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Abstract

This thesis discusses the development of a novel scanning capacitance microscope

(SCM) that enables the investigation of the local capacitance and conductivity of sur-

faces and near-surface nanostructures at cryogenic temperatures and high magnetic

fields.

Simultaneous atomic force microscopy (AFM) and SCM measurements can be made

at a temperature of 1.5K and a magnetic field of 12T. The AFM/SCM sensor is based

on a quartz-tuning fork with an etched metal tip. SCM measurements are made using

an RF tuned filter design which allows changes in capacitance to be measured with

sub-attofarad resolution and a bandwidth of 200 Hz.

Test measurements were made over an evaporated gold film. The capacitance dis-

tance curve was recovered from the measured quantities using a deconvolution scheme

normally used for force-distance curves.

Measurements have been made of a two-dimensional electron gas in the quantum

Hall effect (QHE) regime. Highly conductive stripes form near the edge of the sample

at integer Landau level filling factors in agreement with theoretical predictions. These

measurements are the first direct imaging of the compressible stripes at the physical

edge of a Hall bar device. Measurements were also made by point spectroscopy in a

region that was locally depleted. Around this region a ring-shaped stripe of considerably

larger width than at the sample edge is observed. The increased width was explained

in terms of a shallower potential gradient compared to the physical edge of the sample.

Preliminary measurements have demonstrated that the microscope is capable of

imaging edge states whilst passing current through the device.

vii



Chapter 1

Introduction

1.1 The quantum Hall effect

The quantum Hall effect (QHE) is a fascinating macroscopic quantum phenomenon

which occurs in two-dimensional electron gases (2DEG) at low temperatures and strong

perpendicular magnetic fields. It was discovered in 1980 when Klaus von Klitzing

was investigating the properties of a Si-MOSFET device at low temperature and high

magnetic fields [1]. The QHE is characterized by plateaus in the Hall resistance at

integer multiples of e2/h. The amazing result is that this quantization is accurate to one

part in ten million and is indifferent to disorder, or sample geometry. At corresponding

magnetic fields the longitudinal resistance falls to zero, indicating a dissipationless flow

of current. In 1985 von Klitzing was awarded the Nobel prize for his discovery.

The behaviour of charged particles in a magnetic field is important in a wide range

of fields, for example high-energy physics, atomic physics and astrophysics. Since the

discovery of the quantum Hall effect in 1980, more than 7000 publications have been

written on the subject. There are publications linking the QHE to the physics of

quarks [2], black hole theories [3] and string theory [4]. The main application of the

QHE is as a resistance standard [5].

In spite of the extensive experimental and theoretical work, some fundamental ques-

tions remain, (for example, the influence of the device edges or the mechanism behind
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the breakdown at high currents [6]).

The quantum Hall effect is discussed in detail in Chapter 2.

1.2 Scanning probe microscopy

The invention of the first optical microscope 400 years ago increased understanding of

the world by enabling objects too small to be visible to the eye to be seen for the first

time. Since its invention the magnification of the microscope has increased from a few

hundred to nearly a million. In 1980 the scanning probe microscope was invented. This

technique measures an interaction between a sharp probe and a surface and enables

the measurement of physical properties of materials on a nanometre scale.

The first example of a scanning probe microscope (SPM) was the scanning tun-

nelling microscope (STM), which was invented in 1982 by Binnig and Rohrer [7]. The

STM measures the tunnel current between a sharp conductive tip and a conductive

sample. Within a year of its discovery atomic resolution of the silicon 7 × 7 recon-

struction was achieved [8]. This marked a watershed in microscopy techniques as it

was now possible to image surfaces at the atomic level in three dimensions. A whole

family of scanning probe microscopes has been developed enabling a huge range of local

properties to be measured.

Atomic resolution on the surfaces of solids [9] and force spectroscopy of single chemi-

cal bonds have been demonstrated using atomic force microscopy (AFM) [10]. Scanning

near-field optical microscopy (SNOM) has been used to measure the optical spectra of

single molecules [11] and perform lithography on a molecular scale [12]. The STM can

be used to manipulate single atoms or molecules [13]. Magnetic force microscopy can

be used to investigate magnetic structure on data storage devices [14].

Scanning probe microscopy is discussed in detail in Chapter 3.
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1.3 Overview of thesis

This thesis discusses the development of a low-temperature scanning capacitance micro-

scope and measurements made of the quantum Hall effect. The structure of the thesis

is as follows: Chapter 2 gives a short introduction to the physics of two-dimensional

electron gases focusing on electron transport in GaAs/AlGaAs heterostructures at high

magnetic fields. Chapter 3 gives an overview of scanning probe microscopy. In Chap-

ter 4 the development of the low-temperature scanning probe microscope is described.

In Chapter 5 the capacitance detection scheme is described. In Chapter 6 measure-

ments over a gold film are discussed. In Chapter 7 measurements of a near surface

2DEG at zero field and in the quantum Hall regime are presented. Chapter 8 contains

a brief summary and suggestions for future work.



Chapter 2

The Quantum Hall Effect

2.1 Introduction

The quantum Hall effect (QHE) is observed in a two-dimensional electron gas (2DEG)

at low temperature and high magnetic field. The effect was discovered in 1980 by Klaus

von Klitzing whilst investigating the transport properties of a Si-MOSFET device [1].

Figure 2.1(a) is a schematic diagram of transport measurements made on a Hall bar.

A current I flows in a 2DEG of width W with a magnetic field B applied perpendicular

to the plane of the sample. A longitudinal voltage Vxx is measured between two voltage

probes separated by a distance L. At the same time, the transverse or Hall voltage VH

is measured. Figure 2.1(b) shows a typical measurement of the longitudinal resistance

Rxx = Vxx
I and Hall resistance RH = VH

I for a GaAs heterostructure sample as a

function of magnetic field at low temperature. The classical Drude model predicts

that the longitudinal resistance should be independent of field and that the transverse

or Hall resistance should increase linearly with field. At low temperatures and low

magnetic fields the behaviour of the 2DEG is described by the classical model. At high

fields the longitudinal resistivity oscillates with 1/B periodicity and plateaus appear

in the Hall resistance. The two main features of the QHE effect are plateaus in the

Hall resistance at RH = 1
n

h
e2 (where n = 1, 2, 3, 4 . . .), and at corresponding fields the

longitudinal resistance falls nearly to zero.
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(a) (b)

V
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Figure 2.1: (a) Schematic showing transport measurements with a Hall bar geometry. (b) A

typical magnetoresistance measurement for a GaAs heterostructure at low temperature.

The quantization of the Hall resistance has been shown to be independent of host

material, device and plateau number at a level of a few parts in 1010. Since 1990 the

QHE has been used as a secondary standard of electrical resistance [5].

2.2 Formation of 2DEG in a GaAs heterostructure

In a 2DEG the electrons are quantum mechanically confined in one spatial direction.

A 2DEG can be formed in a number of types of system, including electrons trapped

on the surface of liquid He below 2.2K, metal-oxide-semiconductor space charge layers,

and semiconductor heterostructures. The systems used in this work are GaAs/AlGaAs

heterostructures grown by MBE [15]. These two materials have different band gaps

which results in a 2DEG accumulating at their interface.

A layer of GaAs a few µm thick is grown onto a GaAs(100) wafer, followed by a

layer of Al0.3Ga0.7As. The interface between these two layers is where the 2DEG is

formed. A spacer layer of AlGaAs is then grown into which the dopants are added

before a further layer of GaAs is deposited. Finally, a capping layer of GaAs is grown

to protect the structure. Separating the dopants from the 2DEG by a spacer layer is
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Ionized
donors

(a) (b)
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EV
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Figure 2.2: (a) Schematic of the layers in a heterostructure used to form a 2DEG. (b) Band

diagram at the heterojunction between AlGaAs and GaAs. Figure from [16].

called modulation doping. This technique reduces Coulomb scattering, with the aim of

increasing the mobility. The donors can be introducing over a number of layers referred

to as volume doping or to a single monolayer known as δ-doping.

Figure 2.2 shows the layer structure and band diagram of a near surface 2DEG het-

erostructure. A ratio of gallium to aluminium of 7:3 in AlGaAs gives a crystal structure

with a lattice constant nearly identical to GaAs, enabling an atomically sharp interface

to be realised without distorting the lattice. The difference in the band gap between

the two materials introduces a discontinuity in the conduction band at the interface.

Donors in the AlGaAs layer are easily ionized and some of these donor electrons diffuse

into the GaAs setting up a potential gradient. The potential gradient from the migra-

tion of donor electrons and the band gap discontinuity creates a triangular potential

well in the conduction band [17]. At low temperature electrons are confined in the

growth direction but are free to move orthogonally and form a 2DEG. They occupy

states within a two-dimensional Fermi circle of radius kF . The density of states in two

dimensions is given by [17]:
dn

dE
=

4πm∗

h̄2 (2.1)
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where m∗ is the effective mass. Note that the density of states is independent of energy

unlike the three-dimensional case. In the following section the effect of a magnetic field

perpendicular to the interface is explored.

2.3 Electron wavefunctions in a magnetic field

2.3.1 Classical analogy

Classically, electrons in a uniform magnetic field B execute circular trajectories in

the plane normal to the field whilst motion parallel to B, defined as the z-axis, is

unaffected. The circular trajectories are known as cyclotron orbits and have a constant

angular frequency ωc, known as the cyclotron frequency:

ωc =
eB

m∗ (2.2)

and an orbit radius Rc, known as the cyclotron radius:

Rc =
√

2m∗EK

eB
(2.3)

where EK is the kinetic energy.

In this classical description the angular frequency is independent of the energy

whilst the amplitude is proportional to the energy. This behaviour is reminiscent of a

harmonic oscillator and this will be reflected in the quantum-mechanical results derived

in the next section.

2.3.2 Quantum-mechanical description

In this section the solution of the Schrödinger equation is considered for independent

two-dimensional spinless electrons in a magnetic field. The following derivation can

be found in various forms in the literature and in the following section the method

presented by Prange is summarised [18].

The Schrödinger equation for a single electron in an electromagnetic field is given

by: [
1

2m
(ih̄~∇+ e ~A)2 + V

]
Ψ = EΨ (2.4)
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where V is the electric potential and ~A is the vector potential of the magnetic field [19].

For a 2DEG with no boundaries and the growth direction defined as the z-axis then

V (x, y) = 0 and V (z) is the potential well confining the electrons. For a magnetic field

in the z-direction (perpendicular to the interface) and using the Landau gauge for the

vector potential, in which ~A = (0, Bx, 0), the Schrödinger equation can be rewritten

as:

− h̄2

2m∗
∂2Ψxy

∂x2
+

1
2m∗

(
−ih̄

∂

∂y
+ eBx

)2

Ψxy = EΨxy (2.5)

expanding the inner bracket:
[
− h̄2

2m∗∇2 − ieh̄Bx

m∗
∂

∂y
+

(eBx)2

2m∗

]
Ψxy = EΨxy (2.6)

The magnetic field produces two terms: a parabolic term which tends to confine

the wavefunctions in x, and a first derivative which couples x and y, analogous to the

Lorentz force.

The vector potential does not depend upon y which suggests that the wavefunction

should be a product of a plane wave in y with an unknown function of x. Substituting

Ψxy = exp(iky)ψ(x) then:

[
− h̄2

2m∗
d2

dx2
+

1
2
m∗ω2

c

(
x +

h̄k

eB

)2
]

ψ(x) = Eψ(x) (2.7)

Equation 2.7 has the same form as the one-dimensional harmonic oscillator equation

with the motion centred at the point xk = −h̄k/eB. The length scale is the magnetic

length lB =
√

h̄/eB and is of the order 50-100 Å. Note that this is independent of

material properties. The energies and wavefunctions for the motion in the xy plane are

then given by:

Enk =
(

n +
1
2

)
h̄ωc (2.8)

ψnk(x, y) ∝ Hn−1

(
x− xk

lB

)
exp

[
−(x− xk)2/2l2B

]
exp(iky) (2.9)

where n = 1, 2, 3 . . . and Hn are Hermite polynomials.
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The energy depends only on n not k and the constant density of states found

at zero field collapses into a series of δ-functions with energies given by Eqn. 2.8.

These are known as Landau levels (LLs). The wavefunctions are plane waves in the

y-direction with different k values spatially separated in the x-direction. The spread of

the wavefunction in the x-direction ∆xk is given by magnetic length lB which depends

on the magnetic field.

The distinction between x and y is due to the choice of gauge, it would have been

possible to choose a circularly symmetric vector potential and this symmetry would have

been reflected in the wavefunctions. Irrespective of the choice of gauge the eigenvalues

and underlying physics are the same.

Consider a sample with dimensions Lx × Ly, using periodic boundary conditions

then the k vectors of the plane waves in the y-direction are separated by ∆k = 2π/Ly

and the separation in x is ∆xk = h̄∆k
eB therefore the total number of states N is given

by:

N =
Lx

∆xk
=

eB

h
LxLy (2.10)

or that the number of states per unit area of a full Landau level nL = eB/h. These

definitions do not include a factor of two for spin as the up and down spin states are

not degenerate in a magnetic field.

As the magnetic field increases, the separation in energy between the Landau levels

increases but so too does the number of states in each Landau level. The density of

states averaged over a number of Landau levels remains the same as in the zero field

case. The effect of the magnetic field is to condense the continuous distribution of

energies into discrete Landau levels.

Most experiments are carried out with a constant density of electrons, ns, and as a

result the number of occupied Landau levels changes with magnetic field. The number

of occupied Landau levels is called the filling factor, ν, and is given by:

ν =
ns

nL
=

h

eB
ns (2.11)

At integer filling factors then ns = eB
h . Substituting this into the expression for the

classical Hall effect [20] RH = B/ens this gives RH = h
ie2 as in the experiments. This
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can explain why the quantum Hall effect is seen for specific values of magnetic field but

it cannot explain the presence of plateaus in the Hall resistance. The plateaus are a

consequence of disorder in the system which is discussed in the next section.

2.4 Effect of disorder

The results so far are for an ideal system with no scattering. In a real sample defects

cause scattering and potential fluctuations which result in the Landau levels acquiring

a characteristic width Γ. This can be estimated from the scattering time τ where Γ is

given by [17]:

Γ =
τ

h̄
(2.12)

Prange solved the Schrödinger equation with the addition of a single δ-function

impurity potential [21]. The result of this is that each Landau level has a single localized

state with an energy well above or below the Landau level energy. This localized state

carries no current. Extending this to a system of many defects or other potential

fluctuations, and in a sufficiently strong magnetic field, then the Landau levels will be

broadened into a band. The central part of the band consists of extended states and

away from this in the tails of the distribution there are localized states which cannot

carry current.

At low magnetic fields the separation of the Landau levels is smaller than their char-

acteristic width and they overlap forming a continuous density of states, see Fig. 2.3(a).

At high magnetic fields then the Landau levels are well separated, the extended states

are found at the centre of the Landau levels and the localized states in the tails of the

distribution, see Fig. 2.3(b). The density of states is high in the centre of the Landau

levels and low in the gaps between Landau levels. At the highest magnetic fields then

spin splitting of the Landau levels into two sublevels is observed, see Fig. 2.3(c).

The density of states at the Fermi energy depends upon the filling factor. At integer

filling factors the Fermi energy lies in a gap between Landau levels where the density

of states is low. At half integer filling factors the Fermi level lies in the centre of a
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Figure 2.3: The DOS of a 2DEG in a magnetic field. (a) At low magnetic fields the separation

of the Landau levels is smaller than their width. (b) At high magnetic fields the Landau levels

are well separated. The centre of the Landau bands are populated by extended states (dark

shading) and the tails by localized states. (c) At the highest fields then spin splitting means

that the Landau levels split into two sublevels.

Landau level where the density of states is high. A number of observable properties of

a 2DEG depend on the DOS at the Fermi energy, including, the heat capacity [22] and

conductivity. As a result these depend strongly upon filling factor.

At zero temperature the only states that can carry current are the extended states.

As the Fermi energy passes through the region of localized states the occupation of

extended states does not change. These are the only states to carry a current and as

a result the Hall resistance will not change giving rise to a plateau. Simultaneously

the longitudinal resistance vanishes as only localised states are in the vicinity of the

Fermi energy. As the Fermi energy approaches the next Landau level then the longitu-

dinal resistance becomes finite and the Hall resistance makes the transition to the next

plateau.

This argument is missing one important detail. If some of the electrons are tied up

in localized states then it is incorrect to use the number of states in a Landau level

as the total number of carriers. If this was a factor then the Hall resistance would

depend upon the degree of disorder in a given sample, something which is not observed

experimentally. However, it has been shown that electrons passing an impurity speed
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up and this effect is able to compensate for electrons trapped in localised states [18]. A

more general argument by Laughlin [23] and later refined by Halperin [24] used gauge

invariance and the conservation of energy to show that the extended states carry more

current but without reference to a specific mechanism.

Without disorder the quantized Hall resistance would only be seen at exact filling

factors and not at range of values. Prange [18] discusses an argument based upon

relativistic transformations. It is possible to show that some breaking of translational

invariance, either by disorder or the sample boundaries, is necessary to observe the

quantum Hall effect. The quantum Hall effect would not be observed in an infinite and

defect-free 2DEG.

2.5 Edge states

The analysis so far has considered a 2DEG with no boundaries whereas in real measure-

ments finite samples are of course used. Halperin was the first to realise the importance

of the sample edges [24] and, in combination with the Landauer formalism, made the

edge state approach a very efficient description of transport at high magnetic fields [25].

Consider a narrow channel where the 2DEG is confined in the x-direction and free in

the y-direction. This can be described by a potential V (x). Note that each wavefunction

is centred around a different location x = xk (see Eqn. 2.7). Assuming the potential

varies slowly on the length scale of the wavefunction then a good approximation for

the energy is given by

E(n, k) = (n + 1)h̄ωc + V (xk) (2.13)

where xk = −h̄k/eB. The effect of the edges is to break the degeneracy of the Landau

levels. States in the centre of the sample have the same energy as an unconfined system

whilst the energy of states near the edges is increased. The states near the edges have

a continuous distribution of energies and are referred to as ‘edge states’.

The group velocity of a state vn,k is given by [26]:

vn,k =
1
h̄

∂E(n, k)
∂k

=
1
h̄

∂V (x)
∂x

∂xk

∂k
=

1
eB

∂V (x)
∂x

(2.14)
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Figure 2.4: Distribution of states at the Fermi energy at different filling factors ν. Upper pane

shows a top view of the plane of the 2DEG indicating the spatial location of states at the Fermi

energy. Lower pane shows the energy of the Landau levels as a function of position across a

narrow channel and indicates the intersection of the Landau levels with the Fermi energy. (a)

At integer filling factors the only states at the Fermi energy are at the edges. (b) At non-integer

filling factors states at the Fermi energy include localised states in the bulk.

The edge states have a non-zero group velocity and therefore carry a current. The two

edges carry currents in opposite directions, since the quantity ∂V (x)
∂x changes sign. With

no external potential the currents at opposite edges cancel out.

Consider the effect of filling factor upon the distribution of states at the Fermi

energy. At integer filling factors the Fermi energy lies between Landau levels, and

states at the Fermi energy are located at the edges, see Fig. 2.4(a). States carrying

current in opposite directions are spatially separated, the overlap of their wavefunctions

is extremely small making scattering between them unlikely, as a result backscattering

is suppressed. This explains the strong minima in the longitudinal resistance at integer

filling factors.

At non-integer filling factors the Fermi energy lies in a bulk Landau level. Local

potential fluctuations mean that states at the Fermi energy exist in the bulk, these can

either be localized around a local defect or can form extended states which connect
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Figure 2.5: (a) A conductor in the quantum Hall regime. The edge states carrying current to

the right are in equilibrium with the left contact while those carrying current to the right are

in equilibrium with the right contact (based upon [26]). (b) Occupation of the Landau levels

illustrating that net current is carried by electrons between µ1 and µ2.

the two edges, see Fig. 2.4(b). This distribution of allowed states between the two

edges means that backscattering is not suppressed and a finite longitudinal resistance

is measured.

Quantization of the Hall resistance

In this section the quantization of the Hall resistance is briefly described in terms of

the theory of edge states. This follows the approach of Buttiker [25]. Consider the

case where the sample is connected by ideal contacts to two reservoirs with chemical

potential µ1 and µ2, see Fig. 2.5(a). If µ1 > µ2 as in Fig. 2.5(b) then all the states below

µ2 are occupied (assuming T = 0) and do not carry any net current. Any net current

arises from the states between µ2 and µ1. At integer filling factors backscattering is

suppressed which means electrons originating in C1 (see Fig. 2.5(a)) enter the edge

states carrying current to the right and empty into C2, while electrons originating

in C2 enter the edge states carrying current to the left and empty into C1. Edge

states carrying current to the right are in equilibrium with C1 and edge states carrying

current to the left are in equilibrium with C2. Clearly the longitudinal voltage drop
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Vxx measured between two voltage probes on the same edge of the sample is zero, while

the Hall voltage, VH , is equal to the applied potential.

Vxx = 0 and VH =
µ1 − µ2

e
(2.15)

In the absence of scattering, the current carried by a single edge state ν = n is given

by:

In = evn

[
dn

dE

]

n
(µ1 − µ2) (2.16)

For a 1-dimensional channel, the density of states in k-space is dn/dk = 1/2π therefore

dn

dE
=

1
2π

dk

dE
=

1
2πh̄vn

(2.17)

where the density of states D(E) = 2πh̄vn is the same as a 1D channel. The number

of edge states is the same as the number of occupied Landau levels in the bulk, ν, the

filling factor. Substituting into Eqn. 2.16 then:

I = ν
e

h
∆µ (2.18)

The Hall resistance RH is then given by:

RH =
VH

I
=

h

e2

1
ν

(2.19)

Equation 2.19 has the same form as the quantized resistance of ballistic conductors

with the number of edge states equivalent to the number of modes. The quantization in

a ballistic conductor is not precise because backscattering is not completely suppressed.

