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ABSTRACT

In this thesis, I present a semiclassical and quantum mechanical study of a

biased superlattice with a tilted magnetic field applied. This system exhibits

non-KAM chaotic behaviour which can be controlled by the ratio between the

cyclotron and Bloch frequencies. I will use a semiclassical model to show that

electron trajectories become unbounded when this ratio takes an integer value.

These extended electron trajectories cause peaks in the electron drift-velocity,

which lead to current enhancements calculated using a drift-diffusion model.

Furthermore, I will explain this current enhancement with reference to the elec-

tric field and charge carrier density across the superlattice. These results will

then be compared to experimentally measured current-voltage characteristics.

A second superlattice is also studied, which has a high probability of inter-

miniband tunnelling. I will outline several theoretical models to account for

interminiband tunnelling and will ultimately use an empirical method. The

current-voltage results obtained via this method will then be compared to ex-

perimental data.

Finally, I will use a quantum mechanical model to determine the electron

eigenstates for the first superlattice. These quantum mechanical eigenstates

will be compared to the semiclassical results to determine the degree of cor-

respondence between the two models. Furthermore, I will use the eigenstates

to calculate the energy level structure of the system and investigate how this

varies for different applied field strengths. Ultimately, I will suggest a combined

band transport plus scattering model to explain experimental current-voltage

data obtained for high magnetic fields.
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List of Commonly used Symbols

Symbol Meaning

B Magnetic field magnitude.

d Superlattice period.

e Charge on an electron.

E(px) Superlattice dispersion curve.

F Electric field magnitude.

G Differential conductance (G = dI
dV ).

~ Planck’s constant divided by 2π.

I Electrical current (or action when discussing chaos).

Jr rth Bessel function of the first kind.

k Wavevector.

M∗ Reduced electron mass.

px, pz Momentum components along the x and z axes respectively.

qy Linear momentum along the y axis.

r ratio defined by r = ωB/ωC cos θ.

ρ Radial distance from the centre of phase space.

θ Magnetic field tilt angle relative to the x axis.

τ Electron scattering time.

τSL Superlattice scattering time.

V Voltage.

VSL Superlattice potential.

x Axis aligned along the superlattice growth direction.

Symbols Used in the Semiclassical Model

Symbol Meaning

α Quantum number indexing minibands.

∆xorbit Maximum displacement of an electron along the x axis.

Egap Minibandgap energy.

n Electron density or general index as indicated.

T Probability of interminiband (Zener) tunnelling.

τeff Electron scattering time modified for elastic and inelastic

scattering.

vd Electron drift velocity.

vd,ET Magnitude of the Esaki-Tsu peak in vd.

ωB Block frequency (ωB = eFd/~).

ωC Cyclotron frequency (ωC = eB/m∗).
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Symbols Used in the Quantum Mechanical Model

Symbol Meaning

α Quantum number indexing Wannier functions for a given m.

∆ED Dynamical bandwidth energy.

∆EG Dynamical bandgap energy.

∆ES Dynamical band spread (∆ES = ∆ED/eFd).

∆x Spread of electron probability density along x.

∆xD x width of the dynamical box.

E(N) Energy eigenvalue of eigenstate N .

g, N Quantum number for labelling eigenstates using a single index.

m Quantum number indexing Wannier states shifted by md along x.

n Landau level index.

Ψ Eigenfunction (|Ψ|2 is probability density).

W Wigner function quasiprobability.

ωLO Longitudinal optic phonon frequency.

ωS Slow frequency found in the semiclassical electron trajectories.
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1.1 Superlattices

The idea of a one-dimensional semiconductor superlattice was considered by

Esaki and Tsu in 1969 (1; 2). Such a structure would have a 1D periodic

potential ‘formed by a periodic variation of alloy composition or impurity density

introduced during epitaxial growth’. A series of allowed and forbidden energy

bands was predicted, similar to the bands occurring in semiconductor crystals

but of much smaller width.

Since this original work, many different types of semiconductor superlattice

have been created with a variety of electronic properties as well as magnetic and

other types of superlattice.

Figure 1.1 shows the potential energy variation for an electron in a basic

superlattice. The difference in energy is created by layering two types of semi-

conductor with different conduction band energies.

E
ne

rg
y 

x

Fig. 1.1: Energy profile of a simple superlattice structure showing a series of potential
energy wells and barriers in 1D.

This structure can be viewed as a set of adjacent 1D quantum wells which

are coupled to one another via quantum mechanical tunnelling through the

barriers. High or thick barriers cause the coupling between the wells to be

weak and the structure can be effectively modelled as a series of independent

quantum wells with a small probability of inter-well tunnelling. Such a structure

is commonly referred to as a multiple quantum well (MQW) structure. However,

if the coupling between the wells is sufficiently strong then the structure can

no longer be adequately modelled by discrete wells and band theory must be

used instead. These strongly coupled structures are known as superlattices.

Superlattices have narrow bands of allowed electron energies which are known

as minibands because they are much narrower than the bands which occur in

semiconductors. Superlattices can also be divided into weakly and strongly

coupled variants. In strongly coupled superlattices, the superlattice period is

smaller than the coherence length (∼ 6 nm) which leads to strong coupling

between adjacent quantum wells and resulting minibands are 10s of meV wide.

Conversely, weakly coupled superlattices have periods > 10 nm which leads to

minibands less than 1 meV wide . In these superlattices, electron transport

operates via non-sequential tunnelling because the electrons dephase before they

can move between quantum wells.(3)
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The following sections will outline the band theoretical method for deter-

mining the behaviour of electrons moving perpendicular to the heterointerfaces

(between the semiconductor layers) in a superlattice. This treatment will show

the phenomena of Bloch oscillations and negative differential velocity.

1.1.1 Band Theory

For a 1D1 system with a periodic potential and either an infinite extent or

periodic boundary conditions, the electron probability density is expected to

have the same periodicity. This statement is represented by:

|ψ(x)|2 = |ψ(x + X)|2 (1.1)

where ψ is the electron wavefunction, x is a position vector and X is a lattice

vector given by:

X = na (1.2)

where a is the primitive lattice vector and n is an integer. This lattice vector can

be used to describe the position of any lattice point relative to any other lattice

point. If condition 1.1 is true then it can be shown(4) that the wavefunction

will have the following form:

ψk(x) = eik·xuk(x) (1.3)

which is the product of a plane wave and a function uk(x) which has the peri-

odicity of the lattice:

uk(x + X) = uk(x) (1.4)

where k is known as the wavevector. Substituting 1.4 into 1.3 gives:

ψk(x + X) = eik·Xψk(x) (1.5)

which, along with 1.3, is a statement of Bloch’s Theorem.2

Reciprocal space is defined by the primitive reciprocal lattice vector b which

obeys:

b · a = 2π. (1.6)

The primitive cell in reciprocal space is also known as the first Brillouin Zone

1 This work will only detail the 1D band theoretical model because the superlattices under
investigation are periodic in one dimension. A full multidimensional treatment of periodic
systems can be found in any good solid state text.

2 For a proof of Bloch’s theorem see (4) for example.
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(BZ). The wavevector k in reciprocal space is expressed as:

k = lb. (1.7)

It can be shown that any wavevector k can be described in the first Brillouin

zone as follows. Consider the Bloch function:

ψk(x + X) = eik·Xψk(x) (1.8)

where k is outside the first BZ. We can express k as:

k = k′ + K (1.9)

where k′ is some wavevector in the first BZ and K is a reciprocal lattice vector

given by:

K = mb (1.10)

where m is an integer. Substituting equation 1.9 into 1.8 gives:

ψk(x + X) = eik′·XeiK·Xψk(x) (1.11)

and applying X · K = 2nmπ leaves

ψk(x + X) = eik′·Xψk(x). (1.12)

Comparing equations 1.12 and 1.8 shows that k is equivalent to k′. Therefore

only the first Brillouin zone needs to be considered.

The Bloch wavefunctions for a particular system can be determined from

solving Schrödinger’s equation:

Ĥψ = Eψ. (1.13)

The Hamiltonian of a periodic system of infinite extent is:

Ĥ = − ~
2

2m
∇2 + V (r) (1.14)

where V (r) is the potential energy of the system and has the periodicity of

the lattice. Appendix A details the construction of a Hamiltonian matrix in

one dimension for this system which can be diagonalised to produce the Bloch

wavefunctions. For each value of k there are infinite solutions which are denoted

by the quantum number α3. Therefore the Bloch wavefunctions, ψk,α, are the

3 Note that this quantum number is conventionally denoted as n but we used α to avoid
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Fig. 1.2: Example 1D dispersion curves for a periodic potential plotted using the re-
duced zone scheme. The α = 0 (black), α = 1 (red) and α = 2 (green)
dispersion curves are shown.

solutions of:

Ĥψk,α = Ek,αψk,α. (1.15)

A plot of the relationship between wavevector and energy is known as a

dispersion curve Ek,α. Figure 1.2 shows the three lowest energy (α = 0, 1, 2)

dispersion curves obtained for a typical superlattice by solving the Schrödinger

equation. If values of k outside −π/d < k < π/d were considered then the

dispersion relation would simply repeat as predicted by k = k′ + K.

From figure 1.2, it is clear that certain energies are not obtainable regardless

of the wavevector or band index, α. These regions are referred to as band

gaps and the allowed energy regions are called bands, which are labelled by the

quantum number α which varies from 0 to ∞. It can be shown4 that the number

of possible k values allowed in each band is equal to the number of lattice sites

in the superlattice and this limits the number of electrons that can inhabit a

band because of the exclusion principle.

variable confusion.
4 See any basic solid state text or (5) for example
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Fig. 1.3: Potential energy profile of a superlattice with an electric field applied in the
negative x direction.

A superlattice is typically a one dimensional structure constructed of lay-

ered semiconductors. The semiconductor layers are periodic lattices of atoms

and therefore have associated energy bands in three dimensions. However, the

bands associated with the 1D superlattice periodicity are much smaller than

these semiconductor bands and are therefore referred to as minibands with cor-

responding miniband gaps. The lower edge of the conduction bands of the

semiconductors are the energy levels that determine the superlattice potential.

1.2 Superlattice Transport Models

This thesis will consider two main models to describe electron transport through

a superlattice (or other periodic system). These models are miniband trans-

port which uses a semiclassical model and Wannier-Stark hopping which uses

a full quantum model. Other models such as non-equilibrium Green’s function

method can be used for this system(6) but will not be considered in this work.

1.2.1 The Semiclassical Model

Band theory and Bloch functions describe the state of an electron in a periodic

potential. However, they cannot be used to model the time-dependant behaviour

of the electron once an additional force, typically electric or magnetic, is applied.

To calculate the time dependent electron behaviour, both the external forces and

the influence of the dispersion relation must be considered. Figure 1.3 shows a

new potential energy profile for a superlattice which has an electric field applied

in the negative x direction.

The semiclassical model will not be described in detail here and the reader

is directed to (4) and references therein for a complete derivation and descrip-

tion. However the approximations and important consequences of the model

are outlined here.

The semiclassical model is intended to describe what happens to the position

and wavevector of an electron under the influence of external fields, both electric,
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F, and magnetic, B. This model does not consider collisions or scattering of

electrons which will be incorporated later in his chapter.

The semiclassical velocity of a wavepacket constructed from Bloch states is

given by:

vα(k) =
1

~

∂Eα(k)

∂k
(1.16)

where vα(K) is the velocity of a wavepacket in band α. This equation is only

valid for a wavepacket whose spread in real space is large compared to the

periodic potential so that its spread in k-space is small and k can be treated

as constant over the wavepacket. This condition is the major requirement of

the semiclassical model and it means that the wavepacket must be many times

larger than the superlattice period. The response of the wavepacket to external

fields is determined by classical mechanics through equations that are formally

identical to Hamilton’s equations and, for this to be valid, any change in the

external field must be small over the extent of the wavepacket. In other words,

the electric or magnetic field must be almost the same at any point of the

wavepacket. Although classical mechanics are used to describe external fields,

the form of Eα(k) is derived from quantum mechanics and, for this reason, the

model is known as semiclassical.

The non-relativistic equation of motion for k is:

~k̇ = −e [F + vα(k) × B] (1.17)

where ~k is known as the crystal momentum of the wavepacket. This crystal

momentum is different to the total momentum of the wavepacket because its

rate of change is only due to the electric and magnetic Lorentz force and not

forces due to the lattice potential.

The semiclassical model omits specific details of the periodic potential and

only incorporates indirect information about the lattice through the form of

Eα(k). The model does not allow for transitions between different minibands

and, because of this, only unfilled minibands need to be considered. In full

bands, all the k states are occupied and it can be shown that these filled bands

will not contribute to any transport properties of the system(4).

In the limit of zero quantum well depth, the electrons become free and their

kinetic energy will continually increase under a constant electric field. Because

the semiclassical model does not allow interminiband tunnelling, it can only al-

low a finite energy increase. Therefore the semiclassical model is only applicable

to a periodic potential with wells deeper than some minimum. Interminiband

tunnelling can occur for any periodic potential given a high enough electric field

and this is known as electric breakdown. An analogous magnetic breakdown can
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also occur and this behaviour is even easier to cause given strong magnetic fields.

Now consider the behaviour of an electron in a 1D periodic potential of

period d with an anti-parallel electric field of magnitude F (fig. 1.3). Assume

that the band structure is given by the dispersion curves in figure 1.2 and that

the electron is in the lowest (α = 0) band. For this system, the equations of

motion are:

~k̇ = −eF (1.18)

and

ẋ =
1

~

∂Eα(k)

∂k
. (1.19)

The first equation of motion ensures that k will change linearly with time. But,

because k can always be expressed in the first Brillouin zone (equation 1.9), k(t)

can also be treated as a sawtooth wave of amplitude 2π
d . The second equation

of motion states that the velocity in real space is proportional to the gradient

of the dispersion curve.

Tracing the dispersion curve from k = 0 shows that ẋ will increase from

zero to some maximum at k = π/2d and then decrease back to zero at k =

π/d. At this point, equation 1.9 states that k = π/d ≡ −π/d and, in the

reduced zone scheme, we can continue to examine the behaviour of the electron

by jumping to the left of the dispersion curve. The gradient now becomes

negative and the electron moves backwards, attaining a peak negative speed at

k = −π/2d and then slows to rest at k = 0. The cycle then repeats. Figure

1.4 overlays v(k) on E(k). The change in electron velocity from positive to

negative causes the electron to reverse its direction of motion and this is known

as Bragg-reflection. The electrons motion is oscillatory because the dispersion

curve is symmetrical about k = 0 and these oscillations are known as Bloch

oscillations. The frequency of the Bloch oscillations, ωB, is given by:

ωB =
eFd

~
. (1.20)

Although the semiclassical model predicts Bloch oscillations with an applied

electric field, electron scattering still needs to be considered. In practice, it

is found that electrons in crystal lattices scatter before Bloch oscillations can

complete.

In this section we have shown how the semiclassical model can be used to

predict the dynamic behaviour of electrons in a superlattice miniband (or other

dispersion curve).



1.2. Superlattice Transport Models 17

-1 -0.5 0 0.5 1
kd/π

0E
(k

) 
(a

rb
.)

v(
k)

 (
ar

b.
)

Fig. 1.4: Figure showing an example 1D dispersion curve (solid) and the corresponding
velocity (dashed) of an electron moving in this dispersion curve under the
influence of a constant electric field.

1.2.2 Wannier-Stark Hopping

One difficulty with the semiclassical model is that applying a constant field to

a periodic potential destroys the periodicity. Therefore, the dispersion curve

calculated for a superlattice is, strictly speaking, incorrect if a field is applied.

The semiclassical model first begins to become invalid when the energy variation

between states in additional quantum wells is greater than the thermal energy

broadening of these states:

eFd >
~

τ
(1.21)

where τ is the scattering time of electrons in the lattice. This condition means

that states in adjacent wells are no longer isoenergetic so treating the lattice as

periodic is inaccurate. When this condition is true, a series of states are found

in each quantum well and the set of states is known as a Wannier-Stark ladder.

Adding a magnetic field causing the states to split further into Landau levels

and this splitting is smaller than the principle quantum splitting. In chapter 5

we use a quantum model which incorporates the applied fields to calculate these

states and figure 1.5 shows a set of Wannier-Stark-Landau (WSL) ladders in a

superlattice.

Although the semiclassical model becomes invalid for ωBτ > 1, in prac-

tice, we can use semiclassical dynamics provided that the width of the Bloch

oscillations, ∆x, spans several quantum wells:

∆x =
∆

eF
> d (1.22)

where ∆ is the miniband width.

For transport to occur along the superlattice in the WSL model, an elec-

tron must be able to shift between different WSL ladders. Coherent transitions
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Fig. 1.5: Wannier-Stark-Landau ladder in a superlattice where ∆L is the Landau level
spacing.

between any isoenergetic levels in different ladders is not possible because Lan-

dau levels have zero overlap for n 6= n′. Therefore, neglecting the possibility of

photon assisted transitions, the transitions must be facilitated by a phonon scat-

tering event. There are two major types of semiconductor phonon to consider:

acoustic phonons, which are typically around 1 meV, and bulk longitudinal op-

tic (LO) phonons, which have energies of tens of meV. The low energy acoustic

phonons assist transitions between nominally isoenergetic states in adjacent pe-

riods in a quasi-elastic process. We use the terms “nominally” and “quasi”

because the energy levels are thermally broadened (on the order of ~/τSL where

τSL is the superlattice scattering time) so the electron can absorb a phonon

and move to a state of the same average energy. States in adjacent periods are

isoenergetic when the Landau level splitting is equal to the electric potential

energy dropped in one period:

∆L = ~ωC = eFd. (1.23)

The LO phonons can scatter electrons between Landau levels in the same

period which requires a second resonance condition to be met:

∆L = ωC = ωLO, (1.24)

where ωLO is the LO phonon frequency. This second condition is known as the

magnetophonon resonance (MPR) condition and allows for vertical energy level
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E

X

Fig. 1.6: Schematic of the energy level transitions mediated by phonons in MPR as-
sisted transport. The blue arrow indicates low-energy acoustic phonon as-
sisted quasi-elastic hopping and the red arrow shows LO phonon resonant
hopping. The broken line indicates a single-phonon hopping transition which
does not require the Stark-cyclotron resonance condition to be met.

transitions.

Figure 1.6 shows the scattering processes involved in Wannier-Stark hopping

and, for this transport to be possible, conditions 1.23 and 1.24 must be met.

Therefore, for Wannier-Stark hopping to occur,

~ωC = eFd = ~ωLO (1.25)

must be true. It is also possible for hopping to occur in a single scattering event

as shown by the broken line on figure 1.6. A single scattering event hop removes

the Stark-cyclotron resonance condition so only condition 1.24 need be met and

such a transition can occur for any magnetic field.

Although the Wannier-Stark transport model is more valid at high F , it does

not easily lead to a quantitative measure of electron dynamics. We will therefore

use the semiclassical approximation in this chapter because it can easily be

used to calculate properties such as drift-velocity for a range of applied fields.

In chapter 5 we will incorporate the applied fields into our calculation of the

electron eigenstates. We will then use the Wannier-Stark model to qualitatively

explain some features in experimental data.
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1.2.3 Electron Scattering

The Drude theory of metals(4) assumes that the predominant source of collisions

and scattering within a conductor is interactions between electrons and the

heavy lattice ions5. However, Bloch theory describes all the interactions of

electrons with a periodic lattice of ions. Therefore results obtained using Bloch

theory already have electron-ion scattering built in assuming that the lattice

is perfectly perfect. Bloch theory relies on the quantum wavelike nature of

electrons and thus was not understood in Drude’s day.

A real semiconductor homostructure has two main sources of imperfection

which prevent it from being a perfect lattice. The first type of deviation arises

from structural defects in the lattice structure, which can either be growth de-

fects or may arise from thermal, mechanical or other deformation of the lattice.

In addition, localised structural defects such as missing or incorrect ions at a

lattice site and larger defects such as slipped lattice planes can occur. These

kind of defects may be present under any conditions but can be minimised by

careful fabrication of the structures.

The second type of deviation in semiconductors arises from thermal vibra-

tions of the ions. These vibrations occur at all temperatures but decrease in

significance as the temperature approaches absolute zero. If the lattice ions are

vibrating in different directions then the lattice is no longer perfectly periodic.

This means that there will be scattering due to electron-ion interactions.

In superlattices, the large lattice that leads to the miniband structure is

artificially created by depositing layers of different semiconductor material on

a substrate. Therefore superlattice structures have all the defects of the un-

derlying semiconductors as well as the defects associated with the superlattice

periodicity. However, because superlattice periods are relatively large, the only

significant source of additional scattering is due to imperfections at the semicon-

ductor heterointerfaces known as interface roughness. Interface roughness can

also arise if the adjoining semiconductors have different lattice constants which

will stretch or compress the two layers at the point of contact. This distortion in

the periodicity of each semiconductor can lead to electron-ion scattering events.

Electron-electron scattering events can occur but the independent electron

approximation(4) can be used which treats these scattering events as unim-

portant. This approximation removes the need for a complex self-consistent

approach to scattering times. The Fermi liquid theory shows that this neglect

of electron-electron interactions is valid if dealing with electrons close to the

Fermi level and the carriers are treated as quasi-particles rather than true elec-

trons. In this thesis, the independent electron approximation is used and the

5 At the time, the concept of electrons and ions was not understood in as much detail as it
is today but the general idea is the same.
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carriers are still treated as electrons for simplicity.

This thesis will use a simple representation of scattering time and incorporate

all the possible scattering events described above into a single variable τ where

dt/τ is the probability of a scattering event occurring in time dt. This scattering

time must be inferred from experiments, although scattering times for some of

the simpler defects can be accounted for analytically.

Analytically, two types of scattering process can be identified: elastic and

inelastic scattering. Inelastic scattering processes allow both the energy and mo-

mentum of the electron to change. Phonon scattering is an example of inelastic

scattering where energy is transferred to or from the lattice. Elastic scattering

can only change the momentum of the electron. Ignatov et al(7) replace τ with

an effective scattering time (also see section 3.1.2 of (8)):

τeff = τi

√

τe
τi + τe

(1.26)

which includes contributions from the inelastic, τi and elastic, τe, scattering

times. A correction of δ = τeff/τi is required to the electron drift velocity if

this effective scattering time is used. We will use this effective scattering time

because it does not significantly increase the complexity of any calculations once

τeff and δ are known.

1.2.4 Electron Drift Velocity

This section will derive an equation for electron drift velocity which will then

be altered to use τeff as described in the previous section.

Consider what happens to electrons in a superlattice with dispersion curve

E(k) and scattering time τ . Two major assumptions will be made which con-

stitute the relaxation time approximation.

1. It is assumed that scattered electrons forget about their behaviour prior

to the scattering event.

2. Any point in the system is assumed to have an equilibrium electron dis-

tribution appropriate to the temperature at that point.

Other approximations will be made in addition to the relaxation time ap-

proximation:

1. The scattering time is independent of position, k and ǫ(k) and is therefore

constant.

2. The temperature, T , and chemical potential, µ, are independent of posi-

tion and time.
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3. The electric and magnetic field strengths are constant.

4. The electrons are not allowed to move between bands or minibands by

scattering or otherwise.

To formulate an expression for the electron drift velocity, consider N0 elec-

trons starting from time t = 0. If the number of electrons that remain unscat-

tered by time t is N(t), then the probability of an electron scattering in the time

interval dt can be calculated as follows. The number of electrons unscattered

by time t+ dt is:

N(t+ dt) = N(t) −N(t)
dt

τ
(1.27)

where N(t)dt
τ is the number of electrons that scatter in time dt. Therefore the

rate of change of electrons not having scattered is:

dN

dt
=
N(t+ dt) −N(t)

dt
= −N(t)

τ
. (1.28)

Integrating gives the number of electrons that have travelled for time t without

scattering:

N(t) = N0e
−t/τ . (1.29)

The probability of an electron scattering in time dt is now given by the the

number of electrons that scatter divided by the total number of electrons:

P (t)dt =
N(t)dt

τ

N0
(1.30)

and substituting in equation 1.29 gives:

P (t)dt =
1

τ
e−t/τdt. (1.31)

Because of assumption one of the relaxation time approximation, only the

behaviour of the electrons after their most recent scattering event will affect the

average or drift electron velocity. For example, the drift velocity component due

to electrons which last scattered one second ago is:

vd(t = 1) = vx(t = 1)P (t = 1)dt (1.32)

which is simply the electron velocity after one second multiplied by the propor-

tion of electrons that scattered one second ago. The full electron drift velocity

equation is obtained by integrating over all past times to give:

vd =

∫ ∞

0

vx(t)P (t)dt. (1.33)
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We can now apply the two scattering time correction and substitute in equa-

tion 1.31 to give:

vd = δ

∫ ∞

0

dt

τeff
v(t)e−t/τeff (1.34)

where

τeff = τi

√

τe
τi + τe

, (1.35)

δ = τeff/τi and τe and τi are the elastic and inelastic scattering times respec-

tively.

The initial spread of electron momenta can be characterised by an effective

temperature. To incorporate this spread into vd, we average over a number of

initial states:

vd =
δ

I

I
∑

i=0

∫ ∞

0

dt

τeff
vi(t)e

−t/τeff (1.36)

where i is one of I initial conditions and vi(t) is the velocity of an electron after

starting from initial state i after time t. The initial states are regularly spaced

points in a region of 3D momentum space whose boundaries are determined by

the effective temperature:

Emax = E(px) +
q2y + p2

z

2m∗ (1.37)

where Emax is the electron energy set by the effective electron temperature.

Equation 1.36 is the final definition of the electron’s drift velocity used in

this thesis.

1.2.5 Negative Differential Velocity

Combining the semiclassical equations of motion with the electron drift velocity

formula allows the average electron velocity to be calculated. Consider the

simple case of electrons in a 1D periodic system characterised by the dispersion

curve E(kx) = ∆/2 (cos(kxd)) with an applied electric field. This system is

identical to that considered at the end of section 1.2.1 in which the electrons

are localised in real space by Bloch oscillations of frequency ωB = eFd
~

. We

can now incorporate electron scattering into the model using equation 1.36 and

hence calculate the electron drift velocity as a function of electric field strength,

vd(F ).

As F increases, the Bloch frequency increases and the Bloch period corre-

spondingly decreases. Substituting the dispersion curve into the semiclassical

equations of motion,

vx =
1

~

dE

dkx
, and ~

dkx

dt
= eF, (1.38)
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Fig. 1.7: Drift velocity vs. electric field curve for an electron in a periodic poten-
tial with a cosinusoidal dispersion curve and an applied electric field. The
scattering time is τ = 10 and negative differential velocity clearly occurs for
ωBτ > 1.

gives:

vx =
∆d

2~
sin(kxd), and kx =

eF t

~
(1.39)

assuming that the electron starts from the bottom of the miniband (kx = 0).

Substituting these equations into 1.33 gives:

vd =
∆d

2~

∫ ∞

0

sin(ωBt) exp(−t/τ)dt/τ. (1.40)

This integral evaluates to:

vd =
∆d

2~

ωBτ

(ωBτ)2 + 1
(1.41)

which is plotted in figure 1.7.

Figure 1.7 shows that drift velocity reaches a maximum at ωBτ = 1. For

ωBτ << 1 the drift velocity increases linearly with electric field because the

electrons can only explore the parabolic lower part of the dispersion curve be-

fore scattering. Therefore no Bloch oscillations occur and ohmic behaviour is

observed. When ωBτ > 1 the Bloch period decreases with increasing F which

causes vd(F ) to decrease. This is because the electron has an increasing chance

of performing one or more Bloch oscillations and so the localising effects of these

oscillations become stronger with increasing field. This phenomenon is known as

negative differential velocity (NDV). This result is only valid for a single electric

field aligned anti-parallel to the superlattice.
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It has been shown (9; 10) that the presence of negative differential velocity

can cause the conduction electrons in a bulk structure to perform collective high

frequency oscillations whose frequency is in the GHz to THz range.

1.3 Superlattices in Electric and Tilted Magnetic Fields

The previous sections considered electron transport through a periodic super-

lattice with an electric field applied anti-parallel to the superlattice growth di-

rection. This section will consider how the electron motion changes due to the

addition of a magnetic field tilted at an angle (0◦ ≤ θ ≤ 90◦) to the growth

direction. Figure 1.8 shows a schematic of this system.

Fig. 1.8: Diagram showing orientation of the external electric and magnetic fields ap-
plied to the superlattice. The superlattice layers are represented by the grey
planes. The xz plane, in which the magnetic field vector lies, is shown in
white.

When θ = 0, the two types of motion which will occur in this system are

Bloch oscillations due to the electric field, with angular frequency ωB = eEd/~,

and cyclotron oscillations about the magnetic field, with angular frequency

ωC = eB/m∗. Figure 1.9 shows the form of the 2D potential that an elec-

tron experiences in these fields.

We will now construct a Hamiltonian to describe the electron dynamics.

The Hamiltonian of a 3-dimensional system with a periodic potential along the

x-axis but no applied fields is:

H0 = E(px) +
p2

y

2m∗ +
p2

z

2m∗ (1.42)

which combines the dispersion curve E(px) of the periodic potential in x with
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Fig. 1.9: Contour plot of the 2D potential energy due to electric and magnetic fields
tilted at 30◦ to each other. The arrow shows the direction of increasing
potential energy and the inset shows the direction of the applied fields.

parabolic dispersion curves in y and z. Note that the mass is replaced with the

effective mass, m∗, of an electron in the semiconductor material forming the

superlattice. Making this replacement incorporates the effects of the semicon-

ductor dispersion curves within the Hamiltonian. The superlattice dispersion

curve will be represented as a Fourier series for generality:

E(px) =
∆

2

(

a0 −
∞
∑

n=1

an cos

(

n
pxd

~

)

)

(1.43)

where ∆ is the width of the miniband and an=0,1,2,3... are a set of coefficients

which define the shape of the dispersion curve. For the cosinusoidal dispersion

curve considered previously, a1 = 1 and an>1 = 0. References (11) and (12)

detail the construction of these coefficients.

The semiclassical model states that the change in crystal momentum of an

electron is given by the external forces acting on that electron:

ṗ = ~k̇ = Force (1.44)

and its velocity is given by:

v =
∂E(p)

∂p
. (1.45)

Therefore the classical Hamiltonian of an electron in a periodic potential with
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an electric field anti-parallel to x is:

He = H0 − eFx. (1.46)

Including a magnetic field does not directly alter the total (kinetic plus poten-

tial) energy of an electron but it does change the direction of its motion. It

is therefore convenient to incorporate this effect into the momentum operator

rather than the Hamiltonian:

p → p + eA = mv = q (1.47)

where A is the magnetic vector potential and the canonical momentum p has

been replaced with the linear momentum q(13). For our system, the magnetic

field vector is B = (B cos θ, 0, B sin θ) and the simplest(14) choice for the mag-

netic vector potential is A = (0, B(x sin θ − z cos θ), 0). This leads to a linear

momentum of:

qy = py + eAy(x, z)

= py + eB(x sin θ − z cos θ) (1.48)

in y and leaves the x and z momentum components unchanged. The full Hamil-

tonian is now be written as

H = E(px) +
q2y

2m∗ +
p2

z

2m∗ − eFx (1.49)

and substituting in equation 1.48 for qy gives:

H = E(px) +
k2

y

2m∗ +
~eBky

m∗ (x sin θ − z cos θ)

+
e2B2

2m∗ (x sin θ − z cos θ)
2 − eFx

= E. (1.50)

This can be simplified to:

H = E(px) +
1

2
m∗ω2

C (x sin θ − (z − z0) cos θ)2 − eFx = E. (1.51)

where ωC = eB/m∗ and z0 = py/eB cos θ. This equation is the final semiclassi-

cal Hamiltonian for an electron in a superlattice of dispersion curve E(px) with

applied electric and magnetic fields as depicted in figure 1.8.
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1.3.1 Semiclassical Equations of Motion

Equations of motion can be formed from the Hamiltonian of a system using

Hamiltonian mechanics and Hamilton’s equations in particular. These equations

define the equations of motion for a particle which is described by the conjugate

coordinates {r,p}:
dri
dt

=
∂H(r,p, t)

∂pi
(1.52)

and
dpi

dt
= −∂H(r,p, t)

∂ri
(1.53)

where degrees of freedom are indexed by i. A single electron in a superlattice

with electric and tilted magnetic fields has 3 degrees of freedom. However, the

equations of motion for x and z are independent of y so only i = x and z need

to be considered for Hamiltonian 1.51. Therefore the four Hamilton’s equations

for this system are:

ẋ = ∂H
∂px

, ṗx = −∂H
∂x

(1.54)

ż = ∂H
∂pz

, ṗz = −∂H
∂z

. (1.55)

It needs to be shown that Hamilton’s equations lead to the semiclassical equa-

tions of motion, ṗ = Force and v = ∂E(p)
∂p

, in order for Hamiltonian mechanics

to be applicable to our system. Simply substituting p = ~k̇ into equations 1.54

and 1.55 gives:

ẋ = vx =
1

~

∂H

∂kx
(1.56)

ż = vz =
1

~

∂H

∂kz
(1.57)

which are equivalent to the semiclassical velocity equation. Substituting Hamil-

tonian 1.49 into Hamilton’s equation for px gives:

ṗx = eF − qy
m∗

∂qy
∂x

= e
[

F − qy
m∗B sin θ

]

(1.58)

which shows that the change in crystal momentum along x is given by the

Lorentz force. A similar argument can be made for pz which demonstrates the

equivalence of Hamilton’s and the semiclassical equations of motion. Therefore

Hamilton’s equations can be used to obtain semiclassical equations of motion

for our system.

The four equations of motion that emerge from applying equations 1.54 and
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1.55 to the Hamiltonian 1.51 are:

ẋ =

∞
∑

n=1

ndan

~
sin

(

ndpx

~

)

(1.59)

ż =
pz

m∗ (1.60)

ṗx = −m∗ω2
C

(

x sin2 θ − z sin θ cos θ
)

+ eF (1.61)

ṗz = −m∗ω2
c

(

z cos2 θ − x cos θ sin θ
)

. (1.62)

The second time derivative of pz is given by:

p̈z = −m∗ω2
C

(

ż cos2 θ − ẋ cos θ sin θ
)

(1.63)

which is equal to:

p̈z + ω2
C cos2 θpz = −m

∗∆ω2
C cos θ sin θd

2~

∞
∑

n=1

nan sin

(

nd

~
px

)

. (1.64)

An expression for px in equation 1.64 can be calculated from 1.61 and 1.62:

ṗz sin θ + ṗx cos θ = eF cos θ (1.65)

integrating with respect to time gives:

pz sin θ + px cos θ = eF cos θt+ β (1.66)

where β is a constant of integration. Setting t = 0, we find that:

β = px(0) cos θ + pz(0) sin θ. (1.67)

Substituting 1.67 into 1.66 and simplifying gives:

px(t) = px(0) + eF t− (pz − pz(0)) tan θ. (1.68)

Substituting equation 1.68 into 1.64 gives the final equation of motion for

pz:

p̈z + ω2
C cos2 θpz = −m

∗∆ω2
C cos θ sin θd

2~

×
∞
∑

n=1

nan sin

[

nd

~
(px0

+ eF t− (pz − pz0
) tan θ)

]

.(1.69)

This equation of motion uniquely determines pz(t) and is independent of x, z

and px. Conversely, the equations of motion for x, z and px (eqns. 1.59, 1.60
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and 1.68) are dependant on pz after some simple substitution. Therefore it can

be concluded that the behaviour of the system is characterised by equation 1.69.

If only the n = 1 term is considered, equation 1.69 can be rewritten as:

p̈z + ω2
C cos2 θpz = −m

∗∆ω2
C cos θ sin θd

2~
sin (Kpz − ωBt− φ) (1.70)

where K = d tan θ
~

, φ = d
~

(px(0) + pz(0) tan θ) and a1 = 1. The left-hand side

of this equation has the form of a simple harmonic oscillator with angular fre-

quency ωC cos θ and the right-hand side is a plane wave driving term with a

different frequency of ωB that can be controlled independently of K. A theo-

retical treatment of the driven harmonic oscillator problem will be carried out

in chapter 2.

