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Abstract

Haem proteins are functionally and structurally extremely diverse biomolecules

and play a vital role in aerobic life. They perform a vast range of functions

like transport of oxygen and electron transfer, gene regulation, redox-sensing

and drug metabolism. This many-sidedness of haem-proteins is due to the ex-

tremely versatile chemical properties of the iron in the haem prosthetic group.

Iron, or iron in the form of haem, plays a key role in many biological pro-

cesses and it is an essential nutrient for the majority of living organisms.

Despite being one of the most abundant chemical elements, iron is scarcely

available under physiological conditions, because of its insolubility and toxic-

ity. Pathogenic bacteria rely on their host as a source of haem and/or iron and

a strong link between iron / haem acquisition, virulence factors and pathogenic-

ity exists. Therefore they have evolved a set of specialised haem receptors and

carriers to circumvent their iron dependency, often involving the ’stealing’ of

haem as a source of iron from host’s haem-proteins, which in the host is the

most abundant and relatively available source of iron. These proteins are both

vital and unique to bacteria and so have been considered as possible drug tar-

gets. At the beginning of this thesis work, the fascinating cell and molecular

biology mechanisms of these novel haem binding proteins were still largely

unexplored.

In this thesis the cloning, expression, purification of four novel bacterial haem

transport proteins for biochemical and biophysical characterisation and struc-
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Abstract

tural studies is described: HemS and HemT from Yersinia enterocolitica and

Shp and HtsA from Streptococcus pyogenes. HtsA in complex with haem was

crystallised and a preliminary X-ray diffraction analysis was carried out. Fur-

thermore HemS was crystallised in its apo- and haem bound form and both

structures were determined. Comparison of the apo- and haem-bound crystal

structures provide penetrating insights into its mechanism of haem binding

and release.
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Chapter 1

Introduction

1.1 Properties of haem and haem-proteins

Haem (iron-protoporphyrin IX) is an extremely versatile prosthetic group

widespread in biological systems and vital to aerobic life. Its biological function

depends entirely on its incorporation into proteins where the protein environ-

ment determines the haem properties like its geometry, iron spin state and

redox potential. Haem is an essential cofactor for the electron transfer and

redox reactions of respiration and photosynthesis and the oxygen binding and

transport functions carried out by the globins. Haem is also used by proteins

involved in catalysis, such as the catalases and mono-oxygenases, as well as

in proteins fulfilling a great variety of processes, including signal transduction

and the control of gene expression (Chapman et al., 1997, Paoli et al., 2002,

Anderson & Chapman, 2005). Figure 1.1 depicts a schematic representation

of the haem.

Variations of the haem structure is also possible by modifications of the pyrroles’

methyl and vinyl side chains which extend from the edge of the porphyrin. In

b-type haem, iron-protoporphyrin IX is non-covalently bound to the protein;

this is the prosthetic group of the familiar structures of haemoglobin, myo-

1
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Methyl

Figure 1.1: Ball and stick representation of b-type haem. Haem (proto-
porphyrin IX) consists of four pyrrole-rings (I-VI) that are linked by methylene
bridges (α, β, γ, δ). The two propionate groups originate from pyrrol I and VI
with their carboxy termini, enabling electrostatic interactions with the protein
environment or the solvent. In the centre of the porphyrin plane a ferric (Fe3+) or
ferrous (Fe2+) iron (orange) is coordinated by the four pyrrole nitrogens (blue).
The haem has an asymmetric character, because of the four methyl and two vinyl
groups.

globin and cytochrome b5. However, most other cytochromes contain c-type

haem which differs from b-haem in the covalent attachment of the vinyl side

chains to two cysteine residues by thioether bonds. Moreover there are other,

less common haem derivatives including the a-type haem, which is present in

cytochrome c oxidase, and the d1-type haem identified in nitrite reductase

(Allen et al., 2005). A summary of haem derivatives and associated haem

proteins is reported in the Promise database (Degtyarenko et al., 1997).

Haem-proteins show a spectacular range of distinct molecular architectures all

associated with the same, chemically identical haem ligand; b-type haem is

found in over 20 different folding topologies as highlighted in Table 1.1 and

depicted in Figure 1.2. Moreover protein-bound haem has strong electronic

absorbance bands that depend on its the geometry, spin state, redox potential

and ligation. Therefore Ultra Violet/visible (UV/vis) absorption spectroscopy

2
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A

DC

B

E

Figure 1.2: Schematic diagrams showing the structures of six represen-
tative b-type haem proteins highlighting the striking variety of their
folding topologies. The haem environment can be formed by any element of
secondary structure or any combination of these, as well as turns and loop re-
gions. (A) Tuna myoglobin (1MYT), (B) Insect nitrophorin (1NP4), (C) Cow
cytochrome b5 (1CYO), (D) Bacterial HasA (1DK0), (E) Rabbit haemopexin
(1QHU) and (F) Human serum-albumin (1N5U).

is a powerful tool to investigate haem-protein interactions. Haem proteins

have a characteristic Soret peak between 390-440 nm and Q-bands, also called

3
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α/β-bands, between 500-700 nm. These absorption maxima and their changes

under different conditions (i.e. reducing, oxidising) and the presence of lig-

ands (i.e. carbon monoxide, cyanide, oxygen) can give information about

the coordination structure and ligation state of the haem prosthetic group.

Table 1.1: Selected representatives of b-type haem proteins with dis-
tinct folding topologies. In addition to their different folds, the table highlights
the diversity of their functions and phylogenetic origins as well as the ligation and
coordination state of the haem-iron

Fold Representative Function Origin Ligand PDB

Proteins CODE

4-helix bundle Cytochrome b562 electron transport bacteria His/Met 1QPU
(Escherichia coli) 6c

β-propeller haemopexin haem binding rabbit bis-His 1QHU
and transport (Oryctolagus cuniculus) 6c

CAP CooA CO sensing bacteria His/Pro 1FT9
(Rhodospirillum rubrum) 6c

catalase catalase hydrogen peroxide bacteria Tyr 1QWL
decomposition (Helicobacter pylori) 5c

cupredoxin-like ubiquinol oxidase O2 reduction bacteria His 1FFT
to water (Escherichia coli) 5c

cytochrome b5 cytochrome b5 electron transfer rat bis-His 1EUE
(Rattus norvegicus) 6c

dioxygenase indoleamine L-Tryptophan catabolism man His 2D0T
2,3-dioxygenase (Homo sapiens) 5c

globin-like haemoglobin O2 binding man His 1A3N
and transport (Homo sapiens) 5c

haem oxygenase haem oxygenase haem degradation man His/H2O 1N45
(Homo sapiens) 6c

haem peroxidase cyt c peroxidase biosynthetic yeast (Saccheromyces His 2CYP
and catabolism cerevisia) 5c

HemS HemS haem transport bacteria His 2J0P
(Yersinia enterocolitica ) 5c

H-NOX / SONO SONO NO sensing bacteria (Thermoanaerobacter His 1XBN
tengcongensis) 5c

immunoglobulin cellobiose lignin and cellulose fungus (Phanerochaete His/Met 1D7B
-like dehydrogenase degradation chrysosporium) 6c

lipocalin nitrophorin NO transfer insect His 1NP4
(Rhodnius prolixus) 5c

meander Has A haem binding bacteria His/Tyr 1B2V
and transport (Serratia marcescens) 6c

NO NO synthase catalytic mouse Cys 1NOS
(Mus musculus) 5c

P450 P450 mono- oxidation of fungus (Streptomyces Cys 1ODO
oxygenase organic substrates coelicolor) 5c

PAS FixL O2-sensor / signalling bacteria (Bradyrhizobium His 1DRM
Japonicum) 5c

serum albumin albumin regulation of the colloidal man Tyr 1N5U
-like osmotic pressure of blood (Homo sapiens) 5c

vitamin B6 cystathione redox-controlled PLP man Cys/His 1JBQ
family β-synthase -dependent synthesis of (Homo sapiens) 6c

cystathione
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Optical absorption spectroscopy in combination with site-directed mutagenesis

has been used to identify the haem-iron coordinating residues in a number of

haem proteins, such as the N-terminal domain of the haem regulated eIF2α-

kinase (NTD-HRI) (Inuzuka et al., 2004), chloroperoxidase (Yi et al., 1999),

SOUL (Sato et al., 2004), haem oxygenase (Wilks et al., 1996) cytochrome

b562 (Barker et al., 1996) and cellubiose dehydrogenase (Rotsaert et al., 2001,

2003b).

1.2 Haem-acquisition in bacteria

Despite being one of the most abundant chemical elements, iron is scarcely

available under physiological conditions due to its insolubility and toxicity,

and this makes iron acquisition by any organism a remarkable challenge.

Pathogenic bacteria rely on their host for iron and a first link between in-

fection, pathogenicity of bacteria and the abundance of iron was discovered in

the 1940s. It was shown that specific iron-binding proteins in human serum

inhibit the growth of bacteria by preventing iron uptake through sequestra-

tion. The iron binding protein in the blood serum was identified as transferrin

(Schade & Caroline, 1944, 1946). To circumvent their iron dependency micro

organisms have evolved a range of specialised proteins that enables them to

steal iron and iron in the form of haem from host proteins (Braun, 2001, Braun

et al., 1998, Faraldo-Gomez & Sansom, 2003, Genco & Dixon, 2001, Ratledge

& Dover, 2000, Wilks & Burkhard, 2007). During invasive bacterial infections,

erythrocytes become lysed due to lytic toxins (e.g. haemolysin) or peroxides

produced by the pathogens and/or the host-defence system. Therefore the lo-

cal concentration of available haem, haemoglobin and other host-haem binding

proteins, which can be used by the bacteria as iron source, increases.

In Gram-negative bacteria the haem-uptake systems known to date can be
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classified in two groups:

i) Systems that secrete an extracellular haem-binding protein, a so called

haemophore, that scavenges haem from a variety of sources. The best geneti-

cally and structural studied example is haemophore HasA and the components

(HasR, HasB, HasD, HasE) of its system from Serratia maracescens (Arnoux

et al., 1999, Wandersman & Delepelaire, 2004). When the work reported in

this thesis started, HasA was the only bacterial haem transport protein the

structure of which had been solved.

ii) Systems that recognise haem or specific host-haem proteins. One of the

first to be studied is the HemRSTUV system from the Gram-negative Pro-

teobacterium Yersinia enterocolitica. Y. enterocolitica is a human pathogen,

can cause gastroenteritis and is closely related to Yersinia pestis, the causative

agent of plague. The HemRSTUV haem acquisition machinery is widespread

in Gram-negative bacteria and a schematic representation is depicted in Fig-

ure 1.3A. The system consists of 5 proteins. Located on the outer membrane,

the receptor HemR sequesters haem from host haem proteins or directly binds

free haem. When internalised, the ligand is taken up by the periplasmatic car-

rier HemT and passed onto the hetero-dimer HemUV, an integral inner mem-

brane permease. In the cytosol, haem is held by the soluble protein HemS. This

process is driven by the proton-motive force used by the TonB-ExbB-ExbD

system as well as ATP hydrolysis by the inner membrane permease (Faraldo-

Gomez & Sansom, 2003, Genco & Dixon, 2001, Stojiljkovic & Hantke, 1994,

Wilks & Burkhard, 2007).

This haem-transport system is predominantly found in pathogenic bacteria.

For instance the operon coding for the ChuASTUV system in E. coli is present

in the pathogenic E. coli O157:H7 strain and absent in the non-pathogenic E.

coli K12 strain (Hayashi et al., 2001). The structure of the haem transport

locus in some Gram-negative species, their phylogenetic distribution and their

6
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Figure 1.3: Schematic representation of the major haem-uptake sys-
tems in bacteria. (A) The HemRSTUV system of Y. enterocolitica (Sto-
jiljkovic & Hantke, 1994) is common to many Gram-negative species. (B) Compo-
nents of the haem-uptake machinery in Gram-positive bacteria are less conserved.
Currently the best studied system is the Isd system of S. aureus (Maresso &
Schneewind, 2006).

nomenclature is shown in Figure 1.4 and listed in Table 1.2.

Homologues of the outer membrane receptor can be found across a variety of

species and are assumed to share the same basic architecture of a β-barrel

(Braun & Braun, 2002). Two conserved histidine residues in HemR (His 128

and His 461) are crucial for the interaction and internalisation of haem by

Yersinia (Bracken et al., 1999). ShuA from Shigella dysenteriae is the only

outer membrane haem-receptor that has been purified and its haem-binding

properties analysed (Burkhard & Wilks, 2007). It was shown that ShuA ex-

tracts haem from haemoglobin and as for HemR, two histidine residues (His 86

and His 420) are essential for haem-recognition. In addition to that it was

shown that ShuA interacts with TonB (Burkhard & Wilks, 2007). Vibrio

cholerae has two receptors (HutA and HutR) encoded at different sites on the

chromosome (Wyckoff et al., 2004, 2007).

No homologues in Yersinia, Bordetella or Vibrio can be found for the related
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Table 1.2: Homologs of the HemRSTUV system in Gram-negative bac-
teria. CJ = Campylobacter jejuni (Chan et al., 2006); EC = E. coli (Hayashi
et al., 2001, Perna et al., 2001, Torres & Payne, 1997); PA = P. aeruginosa

(Ochsner et al., 2000); PS = Pleisiomonas shigelloides (Henderson et al., 2001);
SD = Shigella dysenteriae (Mills & Payne, 1995, Wyckoff et al., 1998); VC = Vib-

rio cholerae (Wyckoff et al., 2006); YE = Y. enterocolitica (Stojiljkovic & Hantke,
1994); YP = Yersinia pestis (Thompson et al., 1999); CBP = cytoplasmic binding
protein. * V. cholerae has a conserved hypotetical protein homologues to PhuW,
ChaN etc.

CJ EC PA PS SD VC YE YP

Receptor ChaR ChuA PhuA HugA ShuA HutA+R HemR HmuR
PBP - ChuT PhuT HugB ShuT HutB HemT HmuT
Permease - ChuUV PhuUV HugCD ShuUV HutCD HemUV HmuUV
CBP - ChuS PhuS - ShuS HemS HmuS
Others ChaN ChuW PhuW HugW ShuW * - -

- ChuX - HugX ShuX HutX OrfA (OrfX)
- ChuY - - ShuY - OrfB (OrfY)

Cj1613c - - HugZ - HutZ - YPO0285

proteins ChuW, PhuW, HugW, HutW and ChaN (Cha = Campylobacter haem

acquisition). These proteins have homology to HemN the oxygen-independent

coporphyrinogen oxidase from E. coli K12 (Wyckoff et al., 2004, Chan et al.,

2006, Ochsner et al., 2000), which is a member of the radical SAM super-

family of S-adenosyl-methionine-dependent enzymes (Layer et al., 2002, Sofia

et al., 2001). HemN catalyses the oxidative decarboxylation reaction of co-

porphyrinogen III to protoporphyrin IX, a common step in the biosynthesis of

haems and chlorophylls (Dailey, 2002). But it has been shown, that HutW from

V. cholerae failed to complement Salmonella thyphimurium HemN. Therefore

it is unlikely that HutW and its homologues are oxygen-independent copor-

phyrinogen oxidase, and the general annotation as hemN may need to be

reviewed (Wilks & Burkhard, 2007). Moreover mutation of phuW had lim-

ited effect on growth with haem as sole source of iron, but was necessary for

optimal haem and haemoglobin utilization (Ochsner et al., 2000). Recently,

the crystal structure of ChaN, identified as a haem transport protein from

Campylobacter jejuni, has been solved, showing a novel fold, with an unusual
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Figure 1.4: Organisation of the haem-transport locus in Gram-negative
species. (A) Y. enterocolitica (Stojiljkovic & Hantke, 1994), (B) Y. pestis

(Thompson et al., 1999); (C) S. dysenteriae (Mills & Payne, 1995, Wyckoff et al.,
1998); (D) P. aeruginosa (Ochsner et al., 2000). (E) V. cholerae; the ORF for
the haem-receptors HutA and HutA are encoded on a different locus on the same
chromosome (Wyckoff et al., 2004, 2007). Arrows are indicating promotor and
transcription direction.

cofacial haem binding arrangement. ChaN dimerises upon binding two haem

molecules and the haem is 5-coordinated with a tyrosine residue as the iron’s

proximal ligand (Chan et al., 2006).

The genes shuX and shuY in S. dysenteriae have homology to two ORF

encoded upstream of hmuP in Y. pestis (Wyckoff et al., 1998). Moreover

ShuX shows homology to V. cholerae HutX (Wyckoff et al., 2004) and P.

shigelloides HugX (Henderson et al., 2001), but no homology to open reading

frames (ORFs) with known function for any could be detected. But shuX and

shuY are probably not expressed due to a stop-codon after shuW (Wyckoff

et al., 2004).V.cholerae HutZ has been shown to be required for efficient haem

utilisation (Wyckoff et al., 2004) and shares homology with HugZ from P.

shigelloides (Henderson et al., 2001).

In contrast, the haem-uptake systems in Gram-positive bacteria are less con-

served. The best studied is the Isd (iron-regulated surface determinant) system

of the pathogen Staphylococcus aureus, a leading cause of a wide spectrum of

9



Chapter 1 - Introduction

hospital acquired infections such as toxic shock syndrome (TSS) and septic

endocarditis (Weems, 2001). Haem is the preferred iron-source of S. aureus

and it appears to have therefore evolved more than one haem-uptake system,

as evidenced by the recent identification of the novel haem-regulated transport

proteins, HrtAB (Friedman et al., 2006), and haem-transport system proteins,

HtsABC (Skaar et al., 2004b) shows. The acquisition of haem in S. aureus

through the

IsdDEF, HrtAB and HtsABC systems is highly efficient, since staphylococ-

cal cells are saturated after only 15min when incubated with exogenous haem

(Mazmanian et al., 2003). Gram-positive bacteria are lacking an outer mem-

brane and therefore do not require outer membrane receptors or the TonB-

ExbB-ExbD systems. A schematic representation of the interlinked isd-system

is depicted in Figure 1.3B (Skaar & Schneewind, 2004, Skaar et al., 2004b).

The IsdA, IsdB, and IsdH components are attached to the cell wall and transfer

their load to IsdC, which is the central conduit in this funnel-like uptake ma-

chinery. Passage through the membrane is then mediated by the IsdD/E/F

complex, for final delivery to the cytosolic haem oxygenases IsdG and IsdI

(Skaar & Schneewind, 2004, Skaar et al., 2004a, Mack et al., 2004). The isd -

genes are encoded in three distinct regions and five transcriptional units of the

S. aureus genome (Fig. 1.5)(Skaar & Schneewind, 2004).

A FDC E srtB GisdB

isdH isdI

Figure 1.5: Organisation of the haem-transport locus in S. aureus. In
S. aureus the Isd system is encoded on three distinct chromosomal regions. The
transpeptidase SrtB, encoded by srtB, is involved in anchoring IsdC to the cell
wall and is the only non-haem binding protein of the operon (Skaar & Schneewind,
2004).
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Most components of the isd-system have been functionally and biochemically

characterised; for instance, haem-uptake assays carried out on IsdA and IsdF

staphylococcal knock-out mutants had no influence on cell growth with haem

as source of iron and is most likely due to alternative haem-transport sys-

tems in staphylococci (Mazmanian et al., 2003). It was shown that IsdA has

a broad specificity spectrum and has binding activity to extracellular matrix

proteins, such as fibronectin and fibrinogen, and also to holo-transferrin and

haemoglobin (Clarke et al., 2004). IsdH (also called HarA) is a receptor for

haptoglobin-haemoglobin complexes, which can also bind to a smaller extent

haemoglobin and haptoglobin alone, and is the sole haptoglobin-binding sur-

face component of S. aureus (Dryla et al., 2003); but IsdH does not bind haem

on its own (Pilpa et al., 2006). Furthermore, it has been shown that IsdB binds

haemoglobin (Torres et al., 2006). IsdA, IsdB, and IsdH are also being used to

develop vaccines against S. aureus to reduce the occurrence of disease (Clarke

et al., 2004, Kuklin et al., 2006).

Based on sequence comparisons, IsdA, IsdB, IsdH, and IsdC are all believed

to contain one or more copies of the same haem-binding structural module,

known as the NEAT domain (Andrade et al., 2002)(Fig. 1.6A). Recently the

structures of the apo N-terminal NEAT domain of IsdH (Pilpa et al., 2006),

the apo- and haem-bound NEAT domain of IsdA (Grigg et al., 2007a) and

of the haem-IsdC complex (Sharp et al., 2007) were determined. The NEAT

domain folding topology is that of a β-sandwich (Fig. 1.6B), consisting of

two five-stranded, twisted, antiparallel β-sheets and is structurally related to

immunoglobulin proteins. There are also other haem-proteins known with

this molecular architecture, such as cellobiose dehydrogenase (Hallberg et al.,

2000), ethylbenzene dehydrogenase (Kloer et al., 2006), and cytochrome f (Chi

et al., 2000). In these enzymatic proteins the haem is bound to a topologically

equivalent site, which is different to the binding site in IsdA and IsdC. In IsdA

11
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and IsdC, the haem-iron is 5-coordinate with a tyrosine ligand.

IsdH (1-895)

86-229 326-468 535-664

23-154

IsdC (1-227)

58-188

IsdA (1-629)

140-269 337-462
IsdB (1-652)

A

Figure 1.6: Structure and schematic representation of the NEAT do-
mains in S. aureus Isd-proteins. (A) Schematic diagram of the NEAT do-
mains in Isd-proteins (Andrade et al., 2002, Pilpa et al., 2006). (B) The common
folding topology of NEAT domains is a β-sandwich as shown here in the cartoon
representation of the structure of the haem-IsdC complex (Sharp et al., 2007).

In the last few years, exciting progress has been made in the identification

and functional characterisation of haem-uptake proteins, essential for bacte-

ria. This is owing to the availability of sequence information, provided by the

recent completion of multiple genome sequencing projects. Moreover these

sequence data make it possible to target the proteome of a whole organism

for functional and structural studies. A better mechanistic understanding of

the nutrient uptake system in bacteria, in particular for an essential element

such as iron, could lead to new drug targets. The knowledge gained from the

study of the function and structure of these systems can help in the study of

haem-transporters from other pathogens. This is of particular interest when

we consider the increasing number of multi-drug-resistent bacterial strains,

such as the methicillin resistant S. aureus (MRSA) or other pathogenic organ-

isms like the parasitic protozoa Plasmodium falciparum, the causative agent of

malaria. The life cycle of Plasmodium has steps directly involving haem inter-

actions and metabolism and its genome sequence has been recently completed

and it is therefore likely that novel haem proteins will be identified.

The impact of structural biology in biomolecular and biomedical research
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is growing, for instance through structure-based mutagenesis and structure-

guided drug design. Following the sequencing projects of many genomes,

the area of structural genomics has grown significantly, aiming at the high-

throughput structure determination of all possible folding topologies. Knowl-

edge of all architectures would then open the door to homology modelling thus

providing a basis of structural understanding for all protein molecules. These

is tackled and performed in dedicated centres and consortia. A powerful tech-

nique for structure determination is X-ray crystallography, the principles of

which are summarised in Section 1.3.
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1.3 General principles of X-ray

crystallography

The knowledge of the three dimensional structure of a protein gives precious

insight into its function and can be applied to structure-based design of drugs

and therapeutic agents. X-ray crystallography is a powerful technique for

structure determination, where the scattering signal of a molecule is amplified

by the packing into the crystal lattice. In theory there is no given size limit

for the molecule to be studied. However in practice the limiting step remains

the ability to produce crystals of sufficient size and a high degree of order.

1.3.1 Crystallisation of proteins

Many proteins are relatively dynamic molecules, consisting of long polypep-

tide chains folded into specific three dimensional structures with complex and

irregular shaped surfaces. It therefore can be difficult to achieve the high

level of structural order that is necessary for the molecules to pack into a

crystal lattice. The molecules are held together by generally weak interac-

tions: hydrogen bonds, salt bridges and hydrophobic interactions. Protein

crystals have a high solvent content typically ranging between 30 and 90%,

and usually present in large channels formed amongst the molecules packed

in the lattice. Thus most protein crystals are fragile (Rupp, retrieved July

2006 from the world wide web). The formation of lattice interactions is influ-

enced by a critical series of parameters such as temperature, protein purity,

protein concentration, nature of precipitant and solvent, pH, and presence or

absence of additives like cofactors, ligands and ions. The initial crucial step

for crystallisation is the production of large quantities of highly purified pro-

tein. Determination of crystallisation conditions is a trial and error, iterative

screening process. The balance between solubility, precipitation and the small
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zone of nucleation, when regular inter-molecular interactions start to form, is

delicate (Fig. 1.7).

Figure 1.7: Solubility curve for a protein as a function of the salt con-
centration. *Zone of crystal nucleation; ** Zone of crystal growth (Drenth,
1999)

Techniques where the sample concentration increases in a controlled way have

been developed to aid macromolecular crystal formation. The most popular

method is that of vapour diffusion, depicted in Figure 1.8.

[ppt]       =
reservoir[ppt]

2
drop

A B

Figure 1.8: Schematic representation of the vapour diffusion technique.
(A) hanging drop, (B) sitting drop vapour diffusion. The small drop containing
protein, stabilizing buffer, precipitant (ppt) and other additives is placed in vapour
equilibrium in a closed system with a much larger reservoir volume, with a much
higher reagent concentration than in the drop. Over time water is pulled from
the drop in a vapour phase until equilibrium between the both is reached. Dur-
ing this process, the sample in the drop is concentrated increasing its relative
supersaturation (Drenth, 1999).
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1.3.2 Theory of X-ray diffraction by a crystal

X-rays are scattered by the electron cloud of an atom. If the X-rays scattered

by different atoms are in phase, the weak scattering vectors from each indi-

vidual atom, periodically repeated in the three dimensional order of a crystal,

add up to yield an overall wave of higher intensity. This phenomenon is called

constructive interference and is observed as diffraction spots on a detector and

is mathematically described by Bragg’s law (Eq. 1.1).

2 · d · sinθ = n · λ (1.1)

where n is an integer

θ is the angle of the incident beam

d is the spacing between the reflecting planes of atoms

λ is the monochromatic wavelength of the incident beam.

The Bragg equation (Eq. 1.1) has to be satisfied to obtain an observable

diffraction pattern and in consequence the following principles can be derived:

i) Wavelength and path-length distance are inversely related so that to main-

tain their relationship, a large angle of the incident beam must be coupled to

a small distance between the reflecting planes (Fig. 1.9).

ii) Because of the inverse relationship of d and θ, the difference in path length

is an integer of the wavelength of the X-ray beam.

iii) For n=1, d can be substituted for dhkl where h, k and l are the indices

(Millers indices) that define the reflecting planes intersecting a unit cells (with

the cell edges a, b and c) in a

h , b

k and c

l .

The inverse relationship becomes more obvious by rearranging the Bragg’ equa-

tion (Eq. 1.2) and the indirect relationship can be replaced by a direct one,

the reciprocal lattice.
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θ θ
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dhkl
θ θ

θ θ

dhkl

R2

R1

Figure 1.9: Bragg’s law. When the distance additionally traveled by R2 (red) is
an integer of the wavelength, then Bragg’s law is fulfilled and R1 and R2 interfere
constructively. The angle of the incident beam θ is inversely related to the spacing
of the diffracting planes.

2sinθ =
nλ

d
⇒ θ ∼

1

d
(1.2)

The reciprocal lattice is constructed based on 1
dhkl

= dhkl∗ which varies directly

as sin θ and the reciprocal lattice planes perpendicular to the real lattice planes.

Therefore the larger the unit cell parameters, the smaller is the spacing of the

reciprocal lattice planes. The relationship between the reciprocal unit cell axes

and the real unit cell axes are described in Equations 1.3, 1.4 and 1.5 below.

a · a∗ = b · b∗ = c · c∗ (1.3)

or a∗ =
1

V
bc · sinα b∗ =

1

V
ca · sinβ c∗ =

1

V
ab · sinγ (1.4)

or a∗ =
1

d100

b∗ =
1

d010

c∗ =
1

d001

(1.5)

where V is the unit cell volume

a, b and c are the unit cell edges,
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α, β and γ are the angles between the cell edges

and d100, d010 and d001 are the distances of reflecting

planes parallel to the zero-level planes bc, ac and ab.

The Ewald construction illustrates Bragg’s law geometrically in reciprocal

space in three dimensions (Fig. 1.10). The radiation of the X-rays is rep-

resented by a sphere centered on the X-ray beam with the radius 1
λ
. The

origin of the reciprocal lattice of the crystal is the point where the direct beam

crosses the Ewald sphere. If a reciprocal-lattice point lies on an intersection of

the Ewald sphere and the vector perpendicular to the originating real lattice

planes (= reciprocal lattice vector) with the length 1
d
, then the interference

condition (Bragg’s law) for that particular reflection is fulfilled and gives rise

to a diffracted beam along the line joining the sphere center with the reciprocal

lattice point (Dauter, 1999, Rhodes, 2006).

a*

b*

B

C P

O

θ

θ

R
θ

X

000

010
011

h0l plane

h1l plane

X

RA B

Figure 1.10: The Ewald construction. An incoming X-ray beam is diffracted
at a set of lattice planes (red) and the diffracted X-ray beam is crossing the surface
of the Ewald sphere (radius = 1/λ) at a reciprocal lattice point. The trigonometric
condition of Bragg’s law is fulfilled and a reflection is observed (Rhodes, 2006).

A reflecting plane intersecting the Ewald sphere projects onto the two dimen-

sional detector as an ellipse, since all rays diffracted by the same plane form

a cone (Dauter, 1999, Rhodes, 2006). When a crystal is rotated in a X-ray
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beam, different reflections from the same plane as well as different reflecting

planes are brought onto the surface of the Ewald sphere, and therefore into

reflection condition, forming a diffraction pattern consisting of spots arranged

in concentric ellipses, the so called ’locus of spots’ (’lune’) on the detector

(Fig. 1.11) (Dauter, 1999, Rhodes, 2006).

∆ϕ

Figure 1.11: Locus of spots ’lunes’ produced on a detector by oscillating
a crystal. Many reciprocal lattice planes are brought into reflection condition
by intersecting the Ewald sphere and many reflections are sent to the detector
(Dauter, 1999).

Again due to the inverse relationship of the reciprocal lattice dimensions to

the real lattice, a large structure with a large unit cell and a densely populated

reciprocal lattice will give rise to a more dense reflection pattern with smaller

distances between the reflections, compared with a small-molecule crystal.

This is because more reflecting planes are in reflecting position at any given

time. Also the finer the sampling of the reflecting planes of a unit cell, the

higher are the indices of the reciprocal lattice points the larger is the reflecting

angle of the scattered beam and the higher the resolution. Therefore the finer

is the detail we can observe in the reconstruction of the crystal structure. The

correlation between reciprocal lattice and real crystal lattice is one of the main

concepts of X-ray crystallography.
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1.3.2.1 Mosaicity, crystal space group and data collection strategy

Crystals are not perfectly ordered, but are a mosaic of roughly aligned submi-

croscopic arrays (Fig. 1.12A); the imperfections in the arrangement of molecules

are more pronounced in protein crystals than in inorganic or small molecule

crystals. As result of the mosaicity, the diffracted X-ray beam is not a perfect

linear beam, but has a conical shape (Fig. 1.12B) so that the Bragg condition

is satisfied over a larger space and the reflection is spread over more images.

Therefore in protein crystallography the reflection intensities are measured

over small angular ranges and the mosaic spread is measured in degree oscil-

lation (Rhodes, 2006).
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Figure 1.12: Mosaicity of a crystal. (A) Crystals are not perfectly ordered,
but are a mosaic of submicroscopic arrays. (B) In case of high mosaicity the real
lattice planes (blue) are ’smeared’ and the reciprocal lattice points (green) become
ellipsoid.

The degree of data that need to be collected to obtain the unique part of

reciprocal space and therefore a complete data set, depends upon the symmetry

of the repeated motif. For instance, if the crystal space group includes a three-

fold axis then a unique data set consists of one sextant of the reciprocal space.
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1.3.2.2 The structure factor and the phase problem

After a diffraction experiment, the position (described as Millers indices h, k,

l) and the intensity (I ) of the reflections are integrated in a list of figures in-

cluding the (h, k, l) values, their associated intensities and standard deviations

of intensity (σI). Due to the inherent non-homogeneity of the data collection,

like crystal thickness and orientation, the reflections in any data collection

are on different scales. In the stage of scaling, a set of mathematically deter-

mined corrections (scales) is applied and the data from each collected image

are placed on a common scale. The vector representing the overall scattering

from a particular set of Bragg planes is termed the structure factor (Fhkl).

Because of the correlation between the real lattice and the reciprocal lattice

space, the structure factor equation can be expressed in terms of Miller indices

and fractional coordinates, which is a central concept to determine a molecu-

lar structure from a diffraction pattern. The intensity of a given reflection is

proportional to the square of the structure factor amplitude, Fhkl, where the

structure factor (Eq. 1.6) is defined as the sum of the scattering factors by a

group of atoms and is dependent on the three-dimensional arrangement of the

atoms in the group.

Fhkl =
n∑

j=1

fj e[2π·i(hjx+kjy+ljz)] (1.6)

where fj is the atomic scattering factor of the electron cloud of atom j,

x, y, z are the fractional coordinates of the electron cloud of atom j,

e[2π·i(hjx+kjy+ljz)] is the periodic function describing the reflected wave.

Taking into account the scattering of all atoms in a crystal, Equation 1.7 can

be derived:
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Fhkl = V
∫

cell
ρ(xyz) e[2πi(hx+ky+lz)]dV (1.7)

where ρ(xyz) is the electron density at position x, y, z and

V is the volume of the unit cell.

The electron density is then calculated by performing a Fourier Transform

(FT) of all structure factors to give a Fourier series (Eq. 1.8) and the electron

density is the graph of this function.

ρ(xyz) =
1

V

∑
h

∑
k

∑
l

|Fhkl| e[−2πi(hx+ky+lz)+iα(hkl)] (1.8)

where Fhkl is expressed as a complex quantity,

with the structure factor amplitude |Fhkl|

and the phase α(hkl).

Therefore to calculate the electron density at a given point within the unit cell,

both amplitude and phase have to be known. The amplitude can measured

in the diffraction experiment, but information about the phase is lost. This is

known as the phase problem.

1.3.2.3 Phasing techniques

To circumvent the phase problem various methods have been developed, to

obtaining phases directly and indirectly.

The Patterson function

The Patterson function is one of the most important mathematical relation-

ships in crystallography and is calculated by inverse Fourier Transform (Eq. 1.8)
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of the structure factor intensities (amplitudes squared) with the phases set to

zero (Eq. 1.9).