In the derivation of the Hall resistance there are two conflicting boundary conditions.

The left and right contacts are at chemical potentials of µ1 and µ2 respectively and

the top and bottom edges are at chemical potentials of µ2 and µ1. Buttiker resolves

this problem by introducing a disordered region between the contacts and the 2DEG.

The chemical potential is then dropped across this disordered region and equipotentials

form along the remainder of the sample.
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2.6 Compressible and Incompressible stripes

The model of edge states presented so far is a single electron picture. In this model the

Landau levels are moved up in energy by the confining potential and the position of the

edge states is then given by the intersection of the Landau levels with the Fermi level.

The Landau levels are well separated and the electron density increases from zero at

the edge in steps of nL = eB
h . The local filling of the Landau levels and the electron

density as a function of distance to the edge are shown in Figs. 2.6(a), 2.6(b).

The discontinuities in the electron density are very unphysical as they indicate

regions of high electric field which mobile carriers would be expected to screen.

Coulomb interactions were considered by Chklovskii et al [27] using self consistent

descriptions of the edge potential. They found that the sample divided into incom-

pressible and compressible strips. The argument presented in Ref. [27] is summarized

below.

At zero field the electron density increases smoothly from zero at the edge to the

bulk value ns and has the form:

n(x) =
(

x− ld
x + ld

)1/2

for x > ld (2.20)

where ld is the depletion length and for an etched structure can be approximated by [28]:

ld ≈ 4Vgεε0
πens

(2.21)

where Vg is the band gap potential. This expression is plotted as a dashed line in

Fig. 2.6(d).

In a magnetic field the electron distribution obtained from the electrostatics (Eq. 2.20)

would not be expected to alter significantly. This is because of the huge amount of work

that would need to be performed against the electric field. The electron distribution in

a magnetic field with a self consistent approach is shown in Figs. 2.6(c) and 2.6(d).

The energy gap between the Landau levels means that the electrostatic solution

derived at zero field is no longer the lowest energy state. In regions where there is a

transition between filling one Landau level and the next, for example at x1 in Fig. 2.6(c),



CHAPTER 2. The Quantum Hall Effect 17

(a) (c)

x

E

EF

x

E

EF

(b) (d)

a1

a2

x1
x2

2nL

nL

3nL

x

n(x)

d0

d0

2nL

nL

3nL

x

n(x)

Figure 2.6: Structure of spinless edge states in the integer quantum Hall regime. (a) and (b)

single electron picture. (a) Bending of the Landau levels by the confining potential, edge states

are then formed at the intersection of the Landau levels with the Fermi energy . (b) Electron

density as a function of distance to the boundary, the sudden changes in density would require

high electric fields and are unphysical. (c) and (d) Self-consistent electrostatic picture. (c)

2DEG separates into regions of: (i) non-integer filling factor, where Landau levels are pinned

at the Fermi energy. Here the 2DEG is compressible and screens the confining potential, and,

(ii) regions of integer filling factor where a dipolar stripe has been formed. Here the 2DEG is

incompressible and is unable to screen. (d) Density as a function of distance from the boundary.

The dashed line shows the density distribution at zero field. At high field this is not significantly

modified except in the regions where the next Landau level begins to fill. Based upon Ref. [27].
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the energy gap means it is energetically favourable to relocate some electrons from the

higher Landau level to the lower one. This relocation of charge forms dipolar stripes at

the positions xd where n(x,B = 0) takes on integer multiples of nL, the Landau level

density [27]:

xd =
ld

1 + (k
ν )2

(2.22)

where ν is the bulk filling factor and k = int(ν) the number of completely filled Landau

levels. The potential drop across the dipolar stripes equals the energy gap between the

Landau levels h̄ωc, the width of the stripes ak can then be estimated from the zero field

density gradient at the points xd:

ak =
4xd

ν

√
kab

πld
(2.23)

where ab is the effective Bohr radius.

The compressibility κ of an electron gas is defined as [29]:

κ−1 = n2
s

∂µ

∂n
(2.24)

Within the dipolar stripes it costs energy h̄ωc to add an electron, the compressibility

is therefore zero and these regions are described as ‘incompressible’. Away from the

dipolar stripes electrons can be added at infinitesimally small energies and are described

as compressible.

The effect of the magnetic field is to divide the 2DEG into alternating compressible

and incompressible regions. In the compressible regions the 2DEG can screen strongly

and the potential is constant. In the incompressible regions the 2DEG is unable to

screen and it is in these regions that any potential drop occurs. Figure 2.7 shows

the distribution of the compressible and incompressible stripes close to the edge as a

function of the bulk filling factor.

2.7 Current distribution

The current distribution has been discussed continuously since the discovery of the QHE

and is still controversial. In the previous sections the edge state model was introduced
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Figure 2.7: Distribution of compressible and incompressible regions close to the edge of a

2DEG as a function of filling factor neglecting spin splitting. The edge of the sample is on

the left. Black indicates the depleted area at the edge ld. Blue indicates compressible regions

where the local filling factor is non-integer. Red indicates incompressible dipolar stripes where

the local filling factor is an integer. Green indicates the compressible region which extends into

the bulk of the sample
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and the quantized Hall resistance interpreted as a result of one-dimensional transport

in these edge states. The Hall resistance was calculated from the total current and the

difference in chemical potential between the edge states. However, this does not mean

that the electric current flows exclusively at the edge.

The theoretical discussion in the literature is divided into models which highlight

the importance of current at the edges e.g. [24, 25] and models which suggest that the

majority of the current is carried in the bulk of the sample e.g. [30–33]. In the edge

current picture the current flows in the edge states and the Hall voltage is dropped

entirely in these regions. In the bulk picture some proportion of the Hall voltage is

dropped across the bulk of the sample and the current is carried by extended states

near the centre of the Landau levels. The Hall current is proportional to changes in

the local potential and does not depend upon the existence of edges. This bulk picture

suggests that in a 2DEG without disorder the Hall voltage should drop gradually across

the sample.

A number of experiments have been performed to try to determine the current dis-

tribution. The first experiments involved fabricating metal contacts on the top surface

of Hall bar samples in an attempt to measure the potential distribution across the

width of the device [34–36]. At non-integer filling factors these experiments showed the

potential distribution varied linearly across the device. On the quantum Hall plateaus

the potential distribution was very inhomogeneous suggesting a bunching up of the cur-

rent. There are a number of problems with these experiments, however: The contacts

may strongly influence the potential, it may be that it is the chemical potential rather

than the electrostatic potential that is measured, and, finally, the Corbino effect will

tend to isolate the contacts from the 2DEG on quantum Hall plateaus.

To avoid the problems associated with contacts a number of optical techniques

were developed based upon the linear electro-optical effect. An applied electric field

influences the birefringence of GaAs and the polarization direction of light passing

through the crystal therefore changes depending upon the local potential. In a wide

Hall bar (2mm) Fontein et al [37] found that on the plateaus with small currents the
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majority of the Hall voltage drops near the sample edges. This work was repeated

by Knott et al [38] with a narrow Hall bar (200µm) and conversely they found that

most of the drop in the Hall voltage was in the middle of the channel. More recently

Hall bars have been fabricated with a single electron transistor (SET) mounted on the

top [39]. The edge of the 2DEG was then shifted towards the SET by electrostatic

depletion with a gate electrode. This experiment was able to resolve the compressible

and incompressible stripe pattern and was in qualitative agreement with theoretical

predictions.

The experiments outlined so far don’t give a conclusive answer to the nature of the

current distribution in the quantum Hall effect because it is often difficult to compare

the experiments as the experimental conditions vary significantly (sample size, current,

resolution). The most recent experiments have been carried out with scanning probe

techniques and will be discussed in detail in Chapter 3.

2.8 Summary

This chapter has given a brief overview of the quantum Hall effect a more detailed

discussion can be found in a number of books [18, 40, 41].

The next chapter gives an overview of scanning probe microscopy.



Chapter 3

Scanning Probe Microscopy

A scanning probe microscope builds up a spatial image from local measurements made

with a sharp probe rastered over a surface. The advent of these techniques has made

it possible to make measurements and carry out manipulation on length scales of a

nanometre or less.

3.1 Scanning Tunnelling Microscope

The first example of an SPM was the scanning tunnelling microscope (STM) invented

in 1981 by Binnig, Gerber and Weibel [7]. In an STM a sharp tip is brought close

to a conductive surface with a bias voltage applied between the tip and the surface.

When the separation is small enough, typically a few Å, electrons can tunnel between

the tip and sample surface resulting in a current. This tunnel current is used as the

control signal in a z-feedback loop. A topographic image of a surface can be built up

from scanning the tip over the surface and recording the z-position required to keep

the tunnel current constant. The tunnel current has an exponential dependence on the

separation so that most of the current is carried via the atom on the tip closest to the

sample. This feature of the tunnel current is the factor which makes atomic resolution

so readily achievable with the STM. Images of the 7× 7 reconstruction of silicon were

published less than a year after the first STM paper [8]. In 1986 Binnig and Rohrer
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were awarded the Nobel prize in physics for their invention.

3.2 Atomic Force Microscope

An atomic force microscope (AFM) probes the cumulative forces that act between the

atoms in the tip and sample. These forces act among insulators as well as conductors

which gives the technique greater scope than the STM. In an AFM, the tunnelling tip

is replaced with a force sensing cantilever.

3.2.1 Tip-sample Forces

In vacuum, the tip-sample force Fts is a mixture of short range chemical bonding forces

and long range, van der Waals, electrostatic, and magnetic dipole forces. In air or liquid

operation this is further complicated by meniscus or hydrodynamic contributions.

Van der Waals forces

The van der Waals forces originate from fluctuations in the electric dipole moment

of atoms and their mutual polarization. For two atoms separated by a distance z

the induced dipole-dipole energy varies as 1/z6 [42]. The van der Waals energies for

macroscopic bodies, such as the macroscopic part of an AFM tip, can be calculated

using the Hamaker approach which assumes the individual atom-atom interactions are

additive. The resulting forces for various simple tip geometries are given in Ref. [43].

Short range chemical forces

Chemical bonds are treated in a number of quantum mechanics textbooks and simple

cases such as the H-H covalent bond can be solved analytically. Some simple models

such as the Morse potential or Lennard-Jones potential are commonly used to describe

a chemical bond. The Lenard-Jones potential VLJ is given by:

VLJ = −E0

σ

((
σ

z

)12

− 2
(

σ

z

)6
)

(3.1)
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where Eb is the bond energy and σ is the equilibrium length. This potential has an

attractive term ∝ z−6 originating from the van der Waals interaction and a repulsive

term ∝ z−12 from Pauli repulsion. The form of the repulsive part is chosen for ease

of calculation, in reality it is closer to an exponential dependence. Van der Waals and

electrostatic forces are treated in Ref. [44].

Total Force

Excluding magnetic forces (non-magnetic tip), electrostatic forces (tip-sample potential

Vts = 0), meniscus and hydrodynamic forces (in vacuum) then the tip-sample force Fts

can be represented by:

Fts =
12E0

σ

((
σ

z

)13

−
(

σ

z

)7
)
− AHR

6z2
(3.2)

The first part originates from a Lenard-Jones potential representing the interaction

between the most prominent atom and the surface [45]. The second term is the van der

Waals contribution from the macroscopic part of the tip. This is for a simple spherical

tip radius R where AH is the Hamaker constant and depends on the tip and sample

materials. Figure 3.1 shows a plot of Eqn. 3.2 as a function of tip-sample separation

for some typical parameters. An important observation is that the tip-sample force is

not monotonic over the whole distance range; this makes establishing stable distance

feedback much more difficult than for an STM.

3.2.2 Force sensors

A key component of the AFM is the transducer used to convert the tip-sample forces

into a measurable quantity. In most AFM experiments the normal component of the

tip-sample force is used to image the surface, a cantilever beam geometry is soft in

one direction and rigid in the remaining two and is the basis of most force sensors.

Cantilevers can be used in a static mode, where the deflection is measured and is

directly related to a force. Cantilevers can also be used in a dynamic mode where they

are vibrated and the damping and force gradient modify the amplitude and frequency
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Figure 3.1: Theoretical tip-sample force Fts as a function of tip-sample separation z using a

Lennard-Jones short range force and a 1/z2 long ranged force as in Eqn. 3.2 with parameters,

E0 = 3 eV, σ = 3.4 Å, AH = 0.2 aJ and R = 120 Å.

of the oscillation. These modes of operation are discussed in detail in Sections 3.2.3

and 3.2.4.

The first cantilevers were hand-made, consisting of a strip of gold foil, 0.8mm long,

glued to a diamond tip [46]. Soon after, cantilevers with integrated tips were fabricated

from doped silicon or silicon nitride using micromachining technology [47]. These are

examples of passive force sensors which require some external method of excitation and

detection.

The first detection schemes used an STM tip placed close to the back of the can-

tilever to measure the cantilever deflection [46]. This type of detection system only

works over a fraction of a nanometre, ideally requires UHV conditions and exerts its

own force on the cantilever. Optical detection systems followed [48]; these use either

a beam deflection or interferometric technique. Optical techniques are used by the

vast majority of room temperature AFMs and are discussed in detail by Sarid [49]. In

low temperature experiments alignment of the optics in a cryostat is difficult and in

semiconductor studies stray laser light can give rise to a persistent photoconductivity

effect. Force sensors which exploit piezoelectric or piezoresistive phenomena have been
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developed to avoid the problems associated with optical detection systems. Piezoresis-

tive cantilevers are micromachined from silicon and have half of their thickness doped.

Any deflection strains the conductive layer and causes a change in its electrical resis-

tance [50]. Piezoelectric cantilevers convert mechnical stress into electric charge and

vice-versa. It is difficult to measure the amount of charge created by a static deflection

so these are impractical for measuring constant forces. By applying an AC voltage and

measuring the current it is possible to excite and detect the motion with no additional

components. Another advantage of piezoelectric sensors is that that they have a power

dissipation of the order of nW compared to mW for piezoresistive sensors and this is the

reason they are used extensively at low temperature. Initially, piezoelectric cantilevers

with integrated tips were fabricated [51] but more recently sensors have been based

on quartz tuning forks. Quartz tuning forks are the time-keeping element of digital

watches. By removing the tuning fork from its can and attaching a sharp tip it can

be used as a sensor. Quartz tuning forks are very cheap (less than 20 pence), very

stable with age and temperature, and their size makes it possible to attach a variety of

different probes. The first application was in scanning acoustic microscopy [52]. Recent

applications have included imaging subatomic features on silicon [53]. Quartz tuning

forks and the details of our sensor design are discussed in detail in Chapter 4.

3.2.3 Static atomic force microscopy

In static AFM mode the tip is held in contact with the surface and the tip-sample force

Fts translates into a deflection q′ of the cantilever.

q′ =
Fts

k
(3.3)

where k is the spring constant. If the spring constant is known then it is simple to

calculate the tip-sample force.

A topographic image of a surface can be built up from scanning the tip and recording

the z-position required to keep the deflection constant. The force sensitivity depends

upon the performance of the deflection detector and the spring constant of the can-
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tilever. To avoid deforming the sample the spring constant of the cantilever should be

much softer than the bonds between the tip and sample.

Contact AFM is simple to implement and interpret. However, the large lateral forces

mean that the tip is subject to wear and soft samples can easily be damaged. The force

is determined from the static deflection of the cantilever making this measurement

subject to 1/f noise.

The smaller the spring constant of the cantilever the greater the deflection for a

given force and the greater the sensitivity. However, if the cantilever stiffness is below

a certain value then approaching the tip can cause a sudden ‘snap-to-contact’. This

instability does not occur if the spring constant of the cantilever k is greater than the

maximum force gradient of the tip-sample interaction kmax
ts :

k > max

(
δ2Vts

δz2

)
= kmax

ts (3.4)

where Vts is the tip-sample potential.

Despite these problems it has been possible to demonstrate atomic resolution in a

few very specific environments, for example at low temperature in UHV [54].

3.2.4 Dynamic atomic force microscopy

In dynamic measurements the cantilever is vibrated and changes in the oscillation

parameters are used as a feedback signal. The advantage of this technique is that noise

can be reduced by using lock-in detection and operating at a frequency where 1/f noise

is no longer significant.

The tip-sample interaction can be separated into conservative and non-conservative

forces. Conservative forces are a unique function of the tip-sample separation. Conse-

quently, over a complete oscillation cycle the net work due to these conservative forces is

zero. Non-conservative forces depend upon whether the tip is approaching or retracting

from the surface and represent hysteresis in the interaction. The net work performed

against non-conservative forces over an oscillation cycle is non-zero and causes dissi-

pation of energy from the cantilever. These contributions affect the properties of the
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cantilever in different ways, the conservative forces shift the resonant frequency of the

cantilever whilst the non-conservative forces reduce the quality factor.

There are two commonly used detection schemes, amplitude-modulation (AM) and

frequency-modulation (FM).

AM detection

In AM measurements the cantilever is driven by an AC signal with a fixed frequency

and amplitude close to the resonance frequency of the cantilever. The amplitude of the

cantilever deflection is then used as the feedback signal [48]. The tip-sample interaction

changes the resonance frequency and/or the quality factor of the cantilever and this is

reflected in the oscillation amplitude. This detection system is easy to implement but

it is difficult to interpret and the response is slow.

It is not possible to separate the conservative and non-conservative contributions

of the tip-sample interaction as at a fixed measurement frequency both change the

oscillation amplitude.

The response of the amplitude is not instantaneous and has a characteristic time

scale τAM ≈ 2Q/fo where f0 is the resonant frequency [55]. In UHV it is possible to

achieve quality factors of > 50000 giving a bandwidth < 1 Hz which is far too slow.

FM detection

In the FM measurements the frequency of the drive signal is adjusted so that the can-

tilever is always driven on resonance. This can be achieved by making the cantilever

the frequency determining part of an oscillator [56] or by using phase-locked loop tech-

niques. The change in resonant frequency is then used as the feedback signal. The

oscillation amplitude can be measured separately and an additional feedback loop can

be used to keep the amplitude constant. This technique enables the conservative and

non-conservative parts to be separated, making interpretation simpler. The change in

frequency occurs within one oscillation cycle on a timescale of τFM = 1/f0 which means

the quality factor can be increased without restricting the bandwidth [55].



CHAPTER 3. Scanning Probe Microscopy 29

Oscillation amplitude

For very small amplitudes the frequency shift is a very simple function of the tip-sample

force gradient, it is proportional to the tip-sample gradient. For large amplitudes it is

much more complicated as the direction and size of the force gradient will vary over one

cycle. It has been shown that for small amplitudes the frequency shift is very sensitive

to short ranged forces as these have a strong force gradient, while for large amplitudes

long range forces contribute heavily [57].

The frequency noise of the measurement is inversely proportional to the oscillation

amplitude a. The slope of the frequency shift curve is constant at first and drops

as a−1.5. As a result it has been shown that there is minimal noise for oscillation

amplitudes on the length scale of the tip-sample force Fts.

If hysteresis occurs in the tip-sample interaction then energy ∆Ets must be supplied

to the cantilever during each oscillation cycle. If the energy loss is large compared to

the total energy of the cantilever then controlling the amplitude can become difficult.

An approximate criterion for stability is the following [45]:

k

2
≥ ∆Ets

Q

2π
(3.5)

In order to measure short range interactions with high resolution and to minimise

noise then small oscillation amplitudes are required. To maintain stability with small

amplitudes then the spring constant needs to be high. Quartz tuning forks have a spring

constant two orders of magnitude higher than silicon cantilevers and have made it pos-

sible to image with sub-nanometre oscillation amplitudes and demonstrate subatomic

resolution [53].

3.3 Electric measurements

Electric measurements have been made indirectly by measuring the additional force

acting on a biased AFM probe, for example in Kelvin probe force microscopy (KPFM),

or directly with novel sensors such as scanning-single electron transistor microscopy

(SSET).
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A SET is a sub-micrometre tunnelling device where the current passing between

source and drain electrodes is governed by the Coulomb blockade effect of a small metal

island. The conductance of the SET is extremely sensitive to the electric potential

experienced by the island. A scanning SET was first demonstrated by M.J.Yoo et

al by fabricating an SET on to the end of a sharp glass fibre [58]. These scanning

experiments are very demanding because of the low temperatures required for the SET

to operate and the difficulties involved in fabricating the sensor on an AFM probe. A

review of the experiments can be found in Chapter 7.

Kelvin force microscopy, first demonstrated by Nonnenmacher et al. [59], is a non-

contact AFM technique which allows investigation of the contact potential difference

between the AFM tip and the sample. A DC bias VDC in combination with an AC

modulation VAC at a frequency ωk is applied between the conductive AFM tip and the

sample [59]. The sample potential is the sum of the contact potential difference Vcpd

(due to the difference in work function of the tip and sample) and the two externally

applied potentials. The electrostatic force Fe is given by [49]:

Fe =
1
2

δC

δz
(Vcpd + VDC + VAC cosωkt)

2 (3.6)

=
1
2

δC

δz

[
(Vcpd + VDC)2 + 2 (Vcpd + VDC) VAC cosωkt + V 2

AC cos2 ωkt
]

(3.7)

where C is the tip-sample capacitance and z is the tip-sample separation. The response

includes three frequency components, the first term is at DC the second at ωk and the

third at 2ωk. The frequency shift of the cantilever will have two components:

∆fωk
∝ δC

δz
(VDC − Vcpd)VAC cos(ωkt) (3.8)

∆f2ωk
∝ 1

2
δC

δz
V 2

AC cos(2ωkt) (3.9)

Typically a feedback circuit is used to adjust VDC during scanning to maintain ∆fωk
=

0. Images of VDC then represent the local contact potential difference [60]. It is also

possible to measure ∆f2ωk
simultaneously and construct an image of the local gradient

of the capacitance [61].