The electron velocity in the x direction, vx(t), is given by substituting equa-

tion 1.68 into equation 1.59 to give:

vx(t) = ẋ(t) =

∞
∑

n=1

ndan

~
sin

[

nd

~
(px(0) + eF t− (pz − pz(0)) tan θ)

]

. (1.71)

Substituting this equation into:

vd =
δ

I

I
∑

i=0

∫ ∞

0

dt

τeff
vx,i(t)e

−t/τeff (1.72)

gives the final expression for electron drift velocity where px(0) and pz(0) are

used to set the initial states, i. This equation has been corrected for effective

temperature and the two scattering time model as described in section 1.2.4.

1.4 Superlattice Samples

This section will focus on the parameters of the actual superlattices used in

this thesis. Two types of superlattice are used which differ in one important

feature that alters their dynamics. The first superlattice, known as sample

NU2293, was engineered to have a large miniband gap between the first and sec-

ond minibands which reduces interminiband tunnelling and so the semiclassical

approximation introduced in section 1.2.1 can be used. The second superlattice,

sample NU2299, was designed with a much smaller miniband gap to allow in-

terminiband tunnelling to occur far more readily. Consequently, for this second

sample, the semiclassical model will need to be revised to include the effects of

inter-miniband tunnelling.
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Fig. 1.10: (a) Sketch of the structure of superlattice NU2293 showing a single unit
cell. (b) Variation of the electron potential energy with position x through
the unit cell. Arrows show the widths of each layer.

1.4.1 Superlattice NU2293

Sample NU2293 is a superlattice composed of three different semiconductor

materials arranged in four layers. The semiconductors are AlAs, GaAs and

InAs and the arrangement of these layers is shown in figure 1.10(a). The InAs

layer has an average width of 0.8 monolayers and is included to lower the en-

ergy of the first miniband to facilitate electron injection into this miniband in

experiments(15).

The band structure can be calculated from the lattice parameters sum-

marised in table 1.1 by solving the Schrödinger equation constructed in sec-

tion 1.1.1. To do this we use the matrix diagonalisation method outlined in

appendix A. Although the matrix method is technically less accurate than an

exact analytical calculation such as the Kronig-Penny model it produces results

that are functionally identical for a sufficiently large basis set. The advantage

of the numerical method is that it can calculate the wavefunctions for an ar-

bitrarily complex symmetric superlattice potential and the method could be

easily modified to also handle non-symmetric potentials. Modifying the analyt-

ical Kronig-Penny method to handle more complex superlattices would involve

calculating a new, larger, set of simultaneous equations.

Figure 1.11 shows the miniband structure calculated for this superlattice
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Layer AlAs GaAs InAs GaAs

Conduction Band Energy (meV) 1064 0 -698 0

Layer Width (nm) 1 3.5 0.241 3.5

Start Position (nm) 0 1 4.5 4.741

Table 1.1: Summary of the layer structure and potential energy variation for super-
lattice NU2293.

Miniband Index, α 0 1 2 3 4

Elower (meV) 20.0 240.6 511.6 985.4 1529.3

Eupper (meV) 39.1 341.4 726.8 1362.9 2087.0

Table 1.2: Energies of the lower and upper edges of the lowest five minibands in su-
perlattice NU2293.

illustrating the large energy gap between the first and second minibands. Table

1.2 summarises the energies of the top and bottom of the five lowest minibands

of superlattice NU2293.

Owing to the large miniband gap, it is expected that sample NU2293 will be

effectively described by the single band semiclassical dynamics described in this

chapter. Chapter 3 will describe the behaviour of this superlattice in detail.

1.4.2 Superlattice NU2299

Superlattice NU2299 is constructed from similar materials to NU2293 but has

only two layers per unit cell and a very different miniband structure. Basically

the InAs layer has been removed and the AlAs layer now contains Gallium and

is proportionally thicker than in NU2293. Figure 1.12(a) shows the composition

of this second superlattice and (b) shows its potential energy structure which is

summarised in table 1.3.

The dispersion curves are again calculated using the matrix method. Figure

1.13 shows the first three dispersion curves for this superlattice and the energy

gap between the first and second minibands is calculated as 66.1meV. Table 1.4



1.4. Superlattice Samples 33

Fig. 1.11: First three dispersion curves calculated for superlattice NU2293. The large
201.5meV miniband gap between the α = 0 and α = 1 minibands is marked.

Fig. 1.12: (a) Sketch of the structure of superlattice NU2299 showing a single unit
cell. (b) Variation of the electron potential energy with position x through
the unit cell. Arrows show the widths of each layer.
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Layer Al0.3(Ga0.7As GaAs

Conduction Band Energy (meV) 247 0

Layer Width (nm) 2.5 10

Start Position (nm) 0 2.5

Table 1.3: Summary of the layer structure and potential energy variation for super-
lattice NU2299.

Miniband Index, α 0 1 2 3 4

Elower (meV) 26.6 104.7 231.9 410.5 648.9

Eupper (meV) 38.6 153.9 344.7 609.0 944.5

Table 1.4: Energies of the lower and upper edges of the lowest five minibands in su-
perlattice NU2299.

lists the positions of the first five minibands for superlattice NU2299.

1.4.3 Differences in the Miniband Structure of the Samples

The first, α = 0, minibands are of comparable width in the two structures,

19.1meV for NU2293 and 12.0meV for NU2299, although the dispersion curve

for NU2293 is more sinusoidal. However, there is a large difference in the gap

between the first and second minibands for these two structures, 201.5meV for

NU2293 and 66.1meV for NU2299, a difference of 300%. The small miniband

gap for superlattice NU2299 means that the no interminiband tunnelling as-

sumption made by the semiclassical approximation may no longer be valid and

this tunnelling will have to be accounted for at some point in the model. Chapter

4 deals with superlattice NU2299 and interminiband tunnelling in more detail.

1.5 Electron Transport Properties

The semiclassical model describes the behaviour of a single electron in an infinite

periodic potential, such as a superlattice, under the influence of electric and
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Fig. 1.13: First three dispersion curves calculated for superlattice NU2299. The
66.1meV miniband gap between the α = 0 and α = 1 minibands (marked)
is clearly smaller than that for NU2293. Note the difference in the energy
axis scaling between this and figure 1.11.

tilted magnetic fields. This model can describe the evolution of an electron’s

position and momentum in the absence of scattering. The concept of a scattering

time was introduced to describe the average velocity of an electron with a given

initial condition and this can be further averaged over a number of electrons

with different starting conditions to account for thermal broadening. However,

these models cannot determine any experimentally observable properties of the

superlattice system6.

The most usable transport property is the current-voltage relationship (I(V ))

for the device. This transport data needs to correspond to a finite superlattice

to have physical significance, rather than the infinite superlattice used in band

theory. The transport properties must also deal with a large number of electrons

and allow the electric field to be non-linear.

To deal with a very large number of electrons we define a local electron

density rather than deal with individual electrons. The behaviour of a classical

bulk current carrier can be determined using the Poisson and current continuity

6 Some three-terminal-superlattice experiments can measure the drift velocity of an electron
but such experiments have not yet been performed for the samples discussed here.
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equations. The Poisson equation,

∇ ·F =
ρ

ǫ
, (1.73)

where ρ is the charge density and ǫ permittivity, relates the net charge at a

particular point to the rate of change of electric field at that point. The current

continuity equation,

I(n) = I(n+ 1), (1.74)

where n indexes a section of the circuit, simply ensures that the current, I, is

the same at all points in a circuit.

The transport properties of electrons in a real, finite superlattice can be

predicted using a drift-diffusion model. This model involves solving the classical

Poisson and current continuity equations through the superlattice by dividing

it into N discrete sections. Figure 1.14 shows this division with an additional

four sections (A through D) representing the ohmic contacts used for electron

injection and collection. The following assumptions are made:

• For a given applied voltage, the electric field is constant in sections (A)

and (D) (the ends of the device).

• The width, ∆x, of the superlattice sections will be small enough so that

changes in electric field and charge density across them will be unimpor-

tant.

This second assumption allows the vd(F ) curves predicted for the infinite

superlattice to be used to describe electron velocity in each superlattice sec-

tion. However, this then makes the assumption that the electron’s maximum x

displacement is less than ∆x which which will only ever be an approximation

because scattering events are random.

To construct a set of simultaneous equations describing the device, we first

consider behaviour in the superlattice sections. The two variables to consider

are local charge density and local electric field which can be determined by ap-

plying the current continuity and Poisson’s equation to each superlattice section.

Current continuity is expressed by:

I(i) = I(i+ 1)

n(i)vd(i)eA = n(i+ 1)vd(i+ 1)eA (1.75)

where I(i), n(i) and vd(i) are the current, charge density, and drift-velocity

respectively in section i, and A is the cross-sectional area of the conductor.

vd(i) is the electron drift velocity corresponding to the average electric field in
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Fig. 1.14: Schematic of the division of the real superlattice device into sections for the
purpose of determining its electrostatic properties. The contacts are split
into the four green sections (A-D) and the superlattice region is divided into
the N red sections. The electric field magnitude at the interface between
the ith and (i − 1)th layers is written as F (i) where i = 1, 2...(N + 1). Note
that the direction of the electric field is always assumed to be in the negative
x direction.

region i:

vd(i) = vd

(

F (i) + F (i+ 1)

2

)

. (1.76)

This average field is used because electric field is defined at the boundaries of

sections whereas charge density is defined at the centre.

Equation 1.75 can be simplified to:

n(i)sd(i) = n(i+ 1)sd(i+ 1) (1.77)

where the scaled variable sd(i) = vd(i)
vd,max

has been introduced and vd,max is the

maximum drift-velocity for the system.

Poisson’s equation simply states:

F (i+ 1) − F (i) =

(

e∆x

ε0εr

)

[n(i) − nD(i)] (1.78)

where nD(i) is the density of ionised donors in ith superlattice section which is

included to account for the positively charged donor ions. The proportion of

ionised donors is, in our model, assumed to be exponentially related to the local

electric field,

nD(i) = nD exp

(

− 2Fion

F (i) + F (i+ 1)

)

(1.79)

where Fion is the characteristic electric field required to ionise the donors and
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nD is the overall doping density.

The superlattice contacts are heavily doped and the electric field is constant

in regions (A) and (D). We can therefore relate current and conductivity by:

I = σF (0)A (1.80)

where

σ =
n0e

2τc
m∗ (1.81)

and τc and n0 are the scattering time and doping density respectively for the

contacts.

Regions (A) and (B) are divided by a sheet of negative charge or electron

accumulation layer, which serves to alter the constant electric field, F (0), in

region (A) to the field at the LHS of the superlattice, F (1). Poisson’s equation

gives the charge density of this sheet, nL, as,

F (1) − F (0) =
enL

ε0εr
. (1.82)

In a similar way, region (C) becomes depleted (loses electrons) in order

to change the field F (N + 1) at the end of the superlattice region back to

F (0). Poisson’s equation shows that the relationship between the length, q, and

electron depletion density, n0, in this region is:

F (0) = F (N + 1) − en0q

ε0εr
. (1.83)

By integrating the field change across the depletion region, it can be shown that

the voltage drop across region (C) is,

V (C) = F (N + 1)q − en0q
2

2ε0εr
. (1.84)

The total voltage drop across the system can be calculated by assuming

that the electric field in each section is constant except in region (C), for which

equation 1.84 is used:

V = F (0)(l − s) + F (0)(l − q) + F (1)s+ F (N + 1)q

+ V (C) +
∆x

2

N
∑

i=1

(F (i) + F (i+ 1)) + σF (0)ARext (1.85)

where Rext is a resistance describing the remaining circuit and its connections

to the actual superlattice device at (A) and (D).
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For given values of s and n0, which we take to be the nominal values specified

during the MBE growth process, there are 2N + 4 unique unknowns in this

problem. N + 2 local electric fields, N local charge densities, the sheet density,

nL, of the electron accumulation layer between regions (A) and (B), and the

width, q, of region (C). A set of 2N + 4 non-linear equations have also been

defined:

1. The first N − 1 equations arise from current continuity through the su-

perlattice - see equation 1.77.

2. There are N Poisson’s equation - one for each section of the superlattice

- see equation 1.78.

3. Two equations maintain current continuity between regions (B) and (C)

and the superlattice:

σF0 = n(1)evd(1) (1.86)

σF0 = n(N)evd(N). (1.87)

4. Eqns 1.82 and 1.85 provide two further equations for the set.

5. The final equation arises from ensuring that there is no net charge in the

structure. This requires that the electric field is equal in regions (A) and

(D) and so equation 1.83 is needed.

Solving the 2N + 4 coupled non-linear equations will give information on

the current-voltage characteristics of the device as well as more fundamental

electrostatic properties such as the electric field and charge density at any point

through the superlattice.

1.5.1 Parameters of the Real Superlattices

The drift-diffusion model requires a number of parameters to characterise the

superlattice devices used in experiments. Table 1.5 summarises these param-

eters for both superlattices samples. The doping density of the superlattice

layers is given as an average because it varies between the different semicon-

ductor materials. Note that the contact parameters were estimated from bulk

semiconductor experiments at 4.2 K

1.6 Compatibility of Assumptions Made

A number of assumptions were made in formulating the drift-diffusion and semi-

classical drift velocity models. This section will summarise and discuss the

implications of these assumptions and identify areas where they may not hold.
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Parameter Symbol Value
NU2293 NU2299

Contact length l 500 Å 300 Å
Contact doping density n0 1017 cm−3 3.2 × 1016 cm−3

Contact scattering time τc 90 fs 27 fs
Position of accumulation s 150 Å 150 Å
layer
Mean SL doping density nD 3 × 1016 cm−3 1.88 × 1016 cm−3

Characteristic ionising field Fion 150 KVm−1 80 KVm−1

External resistance Rext 17 Ω (2 < Rext < 20)Ω

Table 1.5: Parameters used to define the real superlattice devices. Note that the
external resistance used for NU2299 was varied depending on the magnetic
field.

Bloch theory assumes an infinite length superlattice and this assumption

conflicts with the finite length superlattice used in the bulk transport model.

However, Rauch has shown(16) that even a five quantum well structure ex-

hibits minibands so Bloch theory should be valid for our 14 period structure.

Therefore, the infinite superlattice assumption will only be invalid if size of the

electron orbits in the x direction exceeds the length of the superlattice. Chapter

3 will show that the spatial extent of the electron orbits is generally determined

by the angle and strength of the magnetic field and the applied voltage. How-

ever, the most significant limit on the distance travelled by an electron is the

electron scattering time. We find that even the most extended electron trajec-

tories do not exceed five superlattice periods over a period of 3τ . Therefore the

infinite superlattice assumption is valid for the determination of drift velocity.

Bloch theory also assumes a perfectly periodic superlattice, which will not

be correct for a real superlattice. The introduction of a scattering time is used

to account for this aperiodicity.

The semiclassical model makes two main assumptions - a wavepacket size

of many periods and no change in the magnitudes of any fields over the extent

of this wavepacket. The large wavepacket assumption does not directly conflict

with any other assumptions but, in the bulk transport model, the electric field is

allowed to vary over the finite superlattice and there are no guarantees that this

variation will be small enough to satisfy the semiclassical model. In addition,

the field needs to be constant over the mean free electron path for the constant

field used in equation 1.17 to be valid.

The assumptions made in the scattering model were discussed in section

3.2.8 and these assumptions do not directly conflict with any other assumptions

made.

The drift-diffusion model uses the local electron drift velocity and there-
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fore explicitly uses all the assumptions made in the Bloch, semiclassical and

scattering models.

The superlattice is modelled as a series of discrete slices which approaches

the real situation as the number of slices goes to infinity. It is assumed that

the electric field is constant over one slice and this can lead to problems if the

electric field changes rapidly over the width of the slices. Some of the results

in chapter 3 are affected by this limitation for high magnetic and electric field

strengths.

Finally, a number of the parameters used to model the real superlattice, es-

pecially those defining the contacts, are only inferred from experimental results.

Parameters such as the contact resistance could take a range of values which can

alter the positions of significant features substantially. However, it is unlikely

that the real parameters are significantly different from the inferred ones.



2. CHAOS
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The usual definition of chaos refers to systems which have an extreme sen-

sitivity to initial conditions. This means that the evolution of a system with an

initial state denoted by I would be very different to that of the same system

with initial state I + dI. This difference can be characterised by:

d(t) = d(0)eλt (2.1)

where d(t) is some measure of the difference in the states of the two systems

at time t. The parameter λ is known as the Lyapunov exponent and when λ is

real and positive then the system is chaotic i.e. it has exponential divergence.

A system with periodic or quasi-periodic system behaviour cannot have this

exponential divergence.

Because of this extreme sensitivity to initial conditions it is very difficult

to predict the evolution of chaotic systems but they are still deterministic. By

this it is meant that, for a particular set of initial conditions, a chaotic system

will always evolve in the same manner. However, in practice, such uniformity is

unlikely to exist for numerical simulations. This is because the level of precision

to which a parameter is taken as well as computational rounding errors can lead

to a divergence between two different simulations of the same system.

2.1 Hamiltonian and Dissipative Systems

The are two major types of system studied in relation to chaos: dissipative and

Hamiltonian systems. A Hamiltonian system must contain no dissipation and,

conversely, a dissipative system cannot generally1 be described by a Hamilto-

nian. A dissipative system converges on some limiting set or attractor as t→ ∞
while a Hamiltonian system does not. The system developed in Chapter 1 and

described by Hamiltonian 1.51 is therefore not expected to converge.

Hamiltonian systems are described by pairs of variables which relate to a

value and its derivative, typically position and momentum, which, for the pur-

poses of this chapter, will be referred to as qi and pi respectively. The subscript

on these variables is an integer that ranges from 1 to N where N is the number

of degrees of freedom of the system and there is a unique pair {pi, qi} for each

degree of freedom. Therefore, a Hamiltonian system with N degrees of freedom

is described by 2N variables. As outlined in the previous chapter, there are 2N

Hamilton’s equations that can be defined for a classical Hamiltonian:

dpi

dt
= −∂H(p,q, t)

∂qi
(2.2)

1 A dissipative system can be described by a Hamiltonian provided a mechanism for dissi-
pation is also incorporated into the Hamiltonian.
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and
dqi
dt

=
∂H(p,q, t)

∂pi
. (2.3)

The time derivative of energy is given by:

dH

dt
=
∑

i

{

∂H

∂pi

dpi

dt
+
∂H

∂qi

dqi
dt

}

+
∂H

∂t
, (2.4)

which contains terms for the explicit and implicit time dependence of H . The

Hamiltonian of the system considered in this work has no explicit time depen-

dence (equation 1.51) so the final term in the above equation is zero. Using

Hamilton’s equations 2.2 and 2.3 to replace the time derivatives of pi and qi in

equation 2.4 gives:

dH

dt
=
∑

i

{

∂H

∂pi

(

−∂H
∂qi

)

+
∂H

∂qi

∂H

∂pi

}

= 0. (2.5)

Equation 2.5 shows that a Hamiltonian with no explicit time dependence is

a constant of motion. For conservative systems, H is the total energy of the

system and therefore is also conserved. This is not an automatic consequence

of defining a Hamiltonian as non-dissipative: even though energy cannot be lost

via dissipation it can be added or removed from the system - for example by an

external force.

2.2 Conserved Quantities

Hamiltonian systems are also known as conservative systems because they often

have one or more quantities that are conserved. It has already been shown that

Hamiltonian 1.51 corresponds to a constant energy and therefore describes a

conservative system. A test to see whether a particular quantity is conserved

can be performed in a similar way to the above analysis of energy. If f is the

quantity to be tested for conservation then if:

df(p,q, t)

dt
=
∂f

∂t
+
∂f

∂q
· dq

dt
+
∂f

∂p
· dp

dt
(2.6)

is zero the quantity is conserved. Using Hamilton’s equations 2.2 and 2.3 to

substitute for the time derivatives of p and q in equation 2.6 gives:

df(p,q, t)

dt
=
∂f

∂t
+ [f,H ] (2.7)

where

[f,H ] =
∂f

∂q
· ∂H
∂p

+
∂f

∂p
· ∂H
∂q

(2.8)
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and the quantity [f,H ] is known as the Poisson bracket of f and H . It follows

from equation 2.7 that if:

[f,H ] =
∂f

∂t
(2.9)

is true then f is conserved. Note that if H is time dependent then the Poisson

bracket may also be time dependent and condition 2.9 must be true at all times

to ensure that f is conserved.

2.3 Phase Space

Because Hamiltonian systems are described by pairs of vectors {p,q} it is useful

to define a space with dimensions of both of these vectors, which is known as

phase space. Phase space therefore has 2N dimensions where N is the number

of degrees of freedom of the system. Thus a system with one dimension in real

space such as a simple harmonic oscillator has a 2D phase space with axes of

position and momentum. Phase space is an extremely useful tool because it

provides information on the dynamics of the system in a single point. This is

in contrast to a real space plot where the momentum can only be determined

by looking at the time evolution of position.

The phase space for a system with k unique conserved quantities is 2N − k

dimensional. A conserved quantity is only unique if the Poisson bracket of it

with all the other conserved quantities is zero:

[fi, fj] = 0 (2.10)

where i 6= j and i and j index the conserved quantities. A set of unique con-

served quantities is said to be “in involution”.

2.4 Integrable and Non-Integrable Systems

First a definition:

An integrable system is a system where the number of conserved quantities

is the same or greater than the number of degrees of freedom.

This means that a system with N degrees of freedom must have k ≥ N

conserved quantities to be integrable. Therefore, the phase space of an integrable

system will have N or fewer independent dimensions. A simple example of an

integrable system is a simple harmonic oscillator which has varying x and px

but fixed energy. The phase space of such a system is two dimensional but the

trajectories are confined to an ellipse of constant energy as shown in figure 2.1.

For an integrable system with more than one degree of freedom and k = N ,

the trajectories are confined to an N dimensional torus in 2N dimensional
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x

p x

Fig. 2.1: Phase space plot (position x vs. momentum px) of a simple harmonic oscil-
lator with constant energy. This shows that the motion is confined to a 1D
curve (an ellipse) in 2D phase space.

phase space. This torus represents all the points in phase space that have

the initial conditions of the k conserved quantities. Figure 2.2(a) shows an

example 2D torus for an integrable system with two degrees of freedom. An N

dimensional torus can be described by N radii (see figure 2.2(a)) which give rise

toN possible distinct frequencies for motion on this torus. Any actual trajectory

around this torus must consist of a linear combination of these fundamental

frequencies - if any fundamental frequency is not included then the system must

have additional conserved quantities. Therefore, for the torus sketched in figure

2.2(a), a trajectory can be specified by the frequencies of motion around the

small radius, f2 and the large radius, f1. A winding number can be defined

which is the ratio of these frequencies:

ω =
f2
f1
, (2.11)

which means the trajectories will be periodic if ω is rational and quasi-periodic

if ω is irrational.

Because we are now dealing with motion on the surface of a torus it is

convenient to perform a change of coordinate systems. This system, known as

action-angle variables, will define a point on the torus in terms of vectors of

magnitude Ii (action) with direction φi (angle). Figure 2.2(b) shows the action-

angle coordinates for a 2D torus. Because motion is constrained to the surface

of the torus, the action coordinates are constant for a given integrable system

and define the initial conditions. The angle coordinates vary with time and give

the current state of the system at time t. An important property that has to be

satisfied by this coordinate transform is that the form of Hamilton’s equations
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(a)

(b)

Fig. 2.2: (a) is a representation of a 2D torus showing the fundamental circumferences
χ1 and χ2 which have radii r1 and r2 respectively. (b) shows the two sets of
action-angle (Ii, φi) coordinates for this torus.
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should remain unaltered so that:

dφi

dt
=
∂H

∂Ii
, (2.12)

and
dIi
dt

= −∂H
∂φi

, (2.13)

which simplifies the use of these coordinates.

Using these new action-angle coordinates, the winding number, ω, can be

defined as:

ω =
ω2

ω1
(2.14)

where ω1 and ω2 are the angular frequencies of the φ1 and φ2 angle coordinates

respectively. For a system with more than two degrees of freedom there is a set

of winding numbers which must all be rational for the system to have periodic

behaviour.

This description of action-angle variables is brief because it does not directly

affect the main thrust of this work. The theoretical results obtained numerically

in this thesis will be compared to experimental results rather than analysed with

respect to the mathematics of chaos. A more comprehensive treatment of these

concepts can be found in any basic chaos text, see refs (17)(18) for example.

2.4.1 Non-Integrable Systems

The above discussion relates to integrable systems, which exhibit either periodic

or quasi-periodic behaviour but not chaotic behaviour. Chaotic behaviour can

only occur in non-integrable systems where the number of conserved quantities

is smaller than the number of degrees of freedom of the system. The 1D sim-

ple harmonic oscillator would become non-integrable if the energy conservation

condition were removed - for example by an external driving force. Under such

a force, the trajectory would no longer be confined to a single elliptical path in

phase space. The system can now behave aperiodically as well as periodically

or quasi-periodically but there is still no guarantee that its behaviour will be

chaotic.

It is more difficult to visualise the transition of a larger system from inte-

grable to non-integrable because the multidimensional phase space is impossible

to plot effectively. A simple example of a system with two degrees of freedom

and one conserved quantity can be obtained by taking the integrable system

in figure 2.2 and removing the energy quantisation condition. In this case, the

“fatness” of the torus, which is related to energy, will change with time but the

trajectories will still lie on its surface. A coupled system has now been created
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with the f2 frequency coupled to the energy variation, as in a double pendulum

system. The double pendulum is a classic example of a non-linear system that

can be chaotic for certain initial conditions.

2.4.2 Chaos

At the start of this chapter it was stated that chaos is defined by the exponential

divergence of two trajectories starting from almost identical initial conditions.

This divergence is characterised by the Lyapunov exponent (eqn. 2.1). If the

Lyapunov exponent is real and positive then the system’s behaviour is chaotic.

However this chaotic behaviour does not necessarily occur over the whole of

phase space and it is possible to have weak chaotic systems where some regions

of phase space behave in a chaotic manner and other regions retain periodic or

quasi periodic behaviour. The contrasting case is strong chaos where the whole

of phase space behaves in a chaotic manner.

To illustrate these concepts of strong and weak chaos it is necessary to use

phase space. However, it has become increasingly difficult to illustrate phase

space for systems with more than one degree of freedom so it is necessary to

reduce the dimensionality of phase space. This is achieved by taking a Poincaré

section as is explained in the next section.

2.5 Poincaré Sections

A Poincaré section is typically a 2D slice through 2N dimensional phase space,

chosen to reveal the dynamics of the system. The advantage of taking such a

section is that the behaviour of the system can be effectively plotted in 2D. The

challenge with defining a Poincaré section lies in choosing the conditions to limit

the plot to 2D.

Consider a system with two degrees of freedom described by the Hamiltonian:

H = H0(x, z, px, pz = 0) + ǫ∆H(x, z, px, pz = 0, t) (2.15)

where ǫ will be varied to change the system. In this Hamiltonian, the H0

term is integrable because it has no explicit time dependence and therefore has

conserved energy as well as a second conserved quantity (pz = 0). However, the

∆H term is time dependent and is therefore non-integrable. If ǫ 6= 0, the full

Hamiltonian will also be non-integrable.

Even if ǫ = 0 the (p,q) phase space is still 3D and an additional constraint is

required to construct a 2D Poincaré section. Looking at phase space whenever z

has some fixed value is an example of such a constraint. Figures 2.3(a) and (b)

show Poincaré sections for ǫ = 0 where the trajectory has rational and irrational
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(a) (b)

(c) (d)

Fig. 2.3: Example Poincaré sections. (a) and (b) show periodic and quasi-periodic
trajectories respectively for the system shown in figure 2.2. (c) and (d) show
chaotic Poincaré sections which can occur for a non-integrable system. (c)
displays weak chaos and (d) strong chaos.

winding numbers respectively. It can be seen that the Poincaré sections show

the small cross-section of the torus. As ǫ is increased the system becomes non-

integrable and the trajectories can leave the surface of the torus. This leads

to figures 2.3(c) and (d) which display regions of chaotic behaviour - i.e. the

Lyapunov exponent is positive. In figure 2.3(c) there are regions of phase space

which still display regular behaviour known as stable islands and such a mix

of stable and chaotic behaviour is referred to as weak chaos. Figure 2.3(d) is

chaotic across all the Poincaré section and this region is referred to as a chaotic

sea and the system displays strong chaos.

Although a Poincaré section may display a certain type of behaviour there is

no guarantee that this behaviour holds across all of phase space - there may be

addition islands of stability or regions of chaos. However, a Poincaré section is

usually chosen with a consideration of the likely dynamics and should therefore

give a good representation of the system’s overall behaviour in phase space.
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2.6 KAM and non-KAM Chaos

Given a system:

H(I, φ, t) = H0(I) + ǫ∆H(I, φ, t), (2.16)

the KAM theorem states(18):

If ǫ is small and H0 is non-degenerate such that:

∣

∣

∣

∣

∂2H0

∂I∂φ

∣

∣

∣

∣

6= 0 (2.17)

for a sufficiently irrational set of trajectories, there exists a torus for

H close to the invariant torus of H0.

Essentially this means that, for such a system, as the parameter ǫ is increased

from zero the rational trajectories are destroyed but there can still exist islands

of stability consisting of trajectories with irrational frequency ratios. Increasing

ǫ further will destroy these stable islands. This means that there is a gradual

transition to chaos as the perturbation of the system is increased - the behaviour

changes from stable to weakly chaotic and finally to strongly chaotic.

However, the system that is considered in this work is degenerate so condition

2.17 does not hold and KAM theory cannot be applied. This work focuses on a

system formally identical to a driven harmonic oscillator and the following will

consider the behaviour of such a system.

2.6.1 Non-KAM Chaos

The one dimensional driven harmonic oscillator with natural frequency ω and

driving frequency ωD is described by:

H =
1

2
ẋ2 +

1

2
ω2x2 + ǫ

ω2

K2
cos (Kx− ωDt) (2.18)

where ǫ is a dimensionless coefficient governing the strength of the perturbing

plane wave andK is the wavevector of this wave. Applying Hamilton’s equations

gives the equation of motion:

ẍ+ ω2x = −ǫω
2

K
sin (Kx− ωDt) . (2.19)

We will consider the case when the driving term is resonant with the inte-

grable harmonic oscillation which occurs when r = ωD/ω is an integer and gives

the strongest possible perturbation. For all integer r values, the Hamiltonian

2.18 can be converted to polar coordinates using x = ρ sin θ and ẋ = ωρ cos θ
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giving:

H =
1

2
ω2ρ2 +

1

K2
ǫω2

∑

m

Jm(Kρ) cos(mθ − rωt) (2.20)

where Jm is an mth order Bessel function of the first kind. Separating out the

term with m = r gives:

H =
1

2
ω2ρ2 +

1

K2
ǫω2Jr(Kρ) cos(rθ − rωt)

+
1

K2
ǫω2

∑

m 6=r

Jm(Kρ) cos(mθ − rωt). (2.21)

The system can now be converted to action-angle coordinates using

I =
ωρ2

2r
φ = rθ − rωt. (2.22)

A new Hamiltonian will be defined:

H̃ = H − rωI, (2.23)

which can be separated into time dependent and time independent parts:

H̃ = H̃0(I, φ) + Ṽ (I, φ, t) (2.24)

thus

H̃0 =
1

K2
ǫω2Jr(Kρ) cosφ (2.25)

Ṽ =
1

K2
ǫω2

∑

m 6=r

Jm(Kρ) cos
[m

r
φ−

(

1 − m

r

)

rωt
]

.

where ρ =
√

2rI/ω. If we treat the time dependent part, Ṽ , as a perturbation

then the stationary points of the system can be found by differentiating the

time-independent Hamiltonian, H̃0:

∂H̃0

∂I
= 0

∂H̃0

∂φ
= 0. (2.26)

Solving these equations gives a set of elliptic points:

J ′
n(Kρ) = 0 φ = 0, π (2.27)

which will define the centres of stable trajectories in phase space and a set of

hyperbolic points:

Jn(Kρ) = 0 φ = ±π/2 (2.28)
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Fig. 2.4: Hyperbolic points (red) and elliptic points (blue) of the driven harmonic
oscillator where r = 2. The black lines are a sketch of the separatrices
connecting the hyperbolic points.

which will be unstable points in phase space. Figure 2.4 shows the location of

these hyperbolic and elliptic points.

The hyperbolic points are connected by an infinitely thin web-like structure

of separatrices while the elliptical points are the centres of a series of closed

orbits within the cells of this web.

Including the time-dependent term into this analysis will destroy the sepa-

ratrices which form in the static system and replace them with stochastic chan-

nels of finite width. In this context a stochastic layer is defined as “a region

of many overlapping trajectories whose width varies linearly with perturbation

strength”(19). Essentially these stochastic channels display chaotic behaviour

and diffusion can occur throughout this web structure along both the radial

and circular stochastic filaments. Including this perturbation term is complex

and the analysis will not be reproduced here. See chapter 4 of (20) for full

details. This treatment shows that the width of the stochastic filaments drops

off exponentially in the radial direction:

∆C ∝ Aρ1/2 exp
{

Bρ1/2
}

(2.29)

where ∆C is the width of the stochastic channels and A and B are constants.
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This analysis has considered the case where the natural frequency of the

oscillator is resonant with the driving frequency. If the ratio between these

frequencies is irrational, the web of stochastic channels or stochastic web does

not form and motion is generally confined to stable orbits or a chaotic sea.

These different behaviours will be considered in Chapter 3.

Therefore the parameter r, which sets the ratio between the driving and

natural frequencies of the system, is vital in determining whether or not a

stochastic web can form and how extended it is in phase space. This system

differs to KAM systems because there is a parameter that can turn the chaotic

stochastic web on and off abruptly rather than gradually.

2.7 Quantum Chaos

It is possible to formulate a quantum model of the driven harmonic oscillator

system. This quantum system should display similar behaviour to the classi-

cal system and should have identical behaviour for sufficiently large quantum

numbers or as ~ → 0. This is known as the correspondence principle. However,

there are several general difficulties(17) with this correspondence:

1. Schrödinger’s equation is linear which means that wavefunctions cannot

diverge exponentially. Therefore it appears as if the quantum system

cannot converge on the classical system as ~ → 0. However, it is possible

for the mean position of the wavefunctions to diverge exponentially so the

correspondence principle holds.

2. The Heisenberg Uncertainty Principle precludes knowledge of the particles

position and momentum to an accuracy greater than ~/2:

∆p∆q > ~/2. (2.30)

This means that it is impossible to define two trajectories with arbitrarily

close starting points so the classical test of chaos cannot be applied.

3. The Uncertainty Principle also means that areas of 2N -dimensional phase

space smaller than ~
N cannot be resolved and classical features that are

smaller than this will not appear in the quantum system.

Points 2 and 3 do reduce to the classical limit when ~ = 0 because the

uncertainty in position and momentum drops to zero.

Therefore, a quantum system cannot directly display many of the properties

that are attributed to classical chaotic systems and the term “quantum chaos”

is a misnomer(21). Quantum chaos is really a study of the quantum properties
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of systems whose classical counterparts exhibit chaos. Although the above lim-

itations may suggest that these quantum systems will be uninteresting from a

chaotic standpoint it must be remembered that the quantum solutions approach

the classical solutions in the limit of high quantum numbers or as ~ → 0. In

addition, “large” features will still appear in the quantum phase space and chap-

ter 5 will show that there is a striking correspondence between results obtained

using the quantum and classical models.

2.8 Phase Space in Quantum Chaos

In classical systems, the features which are distinctive to chaos such as chaotic

seas and stochastic channels are best viewed in phase space. It would there-

fore be useful to view the corresponding quantum states in phase space for the

purpose of comparison. The solutions to Schrödinger’s equation are usually par-

ticle wavefunctions, Ψ, where |Ψ|2 gives the probability density of the particle

in real space. Thus, to look at the phase space probability of the particle it is

necessary to obtain information about the momentum of the particle. However,

introducing momentum means that resolution is limited to ~
N for a system

with N degrees of freedom because of the Uncertainty Principle. One common

method used to look at the properties of two non-commuting variables simulta-

neously is Wigner mechanics(22)(23). In general, Wigner mechanics involves a

transformation of both operators and variables. But in this section we will only

consider the transformation of a quantum mechanical wavefunction Ψ(q) into a

Wigner quasi-probability function W (q,p).