P (uvw) =
1

V

∑
h

∑
k

∑
l

|Fhkl|
2 · e−2π(hu+kv+lw) (1.9)

where u, v, w locate points in the Patterson map and

V is the volume of the unit cell.

This results in a map of the vectors between all atoms of the structure. Peaks

in the Patterson map are correlated to peaks in the electron density. If the

structure is a small molecule with only a few atoms, it is possible to ’de-

convolute’ the Patterson and solve the structure. For bigger molecules this

it not possible because of the large number of peaks (N2 − N , where N is

the number of atoms in the molecule). However, this technique can still be

used to solve the substructure of heavy atoms and anomalous scatterer in the

molecule, because the difference in the structure factor amplitudes (|Fhkl|
2)

between the native and the derivative reflects the contribution of the heavy

atom/anomloaus scatterer. Additionally, using the Patterson function allows

the orientation of the search model in the molecular replacement technique to

be determined.

Direct methods

For small molecules with less than 100 atoms and atomic resolution data, the

phases can be derived directly from the intensities in form of intensity relation-

ships between reflections (Karle & Hauptman, 1956). Jerome Karle and Herb

Hauptmann received the Nobel Price for chemistry in 1985. For molecules

larger than 100 atoms (non hydrogen atoms), the success rate drops dramati-

cally due to the fact that intensity relationship becomes progressively weaker.

23



Chapter 1 - Introduction

However direct methods are extremely important for solving the heavy atom

’substructure’ in proteins for experimental phasing.

Molecular replacement

Molecular replacement (MR) is the technique that can be applied when the

structure of a similar molecule is known, which is used as a search model.

The level of sequence identity between two molecules correlates well with

their structural similarity and MR works well at a sequence ID≥40% with

a relatively complete search model. MR is carried out by rotating (’rotation

function’) and translating (’translation function’) the search model, so that it

aligns with the unknown target structure in the crystal. The known phases

from the aligned search model are then used with the amplitudes from the

diffraction of the target structure to calculate an initial electron density map.

Traditionally rotation and translation functions were based on Patterson meth-

ods as implemented in the programs AMORE and MOLREP (CCP4, 1994).

More recently methods including ’maximum likelihood’ have been developed,

which are taking into account the error in the data and model and improve the

success rate of MR with poorer models and/or data. The program PHASER

(McCoy et al., 2005) uses this approach.

Single and multiple isomorphous replacement

Another method to solve the phase problem is the single and/or multiple

isomorphous replacement (SIR, MIR) in which compounds containing strong

scattering elements such as heavy metals (e.g. platinum or iridium) are soaked

into the crystal. Taking into account the strong scattering of heavy atoms,

their positions can be determined by a difference Patterson function and initial,

approximate phases can be determined. It is necessary that they are occupying

the same position in each unit cell. For unambiguous phase determination at
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least two derivatives are often necessary, although SIR can work in some cases.

The disadvantage of this method is that sufficient heavy atom-derivatised crys-

tals have to be prepared and this often changes or even destroys the lattice.

Binding of heavy atom compounds can cause rearrangement of molecules or

domains/loops and so leading to non-isomorphism of the native and derivative

crystal. As a result the obtained data are no longer isomorphous and the phase

will be in error (Drenth, 1999, Rhodes, 2006, Rupp, retrieved July 2006 from

the world wide web).

Single- and multi-wavelength anomalous dispersion

Single- and multi-wavelength anomalous dispersion (SAD, MAD) uses the

property of some elements to scatter X-rays anomalously at wavelengths close

to their absorption edges (or resonant energy). In the vicinity of the X-ray ab-

sorption edge the wavelength-dependent contributions f ’ (real) and f” (imag-

inary) to the atomic X-ray scattering factor change drastically with wave-

length. This is caused by inner shell electrons absorbing the incoming X-rays

for a short period before re-emitting them, resulting in a small shift in phase

and frequency. This phenomenon is called anomalous dispersion or scattering.

Friedel’s Law states that Bragg reflections related by inversion through the

origin (= Friedel pair) have equal amplitude and opposite phase (Eq. 1.10).

|Fhkl| = |F
hkl

| ϕhkl = −ϕ
hkl

(1.10)

In case of anomalous scattering, the amplitudes remain equal but the phase re-

lationship no longer holds, because the f” term is always positive (Fig. 1.13).

The measurable anomalous difference of the structure factor amplitude and

phase of the X-rays scattered is maximised when comparing the observed in-

tensities at the absorption edge and the inflection point and can be treated as

a special case of MIR and so can be used to obtain phase information.
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Figure 1.13: Anomalous scattering and Friedel’s law. (A) Friedel’s law is
fulfilled when all atoms have the same scattering behaviour. (B) Break-down of
Friedel’s law due to anomalous scattering of some atoms. The magnitude of Fhkl

(and thus, intensity) and phase of Fhkl are different for Fhkl and -Fhkl. Fp is the
structure factor of the protein alone, f + fo is the real part and f” is the imaginary
part of the anomalous scatterer.

All atoms can scatter X-rays anomalously, but only atoms exhibiting a strong

anomalous signal can be used for phasing. Examples atoms used for SAD

and MAD phasing include iron, sulphur or selenium, which are naturally part

of the protein e.g. in form of haem or iron-sulphur cluster or incorporated

in the amino acid chain as selenium-methionine derivate. The advantage of

this technique is that the collected data are derived from a single crystal and

so the problem of non-isomorphism or destroying the crystal by soaking are

avoided. Initial phases can also be obtained using a method which is called

SIRAS (single isomorphous replacement with anomalous scattering) and is a

combination of MIR with the anomalous scattering derived from the heavy

atom (Drenth, 1999, Rhodes, 2006, Rupp, retrieved July 2006 from the world

wide web).

1.3.2.4 Density modification

Electron density maps from phases obtained from MIR, SIRAS, MAD and

other methods are often difficult to interpret due to errors in the initial phases.
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Density modifications like solvent flattening/flipping, histogram matching and

non-crystallographic symmetry averaging are techniques to improve phases for

macromolecular structures. A powerful technique for phase improvement is

solvent flattening and/or solvent flipping particulary for protein crystals with

high solvent content. The disordered solvent density in the large solvent re-

gions of macromolecular crystals is assumed to be ’flat’, which results in a

sharpened electron density map in the protein regions (Wang, 1985). Further

improvement can be obtained by inverting the electron density in the solvent

region using a flipping factor (Abrahams et al., 1996). Histogram matching is

a technique from image processing, that forces the density to contain the right

distribution of values and is only applied to the density in the protein region.

This method is less powerful than solvent flattening in improving phases, but

useful to extent phases to higher resolutions (Zhang & Main, 1990). For crys-

tals with more than one molecule in the asymmetric unit, non-crystallographic

symmetry averaging is a very powerful technique for phase improvement. Por-

tions of the map can, according to non-crystallographic symmetry elements

in the asymmetric unit, be superimposed and averaged, resulting in better

electron density maps (Vellieux, 1998).

1.3.2.5 Model refinement

Usually the accuracy of first derived model by for instance MR or MIR, is small

and represents only an approximation of the real structure. So the agreement

between structure factors calculated from this first model with the observed

structure factors is rather poor. The R-factor, as defined in Equation 1.11, is

used as an indicator for the refinement process and therefore the agreement

between the calculated and observed structure factors.
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R =

∑
|Fobs − Fcalc|∑

|Fobs|
(1.11)

where Fobs is the observed structure factor amplitude and

Fcalc is the expected structure factor amplitude of

the current model.

So refinement is the process of adjusting the model so that the difference

between the |Fhkl|calc and |Fhkl|obs is minimized. These modifications of the

model include the positional parameters (x, y, z) and the temperature fac-

tor (B-factor) of the non-hydrogen atoms of the protein. Thus the number

of parameters is four times (or more) the number of atoms, but the number

of observations (measured reflections) relative to the number of atoms in a

protein only gives a poor observation-to-parameter ratio. This ratio can be

improved by adding extra ’observations’ in the refinement process, that is us-

ing stereochemical data, like chirality, bond lengths and torsion angles from

small molecule structures. This stereochemical information can be used in the

refinement in two ways:

i) They can be taken rigid and only dihedral angles can be varied. So the

number of parameters is reduced and the geometry and the refinement are

called constrained.

ii) A variation of the stereochemical parameters restrained around a standard

value is allowed. In this case the atom positions are variables and the re-

straints are on bond length, bond angle, torsion angles, bond planarities and

van der Waals contacts. Because a penalty is given for a disagreement with

the restraint these are true observations. So small parts of the structure can

be moved easily, but not a large part of the structure, like a domain (Drenth,

1999).
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There are a number of commonly used mathematical refinement techniques as

for example the methods of least squares, maximum-likelihood and simulated

annealing. The method of least squares and maximum-likelihood are based on

a weighted function to be minimized to improve the fit between |Fhkl|calc and

|Fhkl|obs (Eq. 1.12).

Φ =
∑
hkl

ωhkl(|Fobs| − |Fcalc|)
2
hkl (1.12)

where ωhkl is an applied weight dependent on the reliability

of the measured intensity

The stereochemical observations are added in the form of a standard deviation

and therefore a weight, to restrain the model close to ideal geometry.

Isotropic, anisotropic temperature factor and TLS refinement

A crystal structure does not only provide a static snapshot of molecules packed

in the crystal lattice, as generally thought, but a blurred view in which the

blurring indicates motion and direction of the movement. Therefore it is possi-

ble to extract information about the dynamic properties of the molecules in the

crystal. The two main reasons underlying the blurring effect are the dynamic

and static disorder present in all crystals (Bürgi & Capelli, 2000, Bürgi, 2000).

The dynamic disorder is caused by thermal vibrations and mainly gives rise to

a blurred view of individual atoms or small groups of atoms. Static disorder

is caused by large-scale motions due to the trapping of individual molecules

in different micro conformation, which correspond to the states sampled along

a trajectory of motion. In contrast to small molecule crystals in which the

molecules are tightly packed, protein crystals have a high solvent content and

can therefore be relatively loosely packed. Thus domains or subunits may
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move relative to each other, secondary structure elements can be locally dis-

placed and individual side chains may exhibit torsional flexibility (Painter &

Merritt, 2006a).

Conventionally additional parameters have been introduced in crystallographic

models to take into account dynamic and static disorder by defining the prob-

abilistic displacement of each atom about its mean position in the crystal

lattice (Trueblood et al., 1996, Willis & Pryor, 1975). The so called atomic

displacement parameters (ADPs) or temperature factors (B-factor) as well as

the occupancy of each atom are included in the refinement (Eq. 1.13) to min-

imize the difference between Fobs and Fcalc and therefore improving the fit

between the observed and model structure factors.

Fcalc = G
∑
j

njfj e2πi(hx+ky+lz) e−Bj [
(sinθ)

λ
]2 (1.13)

where G is an overall scale factor,

nj is the occupancy,

fj is the scattering factor,

x, y, z are the coordinates,

and Bj is the temperature factor of atom j.

The B-factor or ADP can be described either as isotropic or anisotropic. The

isotropic ADP is described by a spherical Gaussian and requires a total of four

parameters (x, y, z, Biso) and is a correction of the atomic scattering factor by

the displacement. The anisotropic ADP describes a trivariate Gaussian prob-

ability density function for the location of the atomic centre and requires a

total of nine model parameters (x, y, z, U11, U22, U33, U12, U13, U23). The real

space representation of U ij , which is a probability tensor, is commonly known

as the ’thermal ellipsoid’. Only very high resolution diffraction experiments
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can provide enough observation to support refinement of nine parameters per

atom.

An alternative way to describe the local positional displacement of the atoms

in a crystal structure is TLS (Translation /Liberation /Screw), which is based

on the assumption that all atoms in the TLS groups have amplitudes (in 3

dimensions) appropriate to a rigid body and that all atoms move in concert.

TLS parameters describe the anisotropic motion of the TLS groups and an

anisotropic U factor can be derived for each atom in a TLS group. Since

the atoms belong to rigid bodies the U factors can be correlated and only 20

refinement parameters are required for each TLS group (Howlin et al., 1989,

Schomaker & Trueblood, 1968). Thus anisotropic displacements can be in-

cluded in the refinement without the need for the large number of parameters

for full anisotropic refinement. Therefore TLS refinement can improve the re-

finement particularly at medium resolution (∼2Å).

Simulated annealing

In crystallography the introduction of model bias during building and refine-

ment can be a problem. Initial phases derived from a known structure by

molecular replacement or with error in experimental phases can lead to model

bias overfitting, which is caused by the low parameter-to-observation ratio

combined with initial errors in the model. A method to overcome overfitting

and the model being trapped in a local (false) minimum is simulated annealing,

which uses a molecular dynamics approach (Brünger, 1988). In the simula-

tion a ’temperature’ parameter is introduced by heating up the system from

room temperature (300K) to 2000 - 5000K and subsequently cooling it down

to the initial value. During this simulation, the atoms fluctuate around their

equilibrium positions, resulting in a non-zero gradient. The family of confor-

mations resulting from this molecular dynamics calculation are constrained
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by the X-ray data and restricted to those with lower R-factors. This method

has a larger radius of convergence than restrained positional refinement, but

is only useful early in the refinement procedure.

1.3.2.6 Validation of the model

A model of a protein structure may still contain errors after the refinement

process, due to mistakes made in the interpretation of the electron density

map, particular in regions with weak density. Therefore the assessment of the

model quality is important. Here a brief overview of the main points that are

important for the assessment of the quality of both the diffraction data and a

model will be given.

Quality of the diffraction data

A number of criteria to access the quality of diffraction data has been de-

veloped, which are in general quoted for the entire data set as well as for the

highest resolution shell. A statistical measurement for the quality of diffraction

data is the Rmerge (Eq. 1.14)

Rmerge =

∑
h

∑
i |Ih,i − Ih|∑
h

∑
i Ih,i

(1.14)

where the outer sum (h) is over the unique reflection and the inner sum (i)

is over the set of independent observations of each unique reflection (Drenth,

1999). The Rmerge should reflect the spread of multiple observations of the

intensity of the unique reflections. Unfortunately the Rmerge alone is not a

universally good statistic since its value increases with the increase of the

redundancy of the data, despite the higher signal-to-noise ratio due to the

inclusion of more reflections (Diederichs & Karplus, 1997, Weiss & Hilgenfeld,

1997). Other criteria to assess the quality of the data include redundancy and

completeness. Redundancy is defined as the number of independent observa-
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tions per unique reflection in the final merged and symmetry-reduced data set.

Completeness is defined as the fraction of unique reflections that actually have

been measured within a range of Bragg spacing, as a proportion of those that

could theoretically be measured. Moreover the strength of the signal of the

observed intensities as average value of I/σ(I) is an indicator for significance of

the measurements. The nominal resolution limit of a data set is chosen at the

stage of data processing, taking into account not only the range of Bragg spac-

ing but also Rmerge, redundancy, completeness and I/σ(I) (Kleywegt, 2000).

Model bias and Rfree

A problem of model-building and refinement especially at low and medium

resolution is the introduction of model bias by overfitting, because of the

poor observation-to-parameter ratio, typical for macromolecular crystallog-

raphy. That means that while apparently improving the fit of the model to

the experimental data and lowering the R-factor, systematic errors are intro-

duced by adding further parameters-fit noise. Therefore an R-factor has been

introduced, which is unbiased (’free’) from the refinement process (Brünger,

1992). For this so called ’cross-validation’, 5-10% of unique (=free set) reflec-

tions are excluded from the refinement process, which is carried out using the

remaining observations (=working set). The free R-factor is calculated only

with the free reflections (Eq. 1.15).

Rfree =

∑
hkl⊂free ||Fobs| −K|Fcalc||∑

hkl⊂free |Fobs|
(1.15)

So in principle if the model is improved in a refinement step, Rwork and Rfree

will decrease. Introduction of model bias, by for example fitting to many water

molecules in noise peaks of the electron density map will decrease Rwork, but

increase Rfree (Drenth, 1999, Kleywegt, 2000, Kleywegt & Jones, 1995).
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Quality the model

Based on the analysis of the Cartesian coordinates of a model, its quality

can be evaluated using computer programs like WHATIF (Vriend, 1990) and

PROCHECK (Laskowski et al., 1993). Additionally model validation tools

have also been implemented in the model building program COOT (Emsley &

Cowtan, 2004). Validation of the model includes the assessment of the geom-

etry and stereochemistry by comparison of the bond lengths and angles to a

library of ’ideal’ values and quoting their r.m.s. deviations. Moreover the con-

figuration and chiral centres at the Cα atom of the main chain and Cβ atoms of

threonine and isoleucine, which is important in the case of biomacromolecules,

can be assessed in terms of improper torsion angles and chiral volumes. An-

other important point is the planarity of the peptide bond and of moieties

like carboxylate groups and phenyl rings, which can be evaluated either by

the r.m.s. deviation of their torsion angles from ideal values or by fitting a

least-square plane through each atom set and calculating the r.m.s. distance

of each atom to the plane.

Traditionally a first indicator for the quality of the model has been the Ra-

machandran plot (Ramachandran et al., 1963). The conformation of the

backbone is determined by three torsion angles ϕ(Ci−1 − Ni − Cα
i − Ci),

ψ(Ni − Cα
i − Ci − Ni+1) and ω(Cα

i − Ci − Ni+1 − Cα
i+1), which are highly

constrained by steric hindrance. Due to the partial double bond character of

the peptide bond, ω is restrained to values near 0◦(cis-peptide, relatively rare)

and 180◦(trans-peptide). ϕ and ψ torsion angles are less restricted, but have

preferred combinations of ϕ, ψ values because of steric hindrance (Ramakrish-

nan & Ramachandran, 1965). High-resolution structures have shown that in

some rare cases, energetically unfavorable, unusual ϕ, ψ combinations occur

in proteins for functional or structural reasons (Kleywegt, 2000, Lovell et al.,

2003).
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The main stabilising forces in a protein structure are hydrophobic, electro-

static and hydrogen-bonding interactions. These can also be indicators for

errors in the model, like when simple rules of physical interactions are violated

and unusual short non-bonded contacts are contained in the model (Kleywegt,

2000).
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1.4 Aims of the thesis

Iron haem acquisition is essential for the survival of bacteria and, especially

for pathogenic bacteria, to establish and maintain infection. Knowledge of

the structures of haem-sequestering proteins and their complexes, unique and

essential to bacteria, will provide penetrating insights into their mechanism of

binding and release. This knowledge could help to develop new antibacterial

agents which would be very useful given the increasing number of multi-drug-

resistant pathogens.

This project aims at investigating structure-function relationships in novel bac-

terial haem-binding proteins using mutagenesis, modelling, UV/vis absorption

spectroscopy and X-ray crystallography. The specific objectives of the research

are listed below:

· Cloning, over-expression and purification of a set of

bacterial haem transport proteins.

· Biochemical characterisation of protein-haem interactions with

UV/vis absorption spectroscopic methods.

· Secondary and tertiary structure prediction and homology modelling studies.

· Crystallisation and structure determination using X-ray crystallography.

· Site-directed mutagenesis based on multiple sequence alignments and

homology modelling studies and/or structural data.
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General materials and methods

2.1 Materials and chemicals

All chemicals were purchased from Sigma and all enzymes were purchased from

New England Biolabs unless otherwise stated.

2.2 Methods

2.2.1 Bacterial strains and growth media

BL21 (DE3) (Novagen) is an Escherichia coli B strain derived from B834 and

is deficient in the ATP-dependent protease Lon, and the OmpT outer mem-

brane protease, found be the cause of the degradation of T7 RNA polymerase

(Derman et al., 1993, Dubendorff & Studier, 1991).

Genotype: F− ompT lon hsdSB (rB-mB) gal dcm (DE3)

For production of Selenomethionine labeled protein, expression plasmids were

transformed into B834 (DE3) cells (Novagen) a methionine auxothroph strain

(Studier & Moffatt, 1986).

Genotype: F− ompT hsdSB (rB-mB) met dcm lon (DE3)

Used growth media are listed in Table 2.1.

37



Chapter 2 - General materials and methods

Table 2.1: Bacterial growth media reference

Luria Bertani (LB)a 2xYTb SOB Mediumc SOC Mediumd

10 g/l tryptone 16 g/l tryptone 20 g/l tryptone 20 g/l tryptone
5 g/l yeast extract 10 g/l yeast extract 5 g/l yeast extract 5 g/l yeast extract
5 g/l NaCl 5 g/l NaCl 10mM NaCl 10mM NaCl

2.5mM KCl 2.5mM KCl
20 nM glucose

aplasmid preparation
bprotein expression
ccompetent cells
delectroporation

Agar plates were prepared by adding 14 g bacto-agar per liter LB medium.

Electro-competent BL21 cells were prepared as previously described (Sam-

brook & Fritsch, 1989).

2.2.2 Polymerase chain reaction

2.2.2.1 PCR from genomic DNA

The polymerase chain reaction (PCR) was optimised for annealing tempera-

ture, MgSO4 concentration and addition of DMSO for particular template/primer

pairs. A typical example for PCR reaction mix and protocol is shown below:

A 100µl PCR reaction mix included: Used PCR program:
2µl genomic DNA 92◦C, 30 sec
600 nM primer (for) 95◦C, 2min
600 nM primer (rev) 55◦C, 1min
0.25mM dNTPs 72◦C, 1.5min
10µl 10 x ThermoPol reaction buffer 72◦C, 1min
2U Vent DNA polymerase

The annealing temperature varied depending on the used primers (see Ap-

pendix, p. xix) and template. The reactions were carried out in a Peltier

Thermal Cycler (PTC2000).
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2.2.2.2 Single colony polymerase chain reaction

Colonies obtained from ligation and transformation were screened by single

colony PCR. Half a colony was picked, introduced in 10µl H20 and incubated

for 8min 95◦C. One µl was than added to 9µl of PCR-mix and the program

below was used. For a positive result from this procedure, the plasmid of an

over-night culture was purified and send for sequencing to check the correct-

ness of the sequence.

A 14x PCR reaction mix included: Used PCR program (30 cycles)
1.4µl Polymerase 2min 95◦C
1.4µl dNTP’s (25mM each) 30 sec 92◦C
1.7µl primer forward (50µM) 1min annealing
1.7µl primer reverse (50µM) 1-2min 72◦C
14µl 10 x Buffer 2min 72◦C
105.8µl H20 4◦C∑

126µl

2.2.3 General cloning methods

Restriction digestion

For cloning purposes approximately 10µg DNA was incubated with restriction

endonucleases for 3 h at the recommended temperature. Dephosphorylation of

the backbone was carried out with SHRIMP alkaline phosphatase (Fermentas)

by adding 2 units phosphatase to the restriction digestion mix following the

digestion reaction and incubating the mix for additional 30min at 37◦C before

heat-inactivating the enzyme at 65◦C for 20min. The DNA fragments were gel

purified and their relative quantities estimated by agarose gel electrophoresis.

Ligation and transformation

For ligation DNA fragments were mixed in a one to three molar ratio (back-

bone to insert) in a 20µl ligation reaction with 1 unit T4 DNA ligase (Roche)
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and 2µl 10x ligase buffer (Roche) and incubated over night at 4◦C. As a neg-

ative control a ligation reaction containing water instead of the insert was set

up.

An aliquot of 3µl of the ligation reaction was used in a transformation into

electro-competent E. coli BL21 (DE3) cells using a 0.1mm gap cuvette (Bio-

Rad) and 1.5 kV in a BioRad MicroPulser Electroporator. After the transfor-

mation, 1ml of SOC media (Table 2.1) was added and the cells were incu-

bated for 30min at 37◦C. The cells were pelleted by centrifugation (10min,

3500 rpm), resuspended in 200µl medium, plated on LB-ampicillin agar plates

and incubated at 37◦C overnight. Colonies were analysed by single colony

PCR.

2.2.4 Protein expression and purification

For protein expression, transformed E. coli BL21 (DE3) cells were grown in

2xYT media, supplemented with 50µgml−1 carbenicillin, at 37◦C and shaken

at 200 rpm in baffled flasks. Once an OD600 of 0.6 - 1.0 was reached, protein

expression was induced by adding IPTG to a final concentration of 0.4mM.

The induction time and temperature varied between different proteins from

OD600 of 0.6 - 1.0 and 20 - 30◦C.

Cultures were further grown overnight and shaken at 160 rpm. Cells were har-

vested by centrifugation at 2360 g and then resuspended in lysis buffer with a

cocktail of protease inhibitors (Roche) and finally lysed using a French Press

(3 times 700Psi) or sonication (3 times, 1min 5 sec on, 5 sec off; 10micron).

The lysate was cleared by two centrifugation steps (15,000 and 30,000 g for

30min at 4◦C),was passed through a 0.45µm filter and incubated at 4◦C for

one hour with 5ml nickel-nitrilotriacetic acid (Ni-NTA) Superflow (Qiagen)

slurry per liter of culture. The nickel resin had been pre-equilibrated with

lysis buffer, and imidazole was added to a final concentration of 5 - 10mM to
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minimise non-specific binding. The resin was applied to a column and washed

by gravity flow with a series of four wash-buffer solutions (50mM sodium phos-

phate, 300mM NaCl, pH 8.0), containing 5, 10, 15 and 25mM imidazole, re-

spectively. An optional high-salt washing step was performed with washbuffer

containing 1 - 2M NaCl and 25mM imidazole The protein was finally eluted

with elution-buffer containing 150mM imidazole. The buffer was exchanged

using centrifugal membrane-devices (Vivaspin), dialysation or a PD-10 column

(GE Healthcare). The protein concentration was determined by spectroscopic

measurement of the absorbance at 280 nm and an estimated millimolar extinc-

tion coefficient (http://www.scripps.edu/∼cdputnam/protcalc.html).

The N-terminal tag (His and/or GST) was removed by proteolytic cleavage

with thrombin (HTI). Units of thrombin per mg protein as well as incubation

time and temperature were optimised for individual proteins. Usually approx-

imately 5U thrombin/mg protein were added to the protein solution and was

incubated over night at RT. Thrombin was removed by incubation with 2µl

p-aminobenzamidine-agarose beads per U of thrombin. The thrombin-loaded

beads were separated with a column while the flow-through containing the

protein was recovered. The agarose beads were washed with 2M glycine pH

3, stored in 500mM NaCl at 4◦C. Finally, to remove uncleaved protein and

the cleaved tags, the solution was incubated with the Ni-NTA resin for 1 h at

4◦C, then the resin was packed on a column and the flow-through, containing

un-tagged protein, was collected. Quality and integrity of the proteins were

tested by SDS-PAGE.

2.2.5 UV/vis absorption spectroscopy and

reconstitution of proteins with haemin

All UV/vis absorption spectra were recorded on a Cary 100-Bio Varian spec-

trophotometer from 260 - 800 nm in 50mM Tris-HCl pH7.5, 150mM NaCl at
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25◦C. The haemin stock solution was prepared by dissolving haemin chloride

in 0.1M NaOH and the concentration was determined from the absorbance at

385 nm (Choi et al., 1999). The stock solution was kept in the dark on ice and

used within 5 hours. Cyanide binding was carried out by adding potassium

cyanide to a final concentration of 5mM to a cuvette containing a solution of

reconstituted ferric protein (5µM).

For reconstitution of protein, the sample was saturated with haem by incu-

bation with 3 molar excess haemin for one hour at RT or 4◦C. A final gel-

filtration purification step (with the resin GLC 300, Isco Inc.) was carried

out to remove excess haemin. The protein was then concentrated with cen-

trifugal membrane-devices (Vivaspin) in an appropriate buffer to the desired

concentration.

2.2.6 Fast protein liquid chromatography

Fast protein liquid chromatography (FPLC) was carried out on a GE Health-

care chromatography system (Äkta Purifier). For analytical gel-filtration the

system was equipped with a HiLoad Superdex 75 HR16/60 column (GE Health-

care). For ion-exchange chromatography a MonoQ HR5/5 column (GE Health-

care) was used. Representative traces were recorded both at 280 nm and the

Soret maximum depending on the haem-protein.

2.2.7 Crystallisation of proteins

Solubility of proteins were first tested by a pre-crystallisation test (PCTTM ,

Hampton Research) to determine the most appropriate protein concentra-

tion to use. High throughput crystallisation screening was carried out us-

ing the sitting-drop vapor-diffusion method in 96-well Intelliplates (Hampton

Research) or Crystalquick plates (Greiner). Manual optimisation of the hit-

condition was carried out either by the sitting-drop (Crychem plates; Hamp-
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ton Research) or hanging-drop (Linbro plates; Molecular Dimension) vapor-

diffusion method. Crystallisation screens were purchased from Molecular Di-

mensions, Nextal Biotechnology/Qiagen and Hampton Research. The exper-

iments were set up with the Hydra II micro dispensing system (Robertson

Scientific).

2.2.8 Secondary and tertiary structure prediction

For the secondary and tertiary structure prediction the servers listed in the

table below were used.

Table 2.2: Secondary and tertiary structure prediction server.
secondary structure link comment
prediction

Jpred www.compbio.dundee.ac. consensus Method
uk/∼www-jpred/

PSIPRED bioinf.cs.ucl.ac.uk/psipred/ analysis output from PSI-blast
(position specific iterated -blast)

tertiary structure link comment
prediction

SAM-T02 www.soe.ucsc.edu/research/ secondary structure prediction with
compbio/HMM-apps/T02 multiple sequence alignments, builds
-query.html hidden markov model for searching

the pdb

GenTHREADER bioinf.cs.ucl.ac.uk/psipred/ sequence profile based on fold
recognition, uses a position score
matrix

FUGUE www-cryst.bioc.cam.ac.uk searches sequence alignments
∼ fugue/prfsearch.html against a library of profiles, employs

environment specific substitution
tables

3D-PSSM www.sbg.bio.ic.ac.uk sequence profile based on fold
∼3dpssm/ recognition, uses a position score

matrix

bioingbu / ww.cs.bgu.ac.il consensus prediction utilizing
ShotGun on 5 /∼bioinbgu/form.html; models produced by other server

//bioinfo.pl/Meta/

ESyPred3D www.fundp.ac.be/urbm/ weighting and screening of results
/bioinfo/esypred/ from several multiple alignment

programs
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2.2.9 X-ray diffraction, data processing and structure

refinement

Optimisation of cryo-conditions and initial X-ray diffraction analysis were car-

ried out on the in-house X-ray facillities consisting of a Rigaku MicroMax 007

rotating anode generator with a rotating copper anode equipped with Vari-

Max HF optics (Osmic, Rigaku), an R-Axis IV++ image plate detector and the

X-stream 2000 cryo-cooling vapour jet. Data were also collected at beamlines

of the European Synchrotron Radiation Facility (ESRF).

Data were processed with programs of the CCP4 suite (CCP4, 1994), HKL2000

(Otwinowski & Minor, 1997) and/or XDS (Kabsch, 1988). Structural refine-

ment was carried out with REFMAC 5.0 (Murshudov et al., 1997) and TLS

(Painter & Merritt, 2006a,b) Structural figures were prepared using PyMOL

(Delano, 2002) or ASTEXVIEWER (Hartshorn, 2002).
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Diversity and conservation of

interactions for binding haem

3.1 Introduction

Haem-proteins are extremely diverse in their molecular architecture and func-

tion despite containing the same prosthetic group as highlighted in Chapter 1,

Table 1.1, p. 4 and Figure 1.2, p. 3. Due to the explosive growth of the

structural biology field in the past decade, the structures of a large number

of novel b-type haem proteins have been determined, such as the insect pro-

tein nitrophorin (Arnoux et al., 1999), the enzyme NO synthase (Fischmann

et al., 1999), the bacterial siderophore HasA (Weichsel et al., 1998), the mam-

malian transport protein haemopexin (Paoli et al., 1999), the binding protein

albumin (Wardell et al., 2002) and the molecular sensors CooA (Lanzilotta

et al., 2000) and EcDos (Kurokawa et al., 2004). Evidently, the evolutionary

pressure of generating various biochemical functions, combined with the reac-

tivity and versatile chemical properties of haem, have led to the rise of very

different structural associations between haem and proteins. Even in the case

of the evolution of a particular function, multiple paths can be followed that
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result in proteins with distinct folds, structures and mechanisms. This is true

for the mammalian blood serum glycoprotein haemopexin and the bacterial

siderophore HasA which have broadly equivalent roles of sequestration, trans-

port and receptor-mediated release of haem but are structurally unrelated.

Despite the diversity in folding topologies, it is tempting to speculate whether

any interactions between the protein environment and the haem ligand are

shared by the different architectures. Historically, it was assumed that the

bond(s) between the haem iron and the amino acid(s) coordinating the iron

is/are the major force holding the haem into the protein. However, when in

globins and cytochromes the proximal histidine was mutated into a glycine and

its side chain replaced by an imidazole (Barrick, 1994, McRee et al., 1994), the

proteins could still incorporate haem without directly ligating the iron. Hence

the protein framework has to provide sufficient interactions for the haem-

binding within a relatively specific binding pocket. Work on many ’designer’

haem proteins such as molecular maquettes (Rabanal et al., 1996) and others

(Gibney & Dutton, 1999, Rojas et al., 1997) has further shown the impor-

tance of these non-covalent interactions. In many engineering experiments

the main focus was on the positioning of histidine residues, resulting in haem

binding at the expense of structural stability. These ’designed’ molecules of-

ten have low haem affinity, as well as a molten globule-like characteristics and

are lacking tightly packed interiors. It was previously recognised that haem-

contacting residues other than the histidine ligands are important for haem

binding (Robertson et al., 1994) thus one can ask if any common, key struc-

tural features or re-occurring haem-protein packing interactions might exist in

distinct folding environments.

Comparison of a wide range of haem proteins known to date may give insights

on the structural requirements of a haem binding site. Here a comparative

analysis of structurally unrelated haem-proteins was carried out by means of
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multiple structural overlays. The b-type haem proteins listed in Table 1.1

(and Table A.4, p. xxiii) are functionally dissimilar. Any shared interactions

should therefore play a primarily structural role in the association with the

haem. This study shows that despite the obvious differences in the haem en-

vironments which are dictated by the different functions, a specific molecular

pattern emerges for the contact points between haem and the protein binding

pocket.

3.2 Methods

Structures and their haem environments of 68 b-type haem proteins with less

than 60% sequence identity and representatives of over 20 different folds (Ta-

ble A.4, p. xxiii) have been compared by least-squares superposition of the

haem atoms. In some cases where significant sequence divergence exists be-

tween two haem proteins despite their equivalent folding topologies, multiple

representatives of the same fold were analysed (Table A.4, p. xxiii). For

instance, molecules such as sulfite oxidase (PDB code 1SOX) were included

because its cytochrome b5 domain is structurally equivalent to the rat cy-

tochrome b5, despite the lack of significant sequence identity (Kisker et al.,

1997). Another example is given by the structure of soluble guanylate cyclase

(PDB code 1U55) which is not included in Table 1.1, p. 4 because it has

the same fold as SONO, but was considered in our analysis given the lack of

significant sequence similarity (Nioche et al., 2004, Pellicena et al., 2004).

