. 

2.5. Template Matching 

After segmentation of the script, the usual approach is to compare the seg

ments against templates or prototypes of actual characters. There are four main 

techniques that predominate for template matching. 

2.5.1. Elastic Matching 

The elastic matching technique directly compares the segment or stioke with 

a prototype or template and calculates a distance metric from the minimum dis

tance that can be calculated between the digitiser data points (DDPs) on the sam

ple stroke and the template stroke. Figure 2.8 indicates the measurements used to 

calculate the elastic matching distance. A dynamic programming method, com

mon in speech recognition systems^^, is used to calculate the minimum possible 

distance. 

Sample Template 

Figure 2.8 - Elastic matching 

Bmr^^, Tappert^^, Wong and Fallside^ -̂̂  and Kadirkamanathan and 

Rayner^^ all used this approach. 
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Elastic matching provides a graphical approach to template matching, com

paring sample shapes to ideal templates. Efficient algorithms can be used to cal

culate the distance measurement relatively quickly. The main problem, in a cur

sive script recognition context, is that two letters, similarly structured as far as the 

writer is concerned, can look very different when drawn on the page. For exam

ple, a letter & can be written either with a very large loop or with a carefully over

drawn line. These would require separate templates for successful recognition 

using an elastic matching technique. 

2.5.2. Freeman Coding 

Freeman^^ proposed a method for representing a geometric configuration, 

such as a stioke within script, by a simple numerical code. A small number of 

directions are specified and labelled, as in figure 2.9. A stioke is then encoded by 

dividing it into equal length parts, and coding each part by its nearest directional 

label. A complex curve can in this way be represented by a short list of digits. 

Templates are then stored as Freeman codes and the sample is compared with the 

templates and a distance measure calculated. 

Code:4456770122677 

Figure 2.9 - Freeman coding 

Miller^^ segmented a stroke into six parts and encodes these with an 8 direc

tion code so that each stioke is represented by six digits. A simple sum of the 

differences between the coded sample and template is used as the distance meas

ure. 

Wright^^ used an 8 direction code, but compresses any sequential vectors 

in the same direction into one code, and stores a length for each vector. Each 

template is stored as a five vector code, by compressing any short vectors into a 

neighbouring vector (figure 2.10). A sample segment is similarly compressed, 

and for those templates that match the coding precisely, a Cramer Von-Mises 



2: LITERATURE REVIEW 28 

goodness of fit measure^^ is calculated based on the lengths of the vectors. 

Sample 

1 / 

/ 

\ , 

, 

Representation 

Dir:Len 
4:1 
5:1 
6:1 
0:2 
2:2 

Code 

Figure 2.10 - Wright's coding 

Ouladj et af^ used a 16 direction coding of the script, and then modified this 

to a 4 direction coding for the recognition stage. This coding is then modified to 

allow for degradation of the writing from the ideal template model (figure 2,11), 

and a distance calculated based on the amount of degradation needed for a match. 

Code:1267 Code:123567 

Extra code to allow for 
degradation 

Figure 2.11 - Ouladj's modification due to writing degradation 

The problem with systems based on Freeman coding is one which is com

mon with any system which measures features on a discrete scale. Errors will 

often be introduced due to the discrete quantisation as a feature nears the boun

dary from one discrete value to another. Figure 2.12 shows some examples where 

small changes in the shape of a character cause large changes in the Freeman cod

ing. 
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Code:10456701 Code:107623456701 

Code: 1267 Code:123567 

Figure 2.12 - Possible errors due to Freeman coding 

2.5.3. Feature Matching 

Another technique involves measuring various attributes or features of a 

segment and using these to calculate the distance measure during template match

ing. This technique is similar to elastic matching since the segment is not 

simplified (as is the case with Freeman coding). It has an advantage over elastic 

matching, however, since the shape of the segment is treated as a whole, rather 

than as a sequence of points that may change dramatically between samples. It 

will also take a fixed amount of time for the comparison whereas elastic matching 

is proportional to the number of points in the segment. The main drawback with 

this method is that it is essential to measure the cortect features, otherwise vital 

information about the segment may be lost. 

Teulings et aP^ extract four types of feature from a stioke - the vertical 

positions of the endpoints of the stioke, five angles measured between certain 

points along the stioke, the size of the area enclosed by the stioke, and informa

tion about pen ups within the stioke. (A stioke as defined in Teulings' work 

includes pen motion above the paper.) A Euclidean distance measure is used to 

describe the success of the template match. 

The work described in Chapter 5 of this thesis uses a feature matching 

approach. 
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2.5.4. Rule-Based Matching 

It is possible to describe characters in terms of a set of rules, and to use these 

rules to distinguish between the characters. For example, to distinguish between 

an A- and a ^would require a rule that defined the height of the last part of the 

character. By defining a set of rules that differentiates between the complete 

alphabet or stioke set, a recognition system can be constructed. 

Frishkopf and Harmon^^ develop a set of rules based on the vertical extent 

of characters below and above the baseline and halfline, the presence of retio-

grade (right-to-left) strokes, the position of cusps, the presence of closures, and 

diacritical marks. 

The problem with any rule-based recognition system is that it is frequentiy 

possible to find a counter-example which does not satisfy the rules. It is therefore 

necessary to either restrict the styles which can be recognised or add a large 

number of special case rules which seriously degrade the performance. Also such 

a system cannot easily be trained to individual users to improve performance. 

2.6. Whole Word Recognition 

Rather than attempting to solve the problem of segmenting script into letters, 

some researchers have investigated the possibility of identifying a word as a sin

gle unit. The problem with this approach is that it is often necessary to provide a 

training sample of every single word that the system must recognise. This is 

obviously not possible for a large number of words. 

Earnest^ ̂  developed a system which identified a small number of easily 

recognisable features of the script. These were ascenders, descenders, closures, 

t-crosses and centre-line crossings. These features yielded a category code for the 

word which identified matching words from a dictionary of ideal template words. 

The X coordinates of the features were then used to calculate a match weighting. 

Brown and Ganapathy^^ used a larger set of features, including y maxima 

and minima, centie-line crossings, ascenders, descenders, t-crosses, i-dots, cusps 

and closures. The length of the word was estimated by counting the total number 

of centre-line crossings, and the position of each feature was registered with refer

ence to its approximate letter position. A nearest neighbour approach was then 

used to identify likely words. 

Frishkopf and Harmon^^ examined each x and y maximum and minimum for 

vertical position, positive or negative slope and concavity. They generated a 
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feature vector of this information which was used for a nearest neighbour com

parison with a dictionary of ideal template words. 

Farag^^ developed a simple system based on a Freeman style coding of the 

script and a Markov chain model to calculate a weighting when comparing the 

sample with a template word. This technique only used a very small template set. 

2.7. Postprocessing 

As explained in Chapter 1, handwriting is inherently ambiguous at all levels, 

and it is impossible to uniquely classify a script sample. This ambiguity can often 

be resolved if contextual information at a higher level can constrain the set of 

valid output. A dictionary (lexicon) of this information can then be constructed, 

and the list produced by the recognition process reduced and validated. Often 

very large substitution sets are produced which need to be checked quickly and 

efficiently against a large dictionary. This is especially the case with cursive 

script recognition systems. 

Several different techniques have been proposed to make use of contextual 

information. 

Statistical information about the transition probabilities between letters can 

be used to remove or reduce unlikely letter sequences and produce the required 

output (eg Neuhoff^ ,̂ Riseman and Hanson^^, Hull and Srihari^^ ). This is often 

referted to as a bottom-up technique. These techniques are usually very efficient, 

but do not guarantee valid output words. 

Another approach assumes that the written word comes from a fixed diction

ary and the nearest matching word provides the required output (eg Duda and 

Hart^^ ). This is often referted to as a top-down technique. These techniques 

always produce a valid output word but can be inefficient to implement. 

Several hybrid methods have been suggested to balance out the advantages 

and disadvantages of the two approaches (eg Srihari et afi^, Shinghal and Tous-

saint^2). 

Most of the approaches to using contextual information have been based on 

constructing a post-processor for systems that produce a single best-match letter 

sequence as output. The contextual disambiguation process takes this sequence, 

consisting of the most likely letters that span the script, as its input and returns the 

most likely written word as its output. There are several techniques which have 

been widely reported, the most common are listed below. 
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2.7.1. Spelling Correctors 

One simple method to verify the output is to use the wealth of research into 

spelUng ertor detection and cortection that has been accumulated over the years. 

Peterson^^ and PoUock^^ provide good reference lists to the literature. The main 

problems that these techniques address are character substitution, omission and 

insertion, Kashyap and Oommen'* '̂̂ ^, Wagner and Fischer^^ and Lowrance and 

Wagner^ discussed different solutions to this problem. The Levenshtein metric 

is frequentiy used to define the distance between two strings based on the number 

of cortections that need to be made to convert one string to the other^^-^^ 

These techniques work reasonably well but do not take into account the 

likelihood of a letter being misrecognised, or incortectly substituted. 

2.7.2. N-Gram Techniques 

The probability of any individual n-letter sequence occurring can be calcu

lated by examining large pieces of text. These probabilities can then be used to 

calculate the most likely written word given the output word from the recognition 

system, (see Riseman and Ehrich^^ ). An alternative approach using /i-grams to 

reduce a graph of possible letters is discussed in Chapter 6. 

2.7.3. Viterbi Algorithm 

The Viterbi Algorithm (VA) takes the output word from the recognition sys

tem and calculates the most likely input word, using statistical information on the 

sequence of letters in EngUsh and likely ertors from the recognition system. The 

algorithm is first described in Viterbi^^. Forney^ ̂  provided a thorough tutorial 

intioductibn to the theory behind the algorithm. Neuhoff̂ ^ described how it 

could be applied to the problem of text recognition. Various authors have dis

cussed its application, including Riseman and Hanson^^ and Hull and Srihari^^ 

who compared its performance against a binary w-gram approach. 

The VA makes use of a confusion matrix of a priori probabilities observed 

from the recognition system, together with the transition probabilities between 

characters. In other words, the probability that a given letter may be misrecog

nised as another letter is calculated and stored, togetiier with the probability tiiat it 

can be preceded or followed by any other character. 

A 26 X / node tiellis is consttoicted, where / is the length of the word, linking 

every letter with every other letter (see figure 2.13). On the nodes of the tiellis 
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are the confusion probabilities, and on the arcs are the tiansition probabilities, 

(Notation: The confusion probability that a written letter X will be misrecognised 

as a y is written P{X\Y). The tiansition probability that a letterX may be fol

lowed by a letter Y is written P( X - T ).) By tracing a path through this tiellis, 

and combining the probabilities on the arcs and nodes included in the padi, the 

probability that the tiaced word could have been the original input word can be 

calculated. The algorithm finds the most likely path through this trellis, so yield

ing the most likely interpretation of the input word. 

Input: d a n 

P(a-a) ^ P(a-a) 

Output: 

Figure 2.13 - Viterbi algorithm trellis 

2.7.4. Dictionary Viterbi Algorithm 

The VA produces the most likely interpretation of the written word, but does 

not guarantee that the word exists. The Dictionary Viterbi Algorithm (DVA), 

developed by Srihari et afi^, is an improvement on the VA making use of a 

simultaneous full dictionary search, in place of the tiansition probabilities, to 

ensure that only a valid word is produced. The dictionary lookup uses a trie 

structure to store the dictionary. This is described in section 2.7.7. 
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2.7.5. Modified Viterbi Algorithm 

Shinghal and Toussaint^^ described another variant of the VA, called the 

Modified Viterbi Algorithm (MVA). Here a heuristic depth of search d is set by 

the user so that only the d most likely probabilities in each letter position are 

checked. The computational overheads of the VA are thus reduced, as only a 

d X / trellis needs to be tiaced, but the performance degrades as d is reduced. 

2.7.6. Predictor-Corrector Algorithm 

Shinghal and Toussaint^^ further improved on the MVA by combining it 

with an efficient dictionary lookup algorithm (DA). This is called the Predictor-

Cortector Algorithm (PCA). 

The dictionary is partitioned into sub-dictionaries of same-length words. 

Each sub-dictionary is then sorted by value, where the value is calculated by com

bining the tiansition probabilities of the letters of the word. This value was found 

to be nearly always unique for any sub-dictionary. A binary search is used to see 

if the output word from the MVA exists in the dictionary. If so, then that is taken 

as the required output. If not, then the DA is employed. A score is calculated for 

the nearest/words to where the output word was expected, / i s a heuristic set by 

the user. The score is calculated by combining the tiansition probabilities 

between the letters with the confusion probabilities. The word with the largest 

score is the required output. 

Shinghal '̂* described a further enhancement to the PCA, where the n most 

likely words from the MVA are checked in decreasing order to see if they exist in 

the dictionary. If none of them exist, the DA is employed. The value of n is 

determined by experiment. 

2.7.7. Dictionary Tree Structure 

A dictionary or word-list can be restructured in the form of a tiee, based on 

the trie structure suggested by Knuth '̂*. This is shown pictorially in figure 2.14, 

where the tiee represents die word list (a, an, and, at, be, bet, but, by}. Each of 

these words can be found by tiacing a path from left to right. The '(§)' symbol 

represents the start of a word and the '#' symbol represents the end of a word. 

The trie can be used as an efficient stincture to store a dictionary for a 

variety of applications, but is especially applicable for contextual post-processing 

of script recognition systems. The DVA proposed by Srihari et afi^ used a 
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Figure 2.14 - Dictionary tree 

dictionary trie at the same time as the Viterbi lattice is traced to guarantee that a 

valid word is found. Bozinovic and Srihari^ combined a stack-decoding search 

algorithm with a rr/e-structured dictionary with a small dictionary of 1027 words. 

Bozinovic and Srihari^ used a similar approach but adds a depth of search heuris

tic to limit the computation needed. 

Until recently, die availability of computer memory and CPU power has 

prevented the use of such a data structure with very large dictionaries, however 

these can now be seriously considered. ¥orCr° discussed the development of a 

simultaneous graph traversal and dictionary tiee lookup technique (described in 

detail in Chapter 6). A number of other research teams have also subsequently 

shown that this method is a very efficient and effective way of improving the 
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accuracy of text recognition systems^^' ^^' ^^^ 

2.8. Higher Level Context 

Since some ambiguity can remain even after a dictionary verification of the 

output from a CSR system, some investigative research is being carried out into 

the use of higher level context to reduce the ambiguity still further. This includes 

analysis of the syntax and semantics of English sentences^^'^^'^^. A machine 

readable dictionary is appended with information about the word which can be 

used by the higher level contextual system. 

2.9. Training 

A number of systems (identified in table 2.1 below) can be tiained to an 

individual writer's style. This training usually improves the recognition rates 

obtainable by the system. The exact method of training is obviously dependent 

on the recognition method but usually involves calculating certain parameters of 

writing that vary between different writing styles and different characters. The 

problem with training a segmented CSR system is that either the training must be 

carried out manually, identifying each character of a word in turn, or automati

cally, in which case the system must decide where each character lies within a 

word. The automatic approach is preferable, since this requires least effort on 

behalf of the user, but is most complex. For whole word recognition systems 

there are other problems, notably that it may be necessary to provide samples of 

each word that the system is to recognise. 

A manually trained system may be devised that requests the user to write 

each character separately to tiain the templates. Unfortunately this is not ideal 

since most people write characters differently when in the middle of a word to 

when written separately (even when consciously trying not to) and often write 

letters differentiy in different locations within the word, depending on the preced

ing and following letters. It is also necessary to take into account the joining 

stiokes between letters. 

Teulings et aP^ automatically tiained their system by comparing the 

features of similar words and deducing which features represented which letters. 

For example, the training phase may require the user to write the words ^^ and 

«*>. Those features which were the same between these two words would then 

be noted as the 'a' template. If the user then writes VA^ and YA^ the 'v' 
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template can be identified, and so on. With this approach, care must be taken to 

use a sensible tiaining sequence of words. For example, the words AjA'and ftdJi 
would not cortectiy identify the 's ' since the ascender of the next letter would 

also be the same between the two words. 

There is an inherent problem with the completely automatic training of tem

plates. If the automatic system is not 100% accurate at identifying the templates 

to be tiained, ertors will occur and templates will be tiained incortecdy. It is pos

sible that these ertors may be compounded and the user will have no knowledge 

of the situation, other than falling recognition rates. This problem is discussed in 

detail in section 7.3. 

2.10. Recognition Rates 

It is very difficult to compare recognition rates of CSR systems. The extent 

of the recognition process covered by the system - up to letter recognition, or 

word recognition, or dictionary verified word recognition - obviously affects the 

recognition rates quoted dramatically. The experimental details of the test rou

tines used to generate the statistics also affect the results. A number of research

ers, however, quote results of recognition where the test set is the same as the 

training set. This clearly biases the results. A trained system generally produces 

better accuracy than a similar untrained system. Some works make use of a dic

tionary verification of results which improves the recognition rates still further, 

especially when only a small dictionary is used. 

A table of main results published to date is given below. These results are 

for on-line cursive script recognition and quote dictionary-verified word recogni

tion rates where applicable. A number of works only quote letter recognition 

rates. In these cases an estimate of a six letter word recognition rate is given in 

brackets. Some papers only quote word recognition without dictionary 

verification. Some of the recognition rates are for the cortect word appearing in 

the top few (<5) words in the output list of candidate words. It seems reasonable 

to quote these figures as it is often not possible to distinguish between some 

words without sentence or higher level context. 
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Name 

Frishkopf33 (1) 

Frishkopf33 (2) 

Harmon^^ 

Earnest^* 

Mermelstein^^ 

Ehrich23 

Brown ̂ ^ 

Bertiiod^ 

Tappert^ ̂  

Higgins^^ 

Wrightl04 

Ouladj^l 

Year 

61 

61 

62 

62 

64 

75 

80 

80 

84 

85 

89 

90 

Trained 

No 

Yes 

No 

No 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Dictionary Size 

Letter rate 

100 

Letter rate 

10,000 

None 

None 

None 

None 

Letter rate 

25,000 

60,000 

110 

Word Rate 

59 [4] 

63 

93 [65] 

60t 

80 

71 

~70 

87 

97 [83] 

85-93 

82-94 

94 

t This rate is for the correct word appearing in the output list. This list may consist of a large 

number of words, 20 on average. 

Table 2.1 - Recognition rates 

2.11. Conclusions 

The recent increase in research into the field of cursive script recognition 

does not appear to be reflected in vastiy improved recognition rates. Careful 

examination of the experiments, however, show that the more recent work is gen

erally based on more realistic test criteria, for example more sample words from 

larger vocabularies, written in less restricted styles. It should, of course, be noted 

that even humans cannot achieve 100% recognition of handwriting without the 

additional use of context. Neisser^^ conducted an experiment to determine the 

human recognition rates for a very limited set of single hand-printed characters, 

consisting of the upper case capitals, and the digits 2-9. The best results that were 

achieved were 96% recognition. Leedham and Chan^ '̂̂ ^ showed that for uncon-

stiained, upper and lower case separated characters and digits, the human 
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recognition rate is as low as 74%. From informal observations it seems that 

human recognition of isolated handwritten words is around 95%, though no for

mal study has been identified in the literature. It would therefore seem that this 

must be a realistic goal to aim for with an automatic system, without the use of 

higher context. 

There are still a number of problems that need to be addressed in CSR and 

these are discussed in this thesis. These include the need for a consistent segmen

tation method, the use of context to improve recognition, the ability to quickly 

and easily train the system to a particular user or writing style, and the further 

investigation of whole word recognition approaches. 



Chapter 3 

ORCHiD System Overview 

This chapter provides an overview of the complete recognition system, from 

on-line data input, to ascii-coded data output. The system is called ORCHiD or 

On-line Recognition of Connected Handwriting Demonstrator. A brief descrip

tion is given of the techniques and algorithms used at each stage of the process. 

Further details on each of the stages that are relevant to this thesis, including 

technical and experimental results which accounted for the selection of the algo

rithms, are given in the subsequent chapters. 

3.1. Outline of the System 

There follows a brief summary of the processes and the information avail

able at the various stages of the ORCHiD system. Figure 3.1 shows a diagram of 

these processes. 

i) The digitiser produces a time ordered list of coordinates, referted to as 

Digitiser Data Points (DDPs). 

ii) The preprocessing routine takes the raw DDPs and adjusts them to provide a 

truer image of the script. Global information is calculated about the word, 

including the baseline, halfline and diacritical marks. 

iii) The segmentation routine processes the adjusted DDPs and produces a list of 

Possible Segmentation Points (PSPs) and refines this to a hst of Definite 
Segmentation Points (DSPs). Each segment of the script is then measured 

and a list of features is produced. 

iv) The template matching routine takes the Hst of features and compares it with 

the template database to produces a weighted letter graph of possible 

letters and letter-joins (the candidate allographs) that may occur within die 

script word. 

v) The dictionary lookup routine tiaces the letter graph and a tiee-stiiictured 

lexicon of valid output simultaneously to produce a ranked list of candi

date words. Information regarding permissible letter joins is also used at 
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this stage to reduce the output produced. 

vi) The output routine reduces the list of candidate words by comparing the 

ranks, applying the diacritical mark information and using a priori informa

tion of the word frequency of English usage. The final candidate word Ust 

is displayed to the user for confirmation. 

• The training routine trains the template database using the knowledge of the 

confirmed output from the user. 

Designed and 
implemented 
at NPL 

Designed at 
Nottingham, 
implemented at 
NPL 

Designed and 
implemented 
at Nottingham 

prepro 

can 

handwriting 

1 
digitiser 

raw data (DDPs) 

preprocessing 

cessed data , . baseline & h 

segmentation 

features 
' 

template 
matching 

letter graph ' 
dictionary 

lookup 

didate words 

ou put 

alfline diacritical mark 

template 
database 

•* lexicon 

s 

English word 
frequency 

ascii text 

Figure 3.1 - The recognition process 

The software has been written in separate modules which can be run 

independentiy of the other modules. These modules consist of 

• preprocessing, verification, segmentation and feature extraction; 
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template matching; 

dictionary verification; 

output sorting and reduction; 

output verification or cortection; 

template training. 

For a research system this modular approach gives the greatest flexibility for 

development. Each module can be separately developed and tested. Possible 

replacement modules can be tested by inserting them into the complete system at 

the appropriate place and comparing them with the original modules. The output 

from each stage can be stored in files for later examination. 

When the methods and techniques are proved, these separate modules could 

be combined within a single process to improve the speed of execution. Under a 

UNIXf environment the modules can be piped together to give the impression of a 

single process. 

3.2. Project Organisation 

This research was initiated as part of the Electronic Paper Project 

(£PP)8,11,27^ undertaken by the National Physical Laboratory (NPL), The EPP 

included investigations into all aspects of the Electronic Paper concept including 

the supporting hardware and the intelligent controlling software. Research into 

cursive handwriting recognition was split between two sites, NPL and The 

University of Nottingham. The work was divided into logical sections as 

follows:- the data capture and preprocessing was carried out entirely by the NPL; 

the segmentation and feature extraction was specified by Nottingham and imple

mented by the NPL; the template matching, dictionary lookup and automated 

tiaining were carried out entirely at Nottingham. 

The preprocessing is described in Brocklehurst and Kenward ̂ ,̂ Implemen

tation details of the segmentation and feature extraction is described in Ford and 

Symm^^ and Cox and Harris^^. 

The Electionic Paper Project was terminated at NPL before the completion 

of the handwriting recognition research. The preprocessing software has there

fore remained static while the development of the remainder of the system was 

t UNIX is a trademark of Bell Laboratories. 
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completed. The research described in this thesis has been developed assuming 

that a well preprocessed individual word can be supplied to the system. Since a 

large proportion of the preprocessing routines are hardware specific (notably to 

the digitiser), these need to be rewritten for any new technology that is used in 

conjunction with the system. It therefore seems reasonable to base this work on 

the assumption that well preprocessed data will be available to the rest of the 

recognition system. 

3.3. The Underlying Principles of the ORCHiD System 

3.3.1. A Representation of the Script Recognition Process 

One way of representing the script recognition process is to consider the 

input word as a set of data (X) which is acted on by the recognition system (r) to 

produce a set of possible output word candidates (Y) [Y = r(X)]. 

The philosophy used by the ORCHiD system described in this thesis employs 

an extension to this model, that is that the set of input data (X) has itself been pro

duced by another process, the writing process (w). In the writing process, the 

brain of the writer decides that it wishes to write a word (W) and produces some 

form of a mental picture of that word. The motor control part of the brain then 

instructs the muscles of the hand, wrist and arm to move in such a way that the 

pen draws shapes on to the page that resemble the mental picture, to a greater or 

lesser extent. This is our input data (X) described above [X = w (W)] 

The image produced on the page deviates from the mental picture in such a 

way that the image is still identifiable as the cortect word to a human reader. The 

deviations must therefore remain within certain tolerances which will differ 

depending on circumstance. For example, an isolated word must be written more 

carefully to be successfully recognised than a word within the context of a para

graph. 

It can now be seen that the ideal recognition system (r,) would be the 

inverse of the writing process [r,- = w~^] 

The ORCHiD system attempts to make use of this extra information in the 

development of a cursive script recognition (CSR) system. 
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3.3.2. A Statistical Approach 

In order to allow the recognition system to be as generalised as possible it 

was decided to use a statistical approach throughout. This has a number of 

benefits. 

• By using sound statistical principles at each stage of the recognition, all 

decisions and probabilistic calculations can use standard techniques and 

theories. 

• The recognition routines can be data-driven, rather than rule-based, so it is 

not necessary to specify in the code particular featiires of characters. The 

definition of a template for a character was defined by presenting the system 

with a number of samples of that character, and recording the average values 

and spread of the samples. This allowed total flexibility of character 

definition, so that the system could easily be tiained to recognise new char

acters. 

• The template matching algorithm calculates a probability of match for each 

segment of the sample word, assuming a multivariate normal distribution for 

each segment. (Section 4.7 discusses the normality of features for each seg

ment.) This is a true probabiUty, not an ad hoc weighting, conditional on the 

fact that any other template may match the segment. These probabilities are 

then combined across the whole word for each candidate word to give a pro

bability that the whole word is cortect. 

• The various stages of recognition developed within this system are not lim

ited to cursive script, but might be readily applied to other fields of pattern 

recognition. In particular, the template matching and template training rou

tines might be applicable for any trainable recognition system that provides 

feature information from an unambiguously segmented data sample, and the 

dictionary lookup may be applied to any system that requires lexicon-based 

context verification as a postprocessor of the recognition phase. 

3.3.3. Retention of Ambiguity 

Handwriting is an inherentiy ambiguous communication medium. It is fre

quentiy not possible to classify a character or word without reference to the sur

rounding context. There is a conflict here with any automatic recognition system 

that needs to make definite binary decisions about whether some information is 

relevant or can be discarded so that the data stored within the program does not 
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become unwieldy and unmanageable. A successful recognition system will need 

to retain ambiguity for as long as possible, so that contextual postprocessors can 

apply their additional information to produce more accurate (or more probable) 

output. 

The ORCHiD system described here attempts to retain as much ambiguity as 

possible throughout the whole recognition process. Binary cut-offs are necessary 

at certain stages to reduce the processing required, but this is kept to a minimum. 

A weighted list of candidate words is produced. At present, the most likely of 

these words is displayed as output, but the whole list is available if further contex

tual postprocessors are supplied, for example syntactic or semantic verification. 

3.4. Hardware Configuration 

Several different hardware configurations have been used at various stages 

in the development of this system, taking advantage of the constantly evolving 

technology. Initial work was carried out on an ICL Perq 2 graphics workstation, 

with input from a Summagraphics digitising tablet with specially adapted stylus. 

With the development of the PAD, the Electronic Paper Demonstiator^, handwrit

ing data was captured by its digitising surface and transferred to the Perq via 

serial line. The original demonstiation system was developed using this technol

ogy - see Appendix A. 

The PAD was integrated with a Sun 3 workstation, and work was transferred 

to this processor. The stylus on the PAD was not of sufficient quality for collec

tion of large quantities of handwriting sample data, and so the Pencept Penpad 

was used as an input device, connected to the Sun workstation via the serial line. 

This opaque digitiser has a very acceptable stylus for data coUection^^. 

An ideal hardware configuration for this system might be a commercial elec

tionic paper hardware interface connected to a very powerful reduced instmction 

set (RISC) processor with a large amount of memory sufficient to hold the very 

large data structures used. 

3.5. Preprocessing and Stroke Reconnection 

The data is preprocessed by the NPL routines described in the documents 

listed above. Diacritical marks, which we will define to mean dots, as occur on 

the letters «- and V , and crosses, as might occur on the letters ^ n d / , are 

detected by these routines. Descriptive and positional information about them is 
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extracted and stored to be used later, at the dictionary lookup stage, to eliminate 

unlikely words. The stiokes which form these diacritical marks are then removed 

from the sample and ignored in all further processing. The existence of diacritical 

marks is not ambiguous within this system, but their precise identification is 

ambiguous. 

