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Abstract 

Leptin is produced primarily by white adipose tissue but also by brown adipose 
tissue (BAT) and the placenta. It has a major physiological role in the control of 
energy balance. BAT is critically important for the initiation of non-shivering 
thermogenesis in precocial newborns through the uncoupling protein, UCPl 
unique to BAT. This is particularly important in neonatal lambs and infants in 
which levels of UCPl peak at birth concomitant with a peak in plasma leptin and 
a surge in Cortisol Other mitochondrial proteins may contribute to this effect e.g. 
VDAC which is located in the outer mitochondrial membrane. 
The aim of this thesis was to: 

1. investigate the role of the late gestation Cortisol surge on BAT development 
2. investigate the effect of route of delivery on subsequent neonatal plasma 

leptin concentrations 
3. assess the effect on of leptin administration to neonatal lambs on 

thermoregulation 

Late gestation fetuses were infused with Cortisol or saline or underwent 
adrenalectomy or sham operation. BAT was sampled at 129 and 144 days of 
gestation, respectively. UCPl abundance was significantly increased in the 
animals receiving Cortisol treatment compared to controls and was significantly 
reduced in adrenalectomised animals. 

Plasma leptin was analysed from lambs delivered vaginally or near term by 
caesarean section (CS). Cord plasma leptin decreased significantly after birth, an 
adaptation that was delayed by CS delivery. Acute and chronic administration of 
leptin to neonatal lambs improved thermoregulation by preventing a decline in 
body temperature. Chronic leptin freatment over 7 days (lOOp-g daily) promoted 
the loss of UCPl mRNA and protein, but had no deleterious effects on body 
temperature 

Polyclonal antibodies were developed against mitchondrial voltage-dependent 
anion channel (VDAC). The postnatal ontogeny of VDAC was found to be 
similar to that of UCPl and cytochrome c, with abundance peaking around one 
day of age. VDAC was found in high abundance in organs with high metabolic 
requirements such as heart, muscle and BAT. These results suggest that VDAC is 
involved in ensuring BAT maintains a maximal rate of thermogenesis after birth. 

In conclusion, I have shown for the first time that leptin has an important role in 
thermogenesis during the transition from fetal to neonatal life. This is attenuated 
in CS animals, possibly linked to a reduced sympathetic nervous system activity. 
The rapid loss of UCPl mRNA, which occurs within the first few days of life, 
appears to be modulated by leptin, possibly stimulating the development of white 
adipose tissue and generation of body heat through mechanisms other than non-
shivering thermogenesis in BAT. VDAC may be important during this period in 
ensuring adequate subsfrate delivery to BAT. Intact adrenal glands are also 
necessary for the increase in UCPl abundance during late gestation, an effect 
mediated in part by Cortisol. 
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CHAPTER 1 

INTRODUCTION 



LI. Fetus to Neonate 

The transition from fetus to neonate represents a major physiological, hormonal and 

environmental challenge. In order to survive, the fetus must be prepared to 

thermoregulate and feed independently shortly after birth. This requires a number of 

highly complex physical and hormonal interactions around the time of birth. Brown 

adipose tissue is activated around the time of birth by hormones such as Cortisol and 

triiodothyronine and also by the sympathetic nervous system. A recently discovered 

hormone, leptin, has been shown to be involved in thermoregulation in rodents, it is 

not know if leptin has such an effect in ovine neonates. 

1.2. Brown Adipose Tissue 

The transition from a maternally regulated thermal environment to one considerably 

colder (i.e. 39 °C in utero to 12 °C March/April air temperature, in the case of the 

sheep) requires the newborn to be able to rapidly produce heat in order not to 

become hypothermic. The neonatal lamb and human infant are able to produce large 

amounts of heat shortly after birth due to the presence of uncoupling protein 1 

(UCPl) unique to the specialised adipose organ, brown adipose tissue (BAT). 

1.2.1 BAT Morphology and Location 

A brown fatty tissue was first observed in the marmot and noted by the 16'*̂  century 

physician and naturalist Conrad Gesner (Rothwell & Stock 1985). This tissue is now 

normally referred to as BAT and has been shown to be present in most mammals 



studied to date (Rothwell & Stock 1985). BAT mitochondria may be distinguished 

from other cell types by presence of the unique uncoupling protein UCPl. 

BAT is specialised for heat production due to recruitment of non-shivering 

thermogenesis (NST) and this is apparent from the properties, in addition to the 

presence of UCPl, that distinguishes BAT from the other adipose tissue type, white 

adipose tissue (WAT) (Figure 1.1). The other distinguishing features of BAT are 

outlined below: 

• small cells (25-40 jam) with a central nucleus (Vernon 1986) 

• multilocular triglyceride droplets (Alexander 1978) 

• abundant mitochondria with dense parallel cristae richly endowed with 

respiratory chain enzymes (Cannon et al. 1977). 

• high degree of vascularisation 

WAT, on the other hand, contains a unilocular triglyceride droplet with few 

organelles that are pressed against the cell wall. Many of the prominent features of 

BAT relate to its function, for example the stores of triglycerides are necessary for 

combustion during non-shivering thermogenesis. Many mitochondria are required 

for the biochemical oxidation of non-esterified fatty acids (NEFA) released from 

triglycerides and the extensive vasculature supplies the high substrate and oxygen 

requirement necessary to support the high metabolic rate. The vasculature also 

constitutes a convector system for the capture and redistribution of heat. The dark 



brown colour of BAT is derived from hs rich blood supply and high cytochrome 

content. Both BAT and its blood vessels are innervated by sympathetic nerves 

resulting in a high tissue concentration of noradrenline. 
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Figure 1.1 

Microscopic images of brown (upper panel) and whhe (lower panel) adipose 

tissue. The BAT is an electronic scanning microscope image (modified from 

Cmti 1999 (Cinti 1999)), WAT is a light microscopy hnage (courtesy of Victoria 

Wilson) 70X magnification. 



In the lamb, the major depot of BAT (80 %) is found in the perirenal region (referred 

to as PAT throughout this thesis), with smaller amounts found in the pericardial area 

(Alexander 1981). This is in contrast to rodents and hibernating mammals, whose 

main depot is found in the inter-scapular region (Alexander 1981). Newborn infants 

have major BAT depots in the posterior cervical, axillary, supracilliac and perirenal 

regions, forming a "vest" like arrangement around the major organ systems (Merklin 

1974). 

1.2.2 BAT Differentiation 

The adipocyte lineage is of mesodermal origin derived from embryonic stem cells 

(Dani et al. 1997) as illustrated in Figure 1.2. Increasing commitment of totipotent 

embryonic stem cells to a defined cell type gives rise to mesodermal multipotent 

stem cells, from which adipocytes, chondrocytes and myocytes originate (Ailhaud 

1992; Gregoire et al. 1998). Direct evidence that brown adipocytes originate from 

the same mesodermal stem cells as white adipocytes comes from studies on 

C3H10T1/2 cells, that unlike pre-adipocyte cell lines, have not yet undergone 

commitment to any given lineage; i.e. they are a multipotent mesenchymal stem cell 

line. Studies have shown that treatment of these cells with insulin and 

thiazolidinediones (TDZ's) directed them towards differentiation into brown 

adipocytes i.e. they accumulated lipid, expressed UCPl and increased their 

mitochondrial mass (Paulik & Lenhard 1997). From a comparative study on primary 

cultured stromal vascular fractions of WAT and BAT, we know, that pre-adipocytes 

are already committed to either the white or brown adipocyte lineage as T3 evoked 



differential metabolic and thermogenic effects between the adipose tissue types 

(Klaus et al. 1995). At some time point after commitment of the multipotent stem 

cell towards the adipose lineage, a further commitment occurs to either white or 

brown adipocyte lineage. However, at what point this occurs and what the 

underlying molecular mechanisms are is still completely unknown. 
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Factors inducing adipogenic conversion are similar for brown and white 

preadipocytes, whereas inducers of thermogenic function are only functional on 

brown preadipocytes. Whhe and brown pre-adipocytes cultured in vitro can not be 

distinguished either by morphological, metabolic, or molecular criteria although, in 

cell culture, differentiated brown adipocytes can be recognised by the presence of 

UCPl and a higher respiratory activity, i.e. increased mitochondrial content (Ailhaud 

1992). 

Therefore, although brown pre-adipocytes have a superficial resemblance to white 

pre-adipocytes, the brown adipocyte is not an intermediate in the development of the 

white adipocyte. 



1.2.3 BAT Development 

Ovine BAT development begins during fetal life and BAT is fully functional at birth. 

The development of fetal BAT can be divided into three distinct phases: 

• growth 

• development 

• maturation (Symonds et al. 1995) 

Lobes of pre-adipocytes can be found in the perirenal and subcutaneous areas during 

the second trimester of gestation ~G70 (70 days gestation), by G90 there is a marked 

proliferation of adipocytes containing mitochondria and increasing lipid in the 

perirenal area (Alexander 1978; Vernon 1986) (Figure 1.3). Growth of the 

subcutaneous depots (i.e. WAT) commences around 2-3 weeks later (Alexander 

1978) (Figure 1.3). Up to G120 PAT depots grow rapidly so that the amount per kg 

body weight increases, but after G120 until term growth of the depot continues at the 

same proportional rate at as the fetus (Alexander 1978). 

Lambs are a precocial species, bom fully developed and able to thermoregulate 

independently minutes after birth and as such must have fully developed and 

functional BAT at birth. Lambs are normally bom with 20 -30 g of perirenal adipose 

tissue which has the morphological and biochemical properties of BAT i.e. many 

mitochondria and multi-locular fat droplets (Alexander 1978; Cannon et al. 1977; 

Gemmel et al. 1972; Vemon 1986). However, lambs have littie detectable 

subcutaneous adipose tissue (SAT) at birth (Figure 1.3). The amount of SAT in the 



lamb fetus peaks around mid gestation then declines up to term as PAT increases. 

Any detectable SAT in the newbom lamb is BAT, not WAT as it contains UCPl 

mRNA. It is possible that PAT tissue is laid down at the expense of SAT which is 

down-regulated towards term. This reinforces the importance of BAT in providing 

the newbom lamb with heat via NST. 

During the first three weeks of postnatal age, adipose tissue in the perirenal region 

begins to adopt the characteristics and morphology of WAT and by one month of age 

is indistinguishable from the subcutaneous WAT depot, expressing no UCPl 

(Casteilla 1989; Finn et al. 1998; Gemmel et al. 1972). Ovine and bovine species 

and humans do not express BAT, nor UCPl again during adult life, although human 

patients with phaeochromocytoma, a tumour inducing high plasma catecholamines, 

have been shown to have BAT depots (Lean et al. 1986a; Lean et al. 1986b; 

RicquiereM/. 1982b). 

The mechanisms responsible for this alteration in BAT functional and stmctural 

characteristics are unknown, although it is possible that some sort of transformation 

from BAT to WAT occurs during the postnatal period. It has been suggested that 

programmed cell death, apoptosis, is responsible for the "remodelling" of BAT to 

WAT (Finn et al. 1998), although there is no direct evidence at present to 

substantiate this. Fetal and postnatal development of BAT are closely related to 

changes in P-adrenoceptor stimulation and subtype present in BAT. There are three 

subtypes of P-adrenoceptors, type three is the most recently discovered which is 

found predominantly in adipose tissue and thought to be involved in the regulation of 

10 



resting metabolic rate and lipolysis (Strosberg 1997). Mutation of the P3-

adrenoceptor has been associated with predisposition to obesity and early onset of 

non-insulin dependent diabetes in Pima Indians (Clement et al. 1995; Walston et al. 

1995). In the fetal calf P3-adrenoceptor mRNA appearance in BAT precedes that of 

UCPl and is maintained at a high level until around 3 months of postnatal age 

(Casteilla et al. 1994). However, by adulthood, P3-adrenoceptors are undetectable in 

bovine adipose tissue (which has then transformed from brown to white). This is in 

contrast to rodent studies indicating a high expression of p3-adrenoceptor mRNA in 

WAT and BAT of the adult rat (Muzzin et al. 1991). p3-adrenoceptors act through a 

G-protein coupled receptor (Gs) on the surface of adipocytes to increase the 

intracellular activity of adenylyl cyclase, cAMP and subsequently lipolysis via 

hormone-sensitive lipoprotein lipase (Strosberg 1997). The developmental response 

of adenylyl cyclase to a p3-adrenoceptor agonist (i.e. BRL 37344, a synthetic P3 

specific agonist) is well correlated with P3-adrenoceptor expression (Casteilla et al. 

1994) and therefore BAT abundance. After birth the adenylyl cyclase response to 

BRL 37344 decreases rapidly (Casteilla et al. 1994), this could be due to receptor 

desensitisation as there is a peak in neurosympathetic stimulation during parturition 

(Padbury et al. 1981). Adrenergic stimulation is also known to regulate UCPl 

activity and this will be discussed in Chapter 1.3.3. 

Small mammals do not share the same ontogeny of BAT as sheep. Mice and rats are 

an altricial species, immature at birth, they have no fur, their eyes are closed and they 

do not have fully developed BAT. In order to keep warm, rodents huddle in a nest 

11 



until BAT becomes fully functional around 2 weeks of age when they emerge from 

the nest. 
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Figure 1.3 

Adipose tissue growth in the fetal lamb. Modified from Alexander 1978 and Vemon 

1986. (Alexander 1978; Vemon 1986) 
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1.2.4 Ovine Brown Adipose Tissue Regulation 

Many factors influence BAT tissue development in utero and postnatally, including 

matemal nutrition (Alexander 1978; Budge et al. 2000; Symonds et al. 1998), fetal 

number (Alexander 1978), ambient temperature at birth (Clarke et al. 1994) and 

route of delivery (Chapter 4). 

Matemal nutrition is known to influence lipid reserves in newbom lambs and BAT 

deposition (Alexander 1978; Budge et al. 2000; Symonds et al. 1998). Although, 

interestingly, increased nutrition does not necessarily equate to increased adipose 

tissue deposition. Alexander found that pregnant ewes fed a restricted diet of lOg/kg 

from 12 weeks gestation onwards (approximately 20 % less than the ''ad libitum" 

ewes (Alexander 1978)) caused a reduction in BAT deposition (g per kg body) of the 

offspring. This has been confirmed by Symonds et al who found that under-feeding 

pregnant ewes in order to reduce fetal plasma glucose to 50 % of controls resulted in 

a significant reduction in fetal perirenal BAT (Symonds et al. 1998). In contrast, a 

study investigating the effects of matemal over-feeding during pregnancy (150 % 

versus 100 % in controls (Budge et al. 2000)) found that fetuses from well-fed ewes 

had less total perirenal BAT than control fed fetuses (Budge et al. 2000). However, 

BAT from the "well-fed" fetuses had an increased thermogenic potential than those 

from control fed mothers. These differential results suggest that there is an optimal 

energy requirement of BAT in the growing fetus, below this requirement, 

insufficient BAT is deposited and the neonate may not be able to effectively to 

thermoregulate at birth. Above this optimal energy requirement, BAT up-regulates 

14 



the mechanics of NST i.e. increased UCPl and GDP binding suggesting lipid is 

being oxidised. This may be a regulatory step by the fetus to stop over-deposition of 

BAT, the positive function of this is not apparent, but fits with studies of over-fed 

rodents (by a cafeteria diet) that demonstrate up-regulation of UCPl to maintain a 

steady body weight (Champigny & Ricquier 1990; Marchington et al. 1986; 

Rothwell & Stock 1984). 

Alexander has also demonstrated an effect of fetal number on adipose tissue 

deposition in the sheep, twins examined during late gestation were found to have 

significantly less perirenal BAT than singletons of the same gestational age 

(Alexander 1978). "Twinning" may also represent a nutritional effect, twin fetuses 

have lower plasma glucose than singletons of a similar age and are often thought of 

as "growth restricted" (Symonds et al. 2000). 

The ambient environmental temperature at birth also represents a regulatory factor in 

BAT development. Clarke et al demonstrated that caesarean section delivery of 

lambs close to term into a cool ambient temperature (15 °C) caused a reduction of 

adipose tissue mass compared to lambs delivered by caesarean section into a warm 

ambient temperature (30 °C) (Clarke et al. 1994). However, this study only 

investigated caesarean section delivered animals, whom, as discussed in Chapter 4, 

display different adipose tissue abundance than vaginally delivered animals. 

15 



1.3 Uncoupling Protein -1 (UCPl) 

The biochemical analysis of UCPl began with the isolation of the intact peptide 

from BAT mitochondria in the 1980's (Lin & Klingenberg 1980; Lin & Klingenberg 

1982). Prior to this, the thermoregulation of BAT was thought to be "pecuhar" 

uncoupling of cellular respiration, related to a high ion conductance that could be 

suppressed by addition of purine nucleotides (Lin & Klingenberg 1980) or activated 

by the addhion of fatty acids (Jezek et al. 1994). A nucleotide binding site on the 

inner mitochondrial membrane was also found around this time (Nicholls 1976), the 

number of these sites increased during cold exposure, suggesting a nucleotide 

binding, inner mitochondrial membrane protein was responsible for the uncoupling 

of cellular respiration. In view of this putative uncoupling function, the protein was 

"christened" uncoupling protein (UCP, as no family members had been discovered at 

this point). Other literature at the time coined the term "thermogenin" due to the heat 

producing effects of the BAT (Nedergaard & Cannon 1992). 

In evolutionary terms, UCPl has been proposed to be a late offspring from a group 

of HVOH" substrate anion co-transporters (Klingenberg 1990). UCPl is the only 

confirmed H* translocator of this type and bears considerable stmctural resemblance 

to the ADP/ADP and phosphate carriers (Klingenberg 1990). 

1.3.1 Structure of UCPl 

Mouse, rat and human UCPl consists of 306 amino acids with a molecular weight of 

32 - 33 kDa (Ricquier & Bouillaud 2000) although under physiological conditions 

16 



exists as a dimer (Lin & Klingenberg 1980; Lin & Klingenberg 1982) of 64 kDa. 

UCPl belongs to the gene family of mhochondrial anion carrier proteins (MACP), 

which includes ADP/ATP and phosphate carriers. 

UCPl is located on the inner mitochondrial membrane of BAT (Figure 1.4) where it 

acts as the only carrier known to transport H^ alone. The exact tri-dimensional 

stmcture is unknown as it is difficult to obtain crystallization information on 

membrane proteins. Alternative strategies have included sequence analysis 

(Klingenberg 1990; Ricquier et al. 1982a), use of chemical and immunological 

probes (Gonzalez-Barroso et al. 1999; Miroux et al. 1992) and development of 

algorithms (Aquila et al. 1987). Based on the primary stmcture, a folding model of 

UCP 1 was derived which in its simplest form contains six transmembrane a helices 

(Aquila et al. 1987). As a member of the MACP family, the stmcture can be divided 

into three similar repeat domains of about 100 residues, each containing two 

fransmembrane helices this is called a "tripartite" or triad stmcture (Aquila et al. 

1987; Klingenberg 1990). Both the N and C termini are located in the cytosol of the 

intermembrane space of the mitochondria (Figure 1.4). The three matrix loops are 

thought to contribute to the formation of the gating domain in UCPl and it has been 

proposed that they form a hydrophobic pocket that accommodates the purine moiety 

of the bound nucleotide. UCPl from hamster has been shown to contain 28 basic and 

19 acidic charges resulting in excess of 9 positively charged residues, most of these 

are found in the hydrophilic matrix region. Positive or negative charges altemate at 

17 



the helix terminals on the cytosol or matrix side, resulting in "dipoles" which may 

form pairs by electrostatic attraction. 

18 
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1.3.2 UCPl Mechanism of Action 

The mechanism of UCPl is to uncouple normal cellular respiration. There are a 

number of theories at present regarding the exact mechanism of uncoupling; I will 

describe in this thesis the two main models. 

Mammalian metabolic efficiency can be considered to be very close to zero i.e. what 

goes in, goes out. All energy supplied is essentially transformed into heat with a very 

small proportion used to perform work such as growth or for storage in, or extraction 

from the bodily reserves (Nedergaard et al. 2001). Metabolic respiratory control is 

highly regulated due to the following factors: 

• ATP synthesis can only occur to replace de-phosphorylated ADP 

• proton re-entry through ATP synthase is tightly coupled to ATP synthesis 

• electron flow down the respiratory chain is tightly coupled to proton extmsion. 

• proton extmsion and proton re-entry balance (Nicholls et al. 1986) 

This idea is illustrated further in Figure 1.5. In the newbom sheep, stimulated BAT 

can contribute 30 % of the metabolic and 50 % upon arousal from hibernation in 

ground squirrels (Foster 1986). In order to produce these rates of thermogenesis 

observed in vivo, an altemative mechanism must be present in BAT to by-pass 

normal respiratory control. 
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Figure 1.5 

Example of conventional cellular respiration modified from Nicholls et al 1986 and 

Hmims-Hagen 1990 (Hhnms-Hagen 1990; Nicholls et al. 1986). 
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UCP 1 is the by-pass mechanism employed by BAT to exploh cellular respiration. 

The presence of UCP 1 in the inner mitochondrial membrane allows protons to re

enter the mitochondrial matrix via an altemative pathway, avoiding ATP synthase 

(Figure 1.6). The re-entry of protons into the mitochondrial matrix via UCPl allows 

the proton motive force (or proton electrochemical gradient) energy to be dissipated 

as heat. 

Under thermoneutral conditions, i.e. in the ovine fetus, UCPl exists in a "masked" 

state; that is guanidine di-phosphate (GDP) is bound to nucleotide binding sites on 

the outer side of UCPl (Desautels et al. 1978; Nicholls 1976). This prevents the re

entry of protons into the matrix via UCPl. In the lamb, "unmasking" of UCPl is 

stimulated by cold and increased sympathetic nervous activity - two factors critical 

in the transition from fetus to neonate. Other factors, such as diet, influence 

unmasking of UCPl in rodent species (Peachy et al. 1988; Sudin & Cannon 1980). 

Acute stimulation of BAT causes rapid unmasking of available UCP 1 before 

synthesis of new UCPl occurs. Prolonged stimulation of BAT leads to increased 

UCPl abundance and GDP binding in the mitochondria. Removal of the stimuli 

results in "re-masking" of active sites prior to any observed reduction in UCPl 

abundance. It is thought that cold and sympathetic activity unmask UCPl via 

stimulation of fatty acid liberation, fatty acids are known to activate H+ ttansport 

(Winkler & Klingenberg 1994). 
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Proton transport via UCPl is inhibited by purine nucleotides (Desautels et al. 1978; 

Lin & Klingenberg 1982; Nicholls 1976). A nucleotide binding site is present on the 

outer surface of the inner mitochondrial membrane (Nicholls 1976). UCPl has a 

strong preference for purine nucleotides and GDP and GTP bind with a higher 

affinity than ADP and ATP. It is thought that binding of GDP occurs in two stages, 

loose binding and tight binding (Huang & Klingenberg 1996; Huang et al. 1998). 

Loose binding occurs rapidly and there is a slow transition between loose and tight 

binding. Tight binding is highly correlated with the inhibition of H"̂  transport (Huang 

& Klingenberg 1996). 
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Example of cellular resphation m active BAT modified from NichoUs et al 1986 and 

Hhnms-Hagen 1990 (Hhnms-Hagen 1990; Nicholls et al. 1986). 
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There are two main models of how UCPl mediates proton transport, these models 

were proposed in the early 1990's and are still hotly debated today. A full 

examination of these models is beyond the scope of this thesis and will only be 

briefly discussed. The two models are: 

• Fatty acid protonophore mechanism of UCPl mediated H^ flux proposed by 

Skulahev, 1991 and Gariid etal, 1996 (Gariid 1996; Skulachev 1991). 

This model suggests that UCPl catalyses "flip-flop" of the anionic head group of 

fatty acid from the matrix leaflet to the outer leaflet of the inner membrane. The 

carboxyl head of the fatty acid picks up a proton and rapidly flip-flops back to the 

mafrix side where the proton is released, completing the cycle (Figure 1.7). 

Evidence for this method of H"̂  flux can be found in the following papers: 

Skulachev 1991, Jezek et al 1994, Gariid et fl/1996 and Gariid et al 2000 (Gariid 

1996; Gariid et al. 2000; Jezek et al. 1994; Skulachev 1991). 

• Fatty acid buffering mechanism of UCPl mediated H^ flux proposed by 

Winkler and Klingenberg in 1994 (Winkler & Klingenberg 1994). 

This model proposes that protons are directly transported within UCPl. It is 

postulated that protons move through an aqueous pathway in UCPl which is lined 

with fatty acid molecules (Figure 1.7). These are proposed to act as buffering 

cofactors that operate in conjunction with H+ conducting amino acids such as 
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histidine. The fatty acid head group is proposed to oscillate from the aqueous phase 

into the protein channel and deliver a proton to an acceptor group which in turn 

delivers the proton to the matrix. UCPl in this model facilitates the retum of the 

undissociated fatty acid to the cytosolic side for another H^ delivery cycle. Mutation 

of two histidine residues in UCPl has been shown to cause loss of H* transport 

properties (Bienengraeber et al. 1998). Evidence for this model can be found in the 

following papers Winkler and Klingenberg 1994, Bienengraeber et al 1998 and 

Klingenber 1999 (Bienengraeber et al. 1998; Klingenberg 1999; Winkler & 

Klingenberg 1994). 
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Figure 1.7 

The two mam models of H+ flux mediated by UCPl. Model 1 modified from 

Skulachev 1991 and Gariid et al 1996 (Gariid 1996; Skulachev 1991); model 2 

modified from Winkler and Klingenberg 1994 and Klmgenberg 1999 (Klmgenberg 

1999; Wmkler & Klmgenberg 1994). 
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1.3.3 Regulation of UCPl Activity 

The physiological activity of UCPl is known to be regulated by a number of factors, 

I will only consider those relevant to the period of transition from fetus to neonate in 

this thesis. 

Cold Stress and Sympathetic Nervous System (SNS) 

Cold stress and the SNS will be considered together as they act through the same 

pathway to activate UCPl. 

A major activator of UCPl in the newbom lamb is cold exposure. At birth the lamb 

moves from a constantly maintained matemal temperature of 39 °C to that of the 

spring air temperature (approximately 12 °C), which represents a considerable cold 

challenge. The lamb therefore experiences a drop in environmental temperature of 

around 20 °C that stimulates an increased SNS output to BAT which in tum 

increases UCP 1 protein and mRNA expression. Noradrenline (NA) is known to have 

a stimulatory effect on UCPl activity, evidence for this comes from NA 

administration (Mory et al. 1984) and sympathectomy studies. The SNS activates 

UCPl through a cascade of events culminating in increased lipolysis of BAT (Figure 

1.8). Adrenergic nerves terminate at p3-adrenoceptors on the cell surface of BAT, 

this stimulates the G protein Gs to activate adenylyl cyclase, thus increasing cyclic 

(c) AMP. cAMP acts to increase hormone sensitive lipase activity within BAT, 

liberating fatty acids from triglyceride stores (Figure 1.8). These fatty acids have a 

stimulatory effect on UCPl activity by "unmasking" the transport of protons. cAMP 

is also responsible for increased expression of the UCPl gene through a cascade of 
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cellular events involving protein kinase A, mitogen-activated kinase and genetic 

enhancers, although the exact mechanism is unknown (Cao et al. 2001). 

Recent advances in molecular biology have enabled the production of UCPl ablated 

or "knockouf mice (Enerback et al. 1997). These mice have been found to be 

intolerant of cold exposure, UCPl ablated mice acclimatised at 24 °C and 

subsequently placed at 4 °C have been found to rapidly lose body temperature 

despite fully defending temperature through shivering. After around 200 minutes 

exposure to 4 °C these mice succumb to hypothermia, whereas wild type mice 

maintain body temperature through non-shivering thermogenesis. This finding 

confirms the presence of UCPl is essential for survival during cold exposure, at least 

in mice. 

Sheep are unable to "recmif UCPl in adult life during cold exposure as rodents can, 

but react to cold exposure at birth in the same way as rodents do in adulthood. As 

well as increasing UCPl activity, cold exposure and subsequent SNS activity also 

activate transcription of the UCPl gene (Bouillaud et al. 1984; Mory et al. 1984; 

Ricquier et al. 1986). There is evidence for the presence of a P-adrenergic response 

element in a 4.5-kilobase region upstream of the transcription start site of UCPl 

(Cassard-Doulcier e/a/. 1998). 
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Effect of cold stress, leptin and SNS activation on UCPl in BAT. Modified from 

Strosberg 1997 (Strosberg 1997). TG, triglyceride; ffa's, free fatty acids; p3R, p3-

adrenoceptor; NA, noradrenaline; ATP, adenosine triphosphate; BA, brown 

adipocyte. 
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The SNS is highly activated at the time of birth (Falconer & Lake 1982; Faxelius et 

al. 1983; Hagnevik et al. 1984; Lagercrantz & Bistoletti 1973), this is partly due to 

compression of the head during passage through the birth canal and the physical 

trauma of birth. As outiined above, the SNS has a stimulatory effect on UCPl 

activity. Loss of the surge in SNS activity at birth, i.e. through caesarean section 

delivery results in a reduction in the stimulation of UCPl and an attenuated ability to 

thermoregulate (Hagnevik et al. 1984; Irestedt et al. 1982) (Bird 1996; Clarke et al. 

1997). 

Thyroid hormones 

Thyroid hormones are known to have a positive regulatory effect on UCPl 

expression. In the neonate, as tri-iodothyronine (T3) levels increase rapidly with the 

onset of parturition and have been shown to be important in the initiation of 

thermoregulation in the lamb (Bird et al. 1998; Heasman et al. 2000; Schermer et al. 