The Wigner function was designed to be an analogue of the classical phase

space distribution and has the following form:

W (q,p) =
1

π~

∫ ∞

−∞
ψ∗(q + λ)ψ(q − λ)e2ipλ/~dλ (2.31)

where q is position, p is momentum and λ is a spatial displacement. The Wigner

function is a measure of the quasi-probability of the particle which means that

the resolution constraint imposed by the Uncertainty Principle is removed but

the function is now no longer a measure of true probability.

The Wigner function obeys the following desirable conditions which make it

a good analogue of the classical phase space.

1. The Wigner function W (x, px) is real.

2. The integral of the Wigner function over all momenta is equal to the the
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electron probability density at that point in real space:

∫ ∞

−∞
W (x, px)dpx = |Ψ(x)|2. (2.32)

3. The integral of the Wigner function over all position is equal to the the

Fourier transform of the electron probability density at that point in mo-

mentum space:
∫ ∞

−∞
W (x, px)dx = |Φ(px)|2 (2.33)

where Φ(px) is the Fourier transform of Ψ(x).

There are a number of different functions that would satisfy these conditions

but equation 2.31 was chosen by Wigner because it doesn’t increase the com-

plexity of Ψ(q) and because in his words “it seems to be the simplest”. However,

this simplicity comes at a cost and the formulation has the following problems.

1. The Wigner quasi-probability can have negative values which is an im-

possible concept in classical mechanics, however no all positive function

would satisfy the conditions above and leave Ψ(q) simple.

2. The Wigner function only gives quasi-probability values which can be ac-

curately defined to greater resolution than true probability values. There-

fore any behaviour in quasi-probability smaller than ~
N will not be a good

representation of true probability.

It has also been shown analytically(24) that, in the classical limit, the Wigner

function of an integrable system reduces to a delta function following the clas-

sical torus. This provides strong evidence that the Wigner function is a valid

analogue of an integrable classical phase space. Many numerical comparisons

have also been performed (25)(26) in which Wigner functions for non-integrable

systems have been compared to both classical phase spaces and Husimi func-

tions, which are another candidate for quantum phase space plots. In all of

these studies it has been found that quantum Wigner functions show a striking

similarity to classical phase spaces. The work performed by the Theory Group

at the University of Nottingham has also compared Wigner functions to semi-

classical Poincaré sections (27)(28) and this has shown good correspondence

between the two. Chapter 5 shows some of these comparisons.

Therefore the Wigner function will be used in this work to describe the

phase space of the quantum system. However, this phase space will generally

consist of more than two dimensions so it will be necessary to apply some

constraints to produce a 2D plot. These conditions should be chosen to produce

a plot analogous to the semiclassical Poincaré sections. It is difficult to define a
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stroboscopic Wigner function so a new constraint must be chosen to construct

the 2D sections. We will choose this to be px = 0 because it corresponds to

a simple slice of phase space and to when the electron is at the bottom of the

miniband. So, to compare Wigner functions to Poincaré sections, it will be

necessary to construct Poincaré sections with px = 0 rather than at strobed

time intervals.

2.9 Summary

This chapter has introduced the concept of chaos, which is crucial for under-

standing the superlattice systems considered in this thesis because the Hamilto-

nian 2.18 will potentially display chaotic behaviour. However, more importantly,

this chapter has developed tools for looking at the phase space of the system

which will give a more detailed insight into the system’s dynamics. The classical

and quantum phase spaces can be compared through Poincaré sections and 2D

projections of quantum Wigner functions. In a similar way, the classical and

quantum real space behaviours can be compared by examining classical electron

trajectories and quantum electron probability densities.
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3.1 Introduction

Chapter 1 formulated a semiclassical model describing the behaviour of an elec-

tron in a superlattice system with an electric field, F , applied antiparallel to the

superlattice axis and a magnetic field, B, applied at an angle θ to the super-

lattice axis. Here we use this model to analyse superlattice NU2293 (described

in section 1.4.1). The first half of this chapter uses Hamiltonian 1.51 to model

the superlattice as an infinite structure and will investigate the behaviour of a

single electron. We show electron orbits in both real and phase space and also

investigate how the electron drift-velocity varies as a function of electric field.

The second half of the chapter will use these drift-velocity results to model the

superlattice as a finite system within an electrical circuit. We investigate the

variation in current as a function of applied voltage and the change in electric

field and charge carrier density across the superlattice. Finally, we compare our

numerical results to experimental results taken for the real NU2293 superlattice

system.

3.2 Motion through the Infinite Superlattice

An electron’s motion through our infinite superlattice system with applied elec-

tric and tilted magnetic fields (section 1.3) can be determined from its equations

of motion:

ẋ =

∞
∑

n=1

ndan

~
sin

(

ndpx

~

)

(3.1)

ż =
pz

m∗ (3.2)

px = px(0) + eF t− (pz − pz(0)) tan θ (3.3)

p̈z = −ω2
C cos2 θpz −

m∗∆ω2
C cos θ sin θd

2~

×
∞
∑

n=1

nan sin

[

nd

~
(px0

+ eF t− (pz − pz0
) tan θ)

]

. (3.4)

where the variables are specified in chapter 1. In this thesis, a fourth-order

Runge-Kutta method(29) is used to integrate these equations to determine the

evolution of x, z, pz and ṗz with time.

When the magnetic field is applied antiparallel to the electric field (θ = 0◦),

the Bloch and cyclotron oscillations are orthogonal. This causes equation 3.4,

which describes pz, to reduce to that of a simple harmonic oscillator (SHO):

p̈z + ω2
C cos2 θpz = 0. (3.5)
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Consequently, electron motion along the x and z directions is separable and

corresponds to periodic Bloch and cyclotron oscillations respectively. Figure

3.1 shows sample electron trajectories for θ = 0◦. Although these trajectories

are stable, their precise form depends on the initial momentum, pz(t = 0),

which, for θ = 0◦, uniquely determines motion in the yz plane. Figure 3.1(a)

shows that, when ωB = ωC , the resulting motion is periodic and takes the form

of an ellipse whose shape depends on the initial momentum of the electron.

Figures 3.1(b-d) show electron orbits for ωB 6= ωC , which are quasi-periodic.

These are the two types of behaviour characteristic of an integrable system, as

described in chapter 2. It should be noted that the system is only integrable

when θ = 0◦.

The ratio between the Bloch frequency and x component of the cyclotron

frequency, corresponding to the x-component of magnetic field, is denoted by r:

r =
ωB

ωC cos θ
=

Fdm∗

~B cos θ
. (3.6)

For θ = 0◦, an electron’s maximum displacement along its orbit in x, ∆xorbit, is

inversely proportional to F , and hence r. This proportionality can be seen by

comparing figure 3.1(a-d), as r and thus F decrease the orbits are more extended.

Physically, it occurs because decreasing F decreases the Bloch frequency and

the electron can travel for a longer time before it undergoes Bragg reflection.

When examining the electron behaviour for θ 6= 0◦, there are a number

of parameters that can be varied. These parameters include the tilt angle, θ,

and magnitude, B, of the magnetic field as well as the frequency ratio, r, which

defines the electric field magnitude. Figure 3.2 shows the parameter space (F,B)

for an arbitrary θ > 0 indicating the points of interest that will be studied in

detail. We will also investigate the effects of varying θ.

3.2.1 Effect of r on Electron Orbits

Figure 3.3 shows the effects of keeping B and θ constant but varying r. These

plots correspond to the circular points on figure 3.2. At low electric field, r = 0.1,

the electron orbit resembles those for θ = 0◦ (fig. 3.1) but aligned along the

direction of the magnetic field. The length of this orbit along x, ∆xorbit, is

determined by the size of a single Bloch oscillation. Therefore, at low F , the

change in electron trajectory as θ changes from 0◦ to θ 6=0◦ can be viewed as a

perturbation along the direction of the angled magnetic field.

When r is an integer meaning that the Bloch and cyclotron frequencies are

resonant, we find (fig. 3.3) that the electron performs small local oscillations

which have a general drift in the x direction. As x increases these local oscilla-

tions have a larger amplitude along z and a smaller amplitude along x. At some
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Fig. 3.1: Sample electron trajectories for a range of different ratios between the Bloch
and cyclotron oscillations, r. In all cases, B = 11 T, θ = 0◦ and the time of
flight is 1 ps for (a)-(c) and 10 ps for (d). The size of the Bloch oscillations
in the x-direction increases as r, and thus F , decreases. (a) is periodic and
(c-d) are quasi-periodic and these types of motion are characteristic of an
integrable system.
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Fig. 3.2: Key points in the parameter space (F, B) which is a plane of fixed θ in the
full (F, B, θ) parameter space. For a fixed r, the coordinates (F, B) lie on
lines whose gradient is ∝ 1

r
. These lines are shown for r = 0.5, 1, 2, 3 as

indicated. The effects of varying F ∝ r at fixed B (circles) and varying B at
fixed r (+) will be investigated in figures 3.3 and 3.7 respectively.
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critical x value, the x drift reverses direction leading to a quasi-periodic orbit

and we find that ∆xorbit is much larger than the extent of a single Bloch oscil-

lation. This complex behaviour can no longer be explained by treating B as a

perturbation and will be discussed using phase space plots in section 3.2.4. The

electron orbits are similar for both r = 1 and r = 2 (fig. 3.3) although moving

to these higher integer values of r increases the amplitude of the oscillations in

the z direction for a given value of x (∆zorbit(x)) and changes the form of the

high frequency oscillations. The orbit for r ≥ 3 is highly localised.

The r = 0.5 subharmonic resonance electron orbit is also extended but only

to half the extent as that of r = 1 or 2. When r takes the irrational value of
1+

√
5

2 the orbit is highly localised compared to orbits for rational values of r.

The reason for these extended electron orbits will be discussed in section

3.2.4 by considering the electron phase space.

3.2.2 Effect of θ on Electron Orbits

Figure 3.4 shows the effect of increasing the magnetic field tilt angle, θ, on

electron orbits for B = 11 T and r = 1 or r = 2. Figures 3.4(a,c,e) clearly

show that, for r = 1, ∆xorbit decreases with increasing θ. Figures 3.4(b) and

3.4(d) show this same trend for r = 2 but when θ is increased to 60◦ (fig.

3.4(f)) ∆xorbit increases again. A closer look at figure 3.4(f) reveals that the

orbit consists of two distinct regions: the orbit is significantly denser when

x . 5d. The less dense region does not appear at lower θ and is the cause of

the additional ∆xorbit extension at θ = 60◦.

Figure 3.5 shows the effect of increasing θ on the electron orbit at r = 2 on

a single set of axes for clarity. There is a general decrease in ∆xorbit between

θ = 15◦ and θ = 45◦ but then an increase from θ = 45◦ to θ = 75◦. This

increase occurs because the electron can “break out” of the previous limit on

∆xorbit and enter a new region of motion.

The electron orbits also change with θ when r is not an integer. Figure 3.6

shows electron orbits for r = 0.5 (fig. 3.6(a,b)) and r = 1+
√

5
2 (fig. 3.6(c,d)) for

both θ = 30◦ and θ = 60◦. These orbits clearly show that ∆xorbit is greater for

the higher magnetic field tilt angle. For both r = 0.5 and r = 1+
√

5
2 , increasing

the magnetic field tilt angle changes the trajectories from regular to non-regular

and for r = 0.5 at θ = 60◦ there are two distinct regions as occurred for r = 2

at θ = 60◦ (figure 3.4(f)).

Again, all the behaviour noted in this section will be discussed via an exam-

ination of the electron phase space in section 3.2.4.
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Fig. 3.3: Electron trajectories calculated over 20 ps starting from rest for θ = 30◦ and
B = 11T. The electric field is chosen such that r is equal to the values shown
which correspond the the circles in figure 3.2. The plot for r = 1 indicates
∆xorbit, the width of the electron orbit in the x-direction.
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Fig. 3.4: Electron orbits calculated over 20 ps starting from rest with an applied mag-
netic field of B = 11T. (a,b) θ = 30◦, (c,d) θ = 45◦ and (e,f) θ = 60◦. r = 1
for the left hand column (a,c,e) and r = 2 for the right hand column (b,d,f).
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Fig. 3.5: Variation in electron orbit with θ values as specified. These orbits are shown
on the same scale and calculated over 20 ps starting from rest with B = 11 T
and r = 2. ∆xorbit decreases with increasing θ from 15◦ to 45◦ but then
increases with increasing θ up to 75◦.
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Fig. 3.6: Electron orbits calculated over 20 ps starting from rest with an applied mag-
netic field of B = 11T. (a,c) θ = 30◦ and (b,d) θ = 60◦. (a,b) r = 0.5 and

(c,d) r = 1+
√

5

2
. The increase in the extent of the electron orbits is clearly

visible as θ is increased to 60◦.

3.2.3 Effects of B on Electron Orbits

Figure 3.7 shows the effects of increasing B for θ = 30◦ and r = 1 from (a-f).

This figure clearly shows that the electron orbits decrease in extent along both

axes as B is increased. The reasons for this decrease will be examined in the

next section which explores the electron’s phase space.

3.2.4 Phase Space Data

Section 1.3.1 showed that pz is the fundamental variable that determines the

dynamics of this system. The equation of motion for this variable, equation 3.4,

is formally identical to a driven harmonic oscillator (DHO), which was studied

analytically for several integer values of r in section 2.6.1. This work showed

that a DHO gives rise to a so-called stochastic web in phase space through

which an electron can diffuse. This section will show numerical calculations of

the stochastic web and also that stochastic web formation is the cause of the

extended electron orbits seen in the previous section.

The numerically calculated behaviour of the electron orbits viewed in 2D

(pz, qy = ṗz/ωC cos θ) phase space can be compared to the analytical treat-

ment of the DHO (section 2.6.1). To display this phase space, a stroboscopic
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Fig. 3.7: Effect of changing B in the sequence B = 4, 8, 11, 14, 16, 20T from (a-f) for
θ = 30◦ and r = 1 on electron trajectories calculated over a 20 ps interval
starting from rest. Note that the axes on (a) have a different scale to the
other figures.



3.2. Motion through the Infinite Superlattice 69

Fig. 3.8: Phase space for θ = 0 and r = 1. A full phase space plot rather than a
Poincaré section is shown because both types of section will only produce
one identical point per oscillation.

Poincaré section will be used, which is formed by plotting points at a time in-

terval of 2π
ωC cos θ . This type of Poincaré section can be directly compared with

the analytical expressions for the location of the web filament junctions (eqn.

2.28).

The pz and qy data required for these Poincaré sections can be determined

from equation 3.4 and data over a long time interval is required to produce a

well-defined Poincaré section. In addition, multiple initial conditions in (pz, qy)

space will be used so that the phase space structure away from the stochastic

web can also be seen.

When θ = 0◦ the system is integrable and pz behaves as a simple harmonic

oscillator as figure 3.8 shows. Consequently, the electron orbits in phase space

lie on ellipses (fig. 3.8) whose areas depend on the initial electron energy and

these orbits determine the associated regular motion in the xz plane. Note

that figure 3.8 shows continuous time trajectories in phase space rather than a

discrete time Poincaré section.

When θ > 0 and r is an integer, we expect from section 2.6.1 that the

stroboscopic Poincaré sections will reveal a stochastic web consisting of 2r radial

filaments and an infinite number of circular filaments. The radii of these circular

filaments should be near the zeros of:

Jr(ρ
d tan θ

~
) (3.7)

where ρ2 = p2
z + ṗ2

z and Jr is the rth Bessel function of the first kind. Therefore,

the spacing of the circular filaments in the web will increase as θ decreases. Also,
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for a given r, the 2r radial filaments should be evenly distributed in angle from

the centre of the web. The part of the web extending out to the first circular

filament will be referred to as the first ring of the web, the area between the

first and second circular filaments as the second ring and so on.

Figures 3.9 and 3.10 show that, when r is an integer, there exists a stochastic

web in phase space through which electrons move chaotically. In the cells of this

web there are islands of stability where electrons display regular motion. Figure

3.9 confirms that the number and angular distribution of radial filaments is 2r by

plotting stroboscopic Poincaré sections forB = 11 T and r = 1, 2, 3, 4. The effect

of varying θ is shown in figure 3.10 which confirms that the circular filaments

become more closely spaced as θ increases. In addition, the chaotic sea seen at

the centre of the stochastic web expands with increasing θ and the stochastic

filaments also increase in thickness. These effects can be predicted from the

Hamiltonian of the system, as briefly mentioned in section 2.6.1. Because of

this increase in filament thickness, it is expected that the electron can diffuse

further in the radial direction at higher θ.

In section 3.2.2 we noted that ∆xorbit, the maximum electron displacement

along x, initially decreased with increasing θ for θ ≤45◦ but then increased

with increasing θ for θ >45◦ and r = 2. To understand this behaviour, we plot

stroboscopic Poincaré sections and highlight the points corresponding to the

first 20 ps of the trajectory starting from rest. Figure 3.11 shows this data for

B = 11 T, r = 1 and θ = 15◦ to 75◦ which corresponds to the real space electron

orbits shown in figure 3.5. For θ ≤45◦ (fig. 3.11(a-c)) electrons starting from

rest are confined within the first ring of the stochastic web and the decreasing

size radius of this ring leads to the decrease in ∆xorbit. When θ is increased to

60◦ (fig. 3.11(d)) an electron starting from rest can explore both the first and

part of the second rings of phase space. For θ = 75◦ (fig. 3.11(e)), the first

few rings of the web merge because of the thicker stochastic filaments and the

electron explores much of the resulting chaotic sea.

Figure 3.11 shows that electrons starting from rest tend to be confined to a

circular region of phase space comprising of one or more rings of the stochastic

web whose radius varies with θ. It is possible to use maximum radius of phase

space explored to calculate ∆xorbit. More comprehensively, it is possible to

determine the outer perimeter of the electron trajectory in the xz plane of real

space using phase space data. Starting from the semiclassical Hamiltonian:

H = E(px) +
ρ2

2m∗ − eFx, (3.8)
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Fig. 3.9: Stroboscopic Poincaré sections calculated for θ = 30◦, B = 11T and (a)
r = 1, (b) r = 2, (c) r = 3, and (d) r = 4. The red points correspond
to data from initial conditions located on the web filaments and the black
points correspond to initial conditions taken from an evenly spaced grid in
the (pz, qy) plane. The axis range is (−4 → 4) × 10−25 kg ms−1 for both qy

and pz.
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Fig. 3.10: Effect of increasing θ on stroboscopic Poincaré sections calculated for B =
11T, r = 2 and (a) θ = 15◦, (b) θ = 30◦, (c) θ = 45◦, (d) θ = 60◦ (e)
θ = 75◦. The red points correspond to data from initial conditions located
on the web filaments and the black points correspond to initial conditions
taken from an evenly spaced grid in the (pz, qy) plane. Note that the axis
range is (−2 → 2) × 10−25 kg ms−1 for both qy and pz.
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Fig. 3.11: Large black points: stroboscopic Poincaré sections calculated for a single
electron starting from rest and travelling for a time interval of 20 ps. The
smaller grey points show the form of the full stochastic web for comparison.
This data is plotted for B = 11T, r = 2 and θ increasing from 15◦ to
75◦ in 15◦ increments from (a) to (e). Note that the axis range is (−2 →
2) × 10−25 kgms−1 for both qy and pz.
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where ρ2 = p2
z + q2y is the radial position in phase space and rearranging leaves:

x =
1

eF

(

−H +
ρ2

2m∗ + E(px)

)

(3.9)

where H is the total electron energy. At t = 0, ρ = 0 and E(px = 0) = 0 which

means that the electron’s x-coordinate at t = 0 is

xmin = − H

eF
(3.10)

which is the smallest possible x value for any t. If the electron is confined to

a circular region of radius ρmax in the Poincaré section, then the maximum

possible x-coordinate is given by

xmax ∼ − H

eF
+

ρ2
max

2m∗eF
. (3.11)

Therefore,

∆xorbit = xmax − xmin =
ρ2

max

2m∗eF
. (3.12)

More comprehensively, the boundary of the electron trajectory with a given

energy can be calculated from the definition of qy (equation 1.48):

qy = py = eB (x sin θ − z cos θ) . (3.13)

At the perimeter of the electron trajectory py = 0 so

z =
1

cos θ

(

− qy
eB

+ x sin θ
)

. (3.14)

The minimum and maximum values of qy are equal to ρmax(x) and −ρmax(x)

respectively for a given x and, from equation 3.11,

ρmax(x) =

√

2m∗eF

(

x+
H

eF

)

. (3.15)

Therefore, the the electron trajectory must exist within the limits of

z =
1

cos θ

(

±
√

2m∗F

eB2

(

x+
H

eF

)

+ x sin θ

)

(3.16)

Figure 3.12(a) shows that the form of these limits clearly has the same charac-

teristic shape as the electron trajectories seen in sections 3.2.1 to 3.2.3. Figure

3.12(b) overlays a numerical electron trajectory on this boundary which fits ex-

actly within the z limits. The calculated trajectory overlaps the x limit slightly
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Fig. 3.12: (a) Solid lines show the locus of an electron orbit with θ = 30◦, B = 11T and
r = 1 starting from rest as given by equation 3.16. The broken lines show the
xorbit limits assuming the electron stays within the first and seconds rings
of phase space from left to right respectively determined using equation
3.11. (b) Show an enlargement of (a) but also include an electron trajectory
overlaid in grey for the same parameters. This trajectory is identical to that
shown in figure 3.4(a).

because the analytical calculation of ρmax doesn’t account for the slightly non-

circular shape of the circular stochastic web filaments.

Thus, the behaviour of an electron in phase space can be easily used to

determine the limits of its orbit in real space. The boundaries given by equation

3.16 can be analytically determined for any set of parameters. However, the

right-hand x limit on the electron trajectory needs information on how far the

electron disperses through phase space. Thus a numerical simulation is required

to determine the essentially random motion through the stochastic web. We find

that radial motion through phase space leads to extended electron orbits which

are larger in x than simple Bloch oscillations would account for.

The analysis in section 2.6.1 only predicts stochastic web formation when r

is an integer so we do not expect such a web to form when this is not the case.

Figure 3.13 shows stroboscopic Poincaré sections for r = 0.5 and 1+
√

5
2 and

angles of θ = 30◦ and 60◦ and, as expected, these sections show no stochastic

web of the type seen in figure 3.9.

The electron trajectory for r = 0.5 and θ = 30◦ (fig. 3.6(a)) shows that the

electron behaves regularly at θ = 30◦ but is more extended along the x-axis

than the r = 1+
√

5
2 trajectory (figure 3.6(c)). The Poincaré sections for these

parameters (fig. 3.13(a,c) respectively) explain this difference. When r = 0.5 the

Poincaré section (fig. 3.13(a)) shows some of the characteristics of a stochastic

web. Like the Poincaré sections when r is an integer, there are circular filaments

enclosing stable islands but there are no radial filaments connecting the circular

ones to produce the full web pattern. The extended electron orbit for r = 0.5
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Fig. 3.13: Poincaré sections calculated for B = 11 T and (a,c) θ = 30◦ or (b,d) θ = 60◦.
r = 0.5 for (a,b) and r = 0.5(1 +

√
5) for (c,d). The large black points show

data taken over a time interval of 20 ps for an electron starting from rest.
The axis range for θ = 30◦ (a,c) is (−2 → 2)×10−25 kg ms−1 and for θ = 60◦

(b,d) is (−1 → 1) × 10−25 kg ms−1 for both qy and pz.
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and θ = 30◦ (fig. 3.6(a)) occurs because the stable island at the centre of phase

space is not centred on the origin. Consequently, as the electron moves around

the stable island it moves away from (pz, qy) = (0, 0) thus increasing its in-plane

momentum and transporting it spatially through the superlattice.

In contrast, the Poincaré section for r = 1+
√

5
2 and θ = 30◦ (figure 3.13(c))

shows trajectories that are regular, centred on the origin and broadly circular

with a small radial component. This means that an electron starting from rest

does not move far through phase space and its real space x displacement is

correspondingly small. The stroboscopic Poincaré sections do not show this

behaviour well and the next section will look at px = 0 Poincaré sections which

are better for examining non-integer values of r.

When θ is increased to 60◦ a chaotic sea forms at the centre of phase space

for both r = 0.5 and 1+
√

5
2 (fig. 3.13(b,d)). This allows an electron starting from

rest to move radially through phase space and gain in-plane momentum leading

to extended real space orbits (fig. 3.6(b,d)). However, there is a maximum

limit to this radial diffusion because of the finite size of the chaotic sea, which

is bounded by stable orbits, so the electron trajectories cannot be infinitely

extended along x.

3.2.5 px = 0 Poincaré Sections

The stroboscopic Poincaré sections are not a good tool for examining phase space

when r takes a non-integer value. They often show closely packed trajectories

which give the appearance of chaotic behaviour in a regular system. Figure

3.13(c) is a good example of this and appears to show rings of chaotic behaviour

centred on the origin. However, enlarging the Poincaré section or examining the

real space electron trajectories shows that it behaves regularly (figure 3.3 for

example).

However, we can also examine phase space using a second type of Poincaré

section which plots the in-plane momentum components (qy, pz) whenever px =

0 rather than at equally spaced time intervals. Figure 3.14 compares the stro-

boscopic (a) and px = 0 (b) Poincaré sections for θ = 45◦, B = 11 T and r = 2.

This figure shows that both types of Poincaré section have circular filaments

that appear in the same location although the form of the other filaments is

different. This second type of Poincaré section has a gap at qy = eF/ωC sin θ

because the electron would be stationary at this point since both px = 0 and

ṗx = 0 (see equation 1.58).

Figure 3.15 shows this second type (px = 0) of Poincaré section for same non-

integer r parameters shown in figure 3.13 using the stroboscopic Poincaré sec-

tions. For r = 0.5 both types of Poincaré section (figs. 3.13(a,b) and 3.15(a,b))
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Fig. 3.14: Comparison of stroboscopic (a) and px = 0 (b) types of Poincaré section for
θ = 45◦, B = 11 T and r = 2. The axis range is (−2 → 2) × 10−25 kgms−1

for both qy and pz.

show the same general behaviour - regular trajectories encircling the origin with

smaller stable islands in-between. Both types of Poincaré section show stable

behaviour for θ = 30◦ and a chaotic sea surrounded by stable trajectories for

θ = 60◦.

In contrast, the two types of Poincaré section show different behaviour when

r = 1+
√

5
2 (figs. 3.13(c,d) and 3.15(c,d)). As noted previously, the stroboscopic

sections appear to show chaotic behaviour even when θ = 30◦ (fig. 3.15(c)) but

each of these rings actually consisted of a closely packed stable trajectory and is

therefore an artifact of the stroboscopic Poincaré section. The px = 0 Poincaré

section show these stable trajectories clearly (fig. 3.15(c)) and is therefore a

better choice for displaying the phase space of systems with non-integer values

of r. When θ = 60◦ the situation is similar and the Poincaré section clearly

consists of a central chaotic sea surrounded by regular trajectories.

Figure 3.16 shows what happens when the system is shifted off resonance to

r = 1.01 for B = 11 T and θ = 30◦ (a) or θ = 60◦ (b). From these Poincaré

sections, it is clear that moving the system off resonance destroys the radial

stochastic filaments but the structure of the central region is left unchanged.

Therefore the system is highly sensitive to the resonance condition r and shifting

it slightly away from an integer value leads to the destruction of the stochastic

web.

Figures 3.9 to 3.16 have shown that the appearance of a chaotic sea at

the origin of phase space depends on the magnetic field tilt angle θ but is

independent of r. However radial filaments, which create a stochastic web, only

appear for integer values of r and their appearance is independent of θ.
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Fig. 3.15: px = 0 Poincaré sections for B = 11T and (a,c) θ = 30◦ or (b,d) θ = 60◦.
r = 0.5 for (a,b) and r = 0.5(1 +

√
5) for (c,d). The axis range for θ = 30◦

is (−2 → 2) × 10−25 kg ms−1 and for θ = 60◦ is (−1 → 1) × 10−25 kgms−1

for both qy and pz.
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Fig. 3.16: px = 0 Poincaré sections for B = 11 T and r = 1.01. (a) is for θ = 30◦ and
(b) for θ = 60◦. Note that the axis range is (−2 → 2) × 10−25 kg ms−1 for
both qy and pz.

3.2.6 Frequency Analysis

We can examine the electron’s behaviour in frequency space by calculating the

Fourier transform:

F(ω) =
1

T

∫ T

0

[x(t) + z(t)] e−iωtdt. (3.17)

We take the Fourier transform of x + z so that the Fourier transform reveals

frequencies associated with motion along both x and z. The electron is started

from rest so that it always falls on the stochastic web (if present), however, this

does mean that frequency componants due to orbits in stable islands will not

be present in the Fourier transform. Figure 3.17 plots F(ω,B) for fixed values

of θ ((a) θ = 30◦, (b) θ = 45◦ and (c) θ = 60◦) and F . F is chosen such that

r = 1 at B = 10 T and r varies linearly with 1/B according to:

r =
ωB

ωC cos θ
=

Fdm∗

~B cos θ
. (3.18)

In addition, because F is constant, the Bloch frequency ωB is fixed for all

B and this frequency can be seen as a peak at ∼ 23 × 1012 rad s−1 in figure

3.17(a) (and at differing frequencies in figs. 3.17(b,c)). The cyclotron frequency

ωC varies linearly with B and is the origin of the diagonal peak going through

(ω,B) = (0, 0) in figure 3.17(a).

For θ = 30◦ (figure 3.17(a)), when B is such that r takes a non-integer value

(e.g. B = 7 T) there are only two main non-zero frequency peaks - correspond-

ing to the Bloch and cyclotron frequencies. But, when r = 1 (B = 10 T), a
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Fig. 3.17: Intensity plot of F(ω) calculated as a function of B for θ = (a) 30◦, (b) 45◦

and (c) 60◦ with the electron starting from rest. For each angle the electric
field, F , is chosen so that r = 1 when B = 10 T. The colours are determined
linearly from the fourth root of F so that a wide range of intensities can be
clearly seen. (d) shows this choice of colour scaling as a linear colourmap.

stochastic forms through which the electron can diffuse and its behaviour char-

acterised by a wide range of frequencies seen as a horizontal stripe in the Fourier

transform. Similar behaviour is seen for r = 2 (B = 5 T). When r is shifted

slightly from an integer there are large peaks in F(ω) because the phase space

trajectories are very regular (see figure 3.16(a)). However, when r is exactly

an integer, this regular behaviour is destroyed by appearance of the stochastic

web and the peaks in the Fourier transform vanish. When r = 0.5 (B = 20 T),

there are a several frequencies present, but a relatively large peak occurs at

ω = ωC cos θ∼ 7.2 THz because motion is still stable (see figure 3.15(a)).

As θ increases (compare figures 3.17(a-c)), the regular features seen at θ =

30◦ are gradually blurred out and, at θ = 60◦, a wide range of frequencies are

present for any value of B. This effect is caused by the emergence of a chaotic

sea for all values of r which causes the electron trajectories to be irregular with

no dominant frequencies.
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3.2.7 Summary of Single Electron Dynamics Excluding Scattering

The preceding sections on single electron dynamics have investigated electron

trajectories in real, frequency and phase space. This analysis has shown a

number of trends which depend of the parameters of the fields applied to the

infinite NU2293 superlattice.

In general, we find that radial motion from the origin of phase space gives

rise to electron orbits which are extended beyond the size of a single Bloch

oscillation.

When the resonance parameter r = ωB/ωC cos θ is an integer, a stochastic

web, with 2r radial filaments, is formed in phase space. This web allows electrons

to diffuse radially through phase space which results in extended electron orbits

in real space. These orbits can theoretically extend an infinite distance in x,

however, in practice, they are limited by the thickness of the stochastic filaments

which can impede electron transport or by the mean time before an electron

scattering event occurs.

Increasing θ decreases the radial separation of the rings in phase space. How-

ever, increasing θ also thickens the stochastic web so radial diffusion can occur

more easily. Therefore, the extension of the electron orbits tends to decrease as

θ is increased from 15◦ to 45◦ where the electrons are confined to a single ring of

phase space. At higher θ the stochastic filaments are thicker so the electrons can

explore more rings of the stochastic web in phase space and the orbits increase

in extension with increasing θ.

When r = 0.5, electron orbits are still extended because low energy stable

islands exist in phase space which are not centred on the origin. At high θ these

stable trajectories merge into a chaotic sea, which also allows for radial diffusion.

However, there is always a fixed limit on this radial diffusion so electron orbits

can never be infinitely extended in x for r = 0.5.

If r takes some irrational non-integer value, such as 1+
√

5
2 , the electron’s

motion is always stable at high momentum initial conditions (far from (qy =

0, pz = 0)) but a chaotic sea does form at the centre of phase space for high θ.

This can lead to extended electron orbits whose spatial width depends on the

dimensions of this chaotic sea.

We have therefore found that the formation of a chaotic sea occurs at high θ

and is independent of r. Conversely, a stochastic web can occur for any integer

value of r provided θ> 0◦. Therefore both of these parameters can have a large

effect on the motion of an electron through the superlattice system.
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3.2.8 Drift Velocity vs. Electric Field Data

Solving the equations of motion for a single electron reveal the intricate under-

lying dynamics of the system. However, equivalent experimental data cannot be

obtained for comparison. In general, experiments measure the bulk transport

properties of superlattice systems so we need to understand the mean behaviour

of electrons in our system. The simplest mean property that can be determined

from real space electron motion is drift velocity which will calculated as a func-

tion of electric field, vd(F ), at various values of θ and B.

Section 1.2.4 detailed how to calculate electron drift velocity and this requires

knowledge of the scattering time of electrons in the superlattice, τSL. This

scattering time is mainly determined by semiconductor impurities and interface

roughness (see section 1.2.3) but the exact value of τSL also depends on the

experimental setup. Thus, we estimate τSL from experimental current voltage

characteristics as follows. Figure 3.18 shows an example experimental I(V )

relation for the superlattice with θ = 0◦ which exhibits a linear region at low V

terminating at IL(VL). This linear region corresponds to ohmic behaviour which

occurs when ωBτSL ≤ 1 (see section 1.2.5). Therefore, at IL(VL), we know that

ωBτSL = 1. If we further assume that F is proportional to the voltage dropped

over the superlattice1, VSL, then

τSL =
1

ωB
=

~

eFd
≃ ~

ed

LSL

VSL
(3.19)

where LSL is the length of the superlattice. VSL, the voltage dropped over the

superlattice, is given by

VSL = VL − ILRext (3.20)

where Rext is the resistance of the non-superlattice parts of the circuit. There-

fore, τSL can be estimated using the above equations from an experimental I(V )

relation if Rext is known.

The correction, δ, for the elastic-inelastic scattering time model (section

1.2.3) (7)(8) can also be calculated here. We know that IL is related to the

peak drift-velocity by:

IL ≃ eAδvd,unD,ionised (3.21)

where A is the cross-sectional area of the superlattice, vd,u is the maximum

uncorrected drift velocity at θ = 0 and nD,ionised is the total number of ionised

donors across the superlattice. δ can thus be determined by a simple rearrange-

ment of this equation:

δ ≃ IL
eAvd,unD,ionised

. (3.22)

1 which is the case in the ohmic region as will be seen in section 3.3
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Fig. 3.18: Experimentally measured I(V ) curve taken for the NU2293 superlattice with
an 11T magnetic field aligned parallel to the superlattice direction. Note
the approximately linear region below V = 200 mV where the superlattice
is behaving ohmically.