Kelvin probe measurements have been made on a variety of systems. Two examples
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are studies of surface defects [62] on semiconductors and the characterization of pn

junctions [63].

A review of the Kelvin probe experiments performed in the quantum Hall regime

is given in Chapter 7.

3.4 Scanning capacitance microscopy

Scanning capacitance microscopy is a technique where the capacitance between a sharp

tip and a sample is measured as a function of position. It is an important method for

the characterization of dopant profiles in semiconductor samples.

The first SCM was demonstrated by Matey and Blanc [64]. An insulating stylus

was scanned in the tracks of a pre-grooved disk whilst the capacitance between an

electrode and the surface was measured. Bugg and King were the first to demonstrate

an SCM with an unguided scanning system and used it to make topographic images of

samples with a resolution of 200µm [65]. The tip-sample separation was modulated and

the capacitance variation at this oscillation frequency was measured. This capacitance

variation was used by a height feedback loop to keep the average tip-sample separation

constant. The disadvantage with this technique is that capacitance depends upon the

sample geometry and material properties and changes in these will introduce artefacts

to measured topography.

Later Williams et al modified an STM to incorporate a capacitance measurement,

the surface was scanned with feedback at a constant tip-sample capacitance. Barret

and Quate were the first to combine a capacitance measurement with a contact AFM

allowing simultaneous topographic and capacitance data to be recorded [66].

Applications of SCM include measurement of dopant profiles in semiconductors [67]

and pn junctions [68]. Another application is charge storage on nitride-oxide-silicon

(NOS) systems where information densities of 27 Gbits/in2 have been demonstrated [66].

Carrier relaxation times have been measured by Hamers et al using SCM combined with

irradiation of ultra-fast laser pulses [69].
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3.4.1 Capacitance sensors

Most capacitance sensors use the RCA video disc capacitance pickup design [70]. The

circuit consists of an LC-stripline resonator with a frequency ≈ 1GHz, ultra-high

frequency oscillator and peak detector. Driven near resonance, changes in capacitance

modulate the amplitude and this modulation is recovered by the peak detector. With

an optimized version of this design capacitance variations as small as 10−21 F can be

detected in a 1 Hz bandwidth. A lumped-element version was developed by Bugg and

King operating at 90MHz [65]. Other designs which measure capacitance directly

using bridge techniques have been demonstrated but in general are slow and suffer

with problems from changes in the stray capacitance [71]. The low temperature SCM

we have developed uses a similar detection system to Bugg and King and is discussed

in detail in Chapter 5.

3.4.2 Probe design

The type of probe used in SCM can make a large difference to the performance of the

microscope. The first probes were made from tungsten wire, sharpened to a diameter

of a few tens of nanometres by electrochemical etching. These tips had the advantage

of good wear properties and small stray capacitance, however it is difficult to batch fab-

ricate them and the oxide layer is unpredictable. Micromachined silicon tip-cantilever

assemblies with an evaporated metal film are currently in regular use. These types of

probes are well characterized and easy to use. The disadvantages are that the metal film

wears quickly, the tip radius is relatively large (typically 35 nm) and stray capacitance

from the cantilever arm can reduce sensitivity. An alternative to the metal coating is

to dope the tip. These tips are more resistant to wear but can deplete under bias. A

review of probes for electrical measurements can be found in Ref. [72].

3.4.3 Contact SCM

The contact AFM/SCM is the most widely used variant of capacitance microscopy and

is implemented on commercial microscopes such as the Veeco D3100.
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In contact SCM a conductive AFM probe is brought into contact with a semicon-

ductor sample covered with a thin dielectric layer. The tip-sample contact forms a

metal-insulator-semiconductor (MIS) capacitor. The capacitance is a function of the

local carrier concentration and the bias voltage [73]. AFM measurements are used to

maintain a constant contact force with the surface. At the same time measurements

of the tip-sample capacitance are made with a high frequency resonant circuit. In

this way an image of the sample’s topography and capacitance variation are obtained

simultaneously, enabling correlation of sample location with electrical properties. An

important application of this technique is profiling dopants in semiconductor samples.

An extensive review of the technique is given by Williams [67].

The tip-sample capacitance is typically a few tens of aF for a tip radius of 50-

150 nm [74]. Stray capacitances are of the order of 0.5 pF [74, 75]. To reduce the

influence of stray capacitance it is usual to measure a modulated component of the tip-

sample capacitance. The most common approach is to apply a small AC bias between

the tip and the sample and to measure the derivative dC/dV with lock-in detection.

The sign of the derivative gives the type of carrier and the amplitude can be related

to the carrier concentration. No signal is measured over dielectric or metallic regions

since these cannot be depleted.

Figure 3.2(a) is a schematic of a contact SCM measurement. The conductive probe

is connected to the capacitance detector and the tip-sample bias voltage is applied

to a backgate on the sample. Figure 3.2(b) shows capacitance-voltage (C-V ) curves

measured at high frequency for two n-type semiconductor samples with different den-

sities. The measured tip-sample capacitance consists of the capacitance of the oxide

layer Co in series with the capacitance of the depletion layer CD. The variation in the

capacitance as a function of bias voltage is due to the varying size of the depletion

region. With a positive bias voltage electrons are accumulated under the tip, the tip-

sample capacitance saturates at a maximum given by the capacitance of the oxide layer.

With negative bias voltages the region under the tip is depleted and the capacitance

is reduced until there is no free carrier density. Waveforms between the dashed lines
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Figure 3.2: (a) Schematic of contact mode SCM. A conductive probe is held in contact with a

semiconductor sample with a thin insulating layer on the surface. A DC bias voltage with a small

AC modulation is applied to the sample. The capacitance detector measures the capacitance

change in response to the AC modulation. (b) C-V curves for n-type semiconductor samples

with different densities. Waveforms between the dashed lines show an AC modulation ∆V and

the resulting capacitance for the high and low density samples ∆CH and ∆CL respectively.
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show an AC modulation ∆V and the resulting capacitance change for the high and

low density samples ∆CH and ∆CL respectively. In this simple illustration the sample

with the lower carrier concentration gives a bigger response. In real experiments the

SCM output is not always a monotonically increasing signal with decreasing dopant

density [76]. There is a relative shift between the dC/dV curves for different doping

levels which can cause a contrast reversal.

An alternative technique, scanning capacitance spectroscopy (SCS), has been demon-

strated by Edwards et al [77]. In SCS C-V curves are measured at every position in

the scan area. The shape of the curve can then be used to distinguish between different

types of doping and carrier concentration.

The SCM response also depends upon the experimental parameters, such as, the

DC bias, the properties of the oxide layer, and the sample geometry. Preparation of the

surface including formation of a good dielectric oxide, is critical to the reproducibility

of SCM measurements and is a major challenge [78].

At the moment contact SCM is widely used in qualitative analysis of samples and

is limited by the lack of a general quantification method.

3.4.4 Non-contact SCM

Non-contact SCM has been proposed as an alternative mode of operation [74], as it

avoids tip wear and changes in the contact area between tip and the surface. The

oscillation of the probe modulates the tip-sample capacitance, the size of this mod-

ulation depends upon the oscillation amplitude and the local part of the tip-sample

capacitance.

Contact mode SCM uses an AC bias to modulate the tip-sample capacitance, and

therefore as a prerequisite samples must exhibit a voltage dependent capacitance. Non-

contact mode SCM does not have this restriction and studies have been carried out

on dielectric films on metallic substrates [74], buried metal wires [79] and conductive

samples (see Chapter 6). The lateral resolutions reported are comparable to contact

SCM.
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Most AFM systems use an optical detection system to measure the deflection of

the cantilever. However, leakage of laser light can cause undesirable photoconductiv-

ity effects [80]. In a recent development, contemporary with this project, SCM has

been implemented in non-contact mode with a piezoelectric quartz tuning fork force

sensor [81].

3.5 Summary

This chapter has given a very brief overview of scanning probe techniques, more detailed

accounts can be found in a number of books and review articles [45, 49, 82]. In the

next chapter the development of a low-temperature AFM/SCM is discussed. Chapter 5

then discusses the details of the capacitance detection system.



Chapter 4

Experimental Set-up

4.1 Overview

A combined AFM/SCM has been developed that operates at low temperature and

high magnetic field. The system is based on a commercial 4He cryostat with a variable-

temperature insert (VTI) and superconducting magnet. The microscope is mounted on

a probe which is loaded into the VTI. AFM, SCM and transport measurements can be

performed simultaneously. AFM is carried out in dynamic mode with a quartz tuning

fork (TF) force sensor. Capacitance measurements are made with an RF technique

which has a resolution of 0.1 aF and bandwidth of 200 Hz as discussed in Chapter 5.

Transport measurements are made using direct connections to the sample. A schematic

showing the main parts of the system is shown in Fig. 4.1. The following sections of

this chapter discuss the set-up in detail before outlining an analysis of the tip-sample

interactions.

4.2 Cryostat and vibration isolation

A commercial 4He cryostat with a VTI is used to cool the experiment, and a super-

conducting magnet is used to apply a magnetic field. The VTI has a 50 mm diameter

sample space that is isolated from the main bath by an inner vacuum can (IVC). The
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Figure 4.1: Schematic showing the main parts of the system.

magnet and VTI are positioned in the main bath of the cryostat with the bottom of

the VTI centred in the bore of the magnet.

A capillary with a needle valve connects the main bath to the sample space and

allows a flow of liquid to be admitted to the sample space. The temperature is controlled

by adjusting the He flow and applying heat. On entering the sample space the liquid

evaporates and is warmed to the required temperature by a heater, which is controlled

by a temperature controller. A reduction gearbox was fitted to the needle valve control

to make fine adjustment of the He flow possible. This method has a base temperature

of 1.5K and a hold time of up to a week. An alternative is a single-shot technique, in

this case the sample space is flooded so that the sensor and sample are in liquid He-II,

cooling below 4.2K is achieved by reducing the vapour pressure by pumping [83]. The

base temperature of this method is 1.4K and has a hold time of eight hours. Most

experiments are carried out in the gas flow mode because of the long hold time.

The tip-sample separations required for AFM are of the order of nanometres and,

as such, a prerequisite for high resolution imaging is isolation of the microscope from

mechanical vibration. The cryostat was supported on air legs to decouple it from

ground based vibration. Acoustic coupling was reduced by passing the pumping lines

through sand boxes and building a sound proof box around the top plate. Vibrations

originate inside the cryostat from the boiling of He in the main bath. To minimize
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Figure 4.2: Photograph of the laboratory showing the cryostat mount.

coupling to the microscope great care was taken to avoid the probe touching the walls

of the sample space. A photograph of the laboratory is shown in Fig. 4.2.

4.3 Scanning and coarse positioning

The tip and sample are positioned with a piezoelectric scanner and a set of piezoelectric

slip-stick motors.

In a piezoelectric material an applied electric field will cause a change in the shape

or size of the material. The piezoelectric effect is very small, large applied voltages

cause very small changes in the dimensions, for this reason they are used extensively

in SPM applications. As an example the calibration of the scanner in the z -direction

is approximately 10 nm/V at room temperature.

Figure 4.3 shows a series of photographs of the microscope head.

4.3.1 Scanner

Scanning is performed by a five-electrode piezoelectric-tube (length 50.8mm, outer di-

ameter 12.7mm, wall thickness 0.5mm, material lead zirconate titanate (PZT) ceramic,
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Figure 4.3: (a) The assembled microscope consisting of the z and x-y modules. (b) The end

of the z module showing the sample mounted on the scan tube and the filtered sample wiring.

(c) Internal view of the z module showing the scan tube mounted on piezoelectric slip-stick

motors. (d) x-y module used for lateral positioning of the sensor.
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EBL#21). The tube has a single inner electrode and a quadranted outer electrode; this

allows motion in all three directions. The maximum x-y scan range is 46µm at 300 K,

15 µm at 80K and 8.4µm at 2 K. The range in the z -direction is 4.5µm at 300 K, 1.5µm

at 80 K and 0.8µm at 2K. When operating in a low pressure of He gas the scan range

is kept below 70 % of the maximum to avoid arcing between the outer electrodes.

The scan tube is fixed at the top to a carriage, which is part of the z -positioner, and

is shown in Fig. 4.3(c). A platform for mounting the sample is glued into the bottom

end of the scan tube.

4.3.2 Coarse positioning

The range of the scan tube limited to a few µm in each direction, and so in order to

bring the tip within the range of the scan tube coarse positioning systems are required.

The positioners used by this microscope are described in the following sections.

z -positioner

The z-positioner is a piezoelectric slip-stick design which is used to transport the scan

tube and sample mount in the z -direction. This positioner is used during the approach

of the surface before imaging. The scan tube is mounted in a copper carriage which is

supported on three piezoelectric motors using CuBe leaf springs, see Fig. 4.3(c). The

motors consist of a piezoelectric actuator and a quartz sliding surface. A sawtooth

waveform is applied to the piezoelectric motors to move the carriage with a ‘slip-stick’

action. In order for the scanner carriage to follow the motion of the motors then the

frictional forces between the springs and the motors must equal the rate of change of

momentum of the carriage. During the ramp phase of the waveform the springs stick

to the motor surface and the carriage is moved forwards. When the voltage is suddenly

reduced the frictional forces are not adequate and the springs slip against the motors.

The motors return to their rest position whilst the carriage remains advanced. An

arbitrary distance can be moved by repeating this cycle a number of times. The step
1EBL Products Inc.
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Temperature (K) Drive voltage (V) Step size (nm)

300 30 500

80 80 400

2 150 100

Table 4.1: Typical parameters for the z-positioner.

size depends on the amplitude of the waveform and the dimensions and piezoelectric

constant of the drive tubes. Table 4.1 gives some typical values for the drive voltage

and associated step size at different temperatures.

x-y positioner

The x-y positioner changes the relative lateral position of the tip and sample in order

to locate an area of interest, for example the edge of a Hall bar.

Two schemes have been used for x-y positioning. In the first implementation the

sensor platform was fixed and the sample was mounted on a puck on the end of the

scan tube. The sample puck could be moved with a slip-stick action by exciting the

scan tube.

More recently an x-y module has been developed based on commercial positioners.

The sample mount is now fixed and the sensor platform is moved by two linear position-

ers2 mounted orthogonally. Figure 4.3(d) shows an exploded view of the x-y module.

Tests were performed with a new ‘robust and ultra-stable’ design of positioner3, however

this was very sensitive to acoustic excitation and not fit for purpose.

The x-y motion is reliable, reproducible to within 5% and gives step sizes of between

5 nm and 1µm at low temperature. Table 4.2 gives some typical values for the drive

voltage and associated step size at different temperatures.
2ANP100 series attocube systems
3ANP100Flex series attocube systems
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Temperature (K) Drive voltage (V) Step size (nm)

300 15 1000

80 40 800

2 60 500

Table 4.2: Typical parameters for the x-y positioner.

4.4 AFM/SCM sensor

The home-made sensors use a piezoelectric quartz tuning fork (TF) as the oscillating

element and an etched tungsten wire as the tip.

4.4.1 Quartz tuning forks

A number of properties of TFs make them widely used as force sensors in low tempera-

ture SPM. They have a very low power consumption (< 1 nW). There is no optical de-

tection system which avoids the persistent photoeffect in semiconductor studies. Their

relatively large size makes it easy to fabricate more complicated probes for different

applications. A review of experiments performed with TF sensors is given in Ref. [45].

The TF contacts are patterned to excite the antisymmetric eigenmode of oscillation,

this gives very high quality factors as the dynamic forces to keep the tines oscillating

cancel each other out. Attaching a mass such as a tip to one tine breaks the symmetry

of the system and might lead to excitation of the symmetric mode. This problem can

be avoided by immobilizing one tine, reducing the TF to a simple cantilever beam,

which can be approximated as a single harmonic oscillator [84].

Harmonic Oscillator Model

The cantilever can be described as a weakly disturbed harmonic oscillator, effective

mass m∗
c and spring constant k0 [45]. Figure 4.4 illustrates the deflection of the tip

q′(t). It oscillates with an amplitude a at a tip-sample distance q(t) = q′(t)+z+a from

the sample where q = z is the closest point to the sample. The equation of motion is:



CHAPTER 4. Experimental Set-up 44

Sample

z

q’ t( )q t( )

z a+2

z a+

z

0

a

-a

0

Figure 4.4: Schematic showing the coordinate system used to describe the tip motion. The

minimum tip-sample separation is z and the oscillation amplitude is a.

m∗
c q̈(t) + γq̇(t) + k0q(t) = Fts + F0 (4.1)

where γ is the damping coefficient, Fts is the tip-sample force and F0 is the drive force.

This can be solved for the unperturbed motion, q′(t) = a cos(2πf0t), with f0 = 1
2π

√
k0
m∗

c
.

If the tip-sample force gradient is constant then it can be described by an effective spring

constant kts = ∂Fts
∂z and the frequency shift is given by [45]:

∆f = f0
kts

2k0
(4.2)

The length scale of the tip-sample interaction is typically less than one nanometre

whilst the oscillation amplitude is tens of nanometres. The tip-sample force will vary

by orders of magnitude over one cycle and for this reason this simple analysis is not

adequate.

The frequency shift for an arbitrary force Fts can be derived by assuming the can-

tilever motion is periodic and expressing it as a Fourier series [45]. Equation 4.1 can

then be solved to give the magnitude of the harmonics. To first order the frequency

shift is then given by [45]:

∆f ≈ − f0

k0a2
〈Ftsz〉 (4.3)

where 〈...〉 denotes the average over one cycle. This approximation only includes the

first harmonic which is a good assumption for 〈Ftsz〉 ¿ k0a
2/2 which is correct for stiff
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Figure 4.5: (a)-(b) Photographs showing home-made TF SCM sensor. (c)-(d) SEM images of

etched tungsten tip.

cantilevers or small amplitudes. It is not simple to extract a force-distance curve from

frequency-distance information as at each point the frequency shift is an average over

a whole cycle. This problem will be considered in detail in Chapter 6.

4.4.2 Sensor construction

Figure 4.5 shows the sensor and an SEM image of the tip.

A photograph of the sensor design is shown in Fig. 4.5(a)-(b). The outer case of

the tuning fork4 was removed using a lathe to leave the metal ring surrounding the

leads at the base of the fork. The fork was glued to a copper base with non-conductive
4Fox electronics watch crystal NC26 - RS part number 472-1161
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epoxy5, care was taken not to restrict the movement of the free tine with any glue. A

piece of 50µm tungsten wire6 was bent into a right angle and trimmed to leave one end

approximately 5 mm and the other approximately 0.5mm long. The longer half would

be etched to become the tip whilst the short length would allow connection of a fine

gold wire. The tungsten wire was glued using non-conductive epoxy to the front face

of the tine. A 15µm gold wire was a glued to the short end of the tungsten wire with

conductive silver epoxy7. A short length of copper wire (0.5mm diameter) was glued

to the base to provide a link between the gold and the capacitance detector. A right

angle bend was placed in the gold wire close to the tine, this created a natural hinge

and relieved strain in the wire, the free end was then glued with conductive epoxy to

the copper wire. Finally the tungsten wire was electrochemically etched to give a sharp

tip.

4.4.3 Tip etching

Tungsten is chemically inert and very hard making it a suitable material from which

to fabricate SPM tips. In order to create a sharp tip the tungsten wire is immersed

in a beaker of 2.5M NaOH and a DC voltage (≈ 2.5V) is applied between the wire

and an electrode in the solution. The reagents formed in the reaction sink through the

solution and whilst doing so protect the wire beneath the surface. Preferential etching

at the surface creates a neck in the wire and at some point this can no longer support

the weight of the tungsten under the surface. The stretching and eventual snapping

of the wire has the desired effect of creating a very sharp tip. After etching the tip is

immediately washed in high purity water and blown dry with nitrogen.

Previous experiments have shown that the time taken to remove the bias after the

wire has snapped is the most significant factor in determining the tip radius [85]. A

design from the literature is used to control the etch current [86]. This has a differen-

tiator to detect sudden changes in the etch current and removes the applied voltage in
5JB Weld
6Advent Research Materials W5574
7Epotek E2101
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a few microseconds.

The length of wire under the surface determines at what point and how suddenly

the wire breaks, too little wire under the surface and the wire may not break, too much

wire and the energy released can melt the end of the tip. Typical tip radii of 30 nm are

obtained with 0.5 mm of wire below the surface.

4.4.4 Calibration of the Oscillation Amplitude

The TF current Itf is directly related to the velocity and is proportional to the me-

chanical amplitude. The mechanical amplitude a can be expressed in terms of the

current:

a =
Itf

4παf0
(4.4)

where α is the piezoelectric coupling constant.

Methods for calibrating the oscillation amplitude of TFs include optical interfer-

ometry [87], thermal noise measurements [88], and using the AFM control apparatus.

Optical interferometry is very accurate but impractical for low temperature calibration.

Calibration from the thermal noise spectrum requires an estimate of the spring constant

from the geometry of the fork. In the AFM method the z-position of the scan tube is

recorded as a function of the oscillation amplitude. As the drive voltage to the TF is

reduced then the oscillation amplitude is decreased the the scan tube will extend to

bring the tip back into contact with the surface. The amount that the scan tube has to

extend is related to the change in the oscillation amplitude. As long as the calibration

of the scan tube is known then the oscillation amplitude can be calibrated in terms of

the drive voltage or current. This method allows quick calibration at any temperature

and magnetic field for which scan tube calibration is known.

Although the closest point of approach between the tip and the sample is amplitude

dependent, this effect is very small compared to the amplitude and does not introduce

a significant error to the calibration.

Figure 4.6(a) shows a low-temperature calibration giving a value of α = 12±1 µC/m.

A value of α = 4.26µC/m was obtained by Rychen et al. [87]. In their experiments
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Figure 4.6: (a) Tuning fork amplitude as a function of current. The straight line is a linear fit

of the data. (b) TF response as a function of temperature.

both tines were free and the fork had slightly different dimensions.

