5 GHz Optical Front End in 0.35um CMOS

Li, Mengxiong (2007) 5 GHz Optical Front End in 0.35um CMOS. PhD thesis, University of Nottingham.

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (10MB) | Preview


With the advantages of low cost, low power consumption, high reliability and potential for large scale integration, CMOS monolithically integrated active pixel chips have significant application in optical sensing systems. The optical front end presented in this thesis will have application in Optical Scanning Acoustic Microscope System (O-SAM), which involves a totally non-contact method of acquiring images of the interaction between surface acoustic waves (SAWs) and a solid material to be characterized.

In this work, an ultra fast optical front-end using improved regulated cascade scheme is developed based on AMS 0.35mm CMOS technology. The receiver consists of an integrated photodiode, a transimpedance amplifier, a mixer, an IF amplifier and an output buffer. By treating the n-well in standard CMOS technology as a screening terminal to block the slow photo-generated bulk carriers and interdigitizing shallow p+ junctions as the active region, the integrated photodiode operates up to 4.9 GHz with no process modification. Its responsivity was measured to be 0.016 A/W. With multi-inductive-series peaking technique, the improved ReGulated-Cascade (RGC) transimpedance amplifier achieves an experimentally measured -3dB bandwidth of more than 6 GHz and a transimpedance gain of 51 dBW, which is the fastest reported TIA in CMOS 0.35mm technology. The 5 GHz Gilbert cell mixer produces a conversion gain of 11 dB, which greatly minimized the noise contribution from the IF stage. The noise figure and input IIP3 of the mixer were measured to be 15.7 dB and 1.5 dBm, respectively. The IF amplifier and output buffer pick up and further amplify the signal for post processing. The optical front end demonstrates a typical equivalent input noise current of 35 pA=pHz at 5 GHz, and a total transimpedance gain of 83 dB ohm whileconsuming a total current of 40 mA from 3.3 V power supply. The -3 dB bandwidth for the optical front end was measured to be 4.9 GHz. All the prototype chips, including the optical front end, and the individual circuits including the photodiode, TIA, mixer were probe-tested and all the measurements were taken with Anritsu VNA 37397D and Anritsu spectrum analyser MS2721A.

Item Type: Thesis (University of Nottingham only) (PhD)
Supervisors: Harrison, Ian
Keywords: IC CMOS
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7800 Electronics
Faculties/Schools: UK Campuses > Faculty of Engineering > Department of Electrical and Electronic Engineering
Item ID: 10368
Depositing User: EP, Services
Date Deposited: 20 Mar 2008
Last Modified: 14 Oct 2017 10:31
URI: https://eprints.nottingham.ac.uk/id/eprint/10368

Actions (Archive Staff Only)

Edit View Edit View