For superlattice NU2293, we find that the average scattering time is 175 fs

which will be used for all B and θ. δ was found to be 1/8.5. Finally, because

the drift-velocity is averaged over a range of initial conditions, we need the av-

erage temperature of the electrons to set these initial conditions. When the

experimental temperature is 4.2 K the thermal energy is kT ≃0.36 meV, how-

ever, the electrons also receive kinetic energy from the electric field which gives

them a maximum kinetic energy of ∼ 10 meV. At 300 K the thermal energy

contribution is dominant and the electrons receive up to ∼ 30 meV of kinetic

energy thermally. Therefore there is a transition from voltage heating at 4.2 K

to thermal heating at 300 K.

3.2.9 vd(F ) Curves for B = 11 T at 4.2 K

Plots of vd(F ) are shown in figure 3.19 for B = 11 T and a range of θ values.

When θ <45◦, the feature occurring at the lowest electric field in the vd(F )

curves is an Esaki-Tsu-like peak at F = 0.45 MVm−1. These peaks are obscured

by other features for θ ≥45◦. This initial peak, known as the main superlattice

peak, occurs when ωBτSL = 1 as predicted by Esaki and Tsu (see section 1.2.5).

There are also a range of other features, which we now discuss.

Peaks in vd(F ) other than the main SL peak are clearly visible (fig. 3.19) for

10◦ ≥ θ ≥ 55◦. These peaks are caused by the extended electron orbits discussed

at the beginning of this chapter and occur at electric fields corresponding to

r = 0.5, 1, 2, 3... as expected. For example, when θ = 45◦, peaks corresponding

to r = 0.5, 1, 2 are clearly visible. These peaks have a finite width so there is

still some enhancement of electron velocity when r takes a value which is close
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Fig. 3.19: Drift velocity vs. electric field curves calculated at 4.2 K for B = 11 T. θ
increases from 0◦ to 90◦ in 5◦ intervals from bottom to top. Adjacent curves
are offset vertically by 1.2 × 103 ms−1 for clarity. Curves for θ = 0◦, 15◦,
30◦, 45◦, 60◦, 75◦ and 90◦ are shown in bold. The dashed lines pass through
the points on each curve where r = 0.5, 1, 2, 3 from left to right respectively.

to an integer.

The intensity of the additional or resonance2 peaks in vd(F ) increases with

increasing θ until θ ≈ 45◦, thereafter the main superlattice peak and additional

peaks begin to merge into a single peak in vd(F ). The r = 1 peak is always

the most intense and widest. We will first link some of these observations into

the previous discussion of Poincaré sections (section 3.2.4) and then go on to

examine vd(F ) for other values of B.

The finite width of the resonance peaks in vd(F ) can be explained by the

Poincaré sections in figure 3.16 which show that the central region of the stochas-

tic web still exists when r is close to an integer value.

In section 3.2.4 we observed that for sufficiently high θ a chaotic sea appears

in the centre of the Poincaré section independently of r (e.g. fig. 3.15 shows

this for θ = 60◦ and two different r values). This chaotic sea allows all electrons

with initial conditions close to rest to explore a non-zero radial distance in phase

space and hence have a large ∆xorbit. This observation explains the gradual loss

of well-defined vd(F ) peaks in figure 3.19 with increasing θ. At low θ the electron

orbits can only be extended when r ∝ F takes an integer value so peaks in vd(F )

occur. However, as as θ increases the orbits are extended for any all values of

2 Because the extended electron orbits occur when ωB and ωC are resonant, the additional
peaks in vd(F ) will also be known as resonance peaks.
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r ∝ F and the well defined peaks are lost.

We can also use Poincaré sections to understand the increasing intensity of

the r = 1 peaks in vd(F ) with increasing θ <45◦ (fig. 3.19). As θ increases,

the circular stochastic web filaments become more closely spaced and all the

stochastic filaments become thicker (see figure 3.10 for example). In section

3.2.4 we showed that these changes lead to a decrease in ∆xorbit with increasing

θ ≤45◦ for a single electron starting from rest. However, we now have mul-

tiple non-rest initial conditions so as θ increases, and a greater proportion of

phase space is covered by the stochastic web, more initial conditions fall on the

web. Therefore, the increasing intensity of the resonance peaks in vd(F ) with

increasing θ is caused by n increasing number of electrons having an extended

orbit rather than the same number of electrons having increasingly extended

orbits. Finally, it must be remembered that the calculation of vd(F ) includes

an exponential term to approximate scattering which is impossible to consider

in this qualitative analysis using Poincaré sections.

3.2.10 vd(F ) Curves for other Magnetic Fields and Temperatures

Figure 3.20 shows vd(F ) curves calculated at 4.2 K for a range of θ and B

values. The vd(F ) curves for each different B have broadly similar features to

those discussed for B = 11 T in the preceding section. Each vd(F ) curve has a

main superlattice peak occurring at the same electric field for a given B. This

peak is visible for θ up to at least 35◦ and is visible for larger θ as B increases.

The r = 1, 2... resonance peaks occur at higher F as B increases which is a

simple consequence of the ratio:

r =
ωB

ωC cos θ
=

Fdm∗

~B cos θ
. (3.23)

At low B the resonance peaks occur at lower F and are less well defined because

they overlap with the main superlattice peak. The r > 1 resonance peaks

become larger as B increases. Both of these effects can be seen more clearly in

figure 3.21 which shows vd(F ) for θ = 45◦ for a range of B values. It is not

immediately obvious why the peak intensity increases with increasing magnetic

field because the extended electron orbits decrease in size with increasing B (fig.

3.7). To explain this observation we can look at the ratio:

γ =
∆xorbit(r = 1)

∆xorbit(r = 1+
√

5
2 )

(3.24)

for electron orbits starting from rest and travelling for a time of τSL. This ratio

incorporates two new factors. Firstly, it considers the proportional extension of



3.3. Transport through a Finite Superlattice 87

the electron orbits rather than the absolute extension. Secondly, it calculates

the maximum extension over a time of τSL because the electron might not reach

its maximum displacement before a scattering event occurs. Figure 3.22 shows

the change in γ with increasing B and this data shows that the resonant electron

orbits are progressively extended over the off-resonance orbits as B increases.

Although the results of this simple model correlate with the vd(F ) results, γ

ignores all the non-rest initial conditions that had a large effect on vd(F ) for

changing θ.

We can also calculate vd(F ) curves for the superlattice system at room tem-

perature by changing the initial electron momenta which simply involves ex-

tending the spread of initial conditions in equation 1.37 by increasing Emax

from 10 meV to 30 meV. Figure 3.23 shows vd(F ) data calculated at 300 K for

(a) B = 11 T and (b) B = 14 T (comparable to figure 3.20(c-d) at 4.2 K). All

of the parameters affecting r are independent of temperature so the only possi-

ble changes should be in the intensities of the resonance and main superlattice

peaks. In general, we find that for the higher temperature, all the peaks de-

crease in intensity and the resonance peaks tend to be wider and so appear less

well defined. The vd(F ) curves provide the simplest measure of the effects of

changing system temperature, which primarily influences the distribution of ini-

tial electron velocities since scattering time is limited by elastic scattering and is

therefore insensitive to temperature. Because temperature has no effect on the

Poincaré sections, it is difficult to account for these results in any meaningful

way.

In summary, the extended electron motion discussed at the start of the

chapter gives rise to a series of additional resonant peaks appearing in vd(F ).

These peaks occur for characteristic values of F which correspond to integer

values of r. Increasing B increases the size of these peaks, which also depends

on θ. The second half of this chapter will use these vd(F ) curves to help model

the bulk behaviour of an experimentally realised finite superlattice system.

3.3 Transport through a Finite Superlattice

The vd(F ) curves from the previous section can be used as the basis for de-

termining the current voltage, I(V ), characteristics of the system. To do this,

we divide the superlattice into a number of slices and self-consistently solve

Poisson’s and the current continuity equations as detailed in section 1.5. The

set of equations obtained is highly non-linear and we solve it using a sequential

quadratic programming algorithm such as (30). As well as determining I(V ),

the drift-diffusion equations also determine the electric field and charge density

variation across the superlattice system.
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Fig. 3.20: Drift velocity vs. electric field curves calculated at 4.2 K for (a) B = 4T,
(b) B = 8T, (c) B = 11 T, (d) B = 14T, (e) B = 16 T and (f) B = 20T.
In each panel θ increases from 0◦ to 90◦ in 5◦ intervals from bottom to top.
Adjacent curves are offset vertically by 1.2 × 103 ms−1 for clarity. Curves
for θ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ are shown in bold. The dashed
lines pass through the points on each curve where r = 0.5, 1, 2, 3 from left
to right respectively.
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Fig. 3.21: vd(F ) curves calculated for θ = 45◦ and B = 4, 8, 11, 14, 16, 20 T from the
lower curve to the upper. Adjacent curves are vertically offset by 1.5 ×
103 ms−1 for clarity. This figure clearly shows that the intensity of the
resonance peaks (labelled) increases with B.
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Fig. 3.22: Ratio γ (equation 3.24) plotted a function of B for θ = 45◦. The electron
trajectories used to produce this ratio we calculated over a time interval of
τSL starting from rest. The change in this ratio roughly correlates with the
change in vd(r = 2) peak intensity seen in figure 3.21.
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Fig. 3.23: vd(F ) curves calculated at 300 K for (a) B = 11 T and (b) B = 14T. In
each panel θ increases from 0◦ to 90◦ in 5◦ intervals from bottom to top.
Adjacent curves are offset vertically by 1.2 × 103 ms−1 for clarity. Curves
for θ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ are shown in bold. The dashed
lines pass through the points on each curve where r = 0.5, 1, 2, 3 from left
to right respectively.

Figure 3.24(a) plots the electric field profile calculated using this method

for B = 11 T and θ = 0◦ as a function of position x through the superlattice

and voltage V . Figure 3.24(b) shows the same data but has r on the vertical

axis rather than F (recall that F ∝ r). Figure 3.24(c) shows the corresponding

electron density profile, n(x, V ). In all three figures, the solid contours indicate

when r takes an integer value and the broken contour indicates r = 0.5. From

these figures, it is clear that the electric field is not constant across the super-

lattice and, for high voltages, a high field domain forms towards the collector

contact. High field domains occur in devices which exhibit negative differential

velocity (NDV) because, in the NDV region, the electrons slow as the electric

field increases. Therefore, more electrons are required to maintain current con-

tinuity which causes an increase in electric field. This constitutes a positive

feedback loop so a sharp increase in electric field and electron density in regions

of NDV is observed. In contrast, the electric field at voltages ≤ 200 mV is ap-

proximately constant across the bulk of the superlattice as figure 3.24 shows with

more clarity for V = 10, 100, 200, 300 mV. This result validates the constant F

assumption made in the formulation of equation 3.19.

The presence of a large high field domain means that the semiclassical as-

sumption of a slowly varying electric field is incorrect at high voltages. Therefore
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Fig. 3.24: Surfaces showing the electrostatics of superlattice NU2293 with B = 11 T
and θ = 0◦. (a-c) respectively show the change in F , r and n as functions of
x and V . The solid contours on each surface indicate when r takes an integer
value and the broken contour indicates r = 0.5. Note that positioning the r
contours on (c) is not exact because n is not necessarily single valued along
these contours.
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Fig. 3.25: Plots of F as a function of x for B = 11T and θ = 0◦. These plots show that
the electric field is approximately constant across the bulk of the superlattice
for V <200 mV.

stochastic webs may not form and the electron’s x displacement would be re-

duced meaning that vd(F ) may be over estimated. However, the model is still

applicable provided that F varies slowly over the mean free path of the electron.

The next section will explore the electrostatics and I(V ) relationships for

B = 11 T and a range of θ values. Then the effect of changing B will be

investigated.

3.4 I(V ) and Electrostatic Data for B = 11 T

Figures 3.26(a) and (b) show calculated and experimental current voltage, I(V ),

relationships respectively for superlattice NU2293 with an applied magnetic

field of B = 11 T and a range of θ. The theoretical results agree well with

the experimental data for θ < 45◦ but, for higher θs, the current tends to be

underestimated at high voltages. In both sets of data an additional feature

appears which causes an increase in current as θ is increased. This increase

is shown more clearly in the corresponding differential conductance, G(V ) =

dI(V )/dV , (figs. 3.26(c) and (d)) as a peak (highlighted area). The initial

rapid increase in G at very low V occurs because many of the donor ions are

not ionised at V = 0 V and 4.2 K. As V increases, the donor ions become

ionised by the increasing electric field. This process is known as field ionisation.

Therefore I increases more slowly in the ohmic region because the number of

charge carriers is initially low.

For θ = 45◦, the highlighted peak in G(V ) is positioned at V∼ 400 mV in

both the numerical and experimental results. However, the width of the peak
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Fig. 3.26: Comparison of (a,c) theoretical and (b,d) experimental plots of (a,b) I(V )
and (c,d) G(V ) = dI(V )/dV at B = 11 T. θ increases from 0◦ to 90◦ in
5◦ intervals from bottom to top. Adjacent curves are vertically offset by
2mA in (a,b) and by a varying amount in (c,d) for clarity. In (c,d) peaks
due to the r = 1 resonance are highlighted by the grey shaded region. All
experimental data in this chapter are provided by Dr D. Fowler and Dr A.
Patanè.



3.4. I(V ) and Electrostatic Data for B = 11T 95

is greater in the experimental data. Any differences between experiment and

theory can be attributed to the large number of assumptions made in the var-

ious models used as well as to inaccuracies in our estimates of the parameters

used to model the superlattice. However, the qualitative and quantitative cor-

respondence between theory and experiment supports the validity our models.

We can therefore give a good quantitative account of the features in G(V ) using

our semiclassical and drift-diffusion models.

To verify that this additional peak in differential conductance is due to the

resonance peak in vd(F ) we look at the electric field profile across the super-

lattice when θ 6= 0◦ to ascertain if the electron is subject to electric fields which

correspond to peaks in vd(F ). Figures 3.27 and 3.28 show the change in r, F and

n as 2D functions of x and V for B = 11 T and θ = 15◦, 30◦, 45◦ and 60◦. The

bold contours on all these figures indicate where r takes integer values and the

broken contour indicates where r = 0.5. This data shows that when V < 0.2 V

the electric field is below that required for both the main superlattice peak and

the r = 1 resonance in vd(F ). Therefore, the superlattice should exhibit ohmic

behaviour for V < 0.2 V, as seen in figure 3.26. As V increases beyond 0.2 V,

F varies more rapidly with position along the superlattice (figs. 3.27 and 3.28)

and a large high field domain forms for voltages > 0.6 V, which causes F to

increase rapidly near the collector contact. These high field domains occur for

the same reason as those at θ = 0◦ discussed in the previous section.

The main difference between the F (x, V ) surface at θ = 0◦ and, for example,

that at θ = 45◦ is the plateau of approximately constant F which occurs for 45◦

(fig. 3.28(b)). The contour lines show that this plateau corresponds to r = 1

and is thus a consequence of the first resonant peak in vd(F ). Assuming that

the plateau extends between 0.9 ≤ r ≤ 1.1, the contour plot (fig. 3.28(a)) shows

that it occurs for V >0.4 V for θ = 45◦. The emergence of this plateau means

that the r = 1 resonance condition is satisfied across an appreciable fraction of

the superlattice for a range of voltages. Similar plateaux are visible for θ ≥30◦

(figs. 3.27 and 3.28) which occur when V >0.35 V and V >0.35 V for θ = 30◦

and 60◦ respectively.

The plateaux in F (x, V ) appear as minima in n(x, V ) (figs. 3.27(c) and

3.28(c)) because Poisson’s equation (eqn. 1.78) states that regions of low elec-

tron density result in a slowly varying electric field. The contours of integer r

plotted on these surfaces help confirm that the minima in n(x, V ) occur at the

same point in (x, V ) space as the plateaux in F (x, V ).

Because the plateaux correspond to peaks in vd(F ) they have a large effect

on electron transport through the superlattice. The electrons move rapidly

through the plateaux which causes I(V ) (fig. 3.26(a)) to increase faster with

increasing V . This increased gradient appears as a peak in G(V ) (fig. 3.26(c))
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Fig. 3.27: Contour plots (a) showing r as a function of x and V . The contours are
in steps of 0.1 with the broken contour indicating r = 0.5 and the bold
contours indicating when r is an integer. Finally, 0.9 ≤ r ≤ 1.1 is shaded
in grey. (b-c) show 2D surface plots of F and n respectively as functions of
x and V . The solid contours indicate when r is an integer and the broken
contour indicates r = 0.5. This data is calculated for B = 11T and (left
hand column) θ = 15◦ or (right hand column) θ = 30◦ as indicated.
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Fig. 3.28: Contour plots (a) showing r as a function of x and V . The contours are
in steps of 0.1 with the broken contour indicating r = 0.5 and the bold
contours indicating when r is an integer. Finally, 0.9 ≤ r ≤ 1.1 is shaded
in grey. (b-c) show 2D surface plots of F and n respectively as functions of
x and V . The solid contours indicate when r is an integer and the broken
contour indicates r = 0.5. This data is calculated for B = 11T and (left
hand column) θ = 45◦ or (right hand column) θ = 60◦ as indicated.
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corresponding to the small range of voltages for which the plateaux extend

across most of the superlattice.

The formation of these plateau in F can be explained by the following logic.

For F just below F (r = 1) there is a high positive differential velocity (PDV) (fig.

3.26) as opposed the usual NDV seen for θ = 0◦. This positive gradient causes

an opposite effect to that which produced the high field domain. Increasing F

slightly causes the drift-velocity to increase sharply. Therefore the number of

electrons required to maintain current continuity decreases significantly which in

turn reduces any increase in electric field. This effect tends to make F increase

very slowly because increasing F even slightly produces a large resistance to

this change. Thus F changes very slowly over the region of PDV.

So, in summary, when r = 1 and θ is large enough, stochastic webs form in

phase space (fig. 3.9) along which electrons can diffuse radially. This extends

the distance the electrons can move through the superlattice (fig. 3.3) which

causes a peak in the electron drift-velocity (fig. 3.20). This peak leads to a

plateau of F ≡ r = 1 forming in F (x) across a real superlattice (figs. 3.27 and

3.28) which finally leads to an enhanced current through the superlattice (fig.

3.26).

3.5 Electrostatics at other Magnetic Fields

In this section we consider the effects of B on the electrostatics of the system for

θ = 45◦. The electrostatics for B = 4 T to 20 T are shown in figures 3.29 to 3.31

and these plots show the same general features as were observed for B = 11 T

in the previous section. However, as B increases, we can identify several trends

in the strength and position of these features as B.

Figures 3.29(b), 3.30(b) and 3.31(b) shows that the minimum voltage at

which a high field domain near the collector contact can form increases with

increasing B. The contour plots (figs. 3.29(a), 3.30(a) and 3.31(a)) show that

the r = 1 contour shifts to higher V and x values with increasing B and that the

corresponding plateau becomes broader. The increase in the size of the plateau

can be explained by the vd(F ) curves (fig. 3.21) which show that increasing B

increases the intensity of the r = 1 peak. Therefore, the resistance to increasing

F as described in the previous section becomes greater with increasing B and

the plateau of slowly varying F becomes larger. We therefore predict the peaks

in G(V ) to be progressively larger, wider and shifted to higher V as B increases.

These changes are expected because the plateau covers more of the superlattice,

does this for a wider range of voltages and begins at a higher voltage respectively.

Figure 3.32 clearly shows that all three of these changes occur in both the

theoretical and experimental data as predicted.
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Fig. 3.29: Contour plots (a) showing r as a function of x and V . The contours are
in steps of 0.1 with the broken contour indicating r = 0.5 and the bold
contours indicating when r is an integer. Finally, 0.9 ≤ r ≤ 1.1 is shaded
in grey. (b-c) show 2D surface plots of F and n respectively as functions of
x and V . The solid contours indicate when r is an integer and the broken
contour indicates r = 0.5. This data is calculated for θ = 45◦ and (left hand
column) B = 4T or (right hand column) B = 8 T as indicated.
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Fig. 3.30: Contour plots (a) showing r as a function of x and V . The contours are
in steps of 0.1 with the broken contour indicating r = 0.5 and the bold
contours indicating when r is an integer. Finally, 0.9 ≤ r ≤ 1.1 is shaded
in grey. (b-c) show 2D surface plots of F and n respectively as functions of
x and V . The solid contours indicate when r is an integer and the broken
contour indicates r = 0.5. This data is calculated for θ = 45◦ and (left hand
column) B = 11T or (right hand column) B = 14T as indicated.
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Fig. 3.31: Contour plots (a) showing r as a function of x and V . The contours are
in steps of 0.1 with the broken contour indicating r = 0.5 and the bold
contours indicating when r is an integer. Finally, 0.9 ≤ r ≤ 1.1 is shaded
in grey. (b-c) show 2D surface plots of F and n respectively as functions of
x and V . The solid contours indicate when r is an integer and the broken
contour indicates r = 0.5. This data is calculated for θ = 45◦ and (left hand
column) B = 16T or (right hand column) B = 20T as indicated.
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Fig. 3.32: Theoretical (left) and experimental (right) G(V ) = dI(V )/dV curves for
θ = 45◦. The vertically offset curves show B = 4, 8, 14, 16 and 20 T
from bottom to top. The broken lines (from left to right) indicate the
r = 0.5, 1 and 2 resonant peaks.

Figure 3.32 shows that the r = 2 peak in G(V ) first appears for B = 11 T at

V∼ 0.5 V and is most clearly visible for B = 20 T at V 0.75 V. This peak occurs

for the same reason as the r = 1 peak but is much weaker. The lack of an r = 2

G(V ) peak at B = 4 T or 8 T is explained by the vd(F ) curves in figure 3.21.

These curves show that there is no region of positive differential velocity (PDV)

on the leading edge of the r = 2 resonance peak because this peak is merged

into the r = 1 peak. Therefore there is no negative feedback loop to slow the

increase of F and no r = 2 plateau forms. The same reasoning explains the

strength of the r = 2 G(V ) peaks relative to the r = 1 peaks and the increase

in G(V ) peak strength with increasing B. Basically, the longer and steeper the

region of PDV on the leading edge of of a resonance peak in vd(F ), the stronger

the resistance to an increase in F so a larger plateau forms. This larger plateau

then causes a larger peak in G(V ).

No r = 2 peaks are present in the experimental data. To explain this, we

note that the numerical r = 2 peaks in G(V ) arise from a plateau that is less

than 0.5d in length. This distance is shorter than the electron’s mean free path

along x so our calculations of vd(F ) would overestimate the magnitude of the

r = 2 resonant peak. So if we reduced the magnitude of the r = 2 vd(F ) peak

then the peak in G(V ) would become smaller or vanish for the reasons described

in the previous paragraph.
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Fig. 3.33: Comparison of theoretical (left) and experimental (right) G(V ) = dI(V )/dV
curves for B = 4T. θ increases from 0◦ to 90◦ in 5◦ intervals from bottom
to top. Adjacent curves are vertically offset by a varying amount for clarity.

Finally, figures 3.33, 3.34, 3.35, 3.36 and 3.37 show the full comparison be-

tween calculated and experimental G(V ) results for B = 4, 8, 14, 16 and 20 T

respectively for θ = 0◦ to 90◦ in 5◦ increments. These figures show that the

theoretical model tends to correctly predict the position of the r = 1 peaks in

G(V ) but underestimates their width. The theoretical results also show r = 2

resonant peaks, which are not seen in the experimental data, for the reason

explained above.

3.5.1 Electrostatics at 300 K

We can use the 300 K vd(F ) curves (fig. 3.23) to predict the current voltage

characteristics of the superlattice at room temperature. Figures 3.38 and 3.39

show the comparison between this theoretical and experimental I(V ) data for

B = 11 T and 14 T respectively. The calculated data slightly underestimates

the initial current gradient but the resonance peaks appear in approximately

the same positions as in the experimental data.

When compared to the 4.2 K data (figs. 3.26 and 3.35), we see that G(V = 0)

is high at room temperature but low at 4.2 K. This is because at 300 K the

donors are all thermally ionised and the conductance increase associated with

field ionisation does not occur (see section 3.4). The other difference between

G(V ) at the two temperatures is that the r = 1 peaks appear at a lower voltage
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Fig. 3.34: Comparison of theoretical (left) and experimental (right) G(V ) = dI(V )/dV
curves for B = 8T. θ increases from 0◦ to 90◦ in 5◦ intervals from bottom
to top. Adjacent curves are vertically offset by a varying amount for clarity.
The peaks due to the r = 1 resonance are highlighted by the grey shaded
region.

Fig. 3.35: Comparison of theoretical (left) and experimental (right) G(V ) = dI(V )/dV
curves for B = 14T. θ increases from 0◦ to 90◦ in 5◦ intervals from bottom
to top. Adjacent curves are vertically offset by a varying amount for clarity.
The peaks due to the r = 1 resonance are highlighted by the grey shaded
region.
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Fig. 3.36: Comparison of theoretical (left) and experimental (right) G(V ) = dI(V )/dV
curves for B = 16T. θ increases from 0◦ to 90◦ in 5◦ intervals from bottom
to top. Adjacent curves are vertically offset by a varying amount for clarity.
The peaks due to the r = 1 resonance are highlighted by the grey shaded
region.

Fig. 3.37: Comparison of theoretical (left) and experimental (right) G(V ) = dI(V )/dV
curves for B = 20T. θ increases from 0◦ to 90◦ in 5◦ intervals from bottom
to top. Adjacent curves are vertically offset by a varying amount for clarity.
The peaks due to the r = 1 resonance are highlighted by the grey shaded
region.
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Fig. 3.38: Comparison of theoretical (left) and experimental (right) G(V ) = dI(V )/dV
curves at 300 K for B = 11T. θ increases from 0◦ to 90◦ in 5◦ intervals from
bottom to top. Adjacent curves are vertically offset by a varying amount
for clarity. The peaks due to the r = 1 resonance are highlighted by the
grey shaded region.

for 300 K and are less intense. Figure 3.40 shows plots of r(x, V ), F (x, V ) and

n(x, V ) for 300 K which, as expected from the changes in G(V ), show that

the plateaux in F occur for lower x and V values and are thinner than the

corresponding plateaux for 4.2 K (fig. 3.30). Thus, following the logic set out in

the previous section, we would expect these smaller plateaux to be the result of

a smaller or wider r = 1 resonance peaks in vd(F ). Comparing the vd(F ) data

in figures 3.38 (300 K) to 3.26 (4.2 K) shows that this is the case.

3.6 Conclusion

This chapter investigated the behaviour of superlattice NU2293 with an applied

electric and tilted magnetic field using a variety of numerical models. This

system forms a driven harmonic oscillator with Bloch oscillations caused by the

electric field coupled to cyclotron oscillations caused by the magnetic field.

In the first half of this chapter, we assumed that the superlattice was infinite

and used a semiclassical model to predict the behaviour of a single electron. We

observed that a stochastic web forms in the phase space of our system when the

Bloch oscillations are resonant with the x component of the cyclotron oscillations

(r =integer). We also saw a mixed chaotic/stable phase space appearing for
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Fig. 3.39: Comparison of theoretical (left) and experimental (right) G(V ) = dI(V )/dV
curves at 300 K for B = 14T. θ increases from 0◦ to 90◦ in 5◦ intervals from
bottom to top. Adjacent curves are vertically offset by a varying amount
for clarity. The peaks due to the r = 1 resonance are highlighted by the
grey shaded region.

high magnetic fields tilt angles, θ, independently of r. These features allow an

electron to diffuse in the radial direction through phase space which corresponds

to a large x displacement in real space. This large displacement along x means

that the electron drift velocity, vd(F ), is enhanced both when r ∝ F is close to

an integer and when θ is sufficiently large. This enhancement leads to additional

peaks appearing in vd(F ) which we dubbed resonance peaks.

In the second half of this chapter, we input the vd(F ) relations to a drift-

diffusion model to calculate electrostatic and I(V ) data for a finite superlattice

system. We found that the electric field across the superlattice was often highly

non-linear and that a high field domain occurs at high voltages near the collector

contact which is a consequence of negative differential velocity.

Conversely, we also found plateaux of slowly varying F in F (x) which are a

result of the regions of positive differential velocity on the leading edge of the

resonant peaks in vd(F ). These plateaux lead to enhanced current because the

electrons can move across them swiftly due to vd(F ) being maximised. This

increased current is best viewed via a G(V ) = dI(V )/dV plot which shows

the enhancements as peaks. We observed such peaks, and the corresponding

plateaux, for both r = 1 and r = 2 although the validity of the r = 2 peaks is

doubtful due to the small size of their plateaux.
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Fig. 3.40: Contour plots (a) showing r as a function of x and V . The contours are
in steps of 0.1 with the broken contour indicating r = 0.5 and the bold
contours indicating when r is an integer. Finally, 0.9 ≤ r ≤ 1.1 is shaded
in grey. (b-c) show 2D surface plots of F and n as functions of x and V
respectively. The solid contours indicate when r is an integer and the broken
contour indicates r = 0.5. This data is calculated at 300 K for θ = 45◦ and
(left hand column) B = 11T or (right hand column) B = 14 T as indicated
and can be directly compared to the 4.2 K data in figure 3.30.
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Our numerical G(V ) plots are in good agreement with experimental data for

the real superlattice NU2293. This agreement validates our models.



4. SEMICLASSICAL ANALYSIS OF SUPERLATTICE NU2299



4.1. Introduction 111

4.1 Introduction

Chapter 3 has examined superlattice NU2293 and has shown that our model

produces a good match to the experimental I(V ) data. The semiclassically

calculated vd(F ) curves show resonant peaks which correspond to r = 2 and 3

(fig. 3.20). However, the G(V ) curves only show a peaks due to r = 1 and not

r = 2 (figs. 3.26, 3.33, 3.34, 3.35, 3.36 and 3.37). This is because the electric

field gradient is large for F (r = 2) and F (r = 3) etc (figs. 3.29, 3.30 and 3.31).

Therefore, the proportion of the superlattice for which r = 2 or r = 3 is very

small and there will only be a negligible overall current enhancement due to

electrons moving faster through this region (see section 3.3).

Therefore, to see G(V ) peaks corresponding to r = 2, we need to stop F

varying so rapidly about r = 2. Therefore, we need to reduce or eliminate the

high electric field domain that forms near the collector contact in superlattice

NU2293 (31).

In this chapter, we investigate superlattice NU2299 which has a different

bandgap between the first and second minibands to that of superlattice NU2293.

The bandgap for superlattice NU2299 is 66.1 meV compared to 201.5 meV for

sample NU2293. The structural differences between the two superlattice are

covered in section 1.4. It is hoped that this smaller bandgap will allow in-

terminiband tunnelling which should enable the electrons to move more freely.

This should reduce electron buildup and prevent a high electric field domain

forming.

We use the same semiclassical model for this superlattice that we used for

superlattice NU2293 but with different parameters. This basic model does not

account for interminiband tunnelling so the smaller miniband gap will have no

effect on the electron dynamics. We will suggest modifications to allow this

tunnelling later in the chapter.

4.2 Electron Dynamics for Superlattice NU2299

The semiclassical electron orbits for superlattice NU2299 are calculated in ex-

actly the same way as they were for superlattice NU2293. The only parameters

that differ between the two superlattices for this calculation are the superlattice

period, d, and the form of the dispersion curve, E(k). Figure 4.1 shows electron

orbits calculated for superlattice NU2299 with B = 14 T, θ = 30◦ and a range

of r values. These figures are very similar to those in figure 3.3 which were

calculated for superlattice NU2293. Likewise, figure 4.2 shows that the change

in electron orbit with varying θ for B = 14 T and r = 1 is very similar to the

change for superlattice NU293 (fig. 3.5). Therefore, we refer the reader to the



4.2. Electron Dynamics for Superlattice NU2299 112

0 2 4 6 8
 x  / d

0

2

4

6

8

z 
/ d

(a)

0 2 4 6 8
 x  / d

0

2

4

6

8

z 
/ d

(b)

0 2 4 6 8
 x  / d

0

2

4

6

8

z 
/ d

0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

(c)

0 2 4 6 8
 x  / d

0

2

4

6

8

z 
/ d

(d)

Fig. 4.1: Electron trajectories calculated over 20 ps starting from rest for θ = 30◦ and
B = 14T in superlattice NU2299. The electric field is chosen such that (a)

r = 0.5, (b) r = 1, (c) r = 1+
√

5

2
and (d) r = 2.

discussions in section 3.2 for an explanation of these results.

Figure 4.3 shows a selection of Poincaré sections calculated for B = 14 T,

θ = 30◦ and a range of r values. These sections are very similar to those shown

for superlattice NU2293 (section 3.2.4). Therefore we will not examine them in

any greater detail and the discussions in chapter 3 apply.

Figure 4.4(a) plots the drift-velocity as a function of electric field, vd(F ),

for B = 14 T, a range of θ values and superlattice NU2299. This figure shows

that the resonance enhanced peaks in vd(F ) are much stronger for superlattice

NU2299 than those found for superlattice NU2293 (figure 4.4(b)). To explain

this increase we consider the following.

In section 3.2.10 we saw that the resonance peaks in vd(F ) calculated for

superlattice NU2293 at 300 K were smaller than those calculated at 4.2 K. We

explained this change with reference to the higher initial energies at 300 K com-
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Fig. 4.2: Variation in electron orbit with θ values as specified. These orbits are shown
on the same scale and calculated over 20 ps starting from rest with B = 14 T
and r = 1 in superlattice NU2299.
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Fig. 4.3: Stroboscopic Poincaré sections calculated for superlattice NU2299 with θ =
30◦ and B = 14 T. The electric field is such that (a) r = 1, (b) r = 2, (c)

r = 0.5 and (d) r = 1+
√
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. Both axes range from (−2 → 2)× 10−25 kg ms−1.

Note that (d) has fewer starting points than the other Poincaré sections.
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Fig. 4.4: Drift velocity vs. electric field curves calculated at 4.2 K for B = 14T in (a)
superlattice NU2299 and (b) superlattice NU2293. In each panel θ increases
from 0◦ to 90◦ in 5◦ intervals from bottom to top. Adjacent curves are offset
vertically by 1.2× 103 ms−1 for clarity. Curves for θ = 0◦, 15◦, 30◦, 45◦, 60◦,
75◦ and 90◦ are shown in bold. The dashed lines pass through the points on
each curve where r = 0.5, 1, 2, 3 from left to right respectively.

pared to those at 4.2 K. This means that more of the band is occupied at t = 0

at the higher temperature. When considering the difference between superlat-

tices NU2293 and NU2299 at fixed temperature, we note that the miniband

width is smaller for superlattice NU2299. This means that a greater proportion

of the band will be occupied at t = 0 for superlattice NU2299 and we would

therefore expect a reduction in the intensity of the resonance peaks in vd(F ).

However, the opposite result is found and another explanation must apply.

Unlike the results calculated at two different temperatures in superlattice

NU2293, changing to superlattice NU2299 does affect the single electron dynam-

ics. Therefore, the changing dynamics are the cause of the increased intensity

resonant peaks in vd(F ).

4.3 Electrostatics for Superlattice NU2299

We can use the drift-diffusion model (sec. 1.5) to calculate the transport prop-

erties, I(V ) and G(V ) = ∂I(V )
∂V , and the electrostatic properties of a real super-

lattice system.

Figure 4.5(a) show I(V ) curves calculated using this model for B = 14 T

and a range of θ values and figure 4.5(b) shows the corresponding experimen-
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Fig. 4.5: Comparison of (a) theoretical and (b) experimental plots of I(V ) at B = 14T.
θ increases from 0◦ to 90◦ in 5◦ intervals from bottom to top. Adjacent curves
are vertically offset by 2mA for clarity. These results are calculated using
the model described in chapter 1 with no corrections made for interminiband
tunnelling. All experimental data in this chapter are provided by Dr D.
Fowler and Dr A. Patanè.

tally measured I(V ) curves. Figure 4.6 shows the G(V ) curves for these same

parameters. The experimental and theoretical data does not compare well.

The theoretical data (fig. 4.5(a)) shows that, at θ = 0◦, I(V ) is constant

above 70 mV. This effect is due to negative differential velocity in vd(F ): as

voltage is increased, the average electric field increases which causes the elec-

tron drift velocity to decrease and so the current remains constant. However,

the experimental data (fig. 4.5(b)) shows a rise in current for V > 70 mV.