Atomic coordinates from the Protein Data Bank (Bernstein et al., 1978) were

superimposed using a subset of atoms of the porphyrin ring as a reference

frame. Firstly a rotation/translation matrix was calculated from the best

least-squares fit of the porphyrin atoms with the addition of, in some cases,

the proximal histidine imidazole. Secondly the matrix was applied to the whole
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protein. The computation of the overlays was carried out using the fitting pro-

cedures implemented in DeepView (Guex et al., 1999) and visual inspections

were carried out using both DeepView and the program COOT (Emsley &

Cowtan, 2004). Further a list of all amino acids within 4.5 Å of any of the

haem atoms was produced with the program DISTANG (CCP4, 1994).

3.3 Results and Discussion

3.3.1 Diversity of haem-protein packing contacts

Least-squares superpositions of all selected structures (using the atoms of the

porphyrin ring as a frame of reference) highlight both differences and simi-

larities between various haem-proteins. Evolutionary constraints imposed by

the specific function of each protein presumably dictate many differences in

the haem environments, the structure of which has been ’sculpted’ to mod-

ulate the reactivity of the haem. The structural overlays highlight that the

strikingly different folding topologies are associated with an entire spectrum

of haem arrangements. For example, haem is buried inside the molecule like in

catalases with an average solvent accessibility of 1.4%, or is bound in a pocket

near the surface, often relatively exposed to solvent, like in haemopexin with

an average solvent accessibility of 25% (Table 3.1 and Table A.4, p. xxiii).

Its orientation is not fixed, in that the propionate groups can point either to-

wards the outside (e.g. HasA PDB code 1DK0) or the interior (e.g. HemS

PDB code 2J0P) of the protein. In the range of proteins surveyed, the haem

environment is formed from either α-helical or β-extended structures, or both,

as well as loop regions and excursions from secondary elements. Although the

packing of amino acid residues around the haem is generally tight, there are

examples of unusual and relatively open haem pockets, such as those found in

haemopexin, cellobiose dehydrogenase, cystathione β-synthase and CooA.
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Table 3.1: Haem protein folds with their average solvent accessible
area as calculated in AREAIMOL (CCP4, 1994). Percent haem exposure
is calculated against free haem. ∗Large difference were observed between solvent
accessibility in PAS domain proteins EcDos (20 %) and FixL (5 %). For a detailed
list see Table A.4, p. xxiii.

Average haem solvent
accessibility

Protein No. of Structures Å2 %
free haem - 829 100
4-helix bundle 3 166 20
beta-propeller 1 210 25
CAP 1 233 28
catalases 8 11 1
cupredoxin-like 1 32 4
cytochrome b5 4 184 22
dioxygenase 1 92 11
globin like 12 135 16
haem-oxygenase 6 160 19
haem-peroxidase 6 72 8
HemS-fold 1 155 19
H-NOX-fold / SONO-fold 2 19 2
immunglobulin-like 1 179 22
lipocalin 1 130 16
meander 1 191 23
NO fold 4 128 15
P450 14 22 3
PAS∗ 2 111 12
serum albumin-like 1 66 8
vitamin b6 family 1 148 18

3.3.2 Re-occurring contacts: protein-haem interaction

’hot spots’

Despite the structural and functional diversity of the here analysed proteins,

preferences for using specific amino acids in the interactions with haem could

be identified. This observed re-occurrence of some shared key contacts in dis-

tinct proteins, is discussed in more detail below and illustrated in Figure 3.1,

Table 3.2, 3.3 and 3.4. These contacts were categorised in three groups, de-

pending on whether they interact with i) the propionate groups, ii) the plane of

the pyrrole rings or haem face, and iii) the haem edge defined by the perimeter

of the porphyrin including the atoms of the methyl and vinyl groups.
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3.3.3 Anchoring of haem propionates by arginine residues

Commonly one or both propionate groups of the haem in the 20 folds analysed,

are engaged in electrostatic interactions, which are in general salt-bridges. The

majority of these contacts, 38%, are made with arginine side chains. This

can be observed in proteins sharing some sequence similarity, like P450cam,

P450terp and P450BM-3 (Hasemann et al., 1995), as well as in functionally

unrelated molecules. Principally arginine residues appear to be universal part-

ners of the propionate groups, providing them with anchoring points to the

protein (Table 3.2 and A.4, p. xxiii), independent of the haem orientation.

For instance in proteins with a relatively solvent accessible haem-binding site,

the propionates are directed more often towards the outside, or are lying on the

protein surface, partly excluded from the solvent by interactions with arginines.

In addition arginine residues also engage in interactions with the propionates

in cases were the haem is buried in the protein, like in cytochrome, P450 and

catalase, or when the acidic groups are pointing towards the protein interior,

like in haemopexin or HemS. Residues also found in contact with the nega-

tively charged propionates, are positively charged lysine and histidine. This

can be observed in for example in the globin-fold and P450 peroxidases, but is

less common with only 10% and 17%, respectively, of all observed contacts.

Tyrosine residues are can also be involved in electrostatic interactions with

the propionate groups, surprisingly almost as often as lysines (Table 3.2). In

some cases, as in the peroxidase domain of prostaglandin H2 synthase-1 (PDB

code 1PRH), nitrous oxide synthase and haem oxygenase, the propionates are

bound to the backbone amides of loop regions that embrace part of the pros-

thetic group.
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Table 3.2: Frequencies of residues in contact with the haem propionate
groups in b-type haem proteins with distinct folding topologies. Dis-
tances were calculated using DISTANG (CCP4, 1994) and residues in hydrogen
bond distance of 2.5 - 3.2 Å to the propionate groups were taken into account. Per-
centages are relative to the number of contacts in a particular fold. A detailed
list can be found in Table A.4, p. xxiii.

Propionate contacts (2.5 - 3.2Å) in %
Fold Arg His Lys Tyr other
other 4-helix bundle 100.0 - - - -
β-propeller 33.3 16.7 - 50.0 -
CAP - - - - 100.0
catalases 82.9 8.6 - - 8.6
cupredoxin-like 75.0 - - - 25.0
cytochrome b5 - 10.0 20.0 10.0 60.0
dioxygenase 75.0 - - - 25.0
globin like 2.9 17.1 34.3 11.4 34.3
haem-oxygenase 37.5 - 31.3 25.0 6.3
haem-peroxidase 10.3 24.1 10.3 - 55.2
HemS-fold 57.1 - 14.3 14.3 14.3
H-NOX-fold / SONO-fold 70.0 - - 10.0 20.0
immunglobulin-like - - - 40.0 60.0
lipocalin - - 66.7 - 33.3
meander - 16.7 - 16.7 66.7
NO fold 20.0 - - 80.0 -
P450 47.4 28.2 2.6 3.8 17.9
PAS 28.6 57.1 - - 14.3
serum albumin-like - 50.0 50.0 - -
vitamine b6 family 100.0 - - - -
Overall % 38.4 17.2 10.4 9.0 25.0

3.3.4 Conserved interactions at the ’haem face’

involving leucine

The majority of residues making contact with with the haem-face are leucines

(12%), isoleucine (6%) and valine (13%). They may be found on both prox-

imal and distal sides, making non-polar contacts to yield a close fit between

haem and protein atoms (Table 3.3). The most common haem-face con-

tact, seen in at least twelve distinct folding topologies, involves leucine and

isoleucine residues located approximately over the bridge between pyrrole rings

II and III, as depicted by the cluster of side chains shown in Figure 3.1A.

It is remarkable that in twelve distinct, unrelated structures side chains can be

51



Chapter 3 - Haem pockets across diverse folding topologies

Table 3.3: Frequencies of residues in van der Waals contact (3.6 - 4.1 Å
Vriend (1990)) with the haem-face in different folding topologies of b-
type haem proteins. Distances were calculated using DISTANG (CCP4, 1994)
and percentages are relative to the number of contacts in a particular fold A more
detailed list can be found in Table A.5, p. xxiv

Haem-face Contacts (3.6 - 4.1Å) in %
Fold Ala Ile Leu Phe Trp Tyr Val other
4-helix bundle - 30.0 20.0 10.0 10.0 - - 30.0
β-propeller - - - - 33.3 33.3 - 33.3
CAP - 14 28.6 - - - - 57.1
catalases - - - 20.9 - - 32.6 46.5
cupredoxin-like - 22.2 - 33.3 - - 11.1 33.3
cytochrome b5 7.9 - 10.5 15.8 5.3 5.3 7.9 47.4
dioxygenase 16.7 - 33.3 33.3 - - 16.7 -
globin like 2.4 9.8 20.7 22.0 - 6.1 28.0 11.0
haem-oxygenase - - 4.3 17.4 - - 4.3 73.9
haem-peroxidase 2.5 - 12.5 - 15.0 - 7.5 62.5
HemS-fold - - - 66.7 - - 33.3 -
H-NOX-fold / SONO-fold - 14.3 35.7 14.3 - 14.3 - 21.4
immunglobulin-like 25.0 - - - 25.0 25.0 - 25.0
lipocalin 16.7 - 50.0 16.7 - 16.7 - -
meander - - 20.0 - - 20.0 20.0 40.0
NO fold 8.3 4.2 - 16.7 16.7 4.2 8.3 41.7
P450 21.2 3.0 8.1 15.2 - - 6.1 46.5
PAS - 38.9 22.2 5.6 - 11.1 11.1 11.1
serum albumin-like - 20.0 - 20.0 - 20.0 - 40.0
vitamin b6 family 14 - 14 - 14 - - 57
Overall % 7.3 6.2 12.2 15.4 3.8 4.0 12.9 38.1

found in the same three-dimensional space with respect to the haem. Leucine

and isoleucine side chains can be seen in other proteins, like the globins, at

different positions over the porphyrin plane, contributing similar hydrophobic

contacts. When in the globin fold the leucine in contact with the haem was

mutated to alanine, an increased rate of haemin dissociation was observed

(Liong et al., 2001); the fact that this has mainly been attributed to hydration

of the environment around the proximal histidine perhaps undermines the

simple removal of favourable van der Waals interactions with the concomitant

loss of the molecular fit between protein and haem. It has been shown for the

NO-transport protein nitrophorin, that the two leucine residues (122 and 132)

packing over the haem-face, are necessary to maintain a certain ruffling of the
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porphyrin ring and thus stabilising the normally unstable ferrihaem-nitrosyl

(Fe(II)-NO) complex (McGaughey et al., 1998). Site-directed mutagenesis of

these two leucine residues to a smaller valine causes a shift in the reduction

potential of the haem-iron due to allowing a more planar haem-geometry and

thus favoring the stabilisation of the Fe(III)-NO complex Samanta et al. (1999).

3.3.5 Conserved interactions at the ’haem face’

involving phenylalanine/tyrosine side chains

The aromatic residues phenylalanine, tyrosine and tryptophane are responsi-

ble for making up a large proportion of the other observed contacts to the

haem face (15%, 4% and 4%, respectively; see Table 3.3). They predomi-

nantly engage in stacking interactions with the porphyrin and most of these

phenylalanine-porphyrin contacts have distances in the range of 3.6 - 5.0 Å,

with an offset face-to-face parallel geometry relative to one of the four pyrrole

rings. This is similar to the pairing of aromatic side chains in proteins (Mc-

Figure 3.1 (following page): Stereoviews highlighting struc-
turally conserved packing interactions to the ’haem-face’ involving
leucine/isoleucine and phenylalanine/tyrosine side chains. (A) Cluster-
ing of leucine/isoleucine residues over the haem occurs in eleven distinct proteins;
for clarity nine of these structures are shown in the figure: CooA (1FT9) Leu 112
in red, bacterioferritin (1BFR) Ile 22 in purple, cytochrome b5 (1AWP) Ile 25 in
green, nitrophorin (1NP4) Leu 132 in yellow, ubiquinol oxidase (1FFT) Ile 425
in grey, FixL (1DRM) Leu 236 in cyan, serum-albumin (1N5U) Leu 139 in blue,
haem oxygenase (1N45) Leu 147 in orange, SONO (1XBN) Ile 75 in dark red (not
shown: Ile 57 HasA, Ile 75 guanylate cyclase, Leu 92 and Leu 94 HemS). (B) Con-
served phenylalanine residues over the bridge between pyrrole rings III and IV in
distinct haem proteins: SONO (1XBN) Phe 78 in red, cytochrome b562 (1QPN)
Phe 65 in yellow, catalase (8CAT) Phe 160 in green and bacterioferritin (1BFR)
Phe 26 in blue. (C) Conserved tyrosine residues packing over pyrrole I: human
serum-albumin (1N5U) Tyr 138 in red, cellobiose dehydrogenase (1D7B) Tyr 90 in
green, bacterial SONO (1XBN) Tyr 140 in yellow. (D) Conserved phenylalanine
side chains packing in proximity of pyrrole I in the globin fold: rice haemoglobin
(1D8U) Phe 54 in green, tuna myoglobin (1MYT) Phe 43 in yellow, mouse neu-
roglobin (1Q1F) Phe 42 in red, E. coli flavohaemoglobin (1GVH) Phe 43 in blue.
Figure was prepared with PYMOL (Delano, 2002)
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Gaughey et al., 1998, Samanta et al., 1999).

Some of the contacts made between phenylalanine side chains and the por-

phyrin clearly involve aromatic-aromatic π-stacking interactions and are likely

to provide significant stabilisation for haem binding. Moreover examination

of van der Waals radii and shapes of side chains within the pocket show that

these contacts often result in excellent steric complementarity between the

haem and the protein. Strikingly phenylalanine side chains can be found at

specific sites on the porphyrin surface in proteins with a completely different

molecular architecture and unrelated function. These structurally conserved

haem-phenylalanine contacts are highlighted in Figure 3.1B-D. Phenylalanine

residues are located over the bridge between pyrrole rings III and IV in the case

of cytochrome b562, catalase, bacterioferritin and SONO (Fig. 3.1B), which are

all proteins with distinct topologies and unrelated functions. Another set of

structurally conserved contacts is shown in Figure 3.1C, where three tyrosines

pack onto pyrrole I. Similar interactions can be observed in the globin and

two-over-two helical fold (Fig. 3.1D); in these cases, interestingly, equivalent

phenylalanine contacts are made to different pyrrole rings. After superposi-

tion of the structures on both the proximal histidine and the haem, the haems

are essentially flipped 180◦, with pyrrole I of truncated haemoglobin overlay-

ing onto pyrrole IV of myoglobin. So equivalent aromatic interactions can be

observed regardless of the orientation of the haem.

3.3.6 Contacts at the haem edge

Amino acid side chains that are packing around the haem edge in different

folding topologies also provide steric complementarity, albeit only limited con-

servation could be observed in the position of interacting groups. Nevertheless

there is a striking preference for aromatic residues such as phenylalanines,

which are in van der Waals contacts with the edge of the porphyrin and are
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found at different locations around the non-polar sides of the haem (Table 3.4).

In contrast to leucine, another side chain frequently in contact with the edge

of the haem, isoleucine is less common, possibly because its numerous rotamer

conformations, which make it too flexible to keep the haem in a fixed position

(Table 3.4). Leucines are often found packing between pyrroles II and III at

the haem-edge. Other residues packing at these sites include alanine and va-

line (Table 3.4). All these amino acids contribute to building relatively rigid

and complementary surfaces for binding.

Table 3.4: Frequencies of residues in van der Waals contact (3.6 - 4.1 Å
Vriend (1990)) with the haem-edge in different folding topologies of b-
type haem proteins. Distances were calculated using DISTANG (CCP4, 1994)
and percentages are relative to the number of contacts in a particular fold. A
more detailed list can be found in Table A.5, p. xxiv.

Haem-edge Contacts (3.6 - 4.1Å) in %
Fold Ala Ile Leu Phe Trp Tyr Val other
4-helix bundle 7.1 14.3 28.6 - 7.1 7.1 - 35.7
β-propeller - - - 33.3 - - - 66.7
CAP - 11.1 22.2 22.2 11.1 - 11.1 22.2
catalases 14.9 1.4 10.8 9.5 - 1.4 5.4 56.8
cupredoxin-like - 50.0 - 25.0 - - - 25.0
cytochrome b5 14.0 6.0 32.0 10.0 6.0 4.0 8.0 20.0
dioxygenase - 28.6 - 28.6 - 14.3 14.3 14.3
globin like 12.5 7.5 23.8 7.5 - 12.5 10.0 26.3
haem-oxygenase 6.5 2.2 8.7 19.6 - 10.9 13.0 39.1
haem-peroxidase 1.9 13.0 20.4 20.4 7.4 3.7 9.3 24.1
HemS-fold 33.3 - 33.3 33.3 - - - -
H-NOX / SONO-fold - - 15.4 38.5 - 30.8 - 15.4
immunoglobulin-like 14.3 14.3 14.3 14.3 - - 14.3 28.6
lipocalin - 16.7 16.7 16.7 - 33.3 16.7 -
meander 12.5 12.5 12.5 25.0 - 12.5 - 25.0
NO fold 3.1 3.1 12.5 9.4 12.5 6.3 6.3 46.9
P450 8.4 9.3 27.1 15.9 - 0.9 4.7 33.6
PAS 10.0 20.0 20.0 10.0 10.0 10.0 10.0 10.0
serum albumin-like 9.1 - 27.3 27.3 - - 9.1 27.3
vitamin b6 family - - - - - 20.0 - 80.0
Overall % 8.8 7.6 19.9 14.4 2.6 6.3 7.4 33.1
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3.3.7 Interactions with the proximal ligand

In some proteins the residues next to the proximal histidine appears to play

a role in the binding of haem. For instance in haemopexin as well as in

cytochrome c peroxidase, a tryptophan packs face-to-face onto the histidine

imidazole, also making contact with the porphyrin (Fig. 3.2A). In some cases

another side chain on the other side of the proximal ligand in respect to the

tryptophan, is making close contacts.

A

Figure 3.2: Packing interactions with the proximal ligand. (A) In
haemopexin (1QHU) His 265 is sandwiched between Glu 225 (left) and Trp 267
(right). (B) In cytochrome P450 (1PQ2) Cys 435 is sandwiched between Phe 428
(left) and Gly 437 (right). Figure was prepared with PYMOL (Delano, 2002).

A previously carried out study on aromatic interactions in proteins showed

that tryptophan and histidine side chains preferentially interact with a hori-

zontally displaced stacked geometry (Samanta et al., 1999). The packing of

the tryptophan and the proximal imidazole provides a favourable interaction,

possibly by positioning the histidine side chain and therefore stabilising the

histidine-iron bond. This bond is relatively weak, with an estimated energy of

about 10 kcal/mol, as revealed by spectroscopic work on globins (Stein et al.,

1980).

Similar π-stacking interactions can also be observed in peroxidase and ni-

trophorin, where a phenylalanine packs against the imidazole of the proximal

histidine. In fungal peroxidase and the peroxidase domain of prostaglandin H2

synthase-1 a leucine and valine residues can be found in this position, respec-
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tively. In both catalase and ubiquinol oxidase, the proximal histidine is posi-

tioned by the by extensive stacking interactions provided by two phenylalanine

side chain. Finally, in the case of cytochrome P450 the cysteine haem ligand is

sandwiched between a phenylalanine and a glycine, as shown in Figure 3.2B.

The presence of these side chains presumably still provides a stabilising pack-

ing interaction with the proximal ligand and the haem.

3.3.8 Haem orientation relative to the proximal ligand

When structures are overlaid using central atoms of the porphyrin as well as

the proximal ligand as frame of reference, the haem can be effectively rotated

180◦ in some proteins relative to others. Apparently the haem can therefore

be bound in either of two flipped orientations defined by the asymmetry in

the porphyrin, due to the positions of the vinyl substituents (Fig. 3.3). This

’flipped arrangements’ were first observed in NMR studies on rat cytochrome

b5 (Dangi et al., 1998, Lee et al., 1993, Mortuza & Whitford, 1997) and occur

as well in other protein folds, such as for instance in human haemoglobin

and in the haemoglobin from the ciliate Paramecium caudatum (reported in

bold typescript in Figure 3.3). Moreover, the 1.5 Å resolution structure of

neuroglobin revealed a mixed population of haem groups bound in both the

conformations (Fig. 3.3 and Vallone et al. (2004)).

Therefore the haem-orientation, regarding the positions of the vinyl groups

relative to the proximal ligand, does not affect the function as long as the

protein scaffold has evolved to associate with haem in a given orientation

(Dangi et al., 1998, Lee et al., 1993, Mortuza & Whitford, 1997, Vallone et al.,

2004). Indeed, examination of the protein contacts at the haem edge revealed

limited conservation of interactions across different folds which reflects the fact

that the different packing requirements of binding haem in either of its distinct

orientations.
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Figure 3.3: ’Flipped’ haem orientations relative to the proximal ligand.
Structural comparisons of haem pockets show that either of two possible ’flipped’
haem orientations with respect to the proximal ligand is observed in haem-protein
associations. Interestingly, as highlighted in the top panel of the table, different
orientations can exist in homologous or functionally related proteins from different
species. The nomenclature ’P’ and ’E’ refers to proteins with prokaryotic and
eukaryotic origins, respectively.

3.3.9 Perspectives for the design of novel haem proteins

The here described observations on re-occurring contacts made with the haem-

ligand, could provide guidelines for the design of novel haem proteins. Aro-

matic interactions are clearly playing a key role in stabilising the haem-protein

association in many of the proteins examined here. Nevertheless aromatic con-

tacts are not essential, as indicated by their absence, for example in CooA.

Moreover steric complementarity could be more important than aromatic stack-

ing, which is strongly suggested by the analysis of van der Waals contacts.

However, a general estimation of the relative contributions of the different
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interactions may not be possible, especially in those cases in which the evolu-

tionary/functional pressures dominate the structure of the haem pocket. For

instance in globins and cytochromes haem is a prosthetic group that becomes

an integral part of the structure; they are less stable in their apo-forms and the

folding process itself may rely on haem incorporation (Huntley & Strittmatter,

1972, Pfeil, 1993). In contrast, in HasA and haemopexin haem is a true ligand

and the major function is the reversible binding of haem with high affinity.

Multiple factors are combined to yield pico- and femtomolar range binding

affinities, as epitomised by the structures of HasA and haemopexin (Arnoux

et al., 1999, Paoli et al., 1999, Smith & Hunt, 1990).

Substantial efforts have been made towards the design of haem-proteins (for

example Gibney & Dutton (1999), Xu & Farid (2001)). A potential role of

arginine residues in anchoring the propionate groups and leucine side chains in

hydrophobic contacts with the porphyrin has been discussed, but in the final

design experiments a very minimalist approach was maintained (Robertson

et al., 1994). The majority of other design strategies emphasised on the posi-

tioning of histidine ligands to the iron. It is likely that the limited stability of

the resulting designed proteins (Choma et al., 1994, Gibney et al., 1998, Gib-

ney & Dutton, 1999, Rojas et al., 1997) is partly due to steric interactions and

non-specific packing between porphyrin atoms and protein side chains. There-

fore the identification of interactions between the protein framework and the

haem ligand by arginine, leucine and phenylalanine side chains could aid the

design of a new generations of haem-proteins, particularly when catalysis is

one of the design aims (Obataya et al., 2000). In these cases, the specific

haem-packing motifs presented here may be used to maximise the association

of haem while allowing for a trade off in stability, often required by enzymes

for scaffold flexibility and modulation of geometry at the active site.
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3.4 Conclusions

In this Chapter, the haem binding sites of 68 proteins with 20 different folds

and less than 60% sequence identity have been compared by means of struc-

tural superpositions. This analysis showed that multiple structural solutions

are possible for binding the same, chemically identical ligand, haem. In general

the interactions between protein and haem are very diverse. Non-polar inter-

actions are made with both the edge and the flat face of the haem. The edge

contacts are particularly varied, but some remarkable conservation was noticed

in contacts made with the haem-face. Over two thirds of the proteins surveyed

use arginine side chains to anchor the haem’s propionate groups through elec-

trostatic bridges. Strikingly, leucine and isoleucine side chains were found at a

re-occurring position making van der Waals contacts with the haem face. Aro-

matic rings are frequently aligned at three sites over the porphyrin, engaging

in stacking interactions. Other interesting contacts include hydrophobic side

chains that pack against the haem iron proximal ligand, presumably helping

to maintain the imidazole in a suitable orientation for coordinating the iron.

Structural superpositions thus showed that residues from unrelated structures,

despite the great diversity of folding topologies, cluster at particular interac-

tion ’hot-spots’ defining some common structural haem-binding motifs. The

interactions and structural motifs contributing to the association and incor-

poration of haem by proteins identified in this study, may help to understand

structure-function relationships in haem-proteins and might be useful for the

design of proteins able to incorporate this versatile and ubiquitous ligand.
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Chapter 4

Biochemical and biophysical

characterisation of HemS from

Yersinia enterocolitica

4.1 Introduction

HemS is the cytoplasmic recipient and presently the best studied component of

HemRSTUV system which is detailed described in Chapter 1.2, p. 5. Essen-

tial for Yersinia, HemS was originally thought to be a haem oxygenase and was

also presumed to protect the cellular environment from the toxic effects of free

haem (Stojiljkovic & Hantke, 1994, 1992). Work on the homologous protein

ShuS from S. dysenteriae, which shares 64% sequence identity with HemS,

showed that ShuS binds one haem per molecule with an affinity in the micro-

molar range (Wilks, 2001). Moreover ShuS is essential for Shigella to grow

using haem as sole iron source and potentially transfers it to haem-containing

or degrading proteins (Wyckoff et al., 2005). Recently a link between unspe-

cific binding of ShuS to DNA and its inhibition by haem has been investigated

and a potential role in preventing DNA damage and toxicity associated with
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high haem concentration has been argued (Kaur & Wilks, 2007). Also recently

it was discussed that the homologue from E. coli , ChuS, is a haem oxygenase,

degrading its cargo (Suits et al., 2005). In contrast it has been shown that

PhuS, the homologue from Pseudomonas aeruginosa, is not a haem oxygenase

and the break down of haem is an unspecific process caused by the presence of

hydrogen peroxide. Instead PhuS transfers the haem to the haem oxygenase

paOH, driven by direct protein-protein interactions (Lansky et al., 2006).

In this chapter the cloning, expression, purification and site-directed mutage-

nesis of Y. enterocolitica HemS based on computational analysis is described.

Moreover UV/vis absorption spectroscopy was used to characterise the haem

coordinating residues of the haem-HemS complex from Y. enterocolitica, as

well as its haem binding properties. Furthermore to identify potential inter-

action partners of HemS, pull-down assays with cell extracts from Y. entero-

colitica were performed.

4.2 Materials and methods

4.2.1 Cloning of hemS from genomic DNA

The full-length sequence from Y. enterocolitica hemS (gi:2507043) was PCR-

amplified from genomic DNA (genomic DNA previously prepared by Dr.M.Paoli).

For cloning purposes a maximum number of 24 amplification cycles was used.

The PCR product was gel-purified using a Qiagen or Sigma gel-extraction kit.

A standard PCR protocol was employed (see Chapter 2.2.2.1, p. 38 and Ap-

pendix A.2, p. xix).

For cloning and expression the vector pGAT2, a pGAT (Peränen et al., 1996)

derivate, was used (Appendix A.3, p. xx). For insertion into pGAT2, the

PCR product and the vector were cleaved with HindIII and BamHI. Ligation,

transformation and analysis were carried out as described in Chapter 2.2.3,
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p. 39. To obtain HemS only in frame with the His6-tag and the thrombin

cleavage site linker region, YE-HemS-pGAT2 was cleaved with the restriction

endonuclease SpeI, that cuts out the GST encoding region, then gel-purified

and re-ligated (pSGAT2).

4.2.2 Site-directed mutagenesis of hemS

Single amino acid residue exchanges to alanine of Y. enterocolitica HemS His

75, His 196, Met 244 and His 280 were carried out by overlapping primer

extension PCR (Ho et al., 1989) as described in Figure 4.1. Correctness of

the sequence was confirmed by sequencing.

Figure 4.1: Overlapping primer extension PCR. Two separate PCR reac-
tions with YE-HemS-pSGAT2 as template, using the reverse mutagenesis primer
(Appendix A.2, p. xix) containing the nucleotide changes and the forward primer,
and vice versa were carried out (A). The PCR products were gel-purified and
equimolar amounts used in a second PCR reaction (B), to obtain the full-length
mutated gene sequence that was then inserted into pSGAT2.
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4.2.3 Expression and purification of HemS

HemS was expressed and purified as described in Chapter 2.2.4, p. 40 and

published in Schneider & Paoli (2005). Briefly, once an OD600 of 0.6 - 1.0 was

reached, the temperature was dropped to 30◦C and protein expression was

induced by adding IPTG to a final concentration of 0.4mM. The cells were

further grown overnight, harvested and lysed. Native HemS and HemS mu-

tants were purified by Ni-affinity chromatography with an imidazole gradient.

To determine the HemS concentration the theoretical millimolar extinction

coefficient of ε280 =1.13ml cm−1 mg−1 was used (http://www.scripps.edu/ cd-

putnam/protcalc.html). The N-terminal His-tag was removed by proteolytic

cleavage with thrombin. The amount of thrombin necessary to cleave 1mg

His-HemS overnight at room temperature was determined as 5U thrombin.

Thrombin, His-tag and uncleaved protein were removed as explained in Chap-

ter 2.2.4, p. 40.

4.2.4 UV/vis absorption spectroscopy and reconstitu-

tion of HemS with haemin

All UV/vis absorption spectra were recorded in 50mM Tris-HCl pH 7.5, 150mM

NaCl at 25◦C unless otherwise stated. Experiments in which haem was titrated

with the apo-protein were performed by mixing 5µM of haemin chloride with

0.5 to 10 molar equivalents of apo-protein; these mixed samples were then

allowed to equilibrate for 2 hours at room temperature. The haemin stock so-

lution was prepared as described in Chapter 2.2.5, p. 41. Cyanide binding was

carried out by adding potassium cyanide to a final concentration of 5mM to a

cuvette containing a solution of reconstituted ferric protein (5µM). Reduction

of fully reconstituted HemS was carried out by removing the oxygen from the

protein solution in an anaerobic cuvette by flushing with argon, before adding
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5mM sodium dithionite. To carry out measurements on CO-bound protein,

an excess of CO gas was purged through a sample previously reduced with

sodium dithionite.

For reconstitution of HemS, the sample was saturated with haem by incuba-

tion with 3 molar excess haemin for one hour at room temperature and excess

haemin was removed by gel-filtration (see Chapter 2.2.5, p. 41). The pro-

tein was then concentrated with centrifugal membrane-devices (Vivaspin) in

50mM Hepes pH 8.0, 150mM NaCl, to a concentration of 50mg ml−1.

4.2.5 His-tag pull down assays

His- and His-GST tagged HemS was over-expressed, purified over Ni-NTA

resin, eluted and dialysed against 50mM Hepes, pH8.0, 150mM NaCl. After

reconstitution with haem, the His-tagged haem-HemS complex and His-GST-

tagged haem-HemS complex were reattached to new Ni-sepharose resin and

washed with phosphate-buffered saline (PBS) containing 10mM and 25mM

imidazole.

Cell-lysate from Y. enterocolitica cells was prepared as follows: cells from

a 125ml ON culture grown in LB-medium (cells were grown by Dr. Jakki

Cooney), were harvested by centrifugation (6000 g, 10min, 4◦C) and resus-

pended in 1.5ml PBS with protease inhibitors. For cell lysis, 10mgml−1

lysozyme was added and the cells were incubated on ice for 30 min, followed by

3 freeze/thaw cycles. After sonication (2 x 1min of 9 cycles 10 micron) the sol-

uble fraction was recovered by centrifugation (15,000 g, 10min, 4◦C). 600µl of

cell lysate were added to 40 µl of Ni-sepharose His-haem-HemS, Ni-sepharose

His-GST haem-HemS or Ni-sepharose (blank control) resin and incubated for

1 h at RT. The resin was washed 3 times with with PBS 10mM imidazole and

2 times with PBS supplemented with 25 mM imidazole. The resin was then

resuspended in 40 µl 3 x SDS sample buffer and boiled for 5 min at 95◦C.
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10 µl of the supernatant were loaded on a SDS-PAGE gel. Isolated bands

were cut out and sent for peptide-mass-fingerprinting for identification (John

Keyte, Medical School, University of Nottingham).

For verification of identified potential interacting partners for HemS, a reverse

pull-down assay was carried out. Purified His-CRP protein, bound to 10µl

Ni-NTA resin was washed to remove excess CRP protein. The resin was then

incubated with an excess of tag-free, haem-HemS in either 50mM Tris-HCl,

150mM NaCl pH8 or PBS buffer, slowly rotating (1 h at 4◦C or RT). As a con-

trol for specificity of the interaction, HtsA a haem protein from Streptococcus

pyogenes, was included in the experiment and also incubated with His-CRP

attached to the Ni-resin. The resin was then washed with buffer containing 10

and 25mM imidazole, resuspended in 40µl 3 x SDS sample buffer and boiled

for 5min at 95◦C. An aliquot 10µl of the supernatant was loaded on a SDS-

PAGE gel.

4.2.6 Cloning of the cyclic AMP receptor protein-gene

from genomic DNA

The 632 bp gene coding for the cyclic AMP receptor protein (CRP; gi:18032025),

which was identified as a potential interacting partner by pull-down assay

and peptide-mass-fingerprinting, was PCR amplified from Y. enterocolitica

genomic DNA (for primer see Appendix A.2, p. xix). The PCR product was

cleaved with BamHI and HindIII and cloned into the expression vector pGAT2

(Appendix A.3, p. xx) in frame with the His6-GST double tag. The expres-

sion construct YE-CRP-pGAT2 was digested with the restriction endonuclease

SpeI in order to remove the sequence coding for GST, thus leaving the CRP

sequence in frame with the His-tag (YE-CRP-pSGAT2) .
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4.2.7 Expression and purification of the cyclic AMP

receptor protein

Expression of the His-GST double tagged CRP was insoluble at all tested tem-

peratures (20 - 30◦C) as well as over different expression times (2 h - overnight).

The expression construct with CRP only in frame with the His-tag, could be

expressed soluble at 25◦C overnight. The cells were lysed by french press in

presence of 5mM 3’-5’-cyclic adenosine monophosphate (cAMP). A standard

His-tag purification was carried out as described in Chapter 2.2.4, p. 40.