1996). T3 up-regulates and stabilises UCPl expression (Guerra et al. 1996; Stein 

1994) and abundance (Heasman et al. 2000) via responsive sequences on the UCPl 

gene (Rabelo et al. 1995) (Cassard-Doulcier et al. 1998). T3 also acts to up-regulate 

the activity of mitochondrial carriers, proton leak and elecfron transport chain 

components (Goglia et al. 1999) these could all influence thermoregulation 

positively. The enzyme responsible for conversion of thyroxine (T4) to T3 and thus 

the increase in intracellular T3, is 5' deiodinase, this enzyme has been shown to be 

present in BAT (Trayhum et al. 1993) (Nedergaard & Cannon 1998). Abundance of 

5' deiodinase in BAT increases markedly before birth, after which it spontaneously 

declines; the regulation of this decline is as yet unknown although h may be related 
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to the decline in sympathetic nervous system activity after birth (Nedergaard & 

Cannon 1998). The sympathetic nervous system is one of the factors that regulate 5' 

deiodinase activity in BAT. Noradrenaline can act through either p or a-

adrenoceptors to increase cAMP and protein kinase c respectively to stimulate 5' 

deiodinase (Nedergaard & Cannon 1998). Regulation of UCPl by T3 is further 

discussed in detail in Chapter 5. 

Leptin 

The hormone leptin is discussed in detail in Chapter 1.5 but its known role in 

thermogenesis will be summarised here. Studies in rodents have shown leptin to 

have a positive regulatory effect on thermoregulation (Pelleymounter et al. 1995; 

Scarpace & Matheny 1998; Scarpace et al. 1997). Six days of leptin administration 

to leptin deficient ob/ob mice, who are hypothermic, stabilised their body 

temperature to values consistent with control wild type mice (Pelleymounter et al. 

1995). When this was repeated in normal rats, no increase in body temperature was 

observed, although there was an increase in whole body oxygen consumption. This 

increase was attributed to a significant increase in UCPl mRNA expression 

(Scarpace et al. 1997). Induction of the UCPl gene by leptin was found to be 

dependent on sympathetic innervation as no effect of leptin was observed in rats who 

had undergone denervation of interscapular BAT (Scarpace & Matheny 1998). This 

was consistent with the findings of Collins et al 1996 (Collins 1996) who found that 

leptin administration increases noradrenaline tumover in BAT. Leptin is known to be 

a potent activator of the sympathetic nervous system, at least in rodents (Haynes et 

al. 1997b; Scarpace & Matheny 1998; Sivitz et al. 1999; Trayhum et al. 1999), so 
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can be included in Figure 1.8, inducing UCPl via a similar mechanism as cold 

exposure. The action of leptin upon its receptors will be discussed in Chapter 1.5.3. 

Glucocorticoids 

Glucocorticoids are known to be important in the growth and development of the 

fettis (Bames et al. 1978; Fowden et al. 1998; Wu et al. 1978). There is limited 

evidence for a role of GCs in the regulation of thermogenesis. Dexamethasone 

treatment of pregnant ewes has been shown to improve thermogenic adaptation of 

prematurely delivered lambs (Clarke et al. 1998). It is unknown whether 

dexamethasone is acting on thermoregulation via UCPl or another mechanism, 

although Cortisol is implicated in the maturation of the enzyme 5' deiodinase (Wu et 

al. 1978). This enzyme, as described above, increases plasma T3 by transformation 

of T4, this could increase UCPl expression via an enhancer on the UCPl gene 

(Guerra et al. 1996; Rabelo et al. 1995; Stein 1994). The role of glucocorticoids in 

the regulation of UCPl is investigated further in Chapter 5. 

Prolactin 

The hormone prolactin is also proposed to have a role in the regulation of UCPl and 

hence thermoregulation. The abundance of prolactin receptors in BAT increases 

coincidentally with UCPl, peaking around the time of birth. Administration of 

prolactin to pregnant mice has been found to increase the UCPl abundance and 

promote lipid loss in the offspring of the treated rats (Budge et al. 2002; Yang et al. 

2001). Administration of a molecular mimic of prolactin (a recombinant form of 
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endogenous phosphorylated prolactin [Chen, 1998 #270]) to newbom lambs has also 

been shown to improve thermoregulation (Pearce et al. 2001). 

1.3.4 Assessment of UCPl Activity and Abundance 

As this thesis focuses primarily on the activity of BAT and abundance of UCPl, it is 

important to comment on the interpretation of the biochemical methods used to 

assess BAT thermogenesis. 

The major measurements made on BAT are 

• gross assessments 

• UCPl protein abundance 

• UCPl mRNA 

• GDP binding 

Gross measurements made routinely on BAT are tissue weight and protein content. 

Tissue weight gives an indication of the state of energy balance and the level of lipid 

stores, but does not give a measurement of thermogenic activity. According to 

Trayhum and Milner 1989 (Trayhum & Milner 1989) the "total protein content 

provides a cmde index of active tissue mass", major changes of this measurement 

can be observed during initiation of thermogenesis. BAT depots contain other cell 

types such endothelial cells and fibroblasts and any protein measurement made will 

include these, potentially overestimating total thermogenically active protein. The 

protein fraction used most commonly for thermogenic measurements is the 
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mitochondria, this is prepared by differential centrifugation as outlined in Chapter 

2.3.1.a. This fraction is not purely mitochondria and will contain other organelles, 

however, this problem is overcome when investigating mitochondrial specific 

proteins. As mentioned above, the other cell types present will contribute to the 

mitochondria present, however, as the mitochondrial content of BAT is so high the 

proportion of non-BAT mitochondria is likely to be negligible (Trayhum & Milner 

1989). 

UCPl protein abundance in our laboratory is analysed on westem blots using a 

specific ovine UCPl polyclonal antibody (Schermer et al. 1996). It is important to 

include negative and positive controls on initial westem blots for UCPl to confirm 

specificity of the antibody. The UCPl antibody was produced from purified ovine 

UCPl obtained by the procedure documented by Lin and Klingenberg in the 1980's 

(Lin & Klingenberg 1980; Lin & Klingenberg 1982; Schermer et al. 1996). This 

purification method is simple and produces a specific UCPl peptide. The 

identification of UCPl in an adipose tissue depot is regarded as definitive evidence 

that the tissue is BAT and not WAT (Trayhum & Milner 1989). 

The UCPl sequence is now available for sheep and many other species.In our 

laboratory we use an ovine oligonucleotide sequence in northern blotting to obtain a 

quantitative measurement of UCPl mRNA (see Chapter 2.3.7 for more details). Any 

changes in UCP 1 mRNA do not provide quantitative evidence of changes in 
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thermogenesis, but indicate that the BAT is responding at a molecular level to the 

stimulus under test. 

The GDP binding assay is the most widely used method of quantifying 

thermogenesis in BAT (Trayhum & Milner 1989). The assay uses the high affinity 

binding of GDP to UCP 1 to give a measurement of "active" sites available for proton 

transport activity [Nicholls, 1976 #498;Sudin, 1980 #566]. In our laboratory we 

employ a competitive assay to determine non-specific binding, this utilises a high, 

extra-physiological concentration of "cold" or un-radiolabeled GDP. Other purine 

nucleotides may be used in this assay, although ADP is translocated into 

mitochondria by the ADTP/ATP translocase thus requiring the addition of further 

chemicals to block the translocase. 

When considered together, these biochemical analyses provide a detailed insight into 

the thermogenic capacity of the BAT studied: 

• UCP I protein measurements provide evidence for the presence and relative 

abundance of UCPl hence the thermogenic capacity 

• mRNA measurements provide information on the transcriptional state of UCPl 

• GDP binding gives an estimate of the potential thermogenic activity of the 

tissue. 
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1.4 Other IMitochondrial Proteins 

The search for other members of the uncoupling protein family began in the late 

1990's. As UCPl transports protons through the inner mitochondrial membrane of 

BAT, it was proposed that mitochondrial UCPs existed in tissues other than BAT 

and that they were responsible for the proton leak that accounts for a high percentage 

of total oxygen consumption in many tissues. Further evidence for the existence of 

other UCPs came from the observation that antibodies against UCPl or UCPl 

cDNAs were occasionally able to bind to protein or RNA from tissues other than 

BAT (Ricquier & Bouillaud 2000). Also, sequencing of the S. cerevisiae yeast 

genome revealed 34 proteins related to the mitochondrial carriers. 

There is considerable disagreement as to whether the newly discovered UCPl 

homologues actually uncouple respiration. A full examination of the evidence 

available on the newly discovered UCPs is beyond the capacity of this thesis and 

only a brief comment will be made on UCP2 and UCP3. 

1.4.1 Uncoupling Protein 2 (UCP2) 

UCP2 was isolated by Fleury et al in 1997 (Fleury et al. 1997) by comparing the 

cDNA of BAT UCPl with a library of mouse skeletal muscle. UCP2 has 59 % 

sequence identity with UCPl and has a much wider tissue expression. UCP2 exhibits 

several of the protein motifs common to the MACP and the amino acids required for 

nucleotide binding are conserved. UCP2 is expressed in skeletal muscle, kidney and 

the placenta. Interestingly, UCP2 has high expression in the spleen, thymus, 

37 



macrophages and leukocytes, suggesting a role in immunity (Arsenijevic et al. 2000; 

Fleury et al. 1997; Pecqueur et al. 2001). A role for UCP2 in the regulation of 

reactive oxygen species (ROS) production has also been proposed (Arsenijevic et al. 

2000; Negre-Salvayre et al. 1997; Nicholls & Budd 2000). The chromosomal 

mapping of UCP2 is co-incident with quantitative trait loci for obesity and human 

insulin dependent diabetes locus-4 (Fleury et al. 1997; Pecqueur et al. 1999). 

The regulation of UCP2 has been studied in many rodent tissues, however, most of 

these studies only present changes in UCP2 mRNA and use these as a indicator of 

altered thermogenesis. However, lack of protein analyses limit the conclusions that 

can be made (a full review of the regulation of UCP2 can be found in Fleury and 

Sanchis et al 1999 (Fleury & Sanchis 1999)). Daniel Ricquier's group recently 

developed specific UCP2 antibodies that have been stringently tested in selected 

tissues from UCP2 knockout and wild type mice (Pecqueur et al. 2001). Results 

from these experiments indicate that UCP2 mRNA levels do not reflect UCP2 

protein content in mitochondria. Despite the UCP2 protein content of lung and 

stomach mitochondria being 4 and 10 fold lower than that of spleen, the mRNA 

expression of UCP2 between these tissues was very similar (Pecqueur et al. 2001). 

Similar results were observed when the effects of fasting and administration of 

lipopolysaccharide were investigated, no change in UCP2 mRNA were found using 

northem blotting despite significant increases in UCP2 protein after both protocols 

(Pecqueur et al. 2001). The discrepancy between UCP2 protein and mRNA values 

has been attributed to an inhibitory open reading frame (ORF) in exon 2. Deletion of 
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this ORF in a UCP2 constmct subsequently transfected in COS cells (a simian 

kidney epithelial cell line) resulted in UCP2 protein content 176 times that of spleen 

mitochondria (Pecqueur et al. 2001). Interestingly, all newly discovered UCPs have 

an upstream ORF (Pecqueur et al. 2001), indicating that caution must be made when 

interpreting UCP2 and UCP3 mRNA results. 

1.4.2 Uncoupling Protein 3 (UCP3) 

UCP3 was isolated in 1997 by Vidal-Puig et al (Vidal-Puig 1997), Boss et al (Boss 

1997) and Gong et al (Gong 1997) using the same method as Fleury et al (Fleury et 

al. 1997). Human UCP3 was found to have 71 % sequence identity with human 

UCP2 and 57 % identity with UCPl, hydrophilicity plots indicate that these proteins 

are similar (Vidal-Puig 1997). UCP3 is mapped to the same quantitative trait loci as 

UCP2 (Gong 1997). UCP3 mRNA has been shown to be present in skeletal muscle, 

white and brown adipose tissue and to a lesser extent the heart (Gong 1997; Vidal-

Puig 1997). UCP3 has been proposed to be regulated by thyroid hormones (Gong 

1997; Gong et al. 2000), leptin (Gong 1997), noradrenaline (Gong 1997), fatty acids 

(Bmn et al. 1999; Hwang & Lane 1999) and fasting (Cadenas et al. 1999; Gong 

1997), however, these studies relied upon mRNA expression and need verification 

with results from protein analysis. UCP3 knockout and over-expressing mice have 

been produced and provide a better insight into the function and regulation of UCP3. 

UCP3 knockout mice have been found not to be obese and have a phenotype similar 

to that of control mice, suggesting that a lack of UCP3 is not associated with obesity 

despite the genetic linkage studies (Gong et al. 2000; Vidal-Puig et al. 2000). When 

UCP3 over-expression was investigated, mice were found to have a 66-fold increase 
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in skeletal muscle UCP3 mRNA. This was associated with an increase in food 

intake, with no change in body weight (Clapham et al. 2000). The proton 

conductance in mitochondria from mice over expressing UCP3 was significantiy 

increased (Clapham et al. 2000), suggesting a role for UCP3 in energy expenditure. 

However, Stuart et al have suggested that a 66 fold increase in UCP3 mRNA and the 

corresponding (although unknown) increase in UCP3 protein could lead to 

alterations in the mitochondrial membrane integrity which could account for changes 

in proton leak (Stuart et al. 2001a). 

There is intense debate regarding the functional role of UCP2 and 3 and whether 

they act as uncouplers of respiration. Much of the evidence for a role in uncoupling 

for UCP2 and 3 comes from yeast reconstitution studies which involve the insertion 

of UCP2 or 3 into the membrane of yeast and measurement of the membrane 

potential. As mentioned above, this can damage membrane integrity and provide 

false measurements of proton conductance (Stuart et al. 2001a), furthermore the very 

low levels of UCP2 in mammalian mitochondria have been shown not to uncouple 

yeast mitochondria (Stuart et al. 2001b). The information from mouse knock-out 

studies has been conflicting and no major conclusions have been drawn from them. 

There is little information regarding the role and regulation of UCP2 and 3 in the 

neonate, whether a tme uncoupling function is active at this critical time is unknown. 

However, UCP2 and 3 have been shown to be present in the skeletal muscle and 

adipose tissue (white) of piglets, who do not have BAT at birth to provide heat via 

non-shivering thermogenesis (Damon et al. 2000). 
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1.5 Leptin 

Many hormones and metabolites are critically important in ensuring a smooth 

transition from fetus to neonate. However, for purpose of this thesis I will only 

consider leptin, a recently discovered cytokine involved in energy regulation. 

1.5.1 Background 

Parabiosis (joining of animals by anastomosis of the skin, which allows cross-

circulation) experiments in the 1950's provided evidence for a hormone acting as a 

satiety factor. In 1959 Hervey found that an appropriately placed hypothalamic 

lesion caused hyperphagia and obesity in rats which were members of a parabiotic 

pair. The un-operated partners of these rats however, became underweight - the 

immediate cause being that they ate less (Hervey 1959). These results were in 

accordance with the belief that adjustment of feeding is made in relation to the 

amount of stored fat in the body and that controlling centtes in the hypothalamus are 

sensitive to the concentration of a "metabolite" in equilibrium with stored fat i.e. the 

"lipostatic theory" (Hervery 1969). It was not until 1994 that this satiety factor was 

identified with the cloning of the ob gene. The gene product was named "Leptin" 

from the Greek, Leptos, meaning thin (Halaas et al. 1995). 

An obese strain of C57BL/6J mice named ''ob/ob" was discovered in the Jackson 

laboratories in the 1950s. The ob/ob phenotype manifests as severe obesity, type II 

diabetes, decreased physical activity and hypothermia. A further mutation in 

C57BL/6J mice has been identified and termed db which is derived from "diabetic" 
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as the mice are obese and hyperglycaemic. A parabiosis experiment carried out 

between ob/ob and db/db mice found that the ob/ob partner reduced its food intake 

and lost weight, whereas the db/db mouse maintained a constant weight and food 

intake (Coleman 1973). This result led Coleman to believe that ob/ob mice fail to 

produce the signal which reduces food intake in response to body fat, and that the 

db/db mice produce this factor but their brains do not respond to it. 

The ob gene was cloned in 1994 by the group of Friedman (Zhang et al. 1994). Two 

types of mutation in this gene have been observed in ob/ob mice that leads to 

abnormal production of the ob gene product leptin (Chua et al. 1996). 

1.5.2 Leptin Gene and Protein Structure 

WAT was initially though to be the sole site of leptin production although recent 

evidence suggests that although WAT is the primary site of production, leptin may 

also be secreted from BAT and the placenta (Bi et al. 1997; Cinti et al. 1997; 

Dessolin 1997; Hassink et al. 1997; Hoggard et al. 1997a). The human ob gene 

consists of three exons and two infrons, the promotor sequence contains a 

glucocorticoid response element and several cAMP response element binding sites 

(Isse et al. 1995). The coding region of the ovine leptin gene has 87 % homology tp 

the corresponding human sequence (Dyer et al. 1997). The ob gene encodes a 4.5 kb 

adipose tissue mRNA with a highly conserved 166/167 amino acid reading frame 

and has no significant homology to any known peptide sequence. The signal peptide 

is 18 kDa and is cleaved to a mature 16 kDa protein. Leptin consists of 146 amino 

acids, is single stranded with a disulphide bond at the C teminus, this is thought to be 
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pivotal for leptin's stability and bioactivity. Analysis suggests that leptin is related in 

stmcture to the family of haemopoietic cytokines which includes interleukin-1 (IL-1) 

(Madej etaL 1995). 

1.5.3 Leptin Receptors 

In order to elicit a response, leptin must first interact with a high affinity binding 

protein. The leptin receptor (Ob-R) was cloned in 1995 by Tartaglia et al (Tartaglia 

et al. 1995). The ob receptor was found to be a single membrane-spanning receptor 

with considerable sequence homology to the glycoprotein 130 (gpl30) subunit of the 

IL-6 receptor (Figure 1.9) which belongs to the cytokine class 1 family (Tartaglia et 

al. 1995). Parabiosis experiments suggested that db/db mice may be defective in the 

reception of the ob gene product. Subsequent genetic mapping of the gene encoding 

the Ob-R revealed its position to be within the same 300 kilobase interval as the db 

locus, suggesting the db gene is in fact the gene encoding the Ob-R (Lee et al. 1996; 

Tartaglia er a/. 1995). 

The leptin receptor is known to have at least six altematively spliced forms, termed 

Ob-Rb, Ob-Ra, Ob-Rc, Ob-Rd and Ob-Re all with an identical extracellular domain 

(Figure 1.9). The long form of the receptor Ob-Rb has a complete intracellular 

portion complete with a box-2 sequence. This motif is required for the binding of 

Janus Kinase proteins (JAK) (Lee et al. 1996). 
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Figure 1.9 

Comparison of the gp 130 receptor and the 5 splice variants of the leptin receptor. 

Modified from Miller and Bell 1996 (Miller & Bell 1996). 
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Ob-Rb is thought to act in a similar way to the gpl30 receptor upon binding of an 

agonist (Baumann et al. 1996; Devos et al. 1997) i.e. the formation of dimers upon 

binding of leptin and binding of one of the JAKs to one of the intracellular "box" 

sequences (Bjorbeck et al. 1997; Devos et al. 1997). The JAK can then transduce 

signals through phosphorylation of tyrosine residues in the distal part of the receptor 

which activates binding of "signal transducers and activators of transcription" 

(STAT) - this can alter the franscription of key genes (Miller & Bell 1996). STAT-3 

is one STAT known to be activated via Ob-Rb in the hypothalamus (Bjorbaek et al. 

1997). 

Ob-Rb is located primarily in the brain, but has been shown to be located at a lower 

abundance in several other tissues of the mouse including adipose tissue, ovaries, 

testis and placenta (Hoggard et al. 1997b; Mercer et al. 1996). In the brain, Ob-Rb is 

expressed at high levels in the supraoptic, arcuate, dorsomedial and ventromedial 

hypothalamic nuclei (Fei et al. 1997; Mercer et al. 1996; Udagawa et al. 2000). This 

distribution within the brain suggests Ob-Rb is involved in leptin's effects on body 

weight and energy regulation. There is evidence that leptin mediates its effects via 

the synthesis and release of a number of neuropeptides in specific brain areas. A 

number of these pathways have been identified and include neuropeptide Y, a potent 

stimulator of food intake (Kotz et al. 1998); a-melanocyte stimulating hormone, an 

inhibitor of food intake (Satoh et al. 1998) and corticotrophin releasing hormone a 

peptide with inhibitory effects on feeding, energy expenditure and body weight gain 

(Costa 1997). 

45 



A number of leptin's actions have been attributed to increased sympathetic activity 

(Figure 1.8), leptin has been shown to increase sympathetic nerve activity to BAT 

and the kidney in rats (Haynes et al. 1991 a; Haynes et al. 1997b). Leptin acts upon 

UCPl expression in BAT via the sympathetic nervous system (SNS) as discussed in 

Chapter 1.3.3 (Figure 1.8). The increased peripheral SNS activity is thought to be 

mediated by activation of Ob-Rb in the venfromedial hypothalamus -sympathetic (or 

its neighbouring medial hypothalamus-sympathetic) nervous system. Leptin injection 

into this area increased glucose uptake in BAT through activation of the SNS, but 

had no effect on glucose uptake in WAT (Minokoshi et al. 1999). This increase in 

glucose was suppressed in after sympathetic denervation of BAT. 

Outside the brain, Ob-Rb expression accounts for only small part of the total amount 

of leptin receptors. In the peripheral tissues the tmncated forms Ob-Ra and Ob-Re 

are most abundant. Ob-Ra is expressed in many tissues, but mainly in kidney, lung 

and choroid plexus (Fei et al. 1997). The function of Ob-Ra is not known, but is 

thought to facilitate transport of leptin across the blood brain barrier (Boado et al. 

1998). This is consistent with the pattem of high expression of Ob-Ra in brain 

microvessels and choroid plexus and low expression in the hypothalamus. There is 

some evidence that Ob-Ra has some signalling capabilities, although these in vitro 

results could not differentiate whether Ob-Ra homodimerised or formed 

heterodimers with Ob-Rb - or other cytokine receptors to induce signalling 

(Murakami et al. 1997; Yamashita et al. 1998). 
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The soluble form of the leptin receptor, Ob-Re is predicted to have no intracellular or 

transmembrane domains. It is proposed that Ob-Re is a soluble leptin binding protein 

(Huang et al. 2001). The level of Ob-R and leptin increase by up to 40 fold during 

the late stages of mouse pregnancy, suggesting that the soluble leptin receptor may 

modulate leptin action in vivo (Gavrilova et al. 1997). Over-expression of Ob-Re in 

rodents delays the clearance of leptin from the body, without affecting leptin 

expression (Huang et al. 2001). 

1.5.4 Physiological Regulation of Leptin 

Circulating levels and expression of leptin in the adult are regulated by a number of 

factors, these are summarised in Figure 1.10. Many of the factors responsible for the 

regulation of leptin are highly active during the transition from fetus to neonate, 

especially the SNS, cold and glucocorticoids. A full examination of the factors 

responsible for leptin regulation is not possible in this thesis, a detailed review can 

be found in Friedman and Halaas, 1998 (Friedman 1998) and Trayhum et al 1999 

(Trayhum et al. 1999). However, it must be kept in mind that much of the 

information regarding leptin regulation comes from adult rodent studies and not 

large mammals. 
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Figure 1.10 

Summary of the physiological regulation of leptin. WAT, white adipose tissue; SNS, 

sympathetic nervous system; T3, triiodothyronine; TDZ's, thiazolidinediones. 
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1.5.5 Leptin in the Fetus and Neonate 

Leptin mRNA is detectable in fetal adipose tissue of sheep by G90 gestation with 

levels increasing up to term (Yuen et al. 1999), which is -147 days in the sheep 

Leptin mRNA levels are closely cortelated with fetal weight. The slope of the 

relationship between leptin mRNA abundance and fetal weight is steeper at G90 

compared with G125-140 gestation (Yuen et al. 1999). This suggests that leptin 

mRNA is modulated by the increase in size and number of adipocytes which occurs 

during late gestation in the ovine fetus, but is also sensitive to the rapid increase in 

body weight at this period. The increase in leptin mRNA may also be atfributed to 

the rise in circulating corticosteroids during late gestation as glucocorticoids have 

been shown to stimulate leptin expression both in vitro and in vivo (De Vos et al. 

1995). Leptin receptor mRNA has been demonstrated in a variety of murine fetal 

tissues (Hoggard et al. 1997a; Hoggard et al. 2000) although the physiological 

relevance of these is as yet unknown. 

It has been suggested that leptin may act as a growth factor in the fetus, directing 

growth and development via cenfral or peripheral actions (Hassink et al. 1997; 

Steppan & Swick 1999; Udagawa et al. 2000). Many studies have been carried out 

measuring plasma leptin concentrations in newbom infants; however, the results 

from these are highly inconsistent, as shown in Table 1.1. These contrasting findings 

may be due to a number of confounding factors including geographical location, 

matemal and social differences along with the clinical status of the infant at the time 

of blood sampling as "well" infants are not routinely blood sampled. Also there are 
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known to be senshivity problems with the RIA kit used in some of these studies 

(Linco Multi-Species), regarding the detection of low-range values and cross-

reactivity with non-specific plasma proteins of the "multi-species" antibody 

(Delavaud et al. 2000; Imagawa et al. 1998). 

Results from human clinical studies suggest that leptin values remain low during 

early gestation, are detectable by around G35 and increase towards term in response 

to the increased abundance of adipose tissue (Cinaz et al. 1999; Matsuda et al. 

1999). Leptin levels peak around birth in the infant, then rapidly decline by day 3 of 

postnatal life (Hytinantti et al. 1999; Schubring et al. 1999). There is also evidence 

that leptin is expressed in rodent adipose tissue at birth (Dessolin 1997) and may 

play a role in energy regulation of the neonate (Yuan et al. 2000). These postnatal 

changes are likely be in response to the dramatic alterations in energy balance 

experienced by the neonate during the transition to enteral feeding, as fasting has 

been shown to reduce circulating leptin levels (Ahima 1996). Initially there may be 

some delay before the mothers' milk develops and during the first few days and 

colostmm has a low energy content. There is evidence that leptin levels are higher in 

female compared to male infants as leptin production is inhibited by testosterone 

(Figure 1.10) (Behre et al. 1997; Hassink et al. 1997). Recent work in our 

department has shown that ovine postnatal leptin levels do not follow this frend, 

leptin levels in the lamb decline after birth then increase to 8 days of age (Budge et 

al 2001). 
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1.6 Summary and Aim of Thesis 

The postulated peak, then rapid decline in plasma leptin concentrations after birth in 

human neonates is coincident with the height of UCPl activity. The factors that 

regulate UCPl and plasma leptin have a substantial "cross-over" with the factors 

important in the transition from fetus to neonate, such as the SNS, Cortisol and 

thyroid hormones. The aim of this thesis is to investigate the endocrine regulation of 

the development of neonatal brown adipose tissue thermogenesis, with special 

emphasis on leptin. 
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CHAPTER 2 

MATERIALS AND METHODS 



All operative and experimental procedures had the required Home Office approval 

and were carried out according to the regulations of the Animals (Scientific 

Procedures) Act, 1986. 

Laboratory procedures were carried out in accordance with the Control of 

Substances Hazardous to Health (COSHH: SI No 1657 1988) regulations and 

following Good Laboratory Practice guidelines (University of Nottingham Safety 

Office). 

Unless otherwise stated all chemicals and reagents were purchased from Sigma-

Aldrich Company Ltd., and laboratory plastics and equipment from Scientific 

Laboratory Supplies. Addresses for all suppliers are located in Appendix I. Unless 

otherwise stated all aqueous solutions were made up in single distilled water (dH20). 

2.1 Animals 

All animals entered into these studies were housed at the University of Nottingham's 

Joint Animal Breeding Unit, Sutton Bonnington Campus, Sutton Bonnigton with the 

exception of Chapters 4 and 5. Bluefaced Leiceister cross Swaledale ewes were 

mated with Texel rams and pregnancy was confirmed using real-time ultrasound 

echograph between 30 and 50 days gestation. Ewes were group housed at 6 weeks 

prior to their predicted lambing date and individually housed 1 week later. When 

individually housed post-partum ewes were fed daily at 08:30 hour with chopped 
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hay (~1 kg per day) and a barley based concentrate (2 X 500 g fed moming and 

evening), ewes had free access to water at all times. 

2.LI In vivo measurements 

All in vivo measurements of CO2 production, shivering and colonic temperature 

made on neonatal lambs were recorded and analysed using the 'Cardas' sleep 

cardiorespigram package and described in fiill in Chapters 2.1.1a, b and c. 

2.LLa Indirect calorimetry 

The rate of CO2 production of lambs was measured using the technique of open-

circuh indirect calorimetry (Symonds et al. 1986). Lambs were placed in an air-tight 

calorimetry chamber located within a larger temperature controlled room (Ilco 

Refrigeration), within which ambient temperature could be controlled to ± 1 °C. Air 

was drawn through the chamber by a vacuum pump (ECBI vacuum/compressor; 

BOC Edwards) at a rate of 50-701/min, the exact flow rate was measured by an 

electronic flow meter (Percept PT4; SIP Analytical Ltd.). Air leaving the chamber 

was dehydrated as it passed through a silica gel column (4-7 mesh) and a continuous 

sample was analysed for carbon dioxide using an infra-red carbon dioxide analyser 

(ADC 439; Analytical Development Company Ltd.). The system was calibrated 

initially as the lamb was placed in the chamber then subsequently every 2 hours for 

the duration of the study, very little drift was observed during the studies. 

Atmospheric air was used as the zero calibrator and compared to a mixture of gas of 

known CO2 (0.191 % difference) concentration (Span Gas; Cryoservice Ltd.). 

54 



2.Ll.b Colonic Temperature 

Colonic temperature was measured using an electronic temperature probe (Type 

3GID; Light Laboratories) inserted 8 cm into the rectum. The probe was secured to 

the base of the tail with a strip of sticking plaster. 

