
 

 

UNIVERSITY OF NOTTINGHAM 

School of Chemical, Environmental and Mining Engineering 

 

 

 

 

 

 

Treatment of Semi-Synthetic Metalworking Fluids: 

 Membrane Filtration and Bioremediation 

 

By 

Gérald Thierry Michel Busca 

D.E.A. Sciences et Techniques du Déchet  

 

 

Thesis submitted to the University of Nottingham 

 for the degree of Doctor of Philosophy, September 2004 

 



 

A ma Mère et à Stacey 



Abstract 

i 

ABSTRACT 

 

Waste engineering fluids, such as coolants and cutting fluids, are difficult to treat 

because they have variable physical natures, are particularly toxic and have a very high 

Chemical Oxygen Demand. The complex and unknown chemical content of the many 

different products available is also problematic. Current technologies, such as 

nanofiltration or chemical treatment, are quite effective at reducing the COD of the 

waste metalworking fluids before disposal. These technologies remove free or 

emulsified oil and high molecular weight components, but they have their limitations. 

In addition, the more stringent legislation on waste disposal and effluent discharge 

induces an economical stress on engineering industries. It can be anticipated that future 

legislations will introduce eco-toxicology measurements into industrial effluent 

discharge consents. A modular on-site treatment plant to treat semi-synthetic 

metalworking fluids was developed in this thesis. The approach was to combine 

different technologies and to inter-optimise their performances. The technologies used 

were membrane filtration, bioremediation and chemical treatment. The use of activated 

carbon was also studied. Membrane filtration included the study of ultrafiltration and 

nanofiltration. For the bioremediation process, a bio-consortia was developed and 

tested over 8 months. A final design of the whole process is given. The proposed 

treatment plant transforms the waste metalworking fluid into two products: very low 

chemical oxygen demand aqueous phase at 30 mg/l COD and a recovered oil showing 

a calorific value of 42 kJ/kg which could be a possible commodity. The whole 

treatment plant is scalled-up for thye treatment of 500 L of waste metalworking fluid 

per day. 
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CHAPTER I 

Introduction 

 

Metalworking fluids are used in the engineering industry to improve machine tools 

performances and productivity. They are part of a more general product family-called 

lubricant and are applied in the tooling of metal pieces, cutting (cutting fluid) and 

many other applications (grinding, drilling, forming, tapping…). Generally, they are 

composed of oil and organic compounds mixed with water. Once the mixture has been 

used for a period of time, it degrades and generates a toxic liquid waste. Waste 

Metalworking fluids as coolants and liquid lubricants are problematic to dispose of in 

the drain. This is due to their toxicity and high oxygen chemical demand. The toxicity 

is largely due to biocides added into the blend to prevent bacteriological attack during 

its lifetime. Other common components such as amines, borate, nitrates, nitrites, 

polyalkyl sulphonate, glycerol, esters and ester glycols, petroleum based oil or rape 

seed base oil add to the product toxicity and eco-toxicity. The high chemical oxygen 

demand of the waste is due to the oil added to the blend and to the accumulation of 

free oil from the working machinery. The difficulty in developing a system to 

efficiently treat the waste is due to the large number of different chemical it is 

composed of.. This waste is becoming increasingly difficult to dispose of and the 

rising disposal costs make it a financial burden on industry. The combination of rising 

disposal costs and the government targets to reduce any waste going to landfill makes 

an enormous impact on the company’s bottom line profits. The typical mixture for 

engineering coolant is 5% oil and 95% clean water. The volume of coolant disposed of 

in the United Kingdom alone was 400,000 tonnes in 2000 (bio-Wise, 2001).  

Different methods have been used to treat waste metalworking fluids. These methods 

consist mainly of physical-chemical solutions such as coagulation, the disadvantage of 

this method is that it can only be applied to emulsified oil and requires the use of 

chemicals. Another method is membrane separation, using ultrafiltration or 

nanofiltration membranes. The main disadvantage of membrane processes is fouling of 

membrane elements leading to huge reduction in efficiency. There is a clear need to 
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develop a cost effective and reliable system for treating metalworking fluids. This 

system should take into account the regulations imposed on companies for the disposal 

of the waste and wastewater. 

The sponsor of this project is Cardev International Ltd, a leading company in the 

design and manufacture of industrial filtration systems, providing environmentally 

friendly systems for the disposal of waste metalworking fluids. Their sponsorship was 

offered to design a new cost-effective system that fulfils the current regulations on 

waste disposal. Their current filtration systems are limited by the accumulation of oil 

during filtration and do not offer a solution for concentrates.  

This study proposes an on-site waste water treatment solution to minimise and 

suppress any disposal and to obtain quality water, allowing direct discharge into a 

municipal sewage system. 

The combination used is an arrangement of ultrafiltration, nanofiltration membranes 

and bioremediation. Furthermore, acidification and coagulation processes were carried 

out on the produced concentrate during the membrane filtration stage. Activated 

carbon was used to polish the final aqueous phase.  

Not only did the research culminate in a pilot model which would be suitable for on-

site treatment, but also produced a combination of technologies which treated the full 

volumes of waste fluids and separated the components into two streams. One stream 

was the concentrated oil (calorific value of 42 kJ/g) which was reduced in volume but 

could be suitable for use as a fuel and the other was a low chemical oxygen demand 

(less than 100mg/L after activated carbon) aqueous phase which could be discharged 

to drain via the companies municipal sewage system at a very low disposal cost. 

This thesis is composed of 10 chapters including this introduction chapter. 

Chapter II gives a literature review on the different part of the study. The review starts 

with generality on industrial waste effluent treatment. Then, metalworking fluids are 

reviewed with their history and nature clarifying the importance of acting on their 

treatment. The central part of the study deals with membrane filtration and biological 

treatment. The last three parts review the physical-chemical treatment that can be 
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applied to spent metalworking fluids. The use of activated carbon in water treatment 

and the use of spent oil as a fuel have also been reviewed.  

Chapter III describes experimental equipment used in this work and all techniques and 

procedures used during the experimental work. Chapter IV shows three AFM 

dimensional images of membranes used in this study. It also shows full surface 

analysis including pore size and pore size distribution. A correlation was developed for 

the pore size distribution.  

Chapter IV presents the atomic force microscopy images and analyses of membrane 

surfaces. 

Chapter V deals with different methods of chemical treatments used. This chapter 

presents the results on the waste stream characterisation showing that Mobil cut 232 

produces a stable microemulsion of fine oil droplets. This emulsion is destabilised 

when concentrated by membrane filtration. A chemical treatment has been applied to 

separate the oil from the concentrate. The recovered oil from the chemical treatment 

has a high calorific value, especially in the case of acidification. 

Chapter VI describes the membrane filtration which was  carried out at small and 

large-scales. It shows that the combination of ultrafiltration/nanofiltration is efficient in 

reducing fouling in the system and therefore improves the overall filtration 

performance. 

Chapter VII investigates the use of activated carbon which was applied to polish the 

effluent before discharge to the drain. The efficiency of the activated carbon system 

was tested on three waste streams corresponding to three different stages of the main 

treatment. The three different stages were just after nanofiltration, after the bioreactor 

including microorganisms and after the bioremediation without microorganisms.  

Chapter VIII deals with biological treatment of the filtration permeate and the 

development of a bio-consortium in a fixed bed bioreactor. This chapter demonstrates 

that microorganisms extracted from waste metalworking fluids can be used for 

efficient bioremediation of the permeate produced during the filtration process.  
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Chapter IX shows the full detailed integrated design, including the different processes 

tested in the previous chapters. This design clearly shows the enormous benefits for 

potential clients and the environment. Cardev International Ltd have recognised the 

huge benefits from the proposed integrated system and are in the process of developing 

it (see Appendix A). 

The final chapter (X) gives general conclusions and recommendations. 



6 

CHAPTER II 

LITERATURE REVIEW
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CHAPTER II 

LITERATURE REVIEW 
 

II.1 INTRODUCTION 

This bibliography reviews the different aspects of the project. It gives a general 

understanding of industrial waste effluent and a more detailed review of the uses and 

natures of metalworking fluids. The problems and solutions to discharge waste 

metalworking fluids are described and membrane technologies are dealt with. Their 

applications to wastewater treatment and waste metalworking fluids’ treatment and 

advantages and limitations of the technique are pointed out. The middle section deals 

with the atomic force microscopy (AFM) techniques and its application to membrane 

technology. The next three sections present wastewater treatment technologies that 

were used, coupled with the membrane filtration system. These three techniques are 

biological treatment, physical-chemical treatment of emulsion and activated carbon 

adsorption respectively. The last section introduces what is useful to take into account 

considering using waste oil as a fuel.  

 

II.2 INDUSTRIAL WASTE EFFLUENT 

Three categories of waste waters can be discharged from commercial premises; 

domestic sewage related effluent, trade effluent and rain waters. This section gives a 

definition of these different industrial waste effluents. Particular attention is paid to the 

charge of trade effluent, which is the type of effluent that the work is dealing with. 

 

II.2.1 Domestic Sewage 

Domestic sewage on an industrial site are effluents from staff toilets, wash hand 

basins, showers and kitchen areas. This is also sometimes known as foul drainage and 
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will usually be kept separate from the trade effluent whilst on the company site, 

although it is mixed once it reaches the main sewerage system. The charge for this is 

usually included as part of a water bill from the local water company, as it is for any 

individual at home. 

 

II.2.2 Rainwater 

Industry is also responsible for rainwater from roofs, car parks and other outside areas 

that discharge into a surface drainage system. This drainage is separate from the foul 

drainage system and is regulated by the Environment Agency rather than the water 

company. Rainwater is either channelled to surface drains located in roads adjacent to 

the property or is sometimes discharged directly to a river or stream. There is not 

normally a charge for the discharge of rainwater, although companies do have a duty to 

ensure it is not contaminated by oils or any other substances.  

 

II.2.3 Trade Effluent 

Trade effluent is defined as "any liquid, either with or without suspended particles, 

which is wholly or partly produced in the course of any trade or industry carried out at 

trade premises". It does not include domestic sewage. 

Trade effluents are liquid streams from all processes on the site, including all rinse 

water, washing water and any other discharge related to the process (even if it is clean 

water). The local water company charge for this if it goes to sewers, according to a 

standard Mogden formula. Occasionally, effluent is discharged directly into a river or 

other water course: in this instance, the Environment Agency gives an agreement and 

charges the industry. 
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II.2.4 Charges for trade effluent 

All industrial waste waters (trade effluents) are subject to a discharge consent system 

under either the Water Resources Act 1991 or the Water Industry Act 1991. This first 

part provides an overview of the charging system based on the Mogden formula. 

 

II.2.4.1 Consent to discharge 

The Water Industry Act gives companies the right to discharge to a public sewer but 

only with the prior consent or agreement of the water company.  

Water companies maintain the sewerage system; provide treatment for the waste, and 

dispose of the final treated effluent. To allow them to do this effectively, they can 

impose special restrictions on an effluent before allowing the discharge.  

These restrictions depend upon the type of treatment provided by the water company, 

the size of connecting sewers and the capacity of the wastewater treatment works 

(WWTW). They can also include:  

 The nature and composition of the effluent 

 Temperature and pH 

 Prohibited substances 

 The maximum daily volume allowed  

 The maximum flow rate 

 The sewer into which the effluent is discharged 

 

In addition to the type and quality of the effluent, the Water Industry Act also gives the 

water companies the right to charge for carrying, treating and disposing of the waste. 
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II.2.4.2 Discharge to sewer 

Prices of discharge rise to enable water companies to meet water quality obligations 

and to manage the global volume increase of fouled water to treat. Charge levied by 

the water company for discharging trade effluent is calculated using a formula which 

takes account of the volume and "strength" of the waste and the type of treatment 

given at the Waste water treatment work. The formula is commonly known as the 

"Mogden formula" Equation II-1 or "modified Mogden formula" (after the name of the 

sewage treatment works where it was first used).  

The Mogden formula seeks to link charges for discharging trade effluent to the public 

sewer to the costs imposed by customers, i.e. by paying according to the volume and 

strength of trade effluent discharged. The values of the different coefficients are set by 

the water companies. The different values are also adapted upon the type of effluent 

and volume discharged. More details on UK water company charges are given in 

(Office of water services 2004). In the UK, the office of water services regulates the 

rise of the water charges for trade and domestic effluent. 

 

C = (R + V + Vb + B x (Ot/Os) + S x (St/Ss) )x Vt Equation II-1 

 

Where: 

 C = Total charge rate for disposal, pence 

 R = Unit cost for conveyance, pence /cubic metre 

 V = Unit cost for volumetric treatment, pence/cubic metre 

 Vb = Additional volume charge if there is no biological treatment 

 B = Unit cost for biological treatment, pence/cubic metre 

 Ot = COD of trade effluent, mg/L; Os = COD settled sewage 

 S = Unit cost for sludge disposal, pence/cubic metre 
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 St = Solids value trade effluent, mg/L;  

 Ss = Settled sewage; mg/L 

 Vt = Total volume discharged  

 

II.2.4.3 Effluent discharges into rivers and other water courses 

The Environment Agency has introduced a system of charges for the recovery of its 

costs from companies who discharge effluent in this manner. Charges are calculated 

according to the composition of the effluent, the quantity discharged and the quality of 

the receiving water. A banding system is used to classify types of effluent. The bands 

progress from A to G, where A is the most polluting. 

The UK national formula for calculating charges is: 

Charge = R (V × C × RW)  Equation II-2 

where:  

 R = Annual charge financial factor (£477 for 1999/2000 England and Wales)  

 V = Banded weighting factor based on consented discharge volume  

 C = Banded weighting factor based on consented discharge content  

 RW = Banded weighting factor based on category of receiving water. 

In addition to this charge, companies are required to pay a discharge application fee of 

£617 (England and Wales) for most new and revised consents. 

The fees can be found via the Environmental Agency. Example of weighting factors 

given by the Environmental Agency are given in Appendix G. 

 

II.2.5 Regulations 

More and more pressure on the protection of our environment can be expected from 

the legislator. It can be read in the Waste Water Frame Work Directive (2000/60/EC) 
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that achieving a good status of all water by 2015 is aiming at. Even though it does not 

refer directly to waste effluent, it has an impact on the discharge of effluent to the 

aquatic environment. A key element that can be seen in this directive is the impact on 

waste effluent discharges. The set down of discharge limit values are given in 

Directive (96/61/EC) on IPPC. This directive prefigures more drastic conditions for the 

discharge of industrial water into the environment and therefore to the discharge of 

sewage. 

The philosophy of the European (and USA) legislations are based on the “Best 

Available Technology (BAT) principal and the feasibility is not only linked to existing 

technology, but also to its economical and practical viability. In Europe, the Integration 

Pollution Prevention and Control, Directive (96/61), indicates to the member states 

that they have to improve environmental performances on the BAT principle and must 

focus on waste minimisation. Recycling and therefore, in the case of water treatment, 

close-loop options for industrial water use are ultimately implicated. 

 

II.3 METALWORKING FLUIDS 

Metalworking fluids (MWF) are part of a more general product family called 

lubricants and are applied in the tooling of metal pieces, cutting (cutting fluid) and any 

other applications (grinding, drilling, forming, tapping…). As cutting is a major 

process, MWF are sometimes abusively called cutting fluids.  

This section starts with a brief history on the metalworking fluids. The second part 

presents the metalworking fluids, their use, diversity and chemistry specifically related 

to semi-synthetic MWF. The third part reviews the microbiology of MWF. The last 

part presents the different disposal methods available for metalworking fluids. 

 

II.3.1 Brief history of metalworking fluids 

Lubricants must have been used as metalworking fluids since the most ancient times, 

when metal forming appeared especially for weaponry. Even if there are no direct 
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references to the fluid technology available, it is known that mankind used grease and 

oil for lubrication. Therefore, it is reasonable to speculate that lubricants have been 

used in metal crafting. Towards the industrial revolution, scientific studies on friction 

started to appear and the impact of friction on moving parts and metalworking 

processes starts to be appreciated. Water and sour beer were used as coolant fluids in 

cutting and grinding processes, since these processes produce a great amount of heat. 

The use of MWF was concomitant with the development of machine tools and the 

need to accelerate manufacturing processes. The need of cooling and lubricating to 

enhance productivity appeared. Nevertheless, (McCoy, 1994) reports that four 

elements added to the industrial revolution and the invention of almost all machine 

tools, led to the development of modern metalworking fluids. The first element is the 

discovery of petroleum that had a profound impact on the compounding of 

metalworking fluids. Mineral oil then replaced vegetable and animal based lubricants. 

The second element is the introduction of better alloys for making harder tools and 

therefore working at faster speeds and higher pressure, increased the need to use good 

quality MWF. The third element is the introduction of electrical power source that 

initiated the design for more powerful and sophisticated machinery. This new 

development increases stress between tools and workpiece and the need of removing 

metal parts efficiently led to an even greater need to develop metalworking fluids. The 

fourth essential element was the growth of industrial chemistry and petrochemistry that 

allows the manufacture of modern metalworking fluids, leading to the creation of 

soluble oil, emulsions, sulphurised, chlorinated compounds and additives. During and 

after the Second World War, progresses on metalworking fluids were made on the 

same crucial points of productivity and sophistication of the manufacturing processes. 

Semi-synthetic and synthetic oils  were introduced in 1940's (Lijinsky, 2004). The 

history of development that can be found in (McCoy, 1994), including 94 references, 

shows that this development is totally interdependent upon the development of 

machinery and interconnection of sciences as industrial chemistry, friction, lubrication 

and tribology. Today, metalworking fluids are also developed to take into account 

workers health, working comfort, environmental and disposal concerns. The advent of 

modern, complex and diversify MWF has been produced by the need of the 

metalworking industry. Primarily, modern MWF were introduced to satisfy 

productivity needs. They responded to continuous advances made in metalworking 

technologies as tools and machines that took its route during industrial revolution. 
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Recently, studies on eco-compatible of lubricant have been published. (Sokoavic and 

Mijanovic 2001) show the use of renewable resources as an alternative to mineral 

based oils.  

 

II.3.2 Uses and chemistry of metalworking fluids 

Lubricants are of many sorts. They can be gas (mainly air), liquids or solids such as 

organic or inorganic involving surface coating technology. More descriptions can be 

found in specialised literature such as (Kajdas, 1997). Liquids are of particular concern 

and are developed below. 

 

II.3.2.1 Types of metalworking fluids 

Liquid lubricants are of two different natures. The high viscosity ones are made of 

different formulation of mineral oil and additives that are classified mainly by their 

viscosity. The lower viscosity ones include water based lubricants. Metalworking 

lubricants, the second class of lubricants, are not classified according to their viscosity 

since other properties such as cooling, lubricating and protection actions of tool and 

pieces are very important. The purpose of metalworking processes is to tool metallic 

pieces: to put them into shape, to drill, cut, grind, tap and other different specific 

operations. Each type of operation, depending on the conditions material tooling, such 

as tool speed, contact time and heat generated, needs a specific fluid or a different 

concentration of oil in water. Usually, the process implicates intimate contact between 

the tool and the workpiece. According to the process, different gradients of pressure, 

frictions and heat are applied. Therefore, the quality and properties of the MWF are to 

be tuned to the specific problem encountered in the process. The most important are 

cooling and lubricating the tool and the pieces tooled. Metalworking fluids are 

composed of oil derived from petroleum (mineral oil), animal or vegetable oil. 

There are three major types of MWF, which are: oil, emulsion and water soluble 

products. Straight oils are mainly mineral, but also vegetable or animal sources can 

also be used. They contain various sulphurous additives, chlorinated compounds or 
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even a mixture of both. Water-soluble MWF are actually soluble chemicals; they do 

not contain oil and are known to be synthetic soluble oils. Emulsion and micro-

emulsion contain oil in the form of suspended droplets dispersed with emulsifiers. 

Table II-1 recapitulates the main properties of the three types of MWF. The use of 

MWF depends on each specific application and conditions in which the process is 

undertaken. The choice of a specific MWF also depends on the properties of the 

material tooled e.g. hardness and corrosion properties and on the machinery employed. 

This choice is very critical since MWF are used to enhance productivity and to protect 

tools and machinery.  

 

Type Names 
Lubricating 

Properties 

Cooling 

Properties 

Directive for 

applications 

Water Very Poor Very Good Cooling 

Solution 

Synthetic fluids, 

Chemical fluids, 

True Solutions 

Poor-Good Very Good 

High cutting 

speed 

Drilling 

Low Pressure 

Processes 

Emulsion 
Semi-synthetic 

fluids 
Good Good 

General purposes 

High cutting 

speed 

Drilling 

Oil 
Oil 

Straight Oil 
Very Good 

Very Poor 

Poor 

Tapping / 

Broaching 

High Pressure 

processes 

Table II-1: Different types of MWF, their properties and applications 

 

A full range of MWF exist on the market with various chemical compositions. 
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II.3.2.2 Chemistry of semi-synthetic metalworking fluids 

The properties of MWF are important when choosing which MWF to use for a specific 

application. Semi-synthetic MWF are water-based products that produce an emulsion 

when mixed with water. The water contains emulsified oil droplets and dissolved 

compounds. Substances added to metalworking fluids are listed below:  

 Anti-wear additives which form a lubricating film 

 High-pressure additive 

 Antirust additive 

 Foam retardant agent 

 Antifog agent 

 Dispersing agent and surface-active substances (Surfactant and co-surfactant) 

 Biocides 

 Odorous and colouring substances 

 Chemical constituents such as: amines, borate, nitrates, nitrites, polyalkyl 

sulphonate, glycerol, esters and ester glycols… 

 

(Sokoavic and Mijanovic, 2001) and (Chidlers, 1994) give more details on 

metalworking fluid chemistry, formulation, and their applications. The following 

paragraph concentrates on the nature of semi-synthetic fluids. 

To produce the oil emulsions, emulsifiers are used. Emulsifiers can be ionic or 

polymeric and in most of the formulation, both are used. Soluble molecules such as 

alcohols are introduced into the base. When the base is mixed with water, it forms an 

emulsion with oil droplets containing a fraction of soluble molecules that pass to the 

diluting phase (water) so the oil droplets shrink minimising the surface of interaction 

with the aqueous phase, leading to an even more stable emulsion. The stability of an 

emulsion depends on the emulsifier, the cocktail of emulsifiers used and on the size of 

the droplet. Micro-emulsions are stable dispersions of very fine droplets of a liquid in 

another. The droplet size is below 0.2µm, but they are not necessarily transparent due 

to the Tyndall effect. They are created to ensure that they will not achieve equilibrium 

by separating into two phases. 
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II.3.3 Microbiology of metalworking fluid 

The literature reports a vast variety of microorganisms fouling metalworking fluid. 

This is due to the variety of oil available and processes that alter the environmental 

conditions, which can either inhibit or promote the growth of different 

microorganisms. Temperature, biocide mode action, pH, type of oil base additives 

agitation, and oxygenation have effects on microbial growth. The majority of articles 

related to MWF and microbiology are concerned with the health and safety of workers 

in the metalworking industry. 

It seems that primary colonisers are aerobic bacteria, with pseudomonads being the 

predominant population of these micro-organisms. After primary colonisation by 

pseudomonads and other bacteria, the drop in pH allows yeast and fungi to grow. 

In (van der Gast et al. 2001), 66 bacteria were isolated from 6 different in-use MWF 

and from tap water used to prepare them. Pseudomonas pseudoalcaligene and 14 other 

pseudomonas species were found as follow: 

 

 8 from cincinati Cimex  

 14 from Bostomattic 312 

 13 from Bosomatic 405 

 17 from Chipmaster No 1  

 12 from CVA mill 

 2 bacteria seen in tap water use to prepare MWF 

 

No fungi were detected because of the high pH encountered in MWF. 

 

The wilder aerobes were pseudomonads; five species were found: 

 P. aeruginosa 

 P. alcaligenes 

 P. mendocina 

 P. pseudoalcaligenes 

 P. stutzeri 

 

Formatted: Indent: Left:  1.12
cm, Bulleted + Level: 1 +
Aligned at:  1.9 cm + Tab
after:  2.54 cm + Indent at: 
2.54 cm, Tabs: Not at  2.54 cm
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II.3.3.1 Problems due to microbial contamination of MWF 

Many microorganisms are reported in the literature to be found in various 

metalworking fluids. This microbial development has a negative effect on the 

processes using metalworking fluid and enhances a rapid degradation of the fluids 

(Rossmoore and Rossmoore, 2003). Contaminations are associated with problems such 

as corrosion of tools and tooled pieces, odours, putting workers at risk and a lost in 

fluid performances lead to productivity decreases. The effect of bacteria on 

metalworking fluids is that they can use most hydrocarbons as a carbon source. 

Water/Oil emulsions are suitable environments for microbial development because of 

the presence of water and soluble hydrocarbons. The visible result of such a 

contamination is the break down of the emulsion, apparition of slime and separation of 

the oil from the watery phase. Usually, the bacterial activity is followed by a decrease 

in pH down to neutral or acidic if yeast can establish themselves. 

 

II.3.3.2 Biodegradability 

Biodegradation is the break down of chemicals by organisms. This includes two levels 

of degradation: the first one where the molecule loses its properties because one or 

more of its active groups has been lost or the molecular structure is changed. The 

second level is more advanced in terms of remediation. The total breakdown to carbon 

dioxide, water and mineral salt, is known as complete mineralisation. The limitation in 

biodegrading lubricants resides in the fact that oil is insoluble in water and tends to 

make the organic fraction unavailable to the microorganisms. In addition, the complex 

mixture includes formulation with biocide. In the particular case of water-based MWF, 

the organic compounds are dissolved or emulsified. Therefore, their constituents are 

more readily available to microorganisms. Previous studies carried out by CARDEV 

International Ltd have shown that bio-remediation alone, using an aerobic system is 

difficult as a treatment method for semi-synthetic metalworking fluids. The synthetic 

MWF typically have a high Biological Oxygen Demand (BOD) and are therefore 

difficult to treat biologically. 

In the quest for “environmental friendliness”, the choice of biodegradable oil base 

becomes an alternative to formulate lubricants. In its article, (Willing, 2001) reviews 
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and discusses the ecological aspects of using synthetic esters in comparison to 

petrochemical oil based. This interest in lubricants and metalworking fluids, based on 

renewable resources, has not only its roots in the concern of environmental matters, but 

also concerns the manufacturing of alternative products not based on petrochemical 

interest that concerns a very large market. The environmental aspects are of different 

sorts. The first point is that oil is a non-renewable and a limited resource. The second 

is that petrochemicals contribute to global warming due to extraction, transport and 

disposal when incinerated. The third point is that they are more toxic to human type 

and to the environment than oleo-chemicals etherified as shown by (Willing, 2001) and 

(Lijinsky, 2004). Petrochemicals based on benzene rings are known to be carcinogenic. 

The economic aspect is that only 2 to 3 percent of the lubricant market is occupied by 

products derived from mainly renewable resources. This is because they have only 

been available since 8 years. In addition, in the early days, they were not so reliable. 

The second reason is that the multistage synthesis to manufacture these products 

makes them more expensive than their mineral oil counterparts.  

Microemulsion enhances the bio-stability of the product, producing less available oil to 

the micro-organism due to the larger surface tension presented at the interface with the 

oil droplet that prevents micro-organisms to approach the oil droplet. Therefore, the 

direct bioremediation of semi-synthetic MWF is rather unlikely and a stage enabling 

the removal of the oil droplet is needed. 

 

II.3.4 Waste metalworking fluids disposal options 

UK industries produce around 400,000 tonnes per year of metalworking fluids with an 

estimated disposal cost of £8 - 16 million in 2000 alone (Bio-Wise, 2001). This figure 

is similar for France, Germany and Italy. Manufacturing industries in Europe are under 

increasing pressure from regulators to take more responsibility for their waste. The 

increase of waste disposal cost contributes to this pressure. Therefore, engineering 

industries face a particular challenge to treat the waste effluent that they produce. 

Metalworking fluids miscible with water is one of the most complex and polluting 

problems because it is based on a large mixture of components, such as mineral oil or 

synthetic products and most of them form an emulsion or microemulsion. They have a 
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high COD and contain pollutant chemicals. The treatability of the waste depends on its 

nature. Anionic additives can be removed generally by acidification or reactions with 

cationic coagulants. 

 

II.3.4.1 Direct Sewer 

To directly dispose of metalworking fluids in the sewer poses many problems to the 

municipal wastewater treatment plant. The typical problems are reported in Sutton and 

Mishra, 1994. The nature of the waste, emulsion and presence of oil may clog 

screening processes and interfere with skimming operations and the mechanical part of 

the municipal wastewater treatment plant. The presence of large amount of surfactant 

can compromise the efficiency of the wastewater treatment plant physical separation 

process, by emulsifying oil and particles. Metalworking fluids typically represent a 

very large amount of oxygen demand and contain toxic organic compounds in non-

negligible concentrations that can affect the performances of the biological process. In 

the late 1970’s, in the USA and Europe, law started to enforce pre-treatment by 

limiting the amount of grease that can be put down the drain. Regulations concerning 

toxic chemicals, heavy metals and pH of the waste effluent started appearing. 

Nowadays, the cost of disposal of such waste increases tremendously. Sewage costs 

increase according to the volume needed to be treated and improvement of 

technologies. Therefore, on-site treatment can be an effective way for solving this 

problem; such treatments are recognised as good environmental practice and a positive 

step in environmental strategies. 

 

II.3.4.2 On-site treatment 

Oily waste streams can be treated in three different ways; physical, chemical and 

biological or any combination of these three technologies. The treatment is carried out 

in three steps. Primary treatment separates the floatable oil, also call non-emulsifiable 

oil, from the main stream fine particulates that can be separated or by gravity of mesh 

filtration of size 100 to 300µm. This step allows the treatment plan to be buffered. The 

flow and concentration of the wastewater fluctuates with time. Therefore, the first step 
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is to buffer the variations. Because they are tuned to work at an optimum that is related 

to inlet flow and concentration, the secondary and tertiary treatment steps will benefit 

directly from this equalization. This step is critical when large fluctuations in daily 

volume and quality of the wastewater are present. Knowing the magnitude 

fluctuations, designing accordingly a sufficient holding volume tank and using a spelt 

holding tank should stand and smooth fluctuations in the original inlet. The free oil 

should be removed at this stage in order to minimise mixing and the liquid that may be 

mechanically re-emulsified. Avoiding mixing is general practice, not always followed 

(Thomas and King, 1991), in the treatment of oily wastewater. Because the waste 

water can be mixed with surfactant coming from for example, washing water of the 

workshop floor and machinery contains a lot of surfactant, therefore, creating emulsion 

and even more problems downstream. 

For the secondary treatment, several technologies can be used. When dealing with an 

emulsion it can be broken down by centrifugation. The spent oil must be treated before 

its disposal, and different physico-chemical methods have been investigated such as 

settling, chemical treatment, floatation, centrifugation and membrane techniques such 

as Microfiltration, Ultrafiltration and Reverse Osmosis have been reported (Bilstad and 

Espedal, 1996). A review of these methods is shown elsewhere (Benito et al. 1998). 

Increasing attention is now paid to the selection of environmentally-friendly products 

and disposal solutions due to the multiplicity of negative effects which the cutting 

fluids waste place on man and the environment. Usually, the emulsion has to go 

through a separation process. The concentrated oil is incinerated in the cement or steel 

industry or in special industrial incinerators. The watery phase is conditioned and goes 

to a sewage treatment plant. The three most common methods of disposal of spent 

metalworking fluids are evaporation, chemical treatment and membrane filtration. 

(Burke, 1991) shows performance and cost parameters of each method. The treatment 

of this waste has been addressed by several techniques such as chemical destabilisation 

by inorganic compounds as described by (Rios, et al. 1998) and will be reviewed in 

section II-6. Even electrical methods have been patented. Finally, membrane filtration 

processes have been used for a long time for waste MWF treatment (Belkacem, M. et 

al. 1995, Benito, J. et al. 1998,  Benito J.M. et al. 2001 and Hu X, et al. 2002,). 
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The effluent after treatment can be discharged to surface water, sanitary sewer facility 

process for recycling or processing or to atmosphere via incineration or activated 

carbon regeneration. 

Even if a biodegradable metalworking fluid is employed, a pre-treatment is necessary 

prior to any discharge into sewage in order to eliminate free oil and particles as well as 

reduce to a minimum COD level that is an important parameter used to calculate the 

disposal cost. Previous studies have shown that bioremediation alone is difficult as a 

treatment method for metalworking fluids. There are some alternative and 

environmentally friendly lubricants coming to the market, that are usually 

biodegradable (Willing, 2001). This also justifies the choice of using biotechnology to 

solve the problem linked to the waste metalworking fluids. 

 

II.4 MEMBRANE TECHNOLOGY AND APPLICATIONS 

This section defines what membranes are, gives an overview of the advances made in 

membrane technology, the principal applications, limitations of the technology and 

techniques employed to overcome the limitations and improve membrane processes. 

After defining what a membrane is, a brief history of membrane technology is 

depicted. Then, a general overview of all membrane technology is given. Finally, 

polymeric pressure driven membranes are described, including the four types of 

technologies known as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) 

and reverse osmosis (RO). 

 

II.4.1 Definition 

Membranes are engineered barriers that exclude or separate colloids, molecules or salt 

(Baker, 2000). The key property exploited in membrane technology is the ability of the 

membrane to control the permeation of a chemical species through the system. In fact, 

a membrane is nothing more than a thin discrete interface that moderates permeation of 

chemical species in contact with it. It is different from a filter which is limited to 

separate particles larger than 10µm and only because of their size. Membranes separate 
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particles, molecules and chemical species because of their size, shape and their 

chemical and physical properties. Membranes are able to control the rate of chemical 

permeation; this effect is widely used in medicine to relieve chemicals in the human 

body. 