After diacritical mark removal all non-connected stiokes within a word are 

connected together to produce a sample word with a minimum number of pen-

lifts within it. This stroke reconnection or gap removal is done for several rea

sons. Primarily, reconnection eliminates unintentional gaps from the script 

caused by light pen pressure or an insufficiently sensitive digitising tablet, but it 

has the advantage that many letters that can be written with numerous stiokes 

appear similar to completely cursive variations of the same letter after reconnec

tion (see figure 3.2 for examples). 

r\ rs 

D b 

Figure 3.2 - Letters before and after stroke reconnection 

The reconnection is at present carried out by joining the two end-points with 

a stiaight line. Some digitisers can provide positional information about the pen 

motion when it is not in contact with the digitising surface. This might provide a 

more accurate image of the pen motion. 
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3.6. Visual Verification and Correction of Preprocessing 

As mentioned in section 3.2, the preprocessing software has not been fully 

developed along with the rest of the recognition system. The preprocessing 

software occasionally fails causing incorrect data to be passed onto the rest of die 

system. A routine has been implemented that allows the manual cortection of 

word-split ertors and baseline and halfline errors which have occurted within the 

preprocessing. In this way, only cortectiy preprocessed words are passed on for 

recognition. 

The prerequisite discussed in section 1.4.2 is thus satisfied. 

3.7. Segmentation Algorithm 

The segmentation algorithm consists of two parts. Firstly, specific features 

of the pen-strokes of the script define Possible Segmentation Points (PSPs). 

Secondly, each segment between two PSPs is examined and PSPs may be deleted 

to yield a list of Definite Segmentation Points (DSPs). This process is detailed in 

Chapter 4. 

3.7.1. Possible Segmentation Points 

A PSP is recorded at the following points within the sample word (see figure 

3.3) :-

Intersections - Wherever a stroke crosses its own path to produce a loop, two 

PSPs are recorded with a segment in between. 

Cusps - Wherever there is a discontinuity in the slope of the stroke, two superim

posed PSPs are recorded with a zero length segment in between. A cusp is thus 

tieated as an infinitessimally small loop. 

Points of Inflection - Wherever there is a sign change in the angle of curvature, a 

PSP is recorded. 

End Points The position of a pen-up or pen-down is tieated as if it was a cusp. 

3.7.2. PSP Deletion 

This segmentation alone is not perfect, since it is possible to have multiple 

intersections which overlap, and short, irtelevant segments caused by wobble of 

the pen or pen flicks at pen-ups and pen-downs. We wish to use only those PSPs 

that were intentional, and not those that are irtelevant. In figure 3.4, the important 
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1) intersection ii) cusp 

inserted 
pseudo-cusp at 
pen-down 

iii) point of inflection iv) end-point 

Figure 3.3 - Possible segmentation points 

r^ 
irrelevant intersections irrelevant inflection points 

Figure 3.4 - Irrelevant PSPs 

PSPs are indicated in black and the irtelevant PSPs in white. 

To identify which intersections are intentional and which are accidental, 

every intersection is examined to see if its connecting segment contains any other 

intersections. If it does then the segment is repeatedly stietched horizontally with 
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respect to time until only uninterrupted segments are produced between the inter

sections (see figure 3.5). These PSPs are tiien added to the list of DSPs and die 

other accidental PSPs removed. 
PSP's DSP's 

stretch 

Figure 3.5 - PSP deletion 

The PSPs bounding short segments are deleted from the list of DSPs if either 

the segment preceding or the segment following is not a cusp. Short segments 

immediately preceding a pen-up or following a pen-down are regarded as serifs or 

flicks of the pen and are deleted. 

3.8. Feature Extraction 

The segments between DSPs fall into one of three general categories, illus-

tiated in figure 3.6, either a loop, a cusp or a himtp. A number of descriptive 

features are measured for each segment. Section 4.6 discusses the selection of 

these features. 

cusp hump 

Figure 3.6 - Segment shapes 
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3.9. Template Matching 

A database of templates is stored containing the allographs for every variety 

of letter and letter join recognised by the system. A further personal database for 

each user records only the styles which they use, and can be constantiy updated to 

match their individual handwriting. Details of the template matching routines are 

found in Chapter 5. 

The templates for letters and letter-joins are segmented using the same algo

rithm as that used to segment the sample script, in order that the sample and tem

plate segments should match in size and shape. A template can then be several 

segments long. For each segment of the template, the mean and standard devia

tion of each feature is stored. The mean and standard deviations are calculated by 

presenting a number of samples of the letter to the system and their feature values 

analysed. In this way the consistency of each of the features is represented by the 

standard deviation. 

The template matching process consists of several stages - template com

parison, segment normalisation and letter graph formation. 

3.9.1. Template Comparison 

Each segment of each template in the template database is compared against 

every segment of the sample word. For each feature of each segment of the tem

plate a height value is calculated by evaluating an approximation to the height of 

the template's statistical distribution at the sample word's feature value, see figure 

3.7. 

The height values for a segment are then combined together to give a com

parison score for that segment of that template. These scores are recorded in a 

template comparison array, and this artay is located at the appropriate segment 

position within the sample word comparison array. Figure 3.8 shows a sample 

word comparison artay for a five segment sample D compared with template 

database containing three different length templates R, S and T. <t>x,(Oj) 

represents the height value when segment j of the sample is compared against 

segment / of template X. A further description can be found in section 5.7.1. 
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Figure 3.7 - Height value of the template distribution 

Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 

^RADO 

<^R,(D2) 

<\>RAD3) 

<!>/?, ( ^ 4 ) 

<t>/J,(^5) 

<t)5,(01) 

^h-.iDO 

<t>S2(^2) 

<^S,(D2) 

-

-

<k2(D2) 

^,(D2) 

-

-

<^S2iDs) 

<t)S,(£>3) 

-

<h,iD3) 

<k2(D3) 

<h,(D^) 

-

-

<t)S2(^4) 

<^S,iD4) 

-

<h^iD4) 

<t>7-2(04) 

^s.iDs) 

<k.iDs) 

Figure 3.8 - A sample word comparison array 

A number of templates are rejected at this stage if the comparison score for 

any segment falls below a threshold. 
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3.9.2. Segment Normalisation 

When comparison scores have been calculated for every template, the scores 

for each segment of the sample word comparison artay are normalised across the 

segment to give segment-normalised comparison scores. 

3.9.3. Letter Graph Formation 

The segment-normalised comparison scores of a matching template's consti

tuent segments are combined to give a weight for that template. If any template 

weight exceeds an experimentally derived threshold it is accepted as a candidate 

allograph. It is placed in the appropriate position on a directed letter graph, con

nected to any other candidate allographs which may precede or follow it in physi

cal location (see figure 3.9). By tiacing the letter graph, candidate words can be 

generated and associated candidate word weightings calculated by combining the 

weights of each template used. ('@' represents start-of-word, '#' end-of-word.) 

Figure 3.9 - A directed letter graph 

3.10. Dictionary Lookup 

A lexicon of valid words is constiiicted into a rn>-based data stiucture (see 

section 2.7.7). The letter graph, produced by the template matching routine, and 

die dictionary tiee are tiaced simultaneously with a highly efficient recursive 

algorithm that yields every possible valid word candidate tiiat can be formed from 

the letter graph. Each word has a weighting associated with it allowing tiie output 

word candidate Ust to be ranked. Full details are given in Chapter 6. 
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The diacritical mark information saved from earlier is now used to reduce 

the output list by removing words which do not feature the cortect number of 

marks. Even the identification of these marks is ambiguous, so it is necessary to 

allow the counts of dots and crosses to vary, ie all dots are allowed to be short 

crosses and vice versa. Allowance is also made for a double 't' to be crossed with 

just one stioke. 

3.11. Visual Display of Input and Verification of Output 

The final word candidate list can now be presented to the user for 

verification. A final system must be able to make an automatic decision as to 

which of the candidate words to propose as the cortect one, or it must decide that 

there is nothing to choose between a small number of contenders and present all 

of the possibilities for the user to select from. 

The word weighting produced by this system cannot be used as a guide to 

the quality of the output since it is a relative measure with respect to the other 

possible candidate words. If a number of words appear at the top of the candidate 

word list with equal likelihood, then their absolute weightings will be lower than 

a single word. This does not imply that the quality of the match is any lower. 

This can be judged by examining the spread of weightings of the words. If the 

top word, or small group of words, is separated from its nearest neighbour by a 

large amount, then the match is probably better than if there is a very large group 

of words at the top of the list. Within this system at present, all words that have 

probabilities greater than a percentage of the top word are displayed. 

The output Ust can be further enhanced by including the a priori probabiUty 

of a word being written, obtained from a frequency count of English usage. 

In the experimental system the output is displayed one word at a time with a 

graphical display of the input data. The cortect word can be selected from the 

output list, or the cortect word entered if it is omitted from the list. 

3.12. Training 

Training takes place in two stages, initialisation and continuous training. 

Firstiy, a new user is initiaUsed into the system. The system prompts the user to 

write a small number of words which contain every letter. From this data a per

sonal database of allographs is selected and created. Later, the user writes any 

words from the dictionary. The system attempts recognition and requests 
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verification or cortection of each word. The personal database is then updated 

with the new data. This continues until sufficient recognition accuracy is 

attained. This is discussed in Chapter 7. 

3.13. Conclusion 

An experimental system has been produced which enables a user to write 

any number of words from a large vocabulary. Each word is recognised and 

presented to the user for confirmation. After confirmation, the system automati

cally ttains the personal database of the user. Further details of the individual 

components of the system now follow. 



Chapter 4 

Segmentation 

This chapter describes the segmentation method used by the ORCHiD system. 

Section 2.4 described the common segmentation methods and problems that are 

associated widi them. Although any segmentation method will include similar 

problems, it is the goal of this work to minimise these. It is desirable for a seg

mentation method to produce a consistent set of segments, especially for input 

samples with the same underlying stmcture. By studying the way that minor 

changes in letter formation affect the image written on the paper, a segmentation 

method has been conceived which appears to achieve this consistency and minim

ises the associated problems. 

4.1. Background to the Segmentation Algorithm 

To develop an automatic handwriting recognition system which can read 

most styles of handwriting with no training requires a large collection of data 

containing the many differing styles and variations of each character within the 

alphabet. (The way in which a particular character is formed is referted to as its 

allograph and its computer representation is referted to as a template for that 

character). A brief examination of a small number of manuscripts is sufficient to 

indicate the wide variety of styles in everyday use. It is clearly impractical, in 

terms of storage and computation, to record each individual style separately. It is 

therefore necessary to find a way to identify a particular character given a number 

of variations in its formation. 

The most common method used in schools to teach handwriting is the copy

book method. A page of a typical copy-book might have a carefully drawn exam

ple of how to write a character, perhaps with numbers and artows to indicate the 

order and direction in which the stiokes are made, together with guideUnes on 

which die pupil can copy the letter. Figure 4.1 shows a typical page as might be 

found in a copy-book^^. Children then diligentiy copy each letter repeatedly until 

they have mastered how to form the shapes cortectiy. The position, direction and 
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order of the pen stiokes is weU specified. 

Go over the letters a and d. Then copy them underneath. 

H 
Figure 4.1 - A typical page from a copy-book 

As we grow older and need to write increasing amounts of text more quickly 

(and, indeed, as we get more lazy), the near-perfect formation of schoolbook 

handwriting degenerates. The precise manner in which each individual letter and 

letter combination is formed during this period of deterioration is unique to each 

individual and this gives rise to a personal style. Often the quality of the 

handwriting continues to deteriorate until a stage is reached when the script is 

illegible to anyone with whom the writer needs to communicate. At this stage the 

writer is forced to check the decline in standards, if the writing is to be under

stood by anybody else, or leam to type! 

There are only a limited number of copy-book styles from which everyone 

has learnt to write, and most of these styles overlap considerably across different 

copy-books. If we can somehow map the graphical representation of the writing 

which appears on the page to the theoretical representation of the copy-book 

style that the writer learnt, we can greatiy reduce the number of templates which 

need to be stored to just the number of different copy-book styles. 

This is perhaps not a completely impossible task, since everyone has a sub

conscious image of the letters they are trying to form as they write. An informal 

indication tiiat this is true is to ask anyone to write a word as they were originally 

taught, or as they might teach a child to write. Most people will have littie 

difficulty with this task, and it is, in fact, a very common occurtence with parents 

helping children to learn to write. 
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In order to verify this a number of people were asked to write a few words in 

their ordinary handwriting, and then in a very neat style, as they were taught at 

school or as they might teach a child to write. With very few exceptions the 

"standard" copy-book style templates were used, even by those people who had 

very unusual writing styles. 

In general, the accuracy of letter formation compared to the copy-book stan

dard decreases as writing speed increases. The major feature of the script which 

is affected by speed of writing is the cusp or sharp comer. This feature either 

becomes smoother until it is just a wiggle or hump, or it becomes more pro

nounced and turns into a loop. These processes also occur in reverse whereby a 

loop or hump becomes a cusp. Figure 4.2a shows how this occurs and figure 4.2b 

shows this deterioration within the context of letters. As the writing deteriorates 

further, whole letters can disappear and become just squiggles or lines which, 

taken out of the context of the word, are completely meaningless. In figure 4.2c, 

the end of the word conU't^ is illegible when the letters CM are taken out of 

context. There is a limit to the quality of handwriting that is legible to even a 

human reader, so it is not unreasonable to insist that an automated recognition 

system must be presented with reasonably neat handwriting that is relatively easy 

for a human to recognise. Hence the prerequisite of section 1.4.2. 

We can make use of the above information to develop a segmentation 

method that is consistent across a number of writing styles where there are minor 

variations in the graphical formation of allographs. 

4.2. Aims for a Good Segmentation Method 

We can now define some requirements for an ideal segmentation method for 

such a cursive script recognition system. 

a) The method should segment the script at least at letter boundaries, ie there 

should be no more than one actual letter between two adjacent segmentation 

points. 

It is clearly not possible to insist that segmentation should occur only at 

letter boundaries, which would make die subsequent recognition far simpler, 

since the letter boundaries may be ambiguous even after the character recog

nition stage. For example it may not be clear whetiier the word Uca^ox do^ 

was written. (Note: This may not be the case if we were to tieat letter combi

nations as a single unit for recognition, for example it may be desirable to 
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a) b) 

cusp hump 

<=> 

c) 

Figure 4.2 - Cusp deformation 

b) 

recognise < ^ or Z% as single entities. A better description of this require

ment might be to say that the algorithm should segment at least at "recogni

tional unit" boundaries. The ORCHiD system does not in fact use multi

character templates, but it would be simple to define and match such tem

plates if so desired.) 

This requirement ensures that the template matching stage only involves 

comparison of the segment with each template in turn in isolation. It is 

never necessary to consider two templates in combination to match to a sin

gle segment. 

The segmentation algorithm should base its decision on whether to segment 

at a particular Digitiser Data Point (DDP) independently of the other Seg

mentation Points (SP). 
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In this way the algorithm will define if a DDP may be a SP or may not. 

There is no allowance for the position of a SP to be ambiguous. (For exam

ple, in figure 4.3 the segmentation algorithm should be of the form "If there 

exists a segmentation point between X and Y then it shall be at Z" rather 

than of the form "If there exists a segmentation point between X and Y tiien 

it is either at A or at B, but not both".) 

Figure 4.3 - Segmentation points with variable position 

This requirement allows the ambiguity in segmentation to be carried forward 

for resolution by the later stages of the recognition system. (For example, it 

may be desirable to cortectiy identify the letter segmentation and this could 

be more successfully done after the template matching stage.) The ambi

guity of the precise location of a SP cannot be carried forward using a sta

tistical system since there is no valid theory known to the author for compar

ing segments of differing lengths. For example, in the diagram, if there is 

doubt as to whether the segmentation of the stroke XY should be at points A 

or B there is no statistically valid way of comparing the segmented pieces 

XA to XB, or AY to BY. (See section 5.2 for a discussion on the statistical 

vaUdity.) 

c) The segmentation should emphasise the important characteristics of the 

handwriting which help to differentiate between the letters, and suppress the 

unimportant characteristics. 

d) The segmentation should aim to consistently map variations of the same 

character onto a single stored letter template. 

In this way the number of letter templates that need to be stored will be 

reduced. In the terms discussed in section 4.1, we wish to map each written 

character back to the writer's mental image of the copy-book character. 
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4.3. The ORCHiD Segmentation Algorithm 

The algorithm attempts to highlight the deformation of cusps described in 

section 4.1 above, since the graphical appearance of the cusp on the page is one 

of the main features of individuality between writers. For example, the copy

book letter ^may be as in the right of figure 4.4. Each of the other ^ s are based 

on it in some way. If the copy-book ^ i s described in words as 

"a cusp, pointing right, on the halfline, joined to an upward pointing 

cusp at the full-height-line, directly above the first cusp, by a smooth 

curve which touches the baseline," 

and the word cusp is freely interchanged with loop, then the similarity emerges. 

-d d 
copy-book 

letter 

Figure 4.4 - Letter d's based on the same copy-book letter 

Ouladj et af^ have taken a similar theoretical basis for their recognition sys

tem. Their description of the script, however, is based on Freeman coding, so it is 

necessary to apply an additional information source that describes the changes to 

the Freeman code as cusps, loops, etc deform (see figure 2.11). The approach 

described below provides a measure of deformation of a cusp, loop, etc and so 

allows direct comparison between the different types of segment. 

The ORCHiD system is primarily a statistically based recognition system. It 

is therefore important at each stage to consider the statistical validity of that stage 

and its repercussions on subsequent stages. To compare the goodness of fit of a 

sample with a number of templates it is essential that the templates have the same 

number of featiires as the sample, and that the feature artays are of die same 

length otherwise we are comparing variables with differing numbers of dimen

sions. For this reason, item b) above is most important. 
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The segmentation algorithm operates in two passes. On the first pass, a Ust 

of Possible Segmentation Points (PSPs) is produced which are defined by certain 

features of the script. This list is then reduced on the second pass by the applica

tion of a number of criteria to provide a Ust of Definite Segmentation Points 

(DSPs). 

4.3.1. Possible Segmentation Points 

A PSP is recorded at the DDP nearest to specific features of the script. 

These four features are as follows and illustiated in figure 4.5. 

i) Intersection - Wherever a stioke crosses its own path to form a closed loop 

this is defined as an intersection. A PSP is marked at the DDP nearest to the 

intersection at the beginning of the loop and nearest to the intersection at the 

end of the loop. 

ii) Cusp - Wherever there is a discontinuity in the slope of the stroke, ie where 

there is a sharp point, this is defined as a cusp. A cusp is tieated as if it were 

an intersection with an infinitessimally small loop, and so has two superim

posed PSPs with a zero length segment in between. 

iii) Point of Inflection - Wherever there is a sign change in the angle of curva

ture, this is defined as a point of inflection. A PSP is recorded at each point 

of inflection. 

iv) End Points - Each pen-down or pen-up is replaced by a pseudo-cusp with 

the cortesponding two PSPs and zero-length segment. 

4.3.2. PSP Deletion 

This initial segmentation works well for carefully drawn words, but often 

fails in practice due to two features of everyday handwriting. 

Firstiy it is common for a number of loops to be drawn that overlap each 

other within a word. This causes a large number of superfluous intersections and 

loops to be identified which confuse the system. 

Secondly stiaight lines within the script often wobble by more than die 

threshold set by the cleaning routines during preprocessing and thus produce 

irrelevant points of inflection with short segments between them. In figure 4,6, 

die important PSPs are indicated in black and the irtelevant PSPs in white. 

Methods are needed to alleviate these problems. 
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i) intersection ii) cusp 

inserted 
pseudo-cusp at 
pen-down 

iii) point of inflection iv) end-point 

Figure 4.5 - Possible segmentation points 

irrelevant intersections irrelevant inflection points 

Figure 4.6 - Inelevant segmentation points 

4.3.2.1. Multiple Intersections 

Consider the stioke sample between X and Y in figure 4.7a (perhaps a styl

ised letter 'b'). We can see that there are six intersections (A - F) between X and 

Y. However if we consider the first half of the stioke, between X and Z, there is 



4: SEGMENTATION 63 

just one intersection at B (figure 4.7b). Similarly for the second half of the stioke, 

between Z and Y, there is just one intersection at F (figure 4.7c). This matches up 

with our theoretical view of a copy-book letter 'b' which consists of two cusps 

connected by a smooth curve (figure 4.8a). 

It can now be seen that the stroke XY consists of the curve XB, the loop 

delimited by the intersection at B, the curve BZF, the loop delimited by the inter

section at F, and the curve FY. The intersections at A, C, D and E are incidental 

and are not relevant in defining the constituent elements of the stioke. Figure 

4.8b shows a stroke with the same underlying structure without the accidental 

intersections. We require a computational method for highlighting the relevant 

intersections within a piece of script. 

a) 

b) c) 

Figure 4.7 - Multiple intersections 

A very simpUfied view of the motion of the pen during cursive writing is to 

consider tiiat the fingers move the pen by small amounts in the horizontal and 
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b) 

Figure 4.8 - Strokes with same underlying structure 

vertical directions to form the characters, perhaps as they might form separated 

characters, and the whole hand, wrist and arm move slowly from left to right as 

the writing progresses^^••'̂ •^^. Multiple intersections within a stioke are caused 

when the horizontal motion of the writing hand is fairly slow, so that the script 

overlaps itself. If the hand were moving faster in the horizontal direction, or the 

paper were moving from right to left, the strokes would not overlap. If we super

impose a time-motion in the horizontal or x direction, we can simulate this 

increased speed of hand movement. So if a stroke with multiple intersections is 

stretched along the jc-axis with respect to time, by adding an increasing amount to 

the X coordinate of each DDP, the irtelevant intersections disappear leaving just 

the important intersections. Figure 4.9 shows an example being stietched by 

increasing amounts. This can perhaps be visualised by considering the writing as 

a piece of string so that the two ends could be pulled apart until there are no over

laps. 

In the second pass of the segmentation algorithm, each segment that is 

delimited by an intersection, ie the loop part, is examined to see if any other inter

sections occur within it. If so, the local area around the intersection is incremen

tally Stietched along the x-axis until no loops overlap. The remaining intersec

tions are then allowed as Definite Segmentation Points. 

The practical implementation also msists that no other PSP can exist within 

a loop, so there is a priority ranking for these PSPs. If an inflection point occurs 

within a loop, then the loop takes priority and the PSP at the inflection is deleted. 

If a cusp occurs within a loop, then the angle made by the entry and exit lines of 
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Original Stretch by 1 unit 

Stretch by 2 units Stretch by 3 units 

Figure 4.9 - Stretching process 

the cusp (or its "tightness") is examined and compared with a threshold. A cusp 

that is sharper than the threshold takes precedence over the loop intersection, and 

a cusp that is less sharp than the threshold gives precedence to the loop intersec

tion. The inappropriate PSP is then deleted. 

4.3.2.2. Short Segments 

Some of the (non-zero length) segments produced by the segmentation algo

rithm are very short, see examples in figure 4.6. Those segments whose length is 

below a threshold are marked as short during the first pass of the segmentation 

algorithm. If either the segment directiy preceding or the segment directiy fol

lowing the short segment is not a loop or a cusp, then the segment is considered to 

be a wobble and the PSP at the point of inflection which defines the segment is 

deleted. The segment is then effectively added on to the preceding or following 

segment. 
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4.3.2.3. Serifs 

Occasionally short segments occur just before a pen-up or immediately fol

lowing a pen-down. These are referted to as serifs or flicks of the pen. They may 

be caused by inadequacies of the digitiser or may be deliberate stiokes or flour

ishes within the user's style. They are usually not important for the letter forma

tion and so are deleted by the system. 

4.4. Segment Shapes 

It can now be seen that the segments between the definite segmentation 

points fit into one of three categories (see figure 4.10) - either a closed loop, 

where the bounding DSPs occupy the same physical coordinates, but the connect

ing stioke is non-zero in length; or a cusp, where the bounding DSPs occupy the 

same physical coordinates, but the connecting stroke is zero in length; or a hump, 

where the bounding DSPs are separated. 

cusp hump 

+ve 0 " -ve 

"loopiness" gradient 

Figure 4.10 - Segment shapes 

It can be seen from the diagram that these segments can be tieated as die 

same shape but with differing amounts of "loopiness" and that one shape can 

evolve into another shape by either stietching or compressing the coordinates 

along the x-axis with respect to time, as in the technique used to remove multiple 

intersections described in section 4.3.2.1. By using tiiis method of stietching or 

compressing along the Jc-axis locally with respect to time it is possible to adjust 

the graphical representation of a word to resemble its theoretical representation as 

required in section 4.1. 
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4.5. Suitability of the Segmentation Method 

The segmentation algorithm reasonably satisfies the aims for a good seg

mentation outlined in section 4.2. Figure 4.11 shows a sample of the template 

database yielded when this segmentation is applied. The heavy lines indicate the 

segments, the tight lines show connecting stiokes. 

•J) b) bb 
'0 

Figure 4.11- Sample of the template database 

Item 4.2 a) is satisfied, in that it is not possible to have more than one char

acter between two segmentation points. Some letters with poorly defined begin

nings and endings, eg •it, Hf, etc, have to be carefully defined however to max

imise the mapping of different styles to the same template. For example, some 

writers draw a letter ttwith an upward cusp at the beginning and end of the letter. 

Others draw the letter with a smooth curve in and out, while others use some 
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combination of these two styles. Since the middle part of the letter is the same in 

each case, we define this as the user-independent letter -K-and define special letter 

joins which will be user-dependent. Some letter combinations may not requke a 

letter-join between them. A database of permissible letter/letter-join combina

tions is thus required. 

Item 4.2 b) is clearly satisfied since this was the most important considera
tion when developing the algorithm. 

Item 4.2 c) appears to be well satisfied since key characteristics were chosen 
to define the segmentation points. 

Item 4.2 d) is reasonably well satisfied. The segmentation produces con

sistent segments for well-written, cortectiy preprocessed data from individual 

users and across a number of users. This reduces the number of templates needed 

for each letter considerably. 

A pseudo-cusp is inserted at each pen-up and pen-down in order to assist 

with the mapping of different styles to a single template. For example, if a letter 

A- is written with a pen-down at the start of the character, insertion of a cusp will 

make the letter look like a letter ^ written in the middle of a word. 

4.5.1. Consistency of Segmentation 

To test the consistency of the segmentation, the word ^ w was written six 

times by ten writers and the script segmented using the algorithm. The words 

were collected in two sets of three, at the end of more substantial data collections 

to ensure that no extra care was taken over their formation. Each letter or letter-

join was then identified to compare the segmentation. Figure 4.12 shows the dif

ferent segmentations of the letters and table 4.1 shows their frequencies. 
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a) b) f. c) ^ 
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vA 
n) Ĵ  0) A 

^ 

r; 
V/ 

C 
^ J 

Figure 4.12 - Script segmentation 
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Letter/join 

'd' 

d-o 

'o' 

o-g 

'g' 

Figure 4.12 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

none 

h) 

i) 

J) 

none 

k) 

1) 

m) 

n) 

o) 

Frequency 

53 

4 

3 

48 

8 

2 

1 

1 

58 

2 

59 

1 

41 

11 

5 

2 

1 

%age 

88 

7 

5 

80 

13 

3 

2 

2 

97 

3 

98 

2 

68 

18 

8 

3 

2 

Table 4.1 - Consistency of segmentation 

Discussion 

The main inconsistency occurs when a hump becomes thin and crosses tiie 

threshold of the cusp detector. The segments then appear to be totally different. 

For example, a letter 'a' can consist of three segments, but if the hump becomes 

thin then it consists of five segments (figure 4.13). This can be observed in 

figures 4.12a)/b), 4.12h)/i) and 4.12k)/m), and in reverse in figure 4.12k)/o), 



4: SEGMENTATION 71 

'CX 
three segments five segments 

Figure 4.13 - Segmentation inconsistencies 

This inconsistency could be reduced if, perhaps, the cusp detection tiireshold 

is adjusted for each user. To overcome this problem the current system allows 

these as different templates for the same letter, and this has proved desirable in a 

number of other cases, for example rounded 'v's and 'w's compared to pointed 

letters. 

Some inconsistency occurs when script having a large amount of wobble is 

presented to the system. These segments are generally short, however, and are 

usually removed by the algorithm described above. An example that has not been 

removed can be observed in figure 4.12n). The two occurtences of this segmenta

tion, however, occurted in the same sample from the same writer. Further exam

ples from this writer may show that this segmentation is, in fact, consistent for 

this writer. 

The segmentation appears to break down when attempting to resolve multi

ple intersections at the start or end of a stroke. Figure 4.14 gives some examples. 

In these cases the wrong intersections will be identified for deletion. Figure 

4.12c) shows where this has occurted. An improved implementation of the 

stietching stiategy might resolve this problem, for example working from right to 

left, rather than left to right. 

wrong intersections accepted 

Figure 4.14 - Segmentation errors 
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Clearly, the segmentations for the letter 'g' in figures 4.121) and 4.12k) are 

different forms of the letter. Separating these segmentations show diat 4.121) is 

100% consistent, and 4.12k) is 84% consistent. 

It can be seen that the letters are more consistently segmented than the 

letter-joins. This is probably due to more widely varying letter-join styles 

between writers, and within a single writer's script. 

4.6. Feature Extraction 

The coordinate data for each segment must now be reduced to a more 

manageable list of features. This list of features must adequately describe die 

segment so that no information is lost that might be necessary for the recognition 

process. By visually comparing the different graphical forms which the segment 

might take it can be seen that the following features may be useful. These are 

first described generally and then followed by details of those features extracted 

by the ORCHiD system. 

The position of die segment - vertically with respect to the baseUne and halfline, 

horizontally with respect to the neighbouring segments in some way. The vertical 

position is best measured at the point furthest from the bounding segmentation 

points, eg the top of a loop or at a cusp, as this is the least variable position across 

the different segment types. The horizontal position is more difficult to define in 

a consistent way. 

The shape enclosed by the segment. This describes whether the segment is 

round, flattened or elongated. This can be represented numerically by measuring 

the length and breadth of the segment and made size independent by dividing the 

two to get the aspect ratio. 