Therefore, either the degree of negative differential velocity in the calculated

vd(F ) curves has been overestimated, or the drift-diffusion model does not work

for this superlattice.

As mentioned previously, the main difference between our superlattice sam-

ples is that interminiband tunnelling can occur more readily in superlattice

NU2299. Because this is the only major difference between the samples, it

is the most likely reason why our theoretical results for superlattice NU2299

do not reproduce the experimental results accurately. Therefore, we need to

modify either the drift-diffusion model or the form of vd(F ) to obtain accurate

theoretical results. However, to be able to do this, we need to know what the

probability of interminiband tunnelling is.
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Fig. 4.6: Comparison of (a) theoretical and (b) experimental plots of G(V ) =
dI(V )/dV at B = 14 T. θ increases from 0◦ to 90◦ in 5◦ intervals from
bottom to top. Adjacent curves are vertically offset by a varying amount for
clarity. These results are calculated using the model described in chapter 1
with no corrections made for interminiband tunnelling.

4.3.1 Probability of Interminiband Tunnelling

To move between the α = 0 and α = 1 minibands, the electrons must tunnel

through the triangular barrier shown in figure 4.7. In addition, the wavefunc-

tions must match at the top and bottom of the α = 1 and α = 0 minibands

respectively or else the transition will be disallowed. The tunnelling probability

can now be calculated(32)(33) by evaluating:

T = exp

(

−2

∫ C

B

|ℑk(x)| dx
)

(4.1)

where B and C are the left and right hand edges of the barrier respectively

(see figure 4.7) and ℑk(x) indicates the imaginary part of the function k(x).

This equation is essentially an integral over the imaginary dispersion curve in

the miniband gap. Zener(32) makes the nearly free electron assumption and

obtains a tunnelling probability of:

T = exp

(

−
maE2

gap

4~2|eF |

)

(4.2)
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Fig. 4.7: Superlattice with an applied electric field showing tilted minibands. The
arrow indicates the Zener tunnelling transition. Egap is the minibandgap
and ∆α are the miniband widths.

where a is the lattice period, Egap is the bandgap and m is the free electron

mass. This probability can also be expressed more generally using the reduced

electron mass(34)(35):

T = exp

(

−
√
m∗πE

3/2
gap

2~|eF |

)

(4.3)

which does not make the nearly free electron approximation. An overview of

this second method is given by Glutsch(36).

In this thesis, we will make the nearly free electron assumption and take the

Zener or interminiband tunnelling probability in a superlattice to be:

T = exp

(

−
m∗dE2

gap

4~2|eF | cos θ

)

(4.4)

wherem∗ is the semiconductor reduced electron mass, i.e. the free electron mass

for the superlattice, and d cos θ is the superlattice period along the magnetic field

direction. We will further restrict this tunnelling to occur only when the electron

is at the top of the α = 0 miniband. Figure 4.8 show the form of T (F ) for (a)

superlattice NU2293 and (b) superlattice NU2299. These plots clearly show

that the probability of interminiband tunnelling is insignificant for superlattice

NU2293 but is > 10% for F & 5 MVm−1 in superlattice NU2299.

We can calculate vd(F ) for electrons in the α ≥ 1 minibands simply by
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Fig. 4.8: Probability of tunnelling between the first and second minibands in (a) super-
lattice NU2293 and (b) superlattice NU2299. This probability is calculated
using equation 4.4 and the minibandgaps are 66.1 mV and 201.5 mV respec-
tively.

changing the dispersion curve and distribution of initial conditions. In addition,

electrons whose E(px) energy component is greater than the superlattice barrier

height will behave as if they were free. From figures 1.12 and 1.13 we can see that

only the first two minibands have energies lower than the superlattice barriers.

Therefore an electron reaching the third miniband will behave as if free and its

kinetic energy will increase linearly with distance travelled along x.

4.4 Modifying the Drift-Diffusion Model

The drift-diffusion model discussed in chapter 1 works very well for superlattice

NU2293 (see section 3.3) but not superlattice NU2299. We will attempt to

incorporate Zener tunnelling into the model to make it work for this second

superlattice. This tunnelling can be added by using two conduction channels.

Figure 4.9 shows this model schematically, we use two sets of current continuity

equations, one for the α = 0 miniband and one for the α = 1 miniband. The

current continuity equations also reflect the possibility of tunnelling between

the minibands. Because Zener tunnelling is an elastic transition, the electron

changes position rather than energy when tunnelling. Therefore, the electrons

in section M of the second miniband come from both section M − 1 and a

section of the first miniband whose position depends on the electric field. Figure

4.9 shows this process diagrammatically. Therefore, each current continuity

equation involve more superlattice sections than the single miniband model and

the non-linearity of the equation set is substantially increased.

Therefore, the set of equations that must be solved to determine I(V ) now

has 3N + 4 equations: the original 2N + 4 equations and an additional N

equations for current continuity in the second miniband. This set of equations

is also more non-linear than the set for the single miniband transport model

and we find it impossible to obtain a valid solution to the problem. The most
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Fig. 4.9: Two conduction channel drift-diffusion model. The shaded areas represent
minibands in a non-linear electric field and the bold arrows show Zener tun-
nelling between them. The small arrows show the direction of electron flow
along the minibands. It is clear that this tunnelling can move an electron
several superlattice sections (which are delineated by vertical lines). There-
fore, the electrons in section four of the higher miniband come from section
three of the same miniband as well as region one of the lower miniband. All
of these electrons then flow into region five of the upper miniband.



4.5. Modifying Drift-Velocity 121

likely reason for this problem is the increased complexity and non-linearity of

the equations. Testing has shown that the problem is not due to the choice of

initial conditions. Therefore, the two miniband drift-diffusion model has not

resulted in an I(V ) curve which incorporates interminiband tunnelling.

4.5 Modifying Drift-Velocity

Because it is not possible to use a two miniband drift-diffusion model, we must

use the original single-channel model and modify vd(F ) to account for intermini-

band tunnelling. There are two points at which this modification can be made.

The first method is to calculate vd(F ) as normal and then make an addition to

it. We do this as follows.

4.5.1 Directly Modifying the vd(F ) Curves

The simplest way to reduce the effects of negative differential velocity (NDV)

on I(V ) is to remove NDV from vd(F ) by adding some function. This function

need to account for interminiband tunnelling and the simplest form is to assume

that the electron can tunnel from the first to the second miniband in which it

behaves as if it were free. We also assume that this tunnelling is only attempted

once before an electron scatters. Therefore, the modified electron drift velocity,

vd,mod(F ), is given by:

vd,mod(F ) = (1 − T (F ))vd,α=0(F ) + T (F )vd,free (4.5)

where vd,α=0(F ) and vd,free are the electron drift velocities in the first miniband

and free space respectively and T (F ) is the probability of an electron tunnelling

between these regions. The electron drift velocity in free space is given by:

vd,free =
1

τ

∫ ∞

0

eF cos2 θ

2m∗ te−t/τdt

=
eFτ cos2 θ

2m∗ (4.6)

assuming that the electron starts from rest at t = 0. Figure 4.10 plots the

modified vd(F ) relation given by equation 4.5 for B = 14 T and θ = 30◦. The

addition of tunnelling has two effects: firstly, NDV is totally absent except for a

small region after the r = 1 peak and secondly, the r = 2 peak now has a similar

maxima to the r = 1 peak. These two effects should mean that the current will

continue to increase at high voltages and the effect of r = 2 should be more

pronounced on the I(V ) results. Note that we scale the vd(F ) curves by the

height of the main superlattice peak so that they can be compared easily and a
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Fig. 4.10: Comparison of electron drift velocity calculated for θ = 30◦ and B = 14 T
with (solid) and without (dashed) Zener tunnelling to a free electron state
as described by equation 4.5.

similar scaling is made when calculating I(V ) curves (see section 3.2).

It is also possible to add more layers of complexity onto this simple model.

The first of these modifications is to assume that the electron can attempt

to tunnel multiple times before it is scattered. For example, the tunnelling

probability changes to:

T2(F ) = T (F ) + (1 − T (F ))T (F ) (4.7)

for two tunnelling attempts. A more sophisticated form of this modification is to

assume that the number of tunnelling attempts is given by the Bloch frequency

because the electron reaches the top of the band once per Bloch oscillation.

Therefore the number of tunnelling attempts, ntun, made before scattering is:

ntun =
τeFd

~
(4.8)

and the probability of tunnelling is:

Tntun
(F ) = 1 − (1 − T (F ))ntun . (4.9)

Figure 4.11 shows the vd(F ) relations for these modifications.

We can also use the full set of minibands and calculate vd(F ) allowing the

electron to tunnel from the first to the second miniband and from there to free.
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Fig. 4.11: Comparison of electron drift velocity calculated for θ = 30◦ and B = 14 T
for a variety of tunnelling probabilities. The dashed line assumes a single
tunnelling attempt occurs before scattering (equation 4.5), the dotted line
assumes two tunnelling attempts (equation 4.7) and the solid line assumes
that the number of tunnelling attempts is given by the Bloch frequency
(equations 4.8 and 4.9).

This drift velocity, vd,2 bands(F ), is given by:

vd,2 bands(F ) = (1 − T (F ))vd,α=0(F )

+ T (F )(1 − U(F ))vd,α=1(F )

+ U(F )T (F )vd,free(F ) (4.10)

where U(F ) is the probability of tunnelling from the second miniband to free.

Figure 4.12 shows vd,2 bands(F ) for a variety of tunnelling attempt models. These

results show that the rise in drift velocity is much slower than for the simpler

miniband to free model, but the r = 2 resonant peak is more intense and the

r = 3 peak can also be seen.

The three major problems with directly modifying vd(F ) are:

1. It cannot account for the increasing number of electrons at increasingly

larger x. This increase occurs because the probability of tunnelling to a

lower miniband is small so electrons gradually accumulate in the higher

minibands towards the collector contact. Because vd(F ) is independent of

x, it cannot account for this effect.

2. Directly modifying the vd(F ) curve doesn’t allow the number of tunnelling

attempts to be directly determined because this information is contained

in vx(t) and we must estimate this.



4.5. Modifying Drift-Velocity 124

0 2 4 6
F (MVm

-1
)

0

10

20

30

40

v d
(F

)/
v d,

E
T

r = 1 r = 2 r = 3

Fig. 4.12: Comparison of electron drift velocity calculated for θ = 30◦ and B = 14 T
for a variety of tunnelling probabilities in a two miniband to free model.
The solid line assumes a single tunnelling event before scattering, the dot-
dashed line assumes three tunnelling events and the dashed line assumes
that the number of tunnelling events is given by the Bloch frequency. The
dotted line shows vd,2 bands(F ) for the single miniband to free model with a
single tunnelling event for comparison.

3. Finally, because we are taking a linear combination of different drift-

velocity curves, we are assuming that all the tunnelling attempts occur

at t = 0 which is not true.

4.5.2 Modifying vx

An alternative approach to account for interminiband tunnelling is to modify

the electron’s velocity before scattering is applied. To do this, we incorporate

tunnelling into the calculation of vx and then calculate drift velocity using:

vd =
1

τ

∫ ∞

0

vx exp(−t/τ)dt (4.11)

as normal. This method accurately models the number of tunnelling events

because the number of times the electron reaches the top of the miniband can

be determined. It also does not assume that tunnelling occurs at t = 0. However,

it still suffers from the first deficiency in the list in the previous section. This

model also introduces an additional deficiency because scattering is applied after

tunnelling. This means that the scattered electrons relax to their equilibrium

position in the first miniband, rather than remaining in the same miniband

which is the correct behaviour.

Figure 4.13 shows how this model works. When vx changes sign from positive

to negative, the electron has reached the top of the miniband and a tunnelling
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Fig. 4.13: Change in vx with time at θ = 0◦ for the first miniband (black) and free
(red). A tunnelling event occurs when vx,α=0 changes from positive to neg-
ative. The thickness of the lines in this plot is a measure of the probability
of the electron following that path (also see labels). The average electron
velocity along x can be calculated using equation 4.12.

attempt can be made. The average electron velocity, v̄x, is then calculated from:

v̄x(t) =
∑

paths

Ppathvx,path(t) (4.12)

which is the sum over all the electron velocities, vx,path(t), that the electron

could have at time t weighted by Ppath, the probability of the electron having

that particular velocity. The paths to consider are motion through the first

miniband, motion through the second miniband if using a two miniband model

and free electron behaviour.

Figure 4.14 compares vd(F ) calculated using this model to the unmodified

vd(F ) curve. We show results for both the first miniband to free model and

the first miniband to second miniband to free model. The rise in vd(F ) at high

F for these results is slightly lower than the corresponding rises found when

directly modifying vd(F ).

4.5.3 Other Methods of Calculating vd

There are a number of other ways in which interminiband tunnelling can be

accounted for.

Zener tunnelling is often directly incorporated into current calculations with-

out an explicit drift-velocity step(37) and this is a typical feature of I(V )

calculations(8). However, such a method could not be applied to our complex

system without making extreme simplifications.

vd(F ) can also be extracted from experimental I(V ) data(38) and this method

could potentially be applied to our superlattice system. Another approach in-
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Fig. 4.14: Comparison of electron drift velocity calculated for θ = 30◦ and B = 14 T
by modifying vx as described in equation 4.12. The dashed line uses a
miniband to free model while the solid line uses a first miniband to second
miniband to free model. The dotted line shows the unmodified electron
drift-velocity.

volves using a quantum mechanical wavepacket model to calculate vd(F ) which

will implicitly include interminiband tunnelling. Such an approach was used by

S. Naylor(12) and this produces results that have the same form as those that

Sibille et al(38) extracted from experimental data. Figure 4.15 shows a vd(F )

curve calculated for θ = 0◦ and B = 14 T in superlattice NU2299 using this

wavepacket method and an increase in vd(F ) at high F is clearly seen.

4.6 Choice of Model

We decided to use an empirical approach to determine the form of vd(F ) because

of the wide variety of differing models presented above. This involved matching

the calculated I(V ) data at θ = 0◦ to the experimental results by varying vd(F ).

We used:

vd,m(F ) = vd(F ) +A(F ) (4.13)

as the modified electron drift velocity where A(F ) is some function of electric

field used to modify the original vd(F ) relation. We tried a variety of exponential

and power functions for A(F ) and found that there were a range of different

additions that produced a relatively good match for I(V, θ = 0◦). The best

match was achieved for:

A(F ) =
15

2
vd,ET

(

F

107

)1.4

(4.14)
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Fig. 4.15: Electron drift-velocity calculated using a wavepacket model for superlattice
NU2299 with B = 14 T and θ = 0◦. Reproduced by kind permission of S.
Naylor(12).
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Fig. 4.16: Comparison of I(V ) relation calculated from vd,m(F ) (eqns. 4.13 and 4.14)
(solid curve) to experimentally measured data (dashed curve). These curves
are for B = 14T, θ = 0◦ and superlattice NU2299.

where vd,ET is the height of the Esaki-Tsu drift velocity peak at θ = 0◦. Figure

4.16 compares I(V ) calculated using this empirical function to experimental

data.

A similar procedure was also carried out for θ = 45◦ and the best form of

A(F ) was found to be:

A(F ) = 15vd,ET

(

F

107

)1.4

. (4.15)

Figure 4.17 shows these modified vd(F ) curves. In general, the best function for
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Fig. 4.17: (a) shows electron drift velocity calculated for (solid) θ = 0◦, (dashed)
θ = 45◦ and B = 14 T using equations 4.13, 4.14 and 4.15. (b) compares
the θ = 45◦ curve to corresponding vd(F ) curves calculated for a variety of
the theoretical models. The rise over the first 4MVm−1 is similar but the
theoretical models tend to predict a high gradient for vd(F > 4MVm−1)
which our empirical results do not reflect. However, the electrostatic results
that will be shown later (fig. 4.20(b’)) will show that the electric field is
usually < 4MVm−1 when using the empirical vd(F ) curve.

A(F ) is:

A(F ) =

(

15/2 +
15θ

90

)

vd,ET

(

F

107

)1.4

(θ ≤ 45◦)

A(F ) =

(

15 − 15(θ − 45)

90

)

vd,ET

(

F

107

)1.4

(θ > 45◦) (4.16)

where θ is measured in degrees. This formula states that the prefactor varies

linearly from 15/2 → 15 for θ = 0 → 45◦ and from 15 → 15/2 for θ = 45 → 90◦.

From this point, the term “empirical model” or “modified model” will refer to

adding A(F ) from equation 4.16 to the original vd(F ) curves. The “unmodified

model” will set A(F ) = 0.

The vd,m(F ) curves calculated using this empirical model have a different

form to those calculated using most of the theoretical models for intermini-

band tunnelling (fig. 4.17(b)). However, the rises in vd,m(F ) for the different

models are broadly similar to the empirical rise and there are no other obvi-

ous features of superlattice NU2299 that would account for this rise. We will



4.7. Electrostatics Including Interminiband Tunnelling 129

0 200 400 600
V (mV)

G
=d

I/d
V

 (
ar

b.
)

(a)

0 200 400 600
V (mV)

G
=d

I/d
V

 (
ar

b.
)

(b)

Fig. 4.18: Comparison of (a) theoretical and (b) experimental plots of G(V ) =
dI(V )/dV at B = 14 T. θ increases from 0◦ to 90◦ in 5◦ intervals from
bottom to top. Adjacent curves are vertically offset by a varying amount
for clarity. These results are calculated using the model described in chapter
1 and the empirical modification to vd(F ) outlined in the previous section
is used.

therefore attribute the increase in the empirically determined vd,m(F ) curves to

interminiband tunnelling.

4.7 Electrostatics Including Interminiband Tunnelling

Figure 4.18(a) compares the G(V ) curves calculated using the empirically model

(eqns. 4.13 and 4.16) to the experimentally measured results (fig. 4.18(b)). Our

calculated results now show peaks due to r = 1 and r = 2. This is in contrast

to the unmodified model (fig. 4.6(a)) which only shows an r = 1 peak. The

calculated results underestimate the voltage at which the r = 1 peak appears

and overestimate it for the r = 2 peak. The amplitudes of the peaks are also

not exact. However, this is the best overall match to the experimental data that

we can produce without significantly varying A(F ) for different θ.

Figures 4.19 and 4.20 display the electrostatics calculated for B = 14 T and

θ = 0◦ or θ = 45◦ respectively. (a) plots r(x, V ) as contours, (b) plots F (x, V )

as a 3D surface and (c) plots n(x, V ) also as a surface, the bold contours on all

three plots correspond to integer values of r. The left hand columns of figures are

calculated using the unmodified vd(F ) curves and the right hand column use the
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empirically modified vd,m(F ) curves (eqns. 4.13 and 4.16). These figures show

that the electrostatics undergo a profound change when the empirical model is

used to account for interminiband tunnelling.

Comparing F (x, V ) at high x and V for θ = 0◦ (fig. 4.19(b,b’)), we can

see that incorporating interminiband tunnelling prevents the formation of high

electric field domains. This means that the electric field only rises to approxi-

mately half the value that it did in the unmodified model. The form of the rise

in F (x, V = const) also changes. In the modified model, the steepest electric

field gradient occurs at low x and the variation in F at high x is relatively slow,

this is in complete contrast to the F (x, V ) behaviour in the unmodified model.

However, ∂F
∂x in the modified model is much smaller than in the high electric

field domain of the unmodified model results. The electron density variation

(fig. 4.19(c,c’)) also mirrors this change and the modified model produces no

charge buildup towards the collector contact (high x).

The results for θ = 45◦ (fig. 4.20) show similar behaviour. We again see

that ∂F
∂x is largest at low x in the modified model (fig. 4.20(b’)) compared to

high x in the unmodified model (fig. 4.20(b)). This change has a large impact

on the shape and size of the plateaux in F (x, V ) which directly lead to increases

in current (see sec. 3.4 on superlattice NU2293 for an explanation). From the

contours on figure 4.20(b’), we can see that r = 1 and r = 2 are both achieved

when ∂F
∂x is relatively large. We find that the r = 1 plateau initially occurs for

V = 0.28 V where it extends across ∼ 50% of the superlattice (fig. 4.20(a’)).

However, because ∂F
∂x is relatively large, the plateau that forms for r = 1 is

much narrower that the corresponding plateau in the unmodified model, which

appears when ∂F
∂x is small. Because the plateau is narrow, it only extends

across a significant proportion of the superlattice for 0.28 < V < 0.32 V. In

contrast, the r = 1 plateau in the unmodified model extends across a significant

proportion of the superlattice length for all V > 2.5 V. These results explain

why the r = 1 peak in G(V ) for θ = 45◦ is different in the modified (fig. 4.18(a))

and unmodified (fig. 4.6(a)) models.

The main difference between the models can be seen for r = 2: the G(V )

curve for θ = 45◦ in the unmodified model (fig. 4.6(a)) shows no r = 2 peak

but that for the modified model (fig. 4.18(a)) does. The r = 2 plateau in the

unmodified model (fig. 4.20(a)) occurs in the high electric field domain when
∂F
∂x is very high. This causes the plateau to be very narrow, and, because it

occurs at high V and x, the proportion of the superlattice over which r = 2 is

very small. Therefore, no appreciable increase in current occurs. Conversely,

the the plateaux in the modified model (fig. 4.20(a’)) are very similar except

that the r = 2 plateau is slightly narrower than the r = 1 plateau and extends

over a similar proportion of the superlattice for all V > 0.5 V. It is also possible
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to see the r = 2 plateau in the F (x, V ) surface for the modified model (fig.

4.20(b’)). This means that a peak due to r = 2 forms in the θ = 45◦ G(V )

curve for the modified model (fig. 4.18(a)). We can see that this peak is wider

and less intense than the r = 1 peak on the same curve. This is because the

r = 2 plateau is narrower than the r = 1 plateau but varies in width more

slowly with V . Therefore, we see a smaller current enhancement that extends

over a wider range of V .

In summary, we see a peak due to r = 2 when using the modified model

because of the suppression of the high electric field domain. This suppression

occurs because interminiband tunnelling causes a significant rise in vd(F ) at high

F because the electrons can move faster in higher minibands. This effect is not

significant for superlattice NU2293 which has a much larger minibandgap than

superlattice NU2299 so the probability of interminiband tunnelling is negligible.

4.8 Conclusion

This chapter has considered superlattice NU2299 whose first minibandgap is

a third of the size of the corresponding gap for superlattice NU2293. We can

attempt to incorporate this effect into our models by either modifying vd(F ),

modifying vx(t), or modifying the drift-diffusion model. We found that the latter

approach proved unusable and that there are many levels of sophistication that

can be included when modifying vd(F ) or vx which give widely varying vd(F )

curves.

Therefore, we used an empirical approach to calculate a modified vd(F ) curve

by matching the resulting I(V ) curves to experimentally measured data. This

approach resulted in a vd(F ) curve that was broadly similar to, but did not

exactly match, the theoretical models for this modification. The curves were

similar enough to be able to attribute the change in vd(F ) to interminiband

tunnelling.

Making the modification to vd(F ) had a dramatic effect on the superlat-

tice electrostatics. We found that high field domain formation was completely

suppressed and that the electric field gradient was highest near the injector

contact. This caused the r = 2 plateau in F (x, V ) to increase in width which

means that the electron drift velocity is enhanced across more of the superlat-

tice. This enhancement causes a visible peak in G(V ) which is in agreement

with the experimental data.
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Fig. 4.19: Contour plots (a) showing r as a function of x and V . The contours are
in steps of 0.1 with the broken contour indicating r = 0.5 and the bold
contours indicating when r is an integer. (b-c) show 2D surface plots of
F and n respectively as functions of x and V . The solid contours indicate
when r is an integer and the broken contour indicates r = 0.5. This data is
calculated for B = 14T and θ = 0◦ with the unmodified (left) and modified
(right) vd(F ) curves.
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Fig. 4.20: Contour plots (a) showing r as a function of x and V . The contours are
in steps of 0.1 with the broken contour indicating r = 0.5 and the bold
contours indicating when r is an integer. (b-c) show 2D surface plots of
F and n respectively as functions of x and V . The solid contours indicate
when r is an integer and the broken contour indicates r = 0.5. This data is
calculated for B = 14 T and θ = 45◦ with the unmodified (left) and modified
(right) vd(F ) curves.
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5.1 Introduction

The semiclassical method for determining electron behaviour for our system,

characterised by the Hamiltonian derived in section 1.3, has been explored

in the previous chapters. This chapter will focus on obtaining the quantum-

mechanical energy eigenstates of the system. To obtain these eigenstates, we

solve Schrödinger’s equation for the full Hamiltonian, which includes the su-

perlattice periodic potential and the applied electric and magnetic fields. We

can then calculate the electron probability density functions from which we

can obtain Wigner functions. The probability density plots can be compared to

semiclassical electron orbits and the Wigner functions to Poincaré sections. The

exact procedure for determining these probability density and Wigner functions

will be developed later in this chapter.

This chapter will examine the correlation between the quantum-mechanical

and semiclassical systems and chapter 6 will look at the quantum system in

more detail.

Systems that exhibit quantum chaos have been studied for a number of sys-

tems previously(39). These include cold atom(40)(41), semiconductor (42; 43;

44; 45; 46; 47; 48; 49; 50) and optical(51) systems whose chaotic behaviour arises

from direct confinement in a quantum well. However, our system is substan-

tially different in that we need to use quantum mechanics to find even classical

chaos because we use superlattice minibands in the semiclassical model.

5.2 Quantum Mechanical Formulation of the Tilted Field System

To determine the quantum mechanical electron probability distributions, we

solve the Schrödinger equation:

ĤΨg = EgΨg (5.1)

which has an infinite number of solutions each labelled with the index g. We

will use the matrix method outlined in appendix A to find these solutions.

The quantum Hamiltonian operator is similar to the semiclassical Hamilto-

nian 1.70. However, it explicitly contains the superlattice potential rather than

the miniband dispersion curve:

Ĥ = − ~
2

2m∗

(

∂2

∂x2
+

∂2

∂z2

)

+ Veff (r) , (5.2)

where

Veff (r) = VSL(x) − eFx+
1

2
m∗ω2

C (x sin θ − (z − z0) cos θ)
2
, (5.3)
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z0 = py/eB cos θ and VSL is shown in figure 1.12. This Hamiltonian is derived in

the same way as the semiclassical Hamiltonian in Chapter 1 except that VSL(x)

and the operator − ~
2

2m∗

∂2

∂x2 for motion in the x direction are not replaced by the

dispersion curve E(k). The Hamiltonian can be written in the form

Ĥ = Ĥ0 + ∆Ĥ, (5.4)

where

Ĥ0 = − ~
2

2m∗

(

∂2

∂x2
+

∂2

∂z2

)

+ VSL(x) +
1

2
m∗ω2

Cz
2 cos2 θ (5.5)

and

∆Ĥ = −eFx+
1

2
m∗ω2

Cx
2 sin2 θ −m∗ω2

Cxz sin θ cos θ. (5.6)

We will use the solutions of the eigenequation Ĥ0Ψ
0
g = EgΨ

0
g as our basis set

for constructing the full Hamiltonian matrix. The following procedure is used

to obtain this basis set.

Because Ĥ0 contains no xz cross terms, it can be separated into x and z

components:

Ĥ0 = Ĥx + Ĥz (5.7)

where

Ĥx = − ~
2

2m∗

(

∂2

∂x2

)

+ VSL(x) (5.8)

and

Ĥz = − ~
2

2m∗

(

∂2

∂z2

)

+
1

2
m∗ω2

Cz
2 cos2 θ. (5.9)

These components are separable so a product wavefunction can be defined:

Ψ0
g = ψ0

k,α(x)ϕ0
n(z) (5.10)

where ψ0
k,α(x) is the αth solution to Ĥxψ

0
k,α = Ek,αψ

0
k,α for a given k and ϕ0

n(z)

is the nth solution to Ĥzϕ
0
n = Enϕ

0
n.

Each eigenfunction, ψ0
k,α(x), can be determined by expanding the super-

lattice potential as a Fourier series and using Bloch’s theorem as described in

appendix A. We use a numerical method in preference to an analytical method,

such as the Krönig-Penny model, because our numerical method can be easily

adapted to different superlattice potentials.

Because the Bloch functions obtained by the above procedure have infi-

nite extent along the x-direction, they are not ideal basis states for the full

wavefunctions of a finite system. An alternative orthogonal basis set that can

be constructed from the Bloch function set consists of Wannier functions(52).

These Wannier functions extend over only a few superlattice periods and are
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therefore ideal for modelling a finite structure. The general form of a Wannier

function is:

φm,α(x) = Nm,α
d

2π

∫ +π/d

−π/d

e−imkdψk,α(x)dk (5.11)

where Nm,α is a normalising factor, m defines which quantum well the Wannier

function is centred on and α defines the “band” index. There are a large number

of possible sets of Wannier functions which depend on the phase chosen for the

Bloch functions. It is important to choose this phase correctly because a poor

choice will not lead to localised Wannier functions. The maximally localised

Wannier functions, known as the Wannier-Kohn functions(53)(54), are created

using the following rules for phase:

1. If ψk=0,α(0) and ψk=π/d,α(0) are non-zero, then the phase should be chosen

such that the Bloch function ψk,α(0) is real.

2. If ψk=0,α(0) and ψk=π/d,α(0) are zero, then the phase should be chosen

such that the Bloch function ψk,α(0) is imaginary.

3. Otherwise, the x coordinate should be shifted by d/2 which will result in

one of the above situations.

Using these rules, the Wannier-Kohn functions can be determined and figure

5.1 shows the m = 0 and α = 0, 1, 2, 3 functions for superlattice NU2293. The

m 6= 0 Wannier functions for a given α are simply obtained by shifting them = 0

function by integer multiples of d along the x-axis. We will replace ψ0
k,α(x) with

φ0
m,α(x) in equation 5.10 and we have added a 0 superscript to indicate that it

is being used as a basis state.

Eigenfunction ϕ0
n(z), the second term in equation 5.10, is obtained from the

solutions to Ĥzϕn = Enϕn which is a simple harmonic oscillator Schrödinger

equation (55). These solutions are:

ϕ0
n(z) = Nnhn(βz) exp

(

−1

2
β2z2

)

. (5.12)

Here,

β =
√

m∗ωC cos θ/~, (5.13)

Nn is a normalising constant, hn are the Hermite polynomials and n = 0, 1, 2...∞.

We now have our basis states and the final solutions to Schrödinger’s equa-

tion 5.1, which contains Hamiltonian 5.2, have the form:

Ψ0
g(x, z) =

∑

m,n,α

Cg(m,n,α)φ
0
m,α(x)ϕ0

n(z) (5.14)
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Fig. 5.1: Locally maximised Wannier functions (Wannier-Kohn functions) for super-
lattice NU2293 and (a) α = 0, (b) α = 1, (c) α = 2 and (d) α = 3. Therefore,
the Wannier functions are mostly localised to a single superlattice period for
low energies (low α).

where the index g is some combination of the m, n and α indices and the

Cg(m,n,α) coefficients will be obtained from the solution to the Hamiltonian

matrix equation. In full:

Ĥ
∑

m,n,α

Cg(m,n,α)φ
0
m,α(x)ϕ0

n(z) = E
∑

m,n,α

Cg(m,n,α)φ
0
m,α(x)ϕ0

n(z). (5.15)

5.3 Construction of the Hamiltonian Matrix

As previously noted, a simple numerical solution of Schrödinger’s equation can

be obtained by diagonalising the Hamiltonian matrix (see appendix A). The

elements of this matrix are:

Hg,g′ =
〈

Ψ0
g

∣

∣

∣
Ĥ
∣

∣

∣
Ψ0

g′

〉

(5.16)

where Ψ0
g and Ψ0

g′ are basis states of the form 5.14. To construct the actual

matrix, it will be easiest to use the three minor indices, m, n and α, from

equations 5.11 and 5.12 and combine them into the major index g. In addition,

the full Hamiltonian will be divided into parts to simplify the construction of
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the Hamiltonian matrix. The final matrix elements are given by:

Hm,n,α,m′,n′,α′ =
〈

φ0
m,αϕ

0
n

∣

∣

∣
Ĥ
∣

∣

∣
φ0

m′,α′ϕ0
n′

〉

. (5.17)

To evaluate the matrix elements, the Hamiltonian will be divided into three

parts, Ĥx, Ĥz and ∆Ĥ , described by equations 5.8, 5.9 and 5.6 respectively.

The three following sections will each determine one of these matrix element

parts.

5.3.1 Evaluation of Matrix Element due to Ĥx

We define the matrix element relating to Ĥx as:

Hx;m,n,α,m′,n′,α′ =
〈

φα′,m′ϕn′

∣

∣

∣
Ĥx

∣

∣

∣
φα,mϕn

〉

(5.18)

which can be simplified to:

Hx;m,n,α,m′,n′,α′ =
〈

φα′,m′

∣

∣

∣
Ĥx

∣

∣

∣
φα,m

〉

〈ϕn′ |ϕn〉 (5.19)

=
〈

φα′,m′

∣

∣

∣
Ĥx

∣

∣

∣
φα,m

〉

δn′,n (5.20)

because the ϕ basis set is independent of x and orthonormal. Expanding out

the form of the Wannier functions using equation 5.11 gives:

Hx;m,n,α,m′,n′,α′ = N2
m,α

(

d

2π

)2 ∫ ∞

−∞

[

∫ π/d

−π/d

eim′k′dψk′,α′dk′Ĥx

×
∫ π/d

−π/d

e−imkdψk,αdk

]

dx δn′,n (5.21)

= N2
m,α

(

d

2π

)2 ∫ π/d

−π/d

∫ π/d

−π/d

ei(m′k′−mk)d

×
〈

ψk′,α′

∣

∣

∣
Ĥx

∣

∣

∣
ψk,α

〉

dkdk′ δn′,n. (5.22)

The bra-ket term in equation 5.22 simply equals the energy eigenvalues of a

Bloch function in a periodic potential (Appendix A) so
〈

ψk′,α′

∣

∣

∣
Ĥx

∣

∣

∣
ψk,α

〉

=

Ek,αδk,k′δα,α′ . Therefore, the Hx matrix elements reduce to:

Hx;m,n,α,m′,n′,α′ = Nm,α
d

2π

∫ π/d

−π/d

e−ik(m−m′)dEk,αdk δn′,n. (5.23)

where one of the normalising constants has been lost because we now only have

a single integral. This final point is not important to our calculations because

Nm,α is determined numerically.
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5.3.2 Evaluation of Matrix Element due to Ĥz

We define the matrix element relating to Ĥz as:

Hz;m,n,α,m′,n′,α′ =
〈

φα′,m′ϕn′

∣

∣

∣
Ĥz

∣

∣

∣
φα,mϕn

〉

(5.24)

which reduces to:

=
〈

ϕn′

∣

∣

∣
Ĥz

∣

∣

∣
ϕn

〉

〈φα′,m′ |φα,m〉 (5.25)

=
〈

ϕn′

∣

∣

∣
Ĥz

∣

∣

∣
ϕn

〉

δm,m′δα,α′ (5.26)

where the bra-ket term is given by the eigenvalues of a simple harmonic oscillator

(55). Therefore:

Hz;m,n,α,m′,n′,α′ = ~ωC cos θ

(

n+
1

2

)

δn,n′δm,m′δα,α′ (5.27)

5.3.3 Evaluation of Matrix Element due to ∆Ĥ

We define the matrix element relating to ∆Ĥ as:

∆Hm,n,α,m′,n′,α′ =
〈

φα′,m′ϕn′

∣

∣

∣
∆Ĥ

∣

∣

∣
φα,mϕn

〉

(5.28)

which can be reduced to:

=
1

2
m∗ω2

C sin2 θ
〈

φm′,α′

∣

∣ x2
∣

∣φm,α

〉

δn,n′

− 〈φm′,α′ |x |φm,α〉
(

eFδn,n′ +m∗ω2
C sin θ cos θ 〈ϕn′ | z |ϕn〉

)

. (5.29)

The integrals 〈φm′,α′ |x |φm,α〉 and
〈

φm′,α′

∣

∣x2
∣

∣φm,α

〉

will have to be deter-

mined numerically but this will only need to be done once per unique set of

ψk,α bases. The integral 〈ϕn′ | z |ϕn〉 has a known, analytical solution(56):

〈ϕn′ | z |ϕn〉 =

√
~√

2m∗ωC cos θ

(

δn−1,n′

√
n+ δn+1,n′

√
n+ 1

)

. (5.30)

Therefore:

∆Hm,n,α,m′,n′,α′ =
1

2
m∗ω2

C sin2 θ
〈

φm′,α′

∣

∣x2
∣

∣φm,α

〉

δn,n′

− 〈φm′,α′ |x | φm,α〉
(

eFδn,n′ +m∗ω2
C sin θ cos θ

×
√

~√
2m∗ωC cos θ

(

δn−1,n′

√
n+ δn+1,n′

√
n+ 1

)

)

. (5.31)
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5.3.4 The Full Hamiltonian Matrix

The full Hamiltonian matrix can now be constructed by adding the matrix

elements defined in equations 5.23, 5.27 and 5.31:

H = Hx +Hz + ∆H. (5.32)

Due to the complexity of the elements of this matrix, it will not be written out

in full here. The next section will consider the structure of this matrix.