4.4.5 Temperature and Field dependence

The quality factor and resonant frequency of the TF increase with decreasing temper-

ature. Between 300 K and 2 K the frequency increases approximately 100 Hz and the

quality factor by an order of magnitude. The increase in quality factor at lower tem-

peratures is probably due to a reduction in losses as the adhesive used to mount the

fork becomes stiffer. Figure 4.6(b) shows the response of a typical sensor at different

temperatures.

With increasing magnetic field the general trend is an increase in resonant frequency

and a decrease in quality factor. Sensors typically show a linear increase in frequency of

between 0.1 and 0.5Hz/T at high field. The low field behaviour varies between sensors

and can show increasing and decreasing frequency as a function of field. The quality

factor falls by approximately an order of magnitude between 0 and 10 T. Again, the

low field behaviour can be more unpredictable. It might be that ferrous material in the

contacts or tuning fork leads is responsible for the behaviour at low field. Figure 4.7
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(a) (b)

Figure 4.7: (a) Frequency shift versus field. (b) Drive voltage to maintain constant amplitude

versus field.

shows the frequency shift and drive voltage in constant amplitude mode as a function

of magnetic field.

4.4.6 Future improvements

The current sensor design is sensitive to acoustic excitation which appears to be linked

to the attachment of the gold wire. A design has been developed where the free length

of the gold wire is reduced by supporting it close to the tine by a rigid post. Room

temperature experiments suggest this has resolved the problem but low temperature

measurements are needed to confirm this.

An oxide layer forms on the surface of tungsten which can vary the work function

difference between the tip and the sample. Changing the tip material to a platinum-

iridium alloy would avoid these problems. However, it is more difficult to etch.

4.5 AFM Detection and Control

An FM detection scheme is used for the AFM control where the shift in resonant

frequency from the unmodified value is used to determine and control the tip-sample
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Figure 4.8: Schematic showing AFM detection and control loops.

separation. The oscillation amplitude is kept constant by adjusting the drive voltage.

This technique was chosen because as well as performance advantages the frequency

shift and drive signals can be directly related to the ‘conservative’ and ‘dissipative’

components of the force per cycle respectively [89]. The AFM control system has three

feedback loops and is illustrated in the schematic in Fig. 4.8. The first feedback loop

is a phase-locked-loop and keeps the phase of the tuning fork current at a set point

by adjusting the frequency of the drive signal. The phase set point is chosen so that

the tuning fork is always driven at its resonant frequency. The second feedback loop

controls the mechanical amplitude of the tuning fork by adjusting the drive amplitude

to keep the current amplitude constant. The third feedback loop tracks the surface

with the scan tube by maintaining a set frequency shift at the output of the PLL.

A commercial PLL operates the first two feedback loops and a commercial SPM

controller8 runs the z -feedback. The SPM controller is also responsible for scanning
8TOPS3 Oxford Instruments
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and data acquisition.

4.5.1 PLL

To save development time a commercial product 9 was used for the tuning fork PLL and

amplitude control. This has constant excitation, constant amplitude and self excitation

modes of operation. The PLL is operated in constant amplitude mode with a lock

range of ±183Hz and an output bandwidth of 120 Hz giving a frequency noise of <

20 mHz/
√

Hz.

4.5.2 I-V amplifier

Figure 4.9 shows schematic diagrams of the I-V amplifier and the equivalent circuit of

a quartz tuning fork. The quartz tuning fork equivalent circuit consists of a series LCR

in parallel with some stray package capacitance [87]. The series LCR reproduces the

harmonic oscillator behaviour of the tuning fork. The inductance LTF , resistance RTF

and capacitance CTF reflect the mechanical properties of mass, dissipation and spring

constant respectively. In parallel with the series LCR there is some stray package

capacitance Cp between the leads and contacts. The amplifier design, as shown in

Fig. 4.9(a), is a current-to-voltage (I-V) converter with a simple bridge at the input

to negate the package capacitance, Cp, of the tuning fork. To set the compensation,

the drive frequency was set well above the resonant frequency, 80 kHz for example,

and Rc was then adjusted to minimize the output. Figure 4.10 shows typical TF

response curves with and without compensation of the package capacitance. Without

compensation there are closely spaced resonant frequencies that produce the same phase

and would cause the PLL to be unstable. The gain of the amplifier G is given by:

G =
Rg

1 + 2πfRgCg
(4.5)

where Rg is the feedback resistor, Cg the associated stray capacitance and f is the fre-

quency. A lock-in-amplifier and current source were used to calibrate the gain at 30 kHz
9EasyPll Plus - NanoSurf
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Figure 4.9: (a) Schematic of tuning fork I-V amp. (b) Equivalent circuit of a quartz tuning

fork.

(a) (b)

Figure 4.10: (a) Phase and (b) magnitude of the TF current with (solid line) and without

(dashed line) compensation of the package capacitance.
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which was found to be 2.2×106 V/A. The equivalent current noise of the amplifier was

measured as 2 pA/
√

Hz.

4.6 Sample wiring

Direct connections to the sample are made via low-pass filters on the end of the z -

module. The low pass filters were included to protect the sample from capacitive pick

up of the coarse motor drive signal. They have a cut-off frequency of 1 kHz. Fig. 4.3(b)

is an end view of the z module showing the filters.

4.7 Summary

This chapter has described the development of a low temperature AFM/SCM. Mea-

surements can be made at temperatures as low as 1.5 K and magnetic fields up to 12T.

The AFM/SCM sensor is based on a piezoelectric quartz tuning fork with an etched

tungsten tip. The piezoelectric QTF is implemented in a self exciting/detecting config-

uration avoiding alignment problems and stray light associated with optical deflection

measurements. AFM measurements are made in a dynamic mode, a PLL tracks the

resonant frequency of the tuning fork and the frequency shift is used as the feedback

signal for the height control. A separate feedback loop maintains a constant oscillation

amplitude. Capacitance measurements are made using an RF tuned filter design which

is discussed in detail in the next chapter.



Chapter 5

Capacitance detection

Several techniques can be used to measure capacitance, for example bridge methods [90],

charge measurement [91] or RF techniques [65]. The bridge and charge measurement

techniques are more suited to slow and absolute capacitance measurements because

the background has to be compensated for each measurement individually. An RF

technique based on a tuned filter design allowed changes in capacitance to be measured

accurately and with a bandwidth adequate for scanning [65].

The RF-response of a tuned filter circuit was measured with the central resonator

connected to the metallic tip of an AFM in tapping mode. Changes in the tip-sample

interaction modify the frequency and quality factor of the tuned filter which in turn

changes the transmission of the signal. In order to discriminate the local capacitance (≈
10−17 F) from the background, stray capacitance (≈ 10−12 F), we employ the following

technique: the tip oscillation modulates the tip-sample capacitance Cts(t). By using

lock-in techniques we measure the resulting modulation of the RF signal. With highly

conductive samples the system response is dominated by changes in the tip-sample

capacitance. However, for large resistances, for example in the QHE regime, this is no

longer true.

After calibration it is possible to determine the tip-sample capacitance with sub-

attofarad resolution with a spatial resolution of less than 100 nm.

Figure 5.1 shows a schematic of the detection set-up. An RF source provides the
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Figure 5.1: Schematic of capacitance detection set-up. An RF tuned filter is used to detect

changes in the tip-sample interaction. The in-phase X and quadrature Y components of the

RF signal are recovered using mixers and the modulation at the TF oscillation frequency is

measured using lock-in detection.

input signal for the tuned filter and a reference signal for the detection electronics. The

in-phase, X, and out-of-phase, Y , components of the output signal are recovered by

mixing with reference signals at the appropriate phase. The modulation of X and Y at

the tuning fork (TF) oscillation frequency, X̂ and Ŷ respectively, are measured using

lock-in detection.

5.1 Tuned filter

The home-made tuned filter consists of three coils wound on a ceramic former. A

photograph and schematic of the design are shown in Fig. 5.2. The excitation coil

is used to couple power into the sense coil, the pick-up coil is used to measure the

current in the sense coil inductively. The sense coil forms the central resonator and is

connected to the tip. The transmission of the signal through the tuned filter depends on

the impedance of the sense coil which is in turn influenced by the tip-sample interaction.

The design of the coil was constrained by the available space on the microscope
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Figure 5.2: (a) Photograph of the tuned filter showing three coils wound on to a ceramic

former. (b) Schematic of the tuned filter.

head and the requirement of a resonant frequency of approximately 100 MHz. The

frequency is determined by the inductance of the sense coil, the tip-sample capacitance

and stray capacitances. The position and inductance of the excitation and pick-up

coils control the coupling to the sense coil. The coupling needs be strong enough to

generate a measurable signal, however, as the coupling is increased the quality factor of

the resonance is reduced and susceptibility to noise in the external circuits is increased.

The parameters of the tuned filter were optimized by experimentation.

5.1.1 Equivalent circuit model

An equivalent lumped element circuit model of the tuned filter has been developed

and is shown in Figure 5.3. The components have been characterized individually, as

discussed below, and the values are summarized in Table 5.1.

5.1.2 Calibration of the coil inductance

The inductance of the coils was determined by measuring the voltage change in response

to an abrupt change in current using a method described in Ref. [92]. A triangular

waveform was applied to the coil under test, Li, whilst monitoring the voltage, Vi,
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Figure 5.3: Equivalent circuit model of the tuned filter, drive and detection circuits.

Parameter Description Value

R1, R3 wire resistances 0.5Ω

R2 resistance of the sense coil 0.17Ω

L1, L4 excitation, pick-up coil inductance 0.16 µH

L = L2 = L3 sense coil inductance 0.88 µH

Rs output impedance of the RF source 50Ω

RL input impedance of the detector 50Ω

CTF stray capacitance 2 pF

Cts tip-sample capacitance sample dependent

Rsg resistance between sample and ground ”

Table 5.1: Description and values of the components in the equivalent circuit model measured

at room temperature.
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Figure 5.4: Circuits used to calibrate the coils of the tuned filter. (a) Inductance and resistance

of a single coil. (b) Mutual inductance between two coils.

across the coil with an oscilloscope. A circuit diagram is shown in Figure 5.4(a). The

frequency was adjusted such that the voltage appearing across the coil was less than

1 % of the function generator output. This ensured the current had a triangular form.

Figure 5.5(a) shows the applied current and the voltage across the coil.

At the apex of the triangular wave the current changes slope abruptly and an

inductive jump VL is seen in Vi. The inductance Li is given by:

Li =
VL

2dI/dt
(5.1)

where dI/dt is the current slope and the factor of two appears because the slope changes

from positive to negative and the voltage is measured peak-to-peak. The second com-

ponent of the Vi trace is a linear slope due to the voltage drop, VR, across the resistive

part of the coil. The coil resistance, Ri, is given by:

Ri =
VR

∆I
(5.2)

The inductances of the individual coils were measured with the other windings re-

moved to exclude any mutual inductance contribution. The mutual inductance between

the coils was measured by applying a triangular waveform to one coil and measuring the



CHAPTER 5. Capacitance detection 59

VM

(b)

VL

VR

(a)

Figure 5.5: (a) Calibration of the sense coil at 100kHz. Graph shows applied current and

voltage developed across the coil. Parameters of the sense coil are calculated as L = 0.88 µH,

R = 0.17Ω. (b) Measurement of mutual inductance between excitation coil and central coil

showing the applied current and induced voltage. M12 = 0.05 µH.

voltage, VM , induced in the second coil. A circuit diagram is shown in Figure 5.4(b).

The mutual inductance is given by:

M12 =
VM

2dI/dt
(5.3)

Figure 5.5(b) shows the induced voltage on the sense coil for a current applied to the

excitation coil.

Through measurement of the individual inductances and their mutual inductances

it is possible to calculate the coupling coefficients of the coils using:

kij =
Mij√
(LiLj)

(5.4)

The coupling between the excitation coil and the sense coil is k = 0.13. The tuned filter

design is symmetric and therefore the coupling between the sense coil and the pick-up

coil is the same.
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Figure 5.6: Calibration measurement to establish relationship between the stray capacitance

CTF and the resonant frequency of the tuned filter.

5.1.3 Calibration of the stray capacitance

The majority of the stray capacitance CTF originates from coupling between the tip

and the electrodes of the tuning fork. The size of the stray capacitance CTF makes

direct measurement difficult. The resonant frequency of the tuned filter was used to

calculate the stray capacitance, Figure 5.6 shows the resonant frequency for a number

of test capacitances, Ct, placed in parallel with the sense coil. The behaviour can be

described accurately by an LCR circuit where the resonant frequency ω0 is given by:

ω0
2 =

1
LC

(5.5)

The inductance can be calculated from the gradient and has value of 0.86µH, this is in

agreement with the direct measurement of L. With the sensor attached to the resonator

we find a stray capacitance of CTF ≈ 2.1 pF.
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5.1.4 Transfer function

The equivalent circuit model is used to approximate the transfer function of the tuned

filter. The output voltage Uout with no tip-sample interaction is given by [65]:

Uout = −ω2M12M34RL

Z1(ω)Z3(ω)
1

R2 + iωL + 1
iωCTF

+ Zc
Uin (5.6)

where Mij is the mutual inductance between the coils Li and Lj , Z1 = R1 + iwL1 and

Z3 = R3 + iwL4.

The effect of the coupling appears in the term Zc, the impedance seen by the sense

coil due to the coupling to the excitation and pick-up circuits and is given by:

Zc =
ω2M12

2

Z1
+

ω2M34
2

Z3
(5.7)

The response of the tuned filter can be approximated by an LCR or harmonic

oscillator model with effective component values calculated at the resonant frequency:

Uout =
A

Reff + iωLeff + 1
iωCTF

Uin (5.8)

where Leff = L − Imag(Zc)/w = 0.85µH and Reff = R2 + Real(Zc) = 8.1 Ω and

A = −ω2M12M34RL
Z1Z3

= 4.

Figure 5.7 shows the measured response of the tuned filter, the predicted response

from the full equivalent circuit model and the harmonic oscillator approximation with-

out fitting. The two models are in excellent agreement with each other and in good

agreement with the experimentally measured curve. The deviations probably result

from additional stray inductances and capacitances not included in the models.

5.2 Detection system

Passive mixers are used to extract the in-phase, X, and quadrature, Y , components of

the signal. Appropriate reference signals are generated from the drive signal using a

variable phase shifter and a 0/90◦ power splitter. With the tip withdrawn the variable

phase shifter is adjusted so that X is a maximum at the resonance frequency.
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(a) (b)

Figure 5.7: Frequency response of the tuned filter, measured response(red markers), full equiv-

alent circuit model (blue line), harmonic oscillator model (green dashed line). (a) Y response.

(b) X response.

The RF signal is modulated by the sensor oscillation, which allows the local contri-

bution to be separated from the large background signal. X̂ and Ŷ are the components

of X and Y at the TF oscillation frequency and are measured using lock-in-amplifiers.

5.2.1 Tip-sample voltage

In our experiment the tip voltage Utip should be small in order not to disturb the

sample too strongly. Assuming the impedance of the tip-sample interaction is much

larger than that of CTF then from the equivalent circuit model we find:

Utip =
M12

CTF Z1[R2 + iωL + 1
iωCTf

+ Zc]
Uin (5.9)

Using the measured component values then Utip = 8.7× Uin ≈ 0.5mV.

5.3 Sample simulation

We approximate the effect of the electrical tip-sample interaction on the tuned filter

by a simple RC model. The coupling between the tip and sample is represented as
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purely capacitive, Cts, whereas the sample is represented by a resistance to ground, Rs.

The response of the tuned filter to different tip-sample parameters is not simple. For

each sample values for R and C will be estimated and the equivalent circuit model will

be used to determine to which parameter or parameters the measurement is sensitive.

The aim for each sample is to be able to identify regimes where it is possible to make

a straight forward interpretation of the measurement. This will be discussed in full in

the chapters describing the measurements made on particular samples.

5.4 Summary

This chapter has described a capacitance detection scheme based on an RF tuned filter

design. An equivalent circuit description of the detector has been developed and careful

calibrations of the individual components have been carried out. The response calcu-

lated with the model is in good agreement with the experimentally measured response.

Chapter 6 describes some measurements made above a gold film and deconvolution of

the C(z) curve from the measured quantities. Chapter 7 discusses measurements made

over a 2DEG at zero field and in the quantum Hall regime.



Chapter 6

SCM measurements above a gold

film

In this chapter point spectra and scanning measurements of a thin gold film at room

temperature are discussed. The motivation for these measurements was to investigate

force and capacitance as a function of tip-sample separation. These measurements were

made on a gold film as it is a simple well-defined metallic surface.

The tapping mode AFM technique means that the measured quantities are an av-

erage of the tip-sample interaction over an oscillation cycle of the tuning fork. A

generalized deconvolution scheme will be discussed and used to extract force and ca-

pacitance as a function of the tip-sample separation, from point spectra measurements,

of the frequency shift and Ŷ signals.

6.1 Sample

The sample consists of a 100 nm thick gold film evaporated on to a 4 mm2 piece of

undoped silicon wafer (100) 0.1mm thick. The film is connected to ground by metallic

bond wires.
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Parameter Value Impedance |Z| at 120 MHz

Cts 0.2 pF 6 kΩ

Rsg 0.5Ω 0.5Ω

Table 6.1: Model parameters for gold sample.

6.1.1 Lumped circuit model

Values for the lumped circuit elements of the sample model discussed in Section 5.3

have been estimated for the gold sample and are given in Table 6.1. The tip-sample

capacitance, Cts, was estimated from the frequency shift of the tuned filter during the

approach of the tip to the surface. The sample resistance, Rsg was estimated using

a simple model shown in Figure 6.1(a). Assuming the RF signal couples into a small

region in the centre of the film r < r1 (potential U1) the resistance Rsg to the boundary

r = r2 (Potential U2) is given by:

Rsg =
U2 − U1

I
=

ln(r2/r1)
2πσ2D

xx

(6.1)

where σ2D
xx = T/ρxx is the 2D longitudinal conductivity of gold, T is the film thickness

and ρxx is the resistivity of gold. Figure 6.1(b) shows the calculated film resistance Rsg

for a range of r1 between 10 nm and 10µm. Over this range Rsg does not exceed 0.5Ω.

Comparing the impedances of the lumped circuit elements (Table 6.1) the model of

the gold sample can be reduced to the tip-sample capacitance Cts.

The transfer function of the unperturbed tuned filter was discussed in Section 5.1.4.

For the gold sample the tip-sample interaction can be simplified to an additional ca-

pacitance Cts in parallel with CTF , the stray capacitance to ground through the tuning

fork. The transfer function is then given by:

Uout =
A

Reff + iωLeff + 1
iω(Ctot)

.Uin (6.2)

where Ctot = CTF + C
(0)
ts + ∆Cts, C

(0)
ts is the tip-sample capacitance with the tip

withdrawn and ∆Cts is the change in the tip-sample capacitance.
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Figure 6.1: (a) Model used to estimate the resistance of the gold film Rsg. The signal couples

into a small region r < r1 and the gold film is grounded at the boundary r = r2 = 2mm. (b)

Calculated Rsg versus r1 with r2 = 2mm.

Response of Y to changes in Cts

The quadrature component of the RF signal, Y , is given by:

Y = −
A

(
ωLeff − 1

ωCtot

)

Reff
2 +

(
ωLeff − 1

ωCtot

)2 Uin (6.3)

A Taylor expansion of Y (∆Cts) about ∆Cts = 0 gives:

Y ≈ − AUin

ω0CtotReff
2

(
−∆Cts

Ctot
+

(
∆Cts

Ctot

)2

+ ...

)
(6.4)

for ∆Cts ¿ Ctot the first order term is a good approximation. Over the range which

this approximation is valid, Y is proportional to ∆Cts and a constant of proportionality

Kg = dY/dC = −A/Ctot
2Reff

2.Uin can be defined. For the gold sample dominated by

the geometric capacitance between the tip and sample surface Kg ≈ 0.16µV/ aF.
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Response of X to changes in Cts

The in-phase component of the RF signal X is given by:

X =
AReff

Reff
2 +

(
ωLeff − 1

ωC0

)2 Uin (6.5)

Performing a Taylor expansion of X(∆Cts) about ∆Cts = 0 gives:

X ≈ AUin

Reff
− ALeffUin

Ctot
3Reff

2 ∆Cts
2 + ... (6.6)

Note that there is no first order term in ∆Cts. This approximation can be reduced

to the zero order term for ∆Cts ¿
√

Ctot
3Reff

2/Leff ≈ 0.1 fF for the setup. The

parameters A and Reff are constant and therefore the in-phase signal is expected to

be a constant for measurements made on metallic samples.

6.2 Point Spectra

AFM and SCM measurements were made as a function of the tip-sample separation

over a single point. The motivation for these experiments was to investigate the form

and length scale of the tip-sample force and capacitance and make comparisons to

simple models and measurements in the literature.

The dynamic AFM technique used in the experiments introduces significant com-

plexity into the interpretation of these measurements as the length scale of the inter-

actions is comparable to the oscillation amplitude. A deconvolution scheme usually

used for force-distance curves is generalized and used to extract Cts(z) from the Ŷ (z)

measurement.

The point spectra measurements were made at room temperature and under vac-

uum. The AFM control was used locate the surface, the tip was then left controlling

over a single point for a number of minutes. This was to minimize creep of the scan

piezo influencing the measurement. Point spectra measurements were made by switch-

ing off the height feedback loop before varying the tip-sample separation. Data were

acquired whilst retracting and then approaching the surface. The PLL was used to
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track the resonant frequency and maintain a constant oscillation amplitude of the tun-

ing fork sensor (see Section 4.5). Capacitance measurements were made as described

in Chapter 5. The frequency shift ∆f , drive voltage, Ŷ and X̂ were acquired simulta-

neously. Each point spectrum took approximately 30 s. Measurements were made as a

function of oscillation amplitude and are discussed in the next section.