4.3 Results and Discussion

4.3.1 Sequence alignment and structure prediction of

HemS

At the beginning of the project, no structural data of HemS or its homologues

were available. Therefore the conservation of the HemS protein sequence was

analysed, and secondary and tertiary structure predictions were also carried

out, using computational methods. In order to identify conserved amino acid

residues that might play a role in haem-iron coordination, the database of

the National Centre of Biotechnology Information (NCBI) was searched using

BLAST (Altschul et al., 1990) for homologous protein sequences to HemS.

Homologous sequences were only identified in bacteria belonging to the phylum

of the Gram-negative α-, β- and γ-Proteobacteria, showing a sequence identity

of above 30% (Fig. 4.2). No similar sequences from any other organism or

bacterial phylum were detected, nor had the structure of any of the homologous

proteins been solved at the time of this work. Alignments of these sequences

show similar trends of hydrophobic regions as well as four conserved amino

acids, possibly involved in haem-iron coordination could be identified:
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Figure 4.2: Sequence similarities and identities of HemS homologues
from different species of α-,β- and γ-Proteobacteria, calculated using
EMBOSS (http://www.ebi.ac.uk/emboss/align). The sequences compared in
the figure are from the following species: Bartonella hanselae (gi:49475291);
Bordetella avium (gi:20977617); Burkholderia cepacia (gi:46370047); Chro-

mobacterium violaceum (gi:34499352); Enterobacter cloacae (gi:28170649); Er-

winia carotovora (gi:49611302); Escherichia coli (gi:15804043); Mesorhizobium

loti (gi:13471236); Methylobacillus flagellatus (gi:45520416); Photorhabdus lu-

minescens (gi:37526524); Pseudomonas aeruginosa (gi:15599903); Ralstonia

metallidurans (gi:22979076); Rhizobium leguminosarum (gi:13277332); Shigella

dysenteriae (gi:2967533); Silicibacter sp. (gi:52011032); Sinorhizobium meliloti

(gi:15966181); Yersinia enterocolitica (gi:2507043); Yersinia pestis (gi:16120621)

His 75, His 196, Met 244 and His 280 (Fig. 4.3).

Various internet-based secondary and tertiary structure prediction servers,

that utilize different approaches were used to predict the structure of HemS

(Table 2.2, p. 43). Secondary structure prediction methods, especially for

α-helices, are relatively reliable and two different servers, JPRED (Cuff et al.,

1998) and PSIPRED (Jones, 1999), were used. The output from both servers

was similar and the predicted secondary structural elements included seven

well-defined α-helical and four β-sheet regions (Fig. 4.3). However, for fold

recognition and tertiary structure prediction, despite having used different fold

algorithms (Table 2.2, p. 43), no significant solution was found.
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Chapter 4 - Biochemical and biophysical characterisation of HemS

4.3.2 Biochemical characterisation of HemS

4.3.2.1 Purification of HemS and HemS-mutants

HemS from Y. enterocolitica was cloned from genomic DNA and the heterolo-

gous expression in E. coli optimised. HemS shows a highly soluble expression

(Fig. 4.4A). Purification was carried out by Ni-affinity chromatography us-

ing the His-tag (Fig. 4.4B). Since the His-tag binds haem itself (Paul Barker,

personal communication and Fig. 4.10D) and can interfere with crystallisa-

tion, special care was taken to remove the tag by cleavage at the thrombin

cleavage site in the linker region between the N-terminal His-tag and the

protein sequence. Cleavage with thrombin was optimised (Fig. 4.5A) and

the resulting protein has an additional serine and glycine residue at its N-

terminus. Thrombin, traces of uncleaved protein and the His-tag were re-

moved by p-aminobenzamidine agarose and Ni-NTA resin, to obtain pure pro-

tein (Fig. 4.5B).

In order to investigate a potential role in haem-iron coordination of the four

conserved residues (His 75, His 196, Met 244, His 280) identified in multiple

sequence alignments, were mutated to alanine and their haem-binding prop-

erties compared with the wild type. Already upon over-expression in E. coli

a difference could be observed: cells expressing wild type HemS, HemS-H75A

and HemS-M244A were dark colored and the cell lysate was showing a pur-

ple color, indicating haem binding upon protein expression. Cells expressing

HemS-H196A and HemS-H280A were not showing a dark color, indicating de-

fective in incorporation of haem and implying an involvement in haem-iron

coordination of His 196 and/or His 280. Optimised purification of the HemS

mutants is shown in Figure 4.4C. The nickel resin bound with HemS was

coloured dark blue; elution of the protein could be observed by eye due to the

dark red color of the eluate. The yield of pure HemS protein was about 80mg
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Figure 4.4: HemS expression and purification. (A) Soluble expression of
Y. enterocolitica HemS. (B) and (C) His-tag purification of HemS wild type and
HemS mutants: lane 1: flow through; lanes 2 - 5: washing with increasing imidazole
concentrations; lanes 6 and 7: elution of bound HemS with 150 mM imidazole.

per liter cell culture and the protein was stable at 4◦C for approximately two

weeks.

Analytical gel-filtration analysis of apo- and haem-HemS with different protein

and buffer/salt concentrations shows that HemS is a monomer (Fig. 4.6) and

does not form dimers, as in the case of PhuS from P. aeruginosa (Lansky

et al., 2006) or oligomers, as for ShuS from S. dysenteriae (Wilks, 2001).
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Figure 4.5: Removal of the His-tag from Y. enterocolitica HemS with
thrombin.(A) Optimisation of thrombin cleavage of HemS over night at RT with
varying thrombin concentrations: 5 U thrombin were necessary to cleave 1mg of
recombinant HemS protein. (B) Cleaved HemS mutants.
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Figure 4.6: Analytical gel-filtration analysis of the haem-HemS com-
plex. An estimated molecular mass of the protein was extrapolated from a stan-
dard calibration curve. The column was equilibrated either with 50 mM Tris-HCl,
pH 7.5, 150 mM NaCl, or 50 mM Tris-HCl, pH 7.5, 75 mM NaCl, and each was
tested with two sample concentrations of 5 and 10 mgml−1. Representative traces
were recorded at 280 nm for molecular weight markers (black) and HemS (blue)
and trace HemS measured at Soret maximum of 411 nm (red). The data indicate
that HemS is a monomer and no dimerisation is observed even at 10 mg ml−1.
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4.3.2.2 Spectroscopic analysis and haem-binding properties of HemS

Haem proteins have characteristic visible Soret absorption maxima between

390 - 440 nm and Q-bands at 500 - 700 nm that reveal information about the

structure and coordination state of their active site.

UV/vis spectroscopic studies of wild type HemS and the HemS mutants were

carried out. The fully reconstituted, ferric wild type haem-HemS complex has

a Soret maximum at 411 nm and Q-bands at 548 nm and 580 nm (Fig. 4.7A).

Binding of haem by HemS is relatively slow and takes approximately 40min at

room temperature before saturation is reached (Fig. 4.7B). HemS purifies red

from E. coli but is not saturated with haem showing only a small Soret peak

at 411 nm after purification (Fig. 4.8A). Upon reduction of the haem iron by

addition of sodium dithionite, the absorption maximum red shifts to 420 nm,

with a single Q-band at 555 nm (Fig. 4.8A). Binding of carbon monoxide to

the ferrous (Fe2+) haem iron causes a blue shift of the Soret peak to 420 nm

and of the Q-band to 543 nm (Fig. 4.8A). Cyanide binding to the ferric (Fe3+)

haem iron results in a red shift of the Soret peak to 418 nm and the appearance

of a single Q-band at 550 nm (Fig. 4.8B).
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Figure 4.7: Reconstitution of wild type HemS with haemin and time
course of haem binding. (A) UV/vis spectrum of haem-HemS complex and
samples before and after cleavage with thrombin (inset). (B) Plot of height of the
Soret peak relative to the protein peak versus time. Apo-HemS was incubated
with 3 times molar excess of haemin chloride and a spectrum was recorded every
5 - 10 min.
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Figure 4.8: UV/vis spectra of wild type HemS. (A) Optical absorption
spectra of oxidised, reduced and CO-bound HemS: as purified (black), saturated
with haem as ferric (blue); ferrous (green) and CO-complex (red). (B) Optical
absorption spectra of HemS in its ferric unliganded (blue) and CN-bound (red)
forms. (C) Titration of haemin solution (5 µM) with apo-HemS. (D) Plot of bind-
ing curve obtained from titration of haem solution with HemS protein. The curve
has been least square fitted with data points from three independent experiments.

Since cyanide as well as carbon monoxide are able to bind to the haem-iron,

the distal haem side has to be accessible for a ligand and/or the distal lig-

and can be displaced by this strong binder. In the NEAT domain proteins

IsdA and IsdC from S.aureus, the distal haem side is blocked by a residue and

cyanide cannot bind (Grigg et al., 2007a, Sharp et al., 2007).

Titration of a haemin chloride solution with apo-HemS (Fig. 4.8C+D) indi-

cates binding of one haem per molecule, as it has been shown for the homo-

logues ShuS and PhuS (Lansky et al., 2006, Wilks, 2001).

The UV/Vis spectroscopic characteristics of the haem-HemS complex were

compared with other b-type haem proteins with bis-histidyl, histidine/me-

thionine or histidine haem-iron coordination (Table 4.1). Similarities to pro-

teins with bis-histidyl or a histidine and a water as ligands to the iron could
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Table 4.1: Comparison of optical absorption maxima of haem-proteins.
Absorption maxima of HemS and haem-proteins with his, bis-histidyl or his/met
haem-iron ligation. (noted in parentheses are the presumed coordination struc-
tures).

Protein Fe(III) Fe(II) Fe(II)-CO ref.

HemS 411, 548, 580 420, 555 418, 543 this work

cellobiose dehydrogenase 411, 530, 560 428, 526,556 a

mutant M65H (His/His 6cHS) (His/ His 6cLS)
cyt b5 412, 533, 562 423, 525, 556 b

(His/His 6cLS) (His/His 6cLS)
haemopexin 413, 525, 558 426, 527, 559 c

(His/His 6cLS) (His/His6c)
neuroglobin 413 426, 560 420 d

(His/His 6c) (His/His 6c) (His/CO)
SOUL 413, 535, 565 422,527, 558 418, 536, 563 e

(His, ?)
HRI-NTD 415, 534, 565 429, 532, 562 424, 539, 565 f

(His/His 6cLS) (His/His 6c) (His/CO 6c)
EcDos 416, 530, 564 427, 532, 563 423, 540, 570 g

(His/H2O, 6cLS) (His/Met 6cLS) (His/CO 6cLS)
SwMb 410, 505, 635 434, 556 423, 542,579 h

(His/H2O 6cHS) (His 5cHS) (His/CO 6cLS)
haem oxygenase 404, 500, 631 421, 538, 568 i

(His/H2O 6cHS) (His/CO 6c)
horseradish peroxidase 403, 500, 641 437, 556 j

(His/H2O)
sGC 393, 555 431, 555 423, 541, 567 k

(His 5c) (His 5c) (His/CO 6c)
cyt b562 418, 530,564 427, 531, 562 l

(His/Met 6cLS) (His/Met6cLS) (His/CO 6cLS)
cellobiose dehydrogenase 421, 530, 570 429, 532, 562 m

wildtype (His/Met 6cLS) (His/Met 6cLS)

a(Rotsaert et al., 2003a)
b(Rivera et al., 1992)
c(Cox et al., 1995, Shipulina et al., 1998)
d(Dewilde et al., 2001)
e(Sato et al., 2004)
f(Inuzuka et al., 2004)
g(Sasakura et al., 2002)
h(Antonini & Brunori, 1971)
i(Takahashi et al., 1994, Wilks et al., 1996)
j(Tamura et al., 1972)
k(Stone & Marletta, 1994)
l(Barker et al., 1996)

m(Rotsaert et al., 2001)
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be observed. Strikingly a recent study on cellobiose dehydrogenase, an enzyme

with the his/met haem-iron coordination, where Met 65 was mutated to his-

tidine, thus changing the coordination to two bis-histidyl, resulted in a shift

of the Soret peak of the Fe3+ complex from 421 nm (wild type; his/met) to

411 nm (M65H; his/his)(Rotsaert et al., 2003a).

Titration experiments of haemin with HemS at pH’s ranging from 5.8 to 9

were carried out, to investigate whether the protonation-state of the likely in-

volved histidine residues as proximal ligands to the iron has an influence of the

HemS-haem-binding properties, since the pKa of histidine is 6.5. The graphs

depicted in Figure 4.9 shows impaired haem binding at pH5.8 compared to

more alkaline pH’s that seem to enhance haem-binding. Although this pH-

effect on haem-binding could be caused by decreased stability of HemS at

lower pHs as well as effects of pH on the propensity of haem to form ill-defined

aggregates in aqueous solutions.
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Figure 4.9: pH-dependent haem-binding by HemS. Plot showing influence
of pH on haem-binding properties of HemS in titration experiments of haemin
with protein.

The possible involvement in haem-iron coordination of the four conserved

residues His 75, His 196, Met 244 and His 280, was investigated by mutating

them to alanine and comparing the haem-binding, with the wild-type. Mu-

tation of His 75 to Ala had no effect on the haem-binding abilities of HemS
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(Fig. 4.10A+B). HemS-M244A showed a minor effects, causing a slight blue

shifted as well as a reduced Soret maximum (Fig. 4.10A+B). Therefore these

amino acid residues could be excluded as possible ligands to the iron. In con-

trast, mutation of His 196 to Ala causes a large shift in the spectra of the

haem-bound form, from a low-spin (wild type) to a high-spin iron (high-spin

marker band at 622 nm). Additionally, the Soret peak was reduced and blue

shifted from 411 nm to 402 nm, indicating a change of the coordination state

or loss of coordination of the haem-iron (Fig. 4.10A+B). Moreover the spectra

of the ferric haem-HemS-H196A complex resembles the spectra of free haem

in complex with cyanide (Fig. 4.10C). These changes suggest that His 196 is

a ligand to the haem iron.
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Figure 4.10: Spectroscopic analysis of HemS mutants and unspecific
haem-binding by the His-tag. (A) Overlay of UV/Vis spectra of haem-bound
wild type HemS (red), H75A (black), H196A (orange), M244A (green) and H280A
(blue). (B) Comparison of haem-binding properties of HemS and HemS mutants
in titration experiment of haemin chloride with protein. (C) Ferric HemS-H196A
(blue) and its cyanide complex (orange). Haemin in solution (grey) and after ad-
dition of cyanide (black). (D) Unspecific haem-binding by His-tagged glutathione-
S-transferase (GST).
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The His 280 to Ala mutation seems to interfere with the haem-binding ability

of HemS as well, since the mutation appears to cause a loss of the haem binding

ability as investigated by the lack of colour upon purification and UV/vis ab-

sorption spectroscopy (Fig. 4.10A+B). However, when tested in haem-binding

experiments, the HemS-H280A mutant can exhibit an absorption spectra com-

parable with the wild type, except of a reduced Soret peak. Its role might be

more indirect by influencing the overall stability of the protein, because it was

observed that HemS-H280A was less stable at 4◦C than the wild type, which

could explain the effect on the haem-binding ability. But this hypothesis needs

further investigation.

Considering the comparison of UV/Vis absorption maxima with other b-type

haem proteins together with the results of the site-directed mutagenesis study,

it may be possible to conclude that His 196 is the proximal ligand to the haem

in HemS, possibly with a water at the 6th coordination position.

A further experiment was carried out to determine weather the His-tag can

bind haem by itself or contribute to haem-binding. A His-tagged version of

glutathione-S-transferase (GST), which is not a haem protein and does not

bind haem, was expressed and purified. After the addition of haem, His-

GST displays a broad Soret peak, which is an indication of non-specific haem-

binding by the tag (Fig. 4.10D). Therefore the His-tag can have an influence on

haem-binding studies and should be removed before conducting experiments

such as titration assays.

4.3.3 Identification of interaction partners of HemS

There are no known interaction partners for HemS from Y. enterocolitica. For

the homologous protein PhuS from P. aeruginosa, it has been shown that

it transfers its haem to a haem oxygenase paHO, which degrades the haem.

BLAST (Altschul et al., 1990) searches of the Y. enterocolitica genome se-
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quence available at the Sanger institute (http://www.sanger.ac.uk/Projects/)

with the sequence of paOH gave no significant hits. Recently two haem oxyge-

nases from Bradyrhizobium japonicum (HmuD and HmuQ), belonging to the

group of α-Proteobacteria, were identified by BLAST homology searches (Puri

& O’Brian, 2006), using the sequences of the haem oxygenases from S. aureus,

IsdG and IsdI (Skaar et al., 2004a). IsdG and IsdI are structurally distinct from

other haem oxygenases (Skaar et al., 2004a) and share weak sequence iden-

tity with HmuD and HmuQ. In addition to that the gene coding for HmuQ is

clustered in the genome with genes known to be involved in haem utilisation,

such as hmuRTUV (Puri & O’Brian, 2006). The haem oxygenase function of

HmuD and HmuQ was confirmed by in vitro and in vivo experiments (Puri

& O’Brian, 2006). Homologues to HmuD and HmuQ, IsdG and IsdI can only

be found in α-Proteobacteria and not in β- or γ-Proteobacteria. In order to

identify proteins that interact with HemS, pull-down assays with Y. enteroco-

litica cell lysate were performed, using His-tagged haem-HemS and His-GST-

tagged haem-HemS attached to Ni-sepharose resin as a bait. Three protein

bands (∼30 kDa, ∼20 kDa and ∼6 kDa) could be isolated from the cell lysate

(Fig. 4.11) and were sent for identification by peptide-mass-fingerprinting.

A band of ∼26 kDa size is only present using His-GST-tagged haem-HemS

(lane 9), but no His-tagged haem-HemS (lane 8). Therefore it is likely to be a

protein that has bound to GST and not to HemS.

Two out of the three isolated bands could be clearly determined by peptide-

mass fingerprinting with a sequence coverage of 58% (Fig. 4.12), the ∼6 kDa

protein band was to small for identification. The ∼30 kDa protein band could

be determined as the urease accessory protein (UreE) homologue from Y. ente-

rocolitica (gi:18032026)(Fig. 4.12A). The approximately 21 kDa protein band

was identified as the homologue of cAMP receptor protein (CRP) also known

as catabolite gene activator protein (CAP) from E. coli (Fig. 4.12B).
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Figure 4.11: Pull-down assay with haem-HemS. Lane 1: His-haem-HemS;
lane 2: His-GST-haem-HemS; lane 3: Y. enterocolitica cell lysate; lane 4: protein
marker; lane 5: wash fraction 25 mM imidazole, blank control; lane 6: wash frac-
tion 25 mM imidazole, His-haem-HemS; lane 7: controle His-haem-HemS without
cell lysate; lane 8: His-haem HemS incubated with cell lysate; lane 9: His-GST-
haem HemS incubated with cell lysate; lane 10: blank controle (Ni-sepharose resin
without HemS incubated with cell lysate). Arrows are indicating bands identified
by peptide-mass fingerprinting: cyclic AMP receptor protein (CRP), and urease
accessory protein Ure3. The ∼6 kDa band could not be identified by peptide-mass
fingerprinting. The band between UreE and CRP is only present in lane 9, but
not in lane 8 and therefore had bound to the GST in His-GST-haem HemS.

B

A

Figure 4.12: Results and sequence coverage of peptide-mass fingerprint-
ing. (A) Urease accessory protein (UreE) and (B) cyclic AMP receptor protein

(CRP) from Y. enterocolitica.

81



Chapter 4 - Biochemical and biophysical characterisation of HemS

UreE proteins are metallo-chaperones involved in the urease metallo-centre

assembly by binding Ni2+ ions and transferring them into the active site of

urease (Musiani et al., 2004). The sequence identity between the protein from

Y. enterocolitica and the best studied UreE proteins from Bacillus pasteurii

and Klebsiella aerogenes, is 26% and 24% respectively. It is likely that the

UreE homologue from Y. enterocolitica has a similar function as the proteins

from Bacillus and Klebsiella and therefore binds to the Ni-sepharose resin

rather than to HemS. Hence, UreE from Y. enterocolitica was excluded as a

potential interaction partner to HemS and was not further investigated.

CRP is a highly conserved positive regulator of many genes, including the

iron/haem uptake machinery in Proteobacteria and sequence identities for

CRP proteins range from 60 to 99%. CRP from E. coli is a 45 kDa dimer (Aiba

et al., 1982), is a transcriptional activator of over 150 genes (Adhya & Garges,

1990) and the structures of the cAMP-CRP complex as well as the cAMP-

CRP-DNA complex have been determined (McKay & Steitz, 1981, McKay

et al., 1982). In Erwinia and Vibrio CRP acts as an antagonist to the ferric

uptake regulator (FUR) and positive regulator under iron-limited conditions,

for the iron acquisition machinery and pathogenicity (Franza et al., 2002, Lee

& Choi, 2006). The sequence identity between Y. enterocolitica CRP and E.

coli CRP is 98%. Due to the involvement of CRP in iron-metabolism and if

this potential interaction of CRP with HemS is true, HemS could be involved

in the regulation of the HemRSTUV operon. In order to investigate this

possible interaction of HemS with CRP, crp was cloned from Y. enterocolitica

genomic DNA. CRP expressed insolubly in frame with a His-GST double tag

(Fig. 4.13A), most likely because of the interference of the dimerisation by the

GST-tag with the dimerisation of CRP. It expressed soluble with a sole His-

tag (Fig. 4.13B). CRP was purified in presence of cAMP using metal-affinity

chromatography (Fig. 4.13C).
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Figure 4.13: Expression and purification of the cAMP receptor protein

(CRP).(A) Insoluble expression of His-GST-CRP. Expression trials were carried
out at temperatures ranging from 20 - 30◦C and different induction points. (B)
Partly soluble expression of His-CRP at 25◦C. (C) His-tag purification of CRP.
Lane 1= flow trough; lane 2 - 5 =washes with increasing imidazole concentration
(10 - 25 mM); lane 6 - 8 = elution with 150 mM imidazole.

In order to verify the potential interaction of HemS and CRP, His-CRP bound

to Ni-NTA resin was incubated with excess of fully haem-bound, tag-free

HemS. HtsA, a haem protein from Streptococcus pyogenes was used as a nega-

tive control for the specificity of the binding. After several wash-steps, the resin

was boiled with SDS-loading buffer and analysed by SDS-PAGE (Fig. 4.14).

The amount of HemS bound to CRP was very limited and comparable to the

amount of bound HtsA (Fig. 4.14B, lanes 5 - 7). The assay was carried out

in two different buffers (PBS and Hepes), but no specific interaction between

HemS and CRP could be identified in this reversed pull-down assay.

In addition, the potential complex formation between CRP and haem-HemS

were investigated by analytical gel-filtration. Haem-HemS and CRP were

mixed in a 1:1 molar ratio and incubated for one hour at 4◦C before load-

ing the sample onto a gel-filtration column. A potential complex between a
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Figure 4.14: Pull-down assay of HemS with His-CRP. (A) SDS-PAGE
gel showing the individual proteins His-CRP, haem-HemS, haem-HtsA. (B) Pull-
down assay with His-CRP attached to Ni-NTA resin. Lanes 1 - 4 = last wash step
of lanes 5 - 8; lane 5= Ni-NTA-His-CRP incubated with haem-HemS; lane 6 = Ni-
NTA-His-CRP incubated with HemS; lane 7 = Ni-NTA-His-CRP incubated with
HtsA as control; lane 8 = Ni-NTA resin incubated with haem-HemS (blank con-
trol).

CRP dimer and one or two molecules of HemS would have an expected size of

84 kDa and 123 kDa, respectively. The elution of HemS was followed by the

absorbance measured at its Soret maximum of 411 nm and it eluted from the

column after 69ml (Fig. 4.15), matching the elution volume of haem-HemS

on its own (Fig. 4.6). The trace at the protein absorbance at 280 nm shows

a shoulder, possibly corresponding to the CRP-dimer (Fig. 4.15). Thus no

complex formation between HemS and CRP could be observed by analytical

gel-filtration.

Given the results of the reversed pull-down assay and the analytical gel-

filtration, it is unlikely that CRP interacts specifically with HemS in the pull-

down assay with the Y. enterocolitica cell lysate. In the absence of DNA,

CRP has a relative large charged surface area, which could interact with the

Ni-NTA resin. Non-specific binding to affinity chromatography resins by cel-

lular proteins is a common problem in this biochemical approach to identify

target proteins. In general the term ’non-specific protein binding’ is used for

proteins that bind to affinity resins through physical absorption (hydrophobic
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Figure 4.15: Analytical gel-filtration of haem-HemS and CRP. Equimo-
lar amounts of Haem-HemS and CRP dimer were mixed with at a concentra-
tion of approximately 10 mg ml−1. The estimated molecular mass of the proteins
was extrapolated from a standard calibration curve using a HiLoad Superdex 75
HR16/60 column and a Äkta Purifier chromatography system (GE Healthcare).
The column was equilibrated with 50 mM sodium-phosphate, pH 7.5, 20 mM NaCl.
Traces were recorded at 280 nm (blue) and at the Soret maximum of HemS of
411 nm (red).

interactions) instead of specific ligand-receptor interaction (Hofstee, 1974, 1973,

Tamura et al., 2003). Another problem could be the potential low expression

level of potential target proteins for HemS. This could possibly be improved

by growing Y. enterocolitica cells under iron limited conditions, with haem

as sole source of iron. Additional difficulty in determination of target pro-

teins of HemS could be caused by a transient character of the interactions

during haem transfer. Recently, short-lived protein-protein interactions and

fast transfer of haem has been observed between PhuS and paOH (Lansky

et al., 2006) and the haem transport proteins from S. pyogenes (Liu & Lei,

2005, Nygaard et al., 2006a). Such transient interactions could be identified

for example in a bacterial yeast two hybrid assay (Joung et al., 2000), which

would involve generation of a gene library of Y. enterocolitica cells where the

expression levels of potential target proteins is maximised.
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4.4 Conclusions

HemS from Yersinia enterocolitica is a 39.2 kDa protein and the cytosolic re-

cipient of the haem-uptake system HemRSTUV (see Fig. 1.3, p. 7). Homo-

logues of HemS are common to the phylum of α-, β- and γ-Proteobacteria

with a sequence identity of over 35%. At the beginning of this thesis work

the HemRSTUV system from Y. enterocolitica was, biochemically, the best

studied system. Multiple sequence alignments showed conservation of four po-

tential haem-iron coordinating residues: His 75, His 196, Met 244 and His 280.

Using site-directed mutagenesis and UV/vis absorption spectroscopy His 196

could be identified as ligand to the haem-iron. Moreover, in contrast to the

homologues from S. dysenteriae, ShuS, and P. aeruginosa, PhuS, Y. enteroco-

litica HemS is a monomer in solution.

Originally HemS was thought to be a haem oxygenase (Stojiljkovic & Hantke,

1994), which also has been argued for the E. coli homologues ChuS (Suits

et al., 2005). Recent experiments carried out on the P. aeruginosa homologue

PhuS showed that PhuS is not a haem oxygenase, but transfers the haem to

the haem oxygenase paOH (Lansky et al., 2006). It is therefore most likely

that HemS and its homologues are haem-transporter facilitating transfer of

haem from the uptake machinery to enzymes that either utilise haem per se

or break it down. The Y. enterocolitica genome sequence was searched for

a gene coding for a homologous protein to paOH, or the haem oxygenases

HmuD and HmuQ from B. japonicum (Puri & O’Brian, 2006) or IsdG and

IsdI from S. aureus (Skaar et al., 2004a), but none could be found. To identify

target proteins for HemS, pull-down assays with Y. enterocolitica cell lysate

were performed and two potential interacting partners identified. After fur-

ther investigation, these two proteins proved to be false-positives. Failure in

finding target proteins for HemS could be due to their low expression levels

in standard medium and/or the transient character of the protein-protein in-
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teraction. The expression of potential target proteins could be increased by

growing the cells under iron limiting conditions with haem as sole source of

iron. In addition as an alternative method to the pull-down assay the bacterial

two-hybrid system (Joung et al., 2000) could be used.
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Chapter 5

Crystallisation and

structure-determination of

HemS from

Yersinia enterocolitica

5.1 Introduction

In Chapter 4 the role of HemS as the cytoplasmic carrier of the HemRSTUV

system as well as the biochemical and biophysical properties of HemS and its

homologues have been discussed. When this work was started, no structural

data on HemS or its homologues were available, nor could any structural sim-

ilarity to a known structure be identified (Chapter 4.3.1, p. 68).

During this work on the crystallisation and structure determination of HemS,

the apo-structure of the homologous protein ChuS from E. coli was published,

sharing 62% sequence identity with HemS and revealing a novel fold (Suits

et al., 2005). Despite the structural data, no haem binding site was identi-

fied. After the structural studies here carried out on apo- and haem-HemS
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were published (Schneider et al., 2006), the structure of the haem-ChuS com-

plex was also published (Suits et al., 2006). Recently the North East Struc-

tural Genomics Consortium solved two structures from hypothetical proteins,

AGR C 4470p from Agrobacterium tumefaciens and Q6d2t7 erwct from Er-

winia cartovora, sharing strong structural similarity to HemS despite an in-

significant sequence identity of less than 20% (Vorobiev et al., 2007).

The purpose of the work described in this Chapter is the crystallisation and

structure determination of apo- and haem-HemS from Y. enterocolitica, the

comparisons of which will give insights into the molecular mechanism of haem-

binding. Based on the structures of AGR C 4470p and Q6d2t7 erwct, the

evolution of the HemS-folding topology is discussed.

5.2 Materials and methods

5.2.1 Expression and purification of seleno-methionine

derivatised HemS

HemS from Y. enterocolitica was cloned, expressed, purified and reconstituted

with its ligand as described in Chapter 4.3.2.1, p. 71.

Selenomethionine (SeMet)-HemS was produced by transforming the expres-

sion plasmid in methionine auxothroph E. coli B834 (DE3) cells. 2ml of an

over-night culture of B834(DE3) cells grown in Luria-Betani medium, supple-

mented with 50mgml−1 carbenicllin, were transferred to 1 ltr of LeMaster with

50mg ltr−1 SeMet (Calbiochem)(Hendrickson et al., 1990) and 50mgml−1 car-

benicillin (Melford) in a buffled flask. Cells were grown at 37◦C and 200 rev

min−1 until an absorbance (OD600) of 0.8 was reached. Protein expression was

than induced by adding IPTG to a final concentration of 0.4mM and cultures

were further grown over night. Purification of SeMet HemS was carried under
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non-reducing conditions as for the native protein.

5.2.2 Crystallisation of HemS

After carrying out a pre-crystallisation test (PCTTM , Hampton Research)

with the haem-HemS complex to determine the most appropriate protein con-

centration to use for crystallisation trials, initial high-throughput crystallisa-

tion screening was performed using the sitting-drop vapour-diffusion method

in 96-well Intelliplates. The experiments were set up with the Hydra II

micro dispensing system, testing conditions from five crystallisation screens

from Nextal Biotechnology (ClassicsTM , PEGsTM , AmSO4TM , CationsTM ,

MPDTM) and a number of screens from Hampton Research (Crystal ScreenTM ,

Crystal Screen 2TM , IndexTM , SaltRxTM , and GRID screensTM : Ammonium

SulfateTM , Sodium MalonateTM , PEG/LiClTM , PEG6000TM). The effect of

volume was checked using two different drop sizes (2µl+2µl and 0.7µl+0.7µl).

Plates were evaluated after 3 weeks. Crystallisation conditions were then op-

timised by the hanging- and sitting-drop vapour diffusion methods. Differ-

ent drop sizes (4, 8 and 10µl) and protein concentrations (10, 20, 30 and

50mgml−1) were tested against a grid of precipitate concentrations. Addi-

tionally the effect of pH and buffer variation on crystallisation as well as am-

monium sulphate concentration and additives like imidazole or glycerol were

investigated in a 96-well grid-screen, manually designed for the Hydra II micro

dispensing system. Plates were incubated at 20◦C or at 4◦C.

To crystallise the apo-form, Ni-affinity chromatography was followed by ion-

exchange chromatography (MonoQ, GE Healthcare), equilibrated with 50mM

Bis-Tris-Propane pH 6.5), to separate molecules that had incorporated haem

during expression. Initial crystals were obtained in 100mM bicine, pH 9,

2.4M ammonium sulphate, 5% PEG 400 in the same, manually designed 96-

well grid-crystallisation screen for the Hydra II micro dispensing system, as
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haem-HemS. Apo-HemS crystals could be reproduced and optimised by man-

ual screening around the hit condition and the best crystals were obtained in

100mM bicine, pH 9, 2.45M ammonium sulphate and 5% PEG 400, with a

protein concentration of 30mgml−1 in sitting-drop vapor diffusion (Crychem

plates, Hampton Research)(manual optimisation of apo-HemS crystallisation

was carried out by Dr. Katherine Sharp).

Initial crystallisation trials with the haem-SeMet-HemS were carried out in a

grid screen with 50mM Tris-HCl, pH 8.5, ammonium sulphate (1.8 - 2M) and

PEG 400 (2 - 5% (w/ v)). The protein concentrations tested were lower than

for the native protein (10 and 20mgml−1) due to the increased hydrophobicity

of the SeMet derivative protein.

5.2.3 Diffraction analysis and structure of HemS

Prior to flash-freezing in liquid nitrogen haem-HemS crystals were transferred

into an artificial, cryo-protectant mother liquor consisting of 0.1M Tris-HCl,

pH 8.5, 1.8M ammonium sulphate, 150mM sodium chloride, 2% PEG 400,

1.2M sodium malonate. Optimisation of the cryo-protectant solution was a key

issue, since mixtures with higher concentrations of either PEG 400, ammonium

sulphate and sodium malonate resulted in phase separation, serious crystal

damage and/or unsatisfactory freezing. For phase determination with heavy

atom derivatives, haem-HemS crystals were harvested and soaked over night

at 4◦C in artificial mother liquor containing potassium tetrachloroplatinate

(II) (K2PtCl4) or di-m-iodobis (ethylendiamine) diplatinum (II) nitrate (PIP).

Initial diffraction analysis on native haem-HemS crystals was carried out in-

house.

Two MAD data sets on haem-HemS (Fe-MAD) and K2PtCl4-derivatised crys-

tals (Pt-MAD) were collected at the European Synchrotron Radiation Facility

(ESRF) beamline BM14. The exact peak and inflection wavelengths of the
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iron (K-edge) and platinum (LI, LIII-edge) resonance edge were determined

through an X-ray fluorescence scan. Details of the data collection are listed in

the Table 5.1. In addition a data set on a PIP derivatised crystal was collected

in-house with 0.5 ◦ oscillation, an exposure time of 10min and consisting of

360 frames.