5.4 Solving the Eigenvalue Problem

We can now solve the matrix problem:

H C = E C (5.33)

to give the Cg(m,n,α) coefficients which are required by equation 5.14 to deter-

mine the energy eigenfunctions. These coefficients are obtained by diagonalising

the Hamiltonian matrix and we use the dsbevx Lapack(57) routine to achieve

this. The key issue is how to combine the m, n and α sub-indices into the main

index g to arrange the full Hamiltonian matrix. In general, a matrix with its

non-zero elements close to the diagonal is easiest to diagonalise and the form of

g(m,n, α) should reflect this.

To arrange the indices optimally, the points at which the matrix will be zero

need to be considered:

• For given m and m′ indices, the full Hamiltonian matrix will not have

any guaranteed zeros because the 〈φm′,α′ |x |φm,α〉 and
〈

φm′,α′

∣

∣ x2
∣

∣φm,α

〉

integrals can take a finite value for any m and m′. Therefore m should be

one of the “inner” indices, i.e. close to the diagonal.

• For given n and n′ indices, the matrix will only be non-zero on the diagonal

(n = n′) and first sub- and super-diagonals (n = n′ ± 1) (see eqn. 5.30).

Therefore n is a good choice for the “outer” index.

• Like m, given α and α′ values will not guarantee any zeros in the matrix

and so should also be “inner” indices.

We will construct the full matrix with m as the inner index, α as the middle

index and n as the outer index. Thus the major index, g, is given by:

g(m,n, α) = n((mmax + 1) × (αmax + 1)) + α(mmax + 1) +m (5.34)
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Fig. 5.2: Scaled colourmap intensity image of the absolute values of a Hamiltonian
matrix. This matrix is for a 5 period superlattice with B = 11 T, θ = 60◦

and r = 1. The basis has only 5 n states and a single α state to reduce its
size. The decomposition of index g into m and n indices is also shown.

where the indices are numbered from zero. Index m is chosen in preference

to index α as the innermost index because it relates to the superlattice length

which will tend to be constant. This choice of m as the innermost index means

that the integrals 〈φm′,α′ |φm,α〉, 〈φm′,α′ |x |φm,α〉 and
〈

φm′,α′

∣

∣x2
∣

∣φm,α

〉

need

only be constructed once for a superlattice of a given length (fixed m range).

They can then be reused for different magnetic fields to reduce computational

time. Figure 5.2 shows an example of such a matrix with 5 m values, 5 n

values and a single α value. This figure clearly shows a main diagonal and two

off-diagonal peaks which correspond to m = m′ and n − n′ = 0,±1. Matrix

elements with m 6= m′ are very small in comparison to the m = m′ matrix

elements and cannot be seen on this plot.

We now have all the information required to determine the energy eigenvalues

and eigenfunctions for this system using equations 5.33 and 5.14.

5.5 Wigner Functions

We discussed a Wigner function method for generating a phase space map of a

wavefunction in section 2.8. The basic form of a 1D Wigner function is:

W (x, px) =
1

π~

∫ ∞

−∞
Ψ∗(x+ λ)Ψ(x − λ)e2ipxλ/~dλ (5.35)
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whereW (x, px) is the Wigner quasi-probability distribution. For a 2D wavefunc-

tion, such as Ψ(x, z), the Wigner function is four dimensional, W (x, z, px, pz),

which needs to be reduced to a 2D function of different variables, W (pz , qy), for

comparison to the semiclassical Poincaré sections. A mapping between position

and momentum can be obtained from the semiclassical Hamiltonian using the

procedure described in section 3.2.4. We obtain the transformation equations

(equations 3.9 and 3.14 in section 3.2.4):

x =
1

eF

(

−H +
q2y + p2

z

2m∗ + E(px)

)

(5.36)

and

z =
1

cos θ

(

− qy
eB

+ x sin θ
)

, (5.37)

whereH is the energy of the particular eigenstate under consideration. It should

be noted that since we are using the semiclassical Hamiltonian to derive trans-

formation equations 5.36 and 5.37, the resulting Wigner functions will only be

strictly accurate in the semiclassical limit and for an infinite superlattice. There-

fore, the Wigner function of any wavefunctions which lie close to the edges of the

spatial region spanned by our finite basis need to be considered with caution.

We require that px is zero when calculating the Wigner functions to be com-

pared with the px = 0 Poincaré sections. Because it is not possible to produce a

stroboscopic Wigner function without changing the form of the Hamiltonian, we

will restrict our Wigner function vs. Poincaré section comparison to the px = 0

plane of phase space.

A Wigner function comparable to the px = 0 Poincaré sections can now be

calculated by mapping (pz, qy) onto (x, z, px, pz) using equations 5.36 and 5.37:

W (pz, qy) →W (x, z, px = 0, pz) =
1

4π2~2

∫ ∞

−∞

∫ ∞

−∞
Ψ∗ (x+ λx, z + λz)

× Ψ (x− λx, z − λz) e
2ipzλz/~dλxdλz . (5.38)

The Wigner functions calculated using this method can be directly compared

to px = 0 Poincaré sections to see if quantum phase space patterns analogous

to stochastic webs form. The Wigner functions will also be useful in deter-

mining if any scarring of wavefunctions occurs. Scarring is an effect whereby

electron wavefunctions are localised along the paths of unstable periodic classi-

cal orbits(44)(58)(59). Such scars may manifest themselves as deviations from

the usual form of the Wigner functions(60). Scarred states are most likely to be

present in short superlattices where classical periodic orbits due to reflections
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0 |ψ|2max

Fig. 5.3: Colourmap used for eigenstate probability density, |Ψ|2, plots in this thesis.
This colourmap is non-linear in rgb colourspace to allow low intensity fea-
tures to be resolved. All figures are scaled to make full use of this colourmap.

off the ends of the superlattice are more probable.

5.6 Analysing the Quantum Data

There are three main pieces of data that we use to analyse the quantum eigen-

states. Firstly, the energy eigenvalues of the Hamiltonian will be useful when

looking at the distribution of energy levels and the transitions between them.

The eigenvalues will be plotted as E(N) curves where N is the eigenstate in-

dex (starting at N = 0 and ordered by increasing energy). Secondly, we will

consider the probability density functions, |Ψ|2, which show the spatial form

of a particular eigenstate. These probability density plots will be shown as 2D

colourplots using the colourmap defined in figure 5.3. For all the probability

density figures, x is on the horizontal axis and z on the vertical. The axes

values may vary between figures but the distance between the centres of two

small antinodes in the x direction is always the superlattice period, d, and the

x- and z-axes have the same scale. For each energy level, we can determine the

position and width of the corresponding eigenstate along the x-axis. We can

therefore plot where electrons with a particular energy are likely to be found

in the superlattice. This information will be used to understand electron trans-

port along the superlattice direction. Finally, Wigner functions will be plotted

as 2D colour images using the colourmap defined in figure 5.4. These Wigner

functions will have pz on the horizontal axis and qy on the vertical and the axis

limits will both be (−2 → 2) × 10−25 kg ms−1, unless otherwise noted. These

Wigner functions will be used to identify features that are hard to see in real

space probability density plots - similar to how Poincaré sections were used in

the semiclassical analysis.

In general, this chapter will look at two different systems. The first system

will simulate a 61 period superlattice by using a basis with m = 0 → 60.

This long superlattice is designed to give results that are largely independent

of the boundary conditions imposed by a limited basis set. We will compare

an electron’s behaviour in this system to the infinite semiclassical model. Our

second superlattice system consists of only 14 periods, which is comparable to
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0 Wmax−Wmax

Fig. 5.4: Colourmap used for Wigner function quasi-probability plots, W (x, z, px =
0, pz), in this thesis. This colourmap is scaled so low intensity features can
be seen, it is therefore non-linear in rgb colourspace. The Wigner functions
are plotted so that the centre of the colourmap is zero and the positive and
negative scaling is identical.

the NU2293 experimental system and will be used examine electron transport.

The main difference between this 14 period system and the real superlattice used

in experiments is that the model doesn’t account for the superlattice contacts in

any way. Therefore the eigenstates will be those for a superlattice with infinite

potential barriers at its ends rather than with finite barriers linked to a circuit.

Because of this lack of contacts, we will not be able to calculate any currents

directly using the quantum model. In both superlattices, unless otherwise noted,

we use n = 0 → 120 and α = 0 to construct our Hamiltonian matrix.

We use a magnetic field of B = 11 T for the long superlattice because this

value is consistent with the majority of semiclassical and experimental results

obtained. However, for the shorter system, we found it necessary to increase

the magnetic field to keep more electron states away from the contacts. We

generally use small θ values of θ = 15◦ to 30◦ because these values lead to more

regular semiclassical electron behaviour which is easier to match to quantum

eigenstates. After examining general trends at these low angles, we look at

some higher angles to see how they compare. The majority of this chapter will

be concerned with resonant values of r, typically r = 1, because the semiclassical

results have shown that novel behaviour occurs for these parameters. However,

the effect of varying r on the quantum system will also be investigated.

5.7 Energy Eigenvalues of the Superlattice

In this section, we will explore the spectrum of energy eigenvalues to initially

identify overall features and trends which we will examine in more detail later

in the thesis.

Figure 5.5 shows the energy eigenvalues of a 14 period superlattice with

B = 20 T and (a) θ = 0◦, r = 1, (b) θ = 30◦, r = 1, (c) θ = 30◦, r = 1+
√

5
2

plotted as a function of eigenstate index N . All three plots show characteristic

curving tails which are a consequence of the boundary conditions imposed by

the finite number of basis states.

We previously noted that transitions between eigenstates can be mediated
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Fig. 5.5: Energy eigenvalues, E(N), calculated for a 14 period superlattice with B =

20 T and (a) θ = 0◦, r = 1, (b) θ = 30◦, r = 1, (c) θ = 30◦, r = 1+
√

5

2
. These

plots curve at each end, which is a consequence of the finite number of basis
states used for the calculations.

by phonons with energies of tens of meV (section 1.2.2), therefore it is energy

spectrum over this range that is important when considering electron trans-

port. Figure 5.6 shows a magnification of the energy spectra for the 14 period

superlattice calculated for a range of θ values with B = 20 T and r = 1. This

figure shows a clear step structure, which implies that there is a repeating set

of eigenstates with some periodic energy increase, i.e. a staircase function com-

bined with some periodic function. At θ = 0◦ (upper curve), the eigenstates

on a step are degenerate but this degeneracy is lost as soon as the magnetic

field is tilted. This loss of degeneracy is the first evidence within the quantum

model that tilting the magnetic field causes a fundamental change in an elec-

tron’s behaviour. Electron probability distributions will be used to investigate

these steps in section 5.9.

When the system is off-resonance, the distribution of energy eigenvalues

changes dramatically. Figure 5.7 shows how the step structure changes for

non-integer values of r. When r = 1+
√

5
2 (black curve) there is no obvious

step structure for this irrational value of r and the energy eigenvalues increase

approximately linearly with increasing N . However, an altered step structure

exists for non-integer rational values of r and this is particularly strong at r = 1
2

(grey curve). We find that values of r within ∼ 5% of r = 1 (green and blue

curves) also exhibit a strong step structure which has the same size steps as

the r = 1 curve (red). We will continue analysing the effect of the resonance

condition in section 5.10.

5.8 Electron Probability Distributions for the Superlattice

Figure 5.8 shows probability density plots for a range of energy eigenstates.

These plots clearly show that there is a wide variety of electron density profiles

for a single set of parameters - in this case a 61 period superlattice with B =
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Fig. 5.6: Energy eigenvalues plotted as a function of eigenstate index N for a 14 period
superlattice with B = 20T, θ = 0◦, 15◦, 30◦, 45◦, 60◦ from top to bottom
and r = 1. These plots show the loss of degeneracy within each step as soon
as θ 6= 0◦. The step height gradually decreases as θ increases because, for
given r and B, eFd ∝ cos θ, and eFd determines the step height (see section
5.9).
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Fig. 5.7: Energy eigenvalues plotted as a function of eigenstate index N for a 14 period

superlattice with B = 20 T, θ = 30◦ and r = 1+
√

5

2
, 1, 0.99, 0.95, 0.6, 0.5,

0.4, 0.25 and 0.1 from top to bottom. These plots show the variation in step
function as r is altered. Adjacent curves are offset by 20 meV for clarity, with
only the lower (cyan) curve having no offset.
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11 T, θ = 30◦ and r = 1.

This figure shows that eigenstate probability density functions with similar

energies can take very different forms. For example, eigenfunctions (b) and

(c) occupy different regions of space while (d) overlaps both of these regions.

Eigenfunction (e) is concentrated in the region where (b) and (c) overlap. Eigen-

functions (a) and (f) both occupy subsets of the region filled by (b). Much of

this behaviour mirrors the semiclassical electron orbits seen in chapter 3. For

example, the different regions occupied by eigenfunctions (b) and (c) are similar

to the two regions of electron orbit density seen in figure 3.4(f). To explore this

correspondence, in figure 5.9 we overlay a semiclassical electron orbit on the

probability density plot of a quantum mechanical eigenfunction. This compari-

son shows that the semiclassical electron trajectory occupies almost exactly the

same region of space as the electron probability density in figure 5.8(b). Finally,

as expected, these plots show that the antinodes are located in the middle of

the quantum wells rather than in the barriers.

If the real space behaviour of an electron in the semiclassical and quantum-

mechanical models has some correspondence, it follows that there will also be a

correspondence in phase space. Figure 5.10 shows Wigner functions (a-e) calcu-

lated for energy eigenfunctions (a-e) in figure 5.8, while (f) shows the semiclas-

sical Poincaré section. Figure 5.10(d) in particular shows good correspondence

to the Poincaré section because it has maxima along many of the stochastic

filaments in the semiclassical web. In general, regions in the Wigner functions

can be easily matched to stable islands in the Poincaré section. Within these

regions, the quasiprobability repeatedly flips between positive and negative.

There is an upper limit of the real-space x spread of the wavefunction which

is imposed by the finite length of the 61 period superlattice being modelled.

The z spread of the wavefunction is limited by the number of n values used in

the basis which also causes the x spread to be limited because the wavefunction

takes a characteristic 2D shape. The dashed lines on figure 3.4(d) indicate the

x spread limits, the left hand limit is imposed by the energy of the eigenstate

and the right hand limit is, in this case, imposed by the finite number of n basis

states used. Equation 5.36 can be used to translate this limit in x spread into

a limit in ρ2 = q2y + p2
z spread. Figure 5.10 shows this ρ limit as a dashed circle

and it is clear that the Wigner functions have zero quasiprobability outside this

limit.

The major difference between the quantum and semiclassical phase spaces

is that the electron distribution in the quantum system is spread between both

“stable” and “chaotic” regions - although of course these terms have no real

meaning for a quantum system. However, in the semiclassical system, an elec-

tron trajectory is confined to either a single stable island or to the stochastic
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Fig. 5.8: Probability density plots, |Ψ(x, z)|2, for six energy eigenstates of a 61 period
superlattice calculated for B = 11T, θ = 30◦ and r = 1. The plots show
the N = (a) 1182, (b) 1200, (c) 1201, (d) 1202, (e) 1206 and (f) 1219, eigen-
states whose energies are 426.84 meV, 432.31 meV, 432.46 meV, 432.77 meV,
433.21 meV and 435.55 meV respectively. Each plot is shown on an identical
set of axes so the real-space region covered by the different energy eigenstates
can be easily compared. Plots (b) and (c) occupy different regions of space
while (d) and (e) overlap both these regions to some degree. Plots (a) and
(f) occupy subsets of the region filled by (b). The dashed lines on (d) indi-
cate the x spread of the probability density function. The colourmap used is
shown in figure 5.3 and varies from white to yellow to red to black from zero
to (|Ψ|2)max.



5.9. Explanation of the Steps in the On-Resonance E(N) Curves 150

z

x

10d

Fig. 5.9: Probability density plot for B = 11 T, θ = 30◦ and r = 1 with the corre-
sponding semiclassical electron trajectory, starting from rest, overlaid on it.
This probability density data is identical to that shown in figure 5.8(b).

web.

Figure 5.11 compares more Wigner functions and Poincaré sections, this time

calculated for θ = 30◦, 45◦ or 60◦, B = 11 T and r = 1 or 2. We can clearly

see a correspondence between the semiclassical and quantum data for these

parameters. The Wigner functions show a number of regions whose location

corresponds to that of the stable islands in the Poincaré sections. Therefore,

some quantum analogue of the stochastic filaments exists. We will examine

the effects of this confining potential and its effects on the realspace eigenstate

probability densities in section 6.1.

As θ increases, a chaotic sea forms at the centre of the Poincaré sections

and this appears as a low intensity blurred region in the Wigner functions. The

electron probability density can easily flow out of this region and be trapped in

a stable island.

This thesis will not evaluate the correspondence between semiclassical and

quantum phase spaces any further because this comparison has been carried out

in detail by others. In particular, the PhD thesis of D. Sherwood(27) devotes a

large section to this. However, we should note that the Poincaré sections corre-

spond well to the Wigner functions in all cases that were studied in producing

this thesis.

5.9 Explanation of the Steps in the On-Resonance E(N) Curves

We will now examine why there is a step function component in E(N) when

the system is on-resonance (figures 5.6 and 5.7). This section will not look at

the different eigenstates on these steps but chapter 6 will investigate them in
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Fig. 5.10: (a-e) show Wigner functions corresponding to wavefunctions (a-e) in figure
5.8 calculated for a 61 period superlattice with B = 11 T, θ = 30◦ and r = 1,
(f) shows the semiclassical Poincaré section for the same parameters. We
see that (b) covers a region of phase space corresponding to the first ring
of the semiclassical stochastic web while (c) occupies some of the second
ring. (d) and (e) both occupy a region equivalent to the first and some
of the second rings of this web. The broken circles show the limits on the
spread of the Wigner function caused by the finite superlattice. All plots
have axes from (−2 → 2)×10−25 kg ms−1 and the colourmap in figure 5.4 is
used which is white→yellow→orange→red→black from negative→positive
and orange is zero.
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(a) (b) (c)

(a) (b) (c)

(d) (e) (f)

(d) (e) (f)

Fig. 5.11: Comparison of Wigner functions (upper) to Poincaré sections (lower). B =
11T and (a) is for θ = 30◦, r = 1, (b) is for θ = 30◦, r = 2, (c) is for θ = 45◦,
r = 1, (d) is for θ = 45◦, r = 2, (e) is for θ = 60◦, r = 1 and (f) is for θ = 60◦,
r = 2. Wigner function (a) shows a number of ripple-like features which
exist between the stochastic filaments of the corresponding Poincaré section
(indicated by broken circles on Wigner plots). This region of the Poincaré
section should contain stable islands but they are not shown because it
would make the Poincaré sections too complex for these small figures (see
figure 3.15 for example). The Wigner functions for other parameters also
show this correspondence and (d) shows features which correspond to stable
islands within the first three rings of the stochastic web.
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detail.

Figure 5.12 shows the eigenvalues of the system when B = 11 T, θ = 15◦

and r = 1 and the inset clearly shows this step function in E(N). We can

explain this step by showing that a coordinate shift of (x, z) = (d, d tan θ) in

Hamiltonian 5.2 leaves the Hamiltonian invariant save for an energy shift of

−eFd(27). Shifting the Hamiltonian gives:

Ĥ(x′ − d,z′ − d tan θ) = − ~
2

2m∗

(

∂2

∂x′2
+

∂2

∂y′2

)

− eF (x′ − d)

+ VSL(x′ − d) +
1

2
m∗ω2

C ((x′ − d) sin θ − (z′ − d tan θ) cos θ)
2

(5.39)

which can be simplified, due to the periodicity of the lattice, to:

Ĥ(x′ − d,z′ − d tan θ) = − ~
2

2m∗

(

∂2

∂x′2
+

∂2

∂y′2

)

− eF (x′)

+ VSL(x′) +
1

2
m∗ω2

C (x′ sin θ − z′ cos θ)
2
+ eFd. (5.40)

Therefore,

Ĥ(x′ − d, z′ − d tan θ) = Ĥ(x′, z′) + eFd (5.41)

or

Ĥ(x′, z′) = Ĥ(x, z) − eFd. (5.42)

So, if Ĥ(x, z)Ψn(x, z) = EnΨn(x, z), then:

Ĥ(x′ − d, z′ − d tan θ)Ψn(x′ − d, z′ − d tan θ)

= EnΨn(x′ − d, z′ − d tan θ) (5.43)

substituting in for equation 5.41 and rearranging gives:

Ĥ(x′, z′)Ψn(x′ − d, z′ − d tan θ) = (En − eFd)Ψn(x′ − d, z′ − d tan θ). (5.44)

Finally, we remove the primes to leave

Ĥ(x, z)Ψn(x− d, z − d tan θ) = (En − eFd)Ψn(x− d, z − d tan θ). (5.45)

Therefore, shifting a wavefunction by (d, d tan θ) shifts the energy eigenvalue by

−eFd. The form of the wavefunction is otherwise unchanged because both the

effective potential, 1
2m

∗ω2
C(x sin θ − z cos θ)2, and the periodic potential terms

are unchanged by this shift. Therefore the energy shift is a result of the shift

by d along the electric field in x and the shift of d tan θ along z is required to

leave the magnetic potential unchanged. Therefore we see a series of steps in
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N

Fig. 5.12: Energy eigenvalue plotted as a function of state index, N , calculated for a
61-period superlattice with B = 11T, θ = 15◦ and r = 1. Closeup (inset)
of the area inside the box on the main curve shows step-like behaviour.

E(N) each shifted from the previous step by eFd.

To ensure that these steps are indeed due to shifts of wavefunctions, we

overlay two electron probability densities for eigenstates that differ in energy

by 4eFd (figure 5.13). This figure shows that the wavefunction is shifted by 4d

in x and the shift follows the magnetic field direction as expected. Figure 5.14

shows four electron probability densities corresponding to energy levels which

differ by eFd and also have a shift of (d, d tan θ) in (x, z) between each.

We use an autocorrelation method to confirm that the step height in E(N)

is exactly eFd. The density of eigenstates, D(E), is defined as:

D(E) =

∞
∑

N=0

ρ(E − EN ) (5.46)

where ρ(E−EN ) is the intensity at E of a normalised Gaussian centred on EN .

This measure has a periodicity of eFd which can be clearly seen in figure 5.15(a)

for B = 20 T, θ = 30◦ and r = 1. The autocorrelation function of D(E),

A(∆E) =

∫ ∞

−∞
D(E)D(E + ∆E)d∆E, (5.47)
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Fig. 5.13: Two overlaid eigenstates of the superlattice system with B = 11 T, θ = 15◦

and r = 1.00. The eigenstates are separated by 4eFd in energy which was
chosen so the eigenstate shift in both x and z is clear. The arrow is aligned
at θ = 15◦ to show that both states are positioned along the same magnetic
field line. Note that this figure will not be clear in greyscale so use figure
5.14 instead.

is plotted in figure 5.15(b) which shows that the period is indeed eFd. Therefore

the step height in E(N) is eFd as predicted.

5.10 Effect of r on the Energy Eigenstates

This section examines the effect on the energy eigenstates of altering the electric

field such that the resonance parameter r takes on a number of rational and

irrational values. The associated variation in the probability density plots will

be useful for qualitatively evaluating how electron transport changes with F .

We have seen in figure 5.7 that E(N) exhibits a step structure for integer and

rational, but not irrational, values of r. Figure 5.16 shows how the energy

eigenstate probability density plots vary with r for a 14 period superlattice

with B = 20 T and θ = 30◦.

We see that electron probability density is most widely spread (extended) for

integer values of r (figs. 5.16(h,m,n,o)). When r is within ∼ 5% of r = 1 (figs.

5.16(f,g,i,j)) the spatial extent of the state decreases with increasing |r−1|. For

non-integer rational values of r (figs. 5.16(a,b,c,d,e,k)), the probability density

is localised in, and coherently couples, two or more quantum wells. This differs

from when r is integer because the coupled quantum wells are no longer adjacent.

When r is irrational (fig. 5.16(l)), the eigenstate probability density is localised
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(a) (b)

(c) (d)

Fig. 5.14: Probability density plots of four eigenstates calculated for B = 11 T, θ = 45◦

and r = 1.00. The energy eigenvalues are (a) 128.1 meV, (b) 141.6 meV, (c)
155.0 meV and (d) 168.4 meV which is a shift of eFd =13.5 meV between
each. The broken lines are positioned at the same x value in each figure to
show the shift of d in x position with an eFd increase in energy.
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Fig. 5.15: (a) Density of eigenstates and (b) its associated autocorrelation function
calculated for B = 20T, θ = 30◦ and r = 1. A periodicity of eFd = 0.188 eV
is clearly present.
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(a) r = 1
10 (b)r = 1

4 (c) r = 2
5 (d) r = 1

2

(e) r = 3
5 (f) r = 0.95 (g) r = 0.99 (h) r = 1

(i) r = 1.01 (j) r = 1.05 (k) r = 3
2 (l) r = 1+

√
5

2

(m) r = 2 (n) r = 3 (o) r = 4

14d

Fig. 5.16: Probability density plots calculated for a variety of integer [(h) r = 1, (m)
r = 2, (n) r = 3 and (o) r = 4], near-integer [(f) r = 0.95, (g) r = 0.99, (i)
r = 1.01 and (j) r = 1.05], rational [(a) r = 1

10
, (b) r = 1

4
, (c) r = 2

5
, (d)

r = 1

2
, (e) r = 3

5
and (k) r = 3

2
] and irrational [(l) r = 1+

√
5

2
] values of r.

The eigenfunctions are calculated for a 14 period superlattice with B = 20 T
and θ = 30◦. Note that the wavefunctions extend over many superlattice
periods for rational and integer values of r but not for irrational values.
Extended electron states also exist when the system has an almost integer
value of r. All panels are plotted on the same axes and x and z are to scale.
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in a single quantum well.

Figure 5.17 shows the Wigner functions corresponding to the probability

density plots shown in figure 5.16. These Wigner functions help to display the

difference between eigenstates corresponding to integer, near-integer, rational

and irrational values of r. As expected, the radial extent of the wavefunction

is controlled by the resonance parameter r. For integer (figs. 5.17(h,m,n,o))

or near-integer (figs. 5.17(f,g,i,j)) values of r, the Wigner function extends

from the origin to some fixed radius which is determined by the location of the

rings in the semiclassical stochastic web. For non-integer rational values of r

(figs. 5.17(a,b,c,d,e,k)), the momentum distributions of the Wigner functions is

typically concentrated within a range of radial values, which does not necessarily

encompass the origin. When r is irrational (fig. 5.17(l)), the Wigner function is

confined to a single ring of phase space1 as would be expected for this Landau

level like state.

We will initially use a simple coherent coupling argument to explain the ori-

gin of the extended eigenfunctions. For r = 1 and θ 6=0◦, shifting an eigenstate

by (x = d, z = d tan θ) causes it to gain eFd kinetic energy. However, from the

definition of r (equation 3.6):

r =
ωB

ωC cos θ
=

Fdm∗

~eB cos θ
, (5.48)

this energy is also equal to the Landau level spacing ~ωC cos θ. Therefore, the

nth Landau level in well m is isoenergetic with the (n+ 1)th level in well m+ 1.

Because these Landau levels are centred on z and z + d tan θ respectively, they

are not orthogonal and a superposition state can form which coherently couples

both Landau levels. This effect can be seen for r = 1 in figure 5.16(h): the

m = 1 well has a single antinode of probability density, the m = 2 well has two

antinodes and so on, i.e. the probability densities within each quantum well are

similar to a series of Landau wavefunctions.

When r is non-integer but rational, the energy difference between adjacent

quantum wells is a fraction of the Landau ladder spacing so the Landau levels in

non-adjacent quantum wells are isoenergetic. Therefore, the electron probability

density plots show coherently coupled Landau levels in non-adjacent quantum

wells and appear to “skip” a number of superlattice periods. For example, when

r = 0.5 (fig. 5.16(d)), the nth Landau level in quantum well m is isoenergetic

with the (n+ 1)th Landau level in quantum well m+ 2, so a single superlattice

period is “skipped”. For r = 2 (fig. 5.16(m)), the nth Landau level in well m is

isoenergetic with the (n + 2)th Landau level in well m + 1 so only every other

Landau level component is seen and the electron probability density becomes

1 This does not mean a single ring of the stochastic web.
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Fig. 5.17: Wigner functions for the energy eigenfunctions whose probability densities
are plotted in figure 5.16 for a 14 period superlattice with B = 11 T and θ =
30◦. These plots show that integer and near-integer values of r produce the
greatest spread in phase space followed by non-integer rational and finally
irrational values of r. All panels are shown on the same axes with ranges
of (−2 → 2) × 10−25 kg ms−1. The broken circles on (h,m,n,o) indicate the
positions of the circular stochastic web filaments.
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wider in z than it does for r = 1 (figure 5.16(h)).

When r is irrational (fig. 5.16(l)), the energy difference between any pair of

quantum wells is never equal to the Landau level spacing so coherent coupling

will not occur. Therefore the electron probability density is always confined to

a single quantum well.

This simple model helps explain the step structure seen for non-integer ra-

tional values of r in figure 5.7. For example, the steps in the energy eigenvalues

for r = 0.5 (grey curve in fig. 5.7) are half the length and half the height of

those for r = 1 (red curve). The steps are lower because eF (r = 0.5)d is half

eF (r = 1)d and because every other period is skipped, there are only half as

many states on a single step so the steps are half as long. The step structures

for other rational values of r can be explained in a similar way.

However, the simple coherent coupling argument predicts infinitely extended

states which we do not observe. We see additional long-range structure in the

probability density plots which we also observed in the semiclassical dynamics.

In the semiclassical picture we attributed this effect to the coupling between

x and z which the above argument mostly ignores (other than noting that

it removes the orthogonality of the n and n + 1 Landau levels). Therefore,

combining magnetic and electric fields and a superlattice potential produces

eigenstates that cannot be explained simply.

5.11 Summary of Comparison between the Quantum and

Semiclassical Models

We have seen that the frequency ratio r has a similar effect on the electron’s real

and phase space localisation in both the quantum and semiclassical systems. In

addition, we have found a striking correspondence by directly comparing elec-

tron orbits to probability densities and Poincaré sections to Wigner functions.

Therefore, there is a clear classical↔quantum mapping between the two models

as expected from the similar Hamiltonians.

However, directly calculating transport properties, such as drift-velocity, is

not possible from the solutions of the time-independent Schrödinger equation.

A more complex (and computationally intensive) wavepacket-based quantum

model was used by S. Naylor(12) which showed that the mean position of a

wavepacket undergoes dynamics comparable to the semiclassical results. This

model was also used to investigate the effect of quantum specific behaviour

on drift-velocity. Quantum-mechanical calculations of drift-velocity showed

r = 1, 2, ... resonant peaks as well as additional features caused by electrons

tunnelling between quantum wells at high electric fields.
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5.12 The Search for Scarring

As mentioned in section 5.5, scarring occurs when electron wavefunctions be-

come localised along the paths of unstable periodic classical orbits. This ef-

fect has been previously discovered in single quantum well systems with tilted

fields(44)(60). When our superlattice is large, we see long complex quasi-

periodic electron orbits (section 3.2) and the electron probability density tends

to be localised in a similar region to these orbits. But, because the semiclas-

sical orbits are not periodic, this is not scarring. However, if the superlattice

is shorter and enclosed by infinite potential barriers, there is a possibility that

classical periodic orbits will occur similar to those seen in single quantum well

systems. Figure 5.18 shows a number of electron probability density functions

calculated for a five-period superlattice which appear to display scarring. Note

that we had to use basis states involving Wannier functions associated with

several minibands (i.e. many α values in equation 5.14) to find these scarred

states.

From this figure we can see that wavefunctions (c), (e) and (h) in particular

show regions of enhanced probability density along a single path which extends

over the whole length of the superlattice. If this effect is due to scarring then

there should be a corresponding classical periodic orbit along this path. How-

ever, our semiclassical model does not use a finite superlattice so will not show

such an orbit. Therefore it is not currently possible to compare these states to

semiclassical electron orbits and we cannot definitely say that these are scarred

states. The Wigner functions for these states (figure 5.19) do not show any

unusual behaviour or peaks in particular regions, corresponding to scarring or-

bits, which is unusual is itself given the unusual form of the probability density

functions.

Therefore, it is inconclusive whether or not scarred states exist in short

superlattices. Although some electron probability density functions appear to

show scars, there is no corresponding evidence in the Wigner functions. In addi-

tion, no classical analysis has currently been performed to see if periodic orbits

do exist along these scars of enhanced electron probability density. Because of

these issues, no further potentially scarred states will be examined in this thesis.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.18: Probability density plots of eigenfunctions calculated for a 5-period super-
lattice with B = 20 T, θ = 45◦ and r = 1 which show possible scarring.
All these functions show regions of enhanced probability density which are
dissimilar to those found for longer superlattices (e.g. figures 5.8 and 5.16).
Panels (c), (e) and (h) in particular appear to show the electron localised
along some single path which spans the full length of the superlattice.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 5.19: Wigner functions for the eigenstates whose probability densities are shown
in figure 5.18. These plots are calculated for a 5-period superlattice with
B = 20T, θ = 45◦ and r = 1. Not hotspots which would indicate scarring
are seen.
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Fig. 6.1: Energy eigenvalues plotted as a function of eigenstate index N for a 14 period
superlattice with B = 20T, θ = 0◦, 15◦, 30◦, 45◦, 60◦ from top to bottom
and r = 1. These plots show the loss of degeneracy within each step as soon
as θ 6= 0◦. The step height gradually decreases as θ increases because, for
given r and B, eFd ∝ cos θ, and eFd determines the step height (see section
5.9). This is a repeat of figure 5.6 from chapter 5

In chapter 5, section 5.9 we saw that a step structure exists in the energy

eigenstates of our superlattice system with applied electric and tilted magnetic

fields when r takes a rational value. This chapter will examine the characteristics

of the eigenstates on these steps and look at the consequences of having a

repeating structure of energy shifted eigenstates.

6.1 Probability Density Plots for Eigenstates on a Single Step in

E(N)

When θ = 0◦, a plot of E(N) consists of a perfect staircase function with

a number of degenerate eigenstates forming each step (fig. 6.1(black curve)).

However, when θ 6= 0◦, the degenerate eigenstates split and E(N) consists

of a staircase function shaped by the addition of a second function with the

same periodicity as the steps (fig. 6.1(non-black curves)). This section will

examine in detail how the electron probability is distributed in real space for

these eigenstates.

Figure 6.1 shows that the eigenstates on a single step in E(N) have a

smoother energy variation at lower θ. Thus we will initially investigate B =

11 T, θ = 15◦ and r = 1. Chapter 5 has shown that there is a good correspon-

dence between the semiclassical and quantum-mechanical systems. Therefore,

we can use equation 5.36 to estimate the x limits that the eigenstate probability

density is confined in. For θ = 15◦, we can assume from the semiclassical results

(fig. 3.4) that low energy eigenstates are localised within the first ring of the
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stochastic web and this results in the electron wavefunction being delocalised

over 93 superlattice periods in x. However, the quantum calculations only use

a 61 period superlattice for these results so the superlattice will have a trun-

cating effect on the eigenstate probability density in both real and phase space.