The size of the region enclosed by the segment. This can be represented by 

measuring its area. 

The direction in which the segment is pointing. 

The "loopiness" or amount of stretching to give the segment's position gradient in 

figure 4,10. 

The direction of rotation in which the stioke was written - clockwise or anticlock

wise. 

With these points in mind, the following features are measured for each seg

ment, each scaled with respect to the baseline-halfline separation. Figure 4.15 
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shows these features for each of the different possible segment shapes. 

Vertical Position (M) 

Angle (<1)) 

Entry Angle (©) 

Exit Angle (©) 

Area 

Aspect Ratio (t/d) 

Chord Distance (c) 

Horizontal Displace
ment 

The vertical position of the midpoint of the segment. 

The direction in which the segment is pointing. For a 

cusp, this is the direction in which the cusp is pointing. 

For a loop, it is the angle of the line joining the mid

point to the intersection. For a hump, it is the angle of 

the Une joining the midpoint to the point halfway along 

the chord joining the segmentation points which define 

the segment. 

The direction in which the pen was travelling on entry 

to the segment. 

The direction in which the pen was travelling on exit 

from the segment. 

The area enclosed by the segment. For a cusp, this 

value is zero. For a loop, this is the area enclosed by 

the loop. For a hump, this is the area enclosed by the 

segment and the chord joining the segmentation points 

which define the segment. The area is signed depending 

on the direction of the enclosing stroke, clockwise or 

anticlockwise. 

The ratio t/d, for the depth d and thickness t of the seg

ment. For a cusp, this is defined to be unity (ie a per

fect circle). For a stiaight line, this is defined to be a 

predefined large number (ie approaching oo). 

The distance between the segmentation points which 

define the segment. This will be zero for cusps and 

loops. 

The horizontal distance between the midpoint of this 

segment and the previous but one segment. This was 

found by observation to be the most useful horizontal 

position information that could be easily measured. 
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loop 

hump hump 

Figure 4.15 - Features measured 

Figure 4.16 illustiates the variation of some of these features along the "loopi

ness" gradient. 
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+ 
0 

A A r\ ^vy 
"loopiness" 

+ 
0 

area & direction 

up 

down 

angle (0) 

chord (c) 

(ang in) - (ang out) 

YM position (M) 
+ 

0 

Figure 4.16 - Values of features 

4.7. Independence and Normality of Features 

The statistical template matching method described in Chapter 5 assumes 

that the features described above are normally distributed and are independent of 

each other. Results are given below for tests of normality for a number of these 
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features. 

Clearly the features are not independent of each other. For example, die 

dkection the segment is pointing in will be dependent on the angles of entry and 

exit to the segment. The area of the segment will be zero if the height and width 

are zero, and so on. It has been found by experiment, however, tfiat all of the 

features add to the information about die segment, and help to differentiate in die 

template matching process. The assumption of independence is therefore used to 

reduce the complexity of computation of the multivariate normal distiibution (see 

section 5.6). 

There are a number of problems associated with proving normality of the 

feature values. The major problem is the large number of samples needed to 

achieve a significant statistical proof. For this reason, a non-parametric test was 

chosen to show normality, since the restrictions are generally less strict than for 

more formal methods. However these tests are consequentiy more conservative. 

The other problem occurs since the feature measurements are on a discrete scale 

so that the implementation can use integer arithmetic for efficiency. To compare 

this with a continuous normal distribution means that the test will again be con

servative. Despite these restrictions, a number of features have shown reasonable 

supportive evidence that they are normally distributed. 

The Kolmogorov-Smimov test for normality has been used. This test 

involves comparing the cumulative distribution of the sample with the expected 

cumulative distribution function (cdf). The test statistic is the maximum distance 

between the two cdf's and this must be less than a tabulated value^^. 

As an example, 32 samples of the loop of a letter 'e' were examined and the 

angle recorded (table 4.2). 

Angle 
Freq 
Angle 
Freq 

9 
1 

59 
2 

24 
2 

60 
2 

40 
1 

61 
1 

41 
1 

63 
1 

43 
1 

66 
1 

45 
1 

68 
1 

48 
1 

69 
5 

50 
2 
71 
1 

51 
1 

76 
1 

52 
1 

79 
1 

55 
3 
88 
1 

Table 4.2 - Observed frequencies 

The mean and standard deviation are estimated from these values as 56.2 

and 16.7, respectively. The expected cumulative frequency is then calculated 

from tables to give the observed and expected frequencies in table 4.3. 
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Angle 

Exp 
Obs 

Angle 

Exp 
Obs 

9 

0.1 

1 

59 

18.2 
17 

24 

0.9 
3 

60 

18.9 
19 

40 

5.3 
4 

61 

19.7 
20 

41 

5.8 

5 

63 

21.1 
21 

43 

7.0 

6 

66 

23.1 
22 

45 

8.1 
7 

68 

24.4 
23 

48 

10.0 
8 

69 

24.9 
28 

50 

11.4 
10 

71 

26.0 
29 

51 

12.1 
11 

76 

28.3 
30 

52 

12.8 
12 

79 

29.3 
31 

55 

15.1 
15 

88 

31.3 

32 

Table 4.3 - Cumulative distribution values 

The maximum distance between these functions can either be seen from the 

table, or by plotting the graphs (figure 4.17). This occurs when the angle is 

slightly less than 51 and is equal to 11.4 - 8 = 3.4. The test statistic D is equal to 

this value, scaled by the number of samples (32) = 0.1063. The 10% significant 

value for this test statistic is 0.1416, so there is no evidence to reject the 

hypothesis that the sample comes from a normal distribution. 

Frequency 
32 

24 

16 

0 = 3.4/32 = 0.1063 

j : :^ 
20 40 60 80 

Angle 

Figure 4.17 - Cumulative distribution functions 

Table 4.4 shows the results from a number of tests. The "Templates" 

column shows which script letters the features were selected from. More dian 

one letter was used to get sufficient samples, with the assumption that the seg

ment being examined would be consistent across the different letters. 
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Feature 

Horiz disp 
Vert pos 
Vert pos 
Angle 
Area 

Aspect ratio 
Chord dist 

Templates 
sampled 

'e' 
'b', 'd', 'h', 'k', 'r, 't ' 

'e' 
'e' 

'a','g','o','q' 
a , g , o , q 
a , g , o , q 

Segment 
type 
loop 
top 
loop 
loop 
loop 
loop 
loop 

No. of 
samples 

32 
60 
32 
32 
39 
39 
39 

Reject 
level 

5% 
1.5% 
<1% 

>10% 
>10% 

<1% 
2% 

Table 4.4 - Normality test results 

As can be seen from these results, some of the features (area, angle) appear 

to be normally distributed, whereas there is less evidence for the other features. 

The accepted features, however, take a wider range of values and so provide for a 

better test, as described above. Since most of the other features have not been 

completely rejected (>1% confidence level) it seems reasonable to assume that 

these too may be acceptable if a larger range of values were available. 

To verify this, a discrete distribution was generated by taking values of the 

normal distribution at the midpoint of die discrete steps of the feature measure

ments. For the sample of 'e' loops (rejected in table 4.4) the expected values of 

the vertical position were calculated for the cdf of this distribution (table 4.5). 

Since the two discrete distributions coincide, the test statistic is simply die 

greatest difference between expected and observed frequencies. In this case the 

statistic (1.79 / 32) is 0.0599, which is not significant (die 10% significant level is 

0.1416). 

Vert pos 

Observed 

Expected 

6 

2 

1.52 

7 

9 

9.21 

8 

21 

22.79 

9 

32 

30.48 

Table 4.5 - Discrete test 
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4.8. Implementation Details 

Cortectiy preprocessed individual cursive words form the input to the seg

mentation routines as a stieam of coordinates (or DDPs). The baseline and 

halfline are provided by die preprocessing routines, diacritical marks, ie dots and 

crosses, have been separated from the script, and pen-lifts within the word have 

been removed. 

The feature extraction routine outputs a list of features measured for each 

segment of the word. The segments are listed sequentially and interspersed with 

any diacritical marks. For each segment, the output feature list is shown in table 

4,6. 

I n t e r n a l 
Var iable 
L 
R 
XM 
YM 
ANG 
•^IN 
~OUT 
AREA 
MAXD 
THICK 
CHORD 

Description 

Left DDP number of the segment 
Right DDP number of the segment 
Horizontal position of the middle of the segment 
Vertical position of the middle of the segment 
Direction the segment is pointing in 
Angle of entry to the segment 
Angle of exit from the segment 
Area enclosed by the segment 
Height of the area enclosed 
Width of the area enclosed 
Distance between start and end points 

Table 4.6 - Segment features 

There are a number of details to note, specific to the implementation. Many 

of these were for coding convenience, since the feature extraction was developed 

in Fortran at NPL. 

• The features are scaled and the script translated such that the baseline occurs 

at y = 0, the halfline at y = 10 and the left-most part of the word is at J: = 0. 

• The sign of L and R is used to indicate a number of conditions. If L alone 

is negative, this segment is a dot; if R alone is negative, this segment is a 

cross; if they are both negative, this is a short segment which may be 

ignored depending on the type of segments on either side of it (see section 

4.3.2.2 above). A dot or cross segment merely contains positional informa

tion. The pen-down and pen-up on either side can supply other information, 
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if required. 

• The sign of AREA indicates if the stioke was written clockwise (negative) 
or anticlockwise (positive), 

• If XM is flagged as negative, this indicates that this segment is an inserted 

pseudo-cusp at a pen-up or pen-down. The tianslation during preprocessing 

ensures that the actual value of XM is always positive. 

• If THICK is flagged as negative, this indicates that the segment might be 

considered as a straight Une. The actual value of THICK is always positive, 

• The height MAXD and width THICK are divided (MAXD/THICK) to give 

the aspect ratio (ASPCT) for all calculations and this ratio is stored in die 

template files. (In practice the value stored is this ratio, multiplied by 10 and 

truncated.) If both numerator and denominator are zero, then this segment is 

a cusp, so the aspect ratio is set to that of a perfect circle, ie unity (ASPCT 

= 10). If only the denominator is zero, then the aspect ratio is set to a 

predefined large number to represent infinity. 

• A value (DISP) is stored in the template to represent the horizontal dis

placement of the segment from its previous but one segment. 

Example 

There follows an example of how a sample of the word tnM was seg

mented (figure 4.18), and the features thus produced (table 4.7). The columns 

marked with '*' are those entries that are calculated from the other table entries, 

as described above. 
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164 

Figiu-e 4.18 - Example segmentation 

L 

1 
12 
47 
51 
62 
66 
87 
97 

118 
134 
139 
163 
164 
197 
197 
199 
225 

R 

2 
47 
51 
62 
66 
87 
97 
118 
134 
139 
163 
164 
196 
197 
198 
-224 
225 

XM 

-10 
14 
23 
23 
22 
27 
32 
41 
45 
48 
50 
57 
56 
-41 
-1 
13 
-26 

DISP 
* 
-
-
13 
9 
-1 
4 
10 
14 
4 
7 
5 
9 
6 

-16 
-
-
-

YM 

18 
0 
18 
10 
1 
8 
0 
9 
3 
9 
1 
8 

-15 
-15 
13 
14 
15 

ANG 

90 
262 
82 
177 
256 
69 
243 
59 
319 
90 
252 
90 
300 
162 
180 
0 
9 

"IN 

90 
270 
90 

267 
270 
63 

288 
27 
270 
90 

270 
90 

256 
162 
180 
0 
9 

"OUT 

270 
90 

254 
267 
63 
270 
27 
270 
90 
270 
104 
270 
162 
342 
0 
0 

189 

AREA 

0 
183 
0 
0 
0 

-24 
11 
21 
43 
0 
66 
0 

-200 
0 
0 
0 
0 

MAXD 

0 
17 
0 
0 
0 
6 
1 
8 
4 
0 
8 
0 
13 
0 
0 
0 
0 

THICK 

0 
14 
0 

-16 
0 
4 
9 
3 
12 
0 
10 
0 
25 
0 
0 
0 
0 

ASPCT 

10 
8 
10 
250 
10 
7 
90 
4 
30 
10 
13 
10 
19 
10 
-
-
-

CHORD 

0 
13 
0 
16 
0 
5 
10 
0 
12 
0 
9 
0 
28 
0 
0 
0 
0 

Table 4.7 - Feature values for a segmented word 

A brief explanation of this table appears below. The first column refers to 

the values of L and R for the particular segment. 

1-2 Pen-down - ;7.yeMrfo-cusp pointing upwards at Y = 18 
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12-47 Large area downward pointing hump touching the baseline 

47-51 Upward cusp at Y = 18, 13 units right of the previous cusp 

51-62 S tiaight line vertically down of length 16 

62-66 Downward cusp, near to baseline, beneath previous cusp 

66-87 69° upward clockwise hump approaching die halfline 

87-97 243° flattened downward hump touching the baseline 

97-118 60° upward pointing elongated loop approaching the halfline 

118-134 319° downward pointing hump near the baseline 

134-139 Upward pointing cusp near the halfline 

139-163 252° downward pointing hump approaching the baseline 

163-164 Upward pointing cusp near the halfline 

164-196 Large area downward pointing clockwise hump through Y = -15 

197-197 Pen-up - Pseudo-cusp pointing left at Y = -15 

197-198 Pen-down - Pseudo-cusp pointing left at Y = 13 

199-224 T-cross-atY = 14 

225-225 Pen-up - Pseudo-cusp pointing right at Y = 15 

4.9. Conclusion 

The segmentation method described here produces a consistent set of seg

ments for a large number of writing styles. By providing a continuous measure 

that describes the deformation of everyday handwriting from ideal copy-book 

script it is possible to compare different handwriting styles that are based on the 

same copy-book style. The ORCHiD segmentation highlights the "loopiness" of 

the segments of the writing to provide this measure. 

By mapping handwriting to a small number of copy-book styles, the tem

plate database used in the recognition system can be reduced, since a number of 

variations can be matched against the same template. This allows a computation

ally intensive matching routine to be used diat would otherwise be impractical. 

Features of each segment are measured, the distribution of which can be 

approximated by a multivariate normal distribution. These are then suitable for 

use within a statistical template matching process. 



Chapter 5 

Template Matching 

This chapter describes the template matching algorithm used by the ORCHiD 

system. A number of template matching methods are described in section 2.5 and 

their advantages and problems are discussed. The method described here relies 

on a consistent segmentation, as described in Chapter 4. It produces an ambigu

ous set of candidate allographs with probabilities. Context can be used to reduce 

this ambiguous output (see Chapter 6). 

5.1. An Introduction to Statistical Template Matching 

It is first necessary to define some terminology. This will be illustiated with 

some simple examples from the field of separated, handwritten character recogni

tion. 

A template is a definition or computer representation of a real-world object (for 

example, a numerical description of what a letter 'd' looks Uke). An allograph is 

a subject specific or context specific topological structure of a character. So a 

template is used to represent an allograph. 

A sample is data representing an object we wish to identify in terms of real-world 

objects (for example, some digitised script). This identification is carried out by 

comparing the sample with the templates. It may then be possible to make a 

discrete choice and classify the sample as being a particular object, but it is often 

desirable to allow some ambiguity in the classification. In this case it is necessary 

to calculate a match probability or weighting to indicate how well a sample 

matches a template. 

A feature is some particular aspect of the data, whether it be the sample data or 

the template data, which can be measured. This measurement may be taken 

either on a continuous scale, for example the angle that a stioke makes with the 

.JC-axis, or on a discrete scale, for example it may be possible to make the state

ment "this is a cusp". 
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Let us consider a simple template matching example for a character recogni

tion system where the feature of interest is the vertical position of cusps within 

tiie script. For simplicity we will assume that we have just two templates (see 

figure 5.1). Template A represents a lower case letter 'a' and its feature descrip

tion is of two cusps with vertical position 10 (units). Template D represents a 

lower case letter 'd' and its description is of a cusp with vertical position 10 fol

lowed by a cusp with vertical position 20. If the sample consists of a cusp with 

vertical position 10 followed by a cusp with vertical position 13, then we may be 

inclined to deduce that the sample is a better match for template A than template 

D, since the vertical height of the final cusp of the sample (13) is closer to 10 dian 

to 20. 

Template Template Sample 
A D 

20 

10 

Figure 5.1 - A simple template matching problem 

This deduction may not hold, however, if we are aware of some further sta

tistical information about the vertical position of the final cusp in each of the tem

plates. Consider a hypothetical experiment which examined a large number of 

samples of the letters 'a' and 'd'. Of 1000 samples of the letter 'a', the vertical 

position of the final cusp was found to vary only between 9 and 11, with most of 

the samples having a value of 10. However, of 1000 samples of the letter 'd', die 

vertical position of the final cusp varied between 13 and 25, with a mean value of 

20. Our original deduction about the best-match template now seems less reason

able, since it is much less likely that the vertical position of the cusp in template 

A will exceed 11 and more likely that it will be variable in template D. Statistical 

theory must be applied to calculate the best match based on the distribution of the 

values of the feature for each template. We may know the actual distribution, but 

more than likely we will need to estimate the distribution from a large population 

of sample data. 

Typically a large number of features are measured. The distributions of 

each of these features can be estimated separately, but it is often convenient to 
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consider an array of the feature values to be a sample from a multivariate distri

bution covering the whole feature space. The number of features is then referted 

to as the number of dimensions. To reduce the theoretical complexities and com

putation of using generalised statistical distributions, it is usual to select features 

which yield values with a normal distribution so that the combined distribution is 

multivariate normal. 

5.2. The Goodness of Fit Approach 

In the classical statistical approach to template matching, sample data is 

compared to a template and a probability or weighting is produced representing 

how well the sample matches that template. The sample may be compared with 

several templates and the probabilities used to provide a ranked list of possible 

template matches for the sample data. The template might be described by the 

expected values of a number of features which could be extracted from the data, 

and the statistical distribution of values for these features may either be known, or 

can be estimated from a large population. A number of statistical theories are 

available which can be applied in this situation to provide a "goodness of fit" rat

ing when comparing a sample to the expected multivariate distribution of the 

template. These may be based on traditional Bayesian theory^^, or on non-

parametric statistics, such as Kolmogorov-Smimov or Cramer von Mises^^. The 

nonparametric tests are mostly favoured due to their simplicity. 

When such a template matching approach is applied to cursive script recog

nition a common methodology is to attempt to segment the script at letter joins 

and match the segments to templates of characters. Some methods then take die 

closest matching letter in each position as the cortect output, and combine these 

letters to form a word. Other methods allow for a number of possibilities in each 

letter position. These letter possibilities are then combined in every possible way 

to produce a list of possible output words. In this case the probabilities or weight

ings for each letter must also be combined to give a probabiUty or weighting for 

each candidate word. 

Illustration 

Let us consider the following cursive script recognition problem as an exam

ple. The word ^4w-is presented to a segmentation based recognition system. The 

segmentation algorithm cortectiy segments the word at the letter boundaries and 
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passes the three resulting segments to the recognition phase. This recognition 

phase indicates that the first segment is eidier a letter ^with probability or 

"goodness of fit" of 90% or a letter ^̂^ with probability 10%; the second segment 

is either a letter o with probability 70% or a letter ft- with probability 30%; and 

the third segment is either a letter ^with probability 60% or a letter *n widi pro

bability 40%. It is then perfectly reasonable to multiply diese probabilities in die 

usual way and say that there is a (90% x 70% x 60% =) 37.8% probabiUty of the 

word being ^ 4 ^ or a (90% x 30% x 40% =) 10.8% probability of it being fU^ 

and so on for the other six possible combinations of letters. 

The Problem with the Classical Approach 

Cursive script recognition, however, poses a more complex problem. The 

segmentation points between letters are not only difficult to detect but are often 

ambiguous without the application of high level contextual information. There 

are two possible ways in which allowances can be made for this ambiguity. 

Either some form of transformation to the output can be applied which cortects 

any ertors that may have occurred in the segmentation stage, for example mistak

ing C4U for /M*, or ambiguous segmentation can be allowed with the assumption 

that the later stages of the recognition will resolve the ambiguity. 

The first technique requires a detailed study of the performance of the recog

nition system to provide accurate statistics of the likelihood of various ertors 

occurring. These ertors may be transliteration errors, where a letter is misrecog

nised as another letter, or segmentation ertors, where the segmentation has 

occurted in the wrong place and therefore caused recognition ertors. It is then 

possible to take the output from such a recognition system and apply this statisti

cal information to produce the most likely input word for the output produced. 

Sections 2.7.3-6 gives details of some of these methods. 

The second technique retains as much information as possible throughout 

each stage of the recognition process and only rejects it when there is sufficient 

evidence, for example if a letter sequence does not make a valid word. In this 

way it is never necessary to make arbitiary binary decisions and no assumptions 

are necessary about likely ertors that may have been introduced by the system. 

The ORCHiD system uses this second approach. 
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Illustration 

Continuing with the previous illustiation, if we allow an ambiguous segmen

tation method that provides for the strokes which form the letter ^ t o be made up 

of a letter c-and a letter / , then we encounter a problem with the template match

ing approach outlined in section 5.2. Using the same recognition module, it 

might return that the first segment matches the ^template with a "goodness of fit" 

of 100% and the second segment is a 100% match for the /template. The prob

lem that we encounter is that there is no way to compare the 90% letter ^with, 

say, the 100% o. 

Peleg^^ attempted to rationalise the match weights by constructing a graph 

of letter possibilities, and calculating probabilities normalised for each group of 

letters occupying the same space on the graph. Figure 5.2 shows his example 

letter graph for the word fctw^with the possible letters and normalised probabili

ties. For the reasons described above, the probability calculations are flawed and 

should not be combined across the word to give a word probability. 

1 ( 6 7 ) 
e ( 3 3 > 

e ( 3 4 ) 
1 ( 3 0 ) 
r ( i a ) 
s ( 1 8 ) 

Hayes normalisation group A group C 

Figure 5.2 - Peleg's normalisation 

Hayes^^ attempted to alleviate the problem by normalising across groups of 

letters that span a section of a word. In figure 5.2, the probabilities would be nor-

maUsed within the three groups indicated. As letters are deleted from the graph 

(for contextual or other reasons) the probabilities are re-normalised. This mediod 

is stiU fundamentally flawed, for the same reasons. 
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The development of any form of statistical cursive script recognition system 

based on an ambiguous segmentation method must overcome the problem that 

there is no valid theory available for comparing samples taken from multivariate 

distributions with different numbers of dimensions. For instance letters may span 

differing amounts of the sample text and hence have different numbers of features 

associated with them. As stated above, for the word ^4»^we might say that there 

is a 90% probability that the first letter is a ^and a 10% probability of it being an 

/»-, but we may be 100% certain that the first part of the letter, when considered 

on its own, is a c-. How can we now compare the c-with the ^ ? The only way 

that the comparison can make sense is if we consider the letter ^with the letter 

combination o Aaken together. 

5.3. A Probabilistic Approach 

In the example above comparing ^with c&, the first part of the letter could 

equally belong to the o, cCox ^ . (We will ignore other possibilities for the pur

poses of clarity of explanation.) So there is a 33% probability, say, that it belongs 

to any of these three letters. The second part of the letter involves comparing the 

ascender of the ^with the /and the second part of the /»•. Assuming that the 

two true ascenders are equally likely, then they may have a probability of 45% 

each, say, and the /r-may have a probability of 10%. Combining these probabili

ties gives a probability for the ^of 15%, for the ^of 3.3%, for the oof 33% and 

for the /of 45%, but for the <::/combined the probabiUty is 15%, which can now 

be sensibly compared with the <ŝ and the <». 

We can see that although the "goodness of fit" approach to template match

ing produces a meaningful value for how well a sample matches a template and 

can be used to compare the matches of equally sized templates, that value cannot 

be used to compare the match with a template which is of a different size or has a 

differing number of features associated with it. Despite this it is very common to 

find letter weights combined to produce a weighting for a word which is statisti

cally meaningless. 

The example above shows a method of comparing template matches which 

is valid in this situation provided the script between segmentation points is 

sufficientiy small that no more than one template can lie within it, no matter how 

smaU that template. 
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This provision leads to the concept of using a set of sub-letter templates 

which represent die constituent parts of actual characters. The script can be seg

mented, the segments identified by comparison with the sub-letter templates and 

the templates combined to produce letters (and consequentiy words). In this way 

the start of the letters ^, c-and fC, say, might cortespond to the same sub-letter 

template. 

A sub-letter template set does not provide for a readily trainable system, 

however, since the tt-ainer (ie the ordinary user) must know the details of how 

each character breaks down into its constituent sub-letter templates in order to 

cortectiy train those templates. For a system that should require no specialist 

expertise to operate it, this is clearly unacceptable. The ORCHiD system solves 

these problems by using whole letter templates that are automatically segmented 

using the same method as the script sample. In this way each letter template is 

stored internally as a sequence of sub-letter template segments. So a template for 

the letter omay be made up of just one template segment, but the template for the 

letter #tv would be made up of several template segments. 

The template matching process is carried out at the segment level, so that a 

segment of the sample data is compared with a segment of a template and a pro

bability calculated (see section 5.7.1). A match weighting for the whole template 

can then be calculated by combining the probabilities of each of its segments. 

Section 5.2, however, showed that to sensibly compare two match probabilities, 

the matches must span the same portion of the sample script. The most con

venient way to guarantee this is to combine the probabilities for every segment of 

a word to get a probability for that word. 

[Example: Consider a sample word made up of five segments (ABCDE), 

and a template database containing two templates - template I, with two segments 

(PQ), and template II, with three segments (RST). There are clearly two ways 

that the templates can combine to span the word, either combination a -

(PQ)(RST) or combination b - (RST)(PQ). Let ^ai be the match probability for 

template I in combination a, which is calculated as ^AP^BQ^ where O^p is die 

match probability of comparing template segment P with sample segment A, and 

so on. It can be seen that it is not possible to compare any of die values O^/, Oo//, 

Ofc/ or Ofc// directiy, but it is possible to compare the combined probabilities 

^al^all with ^bIl^bI^^ 
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5.4. Match Probability Calculation 

Let us consider a simplified pattern recognition problem. If a sample X can 

come from one of just two known univariate disttibutions, a or b, what is the pro

bability that X belongs to a? Assuming diat there is no option of X belonging to 

neither, then the probabUity that X belongs to a is simply the ratio of the ordinate 

of the probability density function of a at X (simplistically referted to as die 

height of a at X) to the sum of the heights of the disttibutions a and b at X (see 

figure 5.3). (This is referred to as normalising the heights to 1.0.) This theory is 

applicable to any number of disttibutions, and also to multivariate distributions, 

provided they have the same number of dimensions. 

Figure 5.3 - Probability of X belonging to distribution a or 6 

In the script recognition problem, we can assume that the script must match 

letters or letter-joins along its whole length, since the writer is not trying to fool 

the system by making nonsensical marks or squiggles. (It may be necessary to 

allow for stylish flourishes at the beginning or end of a word which hold no mean

ing and for ertors in script formation. This point will not be further discussed at 

this stage.) With this additional information about the input which will be 

presented to the system it is possible to calculate a more meaningful weighting 

than the "goodness of fit" approach, since that method yields a value which is 
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independent of other possible template matches. Provided we try to match every 

possible template in every position along the length of the script sample, we can 

calculate a real probability for a template occurring at any point within the sam

ple, conditional on the fact that it must be one of these templates. By extending 

the theory described in the previous paragraph, the probability calculation 

involves calculating the height of the multivariate distribution for each template 

at the sample feature values and normaUsing all of these heights to 1.0 - see sec

tion 5.7 below. 

As explained in section 5,3, we cannot use letter templates as the base unit 

for comparison between possible templates, but we can use the segments formed 

when the segmentation algorithm of Chapter 4 is applied to the templates. We 

therefore calculate match probabilities for each of the template segments by the 

same method as described above. Each template segment is compared with each 

sample segment and the height of the template distribution calculated. The seg

mentation algorithm provides us with segments which have the same number of 

features, and so their distributions have the same number of dimensions. The 

heights can now be normalised for each segment, and the resulting probabilities 

combined in the usual way to give a probability for each template as a whole. 

Note that with this method a sample segment that matches a template seg

ment very well will contribute a greater influence to the probability of the whole 

word than a sample segment that could equally match several template segments. 

5.5. Template Database Description 

The template database stores a representation of every type of letter and 

letter-join recognisable by the system. The system is easily ttainable for any style 

of writing or letter formation. This is achieved by using data-driven templates, 

whereby any number of samples of a character are averaged together to provide a 

new template (see Chapter 7). In this way a fuzzy picture of the character is used 

to compare against any new sample data, and a distance measure can be calcu

lated. Samples which define the template can be taken from just a single user, to 

give an accurate personalised template, or from a population of users, to give a 

less accurate but more generalised template. It is therefore possible to have a user 

specific or a generalised recognition system simply by installing a different tem

plate database. As well as storing the mean values for the features of a template, 

the number of samples used and the standard deviation of die samples is also 
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available for use in the distance measure and for subsequent tiaining. 

This data-driven template approach allows any portion of a handwritten 

word to be defined as a template. A simplistic view might therefore be to define a 

set of templates for each letter, and combine those letters to form words. Unfor

tunately, this is not practical since letters are formed differently depending on the 

preceding and foUowing letters^^. It would therefore be necessary to record dif

ferent types of letters for different positions within different letter combinations, 

and ensure the cortect combination of letters at the word formation stage. Since it 

is possible to define any portion of the script as a template, it was decided that it 

would be easiest to define letter-join templates as well as letter templates. As a 

large number of letters either start or end in similar ways, it is not necessary to 

have 26 x 26 different letter-joins. Figure 5.4 shows those which were used. It is 

possible to ignore letter-joins completely, and simply flag those segments of 

script as ligatures. It was found, however, that these strokes can be useful, in 

some cases, to reject possible letters and letter combinations. More importantly, 

ignoring these Ugatures would have also invalidated the statistical theory 

developed above. 