 

II.4.2 History 

Studies of membrane properties have been recorded since the 18th century. In 1748 

Abbé Nolet had described the permeation of water through a diaphragm and called it 

osmosis. Until 1945, membranes were only used in the laboratory or for small-scale 

specific applications. After The Second World War, micro-porous membranes were 

used to access the quality of water. This became possible by the earlier development 

and improvement of nitrocellulose (collodion) material for membrane applications. 

The major advance in membrane technology was made by Loeb and Sourirajan, who 

produced the first asymmetric reverse osmosis membrane giving a permeate flux 10 

times higher than the membrane then available. This technology is based on the 

deposition of a thin polymeric film (called active layer) on a much thicker and porous 

substrate that gives mechanical strength to the assemblage. Loeb-Sourirajan advanced 

open reverse osmosis to commercial water desalination and to the development of 

ultrafiltration and nanofiltration membranes. The second advance was made by 

medical applications like artificial kidneys by W.J. Kolf in 1945, with the technique 

being completely refined in the 1960’s. The other important medical application is the 

control drug delivery systems. Medical applications account for the largest part of the 

membrane market including the biggest amount in total membrane surface sold. Then 

between the 1960’s and 1980’s, numerous formations based on the Leob-Sourirajan 

method were developed. The type of modules diversified from dead-end to cross flow 

filtration, the latter including large membrane areas of tubular, spiral wounded, hollow 

fine fiber and flat sheet. Advances were made at the same time on polymers used to 

produce membranes. In the 1980’s, new technology was developed such as gas 

separation and pervaporation. Nowadays, more and more engineered polymers are 

used to improve membrane performances. Recently, less conventional material 

appeared to produce microfiltration and ultrafiltration membranes. Using ceramic 
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materials that have great thermal and chemical resistance and even dense metallic 

(palladium), are used for gas separation. 

 

II.4.3 Membrane processes 

The development of polymeric membranes created two types of membrane structure, 

isotropic and anisotropic membranes. Anisotropic membranes are based on the Loeb-

Sourirajan design and their properties rely on the thin active layer, allowing the 

development of high flow rate polymeric membranes, using microporous or dense 

polymers as active layers. The membrane media is generally manufactured as flat 

sheets or as hollow fibers and then configured into membrane modules. The most 

common membrane module configurations are hollow-fiber (consisting of hollow-fiber 

membrane material), spiral wound (consisting of flat sheet membrane material 

wrapped around a central collection tube), and cartridge (consisting of flat sheet 

membrane material that is often pleated to increase the surface area). In addition, to the 

various module configurations, there are a number of different types of membrane 

materials, hydraulic modes of operation and operational driving forces that can vary 

among the different classes of membrane filtration. Each of these characteristics of 

membrane filtration systems may be considered by a manufacturer and used to meet 

the particular treatment objectives for a given application. The membranes used in all 

four processes are most commonly made of polymeric materials. In the early years of 

membrane development, nitrocellulose and cellulose acetate were the most often used, 

but were increasingly replaced by more sophisticated materials such as polyamide, 

polysulfone, polycarbonate and a number of advanced polymers (Mulder, 1988). These 

synthetic polymers offer improved chemical stability and higher resistance to 

microbial degradation and thus are suitable for use in a wide range of applications such 

as wastewater treatment. 

This review pays particular attention to four filtration processes: microfiltration (MF), 

ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO). All of them are 

well-established technologies developed at small and large industrial scales. They are 

pressure driven filtration processes that use membrane technology to allow the passage 
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of water and the passage or retention of particles, molecules or salts. Figure II-1 

illustrates the principals of filtration processes using this type of membranes. 

Microfiltration is a low-pressure process used for the retention of suspended material 

particles down to size 0.05 µm (Ripperger and Altmann, 2002). Typical operating 

pressures range from 0.5 to 3 bar. They usually have a symmetrical pore structure, with 

porosities as high as 80%. 

Ultrafiltration is a medium pressure process offering retention of proteins, colloids and 

biological materials. Typical operating pressures for ultrafiltration range from 1 to 15 

bar. UF membranes are also porous membranes with an asymmetric pore structure 

comprising a 1-2 µm thick top layer of very fine pore sizes supported by a 100 µm 

thick openly porous layer. Both layers may be made from the same material. The thin-

film composite membrane is another type of UF membrane. It consists of an extremely 

thin layer, typically 1 µm thick, deposited on an open porous matrix. Microfiltration 

membranes and ultrafiltration membranes are mainly described as pore flow micro-

porous membranes. 

Nanofiltration is built on the same principal, a less open structure material is used as 

the active layer and charges may be added to the surface in order to control the passage 

of solute salts. Nanofiltration is used for the removal of dissolved material in the 

molecular range of 100 to 500 kDa. Nanofiltration membranes with small nominal 

pore diameters between 0.001µm and 0.01 µm are described as intermediate pore 

flow/solution diffusion membranes (Baker, 1992) and (Noble and Stern, 1995). Salts 

and charge species are transmitted through the membrane preferentially. The typical 

operating range for nanofiltration membrane is from 10 to 40 bar. 

Reverse Osmosis is a high pressure driven process up to 60 bar, allowing the retention 

of almost all particles and ionic species. RO membranes are generally considered to 

have no macroscopic pore structures but to consist of a polymer network (dense active 

layer) in which solutes can be dissolved. The permeation through RO membranes are 

described with the solution diffusion model.  
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Figure II-1: Types of membrane filtration 

 

Cross flow membrane filtration is now a mature technology, regularly employed as a 

standard technique for liquid processing to effect clarification, product isolation, 

concentration and separation duties in a large number of manufacturing industries. 

Benefits of this type of membrane technology include: 

 Selective and consistent separation 

 Increased product yield 

 Low energy consumption 

 Small footprint 

 Established technology 

 No additives, flocculating agents or percolates chemicals required 

 Large variations in feed quality have little influence on permeate quality 

 Easy retrofitting 

 Low maintenance 
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II.4.4 General applications 

There are various membrane technologies (Scott and Hughes, 1996). Microfiltration is 

mostly used for filtration and sterilisation and to remove small-suspended solids and 

microorganism in milk pasterisation. Ultrafiltration membranes are used to separate 

colloidal suspensions, oil emulsions, viruses and proteins from solutions. They are 

used in the food industry for sugar recovery and cheese production for example. Some 

examples of water treatment that can be given are water recycling processes, dye 

recovery and oil-water emulsion separation. There is a wide range of use of 

ultrafiltration in biotechnology as cell harvesting enzyme production (Weatherley, 

1994) and (Wang, 2001). The last UF application is usually done at small or medium 

scale. Water desalination is the oldest industrial application for drinking water to 

obtain ultra pure water.  

Other types of membrane systems are for gas separation used primarily in separation of 

uranium 235 from uranium 237 in the enrichment process to obtain nuclear fuel. Other 

gas separation processes are used to separate nitrogen from air, carbon dioxide from 

natural gas and hydrogen can be separated from a gas mixture using metallic 

palladium. 

Pervaporation is used for the dehydration of ethanol and recently an application for the 

removal of trace amounts of volatile organic compounds from contaminated water. 

More recently, membrane reactors are used to control the product of chemical 

reactions. Membrane reactors use the separative properties; the membrane shifts the 

equilibrium of a chemical reaction by removing products from the reactor such as 

catalytic gas-phase reactions, chiral drug separation and cell culture and fermentation 

processes.  

For a long time, membranes were used in case of high value compound recovering 

because of cost considerations. Therefore, they were used in pharmaceutical industries 

and then food industries. Nowadays, membrane technology is more efficient and 

industrially well established. Applications to less economically valued processes like 

wastewater treatment take place and are recognised to be effective. 
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II.4.5 Applications in wastewater treatment 

Industrial water uses membrane technology up front of a process to guarantee water 

quality. This is of importance as it prevents corrosion in cooling system as sensitive as 

nuclear power stations and ensures quality water that enters food-processing industries. 

On the other hand, membrane technology is used to minimise fresh water consumption 

in a process and the typical example is the paper mill industry. This industry used to 

consume 300 m3 in early twentieth century down to 30 m3 today of fresh water per ton 

of paper (Nuortila-Jokinen, et al. 2003). Evaporation and floatation have been widely 

used to treat the effluent. Since the 1980’s, membrane technology has been used. Ever 

since, along with improvement performance and decrease in prices, membrane 

technology replaces the traditional effluent treatment. The advantages are numerous; 

adaptability, small footprint and low energy consumption. The versatility of the 

membrane process allows its use at any stage of paper pulp manufacturing for 

treatment of water, for product recovery, chemicals, water and pulp. 

 

II.4.6 Filtration of metalworking fluids 

This part develops Section II.3.4 (“Waste metalworking fluids disposal options”) and 

focuses exclusively on membrane technology applied to waste metalworking fluids 

treatment. The treatment of MWF from wastewater is of environmental and 

commercial importance (Cheryan and N.Rajagopalan, 1998). Generally, membrane 

technology is used here to reduce the volume of waste to be disposed of via a 

contractor. Some examples of studies on MWF filtration for recycling purposes are 

also given. 

 

a) MWF filtration for disposal 

Pressure on companies to minimise their waste production helped in the development 

of such technology. Economical reasons lead in the choice of using membrane 

technology rather than other methods. Membrane technology is more likely to be used 

where the flux of wastewater is less than 190 m3 per day (Cheryan and Rajagopalan, 

1998). The capital investment increases when membrane processes have to be scaled 
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up because the surface area of the membrane is linearly related to the throughput and 

therefore the cost of a plant rises more steeply than other processes when scaled up 

(Stevenson, 1997). Membrane technology is versatile and can be used in combination 

with other technologies such as coagulation or biotechnology. These combinations are 

excellent choices for the treatment of waste metalworking fluids (Xing et al. 2001) and 

(Cheryan and Rajagopalan, 1998). This technology is suitable, and is already used for 

on-site wastewater treatment (Bio-Wise2001; Willing2001). It is obvious that UF or 

NF treatments are not sufficient to obtain a perfectly clean permeate with an acceptable 

organic content to treat metalworking waste effluent, (Belkacem et al. 1995). 

In the 1970’s, the first investigation on cutting oils ultrafiltration were published. At 

this early stage, the efficiency of the treatment of such waste compared to traditional 

methods was recognised. Limitations and problems imposed by ultrafiltration were 

also pointed out by (Lee, et al. 1984). In this article, the author shows that 

concentration polarisation is due to an oil gel that has a concentration of 40% and 

membrane fouling is due to adsorption of oil at the membrane surface which modified 

its wettability. 

(Benito et al. 2001) investigates the filtration of emulsified cutting oil using a dead-end 

ultrafiltration cell. Four parameters were studied; Trans-Membrane Pressure (TMP), 

oil concentration, temperature and rotation speed. They showed that with increasing 

TMP, the permeate flux first increases at low pressure, then the permeate flux becomes 

independent of the pressure applied, and at higher pressure the permeate flux can 

decline. They attribute this behaviour to the formation of an oil layer that has a specific 

resistance to the permeate flow that increases with the TMP. Because of the 

compaction of the oil droplet, this specific resistance is measured without stirring. The 

increase in oil concentration decreases the permeate flux. Two reasons are given for 

this happening. Firstly, the viscosity of the solution increases and secondly, the 

specific resistance of the oil layer increases. The temperature and stirring speed are 

reported to increase the permeate flux. The authors explain this by the fact that a high 

stirring rate leads to an increase in shear rate, therefore there is less chance for a gel 

formation to take place. 

(Hu, et al. 2002) investigate the fouling of oil in water emulsion by ultrafiltration and 

described mechanisms of the oil droplets fouling the membrane surface. Accumulation 
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of oil droplets at the membrane surface, due to concentration polarisation, increases the 

concentration of the emulsion towards the membrane surface, increasing the collision 

frequencies. Then, at a point the interaction becomes such that oil droplets aggregate 

and leads to the formation of a gel layer that finishes covering the whole membrane 

surface. Scanning electronic microscopy images show such aggregates and infrared 

analysis show that the major fouling material was oil. 

(Belkacem, et al. 1995) have an interesting approach in treating waste MWF and 

enhancing reactive salts (CaCl2). This treatment is reported to enhance ultrafiltration 

permeate flux, to reduce the concentration polarisation layer and by making the 

permeate flux independent of the concentration ratio. The authors destabilised the oil 

emulsion by using coagulant to increase the size of the droplet. The membrane surface 

is seen to be used as a coalescing media. In this study, the employed MWF forms an 

emulsion showing a droplet size of 180 to 630 µm when destabilised. This technique is 

interesting, the argument being that a small amount of chemicals are used. The authors 

showed that 30 to 60% of the chemicals can be saved (this is the difference between 

the concentration needed to destabilise and to break the emulsion). However, 

membrane separation processes are more cost effective when no chemicals are used 

and furthermore, the technique cannot be applied to more stable micro-emulsions or 

soluble oils. 

(Atsushi and Mitsutoshi 2002) used a simulated waste effluent containing mineral oil 

emulsified with alkylphenollethoxylate. This waste simulation allowed the authors to 

simplify the system, to assess and to measure the retention rate of the mineral oil and 

the non-ionic surfactant. They showed that even though the MF process substantially 

reduces the turbidity of the permeate compared to the feed emulsion, the mineral oil 

was rejected at only 39-61% and the surfactant at 16-19%. For the UF membrane the 

oil rejection was 97% and the surfactant rejection rate was 8-14%. It can be seen that 

in both cases, oil was not totally removed. The permeate flux is shown to be reduced 

with time and volume reduction. The authors used the notion of Volume Reduction 

Factor that they define as Volume initial / Volume of concentrate. They compared the 

UF MF with an adsorption method and found that UF has better performances than the 

adsorption process. Nevertheless, they suggest that the adsorption process could be 

used to complete the ultrafiltration as a secondary disposal technique. 
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Membrane filtration can be coupled with different technologies as it can be seen in 

(Chang, et al. 2001). They proposed a method using an ultrafiltration of oily 

wastewater with post-ozone treatment to enable the UF permeate of cutting oil to be 

reused as process water. 

Ultrafiltration is found to be an effective method for the treatment of oily effluents. 

This technique allows the separation of oil and organic compounds from the aqueous 

phase and results in two effluents, a concentrate and a permeate. The concentrate is the 

heaviest part containing concentrated oil and pollutants. The permeate is the result of 

the filtration process that is lighter than the concentrate. The limitation is due to 

concentration polarisation and the resulting fouling of the membrane surface by the 

droplet of oil. Generally, in all studies the resistance is due to concentration 

polarisation increasing with pressure. This is due to the compaction of the oil droplet 

that aggregates and forms an oil gel at the membrane surface. Dissolved organic 

molecules pass through the membrane pores. Microfiltration and ultrafiltration 

membranes are also used for recycling synthetic metalworking fluids (Mahdi and 

Skold, 1991). Membrane systems are recognised for the treatment of oily streams such 

as wastewater from metalworking fluids and are cost effective.  

 

b) Recycling of MWF  

The last advance in MWF filtration is to apply the process in order to recycle most of 

the fluid. (Mahdi and Skold, 1991) and more recently (Skerlos et al. 2000) investigate 

the microfiltration of synthetic MWF with ceramic membrane in the view of recycling 

waste MWF by separating contaminants such as tramp oil, micro-organisms and 

particles from the MWF. In the first part of the study, the authors investigated the flux 

decline induced by the filtration of unspoilt metalworking fluid. They observed 

identically a flux decline during filtration operations. This decline is identified as 

adsorption of MWF ingredients leading to pore diameter reduction. The restriction to 

the technique is due to fouling of additive and oil and therefore the “de-

formulation” of the blend. Molecules and additives are of different molecular size and 

physical-chemical nature and have different retention rates. Therefore, the recycled 

product is not like the primary product. The quality of the recycled product has to be 

assessed. This solution is appealing from an environmental point of view because it 
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could cut down the needs of frequent waste MWF disposal. However, the study can 

only be carried out on specific MWF involving a precise tuning of the filtration 

process and the secrecy of MWF formulations make the study of additive retention 

difficult, all the most that is not in the interest of manufacturer to market recyclable 

MWF. 

 

II.4.7 Water recovery 

Water reuse takes place principally in the worry of freshwater conservation. The water 

recovery for reuse in industry can be done in two different manners, recycling and 

reclamation. Reclamation is the treatment of recovered water made available for reuse. 

Recycling means the recovery, with or without treatment, to and from a specific 

process. The parallel that can be made is that glass bottles are recycled (as bottles) and 

the glass from the bottles can be reclaimed as glass. In the last case, the glass is 

reprocessed to manufacture different items and not necessarily bottles. In industry, 

water reuse is motivated by legal requirements such as legal pressure upon discharge, 

or by economic interests. Water reuse in industry is straight forward, as long as it is 

reliable and cost-effective. The challenge in reusing water in industry arises from the 

fact that wastewater comes from different processes and/or at different stage of a 

process. The wastewaters are blended together and result in a mixture that varies 

greatly in flow and load, making it difficult for a system to treat and to provide a 

reliable treated effluent suitable for reuse. Membrane technology is very promising 

because of its versatility and effectiveness in buffering the permeate stream in load and 

flow. Recycling waste water in re-making metalworking fluids found its difficulties in 

the standards needed in the specific application. Two problems can be foreseen. First 

an exess of surfactant may affect the foaming of the product and its quality. The 

second problem is the low organic content present in membrane permeate which 

makes it ideal for biological contamination that would be transmitted to the product 

with the dramatic consequences reviewed in II.3.3.1. 
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II.4.8 Fouling  

Fouling is associated with the decline of permeate flux and of retention-rate. Actually, 

these are not only due to membrane fouling, but also to operating conditions. Intrinsic 

fouling describes an irreversible process that requires the filtration process to be 

stopped, the membrane surface to be regenerated, and this regeneration should be 

associated with total or partial permeate flux and a rejection-rate recovery. The level of 

recovery shows the severity of fouling as well as the effectiveness of the cleaning 

method. The severity of fouling experience under specific conditions can be assessed 

by measuring under the same conditions, the water flux of the fouled membrane and 

comparing it to the original water flux done before filtration. Only limited progress in 

controlling these problems has been made in the last 20 years. Fouling affects the 

performance of the plant because of the permeate flux decreasing. Fouling can affect 

the plant by changing specific species permeability. In an ideal case, during filtration, 

only the membrane opposes a resistance to the flux. (Viadero, et al, 1999) state that 

fouling occurs when additional resistance to the permeate flux are experimented other 

than the intrinsic membrane resistance. 

 

II.4.8.1 Fouling mechanisms 

There are four types of fouling linked to four additive resistances to the membrane 

intrinsic resistance. Concentration polarisation, this phenomenon always appears in 

membrane separation system due to accumulation of rejected compounds at the surface 

of the membrane. The concentrations of the accumulated solute can be high enough to 

form a gel-layer that adds another resistance to the flux. In the case of porous 

membranes, it is possible for solutes to penetrate into pores and accumulation leads to 

pore blocking so the membrane rejection properties can be dramatically changed. 

Adsorption of molecules at the membrane surface or within the pores of the membrane 

block the membrane as well. The adsorption of molecules at the membrane surface 

occurs as soon as the membrane is in contact with the solution and equilibrium takes 

place. Under the pressure of the feed side, an additional deposition of solute can take 

place due to the increase in concentration of rejected solute next to the membrane 
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surface. It can be noted that the blocking process does not occur for non-porous 

membranes. 

 

II.4.8.2 Specific type of fouling 

This section describes specific mechanism of membrane fouling such as biofouling 

scaling and cake formation. 

Biofouling is due to the deposition and adhesion of bacteria at the membrane surface 

or in pores following the mechanisms described above. In addition, biofouling leads to 

the formation of a biofilm onto the membrane surface in the worst case. Bio-fouling 

occurs in three phases described in (Le Thi, 2000). It starts with the adsorption of 

chemical compounds such as polysaccharides and proteins that happens as soon as the 

membrane is in contact with the liquid. The bacteria adhesion happens in 2 stages. 

First stage is a reversible process involving the approach of the cell next to the surface 

by diffusion or convection. The second stage is the adsorption and linkage of the 

bacteria to the surface, this stage is called irreversible bacteria adhesion. In the third 

phase, the whole surface is colonised and a biofilm is formed.  

The scaling phenomena are the precipitation, deposition and growth of mineral crystals 

at the surface of the membrane. It is generally due to calcium or magnesium carbonate 

or sulphate and occurs more likely in RO processes. Other precipitates can also cause 

fouling. This is encouraged by the concentration polarisation that induce a high 

concentration of solutes at the membrane surface. Specific mechanisms can be found 

in (Linnikov, 2003). Linnikov considers the growth of crystal in supersaturated salts in 

solution, so the control of seed crystal in the solution is a factor to diminish the scale 

growth rate. (Sheikholeslami and Ong, 2003) examines the kinetics and 

thermodynamics of calcium carbonate and calcium sulphate sodium chlorine solution 

as encountered in desalination plants.  

Cake or film formation is due to the accumulation of material on the membrane surface 

leading to the formation of a layer that can compact. The nature of the cake is very 

different to the dispersed bulk solution and can lead to the formation of a strong 
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adhesive layer that compacts. The compaction reduces the membrane permeability and 

tends to solidify the cake that will become difficult to remove. 

In the case of oil emulsions, that constitute metalworking fluids the main mechanism 

has been described in Section II.4.6. 

 

II.4.8.3 Membrane cleaning 

Fouling induces a decline in the permeate flux and rejection rate and is the main 

limitation in membrane application. Whatever the technology used or the application, 

membrane fouling always occurs; it may be limited by using the right type of 

membrane by applying good hydrodynamic conditions, introducing turbulences such 

as particles in the concentrate or a gas phase while filtration takes place. These points 

are reviewed in Section II.4.9. Nevertheless, at a point, membranes have to be 

regenerated. The solution used to clean the membrane must not damage the membrane 

or introduce any conditions that lead to problems like precipitation that can happen 

when, for example the pH of the washing solution is changed. Therefore, the washing 

conditions are of great importance. 

Fouling due to oily waste water can be cleaned with surfactant. (Mahdi and Skold, 

1991) used surfactant and alcohol in water micelle solution to regenerate membrane 

surfaces fouled by oil. The cleaning effect is explained by re-emulsification of the oil 

that can then be removed from the surface. In this case, 96% of flux recovery was 

measured.  

(Benito, et al. 2001) in a study of cutting oil ultrafiltration investigating a commercial 

biodegradable cleaning agent (Derquim+) containing ionic and non-inoic surfactants, it 

was found to be very effective to regenerate the membrane after fouling to a total 

initial flux recovery. (Lee, et al. 1984) showed that micellar solutions were effective in 

cleaning membrane used for the filtration of cutting oil. A total regeneration was 

possible using micelles. Other authors (Belkacem, et al. 1995) found it effective to use 

micellar solution in order to clean membrane surfaces that are fouled with oil. Micellar 

solutions are composed of surfactant dissolved in water and are used to re-emulsify the 

oily layer, which fouls the membrane surface. The use of micellar solutions as a 
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cleaning method is considered for higher flux recovery without changing the 

membrane properties, fouling the membrane or even causing damage to the membrane 

surface. 

It is not always recommended to use cleaning agents. If used, they must be chosen 

carefully as to not alter the membrane surface. Frequently using cleaning agents and 

chlorinating the membrane does not necessarily prevent the biofouling of the 

membrane, it can reinforce biofouling problems. Microorganisms subject to low levels 

of biocides generate large amounts of extra-cellular polysaccharides (EPS) for 

protection and tend to live or survive within a protective biofilm. EPS have two main 

fouling actions. Firstly, they adsorb onto the membrane surface and into pores. 

Secondly, they promote microorganisms to adhere and colonise the surface. Many 

plants work satisfactory with a biofilm. Performances of the plant depend on the nature 

and the structure of the biofilm. In some cases the presence of bacteria on the 

membrane surface leads to less organic compounds fouling (Fillaudeau and Carrere, 

2002b) because bacteria degraded them. The resistance of the biofilms to chemical 

cleaning will increase if their use is not adapted. (Baker and Dudley, 1998) recommend 

that shock dose of non-oxidising biocides should always be applied. 

Membrane cleaning is time consuming and the use of chemicals adds to the cost of the 

membrane filtration process. Therefore, the frequency and duration of cleaning cycles 

must be limited. This can be achieved by optimising the membrane filtration process to 

limit membrane fouling and have it less dramatic.  

 

II.4.9 Techniques to enhance filtration 

Besides cleaning and regenerating membrane surfaces, several methods can be used to 

minimise membrane surface fouling during filtration. 

This section deals with methods that can be used to enhance filtration process by 

increasing permeate flux and/or the retention rate during filtration. In contrast to 

cleaning, filtration is not stopped and the enhancing process takes place at the same 

time as the filtration. The methods fall into three categories. The first category 

proposed in the literature is based on the principle of introducing turbulences into the 



Chapter II  Literature Review 

37 

feed stream (hydrodynamic control). The second category consists of modifying the 

surface of membrane in order to minimise the interaction between membrane surfaces 

and fouling materials. The third technique consists of pre-treating the effluent in order 

to remove or modify the fouling material.  

 

II.4.9.1 Filtration module and hydrodynamic conditions 

Hydrodynamic considerations must be taken into account among the various methods 

proposed to limit membrane fouling and biofouling. 

 

a) Filtration modules 

The first step was to use cross flow filtration instead of dead-end filtration. This is of 

historical interest nowadays as all industrial filtrations are carried out in cross flow 

mode. In 1907, Bechhold carried out filtration with a flow parallel to the membrane 

surface. He found an increase in volume filtered before the membrane was blocked. 

Cross flow, filtration became popular later when membrane separation took off in the 

industry in the 1960’s. The effect of the feed velocity has been reviewed in the 

previous section. Cross flow filtration employs tangential flow across the membrane 

surface which provides a continuous scouring action and hence reduces the membrane 

fouling layer due to feed stream debris and macromolecules. Particles and filtered 

molecules are not pushed directly onto the surface. Different configurations of cross 

flow filtration can be found such as flat sheet, spiral membrane and tubular membrane 

modules. In conventional filtration, the feed flow is perpendicular to the membrane 

surface, which causes a build up of debris at the membrane surface, causing a 

reduction in fluid permeation. 

b) Velocity 

Velocity of the cross flow is a very important condition, especially for large particles, 

bacteria, yeast and flocks (Fillaudeau and Carrere, 2002b). In addition, the 

nanofiltartion of fine particles is affected by feed velocity as shown by           
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(Manttari, et al. 1997) studying the NF of paper mill effluent. They showed that the 

critical flux of the membranes was dependent on the flow velocity.  

c) Trans-membrane pressure 

The pressure applied is another parameter that leads to a kick blocking of the 

membrane. With the trans-membrane pressure increasing, the permeate flux is 

expected to increase. However, it is not always the case when the critical pressure is 

reached the permeate flux reaches a plateau and may decrease. The critical pressure 

depends on the type of membrane used, the feed nature and velocity. The decrease 

occurs when materials are deposited onto the membrane surface, forming a gel-layer or 

a cake. Opened membranes such as microfiltration are more affected then reverse 

osmosis membranes. Therefore, adjusting the TMP can improve the permeate flux and 

diminish the effect of fouling. 

II.4.9.2 Introducing turbulence 

This has an effect by minimising the concentration polarisation layer and removing 

particles deposing onto the membrane surface. As an example, dead-end filtration can 

be dramatically enhanced by adding agitation just on top of the filtering surface. 

 

a) Gas injection 

Gas injection is used to enhance the permeate flux in membrane filtration and the 

retention rate. (Li et al. 1998) found that both flux and protein retention were improved 

by gas injection. The technique is based on the principle of introducing turbulences 

towards the membrane surface by creating a multiphase flow within the membrane 

tube. The bubbles have the effect of reducing the boundary layer, therefore reducing 

the resistance to the permeate flux and of harder fouling (adsorption onto the 

membrane surface) by removing particles from the surface creating local mixing next 

to the membrane surface. This effect is well known and adequately studied. However, 

the understanding of the multiphase flow impact on the permeate flux and retention 

rate is not totally understood. The nature of the fluid and the membrane geometry has 

an impact on the bubble formation. This technique is more likely to be applied in UF 
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or MF when the resistance to the permeate flux is highly affected by the concentration 

polarisation layer of particles, as for (Sur and Cui, 2001). 

(Li, et al. 1997) enhanced the ultrafiltration of proteins by gas sparging and studied the 

bubble sizes and frequencies. They found that the permeate flux increases with the 

bubbling frequency. The effect of bubble size was found to affect the filtration as for 

smaller bubbles and a plateau region was reached for larger slugs. 

(Um et al. 2001) found that some of the gas was partially masking the membrane 

surface and therefore decreased the overall permeate flux. In other cases bubble can be 

trapped in the membrane pores and decreases the permeate flux by reducing membrane 

porosity.  

 

b) Other turbulence promoters 

The other turbulence promoters can be divided into two types, the static promoters that 

are linked to the module design and the non-static that are particles added to the feed 

stream. Particles added to the feed streams may damage the membrane surface and 

may be undesirable for concentrate treatment. Nevertheless, the application of 

fluidised bed systems can be attractive in highly viscous systems in which energy 

consumption can be a problem. (Panpanit and Visvanathan, 2001) studied the effect of 

the addition of bentonite to the feed in the UF treatment of oily waste water generated 

by car washing. The improvement of the filtration is attributed to the aggregation of 

the oil droplets on the clay particles and a limit in clay concentration and flock size is 

found. Beyond the limit of 300mg/L of bentonite, the flux declined due to particle 

fouling. The formation of large aggregates is found to have a beneficial effect by 

promoting turbulences next to the membrane surface. 

(Kim et al. 2002) studied the effect of both by adding glass balls to a vortex-flow 

microfiltration system. The system was applied to the treatment of oil in water 

emulsion. It was found that the insertion of glass balls was effective at high flow rate 

and high oil concentration. This indicates that in this case the enhancement of the 

filtration is due to the disturbances of the gel layer that forms at the membrane surface 

during filtration. 
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II.4.9.3 Surface modification 

Membrane surface properties are another important factor. (Hamza et al. 1997) used 

modified polyethersulfone ultrafiltration with surface modifying macromolecules to 

filtrate oily water. They found that the modified polyethersulfone membranes have a 

superior performance and that the oil gel layer resistance of the membranes decreased 

with an increase in the surface modifying macromolecules. (Bowen and Sharif, 2002a) 

have shown the importance of membrane shape in the fouling process. Rough surfaces 

have been shown to be more likely to foul. On one hand, roughness gives a larger 

surface area and slows down the liquid film moving at the membrane surface. On the 

other hand, it can create turbulences at the membrane surface and local mixing. The 

presence of charges at the surface of the membrane, their nature (positive or negative) 

and density are important factors (Pasmore et al. 2001). Hydrophilicity has been 

shown by (Benito, et al. 2001) and is obviously a factor to take into account for oil-

water separation, especially when oil droplets are likely to foul the membrane surface. 

The chemical nature of membranes influences the interaction and 

adsorption/desorption equilibrium with solutes. The pore size can lead to different type 

of fouling. (Fillaudeau and Carrere, 2002b) have shown in the case of microfiltration 

of beer, that for the 1.4µm the predominant fouling mechanism was due to the yeast 

cell layer building up or yeast pore blocking, probably because the 1.4µm pores is the 

same as the yeast size. For the membrane with smaller pore size 0.1, 0.45 and 0.8µm, 

the retention and adsorption of compounds such as proteins and polyphenols was the 

predominant mechanism. High molecular weight cut-off ultrafiltration membranes 

were more suitable for harvesting Esterichia coli and Saccharomyces cerevisiae than 

microfiltration membranes. They attributed these results to the size of the 

microorganisms in relation to the membrane pore size because the yeast cells have a 

similar size to microfiltration membranes pores. Therefore, the microorganisms 

became embedded directly into the pore and created a blockage. On the same principal, 

in flock filtration, the size of the flocks is a very important factor. This size is linked to 

the fluid velocity and shear rate within the tube, so hydrodynamic conditions are likely 

to be major factors for particle filtration. (Tardieu et al. 1998) showed that at the 

deposition of sludge on the membrane surface of an MBR is of a very different nature 
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depending of the hydrodynamic condition applied. In this article, at low feed velocity, 

they found that the sludge forms a cake layer, whereas at high feed velocity the 

progressive fouling was attributed to convective back-transport phenomena in the 

fouling processes. In their article, (Fillaudeau and Carrere, 2002a) attributed the main 

fouling mechanism of the large pore microfiltration membrane to the build up of a 

yeast cell layer which was very sensitive to cross-flow velocity. 

Membrane surface modification aims at lowering the energy between the fouling 

material and the membrane surface in order to avoid adhesion. The best example is the 

role played by hydrophilic molecules added to the membrane cast or graphed 

afterwards to the membrane surface. The change in membrane surface wetability and 

avoid lipophilic material to spread onto the membrane surface. Other molecules are 

added to the membrane surface in order to modify their surface properties and 

specifically their charges. To avoid biofouling, biocides may be added to the 

membrane surface in this case, the effect is to kill micro-organims that approach the 

membrane surface, avoiding the formation of a biofilm.  