6.2.1 Description of the data

Frequency shift and dissipation versus z

Figure 6.2(a) shows the frequency shift and drive force as a function of tip-sample

separation z. The z scale is relative to the the point z = 0 which is where the height

feedback loop was controlling before making the measurement. All of these curves

were measured in both directions and no significant hysteresis was observed. At large

z all the curves show a slow decrease of ∆f with decreasing z until a minimum is

reached. At closer separations ∆f increases sharply with a gradient of up to 1Hz/nm

at an oscillation amplitude of 10 nm. At larger oscillation amplitudes the size of the

frequency shifts are reduced. This is in agreement with theoretical predictions [45] and

other experimental observations [87]. The minimum in the frequency shift is shifted

to increased z with increasing oscillation amplitude. This shift is because the tip

has to come closer to the sample to maintain the same frequency set point with a

larger oscillation amplitude. The change in the ∆f versus z curves indicates that the

oscillation amplitude is large compared to the length scale of the tip-sample force Fts.

As discussed earlier the frequency shift of the tuning fork can be approximated

by [45]:

∆f ≈ − f0

k0a2
〈Ftsz〉 (6.7)

where 〈...〉 denotes the average over one cycle. If the oscillation amplitude, a,is greater

than the length scale of the tip-sample force then further increases in amplitude will

reduce the portion of the cycle over which Fts is experienced and thereby will reduce

the resulting frequency shift.
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Figure 6.2: (a) Frequency shift and drive force versus tip-sample separation for different

oscillation amplitudes. (b) Ŷ is a function of tip-sample separation for different oscillation

amplitudes. Note that the data in Figures (a) and (b) are from different experiments.
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The change in the drive force is a small percentage of drive force away from the

surface. An increase in the drive force indicates that the PLL is providing more energy

to the tuning fork to maintain a constant oscillation amplitude. This additional energy

is compensating dissipation in the tip-sample interaction. The onset of dissipation

occurs at tip-sample separations where the frequency shift is negative and increases with

decreasing z. The change in drive force or dissipation is smaller for larger oscillation

amplitudes. This is because at larger oscillation amplitudes the tip spends less time

close to the surface and the energy of the tuning fork is greater.

The dissipated power can be calculated from P = UexcItf where Uexc is the ex-

citation voltage applied to the tuning fork and Itf is the resulting current. With an

oscillation amplitude of 10 nm then the electrical power supplied away from the surface

is 50 pW. At the closest tip-sample separation this rises to 52 pW. The additional dis-

sipation could be due to the induced kelvin current, phonon emission into the tip and

sample or a water layer on the sample in the non-UHV situation.

Ŷ versus z

Figure 6.2(b) shows the Ŷ signal versus tip-sample separation z for different oscillation

amplitudes. No curves of X̂ have been included as the signal was very small and did not

depend on z within the measurement resolution. Note that the z scale is now 25 nm and

not 10 nm as in Figure 6.2(a). The dashed line indicates the position of the minimum

in the simultaneously measured ∆f curve (not shown) for orientation. All three curves

have the same form, a gradual increase in Ŷ with decreasing z between z = 25nm and

z ≈ 7 nm before a sudden change in gradient and a steep increase in Ŷ for decreasing

z. Increasing the oscillation amplitude increases the size of the signal and reduces the

gradient of the curve. The increase in size is because a larger oscillation amplitude

gives a larger change in capacitance over a cycle. The change in shape is because the

measurement is averaged over a complete cycle and a larger oscillation tends to average

out the detail. The point at which the curve changes shape indicates some change of

regime in the electrostatics and is probably related to the size of the tip.
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6.3 Deconvolution of point spectra into tip-sample force

and capacitance

In the case where the oscillation amplitude is greater than the length scale of the tip-

sample interaction then the measured quantities depend on the oscillation amplitude

as seen in the data discussed in the previous section.

A number of numerical [93, 94] and analytical deconvolution methods [95] have

been used for extracting forces from measured frequency shifts. These methods often

apply under specific conditions, for example a certain range of oscillation amplitudes,

or are difficult to implement. Recent work by Sader et al [89] presented analytical

formulae to calculate the forces from measured frequency shifts valid for any oscillation

amplitude. In this chapter the same mathematical formalism is used to deconvolve any

quantity measured by a harmonically oscillating AFM tip. This is demonstrated for

the capacitance measurements.

In the following sections the method proposed by Sader is discussed before calcu-

lating the tip-sample forces, and tip-sample capacitance from the frequency shift and

Ŷ measurements respectively.

6.3.1 Mathematical background

The following mathematics is a summary of the approach described by Sader [89].

Consider the function Θ(z) which is given as the integral of a functional B(z) over

an oscillation cycle:

Θ(z) = − 1
ab

1
T

∫ T

0
B(z + a + q′(t))) cosωtdt (6.8)

where T is the period of the oscillation, a is the oscillation amplitude, b is a constant,

ω is the angular frequency, z is the tip-sample separation and q′(t) is the displacement

of the tip about z. Figure. 6.3 shows a schematic of the coordinate system used to

describe the tip motion. The integral can be transformed to a function of u:

Θ(z) = − 1
πab

∫ 1

−1
B(z + a(1 + u))

u√
1− u2

du (6.9)
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Figure 6.3: Schematic showing the coordinate system used to describe the tip motion. The

minimum tip-sample separation is z and the oscillation amplitude is a. Note that q′(t) is the

displacement of the tip about its centre position.

The goal is to extract B(z). Such problems can formally be solved by a Laplace

transformation. It is not possible to perform the Laplace transform analytically. Instead

the kernel was approximated by fitting an expression to the numerical solution. This

leads to the following solution of the problem:

B(z) = 2b

∫ ∞

z

(
1 +

a
1
2

8
√

π(t− z)

)
Θ(t)

− a
3
2√

2(t− z)
dΘ(t)

dt
dt (6.10)

6.3.2 Tip-sample force

In general the tip-sample interaction force Fts is a non-linear function of the separation

and can differ between the approach and retract parts of the oscillation cycle. Fts can

be expressed as the sum of an ‘even’ force Feven and an ‘odd’ force Fodd:

Fts = Feven + Fodd (6.11)

The ‘even’ force is given by the average of the approach and retract curves and repre-

sents the contribution to Fts which is given uniquely by the separation. The ‘odd’ force

is given by the difference between the approach and retract curves and represents the

contribution to Fts which depends on the tip velocity and the separation. The physical
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significance of these two components can be inferred by considering the work done W

over a complete tuning fork cycle:

W =
∮

~Fts(~s). ~ds =
∫ max

min
Ftsds1 −

∫ max

min
Ftsds2 =

∫ max

min
Foddds =

∮
Fodd.ds (6.12)

where ~Fts(~s) is the force and ~ds is the position vector in the direction of the tip motion.

For Feven the work done on approach and on retraction is equal and opposite so the net

work per cycle is zero. Feven therefore represents the conservative contribution to the

work per cycle. For Fodd the work done in approach and retraction is identical and in

general is not zero. Fodd represents the dissipative contribution to the work per cycle

(if W < 0) [89].

Recovering Feven

∆f measures the Fourier component of Feven, see Eqn. 4.3. Performing a Fourier

analysis gives the following expression relating the frequency shift ∆f to the ‘even’

force [93]:
∆f

f0
= −

(
1

ak0

)
1
T

∫ T

0
Feven(z + a + q′(t)) cos 2πf0tdt (6.13)

By substituting u = q′(t)
a and rearranging terms one can identify Θ(z) ≡ ∆f(z)

f0
, B(z) ≡

Feven(z) and b ≡ k0. Substituting these coefficients into Eqn. 6.10 leads to:

Feven(z) = 2k0

∫ ∞

z

(
1 +

a
1
2

8
√

π(z′ − z)

)
∆f(z′)

f0

− a
3
2√

2(z′ − z)
d

dz′

(
∆f(z′)

f0

)
dz′ (6.14)

For small amplitudes and small ∆f gradients Eqn. 6.14 reduces to:

Feven(z) = 2k0

∫ ∞

z

∆f(z′)
f0

dz′ (6.15)

or, after d
dz

:

∆f(t) =
f0

2k0

dFeven(z)
dz

(6.16)

which coincides with Eqn. 4.2. Figure 6.4(a) shows a series of experimental frequency

shift ∆f versus distance z curves for different mechanical oscillation amplitudes. These
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Figure 6.4: (a) Measured frequency shift versus tip-sample separation for different oscillation

amplitudes. (b) Recovered Feven.

are discussed in detail in Section 6.2.1. The reconstructed Feven(z) curves are plotted

in Fig. 6.4(b). The curves are identical curves for all amplitudes which supports the

validity of the deconvolution method.

The Feven(z) curves shows four different regimes indicated by the labels in Fig-

ure 6.4(b). Far from the surface z > 7 nm the tip-sample force is very small and the

tuning fork is unperturbed (Label 1). Closer to the surface 0.5 < z < 7 nm there is

a gradually increasing attractive force (Label 2). There is a minimum in the force at

z ≈ 0.5 nm. For separations −1 < z < 0.5 nm the force gradient is reversed and the

force is changing from attractive to repulsive (Label 3). At the closest separations

z < −2 the force is repulsive and inversely proportional to z.

The form of the curve is very similar to the simple theoretical model shown in

Figure 3.1. The forces are about an order of magnitude larger than the simple model.

The length scale of the experimentally measured curve is about a factor of 20 larger than

the model. The work function difference was not compensated in these measurements

and it is probably these long range electrostatic forces that increase the size of the

attractive part of Fts. In the repulsive regime the theoretical curve only describes the
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interaction between the most prominent tip and sample atoms. In the experiment, as

the tip comes closer to the surface, the tip and the sample are deformed and can be

better described by Hertzian contact theory. In the range z < −1 nm the curve is linear

and represents a contact stiffness of ≈ 50 N/m. This is comparable to measurements on

such a material system reported in the literature [96]. The length scale of the interaction

is probably modified because of additional electrostatic forces and deformation of the tip

and sample. Experimental measurements by Rychen et al show similar behaviour [87].

Recovering the damping coefficient

An expression for the drive force F0 in terms of the ‘odd’ component of Fts can be

found in the same way as Eqn. 6.13 [93]:

F0 + 2πabf0 =
2
T

∫ T

0
Fodd(q(t)) sin 2πf0t dt (6.17)

Fodd depends on the tip-sample separation and the tip velocity and therefore cannot

be recovered directly using the mathematical method discussed in Section 6.3.1. This

problem can be overcome by expressing Fodd as the product of the tip velocity q̇′(t) and

a ‘generalized damping coefficient’ Γ(a, f0, q
′(t)) = γ + ∆Γ which is a unique function

of tip-sample position, where γ is the damping coefficient a long way from the surface.

This can be calculated from the quality factor Q, mass m and resonant frequency f0 of

the tuning fork and is given by [97]:

γ =
2πf0m

Q
(6.18)

Fodd is then given by [89]:

Fodd = Γ(z, a, f0, q
′(t))q̇′(t) (6.19)

With Fodd substituted for the definition above, Eqn. 6.17 can be transformed into the

same form as Eqn. 6.9 by partial integration and substitution. Comparing coefficients

then Θ(z) ≡ ∆F0(z)

F0
− ∆f(z)

f0
, B(z) = 2

∫∞
z ∆Γ(z′) dz′ and b = γ. Substituting these

coefficients into Eqn. 6.10 gives:

∆Γ(z) = −γ
∂

∂z

∫ ∞

z

(
1 +

a
1
2

8
√

π(z′ − z)

)
Θ(z′)
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(a) (b)

Figure 6.5: (a) Drive required to maintain constant amplitude versus tip-sample separation

for different amplitudes. (b) Recovered Fodd.

− a
3
2√

2(z′ − z)
dΘ(z′)

dz′
dz′ (6.20)

Figure 6.5(a) shows the change in the drive force as a function of oscillation amplitude,

these measurements are discussed in detail in Section 6.2.1. Using the analysis outlined

above the odd force Fodd has been reconstructed from the experimental data shown in

Fig. 6.5(a) and is plotted in Fig. 6.5(b).

The odd force curves have a large background which increases with oscillation am-

plitude. The change in Fodd with tip-sample separation is much smaller. Fodd increases

linearly with decreasing z with a gradient less than 5 fN/nm. The odd forces are very

small compared to Feven with, Feven ≈ 105.Fodd.

The odd force consists of a contribution from internal damping of the probe and

from the tip-sample interaction. The internal damping of the probe is much larger.

The increase in Fodd with oscillation amplitude is expected from Eqn. 6.19.

6.3.3 Tip-sample capacitance

The capacitance measurement technique has been outlined in Chapter 5. In the case of

the gold sample then it has been shown that the quadrature signal, Y , is governed by



CHAPTER 6. SCM measurements above a gold film 77

1

3

2

(a) (b)

Figure 6.6: (a) Ŷ versus tip-sample separation for different oscillation amplitudes. (b) Recov-

ered C versus tip-sample separation z for different oscillation amplitudes and fit of analytical

expression.

changes in the tip-sample capacitance. The component at the TF oscillation frequency,

Ŷ , is given by the Fourier component of Y measured by the lock-in amplifier:

Ŷ = Kg
1
T

∫ T

0
∆Cts(z + a + q′(t)) cos 2πf0t dt (6.21)

By substituting u = q′(t)
a and rearranging this can expressed in the same form as

Eqn. 6.9 with Θ(z) ≡ Ŷ (z), B(z) ≡ ∆Cts(z) and b ≡ 1
Kga .

Figure 6.6(a) shows Ŷ (z) obtained in the experiment. The reconstructed C(z)

curves are shown in Figure 6.6(b). The Feven(z) curve has been plotted on the same

axes for orientation. The capacitance curve shows three regimes: a linear slope for

separations z > 5 nm (Label 1); for 5 > z > 2 nm the gradient increases quickly (Label

2); and at about 2 nm there is a distinct change in the gradient and the capacitance

increases linearly with decreasing separation. The distinct change at 2 nm corresponds

to the onset of the repulsive regime in the force curves and probably indicates the point

at which the tip begins to interact with the surface.

The capacitance curve has been fitted to the first terms of a McLaurin/Taylor
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expansion:

C =
A

z − z0
+ B(z − z0) + C0 (6.22)

The first parameter can be interpreted as the local part of the tip-sample capacitance,

which changes with 1/z for small separations. This is the same as for a parallel plate

capacitor. The second term represents the main contribution from the macroscopic

part of the tip. The third term accounts for the constant stray capacitance which does

not change with tip-sample separation. This expression has been fitted to z > 2 nm of

the recovered capacitance curves and is shown by the black line in Figure 6.6(b).

The effect of the surface contact force was modelled as a distortion of the motion

of the tip. This might be a distortion of the motion of the tuning fork but more

likely is some deformation of the tip at the surface. The deconvolution routine assumes

harmonic motion for the tip and distortion of this motion will create artefacts in the

recovered force and capacitance curves. The effect of distortion has been modelled

by generating data from the analytical expression for C (Eqn. 6.22) with a distorted

tip-motion. Three types of distortion were modelled:

• A linear reduction in the displacement below a certain threshold.

• A threshold at which the displacement is clipped.

• A combination where below the first threshold the displacement is reduced linearly

and at the second threshold the displacement is clipped.

Figure 6.7(a) shows the displacement of the tip with and without distortion and Fig-

ure 6.7(b) shows the recovered capacitance curves in each case.

This simple distortion model is reasonably successful in reproducing the anomalous

behaviour seen in the C(z) curve at small separations. There is good reason to support

the assumption that the tip/sample is being distorted from the linear slope seen in the

recovered Feven(z). An alternative explanation that was explored is that the tip motion

is harmonic and the change in behaviour at small separations is due to the tip-sample

capacitance shorting out when the tip is in contact with the surface. Simple modelling
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(a) (b)

Figure 6.7: (a) Displacement of the tip over one cycle close to the surface. Black curve shows

harmonic motion, inset shows different distortion models applied to tip motion. Blue - linear

reduction in displacement. Green - hard cut off in displacement. Red - combination of a linear

reduction and a cut off. (b) Recovered capacitance curves from deconvolution scheme using

data simulated with analytical capacitance curve (Black) and distortion models. Colour of the

lines has same meaning as (a).
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with the equivalent circuit of the tuned filter was not able to reproduce the features

seen in the data. It might be that the oxide layer on the tip prevents the tip shorting

to the film.

6.4 Scanning measurements

Figure 6.8 shows a series of images from a scan of the evaporated gold film showing

the topography z, frequency shift ∆f , tuning fork drive voltage Uexc and Ŷ signals.

An image showing X̂ has not been included because no structure in the signal could

be observed. The Ŷ image was scaled in terms of capacitance by multiplying by the

constant Kg as discussed in Section 6.1.1.

The topographic image, Figure 6.8(a), shows gold clusters on the surface with a

lateral size of 50-100 nm and a height of 5-10 nm. The frequency set point was 0.5Hz,

deviations of ±0.5Hz can be seen in the error signal image, Figure 6.8(b). These devia-

tions are a large proportion of the set point and indicate that the AFM control was not

performing well during these images. The frequency error signal has pronounced dips

at positions corresponding with the right edge of topographic features. This indicates

where the AFM control system is briefly losing contact with the surface. The variation

in the drive voltage is approximately 5%, regions of reduced drive voltage correspond to

raised features in the topography. The capacitance signal doesn’t show any significant

structure, the small features that can be seen are about the right size and shape to in-

dicate a correlation with topographic features. The variation in the capacitance signal

is a large proportion of the signal, this might be due to the poor AFM control. These

data are quite difficult to analyze because of the poor AFM control. Future suggestions

for scanning measurments include: a flat conducting sample such as highly orientated

pyrolytic graphite (HOPG) to assess the stability of the Ŷ signal during scanning. A

sample with well defined topographic features could be used to analyse the geometric

effect of the topography on the capacitance signal.
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(b) Error signal Df

1 Hz

0 Hz

Capacitance(d)

4.6 aF

3.2 aF

(a) Topography z

12 nm

0 nm

(c) Drive voltage Vexc

31 mV

29 mV

scan direction

Figure 6.8: 1.5× 1.5 µm scan of a thin gold film at room temperature in vacuum. (a) Topog-

raphy z. (b) Error signal ∆f . (c) Tuning fork drive voltage Uexc. (d) Capacitance signal Ŷ .

Scan rate 0.25 Hz, frequency setpoint 0.5Hz.
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6.5 Summary

Measurements have been made over an evaporated gold film. The tip-sample interaction

was modelled by a capacitance and the sample by a resistive plate. Using the equivalent

circuit model of the tuned filter it was shown that the response of Ŷ was proportional

to the tip-sample capacitance.

A deconvolution scheme was used to recover the tip-sample force and tip-sample

capacitance from the measured quantities. The tip-sample force was larger and over

a longer length scale than theoretical predictions. The increased length scale was

attributed to additional electrostatic forces and a deformation of the tip and sample at

the closest separations.

In the next chapter measurements of a 2DEG sample are discussed.



Chapter 7

Measurements of a 2DEG

7.1 Introduction

This chapter begins with a discussion of SPM measurements of 2DEGs in the literature

and the key results. Point spectra measurements over the bulk region of a 2DEG are

presented and used in conjunction with a simple model to try to understand how

the capacitance measurements relate to the local properties of the 2DEG. Scanning

measurements at an edge are presented and show that the technique is sensitive to

the presence of a 2DEG. In conjunction with finite element simulations the geometric

effect of the edge on the signal is considered. The final sections present scanning

measurements at the edge of the 2DEG as a function of magnetic field and current.

7.2 SPM measurements of 2DEGs

Scanning probe techniques are typically used for microscopic studies of surface phe-

nomena. The electrons in a 2DEG are buried tens of nanometres below the surface

and as such present a challenge for SPM studies. Studies of the quantum Hall effect

require temperatures below a few kelvin and magnetic fields of a few tesla. This envi-

ronment introduces many technical challenges to the design of the microscope. These

difficulties mean that only a handful of groups have been successful in demonstrating
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SPM measurements of the quantum Hall effect.

The SPM techniques which have applied to this area vary in their approach but all

rely on measuring or modifying the electric field between the 2DEG and a metallic tip.

Scanning single electron transistor (SSET) [58] and Kelvin probe measurements [98]

have measured the local potential above the 2DEG. Scanning gate measurements use

a voltage applied to the metallic tip to locally perturb a region of the 2DEG [99].

Scanning charge accumulation microscopy [100] uses a sensitive charge detector to

measure how easily charge can flow in and out of a region of a 2DEG, this depends

upon the local compressibility and conductivity of the 2DEG. In the following sections

these techniques and the key results from studies of the quantum Hall effect will be

discussed.

Later in this chapter scanning capacitance microscopy is presented as a new tech-

nique for local studies of a 2DEG in the quantum Hall regime.

7.2.1 Scanning SET measurements

In scanning single electron transistor (SSET) experiments the static electric field above

the 2DEG is measured with a single electron transistor (SET) fabricated on the end of

a fine glass probe.

An SET is a sub-micrometre tunnelling device where the current passing between

source and drain electrodes is governed by the Coulomb blockade effect of a small

metal island. The island is connected to the source and drain by two tunnel junctions

where the tunnelling rate is determined by the electrostatic potential of the island with

respect to the source and drain. By measuring the current flow through the transistor

it is possible to detect changes in the electric potential.

A scanning SET was first demonstrated by M.J.Yoo et al by fabricating an SET on

the end of a sharp glass fibre [58]. This design has been used for an investigation of a

GaAs/AlGaAs heterostructure with a 2DEG 100 nm below the surface. The scanning

SET was operated as part of a feedback loop keeping the current through the SET

constant by adjusting the potential between the sensor and the 2DEG with a bias
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voltage applied to the 2DEG. Two main types of measurement of the 2DEG are made

with this type of instrument. These are the ‘transparency’ of the 2DEG to an electric

field from a back gate, which probes the compressibility of the electron gas, and the

Hall voltage induced by transport current. There are large stray background potentials

at the surface originating from fluctuating surface dopant charges and metal gates used

to define the spatial extent of the 2DEG. In order to separate the small transparency

or transport signals from the background, low frequency lock-in amplifier techniques

were used.