2.1.l.c Breathing Frequency and Incidence of Shivering 

Breathing frequency was measured by inductance plethysmography, using two 

respitrace bands, secured around the thorax and abdomen with sticking plaster. The 

bands consisted of teflon coated wires in a zig-zag arrangement. Resistance in the 

wire caused by expansion and contraction of the thorax during breathing movements 

generates a signal and hence the respiratory pattem. Interference on the inductance 

waveform was used to assess the incidence of shivering, and non-REM sleep was 

detected as a slow, regular pattem on the respitory trace. 

2.L2 Collection of Plasma Samples 

All blood samples were taken through a polyvinyl catheter (intemal diameter 

1.1 mm, external diameter 1.6mm; Portex Ltd.) introduced into the jugular vein 

through a 14 gauge butterfly needle (Venoflux 247.21; Vygon) following shaving. 

This was carried out after local anaesthetic had been spayed onto the area. 

Ovemight, the catheter was filled with sterile saline (0.9 % (w/v) sodium chloride; 

Baxter Healthcare Ltd.) containing 250 units/ml of heparin, this concentration was 

reduced to 50 units/ml during sampling. Care was taken not to inject heparinised 

saline into the animal at any time. Approximately 5-10 ml of blood was sampled 

from each animal; prior to this a 2 ml volume of saline was taken and discarded, 
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ensuring that the sample was not contaminated. Blood samples were immediately 

placed on ice in tubes containing heparin (sodium salt) as an anticoagulant and 

stored at -20 °C following centrifugation at 800g at 4 °C for 15 minutes. 

2.L3 Collection of Tissue Samples 

All samples were taken as soon as possible after humane euthanasia of the animal 

(see individual studies for details) and snap frozen in liquid nifrogen. Samples were 

subsequently stored at -80 °C until analysis. All major organs were dissected out 

carefully and weighed prior to freezing with the exception of samples required for 

immunohistochemical analysis which were placed in 10 % formol saline (10 % (v/v) 

Formaldehyde in 0.9 % (v/v) sodium chloride). 

2.2 Analysis of Plasma Samples 

2.2.1 Glucose 

Plasma glucose levels were determined using a quantitative enzymatic colourimetric 

assay, supplied in a kit (315-500 Sigma Aldrich Company Ltd.) based on the method 

of[Trinder, 1969 #602] 

2.2.l.a Principle of the Assay 

The enzyme Glucose Oxidase (GOD) catalyses the transformation of glucose and 

water in the presence of oxygen to gluconic acid and hydrogen peroxide. The 

hydrogen peroxide formed reacts with 4-aminoantipyrine and p-hydroxybenzene 

sulphonate, which is catalysed by peroxidase, to form a quinoeimine dye with 
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maximal absorbance at 505nm . The intensity of the dye is directly proportional to 

the glucose concentration in the sample. 

2.2.Lb Assay Procedure 

A standard curve (0-16 mM) was prepared from a stock solution of 32 mM D- (+)-

glucose diluted in dH20. Duplicate 10 |LI1 aliquots of each standard and sample were 

fransferred to a 96 well plate to which 200 ^1 Trinder reagent (0.5 mM 

4-aminoantipyrine, 20 mM p-hydroxybenzene sulphonate, 15,000 U/L Glucose 

Oxidase, 10,000 U/L Horseradish Peroxidase in buffer at pH 7.0) was added. The 

plate was incubated on a shaker at room temperature for 15 minutes before 

measuring absorbance at 540 nm. (Anthos Reader 2001, Anthos Labtec Instmments) 

and plasma glucose concenfration determined from regression analysis of the 

standard curve. The intra- and inter-assay coefficients of variation were 2.3 % (n=6) 

and 11.3 % (n=8), respectively. 

2.2.2 NEFA 

Plasma concenfrations of NEFA were assessed using Waco Kh no. 994-75409 

(Alpha Laboratories) as described by Symonds et al [Symonds, 1986 #2]. 

2.2.2.a Principle of the Assay 

This assay utilises an in vitro enzymatic colourometric method for the quantification 

of NEFA. NEFA in semm form thiol esters of coenzyme A (CoA) (known as acyl-

CoA) when treated with acyl-CoA synthetase, in the presence of adenosine 

triphosphate (ATP), magnesium cations and CoA. Acyl-CoA is oxidised by acyl-
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CoA oxidase to produce hydrogen peroxide. Peroxidase enzymes then catalyse the 

oxidative condensation of 3-methyl-N-ethyl-N-(-hydroxyethylaniline) (MEHA) with 

4-aminoantipyrine in the presence of hydrogen peroxide to form a purple coloured 

adduct with maximum absorption at 550 nm. 

2.2.2.b Assay Procedure 

A Standard curve (0 - 1.97 mM) was produced from the 1.0 mM oleic acid provided 

in the kit. Ten [il aliquots of standard or sample plasma were assayed in duplicate. 

Fifty |il of colour reagent A (acyl-coenzyme A Synthetase, ascorbate axidase, 

coenzyme A, adenosine triphosphate and 4-aminoantipyrine) was incubated with the 

sample/standard at 37 °C for 10 minutes. 100 |ul of colour reagent B was then added 

to each assay tube (acyl-coenzyme A oxidase, peroxidase, MEHA) for a fiirther 10 

minutes incubation at 37°C. Tube contents were equilibrated at room temperature for 

10 minutes prior to measuring absorbance at 550 nm (reference wavelength 405 

nm). Plasma NEFA concentrations were determined following linear regression 

analysis of the standard curve. The intra- and inter-assay coefficients of variation 

were 1.7 % (n=6) and 4.8 % (n=9), respectively. 

2.2.3 Leptin 

Plasma levels of leptin were analysed by Duane Keisler at the University of 

Missouri, using an ovine specific double-antibody, non-equilibrium 

radioimmunoassay according to the method of Delavaud [Delavaud, 2000 #405]. 
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2.2.3.a Principle of the Assay 

Leptin present in a sample/standard competes with a fixed amount of radiolabelled 

leptin for a limited number of binding sites provided by the addition of a polyclonal 

rabbit antibody raised against the purified leptin. Unbound radiolabelled leptin is 

separated from bound following the addition of a second antibody, raised in sheep 

directed against immuno-y -globulin to which horse semm is added to equalise the 

protein content in all tubes. Precipitation of the antibody-antigen complexes was 

accomplished by the addition of polyethylene glycol followed by centrifugation. The 

radioactivity in the pellet is measured with the dissintigrations per minute (dpm) 

being inversely proportional to the concenfration of leptin in the initial sample or 

standard. 

2.2.3.b Assay Procedure 

A standard curve (0.0833 - 4.0 ng) was prepared from I pg/ml leptin. Fifty pi 

aliquots of standards and one hundred yd plasma aliquots were assayed in triplicate. 

Standards and samples were incubated for 24 hours at 4 °C with 50 |J.1 of 1:1200 

working dilution of leptin antisemm (diluted in buffer containing 1:100 normal 

rabbit semm) to achieve a total volume of 400 îl in incubation buffer. One hundred 

pi I-ovine leptin (20,000 c.p.m.) was then added to each tube and incubation 

continued for a further 20 hours at 4 °C. The final dilution of leptin antisera was 

1:15000. Bound and free ligands were separated by the addition of 100 |il specific 

anti-rabbit ram plasma diluted either 1:5 in horse semm for standard curves or 1:5 in 

incubation buffer for unknown plasma samples, this equalised the protein content of 
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all tubes. Antibody-antigen complexes were precipitated by the addition of 2 ml 

4.4% polyethylene glycol and centrifugation at 3000g at 4 °C for 25 minutes. 

Unbound ' I-ovine leptin was removed by aspiration of the supematant and the 

radioactivity of the remaining pellet was counted with a Cobra II gamma counter 

(Packard Inc., Downers Grove, Australia). The intra- and inter-assay coefficients of 

variation were 4 % and 11 %, respectively [Delavaud, 2000 #405]. The lower limit 

of sensitivity was 0.83ng/ml for a 100 îl sample [Delavaud, 2000 #405]. 

2.2.4. Prolactin 

Plasma levels of prolactin were analysed by Helen Budge using a specific double-

antibody, non-equilibrium radioimmunoassay according to the method of McMillen 

et al 1987 [McMillen, 1987 #630]. 

2.2.4.a Principle of the Assay 

The prolactin assay relied on the same methodology to that of the leptin assay 

(section 2.2.3) with the exception that the plasma was incubated with a specific anti-

sera raised against prolactin in sheep and the second antibody was goat anti-rabbit 

semm. 

2.2.4.b Assay Procedure 

A standard curve (0.078 - lO.Ong/100 pi) was prepared from 50ng/ml prolactin (a 

gift from National Institute of Diabetes and Digestive and Kidney Diseases 

(NIDDK)). One hundred \il aliquots of standards or 5 |il sample were made up to 

250 pi with assay buffer (0.015 M sodium chloride, 0.015 M sodium azide, 2 % 
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(w/v) BSA made up to volume with 0.5 M phosphate buffer (pH 7.4)) and were 

assayed in duplicate. Standards and samples were incubated for 18 hours at 4 °C 

with 50 pi of 1:21,000 working dilution of prolactin antisemm (diluted in assay 

buffer containing 2 % (v/v) normal rabbit semm) and 100 1 '̂ ^ I-ovine prolactin (10, 

000 c.p.m./100 1). Bound and free ligands were separated by the addition of 100 pi 

specific anti-rabbit goat plasma (diluted 1:8) and 100 îl of normal rabbit semm to 

equalise the protein content of all tubes followed by an 18 hour incubation at 4 °C. 

Antibody-antigen complexes were precipitated by centrifugation at 4000g at 4 °C for 

30 minutes. Unbound '̂ ^ I-ovine prolactin was removed by aspiration of the 

supematant and the radioactivity of the remaining pellet was counted with a 1260 

Multigamma II gamma counter (LKB, Pharmacia Diagnostics). The intra- and inter-

assay coefficients of variation were 4.9 % (n=4) and 9.0 % (n=6), respectively. The 

sensitivity of the assay (defined by the dose required to produce a 10% 

displacement) was 0.1 ng/tube [Houghton, 1997 #685]. 

2.3 Analysis of Tissue Samples 

Preparation and sorting of tissue samples prior to analysis was carried out on dry ice 

so no significant thawing of the samples occurred. For each analysis, the required 

amount of frozen tissue was cut from the sample and the remainder retumed to the 

freezer. 
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2.3.1 Mitochondrial Preparation 

Mitochondria from various tissues were prepared according to the method of 

Symonds et al (1992)[Symonds, 1992 #603] for analysis of thermogenic potential 

i.e. GDP binding. 

2.3.l.a Mitochondria Preparation Method 

Approximately 1 g of perirenal adipose tissue was thawed on ice in 10 ml tris 

[hydroxymethyl] amino-methane (tris) - sucrose homogenisation buffer (10 mM tris, 

250 mM sucrose and 1 mM ethylenediaminetetraacetic acid (EDTA) pH7.4) and 

homogenised using an Ulfra Turrax homogeniser for 2x30 seconds. The 

homogenate was transferred to a glass homogenisation tube and further 

homogenised with 10 strokes in a Potter-Elvehj em homogeniser. The homogenate 

was made up to 20 ml with homogenising buffer and an aliquot of each sample was 

collected for total protein concentration analysis. 

The remaining homogenate was centrifuged at 800g for 10 minutes at 4 °C and the 

supematant passed through 2 layers of surgical gauze in order to remove lipid. The 

supematant was then centrifuged at 10,000 rpm for 30 minutes at 4 °C. The resulting 

mitochondrial pellet was resuspend a total volume of around 1ml homogenisation 

buffer and stored at -20 °C until fiarther analysis. 

2.3.2 Lowry Assay 

Protein concentration of mitochondria and whole cell homogenates were assessed 

according to the method of Lowry, Rosenbrough, Farr & Randall (195l)[Lowry, 
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1951 #604] taking into account the modifications of Dulley & Grieve [Dulley, 1975 

#623] using Folin reagent. 

2.3.2.a Principle of the Assay 

The Lowry method relies on two different reactions. The first is the formation of a 

copper ion complex with amide bonds, forming reduced copper in alkaline solutions. 

This is called a "Biuret" chromophore. The second is the reduction of Folin-

Ciocalteu reagent (phosphomolybdate and phosphotungstate) by tyrosine and 

tryptophan residues. The reduced Folin-Ciocalteu reagent is blue and thus 

detectable with a specfrophotometer in the range of 500-750 nm. The Biuret 

reaction itself is not very sensitive. Using the Folin-Ciocalteu reagent to detect 

reduced copper makes the assay nearly 100 times more sensitive than the Biuret 

reaction alone. The Lowry assay is relatively sensitive, but susceptible to many 

interfering compounds, particularly detergents therefore the BCA assay (see section 

2.3.3 for details) was employed for analysis of samples containing these. The 

standard curve is linear in the 1 to 100 \xg protein region. 

2.3.2.b Assay Procedure 

Mitochondrial suspensions and cell homogenates were diluted 1 in 50 and 20 

respectively in dH20 to ensure concentrations fell within the linear range. A 

standard curve (0-100 pg) was prepared using bovine semm albumin (BSA) in 

dH20. Solution A (0.2 % (w/v) sodium dodecyl sulphate (SDS), 2 % (w/v) sodium 

carbonate in 0.1 M sodium hydroxide) and B (1 %> (w/v) potassium sodium tartrate. 
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0.5% (w/v) copper sulphate pentahydrate) were prepared and a ratio of 100A:2B was 

mixed on the day of assay. One ml of A:B mix was added to 200 pi 

sample/standards in duplicate which were incubated at room temperature for 10 

minutes. One hundred pi of Folin's reagent (1:1 with dH20) was added to each tube 

and the contents were mixed well. After 45 minutes incubation at room temperature 

the absorbance at 620 nm (reference wavelength 405nm) was measured. Protein 

concentrations were determined following linear regression analysis of the standard 

curve and cortected for the initial dilution. The intra- and inter-assay coefficients of 

variation were 6.0 % and 6.8 %, respectively. 

2.3.3 Western Blotting 

The abundance of selected proteins was measured using sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE) according to the method of 

Bumette (1981) [Bumette, 1981 #620]. All westem blots were performed in 

duplicate. 

2.3.3.a Principle of the Assay 

Sodium dodecyl sulphate (SDS) is an anionic detergent that denatures proteins by 

"wrapping around" the polypeptide backbone, SDS binds to proteins specifically in a 

mass ratio of 1.4 g SDS : 1 g protein. In so doing, SDS confers a negative charge to 

the polypeptide in proportion to its length - ie: the denatured polypeptides become 

"rods" of negative charge with equal charge or charge denshies per unh length. It is 

usually necessary to reduce disulphide bridges in proteins before they adopt the 

random-coil configuration necessary for separation by size: this is done with 2-
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mercaptoethanol or dithiothreitol (DTT). The SDS-protein complexes are then 

electrophoresed through a polyacrylamide gel, with proteins moving towards the 

anode at a rate inversely related to their size, due to the sieving effect of the gel. The 

pore size of the acrylamide gel is dependent on the concentration of acrylamide and 

cross-linking bisacrylamide used in the gel preparation. Therefore, in SDS-

polyacrylamide gel electrophoresis (PAGE) migration is determined not by intrinsic 

electrical charge of the polypeptide, but by molecular weight. Proteins separated by 

SDS-PAGE can be transferred to nitrocellulose membrane for immunoblotting 

analysis. For this procedure, an electric current is applied to the gel so that the 

separated proteins transfer through the gel and onto the membrane in the same 

pattem as they separated on the SDS-PAGE. Areas of the membrane that do not 

contain blotted protein from the gel, can be non-specifically "blocked" so that 

antibody will not bind to them, causing a false positive result. To detect a specific 

antigen blotted on the membrane, for example UCPl, a primary antibody is added at 

an appropriate dilution and incubated with the membrane. If there are any antibodies 

present which are directed against one or more of the blotted antigens, those 

antibodies will bind to the protein(s) while other antibodies will be washed away at 

the end of the incubation. In order to detect the antibodies which have bound, anti

immunoglobulin antibodies coupled to a reporter group such as the enzyme 

horseradish peroxidase (HRP) are added; this anti-Ig-enzyme is commonly called a 

"second antibody". Finally, after excess second antibody is washed free of the blot, a 

substrate is added which emits light upon reaction with the conjugate, resulting in a 

visible band where the primary antibody bound to the protein. 
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2.3.3.b Assay Procedure 

Gel Preparation 

Polyacrylamide gels were cast using alumina and glass plates and teflon spacers and 

combs supplied with a dual gel caster ( SE 245; Hoefer Pharmacia Biotech Inc.). 

Unless otherwise stated, all gels were 12 % acrylamide. The resolving gel (10 ml 

resolving gel: 3.3 ml dHaO, 4.0 ml Acrylamide-bisacrylamide solution (37:5:1), 2.5 

ml 1.5M Tris (pH 8.8), 100 |al 10 % (w/v) SDS, 100 îl 10% (w/v) Ammonium 

persulphate and 4 pi N,N,N',N'-tetramethylethylenediamine (TEMED)) was poured 

between an alumina and glass plate at a thickness of 0.75 mm to a level 1.5 cm 

below the position of the wells. One ml of water saturated butanol was placed on top 

of the resolving gel to ensure a uniform surface and polymerisation of the gel. After 

45 minutes the butanol was decanted and the gel surface rinsed with dH20. Stacking 

gel (10 ml stacking gel: 6.8 ml dH20, 1.7 ml Acrylamide-bisacrylamide solution 

(37:5:1), 1.25 ml 1.0 M Tris (pH 6.8), 100 pi 10% (w/v) SDS, 100 pi 10% (w/v) 

ammonium persulphate and 10 pi TEMED) was poured on top of the resolving gel 

and a 15 well comb inserted between the glass and alumina plates to create wells. 

After polymerisation the comb was removed and the gels were transferred to a 

Mighty Small™ II (SE 250; Hoefer Pharmacia Biotech Inc.) vertical slab 

electrophoresis unit. The wells, upper and lower chambers were filled with I X tris-

glycine electrophoresis buffer (25 mM Tris, 250mM Glycine and 0.1 % (w/v) SDS). 
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Sample preparation and Electrophoresis 

Mitochondrial suspensions of known protein concentration were diluted in tris-

sucrose homogenisation buffer to 4.2 mg/ml in a final volume of 20 |.il, this 

concentration equates to 10 g protein in each well. Fifty pi of protein dissociation 

buffer (10 % (v/v) glycerol, 2 % (w/v) SDS and 5 % (v/v) -mercaptoethanol made up 

to volume in 50 mM tris (pH 6.8)) and 14 pi glycerol-bromophenol blue (16 % (v/v) 

glycerol and 0.001 % (w/v) bromophenol blue in dHaO) was added to each sample 

which were incubated at 100 °C for 4 minutes. Ten pi of sample, reference or 

molecular weight marker was loaded into each lane, empty lanes were filled with 

10 pi glycerol-bromophenol blue, and electrophoresed at 40 mA per gel for 

approximately 45 minutes, or the dye front was sufficiently near the bottom of the 

gel. 

Electroblotting 

Proteins from the polyacrylamide gel were transferred to a solid support (Hybond^*^ 

- C Super, Amersham Life Science) using electroblotting (EFIOOB Electroblotter; 

Cambridge Electrophoresis Ltd). The gel and membrane were sandwiched between 

2 layers of blotting paper soaked in transfer buffer (48 mM Tris, 39 mM glycine, 

20 % (v/v) methanol, 0.037 % (w/v) SDS made up to volume with dHaO) and 

supported by 2 scotch-Brite pads as demonstrated in Figure 2.1. This "sandwich" 

was placed in a cassette and inserted into the electroblotter that was filled with 

transfer buffer. A cooling bath was connected to the electroblotter to ensure that the 

proteins were not denatured during the high voltage transfer process. The proteins 

were then blotted for 1 hour at 80 mA. 
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(+) POSITIVE ELECTRODE (ANODE) 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Scotch-Brite pads 
2 sheets blotting paper 

Nitrocellulose membrane 
Polyacrylamide gel 

2 sheets blotting paper 
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Scotch-Brite pads 

(-) NEGATIVE ELECTRODE (CATHODE) 

Figure 2.1 

Diagram outlining the westem blot procedure. 
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Following electroblotting, the proteins were reversibly visualised using Ponceau S 

stain (2 % (w/v) ponceau S, 30 % (w/v) trichloroacetic acid, 30 % (w/v) 

sulphosalicylic acid in dH20, this stock solution was diluted 1 in 10 with dH20 prior 

to use) which allowed for the position of molecular weight markers to be noted and 

verification of even blotting. Ponceau S dye was removed by rinsing the membrane 

in Tween-fris buffered saline (TTBS, 0.2 % (v/v) Tween 20 in 20 mM tris, 500 mM 

NaCl in dHjO, pH 7.5). 

Immunodetection 

Nifrocellulose membrane were incubated ovemight at 4 °C in blocking buffer (10 % 

(w/v) dried milk powder (Marvel; Premier Brands UK Ltd.) in TTBS) in order to 

block any remaining binding sites on the membrane. The blocking solution was 

discarded and the membrane rinsed twice in TTBS before incubation at room 

temperature for 1 hour with an appropriate dilution of primary antibody (see 

appendix III for details) or normal rabbit semm in order to establish non-specific 

binding (TTBS containing primary antibody and 3 % (w/v) dried milk powder). The 

membrane was then washed for 3 x 10 minutes with TTBS before addition of an 

appropriate dilution of secondary antibody (TTBS containing 3 % (w/v) dried milk 

powder and HRP conjugated swine anti-rabbit immunoglobulins (PO 217; Dako 

Ltd.) unless otherwise indicated) and incubated for 1 hour at room temperature. The 

secondary antibody was discarded and the membrane was washed for 4 x 15 minutes 

in TTBS. Finally the membrane was washed, then soaked in tris buffered saline 

(TBS) for 30 and 45 minutes respectively. 
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Enhanced Chemiluminescence 

The membrane was incubated in ECL westem blotting reagents (1:1 of reagents A 

and B, Amersham Life Science) for exactly 1 minute before exposure in a CCD 

camera (Fugi; Luminescent Image Analyser LAS-1000). Exposure time depended on 

the nature of the tissue type and the antibody used, but was normally between 1 and 

15 minutes. 

Densitometric analysis was cartied out on the bands visualised using Aida software 

(Aida version 2.0; raytest IsotopenmeBgerate GmBH), in order to calculate the 

relative abundance of the protein studied. Protein values were expressed as a 

percentage of a reference sample present on all gels. Approximate size of the 

visualised band was calculated using regression analysis of the molecular weight 

markers. 
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2.3.4 GDP Binding 

GDP binding was carried out according to the method of Nicholls 1976 [Nicholls, 

1976 #498] as described by Symonds et al [Symonds, 1992 #603]. Mitochondrial 

GDP-binding is the most widely used in vitro measurement of thermogenesis in 

BAT [Trayhum, 1989 #501], taking advantage of the high affinity of UCPl for 

purine nucleotides [Nicholls, 1976 #498]. Although other purine nucleotides may be 

used, GDP is almost always selected, primarily as h shows one of the highest 

affinities for UCPl [Lin, 1982 #333] and is not translocated into the inner 

mitochondrial space such as is ADP. 

2.3.4.a Principle of the Assay 

Mitochondria are incubated with a fixed amount of radiolabelled GDP ([^H]-GDP) 

and one of two concentration of unlabelled or "cold" GDP. One concentration of 

GDP (2 pM) represents the normal subsfrate range and the other (200 pM) is past 

the point of substrate saturation. This high concentration of cold GDP is included to 

determine the extent of non-specific binding. The bound GDP is separated from the 

free by cenfrifiigation leaving the bound [^H]-GDP to be assessed by counting P 

radiation. 

2.3.4.b Assay Procedure 

Mitochondrial suspensions (see section 2.3.1) were diluted to approximately 

1 mg/ml in tris-sucrose homogenisation buffer. One hundred jil of diluted 

mitochondria was added to reaction tubes containing 850 pi incubation buffer 
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(lOOmM sucrose, 20mM N-fris (hydroxymethyl) methyl-2-aminoethane sulphonic 

acid (potassium salt) (TES), ImM EDTA, 10 mM choline chloride, 0.8 % (w/v) 

BSA (essential fatty acid free), 5 pM rotenone, 79 pM [3H]-GDP (10 Ci/mmol, 

Amersham Intemational PLC) and either 50 pi 2 [iM cold GDP (in triplicate) or 

50 fil 200 laM cold GDP in incubation buffer. 

GDP binding was assessed over a 7 minute incubation at room temperature with 

continuous shaking. The reaction was stopped by centrifugation for 3 minutes at 

10,000 rpm. The supematant was discarded and the pellet dissolved by addition of 

100 pi 0.75 M sodium hydroxide with a further incubation at 55 °C for 15 minutes. 

A 50 yd volume was taken from the dissolved pellet solution and mixed with 

5 ml Ecoscint A (National Diagnostics and [3H] was counted using a Packard Tri-

card 460 CD scintillation counter (Packard Instmments). The specific binding was 

then calculated following correction for non-specific binding i.e. measured using 

200nM GDP. 

2.3.56 RNA Preparation 

RNA was prepared from BAT using the TRI REAGENT™ (Sigma Aldrich 

Company Ltd.) which is an improved version of the single-step RNA isolation 

developed by Chomczynski and Sacchi [Chomczynski, 1987 #624]. 

2.3.5.a Principle of the assay 

The TRI REAGENT™ is a reagent for use in the simultaneous isolation of RNA, 

DNA and protein. The procedure is an improvement of the single step method of 

total RNA isolation developed by Chomczynski and Sacchi [Chomczynski, 1987 
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#624]. TRI REAGENT™ is a mixttare of guanidine thiocyanate and phenol in a 

mono-phase solution that effectively dissolves RNA upon homogenisation of the 

tissue; addition of chloroform separates the homogenate into three phases, the 

aqueous one containing the RNA. Separation of the phases and fiirther alcohol 

precipitation yields intact RNA with little or no contaminating DNA or protein. 

2.3.5.b Assay Procedure 

RNA Precautions 

RNA is more susceptible to degradation than DNA, due to the ability of the 2' 

hydroxyl groups adjacent to the phosphodiester linkages in RNA to act as 

intramolecular nucleophiles in both base- and enzyme-catalyzed hydrolysis. 

Therefore, it is essential when working with RNA that special precautions are made, 

such as wearing gloves and keeping samples on ice, in order to reduce degradation 

of RNA. Diethyl Pyrocarbonate (DEPC) is used to treat water (DEPC-H2O) and 

solutions used to prepare RNA. DEPC derivitizes histidine residues and is therefore 

an effective method to inactivate nucleases including RNAse. DEPC has a half-life 

of approximately 30 minutes in water, and at a DEPC concentration of 0.1 %, 

solutions autoclaved for 15 minutes/litre can be assumed to be DEPC-free. 

RNA Preparation 

Approximately 100 mg of perirenal adipose tissue was homogenised in TRI 

REAGENT^"^ (1 ml/100 mg tissue). The homogeniser was rinsed between each 

sample tip in a beaker of DEPC-H2O so not to cross-contaminate samples. 
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Perirenal adipose tissue (PAT) contains high levels of fat that can contaminate the 

RNA, PAT samples were homogenised at this point at 12,000g, 4 °C for 10 minutes. 

The fatty material on the surface of the aqueous phase was discarded and the 

supematant transferred to a fresh tube. Samples were incubated at room temperature 

for 5 minutes to ensure total dissociation of nucleoprotein complexes before addition 

of 200 |il chloroform. Samples were vortexed and incubated at room temperature for 

a ftirther 15 minutes. 

The resulting mixture was centrifiaged at 12,000g, 4 °C for 15 minutes in order to 

separate the 3 phases: a red organic phase, an interphase and a colourless upper 

aqueous phase which contains RNA, this phase was transferred to a fresh tube to 

which 500 pi isopropanol was added. Samples were incubated at room temperature 

for 10 minutes prior to cenfrifiigation at 12,000g, 4 °C for 10 minutes. The 

supematant was removed and the RNA pellet washed in 1 ml of 75 % (v/v) ethanol 

prior to centrifiigation at 7,500g, 4 °C for 5 minutes. Again the supematant was 

discarded and the pellet was dried in air for 5-10 minutes. 

The resulting pellet was dissolved in an appropriate volume of DEPC-H2O (usually 

-20 pi) and stored at -80 °C until further analysis. 

Determination of RNA concentration 

RNA can be accurately quantified by measuring its absorbance in a 

spectrophotometer [Wilkinson, 1995 #627]. The optical density (OD) of RNA is 

measured at its maximum wavelength of 260 nm. One OD unit is equivalent to 
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40 pg/ml of RNA. RNA samples were diluted 1:500 in DEPC-H2O for concentration 

determination and placed in a quartz cuvette. Absorbance was measured at 260 and 

280 nm in a specfrophotometer (UV 1101 Biotech Photometer) for determination of 

RNA concentration as well as DNA concentration, this gives an indication of the 

degree of contamination of genomic DNA. RNA concentration was calculated using 

the following equation: 

RNA concentration (|ig/|al) = (OD260 x 40 x 500) /1000 

A 260OD/280OD ratio between 1.6 and 1.8 was accepted as uncontaminated. 

2.3.6 Northern Blotting 

Northem blotting was carried out according to the method of Alwine et al 1977 

[Alwine, 1977 #718] on PAT RNA in order to determine the expression of UCPl. 

2.3.6.a Principle of Assay 

Northem blotting is the term that refers to the transfer of RNA from a gel to a filter. 

An RNA sample is subjected to formaldehyde gel electrophoresis and transferred to 

a filter so that the separation achieved on the gel is maintained on the solid support. 