 

II.4.9.4 Feed Pre-treatment 

(Kim, et al. 2002) studied three modes of stream pre-treatment prior to the filtration of 

the effluent by a spiral wound RO membrane. The three systems proposed were: UF 

membrane filtration; granular activated carbon (GAC) adsorption and organic 

flocculation coupled with the GAC. The best pre-treatment was found to be the UF 

system and this performance is attributed to the best turbidity retention by the pre-

treatment system. The pre-treatment aims at removing the fouling material from the 

feed stream. This technique is largely applied for seawater desalination using different 

filters that remove large particles and microorganisms and the nanofiltration membrane 

to remove poly-charged and large ions prior the RO membrane unit. 

Other method such as centrifugation is proposed by (Turano, et al. 2002). In that case, 

the effect of the pre-treatment is effective leading to a higher permeate flux, a much 

longer steady state and a slower permeate decay. The effect is also found to be 

beneficial to the membrane regeneration efficiency. 
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II.4.10 Modelling of filtration for oil waste water 

This part of the chapter deals with the permeate flux modelling and fouling 

mechanisms. 

 

II.4.10.1 Permeate flux models 

Three main general physical models predict the permeation through a pressure driven 

membrane; the gel model, the resistance in series model and the osmotic pressure 

model. Figure II-2 illustrates a general view of the improvement of permeate flux with 

the increase in Trans-Membrane Pressure (TMP). The permeate flux is the flow of 

permeate stream produced per unit of membrane surface, usually given in litre per hour 

per square metre (L/h.m2). The TMP is the driving force that pushes the fluid through 

the membrane and is the difference in pressure between the feed side and the outside of 

the membrane. It can be seen that when pure water is used, the permeate flux increases 

linearly with the TMP the slop of the line represents the resistance of the membrane to 

the water. When a solute is present in the solution, two behaviours can be noticed. First 

the permeate flux increases with the TMP until it reaches the critical pressure. This 

first part of the graph is called the pressure control region. The second part is when the 

TMP reaches a critical pressure and the permeate flux does not continue to increase 

linearly with the TMP and eventually reaches a plateau. This second part of the graph 

is said to be gel control region (Baker, 1992). 
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Figure II-2: Membrane filtration control regions 

 

The gel model 

The gel model assumes that a gel layer forms on the membrane surface where the 

solute concentration is constant and only depends on the solute. This model can 

predicts a limiting flux and can not predict the flux in the pressure control region. This 

model is represented by Equation II-3. 

 

J=(D/δ)ln(Cg/Cb)   Equation II-3 

Where: 

 J is the permeate flux 

 D is the coefficient of diffusion of the solute 

 δ is the gel thickness 

 Cg is the gel concentration 

 Cb bulk concentration 
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The resistance in series model 

The resistance in series model relates permeate flux to a series of resistance, adding to 

the intrinsic membrane resistance, due increase in increase in TMP and the formation 

of a concentration polarisation layer and fouling of the membrane. This model is 

represented by Equation II-4 

 

J=∆P /η(Rm +Rgel) Equation II-4 

Where: 

 J is the permeate flux 

 ∆P is the trans-membrane pressure 

 Rm is the membrane intrinsic resistance to the permeate flux 

 Rgel is the gel resistance to the permeate flux 

 η is the permeate viscosity 

 

The osmotic pressure model  

The osmotic pressure model justifies the limitation of the permeate flux by the increase 

of osmotic pressure due to the increase of solute concentration at the membrane 

surface. Equation II-5 represents the osmotic pressure model. 

 

J=(∆P-Π)/Rm Equation II-5 

 

Where: 

 ∆P is the trans-membrane pressure  

 Π is the osmotic pressure  
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 Rm is the membrane resistance 

 

II.4.10.2 Membrane surface capture of particles 

Many different parameters intervene in membrane fouling. Particle-wall interaction is 

an important parameter to model membrane fouling. The understanding of how the 

particles approach the membrane surface is important. The particle adhesion depends 

strongly on particle-wall interaction and of the becoming of the particle after the 

collision. The capture, deposition and detachment are determined by a combination of 

colloidal and hydrodynamics factors. (van de Ven, 1998) shows the importance of each 

factor that intervenes in particle wall interactions. It seems evident that the 

approaching angle (particle-wall) has an influence on the particle adhesion to the 

surface. The distribution (between: wall, fluid, particle and into adhesion process) of 

the particle energy after the collision depends on the collision angle. 

(Munson-McGee, 2002) relates this to the force of adhesion measured by the atomic 

force microscope. It is clear that particles in cross flow filtration, arrived at an angle to 

the membrane wall, contrary to dead-end filtration where we can assume if there is no 

stirring, that the particles come to the membrane wall at a right angle. In the literature, 

it can be seen that particles hit the tubular wall quite tangentially and roll along the 

wall or return back to the bulk solution or/and stick to the surface. (King and Hammer, 

2001) showed how leucocytes are captured by the membrane surface and how they 

role onto the membrane before immobilisation (Lu, et al. 2002). 

 

II.5 ATOMIC FORCE MICROSCOPY 

Atomic Force Microscopy (AFM) allows the scanning of any type of surface, 

conductive or non-conductive, with very little sample preparation and can be done 

directly in air. Therefore, it is found to be very useful to study the structure of 

membrane surfaces. Besides imaging surfaces, AFM can be used to measure forces of 

interaction between the tip or probes and surfaces in different environments. 
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II.5.1 Introduction 

AFM is a technique of surface scanning. In atomic force microscopy, it is commonly 

the repulsive force between the tip attached to the end of a cantilever and the sample 

that is measured by the cantilever deflection. Because the repulsive force is universal, 

the technique can be applied to any type of material, conductive, non-conductive, 

biological, hard or soft such as polymers (Shakesheff, 1995). In general, AFM enables 

one to detect surface morphology, nanoscale structures and molecular/atomic scale 

lattices. AFM can be used in three different modes. In contact mode, the tip approaches 

the surface until contact between the sample and the tip is realised. Originally, this 

technique was used to get high-resolution surface profiles specifically for non-

conductive material. With advances in this technique, it appears that for many 

materials, the tip surface interaction must be minimised, so non-contact was 

introduced. The real power of atomic force microscopy is its ability to directly quantify 

forces of interaction between the AFM tip and surfaces in both air and liquid 

environments. The creation of the colloid probe, coated colloid-probe and cell probe 

techniques make it possible to measure (bio)colloidal interactions with membrane 

surfaces (Bowen, et al. 1999a) and (Hilal, et al. 2002).  

 

II.5.2 Scanning modes 

There are three different modes to generate an image using an AFM. In contact mode, 

the tip of the cantilever scans across the sample surface, being in direct physical 

contact with the sample. The force of the contact is set up when the cantilever 

approaches the sample surface. As the scan goes on, the topographic features cause the 

deflection of the cantilever and the light beam, reflected from the back of the cantilever 

into a photodetector. The amount of deflection of the cantilever can be calculated from 

the difference in light intensity on the photodetector sector. In non-contact mode, the 

cantilever is made to oscillate at its resonance frequency. As the oscillating cantilever 

gets closer to the sample surface, it experiences a change in the force gradient that 

provokes a change in oscillation amplitude and phase. Both changes in amplitude and 

phase can be tracked via the deflection of the laser beam reflected from the back of the 

cantilever to the photodetector. The two modes are the classic modes used in AFM 
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imaging. The latter, non-contact, is preferred when soft samples or biological material 

are imaged. This is done in order to minimise sample tip interaction or to avoid 

dragging material that may be picked up in contact mode. In any case, during imaging, 

minimising the interaction between tip and sample is always preferable. The third 

mode presented here is the profiled mode. This mode of imaging has been used and 

presented in (Hilal et al. 2002) and (Hilal et al. 2003) when imaging imprinted and 

grafted membranes surfaces. This mode gave much greater results than contact and 

non-contact mode because of the loose material that can be found at the modified 

membrane surfaces. 

Profile mode allows acquiring an image using the feed back Z-height at each data point 

to establish a topographic profile of the sample surface. The image is obtained by the 

tip approaching the surface at a defined speed until the laser beam signal becomes 

equal to or more positive than the set point. The Z-level is then recorded as 

topographic data. Then, the cantilever is withdrawn above the surface at a defined 

fixed distance, the scanner is moved laterally to the next point, and the cycle is 

repeated. The great advantage here is that the topographic image of the sample can be 

obtained without any lateral interaction between the tip of the cantilever and the 

sample as long as the Z-pullout chosen is large enough and it can be performed with a 

classic contact pyramidal tip. The minor disadvantage is that it is a little time 

consuming, taking approximately half an hour to produce a complete scan as opposed 

to few minutes with the conventional scanning mode. 

 

II.5.3 AFM applied to membrane 

In this part, the key points that AFM imaging brings to the membrane study and the 

technique used to image membrane surfaces are reviewed. 

The key advantage of AFM above other techniques is its ability to produce images in 

both non-conducting and conducting surfaces, in air or liquids, without special sample 

preparation. This is why AFM has been shown to be a versatile tool for the 

determination of important key properties of polymer membranes (Magonov and 

Myung-Hwan, 1996) including pore size and surface roughness (Bowen et al. 1996b) 

and (Calvo et al. 1997a) and (Calvo et al. 1997b). Atomic force microscopy can 
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indicate key properties of the membrane under many different conditions. By surface 

analysis, it is possible to give the pore size distribution, porosity and roughness, which 

are key points in modelling membrane permeation (Bowen, et al. 1997) and fouling 

(Ochoa, et al. 2001) understanding. Ahead of these common AFM measures, it is 

possible to spot a single pore and describe its shape at a nanoscale (Bowen, et al. 

1996a) that we know has an important impact on fouling characteristics (Bowen and 

Sharif, 2002b). Coupled with probe preparation technique, AFM is a powerful tool to 

measure adhesion forces (Bowen et al. 1998). Probes are prepared by adding a silica, 

polystyrene or sphere made from other material of different diameters or even bacteria 

(Bowen et al. 1999b) to the end of a cantilever without a tip. The technique is even 

more powerful when it is possible to coat the probe (sphere) with polymer (Hilal and 

Bowen, 2002) or protein (Butt, et al. 1995). 

 

II.6 BIOLOGICAL TREATMENT OF WASTE 

It has to be considered that biotechnology is one of the key elements among a panel of 

techniques implemented in a waste treatment. It is used for soil remediation in-situ or 

in a bioreactor, or solid waste treatment such as composting liquid waste treatment and 

energy production such as methane produced from landfill or in a bioreactor. Waste 

treatment processes always show multidisciplinary characteristics and the techniques 

involved are physical, chemical and biological.  

Bioremediation takes place in two stages and both are of importance from a 

remediation point of view. The primary degradation corresponds to the lost of the one 

or more functional groups. The other stage is the mineralisation, in which the entire 

molecule is oxidised to carbon dioxide, water and mineral salts (for aerobic processes). 

One of the main gains that can be seen through the use of biotechnology is the 

reduction in COD and the detoxification of the effluent such as denitrification, 

bioreduction of metal as chrome IV into chrome III. In contrast to other techniques, 

such as oxidation processes, biological processes stabilise the waste stream, as the case 

in solid waste treatment such as composting or liquid waste effluent that produce 

sludge. The advantage here is that the processed effluent is less toxic than the ingoing 
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effluent. In certain cases, oxidation processes involve reaction paths that produce toxic 

co-products, besides a global reduction in organic content. The other advantage of 

bioremediation compared to oxidation processes, is when they can be competitive 

treatment solution. The cost of oxidation processes (involving UV light, ozone 

production, use of chemicals hydrogen peroxide, Fenton reagent or titanium oxide) is 

higher then that of biological treatment.  

The use of micro-organisms for degrading waste effluent has been used for decades to 

treat domestic sewage. During the last 20 years, the rapid development of 

microbiology and biochemistry allows very effective treatment of toxic industrial 

waste effluents such as MWF to be obtained. 

 

II.6.1 Biodegradation of MWF 

It has been shown in Paragraph II.3.3 that metalworking fluids are colonised by a 

number of micro-organisms. The extraction and selection of the microorganism from 

waste MWF leads to the development of micro-organism consortia able to degrade 

MWF (van der Gast et al. 2002). 

The biodegradation of MWF, when assisted by membrane filtration, is mainly based 

on the bioremediation of the surfactants and oil that permeates through the membrane.  

Primary biodegradation of surfactant results in the loss of its functionality. Therefore, 

it can be expected to lose the undesirable properties of foaming, dissolving grease and 

forming emulsion, which are phenomenon of the effluent and even more difficult to 

treat.  

 

II.6.2 Bioreactor 

Bioreactors are enclosed vessels in which various parameters can be controlled and in 

which the biodegradation takes place. The immobilisation of micro-organisms in 

biofilms has great advantages that can be summarised as follows: 
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 Maximises the retention time of the biomass 

 It enhances the productivity per unit of biomass 

 System can sustain higher flow rate without washout 

 The fixed systems are more resistant to contamination by microbes or 

overdosed contaminant, making the overall process more robust. 

Different types of bioreactors can be used to treat industrial waste effluent. Two 

systems of bioremediation can be found aerobic or anaerobic. When oxygen is 

provided to the bioreactor, the system is aerobic and when the bioreactor is deprived of 

oxygen, the system is anaerobic. The differences between aerobic and anaerobic 

system is fundamental from a microbiology point of view. For the engineering side the 

difference resides essentially into 8 main technical considerations as presented in  

Table II-2 

 

 Aerobic system Anaerobic sytem 

Rate of degradation + - 
Organic load acceptance - + 
Complex organic degradation - + 
Oxygen  Imperative NO 
Heating  Facultative Needed 
Robustness/simplicity/maintenance + - 

Odour and gas treatment * + - Methane 

Biomass production - + 
Running cost + - 
Cost investment  + - 

Table II-2: Comparison of aerobic and anaerobic systems (+) relative advantage and (-) relative 

disadvantage 

*except for methane production plant 
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II.6.3 Scaling-up 

From flask test to laboratory scale fermenter to industrial size, all parameters of the 

biological process have to be scaled up cautiously in order to ensure performance 

repeatability at each stage. Good control of the bioremediation parameters at each scale 

can lead to performance improvement. As a simple example, the oxygen intake in 100 

ml flask will be improved dramatically when the same biologic system is set-up in a 2 

litres batch reactor, agitated, and in which air is bubbling due to the great improvement 

of exchange surface area between the gas phase and the liquid phase. In order to ensure 

good repeatability of remediation performances, inocula of consistent quality, which 

provide sufficient quantity, are necessary. For the inoculation of a large vessel, it is 

necessary to provide a large volume broth, 10% of the vessel volume that is going to 

be inoculated (Asenjo and Merchuk, 1995). To ensure success, the micro-organisms 

should be in their exponential growth phase. This can be assessed by following the 

measurement of the broth turbidity. 

 

II.7 PHYSICAL CHEMICAL METHOD 

Physico-chemical processes are used to destabilise cutting oil emulsion. These 

processes can be divided into two categories, one that uses inorganic salts and those 

that use polymers. The first one is not effective for the removal of truly soluble organic 

chemicals. Chemical treatment of waste metalworking fluids can be easily adapted to 

any scale. Both techniques are aimed at flocculating the oil droplet to separate the oily 

phase of the emulsion from the aqueous phase. Coagulants may cause the removal of 

colloids in wastewater by two different primary mechanisms. One theory involves the 

neutralisation of the surface charges on the particle so that they can aggregate and form 

larger particles to be separated from the aqueous phase by difference in density in a 

reasonable time. The other mechanism is referred to as the "sweep flock" mechanism. 

This is based on the coagulant precipitation; the resulting nascent particles and flock 

collide with the colloids that adsorb on their surface. Both mechanisms are involved in 

colloid flocculation. 
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The acid-alum method is the most common method of chemical treatment of 

metalworking fluid. This technique uses sulphuric acid, aluminium sulphate and the 

addition of sodium sulphate and the process is described in five steps by (Burke, 1991) 

as follows: 

 Add sulphuric acid in order to lower the pH down to a range of 2.5 to 3. 

 Add aluminium sulphate, preferably as a 50-60% in weight concentrate 
solution. 

 Allow the addition of sulphuric acid and aluminium sulphate to react for five 
minutes. 

 Slowly add sodium hydroxide 50% concentrate solution in order to adjust the 
pH. 

 After ideal pH  is reached, allow solution to continue mixing for more than five 
minutes, then turn off mixing and let solution stand for as long as the flocculate 
rises to the surface. 

It is worth noting here that the agitation is kept mild.  

Although, this technique uses aluminium sulphate, other inorganic salts can be used. A 

study is presented in (Rios, et al. 1998). In their article the authors used CaCl2 and 

AlCl3 as coagulants. Sometimes the technique is supported by UF system that removed 

the large colloids. The down side of the technique is the usage of chemicals. These 

chemicals add cost to the process and may contaminate the supernatant (clear aqueous 

phase) and the oily phase. The effect of cations such as iron on further treatment may 

lead to some problems. Problems in fouling of NF or RO system and to the 

degradation of membrane polymers as it is reported in         (Gabelich et al. 2002). The 

other difficulty in using chemical techniques is the control of the doses of chemical to 

be used, especially when the inlet stream varies in concentration, not only for 

economical reasons, but also for process efficiency. Excess of chemical may lead to re-

emulsification. 
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II.8 ACTIVATED CARBON 

This part presents a brief review of the use of activated carbon in remediation 

technology. 

Activated carbon is a matrix that presents a large surface area and a strong adorption 

potential. The manufacture of activated carbon involves the creation of carbon matrix 

by pyrolyse of material rich in carbon. Activated Carbon (AC) is prepared from nut 

shells, wood, coal, or other carbonaceous material. Waste such as tyres or sludge may 

be used, this step is a pathway for waste valorisation.  

The quality of the AC is relative to the carbon content of the source that may contain 

contaminant and minerals. The rates of pyrolyse and the activation process are of 

importance. These factors influence the porosity, pores size and active surface area of 

the activated carbon. The ability of activated carbon to adsorb pollutant is linked to its 

characteristics. 

There are two classes of activated carbon: 

Powder Activated Carbon (PAC) consists of fine particles, showing a very large 

external surface and a short length of diffusion. 

Granular Activated Carbon (GAC) consists of large particles superior to 100µm, they 

show therefore, a smaller external surface than the powder one. The adsorption is 

strongly dependent of the diffusion of the contaminant into the pores of the activated 

carbon surface.  

Activated carbon may be used as a catalyst or catalyst support improving reactant 

concentration to its surface. Generally AC is used as a separation process that remove 

contaminant from the stream. The technique can be used to treat gas and is particularly 

effective at removing odours and Volatile Organic Compound (VOC) to recycle 

solvents. It is also used to treat aqueous phases. It can be used to remove trace 

contaminant. 
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Activated carbon is capable of being recycled using thermal reactivation techniques. 

This process offers very significant advantages to an activated carbon consumer; 

 The best environmental option available 

 Removal of expensive waste disposal costs  

 Conservation of existing landfill provision  

 Reduction in operating costs as regenerated material is often less expensive 
than virgin adsorbent  

 

Reactivation restores the activated carbon to a state where it is virtually identical to the 

properties of the virgin pre-cursor. 

Activated carbon is used in batch stirred systems or in continuous mode. Batch 

systems are efficient to treat small volumes and achieve equilibrium rapidly. 

Continuous systems need to be implemented when a permanent stream needs to be 

treated. 

 

II.9 FUEL INCINERATION GENERATED FROM WASTE 

Two important aspects of burning waste oil have to be taken into account. The total 

amount of energy that can be recovered has to be balanced against the total energy 

employed in the collection and refining of the used oils. The second aspect is emission; 

the major problems are PCBs, HAPs, dioxins and heavy metals. If the legal 

requirements are not met then a treatment can be done or the waste oil has to be 

considered as a hazardous waste and treated accordingly. As an example of oil 

treatment, (Bhaskar et al. 2004) presents a study on recycling waste lubricant oil using 

thermal and catalytic techniques for desulphurisation. Hazardous waste demands an 

incineration process that ensures a total oxidation of PAHs, PCBs and dioxins and a 

post gas treatment to remove heavy metal. 

A good alternative is to burn the oil in cement factory. The advantage of this method of 

disposal is that the flux of gases produced during the oil combustion mixes with the 

cement and reacts, absorbing and retains within heavy metals. There are limits on the 
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amount of contaminants to be retaining legally and technically (e.g. chlorine and zinc 

are known to have a strong effect on cement quality). 

This recovered oil is suitable and can be blended with fuel and used on site in a boiler 

or a Combine Heat and Power (CHP) plant. A lower European limit of one Megawatt 

has recently been introduced, below which it is not advisable to burn used oil 

(Department of the Environment, Good practice guide 1993)  
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CHAPTER III 

Experimental Equipment and Procedures 
 

III.1 INTRODUCTION 

This chapter describes materials, equipment and protocols adopted for each experimental 

part of the project. It is divided into ten sections including this introduction giving 

details of the process. 

Firstly, Section III.2 explains the preparation, characterisation and simulation of the 

waste effluent that is used throughout this thesis. 

The second part deals with the filtration process. This part is divided into three 

sections detailing the different membranes used, the filtration equipment at small and 

large-scale, and finally describes the method used to inject gas in the tubular 

membrane during filtration. 

The third part describes the two methods of chemical treatment in Section III.6. 

The fourth part concerns the description of the bioremediation process, including 

details of the creation of a bio consortium adapted to the waste used and the 

bioreactors. 

The fifth part of the chapter describes in Section III.8 the process that uses activated 

carbon. 

The last three sections describe analysis techniques. Section III.9 describes the Atomic 

Force Microscopy technique used to image and analyse the surface of the membranes. 

Finally, Section III.10, details the five analytical techniques used to assess the 

performance of the treatment process. 
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III.2 WASTE PREPARATION AND CHARACTERISATION 

Throughout the study, Mobilcut 232 is used as a waste stream. This section describes 

the characteristic of the oil, how the waste streams are simulated and finally, how the 

waste is characterised. 

 

III.2.1 The oil: Mobilcut 232  

Mobilcut 232 is a multipurpose semi-synthetic metal working fluid with a high oil 

content and excellent bio-stability donated by Exxon-Mobil. This oil formed a 

microemulsion when mixed with water for a wide range of oil concentrations.  

Table III-1 and Table III-2 show the principal usages recommended by Mobil. 

In these tables, concentration rates are given as percentage in volume and the letters 

stand respectively for: (E) Emulsion; (M) Micro-emulsion; (S) Solution. Mobilcut 232 

used during this work is highlighted in grey. 

Steels 
OPERATION Mild steels Mid-hard Steels Hard steels Alloyed steels 

Turning - Screw 
cutting 

Mobilcut 222  
5 / M 

Mobilcut 222  
5 / M 

Mobilcut 232  
5 / M 

Mobilcut 242  
5 / M 

Milling Mobilcut 222  
5 / M 

Mobilcut 222  
5 / M 

Mobilcut 232  
5 / M 

Mobilcut 242  
5 / M 

Drilling - Boring Mobilcut 222  
5 / M 

Mobilcut 222  
5 / M 

Mobilcut 232  
5 / M 

Mobilcut 242  
5 / M 

Tapping Mobilcut 222  
5 / M 

Mobilcut 222  
5 / M 

Mobilcut 242  
5 / M 

Mobilcut 242  
5 / M 

Grinding Mobilcut 321  
3 / S 

Mobilcut 321  
3 / S 

Mobilcut 321  
3 / S 

Mobilcut 321  
3 / S 

Sawing Mobilcut 222  
5 / M 

Mobilcut 242  
5 / M 

Mobilcut 242  
5 / M 

Mobilcut 242  
5 / M 

Gear shaping Mobilcut 232  
5 / M 

Mobilcut 232  
5 / M 

Mobilcut 232  
6 / M 

Mobilcut 151  
6 / E 

Broaching Mobilcut 232  
6 / M 

Mobilcut 242  
6 / M 

Mobilcut 242  
7 / M 

Mobilcut 151  
8 / E 

Honing Mobilcut 232  
5 / M 

Mobilcut 232  
5 / M 

Mobilcut 242  
4 / M 

Mobilcut 242  
5 / M 

Table III-1: Steel utilisation of Mobilcut 232 
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Alloys 
Operation Aluminium and alloys Copper and alloys Cast-iron 

Turning - Screw 
cutting 

Mobilcut 232  
4 / M 

Mobilcut 122  
4 / E 

Mobilcut 232  
4 / M 

Milling Mobilcut 232  
4 / M 

Mobilcut 122  
4 / E 

Mobilcut 232  
4 / M 

Drilling - Boring Mobilcut 242  
5 / M 

Mobilcut 122  
4 / E 

Mobilcut 232  
5 / M 

Tapping Mobilcut 242  
5 / M 

Mobilcut 122  
4 / E 

Mobilcut 232  
5 / M 

Grinding Mobilcut 232  
3 / M 

Mobilcut 321  
3 / S 

Mobilcut 321  
3 / S 

Sawing Mobilcut 242  
4 / M 

Mobilcut 122  
4 / E 

Mobilcut 232  
4 / M 

Gear shaping Mobilcut 242  
5 / M 

Mobilcut 232  
5 / M 

Mobilcut 232  
5 / M 

Broaching Mobilcut 242  
6 / M 

Mobilcut 242  
6 / M 

Mobilcut 232  
6 / M 

Honing   Mobilcut 232  
4 / M 

Table III-2: Alloy utilisation of Mobilcut 232 

 

The oil concentration varies between 3% and 6% of oil in volume depending on the 

application and for some specific applications this concentration may rise to 10%. The 

concentration of the waste metalworking fluid (MWF) is also dependent upon the 

water loss during cooling and mode of collection of the waste fluid. In an industrial 

environment, the oil concentration is variable and a fixed oil concentration must be 

chosen in order to study the filtration behaviour. An initial oil concentration is fixed at 

5% in volume to study the microemulsion filtration and to simulate the waste stream. 

 

III.2.2 Waste simulation and metalworking fluid preparation 

Typically, the waste has an oil concentration that varies from 1% to 10% in volume. 

Therefore, in order to simulate the waste, a microemulsion of Mobilcut 232 is mixed at 

5% of oil in volume with tap water. Figure III-1 shows the coolant-mixing unit 

OSCAR CMS (CARDEV Ltd).  This mixing unit allows the production of a constant 
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microemulsion freshly made when needed. In the rest of the work, the effluent is 

identified by MWF (MetalWorking Fluid) followed by a percentage showing the part 

of oil in volume measured by refractometry. MWF 5% stands for an emulsion at 5% in 

volume of Mobilcut 232 as described in this paragraph. The blend is done using tap 

water. 

Other filtration tests are carried out using the retentate that has a concentration of 20% 

(MWF 20%). This retentate is obtained after filtration with FP100 ultrafiltration 

membrane of original MWF 5% prepared as above. 

 

Figure III-1: Mixing unit 

 

III.2.3 Waste characterisation 

a) Oil content 

A refractometer enables the direct measure of the oil content of the microemulsion 

when between 0% and 15%. The abacus is shown in Figure III-2. When the oil 

concentration is over 15%, the microemulsion is diluted with tap water at 50%, then 

the reading is taken and the result multiplied by two to calculate the actual oil 

concentration. The reading is accurate at ±0.2%. 

 

Oil pump

Water tank 

Oil 
distribution 

control 

Distributor
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Figure III-2: Abacus for oil concentration in water applicable for Mobilcut 232 
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b) Oil droplet size 

Oil droplet sizes are measured by Photon Correlation Spectroscopy (PCS) using a 

ZETASISER 3000 from Malvern Instrument Ltd, UK. 

The PCS technique relies on the measurement of the movement of particles 

undergoing Brownian motion. 

c) Oil and emulsion viscosity 

The viscosity of the metal working fluid is measured with a BOHIN Rheometer C-

VOR using double gap geometry. The temperature is set and controlled by a water 

bath. 

 

III.3 MEMBRANES 

Six different types of membranes were used in this work. They fall into two categories, 

ultrafiltration (UF) and nanofiltration (NF) membranes.  

 

III.3.1 Ultrafiltration membranes 

Three UF membranes, two tubular membranes and one flat sheet membrane are used. 

PCI Membrane System provided both the NF and UF tubular membrane. These 

membranes have an inner diameter of 1.27 cm and can be cut in length to fit the 

module in which they are used. Two Polyvinyldiene fluoride (PVDF) tubular 

ultrafiltration membranes FP100 and FP200 with respective Molecular Weigh Cut Off 

(MWCO) of 100,000 and 200,000 Dalton were used. These membranes are chosen for 

their chemical resistance and hydrophobic properties in order to minimise fouling. The 

manufacturer recommends operating temperatures between 10°C and 60ºC. 

Nadir membrane GmbH provided the flat sheet UF membrane UF-PS-100H made of 

polysulphone (PS) with a  MWCO of 30,000 Dalton. 
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III.3.2 Nanofiltration membranes 

Three nanofiltration membranes are used, two flat sheets and one tubular membrane. 

The two flat sheet nanofiltration membranes are BM-05D and BM-20D from Berghoff 

Filtration, Germany. They have a MWCO of 500 and 2,000 Dalton respectively. These 

membranes are negatively charged nanofiltration membranes made of polyamide. 

The tubular nanofiltration membrane AFC30 from PCI Membrane System has a 

MWCO of 3,000 Dalton. It is a thin polyamide film composite nanofiltration 

membrane used for purifying solutions of low molecular weight organics, achieving 

high retention of organics with salt passing. AFC30 exhibits good retention for organic 

molecules above 200 Dalton. The operational range recommended by PCI is at pH 

between 4 and 9.5, a temperature range between 10°C and 60°C and is resistant to 

most solvents. 

 

III.4 FILTRATIONS 

This section describes the equipment used for the filtration of MWF. Filtrations were 

carried out at both small and large-scale. Two types of filtration were carried out, 

ultrafiltration (UF) and nanofiltration (NF). The first part, III.4.1, describes the three 

small-scale units used in this work. In Section III.4.2, the two large-scale units and the 

filtration protocols are detailed. Finally, specific filtration procedures are given, 

starting with washing cycles, cold-water flux (CWF), pressure excursion and 

temperature tests. 

 

III.4.1 Small-scale filtration units 

Membrane filtrations were carried out using the different membranes mentioned in 

Section III.3. 
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III.4.1.1 Dead-end filtration cell 

The dead-end filtration cell is used with the nanofiltration flat sheet membrane. 

a) Description of the cell 

The dead end filtration work was conducted with a stirred cell model 8010 from 

Millipore Corporation, USA. The cell, described in Figure III-3, has a capacity and 

hold-up volume of 10 and 0.2 millilitres respectively. It holds a membrane disc of 25 

millimetres in diameter and the effective membrane area is 4.1 cm2. The maximum 

operating pressure of the cell is 5.17 bar. A magnetic stirrer assembly is mounted 

inside the cap assembly. The design of the body allows the stirrer to be as close as 

possible, just above the membrane. 

 

 

Figure III-3: Dead-end filtration cells 

 

b) Operation of the cell 

When operating the cell, the membrane is mounted on the membrane holder then the 

O-ring gasket locks the membrane in place. The rest of the body is assembled and the 

10 millilitres of solution is poured into the cell. With the magnetic stirrer in place and 

the cap assembly locked, the cell is stirred for 15 minutes to allow the membrane to be 

wetted with the solution stirred above it. The pressure relief knob is closed and turning 

on the nitrogen gas cylindrical valve sets the operating pressure. 



Chapter III  Experimental Equipment and Procedures 

65 

c) Protocol 

The applied pressure was set at 4.8 bar, the stirring rate at 300 rotation per minute 

(rpm) and the permeate flux was measured volumetrically. The permeate was collected 

in a graduated cylinder and the time to collect a certain volume of permeate was 

measured in order to determine the flux. The flux was determined by measuring the 

time for 1 ml of permeate to pass through the membrane. The flux was measured 4 

times and the mean of these measurements was then calculated. A Cold Water Flux 

(CWF) was measured before and after filtration. The CWF is the measurment of the 

membrane permeate flux of demineralised water at 20°C and is described in Section 

III.4.5 

 

III.4.1.2 Flat sheet unit 

Figure III-4 shows a dual ultrafiltration membrane cell. This cell was mounted with 

two sheets of Polysulfone Nadir membrane described in III.3.1. The total filtration 

surface area is 0.0135 m2. These sheets are mounted in the filtration unit in series. The 

filtration was carried out at a pressure of 1.5 bar, using MWF 5% for feed. 

Figure III-4: Small scale UF flat sheet unit 

 

 



Chapter III  Experimental Equipment and Procedures 

66 

III.4.1.3 Cross flow small-scale unit 

The tubular cross flow small-scale unit enables some preliminary experiments to be 

carried out with tubular ultrafiltration membranes and to determine optimum 

parameters of washing cycles. This unit was also used to study the effect of 

temperature on the filtration of MWF and to study the injection of gas during the 

filtration of MWF. 

Figure III-5 shows the small cross flow filtration unit. This unit is fitted with two 

tubular ultrafiltration membranes 1.27cm inner diameter and 30cm long situated side 

by side and connected by a U bend. The total length covered from the inlet manometer 

to the outlet is 70 cm. The membrane tubes in this configuration show a total effective 

filtering area of 0.024 m2. The pump used is from Mono Pump Ltd, Manchester model 

CMM253/H13F and delivers a maximum pressure of 3.45 bar. The pump is fitted with 

a motor from Brook Compton Ltd, Doncaster Model KP 7575. At the maximum inlet 

pressure, the maximum flow rate measured is 0.277.10-3 m3/s (1000 L/h). 