Apo-HemS crystals were soaked in artificial, cryoprotective mother liquor con-

taining 100mM bicine, pH 9, 2.6M ammonium sulfate, 5% PEG 400 and 0.8M

sodium malonate prior to flash freezing and storage in liquid nitrogen. The

crystals were then diffracted at the ESRF beamline ID-14.2. 180◦ of data,

with 1◦ oscillation at 0.933 Å and 15 sec exposure, were collected.

Table 5.1: Data collection details carried out at the ESRF synchrotron
beamline BM14 on haem-HemS crystals. MAD data sets were collected on
a single crystal. (pk= peak; ip = inflection point)

Iron MAD Platinum MAD (K2PtCl4)
Data set iron pk iron ip remote pt pk LIII pt ip pt pk LI

wavelength (Å) 1.7393 1.7406 0.984 1.07144 1.07189 0.88
collected frames 500 360 320 100 200 200
oscillation 1◦ 1◦ 1◦ 1◦ 1◦ 1◦

exposure time 30 sec 15 sec 20 sec 15 sec 15 sec 5 sec

Diffraction data were processed with MOSFLM (Leslie, 1992) and SCALA

(Evans, 1997) or HKL2000 (Otwinowski & Minor, 1997). Initial experimental

phasing trials on the haem-HemS iron- and platinum- MAD data sets were

attempted with MLPHARE (CCP4, 1994), SOLVE (Terwilliger & Berendzen,

1999), SHELX (Schneider & Sheldrick, 2002) and SHARP/autoSHARP (Von-

rhein et al., 2006, de La Fortelle & Bricogne, 1997).

The structure of the haem-HemS complex was then solved by molecular re-

placement using PHASER (McCoy et al., 2005) with the coordinates of the

apo-ChuS structure, which were by then released (PDB code 1U9T). To solve

the apo-HemS structure the coordinates of haem-HemS split in its N- and

C-terminal domains were used as search models (MR and model building of
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the apo-HemS structure were carried out by Dr. Katherine Sharp). Model

building was carried out in COOT (Emsley & Cowtan, 2004) and restrained

refinement with REFMAC5 (Murshudov et al., 1997) and using TLS (Winn

et al., 2003). An optimal number of 10 TLS groups was determined us-

ing the TLSMD web server for the generation of multi-group TLS models

(http://skuld.bmsc.washington.edu/∼tlsmd/index.html) (Painter & Merritt,

2006b). Surface calculations were carried out using the program AREAIMOL

(CCP4, 1994).

5.3 Results and Discussion

5.3.1 X-Ray crystal structure of HemS

5.3.1.1 Crystallisation of HemS

Initial high-throughput crystallisation screening of 864 conditions was car-

ried out. Some drops in the high throughput screens showed heavy precipita-

tion, but in many drops light precipitation could be observed (Fig. 5.1A+B).

Only in one out of the 864 screened conditions, needle clusters had formed

(Fig. 5.1C). A simple manual screen around the hit condition yielded larger,

better clusters of crystals, though the crystal size and shape were not ideal for

X-ray work (Fig. 5.1D+E).

A protocol was devised to carry out a rational grid screen with robotics to test

simultaneously the effect on the crystal formation of both a range of buffers

and ammonium sulphate concentrations (0.8 - 2.8M). The buffers used in this

screen included: MES pH 6.5, sodium cacodylate pH6.5, Bis-Tris pH 6.5,

Hepes pH7.5, Tris-HCl pH8.5, MOPS pH8.0, bicine pH9.0, CAPS pH10.0,

all at a concentration of 0.1M. Experiments with Tris-HCl and Hepes showed

a marked improvement in crystal formation relative to the MES buffer used in
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Figure 5.1: Crystallisation of Y. enterocolitica HemS. (A-C) high through-
put screen of 864 conditions (Hampton Research, Nextal biotech) Hydra micro
dispenser, sitting-drop vapour-diffusion. (HemS concentration 15 mg ml−1). (A)
heavy precipitation, (B) crystaline (’good’) precipitation and (C) needle cluster
observed in one condition out of the screened 864. 0.1 M MES, 2.0 M ammonium
sulphate, 5% PEG400, pH6.5 (Nextal AmSO4 suite). (D and E) reproduced
neddle cluster in hanging-drop vapour-diffusion in sceen with 1.6 - 2.8 M ammo-
nium sulphate versus 2 - 8 % PEG400 in 0.1 M MES, pH 6.5 and various protein
concentrations. Here 1.8 M ammonium sulphate and 4% PEG400. (F) single
HemS crystals. Screen of various buffers versus various ammonium sulphate and
sodium-malonate concentrations, with 4 % PEG400 using the Hydra micro dis-
penser. Single crystals in 0.1 M Tris-HCl, pH 8.5, 1.8 M ammonium sulphate as
well as with 0.1 M Hepes, pH7.5.(G+H) optimisation of crystallisation in hanging
drop, vapour diffusion. Here: 0.1 M Tris-HCl, pH8.5, 1.8 M ammonium sulphate,
2% PEG400. (HemS conc. 30 mgml−1).(I) Apo-HemS crystal in 100 mM bicine
pH9, 2.45 M ammonium sulphate 5% PEG 400. (bar = 100 µm).

the hit condition (Fig. 5.1F). Other screening included testing against sodium

malonate (1.2 - 2.4M), which has been shown to be a successful precipitant in

protein crystallisation trials (McPherson, 2001). Also additives such as imida-
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zole and glycerol in different concentrations were tested, as well as the effect of

varying the concentration of sodium chloride, PEG 400 and protein. Finally,

crystal growth was also carried out at the decreased temperature of 4◦C, but

this did not give improvements. After optimisation of these conditions, the

best results were obtained by the hanging-drop method with drops consisting

of 2µl HemS at 30mgml−1, mixed with 2µl of 0.1M Tris-HCl pH 8.5, 1.8M

ammonium sulphate and 2% PEG 400, incubated at 20◦C. Bright red crystals

typically grew to 0.3 x 0.2 x 0.05mm (Fig. 5.1G+H) over 48 - 72 h. The crys-

tals did not grow any larger after this time. Variation of drop-size or higher

protein concentration did not improve crystal size.

Small apo-HemS crystals were obtained in one condition (100mM bicine, pH

9, 2.4M ammonium sulphate, 5% PEG 400) of the same rational grid screen

used for the haem-HemS complex, testing various buffers against different

ammonium sulphate concentrations using the crystallisation robot. Through

optimisation of this condition (carried out by Dr. Katherine Sharp) more apo-

HemS crystals could be obtained in 100mM bicine, pH9, 2.45M ammonium

sulphate, 5% PEG 400 with a dropsize of 2µl + 2µl, but the crystal size could

not be improved (Fig. 5.1I).

5.3.1.2 Structure determination of HemS

Haem-HemS crystals diffracted to 2.4 Å in-house and to 2.0 - 1.7 Å (Fig. 5.2) at

the European Synchrotron Radiation Facility (ESRF). Initially structure de-

termination of the haem-HemS complex was planned to be carried out using

the multi-wavelength anomalous dispersion (MAD) method, taking advantage

of the iron atom in the haem-prosthetic group. The iron-peak and inflection

point were determined by an X-ray fluorescence scan around the iron-resonance

edge and data sets were collected at 1.7396 Å (peak), 1.7406 Å (inflection) and

0.984 Å (remote). A highly redundant iron-MAD data set was collected which
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Figure 5.2: Diffraction pattern of the haem-HemS crystals at 0.984 Å.
Complex crystals diffracted to 1.9 Å at the ESRF beamline BM14.

showed excellent processing statistics. Moreover a platinum-MAD data set was

collected on a crystal, which was soaked over night in potassium tetrachloro-

platinate (K2PtCl4) and diffracted to 2.6 Å. Radiation damage was observed

after collection of the first two data sets (inflection, peak) on the platinum

LIII-edge and data collected above the LI-edge were not used. Data process-

ing statistics for the two MAD data sets are listed in Table 5.2 and Table 5.3.

Despite the good data processing statistics of the iron-MAD data set and

the clear solution of the iron-anomalous Patterson map (Fig. 5.3), phase cal-

culations carried out using MLPHARE (CCP4, 1994), SOLVE (Terwilliger

& Berendzen, 1999), SHARP/autoSHARP (de La Fortelle & Bricogne, 1997,

Vonrhein et al., 2006) and SHELX (Schneider & Sheldrick, 2002) resulted in

poor electron density maps. Combination with phases provided by the plat-
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inum derivative and solvent flattening did not significantly improve the elec-

tron density maps.

The haem-iron could be clearly located in the Harker sections of the anoma-

lous Patterson map through a strong peak above 5σ (Fig. 5.3). Anomalous or

difference Patterson map calculations, using any of the data sets collected on

the platinum derivative, did not lead to any clear solutions for platinum sites.

Table 5.2: Data processing statistics of the haem-HemS Fe-MAD data.
Fe-MAD data sets were collected on a single crystal on the ESRF beamline BM14.
(anom.= anomalous; ip= inflection point; pk=peak).

Iron MAD
peak inflection remote

Wavelength (Å) 1.739 1.7406 0.984
Resolution (Å) 28.5-2.15 (2.27-2.15) 28.5-2.2 (2.32-2.2) 30-1.95 (2.06-1.95)
Rmerge (%) 6.3 (34.9) 6.7 (42.9) 6.2 (38.1)
Total No. of observations 360163 (50859) 241589 (34181) 318702 (46303)
Total No. of unique 17968 (2530) 16764 (2362) 24467 (3503)
Mean I/σI 35.3 (8.7) 31.7 (6.1) 26.6 (6.7)
Completeness (%) 97.9 (96.2) 97.9 (96.2) 99.5 (99.1)
Multiplicity 20 (20.1) 14.4 (14.5) 13.0 (13.2)
Anom. Completeness (%) 98.2 (96.4) 98.2 (96.4) 99.6 (99.3)
Anom. Multiplicity 10.5 (10.4) 7.6 (7.5) 6.8 (6.8)

Table 5.3: Data processing statistics of the haem-HemS platinum
derivative data. Platinum-MAD data sets were collected on a single crystal on
the ESRF beamline BM14. (anom. = anomalous; ip = inflection point; pk= peak).
Data of the PIP derivative were collected in-house.

Platinum MAD PIP derivative
peak inflection

Wavelength (Å) 1.07144 1.07189 1.5418
Resolution (Å) 28.6-2.6 (2.74-2.6) 28.7-2.6 (2.74-2.6) 23.0-2.8 (2.95-2.8)
Rmerge (%) 4.3 (19.2) 4.5 (28.0) 10.1 (31.5)
Total No. of observations 42613 (5810) 42825 (5839) 52750 (7570)
Total No. of unique 10724(1524) 10788 (1535) 7985 (1115)
Mean I/σI 20.5 (6.7) 18.9 (5.2) 17.5 (6.0)
Completeness (%) 98.2 (91.7) 98.5 (91.2) 93.8 (92.6)
Multiplicity 4.0 (3.8) 4.0 (3.8) 6.6 (6.8)
Anom. Completeness (%) 98.2 (91.7) 98.5 (91.2)
Anom. Multiplicity 2.1 (2.0) 2.1 (2.0)

This could be caused by crystal damage during the soaking process, not fully

occupied binding sites and/or deterioration of the signal during data collec-

tion, due to the fact that derivatives are more susceptible to radiation damage
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because of stronger absorbtion of the energy of the X-ray beam. Nevertheless

four to five potential platinum sites could be identified using the phases ob-

tained by the haem-iron in MLPHARE (CCP4, 1994), albeit the occupancy

was low, ranging from 0.35-0.5.

Figure 5.3: Anomalous Patterson map. Harker section of anomalous Pat-
terson map calculated on the iron-peak data set, showing a clear peak above 5σ

for the iron. The map was calculated using FFT (CCP4, 1994) and data to 2.5 Å.

Moreover, an attempt was made to combine phases from the iron with phases

obtained from the weak anomalous signal of the seven sulphur atoms in the

iron-peak data set, which is relatively close to the sulphur resonance edge

(sulphur-SAD data are usually collected at 1.8 - 1.9 Å), using SHARP. This

slightly improved the electron density map, but still the peptide chain could

not be traced. Combining iron, platinum and sulphur phases as well as solvent

flattening did not help either. Since there was only one HemS molecule in the
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asymmetric unit cell, non-crystallographic averaging could not be carried out.

Alternatively data were also processed with HKL2000 (Otwinowski & Minor,

1997) which did not improve the results from the experimental phasing trials.

Moreover data on a PIP derivatised haem-HemS crystal were collected in-house

(Table 5.3) to add information from single-isomorphous replacement to phase

calculations. Two platinum sites could be identified in a difference Patterson

map, calculated from the derivative and the native (remote) data set (Fig. 5.4).

Figure 5.4: Difference Patterson map. Harker section of difference Patterson
map calculated using the remote from the Fe-MAD and the PIP-derivative data
sets, showing two clear peaks above 5σ. The map was calculated using FFT
(CCP4, 1994) and data to 3.5 Å.

Additionally, the 7 methionines in the HemS protein were substituted with

seleno-methionine (SeMet) for structure determination by SeMet-MAD phas-

ing. SeMet-HemS was expressed and purified (Fig. 5.5) with an overall yield of

approximately 10mg per liter culture, which is 8% of the yield for the native

protein.

SeMet-HemS was purified under non-reducing conditions and reconstituted

with haemin as the native protein. The redox state of the anomalous scat-
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Figure 5.5: Expression and purification of seleno-methionine labeled
HemS. SeMet-HemS in cell lysate (lane 1); after His-tag purification (lane 2);
after removal of the His-tag and reconstitution with haemin (lane 3).

terer SeMet has a big impact on the magnitude and energy of the anomalous

signal. Heterogeneity of the redox states in the crystal lattice would not only

reduce the size, but also ’smear out’ the resonance edge of the MAD signal

and therefore could impair the precise determination of the peak and inflection

point (Sharff et al., 2000). Moreover it has been shown that in some cases the

oxidisation of the incorporated SeMet can aid the optimisation of the MAD

signal (Sharff et al., 2000). The haem-iron in proteins is easily oxidised and

difficult to keep permanently reduced. Therefore, to ensure homogeneity of

the redox state of the SeMet and the haemin, it was decided to work with a

fully oxidised SeMet-HemS protein. Initial manual crystallisation screens were

set up which resulted in oily drops.

Before crystallisation of SeMet-HemS and/or phase calculations using the PIP-

derivative in combination with the Fe- and Pt-MAD data and the signal of the

sulphurs could be tested any further, the structure of the HemS homologue

ChuS from E. coli without its ligand haem, sharing 62% sequence identity,

was published in December 2005 (Suits et al., 2005) . Therefore the structure

of the haem-HemS complex was solved by molecular replacement using the

atomic coordinates of apo-ChuS (1U9T). For the search model all residues not
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shared by HemS were truncated to alanine and the residues numbered accord-

ing to the HemS sequence. Furthermore the potential mobile region around

His 196 (residue 193 - 206) was deleted and the B-factors were reset (mainchain

atoms 10; sidechain 20). A clear solution was obtained with PHASER (McCoy

et al., 2005) with a rotation function Z-score of 17.7 and a translation function

Z-score of 26.4.

The model was refined against data to 1.7 Å spacing, obtained by merging

the remote of the iron-MAD data set with a data set collected at the same

wavelength from a crystal with multiple ice rings diffracting to 1.7 Å. Data on

an apo-HemS crystal diffracting to 1.9 Å were collected at the ESRF beamline

ID14-2. The structure of apo-HemS was solved using the coordinates of the

haem-HemS structure excluding the haem and residues 193 - 206. In addition

the the N- and C-terminal domains were separated into two molecular replace-

ment models. For apo-HemS molecular replacement and model building was

carried out by Dr. Katherine Sharp. Data processing and model refinement

statistics are summarised in Table 5.4. The refined models have excellent

geometry and no Ramachandran outliers.

The orientation of the porphyrin was unambiguous as indicated by well-defined

density peaks. The map for His 196 as a ligand to the iron and for neigh-

boring side chains such as Arg 102, Met 244 and Ile 255 were also very well

defined (Fig. 5.6). His 196 had previously been identified as potential ligand

to the haem-iron by analysing the haem-binding properties of HemS mutants

by UV/vis spectroscopy (Chapter 4.3.2.2). The vicinity of Met 244 to the

porphyrin plane explains the slight difference in the Soret peak in the UV/Vis

absorbance spectrum of the M244A mutant (wild type 411 nm; M244A 409 nm;

Fig. 4.10, p. 78), because the mutation influences the electronic properties of

the haem ligand and has therefore an impact on the absorbance spectrum.
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Table 5.4: Data collection and model refinement statistics. Values in
parentheses are for the highest-resolution shell. The haem-HemS data set was
obtained by merging reflection data from two distinct crystals.

apo-HemS haem-HemS
Data Collection
Space group P212121 I222
Wavelength (Å) 0.933 0.984
Cell dimensions

a, b, c (Å) 62.0, 68.3, 73.6 74.9, 77.6, 114.3
α, β, γ (◦) 90, 90, 90 90, 90, 90

Resolution (Å) 30 - 1.9 (2.0 - 1.9) 30 - 1.7 (1.79 - 1.7)
Rmerge 7.8 (30.7) 8.3 (22.8)
Mean I /σI 16.9 (5.0) 13.0 (2.4)
Completeness (%) 100.0 (100.0) 97.5 (98.0)
Redundancy 6.6 (6.8) 11.7 (3.2)

Refinement
Refinement Resolution (Å) 30 - 1.9 30 - 1.7
No. reflections 23,971 34,237
Rwork/Rfree 18.9 / 23.3 19.2 / 22.1
No. of Atoms

Protein 2670 2667
Ligand - 43
PEG/Ions 86 35
Water 134 169

B-factors
Protein 21.9 29.9
Ligand - 29.9
PEG/Ion 45.3 42.1
Water 23.2 34.5

R.m.s deviations
Bond lengths (Å) 0.011 0.013
Bond angles (◦) 1.367 1.474

5.3.2 Folding topology of HemS

Two topologically homologous domains join, forming a pair of large, stacked

central β-sheets, which characterise the molecular architecture of HemS

(Fig. 5.7A). Two distinctive pockets are created by the twist of these sheets

and the helices that pack at each end of the double sheet (Fig. 5.7A+B). The

haem-ligand is bound at the C-terminal domain, where the deeper, more pro-

nounced pocket is located; the tetrapyrrole ring is buckled and distorted. The

proximal side of the haem, which is the side with the coordinating
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Figure 5.6: Electron density of the haem pocket. Stereo view of the haem
and surrounding protein residues. The 2Fo-Fc density map contoured at 1σ level
is shown in cyan.
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Figure 5.7: Structure of the haem-HemS complex. (A) Cartoon repre-
sentation of the HemS tertiary structure with its homologous N- and C-terminal
domains shown in blue and red, respectively. The deep pocket in which the haem
(green) is bound is highlighted by the overlaid, semi-transparent surface repre-
sentation. His 196, the ligand to the haem iron, is drawn as sticks and is clearly
visible just below the haem. The striking, large β-sheet dome that embraces most
of the haem is apparent. (B) The sequence conservation across Proteobacteria
species is mapped onto a surface representation of the HemS molecule using Con-
Surf (Glaser et al., 2003). The figure was prepared with ASTEXVIEWERTM

(Hartshorn, 2002).

histidine, is embraced by one α-helix (α7) from a three-helix sub-domain (α6,

α7 and α8); His 196 stems from the beginning of this helix. Both the haem

propionate groups and its distal site are flanked by the extensive, convex face
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of the twisted β-sheet. Residues that form the binding pocket clearly map

onto conserved regions of the sequence (Fig. 5.7B).

In the structure of the complex, one haem ligand is bound to HemS, suggesting

a one to one stoichiometry consistent with the biochemical and spectroscopic

data from HemS (Chapter 4.3.2.1 and 4.3.2.2) and the homologous proteins

ShuS (Wilks, 2001) and PhuS (Lansky et al., 2006). The later published struc-

ture of haem-ChuS complex also showed one haem bound to the C-terminal

domain (Suits et al., 2006), and the authors do not mention their previously

published data of one ChuS molecule binding two haems (Suits et al., 2005).

5.3.2.1 Molecular recognition of haem by HemS

The haem ligand is embraced by the large, twisted β-sheet that dominates the

binding pocket. All the distal residues and the groups interacting with the

propionates are originating from this sheet dome (Fig. 5.8A). Over the distal

side of the porphyrin plane, Arg 102 is sandwiched between Leu 92 and Ile 255,

and its guanidinium group is positioned about 4 Å from the iron. Asp 100

makes a salt-bridging interaction with Arg 102 and this electrostatic contact

is sealed away from the solvent by distal residues Leu 94 and Leu 92 which,

together with Ala 90, align to form a barrier burying Arg 102 almost completely

in the binding site. Additionally, Phe 246 packs over the propionate-bearing

pyrroles and completes a line of four distal residues that starts with Leu 92,

Arg 102 and Ile 255.

Placed next to Phe 246, the residues Met 244 and Val 253 are providing further

hydrophobic packing (Fig. 5.8A); they form a non-polar cap shielding away

a polar and electrostatic region, which includes the side chains of Arg 209,

Gln 316, Tyr 318, Lys 294 and Arg 321. These residues, together with two

structural water molecules, firmly anchor the propionate groups to the interior

of the protein by engaging in a series of interactions (Fig. 5.8B). On the
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A

Figure 5.8: Haem-protein interactions. (A) Stereoview of the haem-binding
pocket in the in the haem-HemS complex. Residues provided by the N-terminal
domain are coloured in blue and residues provided by the C-terminal domain
are in red. His 196 stems from the beginning of helix α7 and coordinates the
iron. Next to Leu 94, Arg 102 extends over the porphyrin plane. (B) Residues
interacting with the haem propionates. The 7 direct and 2 water-mediated (not
shown) interactions build the extensive electrostatic/polar network of contacts
firmly anchoring the propionate groups.

proximal side, His 196 coordinates the iron and interacts with Asp 194. Phe 199

and Val 195, packing in the vicinity of the imidazole of His 196 and making

van der Waals contacts with the haem.

5.3.2.2 Comparison with other haem-proteins

A striking feature of the HemS binding site is the presence of an arginine

side chain (Arg 102) which extends over the distal site of the porphyrin plane

(Fig. 5.9A). Interestingly, an arginine on a topologically equivalent position is

present in horseradish peroxidase (Carlsson et al., 2005) (Fig. 5.9B) and other

plant peroxidases (Poulos et al., 1993, Smulevich, 1998). The distance from the
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A

His170

C

Figure 5.9: Comparison of the haem-binding pocket with other haem
proteins. Arginine residues placed over the porphyrine plane in on the distal
haem-side in the (A) haem-HemS complex (3.8 Å), (B) horseradish peroxidase
(PDB code 1H5A) (4.5 Å) and (C) HTHP (3.7 Å)(PDB code 2OYY). Distances
given are measured between the porphyrin plane and the Nε of the arginine.

haem metal in horseradish peroxidase is similar (4.5 Å) to the distance of

Arg 102 in the haem-HemS complex (3.8 Å). In contrast the Nε of the argi-

nine in lignin peroxidase (LiP) is more than 5 Å away from the iron (Pou-

los et al., 1993). A recently characterised novel haem-protein, the hexameric

tyrosine-coordinated haem protein (HTHP) from the marine bacterium Sili-

cibacter pomeroyi, also has an arginine residue packing coplanar over the distal

side of the porphyrin plane; its guanidinium group is placed at 3.7 Å from the

iron (Jeoung et al., 2007) (Fig. 5.9C). HTHP, which shows an hexameric qua-

ternary structure, has a tyrosine to ligate the 5-coordinated haem-iron with a

solvent accessible binding pocket. In all three proteins the arginine makes van

der Waals contacts with the porphyrin plane.

In horseradish peroxidase the arginine exerts a strong electronic pull and, to-

gether with the distal histidine, is essential for the function (Poulos, 2006).

A similar function for the arginine in HTHP has been argued, which is cru-

cial for its catalase-peroxidase activity observed in vitro; however, the exact

biological role remains to be determined (Jeoung et al., 2007). One can only

speculate about the role of the arginine in the haem-transport protein HemS.

Most likely it stabilises the haem-protein complex by packing over the por-
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phyrine plane. Investigation of the function of the arginine by mutagenesis

studies is currently conducted in our collaborators Dr. P.D.Barker’s labora-

tory, Department of Chemistry, University of Cambridge.

In HemS the extensive network of 9 electrostatic contacts (7 direct and 2

water-mediated) that anchor the propionate groups is likely to provide a sig-

nificant contribution to the binding (Fig. 5.8). A similarly vast set of po-

lar/electrostatic interactions has been seen in the structure of haemopexin

(Hpx), another haem-transport protein, (Paoli et al., 1999), in which the pro-

pionate groups are locked into the protein by arginine, histidine and tyrosine

side chains. The structure of other bacterial haem-transport proteins, like

HasA, the haemophore secreted by Serratia marcescens (Arnoux et al., 1999)

and the staphylococcal IsdA (Grigg et al., 2007a), IsdC (Sharp et al., 2007)

and IsdH (Pilpa et al., 2006) proteins have a totally different folding topology

and their haem pockets have no features in common with HemS.

5.3.3 Iron coordination and haem-geometry

The displacement of the haem-iron from the porphyrin plane is dependent

on its ligation state and the strength of the ligands. For instance, both Hpx

(bis-histidyl) and HasA (histidine and tyrosine) have a six-coordinate iron-

geometry, whereas in deoxy-T-haemoglobin the five-coordination state is ap-

parent (Table. 5.5). The iron position in HemS is intermediate between 5-

and 6-coordination and spectroscopic data of the haem-HemS complex sug-

gest a possible water at the 6th coordination position. A suitable space for

a water molecule on the distal haem-site in ideal hydrogen-bonding distance

with Arg 102 is available in the pocket; only weak density at the distal site was

observed (Fig. 5.10), despite the excellent definition of the map for the neigh-

boring residues and no water or hydroxide could be refined at full occupancy

on the distal haem-site.
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Table 5.5: Haem geometry of HemS and selected haem-proteins.

5-coordinated 6-coordinated
Distances deoxy-Mb FixL Lignin HemS Mb-Aquo- Hpx

(1A6N) (1DRM) Peroxidase (1J0P) Met(1A6K) (1QHU)
(1LGN)

Nε2 (His) 2.5 2.29 2.05 2.14 2.24 2.23
-plane
Fe-distal 3.5 - 2.7 2.4 - 2.0
Ligand
Fe-plane 0.4 0.2 0.2 0.2 0.1 0.1

Interestingly, the intermediate or mixed geometry of the iron in HemS is simi-

lar to that in LiP, which is closer to a 6-coordinate system than a 5-coordinate

one (Table 5.5), but electron density maps provided no evidence of ligation at

the distal side (Poulos et al., 1993). In many other 5-coordinate plant peroxi-

dases the distance of the iron from the pyrrole nitrogens plane ranges between

0.01 and 0.23 Å.

Three additional data sets were collected, in order to further check on the ab-

sence of a strongly bound axial haem water ligand. In these experiments data

were collected as rapidly as possible, to minimize the potential of radiation

damage in the crystals which could contribute to the loss of a weakly bound

water ligand. The data collection experiments were carried out at the ESRF

on the ID14-2 beamline using three distinct crystals; in the best case the exper-

iment lasted for less than 20 minutes. After molecular replacement, electron

density maps were checked for peaks over the haem, at the 6th coordination po-

sition. Excellent-quality reflection data were measured to 2.2 Å spacing. Only

little differences in the weak peaks of difference density over the haem were

observed between the three different data sets and the previously collected

data set, and again no water ligand could be satisfactorily refined. Presum-

ably the iron in HemS has a 6th-coordinate water (or hydroxide), which agrees

with the 6-coordinated UV/vis spectrum of haem-HemS (Table 4.1, p. 76);
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Figure 5.10: Stereo view of 6th coordination position of the haem iron.
(A) The difference density map Fo-Fc (green) is contoured at 3σ level and the
2Fo-Fc map (cyan) at 1 σ level. Water molecules (red) were placed in the density
peaks and (B) their distances to the haem-iron and Arg 102 are shown as dotted
lines.

however the porphyrin is bent by the tight clamping of the haem between

His 196 and Phe 199 on the proximal side and Arg 102, Phe 246 and Leu 92

on the distal side, resulting in a marked buckling of the four pyrroles away

from planarity, which would make an octahedral, hexa-coordinate geometry

highly distorted. Therefore the affinity for the bound water might be low and

an association/dissociation equilibrium in the crystal may cause the disorder

indicated by the peaks of weak difference density. In the later published haem-

ChuS complex solved at 1.4 Å resolution, the haem is slightly less buckled and

two more water molecules are refined on the distal haem-site (H2O 130 and

294)(Suits et al., 2006); but as in HemS, no water is directly placed at 6th

coordination position of the haem-iron.
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5.3.4 Conformational changes upon haem binding

Comparison of the structure of apo-HemS, refined against data to 1.9 Å spac-

ing, with the haem-HemS complex, revealed that local as well as global con-

formational changes are taking place in response to ligand binding (Fig. 5.8).

Examination of lattice inter-molecular contacts confirms that these structural

changes are not an artifact of crystal packing. The local changes include the

switching to a different rotamer of the side chains of Leu 94 (distal), Phe 104

(equatorial) and Gln 316 (near propionates), thus becoming engaged in in-

teractions with the ligand. In addition, many other residues shift closer to

the porphyrin (Fig. 5.11). Overall, it appears that the N- and C-terminal

domains (Nd; Cd) are closing into the binding pocket. Comparison of the

apo- and bound-forms using a difference distance matrix (Richards & Kun-

drot, 1988) indeed shows that relatively few changes take place within the

individual domains whilst marked shifts occur in the domains’ position rela-

tive to each other (Fig. 5.12). These domain movements were also analysed

Figure 5.11: Comparison of the haem-binding pocket of the haem-
HemS complex (in green) with apo-HemS (in gold). Stereo view of a
superposition obtained by least-squares fitting the main chain atoms of the sec-
ondary structure elements of the N-terminal domain, as frame of reference. The
flip of the Phe 104 side chain is apparent, resulting in the wedging of a haem vinyl
group between Phe 104 and Ala 90. The figure also highlights the atomic shifts in
the secondary structure elements surrounding the binding pocket.
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by measuring the distances between the centers of gravity of secondary struc-

ture elements (Table 5.6). If HemS was separated into two distinct structural

entities, it becomes apparent that the domains are affected by movements up

to 4 Å, almost as rigid body shifts. Least-squares fitting of all atoms of apo-

and haem-HemS gives an RMSD of 1.4 Å and a maximal displacement of main

chain atoms of more than 4 Å (Fig. 5.12, Table. 5.6). Atomic superpositions

using only the secondary structure elements of the Nd as a frame of reference

(RMSD of 0.5 Å), show that the whole Cd and particularly the α6, α7 and α8

helices move towards the N-terminal distal residues and the haem (Fig. 5.13).
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Figure 5.12: α-carbon distances comparing apo- and haem-HemS. The
difference distance matrix was calculated using DDMP (Richards & Kundrot,
1988) by subtracting the α-carbon atom distances of the apo-form from the haem-
HemS complex. Red indicates distances that are shorter in apo-HemS than in the
ligand bound form, whereas blue indicates longer distances.

111



Chapter 5 - Crystallisation and structure-determination of HemS

Table 5.6: Inter-domain movements upon haem binding to HemS. The
centers of gravity of selected elements of secondary structure were calculated.
Distances between centers of gravity (in Ångstroms) indicate that the Nd and
Cd closing into the binding pocket upon association with haem. The elements of
secondary structure are named as annotated in Fig. 5.7.

Nd -Cd apo-HemS haem-HemS
α1 - α6 53 51
α1 -α7 45 42
α1 - α8 43 40
α4 - α6 40 39
α4 - α7 30 28
α4 - α8 36 34
α4 - α9 36 35
α4 - α10 38 37
α4 - β16 36 35
α5 - α6 50 48
α5 - α7 40 38
α5 - β16 44 43

Figure 5.13: The HemS conformational switch between apo, open state
and liganded, closed state. The superposition was prepared as in Fig. 5.11,
with the apo-structure shown in orange and the complex in green. The figure
shows the global inter-domain movements in HemS that effectively clamp the
ligand in the binding site.
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5.3.5 A haem-induced fit accompanies the switch from

an open, apo-state to a closed, bound-state

Upon haem binding the Nd and Cd close in onto the ligand, effectively acting

as a clamp. Therefore the HemS structure switches between an apo, open

form and a liganded, closed state (Fig. 5.13). Strikingly, these global shifts

also increase the twist of the large β-sheet that forms the dome of the binding

site. In the open, apo-structure, haem can bind to the pocket without the

need of conformational changes to remove steric barriers. The haem-pocket is

partly pre-formed, but some side chains re-shape the pocket to increase the

fit with the haem. Most notably, Phe 104 changes rotamer to close onto the

haem-edge, thus interlocking the ligand in the pocket by wedging a haem vinyl

group against Ala 90 (Fig. 5.11).

Equivalent conformational changes can also be observed in ChuS upon haem-

binding, with movements ranging from 1 to 3 Å, as shown in the distance

difference matrix plot (Fig. 5.14) and the structural superposition of apo- and

haem-ChuS (Fig. 5.15).

Nevertheless the authors claimed that apart from helix α7 with the iron-

coordinating histidine (His 193), no structural changes upon haem-binding can

be observed (Suits et al., 2006). Since the four proteins (apo- and haem-HemS

and apo- and haem-ChuS) were crystallised in 4 different crystal space groups,

the observed conformational changes in HemS and ChuS are unlikely to be

caused by crystal contacts. Therefore this haem-induced binding mechanism

of ’clamping’ onto the ligand might be universal for HemS and its homologues.

The effect of ligand binding on HemS may be best described as an induced

fit, as demonstrated for the glucose/hexokinase association almost described

three decades ago (Bennett & Steitz, 1978). The haem-induced fit of HemS

brings about a cleft closure with maximal atomic main chain displacements of
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Figure 5.14: α-carbon distances comparing apo- and haem-ChuS. The
difference distance matrix was calculated using DDMP (Richards & Kundrot,
1988) by subtracting the α-carbon atom distances of the apo-form from the haem-
ChuS complex. Red indicates distances that are shorter in apo-ChuS than in the
ligand bound form, whereas blue indicates longer distances.