The use of letter-joins as templates creates the need for two extra pseudo-

letters to be included in the alphabet to indicate the start of a word (represented 

by '(a)') and the end of a word ('#'). Templates therefore exist for letter-joins 

from '@' to each letter, and from each letter to '#'. 

As described above, a template may consist of a number of segments. For 

each segment the mean, standard deviation and number of generating samples can 

be calculated for a number of features from the information stored. The standard 

deviation provides an indication of the spread of samples for that particular 

feature, and so is an indication of its consistency, and hence its usefulness in dis

tinguishing between templates. This is essential in the calculation of the distance 

of a sample segment from the template segment. 

For each feattire ORCHiD stores the sum of the samples, the sum of die 

squares of the samples and the number of samples. The mean and standard devia

tion can easily be calculated from this information. The number of samples mak

ing up a template could also be used as a measure of reliabiUty for that template 

since it indicates how often it has been used. Perhaps a further enhancement of 

the template matching routine might be to reject templates from die personal tem

plate database when they have not been recentiy used. 
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Figure 5.4 - Letter-joins 

5,6, Distance Measure 

A fixed number of features are measures for each segment. If we assume 

that each feature is distributed normally, and that all of the features of a segment 

taken together can then be represented by a multivariate normal distribution (see 

section 4.7), then the distance we require is the ordinate or height of the probabil

ity density function of the distribution at the sample segment values, see section 

5.4. Normalisation of these distances across all of the odier template segments 

then gives us the probability that it matches that template, given that it must 

match one of the templates. 

Calculation of the ordinates of the multivariate normal disttibutions for each 

template for every sample segment would be exttemely time-consuming, due to 
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the complexity of the equation (see below), so a simplification is necessary. 

Multivariate Normal Distribution 

IfX = (xi,X2,'- ,X(i) is a sample from a multivariate normal distribution with 

artay of means M = (|j.i ,p.2, • • • ,11,̂ ) and covariance matrix 

V = 

~ 2 2' 
a i i O l 2 . . .^Id 

9 2 2 
021 ^22 • • • ^2d 

9 2 2 

then the ordinate (or height) of the probability distribution function <{) is given by, 

g-'/^(X-M)'V-^(X-M) 
<1)(X) = 

(2K) ̂  ivr^^ 

where d is the dimensionality, (X-M)' indicates the ttanspose of the array 

(X-M), IVI is the determinate of the mattix V, and V~̂  is the inverse of V, 

If we assume, for simplicity, that the variables are independent (see section 4.7) 

so that the covariance matrix V is diagonal. 

V = 
Qoi-- 0 

ai w . . . 0 

0 0 •••oi 

then 

(1)(X) = 
, .=1 Oi 

' T~d 
(27t) 2 X\(5i 

j = l 

-%-
( ,̂-^ir 

a? 

,=1 (27C) Oj 

Normal Distribution 

If ;c is a sample from a (univariate) normal disttibution N(\^,o^), then 

u i ^ ^ -Vi 

(!)(jc) = 

So for the multivariate normal distiibution 

d 
(l)(X) = fl(t)(Xi) 

/•=i 
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/ 

It can therefore be seen that, provided the features are independent of each 

other, the height of the multivariate disttibution is simply the product of the indi

vidual univariate disttibutions. It is computationally expensive to calculate die 

ordinate of the normal distribution for every feature of every template segment, 

so an approximation is used. This is based on the ordinates of the standard nor

mal distribution A (̂0,1). 

Standard Normal Distribution 

If z is a sample from a standard normal disttibutionN(Q,\), then 
, 2 

^l^(z) = 
2 

VSTT 

To calculate (^(x) where x comes from N([i,cP-) from the ordinate values of die 
standard normal distribution (^N(Z), make the substitution 

x-u. 
1 = — ' — 

then 

(^(x) = 

For our purposes, the disttibution is divided into fixed width portions either 

side of the mean (see figure 5.5). The ordinate in the centre of each portion is cal

culated and for any sample lying within that portion the centtal ordinate is 

returned as the approximation to the real ordinate. The ordinate of a normal dis

tribution more than three standard deviations away from the mean is virtually 

zero ( < 0.5% of the maximum ordinate at the mean), so this was selected as the 

maximum distance from the mean for which ordinates would be calculated. The 

intermediate section was divided into half standard deviation portions, since this 

provided a reasonable approximation (see below) and involved calculation of just 

seven ordinate values. The ordinate values are 

(t)(^i) = - ^ = , <^([i-^V2C) = —— , (l)(^l+a) = — — 
<J^j2K aV27C (5^{2^t 

and so on. 
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1.5 2 2.5 3 3.5 

Figure 5.5 - Approximation to normal distribution 

Closer approximations could have been used. This one was selected since it 

could be implemented exttemely efficiently. This was important since this calcu

lation is needed many times during the execution of the program. The next sec

tion shows that the approximation is, in fact, sufficient. 

So for each feature, the distance of the sample from the template mean is 

calculated and scaled by the standard deviation. The relevant approximation to 

the standard normal disttibution is looked up from the table and divided by the 

standard deviation. Each of the values for the features of a segment are then mul

tiplied together to give the approximation to the ordinate of the multivariate nor

mal distribution, which is the distance measure required. 

Validity of the Approximation 

It is possible to show that this approximation is reasonable if it can be shown 

that the area under the curve between the two bounding points of each portion 

(j^) is approximately equal to the area under the cortesponding histogram. Table 

5,1, exttacted from statistical tables, shows this to be sufficient. The average 

ertor across the range -3.25<z<3.25 is approximately 0.2%. 
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[Notation: <I)(z) = \<^(t)dt ] 

z 

<t«(2) 

Z 

(Kz) 
«(z) 

0.0 

.3989 

.5000 

1.75 

.0401 

0.25 

.4013 

2.0 

.0540 

0.50 

.3521 

2.25 

.0122 

.75 

.2266 

2.5 

.0175 

1.0 

.2420 

2.75 

.00298 

1.25 

.1056 

3.0 

.0044 

1.5 

.1295 

3.25 

.000577 

Range 

1̂  
Approx 

%age error 

0-.25 

.0987 

.0997 

1.0 

.25 - .75 

.1747 

.1761 

0.8 

.75-1.25 

.1210 

.1210 

0.0 

1.25-1.75 

.0655 

.0648 

1.1 

1.75-2.25 

.0279 

.0270 

3.2 

2.25 - 2.75 

.00922 

.00875 

5.2 

2.75 - 3.25 

.002403 

.002200 

8.4 

Table 5.1 - Errors in the approximation 

Mathematical Summary 

It is now possible to express formally the distance measure used, and the 

match probability between a sample segment and a template segment. 

Let X be a sample segment feature artay with d elements (xi, • • • ,Xd). Let there 

be n template segments Ti to T„ for comparison with the sample segment (each 

of dimension d ), and assume that these templates come from a multivariate nor

mal distribution. Let the feattire elements of T,- be (r/i, • • • ,tid) and assume that 

each tik is normaUy distiibuted with mean p,jt and standard deviation O,A:, and the 

distiibutions are independent. Let the ordinate of the disttibution of T,- at X be 

(1)T,.(X) and the ordinate of the distiibution of tik at Xk be (Sft^S^k)- Let ^^^(z) be die 

ordinate of the standard normal distiibution N(0,1) at z. 

Then the distance measure between X and T,- is given by 

(t)T,(X)=n<t)r,,(^*) 
J k = l 

d 

= n 
k=\ 

<^N 
J 

Oik 
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5.7. Implementation of the Template Matching Process 

The template matching process consists of several consecutive sub-routines -

template comparison, segment normalisation and letter graph formation. 

5.7.1. Template Comparison 

In the template comparison stage, each segment of every template is com

pared to each segment of the sample word, and a distance measure calculated. 

For example in the simple case of figure 5.6 there are three templates /?, S and T 

to be matched against the sample data D. D has been segmented into 5 segments, 

D1-D5, andR, S and Tare made up of 1, 2 and 3 segments respectively (Ri,Si-

S2, T-^-Tj^). The following distances are then calculated - /?i to each of D1-D5, 

Si toDi-D4, S2 \0D2-Ds, Ti to D1-D3, T2 X0D2-D4, andTs 10 D^-D^. In 

this way, each template has been examined in every possible segment position 

that it can occupy. 

I —A Ri 
I —\ Ri 

>1 S2 \-
H 

S2 

Si 

Ti T2 T3 
I 1 1-

Ti T2 
I 1 

h 
Ti 

Figure 5.6 - Matching tempi 

S2 

T3 

T. 

Ri 

S2 

l-i 

ates to data sample 

The distance measure, which is the approximation to the height of the mul

tivariate distiibution of the template segment at the sample segment, is referted to 

as die comparison score for that segment of that template. These scores are 

recorded in a template comparison array, and this artay is located at the appropri

ate segment position widiin the sample word comparison array. For example, die 

template comparison artay for template S starting at segment 3 of the sample 

word would be [(t)5,(£>3),<t>52(̂ 4)l' ^"'̂  ^̂® sample word comparison artay is 

file:///0D2-Ds
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shown in figure 5.7. 

Segl 

<^R,(Di) 

-

-

-

-

^s,(DO 
-

-

-

<hriDi) 

-

-

Seg 2 

-

<^R,iD2) 

-

-

-

<\>S2(D2) 

<t)5i(^2) 

-

-

(|)r2(^2) 

<\>T,(D2) 

-

Seg 3 

-

-

<!);?, ( ^ 3 ) 

-

-

-

<t>52(^3) 

05,(^3) 

-

h-.iD^) 

^^iD-i) 

<l>r,(^3) 

Seg 4 

-

-

-

^R,(D^) 

-

-

-

<^S2(P^) 

<1)5,(^4) 

-

<l>7-3(̂ 4) 

<t)r2(^4) 

Seg 5 

-

-

-

-

^RSDS) 

-

-

-

^s,(Ds) 

-

-

<h^(Ds) 

Figure 5.7 - Sample word comparison array 

The matching template is referted to as a candidate allograph for that posi

tion in the sample word. A few statistical anomalies can produce spurious candi

date allographs. Section 8.5.4 discusses these anomalies and their causes in more 

detail. Two criteria are examined to decide whether a candidate allograph has 

appeared because of one of these anomalies. Such candidate allographs are then 

removed. 

1) Within a segment of a sample it is possible that one or two of the features 

may match the template very well, the rest matching very poorly. After cal

culation of the comparison score, it is possible that the good match(es) may 

outweigh the poor matches and produce a seemingly reasonable score. This 

score may, however, be a mathematical anomaly. (For example, consider 

eight features measured for a sample segment. If, by chance, one of these 

features matches the template feattire exactly, and that feature disttibution 

has a very low standard deviation, then the height value for that feature wiU 

be very great. If the other features match pooriy, the height values for die 

other features will be very low. The comparison score may be reasonable. 
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though, due to the influence of the first feature, even though intuitively it 

would be said that this is a poor match overall.) To counteract this anomaly, 

a candidate allograph is rejected if a majority of a sample segment's feature 

values are more than three standard deviations away from the mean of the 

template feature values. 

2) It is possible for the statistical method to allow candidate allographs which 

should be rejected for other reasons. Two basic elements of each segment 

are examined to see if a match between the template and the data is impossi

ble. The area occupied by a script word is divided into horizontal strips, see 

figure 5.8. The vertical region in which each sample segment is located is 

compared with the expected region for the template segment. If the sample 

is located more than one region away from the expected region, the candi

date allograph is deleted. The rotation of the segment is also compared. 

Provided neither sample nor template segment is a cusp, if the "clockwise-

ness" is opposite, the candidate allograph is rejected. 

Region 6 

Region 7 

Figure 5.8 - Regions for vertical position of segments 

5.7.2. Segment Normalisation 

The template comparison scores are normalised to 1.0 across each column of 

the sample word comparison array to give segment-normalised comparison 

scores. These scores are equivalent to the probability that a sample segment 
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matches the template segment. 

We can represent the normalisation process in the formal terms of the for
mulae derived above. If XeT, means the sample segment X is an instance of die 
template segment T;, then the match probability P, conditional on the fact that X 
must match one of the templates, is given by 

(t)T.(X) 
P(XeTi\XsTu--,Tn) = ^ 

Z(t)T/X) 
7=1 

So, if we substitute the equation for <^. (X) from above we get 

Xk-[i-ik 

a <^ik 

n- „ 
*=! Oik 

a 

Xk-[^jk 

^jk in-
j=\k=\ ^jk 

It should be noted that this normalisation decreases the influence on the 

word probabiUty of a segment with a number of equally matched candidate allo

graphs and increases the influence of a segment with a single outstandingly good 

match. In this way the influence of each segment on the word probability is lim

ited and the possibility of a single, large segment comparison score overwhelming 

the influence of the other segments is minimised. 

There is clearly a heavy computational requirement to implement this tem

plate matching method. (If there are n templates in the database, each template 

consisting of s segments on average, and there are d segments in the sample data, 

then approximately nxsxd comparison scores must be calculated.) To reduce the 

computation needed, a candidate allograph is rejected at this stage if any of its 

segment normalised comparison scores fall below a threshold. This threshold is 

calculated by experiment to provide a reasonable execution time without deleting 

any cortect candidate allographs. 

The segment-normalised comparison scores are now combined across each 

candidate allograph by multiplication to give a weighting. It should be noted that 

because these weightings are dependent on the number of segments in an allo

graph, they cannot be used for comparisons between different size candidate 
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allographs. 

5.7.3. Letter Graph Formation 

A directed graph is constiucted to represent how each candidate allograph 

may connect with every other allograph, see figure 5,9. This graph can then be 

traced to produce a list of candidate words that might match the sample script. 

Figure 5.9 - A directed letter graph 

The template matching routine provides a list of candidate allographs, for 

each of which is recorded its weighting, calculated from the normalised com

parison scores for each segment of the allograph, and its location within the sam

ple word. The location of the allograph is indicated by the sequence number of 

the segmentation points bounding it. Each candidate allograph is placed onto the 

graph and connected (with pointers) to those allographs that may precede or fol

low it, as defined by their locations. 

On each node of the graph is stored the name of the allograph together with 

its weighting. Each path within the graph can be traced (from left to right in 

figure 5,9) to produce a candidate word and a probability calculated for how well 

the sample matches that candidate word. This probability is calculated simply by 

multiplying die weightings of the candidate aUographs making up the candidate 

word. Since the number of segments across the whole word is the same, no 

matter which combination of allographs is used, these probabilities satisfy the 

conditions discussed in section 5.2 and can thus be used to directly compare die 

different candidate words. Using these probabilities the candidate words are 

ranked. 
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With a system that retains a large amount of ambiguity, such as ORCHiD , die 

letter graph can become very large, with many nodes. This is especially the case 

since die candidate allographs can represent letter-joins as well as letters. 

Although in theory the graph ttacing process described in Chapter 6 does not 

drastically suffer with large letter graphs, it is a recursive process which in prac

tice requties a finite amount of time for each caU of the recursion. As the letter 

graph gets exttemely large, this extta execution time can become considerable, 

especially if the amount of stack required for the recursive calls approaches die 

amount of memory available, causing excessive page faulting. 

To reduce the size of the graph, a template-join table has been constioicted 

which contains a list of which letter-joins are allowable between letters, whether 

letters can join directly to another letter without a join, which templates must be 

located on a pen-up or pen-down, and so on. As each candidate allograph is 

placed on the graph, any other allograph which may connect to it is checked in 

the template-join table to ensure the connection is permissible. As well as reduc

ing the size of the letter graph, this method also increases the accuracy of the 

recognition system by removing inadmissible allograph sequences that will not be 

removed by word-level context. 

5.8. Conclusion 

A statistical template matching routine has been developed which compares 

a sequence of contiguous sample segments with a database of templates. Each 

segment is described by a set of numerical features and these allow a probability 

of match to be calculated. The match probabilities, when combined across the 

whole word, provide a valid weighting for comparison between different possible 

combinations of templates. 

The template database is constiucted very simply, by storing the average 

feature values from any number of samples of a template. This enables training 

to be stiaightforward (see Chapter 7). At present only lower case letter templates 

have been used but, in theory, capital letters could easily be included by defining 

extta templates. 

The process is computationally expensive but shows the value of a data-

driven approach to recognition. There are a number of problems associated with 

this method, however, and these are discussed further in section 8.5.4. Section 

9.3,5 discusses how this method might be combined with different recognition 
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approaches to produce more consistent results. 

A letter graph is produced as the output from this section which can be 

tiaced to produce a ranked list of candidate words that match the sample. There 

will be a large number of these words since the method only deletes possibilities 

that are exttemely unlikely. Many of these words will not be valid in the 

language so it is necessary to verify each of the candidate words against a lexicon 

or dictionary. 



Chapter 6 

Candidate Word Verification 

This chapter discusses the use of word level context to reduce a set of ambi

guous template matches and verify the output. Some methods previously used are 

discussed in section 2.7. A ranked list of valid candidate words is produced and 

this is further reduced by application of diacritical mark information and a priori 

word probabilities. 

6.1. Output from Segmentation Based Recognition Systems 

The output from typical segmentation based text recognition systems can 

fall into one of two main categories: 

(a) a single word can be produced consisting of the most Ukely letters which 

span the written sample; or 

(b) a list of possible letters in each segmentation position can be produced, 

together with a weighting of their likelihood. 

Recognition systems belonging to type (a) have made a binary decision at 

this stage as to where letter segmentation occurs - this will be referted to as fixed 

letter-segmentation. Those belonging to type (b) retain aU of the possible seg

mentation points and will be referted to as ambiguous letter-segmentation. No 

decision has been made at this stage as to exactly where the letters occur in die 

written word. 

Example 

With a fixed letter-segmentation recognition system, the most likely word is 

produced as output. For example, if the word <4^was presented to the system, 

the letter matching algorithm may make a mistake in the second letter position 

and produce the output ft- ^ - ^ • U is then the task of any contextual post

processor to cortect the output and produce the most likely real word. 

An ambiguous letter-segmentation system produces a Ust of possible candi

dates in each segment position, together with a certainty weight to indicate die 
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closeness of the match. For example, if the word f^ was presented to the sys

tem, it may produce two options for the second character, perhaps an /i-with high 

certainty weight of 60 or an c widi a lower certainty weight of 40. 

In cursive script recognition systems, individual characters are permitted to 

run into each other, with the problem that segmentation of the script into letters is 

ambiguous. For example, if the word ^^M-is written cursively, there is the possi

bility that the word may be c ^ , where the segmentation after the first letter is 

ambiguous. 

One way to represent the output from such a system is as a directed graph 

(Hayes^^, Peleg^^, Higgins and Whittow^^ ). Figure 6.1 shows a simpUfied letter 

graph that might be produced by a recognition system acting on the input script 

^ w , The '(§)' symbol represents the start of a word and the '#' symbol 

represents the end of a word. The graph is ttaversed from left to right, yielding a 

list of all possible combinations of letters that the original data might represent, ie 

eUc^, cU>&, c^^-, cicc^, cl(», c^^- The certainty weights can be attached 

to each letter on the graph and combined as the graph is ttaced to produce a rank

ing for each word that is produced. 

Figure 6.1 - A simple letter graph 

Such a letter graph may produce a large number of words if diere is a lot of 

ambiguity, and many of these words wiU not be valid. It is therefore necessary to 

develop an efficient method of verifying each of these words. 
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6.2. Use of Contextual Information from Dictionary Sources 

Since a cursive script recognition (CSR) system will usually be required to 

recognise real words, rather than random sequences of letters, it is possible to 

define a dictionary or lexicon of valid words. Information can be extracted from 

this and used to resttict and verify the output from the system. If such a lexicon is 

used, however, it is essential that every word that is required to be recognised is 

included within it. 

6.2.1. Fixed Letter-Segmentation 

Most of the past approaches to using contextual information have been 

based on consttucting a post-processor for the output from fixed letter-

segmentation recognition systems. The output from such a system is a single 

word, consisting of the most likely letters that span the sample script. The con

textual disambiguation process takes that word as its input and returns the most 

likely written word as its output, using contextual and other information to make 

this decision. Several techniques are discussed in Chapter 2 most of which are 

based on the Viterbi Algorithm. 

6.2.2. Ambiguous Letter-Segmentation 

The problem with all of the systems based on the Viterbi Algorithm is that 

they do not allow for incortect letter segmentation. For example if the word <4» 

is misrecognised as c^cf-then the algorithm cannot produce the correct word and 

the system will fail. An ambiguous letter-segmentation retains all of the possible 

segmentation points within the letter graph representation. 

For an ambiguous script recognition system, the contextual disambiguation 

process takes a letter graph as its input, and produces as its output a list of words 

which have been checked, in some way, against a lexicon of dictionary informa

tion. One simple way to do this is to ttace every path through the graph and 

check each resulting word against a list of valid words. This is not practical since 

the letter graph is usually very large with many paths. Even the most efficient 

dictionary searching algorithms will take a significant amount of processing time 

to verify a very large list of words. 

Commercial speU-checking software cannot be used since, for efficiency, die 

algorithms they employ usually rely on the input words either being cortect, or 
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very close approximations to real words. Often a hash-coding is used on the word 

to be checked and a flag set in the hash-table if that word is valid. The hash-code 

is usually designed so that encodings of slight mis-spelUngs will not coUide with 

cortect spellings, but completely random sequences of letters may often be 

accepted as valid words. The UNIX spell facility is an example of such a system. 

A much more efficient and reliable technique is required. 

6.3. Binary N-Gram Graph Reduction 

This technique makes use of the existence or non-existence of n-letter 

sequences in English. Higgins^^ reported that four is the ideal length of gram to 

use, since only approximately 5% of 4-grams are vaUd in English, and the number 

of possible grams, 26"* = 456 976, can be reasonably stored as a binary array 

occupying just under 56 Kbytes of memory. A much larger percentage of 3-

grams are valid, and 5-grams would require about 1.5 Mbytes of memory for the 

binary artay with littie gain in context. 

The letter graph is supplemented by adding an extia start and stop node at 

the beginning and end of the graph. This is so that the opening two and three 

letter sequences can be checked using the same 4-gram approach. 

The graph reduction process can be implemented in many different ways, 

see Whittow and Higgins^^^. An efficient technique has been selected, which 

uses a similar letter graph stmcture and ttacing algorithm as will be discussed in 

section 6.4, for the purposes of comparison with die dictionary ttee search algo

rithm. This technique involves recursively ttacing each path tiirough die letter 

graph, maintaining pointers to the last four letters accessed. At each step die 

curtent four letter sequence is compared against the list of valid 4-grams. If the 

sequence is valid, then the three arcs connecting the four letters are marked. The 

three arcs are marked differently depending on which letter positions within die 

sequence they connect (first two, middle two or last two letters). An arc which 

has been in each of the three connecting positions of a four letter sequence is 

flagged as used. After the tiaversal is complete, the graph is stiipped of all 

unused links, die arc-markings are cleared, and the process repeated until no more 

links are removed. In this way a much reduced letter graph is produced, which 

can be more readily checked against a dictionary using a stiaightforward 

approach. 
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6.3.1. Speed of Reduction 

The speed of graph reduction for the technique described above is dependent 

on the number of possible paths through the graph, which is in turn dependent on 

the length of the word and on the confusion level of the letter graph. This is 

defined to be the number of letter options at each letter position. 

To test the speed of reduction of this technique in a controlled way, simu

lated letter graphs were generated for the word "test". The confusion level at each 

letter position could be varied and was uniform across the graph. (This is not the 

case in a real letter graph.) The plot in figure 6.2 shows how the time taken for 

the reduction greatly increases as the confusion level increases, as expected. 
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Figure 6.2 - 4-gram reduction time vs confusion 

6.3.2. Output 

4-gram graph reduction produces a much reduced letter graph, but on ttaver-

sal invalid words will still be produced. In a sequence of letters each individual 

gram may be permissible but this will not guarantee that the whole word is valid. 

Also, an arc in the letter graph can only be deleted if no valid gram uses it. A 

remaining arc wUl then still allow invalid grams to pass through it. (Figure 6.3 

shows a subgraph of a letter graph, where die gram ebcf may be invalid but abed 

valid. The arc marked '*' must therefore remain in the graph, so the invalid gram 

will still be present when die graph is tiaced.) It is therefore still necessary to 

check each word against a dictionary to guarantee validity. This wiU incur die 

overhead of additional processing time. 
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Figure 6.3 - Arc deletion 

The «-gram approach is a fast graph reduction technique with small memory 

requirements but the overheads required to verify the final list of candidate words 

can be large. A new approach was investigated to see if it would be more suc

cessful^^. 

6.4. Tree-Based Dictionary Lookup 

A dictionary or word-list is resttuctured in the form of a ttee, based on the 

trie structure suggested by Knuth^^. This is shown pictorially in figure 6.4, where 

the ttee represents the word list {a, an, and, at, be, bet, but, by}. Each of these 

words can be found by ttacing a path from left to right. The '(§)' symbol 

represents the start of a word and the '#' symbol represents the end of a word. 

The ORCHiD system efficientiy ttaces a letter graph, such as that shown in 

figure 6.1, using a recursive procedure. Such a procedure might take the head-

node of the graph on which it is to act as its parameter and call itself recursively, 

passing each subgraph that the head-node points to as a parameter, in turn. This 

will carry out a depth-first ttace of the graph. Using a ttee sttiicture, the diction

ary can be tiaced simultaneously. As each arc of the letter graph is tiaced, if the 

cortesponding arc exists in the dictionary ttee, then the word is valid up to that 

point. When the end-of-word marker is reached in the graph and ttee, the word 

tiaced out exists in the dictionary. An invalid word in the letter graph will be 

rejected as soon as an arc cannot be found in the dictionary ttee. It is not neces

sary to continue tiacing the graph past this point. This is advantageous since it 

limits the time taken to search the dictionary, and allows the dictionary to be very 

large without seriously reducing the performance. 

By using these similar data stiiictures, the letter graph and dictionary ttee 

complement each other perfectly. The graph can be tiaced extiemely quickly and 

efficientiy, without foUowing any irtelevant paths. 
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Figure 6.4 - Dictionary tree - pictorial representation 

All valid words that exist in the letter graph can be produced in this way and 

become candidate words (with a weighting as described in section 5.7.3). No 

information is thrown away at this stage which may prove useful later on if, for 

example, more than one recognition routine is used in parallel and the outputs 

combined. 

6.5. Computer Representation of the Dictionary Tree 

A dictionary structured in this way can be accessed very quickly. It has the 

disadvantage of requiring a large amount of memory, since the data stmcture 

remains resident while the program is running. This is probably the reason for its 

rejection as a suitable method in the past, but as computer memory is becoming 
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larger and more readily available this is no longer a major problem. A number of 

different ways to constmct this data stmcture within a computer program are con

sidered below. 

6.5.1. Discussion of Possible Data Structures 

Knutĥ "* suggests a static data sttiicture for the dictionary ttee. This consists 

of a flag to indicate whether a word can end here and an artay of 26 element 

integer artays together with 26 boolean flags. Each column position points to the 

column containing the next letter in a valid word, and a cortesponding flag to 

indicate if a word can end at that point. This artay is very sparse and would take 

up a large amount of memory. Nowadays, dynamic memory allocation allows 

more efficient data stmctures to be used. 

A simple dynamic data sttucture might consist of a ttee of linked nodes, 

where each node contains 26 pointers to possible successor nodes (see figure 6.5). 

In this particular layout, the letter is implied by the position of the pointer in the 

artay. Such a stmcture will be exttemely sparse and have huge memory require

ments. 

Figure 6.5 - Dictionary tree - simple implementation 

A more compact dynamic sttucture is shown in figure 6.6. In this diagram 

each large square represents a node of the tiee consisting of a key letter, at a cer

tain level, and two pointers. The upper pointer points to a list of those letters, at 
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the next level, diat are permitted to follow this letter. The lower pointer points to 
the remaining list of letters at the curtent level which can occupy die same letter 
position. 
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Figure 6.6 - Dictionary tree - compact implementation 

Figure 6.7 shows the implementation for a letter graph which complements 

the dictionary ttee implementation above. These two data stmctures can be 

tiaced simultaneously and implemented efficiently with very similar code. In the 

diagram a node consists of a letter and a pointer to a list of arcs which, in turn, 

point to possible successor nodes. 

6.5.2. Possible Enhancements 

The final choice of intemal representation involves consideration of die 

tiade off needed between access speed and memory requirements. There are 

several different stiuctures which can be used depending on the most important 

criterion. 
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Nodes: |@| , I fd 

Arcs: 

Figure 6.7 - Letter graph implementation 

6.5.2.1. Speed 

The list of letters, at the next level, which can follow a particular letter in the 

dictionary ttee is defined as its sub-list. The search method for a stmcture similar 

to figure 6.6 can be speeded up by reducing the time taken to search for a letter or 

search-key in a sub-list. The sub-Ust of letters can be ordered in several ways. If 

the letters are in a random order, it is necessary to search to the end of the list if 

the search-key cannot be found. However, if the ordering is known it is only 

necessary to search as far as the expected position of the letter. 