The pump recycles the feed solution from a 20 litre feed tank through the membrane 

unit. It is possible to recycle the permeate in order to undertake a constant feed 

solution concentration or to withdraw the permeate from the re-circulation loop to 

undertake a concentration filtration. The concentrate tends to heat up during filtration 

therefore, to ensure a constant feed temperature a cooling coil is placed in the feed 

tank. An electrical resistance, controlled by a thermostat, may replace the cooling coil 

when experiments are carried out at higher temperatures.  

 

Figure III-5: Small-scale tubular membrane unit 
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III.4.2 Cross flow large-scale equipment 

This part is concerned with the two large-scale filtration units as well as a 

comprehensive methodology to run the two units.  

 

III.4.2.1 Membrane filtration module 

The membrane module is the same for both units, shown as 1 in Figure III-6 (page 69) 

and consists of 18 tubes, each 95 cm centimetres long in which the membranes are 

fitted. The membranes have a total surface area of 0.64 m2. The filtered fluid goes 

through the 18 tubes in sequence. The end caps of the filtration module U-bends fitted 

to each membrane so that the fluid enters the first membrane and is distributed via a U-

bend to the second and so on. It finally enters the eighteenth and leaves the filtration 

module. All appends as if the fluid is following a single multi-bend tube of 17.10 m 

long. A diagram of the module is given in Appendix C. 

 

III.4.2.2 Power 

Power for the entire system is provided via one 415V "3-phase and neutral" plug, 

which is located on the first membrane system. Power to membrane system two is 

switched on via the main control panel located on the first unit. 

 

III.4.2.3 Waste Coolant tank 

The waste coolant tank has a capacity of 2000 litres, with a glass window indicating 

the fluid level. Fluid is drawn from the waste oil tank via a floating pick up, drawing 

fluid from the top. The fluid then passes through the clear hose into the long stainless 

steel pre-filter on system Unit 1. This pre-filter is fitted with a re-usable nylon mesh 

bag filter rated at 300 microns. 
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III.4.2.4  Description of the filtration units 

This part describes each pump and the valves used to operate both membrane system 

units. 

a) System unit 1 

This unit is composed of six different tanks that are described in Figure III-7. 

The first membrane system unit consists of six tanks and five pumps. The main tank 

(1) is charged with 180 litres of waste. The waste is then pumped to a coalescing tank 

(2) filled with plastic beads that help to remove tramp oil. Then it overflows back up 

into the inner process tank (3). From that tank, the waste is driven to the membrane 

module. Tank (4) is used to collect the permeate, tank (5) is used to contain nutrient to 

feed the bioreactor and tank (6) is used to collect the oil from the coalescing tank. 

A Grundfos pump, type CR2 110, drives the first and second membrane units. The 

membrane back-pressure can be tuned with a valve. A bypass is added to the pump 

outlet and when the bypass is opened, the membrane can be operated at lower pressure 

and different cross membrane pressures (XMP) can be applied to the system. Two 

pressure gauges allow the TMP and the XMP to be set. The TMP is the pressure 

average across the membrane unit, calculated as the average between inlet pressure and 

outlet pressure. The XMP is the pressure drop across the membrane unit. At the 

membrane unit outlet, a flow meter allows the fluid velocity to be calculated. 
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V3 

 

Figure III-6: Side view of the first membrane unit 

1: membrane module; 2: M1 process pump; 3: charge pump; 4: circulation pump behind (3);
 5: prefilter 300µm; 6: prefilter 100µm; V3 permeate diverting valve 

 

 

1 2 

3 4 
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Figure III-7: Top view of the filtration unit 1 

1: main tank; 2 coalescer tank; 3 process tank; 4 permeate tank; 5 nutrient tank; 6: tramp oil 
tank; 7: back-pressure valve 
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b) System unit 2 

Figure III-8 shows the membrane filtration unit 2. This unit consists of three tanks and 

three pumps. The main tank has a capacity of 600 litres. The effluent is pumped into an 

internal process tank through a 100µm filter. From the process tank, the fluid is 

pumped to the membranes. To wash the membrane, an external tank is used that is 

driven by the process pump. Both the main tank and washing tank can be flushed with 

the third pump. 

 

 

1 
2 3

Control Panel 

45 7 

6

 

Figure III-8: Filtration unit 2 

 
1: main tank; 2: process tank 3: external washing tank; 4 process pump; 5: circulation pump; 6: 

back-pressure valve; 7: Process/ flushing valve 

 

This unit has its own control panel and an external flushing tank. The large double 

valve, shown as (7) on Figure III-8, must be facing outwards during processing, and 

downwards during flushing. 
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III.4.2.5 Filtration operation 

This part explains how each unit described in III.4.2.4 can be operated. 

a) System unit 1 

From the pre-filter, the fluid is drawn through the charge pump (pump M3, operated 

via charge pump stop/start switches on main control panel) into the main tank of 

system 1. The charge pump will continue to run until the fluid level in the main tank 

rises to the bottom of the internal process tank, at which point, the high level float 

switch is made and the pump is stopped. Each charge allows 180 litres to enter the 

main tank. With this system, the filtration is carried out in semi-batches of 180 litres. 

Once the main tank is full (1), the circulation pump (4) can be started using the 

circulation pump start button on the main control panel. The circulation pump draws 

the fluid from the floating pick up in the main tank of system 1 through a large plastic 

filters, fitted with a re-usable bag rated at 100 microns into the coalescing tank. A 

pressure switch is fitted to the pump to stop the pump when the pressure reaches 3.5 

bar (i.e. when the blue filter (6) is blocked), as well as a pressure gauge to give visual 

confirmation. Once the fluid sprays over the coalescing tank (2), it passes down 

through the coalescing media, returns up through the rear chamber and floods into the 

internal process tank (3). When the internal process tank is full and overflows into the 

main tank, the process can be started. A full description of the coalescing medium is 

given in Appendix D. 
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Once running, the membrane pressure control valve can be carefully closed until the 

membrane inlet reaches the desired pressure. The XMP may be adjusted by opening 

the bypass valve positioned at the membrane inlet, which diverts part of the flow back 

into the process tank. The process pump now feeds from the internal process tank and 

pumps through the membranes, returning the concentrate to the internal process tank 

and the permeate via a flow meter and a valve V3 to the permeate tank if V3 set to 

process mode, or back to the internal process tank if V3 is set to flush mode.  

During normal operation, processing continues until the level in the main tank drops so 

the pump is not able to feed the internal process tank. Then the process tank level 

slowly drops until the process tank float switch is no longer made, at which point the 

process pump also stops. 

 

b) System unit 2 

When the second membrane system is "full" (i.e. level just meets bottom of internal 

float tank), the circulation pump (M2A) should be started. This pump draws from the 

bottom of the main tank through a filter into the internal process tank. The filter is 

fitted with a re-usable nylon mesh bag filter rated at 100µm to retain all the large 

biological material that escapes from the bioreactor. 

When the internal process tank is full, the process pump can then be started. Before 

starting the process pump, ensure that the membrane pressure control valve is fully 

open and that the membrane valve opposite is set to "membrane open". Once running, 

the membrane pressure control valve can be carefully closed until the membrane 

pressure is satisfactory. 

Fluid from the main tank is pumped through the membrane pod. Concentrate is 

returned to the internal process tank, whilst permeate is fed into an IBC, via a flow 

meter. This process continues until the low-level float switch is reached. At this point, 

the process pump cuts off and the level in the internal float tank drops until its float 

switch breaks contact - this cuts off the process pump. The resulting concentrate can 

then be drained via drain pump 2, which is controlled from the main panel.  
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III.4.2.6 Flushing operation 

This section describes the flushing operation that are carried out when the membrane 

requires cleaning. 

 

 

 

a) System unit 1 

A hosepipe is attached to the cam-lock fitting on the inlet of the process pump. Clean 

water is passed through until the water spilling out of the internal process tank is 

relatively clean. Surfactant is then added to the process tank, and the process pump 

started as described in Section III.4.2.5. Valve V3 has to be turned to the flush position 

to divert permeate back into the process tank. This processing continues until the 

system is turned off (usually 30 - 60 minutes is sufficient time). The full washing 

protocol has been studied and optimised in this work and is given in III.4.4. The 

concentrated solution can then be drained from the system using drain pump 1 via 

valve V10 - when V10 is turned clockwise, the coalescer is drained. When the valve is 

fully turned anti-clockwise, the main tank is drained. The internal process tank is 

drained into the main tank via valve V6. 

 

b) System unit 2 

To flush system 2, the external flush tank must be used. The external flush tank is 

filled with fresh water until the top float switch is reached. The membrane module is 

flushed, then surfactant is added to the water. Valve V21 is turned to divert permeate 

back into the external washing tank. The large double valve underneath the flush tank 

is turned downwards for flushing. This diverts the process pump and changes over the 

control of the float switches from the internal flush tank to the external flush tank. 
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The external flush tank can be drained via V19B, using drain pump 2 controlled on 

main panel of the first unit. 

 

III.4.3 Filtration protocol 

Prior to any experiment or when a new membrane set is used, a washing cycle is 

carried out as follows.  

 

 The content of the membrane unit (process tank, pump and membranes) is 
emptied via the pump to the main tank. 

 The unit is flushed with 25 litres of tap water at 45ºC via the concentrate 
tap. 

 1% of surfactant is added to another 25 litres of tap water at 45ºC to wash 
the membranes. 

 The permeate valve is opened in order to recycle the permeate back into 
the process tank. 

 The washing cycle runs as described in III.4.4.2, page 77. 

 The liquid present in the membrane, pump and process tank are flushed 
after 20 minutes. 

 The system is rinsed with 25 litres of tap water at 45ºC and the re-
circulation lasts 5 minutes. 

 

III.4.4 Washing cycles  

Membranes are washed when they are fouled or when they need to be regenerated, in 

order to ensure the same state of the membrane surface when a new set of filtration 

starts. This washing cycle has been studied and optimised. Therefore, this part 

describes how the optimisation of the washing cycle has been conducted and explains 

the washing cycle used for each filtration experiment. 
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III.4.4.1 Optimisation of washing cycles 

This optimisation is carried out with the tubular small-scale unit fitted with 

ultrafiltration membrane FP100, this unit was describe in Section III.4.1.3. Figure III-9 

shows a diagram of the experimental set up. 

 

Figure III-9: Experimental set up used for washing cycle and temperature test 

 

The efficiency of the washing cycle of the membrane surface is evaluated using six 

factors; surfactant concentration, washing solution temperature, re-circulation velocity, 

washing cycle duration, volume of washing solution and the application of pressure 

during the washing cycle. The screening of these factors is undertaken using eight 

trials where each factor is varied between two values (state –1 and state +1) defining 

the experimental domain. The experimental domain is set up regarding the membrane 

characteristics and surfactant use recommended by the manufacturer. Table III-3 

shows the values taken for each factor and defines both states. Experiments are 

structured using an optimal experimental plan based on Plackett and Burman matrix 

(Lanteri and Longeray 1998) and (Plackett and Burman 1946) to reduce the large 

number of trials. To study these six factors, a minimum of eight experiments are 

necessary. A further two experiments are added to the experimental program, one at 

the centre of the domain where each factor takes a middle value and the other with no 

surfactant added. Table III-4 shows the experimental program with the two extra trials 

in the last two rows (9 and 10). The importance of each factor is calculated by the sum 

of the cold water fluxes of each experiment taking into account the sign of the state 
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(State –1 or State +1). This sum is then divided by the number of experiments. The 

first column of the matrix consists of only +1 state so this calculation leads to the 

average response over the experimental domain. 

 

Factor State (-1) State (+1) 

Surfactant concentration (%) X1 0.5 1.5 

Washing temperature (oC) X2 40 60 

Washing time (minutes) X3 15 45 

Volume of solution (litres) X4 5 15 

Application of pressure (no units) X5 No Yes 

Re-circulation velocity (m/s) X6 2.7 3.6 

Table III-3: Value of the washing cycle factors 

 

Experiment 
number X1 X2 X3 X4 X5 X6 

1 1.5 60 45 5 Yes 2.7 

2 0.5 60 45 15 No 3.6 

3 0.5 40 45 15 Yes 2.7 

4 1.5 40 15 15 Yes 3.6 

5 0.5 60 15 5 Yes 3.6 

6 1.5 40 45 5 No 3.6 

7 1.5 60 15 15 No 2.7 

8 0.5 40 15 5 No 2.7 

9 0 60 30 10 No 3.6 

10 1 50 30 10 No 3.6 

Table III-4: Explicit experimental plan for washing cycle optimisation 
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The washing solution is prepared in a clean container where the surfactant is mixed 

with tap water at the correct temperature (60 or 40ºC) in the required volumetric 

proportions (0.5 or 1.5%). The washing temperature is maintained with a thermostat. 

When needed to be applied, a 3.5 bar pressure is maintained for one minute prior to the 

last five minutes of washing. The velocity of the washing solution is controlled with a 

valve placed before the pump inlet; allowing variation of the velocity between 2.7 m/s 

and 3.6 m/s. 

 

III.4.4.2 Washing protocol  

This section describes the washing cycle protocols used to regenerate the membrane 

surface and to ensure that in-between sets of filtration, the surface membrane is in an 

identical condition each time that a filtration experiment takes place. The washing 

protocol has been set after an investigation carried out by (Busca, Hilal, and Atkin 

2003) and similar protocol was used by (Chen, Kim, and Ting 2003) to investigate the 

optimisation of washing cycle. This investigation looked at six parameters that have 

been thought to influence the effectiveness of a washing cycle. The results of the 

investigation are presented in Chapter IV. 

The protocol followed in this work to regenerate membrane surface is applied to both 

UF and NF tubular membranes in the  small and large-scale units and can be described 

as follows. The membrane unit is fully flushed with 45°C tap water, then the process 

or feed tank is filled up with a surfactant solution (1% of surfactant) Surfactant 

SURFACT HDL manufactured by Surfachem Ltd: United Kingdom. Surfact HDL is a 

caustic, biological, heavy-duty laundry liquid containing sodium tripolyphosphate 

(STPP). Table III-5 recapitulates the main properties of the surfactant. This surfactant 

is mixed with tap water to the required concentration at 45°C. The filtration process 

then takes place without the application of back-pressure for at least 20 minutes. The 

permeate is re-circulated into the feed tank. After cleaning, the membrane unit is 

flushed and tap water at 45°C and is re-circulated to desorb the surfactant adsorbed at 

the membrane surface. Then the membrane unit is flushed with cold water to bring 

back the temperature of the unit to 20°C. 
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Appearance at 20°C White liquid 

Total solid content 35% 

Total surfactants content 10% 

STPP content 25% 

Density at 20°C 1.24 kg/L 

pH (0.5% aqueous solution) 9 

Viscosity at 20°C 11000 cps 

Table III-5: Surfactant properties 

 

III.4.5 Cold water flux protocol 

This paragraph describes the protocol used to measure Cold Water Flux (CWF). CWF 

is used to assess to what extent the membrane recovers the water flux after filtration or 

after the cleaning cycle. 10 litres of reverse osmosis (RO) water at 20ºC are used to 

flush the system. The RO water has an original conductivity of 0.11µS, at 20ºC. The 

RO water is filtered at 20°C and under constant conditions of pressure. The permeate 

is not returned to the feed tank to avoid any contamination of surfactant or permeate 

that may be left in the membrane unit. After having taken a series of permeate flux, 

(CWF) the conductivity in the process tank is checked. If it is below 10µS, the test is 

acceptable. If not, the unit is flushed again and a new CWF is measured, applying the 

same procedure. 

 

III.4.6 Temperature tests 

The small-scale tubular membrane unit shown in Figure III-5 and adapted as shown in 

Figure III-9, is used to study the effect of temperature on the ultrafiltration. An 

electrical resistance, controlled by a thermostat, replaces the cooling coil when 

experiments are carried out at higher temperatures. The membrane is cleaned after 

each trial. The MWF is filtred at a constant inlet pressure of 3.6 bar. Experiments are 
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carried out at three feed temperatures 20°C, 30°C and 45ºC. Flux, permeate turbidity 

and TOC are reported for both FP200 and FP100 membranes.  

For each temperature, two types of filtration take place. The first set of experiments is 

carried out at constant feed concentration and the permeate is therefore recycled into 

the feed tank. The second set is carried out with increasing concentration ratio in the 

re-circulation loop. The permeate is kept separated from the feed stream resulting in an 

increase in the feed stream oil concentration during the filtration process. In the second 

case, a process tank containing 6 litres of metalworking fluid is used, allowing a rapid 

enrichment of the concentrate in oil. 

The filtration experiments in the concentration loop mode last 65 hours, resulting in 

membrane fouling. The unit is flushed with 10 litres of tap water at 45ºC. Then a 

washing cycle takes place, followed by flushing the system again with 10 litres of tap 

water at 45°C. Finally, 10 litres of RO water with a conductivity of 0.11µS is flushed 

through the system in order to rinse and cool down the membrane unit to prepare for 

cold water flux measurements. 

 

III.5 GAS INJECTION 

Gas injection is used to enhance the permeate flux in membrane filtration. The 

technique is based on the principle of introducing turbulence within the membrane 

tube. Tests are performed using the small tubular unit fitted with a single tube. The 

circulation flux in the membrane is horizontal.  

 

III.5.1 Experimental apparatus 

A picture of the experimental apparatus is shown in Figure III-10 and a schematic 

diagram is shown in Figure III-11. The assembly consists of a single horizontally 

mounted tubular polyvinylidene fluoride membrane (FP200) as described in III.3.1, 

page 62. The membrane tube has a length of 0.30 m. In this configuration, the filtration 

surface area is 0.0117 m2. The tested solution is driven from the feed tank by a pump 
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and circulated through the membrane module. The tests are carried out at inlet pressure 

of 3 bar and outlet pressure of 2.5 bar and the liquid velocity is 2.3 m/s. 

When the gas is used, compressed air is injected one metre away from the membrane 

inlet via a T piece of 6 mm internal diameter. The airflow rate is set using the 

rotameter’s valve. Adjusting the back-pressure valve controls the applied TMP. A clear 

Perspex tube, of identical internal diameter as the piping, is set between the T junction 

and the membrane module to give a clear view of the two phase flow. A reservoir (2 in 

Figure III-11) maintained at the same pressure as the membrane outlet 2.5 bar collects 

the mixture of gas and liquid. The volume of gas injected via the T-junction is vented 

from the reservoir. The difference in pressure between gas inlet and gas outlet is taken 

into account. When no gas is used, the TMP is set using the back-pressure valve on the 

membrane unit. 

The permeate flow is measured using a graduated cylinder and then the permeate is 

returned to the feed tank to maintain the constant feed concentration. Two tanks of 15 

and 25 litres respectively and open to atmospheric pressure, have been added in series 

after the pressurised reservoir. The liquid is pumped to the membrane module from the 

second tank. 
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Figure III-10: Picture gas injection assembly 

 

Figure III-11: Schematic diagram of gas injection assembly  

1: Membrane; 2: Reservoir; 3: De-foaming Tanks; 4: Pump; 5: T-junction; 6: Solenoid Valve; 
7: Air-Rotameters; 8: Graduate cylinder; 9: Gas outlet valve; 10: Back-pressure Valve; 
11: Cooling System; 12: Perspex tube; P: Pressure Gauge 
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III.5.2 Set of experiments 

The first set of experiments used demineralised water, measuring water flux when gas 

is injected at different flow rates. The flow pattern and shape of bubbles are observed 

via the clear Perspex tube. Pictures are taken using a digital camera. The second set of 

experiments used MWF 5%. 

Between each experiment using MWF 5%, the membrane unit is flushed with tap 

water at 45°C and washed for 20 minutes according to the washing protocol described 

in Section III.4.4.2. Before starting any filtration, the membrane unit is fully flushed 

with tap water and a CWF is taken at 20°C with reverse osmosis water at an inlet 

pressure of 3 bar and outlet pressure of 2.5 bar as the experiment was run. 

 

III.6 CHEMICAL TREATMENT 

This part describes the two methods used for the chemical treatment of the emulsion. 

This treatment is applied to MWF 5% and to an UF concentrate at 20%. 

 

III.6.1 Coagulation  

The effluent used is MWF 5%. Four coagulants were tested: aluminium sulphate 

hydrate, at 98% purity (Al2(SO4)3)x H2O (x=14~18) F.W.342.15; aluminium chloride, 

98% purity AlCl3, F.W. 133.34; iron sulphate pentahydrate at 97% purity Fe2(SO4)3 

5H2O, F.W. 489.94; and iron chloride FeCl3 at 97% purity, F.W. 162.21; all coagulants 

are from Sigma Aldrich Chemicals. The coagulation of the micro-emulsion produces 

two phases, an aqueous phase called supernatant and a coagulated oily phase floating 

on top of the aqueous phase. 

The Critical Coagulation Concentration (ccc) is evaluated by a simple technique, 

which consists of a series of test tubes each of 10 ml volume where the waste coolant 

is prepared and an increasing quantity of coagulant is added. The content of the tube is 

energetically shaken and left to stand for two hours followed by gentle mixing. The 

mixing allows the large flocks produced in the initial coagulation phase to collect all 



Chapter III  Experimental Equipment and Procedures 

83 

residual colloids. After mixing, the samples are left to stand for a further 15 minutes. 

The critical coagulation concentration is determined at the point where the supernatant 

is clear and below this point, a slightly cloudy supernatant remains. The coagulated oil 

and the supernatant are separated by filtration using a paper filter of 2.6 µm pore size. 

 

III.6.2 Acidification 

Sulphuric acid has been used to separate the oil from the aqueous phase of the 

concentrate. The sulphuric acid is from Argos Organic of a purity 97% and a density of 

1.84 kg/L. It has been used to prepare a 5 normal sulphuric acid solution. This 5N 

solution is used in a series of acidification of concentrate MWF 20.8%. 

500 ml of concentrate collected from UF filtration with an oil concentration measured 

at 20.8% is placed in a beaker on a magnetic stirrer and the acid is added into the 

beaker with a burette as the quantity of acid can be monitored. The stirring speed is set 

at high (300 rpm) or low (50 rpm). Five experiments were carried out: 

Experiment 1:  5 Normal of acid is added ml per ml to the 500 ml of MWF 

20.8%, stirring 300 rpm. 

Experiment 2:  5 Normal of acid is added ml per ml to the 500 ml of MWF 

20.8%, stirring 50 rpm. 

Experiment 3:  10 ml of 5 normal acid is directly added to 500ml of 

MWF20.8%, stirring 50 rpm. 

Experiment 4:  10 ml of 5 normal acid is directly added to 500ml of 

MWF20.8%, stirring 300 rpm. 

Experiment 5:  5 Normal of acid is added ml per ml to the 500 ml of MWF 

20.8%, stirring 50 rpm only 10 ml over all of acid is poured then 

stirring is completely stopped. 

Experiment 5 bis:  The aqueous phase obtained in Experiment 4 is brought back to 

pH 9.5 by adding potassium hydroxide (KOH) flakes. 
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For each experiment the pH and phase separation are measured. 

Progressive addition of acid means that 1 ml of acid is added under experimental 

condition the pH is measure and the next ml is added when the pH is stabilised. In the 

case of direct addition of acid the volume of acid is poured and the evolution of the 

solution pH value is followed over time. 

 

III.7 BIOREMEDIATION 

This part describes the methods used to extract Indigenous Community (IC) of micro-

organisms from waste metalworking fluid, how the IC is enriched to ensure good 

degradation of the permeate produced in the filtration stage. 

 

III.7.1 Extraction of indigenous community 

Indigenous Community is extracted from a real industrial waste metalworking fluid 

generated from “Mobilcut 232”. 

The waste effluent is divided into 15ml centrifuge tubes and centrifuged at 4,000 tours 

per minute for 15 min. The supernatant oil is withdrawn with a pipette; the rest of the 

solution is extracted, leaving the micro-organisms at the bottom of the tube. The pellet 

is re-suspended with Phosphate Buffer Solution pH=7 (PBS) (15 ml added). Solutions 

are centrifuged for a second time in the same conditions as above. The residual 

supernatant oil and the PBS are discarded. The pellets are re-suspended with PBS into 

ten 2 ml Eppendorf tubes. Four of them are frozen at –80ºC. The micro-organisms are 

re-suspended in 2ml of effluent for testing. 

 

III.7.2 Flask tests 

Flask tests are used to explore the feasibility of remediation of the filtered effluent by 

the micro-organisms collected in the waste, the indigenous community. 
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10 ml of pellet suspensions are added to 100 ml effluent in 250 ml conical flasks. A 

hydrophobic cotton plug closes the top of the flask and the flasks are shaken for 7 days 

at room temperature. The COD is recorded at the start, day 3, 5 and 7. At the same 

time the number of bacteria are counted with a haemocytometer count technique. This 

count will allow the determination of when the Indigenous Community (IC) starts 

growing exponentially and the rate of bacterial growth. 

 

III.7.3 Continuous stirred bioreactor 

The continuous stirred bioreactor is used to develop a bio consortium from the IC 

when working with a continuous culture. Figure III-12 shows a schematic diagram of 

the continuous stirred bioreactor. 

 

III.7.3.1 Description 

In practice, steady state is achieved when biomass, substrate and product concentration 

are constant with time. Theoretically, a chemostat will have reached steady state when 

the culture has undergone at least three residence time (Faibish and Cohen 2001). Once 

steady state has been established, step changes in dilution rate must be small 

otherwise, oscillation will occur. Enrichment allows the microorganisms to adapt to 

higher COD contents in the feeding effluent. The continuous stirred bioreactor is used 

to select the microorganisms that grow fast enough and use the effluent as a sole 

carbon source. 

Nanofiltration permeate diluted at 50% with tap water (M50/50) showing a global 

COD of 6,000 mg/L is primarily used as a feed for the bioreactor. Then, the 

concentration of the feed of the bioreactor is increased until it reaches the typical NF 

permeate of 12,000 mg/L in COD. The pH and the COD are measured at the outlet of 

the stirred bioreactor. 
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Figure III-12: Continuous stirred bioreactor 

 
1: Bioreactor; 2: Feed tank; 3: Air pump; 4: 0.22µm filter; 5: peristaltic pump; 6 collecting tank; 

 7: magnetic stirrer 

 

III.7.4 Small-scale fixed bed bioreactor  

The small-scale fixed bed bioreactor is used to study the bio-consortium developed 

with the continuous stirred bioreactor. Figure III-13 shows a schematic diagram of the 

fixed bed bioreactor, including the re-circulation loop. 

 

III.7.4.1 Description 

Reactor specifications are shown in Table III-6. The bioreactor is a five litre cylinder 

153 mm diameter packed with plastic pall ring from Koch-Glish, UK. Ten stages of 

heighten pall rings are mounted. In order to avoid any preferential route through the 

packed bed, each stage is rotated in comparison to the previous one so that an upper 

pall ring sits onto two of the previous stage Figure III-13 shows the assembly. Air is 
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injected via a porous stone at a rate of 1.2 litres per minute ensuring good agitation and 

aeration in the bioreactor.  

 

Reactor diameter (m) 0.153 

Reactor total height (m) 0.3 

Total volume (m3) 5.515 10-3 

Collector volume (m3) 0.552.10-3 

Collector effective volume (m3)
(minus air distributor volume) 0.54.10-3 

Packing Volume (m3) 4.596.10-3 

Top volume (m3) 0.367.10-3 

(2 cm above the bed) 

Void ratio (%) 77.8 

Effective volume (m3) 4.5.10-3 

Specific surface area (m2/m3) 390 

Table III-6: Small-bioreactor specifications  
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Figure III-13: Fixed bed bioreactor 

 
1: pall ring matrix; 2: feed tank; 3: peristaltic pump; 4: liquid distributor; 5: air pump;  

 6: 0.22µm filter; 7: air stone; 8: effluent outlet; 9: collecting tank; 10: re-circulation pump 

 

III.7.4.2 Bioreactor installation protocol 

Three 250 ml conical flasks containing 50% NF permeate, 50% tap water and 3% 

Minimal medium are inoculated with the frozen bio-consortium. The prepared mix is 

filtered through a sterile filter 0.22 µm. The flasks are shaken (200 rpm) for three days 

until sufficient growth occurs. The pH of the broth is maintained above 8.5. After three 

days, all the flasks are split into six new flasks and the volume is brought to 150 

millilitres with fresh filtered new M50/50 mix. After two days at 25ºC and 200 rpm the 

flasks show a pH of 8.7. Substantial growth is observed in the bulk and on the wall of 

the flasks. The bioreactor is filled up with 4 litres of the mixture (M50/50) and the 

content of each flask is poured in the bioreactor. The complement of mixture is added 

to top up the bioreactor. Air is supplied via the air-stone, the fluid is recycled at 2.75 

litres per day to ensure good mixing and the pH is measured every 12 hours to control 

that it is not dropping below 8.5. 
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III.7.4.3 Experiment 

When the pH of the bioreactor reaches 8.5 and a turbid growth is observed, the 

continuous mode is started. A peristaltic pump feeds the bioreactor with the effluent. 

Then the COD, pH, turbidity are monitored at the outlet and inlet of the bioreactor. 

The parameters studied are flow rate and NF permeate (effluent) COD concentration. 

 

III.7.5 Large-scale Bioreactor 

The large-scale bioreactor outlet set slightly lower then ythe inlet to allow a gravity 

feed on the outfall. The tank is partitioned across the middle to ensure that all fluids 

must feed in through the top, flow down through the bio decking and then back up 

through the bio-decking before they can escape. Table III-7 shows the data of the 

large-scale bioreactor. 

 

Specific surface area 100 m2/m3 

Number of internal mixing points 6000 / m3 

Void ratio 97% 

Length 1160 mm 

Width 600 mm Standard dimension 
± 10 mm 

Height 600 mm 

Material PVC 

Sheet thickness 0.7 mm 

Average dry weight 30 kg 

 

Table III-7: Bio-decking description 
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Sample points taps are fitted to the permeate inlet and the reactor outlet.  

Permeate is pumped from the first membrane unit’s permeate tank into the bioreactor 

via pump M5 (permeate pump start). The permeate rate can be varied via the knob 

adjuster between 0 and 100% of its maximum flow rate, which is 1.8 litres per minute.  

Nutrients are pumped from the nutrient tank in the first membrane unit via pump M7 

(nutrient pump start). Again, the rate at which the nutrient is delivered is variable (via 

the knob adjuster) between 0 and 100% of its maximum flow rate, which is 4 litres per 

hour.  

Air is delivered to the bioreactor via the air regulator mounted on the first membrane 

unit: air pressure/volume can be adjusted via the knob on the top of the regulator. Air 

passes through one-way valves and into each side of the bioreactor, where the air is 

injected through a ceramic air stone. One air stone is installed on each side of the 

central partition. 

 

III.8 ACTIVATED CARBON ADSORPTIONS 

This section deals with the tests using activated carbon. Activated carbon is used to 

polish the effluent that leaves the bioreactor. Another test is set to try directly to 

remediate the NF permeate. Two types of tests have been set up. The first is batch tests 

allowing the assessment of the feasibility and to get information about the adsorbtion 

isotherms. The second involves continuous process in columns. 

 

III.8.1 Activated carbon 

The activated Carbon used is a grade CC65/12/40 from CPL Environment Limited, 

Carbon Division “Carbon Plant”, is a granular activated carbon with a density of 

300kg/m3. The surface area, meso- and micro- pore volumes and average pore 

diameter of the samples have been calculated from adsorption and desorption 
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isotherms.  These were obtained by measuring the volume of N2 adsorbed on and 

desorbed from the samples over a range of pre-selected pressures from near-vacuum to 

ca. atmospheric pressure at a temperature of 77K using an ASAP 2010 unit.  The 

pressure was increased incrementally to produce the adsorption isotherm, and then 

reduced incrementally to obtain the desorption isotherm (Perry, 2003).  The value for 

the surface area was obtained using the multi-point BET (Brunauer, Emmett and 

Teller) equation, and used points obtained within the relative pressure range 0.05-0.35. 

The BET surface measured was 846m2/g. The full report of the measurement is shown 

in Appendix E. 

 

III.8.2 Batch test 

Three series of batch tests are carried out, one with the effluent collected from the 

bioreactor not filtrated with microorganisms and the second one with the same effluent 

but microfiltrated at 0.45µm and a third one with nanofiltration permeate. Five flasks 

are prepared with 0.5 grams of activated carbon and 100 ml of effluent at different 

concentrations. This procedure is done separately for each type of the effluents 

described above. Different concentrations are obtained by dilution of the effluent with 

RO water. The concentrations are 100% pure effluent, 75% (75 ml of effluent and 25 

ml of RO water), 50%, 25% and 10%. The flasks are closed to avoid any evaporation. 

They are stirred at 20°C ±1°C for 72 hours to ensure that equilibrium is reached. After 

72 hours, the samples are centrifuged for 10 min at 6000 rpm. Then the supernatant is 

collected and COD measured. 

 

III.8.3 Columns 

Three columns are assembled in parallel. Each is 0.935 meter long and 3 cm of inner 

diameter containing 212 grams of activated carbon. They are fed separately in three 

different ways: 
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 The first column is fed with bio-permeate that has been microfiltred at 

0.45µm beforehand via a small cross membrane unit specially designed to 

ensure a constant feed to the column.  

 The second column is fed directly with the bio-permeate containing 

residual microorganisms. 

 The third column is fed with the NF permeate from the AFC30 filtration of 

the MWF 5% pre-treated with UF FP100. 

All columns have an identical supply rate of 0.7 litres per day. The samples are 

collected daily from the bottom of the column and analysed. 