Formaldehyde is used to prevent RNA forming secondary stmctures. Signals 

obtained after subsequent hybridisation with a suitable probe can be compared to 

control samples to give information about the abundance (signal intensity) or size 

(distance of migration) of RNA transcripts [Dyson, 1995 #628]. 
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2.3.6.b Assay Procedure 

Gel preparation 

A 1.4 % (w/v) formaldehyde gel (1.4 g agarose, 83 ml 1 X 3-(N-Morpholino) 

Propanesulphonic Acid (MOPS) heated until the agarose dissolved, cooled to 60 °C 

then 17 ml 37 % formaldehyde was added) was prepared and poured into a gel caster 

containing a comb which formed wells. The gel was left to set in a fiime hood. When 

set, the comb was removed and the gel placed in a gel mnning compartment filled 

with 1 X MOPS buffer. 

Sample Preparation and Gel Electrophoresis 

Thirty pg of RNA was aliquoted into a fresh tube and made up to 4.8 I with DEPC-

H2O. To each sample 10 pi formamide, 2 jil 10 X MOPS and 3.2 pi formaldehyde 

was added and the samples were incubated at 65 C for 5 minutes. Samples were 

chilled on ice for 5 minutes and 2 pi of gel loading buffer (50 % (v/v) glycerol, 0.1 

mg/ml bromophenol blue made up to volume with DEPC-H2O) and 0.1 pi of 

ethidium bromide (EtBr) was added. 

The whole volume of each samples, along with reference and base pair markers, 

were gentiy pipetted into the wells of the formaldehyde gel. The gel mnning 

compartment was attached to a power pack and the gel was mn at 80 V for 

approximately 3 hours or until the dye front was sufficiently near the bottom of the 
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gel. The gel was visualised under UV illumination to ensure equal loading and that 

no degradation had occurred. 

Blotting 

RNA from the formaldehyde gels was transferred to a solid support (+vely charged 

membrane details) using capillary blotting. Gels were washed in DEPC-H20 for 30 

minutes prior to blotting to remove formaldehyde. A plastic stand was placed in a 

tray containing 150 ml 10 X standard saline cifrate (SSC) (dilute 20 X SSC; 3 M 

sodium chloride and 0.3 M sodium citrate, make up to volume with DEPC-H2O, pH 

7.0). A glass plate was placed over the stand and 3 pre-soaked sheets of filter paper 

were draped over it forming a wick. The gel was inverted and placed on the filter 

paper. A sheet of nylon membrane (positively charged nylon membrane; Roche 

Molecular Biochemicals) was cut to the size of the gel and soaked in 10 X SSC prior 

to being placed on top of the gel so that it's edges ran parallel with the top of the gel. 

Bubbles between the gel and membrane were removed with gently rolling of a 

sterile glass rod across the membrane. Three sheets of filter paper were soaked in 

10 X SSC and placed on top of the membrane followed by a 6 cm stack of paper 

towels and a glass plate. The whole "sandwich" was held in place with a 500 g 

weight on top of the glass plate. Enough 10 X SSC was added to the fray to give a 

depth of I cm. The blotting process was left to proceed over night. When blotting 

was complete, the stack was dismantled and the membrane placed on fiher paper. 

The membrane was cross- linked at maximum intensity (UV Stratalinker 1800, 

Stratagene) on both sides and stored at room temperature sealed in an air-tight bag 

until further analysis. 
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Probe Labelling 

Anti-sense oligonucleotide probes for UCPl and 18S (see below) were identified 

and produced in-house. 

UCPl: 5'GAT CCC GGA CTT TGG CGG TGT CCA GCG GGA AGG TGA TG 3' 

18S: 5'CTA GAC GCC TGC TGC CTT CCT TGG ATG TGG TAG CCG T 3' 

Oligonucleotides were end-labelled using a DIG-oligonucleotide 3'-end labelling kit 

(Roche Molecular Biochemicals) which adds digoxigenin-ddUTP conjugates to the 

3' end of an oligonucleotide. Five pi of a selected oligonucleotide was incubated at 

37 °C for 15 minutes with 4 pi tailing buffer, 4 pi cobalt chloride solution, Ipl DIG-

ddUTP solution and 1 pi (50 units) terminal transferase (all Cat. No. 1362 372; 

Roche Molecular Biochemicals). The tailing reaction was then stopped by the 

addition of 2 pi glycogen solution (1 pi glycogen in 200 |J.1 0.2 M EDTA (pH 8.0) 

Cat. No. 1362 372; Roche Molecular Biochemicals). The labelled oUgonucleotide 

was then precipitated with 2.5 pi 4 M lithium chloride and 75 pi pre-chilled absoute 

ethanol. After a 30 minute incubation at -80 °C the sample was centrifuges at 

12,000 g for 5 minutes at 4 °C, the supematant was discarded and the pellet washed 

with 50 yd pre-chilled 70 % (v/v) ethanol. The pellet was air dried, dissolved in an 

appropriate volume of DEPC-H2O (10 pi is acceptable) and stored at -20 °C until 

use. 
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Chemiluminescent Detection 

Detection of UCPl and 18S on northem blots was carried out using the DIG (Roche 

Molecular Biochemicals) non-isotopic detection system. The DIG system is based 

on the steroid hapten digoxigenin that occurs in certain digitalis plants. The 

digoxigenin molecule may be coupled as a hapten to a suitable camier molecule to 

produce high affinity antibodies, e.g. in sheep. Since digoxin occurs exclusively in 

digitalis plants there are no endogenous background problems with these antibodies 

as in the case of other haptens, such as biotin. Digoxigenin can also be coupled to 

nucleotides such as dUTP or UTP and incorporated into nucleic acids using 

generally available polymerases like Klenow polymerase, Taq polymerase, or RNA 

polymerases. The probes thus generated can be used in northem blotting and 

detected with anti-digoxigenin conjugates and the resulting signals can be detected 

by chemiluminescence. 

The RNA membranes were washed for 5 minutes in 2 X SSC prior to a 3 hour pre-

hybridisation in hybridisation buffer (50 % deionised formamide, 5 X SSC, 0.1 % 

(w/v) n-laurolylsarcosine, 0.02 % (w/v) SDS and 2 % blocking reagent (Roche 

Molecular Biochemicals) made up to volume with DEPC-H2O) at 42 °C in a 

hybridisation oven (Hybaid micro 4, Hybaid). Membranes were then incubated 

ovemight at 42 °C in hybridisation buffer containing an appropriate dilution of probe 

(10 pi end-labelled probe in 20 ml hybridisation buffer). The following day, 

membranes were washed twice for 5 minutes in wash 1 (2 X SSC, 10 % SDS made 

up to volume with DEPC-H2O) at room temperature, and twice for 15 minutes in 
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wash 2 (0.1 X SSC, 0.1 % SDS made up to volume with DEPC-H2O) at 48 °C. 

Membranes were then washed in maleic acid wash buffer (0.3 % tween-20 in 

maleic acid buffer (maleic acid buffer; 0.1 M maleic acid, 0.15 M sodium chloride, 

(pH 7.5) pH adjusted by addition of solid sodium hydroxide and made up to volume 

with DEPC-H2O and autoclaved) for 5 minutes at room temperature. Membranes 

were then incubated in blocking buffer (10 %> blocking reagent (Roche Molecular 

Biochemicals) made up to volume with maleic acid buffer) for 1 hour at room 

temperature and then in antibody solution (Anti-Digoxigenin -AP fab fragments 

(Roche Molecular Biochemicals) diluted 1:10,000 in blocking buffer) for 1 hour at 

room temperature. Membranes were then washed twice at room temperature in 

maleic acid wash buffer for 15 minutes and equilibrated for 2 minutes in detection 

buffer (0.1 M tris hydrochloride and 0.1 M sodium chloride made up to volume with 

DEPC-H2O; pH 9.5) before excess wash buffer was drained from the membrane 

onto blotting paper. Membranes were placed on a sheet of saran wrap and incubated 

with approximately 3 ml of Disodium 3-(4-methoxyspiro {l,2-dioxetane-3,2'-(5'-

chloro) tricyclo [3.3.1.1^'^] decan}-4-yl)phenyl phosphate (CSPD) (Roche Molecular 

Biochemicals), then covered with another sheet of saran wrap a glass plate. After a 

10 minute incubation at room temperature, excess CSPD was "squeezed" from the 

saran wrap using a tissue and the whole sandwich was heat - sealed around the edges 

to keep the membrane moist. After a 30 minute at 37 °C, chemiluminescence was 

detected using a CCD camera (Fugi; Luminescent Image Analyser LAS-1000). 
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Densitometric analysis was carried out on the bands visualised using Aida software 

(Aida version 2.0; raytest IsotopenmeBgerate GmBH), in order to calculate the 

relative expression of the mRNA studied. UCPl mRNA expression was expressed as 

a percentage of 18S rRNA. Approximate size of the visualised band was calculated 

using regression analysis of the base pair markers. 

2.3.7 Reverse Transcription and Polymerase Chain Reaction 

Reverse Transcription and Polymerase Chain Reaction (RT-PCR) is a sensitive 

method for the detection and analysis of rare mRNA transcripts such as leptin. RNA 

cannot serve as a template for PCR, so it must first be reverse transcribed into cDNA 

(e.g. with reverse franscriptase from Moloney murine leukemia vims (M-MuLV)). 

Powell et al. first described a combined technique (now commonly known as RT-

PCR) in which reverse transcription (RT) is coupled with PCR amplification of the 

resulting cDNA. 

2.3.7.a Principles of the Assay 

Reverse transcription is the process by which RNA is converted into DNA, catalysed 

by the enzyme reverse transcriptase. M-MLV Reverse Transcriptase is used to 

extend a random hexamer hybridized to an RNA sample containing the message of 

interest. The cDNA produced by reverse transcription is then utilised by PCR. 

The PCR reaction uses two oligonucleotide primers that hybridize to opposite 

strands and flank the target DNA sequence that is to be amplified. The elongation of 

the primers is catalyzed by a heat-stable DNA polymerase (Taq DNA Polymerase). 

A repetitive series of cycles involving template denaturation, primer annealing, and 
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extension of the annealed primers by the polymerase results in exponential 

accumulation of a specific DNA fragment. The ends of the fragment are defined by 

the 5' ends of the primers. Because the primer extension products synthesised in a 

given cycle can serve as a template in the next cycle, the number of target DNA 

copies approximately doubles every cycle; thus, 20 cycles of PCR yield about a 

million copies of the target DNA. 

2.3.7.b Assay Procedure 

Reverse Transcription 

Reverse transcription was carried out on RNA produced from PAT (section 2.3.6). 

I pi of 1 pg/pl RNA was incubated at 70 °C for 5 minutes with 0.5 pi hexamer mix 

(Roche Molecular Biochemicals) and 9.5 |il DEPC-H2O then placed on ice. Then 8.5 

pi of master mix (4 pi 5 x RT buffer (Promega), 2pl 10 mM DNTPs (10 mM of 

each; dATP, dCTP, dGTP and dTTP), 0.5 pi RNAse inhibitors (Roche Molecular 

Biochemicals) and 2 pi DEPC-H20) was added to each sample and incubated at 

room temperature for 5 minutes. Reverse transcriptase (M-MLV, Promega) (0.5 yd) 

was then added to each tube and incubated at 25 °C for 10 minutes (Progene PCR 

block, Techne), 42 °C for 1 hour and 70 °C for 10 minutes. Reverse transcriptase 

products (cDNA) were stored at -20 °C until further use. 
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Polymerase Chain Reaction (PCR) 

Primers for ovine leptin were taken from Yuen et al [Yuen, 1999 #398] and 

produced in house. Primers for 18 were obtained from Ambion (Quantum RNA 18 S 

intemal standards). 

PCR was carried out on the cDNA produced in the reverse transcription step. A PCR 

master mix was prepared (11.25 |al dH20, 2 |j,l 10 X PCR buffer (Promega), 

1 pi dNTPs, 1.5 pi leptin sense primer, 1.5 pi leptin anti-sense primer and 1 pi 18S 

primer/competimer mix (Ambion) per template) and 18.5 |j.l was added to 1 pi of 

template and 0.75 pi Taq Polymerase (Promega) was added last. 

The samples were placed in the PCR block and cycled through the following: 

1. 

2. 

3. 

4. 

5. 

6. 

94 °C 

94 °C 

60 °C 

72 °C 

72 °C 

4°C 

1.5 minutes 

0.5 minutes^ 

0.5 minutes 

1.0 minutes 

7.0 minutes 

indefinhely 

>- 30 cycles 

The PCR products were stored at -20 °C until gel electrophoresis. 

Gel Electrophoresis 

Agarose gel electrophoresis was cartied out in order to assess the size and 

abundance of the PCR product. A 2 % (w/v) tris-acetate (TAE) agarose gel (2 % 

(w/v) agarose made up to volume with 1 X TAE (0.04 M tris-acetate, 0.001 M 

EDTA made up to volume with dH20, pH 8.0) was prepared and poured into a gel 

caster containing a comb which formed wells. The gel was left to set in a fume hood. 
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When set, the comb was removed and the gel placed in a gel mnning compartment 

filled with 1 X TAE buffer. 

Two yil of gel loading buffer (50 %> (v/v) glycerol, 0.1 mg/ml bromophenol blue 

made up to volume with DEPC-H2O) and 0.1 pi of ethidium bromide (EtBr) was 

added to 10 pi of PCR product, reference or base pair marker (DNA 100 base pair 

ladder, Promega). Samples were loaded into individual wells and the mnning 

compartment attached to a power pack. PCR gels were electrophoresed for 

approximately 2 hours, or until the dye face was 1 cm from the end of the gel. 

Gels were visualised under UV illumination using a CCD camera (Fugi; 

Luminescent Image Analyser LAS-1000). Densitomefric analysis was carried out as 

section 2.3.7.b. Leptin expression was expressed as a percentage of 18S rRNA. 

Approximate size of the visualised bands was calculated using regression analysis of 

the base pair markers. 

2.3.8 Statistical Analysis 

The statistical tests applied to results are described in the methods section of the 

relevant chapter. Analyses were performed using the SPSS for Windows package 

(Release 9.0.0; SPSS Inc., 1989-1999). 
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CHAPTER 3 

THE EFFECT OF LEPTIN 

TREATMENT ON 

THERMOREGULATION OF 

NEONATAL LAMBS 



3.1 Introduction 

Survival of the newbom lamb is primarily dependent on its ability to maintain a 

stable body temperature in response to the transition from a warm uterine, to cold 

extemal environment. Precocial newboms, such as the lamb and human infant, 

must have sufficient reserves of BAT for non-shivering thermogenesis at birth in 

order to avoid hypothermia. In the newbom lamb, non- shivering thermogenesis 

constitutes ~40 % of the maximal response to cold (Gemmel et al. 1972). 

BAT produces heat through the unique uncoupling protein UCPl (see Chapter 1) 

which as its name suggests uncouples the respiratory chain in the inner 

mitochondrial membrane, dissipating the energy liberated as heat. BAT is 

particularly well vascularised and the heat is conveyed to other parts of the body 

by blood vessels. The activation of non-shivering thermogenesis at birth is 

regulated by a number of factors (see Chapter 1.2.1 for details), one of which is 

an increase in sympathetic activity mediated by the cold challenge. 

Many hormones, including triiodthyronine and Cortisol peak around the time of 

birth in the lamb in order to co-ordinate the transition from fetus to neonate. 

Non-shivering thermogenesis is one of the mechanisms modulated by the 

hormone surge at the time of birth. Leptin has been shown to peak around the 

time of birth in humans (Hytinantti et al. 1999; Matsuda et al. 1997; Matsuda et 

al. 1999; Schubring et al. 1999), although it is not known if this is the case for 

sheep. Leptin administration to rodents has been shown to increase body 

temperature via increased sympathetic nervous system activity and UCPl 
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expression (Pelleymounter et al. 1995; Scarpace & Matheny 1998; Scarpace et 

al. 1997). These studies were cartied out on adult rodents, some of whom were 

ob/ob mice that do not express nor secrete leptin so it was not known if a similar 

thermogenic effect would be observed in a precocial species. A mechanism that 

would enhance non-shivering thermogenesis in the newbom lamb would be 

highly beneficial, as many lambs die every year from hypothermia. The aim of 

these studies therefore was to investigate the effect of leptin administration to 

neonatal lambs. 
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Part A Acute Leptin Administration 

3.LI Hypothesis and Aim 

The effect of acute leptin adminisfration to neonatal lambs on thermoregulation 

and adipose tissue fianction was investigated. It was hypothesised that acute 

leptin treatment of day old lambs would increase body temperature via increased 

UCPl expression. 

3.2 Methods 

3.2.1 Animals 

Eight pairs of triplet lambs, bom normally at term to Bluefaced Leicester cross 

Swaledale ewes were entered into the study. Each lamb remained with their ewe 

until 16 ± 2.5 hours after birth and all lambs entered into the study obtained 

adequate amounts of colostmm, this was monitored by experienced farm staff. 

Supplementary colostmm was provided for lambs that were thought not to have 

received enough. 

3.2.2 Experimental Design 

Pairs of lambs were selected on the basis of matched body weight (± 10 %) and 

were placed in a constant temperature room of 15 ± 1 °C. The third lamb 

remained with its ewe. A jugular vein catheter was inserted into each lamb as 

(described in chapter 2.1.2.) to enable vehicle or leptin treatment and blood 

sampling 

Each lamb was subsequently placed in an indirect calorimeter maintained at 
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14 °C. Continuous measurements of colonic temperattare and breathing pattem 

using inductance plethysmography were made and sleep state was determined 

from these respiratory pattem measurements (Symonds et al. 1989a). The 

occurtcnce of interference on the respitrace pattems was also used to assess the 

incidence of shivering whilst in non-rapid eye movement sleep. Carbon dioxide 

production was measured continuously using indirect open-circuit calorimetry. 

The mean values presented represent values obtained during periods of non-rapid 

eye movement sleep. This is in order to minimise variations due to animal 

movement, and were recorded using two identical indirect-calorimetry systems 

based on that described by (Symonds et al. 1989b), with the modification that 

airflow was measured using a differential flow indicator (see chapter 2.1.1 for 

details) 

One lamb from each pair was randomly selected to receive recombinant ovine 

leptin (a gift from Professor Duane Keisler, University of Missouri, USA). Once 

placed in the calorimetry box an initial 5 ml blood sample was taken and 

designated sample 1. This was followed by a 1 hour acclimatisation period in the 

calorimeter box after which both lambs were injected intravenously with 1 ml 

vehicle (sterile water). Approximately 40 - 60 minutes after the injection, while 

the lamb was still sleeping a 5 ml blood sample was taken (sample 2). One lamb 

was then treated with 10 pg of recombinant ovine leptin in 1 ml sterile water 

while its sibling received water alone. Blood samples were again taken 40 - 60 

minutes after treatment as it was not possible to blood sample both lambs at the 

same time. This procedure was then repeated twice with the modification that 

treated lambs were injected with 100 pg leptin. Between 70 - 90 minutes after 
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the final injection each lamb was humanely euthanased by intravenous 

administration of barbiturate (100 mg kg-1 pentobarbital sodium: Euthatal: RMB 

Animal Health, UK). Perirenal adipose tissue was rapidly removed and stored as 

described in chapter 2.1.3. 

3.2.3 Laboratory Procedures 

Mhochondria and RNA were prepared from PAT as described in chapters 2.3.1 

and 2.3.6 in order to asses UCPl abundance, expression and activity (GDP 

binding) and VDAC abundance. Plasma concentrations of glucose, NEFA, leptin 

and prolactin were carried out as described in chapter 2.2. 

3.2.4 Statistical Analysis 

Statistical analysis with respect to significant differences (p < 0.05) between 

values obtained from freated and untreated lambs was carried out using Mann-

Whitney U test or repeated measures GLM. The repeated measures GLM 

considered together the effect of time, freatment and gender. Correlations were 

investigated using Spearman's Rho test. 
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3.3 Results 

3.3.1 Thermoregulation 

In vehicle, but not leptin treated lambs, body temperature declined throughout 

the study (Figure 3.1). As a consequence, the overall change in colonic 

temperature was significantiy different between vehicle treated lambs (P=0.018) 

compared to their leptin treated siblings (Figure 3.2). All lambs shivered during 

the study period, but after the second dose of 100 ng leptin, the treated lambs 

shivered for half as much time as controls (Figure 3.3). Carbon dioxide 

production was not influenced by leptin treatment (Table 3.1). 

3.3.2 Plasma Metabolites and Hormones 

At the start of the study leptin concentrations were similar between groups, 

although female lambs had significantly higher levels than males (Figure 3.4). 

Leptin treatment caused a dose dependent increase in plasma leptin treatment 

that was not observed in vehicle treated animals, irrespective of the animals 

gender (Figure 3.5). The increase in plasma leptin concentration after the final 

100 |ag treatment was significantly greater than both pre-treatment and control 

animal values. 

Plasma glucose concentrations were found to be similar at the start of the study 

period (Figure 3.6) and exhibited a decline in both leptin and vehicle freated 

groups. There were no differences attributable to leptin treatment at any time 

point. 
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Plasma NEFA concentrations were similar between treatment groups at the start 

of the study (Figure 3.7). Plasma NEFA concentrations in the vehicle freated 

group declined significantly through out the study period, a trend that was not 

observed in the leptin freated animals. This resulted in vehicle treated animals 

having significantly lower plasma NEFA concentrations than their leptin treated 

siblings after the first 100 pg leptin treatment, by the end of the study NEFA 

concenfrations had equalised between groups. Prior to any treatment, at hour 0, 

NEFA and leptin concentrations were positively correlated (Figure 3.8) 

(R^=0.522, P=0.017) no other cortclation between NEFA and leptin levels was 

observed. 

Prolactin levels were similar between groups at the start of the study and 

remained so throughout the study (Figure 3.9). There was no effect of time or 

treatment on prolactin levels. A weak negative correlation was observed between 

leptin and prolactin plasma concentrations in the leptin group after the initial 

100 pg dose of leptin (R^=0.4\l, P=0.052) (Figure 3.10). 
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Figure 3.1 

Effect of leptin administration on colonic temperature (°C) in neonatal lambs. 

Values are means ± SEM. 

(• leptin, n = 8; O vehicle, n = 8) 
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Figure 3.2 

Effect of leptin administration on overall change in colonic temperature in 

neonatal lambs. 

Values are means ± SEM. 

(•Leptin, n = 8; DVehicle, n = 8) 

* indicates P < 0.05 for treatment effect. 

93 



10 

§ ^ 8 -

.S ^ 6 f 
6 0 CO 

s ^ 
•"̂  IS 4 ' 

^ ^ 9 J 
I 

A^ 

\ 

• leptin 

- o - vehicle 

Iml sahne 

^4 

10 pg 100 pg 100 pg 
leptm leptin leptm 

Tune (hours) 

Figure 3.3 

Effect of leptin administration on shivering in neonatal lambs. 

Values are means ± SEM. 

(• leptin, n = 8; O vehicle, n = 8) 
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Table 3.1 

The effect of leptin administration on CO2 production in neonatal lambs 

maintained at a constant ambient temperature (14°C). 

Leptin n=8. Vehicle n=8. 

Time after start of 
study (hours) 

0 

1 

2 

3 

4 

Vehicle 

CO2 production 
(ml min'' kg'') 
Mean ± SEM 
15.16±1.75 

15.88 + 1.63 

15.18 ±1.66 

14.6811.54 

14.5311.30 

Leptin 

CO2 production 
(ml min'' kg'') 
Mean ± SEM 
14.66 ± 2.65 

13.7911.90 

14.6811.70 

15.4511.76 

13.5712.33 
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Figure 3.4 

Effect of gender on neonatal plasma leptin concentrations in neonatal lambs prior 

to any experimental intervention. 

Values are means ± SEM. 

(•Female, n = 5; DMale, n = 7) 

* indicates P < 0.05 for gender effect. 
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Figure 3.5 

Effect of leptin administration on plasma leptin concentrations in neonatal lambs. 

Values are means ± SEM. 

(• leptin, n = 7; O vehicle, n = 5) 

** indicates P < 0.001 for treatment effect 

*** indicates P < 0.0001 for freatment effect 
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Figure 3.6 

Effect of leptin administration on plasma glucose concentrations in neonatal 

lambs. 

Values are means ± SEM. 

(• leptin, n = 7; O vehicle, n = 5) 
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Figure 3.7 

Effect of leptin administration on plasma NEFA concentrations in neonatal 

lambs. 

Values are means ± SEM. 

(• leptin, n = 7; O vehicle, n = 5) 

* indicates P < 0.05 for freatment effect 

t indicates P < 0.05 for time effect 
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Figure 3.8 

Relationship between leptin and NEFA in neonatal lambs prior to any 

experimental intervention. 
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Figure 3.9 

Effect of leptin administration on plasma prolactin concentrations in neonatal 

lambs. 

Values are means ± SEM. 

(• leptin, n = 7; O vehicle, n = 5) 
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3.3.2 Lamb Body Weight and tissue Analysis 

There was no effect of leptin administration on body weight, PAT weight or any 

of the organs studied (Table 3.2). 

The potential thermogenic activity, as assessed by GDP binding, and abundance 

of UCPl was similar between groups (Table 3.3 and Figure 3.11). UCPl 

expression as measured by Northem blotting was found to be lower in leptin 

treated group (Figure 3.12). Although this did not reach statistical significance, 

six out of the eight pairs of lambs sttadied expressed less UCPl mRNA following 

leptin adminisfration. 

Leptin mRNA abundance was assessed using RT-PCR and expressed as a 

percentage of 18S and an intemal reference sample (Figure 3.13). There was a 

trend for the leptin treated animals to have lower leptin mRNA expression than 

vehicle treated siblings, but this was not statistically significant. Leptin mRNA 

was found to be positively related to BAT weight at the end of the study in the 

vehicle group (R^=0.496, P=0.037) (Figure 3.14), although it was only possible 

to study 5 animals. 

VDAC protein abundance in BAT was assessed using westem blotting with a 

specific ovine antibody. VDAC abundance was similar between groups at 1 day 

of age (Figure 3.15). 
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Table 3.2 

Body and organ weights of lambs following leptin administration. 

Leptin n=8 Vehicle n=8 

Body weight 
(kg) 

PAT weight (g) 

Pericardial AT (g) 

Brain (g) 

Heart (g) 

Liver (g) 

Lung(g) 

Mean Thyroid (g) 

Mean Adrenal (g) 

Mean Kidney (g) 

Vehicle 

3.93 ±0.24 

15.56 ±1.69 

3.37 ±0.42 

43.37 ±0.77 

32.83 ±1.87 

87.04 ±6.12 

79.33 ±4.21 

0.47 ± 0.03 

0.46 ± 0.04 

11.33 ±0.53 

Leptin 

3.98 ±0.29 

16.23 ±1.24 

3.19 ±0.27 

42.94 ± 0.97 

32.24 ±2.57 

80.09 ±7.39 

76.28 ±5.29 

0.46 ± 0.04 

0.47 ± 0.03 

11.79 ±0.62 
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Table 3.3 

UCPl protein abundance and potential activity following leptin administration. 

Leptin, n=8; Vehicle, n=8 

UCPl abundance 
(% of reference) 

GDP Binding 
(pM/mg MP) 

Vehicle 

138.0 ±5.2 

102.3 ±8.3 

Leptin 

150.5 ±6.6 

104.8 ± 9.9 

MP, mitochondrial protein. 
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Figure 3.11 

Representative image of a Westem blot for UCPl (L = leptin, V = vehicle) 10 pg 

MP each lane. 

MP, mitochondrial protein; Ref reference sample (4 hour old lamb PAT 

mitochondria); N, negative control (liver mitochondria). 
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Figure 3.12 

a) Representative image of a Northem blot probed for UCPl and 188 (L = leptin, 

V = vehicle) 10 pg RNA each lane. 

b) Effect of leptin administration on UCP 1 mRNA expression 

Values are means ± SEM. 

(•Leptin, n = 8; DVehicle, n = 8) 
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Figure 3.13 

a) Representative image of a DNA gel containing leptin and 188 PCR products 

from BAT 

(L = leptin, V = vehicle) 

b) Effect of leptin administration on leptin mRNA expression 

Values are means ± SEM. 

(•Leptin, n = 5; DVehicle, n = 5) 
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Figure 3.14 

Relationship between leptin mRNA and BAT weight in vehicle treated neonatal 

lambs. 

(O hour 4, n = 5) 
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Figure 3.15 

a) Representative image of a Westem blot for VDAC in BAT (L = leptin, V 

vehicle) 10 pg MP each lane. 

b) Effect of leptin administration on BAT VDAC protein abundance 

Values are means ± SEM. 

(•Leptin, n = 5; DVehicle, n = 5) 

MP, mitochondrial protein; Ref, reference sample (7 day old lamb skeletal 

muscle mitochondria). 
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Part B Long Term Leptin Administration 

3.4 Introduction 

This study was carried out to investigate further the results from acute leptin 

administration to neonatal lambs. To determine whether the effects of leptin 

administration to day old lambs were transient due to the complex milieu of 

hormones present at birth, a longer-term, "chronic", administration of leptin to 

postnatal lambs was carried out. 

3.4.1 Hypothesis and Aim 

The effect of chronic leptin administration to neonatal lambs on thermoregulation 

and adipose tissue function has been investigated. It was hypothesised that long-

term leptin treatment of postnatal lambs would maintain body temperature 

through a mechanism other than increased UCPl expression. 