Several different orderings are possible. Alphabetical ordering has the 

advantage of allowing the ASCII code to imply position in a list. Sorting on fre

quency of occurtence in English, or frequency of generation from the recognition 

system may produce a faster search, but may require extta memory to store a 

representation of the order. Actual speed will be dependent on the letter graph 

itself; a graph which contains many valid words wiU take a different amount of 

time to tiace than a similarly sized graph with many invalid words. For example, 

a Ust optimised for finding a commonly occurring letter will not be optimised to 

show that an infrequent letter is not present - in fact, it will be the worst possible 

ordering. 
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6.5.2.2. Size 

The size of the data stmcture can be reduced by using tail-end compression. 

If the end of a word is unique and is not common with any other word, then the 

dictionary stmcture can be reduced by constmcting a special end-of-word node 

which contains the rest of the word as a string. This removes the need for extra 

nodes and pointers (see figure 6.8). The disadvantage of this sttucture is that the 

dictionary cannot easily be maintained. For example, to add an extta word may 

involve unpacking the tail of an existing word, adding the new word, then repack

ing the two new tails. Also, since the code needed to search a tail will be dif

ferent to that needed to search the tiee, switching lookup code would degrade the 

speed of lookup. 

Figure 6.8 - Dictionary ttee - tail end compression 

6.5.2.3. Recognition 

This technique was originally developed for use as a post-processor for a 

cursive script recognition system. Often handwritten script samples have very 

poor quality sections where either the word has been written badly, or has been 

poorly digitised. A recognition system may not be able to identify, in any way, 

what has been written in these sections and may insert a wild card, representing 

every possible character, into the letter graph in that place. Altematively, it may 

be clear that a segment has, for example, a descender, but no other information is 
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obvious, so a descender subset wild card, representing every letter with a des

cender, could be inserted. If the poor section occurs at the end of the word, the 

performance of the ttee stmcture described above will not be adversely affected, 

since most of the paths through the letter graph will be rejected before the highly 

ambiguous section is reached. However, if it is at the beginning of the word, then 

there wiU be a large amount of ambiguity at the beginning of the graph, resulting 

in a large amount of wasted computation. 

If the dictionary ttee was also stmctured in reverse, starting at the end of 

words and working towards the beginning, it would be possible, in these cases, to 

verify the letter graph backwards, and so speed up the process. Similarly, if both 

ends of the original data sample are poor, it may be possible to work from the 

middle outwards. An ideal data stmcture might have multiple linkages, starting at 

each letter position, so that the dictionary search would always begin at the least 

ambiguous part of the graph. It is intended that the properties of such a stmcture 

might be investigated in future implementations but the data stmctures will be 

very large. 

It should be noted that a dictionary lookup system based on a letter graph 

will fail if the correct letter is not in the letter graph - hence the need for wild

cards when no letters are obvious candidates. It is not always clear where the 

wild card should be inserted, however (see section 6.11). A fixed letter-

segmentation recognition system does not suffer from this problem since it is pos

sible to change one letter to another. 

6.6. Implementation Selected 

While the suitability of the data sttoicture was assessed, the implementation 

selected for ORCHiD used a simple approach, for ease of coding. The data sttuc

ture is an exact representation of figure 6.6. Lists are ordered alphabetically, and 

the tiee is linked only from start to finish. After verification that the method was 

suitable, it was intended that it would be refined but it was discovered diat die 

performance of this prototype was more than adequate for die system. The size of 

the data sttucture was within the limits of available memory, even with a large 

dictionary, and the execution time was fast, even for very large letter graphs, 

(Some of die more complex generated test graphs could be checked in much less 

than one second, but the number of patiis could not be counted even with several 

hours of computing time.) 
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To test the performance of this implementation, a 210 000 word dictionary 

was used. This is probably much larger than would be needed in a practical sys

tem, A substitution set was used to generate simulated letter graphs of possible 

output from typed input words. A test set of 2100 letter graphs was verified using 

the system running on a Sun 3/160 with 8 Mbytes of main memory, timeshared 

with other users. The average real time needed per word was 0,45 seconds, and 

the actual CPU time used by the system averaged 0.19 seconds per word. In a 

practical system the lookup process would be quicker, since the times quoted 

above include routines to set up the data stmcture for the dictionary, to time the 

program and to calculate and print various analytical results. 

6.7. Size of Data Structure 

The size of the dictionary data stmcture can be measured by counting the 

number of nodes in the ttee. Experiments have been carried out using different 

sized word lists to investigate the effect of dictionary length against data stmcture 

size. As can be seen from the graph in figure 6.9, this is roughly a linear function 

of dictionary size. 
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Figure 6.9 - Size of data structure vs dictionary size 

It seems that a dictionary of 60 000 words will probably be sufficient for a 

usable script recognition system. This would allow for a vocabulary of about 

20 000 root words with plurals and verb endings. (The Lancaster-Oslo/Bergen 

corpus of British English"*^ consists of samples of everyday text, with a total of 5 
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million words. 50 000 individual words were identified in these texts,) Assuming 

that a node consists of a character and two pointers, it can be seen from the graph 

that such a dictionary would require approximately 2.4 Mbytes of memory in our 

implementation. This is not an unreasonable amount of memory to expect in 

modem computer workstations. 

The size of the data stmcture for a particular dictionary is dependent on the 

compactness of the dictionary, ie whether the words have common roots. Adding 

a word which has the same root as a word already in the dictionary increases the 

size by less than adding a unique word since fewer extta nodes are needed. This 

means that the dictionary can contain all participles of verbs, plurals etc without 

drasticaUy increasing its size, avoiding the need to constiiict these words by a 

mle-driven system. 

To investigate the effect of compactness on dictionary size, two sub-

dictionaries of 21 000 words were selected from a word list of 210 000 words; 

one by selecting the first word from each group of 10, the other by selecting the 

first 10 words from each group of 100. As expected, the first of these was less 

compact and used 181 138 nodes, the other more compact dictionary used only 

98 981 nodes. 

6.8. Comparison with Binary 4-Gram Graph Reduction 

The graph in figure 6.10 shows the time taken for the graph reduction and 

the dictionary lookup, plotted against confusion level of the input graph, again for 

the word "test". It can be seen that with very small graphs the two techniques are 

comparable, but, as the ambiguity increases, the dictionary lookup is considerably 

faster. It should also be remembered that the 4-gram output still needs to be 

verified against a dictionary. 

The ORCHiD template matching routine, described in Chapter 5, retains a 

large amount of ambiguity widiin the letter graph it produces. This often pro

duces a confusion level of 10 or more. It can be seen that with this level of confu

sion the dictionary tiee method is far superior to the 4-gram method. 

6.9. Implementation Details 

A few practical details of the implementation are discussed below, together 

with the differences between the theoretical and the actual implementation. The 

template matching stage produces a graph of candidate allographs, but does not 
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Figure 6.10 - Comparison - lookup time vs confusion level 

produce wild-card entries if the quality of match is poor. 

6.9.1. Letter and Letter-Join Graph 

The graph produced by the recognition stage contains letter-joins as well as 

letters on the nodes of the graph. This greatly increases the size of the graph. It is 

possible to consttoict the dictionary ttee including letter-joins and simply use the 

lookup algorithm as it stands. This, however, would greatly increase the memory 

requirements and the system would become unwieldy. It would also be difficult 

to incorporate the contextual information indicating which allographs are permit

ted to connect to which other allographs. 

A template-join table is used to identify which templates are allowed to con

nect to which other templates. For example, some letters may join directly to 

other letters without any linking stioke and some letters must join to other letters 

with specific letter-joins. As the graph is ttaced, the table can be consulted to see 

if two templates can be joined, and if so the dictionary ttee can be checked. 

To further improve the efficiency of the dictionary lookup stage, however, 

the template-join table is checked as the letter graph is being constmcted, rather 

than as it is being ttaced. In this way, the table need only be accessed once for 

each arc of the graph, rather than every time the arc is ttaversed. If a letter tem

plate can link to another template already on the graph, then it is placed on die 

graph. If a letter-join template can link to a letter template on the graph, and can 



6: CANDIDATE WORD VERIFICATION 120 

be followed by another letter, then the probability weight for the letter-join is 
placed on the arc joining the letters. In this way a tme letter graph is consttiicted, 
with additional probabilities for the connecting sttokes located on the arcs of die 
graph. 

6.9.2. MuIti-Pass Dictionary Search 

The dictionary search routine is applied to the letter graph and the output 

automatically examined. If all candidate words produced have a probability 

below a threshold then the dictionary search routine is appUed again with wild

card letter-join templates inserted between each letter. These wild-cards are used 

since letter-joins often contain few distinguishing features and are sometimes not 

identified at the recognition stage. 

The use of two passes improves the speed of the system, since most words 

are identified in the first pass, yet allows for greater accuracy if no word is an out

standing match. 

6.9.3. Diacritical Marks \̂  

The information about diacritical marks, such as dots and crosses, stored 

during the preprocessing is used to reduce the output list and increase the accu

racy of the system. Firstly, any letter that requires a dot or cross is checked to see 

if such a mark is nearby in the sample word. If not, then that letter is removed 

from the letter graph before the dictionary search takes place. Secondly, the can

didate word list produced by the dictionary lookup is checked to ensure that every 

word contains the same number of diacritical marks as were detected in the script. 

This information can only be used with care since most people are not par

ticularly accurate in the location and formation of these marks, if they remember 

them at all. A number of common problems can be identified. 

• Frequentiy a dot will become extended into a line, or a Une will be very 

short and recognised as a dot. It is therefore not possible to insist that a 't' 

has a line through it and an 'i' has a dot above it. 

• The diacritical mark will often not be directly above its cortesponding letter. 

It is important to allow some tolerance in the position of these marks. 

• A double 't' within a word is usually crossed with one stioke. Allowance 

must be made for this. 
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Different writers place marks on different letters. Some cross an T, for 

instance, while others do not make a separate line through a 't'. For this reason, 

parameters can be passed to the ORCHiD system to indicate the level of impor

tance to be placed on these marks depending on the writer. 

6.9.4. Word Frequency 

A dictionary of 60 000 words is used for this system. This provides a rea

sonable vocabulary but includes a number of less common words which may 

appear in the output list. In order to improve the accuracy of any recognition sys

tem it seems reasonable to increase the weight associated with those items that 

are more likely to be presented to the system. We know the frequency of word 

occurtence in EngUsh from a number of studies'* '̂̂ ^. We can therefore attempt 

to incorporate the a priori probabilities of a word occurring into our statistical 

probability produced by the recognition system. 

6.9.5. Reduction of Candidate Word List 

The candidate word list contains a number of words ranked by their proba

bility. A practical CSR system, which could be incorporated within other applica

tions, will need to present the user with either a single word, or a very smaU 

number of options (if it is not possible to decide between them). It is therefore 

necessary to greatly reduce the output list to just a few words. 

Words that are similar or ambiguous in appearance are recognised with simi

lar probability weightings, and so appear close together in the ranked list. The top 

words in the Ust are examined. If the probability associated with the top word is 

considerably higher than its nearest contender, that word is presented as the 

cortect word. If, however, the probability of the next word is relatively close to 

the top word, then a group of words is presented. The group consists of all those 

words at the top of the list whose probabilities are close to their neighbours. 

6.10. Higher Level Context 

It is possible to apply even higher level context to further improve recogni

tion rates. The candidate words can be compiled into a word graph which 

represents an entire sentence or phrase. Sentence and phrase semantics and syn

tax can be appUed to reduce this word graph to a smaller list of candidate sen

tences, which can be ranked in the same way as the letter graph produces a ranked 
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list of candidate words. This technique can also be used to remove word segmen
tation ambiguity that can arise in some handwriting styles which have very 
separated characters. 

This context is not within the scope of this thesis but will be further dis
cussed in Chapter 9. 

6.11. Conclusion 

Whereas a large amount of work has been done in the field of contextual 

post-processing of text recognition systems, not many of die techniques suggested 

successfuUy address the problems caused by ambiguous letter-segmentation, 

common to cursive script recognition. The ttee-based dictionary lookup tech

nique described here is an ideal application of letter and word context for verify

ing the output from text recognition systems and allows for ambiguous letter-

segmentation of the script. It is exttemely fast and efficient, can be used with a 

large dictionary or word list and produces all possible output words, with no loss 

of information that can occur when arbittary cut-offs are applied. The dictionary 

contains every word which can be recognised by the system, without the need for 

prefix and suffix generation. It is simple to add extta words to the dictionary 

without greatly increasing its size. The technique is especially appropriate for 

very ambiguous letter graphs, typically produced by cursive script recognition 

systems. 

The performance is superior to n-gram graph reduction techniques, and is in 

fact a superset of the n-gram approach, since all possible values of n are effec

tively applied during the recursive tiaversal. 

An efficient implementation of the dictionary ttee has been produced. 

Curtentiy the output is presented to the user, along with the image of the prepro

cessed word, for verification. This verification can then be used to further train 

the system (see Chapter 7). 

In theory, wdd card substitution can be used in areas where the script is very 

poorly written or badly digitised. These can be of great value and help to 

improve the recognition rates, especially where there is a small area of uncer

tainty within a script word. In this implementation, wild card letter-joins are 

inserted into the letter graph if no reasonable candidate words can be found from 

the original graph. Wild card letters are not used, however. With a sub-letter 

segmentation method, as described in Chapter 4, it would be necessary to insert a 
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wild card segment and then relate that segment to candidate aUographs that con

tain it. This is a non-trivial task. 



Chapter 7 

Training 

This chapter discusses the methods used to ttain the ORCHiD system, eidier 

to a single user or to multiple users. The system can be automatically ttained 

with minimal human intervention. There are a number of problems associated 

with automatic training however and these are discussed below. 

7.1. The Need for Training 

As has been discussed in section 1.3, a completely unttained cursive script 

recognition (CSR) system is desirable but very difficult to develop. To produce a 

practical system with maximum recognition rates and minimal adjustment of 

writing style on behalf of the user, a recognition system that can be ttained in 

some way is necessary. A ttained system has the added advantage that it can also 

more easily allow for more unusual writing styles. 

The problem with a ttained recognition program is that there is a consider

able period of time while the ttaining process is being completed during which 

the system cannot be used. This problem is especially acute if CSR is the only 

data input method within a larger computer system. With no other method of 

data entry the whole system is inoperable until tiaining is complete. Other factors 

must be considered with a tiained system. If the ttaining period is lengthy the 

user may get frustiated and reject CSR in favour of another data entry method. If, 

however, the tiaining session is not sufficientiy comprehensive, the recognition 

accuracy may not be acceptable to the user, who might again reject the system in 

favour of a more reliable method. ORCHiD attempts to solve this problem by sup

plying a system that can be used almost immediately, yet which can also be 

ttained whilst it is in use, if desired to give improved recognition rates. 
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7.2. Automatic and Manual Training 

With the majority of ttainable separated character recognition systems a 

Q-aining session is performed before the system is used. This ttaining session 

requires die user to supply a number of samples of each character that the system 

is to recognise. There may, however, be a method for on-going adaptation by 

adding characters to the ttaining set while the system is in use. This is a manual 

ttaining approach since the user defines the sttucture of a character. 

A CSR system cannot easily be ttained in this way. Either the user would 

have to supply samples of every word which might be written, or indicate to the 

system where each letter starts and finishes within a cursive word. The first 

approach is clearly impractical for systems which must recognise words from a 

large vocabulary. The second approach relies heavily on the user specifying the 

letters cortectiy. Since the definition of letters, in terms of the recognition sys

tem, is heavily dependent on the underlying recognition model, such as segmenta

tion and feature exttaction, this requires the user to have detailed knowledge of 

how the system works. This is clearly impractical for anything other than a 

development system. 

It may be possible to request the user to provide samples of each letter 

separately and build a CSR system ttained on these samples. The problem with 

this approach is that most people write characters differently in cursive writing to 

separated hand-printing and even form letters differently in different parts of a 

word. Observations have shown that this inconsistency occurs even if the user is 

consciously attempting to write uniformly. 

An automatic ttaining system, which decides on where each individual tem

plate lies within a word and tiains it accordingly, greatiy simplifies the tiaining as 

far as the user is concemed. If desired, it also allows for continuous ttaining all 

of the time that the system is being used. 

7.3. Theory of Automatic Training 

In statistical terms, the ttaining of a template is equivalent to estimating die 

parameters (mean and standard deviation) of the disttibution that the template 

represents. Bayesian theory shows that with increasing numbers of samples these 

parameters can be estimated more accurately. In order to do this, however, die 

samples must be cortectiy identified, ie the system must be manually tiained. The 

theory associated with this supervised learning is dien sti^ightforward^^. 
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As discussed above, an automatically ttained system is preferable. This is 

referted to as unsupervised learning, since the precise classification of the sam

ples presented is not known prior to ttaining. The theory underlying this 

approach is complex, especially if no a priori assumptions are made about possi

ble classification of the samples. A decision-directed approximation is commonly 

used where an automatic classifier attempts to label the samples^^. These labels 

are then used to tiain the classifier itself. Further samples are labelled by the 

classifier and the ttaining is repeated until sufficient recognition accuracy is 

obtained. 

There are two main advantages to this approach. Firstiy the classifier can be 

quickly designed using a small number of labelled samples and then allowed to 

"fine-tune" itself on a much larger set of unlabelled samples. Secondly, if the sys

tem is to recognise patterns that may evolve slowly over a period of time, it can 

be constantly updated and honed. 

The main drawback of such a system is that a classification ertor will cause 

the classifier to be incorrectly ttained. There are two possible outcomes from this 

mistake - either sufficient samples will be correctly identified to "cancel out" the 

incortect sample (on average), or the ertor will be more likely to occur and 

further contaminate the classifier. The only way to reduce the likelihood of this 

ertor occurring is to ensure the initial classifier is reasonably accurate. 

Despite the possible problems with the decision-directed approximation, 

most experimental evidence shows that this procedure works well in practice. 

The ORCHiD ttaining stage is an implementation of such a technique. The initial 

classifier uses of a set of prototype or general templates to label samples, and 

these templates are modified during the subsequent ttaining period. The system 

described by Teulings et aP^, however, does not require a general template data

base since it generates the prototype templates automatically by judicious selec

tion of tiaining words (see section 2.9). 

7.4. Training the Personal Template Database 

As described in section 5.5, the ORCHiD template database consists of statist

ical information about the population of samples presented to the system. This 

statistical information consists of the sum of feature values, the sum of squares of 

feature values and the number of samples so far included. From this information 

it is possible to calculate the mean and standard deviation of die feature values to 
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be used during template matching. To adjust a template during tt-aining simply 

requires die addition of a sample or samples of the template to the template data

base, and die relevant statistical calculations. The complex part of the training 

stage is tiierefore the automatic identification of templates and theti location 

within the script - the allograph segmentation. 

The ttaining routine used utilises the same basic procedures as the recogni

tion system so that ttaining can be carried out during use. The writing is col

lected, preprocessed, segmented and the features exttacted in exactiy the same 

way as during recognition. 

Two template databases can be accessed during the ttaining routine - the 

user's personal database and the general database. By superimposing the per

sonal database on top of the general database, a complete set of possible tem

plates can be constmcted. The sample features are matched against this com

bined database using the same algorithms as the recognition stage, but with less 

severe thresholds so that more candidate allographs are produced. These allo

graphs are constructed into a letter graph, as in section 5.7.3. 

The cortect classification of the script word (the identified word) is known to 

the training routine - either it has been supplied by the user during the recognition 

verification stage, or the system prompted the user to write that particular word 

during an initialisation process. The ttaining routine can now apply this informa

tion to identify and locate the correct templates within the sample word. The dic

tionary lookup routine described in Chapter 6 is applied to the letter graph but 

with just one word in the dictionary ttee - the identified word. The highest 

weighted path through the graph is assumed to be cortect allograph segmentation 

and the templates are thus ttained. 

7.5. The Training Session 

There are two stages to ttaining the system. The first stage involves the sys

tem selecting the particular styles of character formation that the writer uses from 

a generalised set of characters. This subset is then further ttained to the indivi

dual during the second stage of ttaining by adjusting the template feature values. 
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7.5.1. User Initialisation 

During the user initialisation stage a personal database is consttiicted that 

contains a template or templates for every letter of the alphabet. 

The system prompts the user to write a small number of words that contain 

every character in the alphabet. These sample words are preprocessed, seg

mented and features exttacted. Candidate allographs are produced using the gen

eral template database and a letter graph is consttiicted. Wild-card letter-joins are 

inserted at each segment of the sample word to ensure that templates are not 

missed. The allograph segmentation is identified in the way described above 

using the training word that the user was requested to write in the dictionary tt-ee. 

The cortectiy identified templates are now copied across to the personal tem

plate database and ttained with the new sample data. The statistical information 

stored in the general database is scaled during copying so that it appears as if only 

a few samples have been used to ttain the template. In this way the new sample 

data, specific to the user, will quickly influence the average feature values of the 

template. 

Any words for which the system has failed to identify the allograph segmen

tation cortectiy are requested again from the user, until the system has recognised 

each word at least once. 

7.5.2. Continual Training 

Once initialisation is complete and the user's personal database contains at 

least one template for each letter, further ttaining of the templates can take place. 

As well as improving the letter templates, the letter-join templates are identified 

and trained during the continual ttaining process. 

The user writes any number of words from the dictionary. The recognition 

system is applied to these sample words. The user is shown the results and asked 

to verify the correcdy recognised words, or type in any corrections for erroneous 

recognition. The system then reapplies the recognition routines using the per

sonal and the general database combined to produce the letter graph. The cortect 

allograph segmentation is identified using the information provided during 

verification and the personal database tiained accordingly. 

At present this recognition system is a stand-alone demonsttator, but this 

mediod of verification and continual ttaining could be incorporated into any sys

tem without the user being unduly aware of it. For example, as soon as the user 
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has accepted and saved a page of recognised text this can be assumed to be 
verification and tiaining can take place. 

7.6. Success of Training 

The automatic training routines work effectively, and greatly simplify the 
tiaining process. There are, however, two main problems with this automatic 
training approach. 

The problem associated with decision-dtiected leaming, described in section 

7.3, occurs within this system. Allograph segmentation is not always correct and 

consequently templates are incorrectly trained. Observation of the templates over 

a period of training shows that the errors are usually cancelled out by cortect 

ttaining, but occasionally a spurious template is produced. There are no simple 

cures to this problem other than to delete the adulterated template from the data

base when it has been identified. This identification is difficult during normal 

usage, especially for the naive user. Section 9.3.1 also discusses this problem. 

If a template is not in the general or the personal database, perhaps because 

it is an unusual allograph, then it must be identified and ttained manuaUy. This is 

a difficult process for the unttained user, as has been mentioned above. A solu

tion might be to investigate the fully automatic approach of Teulings (described 

in section 2.9) that requires no initial knowledge about character formation. The 

drawback with using this technique for ttaining is that a much longer training 

period is needed before the system can be used. Perhaps a hybrid method, com

bining these two techniques, would provide the best remedy, where the general 

database approach is used to ttain most letters, and Teulings' approach for 

unrecognised letter formations. 

7.7. Conclusion 

The simple format used to store templates for letters and letter-joins pro

vides for an easily ttained recognition system. An unusual allograph can be 

catered for by incorporating several samples into a new template. Other symbols 

could be trained other than lower case characters, for example capital letters, 

digits etc. 

The automatic allograph segmentation enables the system to o^in itself 

without any intervention by the user. This is not without its own problems, not

ably the problem of incortect classification described above, however these do not 
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seem to seriously affect the final results of the ttaining. Some possible enhance

ments to the tiaining routine are discussed in section 9.3,2. 



Chapter 8 

Results 

This chapter contains details of performance tests carried out on the ORCHiD 
system. Details are provided of recognition rates and speed of execution of die 
system, together with an analysis of these results and a discussion of some of die 
causes of ertors. 

8.1. Discussion of Performance Testing 

There are a number of problems associated with adequately testing the 

recognition performance of a CSR system. The most important problem to over

come is the collection of a sufficientiy large amount of high quality data to pro

vide significant results. Any volunteer providing sample data must be prepared to 

spend a considerable length of time writing with the equipment. This is espe

cially the case with an interactive ttainable system since the data collected must 

be processed before collection of the next set of data. This lengthens the collec

tion process. 

To test a trained system in a reliable way, it is necessary to collect two sets 

of sample data, one for training and one for testing. Some research papers quote 

results where the test set was also used to ttain the system. This is unreliable, 

since a practical CSR system will always be required to recognise unseen script. 

8.2. Experimental Details 

Three sets of tests have been carried out. These check the performance of 

the system with no tiaining, after minimal ttaining to a particular writer using a 

small sample of writing, and after a more extended ttaining period. 

8.2.1. Hardware 

Samples of handwriting were collected using a Pencept Penpad opaque 

digitising tablet, connected to a Sun 3/140 via a serial line. This was selected as 

the input device since it has the least inttiisive and most accurate pen action, and 
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provided a familiar feel to the writer. 

Special forms were used to collect the data (figure 8.1 is a reduced image of 

a completed form). These were mled with baseline, full-height-line and halfline 

to assist the NPL preprocessing software by ensuring some uniformity. Each word 

was read to the subject one at a time, at a reasonable pace, to ensure a natural 

handwriting style. The subjects were asked to write relatively neatly and an 

example line of script was shown at the top of the collection form for guidance. 

Figure 8.1 - A handwriting sample 

The data was collected, inspected, preprocessed and the preprocessed data 

verified and cortccted on a Sun 3/140 workstation. The recognition processing 

was carried out on a Sun 4/330 fileserver. 
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8.2.2. Samples Collected 

Four samples of handwriting were collected from eleven writers. The sam

ples consisted of two sets of words which were written twice. 

Samples Al and A2 consisted of the words :-

the' f*uc^ Ucivrv fo» ju^rviped iyift^ A- ^ M ^ 4 ^ wicU fV\M 

Samples Bl and B2 consisted of the words 

ty\4>^j»e<^itie' u^ ^HTrty^M^^ iv^ ^ttte^ ^MI UU^ el kow 

tke4^ M/oiA t/u^ a^»pite^ U nt/w^j ^ cMU expeAt^ fii^ iueii 

A^ e/vtA^ M^ con^Mii^ i^.dcM' doo'doff'dc«' 

Sample set A was chosen to include every letter of the alphabet at least once. 
Sample set B provided a list of more common words within the context of a sensi
ble sentence sttucture. The repeated word 'dog' was used to check the con
sistency of the segmentation and the normality of the exttacted features (see sec
tions 4.5.1 and 4.7). 

8.2.3. Template Databases 

The general template database has been constmcted by presenting large 

numbers of handwriting samples to the system from a variety of writers. This 

database is probably not exhaustive, but includes many of the more common writ

ing styles. Personal databases have been constmcted and tiained from this gen

eral database. 

8.2.4. Verification of Preprocessing 

This was carried out by hand before recognition. Ertors in preprocessing, 

such as incortect word segmentation or incortect baseline identification, were 

cortected using the verification software. Any poorly digitised images were dis

carded. 

The consistency of occurtence of diacritical marks varies greatiy between 

users. The writers were not forced to make these marks, since this would affect 

their natural flow of writing. For this reason the information provided by the 

diacritical marks was not used in the first two sets of tests. 
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8.2.5. Definition of Successful Recognition 

The only true definition of successful recognition must surely be that the 

cortect word is identified and is the most sttongly weighted of all of the candidate 

words. As has been explained in previous chapters, the ambiguity of cursive 

handwriting implies diat 100% recognition is unUkely for single words taken in 

isolation, even for human readers. For this reason, we define successful recogni

tion to be that the cortect word appears towards the top of the ranked candidate 

word list. This is a common practice for workers in this field. 

Results are quoted for successful recognition if the cortect word is within the 
top ten words of the candidate word Hst, together with some results for recogni
tion in the first position. 

8.2.6. Dictionary 

A dictionary containing 60 000 words was used to verify the output. This 

contained most of the words likely to be written, including plurals and verb con

jugations as well as word roots (see section 6.7). 

8.3. Test Routines and Results 

As stated in section 8.1, it is very costiy and time-consuming to gather large 

quantities of data to exhaustively test an interactively tiained system. It is there

fore necessary to devise tests that will show the tiends of such a system and then 

prove its potential performance with a smaller data set. The tests below show the 

performance of the unttained system on a large quantity of data (test I), the ttend 

in performance for the system after minimal ttaining (test II, HI and IV), and the 

performance after further ttaining (test V). Since the ttained system requires 

some of the sample data for the ttaining process, the later tests are, of necessity, 

based on smaller test samples. 

For each test, details are given below of the test sample, the ttaining sample 

and the template database used. The expected results are briefly discussed, fol

lowed by the observed recognition rates. More specific details for sample B2 are 

also given, which are discussed later. An analysis of all of these resuUs is given 

in section 8.4. 
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8.3.1. Test I - Untrained Recognition 

The recognition system was applied to all of the samples using the general 

template database. This shows the average recognition rates for the system with 

no Q-aining. There will be a wide variety of rates between different samples 

depending on the number of non-standard letter formations used. Clearly if a 

subject uses an unusual aUograph diat is not in the general template database dien 

the system cannot recognise a word containing that allograph. 

Sample 

Al 
A2 
Bl 
B2 

Overall 

Rate(%) for writer 
1 

94 
82 
89 
85 
88 

2 
76 
82 
85 
89 
84 

3 
53 
53 
63 
67 
59 

4 
59 
53 
81 
78 
70 

5 
65 
76 
67 
72 
70 

6 
73 
59 
78 
77 
73 

7 
71 
82 
85 
85 
82 

8 
76 
77 
96 
81 
85 

9 
44 
50 
72 
63 
60 

10 
71 
71 
85 
81 
78 

11 
82 
56 
85 
81 
78 

Average 
rate(%) 

69 
69 
80 
78 
75 

Table 8.1 - Test 1 results 

For sample B2, the average position of the word in the output list was 1.509, and 

the cortect word was top of the list 61% of the time. 