 

 

Figure III-14: Activated carbon column set-up 
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Figure III-14 shows the activated carbon set-up used to compare the efficiency of 

activated carbon using the three effluents described. 

III.9 ATOMIC FORCE MICROSCOPE (AFM) 

Atomic force microscopy allows the imaging of conductive and non-conductive 

surfaces, with very little sample preparation in air and in liquid environments. This 

technique is found very useful to study the structure of membrane surfaces. A number 

of imaging modes may be used to generate an image using an AFM. These modes are 

reviewed in Chapter II. 

 

III.9.1 Equipment  

The AFM used is an Explorer (TMX 2000), a commercial device from Vecco 

Instruments (USA). Silicon cantilevers (Ultralevers, Park Scientific Instruments) with 

a high aspect ratio tip of typical radius and curvature of 10 nm have been used to 

produce the membrane surface images. The only preparation required is to solidly 

attach the membrane to a steel disc with double-sided scotch tape without any 

alteration to membrane surface properties. For the analysis of surface pore 

characteristics, the integrated software of the AFM image processing is used. 

 

III.9.2 Sample preparation 

The membrane samples are placed in 500 ml of RO water for 20 minutes in order to 

clear them of any preservative substances. This procedure is repeated three times. 

Then the sample is stuck to a metallic chip that can be magnetically held on the AFM 

sample holder. For the tubular membranes, two techniques can be used. The active 

layer can be peeled off and fixed on the double-sided scotch tape. Alternatively, as 

shown in Figure III-15, it can be cut longitudinally, fixed directly on the metallic chip 

and orientated parallel to the cantilever the scan then takes place at the edge of the tube 

with a scan orientation of 90º. To eliminate the effect of the curvature on the 

membrane image, a second order levelling along the Y axis is applied. 
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Figure III-15: Sample holding technique 

 
1: tubular membrane cut longitudinally; 2: metallic chip; 3: cantilever; 4: scanner;  

 ◄─► scanning motion 

 

III.9.3 Scan mode 

Profile mode is used, allowing an image to be generated using the feed back Z-height 

at each data point to establish a topographic profile of the sample surface. Table III-8 

shows the scanning parameters used to produce the images. These parameters have 

been optimised experimentally. 

Set point 0 nA 

Z-pullout 1 µm 

Tip approach speed 10 µm/s 

Pullout speed 250 µm/s 

Scan frequency 1Hz 

Table III-8: Optimised scanning parameters 
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III.9.4 Surface analysis 

Imaging the surface of membranes enables the determination of  surface characteristics 

and membrane properties such as surface roughness, ratio geometric surface versus 

total surface, pore size distribution and pore geometry. The value of the projected area 

is the X scan range multiplied by the Y scan range. The measures and calculations are 

generated through the AFM software. 

 

III.9.4.1 Geometry  

The value of the surface area is calculated including the height (Z Data). It is 

calculated using the height (Z1, Z2, Z3 and Z4) of every four adjacent pixels. The 

surface of the rectangle described as Z1, Z2, Z3 and Z4 is computed by dissecting the 

rectangle into triangles and then computing the area of each triangle. 

Then the surface of a single triangle is calculated as: 

 

( )( )( )cpbpappS −−−=   Where ( )cbap ++= 2
1  Equation III-1 

Where: 

( ) ( )Zxa ∆∆ += 12
22

  Where ZZZ 2112 −=∆   

( ) ( )Zyb ∆∆ += 24
22

  Where ZZZ 4224 −=∆   

( ) ( )Zzc ∆∆ += 14
22

  Where ZZZ 4114 −=∆   

 

Where ∆x, ∆y and ∆z are the steps made in the x,y and z directions respectively for 

each triangle defined. 
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This calculation is applied to all the surface in order to get the total surface area 

including the Z variations. Therefore, the ratio of the projected area on top of the 

surface area gives a good indication of the sample’s surface area deviation to the 

geometric flat surface. 

Peak and valley spacing measurements give the mean value of spacing between a peak 

and a valley consecutively. For the calculation, peak spacing is defined as the spacing 

between neighbouring peaks is set at zero nm. Any peak is taken into account by 

setting minimum peak height at zero nm. The calculation is done for each 10 lines 

across the picture that counts 300 lines. 

Figure III-16: Projection of the areas defined by 4 consecutive pixels 
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III.9.4.2 Roughness: 

The area RMS –root-mean-square roughness is defined as the square root of the mean 

value of the squares of the distance of the point from the image mean value over each 

data point. 

∑ −
=

=
N

i
ZZ iN

RMS
1

21
      Equation III-2 

Average height give the arithmetic mean, defined as: 

∑
=

=
N

i
iZN

Z
1

1
        Equation III-3 

 

III.10 ANALYSIS 

Analyses are carried out in order to assess the performance of each component of the 

system and the system as a whole. 

 

III.10.1 Measurement of Total Organic Carbon  

Total Organic Carbon (TOC) and pH are used to characterise both the permeate of 

membrane filtration and the supernatant streams from coagulation. TOC is measured 

using a UIC Carbon Coulometer by combusting 20 µl of solution in an oven at 950 ºC 

in a saturated oxygen environment. The CO2 produced by the combustion is collected 

after filtration and quantified by coulometric analysis. In the reactor vessel, the carbon 

dioxide reacts with ethanolamine to form hydroxyethylcarbamic acid. A current is 

applied to the reactor vessel to regenerate the ethanolamine and the current is 

measured. This measurement can be recalculated to indicate the number of carbon 

dioxide molecules that is reacted. 
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III.10.2 Chemical Oxygen Demand 

The Chemical oxygen demand (COD) test is a fundamental test for assessing the 

quality of effluents and waste water prior to discharge. It predicts the oxygen 

requirement of the effluent and is used for assessing treatment plant performance. The 

COD is measured using premixed preparation from Palintest Ltd. In this test, the 

sample is oxidised by digesting in a sealed reaction tube with sulphuric acid and 

potassium dichromate in the presence of silver sulphate catalyst. The amount of 

dichromate reduced is proportional to the COD. The transmittance of the sample is 

measured against a reagent blank prepared in the same condition as the sample but 

with distilled water. The blank gives 100% transmittance. 

The COD after filtration depends principally upon MWF used and its concentration in 

the emulsion. 

 

III.10.3 Measurement of pH, Conductivity and Turbidity 

A Mettler Toledo Inlab 420 probe, suitable for use in oil and colloidal solutions, is 

used to measure the pH of all solutions e.g. Waste MWF, permeates and concentrate as 

well as bio-permeate and is used to follow the pH evolution during chemical tests 

acidification and coagulation. 

The conductivity is measured using a conductivity meter RS 180-7127. 

The turbidity is measured with the Hach Model 2100An Laboratory Turbidimeter. 

Turbidity is reported in Nephelometric Turbidity Units (NTU) and the turbid meter is 

calibrated using formazine standards. 

 

III.10.4 Calorific Values 

The calorific value of the floating oil obtained after coagulation of the micro-emulsion 

is measured using a Perfect Calorimetry C5000 Control from IKA. 
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For the coagulation experiments that use metallic (Al3+ and Fe3+) coagulants, the 

following procedure is applied. The oil is collected on a paper filter, placed in a Petri 

dish and then placed in an oven at 80ºC for 48 hours for drying before the 

measurement of its calorific value is taken. Two measurements are taken for each 

determination and reproducibility of the data is very good. 

In the case of acidification, regarding that clear oil is recovered, no drying is included 

in the procedure. Nevertheless, a gel is recovered in some cases and its calorific value 

is measured by adding a standard tablet of benzoic acid used to ignite the gel. This 

tablet produces a known quantity of energy withdrawn from the total amount 

measured. 

 

III.10.5 Ash content 

Ashes are produced from oil that has been recovered in the acidification process. 

 

III.10.5.1 Producing the ashes 

The sample is weighed into a dish and organic matter is combusted. The dish 

containing the residue is cooled in a desiccator and the amount of total ash determined 

by weighing. Platinum dishes are used as it is widely used crucible material. Platinum 

has a high melting point (1773ºC), good heat conductivity and high chemical inertness. 

Procedure is done as follows. A sample of approximately 2-3 grams of oil is taken and 

weighed exactly in a crucible. This sample stands in an oven at 850°C for 5 hours. 

After 5 hours, the oven is turned off and the dishes are left to cool down. Then they are 

weighed, the difference between the weight before and after combustion give the mass 

of ashes collected. This procedure is repeated 20 times in order to collect enough ashes 

to analyse. The weight of ashes can be related then to the quantity of oil burned. 
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III.10.5.2 Ash analyses 

The ashes collected are transferred to a ceramic crucible and dissolved with 

HF/HNO3/HCl cocktail in a microwave then boric acid solution is added and mixture 

microwaved again. The resultant is brought to 100 ml volumetric flask. Metal analysis 

is then carried out by ICP. 

The results are given in gram per litre in the 100 ml solution that can be easily related 

to the quantity of ashes and therefore to the quantity of oil. 
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CHAPTER IV 

Atomic Force Microscopy 
 

IV.1 INTRODUCTION 

This Chapter presents the result obtained using the atomic force microscope to 

characterise membrane surfaces.  

The results present the images and pores size distribution of the nanofiltration 

membrane used during the work these results were partially presented in  

 

IV.2 NANOFILTRATION MEMBRANE IMAGES 

Figure IV-1 to Figure IV-4 show the atomic force microscope images of the 

nanofiltration membrane surface used in the treatment of metalworking fluids. AFC30 

was used with the large-scale equipment, filtration are studied in chapter VI         

section VI-4. MB05-D and MB20-D membranes were used with the dead-end filtration 

unit to polish the aqueous phase obtained from chemical treatment of semi-synthetic 

metalworking fluids the filtration are presented in Chapter VI Section VI-2.1.1. 
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Figure IV-1: AFM imaging for AFC30 membrane large size (2µm *2 µm) 

 

 

Figure IV-2: AFM imaging of AFC30 membrane at nanometric scale. 
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Figure IV-3: Three dimensional AFM image for BM05-D with small size surface image.  

 

 

 

Figure IV-4 Three dimensional AFM image for BM20-D with small size surface image.  
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IV.3 DETERMINATION OF PORE SIZE DISTRIBUTION. 

Pore size and size distributions of each membrane, which are shown in Figures IV-1 to 

FigureIV-2, have been determined using line analysis software Figure IV-8 illustrate 

the principle of the measure. The pore size distribution identifies the pore size width of 

the membrane. Fifty to one hundred pores were measured for each membrane. In order 

to represent the pore size of all membranes with the suitable fitted equation, lognormal 

distributions has been chosen for fitting the data. This was found to give a good fitting 

to the pore size distribution data. The lognormal distribution shown in Equation IV-1 

was represented by the percentage frequencies ƒ.  

 
ƒ= ƒmax exp[-0.5(ln(dp/a)/ σ)2]                                      Equation IV-1 

 

where ƒ is the percentage of pore density, ƒmax is the maximum of ƒ, dp is a pore 

diameter, a is the mean value of the pore diameters that makes ƒmax maximum (most 

probable dp), and σ is the standard deviation or width of the distribution.  

 

Figure IV-5, Figure IV-6 and Figure IV-7 presents the pore size distribution of the 

three nanofiltration membranes each fitted with Equation IV-1. A good fitting was 

obtained. The diameters µ obtained by the fitting Equation IV-1 is very close to the 

mean diameter obtained by AFM while the values of σ represent the width of the pore 

size of the membranes. 

 

 
 

Membrane R-value ƒmax a (nm) σ(nm) 
AFC30 0.961 17.25 ±  1.16 0.551±0.012 0.224±0.023 

BM05/D 0.904 33.92±5.45 1.09  ±  0.029 0.140 ± 0.026 
BM20/D 0.978 28.56±2.17 4.15 ± 0.120 0.298±0.030 

Table IV-1: Constants obtained from fitted curves lognormal distributions 
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Figure IV-5: Pore size distribution of AFC30 with fitted equation 

Figure IV-6: pore size distribution of BM05-D membrane with the fitted equation 
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Figure IV-7: Pore size distribution of MB20-D with fitted equation 

Figure IV-8: Example of line measurement for AFM pore size determination 
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CHAPTER V 

Waste Characterisation,  

Chemical Treatment and Fuel 
 

V.1 INTRODUCTION 

This chapter presents the results of the experiments that have been carried out to assess 

the feasibility of processes involved in the final design. The first part of this chapter 

presents the characterisation of the original microemulsion. The second part presents 

the results on chemical treatments. Two chemical treatments were studied inorganic 

salt flocculation and acidification. This part also discusses the application of chemical 

treatment of the concentrate generated during the filtration process and its benefits.  

 

V.2 FLUID CHARACTERISATION 

The fluid used is Mobilcut 232 as described in Chapter III, its data sheet is given in 

Appendix I. This fluid is emulsifiable oil that forms a microemulsion when it is mixed 

with water. This part gives more details than what can be found on the data sheet and 

is an essential step towards the understanding of the waste that is going to be treated. 
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V.2.1 Characterisation of the concentrate 

Figure V-1 shows the linear relationship between Total Organic Carbon (TOC) 

measured in the concentrate effluent and the reading given by refractometry. The data 

obtained here fit a straight line of y(TOC) = 7860.4x(oil%) with a r2 of 0.9896. It can 

be seen that the TOC is proportional to the amount of oil measured by refractometry. 

Therefore, the refractometry method was used in this work to establish the TOC of the 

waste effluent and of the concentrate obtained during filtration processes. 

 

Figure V-1: Relationship between refractometry method and concentrate TOC measurements  
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V.2.2 Zeta potential measurement 

The zeta potential measures the magnitude of repulsion or attraction between particles. 

Its measurement is the key to electrostatic dispersion control. Figure V-1and Table V-1 

show the results obtained after four measurements. 

Figure V-2: Microemulsion zeta potential 

 

Run n° Mobility 
µmcm/Vs 

Zeta potential 
mV Width 

1 -4.101 -51.7 5.9 
2 -3.835 -48.4 5.7 
3 -4.087 -51.6 7.9 
4 -4.283 -54.0 9.5 

Average -4.076 -51.4 7.2 
+/- 0.184 2.3 1.8 

Table V-1: Results from the 4 measurements of the zeta potential of Mobilcut 232 at 5% 
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The zeta potential of the microemulsion droplet is -51.4 mV on average. This value is 

characteristic for a stable emulsion. Emulsions stabilised by electrostatic charges are 

considered to be stable when the absolute value of their zeta potential is over 30 mV. 

The charges supported by the droplet are negative and therefore positively charged 

molecules or ions can easily be adsorbed onto the droplets surface and induce 

destabilisation of the microemulsion by reducing the electrostatic repulsion forces 

between oil droplets. 

 

V.2.3 Droplets size distribution 

Particle size measurements are estimated by Photon Correlation spectroscopy (PCS). 

The PCS technique rely on the measurement of the movement of particles undergoing 

Brownian motion. Semi-synthetic oil Mobil cut 232 is mixed with tap water at 5% in 

oil to produce a micro-emulsion of oil in water. As dilutant, ultrafiltration permeate 

was proposed. The permeate is obtained after filtration on FP 100 (MWCO of 100,000 

kD) was diluted 4 times and filtered again with a Millipore filter 0.025µm to avoid any 

dust contamination.  

The size measurement of the oil droplets was duplicated. The sample of oil 

microemulsion needed to be diluted. The chosen dilutant was demineralised water and 

in the second case, clear UF permeate, filtered at 0.22 µm just before use and diluted 

with RO water until the count rate on the dilutant is below 3000 counts per second as 

advised by Malvern Instrument. The second dilutant was chosen in order to make sure 

that there was no significant influence on the distribution size when diluting the micro 

emulsion with RO water. 

Table V-2 presents the refractive index measure of the raw oil and dispersing medium, 

the refractive indices are entered in the software to calculate the oil size distribution. 
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Table V-2: Refractive index  

 

The three first size measurements are presented respectively in Figure V-3, Figure V-4 

and Table V-5, the numerical results reported respectively in Table V-3, Table V-4 and 

Table V-5, have been carried out using RO water at different dilutions. Figure V-3 

shows the results obtained when a count rate of 50 kCps (kilo count per second) is 

used. The red and blue curves are of the same sample measured at 5-minute intervals. 

As indicated in Table V-3, two distinct droplet sizes are found respectively at 476 and 

670 nm. It can be seen that after 5 minutes, the size of droplet increases and the width 

measurement increases, indicating an aggregation of the oil droplet. It can be 

concluded that diluting the emulsion in RO water has an effect on the oil droplet size 

distribution. This can be explained by the fact that the ionic strength of the solution is 

changed and that the concentration in the surfactant is considerably diminished, 

leading to an aggregation of the oil droplets. Nevertheless, to measure a size 

distribution, the 5% emulsion has to be diluted. In that particular case, Malvern 

indicated that it is possible to make the measurement by changing the ionic strength of 

the dilutant phase by adding some salts. However, the addition of salt may also 

interfere with the droplet size and the increase in ionic strength may not overcome the 

problem of surfactant dilution.  

 

% of UF permeate Refractive index
0% 1.332(0)
33% 1.334(0)
50% 1.334(2)
66% 1.334(6)
100% 1.334(9)

# 1.476(5)
# 1.476(3)
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Permeate

Oil
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Figure V-3: Measurement of oil droplet using RO water at low count rate 

 
Peak Analysis by intensity 

Peak Area 
(%) 

Mean 
(nm) 

Width 
(nm) 

1 100.0 467.6 123.3 
2 100.0 670.4 292.4 

Table V-3: Droplet size analysis 

 

Figure V-4 shows measurements obtained when the count rate is over 250kCps in the 

range recommended by Malvern. In this case, the size between the two measurements 

does not vary as much as previously. However, the width of the peak changes and this 

indicates that the droplet size change, probably slower than in the first case. 
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Figure V-4: Droplet size distribution with RO water at high count rate 

 

Peak Analysis by intensity 
Peak 

 
Area 

% 
Mean 
(nm) 

Width 
(nm) 

1 100 176.8 35.2 
2 100 184.2 84.4 

Table V-4: Size value of oil droplet 

 

Figure V-5 and Table V-5 show the measurement carried out at high oil concentration 

leading to a particle count rate of 550kCps over the range recommended. A single peak 

is shown, indicating that the droplet size does not vary with time (if it does, it is much 

slower than at the low count rate). This measure gives the first estimate of droplet size 

distribution of 168.4nm. 
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Figure V-5: Droplet size distribution with RO water as dilutant high count rate 

 

Peak Analysis by intensity 
Run Angle KCps. Zaverage 

(nm) 
Polydispertion Fit Time 

1 90.0 558.0 171.6 0.084 0.000334 10:47:58 
2 90.0 565.4 165.3 0.078 0.000256 10:52:15 

Average  561.7 168.4 0.081   

Table V-5: Size value of the oil droplets 

 

A measurement is carried out using UF permeate as dilutant. In this case, the 

concentration in surfactant is high and may help in preserving the size of the droplet in 

spite of the dilution. The problem with this technique is that the permeate contains 

micelles which can interfere with the measurement. Figure V-6 shows the results of  

emulsion size distribution when UF permeate is used as dilutant. Two sizes are 

observed. The first size, at 39.9 nm this can be attributed to large micelles that are 
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present in the permeate and in the original emulsion. The software calculated a 

molecular weight of 0.9 to 1.1 kDa, that is the limit of the membrane used (FP100). 

The second size is comparable to the size measured in the third case when using RO 

water and can be reasonably attributed to the oil drop size when Mobilcut 232 

produces a microemulsion in water. (Um et al. 2001) found a similar result using 

another semi-synthetic oil and gave size droplet distribution between -100 and 400 nm. 

Figure V-6: Droplet size when UF permeate is used as dilutant 

 

Peak Analysis by intensity 
Peak 

 
Area 

 
Mean 
(nm) 

Width 
(nm) 

1 31.8 39.9 18.5 
2 68.1 161.6 89.3 

Table V-6: Size value of the particles  
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V.2.4 Concentration stability 

The stability of emulsion/microemulsion depends upon the concentration in oil in 

surfactant and water producing different phases; emulsion, microemlsion, water in oil 

emulsion or gel. Therefore, a series of mobilecut 232 have been prepared at different 

concentrations using tap water. Figure V-7 shows the result of phase separation after 

72 hours standing in the test tubes. Over 50% of oil in the emulsion is stable for a few 

minutes and then separated into a gel phase and an aqueous phase. The 5 different 

phases are described in more detail in Table V-7 

Figure V-7: Picture of the different oil fraction after standing for 72 hours  

 
Sign Phase designation Characteristics 

 Microemulsion Translucent homogenous phase of oil in 
water  

 Emulsion Opaque emulsion phase increase of particle 
size leads to opacity of the homogenous 
phase 

 Gel  May be due to phase inversion containing a 
large amount of water 

 Aqueous phase Water containing soluble molecules as the 
yellow dye from Mobilcut 232 

 Oil May contain water as an inverted water in 
oil micro emulsion. 

Table V-7: Description of the different phases found when oil ratio increases 

 

5% 

10% 15% 20% 25% 40%30% 50% 100%
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V.2.5 Fluid viscosity 

Table V-8 shows the results of the viscosity measurements. The viscosity values 

shown are the mean values over a range of shear rates that can be found in the tubular 

membranes. Emulsion viscosity was not sensitive to the range of temperature applied. 

The UF concentrate is twice as viscous than the fresh metal working fluid MWF5%. 

The raw Mobil oil cut 232 viscosity decreases with temperature. 

 

Fluid MWF5% UF concentrate 20% Oil Mobil cut 232 

Temperature ºC Viscosity  (Pa.s-1) 

20 1.66E-03 3.54E-03 1.52E-01 

30 1.40E-03 2.98E-03 9.00E-02 

40 1.57E-03 3.04E-03 5.56E-02 

Table V-8: Viscosity of different effluent  

 

V.2.6 Recapitulation 

Mobilcut 232 is a stable microemulsion showing an average droplet size of 162 nm. 

This micro emulsion is not only stabilised by the very small size of its droplet, but also 

by strong electrostatic repulsion forces showing a zeta potential of –51.4mV. When the 

concentration in raw oil is increased, the oil droplet size seems to increase too, as the 

homogenous phase becomes opaque. After 72 hours, a thin oily layer appears at the top 

of the tubes test when the concentration is above 20% and the stability of the emulsion 

starts to break down. For higher oil concentrations, a gel is formed on the top of a clear 

aqueous phase. Over 50% of oil, the same pattern is observed, except that the 

separation takes place in minutes rather than hours. The oily phase grows very slowly 

from the gel phase that can be considered as stable. 
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V.3 CHEMICAL TREATMENTS 

Chemical treatment of waste metalworking fluids can be easily adapted to any scale. 

This second part presents the results obtained using independently common inorganic 

salt separation and sulphuric acid. Both techniques are aimed at flocculating the oil 

droplet to separate the oily phase of the emulsion from the aqueous phase. Coagulants 

may cause the removal of colloids in wastewater by two different primary 

mechanisms. One theory involves the neutralisation of the surface charges on the 

particle so that they can aggregate and form larger particles to be separated from the 

aqueous phase by the difference in density within a reasonable time (Lissant, 1973) 

and (Walstra, 1996). The other mechanism is referred to as the "sweep flock" 

mechanism. This is based on the coagulant precipitation as the resulting nascent 

particles and flock collide with the colloids that adsorb on their surface with them. 

Both mechanisms are involved in colloid flocculation. 

This part is divided into 3 sub-parts including the inorganic salts treatment, the 

acidification treatment and finally the measurement and comparison of the calorific 

values of sub-products generated during chemical treatment. 

 

V.3.1 Inorganic salts 

Flocculation of metalworking fluids is widely used in the industry, especially when 

dealing with oil emulsion. The principles of the technique have been described in 

Chapter II. In this paragraph, the minimum flocculation concentration of MWF5% is 

determined and the flocculation behaviour of Mobil cut 232 is discussed. In a second 

part, the quantity of flocculant needed to flocculate the concentrate MWF resulting 

from ultrafiltration membrane process is measured. The mechanism and difference in 

nature between the fresh metalworking fluid at 5% in oil and the concentrate are also 

discussed.  
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V.3.1.1 Fresh metalworking fluid flocculation 

a) Results 

Table V-9 shows the results of fast flocculation that have been carried out with MWF 

5%. The critical flocculation concentrations found for each flocculant are in the same 

order of magnitude [10-2 mole per litre of metal (M3+)]. However, aluminium sulphate 

is more efficient than iron sulphate, 33% less metallic ions are needed to flocculate the 

waste.  

 

Salt 
Apparent Ccrit  

(eq M3+ per litre) 
Kcolloid 

Al2(SO4)3 1.50 x10-02 10.935 

AlCl3 1.80 x10-02 13.122 

Fe2(SO4)3 2.00 x10-02 14.58 

FeCl3 1.80 x10-02 13.122 

Table V-9: Apparent colloid characteristic constants for fast flocculation 

 

b) Discussion 

The investigated system has an alkaline pH and is composed of a mixture of 

hydrophilic compounds. This means that the flocculation process is the consequence of 

the precipitation of Al(OH)3 and Fe(OH)3 in colloidal form and the adsorption of the 

organic components present. Flocculation of nascent Al(OH)3 by anions follows the 

Schluze-Hardy rule, which describes the relationship between the concentration of 

electrolyte required to initiate the fast flocculation of a colloid and the charge of the 

said electrolyte (Nowicki W. and Nowicka G., 1994). The empirical rule is Schulze-

Hardy rule, given in Equation V-1 

Ccrit= Kcolloid/z6   Equation V-1 
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Where z is the charge of the electrolyte which causes the flocculation, Kcolloid is a 

characteristic of the colloid and Ccrit is the concentration required for fast flocculation. 

Estimates for Ccrit for each flocculants are shown in Table V-9. 

The similarity between the constants is indicative of the compliance with the Schulze-

Hardy rule. The procedure used for the verification of the rule is not rigorous, because 

it treats the system as if Al3+ or Fe3+ were used to flocculate the colloidal system. This 

is not the case because at an initial pH of 9.5, the important flocculation agents are the 

hydroxides formation and its polymerisation and structure. What is actually happening 

is that the organic content from the colloidal system (which is a constant quantity) is 

being used to adsorb onto the nascent aluminium and iron hydroxide that forms. This 

means that the colloid is able to cause fast flocculation when interacting with a given 

concentration of nascent hydroxide. The condition fulfilling the Schulze-Hardy rule is 

met for these unknown concentrations, which corresponds to the nominal ion and 

aluminium salt concentrations, causing fast flocculation for the coolant micro-

emulsion at the given dilution. Therefore, when the Schulze-Hardy rule is tested, the 

results will indicate that it is being met (the constant has the same value for electrolytes 

of the same charge) even though the actual constant values are implicit in the apparent 

constant values. 

Another interesting factor is the different behaviour of sulphates and chlorides. 

Addition of further aluminium chloride provokes turbidity in the solution, while this 

effect is not seen in the presence of an excess of aluminium sulphate. This is a more 

complex issue. Some work on flocculation of organic matter shows that the residual 

concentration of aluminium increases with the increase of concentration of some 

organic compounds in neutral-alkaline solutions. If more aluminium is added, then the 

residual aluminium concentration decreases. This is connected to the formation of 

complexes between organic compounds and aluminium, which may be either soluble 

or insoluble (Cathalifaud, et al. 1997). In the same way, organic acids or their 

conjugated bases would be affecting the flocculation of the cutting oil. This is not 

likely to be the case here as the effect is only observed with chlorides. The potential 

effect of sequestering/complexation of cation by formation of complexes [MCln]+3-n 

must be the cause. This is observed as the concentration of [Cl-] increases, leading to a 

clear solution and flocculate and then, at higher concentrations, to turbid solutions. 
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They may be an indication of the influence of chloride concentration on the formation 

of complexes of the form [MCln]+3-n if a ratio is defined R = [Cl-]turbid
n/[Cl-]clear

n, as the 

ratio of the equilibrium concentrations of a said complex at the concentration at which 

turbidity reappears over the concentration at which a clear flocculate is obtained. This 

assumes a constant concentration of the cation M3+. As pH decreases with higher 

concentration of the flocculant salt, [M3+]turbid must be higher than [M3+]clear.          

Table V-10 shows theoretical ratios, Rturbid/clear, for complex concentrations forming at 

the nominal MCl3 concentrations leading to the onset of turbid overdosed solution and 

clear flocculate solution, for three different complex stoichiometries n. 

n RFeCl3 RAlCl3 

4 16.3 8.2 

5 32.9 13.9 

6 66.1 23.6 

Table V-10: Theoretical ratios, Rturbid/clear, for complex concentrations forming at the nominal 
MCl3 concentrations leading to the onset of turbid overdosed solution and clear flocculate solution 

flocculate, for three different complex stoichiometries n. 

[FeCl3]clear = 2.19.10-2M; [FeCl3]turbid = 3.59x10-2M 

[AlCl3]clear = 1.85 10-2M; [AlCl3]turbid=3.72.10-2M 

The calculations ignore the change in chloride concentration due to complexation, or 

the effect of other organic compounds present in the competitive formation of 

aluminium or iron complexes containing both chloride and organic ligands. It is a 

reasonable argument for the phenomenon observed that complexes are likely to reduce 

the effective cation concentration and deflocculate part of the material, or maybe 

created insoluble complexes with organic, aluminium or iron and chloride. Finally, the 

effect of the alkali/aluminium ratio in the solution is independent of pH.          

(Bottero., 1989) reported that when the ratio NaOH/AlCl3 is raised above 2.3 by the 

addition of NaOH to a solution, AlCl3 aggregation begins, with larger aggregates 

occurring for ratios above 2.6. Therefore, when a system in which the ratio 

NaOH/AlCl3 is reduced by the addition of aluminium salts, as shown in Figure V-8, 

the ratio NaOH/AlCl3 may have the effect of moving from initially larger flocks to 

smaller dispersed aggregates. Chloride may effectively take part in some kind of 
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complex formation. The ratio COD/[M3+] was measured and was found to be greater 

for both aluminium and iron chlorides. This can also be interpreted by the formation of 

chloride organic complexes that diminish the dissolved COD level in the clear 

supernatant. For the sulphate to give the same COD removal level, the flocculant has 

to be overdosed. 

 

Figure V-8: pH evolution during addition of aluminium sulphate 

 

V.3.1.2 Concentrate coagulation 

a) Results 

Flocculation tests were carried out using aluminium sulphate to flocculate 

metalworking fluid concentrate at 20.8% in oil content. The concentrate has been 

obtained by filtering fresh metalworking fluid, MWF5%, until it reaches the value of 

20.8%. The results show that 2.56x10-2 mol/L of Al3+ were needed to flocculate the 

concentrate. This is equivalent to 7.9 g of aluminium sulphate per litre of concentrate 

against 4.7 g required to flocculate the raw emulsion at 5% in oil content. This 

represents a ratio 39.5 g of aluminium sulphate per litre of oil in the concentrate 

against 94 g of aluminium sulphate per litre of oil in the MWF5%. This increase in 

flocculant needed can be explained by the fact that the quantity of oil to flocculate is 
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much more important in the concentrate than in the fresh metalworking fluid (5% 

against 20.8%). The flocculation is driven by the adsorption of oil droplets onto the 

surface of aluminium hydroxide that forms in the alkaline environment (pH 9.3). 

Nevertheless, four times more oil is flocculated with only 40% more flocculant. Two 

reasons can be given to explain this fact. The first is to consider that smaller hydroxide 

particles were formed when flocculating the concentrate. In this case, a larger surface 

area per gram of aluminium sulphate would have been created and therefore more 

droplets could have been adsorbed onto the nascent hydroxide. This is unlikely, 

regarding that both rapid flocculation in the case of fresh MWF5% and concentrate at 

20.8% have been carried out in the same conditions in a solution at pH 9.3 by shaking 

a test tube containing Al2(SO4)3 and the effluent. Therefore, this first possibility can be 

dismissed. The second reason is that the concentrate is a less stable emulsion than the 

fresh MWF5%. This destabilisation can be explained by the fact that the concentration 

of oil droplets increase bringing them closer to each other forcing them to aggregate. 

This is similar to the experiment in Section V.2.4. This mechanism is reinforced by the 

fact that the surfactant and micelles have been discarded with the permeate during the 

filtration process. Even if the size of the oil droplets contained in the concentrate can 

not be measured (due to dilution problems, knowledge of the ionic pressure and 

surfactant concentration) it is not unrealistic to presume that they aggregate, which also 

explains why the concentrate becomes white-opaque instead of amber translucent as it 

is shown in Figure V-7 on page 118. 

If the oil droplets adsorb onto the nascent aluminium hydroxide forming a nonolayer 

of adjacent spherical droplets of diameter d, then the diameter of the oil droplet in the 

concentrate phase can be calculated. This calculation can be done in two steps. At first 

from the droplet size in MWF5%, it can be calculated what  the surface produced per 

gram of aluminium sulphate in the experimental condition is. Then, working of the 

same set of equations gives the size of the aggregate in the concentrate at 20.8% of oil, 

assuming that the adsorbing surface area per gram of aluminium sulphate is identical in 

both situations. 
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b) Discussion 

Initially, a set of equations used to perform the calculations are given. Then, by 

comparing the calculations and the experimental values, the assumptions made 

previously in the results section are discussed. The hypothesis of concentrate’s 

emulsion destabilisation is confirmed. The hypothesis of an increase in hydroxide 

surface is also investigated and rejected. Finally, the nature of the destabilisation is 

discussed. The surface area of the aluminium hydroxide is based on the surface 

occupied by the adsorbed oil droplets and does not take into account the adsorption of 

other organic compounds and so should be considered inferior to the real surface area. 