3.5 Methods 

3.5.1 Animals 

Nine pairs of female triplet lambs, bom normally at term to Bluefaced Leicester 

cross Swaledale ewes were entered into the study. Lambs remained with their 

ewe throughout the study in individual pens. All lambs entered into the study 

obtained adequate amounts of colostmm. 
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3.5.2 Experimental Design 

Pairs of lambs were selected on the basis of matched body weight (± 10 %) and 

gender, only female lambs were entered into this study to remove any effect of 

gender on plasma leptin concentrations. The third lamb remained in the pen with 

its ewe and siblings. A jugular vein catheter was inserted into each lamb as 

(described in chapter 2.1.2.) to enable vehicle or leptin treatment and blood 

sampling 

One lamb from each pair was selected to receive recombinant ovine leptin (a gift 

from Professor Duane Keisler, University of Missouri, USA). Lambs were 

entered into the study on day one of life and treated daily for six days at 9.30 am 

with either 100 pg leptin, or vehicle (sterile water). Colonic temperature was 

measured daily prior to treatment using an electronic thermometer, as was body 

weight of all lambs. Blood samples were taken daily before freatment. On day 

seven each lamb was humanely euthanased by intravenous adminisfration of 

barbiturate (100 mg kg-1 pentobarbital sodium: Euthatal: RMB Animal Health, 

UK). Perirenal adipose tissue was rapidly removed and stored as described in 

chapter 2.1.3. 

3.5.3 Laboratory Procedures 

Mitochondria and RNA were prepared from PAT as described in chapters 2.3.1 

and 2.3.6 in order to asses UCPl abundance, expression and activity (GDP 

binding) and VDAC and cytochrome c abundance. Plasma concentrations of 

glucose, NEFA, leptin and prolactin were carried out as described in chapter 2.2. 
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3.5.4 Statistical Analysis 

Statistical analysis with respect to significant differences (p < 0.05) between 

values obtained from treated and untreated lamb pairs was carried out using the 

Mann Whitney U test or repeated measures GLM followed with post hoc Mann-

Whitney U tests. Correlations were investigated using Spearman's Rho test. 

3.6 Results 

3.6.1 Thermoregulation 

Colonic temperatures were similar between groups on all days throughout the 

study, however, leptin treated lambs were better able to maintain body 

temperature between days 1 and 2 when the vehicle treated group exhibited a 

significant decline in colonic temperature (P=0.011) (Figure 3.16). 
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Figure 3.16 

Effect of leptin administration on temperature in postnatal lambs. 

Values are means ± SEM. 

(• leptin, n = 9; O vehicle, n = 9) 

* indicates P < 0.05 for time effect 
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3.6.1 Plasma Metabolites and Hormones 

Plasma leptin concentrations were significantly higher overall in treated lambs, 

although, on day three of postnatal age there was no difference between the 

groups (figure 3.17). 

This study also gave us the opportunity to study the natural postnatal ontogeny of 

leptin in the lamb (Figure 3.18). Plasma leptin levels were similar between days 

one, two and three of postnatal age, then significantly increased to a plateau at 

days five and six. Plasma leptin concentrations were positively correlated with 

colonic temperature at postnatal day 1 prior to any intervention (R^=0.145, 

P=0.018). 

Plasma glucose concentrations were found to be similar on day one of postnatal 

age (Figure 3.19). There were no differences attributable to leptin treatment at 

any time point. 

Plasma NEFA concentrations were similar between treatment groups on day one 

of postnatal age (Figure 3.20). Plasma NEFA concentrations in the vehicle 

treated group declined significantly between day one and day two of postnatal 

age (P=0.028), a similar trend was also observed in the leptin treated animals. 

This resulted in vehicle treated animals having significantly lower plasma NEFA 

concentrations than their leptin treated siblings on the third day of life, however, 

NEFA concentrations subsequently equalised between groups. Prior to 

experimental intervention on day one of age there was a significant positive 

relationship between plasma NEFA levels and colonic temperature (R"=0.24, 
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P=0.035). In the leptin treated group, there was a weak negative correlation 

between plasma NEFA and leptin concentrations on day 4 of postnatal age 

(R^=0.631,P=0.042). 

Plasma prolactin concentrations were similar between treatment groups at the 

start of the study (Figure 3.21). Plasma prolactin concentrations in the leptin 

freated group declined between day I and day 2 of postnatal age, although this 

did not reach statistical significance (P=0.066). This trend was not observed in 

their vehicle treated siblings. Prolactin concentrations remained similar 

throughout the study until the sixth postnatal day when the vehicle treated group 

had significantly higher levels (P=0.016). Plasma prolactin levels were found to 

be negatively related to plasma leptin on day 1 prior to experimental intervention 

(R^=0.13, P=0.023) and also to plasma NEFA concentrations on day 2 of 

postnatal age in the leptin treated group (R^=0.62, P=0.019). This was the day 

when leptin freated animals maintained body temperature better than their 

vehicle treated siblings. 
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Figure 3.17 

Effect of leptin administration on plasma leptin concentrations in postnatal 

lambs. 

Values are means ± SEM. 

(• leptin, n = 9; O vehicle, n = 7) 

* indicates P < 0.05 for treatment effect 

** indicates P < 0.01 for treatment effect 
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Figure 3.18 

Ontogeny of plasma leptin in vehicle treated postnatal lambs 

Values are means ± SEM. 

(O vehicle, n = 7) 

* indicates P < 0.05 for age effect 
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Figure 3.19 

Effect of leptin administration on plasma glucose concentrations in postnatal 

lambs. 

Values are means ± SEM. 

(• leptin, n = 9; O vehicle, n = 7) 

119 



1.8 

1.6 

_ 1.4 

f j 1.2 

I 1.0 
< 0.8 
PL, 

g 0.6 

0.4 

0.2 

0.0 
0 2 3 4 5 

Postnatal Age (days) 

leptin 

vehicle 

i-1. i 
6 

Figure 3.20 

Effect of leptin administration on plasma NEFA concentrations in postnatal 

lambs. 

Values are means ± SEM. 

(• leptin, n = 9; O vehicle, n = 7) 

* indicates P < 0.05 for treatment effect 

t indicates P < 0.05 for time effect 
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Figure 3.21 

Effect of leptin administration on plasma prolactin concentrations in postnatal 

lambs. 

Values are means ± SEM. 

(• leptin, n = 9; O vehicle, n = 7) 

* indicates P < 0.05 for treatment effect 

+ indicates P = 0.06 for time effect 
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3.6.2 Lamb Body Weight and Tissue Analysis 

There was no affect of leptin administration on PAT weight or any of the organs 

studied (Table 3.4). Lambs from the leptin administration group had slightly 

heavier hearts than their vehicle treated siblings although this was not significant 

(P=0.063) and the effect disappeared when heart weight was expressed as a ratio 

of body weight. 

Leptin treatment had no effect on body weight, growth rate or weight gain and all 

lambs displayed normal linear growth over the seven day study period (Figure 

3.22) with an average daily weight gain of 0.20 kg ± 0.03, leptin treated and 0.21 

kg ± 0.02, vehicle freated. 
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Table 3.4 

Body and organ weights of lambs on day 8 of postnatal age. 

Leptin (n=9). Vehicle (n=9) 

Body weight 
(kg) 

PAT weight (g) 

Pericardial AT (g) 

Brain (g) 

Heart (g) 

Liver(g) 

Lung (g) 

Mean Thyroid (g) 

Mean Adrenal (g) 

Mean Kidney (g) 

Vehicle 

5.89 ±0.44 

27.19 ±2.40 

5.53 ±0.53 

46.76 ±1.06 

41.89 ±1.38 

156.93 ±9.88 

129.16 ±13.32 

0.43 ± 0.06 

0.60 ± 0.03 

16.82 ±0.98 

Leptin 

5.62 ±0.36 

28.66 ±4.16 

6.30 ±0.31 

48.54 ±1.43 

46.37 ± 3.44 

165.79 ±12.42 

136.98 ±9.34 

0.52 ±0.05 

0.61 ±0.03 

18.51 ±1.16 
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Figure 3.22 

Effect of leptin administration on lamb body weight. 

Values are means ± SEM. 

(• leptin, n = 9; O vehicle, n = 9) 
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The potential thermogenic activity, as assessed by GDP binding was similar 

between groups (Figure 3.23). UCPl abundance as measured by westem blotting 

was lower in the leptin treated group (Figure 3.24). UCPl mRNA expression as 

measured by Northem blotting was found to be significantly lower in leptin 

treated group (P=0.028) (Figure 3.25). Leptin mRNA expression was found to be 

similar between groups at day 7 of postnatal age (Figure 3.26) although values of 

the confrol group were significantly lower than those observed at 1 day of age 

(P=0.002) (Figure 3.27). Unlike the vehicle treated one day old lambs, BAT 

weights were not correlated with leptin mRNA levels (Figure 3.14), but were 

weakly positively related to plasma leptin concenfrations (R^=0.26, P=0.086) 

although this was not statistically significant. 

VDAC abundance in BAT and skeletal muscle was assessed by westem blotting 

with a specific ovine antibody and was found to similar between groups (Figures 

3.28 and 3.29). Cytochrome c abundance in BAT was also measured using 

westem blotting with a purchased multi-species antibody (Santa Cmz sc-7159). 

Leptin freated lambs had a higher mitochondrial abundance of cytochrome c 

compared to their vehicle treated siblings, however, this did not reach statistical 

significance (Figure 3.30). 

Associations between UCPl mRNA and protein, colonic temperature and GDP 

binding were investigated using Spearman's Rho test, the results are shown in 

Table 3.5. 
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60.0 

leptin vehicle 

Figure 3.23 

Effect of leptin administration on GDP binding in BAT from neonatal lambs. 

Values are means ± SEM. 

(•Leptin, n = 9; DVehicle, n = 9) 
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Figure 3.24 

a) Representative image of a Westem blot for UCPl (L = leptin, V = vehicle) 

10 pg MP each lane. 

b) Effect of leptin administration on UCPl protein abundance 

Values are means ± SEM. 

(•Leptin, n = 9; DVehicle, n = 9) 

MP, mitochondrial protein; Ref, reference sample (4 hour old lamb PAT 

mitochondria); N, negative control (liver mitochondria). 

127 



a) 

UCPl 
1.5 Kb 

188 
1.8 Kb 

b) 

V L V L V L V L V L N R e f 

25.0 

^ 20.0 ] 

leptin vehicle 

Figure 3.25 

a) Representative image of a Northem blot probed for UCPl and 18S (L = leptin, 

V = vehicle) 30 pg RNA each lane. 

b) Effect of leptin administration on UCP 1 mRNA expression 

Values are means ± SEM. 

(•Leptin, n = 9; DVehicle, n = 9) 

Ref, reference sample (4 hour old lamb PAT mRNA); N, negative control (liver 

mRNA). 

* indicates P < 0.05 for treatment effect 

128 



a) 

b) 

L V L V L V L V L V L VRef 

18S324bp 

Leptin 192bp 

leptin 

^ 

vehicle 

Figure 3.26 

a) Representative image of a DNA gel containing leptin and IBS PCR products 

from BAT 

(L = leptin, V = vehicle) 

b) Effect of leptin administration on leptin mRNA expression 

Values are means ± SEM. 

(•Leptin, n = 5; DVehicle, n = 5) 
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leptin vehicle leptin vehicle 

Day 1 Day 7 

Postnatal Age 

Figure 3.27 

b) Effect of leptin administration on leptin mRNA expression 

Values are means ± SEM. 

(Day 1 •Leptin, n = 5; DVehicle, n = 5; Day 7 •Leptin, n = 8; DVehicle, n = 8) 

** indicates P < 0.01 for time effect 
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Figure 3.28 

a) Representative image of a Westem blot for VDAC in BAT (L = leptin, V 

vehicle) 10 |ag MP each lane. 

b) Effect of leptin administration on BAT VDAC protein abundance 

Values are means ± SEM. 

(•Leptin, n = 5; DVehicle, n = 5) 

MP, mitochondrial protein; Ref, reference sample (7 day old lamb skeletal 

muscle mitochondria). 
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Figure 3.29 

a) Representative image of a Westem blot for VDAC in skeletal muscle (L = 

leptin, V = vehicle) 10 ng MP each lane. 

b) Effect of leptin administration on skeletal muscle VDAC protein abundance 

Values are means ± SEM. 

(•Leptin, n = 5; DVehicle, n == 5) 

MP, mitochondrial protein; Ref, reference sample (7 day old lamb skeletal 

muscle mitochondria). 
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Figure 3.30 

a) Representative image of a Westem blot for cytochrome c in BAT (L = leptin, 

V = vehicle) 10 pg MP each lane. 

b) Effect of leptin administration on BAT cytochrome c protein abundance 

Values are means ± SEM. 

(•Leptin, n = 4; DVehicle, n = 4) 

MP, mitochondrial protein 
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Table 3.5 

Associations between measured thermogenic parameters in the acute and long-

term leptin treatment studies. 

temp, temperature at time of tissue sampling; vs, versus; NS, non significant 

result. 

UCPl mRNA vs 
UCPl protein 

temp vs UCPl 
mRNA 

temp vs UCPl 
protein 

GDP vs UCPl 
mRNA 

GDP vs UCPl 
protein 

Day 1 

Vehicle 

R^= 0.009 
NS 

R^=0.24 
NS 

R^= 0.057 
NS 

NS 

NS 

Leptin 

R̂  = 0.27 
P = 0.051 * 

R^=0.45 
P = 0.036* 

R^=0.48 
P = 0.012* 

NS 

NS 

Day 7 

Vehicle 

R^=0.27 
NS 

R^=0.18 
NS 

NS 

R^=0.01 
NS 

R^=0.09 
NS 

Leptin 

R̂  = 0.67 
P = 0.021 * 

R^=0.53 
P = 0.006 ** 

NS 

R^=0.78 
P< 0.001 *** 

R^=0.55 
P = 0.004 ** 
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3.7 Discussion 

Previous studies in rodents have reported that leptin treatment can increase body 

temperature through enhanced UCPl activity (Scarpace et al. 1997) 

(Pelleymounter et al. 1995), therefore reducing the requirement for shivering 

thermogenesis. However, since one of these studies were carried out in adult 

ob/ob mice, who are deficient in leptin and the other studied adults, these are 

obviously not good models for the neonatal period. 

Plasma leptin concentrations have been shown to fall dramatically after birth in 

the newbom human infant (Cetin et al. 2000; Geary et al. 1999; Matsuda et al. 

1999; Schubring et al. 1999) and remain significantly lower than cord values for 

up to six days postnatally (Matsuda et al. 1999). However, it has recently been 

demonstrated that ovine leptin concentrations do not follow this trend at birth. 

Ovine plasma leptin concentrations decline during the immediate six hours after 

birth, then exhibit a concomitant increase in plasma leptin and leptin mRNA over 

the first seven days of neonatal life (Bispham et al. 2001; Budge et al. 2001). 

I hypothesised that leptin treatment of neonatal lambs would enhance 

thermoregulation through increased activity of UCPl, resulting in a reduced 

reliance on shivering thermogenesis. The principal finding of the present study 

was that leptin treatment maintained colonic temperature of neonatal lambs, 

despite a reduction in UCPl protein abundance and mRNA expression which 

was not observed in vehicle treated siblings. These apparently contradictory 

findings suggest that regulation of thermoregulation by leptin in is considerably 
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different between precocial and altricial species and between adults and 

neonates. 

3.7.1 Effect of Leptin Administration on Thermoregulation 

Leptin was found to maintain colonic temperature on day one of postnatal age in 

the acute administration study, in contrast, untreated siblings lost body 

temperature. As a result, the control lambs had an average colonic temperature 

that was 40% lower than their leptin treated siblings at the end of the study. In 

support of the hypothesis, plasma leptin was positively correlated with colonic 

temperature prior to intervention in the long-term study. All the animals studied 

in the acute experiment shivered during the experiment, but the leptin treated 

group shivered for half as much time as the controls. The reduction in shivering 

time suggested that leptin treated lambs were maintaining their colonic 

temperature via non-shivering thermogenesis or increased thermal efficiency 

with reduced heat loss. However, UCPl and GDP activity were similar between 

groups. Surprisingly, UCPl expression was reduced in the acute leptin treated 

group although this was not significant. After the first dose of 100 pg leptin 

plasma NEFA concentrations are significantly higher in the treated lambs 

suggesting increased unmasking of GDP binding sites, it was not possible 

analyse this however as no tissue samples were taken at this time point. 

When leptin administration over day two to eight of postnatal age was 

investigated, a similar, initial, maintenance of colonic temperature was observed. 

Between day two and three of postnatal age the vehicle treated group exhibited a 

significant decline in colonic temperature that was not observed in leptin treated 
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siblings. However, after 6 days of leptin treatment there was no difference in 

GDP binding, but both UCP 1 abundance and expression were reduced in the 

leptin treated group. Significant associations between thermogenic parameters 

(e.g. UCPl mRNA and protein, GDP and colonic temperature) were found only 

in the leptin freated animals from both the acute and long-term leptin treatment 

studies (Table 3.5). These results were dependent on postnatal age, but not 

• gender. These results suggest that leptin treatment alters the relationships 

between these thermogenic factors. 

These results are in contradiction to rodent studies (both short and long-term 

leptin treatment) that have reported enhanced body temperature due to increased 

UCPl after leptin administration and may be explained partially by a study 

reporting that leptin activates the proinfammatory cytokine interleukin-1 (IL-1) 

(Luheshi et al. 1999). Leptin has been proposed to induce IL-ip expression in 

the hypothalamus to a magnitude similar to that of a pyrogenic dose of bacterial 

lipopolysaccharide. This mechanism would increase body temperature 

transiently, with no requirement for increased UCPl. 

Altematively, leptin may be directly activating one of the homologues of UCPl, 

UCP2 or UCP3. Although there has been no direct evidence that leptin up-

regulates either of these proteins during the neonatal period, it has been 

established that leptin treatment of rodents up-regulates BAT and skeletal muscle 

UCP3 and 2 (Cusin et al. 1998, Scarpace, 1998 #156, Scarpace, 1998 #227). 

UCP3 has been shown to increase postnatally in skeletal muscle of rodents (Bmn 
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et al. 1999; Carmona et al. 1998) and to be present in newbom piglet muscle 

(Damon et al. 2000). Interestingly, IL-ip and TNF-a have been shown to 

upregulate UCP2 in liver, muscle and adipose tissue of adult mice (Faggioni et 

al. 1998) although there is some debate whether UCP2 protein is present in liver 

and muscle (Pecqueur et al. 2001). 

The elucidation of the role of these UCP homologues has been slow due to the 

lack of specific antibodies, and the ability of these proteins to mediate adaptive 

non-shivering thermogenesis has been thrown into doubt after the production of 

UCPl ablated mice (Enerback et al. 1997, Nedergaard, 2001 #640). These mice 

were found to become hypothermic during cold exposure, despite high 

expression of UCP2. These mice were also unable to initiate non-shivering 

thermogenesis in response to noradrenaline administration. However, recent 

work has shown no UCP2 protein to be present in BAT from UCPl KO mice. 

However, these studies have only investigated the thermoregulatory capacity of 

UCPl deficient adults. The adult rodents used were progeny of the original 

UCPl knock out mice (Enerback et al. 1997) but no mention is made of their 

thermoregulatory ability as neonates, with no UCPl to produce heat after the 

birth the young mice must be initiating other mechanisms of heat production. 

Also, many publications demonstrating an effect of leptin on the UCP 

homologues only provide evidence of mRNA changes, which are not correlated 

with a functional response, for example, little is known about the translational 

efficiency of UCP2 or 3. Also, changes in mRNA levels do not confirm 

translation of the corresponding protein nor import and insertion of the protein 
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into the mitochondrial membrane. However, work in our laboratory on UCPl 

suggests that these unusual transcriptional effects are limited to UCP2 as UCPl 

mRNA is closely correlated with UCPl protein when the protein half-life is 

taken into consideration. 

Leptin is known to be a potent stimulator of the sympathetic nervous system 

(Haynes et al. 1997b; Scarpace & Matheny 1998; Sivitz et al. 1999; Trayhum et 

al. 1999). Sympathetic activity mediates the increase in free fatty acids and 

"switching - on" of UCPl during adaptive thermogenesis (Chapter 1.3.2). Leptin 

administration may also be increasing the noradrenaline tumover in BAT 

(Collins 1996) along with increasing sympathetic outflow, thus liberating more 

fatty acids from triglycerides. In both the acute and long - term ovine studies of 

leptin administration, plasma NEFA levels declined more slowly in the leptin 

treated lambs (Figures 3.7 and 3.18) over the study period. These increased 

NEFA levels may have caused increased activation of UCPl through unmasking, 

leading to a higher body temperattare. As the differences in plasma NEFA 

concenfrations occurred prior to tissue sampling (postnatal hour 3 and day 3) and 

equalised between groups by the end of the studies, it is possible that significant 

differences in GDP binding at the time of maintained body temperature may have 

been missed. 

A more recently discovered effect of the sympathetic nervous system is to 

promote angiogenesis through the transient induction of vascular endothelial 

growth factor (VEGF) in BAT (Fredriksson et al. 2000). Leptin has previously 

been shown to have an angiogenic effect when administered to endothelial cells 
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and rodent comea in culture (Sierra-Honigmann et al. 1998). It is possible that 

noradrenaline is the physiological inducer of VEGF expression during periods of 

cold exposure and it is thought that a transient elevation of VEGF is sufficient to 

support angiogenesis during BAT recmitment (Fredriksson et al. 2000). In the 

present studies, leptins positive regulation of sympathetic outflow to BAT and 

noradrenaline tumover in BAT may be improving thermoregulation through 

increased blood flow to the tissue. This could be investigated further through 

quantitative analysis of VEGF in BAT from the present studies. 

3.7.2 Effect of Leptin Administration on Hormones and Metabolites 

3.7.2a Leptin 

Leptin adminisfration in both the acute and long-term studies increased plasma 

leptin concentrations significantly. Plasma leptin concentrations in treated 

animals from the acute study were higher than those of the long-term study. This 

was probably due to plasma leptin levels being measured the day after 

administration in the long-term study. The "chronic" leptin adminisfration study 

provided the opportunity to look at the natural ontogeny of plasma leptin over the 

first week of life, something that has not previously been undertaken in sheep. 

Results from human clinical studies suggest that leptin values remain low during 

early gestation and increase towards term in response to the increased abundance 

of adipose tissue (Cinaz et al. 1999; Matsuda et al. 1999). Leptin concentrations 

peak around the time of birth in the infant then rapidly decline to day 3 of 

postnatal life (Hytinantti et al. 1999; Schubring et al. 1999) and remain low up to 

at least 17 days of age (Matsuda et al. 1999). However, there is no published data 
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demonsfrating tissue mRNA levels of leptin in newboms. The resuhs of the 

present study suggest that ovine plasma leptin levels decrease after postnatal day 

one, then gradually rise and plateau at the end of the first postnatal week despite 

no concomitant rise is leptin mRNA, in fact a decrease was observed. 

A possible explanation for the differential mRNA and plasma concenfrations of 

leptin is that the newbom lamb obtains leptin from ovine milk, this would 

increase plasma concentrations without the need for increased mRNA 

expression. Human, porcine and ovine breast milk have been shown to contain 

matemally derived leptin that is transfcrted to the infants' blood stream (Estienne 

et al. 2000; Houseknecht et al. 1997), providing leptin at a time when the 

digestive fract of the newbom can absorb whole proteins. At birth, only 66 % of 

UK babies are breastfed, this figure falls rapidly to 56 %> at one week (data from 

The Office for National Statistics Infant Feeding Survey 1995 report) this is low 

compared to the number of lambs that suckle. This may influence plasma leptin 

concenfrations and could be an important source of leptin not available to 34% of 

British infants and a possible explanation for the difference in human and ovine 

postnatal ontogeny and the discrepancy between mRNA and plasma values. 

Although BAT stores of triglycerides are depleted by non-shivering 

thermogenesis in the first few days after birth in the lamb, there is still a 

significant accumulation (43 %> increase in perirenal adipose tissue weight. 

Tables 3.2 and 3.4) of this depot in the first week of life. Leptin has been shown 

to be produced in BAT of newbom rats (Cancello et al. 1998; Dessolin 1997) 
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therefore the increased abundance of this tissue has been suggested to represent 

one of the sources of leptin over the neonatal period. However, in the study's 

presented we found no significant correlation between BAT weight and plasma 

leptin after one week of life, suggesting that plasma concentrations of leptin are 

not associated with concomitant changes in adipose tissue deposhion. Human 

infants on the other hand, experience weight loss during the week after birth, 

then slowly increase their body weight (approximately 1kg in the first month) 

suggesting that the production of endogenous leptin may be reduced and 

circulating levels remain low. 

Gender related differences in leptin have been well documented, as have the 

regulatory role of the sex hormones in leptin production (Behre et al. 1997; 

Mannucci et al. 1998; Tome et al. 1997). Results from the acute leptin 

administration study confirmed the link between gender and plasma leptin 

concenfrations, with female lambs exhibiting significantly higher plasma leptin 

levels than their male siblings, however, the ability of the lambs to respond to 

leptin treatment was unaffected by gender and no further effect of gender was 

observed in any parameter measured. The role of gender in leptin regulation was 

not examined fiarther as all animals in the long-term study were female. 

A negative relationship between leptin and prolactin has not been reported 

previously, although there is limited evidence that prolactin stimulates leptin 

secretion in BAT in rats (Gualillo et al. 1999). It is possible that leptin acts to 

down-regulate prolactin through an unknown negative feedback mechanism. 
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3.7.2b NEFA and Glucose 

Both long and short - term leptin administration was found to fransiently 

attenuate the decline in plasma NEFA concentrations observed in untreated 

lambs (Figures 3.7 and 3.17) and to be positively correlated with body 

temperature in the long term study. Leptin has been shown to increase the rate of 

lipolysis in WAT in vitro and in vivo, (Shimabukuro et al. 1997; Siegrist-Kaiser 

et al. 1997) leading to a reduction in triglyceride stores and preventing 

accumulation of triglycerides in non-adipose tissues such as the liver (Unger et 

al. 1999). However, the documented increase in rate of lipolysis in WAT was not 

associated with an increase in plasma NEFA, possibly due to increased 

intracellular oxidation (Shimabukuro et al. 1997). Leptin has also been shown to 

increase lipoprotein lipase mRNA in cultured BAT (Siegrist-Kaiser et al. 1997) 

which would liberate more NEFA. This is one way in which leptin may be 

modulating UCPl without the requirement of increased protein abundance. 

These observations, however, are from adult studies. The situation during the 

neonatal period is likely to be different and the transient changes in NEFA in the 

present studies may reflect a physiological mechanism "resisting" the breakdown 

of essential adipose tissue stores. 

Plasma glucose levels remained similar between groups in both the short and 

long-term study, this is in agreement with studies carried out in lean mice that 

have shown leptin treatment to have no effect on plasma glucose, insulin or 

glucagon. Leptin has been proposed to increase glucose uptake in BAT and 

muscle and to reduce hepatic glycogen stores associated with increased glucose 

production (Nonogaki 2000). Further analysis could be carried to out to 
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investigate the hepatic and skeletal muscle glycogen content of neonatal lambs 

after leptin administration. 

3.7.2c Prolactin 

In the long-term study, there was a non-significant decline in prolactin plasma 

concenfrations in the leptin group between day 1 and 2 of postnatal age that was 

not observed in their vehicle treated siblings. This decrease in prolactin was not 

associated with any other factor although leptin was found to negatively regulate 

plasma prolactin concentrations prior to intervention as discussed in 3.7.2a . 

Plasma prolactin concentration was found to be negatively related to plasma 

NEFA on day 2 of age in the leptin treated group. This was at a time when the 

treated group were maintaining their colonic temperature better than vehicle 

treated siblings, suggesting that a low plasma prolactin level is conducive for 

effective thermoregulation. This is however in contrast to previous studies 

documenting a positive thermogenic effect of matemal prolactin treatment on 

neonatal rodents (Budge et al. 2002) and prolactin treatment of neonatal lambs 

(Pearce et al. 2001). At the end of the first postnatal week, plasma prolactin 

levels were significantly reduced in the leptin treated lambs, again this was 

unassociated with leptin or any other factor investigated. 

3.7.2d Body Weight and Tissue Analysis 

There was no effect of leptin administration on body weight, PAT weight or any 

other organ investigated in either the acute or long-term studies despite many 

rodent studies demonstrating an anorectic effect of leptin (De Vos et al. 1995; 

Halaas et al. 1995; Pelleymounter et al. 1995). Lamb growth in the long-term 
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sttidy was also similar between treatment groups, these results were in 

accordance with a rodent study which found that leptin had no anorectic effect on 

neonatal mice prior to two weeks of age (Mistry et al. 1999). Neonatal lambs 

must maximise their milk intake and maintain high metabolic rates in order to 

survive, so this differential effect of leptin administration between adults and 

neonates is not surprising. 

When BAT thermogenesis was investigated, GDP binding was found to be 

similar between both groups of animal in the acute and long-term studies. GDP 

binding was reduced at 8 compared to 1 days of age. This is in accordance with 

previous ovine studies (Clarke et al. 1997b) demonstrating a decline in BAT 

thermogenesis with increasing age. Surprisingly, UCPl mRNA expression was 

reduced with leptin treatment, but UCP 1 protein abundance was similar between 

groups in the acute study. Although the reduction in UCPl mRNA was not 

significant, six out of the eight leptin treated lambs had lower UCPl mRNA 

when compared to their vehicle treated siblings. This result was in contradiction 

compared to previous published work demonstrating and increase in UCPl with 

leptin treatment (Pelleymounter et al. 1995; Scarpace & Matheny 1998; Scarpace 

et al. 1997). The half- life of UCPl protein is approximately five days 

(Nedergaard et al. 2001), so no changes related to reduced mRNA would be 

expected in the acute study. It was predicted that seven days of leptin treatment 

would allow any protein changes to become apparent, however, only a non

significant reduction in protein for UCPl was observed in the long-term study. 

Increasing postnatal age is associated with loss of transcription of the UCPl gene 
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and by one month of age UCPl is undetectable in PAT of lambs (Clarke et al. 

1997b). 