8.3.2. Test n - First Training Session 

A personal template database was created for each subject. This was created 

automatically by the system (Chapter 7) using sample Al to identify and train 

each template. The database was then amended as necessary by hand where the 

automatic ttaining system had not succeeded in identifying a template (section 

7.6), This minimaUy ttained system was applied to samples A2, Bl and B2. 

Test II provides recognition rates when a personal database is used that has 

been tt-ained once on a limited set of letters and letter-joins taken from sample set 

A. The recognition rate will be reduced compared with test I, since a number of 

the writer's templates will not have occurted in the initial tiaining set and so will 

not have been tt-ansferted to the personal database. This will be especially 

apparent for samples from set B where the particular letter-join templates will not 

be included in the database. 
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Sample 

A2 
Bl 
B2 

Overall 

Rate(%) for writer 
1 

89 
48 
52 
59 

2 
76 
56 
44 
56 

3 
53 
44 
44 
46 

4 
59 
48 
67 
58 

5 
59 
26 
20 
32 

6 
53 
63 
54 
57 

7 
76 
56 
48 
58 

8 
62 
59 
70 
64 

9 
38 
36 
44 
40 

10 
65 
59 
59 
61 

11 
63 
63 
65 
64 

Average 
rate(%) 

63 
50 
51 
53 

Table 8.2 - Test n results 

For sample B2, the average position of the word in the output list was 1.790. 

8.3.3. Test III - Second Training Session 

Sample A2 was used to further tiain the personal template database for the 
subject. The training set was created automatically but not adjusted by hand. The 
system was then applied to samples Bl and B2. 

Test ni provides recognition rates when a personal database is used that has 

been further ttained using a Umited set of letters and letter-joins taken from sam

ple set A. There may be a slight improvement on the results of test II, due to 

improved ttaining of the letter templates, but the letter-join templates used in set 

B, but not set A, will stiU not be incorporated into the personal database. 

Sample 

Bl 
B2 

Overall 

Rate(%) for writer 
1 

52 
59 
56 

2 
59 
52 
56 

3 
59 
59 
59 

4 
59 
67 
63 

5 
52 
36 
44 

6 
70 
62 
66 

7 
67 
52 
59 

8 
67 
70 
69 

9 
44 
48 
46 

10 
59 
59 
59 

11 
78 
73 
75 

Average 
rate(%) 

61 
58 
59 

Table 8.3 - Test III results 

For sample B2, the average position of the word in the output list was 1.688. 

8.3.4. Test IV - Third Training Session 

Sample B1 was used to further tiain the personal template database for die 

subject. The tiaining set was created automatically but not adjusted by hand. The 

system was then applied to sample B2. 
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Test IV provides recognition rates after a ttaining session with a set of words 

that contain the same letters and letter-joins (sample Bl), The rates should now be 

considerably improved on test III since most of the letter-joins used in set B 

should now be incorporated into the personal template database. This improve

ment in recognition should continue with further ttaining. 

Sample 

B2 

Rate(%) for writer 
1 

85 
2 
85 

3 
63 

4 
78 

5 
76 

6 
73 

7 
70 

8 
96 

9 
63 

10 
78 

11 
85 

Average 
rate(%) 

78 

Table 8.4 - Test IV results 

For sample B2, the average position of the word in the output Ust was 1.462, and 

the cortect word was top of the list 64% of the time. 

8.3.5. Test V - Extended Training 

A number of subjects interactively ttained the system for a short period of 

time. Sample set B2 was used to test the accuracy of the system after this training 

session. Diacritical mark information was used by the recognition system if this 

was consistent for that writer. 

Test V provides recognition rates after a further ttaining session. The recog

nition rates should now be much improved on unttained recognition. The per

sonal database for writer 1 was ttained using a much larger collection of data and 

gives an indication of the performance that might be expected of the system when 

in constant use. Training should not only improve the likelihood of the cortect 

word appearing in die output list but should also improve its position within the 

list, with the ideal being that the cortect word should appear at the top. 

Table 8.5 shows recognition rates for four subjects, both with and without 

ttaining. The occurrences when the correct word was top of the output Ust are 

also shown. 
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Writer 

1 

2 

10 

11 

average 

Unttained system 

Top 10 

rate(%) 

88 

84 

78 

78 

82 

Top 

word 

74 

72 

67 

58 

68 

Trained system 

Top 10 

rate(%) 

96 

89 

89 

88 

91 

Top 

word 

85 

78 

78 

81 

81 

Table 8.5 - Test V results 

The average position of the cortect word was 1.240. 

8.4. Analysis of Results 

The results from test I show that the average unttained recognition rate for 

the system is 75%, though there is quite a considerable variation between dif

ferent subjects (59-88%). 

To compare the recognition rates before and during ttaining it is necessary 

to consider sample B2 alone, since this is the only sample used throughout all of 

the tests (table 8.1). 
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Test 

I 

II 

ni 

IV 

V 

Rate(%) 

78 

51 

58 

78 

91 

First position 

rate(%) 

61 

39 

44 

64 

81 

Ave position 

1.509 

1.790 

1.688 

1.462 

1.240 

Table 8.6 - Recognition rate comparison - sample B2 

Table 8.6 shows that the unttained recognition rate is reasonable (78%). The 

recognition rate drops, as expected (section 8.3.2), between tests I and II, but with 

the inttoduction of ttaining from samples taken from set Bl , with the same words 

as set B2 (test IV), the rates climb considerably, back to the level for unttained 

recognition. (Figure 8.2 shows the individual results for each subject.) In fact the 

rate for 1st position recognition and the average position are improved on the 

unttained rate showing that the recognition is improving with ttaining, as 

expected. 

100 

80 

60 

40 

20 

Writer i Average 

Figure 8.2 - Recognition results - sample B2 
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After some further ttaining, the accuracy improves considerably (test V) to 

produce 91% recognition on average. This rate can be improved further with 

extra training. The template database for writer 1 was ttained for a much longer 

period and achieved 96% recognition for sample B2, with 85% recognised in first 

place. 

These results appear to follow the expected ttends discussed in sections 

8.3.1-5. The system can achieve good recognition rates after just a small amount 

of training and very good rates with further ttaining. The exact performance of 

the system, however, is dependent on the consistency of the writing style. 

8.5. Description of Errors 

Recognition ertors occur due to a number of reasons. These are described 

below and the occurtence rates are given in section 8.6. 

8.5.1, Stylistic or Writing Errors 

i) Within a sample of a subject's handwriting it is common for mistakes to be 

made during word formation, especially in longer words. With a segmenta

tion based system, which looks for individual letters within a word, it is very 

difficult to allow for these ertors. This may not be the case with a whole 

word recognition system, say, which looks at the overall shape of the word, 

rather than carefully analysing each section. 

ii) Some writers have pronounced stylish flourishes within their script. These 

can be tiained into the ORCHiD system, but will not be present in the 

untrained system. Those samples that showed a marked improvement in 

recognition after ttaining (figure 8.2, writers 5 «& 8) generally featured such 

flourishes. 

8.5.2. Preprocessing Errors 

iii) The results of the preprocessing phase are verified before die recognition 

phase is initiated but occasionally incorrectiy preprocessed script is passed 

on due to human ertor. 

iv) The algorithm for joining separated stiokes within a word is very elementary 

- the individual stiokes are simply connected by a stiaight line. This is 

sufficient for most puiposes, but with very separated handwriting styles tiiis 

is an additional source for ertors to occur. Ideally, the script should be 
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reconnected in an intelligent way with curves reflecting the directions that 

the pen is moving at pen-up and pen-down. If pen motion information is 

available from the digitiser when not in contact with the writing surface, this 

could be used to reconnect the sttokes. 

v) The detection of diacritical marks (dots and crosses) is not ertor-free. Some

times the classification is ambiguous (a short line, for instance). Sometimes 

a diacritical mark is not detected at all and the sttoke is reconnected into the 

word, causing ertors in the recognition. 

Preprocessing errors iii), iv) and v) could be reduced with further develop

ment of the preprocessing routines. As these areas were not within the scope of 

this research, recognition ertors due to these problems can be ignored in the 

analysis of this work. 

vi) Another problem associated with preprocessing is the problem of handwrit

ing of inconsistent height. The detection of the halfline is made more 

difficult if taU letters are not appreciably larger than short letters, and in 

some writing styles the height of letters varies considerably. Any handwrit

ing recognition system will be hindered to some extent by this factor. 

8.5.3. Segmentation Errors 

vii) The inconsistencies of segmentation described in section 4.5.1 can cause 

misrecognition. It should be noted that even though there are inconsistencies 

between the practical segmentation and die theoretical segmentation, the 

ertors are in fact consistent within themselves. For example, in the case 

iUustrated in figure 4.13, if a cusp is detected at the baseline, giving rise to 

five segments instead of three, that segmentation is consistent with similarly 

segmented sttokes. Most of the problems can thus be rectified by the inclu

sion of extta templates for the other possible segmentations. 

viii) The segmentation occasionally fails due to ertors in the implementation. 

8.5.4. Template Matching Errors 

ix) The templates are constt^cted simply by averaging a number of samples 

from each class. Match probabilities are calculated using the estimated dis

tribution of these samples. A number of ertors can be inttoduced in this 

way, primarily as a result of approximating the disttibution of the features as 

multivariate normal. Firstly, the distiibution of a template feature may be 
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adequately approximated by a normal distiibution, but in practice limits may 

be placed on its possible range of values, for example the vertical position of 

an ascender should never faU below the halfline of a word. Secondly, one 

sample feature may match the template very well. If the estimated distribu

tion for that feature has a low standard deviation, the comparison score will 

be greatly influenced by that feature, possibly producing a high comparison 

score even if the other features match poorly. This may occur especially if 

only a few samples have been used to generate the template. 

Generally, these errors will not result in a correct template match being 

rejected but in an incorrect template match being accepted. This will reduce 

the weight associated with the cortect template match, however, due to the 

normalisation process. 

x) Theoretically, the template matching algorithm will not reject a cortect 

match since all of the ambiguities should be retained (ie every letter should 

occur in every position in the letter graph, even if its probability is very 

low). In practice, for efficiency, cut-offs are required to reduce the computa

tion necessary by reducing the number of template matches retained in the 

system. If a correct template match has a low probability, it is therefore pos

sible that it may not appear in the candidate allograph list. 

xi) If a particular letter formation is unusual, it is possible that a template may 

not exist in the database for it. The system will fail unless that template is 

intioduced and trained. 

8.5.5. Dictionary Lookup Errors 

xii) No ertors occur due to the dictionary lookup itself (excluding words not in 

the dictionary). If the cortect candidate allographs are included in the letter 

graph the cortect word will be output, together with a reliable probabUity 

based on the probabilities of its constituent components. It has been noted, 

however, that letter-joins are less reliably identified than letters. Ertors can 

occur, therefore, if the system is mnning with high thresholds to increase its 

speed of operation. In this situation, wild-card letter-joins are not included 

in the letter graph, so words may be missed if die less consistent letter-joins 

are not cortectiy identified. 

xiU) A number of ertors have been caused due to mistakes in the template-join 

table, that specifies which templates may connect to which others. These are 
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especially noticable with very separated handwriting styles, where the stroke 

reconnection algorithm has inttoduced spurious data. 

8.6. Error Rates 

The B2 samples recognised by the unttained system (test I) were examined 

to identify the cause of any ertors. Out of these samples (266 words), 164 words 

(62%) were correcdy identified with the highest probability. The other 102 (38%) 

are detailed in table 8.2. 

Ertor type 

Word near top 

Omitted letter template 

Omitted join template 

Poor template match 

Stylish flourish 

No wild-card search 

Failed segmentation 

Preprocessing failed 

Join-table ertor 

Writing ertor 

No of words 

27 

23 

20 

13 

6 

3 

3 

3 

2 

2 

%age 

9.9 

8.4 

7.6 

4.9 

2.3 

1.1 

1.1 

1.1 

0.8 

0.8 

Ertor group 

A 

C 

C 

C 

A 

A 

B 

A 

B 

A 

Table 8.7 - Error rates 

The different ertor types are discussed below. Ertor group A consists of 

those ertors which may be ignored since either the cortect word is weighted very 

close to the top word, or the ertor is not caused directly by the ORCHiD system. 

Ertor group B consists of those ertors caused by mistakes in the programming or 

implementation, and ertor group C consists of those ertors due to non-training of 

the database. 
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Word near top 

The probabilities of words in this group were sufficiently close to the top-

ranked word for no clear decision to be made between them. 

Omitted letter template 

The cortect letter template was not present in the candidate allograph list. 

This could be due to causes x) or xi) identified above. 

Omitted join template 

The correct letter-join template was not present in the candidate allograph 

list. This could be due to causes x) or xi) identified above. This number does not 

include those omitted letter-joins inferred by the use of wild-cards. Wild-card 

letter-joins are only inserted with a maximum length of four segments, so longer 

omitted joins will be counted here. 

Poor template match 

The cortect candidate allograph occurred in the allograph list, but with a low 

probability. This may be due to cause ix). 

Stylish flourish 

An unusual style was not included in the template database (cause i). 

No wild-card search 

There were a large number of segments in the word, such that including all 

wild-card letter-joins would have caused lengthy processing (cause xii) above). If 

this were done, however, the word would be cortectiy identified. 

Failed segmentation 

The segmentation failed due to ertors in the implementation (cause viii). 

Preprocessing failed 

An ertor occurted in the preprocessing that was not identified during die 

verification stage. This could have been due to cause iii), iv) or v). 
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Join-table error 

The cortect templates were identified but ertors in the template-join table 

caused the word to be rejected (cause xiii). 

Writing error 

The word was incortectiy formed (cause ii). 

8.6.1. Discussion 

It can be seen from these results that, for this sample, 62% of words were 

identified with the highest probability, 15.2% of words were either close to the 

top-rank or could be ignored due to some allowable ertor (group A), 1.9% of 

ertors were due to implementation mistakes (group B), and 20.9% of ertors were 

due to lack of training or some other unidentified ertor (group C). It can be seen 

from the test results of the trained system that this last group can be reduced by at 

least a half after ttaining to bring overall recognition rates up to >90%. 

8.7. Speed 

Various factors affect the speed of recognition of the ORCHiD system. 

The preprocessing speed depends on the amount of sample data collected. 

The NPL routines preprocess a large block of data rather than a single word at a 

time. Preprocessing time is proportional to the amount of data being processed. 

Consequently sample data less than the size of a block is processed more quickly. 

The template matching speed is affected by the number of segments in a 

word (s) and the number of templates in the database (t). Since the speed is pro

portional to the number of template comparisons, and the number of comparisons 

is approximately equal to s xt, this is a linear function. The matching routine is 

therefore quicker when trained, since less templates will be in the template data

base. 

The dictionary lookup speed is less easily determined since the major factor 

is the number of successful matches between the letter graph and the dictionary. 

On average, the number of entties in the candidate allograph list and the number 

of words in the dictionary will affect the speed, especially since larger data stt^c-

tures may occupy more than the physical memory available to the processor and 

cause page faults. It is therefore preferable to keep the size of these stmctures to 

a minimum. The letter graph is kept smaller by the use of a probability direshold 
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below which a candidate allograph is rejected, and by only inserting wild-card 

letter-joins if the probabilities associated with the output do not exceed another 

threshold. It should be noted, however, that it is sometimes possible for a small 

letter graph and dictionary to produce more matches than a large one, and hence 

take a longer lookup time. 

The speed of recognition of the ttained system was tested with a large set of 

data containing 107 words of varying length (2-13 letters). The process of tem

plate matching, dictionary lookup and output sorting took 629 seconds on a time-

shared Sun 4/330, including file access for sample data and writing output, but 

excluding template and dictionary database loading. This gives an average of 

5.88 seconds per word. The thresholds were set such that 90% recognition was 

achieved. 

The system could not be described as mnning in real-time on the current 

hardware, but processor speeds are constantly improving and it seems likely that 

there will soon be sufficient power available to process even very complex recog

nition systems within real time. The ORCHiD system was developed as a research 

platform and so was not designed with speed of execution as its main criterion. 

For example, the system stores intermediate data in files that can be examined 

after processing. This requires many disc accesses during the recognition pro

cess, slowing down the overall performance time. 

8.8. Summary 

The unttained recognition system achieved an average recognition rate of 

75% using a large test sample (960 words). After a short initialisation period for 

a particular writer, the system can be automatically ttained during use to improve 

the recognition accuracy. After ttaining, recognition rates of 96% were achieved. 

Average processing time after preprocessing for the ttained system is 5.88 

seconds per word. 



Chapter 9 

Conclusions and Further Work 

9.1. General Conclusions 

The ORCHiD system developed during this research is a practical implemen

tation of a ttainable recognition system for lower case cursive script. Handwrit

ing data is collected online and preprocessed, with the baseline and halfline 

detected, by the NPL routines. After segmentation, segment features are meas

ured and compared with a database of templates. Possible letters and letter-joins 

are combined to produce possible words which are verified against a lexicon of 

valid words. Although the system presently recognises only lower case script, the 

template matching routine could be easily extended to include recognition of 

upper case characters. 

A summary of each section of the research is given below, together with an 

indication of which areas are innovative. 

9.1.1. Segmentation 

The basic elements of the segmentation method were first described by 

Berthod^ and Higgins^^. The suggestions encompassed by these works have been 

fully developed and extended in this thesis to provide a practical segmentation 

method of direct relevance to cursive script recognition (CSR). A number of 

problems have been resolved by examination of the underlying stmcture of the 

writing. The way in which different features of script evolve into other features 

(as writing accuracy deteriorates) has led to the development of the x-axis stietch

ing technique. This resolves the problem of multiple intersections within the 

script, and provides a measure for comparing graphically different segments 

based on the same underlying letter formation. 

The segmentation is very consistent across a number of different handwrit

ing styles, enabling a reduced number of templates to be stored. 
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9.1.2. Features 

A number of feature measurements are taken for each segment. There is a 

fixed number of features per segment allowing a valid statistical template match

ing approach since the dimensionality of the artay of vectors for each segment is 

the same. The distribution of the features can be approximated by a multivariate 

normal distribution, for ease of calculation. 

9.1.3. Template Matching 

A new algorithm for template matching has been developed, based on a pro

babilistic method using conditional probabilities. The use of segmented templates 

enables valid statistical combinations across a word and allows comparison 

between different possible words. 

9.1.4. Dictionary Lookup 

The use of a tiee stmcture, first proposed by Knutĥ "*, was rejected for a 

number of years due to the large requirements of computer resources. This 

research has shown that in an efficient implementation this stmcture is ideal for 

reducing the number of candidate words, and verifying them simultaneously. 

9.1.5. Training 

The system has been designed in such a way that the adjustment of tem

plates to tiain the system to an individual writer is a very simple process. A new 

template can be added by presenting a number of samples. Training can be 

automatic, and concurtent with system use. Initial ttaining can be kept to a 

minimum before the system can be used. 

9.1.6. Important Aspects of this Research 

The most important developments described in this thesis include:-

• the use of the copy-book model to reduce the number of templates required 

(section 4.1); 

• the ;c-axis stietching technique to compare handwriting samples that have 

evolved from the same copy-book base-style (section 4,4); 

• the use of data-driven templates providing a simple method for the addition 

and ttaining of unusual allographs (section 5.5); 
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• the calculation of a statistically valid probability of matching for a candidate 
word (section 5.6); and 

• the very efficient dictionary lookup method (sections 6.4 and 6.5). 

9.2. Recognition Rates 

The system achieves fair recognition rates for unttained recognition (75%) 

and good recognition rates after some tiaining (91% on average). It is difficult to 

compare results between different research groups due to the differences between 

systems and experimental results quoted (section 2.10). Table 2.1 shows results 

quoted for some of the research teams. The work of Higgins (85-93%)^^, Wright 

(82-94%)^^ and Ouladj (94%)'71 appear as the best quoted results to date, due to 

the less restricted test data used. It should be noted that Wright's figures are for 

untrained recognition, Higgins used test samples from only two writers and 

Ouladj's work uses a very small dictionary. The recognition rates reported in this 

thesis seem to be at least comparable with these results. 

9.2.1. A Discussion of Required Recognition Rates 

At present no system has been able to achieve anywhere near 100% recogni

tion without the application of syntactic and semantic contextual knowledge. 

Even with the use of higher level context, 100% recognition has not been 

achieved, since this is only of value if the correct word is contained in the candi

date word list. An omitted word cannot usually be inferted automatically. With 

this in mind it is necessary to ask if 100% recognition will ever be attained, or 

indeed is it necessary before CSR will be used in earnest? 

Let us consider some of the possible uses of CSR. Handwriting will not be 

used as a mass text entry medium, since a skilled typist can type much faster than 

a neat handwriter can write. It could be argued that in the long term speech 

recognition may well be available for the non-keyboard user to enter large 

amounts of text into a computer. So when would handwriting be used? It would 

be used for many of those applications where we curtently use handwriting on 

paper, but in conjunction with a portable electionic paper notebook. For example 

one could take notes in situations where a keyboard or speech input would be 

obttiisive or impractical. Diagrams and sketches diat have been prepared with 

pen-based drawing packages could be annotated without having to set down die 

pen, (One of the problems with curtent mouse-driven systems is that the mouse 
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has to be released to type at the keyboard.) It should be noted that even if speech 

recognition were available it is not necessarily the best text input method, since 

we do not speak in the same way as we write. 

Within the applications listed above it is unlikely that the user will wish to 

use cortect sentence constmction, so the gains in recognition accuracy achievable 

from the use of sentence context may be lost. We can, however, still see a use for 

a CSR system that is not 100% accurate in an electtonic paper environment. 

Such an environment will provide an editing mode which allows for the rapid 
cortection of mistakes by simple gestures, eg crossing out a word. If the CSR 

system were combined with such an editing environment, then it would be possi

ble to simply cortect for any misrecognition during proof-reading by touching the 

incortect word and having the next likely word appear instantiy, say. In this way, 

the smaU amount of misrecognition can be easily cortected. 

9.3. Further Work 

There are a number of related areas which would benefit from further inves

tigation. Some of the areas detailed below are of direct application to the work 

described in this thesis while others are concemed with cursive script recognition 

in general, especially with respect to producing a feasible commercial system. 

Improvements of direct relevance to this work include developing an 

enhanced set of general templates, for the unttained recogniser, and devising a 

more efficient ttaining scheme. CSR systems in general may be improved with 

the use of an accurate Electtonic Paper (EP) device for data collection, the use of 
higher level context, when appropriate, and development of a combined recogni

tion system, with a number of different recognition methods providing a com

bined result. 

9.3.1. Improved Letter Template Database 

The accuracy of the curtent unttained system is limited by the quality of the 

generalised set of templates. The system is prone to ertor if a spurious template 

has accidentally been inttoduced into the system. The curtent template database 

was constmcted simply by incorporating a large number of samples as they were 

encountered. This was mainly carried out automatically and so it is likely that a 

few inaccurate templates have been intioduced (see section 7.6). 
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It would be a useful exercise to constmct a theoretical set of ideal templates 

to use as die general template database. This might be carried out by considering 

what would be reasonable values for each of the features of a template segment. 

Some of the features would be easy to specify theoretically (vertical position, for 

example) whereas others may have to be calculated from a large number of care

fully identified samples (area, for example). In this way it could be ensured that 

no spurious templates are inttoduced. 

By using such a carefully selected general template database, the recognition 

rates should be improved for careful handwriting that is relatively standard. This 

improvement will occur since the less common templates will no longer influence 

the probability of the cortect templates. Writers with more unusual styles will be 

excluded, however, without some initial tiaining. 

9.3.2. Training 

The automated ttaining routine described in Chapter 7 works reasonably 

well, but suffers from a fundamental flaw. If a writing style contains a peculiar 

allograph that does not exist in the general template database, there is no method 

to automatically insert it into the personal database. The allograph must be 

identified and included by hand. This, at present, requires more detailed 

knowledge of the system than is desirable for an average user. 

A less restrictive method of automated ttaining is that described by Teulings 

et aP^ detailed in section 2.9. This method selects templates by requesting the 

user to write similar words and analysing the differences between the extracted 

features. This has the advantage that no previous knowledge of possible template 

formations is necessary. All templates can be deduced by judicious selection of a 

tiaining set of words. The problem with this approach is that the training set will 

need to be quite large to allow every template to be exttacted, and hence the tiain

ing session will be lengthy. 

A more reasonable method might be to combine these two approaches. The 

method described in this thesis could be used initially. Any templates that have 

not then been successfully identified could invoke a Teulings training session 

with a smaller set of tiaining words that concenttated only on the missing tem

plates. 

Another area associated widi the template database that should be investi

gated is the continuous assessment of the database. As a personal database is 
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continually ttained, it will increase in size as additional variations in letter forma

tions are encountered. This will cause the system to slow down as an increasing 

number of templates must be matched against each sample. 

To reduce this problem it would be desirable to have a process which 

assesses the database and removes any unwanted templates. These might 

include:-

• templates that have not been used for a long time, for instance if the user's 

style has evolved and changed; 

• templates that have only occurred rarely, as might be produced in ertor by 

the automatic training routine; 

• templates that are not significantly different from another template. During 

a training period it is possible that an allograph cannot be classified with any 

of the curtent templates and so it is stored as a new template. In the course 

of further training, all of the templates may be adjusted and this new tem

plate might be ttained so that it is now sufficiently similar to another tem

plate that they may be amalgamated. 

9.3.3. Data Collection and Preprocessing 

A number of benefits will be gained by using an EP device (section 1.2.2) 

for data collection. 

• A more accurate sample of script will be collected. With a traditional 

opaque digitising tablet and monitor the writer cannot easily tell if the script 

is being successfully digitised - for example the writing may be too fast, or 

be written without sufficient pressure to trigger the pen switch, or there may 

be hardware glitches. It is therefore necessary for the writer to watch the 

monitor screen as the writing is taking place. This is a very unnatural way to 

write and there is often a time-lag between the digitiser recording the data 

and the output on the graphical display, causing coordination problems for 

the writer. With the direct feedback of an EP device, the writer will 

immediately see the data that the machine is recording, and wiU know if die 

digitising process is successful. If necessary the pen ttace (electtonic ink) 

could be thickened to force the user to write sufficientiy large for successful 

digitising. (Compare this with using a thick nibbed felt pen which nattirally 

makes people write bigger.) 



9: CONCLUSIONS AND FURTHER WORK 153 

• At least in early systems, the handwriting could be consttained to aid the 

recognition hardware and software in such a way that is not intmsive to the 

user. For example, guide lines could be drawn on the writing surface for the 

user to write on and as a guide to the size of writing. The spacing of these 

lines might be user adjustable, but would assist the preprocessing software in 

locating the various vertical regions of the script. Guide lines should not be 

intmsive since real paper is commonly mled to assist writing, 

• An EP device provides instant feedback to the user on the machine's 

interpretation of gestures drawn onto the device and the consequent actions 

that it has carried out. Just as the characters appearing on a conventional 

computer display indicate to a typist any miskeying, so any misrecognised 

script will appear very quickly on the EP display. Since users of EP will 

(probably) want the machine to work for them, it seems only natural that 

they will try to accommodate the machine by adapting their writing style, at 

least to some extent. (This process may even take place subconsciously.) 

This user adaptation, together with the system leaming a writer's style, 

might considerably improve recognition rates. 

Further experiments to evaluate all of these different aspects should be car

ried out when suitable hardware (and software) becomes available. 

9.3.4. Context 

The dictionary verification method described in this thesis is an efficient 

implementation of a word level contextual disambiguation process. The output 

from this process, however, is still ambiguous, resulting in a number of possible 

candidate words for each sample word. Higher levels of orthographic context, 

such as the syntax and semantics of phrase and sentence stmcture, will further 

improve the recognition rates within certain applications, by removing unlikely 

word combinations. Ambiguous word segmentation may also be resolved at this 

level. This is an area of Artificial Intelligence (outside the scope of this thesis) 

which should be studied further^ ̂ •̂ .̂ 

The use of context has its problems, however, since it enforces a stmcture on 

the writer. For example, insisting on valid dictionary words prevents the user 

from writing the word <»<̂ ;̂  (perhaps a coded filename) since this might be recog

nised and automatically interpreted as 'dog', say. The use of sentence level con

text prevents the user from writing ZSi^ 25^ c ^ ^ ^ MffiiiU , since die 
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system might automatically substitute the word 'dog' for 'clog' as this is a more 

meaningful interpretation. It would therefore be impossible to use such a system 

to write this paragraph! 

There are also dangers in relying too heavily on context to cortect for poor 

recognition. If a letter has been completely missed within a word during the 

recognition phase then simple dictionary context cannot find the cortect word, 

SimUarly, if a word has not been recognised within a sentence, a sentence level 

context approach cannot verify the sentence. It may be possible to insert a wild 

card letter, for example, into a word and produce a small list of possible values 

for that letter by comparison with a dictionary, but it is much less practical to gen

erate a Ust of words to complete a sentence. To resolve this type of problem we 

must use the methods described in sections 2.7,3-6 where substitution sets of 

likely errors are examined to decide what word or sentence was written. 

Context can be a great assistance in allowing for the shortfalls of the recog

nition phase, but should not be relied on in preference to improving the recogni

tion phase. 