The volume of a spherical droplet or aggregate is calculated using the equation of the 

volume of a sphere as follows: 

63
4 33 drV ππ

==   Equation V-2:  

where d is the droplet diameter in meters. The number of droplets for a given volume 

of oil (V total
) is calculated as follows: 

3

6
d
V

V
VN total

droplet

total
droplet π

×
==   Equation V-3:  

The surface of hydroxide covered by droplets of size d in monolayer is calculated 

using EquationV-4 and the reverse EquationV-5 is used to calculate the diameter of a 

droplet covering a known surface area in monolayer. 

2
cov

dNS droplet
×=      Equation V-4 

 

 

S
V

Cov

totald
π
6

=       Equation V-5 

 

 

Calculation of aluminium hydroxide surface area: 
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The surface covered by the oil droplet in the case of fresh MWF5% can be calculated 

because the droplet size is known to be 162x10-9m (measured in part V.2.3.). Using 

Equation V-3, the number of oil droplets of size 162 nm obtained with 5x10-5 m3 of oil 

contained in 1 litre of MWF5% is N droplet
 

N droplet
=2.246x1016 droplet per litre of MWF5%. 

Considering that all the droplets are adsorbed onto the aluminium hydroxide, generated 

by 4.7g of Al2(SO4)3 used under specific experimental conditions, this surface can be 

calculated using Equation V-4. Therefore, the surface generated by one gram of 

aluminium sulphate used under the experimental conditions is known.  

S cov
=589.46 m2 for 4.7g of aluminium sulphate is 125 m2/g. 

The formation of aluminium hydroxide gel precipitate consists of thin gibbsite layer of 

aluminium hydroxide in which every third octahedral site is occupied by an aluminium 

cation and the distance between hydroxide is 0.29nm.  

 

 

Al3+ 

 

From: http://www.tulane.edu/~sanelson/geol211/phyllosilicates.htm accessed 2003 

Figure V-9: Gibbsite Octahedral structure describing the layer of Al(OH)3 

 

The value of 125m2/g of aluminium sulphate is small but realistic regarding the 

conditions in which it is formed, and is a value for the surface area involved in the oil 

droplet adoration. 
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Calculation of the oil droplet size in the concentrate: 

Substituting N droplet
 in Equation V-4 by its expression given by Equation V-3, the oil 

droplet size or aggregate size can be calculated, assuming that conditions of spherical 

shape mono-layer adsorption of adjacent spherical shaped aggregate are realised.  

The surface to cover is the one produced by 7.9g/L of aluminium sulphate introduced 

into the emulsion, which is 990.8 m2/L (7.9g/L x 125.46m2/g). The total volume of oil 

at 20.8% in 1 litre is 2.08x10-4 m3/l. Therefore, the diameter of the oil droplets 

aggregated is d20%, calculated using EquationV-5. 

d20% = 401x10-9 m 

Nevertheless, the overall quantity of oil adsorbed on the hydroxide should correspond 

to the experimental value to validate the hypothesis of emulsion destabilisation. This 

raised the question of aggregate structure. Two structures can be proposed, a large 

coagulated oil droplet of 401nm diameter or a pack aggregated structure 401 nm wide 

of n original droplets as illustrated in Figure V-10. In order to answer this question, the 

quantity of oil in an aggregate in a close pack system has to be calculated and 

compared to the quantity of oil effectively adsorbed onto the hydroxide surface in the 

experiment.  

Quantity of oil in an aggregate 

Figure V-10 represents the oil droplet of 162nm and the merge droplet of 401 nm 

 

Figure V-10: Illustration of aggregated and merged droplets 
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If the droplets were only aggregated (droplets would not be merged), they could at best 

form a closed packed structure containing a void ratio of 26%. This would lead to a 

structure of 401 nm diameter containing only 11.2 original droplets, as calculated with 

Equation V-6 below with a void ratio of 26%. 

( ) VolumeVolumeVolumeN sphereOriginalVoidstructuredropletOriginal −−
−= /  Equation V-6 

The same calculations using Equation V-4 and a ratio of 125.46m2/g of aluminium 

sulphate shows that 10.88g of aluminium sulphate would have been used. In this case, 

using the best-packed structure, the calculation deviates from the experimental value 

(+27.11%). Therefore, it should be considered that the original oil droplet merged to 

form a larger droplet. 

The hypothesis is that the oil droplet merges to form a larger droplet of 401 nm in 

diameter with a volume of 3.375x10-20 m3. This volume is equivalent to the volume of 

oil of 15.16 original droplets of 162 nm diameter (e.g. the 15.16 droplets coagulate 

together to give a larger droplet of 401 nm diameter). It has been calculated earlier that 

the concentrate at 20.8% in oil should contains 9.34x1016 original droplets per litre. If 

it is assumed that the original droplets (d=162nm) have merged in the concentrate to 

produce larger droplets of d=401 nm diameter, then the concentrate should contain 

9.34x1016/15.16 = 6.227x1015 large droplets per litre. These droplets would adsorb 

according to Equation V-4 onto a surface of 990.4 m2. This result is very close to the 

surface found previously corresponding to less than 7.89g of aluminium sulphate. 

There is a perfect correlation between the calculated value, 7.89g, and the experimental 

value, 7.9g (-0.16%). Therefore, it can be concluded that the concentrate is an 

emulsion of the larger droplets formed on average by 15.16 original droplets merged to 

produce a single larger droplet 401nm in diameter. 
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The hypothesis of hydroxide surface increase 

To effectively reject the case of aluminium hydroxide surface effect, lets assume that 

the oil droplet does not aggregate and keeps a diameter of 162nm. Then the number of 

droplets in the concentrate at 20.8% would be N droplet
=9.34x1016 droplets per litre of 

concentrate and would cover a monolayer surface of 2452.16m2. This would have 

needed 19.55g of aluminium sulphate (producing 125.42m2/g under the experimental 

conditions). These calculated results are far from the experimental value (+247%) and 

would correspond to an increase of 247.4% in surface. No reasons can be given for 

such a surface increase. Therefore, the hypotheses involving a surface increase of the 

hydroxide can be objectively rejected. 

How stable droplets merge 

The concentration in oil is not the only reason and should not be enough to force the 

original droplets to coagulate. An increase in concentration brings the droplets closer 

and increases droplets interaction, creating aggregate. It is unlikely that the aggregates 

formed are able to spontaneously coagulate. Therefore, a mechanism enabling the 

small solid droplets, to coagulate must be explained. To explain this mechanism, 

another element has to be taken into account, the surfactant and micelles dissolved in 

the aqueous phase ensure the equilibrium between oil and water as illustrated on 

Figure V-11. In this case, an impoverishment of the concentration in surfactant (e.g. 

the surfactants permeate the membrane) has to be considered. The study of the droplet 

size at the beginning of the chapter shows that oil droplet size is sensitive to surfactant 

content. Diluting the microemulsion leads to an increase in size as shown in        

Figure V-3. In the concentrate, 15.16 original droplets would present a surface of 

12.5.24x10-14 m2 and the larger droplet representing the same volume of oil (e.g.15.16 

original droplet merged) show a surface of 2.02x10-12 m2 that is four times smaller. 

Therefore, less surfactant molecules can cover the surface of the large droplet and a 

new equilibrium oil-surfactant can be established. The opposite case is enrichment of 

surfactants in the concentrate (e.g. surfactants are rejected by the membrane). As 

shown on Figure V-12, water would be trapped in-between close oil droplets creating a 

gel. This is not observed as the concentrate at 20.8% is a stable emulsion and does not 

form a gel. Therefore, it can be concluded that the concentrate surfactants 
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concentration decreases during ultrafiltration. Following the mechanism described in 

Figure V-11 and based on Le Chatelier’s principal, surfactants present at the surface of 

the droplets re-dissolved to maintain equilibrium 1. The droplet-droplet electrostatic 

and steric forces of repulsion decrease, destabilising the droplets structure. At the same 

time, the oil droplet concentration increased. Both phenomena lead to oil droplets 

aggregation and coagulation into a larger droplets to reach a new equilibrium. 

Figure V-11: New emulsion equilibria case of surfactant impoverishment 
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Figure V-12: New equilibria case of surfactant enrichment 

 oil droplet  surfactant  water  water locked in between oil droplets 

 

V.3.2 Acidification 

Acidification is a different flocculation process, based on the principle that the charges 

at the droplet surface can be neutralised by adding protons to the system regarding that 

oil droplets are stabilised by electrostatic forces. The acid will also neutralise the pH of 

the alkaline concentrate (pH 9.3). This variation in pH can have an effect on the 

solubility of certain molecules that are in or at the surface of the oil droplets. 

A different experimental approach was undertaken for the study of the acidification 

process. Results obtained during salt flocculation show that the concentrate is less 

stable than the fresh MWF. Acidification has been carried out directly with the 

concentrate MWF20.8%. The different phases obtained during the acidification, the 

behaviour of pH and mode of operation are discussed. Acidification is also carried out 

using fresh MWF20% and results are compared with those obtained with the 

concentrate. Finally, the effect of potassium hydroxide addition to the aqueous phase is 

discussed. 

Repulsion

Oil 
concentration 

Equilibrium 1
in MWF5%

Equilibrium 2
in concentrate

Establishing new 
equilibrium

Surfactants 
remain in 

concentrate 

Gel 
formation 

Repulsion

Oil 
concentration 

Equilibrium 1
in MWF5%

Equilibrium 2
in concentrate

Establishing new 
equilibrium

Surfactants 
remain in 

concentrate 

Gel 
formation 



Chapter V Waste Characterisation, Chemical Treatment and Fuel 

133 

V.3.2.1 Concentrate acidification 

a) Results 

Five tests have been carried out; the results are shown in Table V-11. The results show 

that three phases are obtained when the MWF 20.8% is mixed with sulphuric acid. 

These phases are; an oily phase, a gel and a yellow aqueous phase as shown in     

Figure V-13. They are denoted respectively as O, G and W in Table V-11. It can be 

seen from this table that the calorific value of the gel is much less combustible than 

completely coagulated oily phase. 

 

Figure V-13: Waste metalworking fluid after acidification no2 showing the 3 phase obtained 
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Table V-11: Results from acidification tests 

 

Oil Mobilcut 232 31953 32019
O1 # # 0%
G1 20919 20259.1 1.3 18%
W1 1.7 14.4 6855.7 82%
O2 41742 41693 5.75 4%
G2 22367 6.25 10%
W2 3.68 59 6964.5 46%
O3 41707 41659 6.15 5%
G3 6.3 95%
W3 6.4 217 6884.2 0%
O4 41999 41953 14%
G4 6%
W4 6.3 268 7168.3 80%
O5 41932 41942 6.8 20%
G5 0%
W5 5.45 228 6914.8 80%
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Results reported in Table V-11 show that obtaining oil separated from the aqueous and 

coagulate phases depends on three different factors. These factors are (i) the quantity 

of acid added, (ii) the agitation rate and (iii) the mode of acid addition (direct is that 

the all quantity of acid is added to the emulsion at once and progressive means that the 

acid is introduced millilitre by millilitre over 15 minutes). 

 

b) Discussion 

Figure V-14 shows the evolution of pH of the experiment number 5. The pH is 

neutralised when 6 ml of acid are added to the metalworking fluid concentrate. When 

the oil starts to separate, more acid is added up to 10 ml of H2SO4 5N. Then, stirring is 

stopped and the pH of the aqueous phase is measured. Figure V-15 shows the 

evolution of pH with time after adding the 10 ml of sulphuric acid and stopping the 

stirring. The pH decreases during the next 90 minutes. The values reached after 24 

hours are pH 5.4 and turbidity 228 NTU as shown in Table V-11. 

 

Figure V-14: pH evolution during the fifth acidification vs. volume of acid poured 
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Figure V-15 and Figure V-16 show the evolution of pH with time in two cases 

respectively: when 10 ml of acid is added progressively and when acid is added 

directly to 500 ml of concentrate at 20.8%. 

 

Figure V-15: pH evolution when adding progressively acid  

 

Figure V-16: pH evolution after adding acid directly 
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In both cases, the addition of 5% of H2SO4 at 5N leads to an aqueous phase with very 

similar pH values, 5.6 and 5.8. The difference resides in the quality of the flocculated 

phase obtained. The products obtained are, in order of combustible quality gel, mixture 

gel/oil and fully coagulated oil. In the first case the acid is slowly added to the 

concentrate and a coagulated oily phase is obtained. In the second case the acid is 

added at once, a gel is obtained. Gels are stable after 24 hours when the ratio (W/O/G) 

are measured. It took 3 to 12 weeks to break the gel into an oily phase and an aqueous 

phase. Reaction kinetics and the coagulation process can explain the difference in 

behaviour between the two types of acid introduction mode. Figure V-16 shows the pH 

falls down to 3.5 in one second and is followed by a rapid increase to 5.5 within 30 

seconds. Figure V-15 shows a completely different pattern, in which the final pH is 

obtained after one and half hours. First, in this case, the addition is controlled and 1 ml 

is allowed when pH-meter stabilised (each minute 1 ml of acid was added). Secondly, 

when 10 ml of acid was added, the pH was 6.8 and decreased down to 5.6 after 1.5 

hours letting the coagulation take place and uncharged molecules to leave the surface 

of the droplet dissolving into the acidic aqueous phase. 

 

V.3.2.2 Fresh MWF 20% acidification 

A sixth experiment has been conducted to compare the behaviour of the concentrate 

with a fresh MWF20%. The same parameters as in experiment number 5 were used to 

allow a direct comparison. H2SO4 5N was added progressively to 500ml of fresh 

MWF20% with 50 rpm stirring, then stirring was stopped after adding all the acid. The 

pH of the aqueous phase was then measured. 

a) Results 

Figure V-17 shows the evolution of pH during the addition of the acid. It can be seen 

in the figure that a larger quantity of acid is needed to neutralise and to start observing 

the oil separation compared to the concentrate acidification. The oil effectively starts to 

separate after 9.5 ml of acid. That is, +160% more acid than in experiment number 5. 

Neutralisation occurs at 16 ml of acid added and that is +60% compared with 

experiment number 5. 20 ml of acid added, after 20 hours a gel and a turbid aqueous 
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phase 2200NTU with a pH value of 5.8 were obtained. Figure V-8 shows that the 

emulsion breakage starts at a pH value of 8.4 whereas it took place at pH 7.2 in the 

previous case using concentrate. 

Figure V-17: pH evolution vs. acid addition for fresh MWF20%  
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acidification experiment number 5. The pH of the aqueous phase has been brought to 

an alkaline pH by adding potassium hydroxide pellets. 

 

a) Results 

The pH value of the solution has been brought from 5.8 to 10. Addition of KOH flakes 

to the aqueous phase of experiment number 5 induces the formation of a white 

precipitate and a large decrease in turbidity from 228 to 2 NTU.  

b) Discussion 

The precipitate that forms can be attributed to amine and organic compounds soluble in 

an acidic environment when the solution is brought back under alkaline conditions. 

This indicates that the action of sulphuric acid is not only to neutralise charges present 

on the oil surface but also react with some components. Alkanesulfonate of general 

formula R-SO3- : Na+ or K+ can be electrically neutralised by proton contribution. 

Actions of acid on organic molecules that stabilise the emulsion (emulsifiers) make 

them more hydrophilic as shown in Equation V-7 protonation of an aminoester. Part of 

the emulsifiers dissolved into the aqueous phase leading to emulsion break down. This 

phenomenon is described by (Lissant, 1973). Mobil cut 232 contains different amine, 

amino esters. The product data sheet in Appendix B shows that it contains 15 to 25% 

in weight of alkanolamine and 5 to 15% in weight of diethanolamine esters of rapeseed 

oil. 

The drop in turbidity is due to the formation of the solid that wipes the solution of the 

remaining oils and other complexes that have been created during the acidification 

process.  

R1-O-C-N(R2R3) + H+ → R1-O-C-N
+

H -(R2R3)   Equation V-7  
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V.3.3 Calorific value 

The calorific values of the different phases recovered were measured and compared 

with each other and with other types of fuel. The purpose of these measurements was 

to determine if the recovered oil could be used as a fuel. 

 

V.3.3.1 Results 

Table V-12 shows the different calorific values found for the raw commercial oil, the 

aluminium flocculated oil, acid coagulated oil and the gel (highlighted in blue). 

Calorific value Type of Fuel Fuel kJ/g kwh/kg 
Charcoal 33 9.2 

Coal 25.33 6.9 to 9.2 
Wood 17 4.7 Solid 

Dung cake 6 to 8 1.7 to 2.2 
Kerosene 48 13.3 

Petrol 50 13.9 
Diesel 45 12.9 

Acid treated Oil 42 11.7 
Raw Mobilcut 232 31 8.6 

Ethanol 30 8.3 
Aluminium treated oil 26 7.2 

Liquid 

Acid treated Gel  20.2 to 20.9 5.6 to 5.8 
Bio Gas 35 to 40 9.7 to 11.1 

Butane (LGP) 50 13.9 
Methane 55.3 13.9 Gas 

Hydrogen 150 41.7 

Table V-12: Comparison of calorific values 1 kJ=0.0002777 kWh 

 

Results show that the oil recovered by acidification has very good calorific value and it 

is comparable to other types of fuel such as Diesel. The raw oil has a lower calorific 

value than the acid recovered oil. Both aluminium treated oil and gel have a poor 

calorific value inferior to ethanol. The great advantage here is that oil recovered by 

acidification may be used as fuel (use full product) due to its high calorific value of 

42,000 kJ/kg. 
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V.3.3.2 Discussion 

The discussion is divided into 3 parts. The first part discusses the calorific values. The 

second part deals with the use of the energy and gives some solutions for using the 

recovered oil on site. The third part deals with the pollution that may be generated by 

the oil combustion including, as an example, the ash analyses of the acid oil recovered 

from MWF20%. 

a) Results analysed  

The three following paragraphs discuss the calorific value of the acid recovered oil 

compared to raw “Mobil cut 232”, aluminium recovered oil and the gel obtained 

during the acidification process respectively. 

The difference of +11kJ/g in calorific value between the acid recovered oil and 

original “Mobil cut 232” is that raw oil “Mobil cut 232” does not contain only 

hydrocarbons but also other molecules like surfactants, biocides, emulsifiers and 

alcohol. These components have a lower calorific value for the same mass 

hydrocarbons due to their content in oxygen, sulphur and nitrogen. In the case of the 

acid recovered oil, part of these components were removed from the oily phase. This 

removal takes place in two stages. First, component parts are dissolved in the aqueous 

phase when the fluid is prepared. Secondly, the acidification process further dissolved 

components in the aqueous phase. It had been shown earlier in V.3.2.3, in the 

hypothesis, that during acidification, some components of the metalworking fluid are 

dissolved at a lower pH as surfactants and emulsifiers leave the surface of the oil 

droplets enabling coagulation. The difference in calorific values also shows that no 

water is dissolved in the oily phase. This indicates that the acidified oil is fully 

coagulated and composed mainly of hydrocarbons. 

The aluminium-recovered oil has a low calorific value of -38%, compared to the acid 

recovered oil. This can be attributed to aluminium hydroxide polymerised present in 

the oily phase. However, it can be calculated that the aluminium hydroxide represents 

less than 2% of the oil mass. Therefore, another reason should explain the important 

difference in calorific value. The coagulation process involving the formation of 

aluminium hydroxide is different from the one using acid. The method is based on the 
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adsorption of the oil droplets on the nascent hydroxide and water may been trapped the 

aluminium hydroxide structure. In the case of aluminium flocculation, the oil droplet 

flocculated but did not totally coagulate, so the water content is more important than 

for the acidification process. 

The gel obtained from the acidification method has the lowest calorific value and has a 

difficult ignition (Chapter III). This can be explained by the presence of a large amount 

of water within the gel structure. 

 

b) Use of the energy 

Under the European recommendations for installing a Combine Heat and Power (CHP) 

a minimum power of 1MW should be installed for the plant to be efficient (Chapter II). 

An installed power of 1 MW can be achieved by burning 94 kg of oil per hour with an 

efficiency of 90%. This quantity of oil corresponds to 45.1 m3 of waste MWF5% 

treated per day. This corresponds to a relatively large plant. In comparison General 

Motors in Mansfield, Ohio, USA employed 3,500 people and produced 151 m3 per day 

in 1989. Nowadays, economical and environmental considerations lead companies to 

recycle their fluid, cutting the fluid spent by 30 to 50 %. 

Three solutions to solve the issue of discrepancy between the amount of oil needed to 

be recovered and the minimum installed power.  

The exclusive use of the recovered oil as a fuel can be seen if a boiler or CHP is 

already in place in the plant and to complement and cut down the amount of fuel used. 

In the case of General Motors, the treatment would produce 88.5 MWh and suppress 

the disposal cost associated with oil. 

For smaller volumes, the same principle is applicable when an existing system is in 

place. In the case where a combustion unit (boiler or CHP) needs to be installed, it may 

be possible to advise a group to burn recovered oil and other waste in a common plant, 

for example from an estate. Hot water and electricity would be redistributed back to 

the estate. 
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The third solution may be implemented when onsite combustion is not possible. The 

solution consists of finding a contractor that would take the recovered oil for no cost 

regarding its energetic value of the waste such as a cementery. 

 

c) Ash analysis 

To be able to use the recovered oil onsite as a fuel, the toxicity of fume and ashes has 

to be assessed. The ash content measured was 13 grams of ashes per kg of recovered 

oil. Table V-13 shows the ICP analyses carried out on the ashes. The two main 

compounds found were iron and sulphur. Vanadium may cause corrosion problems but 

appears in very little quantity. Toxic metallic compounds  (shown  in  bold  in       

Table V-13) that are present in little quantity apart from lead. 

The oil has been burned at 850ºC and therefore some volatile metals such as mercury 

may have been lost during calcinations. Nevertheless, zinc which is also a volatile, low 

boiling point metal, is measured at a non negligible quantity. Therefore, despite high 

temperature used to burn the reclaimed oil the loss in volatile metal may be considered 

to be minimum.  

The values give an example of the composition of bottom ashes from reclaimed oil 

after acidification. The main concern is the presence of sulphur, which indicates the 

production of sulphur oxides in the combustion exhaust gases that may need post 

treatment. Some studies proposed catalyse ways to remove the sulphur of lubricant 

recovered oil to remove sulphur (Bhaskar, et al. 2004) proposed a system using ion 

oxide. 

The trace element found in the reclaimed oil will strongly depend on the oil history. 

The process and the nature of the metal tooled will play a major role in the metal 

content of the oil. Therefore, any consideration to use the reclaimed oil as fuel on site 

must be followed by strict analyses of the ashes and fumes content. Nevertheless, if 

any element is found in excess, using the reclaimed oil blended with another fuel may 

eliminate the problem, especially if an existing boiler or CHP plant is in used within 

the plant. This method has two effects; diminishing the quantity used it cuts down the 
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fuel cost and by diluting the reclaimed oil, a suitable blend for combustion can be 

achieved. 

 

Analyte 
Analyte per gram of ash 

(µg/g) 

Vanadium 1 

Chromium 6 

Ion 1260 

Nickel 18 

Copper 336 

Zinc 160 

Cadmium Below LLD 

Calcium 770 

Sodium 820 

Lead 473 

Aluminium 647 

Sulphur 2865 

Gold 4 

Potassium 630 

Magnesium 96 

Palladium Below LLD 

Table V-13: Ash analyses of recovered oil 

LLD; Lower Limit of Detection 
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V.4 SYNTHESIS  

These experiments helped in the understanding of each step of the completed process, 

giving indications on the nature of the waste effluent and its behaviour. Two methods 

of chemical treatment have been studied and were proposed as an alternative to 

membrane separation technology. Both chemical methods are proven to be even more 

effective when used with the filtration concentrate. Therefore, chemical treatment can 

be used as an onsite treatment for the concentrate produced during filtration of the 

waste metalworking fluid. This method can be justified by the volume reduction of the 

waste to be chemically treated, by the production of a valuable fuel and finally by the 

possibility of returning the aqueous phase back into the filtration process. 
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CHAPTER VI 

Membrane Filtration 
 

VI.1 INTRODUCTION 

The first part deals with the results obtained during the small-scale filtration study. The 

feasibility of using membrane filtration technology is discussed. Antifouling methods 

are studied. The first method is the optimisation of membrane washing cycles using 

micellar solution and the second is the use of two phase flow. The results of gas 

injection during metalworking fluid filtration are discussed. 

Membrane filtration is used for separating oil from water and treating waste metal-

working fluids. This work presents two different filtration systems. The first system 

consists of direct filtration of MWF using two ultrafiltration (FP100 and FP200) and 

one nanofiltration (AFC30) membrane. The second system consists of ultrafiltration 

membranes followed by a nanofiltration membrane. Filtration experiments are carried 

out in a large-scale, semi-batch process of volume 180 litres described in Chapter II. 

The performances of each filtration system are discussed and compared. A number of 

factors, such as concentration polarisation and fouling via deposition, pore blocking 

and macromolecular adsorption can limit this technique. Oil droplets are transported 

and eventually captured at the membrane surface, causing a drastic increase in the 

local concentration of particles, a gradual fouling and a consequent reduction in 

permeability. 

In this study, a large-scale tubular membrane unit is used for the treatment of a semi-

synthetic MWF. The effects of a number of parameters affecting permeate flux and 

quality are investigated. These parameters include trans-membrane pressure (TMP), 

fluid velocity in the membrane tube, concentration ratio in the re-circulating feed 

stream and the molecular weight cut-off (MWCO) of the membranes. 

Two models are investigated; the resistance in series theory and the gel polarisation 

theory. The study deals with filtration of high oil concentration aiming at increasing 

the retentate concentration using industrial conditions. This implies that the original 
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concentration in oil in the feed stream was 5% and increased up to 20% during 

filtration. The feed temperature increases during filtration with varying permeate flux 

and membrane retention as it has been shown in Chapter IV. Under these conditions, 

the gel layer plays an important role.  

The aim of this study is to optimise the filtration operation in order to obtain a 

permeate quality level acceptable for treatment using an aerobic bioreactor. 

Performances of the filtration stage limit fouling and improve permeate quality. 

The experiments at large scale were first carried out as recommended by the rig 

manual (Appendix C). These conditions are referred to as “cardev conditions” the 

results are presented and discussed in section VI.3. The second part presents the results 

obtained during direct MWF filtration carried out under lower TMP conditions. The 

third part presents the results obtained using the combination UF-NF filtration, using 

independently FP100 and FP200 as NF pre-treatment. 

 

VI.2 SMALL-SCALE FILTRATION  

This section deals first with the filtration carried out using flat sheet membranes, dead-

end nanofiltration and flat sheet cross flow ultrafiltration membranes. The second part 

presents the results from small-scale tubular membranes. 

 

VI.2.1 Flat sheet membranes 

These experiments helped to assess the feasibility of treating Mobil cut 232 fluids 

using membrane technology. The experiments that have been carried out are described 

in this section. Their performances are compared with the flocculation process in the 

conclusion of this chapter. 
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VI.2.1.1 Dead-end filtrations 

The dead-end filtration was used to filter the supernatant produced by flocculation 

using two nanofiltration membranes BM-05D of 500 Da and BM-20D of 2000 Da. 

AFM images and pores size distribution of these membranes are shown in chapter IV. 

The initial water flux was determined for both membranes used in this study, BM-20D 

and BM-05D. The demineralised water used here has a conductivity of 0.3 µs. The 

measured water fluxes had values of 6.94 ± 0.01 L/h/m2 for BM-05MD and 12.79 ± 

1.09 L/h/m2 for BM-20D.  

After determining the water fluxes for both membranes, the obtained supernatant from 

the flocculation step (section V3.1.1. chapter V) had a TOC of 5715mg/Land was used 

as the feed. Filtration was carried out in a dead-end filtration unit at 4.75 bar and stirrer 

speed of 300 rpm. The resultant permeates from the BM-05D membrane have fluxes of 

2.54± 0.25 L/h/m2 and TOC of 4356 mg/l, while BM-20D membrane has a flux of 

6.65± 0.73 L/h/m2 and a TOC of 3832 mg/l. 

The water flux was measured again through both membranes; the data from these 

measurements were compared with initial water fluxes to assess the extent of the 

fouling of both membranes. As shown in Figure VI-1, the water flux was reduced for 

the BM-05D membrane whereas an increase was noticed for this flux when the BM-

20D membrane was used, shown in Figure VI-2. Similar behaviours were observed 

when both membranes were reused for filtering the supernatant from flocculation for 

the second time; again the water flux was noticed to increase slightly for BM-20D and 

decrease for the BM-05D. 

The water flux experiments have been repeated several times for each case. The 

experimental errors are shown as error bars in Figure VI-1 and Figure VI-2 which 

show the data for all experiments. 

For the BM-20D membrane, the values of water flux shows that the flux has been fully 

recovered with a slight increase each time when the membrane was filtered with 

demineralised water as shown in Figure VI-2. The most probable reason for that is that 

the fouling occurring from supernatant filtration is a surface fouling, causing a layer of 
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deposited material on the membrane surface. Subsequent filtration with demineralised 

water managed to remove this layer. 

In the case of the BM-05 D membrane, the fouling is a combination of both surface 

fouling and pore blocking. Subsequent filtrations with demineralised water recovered 

some of the flux, 66% of the initial demineralised water flux after the first effluent 

filtration and 52% after the second effluent filtration was recovered. These two 

demineralised water fluxes were still higher than the flux of the effluent. This increase 

in flux is due to the removal of the fouling layer on the membrane surface. However, 

the recovery of demineralised water flux was not 100% compared with the initial 

demineralised water flux. This is likely to be due to fouling occurring through pore 

blocking. Figure VI-1 shows a further decrease in demineralised water flux. It is 

believed that this decrease is due to more pores being blocked after each supernatant 

filtration through the membranes. 

The permeation increase for any run with water that follows a run with effluent for the 

BM-20D membrane, shown in Figure VI-2, may be a consequence of molecules larger 

than 2000 Dalton entering the membrane. This may affect the structure of the 

membrane causing pore enlargement. The structural changes result in increased 

permeability to small molecules and overall fouling simultaneously. Because of the 

complex and non-characterised nature of the effluent, information cannot be given on 

the effect of this process on changes in the cut-off of the membrane with respect to 

larger molecules. 
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Figure VI-1: Water flux and effluent flux for BM-05D nanofiltration membrane 

 

Figure VI-2: Water flux and effluent flux for BM-20D nanofiltration membrane 
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VI.2.1.2 Cross flow flat sheet membrane 

The cross flow membrane unit has been used to treat waste metalworking fluid oil 

concentration of 5%. This has been carried out to compare UF performances with the 

chemical treatment performances as it has been published by (Hilal, et al, 2002). At 

this stage, no measurement of permeate flux has been carried out in detail. 

a) Results 

After carrying out the crossflow filtration using Polysulphonate ultrafiltration 

membrane of 100,000 Dalton, the collected permeate was analysed. Total organic 

carbon (TOC) was found to be 5,374 mg/Lwith a pH of 9.6. The resultant permeate 

from this membrane had much lower TOC than the feed which has a TOC of 44,209 

mg/l. The pHs of both the feed and the permeate were the same at 9.6. It is worth 

noting that the permeate has a yellowish colour and was much clearer compared to the 

feed which has a milky appearance. 

b) Discussion 

These preliminary tests show that ultrafiltration is an effective way of treating oily 

wastewater. The technique shows similar performances to the one found for the 

chemical treatment employing aluminium sulphate. However, more investigations 

presented below using tubular membranes were carried out to improve the technique. 

 

VI.2.2 Tubular membrane 

The large-scale filtration system described in Chapter III uses a cross flow tubular 

membrane. Therefore, a study of the cross flow filtration of Mobil cut 232 has been 

carried out in order to determine the effect of different parameters on the ultrafiltration 

of the waste effluent. The study of the effect of temperature and pressure has been 

carried out as well as an optimisation of the washing cycle. 
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VI.2.2.1 Effect of temperature 

The effect of increasing feed temperature on the permeate has been studied using 

FP100 and FP200 ultrafiltration membranes. Figure VI-3 and Figure VI-4 show the 

filtration of MWF5% at different temperatures using ultrafiltration membranes FP 100 

and FP200 respectively. In both cases, increasing the feed temperature increases the 

initial permeate flux. Nevertheless, concentration polarisation establishes itself and the 

permeate flux decreases progressively. This decrease is due to the feed concentration 

increasing which induces the effect of concentration polarisation. 