The loss of BAT UCPl is an indication of the changing role of adipose tissue 

with age. BAT, and therefore UCPl is not expressed in aduh sheep, there is no 

requirement for recmitable thermogenesis as they have deposited subcutaneous 

WAT and developed fleece. The loss of UCPl in the leptin treated lambs 

suggests that leptin is acting to promote or "signal" the transition from BAT to 

WAT. Leptin is known to modulate adipose tissue mass in rodents via lipolysis 

and deletion of adipocytes through apoptosis (Qian et al. 1998) although the 

signalling pathway mediating this process is unknown. So it is possible that 

leptin treatment of neonatal lambs is activating apoptosis of BAT thus reducing 

the number of adipocytes present, apoptosis was suggested as a possible 

mechanism for the transition of BAT to WAT in 1998 by Finn et al (Finn et al. 

1998). However, as there was no difference in adipose tissue weight between 

treatment groups, microscopy would have to be carried out to verify cell size and 

the lipid content of individual adipocytes. Assays of apoptosis, such as TUNEL 

staining and DNA laddering are required to determine the apoptotic state of the 

tissue. 
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3.8 Conclusion 

Leptin treatment of neonatal lambs causes maintenance of body temperature 

despite a reduction in UCPl protein and mRNA expression. This change occurs 

without effect on lamb or organ growth and development. Leptin, in this way 

may be acting through mechanisms other than UCPl to maintain temperature. 
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CHAPTER 4 

THE EFFECT OF ROUTE OF 

DELIVERY ON PLASMA 

LEPTIN CONCENTRATIONS IN 

THE NEWBORN LAMB 



4.1 Introduction 

Leptin mRNA is detectable in fetal adipose tissue of sheep by around G90 (Yuen 

et al. 1999). Abundance of leptin then increases up to term and is closely 

correlated with fetal weight (Yuen et al. 1999). This suggests that the production 

of leptin mRNA is modulated by the increase in size and number of adipocytes 

which occurs during late gestation in the ovine fetus (Alexander 1978; Lonnqvist 

et al. 1997). The rise in leptin could also be due to increasing corticosteroids 

during late gestation as these have been shown to stimulate leptin expression 

both in vitro and in vivo (De Vos et al. 1995). 

Many studies have measured plasma leptin concentrations in newbom infants; 

however, the findings from these studies have been highly inconsistent (see 

Chapter 1). Clinical human studies suggest that plasma leptin remains low 

throughout gestation, are first detectable by 35 weeks of gestation, and increase 

towards term in response to the increased abundance of adipose tissue (Cinaz et 

al. 1999; Matsuda et al. 1999). Leptin levels have been shown to peak around the 

time of birth in the infant, then rapidly decline by day 3 of postnatal age 

(Hytinantti et al. 1999; Schubring et al. 1999). These postnatal changes are likely 

to occur in response to the dramatic alterations in energy balance and the surge in 

endocrine and sympathetic activity experienced at birth. The sympathetic 

nervous system, Cortisol and thyroid hormones are known to regulate leptin 

expression (De Vos et al. 1995; Flier et al. 2000; Mostyn et al. 1998); all of 

which are critically important at parturition and for the initiation of breathing and 

thermoregulation at birth (Symonds 1995). 
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The route of delivery of a fetus influences the postnatal changes outlined above 

(Clarke et al. 1997c). Caesarean section delivery is known to reduce neonatal 

plasma concentrations of Cortisol and thyroid hormones by reducing the normal 

sfress experienced by the infant during the process of parmrition. This results in a 

neonate with significantly reduced ability to thermoregulate after birth (Clarke et 

al. 1997c). However, the effect of the route of delivery on plasma leptin 

concentrations is unknown. 

4.1.1 Aim and Hypothesis 

The aim of this study was to investigate the effect of route of birth, adipose tissue 

mass and body weight on plasma leptin in neonatal lambs. It was hypothesised 

that caesarean section delivery would alter leptin secretion. 

4.2 Methods 

4.2.1 Experimental Design 

All animal work was carried as described by Clarke et al (Clarke et al. 1997c) 

prior to the development of the plasma leptin assay. Full experimental procedures 

may be found in Clarke et al l997(Clarke et al. 1997c). Briefly, twenty 

Bluefaced Leicester cross Swaledale ewes of recorded mating date and 

confirmed as bearing twins were entered into the study. Ten sets of twins were 

delivered by caesarean section at G146 into warm or cool ambient temperatures. 

An umbilical cord blood sample was taken immediately before cord clamping. A 

jugular vein catheter was then inserted into each lamb and blood samples were 
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taken hourly for the first 5 hours after birth. A similar protocol was performed on 

the remaining lambs that were all bom normally at term (G147 in this breed), 

with the modification that it was not possible to obtain umbilical cord samples. 

There was no effect of delivery temperature on plasma leptin in either caesarean 

section or vaginally delivered lambs, so only mean results with respect to route 

of delivery are shown. Body weights and perirenal adipose tissue mass were 

measured post euthanasia, 6 hours after birth. 

4.2.2 Laboratory Procedures 

Plasma leptin was analysed by Professor Duane Keisler using a 

radioimmunoassay as described in Chapter 2.2.3. 

4.2.3 Statistical Analysis 

Statistical analysis with respect to significant differences (p < 0.05) between 

values obtained from the different treatment groups was carried out using Mann-

Whitney U tests. The effect of postnatal age was assessed by the Wilcoxon test. 

4.3 Results 

4.3.1 Plasma Hormones 

Plasma leptin concentrations were significantly higher in fetal than postnatal 

samples (P=0.009) (Figure 4.1). When route of delivery was considered, cord 

plasma leptin levels were not significantiy higher than the first venous sample 

taken from caesarean section delivered neonates (Figure 4.1 and 4.2). However, 

cord values were significantly higher than the first sample taken from vaginally 
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delivered lambs (P=0.001) (Figure 4.1 and 4.2) and this leptin concentration was 

significantly lower than that of the caesarean section delivered lambs (P=0.002) 

(Figure 4.1). Figure 4.2 shows the ontogeny of leptin in caesarean section and 

vaginally delivered lambs over the first 5 hours of life. Plasma leptin 

concentrations in caesarean section delivered lambs were significantly lower than 

cord values by 2 (P=0.038), 3 (P=0.031) and 4 (P=0.008) hours of life by which 

time leptin concentrations were similar between delivery groups. Irrespective of 

delivery group, there was no effect of gender on neonatal leptin. 

4.3.2 Lamb BAT and Body Weight 

Lambs delivered by caesarean section had significantly more fat per kg than 

their vaginally delivered counterparts (P=0.001) (figure 4.3), however, vaginally 

delivered lambs were significantly heavier (P<0.001) (Figure 4.4). 

Plasma leptin was positively correlated with body weight in the vaginally 

delivered group only (R^=0.22, P=0.05) (Figure 4.5). No correlation between 

body weight and leptin was found in the caesarean section delivered group, 

although male animals exhibited a strong relationship between leptin and fat per 

kg body weight (R^=0.85, P=0.004) (Figure 4.6). 

152 



2.0 

1.5 

c, 1.0 

^ 0.5 

0.0 

i-

Cord CS VD 

Figure 4.1 

Influence of route of delivery on plasma leptin concentrations. 

Values are means ± SEM (cord n=19, caesarean delivery (CD) n=19, vaginal 

delivery (VD) n=20). 

*** indicates P < 0.001 for delivery effect 

** indicates P < 0.01 for age effect 

153 



r/
m

l)
 

tin
 (n

^ 
le

p 

2.0 -

1.8 : 

1.6 , 

1.4 : 

1.2 -

1.0 -
rv o 
0.8 -
0.6 -

U.4 1 

*** 

1 

0 1 

s^ t 

' 
2 

t tt 

- ^ ^ = ^ Y 2^--: 

1 1 

3 4 

Time after birth (hours) 

^ 
^ 

5 

•VD 

•CS 

1 

6 

Figure 4.2 

Influence of route of delivery on plasma leptin concentrations. 

Values are means ± SEM (cord n=19, caesarean delivery (CD) n=19, vaginal 

delivery (VD) n=20). 

*** indicates P < 0.001 for delivery effect 

t indicates P < 0.05 for age effect (when compared to cord values) 

tt indicates P < 0.01 for age effect (when compared to cord values) 
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Figure 4.3 

Influence of route of delivery on fat per kg body weight in neonatal lambs. 

Values are means ± SEM (caesarean delivery (CD) n=20, vaginal delivery (VD) 

n=22). 

*** indicates P < 0.001 for delivery effect 
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Figure 4.4 

Influence of route of delivery on body weight in neonatal lambs. 

Values are means ± SEM (caesarean delivery (CD) n=20, vaginal delivery (VD) 

n=22). 

*** indicates P < 0.001 for delivery effect 
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Relationship between plasma and fat per kg body weight 

(vaginally delivered, n=22) 
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4.4 Discussion 

4.4.1 Effect of Delivery on Plasma Leptin 

Cord plasma leptin concentrations in the sheep were found to be significantly 

lower than values published for human placental studies. This is not surprising as 

I have shown ovine neonatal plasma leptin concentrations to be considerably less 

than those of human neonates (1-3 days of postnatal age) (Mostyn et al. 2001b). 

The birth of lambs in this particular study can be likened to an elective caesarean 

section delivery near term in humans, as labour was not initiated prior to 

caesarean section delivery. 

Caesarean section delivery caused a delay in the "normal" decline in plasma 

leptin observed in the vaginally delivered animals resulting in significantly 

higher neonatal plasma leptin concentrations. This could be due to a number of 

factors that are known to alter in caesarean section delivery: 

• sympathetic nervous activity 

• thyroid hormones 

• adipose tissue deposition and thermoregulation 

• Cortisol 

One of the major physiological differences in lambs bom by caesarean section 

compared to vaginally delivered lambs, is the reduction in physical sfress at birth 

associated with a decrease in the normal surge of catecholamines in the neonate 

(Falconer & Lake 1982; Faxelius et al. 1983; Hagnevik et al. 1984; Irestedt et al. 
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1982; Lagercrantz & Bistoletti 1973). This is due to a number of reasons 

including, passage through the birth canal compresses the head - this kind of 

mechanical trauma is known to stimulate catecholamine release. Brief reversible 

hypoxia during uterine contractions may also increase catecholamine production. 

Therefore, lack of labour is thought to cause the reduced neonatal plasma 

catecholamine concentrations observed after elective caesarean section delivery. 

Leptin has been shown to be negatively regulated by the sympathetic nervous 

system (Li et al. 1997; Mostyn et al. 1998; Trayhum et al. 1998), with less 

sympathetic activity, the caesarean section delivered animals would experience 

less inhibition of leptin secretion, thus higher plasma values. 

Plasma T3 concentrations are low during most of gestation in the sheep but 

increase rapidly with the onset of parturition (Eraser & Liggins 1988; Wu 1990). 

This increase has been shown to occur in parallel with the increase in Cortisol 

observed at this time (Eraser & Liggins 1988; Eraser & Liggins 1989). Caesarean 

section delivered lambs experience a reduced increase in plasma Cortisol and T3 

(Bird 1996). Thyroid hormones have previously been shown to regulate leptin 

mRNA expression although the nature of this regulation is complex (Flier et al. 

2000). Hypothyroid rats have been shown to have higher plasma leptin 

concentrations and adipose tissue that releases more leptin than their euthyroid 

controls (Fain & Bahouth 1998). However, in vitro studies have shown that 

under conditions that mimic the fed state (i.e. high glucose, glucocorticoids and 

insulin) thyroid hormones will stimulate leptin expression. In contrast, conditions 

which mimic the fasted state (i.e. glucocorticoid alone or in the presence of a P3-
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adrenoceptor agonist) T3 enhances the loss of leptin mRNA (Fain & Bahouth 

1998). The conditions that match the situation of the vaginally delivered newbom 

lamb are those of the fasted state. Considering the two findings together, 

hypothetically, T3 should have an inhibitory effect on leptin. Vaginally delivered 

lambs and human infants have significantly higher plasma T3 concentrations 

than those delivered by caesarean section (Bird 1996; Clarke et al. 1997c) 

therefore this is a possible mechanism of suppression of leptin expression and an 

explanation for the higher plasma leptin in caesarean delivered lambs. 

Route of delivery of the newbom is an important influence on ability to 

thermoregulate after birth. Increased T3 and SNS activity promote non-shivering 

thermogenesis in BAT of the newbom lamb, these factors are substantially 

reduced in caesarean section delivery (Bird 1996; Clarke et al. 1997c; Hagnevik 

et al. 1984), thus vaginally delivered lambs are better able to maintain body 

temperature after birth (Clarke et al. 1997c). Non-shivering thermoregulation in 

BAT is associated with an increase in lipolysis, thus a reduction in adipose tissue 

mass and an increase in circulating free fatty acids (Clarke et al. 1997c). The 

vaginally delivered lambs had significantly less adipose tissue per kg body 

weight than their caesarean section delivered counterparts, this is most likely due 

to increased BAT thermogenesis. Although there was no correlation between 

plasma leptin and BAT nor fat/kg body weight in the vaginally delivered group, 

previous studies have shown neonatal leptin to be positively influenced by body 

fat. It is possible that the reduced BAT abundance of vaginally delivered lambs 

had a negative regulatory effect on leptin secretion, resulting in the caesarean 
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section delivered lambs, who had significantly more adipose tissue, having 

higher plasma leptin immediately after birth. Although measurement of fat mass 

was taken at the end of the study when plasma leptin concentrations were similar 

between groups, it is possible that fat mass was lower in the vaginally delivered 

lambs from the first blood sample. It is possible that lambs delivered by 

caesarean section also have a suppressed metabolic rate compared to vaginally 

delivered lambs (Clarke et al. 1997c), this could impede the clearance of leptin 

from the kidney (Zeng et al. 1997), resulting in higher leptin concentrations in 

the plasma of caesarean section delivered animals. 

Plasma glucocorticoid levels are thought to regulate circulating leptin 

concenfrations in the adult (De Vos et al. 1995) although there is no evidence for 

this in the newbom. Plasma Cortisol levels peak at the time of birth and are 

significantiy higher in cord plasma of vaginally, compared to caesarean section 

delivered neonates (Bird 1996). This is reversed postaatally with lambs delivered 

by caesarean section exhibiting higher plasma Cortisol concentrations (Clarke et 

al. 1997c). Cortisol therefore may be another factor involved in the maintenance 

of higher postnatal leptin in the caesarean section delivered lambs at one hour of 

postnatal age. 
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4.5 Conclusion 

Plasma leptin concentrations decrease after birth and are positively correlated 

with adipose tissue depots and/or body weight dependent on route of delivery. 

The extent to which fetal leptin may regulate fetal growth remains to be 

established. 
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CHAPTER 5 

THE EFFECT OF CORTISOL 

ON THERMOGENIC 

CAPACITY OF BAT IN THE 

LATE GESTATION FETAL 

LAMB 



5.1 Introduction 

Fetal plasma Cortisol levels, along with a number of hormones such as T3 and 

SNS activity, peak around the time of birth (Lagercrantz & Bistoletti 1973; Polk 

1995; Slebodzinski et al. 1981). This is coincident with peak activity and 

expression of UCPl (Casteilla et al. 1989; Clarke et al. 1997a) which is critical 

for the initiation of non-shivering thermogenesis. Manipulation of thyroid 

hormones in the newbom lamb has been shown to improve thermoregulation of 

lambs following caesarean section delivery (Bird et al. 1998; Heasman et al. 

2000). Administration of noradrenaline to lambs at delivery has also been found 

to diminish the drop in body temperature normally observed after birth through 

increased abundance of UCPl (Symonds et al. 2000a). 

Route of delivery is a critical factor in determining postnatal thermogenesis. 

Lambs that are delivered by caesarean section are not subjected to the stress of 

normal vaginal delivery and subsequently exhibit: 

• lower colonic temperature 

• reduced thermogenic activity of BAT 

• reduced plasma Cortisol and T3 concentrations (Clarke et al. 1997c) 

Dexamethasone treatment of pregnant ewes has been shown to improve the 

adaptation after birth following premature delivery of lambs by caesarean section 

(Clarke et al. 1998). The thermoregulation of these premature lambs was very 

similar to unfreated lambs delivered 1-2 days before term. Cortisol appears to be 

acting to mattire the thermoregulatory capacity of the fetuses in this sttidy. It is 
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not known whether manipulating the Cortisol status of the late gestation fetias 

would have a stimulatory influence on BAT development and activity. 

The voltage dependent anion channel (VDAC) is a channel forming protein 

found in the outer mitochondrial membrane. VDAC has a major role in the 

delivery of ADP, ATP and other metabolic substrates into the mitochondria 

(Chapters 6 and 7). VDAC is present in fetal BAT and increases in abundance to 

peak at one day of postnatal age when UCPl is also highly abundant (Chapter 7). 

It is not known if Cortisol infusion would influence VDAC abundance in 

mitochondria. 

5.1.1 Aim and Hypothesis 

The aim of this study was to determine whether Cortisol, along with intact 

adrenal glands, influences UCPl abundance, expression and activity and leptin 

mRNA expression in perirenal BAT from sheep fetuses during late gestation. It 

was hypothesised that impaired Cortisol secretion would reduce the thermogenic 

capacity of fetal lambs. Conversely, increased plasma Cortisol concenfrations 

were hypothesised to increase the thermogenic capacity of BAT of fetal lambs. 
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5.2 Methods 

5.2.1 Experimental Design 

All animal work was carried out at the University of Cambridge by Dr Abigail 

Fowden, full experimental procedures can be found in Li et al 1998 (Li et al. 

1998) with the exception that BAT was sampled at after administration of a 

lethal dose of anaesthetic (sodium pentobarbitone, 200mg/kg intravenously). 

Briefly, Welsh Mountain ewes carrying twin fetuses of known gestational age 

were entered into the study and the fetuses were either treated with Cortisol or 

saline, or underwent adrenalectomy during late gestation. Figure 5.1 outiines the 

experimental procedure in a flow chart. 

5.2.2 Laboratory Procedures 

Mitochondria were prepared from PAT as described in chapters 2.3.1 and 2.3.6 

in order to asses VDAC and UCPl abundance with westem blotting. Total RNA 

was also prepared from BAT as described in Chapter 2.3.6 for Northem Blotting 

(Chapter 2.3.7) and RT- PCR (Chapter 2.3.8). Plasma Cortisol and thyroid 

hormone concentrations were analysed by Dr Abigail Fowden at the University 

of Cambridge (Fowden & Silver 1995). Hormone data presented in this thesis 

have been published previously Dr Fowden and are reproduced here as necessary 

to allow full interpretation of my original data. Only the hormone data for 

animals included in thermogenic analyses are included. 
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5.2.3 Statistical Analysis 

Statistical analysis with respect to significant differences (p < 0.05) between 

values obtained from the different treatment groups was cartied out using Mann-

Whitney U tests. 
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33 fetuses entered into the study 

Femses chronically catheterized at Gl 16 under halothane 
anaesthesia 

G121 

10 fetuses 
infused with 
saline (3ml per 
day) 

10 femses 
infused with 
Cortisol(2-
3mg/kg/day) 

1 
Infused for 5 days 
Fetuses delivered by caesarean 
section and BAT sampled G129 

G118 

7 fetuses ax 6 fetuses sham 
operated 

i 
Fetuses delivered by caesarean 
section and BAT sampled 
G144 

Figure 5.1 

Flow chart of experimental procedures. 

ax, adrenalectomised. 

G121, 121 days gestation; Gl 18, 118 days gestation etc. 
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5.3 Results 

5.3.1 Plasma Hormones 

Plasma Cortisol concentrations were found to be significantly higher in the 

Cortisol infused fetuses compared to those infused with saline (P<0.001) (Figure 

5.2). Adrenalectomised fetuses had significantiy lower plasma Cortisol 

concentrations than fetuses that underwent sham operations (P=0.001) (Figure 

5.2). The plasma Cortisol levels in the 2 "control" groups were within the normal 

range for the fetal age and exhibited the expected increase with increasing 

gestation (P<0.001) (Figure 5.2). 

Triiodothyronine (T3) plasma concentrations were significantly higher in Cortisol 

treated fetuses compared to those treated with saline (P=0.004) and in the sham 

operated compared to adrenalectomised fetuses (P=0.03) (Figure 5.3) There was 

also a significant gestational increase in plasma T3 (P=0.04). Plasma thyroxine 

(T4) concentrations were similar between groups (Figure 5.4). 
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Effect of Cortisol status on plasma Cortisol concentrations m the late gestation 
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Effect of Cortisol status on plasma T3 concenfrations in the late gestation fetus 
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5.3.2 Lamb Body Weight and BAT Analysis 

Lamb weights were assessed at the time of delivery, none of the treatments 

affected body weight (Figure 5.5) or crown mmp length (Figure 5.5). There was 

a normal increase in body weight and crown mmp length with gestational age 

(Figure 5.5). 

The potential activity of BAT, as assessed by GDP binding was found to be 

similar between groups (Figure 5.6) although there was a trend for higher GDP 

binding in the Cortisol group compared to saline treated fetuses. UCPl abundance 

was found to be higher in lambs freated with Cortisol, although this was not 

statistically significant. UCPl protein was significantiy increased in intact fetuses 

compared to the adrenalectomised group (P=0.009) (Figure 5.7). UCPl mRNA 

expression was assessed using Northem blotting, the results are shown in Figure 

5.8. UCPl mRNA is expressed as a ratio of 188, then as a percentage of a 

reference sample present on all gels, this is to remove inter-gel variation. There 

were no significant differences between the treatment groups although there was 

a trend towards higher UCPl mRNA in the intact fetuses compared to those that 

underwent adrenalectomy. 

Voltage dependent anion channel (VDAC) abundance was measured in BAT 

using Westem blotting. There were no significant differences between the 

treatment groups (Figure 5.9). 

Due to the small numbers involved in the sttidy, it was not possible to investigate 

correlations within individual groups for all thermogenic measurements. When 
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animals from all groups were considered together, Cortisol was found to be 

positively related to UCPl protein abundance (R^=0.41) (Figure 5.10), but not to 

UCPl mRNA expression in BAT. Plasma Cortisol concentration was also found 

to be poshively related to plasma T3 (R^=0.59) (Figure 5.11). T3 was positively 

related to UCPl protein abundance (R^=0.31) (Figure 5.13). GDP binding was 

found to be positively related to UCPl protein abundance (R^=0.59) (Figure 

5.12). There was only a very weak positive relationship between UCPl protein 

abundance and UCPl mRNA expression (R^=0.29). Table 5.1 summarises all 

correlations between thermogenic and hormonal parameters. 
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Figure 5.5 

a) Effect of Cortisol status on body weight 

b) Effect of Cortisol status on crown rump length 

Values are means ± SEM. 

t indicates P < 0.05 for age effect 

tt mdicates P < 0.01 for age effect 
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Effect of Cortisol status on GDP binding in BAT from fetal lambs 
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Figure 5.8 

a) Representative hnage of a Northem blot for UCPl and 18S, 10 îg RNA each 

lane. 

b) Effect of Cortisol administration on UCPl expression. 

Values are means ± SEM. 

(salme, n = 5; Cortisol, n = 5; mtact, n=5; adrenalectomised, n=5) 

Ref, reference sample (4 hour old lamb PAT mRNA); N, negative control (liver 

mRNA); I, hitact; ax, adrenalectomised. 

G129, 129 days gestation; G140, 140 days gestation 
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a) Representative hnage of a Westem blot for VDAC, 10 pg MP each lane. 

b) Effect of Cortisol administration on VDAC protem abundance 

Values are means ± SEM. 
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Table 5.1 

Associations between measured thermogenic and hormonal parameters in the 

four treatment groups. 

vs, versus; NS, non significant result; NA, result not available. 

UCPl mRNAvs 
UCPl protein 

Cortisol vs 
UCPl mRNA 

Cortisol vs 
UCPl protein 

GDP vs UCPl 
mRNA 

GDP vs UCPl 
protein 

T3vsUCPl 
mRNA 

T3vsUCPl 
protein 

T3 vs GDP 

Cortisol vs GDP 

saline 

R^ = NA 
NS 

R^= 0.0013 
NS 

R^=0.14 
NS 

R̂  = 0.11 
NS 

R- = 0.03 
NS 

R^=0.12 
NS 

R^=0.14 
NS 

R^=0.74 
NS 

R^=0.08 
NS 

Cortisol 

R^=0.65 
NS 

R^=0.08 
NS 

R^=0.28 
NS 

R̂  = 0.95 
NS 

R̂  = 0.84 
P = 0.01 ** 

R^=0.31 
NS 

R^=0.05 
NS 

R^=0.05 
NS 

R̂  = 0.09 
NS 

intact 

R^=0.31 
NS 

R̂  = 0.25 
NS 

R^=0.25 
NS 

R̂  = 0.36 
NS 

R^=0.30 
NS 

R^=0.03 
NS 

R̂  = 0.64 
NS 

R^= 0.003 
NS 

R̂  = 0.15 
NS 

ax 

R^=0.10 
NS 

R^= 0.023 
NS 

R̂  = 0.045 
NS 

R̂  = 0.020 
NS 

R^=0.39 
NS 

R^=0.08 
NS 

R^-0.05 
NS 

R^= 0.005 
NS 

R^-0 
NS 

all groups 

R^=0.29 
P = 0.043 * 

R^=0.05 
NS 

R^=0.40 
P= 0.001*** 

R̂  = 0.04 
NS 

R^=0.58 
P= 0.001*** 

R^= 0.018 
NS 

R̂  = 0.31 
P= 0.019* 
R^=0.14 

P=NS 

R^-0.07 
P=NS 
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5.4 Discussion 

Cortisol is known to have a role in the maturation of many tissues and organ 

systems, however, this is the first time a direct role in fetal adipose tissue 

development and function has been reported. 

5.4.1 Effect of Cortisol Status on Plasma Hormones 

Plasma concentrations of Cortisol in the saline and intact groups were within the 

normal range for the particular gestational age and exhibited the expected 

increase towards parturition. Cortisol is known to "auto-amplify" production of 

glucocorticoids by causing maturation of the adrenal gland (Naaman Reperant & 

Durand 1997). This may explain the rapid increase in fetal Cortisol levels prior to 

parturition. Both Cortisol and saline infused groups were studied at a gestational 

stage prior to the normal "surge" in plasma Cortisol levels. The increase in 

plasma Cortisol in the infused group mimicked the normal increase observed up-

to term, producing Cortisol concentrations similar to those in the intact group 

who were approximately 11 days older, and experiencing the late gestational rise 

in Cortisol. Conversely, plasma Cortisol concentrations in the adrenalectomised 

group were markedly reduced. 

As expected, plasma T3 concentrations were influenced by the Cortisol stattas of 

the fetus which has been well documented previously (Stein 1994; Thomas et al. 

1978). During late fetal life, Cortisol induces a switch in thyroid hormone 

metabolism that prepares the fetiis for extrauterine life. Fetal plasma Cortisol and 

T3 concentrations increase concurrently as Cortisol stimulates outer ring 
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deiodination of T4 (Wu et al. 1978). This explains the divergent T3 levels in the 

different groups of fetuses. Thyroxine levels were not significantly altered by 

Cortisol treatment, although values were slightly higher in the fetuses that 

underwent adrenalectomy and lower in the fetuses that received Cortisol. This can 

also be explained by the positive influence of Cortisol on T4 deiodinase. 

Thyroxine concentrations will therefore decline as T4 is transformed into T3 by 

the loss of an outer ring iodine, a reaction which is up-regulated by Cortisol (Wu 

1990). 

When the relationship between T3 and Cortisol is investigated, a positive 

correlation would be expected, however, if the two "control" groups are 

examined individually, a negative relationship between Cortisol and T3 is seen in 

the saline freated fetuses. It is possible that there is an age, or Cortisol 

concentration, "cut-off point above which Cortisol regulates T3 concentrations. 

It is therefore possible that above a certain plasma threshold, Cortisol along with 

other as yet unknown factors regulate T3 levels. 

5.4.2 Effect of Cortisol Status on Thermoregulation 

Although there were no statistically significant differences in GDP binding and 

UCPl abundance in the Cortisol treated fetuses, there was a strong frend towards 

higher potential activity of BAT and more UCPl protein. The adrenalectomised 

group however, exhibited a significantly lower UCPl abundance than intact 

controls. Despite the change in protein abundance, there was only a trend 

towards less UCPl mRNA in the adrenalectomised group. The mechanism of up-

regulation by Cortisol is unknown, but possible explanations are: 
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• increased P3- adrenoceptor abundance and activity on BAT 

• increased T3 concentrations up-regulating UCPl expression 

• induction of enzymes necessary for thermogenesis. 

Evidence for an increased number p3-adrenoceptors comes from publications 

indicating that Cortisol causes mattaration and development of these receptors in 

utero (Fowden et al. 1988). However, in vitro sttidies of mouse 3T3-F442A cells 

(a mouse cell line with the phenotype of WAT) have shown glucocorticoids to 

suppress expression of P3 adrenoceptors. This evidence however, is not from a 

whole animal study, nor from a BAT cell line and definitely not a fetal model. 

Interestingly, combined Cortisol and thyrotrophin releasing hormone (TRH) 

infusion of fetal lambs has been shown to have a stimulatory effect on lung P 

adrenoceptor binding capacity, despite a lack of effect of Cortisol alone (Fowden 

et al. 1988). This might explain the results from the in vitro study mentioned 

above, the Cortisol infusion of adipocytes in culture occurred under non-

physiological circumstances, as Cortisol would normally increase circulating T3 

concenfrations. 

Cortisol is also known to contribute to increased catecholamine concentrations 

during labour, delivery and cutting of the umbilical cord. Increased plasma 

catecholamine concentrations in utero could up-regulate UCPl through increased 

activity of p3-adrenoceptor activity i.e. adenylyl cyclase, this could upregulate 

UCPl activity without an increase of UCPl mRNA. This would occur via up-

regulation of free fatty acid liberation from triglycerides regulated by increased 
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cAMP and hormone sensitive lipase in BAT, thus, "unmasking" UCPl. Although 

no statistically significant changes in UCPl activity were observed, a strong 

trend for higher GDP binding was observed in the Cortisol treated group. 