9.3.5. A Pooled Method Approach 

The data-driven recognition system described in this thesis has shown that 

such a method can be used for unconsttained script recognition, but it is always 

prone to produce the occasional peculiar output due to mathematical anomalies 

(see section 5.7.1). At the other extteme, a completely mle-based system could 

be used which defines general mles for letter or word formation independent of 

writing style. However, this approach suffers from peculiarities that occur within 

the wide variety of handwriting styles in common usage. No matter how care

fully a mle has been devised, there will always be an exception or an ambiguity to 

be resolved. It seems evident that no recognition system based on just one of 

these techniques will be completely successful. In the short term, a successful 

CSR system will need to be:-

a) easily tiainable, so that the user does not need to leam a new skill to operate 

the device; and 

b) subject to a number of built-in, all-encompassing mles to remove any pecu-

Uar anomalies from the output. 

The best way of achieving this may be to have a number of different recog

nition modules that may independentiy analyse the data and then pool the output 
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from each of the modules to produce an aggregate set of output. For efficiency it 

may be possible to use a simple but fast method to quickly analyse the data and, if 

this does not produce conclusive results, to bring in more complex recognition 

modules. 

One method which could take advantage of these ideas is a blackboard sys-

fgfji25,44 fijjg jypg Qf system contains a shared data area, the blackboard, where 

a number of different processes (knowledge sources) can locate data on which 

they can operate, and where they place their output. 

An efficient CSR system could be developed using a blackboard approach to 

continually reduce a lexicon of candidate words by examining smaller and 

smaUer features of a word. For example, ascenders and descenders might be used 

to reduce the dictionary of valid words. Another process might then examine this 

word list to decide what other features of the word would most profitably be con

sidered next. Some of these processes might be ttainable to a particular user, oth

ers might contain fixed general mles that must be satisfied. In this way, the prob

lems of using any one fixed method (discussed above) may be alleviated by incor

porating both data-driven and rule-based systems. 

9.3.6. Feedback 

As each stage of the recognition process is completed, information is pro

duced that may have been of use to the previous stages of recognition, had that 

information been available. For example, if one of the stages in the recognition 

process cannot produce reasonable output, then it is possible that its input data is 

suspect. If each of the preceding processes are adjusted in turn, perhaps by mov

ing a threshold, until reasonable output can be achieved, the overall recognition 

rates of the system may be improved. 

Future recognition systems (especially blackboard systems) may be able to 

make use of this continual flow of information backwards and forwards between 

each individual process. Each process will need to retain details of each action it 

has applied to the data, so that it can undo and reapply the action using the addi

tional information supplied to it. A few possible examples follow. If a peculiar 

set of features is extracted from the data, this may indicate that the preprocessing 

has erted and should be cortected before continuing with the recognition process. 

If a word is identified, then the letter segmentation is clear and can be passed back 

to the segmentation phase for future reference. The dictionary lookup phase 
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could be dynamically linked to the template matching phase and pass back infor
mation as to which template to try to match next. 

Within the ORCHiD system, some feedback is curtentiy used by die template 

matching routine, since the templates are adjusted during ttaining to incorporate 

previously observed samples. The dictionary lookup routine uses feedback to 

improve its performance by only including wild-card letter-joins if the output 

word probabilities are low. A closer "feedback-loop" between the template 

matching stage and the dictionary lookup stage would be useful. As a candidate 

allograph is rejected by the dictionary verification, the relevant probabilities for 

the other allographs occupying the same segments could be recalculated. This is 

similar to the method used by Hayes^^ (see section 5.2) but, unlike Hayes' 

method, this wUl still produce valid probabilities conditional on the other possible 

allographs in the letter graph. This was not incorporated within the system due to 

implementation difficulties and time consttaints. 

9.4. Closing Remarks 

A working CSR system has been produced. The techniques developed as 

part of the ORCHiD system could provide an important constituent element of any 

future CSR development. In particular, two fundamental principles for CSR have 

been identified and successfully incorporated during development. Firstly, the 

principle of retaining ambiguity wherever possible is exttemely important within 

a CSR system. Secondly, an adaptive system that can be ttained to an individual 

will remain a necessity for any practical system in the near future and may pro

vide a useful security measure for personal identification in the long term. 

This system has shown that these principles can be adhered to within an 

effective CSR system. The unttained ORCHiD system achieves acceptable recog

nition rates with fairly neat handwriting (75%) and it is particularly successful 

after tiaining, when recognition rates of 96% were achieved. 
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Glossary 

Active Book 
Allograph 
Baseline 
Candidate allograph 

Candidate word 
Centre-line 
Copy-book 

CSR 
Cursive script 
Data-driven system 

DDP 

Decision-directed 
Descender-line 
Diacritical mark 
Digitiser 
DSP 
Electronic Paper 

EP 
Feature 
Freeman coding 
Full-height-line 

Halfline 

HCI 
Interactive Tablet 

Ligature 
Letter-join 

Example of EP. 

Topological stmcture of a character. 

See figure 1.8. 

Possible character identified by template matching rou

tine. 

Possible output word identified by recognition system. 

See figure 1.8. 

Handwriting teaching book. 

Cursive script recognition. 

Natural, connected handwriting (section 1.3). 

Handwriting samples define templates (cf rule-based 

system). 

Digitiser data point - the time-ordered list of coordi

nates provided by the digitiser. 

Method for automatic training (see section 7.3). 

See figure 1.8. 

Cross through 't', dot over 'i ', for example. 

Pen-driven computer input device. 

Definite segmentation point. 

Interactive display/digitiser operated with a stylus (sec

tion 1.2.2). 

Electronic Paper. 

Descriptive value of a segment (section 3.8). 

Method for describing a sttoke (section 2.5.2), 

See figure 1.8. 

See figure 1.8. 

Human computer interface. 

EP 

Letter-join. 

Portion of script connecting letters (figure 5,4). 
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N-gram 

Noise 

Normalisation 

NPL 
Off-line recognition 
On-line recognition 
ORCHiD 

PAD 
PC 
Pen-down 
Pen-up 
Preprocessing 

PSP 
Postprocessing 

Rule-based system 

Segmentation 

Serif 

SP 
Stroke 
Template 
Training 

Trie 

VA 

Viterbi algorithm 

Wild-card 

WIMP 

N letter sequence occurring in a lexicon of words (sec

tion 6.3). 

Ertors in data caused by hardware inadequacies (sec

tion 1.4.1). 

Standardisation and scaling of a sample (section 1.4.1). 

National Physical Laboratory, Teddington. 

Data collected statically, after writing (section 1.3). 

Data collected dynamically, in real-time (section 1.3). 

On-line Recognition of Connected Handwriting 

Demonsttator described in this thesis. 

Pen And Display - NPL EP demonsttator. 

Personal computer. 

Point where pen touches writing surface. 

Point where pen leaves writing surface. 

Adjustment of raw data to remove noise and normalisa

tion (section 1.4.1). 

Possible segmentation point. 

Use of additional information to improve recognition 

(section 1.4.3). 

Predefined mles identify different characters (cf data-

driven system). 

Division of script into smaller units for recognition 

(section 1.4.2). 

Stylistic or accidental pen-flick at beginning or end of a 

stroke. 

Segmentation point. 

Portion of script hctv/een pen-down and pen-up. 

Intemal representation of a character (section 5.1). 

Adjusting recognition system for a particular user 

(Chapter 7). 

Data removal tiee (section 2.7.7). 

Viterbi algorithm. 

Method for optimaUy ttacing a graph (section 2.7.3). 

A "match-all" character (section 6.5.2.3). 

Window, Icon, Mouse and Pointer computer interface. 



Appendix A 

A Simple Recognition Demonstrator 

A.l. Introduction 

Early on in the development of the project it was decided that a simple 

demonstiation system would provide a useful illusttation of the concept of cursive 

script recognition, and prove the feasibility to a limited extent. A system was 

developed based on the work completed to date. 

At this stage in the development of the recognition process, features were 

extracted from the script which could be described as graphical features, ie global 

features evident from examining the "image" of the script. With this type of 

information available, it was decided that a whole word recognition approach 

would be most profitable in producing a reasonable result for demonsttation pur

poses. 

A limited dictionary of accepted words was analysed and sorted according to 

the global features which were expected. The features exttacted from the sample 

script were then compared against the dictionary to produce the output list of can

didate words. 

A simple real-time demonsttator was produced which was publicly demon-

stiated on the BBC TV programme Tomorrow's World (March 1988). It would 

recognise a fairly fixed style, but it was found that most people could adapt their 

style to achieve at least some recognition. 

A.2. Hardware 

This system was implemented on several combinations of hardware. Since 

the aim of this system was to produce real time recognition, the speed of proces

sor and digitiser provided a number of constiaints on the capabilities of the recog

nition software. 
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Perq with Opaque Tablet 

The software was originally developed on a Perq 2 workstation, running 

PNX UNIX , and the Perq proprietary window system. This worked successfully 

but was slow due to the limitations of the Perq's centtal processor unit. The max

imum usable dictionary size was 300 words, with the digitiser producing 60 coor

dinates per second over a parallel port. 

Perq Connected to PAD 

A prototype hardware, called the PAD"*̂  was developed for the Electtonic 

Paper Project. Performance with this hardware was comparable with the Perq and 

opaque tablet. The host computer received only about 20 coordinates per second 

from the digitiser due to the slow speed of the RS232 connection. The low coor

dinate rate meant that the preprocessing had to be modified. 

Sun 3 Workstation and Optical Mouse 

The software was ported to a Sun 3 workstation, under the SunView window 

system. This was a successful implementation working much faster than the 

Perq, An 800 word dictionary was installed, and this produced a reasonable 

response. The optical mouse produces 40 coordinates per second. 

Sun 3 connected to PAD 

The PAD was integrated directly with the Sun via the VME bus. This was 

the optimal configuration for the system. The PAD digitiser produced about 50 

coordinates per second. 

A.3. Preprocessing 

A single word was presented to the system. The raw data was preprocessed 

to stiaighten, deskew and smooth the handwritten sample. The baseline and 

halfline were detected. Details of the preprocessing are available in Brocklehurst 

and Kenward ̂ .̂ 

A.4. Feature Extraction 

A number of primitive features were detected by the feature exttaction rou

tines at this time. These included pen-ups, pen-downs, cusps, intersections, 

Stiaight lines, humps, i-dots and t-crosses. From these primitive features, a 
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number of basic features were identified, namely pen-ups, pen-downs, cusps in 

four directions (up, down, left and right), i-dots, t-crosses and four types of loop 

(or near loop). These loops, or closures, included not only loops delimited by 

intersections but also sttokes which nearly meet (as in a letter 'o'). They could 

either be written clockwise or anti-clockwise and pointing upwards or down

wards. 

These basic features were reduced further to produce a more consistent set 

of features that could be used for recognition. Two processes were used to define 

this feature set. Firstiy the dictionary was analysed to see which features would 

help to reduce the possible list of candidate words. Secondly the extracted 

features were examined for consistency when the same letters or word were writ

ten. 

Analysis of the dictionary subject to different feature sets showed that the 

most useful features were ascenders, descenders, i-dots and t-crosses. (Experi

mental details are available in Ford and Higgins^^ ). The information about posi

tion of cusps provided further reduction of the dictionary, as did the information 

about loops between the baseline and halfline (loops outside this region are either 

ascenders or descenders). 

It was discovered that the direction of cusps occurring in the region between 

the baseline and halfline was not very consistent. For example, the initial cusp of 

a letter 'c' could be written pointing upwards, rightwards, or downwards. The 

occurtence of cusps is also ambiguous. Loops can also be ambiguous if the ends 

do not actually meet. Downward pointing clockwise loops that occurted between 

the baseline and halfline were found to be very inconsistent, since they were gen

erally poorly written cusps. 

Combining the above information led to the features of table A.l being used 

within this system. 
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Feature 

ascender 

descender 

o-loop 

b-loop 

e-loop 

i-dot 

t-cross 

wild 

Description 

sttoke rising above halfline 

sttoke descending below 

baseline 

downward pointing, 

anti-clockwise loop 

upward pointing, 

clockwise loop 

upward pointing, 

anti-clockwise loop 

none of the above 

Example letters 

b d f h k l t 

f g j p q y z 

a d g o q 

bkp 

e 

ij 

t 

c m n r s u v w x 

Table A.l - Features extracted 

Any basic feature that occurred considerably above the halfline was defined 

as an ascender (excluding i-dots and t-crosses), and any considerably below the 

baseline was defined as a descender. Any basic feature that did not fit into any of 

these categories was defined as wild. 

An estimate of the number of letters in the word was calculated by counting 

the centie-line crossings and dividing by the average number of crossings per 

letter. Each of the features detailed above was identified together with its approx

imate letter position within the word and a likelihood weighting. 

These features do not provide a unique description of the word, since they 

are ambiguous in their definition. For this reason more than one feature could be 

reported at any location within the word. For example, a cusp may be a tighdy 

written e-loop and so both these possibilities would be reported with appropriate 

weight. A loose, non-closed o-loop might not be a loop at all, in which case it 

would be reported as wild. 
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Details of the implementation of the feature exttaction routines are given in 
Brocklehurst et al? 

A.5. Dictionary Lookup 

The list of possible features is constmcted into a directed graph, similar to 

the letter graph described in section 5.7.3, but with weighted features attached to 

each node instead of letters. 

The dictionary is coded into features using a substitution set for each letter. 
In this way, ideal letters are described in terms of features but each letter is then 

specified in a fixed style. Two data stmctures are constmcted from this coded 

dictionary. Firstly a dictionary ttee is produced using features instead of letters in 

a similar way to the letter ttee described in section 6.4. Secondly a number of 

short Usts of dictionary words are produced sorted on word length, i-dot count and 

t-cross count. These can be accessed quickly by a three dimensional artay of 

pointers. 

A comparison of the graph and ttee is carried out producing a list of possible 

feature-coded words. These are then verified by cross-checking in the array-

indexed lists. The estimate of word length was found to be in error by up to two 

letters in either direction, so this was allowed for at this stage. Allowances were 

also made for missing diacritical marks, for example, i-dots becoming elongated 

into t-crosses, and vice versa, and the use of a single sttoke to cross a double 't'. 

Three values are combined to give a certainty weighting for a particular 

word - the combined value of probabilities from each of the segments in the word, 

the difference in actual and estimated word length, and the combined distance of 

the letter positions of actual features from their estimated positions. This allows 

the output list of candidate words to be ranked. 

Two dictionaries were installed, with 300 and 800 words. The most com

mon words in English usage have been selected, the 800 word dictionary account

ing for about 60% of all usage. In theory it is possible to install any size of dic

tionary, but this would be at the expense of speed of execution of die program. 

The accuracy of the results would also be reduced, since more words would be 

permissible. 
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A.6. Example 

The word 25^ was written into the system. Figure A.l shows the screen 

displaying the raw data collected from the digitiser, the preprocessed word and 

the candidate words output from the system. 

iini!wi!]nwiwiiii™«fiiwiiiiBi».iijiiiB.iiiiiiiii]iiiin«'ii.iiiiminirini 

Pra-procasBlng 

Processing f o f f e a t u r e s I n f o n w H o n 

erf l e t t e r s ea t lmated = 3 

no (rf f e a t u r e s = 18 

NE>a-VORD EXIT 

u u 

iorti Ninber 1 : 

> thus the 
> than then 
> l a t e l o t 
> t h i n 
> t * k e las t l o s t 
> those 
> Mhat 
> l a t e r taken 
> e t t t t »hort t t i r t 

!f .L.f^ 
I ' 

\A m 

Figure A.l - An example screen 

The following list of features was exttacted. 
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Feature 
ascend 
o-loop 
wild 
ascend 

wild 
wild 
wild 
b-loop 
wild 
o-loop 
wild 
wild 
e-loop 
o-loop 
wild 
wild 
t-cross 

Height 
23 
13 
13 
27 
14 
0 
6 
6 
6 
7 
7 
6 
4 
6 
6 
3 

17 

Position 
1 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
1 

% 
100 
29 
71 
99 

100 
99 
95 
42 
58 
41 
59 

100 
90 
47 
53 

100 
100 

L 
1 
2 
2 

26 
27 
38 
39 
39 
39 
48 
48 
57 
65 
65 
65 
78 
80 

R 
2 

26 
26 
27 
38 
39 
48 
57 
57 
65 
65 
65 
65 
78 
78 
80 
92 

Basic Feature 
pen-down 

up cusp 

down cusp 

pen-up 

172 

F e a t u r e details the type of feature to be looked for in the dictionary. 

Height is the scaled vertical position. 

P o s i t i o n is the estimated letter position within the word, based on the estimate 
of word length and the horizontal position. 

% is the weighting associated with the feature. 

L and R are the coordinate pair numbers of the start and end of the feature. 

These are used to determine which features connect to which other features. 

Bas i c F e a t u r e indicates what basic feature (if any) defined this feature. 

These features were then combined and any matching words in the diction

ary displayed in ranked order of likelihood. The output list can be seen in figure 

A.l under the heading "Matched Words". 

A.7. Evaluation and Conclusions 

This system expected writing in a style loosely based on the author's own 

hand, but most people had few problems in conforming to this style. It could be 

tailored to slightly differing styles by installing different coded dictionaries. A 

large proportion of users could write and have their script successfully recog

nised, but there were problems with the preprocessing, especially detection of the 

base-line of short words and the half-line in non-linear and non-uniform writing. 

The writing samples were completely unconsttained in this system. The system 

was slow in operation and response time increased with a larger dictionary. 
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Despite its limitations, this system served its goal of demonsttating the feasi

bility of cursive script recognition. The underlying methods were, however, 

unsuitable for further extension to a more sophisticated system. 



Appendix B 

Example Processing 

This appendix shows the processing of an example word through the ORCHiD 
system. 

B.l. Preprocessed Data 

Figure B.l shows the collected sample after preprocessing and cortection of 
any ertors. 

pH,HiUI„,l«IIMMIIHIUM<JJI.JIIjami«Bl 

Correcting baseline and/ar ha l f l ine 
Select uords for correction - touch QUIT box to f i n i sh 

>' i k 

Figure B.l - Preprocessed data 
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B.2. Features Extracted 

The script is segmented and features are measured for each segment. These 
are shown in table B.l. 

L 
1 
-3 
10 
34 
36 
50 
51 
69 
80 
93 
103 
103 
105 
119 

R 
2 

-10 
34 
36 
50 
51 
69 
80 

93 
102 
103 

104 
-118 
119 

XM 
-4 
5 
8 
9 

10 
10 

12 
16 
21 
23 

-26 
-1 
6 

-12 

DISP 

-
-
-
5 
2 
1 
2 
6 
9 
7 
5 
-
-
-

YM 
14 
15 
3 
20 
11 
2 
9 
1 
8 
1 
3 
12 
12 
12 

ANG 
124 
45 

277 

90 
185 
270 
90 

246 
72 

292 
37 

180 
0 

351 

"IN 
124 
304 
270 
90 

275 
270 
79 

279 
37 
315 
37 
180 
0 

351 

"OUT 
304 
80 
90 

270 
275 
90 

256 
37 

315 
37 

217 
0 
0 

171 

AREA 
0 
0 

56 
0 
0 
0 

-23 
8 
8 
5 
0 
0 
0 
0 

MAXD 
0 
0 

14 
0 
0 
0 
6 
2 
6 

1 
0 
0 
0 
0 

THICK 
0 
0 
6 
0 

-17 
0 
4 
4 
1 
6 
0 
0 
0 
0 

ASPCT C 
10 
_ 
4 
10 
250 
10 
7 
20 
2 
60 

250 
_ 
_ 
-

HORD 
0 
0 
6 
0 
17 
0 
4 
5 
0 
6 
0 
0 
0 
0 

Table B.l - Extracted features 

A fuU description of these feature values is given in section 4.8. A brief 

description identifying the entries specific to this example is given below. 

1-2 Cusp at top of't' (pen-down) 

3-10 Short segment which is deleted 

10-34 Join between 't' and 'h' 

34-69 The letter'h' 

6 9-80 Join between 'h' and 'e' 

80-93 Loop of the'e' 

93-103 Tail of the 'e' (pen-up) 

103-119 Cross through the 't' 

B.3. Templates Matched 

The segment features are compared against the template database and a Ust 

of candidate aUographs produced, together with a probabiUty for the match. 
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i.2 
U.2 

0.3 
aa2 
c.l 
e.l 
i.l 
u.2 
0.2 
a#2 
a#6 

6 
6 
6 
7 
8 
8 
8 
8 
8 
9 
10 

7 
8 
9 
8 
9 
9 
9 
10 
11 
11 
11 

279 
233 
146 
199 
108 
196 
206 
172 
129 
364 
171 

i.l 1 2 691 
1.1 1 2 1096 
t.l 1 2 1318 
d.2 1 4 550 
ahl 2 3 399 
Ihl 2 3 542 
1.1 3 4 1426 
t.l 3 4 1630 
h.l 3 7 539 
lal 4 6 128 

Table B.2 - Candidate allographs 

Table B.2 shows a selection of the allographs matched for the example 

word. The first column indicates the template name - "i.l" meaning template 1 

for a letter 'i ', "ahl" meaning template 1 for a letter join between an 'a' shape and 

an ascender (see figure 5.4). Columns two and three indicate the segment posi

tions of the beginning and end of the allograph within the sample word - the first 

allograph "i.l" occupies segment 1, for example. The fourth column is the scaled 

match probability for the template - see section B.4 for details of its calculation. 

The information that there is a t-cross at the beginning of the word is used to 

eliminate any 't' allographs at the end of the word. This ensures that all 't's are 

crossed. 

The actual candidate allograph list is much larger than this, containing some 

450 elements. The letter graph is now consttiicted from this list. 

B.4. Letter Graph 

A letter graph is dynamically constiucted from the candidate allograph list. 

A letter allograph is placed on the graph if a valid letter-join allograph exists 

which can precede it and join it to an entty already on the graph. The probability 

for die letter allograph is placed with it on the node and the probability for die 

letter-join allograph is placed on the connecting arc (see figure B.2). By ensuring 

letter/letter-join connectivity at this stage, the graph ttacing routine is much more 

efficient. 

Match probabilities are calculated for each segment individually. These are 

combined by simple multiplication to provide probabilities for larger portions of 

the script. This means that the probability for a two segment portion of script will 
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364 

364 

364 

<^n 
02 
129 

30 

> 
364 

3-

Figure B.2 - Letter graph 

more than likely be less than for one segment. (If each segment matches with 

probability 0.3, say, the two segment probability will be 0.3x0.3 = 0.09.) For 

efficiency, it is often desirable to ignore candidate allographs with very low pro

babilities. In order to compare these, the probability is scaled by taking the /ith 

root, where n is the number of segments. (This is the geometric mean of the pro

babilities.) The fourth column of table B.2 contains this geometric mean (multi-

pUed by 10 000). 

B.5. Candidate Words 

The letter graph and dictionary ttee are now ttaced simultaneously to pro

vide a list of candidate words. A match probability is calculated for each word 

(see below). Figure B.3 shows the output that is presented to the user for 

verification. In a practical system, the word 2Jfe-is clearly the most Ukely, and the 

other possibilities would not be presented. 

The word probability is calculated by multiplying the probabilities for each 

individual segment of the word. For the purposes of display to the user, the 

geometiic mean is again calculated. This is the first number displayed in figure 

B.3. The number in parentheses is the ratio of die actual probability to the proba

bility of the first word in the list. This is the value used to decide whedier more 

than one candidate word should be displayed to the user. (Extta candidate words 

have been displayed in this example for clarity of explanation.) 
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1 T-CrocG0s 0 1-OotG 
th« 61S (1.00) 
the 347 (0.00) 
d1« 2Be (0.00) 
Ih 20e (O.OO) 
di 134 (O.OQ) 

Figure B.3 - Output 

For example, the word tho would be made up of tl(1318), join(542), 

hl(539), join(199), o2(129). Its probability is therefore calculated as 

.1318 X .0542 X .0539^ x .0199 x .0129^ = 2.576 x lO^̂ ^ 

The geometric mean, multiplied by 10000 is therefore 

(2.576x10-^^) '̂̂ ^ X 10000 = 347.6 

The probability of any word that is among the 800 most frequently used in 

the English language is increased by a small factor, depending on its frequency. 

This ensures that more common words will be recognised more often. The proba

bility for the word uie-has therefore been increased, since this is the most likely 

word. 

A check of the number of diacritical marks in each candidate word is made 

to ensure compatibility widi the recognised number of marks. Allowance is 

made, however, for ambiguity in the recognition of these marks, hence die 

appearance of the word ^ i n the output list. 



APPENDIX B 179 

B.6. Training 

After verification of the cortect word by the user, the personal template data

base can be adjusted to include the new data. This provides an automatic method 

for ttaining the system. 



Appendix C 

Published Papers 

Copies of relevant papers published by the author follow. 
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THE ELECTRONIC PAPER PROJECT 

D M Ford & Dr C A Higgins E R Brocklehurst 
Department of Computer Science National Physical Laboratory 

University of Nottingham Teddington 
England England 

1. INTRODUCTION 
The National Physical Laboratory (NPL) has originated and led a coordinated UK research 

effort designed to exploit the potential of a novel form of computer interface. This interface 
consists of a high resolution, large area, flat panel display overlain with a transparent digitiser 
which is activated by a stylus. The combination of such a display and digitiser offers the oppor
tunity to develop a new human-computer interface which subsumes and exceeds the mouse, light 
pen and touch panel. 

Work has been in progress for five years. A demonstrator has been built which requires 
only the natural strokes of pen on paper as its input. Initial experiments with the demonstrator 
have shown the tremendous potential of such an interface. 

This paper documents the concept of Electronic Paper, together with the hardware develop
ments and ergonomic factors involved. This is followed by a description of the research and 
software developments made by the team. The main areas of research currently in progress are 
hand-printed character and symbol recognition, cursive script recognition and free-hand editing 
of text. Future work will include the detailed study of the ergonomic aspects related to the 
device, together with improvements to the hardware. 

2. THE CONCEPT OF ELECTRONIC PAPER 
Electronic Paper will consist of a flat panel display that can be written on with a stylus. 

The movement of the stylus is traced onto the screen, and the gestures interpreted and under
stood. Electronic Paper will be more than an input/output device - it will also include intelli
gence at a functional level. An interaction with the machine will involve pointing to an object, 
drawing a symbol or character, or writing. This leads to a very user-natural interface, since 
compound actions can be expressed very simply with a few handwritten symbols. For example, 
the handwritten instruction to move a paragraph merely requires the gesture of drawing an arrow 
from within the paragraph to its destination. With a conventional word processor it is necessary 
to specify the beginning of the paragraph, the end of die paragraph, select the move command 
from a range of options, and specify the destination - a large amount of data must be supplied for 
what should be an obvious action. 

Electronic Paper offers the potential for people to interact with a machine without the need 
for training or recourse to instruction manuals. The manual for Electronic Paper will consist of 
just a small number of pages, with pictures of the few symbols necessary to operate the device. 

There are several obvious uses for Electronic Paper, particularly in an office environment. 
• The interface can be used as a jotting pad for notes and sketches. These can then be tidied 

up, sent electronically to another site for corrections or annotations, and returned for print
ing or inclusion in other documents. 

• It can be used for the interactive manipulation and annotation of digitaUy encoded docu
ments and images. 

• The executive working outside normal office hours can produce documents ttiat would nor
mally be sent to a secretary. 

• Two devices connected to each other via a telephone line could be used for remote, on-line, 
visual communications, enabling distant parties to converse and simuUaneously iUustrate 
their ideas with free-hand sketches. 
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3. HARDWARE DESIGN 
The hardware for Electronic Paper relies on two crucial pieces of technology. The first, the 

transparent digitiser, has already been developed sufficientiy to be incorporated in a flat panel 
display. The second is the flat panel display itself The Japanese efforts to develop flat screen 
TV should ensure their availability at compedtive prices. 

The PAD (Pen And Display), a prototype, has been built which demonstrates the potential 
of the interface. The hardware was specified as the result of joint discussions between NPL, the 
Central Computer and Telecommunications Agency (CCTA) of the British Government, and 
DataSystems UK Ltd. It has been designed and built by DataSystems UK Ltd. 

The PAD consists of a flat AC plasma display panel, the Thomson TH7617, and a Scriptel 
SPD-1212 transparent digitiser. These are controlled by a Motorola 68000 processor. The 
display is 310mm (12 in) square, witii a resolution of 3.4 pixels per mm (86 per inch). The 
digitiser has a resolution of 0.025mm (0.001 in) and an accuracy of 0.64mm (0.025 in). The 
prototype is at present desk-bound but it is hoped that the final product wiU be about 300mm (12 
in) square, and 50mm (2 in) deep. Future designs should be light enough to be carried or used on 
the lap. The size and weight is very dependent on current flat screen technology. 

The prototype operates in a stand-alone (executive toy) mode, where it simply mimics the 
operations of pen on paper, or it can be driven by a host computer via a serial line. Work is in 
progress to link the PAD directiy to a SUN workstation, via the VME bus. This will enable the 
PAD to act as another window to the SUN operating system, or to replace the current CRT and 
mouse completely. 

4. ERGONOMIC FACTORS 
From initial observations of volunteers using the PAD it appears that this interface has 

considerable potential. Most users can get used to using the device after just a few minutes of 
practice, and are soon able to manipulate the stylus with considerable accuracy. 