Figure 5.15: Domain movements in ChuS upon haem-binding. ChuS
shows similar conformational changes as HemS between the haem-ChuS complex
(in red) and apo-ChuS (in blue), when using the Nd as frame of reference. The
superposition was prepared as for HemS.
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over 4 Å, accompanied by the burial of 350 Å
2

of solvent accessible surface

area additional to the area buried by the haem. The 3-helices, α6, α7 and α8,

have higher mobility than other parts of the structure, which is indicated by

analysing the temperature factors (Fig. 5.16), thus defining the 3-helix sub-

domain as a flexible region key for the induced-fit binding mechanism.
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Figure 5.16: Average B-factors of mainchain atoms in the apo- and
haem-HemS crystal-structures. The region with highest B-factors corre-
sponds to the 3-helix subdomain involved in binding the proximal side of the
haem.

5.3.6 Structure-function relationships and evolution of

the HemS fold

In the haem-HemS complex almost 60% of the ligand’s solvent accessible sur-

face area is buried (Fig. 5.7). The haem therefore remains significantly ex-

posed to the solvent relative to other haem proteins (e.g. catalse, haemoglobin)

which incorporate haem in such a way that 85 - 99.5% accessible area of the

prosthetic group is excluded from the solvent. However, in HemS the haem

is a ligand that needs to be released as well as sequestered. The buried area

of the haem in HemS is comparable to that in haemopexin (about 70%) and

this reflects the haem-transfer function of these molecules. In order to release

its cargo, HemS must reverse the conformational changes observed upon haem
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binding. Most likely, the switching from the closed, loaded state to the apo,

open form may require the binding of an effector molecule since conditions

of extreme pH and high salt are not sufficient to induce haem loss (data not

shown). This binding and release/transfer mechanism has been established

for the homologue PhuS from P. aeruginosa, which interacts with the haem

oxygenase paHO (Lansky et al., 2006).

The similar molecular architecture of the two domains in HemS and ChuS

suggests that these proteins have evolved through a gene-duplication event.

This hypothesis is supported by the recently released crystal structures of the

hypothetical proteins AGR C 4470p from Agrobacterium tumefaciens (PDB

code 2HQV) and Q6d2t7 erwct, from Erwinia carotovora (PDB code 2PH0).

Both structures were solved by the North-East Structural Genomics Consor-

tium and only for AGR C 4470p a limited structural analysis was carried out

(Vorobiev et al., 2007). AGR C 4470p is mostly a homodimer in solution and

shares 35% sequence identity with Q6d2t7 erwct. They superimpose with a

RMSD of 1.4 Å (for 161 Cα-atoms from 162 used as a reference frame) and

they bear a strong structural homology to HemS, with the two monomers in

the crystallographic dimer arranged in the same way as the Nd and Cd do-

mains of HemS; but they have only a sequence identity of less than 18% with

HemS. Superposition of the Q6d2t7 erwct monomers onto each domain of apo-

and haem-HemS result in RMSD ranging from 1.9 to 2.5 Å (for 169 Cα-atoms

out of 186 used as a reference frame) .

The two molecules form, through dimerisation, the two stacked large central

β-sheets which in HemS are made up by the two domains (Fig. 5.17A). When

the haem binding site of HemS is compared with AGR C 4470p, the only com-

mon feature is the hydrophobic pocket-lining (Fig. 5.17C+ 5.18). His 196 is

not present and therefore the authors concluded that AGR C 4470p might

not be involved in haem-utilisation, but are likely to bind a different ligand
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Figure 5.17: Structure comparison of HemS and AGR C 4470p. (A)
Folding topology of the AGR C 4470p crystallographic dimer (orange and cyan)
with the extended N-terminal helices. (B) Superpositions of AGR C 4470p onto
the N- (red) and C-terminal (blue) domains of haem-HemS, using SSM (Krissinel
& Henrick, 2004) in COOT (Emsley & Cowtan, 2004). The arrow indicates the
long, partly disordered loop connecting the two domains in HemS. The haem
bound to the C-terminal domain in HemS is displayed as a stick model (green).(C)
Stereo-view of the haem-binding pocket in HemS overlayed with AGR C 4470p.
Residues provided by the N- and C-terminal domains of HemS are coloured in
blue and red, respectively. His 123 and His 140 of AGR C 4470p reaching into the
binding pocket are highlighted in black.

(Vorobiev et al., 2007). Despite the lack in AGR C 4470p of an equivalent

to His 196, it is noticed that His 140, which originates from an adjacent loop

region between β7 and β8, reaches into the pronounced pocket (Fig. 5.17C).

The residues lining the pocket in AGR C 4470p are conserved across its ho-

mologues identified by BLAST search (Fig. 5.19), and His 140 is replaced by a

methionine in all other homologues. In addition, the conserved His 123, which
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is provided by one of the two strands from the second molecule in the dimer,

protrudes into the binding site from the sheet-dome (Fig. 5.17C). Interest-

ingly, in the structural alignment His 123 is matched with His 280 in HemS and

reaches into both pockets of AGR C 4470p from the sheet-dome (Fig. 5.18).

Therefore AGR C 4470p and its homologues could potentially coordinate a

haem-iron with this two residues.

.
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Figure 5.18: Structure based sequence alignment of HemS and
AGR C 4470p. The secondary structure annotation refers to HemS and residues
lining the pockets are marked with a blue dot. The alignment of the proteins was
carried out with secondary structure matching in SUPERPOSE (CCP4, 1994)
and was annotated using a program kindly provided by Dr.T. Stevens (Stevens &
Paoli, 2007).

AGR C 4470p belongs to the Pfam (Bateman et al., 2004) protein family

DUF1008, which contains 45 proteins of unknown function. More homologues

of AGR C 4470p were identified through BLAST searches (Altschul et al.,

1990) of the NCBI database, sharing a sequence identity ranging from 30 -

40% and all belonging to the group of Proteobacteria species. Amongst these

identified proteins are for instance ShuX from S. dysenteria and ChuX from E.

coli, as well as the hypothetical proteins YE0334 and OrfX (OrfA in Thompson

et al. (1999)) from Y. enterocolitica and Y. pestis, respectively (Fig. 5.19).
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Figure 5.19: Sequence alignment of representative sequences of ho-
mologues of AGR C 4470p. Homologues identified by BLAST search using
the AGR C 4470p protein sequence, are unique to the phylum of Proteobacte-
ria and were aligned using ClustalX (Thompson et al., 1994). The secondary
structure annotation and numbering refer to AGR C 4470p. Residues lining the
binding pocket equivalent to the haem binding site in HemS are marked with a
blue dot. The residues His 123 and His 140 are highlighted with an arrow. The
sequences are: AGR C 4470p (gi:116667786), Erwinia carotovora Q6d2t7 erwct
(gi:146387157); E. coli ChuX (gi:15833638); Y. enterocolitica hypothetical pro-
tein YE0334 (gi:123440720); Y.pestis OrfX (gi:22124460); S. dysenteriae ShuX
(gi:82778667); Haemophilus ducreyi HemN (resi 402-620) coproporphyrinogen III
oxidase (gi:33151310); V. cholerae HutX (gi:121726494). The alignment was anno-
tated using a program kindly provided by Dr.T. Stevens (Stevens & Paoli, 2007).

Search of the Y. enterocolitica genome sequence from the Sanger genome

sequencing project (http://www.sanger.ac.uk/Projects/Y enterocolitica/) re-

vealed that YE0334 is encoded upstream of HemR as well as a homologue

to ShuY from S. dysenteriae, Y0333 (Fig. 5.20). Therefore it is likely that

YE0333 and Y0334 are regulated and expressed in concert with the

HemRSTUV system.

No haem-binding trials with either AGR C 4470p or Q6d2t7 erwct, or any of

their homologues have been carried out so far. However, given the conserva-

tion of residues that are known to be able to coordinate a haem-iron in their
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potential binding pocket, as well as the co-localisation with the HemRSTUV

system in many Gram-negative species (Table. 1.2, p. 8 and Fig. 5.20), one

could speculate that these proteins and their homologues are indeed involved

in haem-binding and possibly haem-utilisation.

RhemV T
SU P

YE0333

YE0334

HemN

Figure 5.20: Organisation of the HemRSTUV operon. Operon organisa-
tion as annotated at the Sanger Institute (http://www.sanger.ac.uk/). The hy-
pothetical proteins encoded by ORFs YE0333 and YE0334 have ∼30 % sequence
identity to ShuY and ShuX and their homologues, respectively.

5.4 Conclusions

When the work described here was started, no structural and only limited

biochemical / biophysical data were available on any bacterial haem acquisi-

tion protein, with the exception of HasA. Here HemS with and without its

ligand haem were crystallised and the X-ray crystal structures determined.

The structure of the haem-HemS complex shows the molecular recognition of

the ligand by HemS. The haem is bound to its C-terminal domain and His 196

is the ligand to the haem-iron, which was indicated by the mutagenesis and

spectroscopy work in Chapter 4.

Comparison of the apo- and haem-bound HemS structures gave precious in-

sights into the molecular mechanism of haem-binding, which can be described

as an haem-induced fit mechanism. The two domains of HemS effectively act

as a clamp, closing in onto the ligand and thus HemS appears to switch from

an open, apo-state to a closed, bound-state.

The binding of haem to HemS has to be reversible in order to fulfill its trans-

port function. The conformational changes observed between the apo- and
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haem-bound structures indicate that release of the haem might require the

interaction with an effector molecule. Such an effector molecule has been iden-

tified for the HemS homologue PhuS from P. aeruginosa, the haem-oxygenase

paOH (Lansky et al., 2006), but homologous protein no paOH or any known

haem oxygenase could be found in the genome sequences of Y. enterocolitica,

E. coli or other Proteobacteria. Therefore a target molecule for HemS still

remains elusive.

The recently determined structures of the hypothetical proteins AGR C 4470p

and Q6d2t7 erwct, from Agrobacterium tumefaciens and Erwinia carotovora

are supporting the hypothesis that the HemS folding topology has evolved

through a gene duplication and fusion event. Despite the insignificant sequence

identity to HemS and its homologues, the two molecules in the homo-dimer are

exactly arranged as the N- and C-terminal domains in HemS. No counterpart

for the iron-coordinating residue in HemS, His 196, is present in these proteins,

but two strictly conserved residues that could ligate a haem-iron were identi-

fied and seen to reach into the pocket. These observations, taken together with

the finding that homologues of AGR C 4470p and Q6d2t7 erwct are encoded

next to the HemRSTUV system in many Proteobacteria, make it likely that

these proteins play a role in haem/ iron acquisition and utilisation. Unfortu-

nately no haem-binding studies have been carried out with these proteins and

their exact function as well as their possible role in haem-utilisation remain to

be elucidated.
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Chapter 6

Cloning, expression and

purification of HemT from

Yersinia enterocolitica

6.1 Introduction

In Gram-negative bacteria substrate transport across the periplasmic space is

commonly carried out by a soluble periplasmic binding protein (PBP), which

shuttles its cargo between the outer cell membrane receptor and inner cell

membrane permease (Wilks & Burkhard, 2007). The components of the trans-

port system (outer membrane receptor, PBP, inner membrane permease) are

ligand specific and not interchangeable (Wilks & Burkhard, 2007).

The common structural feature of the PBPs characterised to date are two

globular domains connected by a flexible hinge region with the ligand binding

pocket lying between the two domains. PBPs are classified in three groups

according to the number of domain-connecting elements (three, two or one)

(Wilks & Burkhard, 2007). At present no structural information on haem

PBPs is available, but they show weak sequence identity (18 - 22%) to the
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Vitamin B12 binding protein (BtuF) (PDB code 1N2Z) and iron-hydroxamate

binding protein (FhuD) (PDB code 1ESZ) from E. coli, which have one α-helix

bridging between the two domains (Fig. 6.5A, p. 131).

Comparisons of the apo-BtuF and BtuF-cobalamin (vitamin B12) crystal

structures indicated a hypothetical mechanism of cargo binding and release:

Local unwinding of the α-helix connecting the two domains increases the flexi-

bility in the apo-structure and the release of the cobalamin is driven by a con-

formational change in the BtuF-permease interaction induced by a ’tweezer’

motion of the permease upon ATP-hydrolysis. Two glutamine residues each

sitting on one domain of BtuF are necessary to interact with arginine residues

on the permease (Borths et al., 2002).

Homologues from 52 different species to the haem PBP PhuT, from P. aerugi-

nosa, were identified, showing low sequence identities of 30-40% (Tong & Guo,

2007) with a conserved tyrosine residue potentially involved in haem-iron co-

ordination. Figure 6.1 shows a sequence alignment of selected proteobacterial

haem PBPs. Recently two haem PBPs, ShuT from S. dysenteriae and PhuT

from P. aeruginosa, have been biochemically and biophysically characterised.

Using site-directed mutagenesis, UV/vis absorption, resonance raman and cir-

cular dichroism spectroscopy, it has been shown that they bind one haem

per molecule, with the conserved tyrosine residue as the proximal ligand to

a high-spin haem-iron (Eakanunkul et al., 2005, Tong & Guo, 2007). ShuT

binds haem with high affinity and the complex is extremely stable over a

wide pH range and relatively redox inactive (Eakanunkul et al., 2005). This

iron-coordinating tyrosine residue in ShuT and PhuT is conserved through-

out the putative periplasmic haem binding proteins (Fig. 6.1 and Eakanunkul

et al. (2005), Tong & Guo (2007)). Additionally, far-UV CD spectroscopy

and limited proteolysis assays revealed conformational changes of PhuT upon

haem-binding (Tong & Guo, 2007). Moreover the glutamine residues, shown
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Figure 6.1: Sequence alignment of HemT and HemT homologues. Mul-
tiple sequence alignment of 9 HemT homologous sequences from representative
Proteobacteria species. Homologous sequences to Y. enterocolitica HemT were
identified by BLAST searches (Altschul et al., 1990) of the National Center for
Biotechnology Information database (http://www.ncbi.nlm.nih.gov/) and align-
ments were carried out with ClustalW (Thompson et al., 1994). The alignment
was annotated with a program kindly provided by Dr.T. Stevens (Stevens & Paoli,
2007). Numbering correspond to Y. enterocolitica HemT and is indicated on top
of the alignment. The secondary structure assignment corresponds to the E. coli

vitamin B12 binding protein (BtuF) crystal structure, which shares 21 % sequence
identity with HemT. HemT, HmuT, ShuT and PhuT share around 30% sequence
identity and have a sequence similarity ranging from 44 to 52 %. The arrows
indicate the conserved tyrosine residue, ligand to the haem-iron in the homol-
ogous proteins ShuT and PhuT from S. dysenteriae and P. aeruginosa as well
as the conserved Glu residues, essential for the interaction with the permease in
BtuF. Also highlighted are the conserved aromatic residues packing against the
cobalamine ligand in BtuF (Borths et al., 2002).

to be essential for the interaction with the permease are conserved in the

haem-PBP proteins (Fig. 6.1). Therefore it is assumed that the structure and
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molecular mechanism of HemT is similar to BtuF (Wilks & Burkhard, 2007).

HemT also shares weak sequence identity (∼22%) with the haem-binding pro-

teins from Gram-positive bacteria, IsdE from S. aureus and HtsA S. pyogenes .

IsdE and HtsA are extracellular lipoproteins that are attached to the cell wall

by their C-terminus (Skaar & Schneewind, 2004, Lei et al., 2003). The tyrosine

residue conserved in the haem-PBPs is not conserved in IsdE and HtsA, sug-

gesting that these proteins must employ different haem-coordinating residues,

despite sharing the overall folding topology. HtsA and haem-transport in S.

pyogenes will be discussed in Chapter 7.

In this chapter the cloning, the expression and purification for structural stud-

ies using X-ray crystallography of the haem PBP HemT from Y. enterocolitica

and its homologue HmuT from Sinorhizobium meliloti are described.

6.2 Materials and methods

6.2.1 Cloning of hemT from genomic DNA

Initially the full-length sequence of Y. enterocolitica hemT (gi:1619623) and

the gene coding for the homologous protein HmuT Sinorhizobium meliloti

(gi:15966182) were PCR amplified (see Chapter 2.2.2.1, p. 38 and Appendix,

p. xix) from genomic DNA (genomic DNA previously prepared by Dr.M.Paoli).

HemT and hmuT were cloned into the expression vector pGAT2, a pGAT

(Peränen et al., 1996) derivative (Appendix A.3, p. xx). For insertion into

pGAT2, the PCR products and the vector were cleaved with HindIII and

BamHI. Ligation, transformation and analysis was carried out as described in

Chapter 2.2.3, p. 39.

Because of insoluble expression of the full-length Y. enterocolitica HemT, a

truncated version with its own leader sequence omitted was re-cloned into

pGAT2 (YE-HemT25). Additionally hemT was also cloned replacing its own
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leader sequence with the E. coli PelB sequence into pET22b (Novagen) (Ap-

pendix A.3, p. xxi) with and without a C-terminal His6-tag.

6.2.2 Expression and purification of HemT

Expression trials for His-GST tagged YE-HemT and SM-HmuT in BL21 (DE3)

cells were carried out as described in Chapter 2.2.4, p. 40. The influence of

temperatures (20 - 30◦C), induction point (OD600 =0.4 - 1.2) as well as length

of expression (4 h - ON) were tested and some soluble expression for SM-HmuT

could be achieved. YE-HemT and YE-HemT25 expressed only insoluble or did

not express at all.

Purification of SM-HmuT using GST-sepharose and Ni-NTA resin were car-

ried as described in Chapter 2.2.4, p. 40, but the protein was to unstable and

prone to degradation.

Expression of the YE-HemT25 construct were the PelB sequence was cloned

N-terminal in frame with YE-HemT25 was carried out as described in Chap-

ter 2.2.4, p. 40. Cells were induced when an OD600 =1.0 was reached, the

temperature dropped to 25◦C and the cells were further grown over night.

Due to the PelB leader sequence, HemT is secreted to the periplasmic space

and the signal peptide is cleaved off. The protein was then purified from

the periplasma by osmotic shock (Shouldice et al., 2003). The cells were har-

vested by centrifugation (2360 g, 4◦C, 20min) and resuspended in 1/10 volume

of ice-cold 30mM Tris-HCl, pH 8.0, 20% (w/v) sucrose, 5mM EDTA. The cell

suspension was rocked for 10 min at RT. After centrifugation (2250 g, 4◦C,

20min) the supernatant was discarded and all traces removed by inverting the

bottles on a paper towel. The cells were than rapidly resuspended in 10ml of

ice-cold 5mM MgSO4 and incubated on ice for 20min. After that the cells were

pelleted by centrifugation (8000 g, 4◦C, 30min) and the supernatant contain-

ing the periplasmic osmotic shock fluid was carefully removed and the buffer
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exchanged to 50mM Tris-HCl, 200mM NaCl, pH 8 using spin columns. The

His-tagged construct was purified using Ni-NTA resin (Chapter 2.2.4, p. 40)

and the buffer exchanged to 50mM Tris-HCl, 200mM NaCl, pH 7.5 using

centrifugal filter devices (Vivascience).

6.2.3 UV/vis spectroscopy and reconstitution of HemT

with haemin

Reconstitution of Y. enterocolitica HemT with its ligand haem and UV/visible

absorption spectroscopic analysis was carried out as described in Chapter 2.2.5,

p. 41, but with the protein in 50mM Tris-HCl, 200mM NaCl, pH 7.5.

6.3 Results and Discussion

6.3.1 Expression and purification of HemT

The sequence coding for the full-length protein HemT from Yersinia ente-

rocolitica and its homologue HmuT from Sinorhizobium meliloti was cloned

from genomic DNA into the expression vector pGAT2, in frame with a His-

GST double tag. Expression trials at temperatures ranging from 20 - 30◦were

carried out (Fig. 6.2A), but no soluble expression of Y. enterocolitica HemT

and only limited soluble expression for S. meliloti HmuT could be achieved.

HemT was also cloned omitting its predicted leader sequence (residues 1 - 25),

but this truncated construct (YE-HemT25) did not express because of a frame

shift mutation in the primer binding site, probably caused by an error during

primer production. Soluble expression of HmuT could be observed at 25◦C

(Fig. 6.2A). HmuT was expressed on a larger scale (Fig. 6.2B) followed by

purification using the His- and GST-tag, but the protein degraded during this

process despite the addition of protease inhibitors (Fig. 6.2C+D). Therefore
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Figure 6.2: Expression optimisation and purification of Y. enterocolitica

HemT and S. meliloti HmuT. (A) Small-scale expression of Y. enterocolit-

ica HemT and S. meliloti HmuT at 25◦C and 30◦C. (B) Large-scale expression
of S. meliloti HmuT. (C) Degradation of HmuT during His-tag and (D) GST
purification. Arrows marking the His-GST-HmuT and the degradation product.

Y. enterocolitica HemT was recloned replacing its own leader sequence (residues

1 - 24) with the E. coli PelB leader sequence, which directs the fusion protein

to the E. coli periplasmic space upon expression. The PelB signal sequence

is cleaved off the fusion protein during the transport from the cytosol to the

periplasma. The PelB-HemT construct expressed solubly and was purified

from the periplasm by disruption of the outer cell membrane by osmotic shock

(Fig. 6.3A).

To facilitate additional purification upon periplasmic expression, HemT in

frame with the PelB sequence was also cloned with a C-terminal, non-cleavable

C-terminal His-tag (Fig. 6.3B). The soluble expression of PelB-HemT was very

high and not all the protein was transported in the periplasmic space. Thus in

large-scale purification contamination with the cell fraction containing HemT
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still in fusion with the PelB sequence was an issue and the procedure had to

be optimised. The yield of pure HemT protein was approximately 60mg per

liter cell culture, was concentrated to about 40mgml−1 and was stored at 4◦C.
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Figure 6.3: Expression and purification of Y. enterocolitica HemT. (A)
HemT after concentration of osmotic shock fluid obtained in small scale expression
and purification trials. (B) Pure HemT-His protein after optimisation of large-
scale expression and purification with additional His-tag purification.

6.3.2 UV/vis spectroscopy and reconstitution of HemT

with haemin

The tag-free HemT concentrated from the periplasmic osmotic shock fluid

shows a Soret maximum at 400 nm and Q-bands at 498 nm and 535 nm as well

as a high-spin marker band at 620 nm which increase upon addition of haemin

solution (Fig. 6.4A). Figure 6.4B depicts the spectra of the reconstituted fer-

ric haem-HemT-His complex, which has a slightly shifted absorption maxima

of 398 nm, 503 nm, 537 nm and 627 nm (Fig. 6.4B), which could be caused

by the additional C-terminal His-tag. The spectral maxima are similar to the

homologues from P. aeruginosa , PhuT (400 nm, 500 nm, 534 nm, 624 nm) and

S. dysenteriae ShuT (400 nm, 500 nm, 521 nm, 617 nm), which were both pre-

pared as His-tag fusion proteins (Tong & Guo, 2007, Eakanunkul et al., 2005).
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Figure 6.4: UV/vis absorption spectrum of Y. enterocolitica HemT. (A)
Spectrum of HemT as obtained from the periplasmic fraction and after addition
of haemin. (B) Reconstituted HemT-His6.

Recently published site-directed mutagenesis carried out on ShuT and PhuT

have shown that they have a 5-coordinate, high-spin haem-iron with a tyro-

sine (ShuT Y94; PhuT Y71) as axial ligand (Eakanunkul et al., 2005, Tong

& Guo, 2007). The similarities of the absorption spectra of HemT with its

homologues as well as the conservation of the tyrosine in multiple sequence

alignments (Fig. 6.1 and Tong & Guo (2007)) are suggesting a 5-coordinate,

high-spin haem-iron with tyrosine 70 as axial ligand in Y. enterocolitica HemT.

Due to the low sequence identity between BtuF and HemT, only a very

crude homology model of HemT was generated, using the coordinates of BtuF

(Fig. 6.5A) and Swiss-PDBviewer (Guex & Peitsch, 1997). No attempt was

made to model the haem-ligand in the binding pocket, also due to the low se-

quence identity. Nevertheless, the model shows Tyr 70 in vicinity of the cobal-

amin ligand (Fig. 6.5B). Also highlighted are the two conserved glutamine

residues (Glu 77 and Glu 206), which fall at the same topological places as in

BtuF, and are essential for BtuF to interact with the inner membrane permease

BtuCD (Borths et al., 2002).
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A

Figure 6.5: Structure of E. coli BtuF and homology model of HemT.
(A) Cartoon representation of the crystal structure of the E. coli vitamin B12
binding protein (BtuF, pdb code 1NZU) in complex with cobalamin. (B) Homol-
ogy modelling of HemT was carried out using Swiss-PDBviewer (Guex & Peitsch,
1997) and the coordinates of E. coli BtuF. The cobalamin ligand of BtuF is left
in the model of HemT due to the low sequence identity between HemT and BtuF.
Tyrosine 70 (orange) is in the vicinity of the cobalamin from BtuF (blue). Also
in orange, residues Glu 77 and Glu 206 potentially interacting with the inner
membrane permease.

6.4 Conclusions

Soluble periplasmic haem binding proteins are required in Gram-negative bac-

teria to transport their cargo from the outer membrane receptor to the in-

ner membrane permease. In recently carried out biochemical and biophysical

studies on the haem PBP homologues from S. dysenteriae and P. aerugi-

nosa, a tyrosine was identified as the proximal ligand to the haem-iron in a

5-coordinate high-spin system (Eakanunkul et al., 2005, Tong & Guo, 2007).

This tyrosine residue is conserved across species and it can therefore be as-

sumed that this coordination state is a common feature of these haem PBPs.

The haem-transport proteins IsdE and HtsA from the Gram-positive species

S. aureus and S. pyogenes, share a weak sequence identity and therefore are

likely to share the overall folding topology, but not have the conserved tyrosine

residue. Hence they must employ different residues to coordinate the haem-

iron. This will be further discussed in Chapter 7. To date no structural data
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on haem-PBPs or their homologues from Gram-positive species are available.

In this thesis, the cloning and expression trials with the haem PBP homologues

HemT from Y. enterocolitica and HmuT from S. meliloti are reported. Lim-

ited soluble expression of His-GST tagged fusion protein from S. meliloti was

observed, but the protein was subject to degradation during purification. A

total of four constructs were prepared to obtain soluble expression for HemT

from Y. enterocolitica of sufficient quantity and quality for future crystalli-

sation trails. Solution of the structure could possibly be accomplished by

molecular replacement using the coordinates from BtuF (1N2Z) as a model,

but might prove difficult given the low sequence identity between BtuF and

HemT. Experimental phases obtained using the anomalous signal of the iron

in the haem prosthetic group in a MAD experiment could be sufficient to solve

the HemT structure, but might be challenging given the size of the protein to

be phased with one haem-iron slone. Combination of a possible weak molecu-

lar replacement solution with experimental iron-MAD phases, are more likely

to be successful for structure determination (Baker et al., 1995). Alterna-

tively, since HemT contains 12 methionine residues in 256 residues, structure

determination could be carried out by SeMet-MAD.
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Structure-function relationship

of HtsA and Shp from

Streptococcus pyogenes

7.1 Introduction

Streptococcus pyogenes, or group A Streptococcus (GAS), is a Gram-positive

human pathogen which causes a variety of diseases, such as pharyngitis, cro-

tizing fasciitis, streptococcal toxic shock syndrome, scarlet fever, and postinfec-

tion sequelae including glomerulonphritis, rheumatic heart disease and

rheumatic fever (Cunningham, 2000).

In the search of the GAS genome sequence for genes coding for putative ex-

tracellular and cell surface protein that could be used for vaccination trials

(Lei et al., 2002) or could be involved in iron / haem-acquisition (Bates et al.,

2003), three streptococcal proteins were identified: the cell surface proteins

Shp (Lei et al., 2002) and Shr (Bates et al., 2003), and the lipoprotein HtsA

(Lei et al., 2003). They are part of a haem-specific ABC transport system,

named HtsABC (haem transporter of group A streptococcus) (Lei et al., 2002),
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also known as SiaABC (streptococcal iron acquisition) (Bates et al., 2003).

The shr, shp and htsA genes are co-transcribed with 7 other genes (Fig. 7.1)

and their expression is regulated through the abundance of iron (Lei et al.,

2003, Bates et al., 2003). The function of the 7 other genes is yet unknown,

but it is assumed that the genes named htsB and htsC are encoding for the

ATP dependent permease (Lei et al., 2002, 2003, Bates et al., 2003). It has

been argued that haem is the most important source of iron in vivo for GAS

(Eichenbaum et al., 1996, Francis et al., 1985), and it is likely that the HtsABC

system plays a considerable role in iron acquisition of GAS (Lei et al., 2003).

shr htsChtsAshp htsB 1791 1790 1789 1788 1787

Figure 7.1: Iron / haem-acquisition locus in S. pyogenes. The operon is
a cluster of 10 genes, and conserved across streptococci. The expression of the
operon is regulated by the abundance of iron. (Bates et al., 2003, Lei et al., 2003).

The cell surface protein Shr is predicted to have two NEAT domains (Andrade

et al., 2002), like the IsdA, IsdB, IsdC and IsdH proteins from S. aureus, and

was argued to be a receptor for haem-proteins, such as haemoglobin, myo-

globin, haem-albumin and haemoglobin-haptoglobin complexes (Bates et al.,

2003). Shp and HtsA are the only components of the streptococcal haem ac-

quisition machinery with a biochemical characterisation to date. It has been

shown that Shp actively passes on haem from haemoglobin to HtsA (Liu & Lei,

2005). HtsA has a 5-fold higher affinity for haem than Shp, which results in a

direct, affinity-driven and rapid transfer of haem from Shp to HtsA. (Nygaard

et al., 2006a). The proposed model for haem-uptake in S. pyogenes is shown

in Figure 7.2. HtsA is part of the ABC transporter which then transfers the

haem across the membrane (Liu & Lei, 2005, Nygaard et al., 2006a).
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ATP
ADP+Pi

Hb

p/Hb

Figure 7.2: Model of haem transport in S. pyogenes. Shr was shown to be
able to bind host haem-proteins, such as haemoglobin, haemoglobin-haptoglobin,
haem-albumnin and myoglobin (Bates et al., 2003). Shp extracts haem from
haemoglobin and passes it on to HtsA. The putative permeases HtsB and HtsC
transfer the haem into the cytosol (Liu & Lei, 2005, Nygaard et al., 2006a).

Structural data on these two proteins, as well as their interaction, would give

precious insights into the molecular mechanism of haem transfer. Given the

transient nature of the interaction it is likely to be difficult to capture a HtsA-

Shp complex in a crystal lattice. Surprisingly the haem-complexes of both

proteins interact with each other, forming a longer-lived complex relative to

the transfer reaction (Liu & Lei, 2005).

Here HtsA and Shp from S. pyogenes were cloned, expressed, purified and

high-throughput crystallisation screens carried out. Crystals for HtsA could

be obtained and diffracted to 2.8 Å. Moreover the interaction between Shp

and HtsA for possible co-crystallisation experiments was investigated.
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7.2 Materials and methods

7.2.1 Cloning of htsA and shp from genomic DNA

Streptococcus pyogenes htsA and shp were PCR amplified from genomic DNA

(strain MGAS 1718, prepared by Dr. J.Cooney). The sequence coding for

residues 21 - 294 of HtsA was amplified without the N-terminal secretion sig-

nal sequence using the primer sequences as previously described (Lei et al.,

2003), which were modified to insert the product into pSGAT2 (Peränen et al.,

1996)(for plasmid map and list of primer see Appendix A.2, p. xix and A.3,

p. xx) using HindIII and BamHI in frame with the cleavable His6-tag (SP-

HtsA21-pSGAT2). HtsA was also cloned using another forward primer start-

ing at the sequence coding for residue 31 (SP-HtsA31-pSGAT2).

The sequence coding for Shp residues 30 - 258, therefore omitting the presumed

N-terminal secretion signal sequence, the C-terminal transmembrane domain

and charged tail (Lei et al., 2002), was PCR amplified from genomic DNA

(strain MGAS 1718 see above). The PCR product was cloned using the re-

striction endonucleases NdeI and XhoI into pET21a (Novagen) in frame with

the C-terminal His6-tag (SP-Shp-pET21a). The vector pET21d had been pre-

viously used by Lei et al. (2002) for expression of tag-free Shp. PCR, ligation,

transformation and sequence analysis were carried out as described in Chap-

ter 2, p. 2 and for the primer sequences see Appendix A.2, p. xix.

7.2.2 Expression and purification of HtsA and Shp

HtsA and Shp were expressed and purified as described in Chapter 2.2.4, p. 40.

Briefly, BL21 cells containing the expression constructs were grown until an

OD600 of 0.8 - 1.0 was reached, the temperature dropped to 30◦C and protein

expression induced by adding IPTG to a final concentration of 0.4mM. The

cells were further grown over night, and lysed using a French press. HtsA
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and Shp were purified using the His-tag and Ni-NTA resin with an imidazole

gradient (10 - 30mM imidazole). An additional wash-step with 1M NaCl and

30mM imidazole in 50mM sodium phosphate buffer, pH8.0 was carried out

to reduce unspecific binding to HtsA and Shp. After purification the buffer

was exchanged to 50mM Tris-HCl, pH8 200mM NaCl using a PD10 column

(GE Healthcare).

7.2.3 Reconstitution of HtsA and Shp with haemin and

UV/vis spectroscopy

To reconstitute HtsA and Shp with their ligand haem, the samples were sat-

urated with two fold excess haem and unbound haem was removed by gel-

filtration (see Chapter 2.2.5, p. 41). The protein was then concentrated with

centrifugal membrane-devices (Vivaspin) in 50mM Tris-HCl pH 8, 200mM

NaCl, to the desired concentration and stored at 4◦C. Spectroscopic measure-

ments were carried out in 50mM Tris-HCl, pH7.5, 200mM NaCl.

7.2.4 Dynamic light scattering

Dynamic light scattering (DLS) experiments were conducted at room tem-

perature in a 1ml quartz cuvette (path length 1 cm) containing protein at

concentrations of 0.5 and 1mgml−1 in PBS buffer. Prior to the DLS studies,

protein samples were centrifuged at 12,000 rpm for 30min at 4◦C. Data were

collected with a Viscotek model 802 DLS instrument. Measurements were

programmed using the software OmniSIZE 2.0 (Viscotek Europe Ltd.) such

that each experiment was averaged over 30 runs, each for 3 sec. The results

were processed with the OmniSIZE software.
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7.2.5 Crystallisation of haem-HtsA and haem-Shp

The most appropriate protein concentration for the haem-HtsA and haem-

Shp complexes to use for crystallisation trials was determined using the pre-

crystallisation test (Hampton Research). Initial high-throughput crystallisa-

tion screening was carried out using the sitting-drop vapour-diffusion method

in 96-well CrystalQuick plates (Greiner). The experiments were set up with

the Hydra II micro dispensing system, testing conditions from 10 crystallisa-

tion screens from Nextal Biotechnology/Qiagen (ClassicsTM , PEGsTM , PEGs

IITM , AmSO4TM , CationsTM , MPDTM , pH clearTM , AnionsTM , PACTTM ,

MbclassTM ) and a number of screens from Molecular Dimensions (Clear Strat-

egy ITM , Clear Strategy IITM , PACTTM ). For the haem-HtsA a drop size of

0.8µl + 0.8µl was used, testing the effect of protein concentration (60mgml−1;

100mgml−1; 120mgml−1), buffer (50mM Tris-HCl, pH 7.5; 50mM Hepes,

pH8), temperature (20◦C, 4◦C) and NaCl concentration (0, 0.1M, 0.3M,

0.5M, 1M). Screens for haem-Shp were set up using either 20 or 28mgml−1

protein in either 50mM Tris-HCl, pH 7.5, 200mM NaCl, or 20mM Bis-Tris-

Propane, pH 6.5 or milliQ water. Plates were incubated at 20◦C and examined

after 2 - 3 weeks.