Figure VI-3: Permeate flux of ultrafiltration membrane FP100 at 3 different temperatures 
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Figure VI-4: Permeate flux of ultrafiltration membrane FP200 at 3 different temperatures 

 

Figure VI-5 compares the fluxes obtained from both membranes at temperatures 20°C, 

30ºC and 45ºC. The values shown in Figure VI-5 were the average flux over 200 ml of 

collected permeate. It can be seen from Figure VI-5 that the FP200 ultrafiltration 

membrane has a flux 40% higher than the FP100 at 20ºC. Figure VI-5 also shows the 

flux has increased by more than 50% for both membranes when the feed temperature 

was raised from 20ºC to 45ºC. At the same time, the quality of permeate was 

dramatically affected. 
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Figure VI-6 and 
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Figure VI-7 show the Total Organic Carbon (TOC) and the turbidity of the permeate 

from both membranes. More oil and organic matter were passing through the 

membrane pores when the feed temperature was increased. This may be attributed to 

the solubility of the oil in the hot water was better and the viscosity of the fluid 

decreased with the temperature, allowing the oil to pass through the membrane and 

produce an emulsion with lower oil concentration on the permeate side (Simon and 

Tragardh, 2000). 
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Figure VI-5: Permeate flux vs. feed temperature after 1-hour filtration 
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Figure VI-6: Permeate TOC vs. feed temperature after 1 hour filtration 
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Figure VI-7: Permeate turbidity vs. feed temperature after 1 hour filtration 

 

In industrial membrane processes, the permeate is not usually recycled into the 

filtration process. Therefore, the feed stream, which only consists of the re-circulated 

concentrate, is concentrated and rejected species increased. In this case, the oil 

concentration increases during the filtration. Figure VI-8 shows a comparison between 

the resultant permeates from FP200 UF membrane in both recycling and concentration 

systems. Both curves in Figure VI-8 were almost identical until a point where the feed 

stream concentration has an impact on the permeate flux, leading to a larger decrease 
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than recycling. The start of the rapid decrease in permeate flux was caused by the 

concentration polarisation, due to the accumulation of oil droplets on the membrane 

surface. Then the rate of flux decrease slows down due to membrane fouling. In the 

case where the permeate was recycling, the permeate flux arrives at a steady state with 

the fouling effect at 15 L/h/m2. A further decrease in the permeate flux, when there 

was no recycling, was due to an increase in the concentration ratio in the re-circulation 

loop with an increase in the gel layer resistance (Lee, et al. 1984). 

 

Figure VI-8: Comparison of permeates flux between re-circulation and concentration regime 
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surprisingly negative. This means that when the velocity of washing solution in the 

membrane tube was raised from 2.7 to 3.6 m/s, the CWF decreases by 101 L/h/m2 on 

average. An increase in feed velocity will increase the turbidity of the fluid. This was a 

favourable condition to wash away the oil from the membrane surface (Darko, et al. 

2002) and (Noordman, et al. 2002). These results can be explained by the fact that 

when the valve was fully open to give full speed of 3.6 m/s, an inlet pressure of 1.3 bar 

and an outlet pressure of 0.7 bar were measured during the whole washing cycle. At 

lower velocities, no inlet or outlet pressures were noticed. This may be attributed to the 

fact that surfactant fouls the membrane when pressure exists in the system at high 

velocity. Washing time (factor X3) and applied pressure during the washing cycle 

(factor X5) have similar importance and were both positive as shown in Table VI-2. As 

for the application of pressure (factor X5), it was more difficult to interpret because of 

interactions between pressure variations and the velocity of washing solution. The 

surfactant concentration (factor X1) has the smallest value as shown in Table VI-2 and 

does not seem to be significant.  

An increase in surfactant concentration from 0.5% to 1.5% led to a small increase in 

CWF by 51 L/h/m2 as shown in Table VI-2. It was evident that surfactant was crucial 

to clean the membrane as illustrated by the weak performance of a cleaning cycle 

without surfactant experiment (Table VI-1, experiment 9). This means that a minimum 

amount of surfactant was needed to clean the membrane. The last parameter, the 

volume of the washing solution (factor X4), has the smallest effect, as shown in Table 

VI-2, and therefore should be kept as small as possible in the system under study. Five 

litres was the minimum volume used in this case. The experimental data taken in the 

centre of the domain (10th row in Table VI-1) shows a smaller CWF flux to the average 

CWF calculated in the first column of Table VI-2. This was due to the pressure applied 

by the system running at full speed causing a higher surfactant fouling. 
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Factors 
Experiment 

number X1 X2 X3 X4 X5 X6 
Response 
(CWF L/h/m2) 

1 1.5 60 45 5 Yes 2.7 805 

2 0.5 60 45 15 No 3.6 597 

3 0.5 40 45 15 Yes 2.7 362 

4 1.5 40 15 15 Yes 3.6 487 

5 0.5 60 15 5 Yes 3.6 484 

6 1.5 40 45 5 No 3.6 509 

7 1.5 60 15 15 No 2.7 611 

8 0.5 40 15 5 No 2.7 436 

9 0 60 30 10 NO 3.6 207 

10 1 50 30 10 NO 3.6 326 

 

Table VI-1: Explicit experimental plan and CWF response 

 

Average of 
CWF 
(L/h/m2) 

X1 X2 X3 X4 X5 X6 

536.5 25.5 88.5 35.3 14.1 34.8 -50.5 

Table VI-2: Evaluation of the average effect of washing condition on the CWF 
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 X1: surfactant concentration 

 X2: Washing temperature 

 X3: washing time 

 X4: Volume of the washing solution 

 X5: Pressures Applied 

 X6: Fluid velocity in the membrane tubes 

A FP200 membrane was used to filter MWF for six hours, which led to a large 

reduction in permeate flux, indicating fouling of the membrane. This was followed by 

a washing cycle without pressure. Figure VI-9 shows the permeate flux of a washing 

cycle and the effect of pressure. It can be seen from Figure VI-9 that the washing cycle 

takes place in three phases before applying the pressure. At first, the flux declines for 

five minutes where the surfactant molecules accumulate near the membrane surface 

(concentration polarisation) until it reaches a steady state, leading to stabilisation of the 

flux for three minutes. During this stabilisation, the surfactant interacts with the oil, 

(2nd phase) which fouls the membrane surface and finally produces a rapid increase in 

the flux (3rd phase). This was due to the removal of oily fouled material from the 

membrane surface after which the maximum flux was obtained and the washing 

permeate flux decreased gradually. 

A sudden decrease of 16% in permeate flux can be seen after a pressure of 3 bar was 

applied for one minute. This decrease was not recovered with time. This sudden 

decrease may be interpreted by the fact that the washing materials have fouled the 
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membrane. 

 

Figure VI-9: Permeate flux during washing cycle and effect of applying pressure 

 

Figure VI-10 shows the filtration of MWF using FP200 with eight periodic washing 

cycles each after 6 hours using a concentration loop mode. The regeneration of the 

membrane was efficient in all cases. The permeate flux decreased sharply in the first 

few minutes. This decrease was less sharp as the number of washing cycles increased 

and may due to the adsorption of surfactant onto the membrane surface or within the 

membrane pores. The quantity of permeate collected during the first hours was 500ml 

for the initial filtration when the membrane surface was not in contact with the 

surfactant. This increased with washing cycles to reach 800 ml after the eighth 

washing cycle (Belkacem, et al. 1995). 

Figure VI-10: Filtration of MWF5% after successive washing cycle 
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using two FP200 membranes, one pre-washed with surfactant, the other pre-washed 

with tap water. The data was collected over a three hour period. Figure VI-11 shows 
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was effectively adsorbed onto the membrane surface preventing fast fouling by the oil 

emulsion. It can be seen from Figure VI-11 that the permeate flux started to increase 

after 3 minutes, a behaviour that has been seen earlier in Figure VI-9. 

Figure VI-11: Effect of surfactant used during washing on metalworking fluid filtration 

 

The necessity of using a surfactant (Micellar solution) to clean the surface of the 

PVDF ultrafiltration membranes has been demonstrated and found to be effective. 

However, the amount and concentration of surfactants play a crucial role in membrane 

fouling. In addition, they have a preventive anti-fouling effect that has been observed 

and two major factors have been identified for cleaning membrane surface after the 

filtration of metalworking emulsions: temperature of the washing cycle and an optimal 

concentration of surfactant. 

The study of the mechanism to regenerate the membrane surface fouled by the 

microemulsion using micellar solution indicates that an oily layer build-up onto the 

membrane surface during filtration. This layer can be removed efficiently by 

dissolving it into the washing solution. 
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VI.2.4 Gas injection 

Turbulence in a tubular module can be introduced by injecting air in the membrane 

unit via a T-junction in order to create gas slug flow during filtration process. The 

small-scale equipment presented in Chapter III was modified (Figure III-10) to enable 

the testing of injecting gas in the filtration system of ultrafiltration of MWF in order to 

enhance the filtration by removing or disturbing the concentration polarisation layer 

(Cui and Wright, 1996). A diagram has been presented in the experimental equipment 

and procedures chapter (Figure III.11). The modified module is fitted with a single 

tube ultrafiltration membrane FP200 29.4 cm long. Firstly, the behaviour of the 

permeate water flux when injecting air during filtration was investigated and the effect 

of gas injection on the permeate flux during MWF5% filtration was studied. 

 

VI.2.4.1 Gas injected during reverse osmosis (RO) water filtering 

The influence of gas injection on permeate flux of filtering a two phase water/air flow 

is tested using reverse osmosis water with a conductivity of 0.11µS. Reverse osmosis 

water gives no concentration polarisation and has a constant permeate flux under 

constant TMP. Therefore, any variation in permeates flux that appears during RO 

filtration can be interpreted as a gas phase effect. 

a) Results  

Figure VI-12 shows the result of reverse osmosis water filtered at a TMP of 2.75 bar 

and a temperature of 20°C. During gas injection, a drop in cross membrane pressure is 

observed. This is corrected by opening the back pressure valve. The gas is injected at 3 

bar at a distance of 1 meter from the membrane inlet. This pressure is taken as 

membrane inlet pressure and the pressure measured at the outlet is 2.5 bar. RO 

permeate flux variations during gas injection show a difference of 5% at most. 
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Figure VI-12: Permeate flux of deminerilised water filtered with FP200 when gas is injected 

 

Table VI-3 shows photographs taken in the clear tube placed prior the membrane unit 

(as describe in Chapter III Figure III-11). The flow pattern and the size of bubbles 

created were measured. 
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Gas flow rate 0.8 L/min 

  

Gas flow rate 1.0 L/min 

  

Gas flow rate 2.0 L/min 

  

Gas flow rate 3.0 L/min 

Table VI-3: Two phases flow pattern corresponding to the gas flow rate 
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Table VI-3 shows the range of flow pattern that may be produced by the system set up. 

This range varied from 0.5 cm individual caps shape bubbles running at top of the 

horizontal tube to 5 cm slug flow when the gas flow rate increases.  

The turbulence created by the wake of the passing air bubble is expected to disturb the 

gel layer that is formed on the membrane surface during filtration. 

 

b) Discussion 

The injection of gas at low or high rates under of the experimental conditions does not 

affect the water permeate flux. This result was expected because demineralised water 

filtration does not induce any concentration polarisation effect. Nevertheless, the 

experiment shows that the small bubble created and the gas dissolved in the water do 

not affect the permeate flux under the experimental conditions. Adjusting the 

backpressure valve to correct the TMP to its original value compensates the pressure 

drop induced by the injection of gas. The gas flow rate induces a different flow pattern 

as shown in Table VI-3. Small bubbly flow to slug flow was observed. The gas 

dissolved in the water does not interfere with the water flux during filtration. 

Therefore, any effects observed during metalworking fluid filtration when gas is 

injected can be attributed to the injection of gas. 
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VI.2.4.2 Gas injected in during MWF5% filtration 

Turbulences created by the wake of the passing air bubble are expected to disturb the 

gel layer that is formed on the membrane surface during filtration. 

a) Results 

Figure VI-13 below shows the permeate flux measured when MWF5% is filtered with 

an ultrafiltration membrane FP200. It also shows that the flux is enhanced when gas 

bubbles are introduced. Nevertheless, increasing gas flow do not affect the filtration 

permeate flux. 

Figure VI-13: Permeate flux when using a two phase flow 
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Figure VI-14: Filtration of metalworking fluid after gas injection has been stopped 

 

Figure VI-14 shows MWF5% filtration after stopping the gas injection filtration 

overnight in A and started the next day in B. From B to C no gas is injected. Without 

any gas injection, no difference in permeate flux is noticed, the permeate flux of 

MWF5% is similar to the one measure the previous day. At C gas is injected at a flow 

of 1.0 L/min and at D the filtration is terminated after 7 hours. In this last case between 

C and D, no effect of the gas injected is observed. 

Figure VI-15 shows the evolution of the MWF5% turbidity after it has been mixed 

with gas at 3.5 bar for 15 min. Then sample turbidity is immediately measured. During 

the first seconds of turbidity measurement the solution gas/emulsion is so turbid that 

the measure is saturated. At 30 seconds, a turbidity value of 6500 NTU was measured. 

The solution lost its gas and returned to its original turbidity value of 1200 NTU in 3 

minutes. This experiment shows that when the microemulsion is mixed with pressured 

gas, part of the gas dissolved in the liquid phase and stayed locked in solution. It took 

3 minutes for all the bubbles to separate from the emulsion, whereas for demineralised 

water this is practically instantaneous.  
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Figure VI-15: Turbidity of MWF5% when air has been injected at 3.5 bar for 15 min 

 

b) Discussion 

There is no improvement in MWF filtration when gas is injected into the tubular 

membrane. Difficulties appeared because of the gas trapped in the emulsion. This is 

specific to the metalworking fluids. The reason for this is the presence of surfactant 

that trapped the dissolved gas delaying the release of the gas bubbles formed when the 

pressure is released at the outlet of the system. Despite the attempt to release the gas at 

the same pressure as in the membrane, the enrichment in dissolved gas in the MWF 

during filtration was inevitable. 

The results from both experiments of gas injection during the filtration of 

demineralised water and of MWF5% show that using gas injection to enhance the 

filtration of metalworking fluids and more generally of surfactant solutions is not 

straight forward. Negative effects during filtration process arose from the dissolution 

of gas in the liquid phase that is sequestered by the surfactant creating a sol-gel.  

A second explanation that can be given for the drop in permeate flux is when gas is 

injected. The formation of a film was observed on the clear tube when metalworking 

fluid was filtrated and gas injected. Figure VI-16 show the photograph of the clear tube 

after MWF filtration and after demineralised water has been used to flush the system. 
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A thin film of material remains on the tube (left picture) whereas a clean tube is 

obtained in the case of filtration without gas injection (right picture). 

 

Figure VI-16: Picture of clear tube after MWF filtration with (left) and without (right) gas 

 

(Um, et al. 2001) came to similar conclusions in that injecting gas in oily wastewater 

containing surfactant has a positive effect in promoting turbulences. A negative effect 

attributed to the masking effect of the effective membrane surface area and occupancy 

of pores by bubbles. The authors related this negative effect to the gas fraction within 

the solution.  

 

Tests using MWF5% and higher gas flow rates were briefly setup. An increase in the 

emulsion gasification when it returns to atmospheric pressure was observed. No 

immediate benefit on the permeate flux was noticed as shown by (Um, et al. 2001). 

The difference between this work and the work carried out by (Um, et al. 2001) is that 

in this work, the filtration is operated at a much higher TMP of 2.75 bar as opposed to 

1 bar. In the present study, the limitation of the gas effect expected is attributed to the 

change in nature of the fluid filtrate that contains dissolved gas when gas is injected, 

plugging the pore of the membrane and contributing to the membrane surface fouling. 
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VI.3 RESULTS OBTAINED WITH INITIAL INSTRUCTIONS 

The following experimental parts deal with the large-scale equipment. 

The first filtration unit described in Chapter IV, fitted with ultrafiltration membrane 

FP100, was used according to the instruction manual. The instructions were to filter 

the waste MWF at inlet and outlet pressure of 8.5 and 7 bar respectively.  

Two types of results are presented, the effect of “cardev condition” filtration on the 

permeate flux and on the permeate quality. In addition, a full filtration process is 

presented, including three successive batches of filtration. Using FP100 ultrafiltration 

membrane under “cardev conditions” the 180 litres batch is concentrated, then the tank 

is replenished with fresh MWF5%.  

 

VI.3.1 Permeate flux 

Figure VI-17 shows the permeate flux of fresh metalworking fluid MFW5%. The 

filtration was carried out at a TMP of 7.75 bar. The initial permeate flux is 64 L/h/m2 

which decreased dramatically down to 30 L/h/m2 after 2 minutes. After 15 minutes, the 

permeate flux increased to 40 L/h/m2, then a constant flux of 34 L/h/m2 was observed. 

After 1 hour and 45 minutes, the flux decreases from 34 L/h/m2 down to 22 L/h/m2.  
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Figure VI-17: Permeate flux of MWF5% filtration with “cardev filtration conditions” 

 

The sharp decrease in permeate flux as soon as the pressure is operated, indicates that 

under the experimental conditions, the membrane filtration is controlled by 

concentration polarisation. The increase in permeate flux that follows can be attributed 

to the fact that the membranes were washed with surfactant solution and flushed before 

use. The presence of surfactant adsorbed onto the membrane surface can cause an 

increase in permeate flux during MWF5% filtration. This phenomenon was explained 

in Chapter IV and it lasted only 15 minutes. Another explanation is that on the large-

scale equipment, the temperature cannot be controlled. The feed temperature rises from 

21°C to 36°C after 3.5 hours. The study of the effect of temperature on the permeate 

flux carried at small scale, explained in Chapter IV, indicates that the permeate flux 

increases with the feed temperature. After 2 hours the permeate flux decreases by 43% 

from the plateau at 34.5 L/h/m2 down to 19.8 L/h/m2. The decrease in permeate flux is 

due to the increase in feed concentration coupled with a stabilisation of the feed 

temperature. 
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VI.3.2 Permeate quality 

Figure VI-18 shows the evolution of the permeate turbidity during the filtration of the 

MWF with recommended filtration conditions. The turbidity stays between 200 and 

400 NTU during the 2 first hours. After 2 hours, the turbidity increases rapidly until it 

reaches a value of 1438 NTU. 

Figure VI-18: Evolution of the permeate turbidity with “cardev filtration condition” 

 

Figure VI-19 and Figure VI-20 show the increase of permeate turbidity in relation to 

the increase in feed temperature and concentration. Both feed physical properties 

increases linearly from 21 to 36 ºC and from 5 to 12% respectively during the 

filtration. The increase in feed temperature is due to the pump. The feed concentration 

increases during filtration. 
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Figure VI-19: Permeate turbidity compared to temperature increase during  
“cardev filtration conditions” 

 

Figure VI-20: Permeate turbidity compared to feed concentration increase during  
“cardev filtration conditions” 

 

The permeate quality is altered when compared to the filtration done at small-scale. In 

chapter IV, the permeate was found to have a turbidity of 40 NTU, using in that case a 

TMP of 2.5 bar. The increase in TMP considerably affects the quality of the permeate 

that is now at best between 200 and 400 NTU. Three factors contribute to the increase 

in permeate turbidity. The first factor is temperature, as seen in chapter IV. The second 
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factor is the feed concentration that also increases during the filtration. Both factors 

increased linearly during the filtration, whereas the permeate was increasing 

exponentially after 2 hours of filtration. Therefore, a third factor may be responsible 

for the increase in permeate turbidity: membrane surface fouling. Figure VI-21 shows 

the membrane permeate flux (orange curve) and the permeate turbidity (blue curve). 

After 2 hours, the permeate flux starts to decline due to membrane fouling, in parallel 

after 2 hours, the permeate turbidity starts to increase. Therefore, the main reason that 

depletes the permeate quality, under the experimental conditions, may be linked to 

membrane fouling and more explicitly to the deposition of oil at the membrane 

surface. 

Figure VI-21: Permeate quality and flux decline during “cardev filtration conditions” 

 

After 3.5 hours, 105 litres of permeate has been filtered and 75 litres of concentrate, 

with an oil concentration of 12%, is left in the filtration unit’s main tank. The filtration 

process stopped because enough liquid could not be processed. Therefore, the main 

tank is recharged with 105 litres of fresh MWF5% in order to continue the filtration. 

 

VI.3.3 Effect of reloading the main tank 

The new feed obtained has an oil concentration of 8.6% and a temperature of 30°C. 

The filtration is started again and this process has been carried out twice after 3.5 hours 
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and 6.5 hours, the main tank is reloaded with fresh MWF5%. Figure VI-22 shows the 

evolution of the permeate flux (blue curve) and turbidity (orange curve) during MWF 

filtration using the “cardev conditions” settings (e.g. the filtrations after recharge 

continue). The black arrows indicate the point at which the main tank was reloaded. 

After each reload, the permeate flux increases to 35.7 L/h/m2 after 5 minutes from the 

first reload and after 30 minutes from the second reload. In both cases, after the flux 

increases, the permeate flux declines over the 3 hours of filtration. This decline is due 

to fouling and retentate concentration. 

Figure VI-22 shows that the permeate turbidity increases sharply when the permeate 

flux decreases. Two maxima turbidity values are measured at 1438 and 1822 NTU just 

before reloading the main tank. After reload, the permeate turbidity decrease to values 

below 300 NTU after 45 minutes, and 1 hour after the first and second reload 

respectively. Three minimum values of permeate turbidity were observed for each part 

of filtration 209, 210 and 192 NTU. 

Figure VI-22: 3 Semi-batch UF filtrations with “cardev conditions”, comparison between 
permeate flux, indicating fouling, and feed turbidity, indicating oil permeation 

 

Reloading with MFW5% dilutes and lowers the temperature of the remaining retentate. 

The concentration polarisation effect is reduced and less oil fouls the membrane 

surface. Therefore, the flux and quality of the permeate improved. This phenomenon 

can be explained by the fact that lowering the retentate concentration lowers the 
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concentration polarization and helps to dissolve the gel layer. In addition, the permeate 

quality also improves because of the temperature decrease. 

A lag in permeate quality improvement can be observed. This is due to the permeate 

retained in the membrane housing. The difference in time for permeate flux partial 

recovery between first reload (5 minutes) and second reload (30 minutes) is due to 

membrane fouling and pore are blocking. The more the filtration continues, the more 

the membrane surface fouls and pores become blocked. The oil needs to be removed 

from the surface and pores to be unblocked. The pores are effectively unblocked at a 

TMP of 8 bar because the flux is recovered after reloading the feed with fresh 

MWF5% to a value of 34.5 L/h/m2. 

Under “cardev conditions”, FP100 ultrafiltration membrane at high TMP is used. The 

filtration is rapidly controlled by concentration polarisation. The permeate flux 

decreases with the retentate concentration increasing. The permeate quality is not quite 

as good as the permeate obtained during small-scale filtration, the main difference 

being the operational TMP. The maximum concentration ratio achievable is 12%. 

Above this value the flux decreases and the permeate quality deteriorates rapidly. 

Therefore, the ultrafiltration of the MWF has to be optimized. The optimisation should 

take place at a lower TMP and under operating conditions that allow a reduction of the 

concentration polarization layer. 

 

VI.4 DIRECT FILTRATION 

Having carried out MWF5% ultrafiltration using the operational parameters 

recommended, it has been found that these operational conditions were not optimal. 

Therefore, improvements of the operational parameters were investigated using FP100 

and FP200 ultafiltration membranes. Filtration of MWF5% and MWF20% were also 

carried out using the nanofiltration membrane. 

It was decided that the study should be made at an initial feed oil concentration of 5% 

and using the concentrate resulting from complete MWF filtration. The concentrates 
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have an oil concentration of 20% and 16% respectively for FP100 and FP200. The 

TMP and cross flow velocity are studied using the two UF membranes. 

 

VI.4.1 Effect of transmembrane pressure (TMP) 

The effect of TMP on the initial permeate flux was studied by increasing TMP from 1 

to 7 bar. The effect of TMP is tested with both feed MWF5% and MWF20%. The 

permeate flux and the permeate quality are assessed. Data is presented for two 

ultrafiltration membranes, FP100 and FP200, and one nanofiltration membrane, 

AFC 30. 

 

VI.4.1.1 Permeate flux 

a )  Case of the ultrafiltration membranes 

Figure VI-23 shows the initial permeate flux versus TMP for two different feed 

concentrations, 5% and 20% oil. It can clearly be seen from Figure VI-23 that the 

initial flux for both UF membranes increases with TMP to a maximum value and then 

gradually reduces with a further increase in TMP. A maximum value of 49 L/h/m2 was 

reached at 2 bar when using the FP200 UF membrane; this value was sustained up to 5 

bar and then gradually deceased with a further increase in TMP. For the FP100 UF 

membrane, a maximum value of 39 L/h/m2 was reached at 4 bar and then gradually 

decreased with increasing TMP. Similar behavior was noticed when using feed 

concentrations of 20 % oil. The existence of a maximum value for the initial permeate 

flux in the case of the FP100 and FP200 UF membranes is due to the formation of a 

concentration polarisation layer on the membrane surface. The initial permeate flux 

was found to increase monotonically with TMP when using a feed concentration of 5% 

oil and the AFC30 nanofiltration membrane. In the case of a feed concentration of 20% 

oil, a maximum permeate flux was reached at 3 bar in all cases and remained at this 

value with further an increase in TMP. 
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It may be seen from Figure VI-23 that the permeate flux decreases dramatically when 

using a feed concentration of 20% in oil. This decrease was by 75% for AFC30, and   

80 % for FP100 and FP200. 

 

Figure VI-23: Permeate flux at different TMP for UF FP100, FP200 and NF AFC 30 membranes 
using MWF5% and MWF20% as feed 

 

The permeate flux of an oil in water can relate to the TMP by the relation expressed in 

Equation VI-1 using the gel resistance model. 

J = TMP/η(Rm+Rg)        Equation VI-1 

Where J is the permeate flux, η is the permeate viscosity, Rm is the intrinsic membrane 

resistance and Rg is the gel resistance added to the intrinsic membrane resistance. 

The UF filtrations are carried out at different TMP and gel resistance increased with 

the TMP. This is because at higher TMP, more oil droplets came towards the 

membrane surface. Therefore, the thickness of the gel layer increases and the 

resistance to the permeate flux is increased.  
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At higher TMP and higher feed concentration, the relationship between TMP, gel 

resistance Rg and the permeate flux J are more complex. The permeate flux becomes 

directly dependant on the gel layer resistance rather than the TMP and can be 

expressed as in Equation VI-2. 

 

J=(D/δ) ln(Cg/Cb)       Equation VI-2 

Where J is the permeate flux, D is the diffusion coefficient of the solute in water; δ is 

the thickness of the polarisation layer, Cg is the gel concentration and Cb is the feed 

concentration. 

In the case where the concentration at the membrane surface reaches the gel 

concentration, the permeate flux is no longer related to the TMP, and in identical 

thermal and hydrodynamic conditions the permeate flux stays constant. Nevertheless, 

during filtration, the temperature increases then the concentrate viscosity decreases and 

membrane properties change, leading to an increase in permeate flux. In addition, 

during filtration the emulsion concentration and properties change as it has been seen 

in Chapter IV. The changes in emulsion properties (concentration, aggregation) lead to 

a decrease in permeate flux due to the thick set of the gel layer and emulsion 

destabilization. In extreme case it can be seen using Equation VI-2 that when Cb tends 

to equal Cg the permeate flux tends to zero. This explains the limitation observed 

during ultrafiltration of MWF in the retentate concentration that can be obtained; 20% 

for FP100 and 16% in the case of FP200. Over these values, the permeate flux 

decreases and the permeate quality deteriorates rapidly. In addition, Equation VI-2 

shows that the permeate flux declines linearly with the logarithm of the feed 

concentration. 

As shown in Figure VI-23, at low TMP the flux is linear with the pressure applied as 

predicted by Equation VI-1. When the TMP increases, the permeate flux reaches a 

plateau and tends to decrease the plateau as predicted by Equation VI-2. The decrease 

in permeate flux is indicative of the fact that the gel concentration, Cg, is also related to 

the TMP and increases with increasing TMP. 
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b)  Case of the nanofiltration membrane  

In the case of the nanofiltration membrane, a difference can be seen between high and 

low feed concentrations. At 5% feed concentration, the permeate flux increases 

linearly with TMP until 6 bar. At 20% feed concentration, the permeate flux increases 

with the TMP until 3 bar then the permeate flux reaches a plateau. In the first case 

(between 0 and 6 bar) the permeate flux follows the resistance-in-series model. 

However, in the second case at high concentration the gel polarisation controls the 

filtration. 

 

VI.4.1.2 Permeate quality 

The permeate quality has been assessed by measuring the value of its turbidity. The 

more turbid the permeate, the more oil goes through the membrane. This section 

presents the results of permeate turbidity obtained during the filtration of MWF5% and 

of MWF20%.  

 

Figure VI-24 and Figure VI-25 respectively show the evolution of permeate turbidity 

at low TMP during filtration of MWF using FP100 and using FP200 respectively as 

the concentration loop takes place. Figure VI-26 shows the nanofiltration permeate 

turbidity during filtration, at a TMP of 6 bar, as the concentration ratio increases. In all 

three cases, the permeate turbidity increases strongly with the feed concentration. The 

difference resides in the turbidity values obtained. 

 

a )  Ultrafiltration 

For FP100 the value reaches at 2.75 bar TMP is 50 NTU compared to the 4700 NTU 

obtained with FP200 under the same operational conditions. This indicates that the 

membrane molecular weight cut off has an effect on the permeate turbidity. On Figure 

VI-24, the turbidity value measured at 3.5 bar is seven times higher than at 2.75 bar. In 

addition, when comparing FP100 performance at high TMP (Figure VI-18 page 173) 
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where the turbidity was initially between 200 and 400 NTU and reached 1438 NTU for 

a feed concentration of only 12.6%. This indicates that the TMP also has an effect on 

the level of permeate turbidity. 

Figure VI-24: Evolution of permeate turbidity with feed concentration for FP100 at low TMP 

 

Figure VI-25: Evolution of permeate turbidity with feed concentration for FP200 at low TMP 
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b)  Nanofiltration 

The evolution of the nanofiltration permeate turbidity during MWF5% filtration is 

shown on Figure VI-26. The permeate turbidity reaches at most 7.6 NTU, despite the 

high TMP of 6 bar used. In that case the smaller molecular weight cut off of the 

nanofiltration membrane prevents the oil to permeate through the membrane. 

Nevertheless, the turbidity increases with the feed oil concentration and with fouling. 

The black arrow shows at which point the membrane unit was washed with surfactant 

and restarted with using the same feed as previously. 

 

 

Figure VI-26: Evolution of permeate turbidity with feed concentration for AFC 30 at 6 bar 
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in Table VI-4. The NF permeate turbidity has an order of magnitude lower than the 

value found for the UF membrane permeate; however, its TOC has increased by 88% 

compared with the permeate obtained using 5% feed concentration. 

 Feed concentration 

(oil %) 

Permeate flux 

(L/h/m2) 

Permeate Turbidity

(NTU) 

FP200 16% 9 4780 

FP100 20% 6.2 500 

AFC30 20% 4 6 

Table VI-4: High feed concentration filtration results for the three membranes 

 

The permeate deterioration at high feed concentration is the result of the oil layer 

covering the membrane surface, leading to its permeation through the membrane pores. 

Table VI-4 shows that the permeate turbidity depends on the membrane molecular 

weight cut off used. In addition, the feed at 20% oil concentration that comes from 

concentration loop is less stable than the original emulsion. Therefore, the gel layer is 

more likely to coagulate and to form an oily film at the membrane surface. 

 

Synthesis 

In all cases beside temperature three parameters increase the permeate turbidity; (i)the 

feed concentration, (ii) the degree of fouling and (iii) the increase in TMP. This is due 

to the fact that at high feed concentration and at high TMP the oil that fouls the 

membrane surface is pressed through the membrane pores. 

TMP contributes by two means to the phenomenon; by increasing the number of oil 

droplet coming towards the membrane surface (increasing the concentration 

polarisation) and by forcing the oil to pass through the membrane. The pressure needed 

to force oil through a pore can be expressed as Equation VI-3. 

∆P= 4γcos(θ)/ Dm     Equation VI-3 
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Where γ is interfacial tension between oil and the solvated surface, θ is the contact 

angle, Dm is the membrane pore diameter and ∆P is the pressure required to push the 

oil through the pore. 

Pore size affects the permeate turbidity because according to Equation VI-3 larger the 

pore sizes, smaller the pressure needed to push the oil through is. 

The oil concentration in the feed increases the gel formation by bringing larger 

aggregates onto the membrane surface. Therefore, oil fouling takes place and the oil 

can permeate the membrane. This can be seen on Figure VI-26, the black arrow shows 

the point at which the filtration has been stopped and the membrane regenerated. The 

filtration was continued using the same feed at 17%. The permeate turbidity stays high 

despite the membrane regeneration. The turbidity values decreases at first because the 

gel layer has been removed due to the regeneration process. However, a quick 

increases in permeate turbidity is observed because of the gel layer rebuilding on the 

membrane surface. This shows that the turbidity of the nanofiltration permeate 

increases with the feed concentration independently of the original state of the 

membrane surface. At high feed concentration the membrane fouls rapidly due to large 

aggregates dragged to the membrane surface. 

 

VI.4.2 Effect of feed velocity 

The other filtration parameter studied in this work was the feed velocity. Figure VI-27 

to Figure VI-33 show the effect of feed velocity at different TMPs. The increase of 

feed velocity in the membrane tube increases the shear stress at the membrane surface. 

This increase in shear stress creates turbulences at the membrane surface that disturbed 

the concentration polarisation layer. The tests were carried out using two feed 

MWF5% and MWF20%. 
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VI.4.2.1 Ultrafiltration membranes 

Figure VI-27 presents the ultrafiltration results for a feed concentration of 5% oil and 

for different transmembrane pressures from 3 to 7 bar. It can be seen in Figure VI-27 

that permeate flux increases with velocity, regardless of TMP, from 10-15 L/h/m2 to   

48 L/h/m2. Similar behaviour was found when using a feed concentration of 20% oil 

(Figure VI-29).  