Catecholamines have also been shown to directiy increase UCPl protein (Mory 

et al. 1984). In the rat, catecholamines, thyroid hormones and other factors have 

been shown to regulate UCPl expression via a 211-bp enhancer upstream of the 

UCPl gene, although it is not known if such an enhancer is present on the ovine 

UCPl gene (Cassard-Doulcier e? a/. 1998). 

Enhanced T3 concentrations in the Cortisol treated and intact group may also 

have influenced thermoregulation. As outiined in Chapter 5.4.1, Cortisol up-

regulates plasma T3 concentrations via increased activity of T4 deiodinase. This 

occurs normally during late gestation, causing a peak of plasma T3 around one 

day of age. Thyroid hormones have been shown previously to be important in the 

initiation of thermoregulation in newbom lambs (Bird et al. 1998; Heasman et al. 

2000; Schermer et al. 1996), with higher concenfrations being associated with 

enhanced thermoregulation and thyroidectomy associated with significantly 

lower thermogenic activity (Schermer et al. 1996). Triiodothyronine is thought to 

upregulate and stabilise UCPl expression (Guerra et al. 1996; Stein 1994) and 

abundance (Heasman et al. 2000) in BAT. Although no statistically significant 

changes were observed in UCPl, there was a trend towards higher UCPl 

expression in the Cortisol infused and intact groups and T3 was found to have a 

positive correlation with UCPl protein. Triiodothyronine has been documented 

to up-regulate activity of mitochondrial carriers, proton leak and electron 

transport chain components (Goglia et al. 1999) via responsive sequences on the 
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UCPl gene (Rabelo et al. 1995) (Cassard-Doulcier et al. 1998), all of which 

would influence thermoregulation positively. It is possible that Cortisol is acting 

in a "permissive" way, not directly increasing UCPl abundance and expression, 

but acting via increased plasma T3 concentrations. 

Cortisol is known to modulate the maturation of various enzymes during fetal 

development, including those for gluconeogenesis is in the liver. It is not known 

if Cortisol acts on lipolytic enzymes in adipose tissue, although TRH 

adminisfration to newborn caesarean section delivered lambs has been shown to 

increase plasma NEFA concentrations (Bird et al. 1998). If Cortisol did up

regulate triglyceride oxidative enzymes in BAT, this would further potentiate 

thermogenesis by providing extra free fatty acids to "unmask" the GDP binding 

sites of UCPl. 
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5.5 Conclusion 

Enhanced plasma Cortisol concentrations in the late gestation sheep fetus have 

been shown to increase UCPl protein abundance and UCPl expression in 

association with increased plasma T3. In contrast, impaired Cortisol secretion 

resulted in significantly reduced UCPl protein abundance, UCPl expression in 

association with increased plasma T3. 

In conclusion the increase in UCPl mRNA expression and protein abundance 

observed in ovine perirenal adipose tissue during late gestation is mediated, in 

part, by the prepartum rise in plasma Cortisol. 
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CHAPTER 6 

PRODUCTION OF 

POLYCLONAL ANTIBODIES 

AGAINST A SPECIFIC 

MITOCHONDRIAL PROTEIN 



6.1 Introduction 

The discovery of the UCPl homologues, UCP2 and 3 (Fleury et al. 1997; 

Riquier 1997; Vidal-Puig 1997) has provided another line of research into 

thermoregulation and energy regulation. However, there are no commercially 

available antibodies for ovine UCP2 or 3 and serious doubts have been raised 

against the sensitivity of those available for rodents (Jezek et al. 1999). 

Knowledge of the presence and relative abundance of the UCP homologues in 

neonatal tissues would provide us with more information on their role in the 

production of heat at birth and possibly explain fiirther the results of Chapter 3. 

Purification of UCPl relies on detergent solubilisation from mitochondria 

followed by purification by hydroxyapatite column chromatography as described 

by Lin and Klingenberg (Klingenberg & Lin 1986; Lin & Klingenberg 1980; Lin 

& Klingenberg 1982) and Tiselius as described by Bemardi (Bemardi 1973). The 

detergents used for extraction of UCPl have been selected and optimised 

according to the following parameters: 

1. solubilisation 

2. retention of nucleotide binding 

3. stability of binding and homodisperity (Klingenberg & Lin 1986) 

An important step in the purification of UCPl is separation from ADP/ATP 

carrier, which has certain similar properties and is of a similar molecular weight 

(30 Kda) (Lin & Klingenberg 1982). The purification method developed by Lin 

and Klingenberg (Lin & Klingenberg 1980; Lin & Klingenberg 1982) utilised the 

observation that UCPl was more easily detached from the mitochondrial 
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membrane than the ADP/ATP carrier, therefore less detergent was needed and 

very little salt. Triton-x-100 has been shown to be the most suitable detergent for 

purification of UCPl as it solubilises the protein effectively, while retaining 

binding capacity (Lin & Klingenberg 1982). Before extraction with triton-x-100, 

soluble proteins and those peripheral to the membranes can be removed by pre-

treatment with a non-solubilising detergent such as Polyoxyethylene -w-1 

(PEW-1), however, the sedimented membranes should be washed free of PEW-1 

by resuspension in a sucrose buffer in order to use minimum amounts of triton-x-

100 for the subsequent solubilisation. This is due to PEW-1 sequestering triton-x-

100 by forming mixed micelles (Lin & Klingenberg 1982). 

Hydroxyapatite column chromatography has been shown to be the most effective 

method of purification of UCPl (Klingenberg & Lin 1986). When the frhon-x-

100 extract of mitochondria is applied to a hydroxyapatite column, a rapid and 

high degree of purification id obtained, UCPl is confined to the breakthrough 

whereas most other solubilised proteins are adsorbed. If the hydroxyapatite 

column is mn at room temperature, the ADP/ATP carrier is denatured and 

absorbed (Lin & Klingenberg 1982). 

Antisemm against ovine UCPl has been successfially produced in our laboratory 

for use in westem blotting and immunohistochemistry (Schermer et al. 1996) 

using the above purification technique. The predicted amino acid sequence of 

human and rodent UCP2 is 59% homologous to the sequence of human and 

rodent UCPl (Fleury et al. 1997) and the predicted sequence of human UCP2 

shows a triplicated stmctiire common to UCPl and other mitochondrial carriers 
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(Vidal-Puig 1997). It was therefore proposed that a method known to isolate 

UCPl and the ADP/ATP carrier would be suitable for the purification of UCP2. 

6.1.1 Aim 

The aim of this sttidy was to produce specific antibodies against UCP2 that could 

be used in immunohistochemistry and westem blotting in order to assess the 

postiiatal ontogeny and hormonal regulation of UCP2 in the sheep. 

6.2 Methods 

6.2.1 UCP2 Peptide Purification 

Mitochondrial Preparation 

Mitochondrial fractions were prepared as previously described (Symonds et al. 

1992) from 50g of one - month old lamb kidney. Kidney was chosen as at the 

time, it has been shown to expresses only the UCP2 homologue (Fleury et al. 

1997; Fleury & Sanchis 1999) although this has recentiy been questioned 

(Pecqueur et al. 2001). The final mitochondrial pellets (see Chapter 2.3.1a) were 

resuspended in approximately 1 ml of MOPS buffer (20 mM MOPS, 20 mM 

sodium sulphate anhydrous, 1 mM EDTA (pH 6.7)) and pooled to give a total 

volume of- 20 ml. A 1 ml portion of this mitochondrial fraction was saved at -

20 °C for total protein assessment, the remaining mitochondrial suspension was 

mixed with an equal volume of 5 % (w/v) Polyoxyethylene -w-1 (PEW-1) and 

incubated at 0 °C for 30 minutes prior to centrifugation at 28,000 rpm for 30 

minutes at 4 °C. The resulting mitochondrial pellet was resuspended in 

approximately 20 ml of tris-sucrose buffer (0.3 M sucrose, 10 mM fris-HCl, 2 
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mM EDTA (pH 6.7)) and further centrifuged at 28,000 rpm for 30 minutes at 4 

°C. The pellet was this time resuspended in 20 ml 5 % (w/v) triton-x-100 and 

incubated at 0 °C for 30 minutes followed by centrifiigation at 28,000 rpm for 30 

minutes at 4 °C. The resulting supematant was stored for hydroxyapatite 

chromatography. Figure 6.1 demonstrates this method in flow chart format. 

Hydroxyapatite Column Chromatography 

Hydroxyapatite (HA) (Bio - gel Hydroxyapatite gel, Biorad Laboratories) was 

equilibrated with the MOPS buffer (100 ml HA added to 600 ml MOPS buffer) 

with gentle mixing for 10 minutes then allowed to settle. The supematant 

containing "fines" was removed and the HA equilibrated with a further 600 ml 

MOPS buffer, allowed to settle and the supematant removed. This procedure was 

repeated once more and the resuhing sediment was resuspended in 100 ml MOPS 

buffer and poured into a 50 cm^ burette. Once the column was completely settled 

the void and breakthrough volume were estimated using 0.05 % (w/v) methyl 

orange dye. Twenty ml of dye was loaded onto the colunrn and the volume at 

which dye was first eluted, and when dye was no longer eluted were measured. 

The void volume represents the volume of buffer eluted prior to peptides and the 

break-though volume is an estimate of the volume to be collected. These values 

are approximate as they represent the movement through the column of a dye and 

do not account for the slower movement of protein sample. 

The triton-x-100 supematant was applied to the column at room temperature and 

allowed to move through under normal air pressure, MOPS buffer was added to 

the top of the column at the same rate of elution. The break-through fraction was 

collected on ice and stored at - 20 °C until fiirther analysis. 
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Ultrafiltration 

The protein samples obtained were further purified and concentrated using spin 

ultrafilfration. Centriprep 10 (Amicon, Millipore Corporation, UK) spin 

concenfrators were initially used to remove excess buffer from the peptide 

fractions. These have a specific molecular weight cut of point of 10 Kda and any 

peptides smaller than this are removed from the solution through the pressure of 

centrifugation and the remaining peptides become increasingly concentrated as 

the operation continues. The resulting solution was then applied to a 100 KDa 

spin concentrator (Centrex UF-2 Centrifiigal Filter; Schleicher and Schnell Uk 

Ltd) to remove any large molecular weight particles. 
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Preparation of mitochondria (Chapter 2.3. l.a). 

i 
Pre-treatment with a non-solubilising, nonionic detergent (PEW-1). This opens 

membranes and removes soluble and loosely bound proteins, thus reducing the 

requirement for solubilising detergent. 

1 
Solubilisation with a nonionic, solubilising detergent (trition-x-100). This 

recovers membrane components of the mitochondria. 

i 
Purification on HA colunrn. UCPl has been shown not (in contrast to other 

extracted proteins) to be adsorbed into the HA. 

1 
Concentration using ultrafilfration. Specific molecular weight cut-off spin 

concentrators remove excess buffer and proteins with an undesired molecular 

weight. 

1 
Gel electrophoresis to determine molecular weight and purity. SDS-PAGE is 

used to visualise the purified peptide. 

Figure 6.1 

Flow diagram of UCP2 purification method 
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6.2.2 Protein Concentration Determination 

Initially, protein concenfrations were determined using the Lowry Assay 

(Chapter 2.3.2), however, this provided unsatisfactory results. It has been shown 

that the Lowry assay is sensitive to detergents (Yeang et al. 1998), therefore an 

altemative method of protein concentration, the bicinchoninic acid assay (BCA 

assay), was utilised. The BCA assay was developed by Smith et al 1985 and 

modified by Wiechelman et al 1988 (Smith et al. 1985; Wiechelman et al. 1988) 

and is used to determine total protein concentrations of mitochondria prepared 

using detergents. 

6.2.2.a Principle of the Assay 

The BCA assay measures the formation of Cu^' from Cu"̂ ^ by the Biuret complex 

in alkaline solutions of protein. It was originally thought that the mechanism of 

the assay was the same as in the Lowry assay, but it has since been determined 

that there are two distinct reactions that take place with copper ions unique to the 

BCA assay. The first reaction occurs at lower temperatures and is the result of 

the interaction of copper and BCA with the following residues: cysteine, cystine, 

tryptophan and tyrosine. At elevated temperatures it has been shown that the 

peptide bond itself is responsible for colour development. This is why 

performing the assay at 37 °C increases the sensitivity and reduces the variation 

in the response of the assay to protein composition. The BCA reagent replaces 

the Folin-Ciocalteu reagent used in the Lowry assay with bicinchoninic acid. 

The BCA reagent forms a complex with Cu^', which has a strong absorbance at 

562 nm. BCA is advantageous in that it does not interact with as many 

substances as the Folin-Ciocalteu reagent, especially detergents and buffers. 
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was 

6.2.2.b Assay Procedure 

Protein samples were diluted between I in 5 and 50 in 0.9 % saline to ensure 

concenfrations fell within the linear range. A standard curve (0 - 1 mg/ml) 

prepared using bovine semm albumin (BSA) in 0.9 % saline. Solutions A (1 % 

BCA, 2 % sodium carbonate, 0.16% sodium tartrate and 0.4 % NaOH, pH 11.25 

with 10% sodium bicarcarbonate) and B (4 % copper sulphate) were prepared 

and a ratio of 100A:2B was mixed on the day of assay. Two mis of A:B mix was 

added to 100 pi sample/standards in duplicate and were incubated at 60 °C 30 

minutes following which absorbance at 570 nm was measured. Protein 

concentrations were determined following linear regression analysis of the 

standard curve and corrected for the initial dilution. The intra- and inter-assay 

coefficients of variation were 4.9 % (n=3) and 2.0 % (n=3) respectively. 

6.3.2 Protein Visualisation 

In order to visualise the proteins isolated from hydroxyapatite column 

chromatography, and determine their molecular weight, SDS-PAGE was carried 

out and the resulting gels stained using either Coomassie Brilliant Blue or silver 

nitrate. 

6.3.2.a Coomasssie Blue Staining 

SDS-PAGE was camied on purified proteins as described in Chapter 2.3.4. In 

this case, proteins were not blotted onto a nifrocellulose membrane, but were 

irteversibly stained with Coomassie Brilliant blue (CBB) dye. CBB is a 

commonly used staining procedure for the detection of proteins. It is the method 
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of choice if SDS is used in the elecfrophoresis of proteins, and is sensitive for a 

range of 0.5 to 20 pg of protein. 

CBB Staining Procedure 

After SDS-PAGE the gel was fixed in fixing solution (40 % (v/v) methanol and 7 

% (v/v) acetic acid) for 1 hour, this immobilises the proteins. Proteins are then 

stained with CBB (0.025 % CBB, 40 % methanol, 7 % acetic acid made up to 

volume with dH20) for up to 2 hours with mixing. Excess CBB was removed by 

incubating with destain solution 1 (25 % (v/v) methanol, 10 % (v/v) acetic acid 

made up to volume with dH20) for approximately 20 minutes followed by up to 

24 hours in destain solution 2 (25 % (v/v) methanol made up to volume with 

dH20) until the desired resolution is obtained. The gel was washed several times 

in dH20 prior to drying. Gels were placed upside - down onto a sheet of saran 

wrapT'̂  then inverted onto two pieces of blotting paper, the gel "sandwich" was 

then dried for 3 hours using a (Scie-Plas Gel Drier (GD4534); Heto Laboratory 

Equipment). Figure 6.2 shows the 34 KDa peptide band obtained from CBB 

staining. 

6.2.3.b Silver Staining 

Silver staining was also used to visualise proteins after SDS-PAGE. Silver 

staining is a more complex protocol but gives much greater senshivity. Silver 

staining uses colloidal silver to stain proteins. The silver ions (Ag"") bind to 

protein bands and are deposited as metallic silver (Ag°). The silver stains the 

bands black/brown. Silver stains can detect protein bands containing levels as a 

low as 1 ng and thus are more sensitive than CBB stains. This procedure was 
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carried out according to the method of Hariow and Lane (Hariow & Lane 1988) 

and Sambrook et al (Sambrook et al. 1989). 

Silver Staining Procedure 

As with CBB staining, the gel is removed from the electrophoretic equipment 

and not blotted. The gel was washed for 30 minutes in prefixing solution 1 (50 % 

(v/v) methanol, 10 % (v/v) acetic acid made up to volume with dH20) followed 

by a 30 minute wash in prefixing solution 2 (5 % (v/v) methanol, 7 % (v/v) acetic 

acid made up to volume with dH20). The gel was then fixed for 30 minutes in 10 

% (v/v) gluteraldehyde followed by over night rinsing in a large volume of 

dH20. The following day the gel was soaked in reducing solution (5 pl/ml 

dithiothreitol (DTT) made up to volume with dH20) for 30 minutes followed by 

30 minutes treatment with 0.1 % (w/v) silver nitrate solution. The gel was then 

rinsed once in dH20 then twice rapidly with developing solution (0.0185 % (v/v) 

formaldehyde, 3 % (w/v) sodium carbonate made up to volume with dH20) 

followed by soaking in developing solution until a desired stain is achieved. 

Staining was then stopped by the addition of 5 ml 2.3 M cifric acid. The gel was 

washed several times in dH20 prior to drying (described in Chapter 6.2.3.a). 

Figure 6.3 shows the single 34 KDa peptide band obtained with silver staining. 

6.2.4 Immunisation of Rabbits 

Three female New Zealand White rabbits were immunised with the putative 

UCP2 protein. An initial 100 pg immunisation was given in non-ulcerative 

Emends Adjuvent (Guildhay Ltd, UK) at 2 sites either side of the spine, 4 cm 

away from the spine between the shoulders and the hips. Rabbits were given 3 

booster immunisations of 75 pg UCP2 peptide in the same way. All blood 
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samples were taken from the marginal ear vein. Nine months after the initial 

immunisation, the rabbit with the most promising antisemm was humanely 

euthanased with an overdose of sodium pentobarbitone (Euthatal) given via the 

marginal ear vein prior to exsanguination. 

6.2.5 Antibody Screening 

The specificity and quality of the antisera obtained was assessed using westem 

blotting (see Chapter 2 for details). This method was chosen, as it is the assay for 

which the antibodies are required. Unforttmately, none of the UCP2 antibodies or 

positive confrol peptides that are available commercially are ovine specific and 

there is concem about the cross reactivity of the available UCP2 antibodies with 

other members of the uncoupling protein family (Jezek et al. 1999; Pecqueur et 

al. 2001). For this reason I was unable to obtain adequate positive and negative 

confrols at the time of antisera screening. To assess non-specific antibody 

binding a pre-immunisation bleed was taken from all rabbits. This plasma was 

used along side post-immunisation plasma to determine specific antibody 

binding. The purified protein and the kidney mitochondrial fraction from which it 

was purified were used as positive controls on all gels. Westem blotting was 

carried out following each antisemm sampling to determine which titre was most 

immunoreactive. 
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M Ho MP P Ts Tx Col 

34kDa 

Figure 6.2 

Protem Gel stamed whh CBB dye 

M, molecular weight markers; Ho, kidney mhochondrial homogenate; MP, 

kidney mitochondrial protem; P, PEW-1 extract; Ts, tris sucrose buffer extract; 

Tx, trhon-x-100 extract; Col. column breakthrough fraction. 
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M Ho MP P Ts Tx Col 

34kDa 

Figure 6.3 

Protem Gel stamed with silver 

M, molecular weight markers; Ho, kidney mitochondrial homogenate; MP, 

kidney mitochondrial protem; P, PEW-1 extract; Ts, tris sucrose buffer extract; 

Tx, triton-x-100 extract; Col, column breakthrough fractions. 
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M Tx Col M 

34kDa 

Figure 6.4 

Protein Gel stained whh silver 

M, molecular weight markers; Tx, trUon-x-100 extract; Col, column 

breakthrough fractions. 
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6.3 Results 

6.3.1 Purification of UCP2 

Detergent treatment of kidney mitochondrial suspensions produced a different 

protein spectmm when compared to unp-eated suspensions on SDS-PAGE 

(Figures 6.2 and 6.3). When the triton-x-100 supematant was subjected to HA 

column chromatography, SDS-PAGE and subsequent staining revealed a 

significant band at approximately 34 KDa (Figures 6.2 and 6.3). With further 

purification and concentration, a single band was visible at this molecular weight 

(Figure 6.4). The purity of this band was thought to be suitable for antibody 

production. 

6.3.2 Antibody Selection 

Semm from only one of the immunised rabbhs showed immunoreactivity against 

the peptide and kidney mitochondrial suspension. Figure 6.5 shows the results 

from westem blots with semm from the fourth booster injection sample from 

rabbit 498. It was decided that this semm would be specific enough for westem 

blotting and the rabbit was humanely euthanased so that as much semm as 

possible could be obtained. Westem blots with semm taken prior to 

immunisation did not detect any bands at the desired molecular weight (Figure 

6.6). When further westem blots were carried out it was clear that the sera 

detected a band at 34 KDa in not only kidney, but also BAT and muscle. This 

was encouraging, as these tissues had been shown to express UCP2 at a high 

level in previous papers (Fleury et al. 1997; Fleury & Sanchis 1999). 
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Peptide 
K BAT Mus 

34kDa 

Figure 6.5 

Westem blots detected with semm from rabbit 498 (1 in 1000 dilution) after 

fourth booster immunisation, 8 months after initial immunisation, (peptide and 

samples were not mn on the same gel) 

K, kidney MP; BAT, 7 day old lamb BAT MP; Mus, 7 day old lamb skeletal 

muscle MP 
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M P K Mus Liv M 

Figure 6.6 

Westem blots detected with semm from rabbit 498 (1 in 800 dilution) prior to 

immunisation 

M, molecular weight marker; P, UCP2 peptide; K, kidney MP; Mus, 1 day old 

lamb skeletal muscle MP; Liv, liver MP. 
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6.3.3 Sequencing and Confirmation 

Subsequently, I had the opporttinity to have the purified protein sequenced and 

have a westem blot containing the purified protein detected with a specific UCP2 

antibody. These analyses were carried out by Martin Brand (MRC Dunn Human 

Nutrition Unit) and Bmno Miroux (CEREMOD-CNRS, France) respectively. 

Sequencing was carried out by in-gel tryptic digest followed by extraction and 

mn on a Maldi TOE mass spectrometer. The resulting sequence was then 

matched against a database of known sequences. Figure 6.7 shows the results 

from the database analysis, the higher the MOWSE score, the higher number of 

peptide masses matched, and the more likely the "hit" is. In Figure 6.7, the 

percentage of peptide masses matched, protein molecular weight, accession 

number from NCBI protein database fhttp://www.ncbi.nlm.nih.gov/entrezA). 

species and protein name are listed. Obviously, this sort of confirmation is 

optimally cartied out prior to antibody production, but was not available at this 

stage. However, I thought it would provide definitive confirmation of the peptide 

sequence. The results of the sequencing were clear that the peptide was not 

UCP2, but the voltage dependent anion channel (VDAC) isoform 1 (Figure 6.7). 

Similar results were obtained from Bmno Miroux who confirmed that his 

sensitive UCP2 antibody did not detect my purified peptide and suggested that it 

was VDAC. 
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Figure 6.7 

Results from Mass Spectrometry and database analysis of putative UCP2 protein. 
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Figure 6.8 

Peptide sequence for PORlRabit, the most closely matched protein to the 

putative UCP2 peptide. Taken from http://www.ncbi.nlm.nih.gov/ accession 

number Gl: 10720225 (Q9TT15). 
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6.4 Discussion 

The reason for the unsuccessful production of UCP2 is most likely that it is not 

present in the kidney. Some of the factors that may have been important are: 

• The tissue used for protein purification 

• The method of protein purification 

Kidney was chosen for UCP2 protein purification as published data demonstrated 

that it was a tissue with a high expression of UCP2 (Fleury et al. 1997; Gong 

1997) and that it contained no other UCP homologue. However, as discussed in 

Chapters 1 and 3, mRNA expression has been shown not to be conclusive 

evidence that the uncoupling protein in question is franslated and incorporated 

into mitochondrial membranes. More recent data suggests that UCP2 mRNA 

levels do not cortclate with the variation of the protein and that UCP2 protein is 

expressed at very low levels in vivo (Pecqueur et al. 2001). Quantitative analysis 

of mouse tissues by the same group has shown that UCP2 protein is four and ten 

times less abundant in lung and stomach, respectively, than spleen mitochondria 

and that UCP2 is approximately 160-fold less abundant in spleen mitochondria 

than UCPl is in BAT mitochondria (Pecqueur et al. 2001). This equates to 

approximately 313 ng UCP2/mg of mitochondria in spleen and 78 ng/mg in lung 

(Stiaart et al. 2001b). The peptide purified in this study had an abundance of 

approximately 0.11 mg/mg of mitochondria, this equates to 11 % of 

mitochondrial protein. 

If the above information regarding UCP2 tissue abundance had been available at 

the time of the sttidy it would have been clear that the purified peptide was a 

mitochondrial protein other than UCP2. VDAC is known to make up around 

20 % of mitochondrial protein (Gottiieb 2000), which cortelates well with the 
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abundance I observed. There may also be species differences, UCP2 mRNA 

appears to be highly expressed in the kidney of human and rodents, however, 

UCP2 may be expressed to a lesser extent in ovine sample. 

The kidney is a highly metabolic tissue, involved in many physiological 

processes, receiving approximately 25 % of total cardiac output (Ganong 1995) 

this suggests that kidney mitochondria are highly active, containing many 

proteins involved in substrate metabolism. One of the main functions of the 

kidney is the formation and excretion of urine; this involves the reabsorption and 

secretion of solutes across the tubules. The role of VDAC is highly compatible 

with this function so it is not surprising that VDAC was found to be highly 

abundant in this organ, perhaps at such a high abundance, that any UCP2 was 

"quenched" by VDAC. If this attempted isolation of UCP2 were to be repeated, 

the lung currently appears to be a better candidate tissue for UCP2 production 

(see Figure 7.6). 

The purification technique employed was chosen for a number of reasons; it was 

cheap, quick and produced a protein from an ovine tissue rather than a 

recombinant peptide sequence as the ovine UCP2 sequence was not available at 

that time. The method was well documented and verified for the purification of 

UCPl in ovine adipose tissue (Schermer et al 1996). The sequence homology 

between UCPl and UCP2 is 59 % (Fleury et al. 1997) and both share the 

triplicate stmctiire of 100 amino acids found for all mitochondrial carriers of the 

inner mitochondrial membrane (Fleury & Sanchis 1999). It was hoped that such 

similarities would allow UCP2 to be extracted in the same way as UCPl. UCP2 
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may not be adsorbed onto the HA column in the same way as UCPl, but as the 

exact method of protein adsorption and interaction with HA is unknown 

(Bemardi 1973), it may not be possible to investigate this further. 

6.5 Conclusion 

Despite the unsuccessful production of UCP2 antibodies, serendipity prevailed 

and a specific antibody was raised against the equally interesting protein, VDAC. 

There appears to be a lack of knowledge regarding VDAC in the neonatal and 

fetal period, thus much more work can be carried out to investigate its role in the 

transition from fetal to neonatal life and its endocrine and nutritional regulation. 

Further work may be cartied out in order to produce a specific ovine UCP2 

antibody as there is still some concem regarding the specificity of the mouse 

UCP2 antibody we are currently utilising. 
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CHAPTER 7 

ONTOGENY OF OVINE 

BROWN AND WHITE ADIPOSE 

TISSUE MITOCHONDRIAL 

PROTEINS AND TISSUE 

DISTRIBUTION OF VDAC 



7.1 Introduction 

In light of the results of Chapter 6 I carried out an extensive literature review on 

VDAC and it's role in fetal and perinatal development. The overwhelming out

come was that very little was known about the role of VDAC, a mitochondrial 

channel protein, at these critical times when the need for thermogenesis is 

greatest. 

VDAC is a 283 amino acid protein that forms an anion selective channel, 

generally considered to be the main pathway for metabolite and ion diffusion 

across the outer mitochondrial membrane due to its propensity to form pores 

(Colombini 1979). Mitochondrial respiration is influenced by changes in the 

permeability of the outer membrane regulated by VDAC (McEnery et al. 1993). 

VDAC has been shown to have a number of additional functions and is also 

thought to be present in other cellular membranes (Bathori et al. 2000; Reymann 

et al. 1998; Shinohara et al. 2000; Thinnes & Reymann 1997). Hexokinase and 

other mitochondrial enzymes bind to VDAC to obtain selective access to 

mitochondrially generated ATP, this may control delivery of glucose-6-

phosphate into the glycolytic pathway (McEnery et al. 1993). Cytochrome c also 

binds to VDAC, but the physiological significance of this is unclear. It has been 

suggested, however, that VDAC serves as part of the undefined pathways for 

release of cytochrome c from the inter-membrane space, a process that has been 

implicated in the chain of events involved in apoptosis (Cai et al. 1998; 

Crompton 1999; Crompton et al. 1998; Desagher & Martinou 2000; Vander 
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Heiden era/. 2001). 

7.1.1 Aim 

The aim of this study was to utilise the specific ovine VDAC antibody to 

investigate the postnatal ontogeny of VDAC and to compare it with other 

important mitochondrial proteins namely, cytochrome c and UCPl and to 

investigate the tissue distribution of UCP2 and VDAC. 

7.2 Methods 

7.2.1 Experimental Design 

BAT was sampled from the perirenal region of fetal lambs at 145 days gestation 

(n=4) and postnatal lambs at 4 hours (n=5), 1 (n=5), 7 (n=5) and 30 days (n=5) of 

life after a lethal does of anaesthetic (200 mg kg-1 pentobarbital sodium: 

Euthatal: RMB Animal Health, UK). Tissue samples were also taken from the 

following regions for tissue distribution studies; hind limb skeletal muscle, heart 

muscle (left ventricle), brain (cortex), liver, spleen, pancreas (all from 7 day old 

lamb), late gestation whole placentome, manunary gland (late gestation ewe) and 

white adipose tissue (30 day old lamb). 