7.2.6 Structure determination of HtsA

Data collection was carried out at the ESRF synchrotron radiation facility

beamline ID14-2. Two sweeps of data were collected on a single crystal, both

consisting of 250 images collected with 1◦ oscillation, one with an exposure of

2 sec (low resolution), and the second with an exposure time of 60 sec (high

resolution). The data were processed (low resolution data set: 30 - 4 Å; high

resolution data set: 8.0 - 2.8Å) using the programs XDS (Kabsch, 1988, 1993),

MOSFLM/SCALA (Leslie, 1992, Evans, 1997) and XPREP (version 6.14 from
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BRUKER) and were tested for twinning using the programs SFALL (CCP4,

1994) and XTRIAGE (Zwart et al., 2005). Molecular replacement trials where

carried out using the structures of the enterochelin uptake PBP (CeuE) from

Champylobacter jeuni (PDB code 2CHU), the E. coli iron-hydroxamate bind-

ing protein (FhuD; PDB code 1ESZ) and the Vitamin B12 binding protein

(BtuF) (PDB code 1N2Z) as an ensembled search model in PHASER (McCoy

et al., 2005). All residues not shared between these structures and HtsA were

truncated at the Cγ-atoms and the B-factors were reset to 10 and 20 for the

main- and side chains, respectively. Furthermore, alternative space groups

were tested. While writing this Chapter, the structure of the S. aureus IsdE

protein in complex with haem was determined (PDB code 2Q8Q) (Grigg et al.,

2007b), sharing 40% sequence identity with HtsA. IsdE was prepared as a MR

model as described above.

Iron-MAD data were collected at the beamline ID23-1 at the ESRF syn-

chrotron radiation facility. The peak and inflection points were determined

by an X-ray fluorescence scan around the iron-edge. A MAD data set consist-

ing of peak (1.7399 Å, 250◦, 1◦ oscillation, 2 sec exposure), inflection (1.7120 Å,

240◦, 1◦ oscillation, 2 sec exposure) and remote (0.954 Å, 180◦, 1◦ oscillation,

1 sec exposure) were collected using different positions of a translated crystal.

7.3 Results and Discussion

7.3.1 Sequence alignment and structure predictions

The NCBI data base was searched using BLAST (Altschul et al., 1990) for

proteins homologous to HtsA and Shp. Homologues for Shp could only be

identified from other GAS strains, sharing more than 90% sequence identity,

as well as from Streptococcus equi. Shp from S. pyogenes has a sequence iden-

tity of 75% and a similarity of 91% with the protein from S. equi (Nygaard
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et al., 2006b), and appears to be unique to streptococci. In contrast, HtsA

shows homology to a number of proteins from other species; for instance, it

shares 40% sequence identity with the lipoprotein IsdE from S. aureus, which

is part of the Isd haem-uptake machinery (see Chapter 1.2, p. 1.2). Three

residues that could be possibly ligating the haem-iron, Met 79, His 229 and

Met 238, are conserved in HtsA homologues (Fig. 7.3). Electron paramagnetic

resonance (EPR) measurements carried out on haem-HtsA indicates that the

iron is hexacoordinate and two histidine residues were argued to be possible

ligands, because of the similarity to the EPR spectra of b-type cytochromes

(Nygaard et al., 2006a). HtsA also has low sequence identity to the periplasmic
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A A HGMP A E V V KM F D E E F K T N D I WK H F D A V K N N R V Y D L D E N L F GM T A S L N A P E A L K E M E K M L Y D N - - - -
M T HGMP E Q A K KM A E E K F A S D P AWS R I E A V K E G K V Y Y L E N G Y F GMS A N L K V I E S L D K L G E I I Y G E K - - -
L T H T N S K D T A E S L R A E F A K N E I WQ K V K A I K E D K I Y D L D S N L Y T V S R N I K I MQA V E N L K E I I Y G E T E D -
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Figure 7.3: Sequence similarities and identities of HtsA homologues.
Multiple sequence alignment of 6 HtsA homologous sequences from representative
Gram-positive species. Sequences homologous to HtsA from S. pyogenes were
identified by BLAST searches (Altschul et al., 1990) of the National Center for
Biotechnology Information database (http://www.ncbi.nlm.nih.gov/) and align-
ments were carried out with ClustalW (Thompson et al., 1994). Sequences aligned
are from the following species: Bacillus antracis (gi:47552030); Clostridium tetani

(gi:28210884); Listeria monocytogenes (gi:16411654); S. aureus (gi:13700933);
Treponema denticola (gi:42527857). The alignment was annotated with a pro-
gram kindly provided by Dr.T. Stevens (Stevens & Paoli, 2007). Numbering on
top of the alignment is according to the HtsA sequence.
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binding proteins (PBP) HemT from Y. enterocolitica, ShuT from S. dysente-

riae and PhuT from P. aeruginosa. In addition it shows similarity to other

PBP, such as the enterochelin uptake PBP (CeuE) from Champylobacter jeuni

(PDB code 2CHU), the E. coli iron-hydroxamate binding protein (FhuD; PDB

code 1ESZ) and the Vitamin B12 binding protein (BtuF) (PDB code 1N2Z),

of which the structures have been determined. The sequence alignment in Fig-

ure 7.4 shows that the conserved tyrosine residue coordinating the haem iron

in PhuT (Tong & Guo, 2007), ShuT (Eakanunkul et al., 2005) and most likely

in HemT (discussed in Chapter 6) has no equivalent in IsdE and HtsA; the

methionine residue conserved in the HtsA homologues is located two residues

downstream from the tyrosine (Fig. 7.4). This is supporting the hypothesis

BtuF   :     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A A P R V I T L S P A N T E L A F A A G - - I T P V G V S S Y S D Y P P Q A QK I E Q V
HemT   :     - - - MR L R L L S L P F I L S - L S A C L L P L N - - - - - - - - S F A A E R I V T I GG D V T E I A Y A L G A GG E I V A R D S T S L Q P Q A V QK L P D V
ShuT   :     - - - - M P R I I T R P F L F T P L T L C I S A V A S A S - 2 0 - S V T A A E R I V V A GG S L T E L I Y AMG A G E R V V G V D E T T S Y P P E T A K L P H I
HtsA   :     - M I K R C K G I G L A L M A F F L V A C V NQH P K T A - - - - K E T E QQ R I V A T S V A V V D I C D R L N L D L V G V C D S K L Y T L P K R Y D A V K R V
IsdE   :     MR I I K Y L T I - L V I S V V I L T S CQ S S S S Q E S - - - - T K S G E F R I V P T T V A L T M T L D K L D L P I V G K P T S - Y K T L P N R Y K D V P E I

β1 β2 β3

BtuF   :     S TWQGMN L E R I V A L K P D L V I AWRGG N A E RQ V D - - Q L A S L G I K V MWV D A T S I E Q I A N A L RQ L A PWS P Q P D K A E Q A A Q S L L D
HemT   :     G Y MRM L N A E G I L A MK P T M L L V S E L A Q P S L V L K Q V A D S G V N V V T V P - GQ T T P E S V A V K I N A V A S A L H QQ E K GQ A L I K D Y QQ
ShuT   :     G YWK Q L S S E G I L S L R P D S V I TWQ D A G P Q I V L DQ L R A Q K V N V V T L P R V P A T L E QMY A N I RQ L A K T L Q V P E QG D A L V T Q I N Q
HtsA   :     G L P MN P D I E L I A S L K P TW I L S P N S L Q E D L E P - - - K Y Q K L D T E Y G F L N L R S V E GMY Q S I D D L G N L F QR QQ E A K E L RQQ Y Q D
IsdE   :     GQ P M E P N V E A V K K L K P T H V L S V S T I K D EMQ P - - - F Y K Q L NM K G Y F Y D F D S L K GMQ K S I T Q L G DQ F N R K A QA K E L N D H L N S

β4 β5 β6

BtuF   :     Q Y A Q L K A Q Y A D K P K K - R V F L Q F G I N - P P F T S G K E S I QN Q V L E V CGG E N I F K D S R V PWP Q V S R E Q V L A R S P Q A I V I T GG P D
HemT   :     R L A A V N N - - - - T P L P V K V L F V MS H GG L T PMA A GQ N T A A D A M I R A A GG S N AMQG F S R Y R P L S Q E G V I A S A P D L L L I T S DG V
ShuT   :     R L E R V QQ N V A A K K A P V K A M F I L S A GG S A P Q V A G K G S V A D A I L S L A G A E N V A T - H QQ Y K S Y S A E S L I A A N P E V I V V T S QM V
HtsA   :     Y Y R A F Q A K R - K G K K K P K V L I L MG L P G S Y L V A T N Q S Y V G N L L D L AGG E N V Y Q S D E K E F L S A N P E DM L A K E P D L I L R T A H A I
IsdE   :     V K Q K I E N K A A K Q K K H P K V L I L MG V P G S Y L V A T D K S Y I G D L V K I AGG E N V I K V K D R Q Y I S S N T E N L L N I N P D I I L R L P HGM

β7 β8 β9

BtuF   :     Q I P K I K Q YWG E Q L K I P V I P L T S DWF E R - - - - - - - - - - - - - A S P R I I L A A QQ L C N A L S Q V D - - -
HemT   :     R A L GG S E G I WK L P G - - - MA L T P AG K N K R L L V V D DM A L - L G F G L E T P Q V L S Q L R K GM E Q A Q - - -
ShuT   :     D - - G D I N R L R S I A G - - - I T H T A AWK NQR I I T V D Q N L I - L GMG P R I A D V V E S L H QQ LWP Q - - - -
HtsA   :     P D K V K V M F D K E F A E N D I WK H F T A V K E G K V Y D L D N T L F GM S A K L N Y P E A L D T L T Q L F D H V GD H P
IsdE   :     S E E V K KM F Q K E F K Q N D I WK H F K A V K N N H V Y D L E E V P F G I T A N V D A D K AM T Q L Y D L F Y K D K K - -
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Figure 7.4: Sequence alignment of HtsA with BtuF. Annotation of the
alignment was carried out by a program kindly provided by Dr.T. Stevens (Stevens
& Paoli, 2007) and the numbering on top of the alignment corresponds to HtsA.
Secondary structure was assigned according to the structure of BtuF. Highlighted
by an arrow are residues involved or possibly involved in haem-iron coordination;
the tyrosine in ShuT and HemT, and the two methionines and the histidine.
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that this methionine is involved in haem-iron coordination in HtsA and IsdE.

While writing this Chapter the structure of the haem-IsdE complex from S.

aureus was published, showing a 6-coordinated haem-iron with Met 79 and

His 229 as ligands, which are conserved across species (Grigg et al. (2007b)

and Fig. 7.3). Homology modelling studies of HtsA using IsdE as template

also points to this histidine and methionine as the axial ligands (Grigg et al.,

2007b).

7.3.2 Purification and biochemical characterisation of

HtsA

7.3.2.1 Purification of HtsA and Shp

S. pyogenes htsA and shp were cloned from genomic DNA. For htsA two alter-

native constructs were generated; one coding for HtsA starting at residue 21

as previously described (Lei et al., 2003) and the second starting with residue

31, where the structure of E. coli BtuF begins (Fig. 7.4). Shp was cloned

in frame with a non-cleavable C-terminal His6-tag and all constructs showed

very high expression levels of ∼150mgml−1 per litre cell culture. The proteins

were purified using Ni-affinity chromatography, the His-tag was removed with

thrombin from HtsA21 and HtsA31 (Fig. 7.5) and Shp and HtsA were recon-

stituted with the haem-ligand.

Analytical gel-filtration analysis was carried out on the haem-Shp and haem-

HtsA complex as well as apo-HtsA and they appeared to be monomeric in

solution (Fig. 7.6).

The haem-HtsA complex was also analysed by dynamic light scattering, con-

firming the monomeric state of the haem-HtsA complex in solution (Fig. 7.7).

The observed radius in the two experiment of 3.0 and 3.1 nm (standard de-

viation +/- 1 nm), which is equivalent to 30 and 31 Å, respectively. This is
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similar to the dimensions of the E. coli BtuF protein, which has a longitudinal

shape with approximate diameters of 31 and 47 Å.
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Figure 7.5: Purification of HtsA. (A) His-tag purification of HtsA21 with
an additional high-salt wash step (30 mM imidazole, 1 M NaCl). His-HtsA21 af-
ter cleavage with thrombin, reconstitution with haemin and gel-filtration. (B)
Pure Shp protein after His-tag purification, reconstitution with haemin and gel-
filtration. (C) His-tag purification of HtsA31 and pure HtsA31 protein after cleav-
age with thrombin, reconstitution with haemin and gel filtration.
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Figure 7.6: Analytical gelfiltration analysis of HtsA. An estimated molec-
ular mass of the protein was extrapolated from a standard calibration curve us-
ing an GE Healthcare chromatography system (Äkta Purifier) equipped with a
HiLoad Superdex 75 HR16/60 column. The column was equilibrated with 50 mM
Tris-HCl, pH7.5, 75 mM NaCl, and was tested with a sample concentration of
20 mgml−1. (A) Representative traces were recorded at 280 nm of molecular
weight markers (black) and HtsA (blue) and trace HtsA measured at Soret maxi-
mum of 413 nm (red). The data indicates that HtsA is a monomer and no dimer-
ization is observed. (B) Haem-Shp is a monomer and its elution of was followed
at 280 nm (blue) and its Soret maximum 425 nm (red).
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Figure 7.7: Dynamic light scattering analysis of haem-HtsA. Two differ-
ent protein concentrations (1 mgml−1 and 0.5 mg ml−1) were analysed indicating
that the haem-HtsA complex is mono dispersed in solution with an estimated di-
ameter of 30 Å. Data shown here were obtained with a haem-HtsA concentration
of 1 mgml−1.
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7.3.2.2 UV/vis spectroscopy of HtsA and Shp

After reconstitution of HtsA and Shp with haem, the UV/vis absorption spec-

tra where recorded. Fully reconstituted HtsA and Shp have similar UV/vis

absorption spectra. Ferric-HtsA has a Soret maxima of 413 nm and Q bands at

534 nm and 567 nm. Upon reduction the Soret peak is red-shifted to 424 nm,

with Q-bands at 529 nm and 559 nm (Fig. 7.8A). The haem-Shp complex in its

oxidised form exhibits absorbance peaks at 415 nm, 532 nm and 560 nm and

in its reduced form at 425 nm, 529 nm, 559 nm (Fig. 7.8B). The absorption

spectra of the haem-HtsA and haem-Shp complexes both show characteristics

of a 6-coordinated haem-iron. This was previously suggested by EPR mea-

surements, which indicated two ligands to the iron (Nygaard et al., 2006b).

Cyanide can bind to the ferric haem-HtsA and haem-Shp complexes (Fig. 7.8).

Therefore the haem has to be accessible for cyanide, which then replaces the

weaker ligand to the haem iron.
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Figure 7.8: UV/vis spectroscopy of HtsA and Shp. Spectra of ferric (blue),
ferrous (green) and ferric cyanide complex (red) of (A) HtsA and (B) SHP-His.

The absorption maxima of haem-HtsA and haem-Shp observed here, partly

differ from the ones previously described in the literature (Lei et al., 2003,

Liu & Lei, 2005, Nygaard et al., 2006a)(see Table 7.1). It was argued that

the haem-Shp complex does not undergo auto oxidation after reduction, but
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is stable in its reduced, ferrous form for weeks in Tris-buffer at pH 8 at 4◦C

(Nygaard et al., 2006a). Here a prolonged stability of the reduced complex

was noticed, but autoxidation occurred after a few days in Tris-HCl, pH 7.5.

The differences in the spectroscopic characteristics compared with the ones

reported in the literature could be due to slightly different buffer conditions

and the absence (HtsA) or presence (Shp) of the His-tag. Deviations in the

Soret peak of haem-HtsA-His can be found in the literature (Lei et al. (2003),

Liu & Lei (2005), Nygaard et al. (2006a); Table 7.1), but have not been

discussed. No differences in the absorption spectra of haem-HtsA beginning

with residue 21 or 31 were observed.

Table 7.1: UV/vis absorption spectra of HtsA and Shp-His

this work HtsA SHP-His6

ferric (Fe3+) 413nm, 534 nm, 567nm 415nm, 532 nm, 560nm
ferrous (Fe2+) 424nm, 529 nm, 559nm 425nm, 529 nm, 559nm
ferric-cyanid 419nm, 537 nm 422nm, 532-558nm

Nygaard et al. (2006a) HtsA-His6 Shp
Liu & Lei (2005)
ferric (Fe3+) 412nm, 530 nm, 570nm 420nm, 530 nm (shoulder)
ferrous (Fe2+) 424nm, 528 nm, 558nm 428nm, 528 nm, 560nm

Lei et al. (2003) HtsA-His6

ferric (Fe3+) 408nm -
as purified 417nm 530nm 460 nm -

7.3.3 Crystallisation of Shp and HtsA

7.3.3.1 Crystallisation trials of the haem-Shp complex

High-throughput crystal screening of 960 conditions was carried out with

haem-Shp at a concentration of 28mgml−1 in three different solutions: i)

50mM Tris-HCl,pH7.5, 150mM NaCl, ii) 20mM Bis-Tris-Propane, pH6.5,

and iii) milliQ water.
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The trays were incubated at 20◦C and inspected every one-two weeks. Crys-

talline precipitation, aggregation and strong phase separation could be ob-

served (Fig. 7.9), but no crystals formed. The formation of strong phase

separation and crystalline precipitate is promising. Further screening using

higher protein concentrations, different temperature (4◦C) and buffer condi-

tions of the protein solution should be explored, but was not carried out due

to the time limitations of this thesis work.

A CB

Figure 7.9: High-throughput crystallisation screen of haem-Shp. Com-
monly observed in various conditions were (A) crystalline precipitation, (B) strong
phase separation and (C) aggregation.

7.3.3.2 Crystallisation of the haem-HtsA complex

Initial high-throughput crystallisation screening of 1344 conditions with vari-

ous protein concentrations, buffers, sodium chloride concentrations and at dif-

ferent temperatures was carried out with HtsA starting at residue 21 and 31,

(for details see Chapter 7.2.5, p. 138). Quite commonly crystalline aggregation

and variations of strong phase separations could be observed (Fig. 7.10A+B).

Figure 7.10C shows the haem-HtsA21 crystal obtained in the PEGsTM (Qia-

gen /Nextal) in 0.1M Hepes, pH7.5, 25% (w/v) PEG 4000, at a protein con-

centration of 100mgml−1 in 50mM Tris-HCl, pH 8 and 4◦C. No crystals

were obtained in the same condition at 4◦C with protein solution supple-

mented with sodium chloride or at 20◦C. HtsA crystals could be reproduced

in hanging as well as sitting drop grid-screens around the initial hit condition
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A

C D

B

Figure 7.10: Crystallisation of HtsA. (A+B) Commonly observed strong
phase separation in initial high throughput crystallisation trials. (C) HtsA crystal
obtained in 0.1 M Hepes, pH7.5, 25 % (w/v) PEG 4000, high-throughput screen
PEGsTM (Qiagen), at a protein concentration of 100 mg ml−1 in 50 mM Tris-HCl,
pH8.0 and 4◦C. (D) Reproduced HtsA crystal in hanging-drop grid screen around
the initial hit condition in 150 mM Hepes, pH 7.5, 26% PEG4000, at a protein
concentration of 125 mgml−1 and a drop size of 2 +2 µl. The bar indicates 100 µm.

at 4◦C (Fig. 7.10D). Crystals usually grew after 2 - 3 weeks and the sites of

nucleation appeared to be in the zone of strong phase separation.

The crystals were very fragile and the majority of the crystals obtained in the

sitting drop screens were attached to the plastic surface of the tray. Therefore

handling of the crystals and transferring them to the cryo protectant was an

issue. Moreover most of the crystals showed imperfections and deformations,

indicating the presence of multiple lattices.

Partial cleavage of the haem-HtsA21 was observed after a few days of stor-

age at 4◦C. (Fig. 7.11, lane 1). This double band with the same ratio of un-
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Figure 7.11: Partial cleavage of HtsA over time. SDS-PAGE gel showing
partial cleavage of HtsA21 after two days storage at 4◦C, a lower band appears in
the protein sample (lane 1). These two bands are also present in the strong phase-
separation from a drop where haem-HtsA21 crystals have grown (lane 2). Only
the lower band, representing the cleaved protein can be observed in haem-HtsA
crystals (lane 3).

cleaved to cleaved protein could also be seen in the strong phase-separation

zone in drops were crystals had formed (Fig. 7.11, lane 2); but for crystal

formation, only the cleaved protein was selected (Fig. 7.11, lane 3). It might

therefore be possible to improve the packing of the crystal lattice by setting

up crystallisation trials with only the cleaved, lower molecular weight protein.

In order to determine the residue where the lower molecular weight protein in

the crystal started, the lower band was cut out from an SDS-PAGE gel and

sent for N-terminal sequencing (Altabiosciences, Birmingham). Results indi-

cated that the protein in the crystals was truncated after Lys 25. Incorporation

of uncleaved HtsA21 protein in the crystal lattice could account for the ob-

served deformation and anisotropic diffraction of the crystals. Hence, it might

be possible to improve the quality of the crystals by carrying out crystalli-

sation trials only with the truncated HtsA protein. The previously prepared

expression construct, coding for HtsA starting at residue 31 could be a suit-

able substitution for the truncated HtsA selected in the crystal lattice, since
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cleavage of the His-tag with thrombin after expression in the pGAT2-plasmid,

two additional amino acids (Gly, Ser) are left at the N-terminus, and haem-

HtsA31 had not been tested in high-throughput crystallisation screens at 4◦C.

HtsA31 was purified and tested for improvement of crystal formation in a grid

screen around the hit condition (Hepes, pH7.5: 50 - 200mM; PEG 4000: 22 -

30% (w/v)) with concentrations ranging from 100 - 160mgml−1 at 4◦C. Only

strong phase separation but no crystal formation could be observed. Further

screening as well as seeding using crystal fragments from HtsA21 might aid

crystal formation from HtsA31, but was not tried due to time limitations of

this thesis work.

7.3.4 Diffraction analysis of HtsA

The haem-HtsA crystal obtained in the initial high-throughput screen was

diffracted at the European Synchrotron Radiation Facility (ESRF) beamline

ID14-2. Diffraction was limited in resolution, and highly anisotropic. By re-

ducing the beam size and screening different parts of the crystal, a complete

data set to 2.8 Å (Fig. 7.12) could be obtained.

The manually reproduced haem-HtsA crystals did not show any improvement

of resolution or diffraction quality at the home-source or the ESRF-beamline

ID23-1. The data were processed with different programs and in different,

possible space groups and the systematic absences were analysed.

Initially it appeared that the crystals belong to the tetragonal enantiomor-

phic space group P41212 /P43212, but the data could be processed with a

slightly better Rmerge in P212121 (Table 7.2). According to solvent content

and self-rotation function analysis, there are most likely two molecules in the

asymmetric unit cell.

HtsA shares low sequence identity (≤ 23%) with the periplasmic binding pro-

teins (PBP) from Gram negative species, the structures of which have been de-
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Figure 7.12: Diffraction of haem-HtsA crystal. Diffraction of haem-HtsA
crystal from initial hit condition. Crystal was transfered to an artificial mother
liquor of 100 mM Hepes, pH 7.5, 50 mM Tris-HCl, pH8.0, 35 % (w/v) PEG4000,
prior to flash freezing in liquid nitrogen.

termined; the enterochelin uptake PBP (CeuE; PDB code 2CHU) from Champy-

lobacter jeuni, the iron-hydroxamate binding protein (FhuD; PDB code 1ESZ)

and the Vitamin B12 binding protein (BtuF; PDB code 1N2Z) from E. coli.

They superimpose onto each other with RMSDs ranging from 2.8 - 3.1 Å and

Figure 7.13 shows a secondary structure based alignment of these molecules.

Molecular replacement using all three proteins as an ensemble search model

was carried out. Two weak solutions in the tetragonal space groups P43212 (ro-

tation function Z-score (RFZ)=2.6 / 2.7; translation function Z-score (TFZ)=

6.0 / 5.9) and P4322 (RFZ =2.6 / 3.0; TFZ =5.5 / 5.2) were found, with the so-

lutions differing in the alternate arrangements of the two molecules in the

asymmetric unit along the screw axis. But in both solutions the log likeli-
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Table 7.2: Data collection and processing statistics. Values in parentheses
are for the highest-resolution shell.

haem-HtsA
Data Collection
Space group P43212 P212121

Wavelength (Å) 0.933
Cell dimensions

a, b, c (Å) 71.34 71.34 227.96 71.27 71.45 228.21
α, β, γ (◦) 90, 90, 90 90, 90, 90

Resolution (Å) 30 - 2.85 (3.0 - 2.85) 30 - 2.8 (2.95 - 2.80)
Rmerge 0.074 (0.466) 0.058 (0.469)
Mean I /σI 28.8 (4.5) 19.4 (3.0)
Completeness (%) 99.9 (100.0) 99.9 (100.0)
Redundancy 14.4 (11.6) 7.3 (6.1)
Solvent content (%) 50.8 47.5
Molecules in ASU 2 2

hood gain (LLG) for the second molecule was negative. In addition there were

clashes between the molecules in the asymmetric unit and symmetry related

molecules.

When molecular replacement was carried out with the data processed in the

orthorhombic space group P222 and tested against all possible space groups,

weak solutions were found in P2221 and P212121, but the LLG was negative.

No solutions were found when only one of the molecules was used as a search

model instead of the ensemble. Most likely this is caused by the large error

in the phases due to the low sequence identity between HtsA and the search

models as well as the limited resolution.

An attempt was made to aid structure determination by taking advantage of

the iron in the prosthetic group. Combination of the molecular replacement

phases with phases obtained from the iron could largely improve the resulting

electron density maps as well as reduce model bias. An iron-MAD data set was

collected at the ESRF beam line ID23-1. The iron peak and inflection point

wavelengths were determined by an fluorescence scan around the iron edge

(peak=1.7399 Å, inflection=1.7120 Å). Unfortunately only limited resolution
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Figure 7.13: Secondary structure alignment of the molecular replace-
ment models. An ensemble of the molecules here aligned was used for molec-
ular replacement in PHASER (McCoy et al., 2005). Secondary structure assign-
ment corresponds to IsdE from S. aureus (PDB code 2Q8Q) and the number-
ing to HtsA. enterochelin uptake PBP (CeuE; PDB code 2CHU) from Champy-

lobacter jeuni, the iron-hydroxamate binding protein (FhuD; PDB code 1ESZ)
and the Vitamin B12 binding protein (BtuF; PDB code 1N2Z) from E. coli.
HtsA was aligned to IsdE using ClustalW (Thompson et al., 1994). The co-
ordinates were matched according to their secondary structure using the SSM
server at the European Bioinformatics Institute (EBI; http://www.ebi.ac.uk/msd-
srv/ssm/ssmstart.html). Annotation was carried out with a program kindly pro-
vided by Dr.T. Stevens (Stevens & Paoli, 2007).

(∼3.5 Å) and highly anisotropic diffraction, which was also depending on loca-

tion of the crystal and its orientation, was obtained. The data were processed

with XDS (Kabsch, 1993, 1988) and MOSFLM/SCALA (Leslie, 1992, Evans,

1997), but due to the low quality of the data the iron position could not be

unambiguously determined.
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The purification of SeMet derivatised HtsA was planned and attempts were

made to obtain better quality crystals (see above), but while this Chapter was

written, the structure of the haem-IsdE from S. aureus complex was published

(Grigg et al., 2007b), sharing 40% sequence identity with HtsA. Molecular re-

placement with IsdE as search model testing tetragonal space groups gave im-

proved resulting maps (P43212; RFZ =7.1 / 5.3; TFZ =21.2 / 4.6; LLG =176 /

80), but the LLG for the second molecule was lower than for the first and there

were still large errors in the calculated phases as well as clashes with symme-

try related molecules. A solution resulting in better electron density maps

could be obtained using the data processed in the orthorhombic space group

P212121 (RFZ =4.8 / 5.2; TFZ =10.1 / 20.9; LLG =121 / 373), but six clashes

between the two molecules occurred. Taking advantage of the two molecules

in the asymmetric unit, non-crystallographic symmetry (NCS) averaging was

carried out in DM (Cowtan, 1999), which resulted in improved phases. Further

improvement of the maps was obtained by density modifications and NCS av-

eraging using SOLOMON (Abrahams & Leslie, 1996), implemented in SHARP

(de La Fortelle & Bricogne, 1997, Vonrhein et al., 2006), using the phases cal-

culated in DM. Parts of the electron density maps were still of poor quality

and only some weak density peaks for the haem could be observed (Fig. 7.14).

An attempt was made to slowly improve the model by making adjustments

of the positions of residues and side chains according to the NCS-averaged

electron density map. Repeating the molecular replacement in PHASER with

one chain of the improved model, resulted in markedly improved statistics

(RFZ =9.1 / 10.3; TFZ =18.4 / 33.9; LLG =348 / 1223) and the clash between

the two chains was reduced to two residues. Nevertheless the R-factors could

not be reduced below 49% in all initial refinement trials in REFMAC.

An explanation for the inability to refine the HtsA structure could be pseudo-

merohedral twinning of the crystal. A merohedral twinned crystal contains two
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A B

Figure 7.14: Electron density of the haem-HtsA complex after NCS
averaging. Map calculated to 2.8 Å and contoured at 1 σ level. Figure showing
(A) a part of the beta sheet in the core of the C-terminal domain and (B) the
density peak around the haem and its ligands.

lattices of two separate twin domains, which perfectly superimpose in three

dimensions. In this case the two different unit cells related by the twinning

operator comply with the unit cell lattice, but the orientation of the molecules

in the asymmetric unit cell is not equivalent. Usually this can sometimes be

observed in higher symmetry space groups (cubic, tetragonal and hexagonal)

when the space group symmetry is lower than the symmetry of the crystal

lattice (Yeates, 1997). Nevertheless rare cases of merohedral twinning have

been reported for lower symmetry space groups when the geometry of the unit

cell is similar to a higher symmetry space group (for example Rudolph et al.

(2004), Wittmann & Rudolph (2007), MacRae & Doudna (2007)). The na-

tive HtsA data were tested for twinning using the program XTRIAGE (Zwart

et al., 2005). For the data processed in P212121 either a pseudo-merohedral

twinning fraction of 42.3%, with the twinning operator -k, -h, -l, or the higher

symmetry space group P4x212 was suggested. No twinning for the data pro-

cessed in tetragonal space groups could be detected.

A case of perfect pseudo-merohedral twinning of orthorhombic crystals, where

the length of the a axis equal to that of b axis has been reported recently for
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the protein Dicer (MacRae & Doudna, 2007). The unit cells can be orientated

in two ways, which are related by a 90◦ rotation about the c-axis, and still

fit into the crystal lattice. The structure was solved using data from crystals

with reduced twinning, obtained through replacement of magnesium chloride,

which was essential for crystal growth, by manganese chloride (MacRae &

Doudna, 2007).

Refinement of the structure against twinned data is possible, as for example

implemented in the PHENIX software package (Adams et al., 2002), but spe-

cial care must be taken not to introduce model bias. In the case of the Dicer

structure refinement using the twinned data, which were of higher resolution

than the data obtained from un-twinned crystals, resulted in apparently better

electron density maps and reasonable statistics, but the maps were less reliable

due to introduced model bias (MacRae & Doudna, 2007).

Given the large errors in the phases in combination with the limited resolution

and the presumable pseudo-merohedral twinning of the haem-HtsA crystals,

it is also likely that a better model for haem-HtsA cannot be obtained. Better

quality, un-twinned crystals as well as collection of higher quality iron-MAD

data would help tremendously to overcome these problems.

7.3.5 Complex-formation of Shp and HtsA

It has been shown recently that Shp transfers the haem to apo-HtsA by forming

a transient protein-protein complex (Liu & Lei, 2005, Nygaard et al., 2006a).

A more stable interaction had been observed between the haem complexes of

HtsA and Shp (Liu & Lei, 2005). In order to investigate the possibility to ob-

tain a stable interaction for co-crystallisation trials, haem-HtsA and haem-Shp

were mixed in a one to one molar ratio and analytical gel-filtration was carried

out. Partly a stable haem-HtsA-haem-Shp complex was observed (Fig. 7.15),

but the conditions would need to be optimised to shift the equilibrium more
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towards the formation of the complex before crystallisation trials could be car-

ried out.
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Figure 7.15: Analytical gelfiltration of haem-HtsA and haem-Shp.
Haem-Shp and haem-HtsA were mixed in a one to one molar ratio in 20 mM
sodium phosphate buffer pH7.5, 20 mM NaCl with a final concentration of
∼10mg ml−1 and loaded onto a Superdex 75 column (GE Healthcare). (A) Traces
were recorded at 280(blue) and the Soret maxima of 413 nm (red). Partly a haem-
Shp-haem-HtsA complex was formed and eluted from the column at ∼45ml. The
protein samples were analysed using SDS-PAGE. (B) before mixing together as
well as the (C) fraction containing the potential complex after gelfiltration.

7.4 Conclusions

The major iron source for Streptococcus pyogenes during infection are host-

haem proteins (Eichenbaum et al., 1996, Francis et al., 1985) and only recently

some components of its haem-uptake machinery have been identified and bio-

chemically characterised; the cell surface proteins Shr and Shp, as well as the

lipoprotein HtsA (Lei et al., 2002, 2003, Bates et al., 2003, Liu & Lei, 2005,

Nygaard et al., 2006a), but no structural data on these proteins or their ho-

mologues were available when this work was started.