A similar effect was seen in section 5.8. However, we will still examine these

results because the θ = 15◦ step structure turns out to be the most regular.

Figure 6.2 shows probability density plots for the eigenstates which have the

twelve lowest energy eigenvalues on the “flat” section of a single E(N) step,

as shown in figure 6.3. These twelve wavefunctions all occupy much the same

region of the superlattice. The number of nodes along the z direction in |Ψ|2
at a particular x value is the same for all the eigenstates. However, each of

the eigenfunctions is modulated by a slower density fluctuation which generates

regions of low probability density. The number and location of these regions vary

amongst the eigenstates. We assume that these probability density functions are

different subsets of some underlying function whose approximate form, Ψmeta,

is given by:

|Ψmeta|2 = |Ψ699 + Ψ700 + Ψ701 + ...+ Ψ710|2 (6.1)

and is plotted in figure 6.4. This function resembles the probability density

plots in figure 6.2 but does not have any regions of slowly fluctuating probability

density.

We will introduce the following terminology to discuss this behaviour. The

probability density of the summed eigenfunction will be known as the meta-

probability density function and this meta-probability density function, weighted

by some envelope function, will give a particular probability density function

such as those plotted in figure 6.2.

We will refer to the set of eigenstates of a single E(N) step as a band because

they are similar in both energy and position. Therefore a transition between

any two of these states would only require a small amount of energy, which

could be obtained from acoustic phonons for example.

As an aside, figure 6.5 compares the semiclassical electron orbit starting

from rest calculated over 20 ps for B = 11 T, θ = 15◦ and r = 1 with (a) the

probability density plot of theN = 702 eigenstate (fig. 6.2(d)) and (b) the meta-

probability density function (fig. 6.4). The semiclassical orbit encompasses the

whole first ring of the stochastic web and these comparisons clearly show the

truncation of the quantum eigenstates due to the finite length of the superlattice.

However, taking this truncation into account, the semiclassical and quantum-

mechanical models both show the electron covering the same characteristic area

the the left of the end of the superlattice. Also the semiclassical electron has

to travel for ∼ 115τSL before its average motion in the x-direction reverses so
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Fig. 6.2: Probability density plots of energy eigenfunctions with adjacent energy eigen-
values calculated for a 61 period superlattice with B = 11 T, θ = 15◦ and
r = 1. These are the N = 699 → 710 eigenstates from (a) through (l).
The RHS of the figures corresponds to the end of the superlattice which is
modelled as a infinite potential barrier in our calculations. We only show
these twelve states because the envelope period becomes comparable to the
superlattice period for higher energy eigenfunctions. This makes the node
structure hard to distinguish.
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Fig. 6.3: E(N) plot showing the location of individual energy eigenvalues (circles) for
B = 11 T, θ = 15◦, r = 1 and a 61-period superlattice. A new step begins
on the E(N) curve at N ≈ 699. The eigenvalues inside the box correspond
to the eigenstate probability density plots shown in figure 6.2. Note that the
energy eigenvalues inside the box vary smoothly with N .

10d

Fig. 6.4: Meta-probability density for the eigenstates in figure 6.2 created using equa-
tion 6.1.
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(a)

10d

(b)

Fig. 6.5: Semiclassical electron trajectory calculated for B = 11 T, θ = 15◦ and r =
1 in an infinite superlattice overlaid on the corresponding (a) probability
density plot of the N = 702 eigenstate (b) meta-probability density plot,
both calculated for a 61 period superlattice. The solid line indicates where the
superlattice is truncated by the finite basis used to determine the quantum
results, meaning that the probability density is zero to the right of this line.

truncation by the superlattice is unlikely to be important in the semiclassical

model for these parameters.

We now return to the eigenstate probability density plots in figure 6.2 and

use our new terminology to describe them. The envelope function corresponding

to the lowest energy eigenstate (fig. 6.2(a)) appears to consist of a single antin-

ode along one dimension which is roughly aligned with the x-axis. Increasing N

by one (fig. 6.2(b)) adds an additional antinode to the envelope function which

causes the eigenstate probability density to split into two regions. This pat-

tern continues, with successively higher energy eigenstates having an additional

antinode in their envelope function. Figure 6.6 plots Ψ(x, z) for the N = 702

eigenstate (c.f. fig. 6.2(d)) which shows that there is a change in sign between

adjacent antinodes. This behaviour is consistent with quantisation within a box
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Fig. 6.6: N = 702 eigenfunction of a 61 period superlattice with B = 11 T, θ = 15◦

and r = 1.00. Note that the sign of the slowly varying envelope function
changes as x passes through the (arrowed) antinodes.

created by the rising electric potential on the left hand side and the finite length

superlattice on the right.

For completeness, figure 6.7 shows the Wigner functions of the twelve eigen-

states studied. These functions show radial truncation due to the finite length of

the superlattice as discussed in section 5.8, but also show an increasing number

of antinodes with increasing N . The node structure in the Wigner functions is

more complex than that in the real space probability density plots and consists

of a separate set of nodes in each stable island of the corresponding semiclassical

stochastic web.

Because our boxed state is partially formed by the end of the superlattice, we

will now change the parameters of the applied fields to see if the same behaviour

occurs when the electron eigenfunction is not truncated by the superlattice.

6.1.1 Shorter Eigenstates

From equation 5.36, we obtain the approximate eigenstate delocalisation in x,

∆x, to be:

∆x =
ρ2

max

2m∗eF
=

dρ2
max

2e~B cos θ
. (6.2)
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Fig. 6.7: Wigner functions corresponding to the twelve probability density plots shown
in figure 6.2. These are for a 61 period superlattice with B = 11 T, θ = 15◦

and r = 1. The number of antinodes clearly increases as energy increases.
The broken line in (a) and (l) shows the location of the first circular stochas-
tic filament in the corresponding Poincaré section (m). It is clear that
the Wigner functions are truncated at a radial limit which is smaller that
the radius of the first ring of the stochastic web. Both axes range from
(−2 → 2) × 10−25 kgms−1.
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Furthermore, equation 3.7 states that the circular filaments in the stochastic

web are located at the zeros of:

Jr

(

ρ
d tan θ

~

)

. (6.3)

If we choose a particular root of Jr, which corresponds to a particular circular

filament of the stochastic web, we can combine these equations and obtain:

∆x =
~(J0

r )2

2eBd tan θ sin θ
(6.4)

where J0
r is a zero Jr. Therefore, we find that ∆x varies as:

∆x ∝ 1

B sin θ tan θ
, (6.5)

so the eigenstate’s delocalisation along x decreases as both B and θ increase.

However, the semiclassical dynamics analysis in chapter 3 revealed that in-

creasing θ increases the chance that the electron will explore more rings of the

stochastic web (see figs. 3.4 and 3.11). Therefore the probability density plots

may show an increased delocalisation at large θ.

Assuming that the electron remains confined to the first ring of the stochastic

web, we find that keeping B = 11 T and setting θ = 30◦ reduces the electron

delocalisation to 22 superlattice periods. This is much shorter than our 61 period

superlattice so it should be possible to obtain results that are not truncated by

the end of the lattice.

However, it must be remembered that the quantum model produces results

with a range of energy eigenvalues. This contrasts to the semiclassical electron

orbits in seen section 3.2, which have a single energy. We therefore expect higher

energy eigenstates to explore regions of phase space corresponding to larger

rings of the stochastic web and therefore to possibly extend over more than 22

superlattice periods in real space. Figure 6.8 shows (a,b) probability density

and (c,d) Wigner function plots for the N = 1197 and N = 1198 eigenstates

respectively, calculated for B = 11 T, θ = 30◦ and r = 1. These eigenstates

clearly exist in different regions of real space which correspond to first and

second rings of the stochastic web respectively. Note that the higher energy of

eigenstate (fig. 6.8(b)) is limited by the end of the superlattice, but the lower

energy eigenstate (fig. 6.8(a)) is not.

To look for behaviour similar to that seen for θ = 15◦, we will examine the

eigenstates on a single step in E(N) whose probability density is concentrated

within the first ring of the stochastic web. We do this so our analysis is not

initially confused by eigenstates which occupy a different region of space entirely.
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Fig. 6.8: (a) and (b) show probability densities plots for the N = 1197 and N = 1198
eigenstates in a 61 period superlattice system with B = 11 T, θ = 30◦ and
r = 1. Both plots are on the same scale and the right hand border of
the plot corresponds to the end of the superlattice which is modelled by an
infinite barrier. The solid line shows the semiclassical electron orbit locus
given by equation 3.16 and the broken line shows the x limit corresponding
to the first ring of the stochastic web. (c) and (d) show the corresponding
Wigner function plots with the broken line again indicating the first ring of
the stochastic web. The axes on the Wigner functions range from (−2 →
2) × 10−25 kg ms−1.
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This restriction means that some eigenstates are ignored and hence the series

of eigenstates chosen will not be contiguous in N . Figure 6.9 shows probability

density plots of the ten eigenstates that were chosen, and figure 6.10 highlights

their energy eigenvalues on the full E(N) curve. Finally, figure 6.11 plots the

Wigner functions for these eigenstates. Note that figures 6.9(i) and 6.11(i) are

identical to (a) and (c) in figure 6.8.

These probability density plots and Wigner functions show results similar

to those obtained for θ = 15◦. The probability density plots (fig. 6.9) again

show an envelope function with a number of antinodes that increases by one

with each successive energy increase. Figure 6.12 shows that the x position of

the nodes varies with z which implies that the series of antinodes is not aligned

along the superlattice axis and does not appear to show it aligned along θ either.

However, we will assume that the antinode series is aligned along the x-axis for

simplicity. We can make this assumption because it is the x component of

electron transport that is useful for determining I(V ) relations.

The major difference between the probability density plots results at θ = 30◦

(fig. 6.9) and those at θ = 15◦ (fig. 6.2) is that the electron is no longer

confined by the edge of the superlattice but by some other, shorter, limit. The

Wigner function plots (fig. 6.11) confirm that this limit corresponds to the

first ring of the stochastic web. The Wigner functions have a distinctive pattern

which consists of a number of regions that correspond to the semiclassical stable

islands. The number of antinodes inside each of these regions varies with the

same sequence as that describing the number of antinodes in the probability

density plots.

The electron is therefore bounded on all sides by three different barriers.

The left hand barrier is due to the rising electric potential, which, in principle,

can become infinitely high. The top and bottom barriers are created by the

magnetic field gutter potential and can also become infinitely high. Finally, the

right hand barrier has some connection with the semiclassical stochastic web

and its form is non-obvious. We will refer to this barrier as a dynamical barrier

because it appears to arise from the semiclassical electron dynamics of our tilted

field system rather than from a potential energy increase.

We can easily estimate the width of the dynamical box produced by the

dynamical barrier, ∆xD, using equation 6.2. We obtain:

∆xD ≈ ρ2
max

2meF
=
ρ2

maxdm
∗

r~B cos θ
(6.6)

where ρmax is the radius of the first ring of the stochastic web given by the

first root of equation 6.3. It should be emphasised that this dynamical box only

exists if the electron wavefunctions are extended, which only occurs for rational
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Fig. 6.9: Probability density plots for ten eigenstates localised in the same region of
space calculated for a 61 period superlattice with B = 11T, θ = 30◦ and
r = 1.00. The energy eigenvalues of these eigenstates are similar but not
necessarily adjacent (fig. 6.10). The solid lines in (a) and (j) show the
semiclassical locus and the broken lines show the x limit corresponding to
the first ring of the stochastic web.
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Fig. 6.10: E(N) plot showing the location of individual energy eigenvalues (circles). A
new step begins on this E(N) curve at N ≈ 1178. The solid points (arrowed)
are the energy eigenvalues of the eigenstates shown in figure 6.9(a→j) from
left to right respectively. The broken arrow indicates the energy eigenvalue
of the eigenstate plotted in figure 6.8(b). Note that this step continues to
N ≈ 1222.

values of r. In addition, ρmax can only be easily determined for integer values

of r.

6.1.2 Form of the Dynamical Barrier and Box

We know the exact form of the potential energy function that gives rise to our

dynamical box. This function consists of a magnetic gutter potential tilted at an

angle θ to a linearly varying electric potential (see figure 1.9) which is multiplied

by a periodically varying superlattice potential aligned along the electric field.

This potential is expressed by equation 5.3. However, this function is not useful

to visualise because the interaction between the applied fields and the periodic

potential is non-trivial and ultimately results in the complex dynamics seen in

chapter 3. It would therefore be useful to obtain the form of an approximate

dynamical potential which would explain the antinodes seen in figures 6.2 and

6.9. This dynamical potential will not attempt to describe the Landau level-

like antinodes along the z-direction, which can be adequately described by the

applied field potentials, nor will it attempt to explain the nodes spaced by d

along x, which correspond to the superlattice barriers. However, it will attempt

to describe the large scale node structure seen in this chapter.

Because we are looking for a potential which describes a series of antinodes

along one direction, the magnetic field direction, we can simplify our search

to 1D potentials. Two initial candidates for this potential are an infinite well
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Fig. 6.11: Wigner functions corresponding to the ten probability density plots shown in
figure 6.9. These are calculated for a 61 period superlattice with B = 11T,
θ = 30◦ and r = 1. (k) shows the Poincaré section corresponding to these
Wigner function and the broken line on (a) and (j) indicates the position of
the first ring in the stochastic web.
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10d

Fig. 6.12: Probability density plots for the N = 1190 eigenstate calculated for a 61
period superlattice with B = 11T, θ = 30◦ and r = 1.00. This is an enlarge-
ment of figure 6.9(f). The solid lines in (a) and (j) show the semiclassical
locus and the broken lines show the x limit corresponding to the first ring
of the stochastic web. The red line shows the approximate node orientation
which does not appear to correspond to either the superlattice axis or θ.
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Fig. 6.13: (a) energy eigenvalues (circles) corresponding to the probability density
plots shown in figure 6.9. M indexes the number of large nodes seen in
these distributions which is one less than the number of antinodes. (b)
plots the gradient of (a) and shows that the energy eigenvalues do not vary
linearly with M .

with straight sides and a simple harmonic or parabolic potential, both of which

produce a series of wavefunctions that have an increasing number of nodes with

increasing energy. The energy eigenvalues of the straight walled and parabolic

potentials vary as E(M) ∝ M2 and E(M) ∝ M respectively where the eigen-

function indexed by M = 0 has a single antinode, that by M = 1 has two

antinodes and so on. We can therefore test these candidates by seeing how

E(M) varies for the eigenstates pictured in figure 6.9 (identical to just plotting

the solid points in figure 6.10). Figure 6.13 plots (a) E(M) and (b) dE(M)
dM

and clearly shows that the eigenvalues increase sublinearly with increasing M ,

E(M) ∝ M<1. This result means that a straight walled potential is ruled out.

A parabolic potential is more likely because the variation of E(M) with M is

close to linear and the deviation may arise from the more complex underlying

potential that we are attempting to abstract. Note that the potential should also

include a left hand barrier, which is formed from the rising electric potential.

Figure 6.14 plots x(t) for the semiclassical electron orbit calculated for B =

11 T, θ = 30◦ and r = 1 (fig. 3.3). There is a slow oscillation present in this

result which has a period of ∼ 11 ps and an amplitude of ∼ 23d. This slow

oscillation therefore spans the entire dynamical box and is the semiclassical

manifestation of our dynamical potential. We will use this x(t) data to estimate

the form of the dynamical potential. At x = 0, we can see that the electron

changes direction abruptly and the reflection resembles bouncing off a flat wall.

Conversely, at x = 23d, the electron reverses direction more gradually which

indicates that the potential change is also gradual. Therefore the potential of

the dynamical box appears similar to half a parabolic potential (fig. 6.15). The

left hand barrier in this potential is, of course, provided by the rising electric

potential so its gradient is eF which an order of magnitude greater than that of

the right hand parabolic barrier for these parameters.
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Fig. 6.14: Variation in semiclassical electron displacement along x with time calculated
for B = 11T, θ = 30◦ and r = 1. The slow oscillation with a period of
∼ 11 ps and length of ∼ 23d is attributed to the dynamical box. The solid
and open circles indicate where the electron is in (x, z) space (inset) at the
bottom and top of this slow oscillation respectively.
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Fig. 6.15: Sketch of a half-parabolic potential. This is our first estimate of the form
of the dynamical box which leads to the loss of degeneracy in the energy
eigenvalues (fig. 6.13).
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Fig. 6.16: Comparison of the widths of the eigenstate probability density functions,
∆x, measured from figure 6.9 (black) to the widths of the eigenstates in a
half-parabolic potential (red). These predicted widths were calculated from
equation 5.12 and the curve is scaled to the same size as the black curve so
we are only comparing relative widths rather than absolute widths.

We will now examine the quantum-mechanical probability density plots (fig.

6.9) to see if the eigenstates support this half-parabolic potential. This data

shows that the left-hand sides of the eigenfunctions all begin at approximately

the same x location. This is consistent with an abrupt barrier such as that

formed by the rising electric potential. However, the right-hand side of these

eigenfunctions shifts to higher x with increasing energy. This is consistent with

a barrier whose energy varies slowly with position such as a parabolic potential.

We can calculate how the widths of the eigenfunctions of a theoretical half-

parabolic potential vary with M from equation 5.12. Figure 6.16 compares this

predicted progression with the actual widths along x of the eigenstates in figure

6.9. This data shows that the increase in eigenfunction x width with increasing

energy is exactly predicted by the half-parabolic potential.

We can also see that the size of the antinodes in figure 6.9 varies with position

with the widest antinodes located at higher x. This is consistent with half-

parabolic potential eigenfunctions which would be similar to half of figure 6.17.

Finally, figure 6.13 has shown the the change in energy eigenvalue with M is

not dissimilar to that expected for a parabolic potential.
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Fig. 6.17: Form of the n = 6 simple harmonic oscillator (parabolic potential) wave-
function calculated from equation 5.12 where z has been replaced by x. A
half-parabolic potential eigenfunction would resemble the x > 0 part of this
function.
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Fig. 6.18: Sketch of the dynamical potential experienced by an electron in a 61 well
superlattice with B = 11 T, θ = 15◦ and r = 1. The central vertical line
indicates where the RHS of the superlattice truncates the potential with an
infinite barrier. Since this truncation does not typically occur at higher θ
we include the remainder of the curved potential for reference.

Therefore, all the evidence gathered from the θ = 30◦ results indicates that

the dynamical potential has a form similar to that shown in figure 6.15.

We will now return to the θ = 15◦ results (figs. 6.2, 6.3 and 6.7) to see if

they can be explained by a similar dynamical potential. Figure 6.2 shows that

the right hand edges of all twelve eigenstates are aligned which would appear

to disagree with the half harmonic potential. However, it must be remembered

that most (∼ 2/3) of the dynamical box is inaccessible due to the finite length

superlattice so our dynamical potential needs to have an infinite barrier added.

We also find that the left hand edges of the eigenstates are not aligned which

also disagrees with the potential sketched in figure 6.15. This conflict can be

rectified by using more than half a harmonic potential such as that sketched in

figure 6.18. The θ = 30◦ results (fig. 6.9) also show a slight shift in the LHS of

the eigenfunction with increasing energy which is consistent with this change.

To clarify this explanation, figure 6.19 shows the general form of the dynami-

cal potential for superlattices whose length (a) does not affect this potential and

(b) does cause this potential to be truncated. We also plot a series of equally

spaced energy levels in these potentials which show how the x width of the cor-

responding eigenfunctions would vary with energy. These levels help show how
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Fig. 6.19: Our second estimate of the form of the dynamical box potential including
sample energy levels. (b) is truncated by the superlattice while (a) is not.
These figures show how truncating the superlattice can lead to eigenstate
probability density plots for different energies being aligned along opposite
sides of the dynamical box. This potential is essentially a guess made from
the x lengths of the eigenfunctions.

truncating the superlattice can cause the eigenstate probability density plots to

be aligned along different sides of the dynamical box.

We can compare the probability density plots for θ = 30◦ (fig. 6.9) to the

levels in figure 6.19(a). We see that the LH edges of the two lowest energy

eigenfunctions are shifted to the right. We also see that RH edges of all the

eigenfunctions shift right with increasing energy, this causes the overall width

of the eigenfunctions to increase with energy. Therefore the potential shown

in figure 6.19(a) appears to be a good choice for the dynamical potential when

B = 11 T, θ = 30◦ and r = 1. We can also compare the eigenstate probability

density plots for θ = 15◦ (fig. 6.2) to the energy levels in figure 6.19(b). We

see that the RH edges of all the eigenfunctions are aligned and the position of

the LH edge shifts left with increasing energy until the barrier imposed by the

electric potential is met.

Therefore, the potential shown in figure 6.19(b) is a good choice for the

dynamical potential when B = 11 T, θ = 15◦ and r = 1.

6.1.3 What About the States We Skipped?

In formatting the above picture of a dynamical box, we only considered states

on a single step in E(N) that were concentrated in the region of (x, z) space

corresponding to the first ring of the stochastic web. This section will briefly

examine the form of all the eigenstates on a step in E(N).

We will calculate the eigenstates for a 14-period superlattice to reduce the

maximum number of states on a step to 14. For this shorter superlattice, we have

to increase the magnetic field strength to B = 20 T so that the first dynamical

box for θ = 30◦ is not truncated by the end of the superlattice. With B = 20 T

and r = 1, the first dynamical box is 12.3d long for θ = 30◦, 5.0d long for θ = 45◦

and 2.4d long for θ = 60◦, which is shorter than the superlattice in all cases. The

second reason for using a 14-period system is because we have experimental data
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for such a system. We will use this short superlattice throughout the remainder

of the chapter.

Figure 6.20 shows probability density plots of the 14 eigenstates on a single

step in E(N) calculated for B = 20 T, θ = 30◦ and r = 1, while figure 6.21(a)

shows E(N) for these parameters. From the results for the 61-period superlat-

tice, we expect there to be a sequence of eigenfunctions with 1, 2, 3... antinodes.

The arrows in figure 6.20 indicate the positions of these nodes. The number

of antinodes in the sequence (a), (b), (c), (d), (e), (f) appears to increase by

one each time, although two of the nodes are not obvious in (e). The nodes

are harder to distinguish in this shorter superlattice because the nodes are pro-

portionally shorter. Any regions of near-zero probability density shorter than

d will be hard to identify unless they correspond with the centre of a quantum

well. However, a dynamical box generated node in the same x position as a

node caused by the superlattice barriers will be difficult to identify.

Although the number of antinodes increases by one through figures 6.20(a→f),

it does not follow this trend for higher energy eigenstates. Instead, we find that

the number of nodes decreases by one through the sequence (g), (h), (i), (j), (l),

(m), (n) with (g) probably having 6 antinodes. The number of nodes in (g) is

hard to determine because the probability density is concentrated towards the

right of the superlattice. The eigenstate probability density plotted in figure

6.20(k) is not concentrated in the same region as the other eigenstates and only

extends across a single superlattice period.

There are therefore 13 eigenstates which exist within the dynamical box

corresponding to the first ring in to stochastic web. This is unsurprising be-

cause this box is 12.3d width which means that there should be 13 degenerate

eigenstates in it at θ = 0◦, which then split in energy for θ = 30◦.

We will now plot the eigenstates for θ = 45◦ and then go on to discuss the

antinode sequences seen in both the θ = 30◦ and θ = 45◦ results.

Figures 6.22 and 6.21(b) plot the probability density and energy eigenvalues

for the 14 eigenstates on a single step in E(N) for B = 20 T, θ = 45◦ and r = 1.

In figure 6.22, eigenfunctions (a), (d), (g), (h), (j) and (n) exist within the first

ring of the stochastic web although (g) and (h) also have a significant proportion

of their probability density outside this region. For these six states, the number

of antinodes follows the sequence 1 → 2 → 3 → 3 → 2 → 1 with increasing

energy. The remaining eigenstates exist within the second ring of the stochastic

web which should extend to 17.4d but is truncated by the superlattice. The

number of antinodes in these states goes as (b) 1, (c) 2, (e) 3, (f) 4, (g) ?, (h) ?,

(i) ?, (k) 3, (l) 2 and (m) 1, where ? indicates that the number of antinodes in

(g), (h) and (i) is unclear, but is probably 5, 5 and 4 respectively. These series

show that similar behaviour occurs in the first and second rings of the stochastic
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Fig. 6.20: Probability density plots for eigenstates N = 91 → 104 calculated for B =
20T, θ = 30◦ and r = 1 in a 14-period superlattice. The energy eigenvalues
for these states are shown in figure 6.21(a). The arrows indicate the position
of the more clearly visible nodes along x which are caused by confinement in
the dynamical box. There are probably 4 nodes in (e) and 6 in (g) although
these are hard to identify for the reason outlined in the text.
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Fig. 6.21: A single step on the E(N) curves calculated for B = 20 T, r = 1 and
(a) θ = 30◦, (b) θ = 45◦ for a 14-period superlattice. These plots show the
energies of the probability density plots in figures 6.20 and 6.22 respectively.

web so there should also be a dynamical box corresponding to the second ring.

Eigenfunctions (g) and (h) cover both these dynamical boxes so some form of

tunnelling between them is possible.

We can therefore modify our predicted form of the dynamical potential to

account for these results. The 1 → 6 → 1 sequence of antinodes found for θ =

30◦ (fig. 6.20) implies that the potential is symmetric about some characteristic

energy. Having such a closed potential would also place a finite limit on the

spread of the eigenstates along x. Because we see a similar sequence of states

in the region corresponding to the second ring of phase space for θ = 45◦ (fig.

6.22), a similar dynamical potential exists here as well. Presumably the series of

dynamical boxes is infinite with one corresponding to each ring of the stochastic

web. Figure 6.23 sketches this new form of the dynamical potential.

We can determine if this potential is accurate by plotting the spatial extents

of the eigenfunctions against their energy eigenvalues. Figure 6.24 shows such a

plot for B = 20 T, θ = 45◦ and r = 1 with an overlaid sketch of the dynamical

potential. We can see that the form of the eigenstates is broadly consistent with

the dynamical potential although the match is not exact. This is the final piece

of evidence that our approximation of the dynamic box as a series of parabolic

potentials mirrored about some energy is a good choice, and that the concept

of a dynamical box is valid.

6.1.4 Dynamical Potential Box Summary

In the previous sections we have suggested that the large scale antinode structure

along x (figs. 6.20 and 6.22) can be explained by the dynamical potential wells

shown in figure 6.23.

At this point, we should re-emphasise what this dynamical potential does

and does not model. It is not intended as an addition to the three real poten-

tials that define this system (electric, magnetic and superlattice), instead, it is
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Fig. 6.22: Probability density plots for eigenstates N = 91 → 104 calculated for B =
20T, θ = 45◦ and r = 1 in a 14-period superlattice. The energy eigenvalues
for these states are shown in figure 6.21(b). The arrows indicate the position
of the more clearly visible nodes along x which are caused by confinement
in the dynamical box corresponding to the first ring of the stochastic web.
Note that eigenfunctions (g) and (h) extend over two dynamical boxes both
only the nodes in the region corresponding to the first dynamical box are
arrowed.

1 2 3

Fig. 6.23: Sketch of our final estimate of the form of the dynamical potential. The
region inside the shape shows the allowed energy/position coordinates and
the region outside is forbidden. The dynamical boxes corresponding to
rings of the stochastic web that are progressively further from the centre
(numbered) get progressively larger. This occurs because x varies as ρ2

where ρ is radial distance is phase space. This series of boxes is created
from a number of curves with a E = B + (x − A)2 and E = B − (x − A)2

functional forms where A and B shift the position of the boxes.
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Fig. 6.24: (red) Plot of the x width of the eigenstates shown in figure 6.22 vs. their
energy eigenvalues. This data if for B = 20 T, θ = 45◦ and r = 1. (black)
Attempt to fit a parabolic dynamical potential similar to that shown in
figure 6.23 around these states. The potential is truncated at high x by
the finite superlattice length. It will not be possible to get a perfect match
between the real eigenstates and the expected form of the dynamical box
because the eigenfunction lengths are generally integer multiples of d be-
cause of the underlying superlattice potential while to dynamical box has
no such restriction.
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designed to account for the features only occur when these three real poten-

tials are combined. Thus it does not attempt to model the small scale nodes

along x which are an obvious effect of the superlattice potential. Nor does it

attempt to describe the locus which confines the electron (eqn. 3.16) which, in

a semiclassical model, is defined by the electric and magnetic field. However, it

does attempt to account for the limit on x delocalisation which is caused by the

stochastic web and is therefore due to a combination of all three potentials. It

also attempts to describe the series of energy levels which form from the same

underlying set of Landau levels.

The dynamical box model does not explicitly consider the stochastic fila-

ments which exist around the edges of the stable regions of phase space. There-

fore, the only mechanism for an eigenfunction to span multiple dynamical boxes

in the dynamical box approximation is the tunnel between them.

The next section will compare the energy level spacing between adjacent

N eigenstates to the spacing predicted from the large scale oscillations in the

semiclassical electron trajectories. The remainder of the chapter will then look

at the full spectrum of energy levels rather than just those on a single step in

E(N).

6.2 Semiclassical and Quantum Frequency Comparisons

The dynamical potential helps explain the large antinode structure seen in the

eigenstate probability density plots (figs. 6.20 and 6.22). The corresponding

semiclassical behaviour is a large scale orbit along the magnetic field direction

(fig. 6.14). If this orbit is stable and periodic, it should be possible to relate

the slow semiclassical frequency, ωS , to the quantum energy eigenvalue spacing,

∆E, using:

∆E = ~ωS . (6.7)

If this relation is true, it will provide further validity to our parabolic dynamical

box approximation.

We can measure ωS by calculating the semiclassical electron trajectories in

an identical manner to that performed in chapter 3 and Fourier transforming

x(t). Figure 6.25 shows an example Fourier transform corresponding to x(t)

calculated for an electron starting from rest with B = 11 T, θ = 30◦ and r = 1

(fig. 6.14). As expected from the form of figure 6.14, we find two frequencies,

the high frequency (∼ 4 THz) corresponds to the frequency of the Bloch and

cyclotron oscillations (remember that we are plotting f rather than ω) while the

low frequency (∼ 0.091 THz) corresponds to slow periodic oscillations within

the dynamical potential. In this analysis of the dynamical box, we will ignore
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Fig. 6.25: Fourier transform, AF T (f), of the x(t) data shown in figure 6.14. The
main plot shows high frequency peaks (∼ 4THz), and their harmonics,
which correspond to Bloch and cyclotron oscillations. The inset shows lower
frequency peaks (∼ 0.091 THz), which are the large scale oscillations caused
by the presence of the stochastic web.

the high frequency component for the same reason that we ignored the small

scale node structure in the probability density plots. This reason is simply

that the high frequency behaviour can be explained from either the magnetic

potential (cyclotron oscillations) or a combination of the superlattice and electric

potentials (Bloch oscillations). However, the low frequency behaviour arises

from a combination of all three potentials which is the specific behaviour that

the dynamical box is designed to model.

However, we cannot simply inset this value of ωS = 0.091 THz into equation

6.7 because it is calculated for a single electron starting from rest. Therefore,

this value of ωS only corresponds to a trajectory which exists on the stochastic

web but does not cover any stable islands of the semiclassical phase space. In

contrast, the Wigner functions (fig. 6.11 for example) incorporate both chaotic

and stable regions. Therefore, we must calculate ωS for a number of different

initial conditions and take some weighted average to compare to the quantum

energy level spacing. Figure 6.26 plots electron trajectories and x(t) for a variety

of stable orbits which show that slow frequencies also exist for these stable

trajectories.

To calculate our average slow frequency, ω̄S, we determine ωS for a grid of

(qy, pz) values by calculating and Fourier transforming x(t) data calculated for

these each of these starting momenta. This ωS(qy, pz) function is then weighted

by the normalised quantum Wigner function, W (qy, pz), and summed to give
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Fig. 6.26: Five semiclassical electron trajectories (left) whose initial momentum is (yel-
low) near the centre of a stable island, (black) on the stochastic web and
(blue, green, red) a range of values in between. Adjacent plots have a vari-
able offset in the z-direction for clarity. The right hand figures plot x(t)
for these same electron trajectories and each orbit shows a differing slow
frequency.
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ω̄S . This can be expressed mathematically as:

ω̄S =

∞
∑

qy=−∞

∞
∑

pz=−∞
ωS(qy, pz)W (qy, pz). (6.8)

Figure 6.27(a) shows plots ωS(qy, pz) for B = 20 T, θ = 30◦ and r = 1.

The form of ωS(qy, pz) resembles the form of both the corresponding Poincaré

section (fig. 6.27(b)) and a sample Wigner function (fig. 6.27(c)), which is

unsurprising considering that ωS(qy, pz) is generated from the same information

as the Poincaré section.

Figure 6.27(a) shows that ωS(qy, pz) is highest at the centre of the stable

islands in the stochastic web and decreases towards the edges of these islands.

The Wigner functions also tend to be concentrated in these areas (fig. 6.27(c)).

ωS(qy, pz) is very low on the stochastic filaments and these small regions will not

make a large contribution to ω̄S . Therefore, it is the electron behaviour in the

stable islands that will make the main contribution to ω̄S . This is useful because

equation 6.7 is only valid for stable orbits and orbits in stable islands are stable

by definition. The three panels on the RHS of figure 6.27 plot example Fourier

transforms for given qy and pz values. These Fourier transforms all show a single

low frequency peak with associated harmonics. Therefore these low frequency

orbits are stable.

The value of ω̄S can now be calculated, using equation 6.8, for all the Wigner

functions on a particular step in E(N). Multiplying by ~ should then give a

measure of the quantum energy level spacing (eqn. 6.7). Figure 6.28 compares

the energy level spectrum calculated from these spacings to E(N) calculated

using the quantum model. The two sets of values compare fairly well although

there is some deviation whose cause is unknown.

Figures 6.29 and 6.30 are identical to figure 6.27 but are calculated for θ =

45◦ and θ = 60◦ respectively. In both cases we see that the form of ωS(qy, pz)

(figs. 6.29(a) and 6.30(a)) is reminiscent of the Poincaré sections (figs. 6.29(b)

and 6.30(b)) and the Wigner functions (figs. 6.29(c) and 6.30(c)).

The form of ωS(qy, pz) changes as θ is increased. For θ = 45◦, ωS(qy, pz) (fig.

6.29(a)) is very irregular and low valued within the first ring of the stochastic

web. An example Fourier transform of this region (fig. 6.29(B)), shows that

a large number of frequencies are present which is a signature of unstable be-

haviour. Fortunately, these unstable orbits will not make a significant contri-

bution to ω̄S because the calculated ωS is low for the unstable regions (our

approach simply detects the lowest frequency peak in the Fourier transform).

Additionally, W (qy, pz) also tends to be low in the unstable regions because sta-

ble regions “trap” the electron probability. We still see some stable orbits within
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Fig. 6.27: Plots of (a) ωS(qy , pz), (b) the Poincaré section and (c) an example Wigner
function for B = 20 T, θ = 30◦ and r = 1. All three plots are on the same
axes which vary from (−2 → 2) × 10−25 kg ms−1. The three graphs on the
right show Fourier transforms for electron orbits starting from the (B) blue,
(Y) yellow and (G) green points on (a). Note that the ωB peak is off the scale
at 7.2 THz. The large number of white points at the edges of (a) correspond
to ωB which is ≫ ωS. ωB is only detected if the resolution of the Fourier
transform is too low to find a lower frequency peak which should always
exist. The noise in the centre of (a) does not have a significant impact on
any results calculated from this data and smoothing out the noise has no
significant impact on ω̄S. The colourmap for (a) varies linearly from black
to yellow to red to white. The broken circles on the Wigner functions show
the radius of the stochastic rings.
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Fig. 6.28: Comparison between the quantum mechanical energy eigenvalues (circles)
and the calculated semiclassical energies (squares) for a single step in E(N)
for a 14 period superlattice. B = 20T, r = 1 and θ = 30◦.

the first ring of the stochastic web for θ = 45◦, figure 6.29(Y) for example.