7.2.2 Laboratory Procedures 

Mitochondria were prepared from PAT as described in chapters 2.3.1 and 2.3.6 

in order to asses VDAC, UCPl and cytochrome c abundance with westem 
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blotting. Mitochondria were also prepared from a number of different tissue 

types (see Figures for details) in order to asses the distribution of VDAC and 

UCP2. UCP2 was detected using a specific mouse UCP2 antibody that was 

provided by Dr Bmno Miroux. 

7.2.3 Statistical Analysis 

Statistical analysis with respect to significant differences (p < 0.05) between 

values obtained from the different ages of lambs was carried out using Mann-

Whitney U test. 
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7.3 Results 

7.3.1 VDAC Ontogeny 

VDAC protein abundance peaked at day 1 of postnatal age in BAT as shown in 

Figure 7.1. VDAC was present in fetal brown adipose tissue at an equivalent 

abundance to that of 4 hour - old lambs. Between 4 hours of age and 1 day, there 

was a significant increase in VDAC (P=0.009). Following the peak abundance at 

1 day of age there was a significant reduction in VDAC up to 7 days (P=0.008) 

and a fiirther reduction up to 30 days of postnatal age (P=0.009). Between 1 and 

30 days of postnatal age there was a 90 % reduction in VDAC abundance. 

7.3.2 UCPl Ontogeny 

UCPl abundance increased significantiy in BAT between late fetal life and 4 

hours of day of age in the lamb (P=0.008) (Figure 7.2). Like VDAC, UCPl also 

peaked at day 1 (P=0.003), and declined up to day 7 of postnatal age (P=0.001). 

However, by 30 days of age there was no detectable UCPl protein in PAT 

(P=0.006 compared with day 7) although UCP2 was still present (Figure 7.5). 

7.3.3 Cytochrome c Ontogeny 

The cytochrome c ontogeny was similar to that of VDAC and UCPl. There was 

no difference in cytochrome c between late fetal and early neonatal values 

(Figure 7.3). However, abundance of cytochrome c significantly increased to 

peak at day 1 of postnatal age (P=0.021). There was then a reduction in 

cytochrome c up to 7 (P=0.021) and 30 days of age (P=0.02) although 
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cytochrome c was still detectable. 

7.3.4 UCP2 Tissue Distribution 

UCP2 was found to be highly expressed in lung, spleen and white adipose tissue 

(Figure 7.6). It was not possible to analyse UCP2 abundance in BAT, heart and 

skeletal muscle, as the antibody is known to cross-react with UCPl and UCP3. 

Unlike UCPl, UCP2 was still highly abundant in 30-day-old lamb adipose tissue 

(Figure 7.5). 

7.3.5 VDAC Tissue Distribution 

VDAC was found in a wide variety of fetal, neonatal and also aduh tissues 

(Figure 7.7). The highest abundance of VDAC appeared to be in heart, brain, 

skeletal muscle (although not shown) and kidney from 7 day old lambs. VDAC 

was found to be present in the placenta, lung, spleen, liver and pancreas, but at a 

reduced abundance. No VDAC was detectable in non-lactating mammary gland 

from a 140-day gestation ewe. Immunohistochemistry was carried out by 

Victoria Wilson (Experimental Officer, Child Health), to further investigate the 

location of VDAC in certain tissues. Figure 7.8 shows the location of VDAC in a 

kidney section from an adult ewe, the VDAC is clearly present in the tubules of 

the kidney. Figure 7.9 confirms the presence of VDAC in human placenta and 

Figures 7.10, 7.11 and 7.12 show VDAC in aduh sheep PAT, skeletal muscle and 

placentome respectively. Human placental sections were included in the analysis 

in order to establish if the antibody would cross react with human VDAC so that 

it could be utilised in fiarther studies. Immunohistochemistry was carried out on 6 
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pm sections tissues with Hams's Haematoxylin as a counter stain using the Dako 

Envision system (Dako, UK). 
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Figure 7.1 

Abundance of VDAC in BAT from late gestation, to one month of age in the 

lamb. 

a) Representative image of a Westem blot for VDAC, 10 pg MP each lane. 

b) Effect of postnatal age on VDAC protein abundance 

Values are means ± SEM (n=5 each age). 

MP, mitochondrial protein; Ref reference sample (7 day old lamb skeletal 

muscle mitochondria) 

** indicates P < 0.01 for age effect 
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Figure 7.2 

•3d 4h Id 

Age 

7d 30d 

Abundance of UCPl in BAT from late gestation, to one month of age in the 

lamb. 

a) Representative image of a Westem blot for UCPl, 10 pg MP each lane. 

b) Effect of postnatal age on UCPl protein abundance 

Values are means ± SEM (n=5 each age). 

MP, mitochondrial protein 

* indicates P < 0.05 for age effect 

** indicates P < 0.01 for age effect 
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Figure 7.3 

Abundance of cytochrome c in BAT from late gestation, to one month of age in 

the lamb. 

a) Representative image of a Westem blot for cytochrome c, 10 pg MP each 

lane. 

b) Effect of postnatal age on cyt c protein abundance 

Values are means ± SEM (n=4 each age). 

MP, mitochondrial protein 

* indicates P < 0.05 for treatment effect 
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Figure 7.4 

Effect of postnatal age on VDAC, UCPl and cytochrome c protein abundance m 

BAT 

Values are means ± SEM. 
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30 davs +ve 

Figure 7.5 

Representative image of a Westem blot for UCP2, 10 pg MP each lane. 

30 days (WAT tissue); +ve, UCP2 peptide (5ng). 
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M Ht B 8p L Liv WAT Plac +ve 

Figure 7.6 

Representative image of a Westem blot for UCP2, 10 pg MP each lane. 

MP, mitochondrial protein; M, skeletal muscle; Ht, heart; B, brain; L, lung; Liv, 

liver; Plac, placenta (145 day gestation, "A" type whole placentome); WAT, 

white adipose tissue (30 day old lamb); Sp, spleen (7 day old lamb); +ve, UCP2 

peptide (5ng). 
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Figure 7.7 

Representative image of a Westem blot for VDAC, 10 pg MP each lane. 

MP, mhochondrial protein; Ht, heart; B, brain; L, lung; Pan, pancreas; Liv, liver; 

Plac, placenta (145 day gestation, "A" type whole placentome); MG, mammary 

gland (late gestation ewe); K, kidney; WAT, white adipose tissue (30 day old 

lamb); 8p, spleen (7 day old lamb). 
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Figure 7.8 

Images of ovine kidney detected whh VDAC (1 in 400 dilution of antibody). All 

longhudinal sections. 

a) Negative control section, not incubated whh antibody. Kidney from aduh ewe. 

140 X magnification 

b) Aduh ewe kidney section incubated whh VDAC (1 m 400) 140 X 

magnification 
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Figure 7.9 

Images of human placenta detected with VDAC. All longitudmal sections. 

a) Human placental section hicubated whh VDAC (1 in 100) 70 X magnification 

b) Human placental section mcubated with VDAC (1 m 100) 140 X 

magnification 
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a) 

b) 

Figure 7.10 

Images of ovine aduh PAT detected with VDAC. All longitudinal sections. 

a) Negative control section, not mcubated with antibody. PAT from aduh ewe. 

70 X magnification 

b) Ovme aduh PAT section mcubated with VDAC (1 m 100) 70 X magnification 
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b) 

Figure 7.11 

Images of ovine aduh skeletal muscle detected with VDAC. All longitudinal 

sections. 

a) Ovme skeletal muscle section incubated whh VDAC (1 m 400) 17.5 X 

magnification 

b) Negative control section, not incubated whh antibody. Skeletal muscle from 

aduh ewe 70X magnification 
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Figure 7.12 

Images of ovine placentome detected with VDAC. All longitudinal sections. 

a) Ovme placentome section incubated whh VDAC (1 m 100) 140 X 

magnification 

b) Negative control section, not incubated with antibody. Ovine placentome 

140X magnificat io n 
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7.4 Discussion 

7.4.1 BAT Ontogeny of VDAC, Cytochrome c and UCPl 

The ontogeny's of VDAC, cytochrome c and UCPl were found to be similar, all 

with a peak in abundance at day 1 of age. 

The peak abundance of UCPl at day 1 of postnatal age is critical for the 

production of heat through non-shivering thermogenesis for the neonatal lamb 

who relies on BAT thermogenesis for heat production before the appearance of 

subcutaneous WAT and a thick fleece. UCPl mRNA and protein have previously 

been shown to peak at around the time of birth in the lamb (Clarke et al. 1997b, 

Finn, 1998 #105) and the current results correlate well with these published 

findings. UCPl is then down-regulated in the first month of age when the 

adipose tissue adopts the characteristics of WAT, that is: no UCPl, unilocular fat 

droplets with few cellular organelles (Casteilla 1989; Gemmel et al. 1972), 

however, UCP2 is still abundant in WAT at this time. 

The postnatal ontogeny of VDAC was found to be similar to that of UCPl. 

VDAC had high antenatal abundance in ovine BAT, the function of VDAC 

during the fetal period is unknown, although it may be involved in the supply of 

ATP and ADP to the mitochondria of developing fetal tissues. The reduction in 

VDAC with increasing postnatal age was also similar to the ontogeny of UCPl. 

This may be related to the changing metabolic requirements of brown adipose 
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tissue. The metabolic requirements of BAT decline with increasing postnatal age 

as its role changes from that of an active heat producing tissue, to one with a 

major role in the storage of energy as fat. VDAC is known to control ATP flux 

across the outer mitochondrial membrane (Rostovtseva & Colombini 1996) and 

this role correlates well with the reduced abundance of VDAC as the energy 

requirements of BAT decline with increasing postnatal age. 

VDAC is also a component of the mitochondrial permeability transition pore 

(MPTP) which is thought to be involved in apoptosis and also necrosis 

(Crompton 1999). The MPTP is formed from a complex of VDAC, the adenine 

nucleotide translocase and cyclophilin-D at contact sites between the outer and 

inner mitochondrial membrane (Crompton et al. 1998). There is evidence to 

suggest that the MPTP is utilised in some capacity during apoptosis, possibly in 

the release of cytochrome c from the mitochondria (Gottiieb 2000). The exact 

role of VDAC and the MPTP in apoptosis is not yet known. However, if an 

increased abundance of VDAC is associated with the initiation of apoptosis, one 

might speculate that on day one of postnatal age apoptosis is being initiated in 

BAT which would lead to the to the loss of adipocytes. This could be further 

investigated with specific assays of apoptosis. 

The cytochrome c ontogeny was again similar to that of UCPl and VDAC, with 

a peak at one day of postnatal age. Cytochrome c was abundant antenatally, with 

levels similar to that of a four -hour old lamb. The function of cytochrome c in 
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fetal BAT is likely to be the same as that in the adult. Cytochrome c is involved 

in complex III and IV of the electron transport chain (Lehninger et al. 1993) 

where it acts as a mobile electron transporter. The reason for the significant 

reduction of cytochrome c with increasing postnatal age is likely to be the same 

as that for VDAC; as the adipose tissue adopts the characteristics of WAT there 

is less requirement for aerobic energy production through the electron transport 

chain. 

7.7.3 Tissue Distribution of VDAC 

VDAC was found to be highly abundant in skeletal muscle, kidney, brain, BAT 

and heart mitochondria from ovine samples. These tissues are all highly 

metabolically active; receiving 57.5 % of total cardiac output between them and 

57.2 % of total oxygen consumption (Ganong 1995). This is in accordance with 

the role of VDAC as the major pathway for the transport of metabolites -

especially adenine nucleotides (Kirk & Strange 1998). Metabolic enzymes such 

as hexokinase, glucokinase and creatine kinase may also bind to VDAC, this is 

thought to provide the enzymes with preferential access to mitochondrial 

substrates and ATP (Kirk & Sfrange 1998). VDAC has also been shown to exist 

in exfra-mitochondrial localisations such as endosomes, sarcoplasmic reticulum, 

astrocytes and caveolae (Bathori et al. 2000; Dermietzel et al. 1994; Jakob et al. 

1995). 

h cannot be determined if VDAC in the tissue sections shown in Figures 7.14 

and 7.15 are localised to mitochondria or cellular membrane, as the 
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magnification is not great enough to visualise mitochondria. However, the 

specific tissue locations give us a clue as to the position of the VDAC. In the 

kidney, VDAC is found in the walls of the tubules. Tubules function to absorb 

and secrete water and solutes in order to produce urine. Many of these transport 

mechanisms are ATP dependent, such as the potassium:sodium transporter, a 

high abundance of VDAC in the mitochondria of the tubular cells would provide 

ATP for such active transport. In the human placenta, VDAC is located in the 

syncytiotrophoblast. The syncytiotrophoblast constitutes the matemal fetal 

interface and has highly differentiated cytoplasm that is filled with vacuoles, 

multivesicular and dense bodies, lipid droplets, mitochondria and other 

organelles (Ross et al. 1995). One of the roles of the syncytiotrophoblast is 

steroidogenesis; cholesterol is mobilised into mitochondria and transformed in to 

eostrogen and progesterone (Bonenfant et al. 2000; Ross et al. 1995). This type 

of activity would require energy; thus a high abundance of VDAC in these cell 

types is not unsurprising. It is also possible that VDAC is in an extta-

mitochondrial location in these cells. 

7.7.4 UCP2 Tissue Distribution 

Initial work on UCP2 found that it had a wide tissue expression, but more recent 

work has identified a much lower tissue protein disfribution, that is, the mRNA 

for UCP2 is present in many tissues, but the functional protein is only present in 

a fraction of them. This sttidy found UCP2 to have highest abundance in lung 

and WAT mhochondria. UCP2 protein was found at a lower level in brain, 

spleen and placental mitochondria. This is slightly different to findings from 
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Pecqueur et al who found spleen mhochondria to have significantly more UCP2 

than the lung (Pecqueur et al. 2001), although these experiments were cartied out 

mice. This could be a species variation or an age difference, the spleen 

mitochondria in my study were isolated from seven days old lambs, and the mice 

in the published study were seven to ten weeks old. The band obtained from liver 

mitochondria is of a slightiy lower molecular weight, so it is thought not to be 

UCP2. With the limited evidence available regarding UCP2 protein, h seems 

unlikely that it has a role in thermogenesis, as physiological levels of the protein 

are unable to uncouple yeast mitochondria (Cadenas et al. 1999; Smart et al. 

2001a; Stuart et al. 2001b). However, as discussed in Chapter 3, UCPl knock

out mice survive the neonatal period without UCPl to produce heat, no data has 

been published on UCP2 activity or tissue abundance at this critical time. It is 

has been postulated that UCP2 has a role in reactive oxygen species (ROS) 

production (Arsenijevic et al. 2000) (Faggioni et al. 1998; Pecqueur et al. 2001; 

Stuart et al. 2001b). This correlates well with the high abundance of UCP2 

observed in the spleen and lung as these tissues are actively involved in the 

immune response to infection. 

7.8 Conclusion 

The similar ontogeny's of UCPl, VDAC and cytochrome c suggests that these 

mitochondrial proteins may all be important in ensuring BAT maintains a 

maximal rate of themogenesis at the critical time after birth. The parallel changes 

in mhochondrial proteins are coincident with the transition of BAT to WAT. The 
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fact that UCP2 is still abundant in WAT after 30 days of age suggests a different 

role than UCPl as non-shivering thermogensis is not relied upon at this stage in 

hfe. 
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CHAPTER 8 

CONCLUSION 



8'1 General Conclusions 

The aim of this thesis was to examine the endocrine regulation of BAT in the 

fetal and neonatal lamb, in order to understand better the mechanisms involved in 

the fransition from fetus to neonate. This was achieved by investigating the fetal 

or posmatal regulation of adipose tissue by Cortisol and leptin, respectively. 

Further insight into the metabolic regulation of adipose tissue was achieved by 

the development of specific ovine antibodies against VDAC. Below is a 

summary of my findings along with futtire perspectives. 

8.1.1 Leptin and Neonatal Adipose Development 

The main findings of Chapter three were the differential effects of leptins 

regulation of UCPl of large mammals and rodents. Contrary to previous smdies 

in rats and mice demonstrating that administration of leptin increases body 

temperature via UCPl expression (Pelleymounter et al. 1995; Scarpace & 

Matheny 1998; Scarpace et al. 1997), the present studies found that 

administration of leptin to neonatal lambs caused a modest initial temperature 

maintenance, despite a reduction in the expression and abundance of UCPl. The 

effects on temperature occurred with no effect on lamb growth, body or BAT 

weight. The mechanism of leptin in this case, is as yet unknown as it did not act 

through UCPl. Possible mechanisms inhiated by leptin to increase body 

temperature are outline in Figure 3.26, these include increased interleukin-1 

(Luheshi et al. 1999) and upregulation of other uncoupling proteins (Cusin et al. 

1998; Scarpace et al. 1998). The doses of leptin used in Chapters 3 produced 

plasma leptin levels above the normal physiological range, although they were 

considerable lower than concentrations observed in previous rodent studies, ft is 
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possible that the doses of leptin used produced pharmacological effects, although 

all physiological, metabolic and hormonal values assessed were within the 

normal ranges. It was not possible to measure T3 or catecholamines in plasma in 

all studies in this thesis. T3 and catecholamines are important markers of 

thermogenesis and thus fiiture work investigating the role of leptin in neonatal 

thermogenesis should include 

It is likely that increased SNS activity had a major contribution in leptins 

maintenance of body temperature in the treated animals. Plasma NEFA 

concentrations were significantly higher in the freated animals at the time of 

maintained temperamre, suggesting leptin was acting to increase sympathetic 

outflow to BAT thus increasing lipolysis. As described in Chapter 1.3.2 fatty 

acids can act to "unmask" UCPl, this increases the number of active sites 

available, increasing thermogenic activity with no increase in UCPl 

transcription. However, this does not explain the unusual finding of reduced 

UCPl expression and abundance. I suggest that leptin is acting as a signal to 

promote the neonatal transition from BAT to WAT in the sheep, with the high 

plasma levels observed at birth acting as a "switch", promoting the loss of UCPl 

mRNA and thus the transformation of BAT to WAT. There is evidence that 

leptin acts to modulate adipose tissue mass in the rodent by apoptosis (Qian et al. 

1998), further investigations will have to be made to verify apoptosis in these 

ovine samples. 

The impact of the route of delivery was investigated in Chapter 4; the major 

finding was that the neonatal decline in plasma leptin was attenuated in lambs 
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delivered by caesarean section. The factors responsible for higher plasma leptin 

after birth in caesarean section delivered lambs include the SNS and thyroid 

hormones, both of which are markedly reduced after caesarean section delivery 

in the sheep (Bird 1996; Clarke et al 1997c; Hagnevik et al 1984; Irestedt et al 

1982). Reduced SNS activity and T3 contribute to an inferior ability to 

thermoregulate in caesarean section delivered lambs. When the results from 

Chapter three are considered, the slower decline in plasma leptin in these lambs 

may represent a compensatory response in order to restore body temperature. 

8.1.2 Cortisol and Adipose Development 

Chapter five investigated the role of Cortisol in the development and preparation 

of ovine fetal BAT for neonatal thermogenesis. Intact adrenals are required for 

the surge in Cortisol and the normal increase in UCPl in BAT leading up to birth. 

Cortisol treatment to mimic the normal late gestation increase was found to 

increase UCPl protein and GDP binding in BAT. Adrenalectomy of late 

gestation fetuses, in contrast, resulted in a reduction of UCPl and GDP binding. 

These changes were correlated with T3 concentrations suggesting that T3 and 

Cortisol are both required for the normal in utero development of BAT in sheep. 

This finding has important clinical implications, glucocorticoids are often used to 

treat pregnant women in premature labour to mimic the late gestational surge in 

Cortisol and aid development of the unborn child. This treatment has been carried 

out since the 1950's to promote surfactant production and lung development and 

improve overall outcome of the premature neonate. The results of this study 

suggest that Cortisol may also be improving neonatal thermogenic capabilities via 

increased development of BAT. 
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8.1.3 Postnatal Ontogeny of Mitochondrial Proteins 

The production of UCP2 antibodies was unsuccessful, but a specific ovine 

VDAC antibody was produced for use in the investigation of BAT development 

and activity. VDAC was found to peak at day one of postnatal age, along with 

UCPl and cytochrome c in BAT. The functional significance of this high 

abundance of VDAC is unknown, although h is likely to be involved in the 

delivery of metabolic substrates to the mitochondria during the period of high 

metabolic requirement at birth. The reason for the peak abundance of cytochrome 

c at day one is likely to be similar to that of VDAC, that is, to ensure that the 

high demand for metabolic substrates is met. The peak activity of UCPl shortly 

after birth is well documented, and acts to maintain neonatal body temperature 

via NST. Mutations in the VDAC gene have been reported (Anflous et al 2001; 

Huizing et al. 1996) and result in altered sensitivty for ADP, it is not known if 

alterations in VDAC abundance would modify the thermogenic efficiency of the 

newbom given that the postnatal ontogenys are so similar. 
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8.2 Future Perspectives 

Leptin has the potential to play a role in the transition from fetal to neonatal life, 

although its exact function remains unknown. Concentrations decline rapidly 

after birth as the infant moves from a state of passive nutrient uptake, to one of 

active enteral feeding, levels are known to decrease in response to starvation 

(Ahima 1996) and this may be one way of facilitating the infants' intake of milk. 

As the infant or lamb commences feeding and increases food intake, fat 

deposition will occur, as less energy is needed for maintaining body temperature. 

The neonate will therefore have less requirement for non-shivering 

thermogenesis in BAT as heat production from dietary induced and shivering 

thermogenesis in muscle plus increased insulation, act to maintain body 

temperature (Symonds et al. 1989a; Symonds et al. 1989b). 

ft is hypothesised that with increasing age plasma leptin increases in response to 

feeding and at the same time promotes loss of UCPl, as was observed in Chapter 

three. Concurrently, abundance of UCP2 and UCP3 may be increased, the 

activity of which may be stimulated during periods of nutritional stress (e.g. 

starvation (Ahima 1996). This will enable the neonate to maintain a basal 

metabolic rate and prevent hypothermia despite the loss of UCPl. 

The nutritional and endocrine regulation of VDAC remains to be established but 

may represent one of the factors involved in ensuring a smooth fransition from 

fetus to neonate. 
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More studies are required to fully elucidate the role of leptin in the fetus and 

neonate. The emergence of sheep transgenic models (McCreath et al. 2000) in 

which under and over-expression of UCPs can be accomplished are likely to 

provide more information regarding the effect of leptin on thermogenesis at birth. 

Both acute and chronic leptin treatment reduce UCPl, whether a lack of leptin at 

birth will allow UCPl to function for longer than the usual first two weeks of life 

remains to be established. The potential therapeutic use of leptin to promote 

thermoregulation and postnatal adaptation remain an intriguing possibility. 
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Appendix I 

List of suppliers 

Aida Raytek Scientific Ltd, 26 Norton park View, Sheffield, 88 8G8, UK 

Alpha Laboratories Ltd. 40 Parham Drive, Eastleigh, Hampshire, 8O50 4NU, 

UK 

Ambion, Inc. AMS Biotechnology (UK Ltd), 185A & B, Milton Park, Abingdon, 

Oxfordshire, 0X14 4SR, UK 

Amersham Pharmacia Biotech UK Ltd. Amersham Place, Little Chalfont, 

Buckinghamshire, HP7 9NA, UK 

Amicon, Millipore UK Ltd, The Boulevard, Blackmoor Lane, Watford, WDl 

8YN,UK 

Analytical Development Company. Pindar Road, Hoddeson, Hertfordshire, 

EN 11 OAQ,UK 

Avery Berkel Ltd. Foundry Lane, Smethwick, West Midlands, B66 2LP, UK 

Baxter Healthcare Ltd. Wallingford Road, Compton, Newbury, Berkshire, 

RG20 7QW, UK 

Bio-Rad Laboratories Ltd. Bio-Rad House, Maylands Avenue, Hemel 

Hempstead, Hertfordshire, HP2 7TD, UK 

BOC Edwards Ltd. Manor Royal, Crawley, West Sussex, RHIO 2LW, UK 

Cambridge Electrophoresis Ltd, 84 High Street, Cherry Hinton, Cambridge, 

CB19HZ,UK 

Dako Ltd. 16 Manor Courtyard, Hughenden Avenue, High Wycombe, 

Buckinghamshire, HP 13 5 RE, UK 

Diagnostic Systems Laboratories Ltd. Unit C121, 89 Bickerseth Road, Tooting, 

London, SW17 9SH, UK 
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Fisher Scientific UK Ltd. Bishop Meadow Road, Loughborough, Leicestershire, 

LEll 5RG,UK 

Frank Wright Ltd. Blenheim House, Blenheim Road, Ashboume, Derbyshire, 

DE6 1HA,UK 

Fuji Photo Film (UK) Ltd Graphic Systems Imaging Centre, Unit 15, St 

Martins Way, St Martins Business Centre, Bedford, MK42 OLE, UK 

Guildhay Ltd, 6 Riverside Business Centre, Walnut Tree Close, Guilford, Surrey, 

GUI 4UG, UK 

Heto-Holten Ltd, PO Box 31, Camberiey, Surrey, GUI5 ITN, UK 

Hoefer Pharmacia Biotech Inc. 23 Grosvenor Road, St Albans, Hertfordshire, 

ALl 3AW, UK 

Hybaid Ltd, Action Court, Ashford Road, Middlesex, TW15 IXB, UK 

Light Laboratories. 10 Princes Street, Brighton, BN2 IRD, UK 

LKB Produkter AB. Box 305, S-161 26 Bromma, Sweden 

Microsoft Corp. Microsoft Campus, Thames Valley Park, Reading, RG6 IWG, 

UK 

National Diagnostics.Unit 3, Chamberiain Road, Aylesbury, Buckinghamshire, 

HP 19 3DY, UK 

Packard Instruments. 14 Station Road, Pangboume, berkshire, RG8 7DT, UK 

Premier Beverages UK Ltd, Knighton, Adbaston, Stafford, ST20 OQJ,UK 

Promega UK Ltd, Delta House, Chilworth Research Centre, Southampton, 8016 

7NS, UK 

Roche Diagnostic Products Ltd. PO Box 8, Welwyn Garden City, Hertfordshire, 

AL7 3AY, UK 
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Salter Weigh-Tronix Ltd. George Street, West Bromwich, West Midlands, B70 

6AD, UK 

Sant Cruz, c/o Autogen BiocIearUK Ltd, Holly Ditch Farm, Mile Elm, Calne, 

Wiltshire, SN11 OPY, UK 

Sarstedt Ltd. 68 Boston Road, Beaumont Leys, Leicester, LE4 I AW, UK 

Schleicher & Schuell GmbH, PO Box 4 D-37502, Dassel, Germany 

Scientific Laboratory Supplies Ltd. Units 26-27, Wilford Industrial Estate, 

Ruddington Lane, Wilford, Nottingham, NGl 1 7EP, UK 

Sigma-Aldrich Company Ltd. Fancy Road, Poole, Dorset, BH12 4QH, UK 

SIP Analytical Ltd. Goodwin Park, Sandwich Indusfrial Estate, Sandwich, Kent, 

CT13 9LN,UK 

SPSS UK Ltd. 1st Floor St. Andrew's House, West Street, Woking, Surrey, 

GU21 1EB,UK 

Techne (Cambridge) Ltd, Duxford, Cambridge, CB2 4PZ, UK 

Vygon UK Ltd. Bridge Road, Cirencester, Gloucestershire, GL7 IPT, UK 
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Appendix II 

Abbreviations 

ADP 

ATP 

BAT 

BCA 

BSA 

coA 

DEPC 

DNA 

DTT 

EDTA 

EtBr 

"G" 

GC 

GDP 

HRP 

JAK 

MACP 

MOPS 

NA 

NaCl 

NEFA 

NST 

Adenine diphosphate 

Adenine triphosphate 

Brown adipose tissue 

Bicinchoninic acid 

Bovine semm albumin 

Coenzyme A 

Diethyl pyrocarbonate 

Dexoyribonucleic acic 

Dithiothreitol 

Ethylenediaminetetra-acetic acid 

Ethidium bromide 

Gestational day 

Glucocorticoid 

Guanodine diphosphate 

Horseradish peroxidase 

Janus kinase 

Mitochondrial anion carrier prote 

3-(N-morpholino)propanesulpho 

Noradrenaline 

Sodium chloride 

Non-esterified fatty acids 

Non-shovering thermogenesis 
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Ob-R 

OD 

ORF 

PAGE 

RNA 

SDS 

SNS 

SSC 

STAT 

T3 

T4 

TEMED 

TES 

TTBS 

UCP 

UV 

WAT 

Leptin reading frame 

Optical Density 

Open reading frame 

Polyacrylamide gel electrophoresis 

Ribonucleic acid 

Sodium dodecylsulphate 

Sympathetic nervous system 

Standard saline citrate 

Signal transducer and activator of transcription 

Triiodothyronine 

Thyroxine 

N,N,N' ,N' -tetramethy 1 ethylenediamine 

N-tris methyl-2-aminoethanesulphonic acid 

Tween-tris buffered saline 

Uncoupling protein 

Ultra violet 

White adipose tissue 
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Appendix III 

Antibody Dilutions 

Antibody 

UCPl 

UCP2 

VDAC 

Cytochrome c 

Swine anti rabbit IgG 

Supplier 

in house 

Bmno Miroux 

in house 

Santa Cmz (sc-7159) 

Dako (PO 217) 

Dilution 

1/8000 

1/10,000 

1/1000 

1/1000 

1/1500 
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