In the transparency measurements the voltage between the SET and the backgate

was modulated. The modulated voltage is screened by the 2DEG and the strength of

this screening depends upon the local filling factor. Figure 7.1 shows SET images of

a 2DEG in the vicinity of metal gates fabricated on the sample surface. The 2DEG

underneath the gates is depleted by the work function difference between the gates and

the GaAs. Figure 7.1(a) shows the local potential between the gates. The transparency

image, Fig. 7.1(b), shows compressible and incompressible phases of the 2DEG. The

regions of high signal are incompressible areas of 2DEG surrounded by compressible

regions. The bright stripe between the gates is identified as the incompressible stripe

that lies along the ν = 1 edge states. The bright regions at the edge of the gate are

artefacts of the imaging technique.

Measurements of the Hall voltage have also been made by passing a low frequency

AC current through the 2DEG. At low magnetic fields the Hall voltage was found

to drop linearly across the sample in agreement with the classical prediction. In the

quantum Hall regime the voltage drop is concentrated at the edges suggesting this is

where most of the current flows. It was not possible to measure the voltage drop right

up to the edge because of the screening effect of the metallic top gates.

The advantage of this technique is that it is able to measure the local potential or

local screening properties with a very high resolution. The probes are very difficult to

fabricate and compensating the background potential close to an edge makes imaging

real devices difficult.
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Figure 7.1: 15 × 15 µm SET images taken close to metallic gates fabricated on the sample

surface at filling factor ν = 1. (a) The local potential between the gates. (b) Transparency to

a back gate showing an edge state following the local potential. Images taken from Ref. [101].

7.2.2 Kelvin Probe microscopy

Measurements have been made on a 2DEG in the quantum Hall regime by McCormick

et al [98]. A particular aim of the experiments has been to image the Hall potential

as a function of distance from the edge of a Hall bar. The 2DEG was located in a

GaAs/AlGaAs heterostructure 77 nm below the surface. A gold coated piezo resistive

cantilever was used as the sensor and had a resonant frequency of ≈ 120 kHz. The Hall

potential was measured as a function of magnetic field by applying a small AC current

to the sample and measuring the force on the probe at this frequency. The tip-sample

capacitance and induced charge influence the spatial dependence of the measured force.

To compensate, reference measurements were taken before applying a current and were

used to normalize the measurements with an applied current.

Figure 7.2 shows a line scan of the potential across a Hall bar as a function of

magnetic field taken from Ref. [102]. Away from integer filling the Hall potential profile

shows a linear drop across the sample. Close to integer filling the potential drops

arbitrarily in the bulk of the sample, just above integer filling factors the potential

becomes flat in the bulk and all the potential drop occurs at the edges [103]. This

behaviour is periodic with filling factor and can be related to the model of compressible
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(a) (b)

Figure 7.2: (a) Normalized Hall potential profile versus magnetic field. Lines on lower graph

indicate the position of the innermost incompressible stripe from the model of Chklovskii et

al [27]. (b) Normalized Hall potential profile for different magnetic fields around filling factor

ν = 2. Sample geometry and transport data are shown in the inset. Images taken from

Ref. [102].

and incompressible regions [27]. The potential drop has been successfully fitted to the

position of the innermost compressible stripe [102]. The Hall potential distribution has

also been investigated near a contact and it was concluded that the bulk is strongly

decoupled from the edges and ohmic contacts slightly above integer filling factors [104].

The relatively high frequencies used by this technique may reduce the sensitivity in

regions where the conductivity is low, such as the bulk of the sample at integer filling

factors. In the measurements made in this thesis it is quite common to see areas of

the image which behave differently from the rest of the image. It is difficult to judge

how representative of the sample the line scans presented in Fig. 7.2 are as there are

no whole scans published in the literature.

The advantages of this technique are that it can be performed with a standard AFM
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and the measurement is easy to interpret. The disadvantage is that measurements are

very slow. This is evident in the literature where only line scans have been presented.

7.2.3 Sub-surface charge accumulation

Sub-surface charge accumulation (SCA) measures the local charge accumulation of a

2DEG in response to small AC excitation. This technique has been used to image

nanometre-scale structures in the quantum Hall regime [100, 105–108].

A sharp metallic tip is scanned a short distance from the sample surface (≈ 5 nm)

and is connected to a sensitive charge detector. An AC voltage with a frequency of

about 100 kHz and an amplitude of a few mV is applied directly to the 2DEG via

an ohmic contact. The applied voltage causes charge flow in and out of the 2DEG,

capacitive coupling in turn induces charge on to the tip. The charge is measured

with a high electron mobility transistor. A simple bridge circuit compensates the

huge background signal, originating from stray capacitances [109]. A sensitivity of

0.01 electrons /
√

Hz has been demonstrated [109]. Lock-in detection at the excitation

frequency is used to recover the in-phase and quadrature components of the charging

signal.

Contrast in the images arises from spatial variation in the compressibility or conduc-

tivity of the 2DEG. In the quantum Hall regime, structure on a length scale of 100 nm

has been observed. Some of this can be explained using the ideas of compressible and

incompressible stripes [100, 105, 107]. A number of models for these experiments have

been discussed in Ref. [110]. The lateral resolution has been estimated to be ≈ 90 nm

using numerical simulations of the tip-sample capacitance for a 2DEG buried 100 nm

below the surface [111].

Figure 7.3 shows an SCA image close to a gate fabricated on the surface of a sample.

An AC signal was applied to the gate and the 2DEG, the charge accumulation on the

tip was then measured. Although no DC bias was applied to the gate, the work function

difference is enough to deplete the 2DEG by ≈ 15% under the gate. In the absence of

a magnetic field the conductivity of the 2DEG is high and uniform. The tip charges



CHAPTER 7. Measurements of a 2DEG 89

Figure 7.3: 12 × 12 µm SCA images. (a) 0 T in-phase signal. (c) 6.4T in-phase signal. (d)

6.4T quadrature signal. (b) Sample schematic. Incompressible stripes at ν = 1 form close to

the edge of the gate and separate regions of ν < 1 from regions of ν > 1. Figure taken from

Ref. [108].
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uniformly in-phase with the excitation signal and this is seen in Fig. 7.3(a). The bright

region to the left is the gate where the capacitance is higher as it is on the surface

compared to the 2DEG which is buried beneath the surface. In the vicinity of integer

filling factors the charge flowing from the gates only partially penetrates the 2DEG,

Fig. 7.3(c). At the boundary between the edge state and the bulk region there is a

peak in the out-of-phase charging signal. From these measurements Glicofridis et al

were able to estimate the resisitivity of an incompressible stripe as ≈ 10MΩ/µm.

This technique has been applied in a different way to map out the local potential

in the quantum Hall regime. By applying a positive voltage to the tip and at suitable

filling factors, a ‘bubble’ of electrons is accumulated underneath the tip. This contains

a small number of electrons and is isolated from the rest of the 2DEG by a circular

incompressible stripe. By measuring the charge entering or leaving this ‘bubble’ as the

tip is scanned over the surface it is possible to map out the local potential in the Hall

liquid [106]. These experiments found that random potential fluctuations had a length

scale of ≈ 0.5µm and that this potential remained fairly unchanged between different

quantum Hall plateaus.

There are a number of limitations of this technique. For instance, there are no

examples in the literature where images have been taken close to an edge of a real

device and no measurements where a current is passed through the sample. It might

be that the potential variations close to the edge or due to the Hall voltage would make

it difficult to make measurements without saturating the charge measurement device.

7.2.4 Scanning Gate

In scanning gate experiments macroscopic measurements of a system, typically conduc-

tance, are made whilst scanning a conductive AFM tip across the surface. By applying

a bias between the tip and the sample it is possible to modify the local potential of the

system. Scanning gate images are formed from the measured quantity as a function of

the tip position.

Scanning gate experiments have been used to image coherent electron flow around
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a quantum point contact (QPC) [112–116]. The tip creates a small depleted region in

the 2DEG that can backscatter electron waves. When the tip is over an area of high

electron flow the conductance through the QPC is decreased whereas when the tip is

over an area of low electron flow the conductance is unmodified.

Close to the QPC it has been possible to image the angular pattern associated

with individual modes of the QPC [114]. Further away the electron flow forms narrow

branching strands that follow channels in the local background potential [113]. A review

of these coherent flow experiments can be found in Ref. [116].

Three scanning gate experiments have been reported in the quantum Hall regime. In

the first, the scattering between edge channels was investigated on a Hall bar [99]. Metal

gates fabricated on the top of the Hall bar were used to establish and detect the edge

state populations. The scanning gate measurements showed regions of the sample close

to the edge where the tip was able to enhance the longitudinal resistance and these were

interpreted as local scattering centres. A similar experiment investigated scattering

between edge channels using a more complicated sample geometry, the scanning gate

images show fringes which suggest that phase coherence may be important in edge

state coupling [117]. In the most recent experiment the Hall resistance of a Hall bar

was measured as a function of tip position and magnetic field [118]. Local features of

the resistance images resembled 1/B periodicity of the transport data. Features in the

images corresponded to formation of extended edge states and localized bulk states.

Figure 7.4 shows some examples of scanning gate images of a Hall bar in the quan-

tum Hall regime. The images show the Hall resistance as a function of the tip position.

The black contours indicate the edges of the Hall bar. The work function difference

of the tip and sample means that the tip was at a voltage of 0.3V with respect to

the 2DEG. The patterns of the tip-induced resistance changes are strongly dependent

on filling factor. At integer filling factors the Hall resistance is not influenced by the

position of the tip. Away from integer filling factors tip-induced changes are very lo-

calized, mainly close to the edges and 1/B periodic. These features are interpreted as

‘hot spots’ in the local potential where a small change in the local potential can change
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Figure 7.4: Scanning gate images showing the Hall resistance as a function of the tip position

for different filling factors. Images taken from Ref. [119].
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Figure 7.5: Cross section of the heterostructure and the band diagram of wafer NU1793.

Figure taken from Ref. [120].

dramatically the percolation of extended states between the two edges. These images

can be used to extract real space information about the local potential landscape in

real devices.

The disadvantage of these measurements is that they are difficult to interpret. They

do not measure a local property of the system but the response of some macroscopic

quantity to a local perturbation.

7.3 Sample description

Experiments were performed on a GaAs/GaAlAs heterostructure sample 1 with a 2DEG

located 50 nm below the surface. A cross section of the heterostructure and the band

diagram are shown in Fig. 7.5. Remote doping was achieved by a δ-doping layer placed

in a quantum well. This unusual design helps to avoid parallel conduction channels

and reduces the distance between the 2DEG and the surface [120].

Large Hall devices, (L,W >> mean free path), were fabricated by photolithography

and wet chemical etching. The active area has a length L = 2.4mm and a width
1wafer number NU1793
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(a) (b)

Figure 7.6: (a) Magnetoresistance data measured at 1.8K. (b) Schematic of the sample geom-

etry.

W = 1 mm, see Fig. 7.6(b). Figure 7.6(a) shows magnetoresistance data of this sample

measured at 1.7K. Minima in Rxx and plateaus in RH are seen at even integer filling

factors and at filling factor ν = 3. Filling factor ν = 1 at B ≈ 16 T is above the

maximum field of the magnet. The electron sheet density was determined from the

classical Hall slope as ns = 3.8 × 1015 m−2, and the Shubnikov-de Haas oscillations as

ns = 3.7×1015 m−2. A mobility of µ = 45 m2V−1s−1 was calculated from the zero-field

longitudinal conductivity which gives a zero-field mean free path of 4.5µm.

7.4 Point spectroscopy

The aim of this section is to use point spectroscopy measurements in the bulk of the

2DEG and some simple modelling to construct an argument which allows straightfor-

ward interpretation of the data. This section starts with a discussion of the experimen-

tal data before introducing a simple model of the tip-sample interaction. This model is

used to simulate the point spectroscopy measurements and these simulations are com-

pared with the data. With the model it is possible to demonstrate that changes in the
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Figure 7.7: Response of the tuned filter as a function of frequency f .

measured quantities are dominated by the local conductivity, σxx, of the sample.

7.4.1 Point spectra experiments

Capacitance measurements were made as a function of magnetic field over the bulk

region of the sample, with a distance to the nearest edge larger than 200µm. Before

presenting the data there is a brief summary of the technical details of the capacitance

measurements.

The capacitance measurements are based on the transmission of the RF signal

through the tuned filter. Figure 7.7 shows the transmission of the tuned filter as

a function of frequency. Measurements are made at a fixed frequency close to the

resonance of the tuned filter. Changes in the sample properties modify the resonance

frequency and amplitude of the tuned filter response. At a fixed frequency, close to

resonance, and for small changes in the filter response, the in-phase component X of

the transmission is proportional to the amplitude of the filter response. The quadrature

component Y is proportional to the shift in resonance frequency. Changes in the

resonance frequency are brought about by a change in the imaginary or reactive part of

the sample impedance and changes in the amplitude by a change in the real or resistive

part of the sample impedance. Figure 5.1 is a schematic showing an overview of the
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capacitance detection. The instrumentation design means that the measured quantities

scale linearly with the amplitude of the signal from the tuned filter. In this chapter

the majority of the measurements have been normalized to the amplitude of the tuned

filter on resonance at zero-field X0. This normalization makes it possible to compare

different measurements with slightly different drive voltages. The X and Y quantities

are typically of the order mV and the X̂ and Ŷ quantities a few tens of µV.

X and Y point spectra

The RF lock-in amplifier was used to measure the in-phase, X, and quadrature compo-

nents of the signal, Y , as a function of magnetic field. Before making the measurement,

the AFM control was used to locate the surface of the sample. The control loop and tip

oscillation were switched off to leave the tip 50 nm above the surface. The measurement

time was limited by the ramp rate of the magnet taking approximately 20 minutes to

record a sweep of 0-10 T.

The reason for making point spectra measurements with no tip oscillation is that

they are easier to simulate with the model discussed in the next section.

Fig. 7.8(a) shows the quadrature component, Y , of the RF signal as a function

of filling factor. There are peaks at even integer filling factors which can be resolved

up until ν = 30. A peak can be seen at ν = 3 and a small feature at filling factor

ν = 5. The even integer peaks increase in magnitude with decreasing filling factor,

ν = 4 is an exception which is smaller and has a split top. There is a background which

decreases sharply at low filling factors before flattening out. The total change in Y is

approximately 20 % of the magnitude of the RF signal. The low field peaks were used

to estimate the sheet density giving ns = 3.7 × 1015 m−2 which is in agreement with

the transport value. Fig. 7.8(b) shows the in-phase component, X, of the RF signal

as a function of filling factor. There are strong features corresponding to even integer

filling factors. At the highest filling factors (low magnetic fields) there are minima at

even filling factors. At low filling factors there are peaks just below even filling factors.

The transition between minima and maxima can be seen between ν = 16 and ν = 12.
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(a) (b)

Figure 7.8: (a) Quadrature, Y , and (b) in-phase, X, components of the RF signal over the

bulk of the 2DEG as a function of filling factor.

The features increase in size with decreasing filling factor, the dip around ν = 18 is

approximately 1.5% of the signal magnitude whilst the peak at ν = 2 is about three

times larger.

X̂ and Ŷ point spectra

When imaging, the tip-sample distance z is modulated by the tuning fork oscillation

of a few tens of nanometres. This modulates the tip-sample capacitance resulting

in modulations of the quadrature and in-phase RF signals, Ŷ and X̂ respectively.

Figure 7.9 shows the measured Ŷ versus magnetic field with an oscillation amplitude of

50 nm. A constant background of 15µV (approximately 20 % of the maximum signal

level or 1× 10−3 in the normalised units) has been subtracted. This is the signal level

seen over an etched region of the structure (no 2DEG) and is due to the finite dielectric

constant of GaAs. Strong minima are seen in the signal at integer filling factors, the

minima become deeper and wider with decreasing filling factor. Away from integer

filling factors there is a decreasing background with increasing field, which is due to
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Ŷ
/
X

0
(1

0
−

3
)

86 4 2 1

B (T)

Figure 7.9: Ŷ versus filling factor with an oscillation amplitude of 50 nm.

the falling longitudinal conductivity of the sample.

Problems with the set-up meant that the phase of the reference used to recover

the in-phase part of the signal was set incorrectly which means the recorded X̂ was a

mixture of X̂ and Ŷ . These problems with the set-up have now been resolved but most

of the X̂ measurements need to be repeated in the future.

7.4.2 Modelling

A simple model of the tip and sample is used in conjunction with the equivalent circuit

description of the tuned filter to investigate the response of the RF resonator. The

assumptions made in this model are:

• The tip-sample interaction can be described by a series RC equivalent circuit

• The tip couples capacitively into a small area of the 2DEG and that this ca-

pacitance consists of geometric contributions and contributions from the finite

compressibility of the 2DEG.

• The 2DEG is homogeneous and can be represented by a resistive plate.
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Figure 7.10: (a) Lumped element model used to describe tip-sample system. (b) Schematic of

tip and sample.

The tip-sample system is approximated by a series RC lumped element circuit.

Figure 7.10(b) shows a schematic of the tip a distance z above the sample and the

2DEG a distance d below the surface. Figure 7.10(a) shows the lumped element model

consisting of tip-sample capacitance and a resistance to ground through the sample.

The 2DEG is modelled as a resistive plate as in ref. [121] rather than a distributed

RC network as in ref. [110] as this is able to reproduce the main features of the data.

The tip-sample capacitance, Cts(D, z) (where D is the density of states and z is the

tip-sample separation), has geometric contributions and a contribution from the finite

compressibility of the 2DEG. This is approximated by three parallel plate capacitors

in series each with an effective area Ae = πr2
e and is given by [110]:

Cts(D, z) =
(

1
C1

+
1
C2

+
1
C3

)−1

(7.1)

Cts(D, z) = Ae




geometric︷ ︸︸ ︷
z

ε0
+

d

κε0
+

1
e2D




−1

(7.2)

where C1 is the capacitance between the tip and the sample surface, C2 is the capaci-

tance between the sample surface and the 2DEG, C3 is the capacitance due to the finite

compressibility of the 2DEG and κ is the dielectric constant of the semiconductor.
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Assuming the tip couples into a small area of the sample radius, re, and that the

sample can be described by a local conductivity tensor, the resistance R ∝ 1/σxx can

be calculated in the same way as for the gold measurements using Eqn. 6.1.

Using the model described it can be demonstrated that for variations of R and Cts

in the same regime as the experiment then changes in X and Y are dominated by

changes in R.

The two properties of the 2DEG which appear in the lumped element model are

the density of states D which makes a contribution to the tip-sample capacitance and

the conductivity which determines the sample resistance. Ideally these two parameters

would be measured experimentally for this particular sample and entered directly into

the model. The conductivity can be inferred by transport experiments, whereas this is

a formidable task for D. For this reason the theoretical model outlined in Appendix A

was used to generate values of σxx and D of the same order of magnitude as the

experiment.

Values for the lumped element components R and Cts were calculated as a function

of magnetic field using Eqn. 6.1, and Eqn. 7.2, the tip-sample separation z = 50 nm

and 2DEG depth d = 50 nm were taken from the experiment and the effective radius

re = 1 µm was adjusted to reproduce the features of data. The geometric contribution

to the capacitance calculated with these parameters is 5 fF which is reasonable. The

equivalent circuit model of the tuned filter (Section 5.1.1) was used to calculate the

response of the RF signal.

Figure 7.11 shows the calculated quadrature Y and in-phase X components of the

RF signal as a function of magnetic field. The green curves are for the full model, where

Cts includes the density of states contribution, and the blue curves are a simpler model,

where Cts only has the geometric terms and is not a function of magnetic field. The

quadrature Y component is dominated by R but not Cts. There is a small deviation

between the two curves at non-integer filling factors but this only a few percent. The

in-phase curves show X is also dominated by changes in R, however the deviation

between the curves is much larger than in Y , particularly in the vicinity of integer
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(a) (b)

Figure 7.11: (a) Quadrature, Y , and (b) in-phase, X, components of RF signal calculated as

a function of magnetic field for the analytical model of the 2DEG sample. Blue curves are for

a constant tip-sample capacitance and green curves include a field dependent density of states

contribution to the tip-sample capacitance.
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Figure 7.12: Simulated X and Y as a function of sample conductivity σxx. Cts = 5 fF.

filling factors.

In summary an RC description of the tip-sample interaction and an analytical model

of the 2DEG as a function of magnetic field have been used to demonstrate that, in

this simple model, the measured quantities, i.e. the transmission of the tuned filter,

are dominated by changes in the local conductivity. Therefore the effect of the density

of states on the capacitance sensor will be ignored when comparing the model to the

experimental data.

7.4.3 Modelling X and Y point spectra

Figure 7.12 shows the calculated response of X and Y as a function of the sample

conductivity σxx. At high conductivities the tip-sample capacitance is dominant and

changes in conductivity have very little influence. At the lowest conductivities the

sample has very little influence on the resonator and X and Y are not sensitive to

changes in σxx. In the intermediate regime the sample is changing from a regime where

the capacitance is the dominant contribution to the impedance, to a regime where the

conductivity is the dominant contribution. This is reflected by a minimum in X which

indicates the point at which the dissipation is a maximum and a steep slope in Y



CHAPTER 7. Measurements of a 2DEG 103

indicating a phase shift in the signal.