Problems that must be considered before construction of a final product include parallax, 
reflection, stylus design, screen colour, contrast and the presentation of the device itself and the 
information on the screen. The parallax problem is the most severe at present due to the con
stmction method of the PAD. It was built using "off-the-shelf components. The digitiser is 
6mm (0.24 in) thick and the display glass with filter is 9mm (0.36 in) thick, leading to a total 
glass thickness of about 15mm (0.6 in) between the display pixels and the surface. Conse
quently, standing directly over the display increases the accuracy of pointing. The thickness of 
the digitiser could be reduced, since it was originally designed to be self-supporting. 

Some work has already been done on the problems of parallax on a similar device, see 
Tappert et al.^ 

5. SOFTWARE 
Work is in progress on many of the modules concemed with the project, at several UK sites. 

These include NPL, and the Universities of Nottingham and Essex. Several programs have been 
completed and transferred onto the PAD for testing, including a free-hand text editor, for cortec
tion of documents, and table and histogram drawing programs. Projects are underway research
ing into hand-printed character recognition and cursive script recognition. When all of the indi
vidual modules are complete, they wiU be fused together by a control program which will take 
the input data stream of coordinates and distinguish between cursive script, single characters, 
punctuation, symbols, editing cortections or diagrams. 

5.1. Free-hand Editing 
Two editors have been developed at present. A simple editor was developed at Trent 

Polytechnic for small corrections to unrecognised cursive script, for example to join incorrectiy 
segmented words. The second, developed at NPL, is a more powerful general text editor for 
correction of typescript. This recognises commonly used correction marks, as specified by BSI 
standard BS5261(1976), and makes the necessary adjustments to the text. Thus, for example, a 
word may be deleted simply by striking it out with a line. 
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5.2. Tables and Histograms 
Programs have been developed which enable tables and histograms to be roughly sketched 

free-hand on the PAD. These are then tidied up, lines are straightened, comers joined, and after 
editing with simple deletion and insertion symbols, the final diagram saved to file. 

5.3. Hand-printed Character Recognition 
Work is continuing at Essex University on recognition of any single character on the 

QWERTY keyboard, together with the option of a small number of user-definable characters, for 
example mathematical symbols. 

5.4. Cursive Script Recognition 
This is being developed at two sites. NPL are developing the pre-processing and feature 

extraction routines. Nottingham University are researching into whole word recognition, based 
on the extracted features, and dictionary lookup techniques. Much work is being channelled into 
appropriate feature set selection to find a compromise between easily recognised features at the 
feature extraction level, and features which are of most use to distinguish between words at the 
dictionary lookup level. See Higgins.^ 

Most researchers into cursive script recognition use a database of samples on which to test 
their routines. This database is usually collected on an opaque tablet, with either a real time 
visual check on a VDU screen, or is checked after coUection. This has proved inconvenient and 
cumbersome, the subject requires a substantial practice time with the equipment, and the data so 
coUected is unnatural and unsaUsfactory. The interactive feedback provided by Electronic 
Paper, with the "ink" displaying the digitised image on the writing surface, means that the 
volunteer can dramatically improve the standard of his/her writing. In the near future we will be 
implementing a cmde recognition system on the PAD. This will then be used to carry out experi
ments to discover to what extent a subject will adapt his/her handwriting style to assist the 
machine in recognition. For example, if the subject writes the word "had", and the computer 
recognises this as "naa", he/she may increase the height of ascenders. If this correction comes 
naturally, it will increase our chances of successful recognition. 

6. CONCLUSIONS 
NPL has shown the feasibility of Electronic Paper as an input/output device. Several 

modules are complete and are being field-tested; the recognition projects are making progress. 
The natural way in which a user can interact with the computer holds great potential for future 
developments, especially in a modem, electronic office environment. 
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A TREE-BASED DICTIONARY SEARCH TECHNIQUE AND COMPARISON 
WITH N-GRAM LETTER GRAPH REDUCTION 

DAVID M FORD and COLIN A FnGGINS 

Department of Computer Science, University of Nottingham, Nottingham NG7 2RD,United 
Kingdom 

Segmentation methods are commonly used in automatic handwriting 
recognition systems. Pre-processed input data is divided into smaller 
segments, which are then recognised, perhaps by comparing with pre
defined templates, and these recognised pieces recombined to form the 
required output. Recognition of any one segment is often ambiguous, 
resulting in a substitudon set of possible templates. The segmentation itself 
may also tie ambiguous. 

Higher level context can be used to resolve some of this ambiguity by 
defining a set of valid output which can he expected from the system. This 
context can be applied at various levels ranging from legal letter sequences, 
to valid words, to correct sentence semantics. The letter and word context 
can be applied using a purely computational approach, whereas the 
sentence level semantics require techniques from the field of Artificial 
Intelligence. 

This paper discusses the application of letter and word context, and in 
particular demonstrates a dictionary lookup technique which is applicable 
to many forms of automatic script recognition. A comparison is made 
between this method and a binary M-gram approach. 

1. Introduction 

In many syntactical and statistical handwriting recognition systems, unique 
classification is impossible and an ambiguous substitution set may be 
produced. This ambiguity can often be resolved if contextual information at a 
higher level can define a limited set of valid output. A dictionary or lexicon 
of this information can then be constructed, and the Ust produced by the 
recognition process reduced and validated. Often very large substitution sets 
are produced which need to be checked quickly and efficiently against a large 
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dictionary. This is especiaUy the case with cursive script recognition systems. 

A number of different techniques have been proposed to make use of 
contextual information. 

Statistical information about the transition probabilities between letters can 
be used to remove or reduce unlikely letter sequences and produce the 
required output (e.g. Neuhoff (1975); Riseman and Hanson (1974); Hull and 
Srihari (1982)). This is often referred to as a bottom-up technique. These 
techniques are usually very efficient, but do not guarantee valid output 
words. 

Another approach assumes that the written word comes from a fixed 
dictionary and the nearest matching word provides the required output (e.g. 
Duda and Hart (1968)). This is often referred to as a top-down technique. 
These techniques always produce a valid output word but can be inefficient to 
implement. 

A number of hybrid methods have been suggested to balance out the 
advantages and disadvantages of the two approaches (e.g. Srihari et al. (1983); 
Shinghal and Toussaint (1979)). Some of these techniques are briefly 
discussed below. 

A technique incorporating the advantages of both top-down and bottom-up 
approaches is presented here. This appears to be ideally suited to input data 
which can be represented as a directed letter graph, for example as is produced 
by cursive script or character recognition systems. Each node of the letter 
graph contains information concerning the match of a segment to a particular 
template, together with links to any possible succeeding nodes. The data 
structures used for the dictionary and graph are directly comparable, leading 
to a very efficient technique. An algorithm is designed and implemented, 
and experiments are reported which investigate the characteristics and 
suitability of this technique. Different internal structures for the dictionary 
are discussed and compared. 

Experiments have been carried out to compare the performance of this 
algorithm with a method which has been used previously to reduce the letter 
graph using binary M-grams. Results are presented which show that the new 
technique is usually much faster than a 4-gram system, and a manifold 
increase in performance is achieved with very large graphs. 
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2. Typical Output from Segmentation Based Text Recognition 
Systems 

There are two main approaches to the problem of text recognition. The first 
involves attempting to recognise a complete word as a whole unit - whole 
word recognition. The second involves segmenting the word into smaUer 
units which are then recognised - segmentation based recognition. Only the 
second of these will be discussed in this paper. 

A typical segmentation based text recognition system operates in several 
distinct stages. Firstly, the raw data, whether it be a scanned image or a time-
ordered sequence of coordinates from an on-line digitising tablet, is pre-
processed to smooth, straighten and normalise the script. Secondly, a list of 
possible segmentation points is produced and thirdly, features are extracted 
from the segments which allow recognition to take place. The segmentation 
and subsequent recognition may be achieved at the letter level, or at the sub-
letter level, where more than one segment may be combined to produce a 
single letter. 

The letter-matching routine can fall into one of two main categories: 

(a) those which produce a single word as output consisting of the most 
Ukely letters which span the written sample; 

(b) those which produce a list of possible letters in each segmentation 
position together with a weighting of their likelihood. 

Recognition systems belonging to type (a) make a binary decision at this 
stage as to where letter segmentation occurs - we will refer to this as a fixed 
letter-segmentation. Those belonging to type (b) may retain aU of the possible 
segmentation points for future use and will be referred to as ambiguous 
letter-segmentation (no decision has been made at this stage as to exactly 
where the letters occur in the written word). 

Example 

With a fixed letter-segmentation recognition system, the most likely word is 
produced as output. For example, if the word dog was presented to the sys
tem, the letter matching algorithm may make a mistake, for instance, in the 
second letter position and produce the output d-a-g. It is then the task of any 
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contextual post-processor to correct the output and produce the most likely 
real word. 

An ambiguous letter-segmentation system produces a list of possible 
candidates in each segment position, together with a certainty weight to 
indicate the closeness of the match. For example, if the word dog was 
presented to the system, it may produce two options for the second character, 
perhaps an 'a' with high certainty weight of 60 or an 'a' with a lower certainty 
weight of 40. 

In cursive script recognition systems, individual characters are permitted to 
run into each other, with the problem that segmentation of the script into 
letters is ambiguous. For example, if the word dog is written cursively, there 
is the possibility that the word may be clog, where the segmentation after the 
first letter is ambiguous. 

One way to represent the output from such a system is as a directed graph 
(Hayes (1980); Higgins and Whitrow (1985); Peleg (1979)). Figure 1 shows a 
simplified letter graph that might be produced by a recognition system acting 
on the input word dog. The '©' symbol represents the start of a word and the 
'#' symbol represents the end of a word. The graph is traversed from left to 
right, yielding a list of all possible combinations of letters that the original 
data might represent, i.e. {dcig, dog, dag, clcig, clog, clag}. The certainty 
weights can be attached to each letter on the graph and combined as the graph 
is traced to produce a ranking for each word that is produced. 

Figure 1 - A simple letter graph 
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3. Use of Contextual Information from Dictionary Sources 

3.1 Fixed Letter-Segmentation 

Most of the approaches to using contextual information have been based on 
constructing a post-processor for the output from fixed letter-segmentation 
recognition systems, ie the output from the recognition stage is a single, most 
likely word. The contextual disambiguation process takes a word, consisting 
of the most likely letters that span the word, as its input and returns the most 
likely written word as its output. There are several techniques which have 
been widely reported, the most common are listed below. 

3.1.1 N-Gram Techniques 

The probability of any individual ?z-letter sequence occurring can be 
calculated by examining large pieces of text. These probabilities can then be 
used to calculate the most likely written word given the output word from 
the recognition system, (see Riseman and Ehrich (1971)). 

3.2.2 Viterbi Algorithm 

The Viterbi Algorithm (VA) takes the output word from the recognition 
system and, using statistical information on the sequence of letters in English 
and likely errors from the recognition system, calculates the most likely input 
word. Viterbi (1967) first described the algorithm. Forney (1973) provides a 
thorough tutorial introduction to the theory behind the algorithm. Neuhoff 
(1975) described how it could be applied to the problem of text recognition. 
Various authors have discussed its application, including Riseman and 
Hanson (1974) and Hull and Srihari (1982) who compared its performance 
against a binary n-gram approach. 

The VA makes use of a confusion matrix of a priori probabilities observed 
from the recognition system, together with the transition probabilities 
between characters. In other words, the probability that a given letter may be 
mis-recognised as another letter is calculated and stored, together with the 
probabiUty that it can be preceded or foUowed by any other character. 

A 26 x / node trellis is constructed, where / is the length of the word. Unk
ing every letter with every other letter (see Figure 2). On the nodes of the trel-
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lis are the confusion probabilities, and on the arcs are the transition 
probabilities. [Notation: The confusion probability that a written letter X will 
be mis-recognised as a Y is written P( X I Y ). The transition probabiUty tiiat a 
letter X may be followed by a letter Y is written P( X - Y ).] By tracing a path 
through this trellis, and combining the probabilities on the arcs and nodes 
included in tiie path, the probability that the traced word could have been the 
original input word can be calculated. The algorithm finds the most Ukely 
path through this trellis, so yielding the most likely interpretation of the 
input word. 

input: d a g 

, ^ P(a-a) ^ P(a-a) 
P( a I d ) ) ^ --^P( a I a ) ) ^ - j ^ 

Output: 

Figure 2 - Viterbi Algorithm Trellis 

3.2.3 Dictionary Viterbi Algorithm 

The VA produces the most likely interpretation of the written word, but 
does not guarantee that the word exists. The Dictionary Viterbi Algorithm 
(DVA), developed by Srihari et al. (1983), is an improvement on the VA 
making use of a simultaneous full dictionary search, in place of the transition 
probabilities, to ensure that only a valid word is produced. (A similar 
technique was used by the HARPY speech understanding system, using words 
and sentences in place of letters and words, see Lowerre and Reddy (1980).) 
The dictionary lookup uses a trie structure to store the dictionary. This is 
described in Section 3.2.2. 
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3.1.4 Modified Viterbi Algorithm 

Shinghal and Toussaint (1979a) describe another variant of the VA, caUed 
the Modified Viterbi Algorithm (MVA). Here a heuristic depth of search d is 
set by the user so that only the d most likely probabilities in each letter 
position are checked. The computational overheads of the VA are thus 
reduced, as only adxl trelUs needs to be traced, but the performance degrades 
as d is reduced. 

3.2.5 Predictor-Corrector Algorithm 

Shinghal and Toussaint (1979b) further improve on the MVA by combiiung 
it with an efficient dictionary lookup algorithm (DA). This is called the 
Predictor-Corrector Algorithm (PCA). 

The dictionary is partitioned into sub-dictionaries of same-length words. 
Each sub-dictionary is then sorted by value, where the value is calculated by 
combining the transition probabilities of the letters of the word. This value 
was found to be nearly always unique for any sub-dictionary. A binary search 
is used to see if the output word from the MVA exists in the dictionary. If so, 
then that is taken as the required output. If not, then the DA is employed. A 
score is calculated for the nearest / words to where the output word was 
expected. / is a heuristic set by the user. The score is calculated by combining 
the transition probabilities between the letters with the confusion 
probabilities. The word with the largest score is the required output. 

Shinghal (1983) describes a further enhancement to the PCA, where the n 
most likely words from the MVA are checked in decreasing order to see if 
they exist in the dictionary. If none of them exist, the DA is employed. The 
value of n is determined by experiment. 

3.2 Ambiguous Letter-Segmentation 

The problem with aU of the systems based on the VA is that they do not 
allow for incorrect letter segmentation. For example if the word dog is mis
recognised as clog then the algorithm cannot produce the correct word and 
the system will fail. An ambiguous letter-segmentation retains all of the 
possible segmentation points within the letter graph representation. 

For an ambiguous script recognition system, the contextual disambiguation 
process takes a letter graph as its input, and produces as its output a list of 



298 D. M. Ford and C. A. Higgins 

words which have been checked, in some way, against a lexicon of dictionary 
information. One simple way to do this is to trace every path through the 
graph and check each resulting word against a list of valid words. This is not 
practical since the letter graph is usually very large with many paths. Even 
the most efficient searching algorithms will take a significant amount of 
processing time to verify a very large list of words. (Commercial spell-
checking software cannot be used since, for efficiency, the algorithms they 
employ usually rely on the fact that the input words will either be correct, or 
very close approximations to real words. Completely random sequences of 
letters may often be accepted as valid words, eg UNIX+ spell.) A much more 
efficient technique is needed. 

Two main practical techniques are described and compared below. 

3.2.2 Binary N-Gram Graph Reduction 

A list of valid n-letter sequences is produced by analysing a dictionary of 
allowable words. This list can be used to reduce the size of the letter graph by 
removing invalid portions. Section 7.1 gives details of one such method. 

3.2.2 Dictionary Tree 

A dictionary or word-list is restructured in the form of a tree, based on the 
trie structure suggested by Knuth (1973). This is shown pictorially in Figure 3, 
where the tree represents the word list {a, an, and, at, be, bet, but, by}. Each of 
these words can be found by tracing a path from left to right. The '@' symbol 
represents the start of a word and the T symbol represents the end of a word. 

The trie can be used as an efficient structure to store a dictionary for a 
variety of applications, but is especially applicable for contextual post
processing of script recognition systems. The DVA proposed by Srihari et al. 
(1983) used a dictionary trie at the same time as the Viterbi lattice is traced to 
guarantee that a valid word is found. Bozinovic and Srihari (1982) combined 
a stack-decoding search algorithm with a frze-structured dictionary with a 
small dictionary of 1027 words. Bozinovic and Srihari (1989) used a similar 
approach but added a depth of search heuristic to Umit the computation 
needed. 

^ UNIX is a trademark of Bell Laboratories 
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Figure 3 - Dictionary Tree - Pictorial Representation 

Our method shows that a letter graph, such as that shown in Figure 1, can be 
efficiently traced using a recursive procedure. Such a procedure might take 
the head-node of the graph on which it is to act as its parameter and call itself 
recursively, passing each sub-graph that the head-node points to as a 
parameter. This will carry out a depth-first trace of the graph. Using a tree 
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Structure, the dictionary can be traced simultaneously. As each arc of the 
letter graph is traced, if the corresponding arc exists in the dictionary tree, 
then the word is valid up to that point. When the end-of-word marker is 
reached in the graph and tree, the word tiaced out exists in the dictionary. An 
invaUd word in the letter graph will be rejected as soon as an arc cannot be 
found in the dictionary tree. It is not necessary to continue tracing the graph 
past this point. This is advantageous since it limits the time taken to search 
the dictionary, and allows the dictionary to be very large without seriously 
reducing the performance. 

All valid words that exist in the letter graph can be produced in this way 
with a weighting of their likelihood. No information is thrown away at this 
stage which may prove useful later on, for example, if more than one 
recognition routine is used in parallel and the outputs combined. 

4. Computer Representation of the Dictionary Tree 

A dictionary structured in this way can be accessed very quickly. It has the 
disadvantage of requiring a large amount of memory, since the data structure 
remains resident while the program is running. This is probably the reason 
for its rejection in the past, but as computer memory is becoming larger and 
more readily available this is no longer a major problem. We consider a 
number of different ways to construct this data structure within a computer 
program. 

4.1 Discussion of Possible Data Structures 

Knuth (1973) suggests a static data structure for the dictionary tree. This 
consists of a flag to indicate whether a word can end here and an array of 26 
element integer arrays together with 26 boolean flags. Each column position 
points to the column containing the next letter in a valid word, and a 
corresponding flag to indicate if a word can end at that point. This array is 
very sparse and would take up a large amount of memory. Nowadays, 
dynamic memory allocation allows more efficient data structures to be used. 

A simple dynamic data structure might consist of a tree of linked nodes, 
where each node contains 26 pointers to possible successor nodes (see 
Figure 4). In this particular layout, the letter is implied by the position of the 
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pointer in the array. Such a structure will be extremely sparse and have huge 
memory requirements. 

Figure 4 - Dictionary Tree - Logical Representation 

A more compact dynamic structure is shown in Figure 5. In this diagram 
each large square represents a node of the tree consisting of a key letter, at a 
certain level, and two pointers. The upper pointer points to a list of letters, at 
the next level, that are permitted to follow this letter. The lower pointer 
points to the remaining list of letters, at the current level, which can occupy 
the same letter position. This diagram is a representation of the tree shown 
in Figure 3. 

Figure 6 shows an internal representation for the letter graph in Figure 1. A 
node consists of a letter and a pointer to a list of arcs which, in turn, point to 
possible successor nodes. 
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Figure 5 - Dictionary Tree - Physical Implementation 
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Figure 6 - Letter Graph - Physical Implementation 
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4.2. Possible Enhancements 

The final choice of internal representation involves consideration of the 
trade off needed between access speed and memory requirements. There are 
several different structures which can be used depending on the most 
important criterion. 

4.2.2 Increased Speed of Access 

We define the list of letters, at the next level, which can follow a particular 
letter in the dictionary tiee as its sub-list. The search method for a structure 
similar to Figure 5 can be speeded up by reducing the time taken to search for 
a letter in a sub-list. The sub-list of letters can be ordered in several ways. If 
the letters are in a random order, it is necessary to search to the end of the list 
if the key cannot be found. However, if the ordering is known it is only 
necessary to search as far as the expected position of the letter. 

Several different orderings are possible. Alphabetical ordering has the 
advantage of allowing the ASCII code to imply position in a list. Sorting on 
frequency of occurrence in English, or frequency of generation from the 
recognition system may produce a faster search, but may require extra 
memory to store a representation of the order. Actual speed will be 
dependent on the letter graph itself; a graph which contains many valid 
words will take a different amount of time to trace than a similarly sized 
graph with many invalid words. For example, a list optimised for finding a 
commonly occurring letter will not be optimised to show that an infrequent 
letter is not present in fact, it wUl be the worst possible ordering. 

4.2.2 Reduced Size of Data Structure 

The size of the data structure can be reduced by using tail-end compression. 
If the end of a word is unique and is not common with any other word, then 
the dictionary structure can be reduced by constructing a special end-of-word 
node which contains the rest of the word as a string, without the need for 
extra nodes and pointers (see Figure 7). The disadvantage of tiiis structure is 
that the dictionary cannot easily be maintained. For example, to add an extra 
word may involve unpacking the tail of an existing word, adding the new 
word, then re-packing the two new tails. Also, since the code needed to 
search a tail wiU be different to that needed to search the tree, switching 
lookup code would degrade the speed of lookup. 
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Figure 7 - Dictionary Tree - Tail End Compression 

4.2.3 Improved Performance 

Our technique was originally developed for use as a post-processor for a 
cursive script recognition system. Often handwritten script samples have 
very poor quality sections where either the word has been written badly, or 
has been poorly digitised. A recognition system may not be able to identify, in 
any way, what has been written in these sections and may insert a ivild card, 
representing every possible character, into the letter graph in that place. 
Alternatively, it may be clear that a segment has, for example, a descender, but 
no other information is obvious, so a descender subset wild card, representing 
every letter with a descender, could be inserted. If the poor section occurs at 
the end of the word, the performance of the tree structure described above 
will not be adversely affected, since most of the paths through the letter graph 
will be rejected before the highly ambiguous section is reached. However, if it 
is at the beginning of the word, then there will be a large amount of 
ambiguity at the beginning of the graph, resulting in a large amount of wasted 
computation. 

If the dictionary tree was also structured in reverse, starting at the end of 
words and working towards the beginning, it would be possible, in these 
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cases, to verify the letter graph backwards, and so speed up the process. 
Similarly, if both ends of the original data sample are poor, it may be possible 
to work from the middle outwards. An ideal data structure might have 
multiple linkages, starting at each letter position, so that the dictionary search 
would always begin at the least ambiguous part of the graph. It is intended 
that the properties of such a structure will be investigated in future 
implementations. 

It should be noted that a dictionary lookup system based on a letter graph 
will fail if the correct letter is not in the letter graph hence the need for wild
cards when no letters are obvious candidates. A fixed letter-segmentation 
recognition system does not suffer from this problem since it is possible to 
change one letter to another. 

5. Implementation Selected 

For our implementation, we initially chose a simple approach, for ease of 
coding, to ascertain whether this data structure was suitable in practice. The 
data structure is an exact representation of Figure 5. Lists are ordered 
alphabetically, and the tree is linked only from start to finish. It was 
discovered that its performance and size were perfectly adequate for our 
requirements, even with very large ambiguous letter graphs. 

To test the performance of this implementation, a 210,000 word dictionary 
was used. This is probably much larger than would be needed in a practical 
system. A substitution set was used to generate simulated letter graphs of 
possible output from typed input words. A test set of 2,100 letter graphs was 
verified using the system running on a SUN 3/160 with 8 Mbytes of main 
memory, timeshared with other users but with light loading. The average 
real time needed per word was 0.45 seconds, and the actual CPU time used by 
the system averaged 0.19 seconds per word. In a practical system the lookup 
process would be quicker, since the times quoted above include routines to set 
up the data structure for the dictionary, to time the program and to calculate 
and print various analytical results. 

6. S ize of Data Structure 

The size of the dictionary data structure can be measured by counting the 
number of nodes in the tree. Experiments have been carried out using differ-
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ent sized word lists to investigate the effect of dictionary length against data 
structure size. As can be seen from the graph in Figure 8, this is roughly a 
linear function of dictionary size. 

Number 
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Figure 8 - Size of Data Structure vs. Dictionary Size 

For example, it seems that a dictionary of 60,000 words will probably be 
sufficient for a usable script recognition system. (This would allow for a 
vocabulary of about 20,000 root words with plurals and verb endings.) 
Assuming that a node consists of a character and two pointers, it can be seen 
from the graph that such a dictionary would require approximately 2.4 Mbytes 
of memory in our implementation. This is not an unreasonable amount of 
memory to expect in modern computer workstations. 

The size of the data structure for a particular dictionary is dependent on the 
compactness of the dictionary, ie whether the words have common roots. 
Adding a word which has the same root as a word already in the dictionary 
increases the size by less than adding a unique word. This means that the 
dictionary can contain all participles of verbs, plurals etc without drastically 
increasing its size, avoiding the need to construct these words by a rule-
driven system. 
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To investigate the effect of compactness on dictionary size, two sub-
dictionaries of 21,000 words were selected from a word list of 210,000 words; 
one by selecting the first word from each group of 10, the other by selecting 
the first 10 words from each group of 100. As expected, the first of these was 
less compact and used 141,138 nodes, the other more compact dictionary used 
only 98,981 nodes. 

7. Comparison with Binary 4-Gram Graph Reduction 

7.1 The Graph Reduction Process 

This technique makes use of the existence or nonexistence of four-letter 
sequences in English. Higgins (1985) reported that four is the ideal length of 
gram to use, since only approximately 5% of 4-grams are valid in English, and 
the number of possible grams, 26̂ ^ = 456,976, can be reasonably stored as a 
binary array occupying just under 56 Kbytes of memory. A much larger 
percentage of 3-grams are valid, and 5-grams would require about 1.5 Mbytes 
of memory for the binary array without much gain in context. 

The letter graph is supplemented by adding an extra start and stop node at 
the beginning and end of the graph. This is so that the opening two and three 
letter sequences can be checked using the same 4-gram approach. 

The graph reduction process can be implemented in many different ways, 
see Whitrow and Higgins (1985). We have selected an efficient technique, 
which uses a similar letter graph structure and tracing algorithm to the 
dictionary tree search algorithm, for the purposes of comparison. This 
technique involves recursively tracing each path through the letter graph, 
maintaining pointers to the last four letters accessed. At each step the current 
four letter sequence is compared against the list of valid 4-grams. If the 
sequence is valid, then the arcs connecting tiie letters are marked. The three 
arcs are marked differentiy depending on which letters of the sequence they 
connect. An arc which has been in each of the three connecting positions of a 
four letter sequence is marked as used. After the traversal is complete, the 
graph is stripped of aU unused links, the arc-markings are cleared, and the 
process repeated until no more links are removed. In this way a much 
reduced letter graph is produced, which can be more readily checked against a 
dictionary using a straightforward approach. 
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7.1.1 Speed of Reduction 

The speed of graph reduction for the technique described above is 
dependent on the number of possible paths through the graph, which is in 
turn dependent on the length of the word and on the confusion level of the 
letter graph. This is defined to be the number of letter options at each letter 
position. The graph in Figure 9 shows how the time taken for the reduction 
greatiy increases as the confusion level increases. The graph shows the time 
taken when reducing various possible letter graphs generated from the input 
word "test", with increasing ambiguity at each letter position. 
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Figure 9 - 4-Gram Reduction Lookup Time vs. Confusion 

7.2.2 Output 

4-gram graph reduction produces a much reduced letter graph, but this 
will usually still contain invalid words when all of the paths are traced. In a 
sequence of letters each individual gram may be permissible but this will not 
guarantee that the whole word is valid. Also, an arc in the letter graph can 
only be deleted if no valid gram uses it. A remaining arc will then still allow 
invalid grams to pass through it. (Figure 10 shows a sub-graph of a letter 
graph, where the gram ebcf may be invalid but abed valid. The arc marked 
'*' must therefore remain in the graph, so the invalid gram will still be pre-
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sent when the graph is traced.) It is therefore still necessary to check each 
word against a dictionary to guarantee vaUdity. This will incur the overhead 
of additional processing time. 

Figure 10 - Arc Deletion 
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Figure 11 - Comparison - Lookup Time vs. Confusion Level 
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7.2 Speed Comparison with Dictionary Tree 

The graph in Figure 11 shows the time taken for the graph reduction and 
the dictionary lookup, plotted against confusion level of the input graph, 
again for the word "test". It can be seen that with very small graphs the two 
techniques are comparable, but, as the ambiguity increases, the dictionary 
lookup is considerably faster. It should also be remembered that the 4-gram 
output still needs to be verified against a dictionary. 

8. Conclusions 

Whereas a large amount of work has been done in the field of contextual 
post-processing of text recognition systems, not many of the techniques 
suggested successfully address the problems caused by ambiguous letter-
segmentation, which are common with cursive script. The tree-based 
dictionary lookup technique described here is an ideal application of letter 
and word context for the output from text recognition systems and allows for 
ambiguous letter-segmentation of the script. It is extremely fast and efficient, 
can be used with a large dictionary or word list and produces all possible 
output words, with no loss of information that can occur when arbitrary cut
offs are applied. The dictionary contains every word which can be recognised 
by the system, without the need for prefix and suffix generation. It is simple 
to add extra words to the dictionary without greatly increasing its size. The 
technique is especially appropriate for very ambiguous letter graphs, typically 
produced by cursive script recognition systems. WUd card substitution can be 
used in areas where the script is very poorly written or digitised. 

The performance is superior to «-gram graph reduction techniques, and is 
in fact a super-set of the n-gram approach, since all possible values of n are 
effectively applied simultaneously. 
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