For θ = 60◦, the unstable region in ωS(qy, pz) (fig. 6.30(a)) extends out

to the second ring of the stochastic web and we can see the corresponding

chaotic sea in the Poincaré section (fig. 6.30(b)). Again, these unstable orbits

are characterised by a large number of low frequency peaks (figs. 6.30(B) and

6.30(Y)).

Figure 6.31 shows the comparison between E(N) calculated from the quan-

tum model and E(N) calculated from ωS(qy, pz) using the semiclassical model

for (a) θ = 45◦ and (b) θ = 60◦. These results agree to a greater degree than

those at θ = 30◦ and the θ = 45◦ match is especially good. For θ = 60◦, there

is a large deviation for N > 100. The N = 103 and 104 eigenstates are part of

the next step in the E(N) curve and are shifted by approximately eFd from the

N < 100 energy levels. Eigenstates 101 and 102 exist somewhere between these

two steps. Therefore, the discrepancy in the two methods of calculating E(N)

occurs because ~ωS can only predict the energy level spacings of eigenstates

whose eigenfunctions are localised in a similar region of space. The eFd spacing

arises from shifting the eigenfunction and so cannot be accounted for with ~ωS.

It is unclear why the match is much better for θ = 45◦ and θ = 60◦ than

for θ = 30◦ because the electron orbits for θ = 30◦ are almost all stable and

so equation 6.7 should work much better. However the match is still good and

does not represent a significant failing in our model.
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Fig. 6.29: Plots of (a) ωS(qy , pz), (b) the Poincaré section and (c) an example Wigner
function for B = 20 T, θ = 45◦ and r = 1. All three plots are on the same
axes which vary from (−2 → 2) × 10−25 kg ms−1. The three graphs on the
right show Fourier transforms for electron orbits starting from the (B) blue,
(Y) yellow and (G) green points on (a). Note that the ωB peak is off the
scale at 5.9 THz. The noise in (a) is discussed in the caption of figure 6.27.
The colourmap for (a) varies linearly from black to yellow to red to white.
The broken circles on the Wigner functions show the radius of the stochastic
rings.
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Fig. 6.30: Plots of (a) ωS(qy , pz), (b) the Poincaré section and (c) an example Wigner
function for B = 20 T, θ = 60◦ and r = 1. All three plots are on the same
axes which vary from (−2 → 2) × 10−25 kg ms−1. The three graphs on the
right show Fourier transforms for electron orbits starting from the (B) blue,
(Y) yellow and (G) green points on (a). Note that the ωB peak is off the
scale at 4.2 THz. The noise in (a) is discussed in the caption of figure 6.27.
The colourmap for (a) varies linearly from black to yellow to red to white.
The broken circles on the Wigner functions show the radius of the stochastic
rings.
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Fig. 6.31: Comparison between the quantum mechanical energy eigenvalues (circles)
and the calculated semiclassical energies (squares) for a single step in E(N)
for a 14 period superlattice. B = 20T, r = 1 and (a) θ = 45◦, (b) θ = 60◦.
The large deviation for θ = 60◦ and N > 100 occurs because the energy
eigenvalues of these states place them on a different step in E(N) to the
N ≤ 100 eigenstates. The equation ∆E = ~ωS can only account for the
spacing between eigenstates that are positioned on the same step.

This energy correspondence is the final piece of evidence in verifying our

hypothesis that the non-degenerate eigenstates on a single step in E(N) vary

in energy due to quantisation in the box shown in figure 6.23. We have found

that E(M) does not vary linearly with M as predicted by ∆E = ~ωS because

ωS varies with energy1.

6.3 Band Structure

The previous sections have shown that the degenerate set of localised eigen-

states seen at θ = 0◦ split into non-degenerate levels when θ > 0◦, which form

short bands of states with spatially extended eigenfunctions (fig. 6.24). Con-

tinuing with our previous convention, we will refer to these bands as dynamical

bands because they arise from the dynamical box and to distinguish them from

semiconductor bands and superlattice minibands. This section will look at the

structure of these dynamical bands and discuss their effect on electron transport

through the superlattice. We will continue to look at the 14-period superlattice

for which we have experimental I(V ) data. When considering these bands, it is

important to note that thermal broadening of energy levels will occur in a real

system. This thermal broadening is of the order ~/τSL which is typically a few

meV.

1 We use M , rather than N used earlier in the paragraph, because only the eigenstates in
the same dynamical box should have a separation given by ∆E = ~ωS but a full step in E(N)
may contain eigenstates in different dynamical boxes.
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Fig. 6.32: Plot of the N = 0 → 119 energy eigenstates of a 14-period superlattice
with B = 20T, θ = 30◦ and r = 1. The height of each red line indicates
each eigenstate’s energy eigenvalue and the width of the line indicates the
spatial extent of its eigenfunction along x. The superlattice and electric field
potential (black) is also shown for reference. The inset shows a magnification
of the top two bands indicating the dynamical bandwidth, ∆ED, and the
dynamical bandgap, ∆EG. The broken line shows where the first dynamical
box is expected to end so the majority of these states are confined to the
first dynamical box.

The N = 0 → 118 eigenstates for B = 20 T, θ = 30◦ and r = 1 are

shown in figure 6.32. This figure represents each eigenstate by a horizontal

line whose length shows the x width of the eigenfunctions and whose height

shows the energy eigenvalue. We will refer to such a plot as the band structure.

We generally find that the number of states in each dynamical box is equal to

the number of superlattice periods that the dynamical box extends over. The

shape of the bands in figure 6.32 resembles the expected form of the dynamical

potential of the first dynamical box2. No band due to the second dynamical

box can be seen because only a few states exist in this region (to the right of

the broken line).

This type of band picture will only emerge when r takes an integer value.

This is because the Landau levels in adjacent superlattice periods must be isoen-

ergetic to allow the eigenfunctions to extend across adjacent superlattice periods.

Extended eigenfunctions will still form for non-integer rational values of r but

they will contain gaps (see fig. 5.16). This integer r condition is identical to the

2 See figure 6.24 for an example of how this works
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Stark-Cyclotron resonance condition that must be satisfied for Wannier-Stark

hopping to occur when θ = 0◦ (section 1.2.2). The difference is that, for θ = 0◦,

an integer r enables scattering based transport but, for θ 6= 0◦, it enables coher-

ent coupling of adjacent quantum wells. This difference occurs because different

Landau eigenfunctions, ϕn(z), are orthogonal unless offset in space:

〈ϕn(z) |ϕn′(z)〉 = δnn′ (θ = 0◦) (6.9)

〈ϕn(z) |ϕn′(z + d tan θ)〉 6= 0 (θ 6= 0◦). (6.10)

The offset is, in this case, caused by the tilted magnetic field.

Figure 6.33 confirms that dynamical bands form for other values of θ and

for other integer values of r. When r = 2 (fig. 6.33(a)), two bands form per

eFd energy range. These two bands occur because the extended eigenstates for

r = 2 combine every other Landau level-like state (see fig. 5.16(m)). Therefore,

there are two possible basic eigenstates, one which combines the n = 0 Landau

level in superlattice period one with the n = 2 level in period two and so on,

the second combines the n = 1, 3, 5 ... Landau levels in adjacent periods. The

energy difference between these two possibilities is ~ωC which is 1
2eFd for r = 2.

These basic states then split into bands and a series of these bands, shifted in

energy by eFd and in position by (x = d, z = d tan θ), will occur.

When θ = 45◦, B = 20 T and r = 1 (fig. 6.33(b)), the bands are divided

into two along the x-direction (thick lines). This splitting occurs because two

dynamical boxes fit into the superlattice (the first is 5d long and the second

would be 17.4d long if it were not truncated by the finite superlattice). The

density of levels in these shorter dynamical boxes tends to be lower because there

are fewer levels in each part of the dynamical band. However, there are also

some eigenstates which extend across multiple dynamical boxes so tunnelling

between them is possible (see fig. 6.22(g) for an example of an eigenfunction

that spans multiple dynamical boxes).

When r is irrational, there are no Landau levels that are isoenergetic with

Landau levels in a different superlattice period so no coherent coupling occurs.

Therefore the eigenfunctions are localised to a single superlattice period (fig.

5.16(l)). Figure 6.34 plots the “band structure” for B = 20 T, θ = 30◦ and

r = 1+
√

5
2 which clearly shows that no dynamical bands form.

For non-integer rational values of r, the eigenstate probability density func-

tion “skips” some superlattice periods because Landau levels in adjacent periods

are not isoenergetic, but those in non-adjacent periods may be (see fig. 5.16 for

examples). Therefore the dynamical bands will contain periodic gaps along x.

Figure 6.35 shows the band structure for B = 20 T, θ = 30◦ and r = 0.5 which

appears to resemble that for r = 1+
√

5
2 (fig. 6.34). However, coherent coupling
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Fig. 6.33: Plot of the (a) N = 0 → 239 and (b) N = 0 → 119 energy eigenstates
of a 14-period superlattice with B = 20 T and (a) θ = 30◦, r = 2, (b)
θ = 45◦, r = 1. The height of each red line indicates each eigenstate’s
energy eigenvalue and the width of the line indicates the spatial extent of its
eigenfunction along x. The superlattice and electric field potential (black)
is also shown for reference. The insets show a magnification of the top
two bands indicating the dynamical bandwidth, ∆ED, and the dynamical
bandgap, ∆EG. In (a), for r = 2, we see that there are two dynamical
bands per shift of eFd in energy (e.g. the two bands inside the blue box).
The broken lines show the limit of the first dynamical box and in (b) we
can clearly see dynamical bands corresponding to both the first and second
dynamical boxes (left and right of the broken line respectively).
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Fig. 6.34: Plot of the N = 0 → 119 energy eigenstates of a 14-period superlattice with

B = 20 T, θ = 30◦ and r = 1+
√

5

2
. The height of each red line indicates

each eigenstate’s energy eigenvalue and the width of the line indicates the
spatial extent of its eigenfunction along x. The superlattice and electric
field potential (black) is also shown for reference. It is clear that no bands
form and the eigenstates are all localised to a single superlattice period.
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Fig. 6.35: Plot of the N = 0 → 119 energy eigenstates of a 14-period superlattice
with B = 20 T, θ = 30◦ and r = 0.5. The height of each red line indicates
each eigenstate’s energy eigenvalue and the width of the line indicates the
spatial extent of its eigenfunction along x. The superlattice and electric field
potential (black) is also shown for reference. Note that coherent coupling
of non-adjacent superlattice period does occur. The blue arrow indicates a
vertical transition which has an energy spacing of 2eFd. The green arrow
shows a transition which only has an energy spacing of eFd but requires a
shift in position.

still occurs between non-adjacent periods so the electron probability density is

not localised to a single superlattice period. Therefore, the bandgap for vertical

transitions is 2eFd and eFd for transitions that shift superlattice periods.

In summary, for rational values of r, we have found dynamical bands that

extend across most of the 14 superlattice periods. However, there are few indi-

vidual electron eigenfunctions that span this full distance, instead each band is

formed from states that occupy a number of dynamical boxes whose widths are

related to the radius of the rings in the semiclassical stochastic web. Therefore,

an electron can only move a short distance through the superlattice without the

influence of scattering. That said, this short distance is still much longer than

the highly localised eigenfunctions which occur when the dynamical box does

not exist (fig. 6.34). The next section will investigate the variation in the width

of these dynamical bands as a function of both B and θ.



6.3. Band Structure 203

6.3.1 Width of the Dynamical Bands

We will now investigate how the bandwidth, ∆ED of the dynamical bands varies

with B and θ. We can make two measures of this bandwidth. Firstly, if B and

r are fixed and θ is varied, then the absolute bandwidth can be plotted as a

function of θ. However, using this approach means that eFd, the energy spacing

between the centres of adjacent bands, will decrease with increasing θ because:

eFd =
reB cos θ

m∗ . (6.11)

Thus, even if the absolute bandwidth stays constant with increasing θ, the

bandgap, ∆EG, will decrease and a plot of ∆ED will not reveal the full picture.

Therefore, to see the true effect of varying θ, we can either fix B cos θ or plot

bandwidth as a fraction of eFd. This second measure of bandwidth will be

referred to as band spread, ∆ES because it measures how much of the energy

spectrum is covered by bands. The experimental data we have has fixed B or θ

so the best way to measure band spread is to calculate:

∆ES =
∆ED

eFd
. (6.12)

The above discussion applies equally for investigating the effects of varying B

rather than θ.

The particular N states which form a band vary depending on θ and B.

For example, the fifteenth dynamical band for B = 20 T and r = 1 is made

from N = 91 → 104 for θ = 30◦ and θ = 45◦, but from N = 89 → 101

for θ = 60◦ (figure 6.36). This makes determining ∆ED for a wide range of

parameters problematic because it is hard to automatically determine which

states are actually in a single band. The problem is further compounded by

the presence of interband eigenstates - eigenstates whose energy eigenvalue lies

between two bands and the eigenfunction does not appear to belong to either

band (see figure 6.37 and discussion). Figure 6.37 shows an example of these

interband states and it is clear that they do not belong to a band. Therefore,

for a 14-period superlattice, the maximum number of eigenstates in a dynamical

band is 14 but will often be lower. We tend to find that high B and θ values

cause the number of eigenstates in a dynamical band to decrease as will be

shown later.

To calculate the dynamical bandwidth automatically, we determine:

∆ED = min [E(N) − E(N −W + 1)] (6.13)

where W is the number of states we expect to find in the dynamical bands. We
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Fig. 6.36: Plot showing E(N) for B = 20 T, r = 1 and θ as marked. The arrows
indicate the lowest and highest energy eigenstates that form the fifteenth
dynamical band. Therefore, which eigenstates form a particular band can
change with θ.
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Fig. 6.37: Plot of E(N) for B = 35 T, θ = 60◦ and r = 1. The dynamical bands are
shown by the grey energy ranges and four interband states are highlighted by
the blue circles. The interband states lie over 8meV from the bands which
is much further than the thermal energy broadening of ~/τ≈ 3.75 meV.
Therefore, these interband states will never be part of the band.
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will calculate ∆ED for W = 14, 13, 12 and 11. This will obtain the bandwidth

assuming there are zero, one, two and three interband states which do not

belong to a band that we want to ignore respectively. Figure 6.38 plots these

four different bandwidths calculated for θ = 45◦, r = 1 and B = 0 → 50 T. This

figure shows that when B > 30 T, the amplitude of the W = 14 curve (black) is

much larger than the other solid curves which indicates that a single interband

state is present. The W = 13 and W = 12 curves also show a similar increase

for B > 42 T which implies that there are three interband states at these high

magnetic fields. The bandwidth for a particular B should be taken from the

up-most curve that doesn’t show a large deviation from the curves below it. We

therefore use the black curve for B ≤ 30 T, the red curve for 30 < B < 42 T

and the blue curve for B ≥ 42 T.

The broken line in figure 6.38 shows how eFd varies with B. The energy

spacing between E(N) and E(N + 14) should also be eFd so if the W = 14

bandwidth (black curve) approaches 13/14 of eFd then the bands are merged.

This is because the interband spacing is equal to, or less than, the spacing

between levels within the bands. This occurs for B < 10 T and, for these

magnetic fields, something approaching a continuum of states exists.

The variation in ∆ED with θ = 0 → 60◦ for B = 20 T and r = 1 is plotted in

figure 6.39(a). We find that bandwidth increases with increasing θ for θ < 15◦

and peaks at ∼ 11 meV. The bandwidth for θ > 15◦ decreases slightly with

increasing θ. Using the method outlined in the caption of figure 6.38, we can

tell that the band consists of 14 eigenstates for θ ≤ 52◦ and a single interband

state is present for θ > 52◦. We find that eFd is always much larger than ∆ED

so distinct bands are always present.

Figures 6.39(b-d) show the variation in ∆ED with B = 0 → 50 T for r = 1

and (b) θ = 30◦, (c) θ = 45◦, (d) θ = 60◦. For all these values of θ, the bands

merge into a series of closely packed states for B . 10 T. Above this low B limit,

the bandwidth appears to rise with increasing B in some non-linear manner and

varies between ∼ 10 meV and ∼ 20 meV. For high B, especially at high θ, there

are a large number of interband states and the dynamical bands only contain

∼ 11 levels for θ = 60◦ and B > 30 T.

We can also determine the change in band spread, ∆ES = ∆ED/eFd, as

θ and B are varied. Figure 6.40 plots the change in ∆ES corresponding to

W = 14 for θ = 0 → 60◦, B = 20 T and r = 1. The band spread increases

rapidly with increasing θ for θ < 15◦ and then increases more slowly beyond

this limit. Therefore, for varying θ, decreasing the width of the dynamical box

by increasing θ causes the dynamical band spread to increase. By comparing

with figure 6.39(a) we see this is because ∆ED is roughly constant for θ > 15◦

but eFd decreases with increasing θ.
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Fig. 6.38: Dynamical bandwidth as a function of B, ∆ED(B), calculated for θ = 45◦

and r = 1. The four curves correspond to setting W = 14, 13, 12 and
11 in equation 6.13 from top to bottom. The broken line shows eFd and
the bandwidth will always be below this value. This is because the largest
bandwidth is the energy spacing between N and N + 13 while eFd is the
spacing between N and N + 14 for a 14-period superlattice and r = 1.
We select the bandwidth as being the amplitude of the solid line that isn’t
highly different to the amplitude of all the lines below it. We therefore use
the black curve for B ≤ 30T, the red curve for 30 < B < 42 T and the blue
curve for B ≥ 42 T.
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Fig. 6.39: Bandwidth of the dynamical bands for (a) varying θ with B = 20 T and
(b-c) varying B with (b) θ = 30◦, (c) θ = 45◦ and (d) θ = 60◦. r = 1 in all
cases and the broken lines show the value of eFd.
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Fig. 6.40: Variation in bandwidth of the dynamical bands (solid line) as a fraction of
eFd, known as band spread, for varying θ at B = 20 T and r = 1. The
theoretical width of the dynamical box (broken line) is also shown. The
circle shows where the dynamical box corresponding to the first ring of the
stochastic web equals the length of the superlattice, therefore the dynamical
box becomes truncated for θ < 28◦.
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Fig. 6.41: Variation in band spread with θ for B = 20 T, r = 1 and five different super-
lattice lengths (see legend). This figure shows that region of reduced band
spread at low θ increases in size as the superlattice is shortened. We there-
fore attribute this low θ region of decreased band spread to band truncation
caused by the finite superlattice.

From the broken line in figure 6.40, we can see that the dynamical box corre-

sponding to the first ring of the stochastic web will fully fit into the superlattice

when θ & 28◦ and that the dynamical boxes for θ < 20◦ are highly truncated by

the superlattice. When the dynamical box is truncated, the dynamical bands

consist of fewer states than the untruncated band would and a reduction in band

spread is unexpected. The θ . 28◦ region where the dynamical box is truncated

and the θ < 15◦ region where the band spread is notably reduced do not totally

overlap. It therefore appears that band truncation can slightly reduce the num-

ber of states in the dynamical bands without significantly affecting the band

spread. However, the band spread is greatly reduced when the dynamical band

only contains a few states because it is severely truncated.

Figure 6.41 plots the change in band spread with θ for B = 20 T, r = 1 and

a range of superlattice lengths. This figure shows that the θ range over which

the band spread is reduced becomes larger as the superlattice is shortened. This

result shows that the reduction in band spread at low θ is at least partially due

to truncation of the dynamical box by the finite superlattice. Therefore, band

spread increases approximately linearly with increasing θ unless the dynamical

box cannot fit into the superlattice. When this occurs, the band spread is

decreased by an amount which depends on how much of the box is truncated.

Figure 6.42 plots the variation in band spread with changing B. We find

that band spread is proportional to the width of the dynamical box. This is in

contrast to the behaviour seen for varying θ which showed that increasing the

size of the box decreased band spread. The dynamical bands are truncated for

B . 13 T but no obvious variation in band spread is seen at this point. For

B < 10 T the band spread approaches one which means that the bands merge
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Fig. 6.42: Variation in bandwidth of the dynamical bands (solid line) as a fraction
of eFd, known as band spread, for varying B at θ = 30◦ and r = 1. The
theoretical width of the dynamical box (broken line) is also shown. It is clear
that ∆ED/eFd is proportional to the dynamical box width for B > 10T.
This B > 10T limit is the point at which the dynamical bands are not
merged into a continuous sequence (see figure 6.39(b)).

together and our measurements of bandwidth and band spread are meaningless.

To understand the difference between the effects of θ and B on the band

spread, we need to consider the stochastic webs. Chapter 3 has shown that θ

has a large effect on the form of the stochastic webs (fig. 3.10 for example).

θ affects both the size of the stochastic web and the width of the stochastic

filaments as well as controlling where a chaotic sea forms. In contrast, changing

B has no effect on the stochastic web and B only affects the extent of the

electron trajectories along x (fig. 3.7 and eqn. 3.12 where F ∝ B). Therefore,

our result for band spread variation with B (fig. 6.42) have shown that the band

spread is proportional to the dynamical box width because changing B changes

nothing else. However, the result for band spread variation with θ (fig. 6.40)

shows that band spread is also dependant on other factors which are controlled

by θ but not B.

We can understand the changing band spread with dynamical box width

as follows. If the dynamical box width doubles, then the number of states in

that section of the dynamical band will double. However, the spacing between

these states will halve because the characteristic frequency, ωS, of the dynamical

potential is inversely proportional to the dynamical box width. This implies that

the bandwidth will be constant with changing B and figures 6.39(c-d) support

this theory to some degree. However, the band spread is ∆ED/eFd and F ∝ B.

Therefore, the band spread should be inversely proportional to B which we see

in figure 6.42.

We would see a similar effect for θ with band spread being inversely propor-

tional to tan θ sin θ if θ did not have additional effects which overshadow this



6.4. A Hybrid Transport Model for the Dynamic Bands 210

relationship.

6.3.2 Dynamic Band Summary

This chapter has shown that, when r is rational, the energy degenerate Landau-

like eigenfunctions in different superlattice periods seen at θ = 0◦ combine into

extended eigenfunctions for θ 6= 0◦. The energy eigenvalues of the extended

eigenfunctions are split into a range of non-degenerate values. We can under-

stand the splitting between these eigenstates semiclassically via the concept of

a dynamical box. See section 6.1.4 for a description of these dynamical boxes.

The non-degenerate eigenstates form dynamical bands whose states are lo-

calised in a number of regions along the superlattice axis. The length of these

regions is determined by the size of the dynamical boxes which is in turn deter-

mined by the radius of the rings of the stochastic web.

We find that the band spread of the dynamical bands, which is defined as:

∆ES =
∆ED

eFd
. (6.14)

where ∆ED is the bandwidth, varies with both θ and B for r = 1. We find

that ∆ES increases with increasing θ (fig. 6.40) so long as the majority of the

dynamical box can fit in the superlattice. We also find that ∆ES is directly

proportional to 1/B (fig. 6.42).

The variation in dynamical box width cannot be the sole reason for these

trends because it varies as:

∆xD ∝ 1

B tan θ sin θ
. (6.15)

Therefore, increasing both θ and B decreases the dynamical box width which

contrasts with the trends in ∆ES (figs. 6.40 and 6.42). Changing B only affects

the width of the dynamical bands while changing θ also affects the form of the

corresponding semiclassical stochastic web. Therefore, ∆ES is proportional to

∆xD, but it is also affected by other parameters which are controlled by θ and

not B.

6.4 A Hybrid Transport Model for the Dynamic Bands

Finally, we propose a transport model for electrons moving through the dynam-

ical band system with reference to experimental data.

The two models of superlattice transport discussed in chapter 1 are mini-

band transport and Wannier-Stark hopping. In general, miniband transport is

valid at low electric fields where electrons are delocalised over many superlattice
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Fig. 6.43: Greyscale plots of experimental d2I/dV 2 data plotted as a function of
V = 0 → 1.8 V and B = 0 → 47 T. The data is measured for (a) θ = 0◦,
(b) θ = 15◦ and (c) θ = 30◦. (a) shows two hotspots at V ≈ 0.7 V for
B = 21 T and B = 27 T (blue circles) which correspond to Wannier-Stark
hopping transport mediated by the AlAs and GaAs phonons respectively.
(b) and (c) show a diagonal feature which corresponds to current enhance-
ment due to extended electron behaviour. Experimental data provided by
Dr D. Fowler(61).

periods. Wannier-Stark hopping is valid when equivalent eigenstates in adjacent

superlattice periods have an energy separation greater than thermal broaden-

ing. However, our dynamical bands already include the electric field and will

therefore be valid for all electric fields for which r is rational.

When θ = 0◦ or r is irrational, no dynamical bands form and either the

miniband transport or Wannier-Stark hopping model can be used depending on

the electric field. However, when θ 6= 0◦ and r is rational, dynamical bands

form and the transport picture is less clear.

Figure 6.43 shows experimental data for a 14-period superlattice system,

plotting d2I/dV 2 as a function of B and applied voltage V for three different

values of θ. The aim of this section is to qualitatively formulate an electron

transport model that explains the features in this data. It must be remembered

that voltage does not directly correspond to electric field and the semiclassical

work in chapter 3 showed that F (x) is often highly variable for a single value

of V . Therefore, it is also possible for r to take an integer value across some of

the superlattice for a range of V .

When θ = 0◦, the experimental data (figure 6.43(a)) shows a number of

features but the important points to note for this analysis are the hotspots

(circled) at V = 0.7 V for B = 21 T and B = 27 T. These hotspots correspond

to the onset of Wannier-Stark hopping transport which is mediated by AlAs and



6.4. A Hybrid Transport Model for the Dynamic Bands 212

GaAs LO phonons for B = 21 T and B = 27 T respectively. Similar hotspots

also occur for θ = 15◦ (figure 6.43(b)) but not for θ = 30◦ (figure 6.43(c)) where

these features are obscured by a broad diagonal stripe.

This diagonal region of enhanced transport seen in figures 6.43(b) and (c)

has two important properties. Firstly, it has a much larger amplitude than the

hotspots seen for θ = 0◦ and secondly, it exists for all magnetic fields up to

∼ 40 T. The cause of this current enhancement was discussed in chapter 3 using

the semiclassical model. This model showed that enhancing the distance the

electrons travel leads to a current enhancement. We therefore attribute this

diagonal stripe to be due to current enhancement corresponding to r = 1. We

can use the range of B values over which the stripe exists to tell us something

about the dynamical band structure.

The simplest electron transport model for this system is to use dynamical

band transport when r is rational and Wannier-Stark hopping when r is irra-

tional. This simple model has a number of problems. If the dynamical bands

were split into a number of dynamical boxes then scattering would be required

for electron transport along the whole superlattice. A pure miniband transport

model would therefore predict zero current as soon as the dynamical bands were

composed of more than one dynamical box. This should occur for B & 13 T at

θ = 30◦ and is not observed in figure 6.43(c). Secondly, a non-linear electric

field would cause r to vary across the superlattice, which would truncate the

dynamical bands. It would therefore be impossible to choose a single model

because r would be both irrational and rational for a single value of V . Finally,

even if the electrons were confined to a single dynamical band and managed to

move across the whole superlattice, they would enter the collector contact at a

higher energy relative to the electric potential than it left the emitter contact.

This could lead to a loss of current at high F depending on the width of the

bands in the contacts. No such loss is seen in figures 6.43(b) and (c).

Because of these problems with the pure band transport model, we suggest

the use of a mixed band and interband scattering based transport model when

r is an integer. This model will allow transport along the dynamical bands,

but also permit inter- and intraband phonon assisted scattering. Interband

scattering will only be possible if a phonon of the correct energy exists.

Using our combined model, we can calculate the parameters for which phonon

assisted interband scattering is possible. Wannier-Stark hopping at θ = 0◦ oc-

curs when the spacing between Landau levels is equal the phonon energy, known

as the magnetophonon resonance condition. In superlattice NU2293, there are

two bulk longitudinal optic (LO) phonons which have energies of 36 meV and

47 meV for GaAs and AlAs respectively. The hotspots in figure 6.43(a) occur

when the MPR condition is satisfied for these two phonon energies.
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Fig. 6.44: (a) shows the maximum (red) and minimum (yellow) energy phonons that
can cause transitions between two adjacent bands (equation 6.16). (b) shows
the phonons that can cause transitions between non-adjacent bands (equa-
tion 6.17). (c) shows that transitions can be either intra- or interband if the
bandgap is smaller than the bandwidth.

Dynamical bands form for θ > 0◦ which mean that the scattering condition

is easier to satisfy because the bands provide a range of transition energies.

In general, if the bandwidth, ∆ED, is smaller than bandgap, ∆EG, then the

phonon energy, ELO, must satisfy:

∆EG ≤ ELO ≤ ∆EG + 2∆ED (6.16)

for interband scattering to occur. There is also a possibility of scattering be-

tween non-adjacent bands and the condition for scattering between band α and

band α+ β is:

β∆EG + (β − 1)∆ED ≤ ELO ≤ β∆EG + (β + 1)∆ED. (6.17)

Finally, scattering will always be possible if ∆ED > ∆EG but this will be

intraband scattering if ELO ≤ ∆EG. Figure 6.44 shows these three conditions

graphically. The dynamical bands we have found so far are all narrower than the

LO phonon energies so intraband scattering can only be caused by low energy

acoustic phonons.

Figure 6.45 plots the magnetic fields for which phonons can cause interband

scattering for θ = 30◦ and r = 1. This figure shows that the phonon resonance

condition is satisfied for all B < 41 T, which increases to B < 45 T when

thermal broadening of ~/τSL is incorporated. These limits correspond well to

the experimental data in figure 6.43(c) which shows a reduction in the enhanced

current region for B > 40 T.

Therefore, in figure 6.43(c), the enhancement in transport occurs when r = 1

which causes the electrons to extend significantly further along the superlattice
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(a) (b)

Fig. 6.45: Figure showing when the phonon resonance condition is satisfied (b) with
and (a) without thermal broadening of ~/τ applied. The grey regions show
how the bandwidth varies with B for θ = 30◦ and r = 1 while the gaps
between these regions show how the bandgap varies. The red lines indicate
the centres of the bands. The blue arrows, and the dotted lines joining
them, show the range of B over which the 36meV GaAs phonons can cause
interband scattering events. The black arrows show the same for the 47meV
AlAs phonons. Where the bands merge (B = 8 T in (a) and B = 10T in
(b)) any phonon can cause a transition. The highest B value for which a
phonon scattering event can cause an interband transition is 41T and 45 T
if thermal broadening is considered.

axis. However, when the magnetic field reaches a critical value of B ≈ 40 T, the

current enhancement drops off because it is no longer possible for LO phonons

to cause interband scattering. This second limit is essentially a magnetophonon

resonance condition. Therefore, interband scattering is a requirement for trans-

port through our dynamical band system. The B value at which our model

predicts that the enhanced enhanced current will terminate is similar to the

measured value which suggests that our calculated bandwidths are of the cor-

rect magnitude. However, the lack of extensive experimental data means it is

not possible to further validate our transport model.

There are two further points to consider. Firstly, the rate of electron trans-

port across the short dynamical bands has not been calculated. Therefore, no

quantitative measure of current enhancement can be made using the quantum

model. Secondly, this model has assumed that the electric field is fixed at

r = 1 across much of the superlattice. The results in chapter 3 support this

assumption to some degree but use the semiclassical approximation and so may

not apply to this quantum result. Therefore, our transport model can only be

qualitatively compared to the limited range of experimental data available.
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A. GENERATION OF BLOCH STATES

The Bloch wavefunctions, ψ for a particular superlattice can be determined by

solving:

Ĥ |ψ〉 = E |ψ〉 (A.1)

where

Ĥ = − ~
2

2m∗
∂2

∂x2
+ VSL. (A.2)

If the wavefunction ψ is expanded as a linear combination of basis states:

|ψ〉 =
∑

n

An |φn〉 (A.3)

then the eigenvalue problem may be rewritten as:

Ĥ
∑

n

|φn〉An = E
∑

n

An |φn〉

=
∑

n

〈

φm

∣

∣

∣
Ĥ
∣

∣

∣
φn

〉

An = E
∑

n

〈φm |φn〉An. (A.4)

This can be represented in matrix form by:

H A = EI A (A.5)

where H =
〈

φm

∣

∣

∣
Ĥ
∣

∣

∣
φn

〉

and I is the identity matrix because 〈φm |φn〉 = δnm

due to the orthogonal basis set. Therefore, solving this matrix equation by

diagonalisation will give the required An coefficients to construct the Bloch

wavefunction ψ from bases φn.

A.1 Construction of the Hamiltonian Matrix for Bloch States

ψ obeys Bloch Theorem (eqn. 1.3) for a superlattice:

ψk(x) = eikx
∑

n

Ane
iNx (A.6)
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where uk(x), is expanded as a series of plane waves, n is an integer, An are the

coefficients required by equation A.3 and N is a reciprocal lattice vector defined

by:

N =
2πn

d
. (A.7)

The basis states are now be defined as:

φn = exp

(

i(k +
2π

d
n)x

)

. (A.8)

The Hamiltonian matrix, H, can be constructed by substituting equation A.8

into A.2. Dividing the Hamiltonian into the kinetic, K̂, and potential, P̂ , terms

will simplify the construction of the final matrix:

Ĥ = K̂ + P̂ . (A.9)

The kinetic energy component to the Hamiltonian matrix is,

Kn,m =

∫ ∞

−∞
e−i(k+ 2π

d
m)x

(

− ~
2

2m∗
∂2

∂x2

)

ei(k+ 2π
d

n)xdx

=
~

2

2m∗

(

k +
2π

d
n

)2 ∫ ∞

−∞
exp

(

i
2π

d
(n−m)x

)

dx

=
~

2

2m∗

(

k +
2π

d
n

)2

δn,m. (A.10)

The potential energy component is given by:

Pn,m =

∫ ∞

−∞
e−i(k+ 2π

d
m)xVSLe

i(k+ 2π
d

n)xdx

=

∫ ∞

−∞
e−i(k+ 2π

d
m)xale

i( 2π
d

lx)ei(k+ 2π
d

n)xdx (A.11)

(A.12)

where VSL is expanded into a series of Fourier terms weighted by al (for details

of determination of al see reference (11) for example). Therefore,

Pn,m = alδn+l,m. (A.13)

Summing K and P gives the full Hamiltonian matrixH whose size is determined

by the number, n of basis states used. This matrix is banded and has a width

determined by the number of Fourier terms used in the expansion of the periodic

potential. Typically, 1001 basis states and 2001 Fourier terms produce a dense

matrix of a sufficient size to accurately account for VSL and to produce accurate

Bloch states. A matrix of this size can be diagonalised swiftly using modern
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computers.

In practice, this matrix was solved using nag routine f02hcf, although an

equivalent lapack routine such as zheevr could also be used.
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[21] H-J Stöckmann. Quantum Chaos: An Introduction. Cambridge University

Press, 1999.

[22] E. P. Wigner. On the quantum correction for thermodynamic equilibrium.

Physics Reports, 40:749–759, 1932.

[23] M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner. Distribution

Functions in Physics: Fundementals. Physics Reports, 106(3):121–167,

1984.

[24] M. Berry. Semiclassical Mechanics in Phase Space: A Study of Wigner’s

Function. Philosophical Transactions of the Royal Society of London A,

287(1343):237–271, 1977.

[25] J. S. Hutchinson and R. E. Wyatt. Quantum Ergodicity and the Wigner

Distribution. Chemical Physics Letters, 72(2):378–384, 1980.



BIBLIOGRAPHY 221

[26] P. A. Dando and T. S. Monteiro. Quantum surfaces of section for the

diamagnetic hydrogen atom: Husimi functions versus Wigner functions.

Journal of Physics B, 27(13):2681–2693, 1994.

[27] D. Sherwood. Effect of Stochastic Webs on Electron Transport in

Semiconductor Superlattices. PhD thesis, University of Nottingham, 2003.
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