If the conclusion of the modelling is correct it should be possible to take the con-

ductivity from magnetotransport data and reproduce the X and Y spectra described

in Section 7.4.1

The simulated RF response, with Cts = 5 fF and R calculated from transport data

(see Fig. 7.10), is shown in Fig. 7.13 alongside the experimental measurements. The only

fitting parameter was the effective radius where re = 1 µm was found to reproduce the

main features of the data. Values for R vary from ≈ 10MΩ around integer filling factors

to≈ 50 kΩ around non-integer filling factors. The quadrature curves (Fig. 7.13(a)) show

good agreement, both show peaks at integer filling factors and scaling of the two curves

is comparable. The measured curve has an increasing background not reproduced in the

simulation. A possible reason could be a contribution from surface charges or donors

not included in the simple model, or a variation in the tip-sample separation z with

magnetic field.

The in-phase curves also have similar behaviour, at low fields there are minima at

integer filling factors whilst at high fields there are maxima at integer filling factors.

The relative size and shape of the features and the background is different between the

simulation and experiment. The simulations with the analytical model showed that

the in-phase component depends on changes in R and Cts so artefacts in the simulated

data are expected as no density of states, D, contribution to Cts is included.

7.4.4 Modelling Ŷ and X̂ measurements

During imaging the tip-sample distance is oscillated by the tuning fork and this mod-

ulates the tip-sample capacitance. The components of the in-phase and quadrature

signals at this oscillation frequency, X̂ and Ŷ respectively, are measured with lock-in

amplifiers.

The model has been extended to these measurements by making some simple as-

sumptions:

• The only effect of the oscillation is to modulate Cts by a small amount ∆Cts.
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(a)

(b)

Figure 7.13: Simulated (blue) and experimentally measured (red) curves for the RF response

as a function of filling factor ν. (a) Quadrature, Y , and (b) in-phase, X components.
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Figure 7.14: Simulated X̂ and Ŷ as a function of sample conductivity σxx. Cts = 5 fF,

∆Cts = 6aF.

• Ŷ and X̂ are proportional to the size of the capacitance variation ∆Cts.

Figure 7.14 shows the simulated X̂ and Ŷ versus the sample conductivity. As in

the previous section, the density of states contribution to the tip-sample capacitance

has been ignored. The curves form is similar to X and Y as a function of conductivity.

At the highest and lowest conductivities the measurement is least sensitive to changes

in conductivity. In the transition between these two regimes the Ŷ signal changes from

high signal at high conductivity to low signal at low conductivity at the same time X̂

goes through a maximum. There is a small minimum in Ŷ around σxx = 10−6 Ω−1.

Figure 7.15(a) shows the simulated (blue) data for Ŷ plotted against the experi-

mental data. The only fitting parameter was the size of the capacitance modulation,

where ∆Cts = 6 aF was found to be the optimum value. This is reasonable when

compared to the capacitance distance curve measured on the gold sample, Fig. 6.6(b).

The simulated data reproduces the main features of the data, deep minima on integer

filling factors and a decreasing background for non-integer filling factors. The only field

dependent term in this model is the sample resistance which is inversely proportional to

the longitudinal conductivity σxx. Figure 7.15(b) shows the simulated and measured Ŷ

plotted against the conductivity σxx. The data agrees reasonably well with the model
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(a)

(b)

Figure 7.15: Measured (red) and simulated (blue) Ŷ (a) versus filling factor ν (b) versus

longitudinal conductivity σxx.
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Parameter Value

Scan size 4.25µm×4.25 µm

Data points 128× 64 pixels

Scan rate 750 nm/s, 12 min/scan

Frequency set point 1Hz

DC tip bias −0.3V

RF signal amplitude 0.5mVrms

Table 7.1: Scan parameters.

for σxx < 1 × 10−4 Ω−1. At higher conductivities, which occur at the lowest magnetic

fields, the difference could be due to the effect of surface charges or donors not included

in this simple model. Variations between the data and the model are to be expected

as the transport data, which provides the conductivity values, is a bulk measurement

whereas the Ŷ is a local measurement. Overall, the agreement between the model and

the measurement is good enough to support the interpretation of the Ŷ measurement

in terms of local conductivity.

7.5 Scanning measurements at zero-field

Images of the edge of the 2DEG were taken at zero-field; by understanding the features

in these scans it is then possible to identify changes due to an applied magnetic field.

AFM and SCM measurements are made simultaneously and the imaging parameters

for all the scans in this chapter are given in Table 7.1. The scan size was deliberately

limited to about 70 % of the maximum available range to minimise the possibility of

arcing between the quadrants of the scan tube in the low pressure helium gas. The

number of data points is a compromise between resolution and the time taken to acquire

an image. The design of the cryostat means that regular intervention from the operator

is required to maintain stability at the lowest temperatures and therefore measurement

series requiring continuity must be completed in a day.

Careful consideration was given to the voltages applied to the tip in order to mini-
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mize disturbance of the system.

A contact potential difference exists between the tungsten tip and GaAs sample

due to a difference in their work functions. Kelvin probe measurements were used to

estimate this difference. With the tip over a point in the bulk of the sample and the z-

feedback loop switched off, the DC bias applied to the sample was varied between −1 V

and 0 V whilst recording the frequency shift of the tuning fork. The minimum in the

frequency shift curve corresponded to the DC bias needed to compensate the contact

potential difference. The measured contact potential difference was not consistent and

varied with the tip position by as much as 0.2V. This variation could be due to surface

contamination, or an unstable oxide layer on the tip or on the surface of the GaAs.

In future experiments a sample heater will be installed to reduce material condensing

on the surface during loading and unloading the microscope. The tip material will be

changed to a platinum-iridium alloy as this does not develop an oxide layer.

The RF signal applied to the tip by the capacitance detector was reduced as far

as possible whilst maintaining enough signal to make measurements with a bandwidth

fast enough for scanning. The RF voltage at the tip was estimated as 0.5mVrms using

the equivalent circuit model of the tuned filter (see Section 5.2.1). This is comparable

to the excitation applied to top gates in early bulk magnetocapacitance measurements

of 2DEGs [121].

Figure 7.16(a) is a Ŷ image taken at the edge of the 2DEG between contacts 7

and 8 (see Fig. 7.6(b)) at 2.2K. Contours from the topographic data have been su-

perimposed: the white contour follows the sample edge with the Hall bar to the left,

the black contours indicate significant features on the surface. Figure 7.16(b) shows

simultaneously acquired line scans of the topography and the Ŷ signal.

There are four main observations:

• Ŷ signal is high on the Hall bar where there is a 2DEG and five times smaller

over the etched region.

• On the Hall bar there is a correlation between high regions of the topography and

lower Ŷ signal.



CHAPTER 7. Measurements of a 2DEG 109

(a) (b)

Figure 7.16: (a) Ŷ image of edge of a 2DEG at zero-field and 2.2K. White contour indicates

the edge of the sample with the Hall bar to the left, black contours indicate topographic detail.

(b) Simultaneously measured topography and Ŷ line scans of the same sample.

• There is a small inflection in the Ŷ signal just as the signal begins to rise as the

tip approaches the sample edge.

• There is a region on the Hall bar parallel to the edge approximately 0.5µm wide

where the Ŷ signal is reduced.

The first observation is very significant as it shows that the Ŷ measurement is

sensitive to the presence of a 2DEG buried tens of nanometres below the surface.

Without the 2DEG one would expect a decrease in signal over the Hall bar as the

probe assembly is pulled back further and the stray capacitance is reduced. This effect

probably explains the anti-correlation between between topographic features and the

Ŷ signal and is discussed in more detail in Section 7.5.3. The region parallel to the

edge with decreased signal could be a measurement artefact due to the geometry or it

may relate to the depletion region expected at the edge of a 2DEG. This is discussed in

Section 7.5.2. The inflection in the Ŷ signal on the approach to the edge is an artefact

caused by a change in the tip-sample capacitance due to the sample geometry. This

was investigated with a finite element simulation and is described in Section 7.5.1.
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7.5.1 Finite element simulations

A simple finite element simulation was carried out to try to understand qualitatively

the effect of the step at the edge of the Hall bar on the Ŷ signal. In constructing this

model the following assumptions were made

• The conductivity of the 2DEG is high and it can be represented by a metal.

• At zero-field, changes in Ŷ are only due to changes in the size of the tip-sample

capacitance.

• Ŷ is proportional to the difference in capacitance between the closest and furthest

points of the tip oscillation.

A full 3D simulation was performed using the electrostatics module of a commercial

finite element package2. The tip was modelled with a hemisphere, radius 100 nm, as the

tip apex and a cylinder as the extended body of the tip. The sample was represented

by a metallic slab of 100 nm thickness. Figure 7.17(b) shows the output of the finite

element model; the colour scale plot is one slice of the solution showing the calculated

electric field. The tip-sample capacitance was calculated for various tip positions to

simulate a line scan across the edge of the sample. Figure 7.17(a) shows the result of

these simulations, the black line indicates the surface, the conductive slab is the raised

portion to the left. The blue lines indicate the path of the tip over the edge and the

red lines are the calculated tip-sample capacitance. The calculation was carried out

for tip-sample separations of 10 nm (solid lines) and 110 nm (dashed lines). The green

curve is the difference between 10 nm and 110 nm curves and should relate qualitatively

to the measured Ŷ .

The simulation shows that within two tip radii of the edge the tip-sample capaci-

tance over the 2DEG is very close to the bulk value. A small inflection in the capacitance

is seen approximately one tip radius away from the edge on the etched side. A very

similar feature can be seen in the experimental data (for example, in the line scans in
2COMSOL Multiphysics 3.1 - www.comsol.com



CHAPTER 7. Measurements of a 2DEG 111

(a) (b)

1.0

Potential (V)

0.5

0.0

Figure 7.17: (a) Calculated capacitances from finite element simulation. Black line indicates

the position of the surface, blue lines indicate tip apex position and red lines are the calculated

tip-sample capacitance for the two tip-sample separations. The green line is the difference

between the two capacitance curves. (b) Finite element simulation of the electric field between

a tip and a metallic block. Colour plot shows a slice of the calculated electric field.
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Fig. 7.16(b)). Future extensions to this work would be to incorporate a more realistic

tip shape and to model the 2DEG as a thin metal sheet buried in a dielectric rather

than a metallic slab.

7.5.2 Depletion length

The carrier density varies smoothly from the bulk value, ns, to zero at the edge with a

characteristic length scale, d0 the depletion width. In ref. [28] this length was calculated

assuming the edge was defined by a gate electrode in the plane of the 2DEG

d0 =
4ε0εr

πe2

Vg

ns
(7.3)

where Vg is the potential difference between the gate and the 2DEG. In an etched

structure the surface charges pin the Fermi energy at the surface to the middle of the

bandgap of GaAs so that Vg = EG/2e [27] where EG ≈ 3 eV is the bandgap of GaAs.

Using this expression it is possible to calculate the depletion length d0 = 200 nm.

As discussed earlier there is a region parallel to the edge where the signal level

is reduced, it is difficult to determine how much of this contribution is due to the

geometric effect of the step and how much is the depletion of the 2DEG. A possible

way to investigate this further would be to image a sample where the density could be

controlled with a backgate. As the density is modified then the width of the depletion

region should change.

7.5.3 Topographic artefacts

Figure 7.18 shows Ŷ images from the forward and reverse scan direction of the region

indicated by the dashed box in Fig. 7.16(a). The black contours mark raised features

in the topography and it can be seen that these correlate with a reduced Ŷ signal. The

origin for this could be the effect of the probe assembly withdrawing from the surface as

discussed earlier, or it could be that these topographic features are a contaminant with

different electrostatic properties, for example metallic particles or an insulator with a

different dielectric constant. Another observation is the lateral translation between the
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(a) (b)

Figure 7.18: Shift of topographic artefacts in the Ŷ image due to AFM control problems. (a)

Forward scan. (b) Reverse scan.

features in the Ŷ data and the topographic data. The direction of the shift is reversed

between the two scan directions which suggests this a control problem rather than a

tip asperity. The shift is approximately 100 nm which is a couple of percent of the

scan range. This is an order of magnitude less than the length scale of the magnetic

structure observed later in the chapter.

7.6 Scanning measurements in applied magnetic field

The images presented in this section have been scaled in the raw measurement units

normalized to the amplitude of the RF signal X0 at zero-field rather than rescaling

them as conductivity. The agreement between the experimental point spectra and

the modelling is strong enough to support the conclusion that the measurement is

dominated by the local conductivity. However, it is not yet good enough to justify

rescaling the image data. The modelling of the point spectra assumes that the sample

is homogeneous. Close to integer filling factors this is not the case. Overall, high signal

(bright areas of the images) can be interpreted as high local conductivity and low signal

(darks areas) as low local conductivity.
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Figure 7.19: Magnetoresistance data with markers indicating the fields at which images were

acquired.

A problem with the instrumentation during this run of experiments meant that the

phase of the reference signal for the in-phase part of the RF signal was incorrect. The

result of this is that the measured X̂ was a mixture of X̂ and Ŷ components and for

this reason these measurements have not been included.

The first part of this section presents a series of images as a function of magnetic

field, in the following subsections significant features of the data are discussed in detail.

7.6.1 Description of the data

Measurements were made between filling factors ν = 1.8 and ν = 4.5 at the magnetic

fields indicated by points on the magnetotransport curves in Fig. 7.19. The measure-

ments are concentrated around filling factors ν = 2 and ν = 4. A selection of Ŷ images

from the magnetic series are shown in Fig. 7.20. For identification, the filling factor ν

is given below each image along with the image number in brackets indicating the po-

sition in the image series. The images are arranged in two cycles, the first two columns

are points taken around filling factor ν = 4 and the last two are points around ν = 2.

Images on the same rows of columns one and three and columns two and four are at
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corresponding points in the two cycles for example ν = 3.8 and ν = 1.8. The aim of

this layout was to examine if the features in the images display 1/B periodicity.

Initially the filling factor was calculated from the transport data but this did not

quite match the periodicity of the structure seen in the images. A single pixel in the

image was plotted as a function of magnetic field and from the periodicity of this curve

the local density was extracted. The location and field plot for this pixel is indicated by

Label 1 in Fig. 7.6.4. The new density was found to be nm = 3.85×1015 m−2 compared

to the transport measurement ns = 3.79×1015 m−2. This is within the error associated

with the density calculation. The dashed lines in Fig. 7.19 indicate the position of

integer filling factor and were calculated with the local density.

Filling factors ν = 4.3 to ν = 3.65

The transition through filling factor ν = 4 is shown in the series of images in the first

two columns starting at the top left of Fig. 7.20.

At ν = 3.65 the structure of the image is similar to zero-field, the signal is high over

the 2DEG except for the depleted region along the edge. The depleted region has the

same magnitude and width as the zero-field case. The remainder of the signal on the

2DEG is homogeneous except for artefacts from topographic features. The signal level

is lower than at zero-field but this is consistent with the point spectra results in the

bulk where a decreasing background with increasing field is observed. This decrease is

attributed to a fall in the conductivity.

At ν = 4.21 the signal over the 2DEG is reduced and a bright feature is seen close

to the centre of the image (Label (1)).

Reducing the filling factor to ν = 4.11 the change in signal is no longer homogeneous

across the 2DEG. The biggest reduction in signal is seen in regions to the left of the

image, closer to the bulk of the 2DEG, a narrow stripe of high signal remains close

to the edge. The bright spot in the centre of the image has remained constant in

magnitude but has a greater lateral extent.

At integer filling factor ν = 4 the only region of high signal is a stripe approximately
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3

4

Figure 7.20: Selected Ŷ images from the magnetic field series taken at 2.2K. The lateral scale

is 4.25 × 4.25 µm and the colour scale is shown in the top right. The white contour indicates

the position of the edge. The collage shows two periods, the first two columns are around filling

factor ν = 4 and the last two are centred on filling factor ν = 2. Numbers in brackets show

image number in the order taken. Filling factors have been corrected for local density variation

(see text).
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2 µm wide close to the sample edge. The signal over the remainder of the 2DEG is the

same as the etched region away from the Hall bar. The stripe is not homogeneous and

has a brighter region on the right side about 0.5 µm wide (Label 2). Close inspection

reveals a narrow dark stripe along the left edge of the bright stripe where the signal is

lower than the etched region (marker (3)) This is not very clear in this figure but can

be seen in a line scan in Section 7.6.3. The bright spot in the centre of the image is

slightly enlarged.

Between ν = 4 and ν = 3.82 the background signal begins to recover and the width

of the stripe and the bright region within the stripe broadens. The bright spot remains

constant but begins to be obscured by the increasing background.

At ν = 3.65 the image looks similar to the zero-field case. The signal across the

2DEG (excluding the depleted band at the edge) is high and fairly homogeneous.

Filling factors ν = 2.53 to ν = 1.82

The transition through filling factor ν = 2 is shown in the last two columns of Fig. 7.20.

The evolution of a bright stripe at the edge follows the same pattern as around ν = 4

which demonstrates the 1/B periodicity of this feature. The main differences are the

average signal level which is lower and the width of the stripe which is narrower.

At ν = 2.53 the image is comparable to the zero-field case and is almost indistin-

guishable from ν = 3.65 and ν = 4.32.

At ν = 2.19 the signal over the 2DEG has decreased except for a bright region in

the centre which corresponds to the feature seen in the previous set of images. There

is no clear distinction between regions of the 2DEG close to the edge and close to the

bulk. This lack of structure is also seen in the image at ν = 4.21.

The stripe structure is well developed by ν = 2.11 and the region of the 2DEG on

the left has already fallen very close to the signal over the etched region. The signal

on the stripe is about 30% smaller than at ν = 4.11. Another interesting observation

is that the bright feature previously seen at the centre of the image has disappeared.

At integer filling factor ν = 2 the bright stripe is separated from the rest of the
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2DEG by a narrow black stripe. The signal level close to the bulk is the same as the

etched region. The stripe at ν = 2 is approximately 2/3 of the width at ν = 4.

Between ν = 2 and ν = 1.82 the width of the stripe makes it possible to see the

evolution more clearly than the ν = 4 period. The growth of the stripe is much more

gradual than its onset around ν = 2.16. The stripe becomes brighter as it gets wider

and a small feature develops just to the right of the centre of the image.

Unfortunately no images were taken at filling factors less than ν = 1.82 so it is not

possible to see if the signal becomes homogeneous again.

Summary

The signal over the etched region and the depleted region of the 2DEG remains constant

and is the same as at zero-field. Away from integer Landau level filling factors the signal

over the 2DEG is comparable to zero-field. At integer filling factors a narrow stripe of

high signal is seen at the edge and the remainder of the 2DEG has the same signal level

as the etched region. The width of the stripe depends on filling factor and is greater

at ν = 4 than at ν = 2. There is a general decrease in signal level over the 2DEG with

decreasing filling factor which is consistent with the point spectra measurements and

the interpretation of a reduction in conductivity.

The relative signal level over the etched region, stripe and close to the bulk are

discussed in the next section. The evolution of the stripe and comparison to theory is

discussed in Section 7.6.5. Very close to integer filling factors a narrow dark stripe is

seen at the left edge of the bright stripe this is discussed in Section 7.6.3. A couple

of anomalous features are seen in the images which don’t appear to be periodic with

filling factor and are discussed in Section 7.6.2.

7.6.2 Anomalous features

In the magnetic field series a couple of bright point features were observed. These did

not appear to change with magnetic field but were more or less pronounced depending

on the background level. The evolution of these features is correlated with the order
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in which the images were taken. The bright feature indicated by Label 1 in Fig. 7.20

appears in image number 12 and increases in size with increasing image number. After

each image the SPM controller returns the tip to the centre of the image and controls

over a point until the image acquisition is restarted. The tip typically spent a few

minutes in this position between each scan and over the course of the 28 images this

is a significant amount of time. If the work function difference was not compensated

perfectly it might be that some surface states have been charged up in this region

or that imaging this point more heavily has deposited some debris from the tip. To

minimize this effect in the future the tip could be moved to a corner of the scan area

immediately after each scan.

7.6.3 Dark stripe

Close to integer filling factors the Ŷ images show a bright stripe at the edge separated

from the rest of the sample by a very narrow dark stripe, an example of this can be

seen in Fig. 7.22(a).

Figure 7.21(a) shows a line scan across the edge at filling factor ν = 2 with the

etched region to the left. The problem with the instrumentation was resolved before

this set of measurements was made making it possible to measure X̂ and Ŷ . The Ŷ

trace shows similar features to the images, there is a peak corresponding to the bright

stripe approximately 700 nm inside the sample. Close to the bulk of the sample the

signal level is the same as the etched region. Exactly at the edge a small peak is seen in

the Ŷ signal which can explained by the geometry of the step edge and was discussed in

Section 7.5.1. There is a sharp minimum in the signal just after the peak at a distance

of 1.7µm from the edge corresponding to the narrow dark stripe. The X̂ trace is zero

everywhere except for a sharp peak which corresponds with the minimum in the Ŷ

signal.

Figure 7.21(b) is simulated response of X̂ and Ŷ as a function of the sample con-

ductivity σxx. This figure is reproduced from earlier in the chapter and is discussed in

Section 7.4.2. This model shows that in the transition from the low to high resistance
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(b)(a)

Figure 7.21: (a) Line graph showing Ŷ and X̂ over a single line across the edge of the sample

at filling factor ν = 2. The dashed line indicates the position of the edge. (b) Ŷ and X̂ as a

function of the sample resistance Rs from the model.

regime X̂ goes through a maximum and Ŷ through a minimum. The maximum and

minimum do not correspond to the same resistance but if the transition happens over a

small spatial region they might appear to coincide. Using this model the dark stripe in

the Ŷ data can be interpreted as a measurement artefact which indicates the transition

from a high conductivity region close to the edge to a low conductivity region closer to

the bulk. The fact that X̂ is zero everywhere else is another indication that the sample

is divided into regions of very high and very low conductivity.

The model only includes coupling through the 2DEG and at the moment does not

reproduce the background seen over the etched region. More work needs to be done in

the future to include this.