Here Shp and HtsA were cloned and purified and crystallisation trials carried

out. Search of the the NCBI database for homologues of HtsA and multiple

sequence alignments revealed three conserved residues that could be involved

in haem-iron coordination; Met 79, His 229 and the almost conserved Met 238.
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HtsA has low sequence identity to ShuT, PhuT and HemT from Gram-negative

bacteria. The tyrosine residue which is coordinating the iron in these proteins

(Eakanunkul et al., 2005, Tong & Guo, 2007) is located two residues away from

Met 79 and therefore supporting the hypothesis that this residue is ligand to

the haem-iron. While writing of this Chapter the structure of the haem-IsdE

complex from S. aureus was published, which shares 40% sequence identity to

HtsA and is coordinating the iron by the conserved Met 79 and His 229 (Grigg

et al., 2007b). In contrast Shp appears to be unique to streptococci and ho-

mologues share a sequence identity of greater than 90%.

Analysis of the UV/vis absorption spectra of the haem-Shp and haem-HtsA

showed that the haem is accessible to the binding of cyanide and to displace

one of the two ligands to the haem-iron. Previous EPR measurements indi-

cated 6-coordinated haem-iron in both proteins (Nygaard et al., 2006a) which

for HtsA was confirmed by the structure determination of IsdE.

No crystals for Shp could be obtained, but promising crystalline precipitation

as well as strong phase separation were identified. Higher protein concentration

and incubation at different temperature (i.e. 4◦C) might give better results,

but were not tested due to the time limitation of this work. Diffraction qual-

ity crystals for HtsA were obtained and could be reproduced. HtsA crystals

diffracted X-rays to 2.8 Å using a synchrotron radiation source and most likely

belong to the orthorhombic space group P212121 with a pseudo-merohedral

twinning fraction of 42.3%. HtsA has low sequence identity (∼22%) to the

PBP BtuF, FhuD and CeuE, the structures of which had been determined.

Using these structures as an ensemble for molecular replacement, a solution

could be found, but resulting maps where of poor quality given the low se-

quence identity and the resulting large error in phase.

Using the coordinates of the recently solved structure of the homologues pro-

tein IsdE from S. aureus (Grigg et al., 2007b), as molecular replacement model,
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a better solution was obtained but the errors in the phases were still large.

The electron density maps could be improved by taking advantage of the two

molecules in the unit cell and carrying out non-crystallographic symmetry av-

eraging. Due to errors in the phases, the limited resolution as well as the likely

pseudo-merohedral twinning of the data, improving and refining the model

avoiding model bias will be challenging. Solution of the structure could be

facilitated by improving the quality of the crystals to acquire better resolution

data and / or combination of the phases obtained from the molecular replace-

ment with good iron-MAD data. Moreover preparation of SeMet-derivatised

HtsA could provide better means to structure determination, given the pres-

ence of 6 methionines, of which 5 appear to be buried in the molecule (by

comparison with IsdE) and hence are likely to be ordered.

Additionally, complex formation of haem-Shp and haem-HtsA which had been

previously reported (Liu & Lei, 2005, Nygaard et al., 2006a) was investigated

for co-crystallisation trials. Analytical gel-filtration showed that a proportion

of the mixed two proteins form a stable interaction, but for co-crystallisation

trials the equilibrium would need to be shifted more towards the complex.
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Conclusions

The strong link between iron / haem acquisition, virulence factors and patho-

genicity in many pathogenic species emphasises the need to understand the

molecular mechanisms of haem-uptake. Pathogenic bacteria have evolved spe-

cialised and unique proteins to circumvent their iron dependency and the

knowledge of how these proteins bind and release haem could aid future de-

velopment of new antimicrobial agents; this would be of special interest given

the increasing number of bacterial drug-resistant strains.

When the work described here was started 2003 / 2004, there were only a

handful of publications on genetical, biochemical and biophysical characteri-

sation on these proteins, so important for bacteria; only the structure of the

haemophore HasA from Serratia marcescens (Arnoux et al., 1999) had been

determined.

In this thesis work the haem-binding properties of the cytosolic protein HemS

from Y. enterocolitica were biochemically characterised by means of bioinfor-

matics-guided mutagenesis expriments and UV/vis absorption spectroscopy.

Moreover the structures of the apo- and haem-HemS were determined and so

precious insights were gained into the molecular mechanism of haem-binding.

In addition the periplasmic binding protein HemT was cloned and its expres-
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sion and purification were optimised. Finally, the streptococcal proteins HtsA

and Shp were cloned, expressed, purified and crystallisation trials carried out.

Diffraction quality crystals for HtsA were obtained.

During the time of this work, an extensive number of molecular biological

studies as well as structure determinations on the bacterial haem-uptake sys-

tems was published and is illustrated in Figure 8.1. This is clear evidence of

the interest and importance of this research area in the wide scientific commu-

nity. The structures reported in Figure 8.1 are HemS from Y. enterocolitica

(Schneider et al., 2006) described in this thesis, as well as structural studies on

the HemS homologue ChuS from E. coli (Suits et al., 2005, 2006), ChaN from

Campylobacter jejuni (Chan et al., 2006), IsdH (Pilpa et al., 2006), the IsdA

(Grigg et al., 2007a), IsdC (Sharp et al., 2007) and IsdE (Grigg et al., 2007b)

proteins of the staphylococcal isd haem-uptake machinery and the streptococ-

cal outer membrane protein Shp (Aranda et al., 2007).
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Figure 8.1: Structural studies on the bacterial haem-uptake systems in
the last few years. Diagram showing the number of publications on structures
of bacterial haem transport proteins. For 2007 number of publications before 20th
August were taken into account.

Despite the enormous progress made on the genetical, biochemical, biophysi-

cal and structural characterisations of molecular components of the bacterial
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haem-uptake machinery in the last few years, the complex relationships be-

tween its components and the exact mechanism of haem transfer remains to

be determined. For instance the hypothetical model of the flow of the haem

in the Isd-system from the Gram-positive pathogen S. aureus (Fig. 1.3B) still

needs to be validated. A start has been made with the investigation of the

haem transfer process from the streptococcal proteins Shp to HtsA (Liu &

Lei, 2005, Nygaard et al., 2006a) and the proteins PhuS and paOH from the

Gram-negative pathogene P. aeruginosa (Bhakta & Wilks, 2006, Lansky et al.,

2006). Given the physical separation of the components in Gram-negative

species by the two membranes (Fig. 1.3A), haem transfer experiments are

challenging and biochemical and structural data on the key membrane com-

ponents of these systems, like the permease, are still missing. Biochemical data

are available on the outer membrane haem-receptor ShuA from S. dysenteriae,

which has been purified and its haem-binding properties analysed (Burkhard

& Wilks, 2007). Some structural data on homologues to the haem-receptors

from Gram-negative species are available; the iron transporters FhuA (Fer-

guson et al., 1998, Locher et al., 1998), FepA (Buchanan et al., 1999) and

FecA (Ferguson et al., 2002), which all share the molecular architecture of a

β-barrel.

The protein-protein interactions during the haem-transfer process have only

been shown for PhuS and paOH (Bhakta & Wilks, 2006, Lansky et al., 2006)

as well as HtsA and Shp (Liu & Lei, 2005, Nygaard et al., 2006a). But confor-

mational changes in the molecules triggered by the interactions during haem-

transfer have not been investigated. No protein-protein interaction between

any of the components of the Isd-system from S. aureus has been analysed to

date.

The fate of the haem once in the cell is only partly understood; some of

the haem-oxygenases involved in haem-degradation have been identified (Zhu
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et al., 2000, Unno et al., 2004, Skaar et al., 2004a, Lansky et al., 2006, Puri

& O’Brian, 2006), but the effector molecules in many species, like for instance

Yersinia and Shigella are still unknown.

Finally because of the importance of iron as a nutrient, pathogens have evolved

multiple, phase variable acquisition systems that enables them to escape the

host immune system; for instance two different haem-uptake systems have

been identified in S. aureus; the Isd-system (Skaar et al., 2004b), and the

HtsABC-system (Friedman et al., 2006) and the interplay between the two

systems in the same cell remains to be elucidated.
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Appendices

A Appendices

A.1 Amino acid abbreviations (IUPAC)

Abbreviation Amino acid name
Ala A Alanine
Arg R Arginine
Asn N Asparagine
Asp D Aspartic acid (Aspartate)
Cys C Cysteine
Gln Q Glutamine
Glu E Glutamic acid (Glutamate)
Gly G Glycine
His H Histidine
Ile I Isoleucine
Leu L Leucine
Lys K Lysine
Met M Methionine
Phe F Phenylalanine
Pro P Proline
Ser S Serine
Thr T Threonine
Trp W Tryptophan
Tyr Y Tyrosine
Val V Valine
Asx B Aspartic acid or Asparagine
Glx Z Glutamine or Glutamic acid
Xaa X Any amino acid
TERMtermination

xviii
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A.2 List of primer

Name Plasmid Sequence (5’-3’) T

SM-HemSfor pGAT2 ggattagcgaggatccatgacgatgactgagagcattcg 55◦C
SM-HemSrev pGAT2 gctacggtctaagcttaggccgcgacgacggcttcc 55◦C
SM-HemTfor pGAT2 ggattagcgaggatccatgatgaacggcttcgctatcc 49◦C
SM-HemTrev pGAT2 gctacggtctaagcttactgcgaggcattggtcttctttcc 49◦C
SP-HtsA21for pGAT2 ggattagcgaggatccgtgaatcagcaccctaaaac 55◦C
SP-HtsA31for pGAT2 ggattagcgaggatccgaacagcagagaattgtagcc 55◦C
SP-HtsArev pGAT2 gctacggtctaagcttcttacggatgatctcccacgtg 55◦C
SP-SHPfor pGAT2 ggattagcgaggatccgataaaggtcaaatttatggatg 58◦C
SP-SHPrev pGAT2 gctacggtctgcggccgccttaccaaacccatacagcaaacc 58◦C
SP-SHPfor pET21a attagcgacatatggataaaggtcaaatttatgg 58◦C
SP-SHPrev pET21a gctacggtctctcgaggtcttttttagaccg 58◦C
YE-CRPfor pGAT2 ggattagcgaggatccatggttctcggcaagcc 62◦C
YE-CRPrev pGAT2 gctacggtctaagcttttaacgggtgccgtaaacg 62◦C
YE-HemSfor pGAT2 ggattagcgaggatccatgagcaaatcaatatacgagc 55◦C
YE-HemSrev pGAT2 gctacggtctaagcttatgcggcgatatccttattattg 55◦C
YE-HemS-H75Afor pSGAT2 cgcaacacctatgccgtagcagagcaaatgggccgttac 55◦C
YE-HemS-H75Arev pSGAT2 gtaacggcccatttgctctgctacggcataggtgttgcg 55◦C
YE-HemS-H196Afor pSGAT2 cgtgctatgactgacgtggcccagttcttccagttgctc 55◦C
YE-HemS-H196Arev pSGAT2 gagcaactggaagaactgggccacgtcagtcatagcacg 55◦C
YE-HemS-M244Afor pSGAT2 gcaagaacagaatgaaatcgcgatttttgtgggtaaccgtg 55◦C
YE-HemS-M244Arev pSGAT2 cacggttacccacaaaaatcgcgatttcattctgttcttgc 55◦C
YE-HemS-H280Afor pSGAT2 ccagcgcttcacgctggccctgattgaaacaacgattgc 55◦C
YE-HemS-H280Arev pSGAT2 gcaatcgttgtttcaatcagggccagcgtgaagcgctgg 55◦C
YE-HemTfor pGAT2 ggattagcgaggatccatgagactaaggttactgtcactcc 55◦C
YE-HemTrev pGAT2 gctacggtctaagcttattgcgcttgttccatacctttgcg 55◦C
YE-HemT25for pET22b ggattagcgaccatggccgcagaacgtatcg 61◦C
YE-HemTrev-His pET22b gctacggtctctcgagcgcttgttccatac 61◦C

xix
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A.3 Plasmid maps

Plasmid map of pGAT2 (Peränen et al., 1996).

Feature Position (bp)
T7 promoter 1-17
Lac operator 21-42
T7 gene 10
ribosome binding site 50-80
Glutathione-S-transferase gene 83-836
Thrombin cleavage site 815-826
Polylinker 824-864
SP6 promoter 869-887
T7 transcription terminator 966-1007
LacI gene 1417-2498 (reversed)
b-Lactamase gene 3268-4118
Origin of replication 4193-4888

xx
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Plasmid map of pET22b.
(Novagen, http://www.merckbiosciences.co.uk/g.asp?f=NVG/home.html)

Feature Position (bp)
f1 origin 5027-5482
T7 promoter 361-377
T7 transcription start 360
pelB coding sequence 224-289
Multiple cloning sites 158-220
His-Tag coding sequence 140-157
T7 terminator 26-72
lacI coding sequence 764-1843
pBR322 origin 3277
bla coding sequence 4038-4895
f1 origin 5027-5482

xxi
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Plasmid map of pET21a.
(Novagen, http://www.merckbiosciences.co.uk/g.asp?f=NVG/home.html)

Feature Position (bp)
f1 origin 4977-5432
T7 promoter 311-327
T7 transcription start 310
Multiple cloning sites 158-203
His-Tag coding sequence 140-157
T7 terminator 26-72
lacI coding sequence 714-1793
pBR322 origin 3227
bla coding sequence 3988-4845
f1 origin 5027-5482

xxii
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A.4 Haem-propionate contacts in analysed folding topolo-
gies.

FOLD PDB PROTEIN ORIGIN area aver. % aver. Arg His Lys Tyr other
globin -like 1q1f neuroglobin Mus musculus 132 15.9 0 0 2 2 0

1oj6 neuroglobin Homo sapiens 90 10.8 0 0 2 2 2

1d8u haemoglobin Oryza sativa 102 12.3 1 0 0 0 1

1vhb haemoglobin Vitreoscilla 169 20.4 0 0 1 0 0

1a3n hemoglobin Homo sapiens 134 16.1 0 1 1 0 1

1myt myoglobin Thunnus albacares 143 134.8 17.2 16.2 0 1 2 0 1

1spe myoglobin Physeter catodon 147 17.7 0 2 0 0 1

1lhs myoglobin Caretta caretta 171 20.6 0 1 0 0 1

1v5h/1ut0 cytoglobin Homo sapiens 135 16.3 0 0 2 0 1

1cqx flavohaemoglobin Alcaligenes eutrophus 219 26.4 0 0 1 0 2

1gvh flavohaemoglobin Escherichia coli 39 4.7 0 1 0 0 2

1fsl leghaemoglobin Glycine max 136 16.4 0 0 1 0 0

cytochrome b5 fold 1eue cyt b5 Rattus norvegicus 219 26.4 0 0 0 0 2

1cxy cyt b5 Ectothiorhodospira v. 103 184.3 12.4 22.2 0 0 2 1 2

1cyo cyt b5 Bos taurus 216 26.0 0 0 0 0 2

1sox sulfite oxidase Gallus gallus 199 24.0 0 1 0 0 0

serum albumin-like 1n5u albumin Homo sapiens 66 7.9 0 1 1 0 0

4-helix bundle 1jgc bacterioferritin Rhodobacter capsulatus 189 22.8 1 0 0 0 0

1qpu cyt b562 Escherichia coli 148 166.0 17.8 20.0 0 0 0 0 0

1bfr bacterioferritin Escherichia coli 161 19.4 0 0 0 0 0

catalase 8cat catalase Bos taurus 3 0.4 4 1 0 0 0

1qwl catalase Helicobacter pylori 15 1.8 4 0 0 0 0

1a4e catalase Saccharomyces cerevisiae 8 1.0 4 1 0 0 0

1m7s catalase Pseudomonas 5 11.6 0.6 1.4 4 0 0 0 1

1m85 catalase Proteus 27 3.3 4 0 0 0 0

1dgf catalase Homo sapiens 2 0.2 3 1 0 0 0

1hbz catalase Micrococcus 30 3.6 4 0 0 0 1

1iph catalase Escherichia coli 3 0.4 2 0 0 0 1

haem-peroxidase 2cyp cyt c peroxidase Saccharomyces cerevisiae 24 2.9 0 3 1 0 2

1itk catalase-peroxidase Haloarcula m. 20 2.4 0 2 1 0 2

2gj1 lactoperoxidase Bos taurus 61 72.0 7.3 8.7 3 0 0 0 2

1mwv catalase-peroxidase Burkholderia p. 30 3.6 0 2 1 0 2

1prh prostaglandin synthase Seminal vesicl 141 17.0 0 0 0 0 4

5cox prostaglandin synthase Mus musculus 156 18.8 0 0 0 0 4

P450 2cpp P450 mono-oxygenase Pseudomonas putida 28 3.4 3 1 0 0 3

1cpt Cytochrome P450-Terp Pseudomonas Sp.) 17 2.0 1 2 0 0 0

1pq2 P450 mono-oxygenase Homo sapiens 17 2.0 5 2 0 0 2

1po5 P450 mono-oxygenase Oryctolagus cuniculus 23 2.8 3 2 0 0 1

1dt6 P450 oxidreductase Oryctolagus cuniculus 2 0.2 4 3 0 0 1

1odo P450 mono-oxygenase Streptomyces coelicolor 16 1.9 4 2 0 1 0

1rom P450 mono-oxygenase Fusarium oxysporium 10 1.2 1 2 0 0 0

1f4t P450 mono-oxygenase Sulfolobus solfatorius 39 25.5 4.7 3.1 3 1 0 0 1

2hpd/1fah P450 oxidreductase Bacillus megaterium 19 2.3 2 0 0 0 1

1e9x P450 α-sterol demethylase Mycobacterium tuberculosis 51 6.1 2 1 1 1 3

1n40 P450 oxidreductase Mycobacterium tuberculosis 15 1.8 4 2 0 0 0

1lfk P450 oxidreductase Amycolatopsis orientalis 29 3.5 3 2 0 0 2

1izo P450 oxidreductase Bacillus Subtilis 65 7.8 2 2 1 1 0

haem oxygenase 1n45 haem oxygenase Homo sapiens 247 29.8 1 0 2 1 1

1j77 haem oxygenase Neisseria meningitidis 210 25.3 0 0 1 1 0

1we1 haem oxygenase Synechocystis 127 184.8 15.3 22.3 4 0 1 1 0

1iw0/1 haem oxygenase Corynebacterium diphteriae 155 18.7 1 0 1 1 0

NO fold 1nos NO synthase Mus musculus 159 19.2 1 0 0 0 0

3nos NO synthase Homo sapiens 122 14.7 0 0 0 1 0

1m7z NO synthase Bacillus subtilis 102 127.8 12.3 15.4 0 0 0 1 0

1qw6 NO synthase Rattus norvegicus 128 15.4 0 0 0 2 0

PAS 1drm FixL Bradorhyzobium japonicum 40 105.0 4.8 12.7 2 4 0 0 1

1v9y/z EcDos Escherichia coli 170 20.5 0 0 0 0 0

lipocalin 1np4 nitrophorin Rhodnius prolixus 130 15.7 0 0 2 0 1

meander 1dk0 hasA Serratua marcescens 191 23.0 0 1 0 1 4

β-propeller 1qhu haemopexin Oryctolagus cuniculus 210 25.3 2 1 0 3 0

cupredoxin-like 1fft ubiquinol oxidase Escherichia coli 32 3.9 3 0 0 0 1

immunglobulin-like 1d7b cellobiose dehydrogenase Phanerochaete chrysosporium 179 21.6 0 0 0 2 3

CAP 1ft9 CooA Rhodospirillium rubrum 233 28.1 0 0 0 0 1

vitamine B6 family 1jbq cystathione beta-synthase Homo sapiens 148 17.8 4 0 0 0 0

H-NOX / SONO fold 1u55 guanylate cyclase Thermoanaerobacter tengcongensis 6 18.5 0.7 2.2 4 0 0 0 0

1xbn SONO Thermoanaerobacter tengcongensis 31 3.7 3 0 0 1 2

HemS-fold 2j0p HemS Yersinia enterocolitica 155 18.7 4 0 1 1 1

dioxygenase-fold 2d0t indoleamine 2,3-dioxygenase Homo sapiens 92 11.1 3 0 0 0 1

Sum of contacts 103 46 28 24 67
total number of contacts 268

PERCENTAGE 38.4 17.2 10.4 9.0 25.0

PERCENTAGES FOLDS
Arg His Lys Tyr other

globin-like 2.9 17.1 34.3 11.4 34.3

cytochrome b5 fold 0.0 10.0 20.0 10.0 60.0

serum albumin-like 0.0 50.0 50.0 0.0 0.0

4-helix bundle 100.0 0.0 0.0 0.0 0.0

catalase 82.9 8.6 0.0 0.0 8.6

haem peroxidase 10.3 24.1 10.3 0.0 55.2

cytochrome P450 47.4 28.2 2.6 3.8 17.9

haem oxygenase fold 37.5 0.0 31.3 25.0 6.3

NO fold 20.0 0.0 0.0 80.0 0.0

PAS 28.6 57.1 0.0 0.0 14.3

lipocalin 0.0 0.0 66.7 0.0 33.3

meander 0.0 16.7 0.0 16.7 66.7

β-propeller 33.3 16.7 0.0 50.0 0.0

cupredoxin-like 75.0 0.0 0.0 0.0 25.0

immunoglobulin-like 0.0 0.0 0.0 40.0 60.0

CAP 0.0 0.0 0.0 0.0 100.0

vitamin B6 family 100.0 0.0 0.0 0.0 0.0

H-NOX-fold / SONO-fold 70.0 0.0 0.0 10.0 20.0

HemS-fold 57.1 0.0 14.3 14.3 14.3

dioxygenase fold 75.0 0.0 0.0 0.0 25.0

solvent accessibility  propinate contacts (2.5-3.2Å)

 propinate contacts (2.5-3.2Å)
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A.5 Residues in contact with the haem-face and haem-
edge.

FOLD PDB PROTEIN ORIGIN Ala Ile Leu Phe Trp Tyr Val other Ala Ile Leu Phe Trp Tyr Val other

globin -like 1q1f neuroglobin Mus musculus 0 1 3 0 0 1 3 1 0 0 1 3 0 0 2 1

1oj6 neuroglobin Homo sapiens 0 0 3 0 0 0 3 1 0 0 1 2 0 0 2 0

1d8u haemoglobin Oryza sativa 1 1 1 1 0 2 0 4 0 0 1 2 0 1 3 0

1vhb haemoglobin Vitreoscilla 0 1 1 1 0 0 0 2 0 1 1 1 0 1 3 0

1a3n hemoglobin Homo sapiens 1 0 2 0 0 1 0 4 0 0 3 2 0 0 3 0

1myt myoglobin Thunnus albacares 0 1 1 0 0 0 0 2 0 1 1 2 0 0 1 2

1spe myoglobin Physeter catodon 1 1 1 1 0 1 0 2 0 1 1 1 0 0 1 2

1lhs myoglobin Caretta caretta 1 1 0 0 0 1 0 0 0 1 2 1 0 0 1 1

1v5h/1ut0 cytoglobin Homo sapiens 2 0 2 0 0 1 0 0 0 0 1 2 0 0 3 2

1cqx flavohaemoglobin Alcaligenes eutrophus 1 0 1 0 0 0 1 2 0 1 2 1 0 1 2 0

1gvh flavohaemoglobin Escherichia coli 2 0 2 2 0 2 0 2 1 3 1 1 0 1 1 0

1fsl leghaemoglobin Glycine max 1 0 2 1 0 1 1 1 1 0 2 0 0 1 1 1

cytochrome b5 1eue cyt b5 Rattus norvegicus 2 2 4 1 0 0 0 2 1 0 3 2 0 0 0 4

1cxy cyt b5 Ectothiorhodospira v. 2 0 4 0 2 1 0 3 1 0 0 0 1 1 0 5

1cyo cyt b5 Bos taurus 2 0 4 2 0 0 2 4 1 0 1 2 0 0 2 4

1sox sulfite oxidase Gallus gallus 1 1 4 2 1 1 2 1 0 0 0 2 1 1 1 5

serum albumin-like 1n5u albumin Homo sapiens 1 0 3 3 0 0 1 3 0 1 0 1 0 1 0 2

4-helix bundle 1jgc bacterioferritin Rhodobacter capsulatus 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1

1qpu cyt b562 Escherichia coli 0 0 2 0 0 0 0 4 0 0 2 0 0 0 0 2

1bfr bacterioferritin Escherichia coli 1 1 1 0 0 1 0 1 0 2 0 1 0 0 0

catalase 8cat catalase Bos taurus 2 0 0 2 0 0 0 3 0 0 0 1 0 0 2 2

1qwl catalase Helicobacter pylori 1 0 0 0 0 0 0 3 0 0 0 1 0 0 2 3

1a4e catalase Saccharomyces cerevisiae 1 0 2 1 0 1 1 4 0 0 0 1 0 0 1 4

1m7s catalase Pseudomonas 1 0 2 0 0 0 2 7 0 0 0 2 0 0 2 1

1m85 catalase Proteus 1 0 1 1 0 0 0 5 0 0 0 1 0 0 1 3

1dgf catalase Homo sapiens 2 0 1 1 0 0 1 8 0 0 0 1 0 0 3 2

1hbz catalase Micrococcus 3 0 1 1 0 0 0 6 0 0 0 1 0 0 1 4

1iph catalase Escherichia coli 0 1 1 1 0 0 0 6 0 0 0 1 0 0 2 1

haem-peroxidase 2cyp cyt c peroxidase Saccharomyces cerevisiae 1 0 2 2 0 0 1 2 1 0 1 0 2 0 0 3

1itk catalase-peroxidase Haloarcula m. 0 4 0 3 1 0 1 5 0 0 1 0 2 0 1 3

2gj1 lactoperoxidase Bos taurus 0 0 2 1 0 0 1 2 0 0 1 0 0 0 0 6

1mwv catalase-peroxidase Burkholderia p. 0 3 2 2 1 0 1 4 0 0 1 0 2 0 0 4

1prh prostaglandin synthase Seminal vesicl 0 0 4 1 1 1 0 0 0 0 0 0 0 0 1 5

5cox prostaglandin synthase Mus musculus 0 0 1 2 1 1 1 0 0 0 1 0 0 0 1 4

P450 2cpp P450 mono-oxygenase Pseudomonas putida 1 0 4 2 0 0 2 4 0 0 0 1 0 0 1 4

1cpt Cytochrome P450-Terp Pseudomonas Sp.) 0 1 1 1 0 0 1 1 1 0 1 2 0 0 1 3

1pq2 P450 mono-oxygenase Homo sapiens 0 0 3 0 0 0 0 1 3 0 1 1 0 0 0 4

1po5 P450 mono-oxygenase Oryctolagus cuniculus 0 1 1 0 0 0 0 3 2 1 1 1 0 0 1 4

1dt6 P450 oxidreductase Oryctolagus cuniculus 0 2 3 0 0 0 0 3 2 0 1 1 0 0 1 3

1odo P450 mono-oxygenase Streptomyces coelicolor 2 0 1 1 0 1 1 3 2 0 1 1 0 0 0 3

1rom P450 mono-oxygenase Fusarium oxysporium 2 1 1 2 0 0 0 2 2 1 0 1 0 0 0 4

1f4t P450 mono-oxygenase Sulfolobus solfatorius 1 2 2 1 0 0 0 4 1 0 1 1 0 0 1 3

2hpd/1fah P450 oxidreductase Bacillus megaterium 0 0 2 3 0 0 0 2 3 1 0 2 0 0 0 4

1e9x P450 α-sterol demethylase Mycobacterium tuberculosis 0 0 2 1 0 0 0 4 2 0 1 1 0 0 1 3

1n40 P450 oxidreductase Mycobacterium tuberculosis 1 0 3 2 0 0 0 3 1 0 0 2 0 0 0 4

1lfk P450 oxidreductase Amycolatopsis orientalis 1 1 4 1 0 0 1 5 2 0 1 1 0 0 0 3

1izo P450 oxidreductase Bacillus Subtilis 1 2 2 3 0 0 0 1 0 0 0 0 0 0 0 4

haem oxygenase 1n45 haem oxygenase Homo sapiens 1 0 0 2 0 1 1 8 0 0 1 1 0 0 0 5

1j77 haem oxygenase Neisseria meningitidis 0 0 1 3 0 2 2 5 0 0 0 1 0 0 1 5

1we1 haem oxygenase Synechocystis 1 1 2 2 0 1 1 3 0 0 0 1 0 0 0 3

1iw0/1 haem oxygenase Corynebacterium diphteriae 1 0 1 2 0 1 2 2 0 0 0 1 0 0 0 4

NO fold 1nos NO synthase Mus musculus 0 1 1 0 1 1 0 3 1 0 0 1 1 0 0 2

3nos NO synthase Homo sapiens 1 0 1 1 1 0 1 3 0 0 0 1 1 1 1 4

1m7z NO synthase Bacillus subtilis 0 0 1 1 1 1 1 4 0 1 0 1 1 0 0 3

1qw6 NO synthase Rattus norvegicus 0 0 1 1 1 0 0 5 1 0 0 1 1 0 1 1

PAS 1drm FixL Bradorhyzobium japonicum 0 1 1 1 0 0 0 1 0 4 1 0 0 1 2 1

1v9y/z EcDos Escherichia coli 1 1 1 0 1 1 1 0 0 3 3 1 0 1 0 1

lipocalin 1np4 nitrophorin Rhodnius prolixus 0 1 1 1 0 2 1 0 1 0 3 1 0 1 0 0

meander 1dk0 hasA Serratua marcescens 1 1 1 2 0 1 0 2 0 0 1 0 0 1 1 2

β-propeller 1qhu haemopexin Oryctolagus cuniculus 0 0 0 1 0 0 0 2 0 0 0 0 2 2 0 2

cupredoxin-like 1fft ubiquinol oxidase Escherichia coli 0 2 0 1 0 0 0 1 0 2 0 3 0 0 1 3

immunglobulin-like 1d7b cellobiose dehydrogenase Phanerochaete chrysosporium 1 1 1 1 0 0 1 2 1 0 0 0 1 1 0 1

CAP 1ft9 CooA Rhodospirillium rubrum 0 1 2 2 1 0 1 2 0 1 2 0 0 0 0 4

vitamine B6 family 1jbq cystathione beta-synthase Homo sapiens 0 0 0 0 0 1 0 4 1 0 1 0 1 0 0 4

H-NOX / SONO fold 1u55 guanylate cyclase Thermoanaerobacter tengcongensis 0 0 0 3 0 2 0 2 0 1 3 1 0 1 0 1

1xbn SONO Thermoanaerobacter tengcongensis 0 0 2 2 0 2 0 0 0 1 2 1 0 1 0 2

HemS-fold 2j0p HemS Yersinia enterocolitica 1 0 1 1 0 0 0 0 0 0 0 2 0 0 1 0

dioxygenase-fold 2d0t indoleamine 2,3-dioxygenase Homo sapiens 0 2 0 2 0 1 1 1 1 0 2 2 0 0 1 0

Sum of contacts 48 41 108 78 14 34 40 180 33 28 55 69 17 18 58 171

total number of contacts 543 449

PERCENTAGE 8.8 7.6 19.9 14.4 2.6 6.3 7.4 33.1 7.3 6.2 12.2 15.4 3.8 4.0 12.9 38.1

PERCENTAGES FOLDS
Ala Ile Leu Phe Trp Tyr Val other Ala Ile Leu Phe Trp Tyr Val other

globin-like 12.5 7.5 23.8 7.5 0.0 12.5 10.0 26.3 2.4 9.8 20.7 22.0 0.0 6.1 28.0 11.0

cytochrome b5 fold 14.0 6.0 32.0 10.0 6.0 4.0 8.0 20.0 7.9 0.0 10.5 15.8 5.3 5.3 7.9 47.4

serum albumin-like 9.1 0.0 27.3 27.3 0.0 0.0 9.1 27.3 0.0 9.1 0.0 9.1 0.0 9.1 0.0 18.2

4-helix bundle 7.1 14.3 28.6 0.0 7.1 7.1 0.0 35.7 0.0 30.0 20.0 10.0 10.0 0.0 0.0 30.0

catalase 14.9 1.4 10.8 9.5 0.0 1.4 5.4 56.8 0.0 0.0 0.0 20.9 0.0 0.0 32.6 46.5

haem peroxidase 1.9 13.0 20.4 20.4 7.4 3.7 9.3 24.1 2.5 0.0 12.5 0.0 15.0 0.0 7.5 62.5

cytochrome P450 8.4 9.3 27.1 15.9 0.0 0.9 4.7 33.6 21.2 3.0 8.1 15.2 0.0 0.0 6.1 46.5

haem oxygenase fold 6.5 2.2 8.7 19.6 0.0 10.9 13.0 39.1 0.0 0.0 4.3 17.4 0.0 0.0 4.3 73.9

NO fold 3.1 3.1 12.5 9.4 12.5 6.3 6.3 46.9 8.3 4.2 0.0 16.7 16.7 4.2 8.3 41.7

PAS 10.0 20.0 20.0 10.0 10.0 10.0 10.0 10.0 0.0 38.9 22.2 5.6 0.0 11.1 11.1 11.1

lipocalin 0.0 16.7 16.7 16.7 0.0 33.3 16.7 0.0 16.7 0.0 50.0 16.7 0.0 16.7 0.0 0.0

meander 12.5 12.5 12.5 25.0 0.0 12.5 0.0 25.0 0.0 0.0 20.0 0.0 0.0 20.0 20.0 40.0

β-propeller 0.0 0.0 0.0 33.3 0.0 0.0 0.0 66.7 0.0 0.0 0.0 0.0 33.3 33.3 0.0 33.3

cupredoxin-like 0.0 50.0 0.0 25.0 0.0 0.0 0.0 25.0 0.0 22.2 0.0 33.3 0.0 0.0 11.1 33.3

immunoglobulin-like 14.3 14.3 14.3 14.3 0.0 0.0 14.3 28.6 25.0 0.0 0.0 0.0 25.0 25.0 0.0 25.0

CAP 0.0 11.1 22.2 22.2 11.1 0.0 11.1 22.2 0.0 14.3 28.6 0.0 0.0 0.0 0.0 57.1

vitamin B6 family 0.0 0.0 0.0 0.0 0.0 20.0 0.0 80.0 14.3 0.0 14.3 0.0 14.3 0.0 0.0 57.1

H-NOX-fold / SONO-fold 0.0 0.0 15.4 38.5 0.0 30.8 0.0 15.4 0.0 14.3 35.7 14.3 0.0 14.3 0.0 21.4

HemS-fold 0.0 0.0 66.7 66.7 0.0 66.7 0.0 0.0 0.0 33.3 66.7 33.3 0.0 33.3 0.0 66.7

dioxygenase fold 14.3 0.0 14.3 14.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3 0.0 0.0 16.7 0.0

haem edge (3.6-4.1Å) haem face (3.6-4.1Å)

haem edge (3.6-4.1Å) haem face (3.6-4.1Å)
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