7.6.4 Single points versus field

To examine the behaviour of the signal over different regions in the imaging area single

points were selected and plotted as a function of magnetic field. Figure 7.22(a) is one

of the images showing the location of the points plotted in Fig. 7.22(b). Points were

positioned on the etched region (Label 1), on the far left of the image close to the bulk of
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(a) (b)

Figure 7.22: (a) Ŷ image at 8 T. Labels indicate spatial location of points plotted as a function

of magnetic field in Fig. 7.6.4(b). (b) Ŷ as a function of magnetic field for three points in the

image series. Point 1 is over the etched region, Point 2 is close to the edge where the stripe

structure develops and Point 3 is close to the bulk.

the sample (Label 3) and close to the edge where the stripe of high signal develops (Label

2). Care was taken to avoid regions of the image where any of the anomalous bright

features are seen. The signal over the etched region (Label 1) remains constant. The

electrostatic properties of the GaAs are expected to remain unchanged in a magnetic

field. This is an important result as it shows the measurement system is unaffected by

the change in applied field and shows that the microscope is indeed able to make local

measurements.

The signal close to the bulk (Label 3) varies strongly with magnetic field and resem-

bles the point spectra measurements in the bulk with strong minima at integer filling

factors and a background decrease with increasing field. This indicates that this region

of the sample is behaving in a similar way to the bulk of the sample. The minima from

this curve were used to estimate the local density as discussed in Section 7.6.1.

The signal over the stripe shows aspects of the bulk behaviour seen in the curve at

Point 3, the background is a similar size and has corresponding minima with reduced

magnitude.
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(a) (b)

Figure 7.23: Ŷ as a function of distance from the edge and filling factor. (a) Around filling

factor ν = 2 and (b) ν = 4. These data were extracted from the magnetic field series; the

data processing is discussed in detail in Section 7.6.5. The solid blue line indicates the position

of the innermost compressible stripe from theory; the dashed blue line indicates the point at

which the innermost incompressible stripe diverges into the bulk of the sample.

7.6.5 Evolution of the stripe versus filling factor

Figure 7.23 shows the Ŷ signal versus distance from the edge and filling factor where

Fig. 7.23(a) is around filling factor ν = 2 and Fig. 7.23(b) is around filling factor ν = 4.

These two figures show the same range of filling factor and have the same colour scale

to simplify comparison.

In each image in the field series a number of line sections were taken perpendicular

to the edge of the sample and averaged. These averaged line sections at different filling

factors were used to compile the two figures. There are gaps in the data at particular

filling factors and 2D interpolation has been used to make a smooth plot.

In these images it is easy to compare the width of the depletion region as a function

of filling factor and it is clear that it remains constant. In both images the evolution of

the stripe is similar: the onset of the stripe approaching integer filling is more gradual

than the expansion of the stripe above integer filling. The stripe structure is much

brighter around ν = 4, this could be because the conductivity is higher at lower fields.
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Some of the structure seen in these images is due to topographic artefacts for example

the dark feature seen in both images (Label 1).

The solid blue lines indicate the position of the innermost incompressible stripe

from theory [27] (Eqn 2.22). The data is in reasonable agreement with the theoretical

prediction close to integer filling but the stripe width increases faster in the data than

predicted by the theory. This theoretical expression (Eqn 2.22) is only valid for ν−k <<

ν [27] where ν is the bulk filling factor and k is the local filling factor at the edge. In the

data shown in Fig. 7.23(a) the bulk filling factor varies between ν = 1.75 and ν = 2.15

and the innermost incompressible stripe is at the position of local filling factor k = 1.

In the data shown in Fig. 7.23(b) the bulk filling factor varies between ν = 3.75 and

ν = 4.15 and the innermost incompressible stripe is at the position of local filling factor

k = 3. In both cases ν − k << ν is only satisfied very close to integer filling. It might

be that the disagreement between the theory and experiment is because the theory is

not valid in these limits.

7.6.6 Edge state around a locally depleted region of the 2DEG

Figure 7.24 is a collage of 14 images taken over 3 hours of an area close to the edge

of the 2DEG at filling factor ν = 2. The lower collage shows the topography and

the top collage the Ŷ measurement. The individual topographic scans were plane

fitted and the centre position of the scale was offset to align the images. No image

processing was applied to the Ŷ images. This image series is good test of the stability

of the measurement technique, it is very difficult to see the boundaries where individual

images overlap and there is no obvious drift in the signal level across the collage.

In the top right of the Ŷ collage a narrow bright stripe is observed and is compa-

rable to other images taken at ν = 2. The stripe is positioned just inside the sample

approximately 700 nm from the edge and has a width of 1µm. Small dark features

inside the stripe are artefacts which correspond to raised features in the topography.

Separating the stripe from the bulk region is a narrow dark stripe where the signal

level is lower than the etched region. The signal level over the bulk is the same as the
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Figure 7.24: A collage of 14 images taken over 3 hours close to the edge of the Hall bar.

Bottom collage is the topography, the constituent images have been plane fitted to compensate

for thermal drift of the microscope during the scan. The upper collage shows the Ŷ data,

without any image processing. Blue line indicates a cross-section through the data shown in

Fig. 7.25. (Label a) indicates a region of raised topography. The geometric effect of this feature

causes a decrease in the Ŷ signal. (label b) There is a strong decrease in Ŷ but this does not

correlate with a region of raised topography.
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Figure 7.25: Cross-section through the collage shown in Fig. 7.24 where the position is indi-

cated by a blue dashed line. Blue line is the topography and the red line is the Ŷ signal. (Label

a) indicates a high point in topography, the geometric effect on the tip-sample capacitance

causes a corresponding dip in the Ŷ . (label b) a region of decreased Ŷ signal which does not

correspond to raised area in the topography. The decrease in this region is attributed to a local

depletion of the 2DEG.

etched region.

A circular stripe of enhanced conductivity, located about 5µm from the sample

edge, appears further down the image. The width of the stripe is ≈ 3.8µm, about

3 times larger than the one found at the physical edge of the sample. Figure 7.25

shows a cross-section of the topography and Ŷ signal, as indicate by the dashed lines

in Figs. 7.24(a) and (b). A topographic maximum leads to a minimum in Ŷ , as can

be seen at position (a); at position (b), i.e. in the centre of the ring structure Ŷ is

reduced to about 1/3 of the stripe maximum. Unlike at position (a) this reduction is

not due to a topographic feature. Position (b) coincides with the tip position of prior

point spectroscopy experiments, which suggest that the ring shaped feature is caused

by a permanent local depletion of the 2DEG. For reasonably smooth potentials, the

width of a compressible stripe is determined by the electron density distribution at zero

field [27]. It is expected that the potential and therefore the electron density around the
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depleted region varies on a different length scale than at the physical edge. A shallower

density gradient, as expected for charged surface states 50 nm above the 2DEG would

result in an enhanced stripe width as seen in the data.

7.6.7 Sample bias

During imaging the tip is at DC ground and a voltage is applied to the 2DEG to

compensate the work function difference between the tip and sample. Measurements to

determine the work function difference are unreliable possibly due to spatial variations

of this quantity across the sample or the oxide layer on the tip. Given the uncertainty

in the work function difference a series of images was taken to look at the effect of the

sample bias.

Figure 7.26 shows three of the images taken as a function of the sample bias at

filling factor ν = 2. The DC bias was applied to all the sample contacts so that there

was no net current flowing through the sample. The work function difference between

the tip and sample was compensated by applying a bias of approximately −0.3V to

the sample, images were taken over a range of ±0.2 V from this value. The graph in

the bottom right shows the signal level at three different positions as a function of the

sample bias.

The signal over the etched region remains constant which is expected as there is

no electrical connection to the contacts. The bulk region of the 2DEG also remains

constant, this is consistent with theory which predicts at integer filling factors the

electrochemical potential of the contacts is carried by the edges and the bulk is isolated.

The stripe gets brighter and appears to broaden slightly as the bias is increased. At

the most negative bias a narrow dark stripe separates the bright stripe from the bulk,

as the bias is increased this feature disappears. The apparent change in width and

disappearance of the dark stripe might be related to the overall increase in signal over

the stripe. At the edge of the stripe some of the signal is due to coupling to the stripe,

as this contribution increases with bias then the bright stripe may appear wider and

the dark stripe washed out.
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(c) (d)

Figure 7.26: Images showing Ŷ as a function of sample bias at 2.2K and filling factor ν = 2.

(a)-(c) Selection of images from the bias series. (d) Graph showing the evolution of three points

as a function of sample bias.
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The main observation is that the stripe gets brighter as the sample becomes more

positive. The two explanations for this are that the measurement set-up is sensitive to

the DC potential or that the tip-sample potential difference is perturbing the sample.

Analysis of the measurement set-up has not revealed any obvious mechanism that

causes the Ŷ signal to be sensitive to the tip-sample potential.

It is possible that the tip acts like a local gate accumulating or depleting charge.

The tip is held at DC ground, if the tip-sample work function difference is −0.3V at

a sample bias of −0.6V the tip has a potential of 0.3 V with respect to the 2DEG.

With a sample bias of 0 V the tip has potential of −0.3V with respect to the 2DEG.

In the image series the tip potential relative to the 2DEG is getting more negative as

the sample bias is increased and the effect of this would be to deplete the 2DEG. The

filling factor ν is given by:

ν =
h

e

ns

B
(7.4)

The magnetic field is fixed so, as the local density is reduced, the local filling factor, ν,

decreases. The scans as a function of magnetic field show that in the vicinity of integer

filling a decrease in filling factor (increase in field) leads to the stripe gradually getting

wider and brighter. This can be seen in the point graphs shown in Figure 7.22. This

change in the local filling factor could explain the change in the images as a function

of bias. This hypothesis could be investigated further using a backgated sample to

modulate the density.

7.7 Scanning measurements with an applied current

Previous experiments have shown that above some critical current the quantum Hall

effect breaks down [6]. There are a number of proposed mechanisms for this breakdown

including electron heating [122], intra [123] and inter [124] Landau level transitions and

tunnelling between Landau levels caused by the Hall field [125]. No conclusive theory

of the breakdown is available yet and scanning probe techniques might be able to help

solve this by making local measurements.
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Figure 7.27: Schematic showing the connections to the sample during the current measure-

ments. A floating current source applies a constant current. The edge where the tip is located

is fixed at potential of −0.3V to compensate the tip-sample work function difference.

Measurements in the breakdown regime are a future aim of the research and as a

first step it has been possible to demonstrate that the technique can image edge states

with an applied current.

Figure 7.27 shows the electrical connections to the sample and the location of the

tip during the current experiments. The current was provided by a battery powered

constant current source. One contact was fixed at a potential of −0.3V relative to

ground to compensate the tip-sample work function difference. The tip was positioned

along the same edge. In the quantum Hall regime this edge and therefore the scan area

will be fixed at the potential of the voltage source. This was the last set of experiments

on this sample and unfortunately problems with some of the contacts meant that it

was not possible to make magnetoresistance measurements at the same time.

7.7.1 Description of the data

Figure 7.28 shows a series of images at the edge of the sample at filling factor ν = 2 as

a function of the applied current.

With no applied current a stripe of high signal is seen close to the edge and the
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Figure 7.28: Series of 4.25× 4.25 µm Ŷ images taken as a function of DC current through the

sample at 2.2K and filling factor ν = 2.
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signal towards the bulk region (left of the image) is the same as the etched region. At

the edge of the bright stripe a narrow dark stripe can be seen which is very similar

to previous images. There is a bright region in the centre of the scan which is an

artefact; the cause is uncertain but might be due to charging of surface states. As the

current is increased the stripe gets brighter and appears to get wider. Between 300µA

and 310µA the structure of the image changes dramatically, the stripe is no longer

well defined and the brightest regions extend into the bulk part of the sample. The

potential along this edge should be held constant in the quantum Hall regime so the

increase in brightness cannot be explained by a change in the tip-sample potential as

seen in the bias experiments. The change in structure might indicate that quantum

Hall breakdown has occurred, previous measurements made on same wafer by Shashkin

et al found a breakdown current of 150µA with a 280µm wide Hall bar [120].

Without corresponding magnetoresistance data it is difficult to interpret these mea-

surements. However, they have demonstrated that the measurement technique is able

image edge states with an applied current.

7.8 Summary

In this chapter measurements were made over a near surface 2DEG. At integer filling

factors a stripe of high conductivity develops at the edge of the device. Well away from

integer filling factors then the response over the 2DEG is homogeneous similar to the

zero field case. A simple model was developed to account for the major features of

the images. In the next, and final, chapter the major findings of this research will be

summarized and suggested directions for further research will be discussed.



Chapter 8

Conclusions and suggestions for

future work

This thesis has discussed the implementation of a scanning capacitance microscope

which can operate at low-temperatures and high magnetic fields. Studies of a 2DEG in

a magnetic field were performed and the formation of highly conductive stripes at the

physical edge of the sample were observed in agreement with theoretical predictions.

This chapter includes a brief summary of the main areas of the project and some

suggestions for future work.

8.1 Summary

8.1.1 Experimental setup

An SPM has been developed which allows simultaneous AFM, SCM and transport

measurements to be made at low temperatures and high magnetic fields. AFM mea-

surements are made in a dynamic mode using a quartz tuning fork force sensor and

electrochemically etched tungsten tip. The microscope has a lateral resolution better

than 50nm and a scan area of 7× 7µm at low temperature. Measurements can made

in a low pressure of helium gas or superfluid helium. The temperature range of the

microscope is 1.5-300K and magnetic fields of 0-12T can be applied perpendicular to
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the sample. Quartz tuning fork (QTF) force sensors are used as they are piezoelectric

and can be applied in self exciting/sensing configuration without the need for an optical

deflection detection system. They have a very low power consumption and operate re-

liably at low temperatures and high magnetic fields. QTF’s are cheap, readily available

and large enough to make production of novel sensors relatively easy. SEM analysis

of the tungsten tips has shown that the electrochemical etching technique is routinely

able to produce tips with typical radii of 30 nm. Dynamic AFM is performed using

a frequency-modulation technique. A phase-locked loop (PLL) was used to drive the

tuning fork on resonance. A separate feedback loop maintained a constant oscillation

amplitude. This technique enabled the frequency shift and dissipation of the tuning

fork to be measured separately. These measurements can be related to the conservative

and non-conservative components of the tip-sample force respectively.

8.1.2 SCM measurements

A capacitance detector based on an RF tuned filter design was implemented. This

enabled capacitance measurements to be made with a resolution of 0.1 aF with a band-

width adequate for scanning. The tuned filter approach was chosen as it could be

implemented with the constraints of limited space, low-temperature and high mag-

netic field. An equivalent circuit model of the tuned filter was developed and detailed

calibrations of the individual components were made. This model was successful in

reproducing the experimentally measured response. The oscillation of the tuning fork

modulates the tip-sample capacitance. This modulation was used to isolate the local

contribution to the tip-sample capacitance from a huge background.

8.1.3 Measurements of a gold film

The tip-sample system was modelled by an RC circuit. The tip-sample coupling is

represented by a capacitance and the sample as a resistive plate. Using analytical

analysis of the tuned filter and tip-sample interaction it was possible to demonstrate

that over a highly conductive surface then the Ŷ measurement can be interpreted as
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the tip-sample capacitance.

The tip-oscillation is typically much larger than the length scale of the tip-sample

interaction and complicates the interpretation of the measured quantities. The capac-

itance as a function of tip-sample separation, C(z) was extracted from the measured

quantities with a deconvolution scheme usually used for tip-sample forces. Point spec-

tra measurements were made with different oscillation amplitudes and the tip-sample

force and capacitance were reconstructed from each. The reconstructed curves were

essentially identical which demonstrated the validity of the deconvolution technique.

The tip-sample force had a length scale much larger than theoretical predictions but

was comparable to experiments under similar conditions in the literature. The larger

length scale is attributed to electrostatic forces originating from the tip-sample work

function difference and distortion of the tip and sample at the smallest separations.

The tip-sample capacitance variation was found to be a few aF/nm at the smallest

separations. The form of the curve was fitted to a simple analytical expression. At the

smallest separations the interpretation is more difficult as the C(z) curve is modified

by the tip coming into contact with the surface.

8.1.4 Measurements of a 2DEG

Measurements were made on Hall bar devices fabricated from a GaAs/GaAlAs het-

erostructure with a 2DEG 50 nm below the surface. At zero-field scans were made

close to the physical edge of the device. High contrast is seen between the regions on

and off the device which demonstrated the measurement technique is sensitive to the

presence of a sub-surface 2DEG. A depletion region parallel to the edge of the device

was observed with a length scale comparable to theoretical predictions. Finite element

simulations were performed to understand the geometric effect of a step edge on the

tip-sample capacitance.

Point spectroscopy measurements were made over the bulk region of the device as a

function of magnetic field. Oscillations in the signal were observed with 1/B periodicity.

With some simple modelling it was possible to show that the Ŷ measurement can be
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interpreted as local conductivity.

At non integer filling factors signal over the 2DEG is homogeneous (apart from

artefacts caused by topographic features) similar to the zero-field case. At integer

filling factors the bulk becomes insulating and a highly conductive stripe forms at the

edge of the sample. A series of images were taken at filling factors around ν = 2 and

ν = 4 and the evolution of the stripe has been observed. The variation of the stripe with

filling factor is qualitatively in agreement with theoretical predictions. It is difficult to

make quantitative predictions as at low filling factors the theory is only valid for small

deviations from integer filling.

Measurements were made in a different position along the edge close to where some

point spectroscopy had been performed. An anomalously broadened stripe was seen

around a locally depleted region of the 2DEG. The local depletion is attributed to

charging of the surface by the point spectroscopy measurements and the increased

width to a shallower potential gradient compared to the physical sample edge.

Images of the edge were made close to ν = 2 whilst passing a current through

the sample. At some critical current this stripe structure is no longer seen and the

signal over the 2DEG becomes homogeneous. Measurements made on the same wafer

indicate that this current is about the right order of magnitude to cause breakdown

of the quantum Hall effect and this might be associated with the disappearance of the

stripe. These measurements are difficult to interpret as transport measurements were

not made at the same time. However, this does demonstrate that it is possible to

image at the edge of a real device whilst passing current, something that has not been

demonstrated in the literature.

8.2 Suggestions for future work

Some suggestions for improvements to the microscope and other types of measurements

that could be made are outlined in this section.
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8.2.1 Microscope

The features seen at the sample edge are on a length of a micron at low integer filling

factors. At higher filling factors and away from integer filling factors the stripe struc-

ture exceeds the scan range of the microscope. A larger scan range would be a big

improvement and could be achieved by replacing the scan tube with one with a smaller

diameter and greater length.

Etched tungsten tips are easy to fabricate but the oxide layer on the surface makes

it difficult to predict the work function of the tip. The tip material could be replaced

with a PtIr alloy, this is more difficult to sharpen but does not form an oxide layer.

In some measurements contamination of the surface is seen, one cause of this might

be water vapour condensing on to the sample whilst loading the microscope into the

cryostat. A heater could be incorporated into the sample mount to prevent this hap-

pening.

The z coarse positioner is the most unreliable part of the microscope and needs

careful adjustment of the clamping springs to make it operate correctly at low temper-

ature. There were a number of measurement runs where the motor did not function at

low temperature or slipped during the cool down. Work needs to be done to improve

this part of the microscope.

The main source of noise in the AFM measurements is mechanical vibrations caused

by acoustic excitation of the cryostat by the vacuum pump. Work is under way to

relocate the pump outside the laboratory.

8.2.2 Measurements

The surface of the gold sample had topographic features with a height of 10 nm. The

point spectra measurements were made over similar length scale and it might be bet-

ter to repeat this measurements with a flatter sample, for example highly-orientated

pyrolytic graphite (HOPG). To study the effect of the topography on the capacitance

signal then a sample with a well defined set of topographic features would be required,

for example a grating with a metallic coating.
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The scanning measurements close to the edge of 2DEG could be improved by scan-

ning a larger area and making measurements at more magnetic fields. It would be

interesting to make measurements on a narrower Hall bar, 50µm for example, where

it is possible to image across the whole width of the device in a few scans. A sample

with a lower density would make it possible to image around filling factor ν = 1.

The measurements as a function of applied current need to be repeated with si-

multaneous transport measurements. In a large device then the most likely place that

quantum hall breakdown would originate is close to the contacts. A better device to

study this effect would be a large Hall bar but with a narrow constriction in the mid-

dle. Studies in the literature suggest that with this type of sample geometry then the

breakdown occurs in this constricted region where the current density is higher [124].

Recent publications have demonstrated transport measurements of the quantum

Hall effect in graphene [126]. It would be really interesting to see if it possible to image

edge states in this system using our technique.



Appendix A

Analytical model of a 2DEG in a

magnetic field

Benedict et al describe an analytical model of a disordered, non-interacting 2DEG

in a magnetic field [127]. The model consists of electrons moving in a plane under

the influence of a perpendicular magnetic field and some random potential V (r). They

consider various statistical forms of the disorder potential and the results for a Gaussian

white noise distribution were used in this work. Figure A.1(a) shows the DOS calculated

with the analytical model. Figure A.1(b) shows the conductivity calculated with the

model and from transport measurements. The adjustable parameters of this model

were the Fermi energy, which was calculated from the measured electron density and

the size of the disorder potential; this was adjusted so that the widths of the peaks

were comparable to those of the measured data.

The analytical model shows the same periodicity as the experimental curve and

the conductivities are very similar in magnitude. At higher magnetic fields a change

in shape and width of the peaks is seen in the experimental curve and is due to spin

splitting which is not included in the model. In the analytical model the DOS is

zero between Landau levels and therefore so is the conductivity, in the real sample

there would be a finite DOS between Landau levels due to localised states and the

conductivity remains finite.
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(a) (b)

Figure A.1: (a)DOS at the Fermi energy calculated using the analytical model of Benedict et

al [127]. (b)Longitudinal conductivity σxx as a function of magnetic field, (blue) from analytical

model, and (red) experimentally measured.
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