Figure VI-27: Influence of feed velocity on initial permeate flux with feed MWF5% using UF 
membrane FP100 

When looking in more detail at Figure VI-27, increasing the TMP does not necessarily 

result in a permeate flux improvement. The same behaviour was found previously, 

shown in Figure VI-23. The permeate flux is limited by the concentration polarisation 

when TMP reaches 4 bar. Nevertheless, increasing the feed velocity improves for 

small TMP (at 3.5 bar the permeate flux rises from 10 to 46 L/h/m2 when the feed 

velocity rises from 0.7 to 2.2m/s) as well as high TMP (at 7 bar the permeate flux rose 

from 12 to 35 L/h/m2 when the feed velocity rise from 0.7 to 1.9 m/s). When the flow 

velocity reaches 1.5 m/s, the permeate flux does not increase any more, but the TMP 

controls the permeate flux. 

Figure VI-28 shows the effect of cross flow velocity on the permeate flux for the same 

FP100 ultafiltration membranes using low TMP. In this case, the permeate increases 

with the flow velocity as well as the TMP applied. However, the latter is less 

significant. In addition, over 1.5 m/s of feed velocity, the increase in permeate flux 

stopped. 
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Figure VI-29 presents the results obtained when the concentrate MWF20% was filtered 

with FP100. In this case, the TMP has no effect on the permeate flux as the cross flow 

velocity does. At 1.2 m/s cross flow velocity, an increase in TMP from 1.5 to 3.5 bar 

sees an improvement in the permeate flux of 24% (which is the best of the 5 cases 

presented). When the cross flow velocity reaches 1.5 m/s the permeate flux improved 

by 50%.  

Figure VI-28: Influence of feed velocity on initial permeate flux feed MWF5% using UF 
membrane FP100 at low TMP 

 

Figure VI-29: Influence of feed velocity on initial permeate flux with feed MWF20% using UF 
membrane FP100 
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Figure VI-31 and Figure VI-30 show the cross flow velocity results obtained using the 

ultrafiltration membrane FP200 with low TMP applied. A similar behaviour as for FP 

100 can be observed. Throughout, at low feed concentration, the effect of TMP and of 

cross flow velocity are mixed. On one hand, at a TMP of 4 bar, the permeate flux 

improves with the increase of cross flow velocity. On the other hand, at a flow velocity 

of 1 and 1.6 m/s, the TMP has little effect. This effect is attributed to the relationship 

between membrane cross flow velocity and TMP. 

Figure VI-30: Influence of feed velocity on initial permeate flux with feed MWF5% using UF 
membrane FP200 

Figure VI-31: Influence of feed velocity on initial permeate flux with feed MWF16% using UF 
membrane FP200 
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In both cases for FP100 and FP200, behaviours observed can be explained by the fact 

that for a given TMP, the increase in fluid velocity increases turbulences and shear 

stress at the membrane surface results in a disturbance in the concentration polarisation 

layer and a decrease of the gel layer thickness. Therefore, in the cases where the gel 

layer governs the permeate flux, an increase in cross flow velocity improves the 

permeate flux. When the gel resistance is weak, the TMP controls the permeate flux 

and the cross flow velocity has little effect. 

An identical effect of feed velocity on UF of oily wastewater was found (Benito et al. 

2002). They observed an increase in permeate flux with velocity when the permeate 

flux is controlled by the concentration polarisation for a TMP above 2 bar for their 

experimental conditions. 

 

VI.4.2.2 Nanofiltration membrane 

Figure VI-32 and Figure VI-33 present the nanofiltration permeate flux for a feed 

concentration of 5% and a feed concentrate at 20% respectively versus the feed 

velocity at different TMPs. 

Figure VI-32: Influence of feed velocity on initial permeate flux with feed MWF5% using NF 
membrane AFC30 
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Figure VI-33: Influence of feed velocity on initial permeate flux with feed MWF20% using NF 
membrane AFC30 
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the point that they finished the day before. Figure VI-34 shows a decrease in the flux to 

a minimum point followed by an increase to a maximum by the end of the day (point 

A at the end of day one, B at the end of day two and C at the end of day three). The 

increase in the flux is most probably due to the rise in temperature of the feed; this rise 

results from the energy of the pump. The start of the next day’s filtration gives a lower 

permeate than the previous day (point A’ for the second morning, B’ for the third 

morning and C’ for the fourth morning); this is likewise due to a lower temperature of 

the feed. Figure VI-34 shows that at the start of the filtration, a reduction in permeate 

flux results from membrane fouling over consecutive days, as shown by the dotted 

line. Similar behaviour is observed when pretreatment is included using FP100 

ultrafiltration, in which the nanofiltration permeate flux is enhanced by 15 % when 

compared to FP200 pre-treatment case. The data representing the nanofiltration of the 

MWF with pretreatment in Figure VI-34 can also be divided into three successive 

experiments. After the 9th, 17th and 27th hours, the filtration is stopped and the feed 

allowed to cool down. When the filtration is started again the next day, the flux 

measured at points D, E, F (at 20 ºC), is lower for the same reason as given previously. 

The dotted line shows the behaviour of the permeate flux at 20ºC at the start of each 

run. Figure VI-34 shows a clear advantage of using ultrafiltration as pretreatment prior 

to the nanofiltration; the use of pretreatment leads to considerably less fouling of the 

nanofiltration membrane and therefore improves the quality of the final permeates. 
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Figure VI-34: Nanofiltration runs, comparison between UF pre-treated feeds and direct filtration 
using MWF5% over 40 hours 

 

Table VI-5 shows an analysis of permeates from direct nanofiltration and from the 

combinations of ultrafiltration and nanofiltration. In both cases the nanofiltrations 

pretreated with ultrafiltration performances are superior. 

The advantages of using the pretreatment are that oil droplets foul the nanofiltration 

membrane less. The turbidity of the nanofiltration permeate stays low during filtration, 

indicating that no oil gel layer is formed on the membrane surface. This implies that 

after 400 litres of FP100 permeate were filtered through the nanofiltration membrane, 

the turbidity of the nanofiltration permeate was 0.2 NTU. In addition, the 

nanofiltration removed the excess COD. 
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Nanofiltration permeate data 

Feed tested Turbidity 

(NTU) 

Range 

over filtration

COD 

(mg/l) 

Permeate flux 

(L/h/m2) 

TMP=7 bar 

5% 0.5 0.18 to 2 8860 15 
MWF 

20% 3.9 1 to 6 10150 8 

FP 200 permeate 0.26 0.1 to 0.5 6690 21 

FP 100 permeate 0.12 0.1 to 0.23 6400 24 

Table VI-5: Typical nanofiltration performances values  

 

Another interest in using FP100 over FP200, other than having a better permeate at 

high concentration, is that the volume of the concentrate can be reduced to produce a 

concentrate of 20% in oil although for the FP200 when the concentrate achieves 16 % 

in oil, the quality of the permeate and the permeate flux decrease dramatically. 

 

VI.6 MODEL 

Modelling the filtrations of MWF using the data found during large-scale filtration 

under industrial conditions is challenging. The feed is changing over time; parameters 

such as temperature, concentration and even the nature of the feed are changing. 

Nevertheless, in most cases the model based on Equation VI-2 has been found to fit the 

experimental data obtained. (Hu, et al. 2004) applied the model to ultrafiltration of 

stable oil emulsion. There are two differences between their work and the data 

presented. In industrial conditions for waste metalworking fluids filtration, the feed 

temperature is not controlled. The range of concentration is higher, the purpose of the 

filtration being to concentrate the emulsion as much as possible in order to reduce the 

volume of the waste. They were looking at concentrations of 0.5 and 5% in oil, 

whereas this work investigates concentrations of 5 to 20% in oil. In addition, the 

emulsion at 20% is in fact the retentate of the filtration and not a fresh MWF made at 

20%. As it has been seen, the nature of the concentrate at 20% is different from the 

fresh MWF5%. 
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Equation VI-2 can be rearranged as follows: 

J = (D/δ) * ln(Cg)- (D/δ)* ln (Cb)    Equation VI-4 

Equation VI-4 is used to fit the permeate flux vs. bulk concentration data collected 

using large-scale filtration; without temperature control, with extreme feed oil 

concentration up to 23% and feed stream reload. Equation VI-4, when plotting the 

permeate flux versus the retentate concentration, allows the calculation of  the gel 

concentration, Cg, the ratio D/δ. The comparison of these calculated parameters related 

to the permeate flux and oil retention, under the different filtration conditions, allows a 

better understanding of the filtration process. 

 

VI.6.1 Ultrafiltration FP200 

Figure VI-35 shows the evolution of the permeate flux during MWF ultrafiltration 

using FP200. Logarithmic curves have been fitted to the different part of the curve 

using Equation VI-2. The quality of the fit is good and shows that the filtration is 

effectively controlled by the gel layer at low and at high feed concentration. Three 

curves are needed to fit the filtration because of the large span of the emulsion 

concentration. Changes include larger droplet viscosity, leading to a variation in 

particles diffusion coefficient (D) and destabilisation, leading to oil droplet aggregation 

and gel formation. The model reflects these changes as it can be seen in Table VI-6. 

Nevertheless, the result may be affected by the feed temperature variation and the 

membrane pore blocking and fouling. Therefore, the membrane was regenerated and 

the filtration restarted using the concentrate as feed. Figure VI-36 shows the results 

and the logarithmic fitting found is excellent. From the fitted curves the gel 

concentration Cg and the ratio D/δ can be calculated. These calculations are reported in 

Table VI-6. 

Figure VI-37 presents the MWF5% filtration at a TMP of 3.5 bar. In this case, a good 

logarithm fitting is found over the full range of feed concentrations. In this case, the 

result indicates that the filtration is controlled by the gel layer formation, over the 

whole range of feed concentrations. The gel concentration and ratio D/δ are calculated 

and reported in Table VI-6. 
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Figure VI-35: Permeate flux plotted against retentate concentration during ultrafiltration using 
FP200 with a TMP of 2.75 bar and 3 different logarithm fitting curves 

 

 

Figure VI-36: Permeate flux plotted against retentate concentration during ultrafiltration using 
FP200 with a TMP of 2.75 bar at high feed concentration after regenerating the membrane 

surface  
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Figure VI-37: Permeate flux plotted against retentate concentration during ultrafiltration using 
FP200 with a TMP of 3.5 bar 

 

TMP  

(bar) 

Range of retentate 

concentration (%) 

Gel 

concentration Cg  

(%) 

Ratio D/δ 

Permeate turbidity at 

maximum feed 

concentration 

(NTU) 

5 to 10 13 49 182 

10 to 18 26.6 24 600 

18 to 20 28 31 3286 
2.75 

20 to 22 34.5 14 4780 

3.5 5 to 15 45 19 2200 

Table VI-6: Values calculated from model when filtering MWF using ultrafiltration membrane 
FP200 
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indicates that the diffusivity of the oil droplet decreases. This is due to the aggregation 
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attributed to the increase in gel layer thickness δ, considering that the diffusivity is not 

affected by the pressure. The gel concentration increases during filtration because of 

the change in physical-chemical properties of the retentate. The emulsion is 

destabilised and the gel becomes more compact (Cg increases) until a phase inversion 

occurs. The fouling gel concentration is found to be in the same range as in (Lee, et al. 

1984). Once the concentration of the oil at the membrane surface reaches the phase 

inversion limit, the surface is coated by oil that permeates through the pores. 

 

VI.6.2 Ultrafiltration FP100 

In case of FP100 MWF filtration, the issue is a more complex. Firstly, at a low feed 

concentration and low TMP of 2.75 bar, the model poorly fits the evolution of the 

permeate. This is due to the fact that, with light operating, (low TMP and low oil 

concentration) the gel concentration model cannot be applied because the gel 

concentration at the membrane surface is not reached. The permeate flux is controlled 

by the resistance of the concentration polarisation, Rg, (Equation VI-1). Besides, Rg 

increases during filtration due to the increases in retentate concentration. This produces 

the linear decrease in permeate flux during filtration when the gel concentration is 

reached. Once the gel concentration at the membrane surface is reached, (depending on 

TMP and retentate physical-chemical conditions) the decline in permeate flux can be 

fitted to a logarithmic curve. 

Figure VI-38 and Figure VI-39 show that with the FP100 MWF filtration at 3.5 and 6 

bar respectively, a good logarithmic fit was found. The value calculated for gel 

concentration and D/δ are reported in Table VI-7. In the case of filtration at 6 bar, the 

curve has been fitted using isothermal points. 
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Figure VI-38: Permeate flux plotted against retentate concentration during ultrafiltration using 
FP100 with a TMP of 3.5 bar 

Figure VI-39: Permeate flux plotted against retentate concentration during ultrafiltration using 
FP100 with a TMP of 6 bar  

 

Figure VI-40 shows the results and the logarithmic fitted curve (orange part) of FP100 
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rapid and sharp permeate flux decrease is observed. During the second stage, (between 

6 and 13%) the permeate flux decreases steadily. In these two regions, the membrane 

works in a pressure controlled region. The gel model used to fit the experimental 

filtration data cannot predict the flux behaviour in this region under the experimental 

conditions. The decrease in the second case is because of membrane fouling and 

retentate viscosity increase. Above 13% in retentate concentration, the gel layer takes 

control of the permeate flux and can be fitted with the logarithmic curve. 

Figure VI-40: Permeate flux plotted against retentate concentration during ultrafiltration using 
FP100 with a TMP of 2.75 bar for high retentate concentration 
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Range of retentate 

concentration (%) 

Gel 
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Ratio D/δ 

Permeate turbidity 

at maximum feed 

concentration 

(NTU) 

3.5 5 to 20 38.8 16 516 

6 5 to 18 32.2 18.5 285 

5 to 13 Not calculated Not calculated 5 
2.75 

13 to 19.6 26.5 34.35 31.4 

Table VI-7: Values calculated from model when filtering MWF using ultrafiltration membrane 
FP100 
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It can be seen from Table VI-7 that D/δ value doubles when low TMP (2.75 bar) is 

used. The difference in ratio D/δ between the filtration at 2.75 and 3.5 bar is due to the 

increase in gel layer thickness δ. D/δ and Cg values found for FP100 are comparable to 

those found for FP200, presented in Table VI-6. Nevertheless, the permeates turbidity 

is 100 times lower when using FP100. In the latter case, despite gel formation at low 

pressure, the oil permeates less the membrane because of the difference in pore size. 

 

VI.6.3 Nanofiltration AFC30 

Nanofiltration models have been carried out using the isotherm points of the direct 

filtration. 

 

Figure VI-41 and Figure VI-42 show the results and the logarithmic fitted curve of 

direct nanofiltration of MWF. They present filtration at low concentration (starting 

with MWF5%) and filtration at high concentration (after membrane surface was 

regenerated and retentate was used as the feed) respectively. The results of the fit are 

reported in Table VI-8. The gel concentration is lower than in the cases of 

ultrafiltration, despite the much higher TMP used. The permeate flux is lower, so less 

oil droplets are coming towards the membrane surface during filtration. Between low 

and high retentate concentration, the gel concentration increases from 16.8% to 25.5%. 

This shows that the gel concentration increases with the retentate concentration. The 

ratio D/δ stays stable despite the decrease in diffusion coefficient meaning that the gel 

layer thickness δ increases (the gel layer builds-up). The turbidity of the permeate is 

lower than in the case of ultrafiltration membrane, but increases during retentate 

concentration. Despite the higher TMP, 6 bar against 2.75 bar, for the ultrafiltration 

membrane the turbidity is 550 and 5.5 times lower than the turbidity obtained with 

FP200 and FP100 respectively. These results show the importance of pore size in the 

oil retention performances. This is not because oil droplets are able to go through the 

membrane, but because of the mechanism that allows the oil to pass the membrane. 

This mechanism is illustrated in Figure VI-43. 
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Figure VI-41: Permeate flux plotted against retentate concentration during direct nanofiltration 
using AFC30 with a TMP of 6 bar 

 

 

Figure VI-42: Permeate flux plotted against retentate concentration during direct nanofiltration 
using AFC30 with a TMP of 6 bar after regenerating the membrane surface and using the 

concentrate as feed. 
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TMP  

(bar) 

Range of retentate 

concentration (%) 

Gel concentration 

Cg  (%) 

Ratio 

D/δ 

Permeate turbidity 

(NTU) 

6 5 to 15 16.8 19.8 0.3 

6 18 to 22 25.6 21 6 

Table VI-8: Values calculated from model when filtering MWF using nanofiltration membrane 
AFC30 

 

VI.6.4 Oil permeation mechanism  

During filtration, the TMP creates concentration polarisation layer towards the 

membrane surface. The retentate concentration increases until the gel concentration Cg 

reaches the concentration of phase inversion, at which point a layer of oil covers the 

surface of the membrane. 

Figure VI-43: Illustration of gel formation relative to feed concentration increase. 
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Phase inversion of the emulsion oil in water is illustrated in Figure VI-44 and leads to 

the formation of emulsion of water in oil. In Chapter V (Figure V-7), the phase 

inversion occurs between 25 and 30% in oil in the mix, leading to the formation of a 

thick gel. In the concentration polarisation, layer another factor influences the phase 

inversion, which is the depletion in surfactant in the feed during filtration. This 

emulsion destabilisation can explain the formation of the oil layer. 

 

 

Figure VI-44:  Phase inversion principle due to oil droplet compaction  

 

VI.7 SYNTHESIS 

The seventh part presents a synthesis of the chapter. The results found on 

metalworking fluid filtration are summarised and key factors of the MWF filtrations 

are pointed out. 

 

VI.7.1 Small-scale results  

These experiments helped in the understanding of each step of the completed process, 

giving indications on the nature of the waste effluent and its behaviour. The system 

proposed in this study is based on membrane filtration. Preliminary small-scale trials 
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of membrane filtration show that it is a satisfactory method of treating waste as semi-

synthetic metalworking fluids. With the membrane filtration system, three problems 

occur; the production of a concentrate, membrane fouling and the quality of the 

permeate. 

A solution for the production of a concentrate emulsion was given in Chapter V 

The second problem arising from membrane filtration technology is fouling. The oily 

wastewater heavily fouls the membrane surface, reducing its separation performances. 

This issue was addressed in this chapter with the optimisation of the washing cycle and 

tests on the enhancement of filtration by gas injection. 

The nature of the membrane permeate was also investigated. Its flux and organic 

content depend mainly on the membrane used UF or NF. NF membranes allow a 

polishing of the permeate that does not contain any more oil droplets (low turbidity). 

However, UF membranes tend to produce a permeate that increases in turbidity values 

during filtration. The second factor studied was feed temperature that has a dramatic 

effect on permeate quality. The third factor is transmembrane pressure that has been 

studied, giving a good basis for scaling up the process. Further investigations will be 

carried out in the large-scale filtration chapter to improve filtration process. The 

permeate biodegradability is investigated in the biological process chapter. 

 

VI.7.2 Large-scale ultrafiltration 

The filtration of the MWF at high emulsion concentration (from 5% to 20%) indicates 

that for any method employed, the permeate flux decreases with the concentration of 

the retentate. Therefore, reloading the retentate with fresh MWF5% can be used to 

dilute the retentate concentration. The reload should take place when the filtration 

starts to be controlled by the gel layer. In addition, avoiding the gel formation during 

the filtration process will avoid the oil fouling the membrane and blocking the pores. A 

semi-batch process may help to minimize the effect of feed concentration ratio during 

the UF filtration. 
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The membrane molecular weight cut off is of importance when looking at the oil 

retention. This is not because of a “sieving” effect, but because of the capacity of oil 

layer to pass through different size pore. 

 

VI.7.3 Large-scale nanofiltrtion 

An increase in transmembrane pressure can improve the permeate flux. At a lower 

emulsion concentration, (5%) the concentration polarisation is not obvious, the 

permeate flux increases with an increase in the pressure until it reaches 6 bars. At very 

high oil concentration (20%) the concentration polarisation totally controls the 

permeate flux. It has been shown that the filtration of MWF using a nanofiltration 

membrane follows the resistance model, and that above a TMP value of 6 bar the gel 

polarisation takes over. In addition, at high oil concentration, the filtration is controlled 

by the gel polarisation. 

In both cases UF and NF direct MWF, the concentration in oil droplets and the 

degradation of the emulsion stability during filtration is responsible for the membrane 

surface fouling and pore blocking and therefore, oil retention. The filtration parameters 

such as temperature, TMP and MWCO are driving factors that influence the fouling 

phenomenon and the oil retention. 

 

VI.7.4 Combining UF and NF 

The filtration efficiency of the combination UF and NF is very beneficial. Three types 

of advantages can be summarised. From Figure VI-34, it can be calculated that over 40 

hours of filtration, the volume of NF permeate, using FP100 pre-treated effluent, is 760 

L/m2 whereas the NF permeate flux using MWF5% is only 315 L/m2. This 

corresponds to an increase of 240% in volume treated. The second benefit is the better 

control of the permeate quality, because the oil droplets are removed during the UF 

pre-treatment. The third benefit is the low NF fouling also due to the oil droplet 

removal, over 40 hours of filtration, the loss in permeate flux with UF pre-treatment 

was 21% whereas for the direct NF filtration the loss was 74%. 
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VI.7.5 Model 

The model of filtration at large scale demonstrates that feed concentration influences 

the gel layer and effect on membrane fouling. Traditionally, in a more simple system, 

the gel layer model shows that the gel concentration is constant (Cheryan and 

Rajagopalan, 1998) and (Guadix, et al. 2004). However, in this case the gel layer 

concentration increases during filtration (Figure VI-35 and Table VI-6) and this is due 

to the change in feed physico-chemical properties during filtration. The model also 

shows that the NF membrane used to treat MWF5% is also subject to a gel layer 

controlled filtration under the experimental conditions. 
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CHAPTER VII 

Activated carbon 
 

VII.1 INTRODUCTION 

Increasingly stringent legislation on the decontamination of wastewater has created 

an interest concerning the use of activated carbons. Adsorption systems are rapidly 

gaining prominence as treatment processes, which produce high quality effluents 

that are low in concentration of dissolved organic compounds, such as dyes. 

However, activated carbons are expensive; their use may imply carrying out 

regeneration and reactivation procedures. Liquid-phase adsorption has been 

demonstrated to be a promising option for non-biodegradable organic molecules 

removal. Therefore, polishing the effluent coming from the bioreactor can be proved 

to be a solution to eliminate all COD from the effluent. This would enable the 

treatment system to produce water for reuse or even to allow discharge in surface 

water. 

The use of activated carbon to eliminate dissolved organic compounds is well 

known as a unit process in water treatment. In this work, it is tried to reduce the 

COD level obtained after different stages of the wastewater treatment of 

metalworking fluid. The adsorption experiments were carried out in two modes. 

First, a batch system is used to check the adsorption capacity of the adsorbent and 

model isotherms. Then, fixed continuous systems are set up, and the feasibility of a 

real treatment of these effluents is assessed. 

The aim of the present work is to use activated carbon to reduce the COD of the 

effluent obtained after different treatment stages of a waste metalworking fluid. The 

treatment consists of four stages. The first two are membrane separation: after coarse 

filtration 100µm, the waste metalworking fluid is ultrafiltrated and the resulting 

permeate is then filtered with a nanofiltration unit. The next stage is bioremediation 

of the nanofiltration permeate. The fourth stage is to remove microorganisms using a 
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0.45µm microfiltration membrane. Activated carbon treatment was introduced 

independently after three different stages of the process described previously. The 

tests that were carried out after nanofiltration to treat nanopermeate (effluent e), after 

bioreactor to treat biopermeate that contains biological material (effluent eB) and 

finally after microfiltration to treat the biopermate without microorganisms (effluent 

eBF). Adsorption tests were carried out both in a discontinuous and in a continuous 

mode in liquid phase. The results of the three activated carbon tests were compared. 

The effect of the presence of microorganisms in the adsorption process and the 

comparison of bioremediation versus activated carbon used both after nanofiltration 

stage are discussed. 

The effluent resulting from each system were used to prepare fresh metalworking 

fluid in order to simulate the reuse of water in the manufacturing process. 

Characterisation tests, such as foaming and emulsion stability, are compared for the 

same metal-working emulsion when made with tap water in order to assess the 

feasibility of such water re-use. 

 

VII.2 BATCH TESTS ADSORPTION TRIALS 

Batch tests allow an estimation of the feasibility of the treatment. They also give an 

indication of the activated carbon employed capacity to adsorb the effluent COD. 

The experimental isotherms found are fitted to Langmuir and Freunlish isotherms to 

measure the COD adsorption capacity of the activated carbon used. 

 

VII.2.1 Adsorption isotherms 

Figure VII-1 shows the adsorption isotherms obtained for each batch experiment. 

Figure VII-1 plots qe quantity of effluent COD adsorbed per gram of activated 

carbon versus the concentration of the effluent in the batch (Ce). Their size depends 

of the initial concentration used. It is going to be different because it has to be taken 

into account that effluents from different parts of the process are used. Initially, all 
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the isotherms look very similar. However, the effluent-e seems to be adsorbed a 

little better than effluent-eB, which is more than effluent-eBF. The rate of 

adsorption reached is good. For the effluent-e, it is possible to adsorb more than 550 

mg of its COD per gram of activated carbon. The adsorption in stirred batch system 

is different to the continuous trials because the latter system is static, so the diffusion 

inside the carbon is lower. However, these batch experiments are the best way to 

understand the maximum adsorption capacity of an adsorbent. 

Figure VII-1: Adsorption isotherms  

 

VII.2.2 Fittings to isotherms 

Langmuir’s well-known equation (EquationVII-1) is based on a theoretical model 

and supposes that maximum adsorption consists in a saturated monolayer of 

molecules of adsorbate on the surface of the adsorbent, considered energetically 

homogenous from the point of view of adsorption.  
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Where Qº (mg/g) is the maximum adsorption capacity per unit of mass necessary for 

the formation of a complete monolayer on the surface and KL (L/mg) is a constant. 

On the other hand, Freundlich’s isotherm Equation VI-2 is an empirical equation, 

which takes into account the heterogeneity of the adsorption energies of the surface. 

 

n
eFe CKq /1=   Equation VII-2 

 

 

Where KF ([mg •Ll/n]/[g •mgl/n]) and n are the Freundlich constants characterising 

the system and indicating respectively the capacity and intensity of the adsorption. 

The value of n indicates favourable adsorption when 1 < n < 10, being more 

favourable the lower its value within this range. 

 

Final fittings to these models are shown in Table VII-1. Although the isotherms look 

similar Figure VII-1, the parameters calculated from the models are different. This 

can be due not only to different adsorption capacities, but also due to the different 

nature of the effluent treated. The difference in absorption capacity between the –eB 

and –eBF can be attributed to the fact that micro-organisms do not totally adsorb 

onto the activated carbon. The difference in adsorption capability between –e and 

both      bio-effluents –eB and -eBF is due to the change in nature of the effluent. 

Effluent –e is transformed during bio-filtration; surfactants are degraded, bio 

polymers are produced and both its pH and COD are lowered. The yellow dye that is 

present in the NF permeate is not removed during the biological step but the effluent 

is totally transparent after activated carbon treatment. 
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Table VII-1: Fittings to Langmuir’s and Freundlich’s models 

 

VII.3 CONTINUOUS MODE 

The results obtained for the treatment of each effluent are shown in Figure VII-2, 

Figure VII-3 and Figure VII-4. The inlet COD and the outlet COD measure are Co 

and Cs respectively for each column. The inlet COD varies for the effluents -eBF 

and -eB, as a consequence of the biological activities. The average COD over the 

trial calculated are 1134 mg/L for -eBF and 1730 mg/L for -eB. For column-e, a NF 

permeate of COD value of 3700 mg/l was first used then after 10 litres treated a 

second batch of NF permeate showing a COD value of 7350 mg/L was used.  

VII.3.1 Column results 

 

The column-e totally removed the COD and colour of the effluent-e until the second 

batch at 7350 mg/L was used. Then the column starts to saturate and COD started to 

appear in the treated effluent. After 28 litres of effluent treated the level of COD 

reaches 1000mg/L and at that point the column reaches the same performance as the 

bioreactor and is no longer competitive. Microbial development is observed at the 

top of the column. This development induces a decrease in effluent pH from 9.1 

down to 7.95 over the 28 litres of effluent treated. It also contributes to the blockage 

of the column. Therefore, this column had to be stopped after 30 litres of effluent 

had been treated. 

 

Adsorbate Qº (mg/g) K L (L/mg) R 2
n K F R 2

e 345.0 0.007 0.994 2.1 23.11 0.929
eB 400.0 0.033 0.928 1.9 17.05 0.989

eBF 625.0 0.014 0.992 1.5 9.06 0.992

Langmuir Freundlich



Chapter VII  Activated carbon 

213 

Figure VII-2: Concentration treated (Co) and breakthrough curves for the adsorption process 
of effleunt-e 

 

Figure VII-3 presents the performance of column-eBF. The column treating the 

effluent-eBF shows better performance than the column using directly NF 

permeates, because the C0 of the filtered bio-permeate is 5.5 times smaller than the 

NF permeate. Nevertheless, after 25 litres of effluent-eBF passed through the 

column the COD measured is only half compared to column-e. 

Figure VII-3: Concentration treated (Co) and breakthrough curves for the adsorption process 
of effleunt-eBF 
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The performances of column-eB are presented in Figure VII-4. Column-eB shows 

the best performance of the three columns. After 25 litres of effluent was treated, no 

COD was detected. It is after 28 litres that COD was measured at a value of 100mg/l 

and after 40 litres that the COD started to breakthrough. Effluent-eB contains micro-

organisms that come from the bioreactor; contrary to the effluent-eBF, in which case 

the micro-organisms have been removed by the microfiltration membrane. A 

synergetic effect can be seen between adsorption onto the activated carbon and the 

biodegradation due to micro-organisms added to the column. However, the 

microbial development in column-eB does not block the flow of the column and this 

may be attributed to the fact that they do not colonise the column as for the column-

e probably because of the low inlet COD (when compare to column-e). In addition, 

the turbidity of the effluent coming from column-eB has the same level as the 

bioreactor outlet. This is because micro-organisms are not fully retained within the 

column-eB, because the non-filtered bio-permeate contains micro-organisms. 

However, the inlet COD is insufficient for the microorganism to produce a biofilm 

within the column. The turbidity of the column –eB and –e were consistent through 

out the column tests and was not due to activated carbon particles presents in the 

filtrate.  

Figure VII-4: Concentration treated (Co) and breakthrough curves for the adsorption process 
of effleunt-eB 
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The action of the micro-organisms across the column can be seen in the lowering of 

the effluent pH as it can be seen in Figure VII-5. The column-e drops the pH of the 

NF permeate down to 7.9 after 35 days. This shows that the microbial development 

observed in the column has an effect on the effluent-e. The column-eBF shows no 

drop in pH when compared to the bio-permeate (blues curves). The column-eB 

(yellow curve) shows a drop in pH compared to the bioreactor outlet. This 

demonstrates that biological activity continues in the column for effluent-eB. 

Figure VII-5: pH of the effluent collected at the outlet of each activated carbon column 

 

Under the experimental conditions, more than 40 litres of effluent-eB can be treated 

with 212 grams of activated carbon, producing a clear effluent showing an average 

turbidity value of 15 NTU (average over 35 days). The differences in effluents 

aspect are shown on Figure VII-6. 
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Figure VII-6: picture of effluent bioreactor permeate on the left and the three effluent after 
activated carbon on the right in order from left to right (-e; -eB and eBF) 

 

The left picture (Figure VII-6) shows the different results after 25 litres of effluent 

have been passed through each column. In all cases the effluent colouration 

disappears after activated carbon. The COD is considerably reduced. Nevertheless, 

the turbidity of the effluent eB remains and increases for effluent e. This is because 

the micro-organisms that developed in both columns e and eB are not totally 

retained. 

 

VII.4 SUMMARY 

Figure VII-7 and Table VII-2 show the performance of the activated carbon columns 

for each effluent. The activated carbon is very efficient in removing the all effluents 

colour and COD effluents. 
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Figure VII-7: Efficiency of activated carbon on the different effluent tested 
after 25 litres passed through each column 

 

 Before activated carbon  After activated carbon 

Effluent -eB -e -eBF -eB -e -eBF 

pH 8.2 9.2 8.2 7.9 7.7 8.2 

Turbidity 

(NTU) 
17.6 1.3 0.05 15 5.5 1.1 

COD 

(mg/l) 
1150 7300 1000 85 840 350 

Table VII-2: Recapitulation of effluent before and after activated carbon treatment 
after 25litres passed through each column 

 

From Table VII-2 it can be seen that treating effluent that comes out directly from 

the bioreactor (effluent–eB) gives the best performances in terms of COD removal. 

The turbidity in both cases for the non-filtered effluent show that the micro-

organisms are not totally retained. Nevertheless, the synergetic action of the 

activated carbon and the microbes present in effluent-eB was demonstrated. In 

addition, no significant blockage occurs in this case (compared to effluent-e), so it 

can be anticipated that less or no back wash would be needed. 

The aspect of scaling-up the activated carbon column is discussed in Chapter IX.
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CHAPTER VIII 

Biological Process 
 

VIII.1 INTRODUCTION 

The microbiology of MWF plays an important role in the degradation of the product 

and could be advantageously used for its disposal. Bio-remediation is an economic and 

easy on-site way to dispose of the exhausted product. It is also a sensitive tool to 

operate. Therefore, its robustness has to be assessed. 

The aim of this part of the work was to evaluate the biodegradability of metalworking 

fluids and its application in a waste treatment system. This aim was achieved by 

isolating and growing micro-organisms able to survive in the effluent and capable of 

digesting the organic components. The consortium extracted from waste metalworking 

fluid (Mobil cut 232) was tested with different effluent.  

This chapter is divided into three parts. The first part presents work done in Oxford. 

The second part presents the development of a bio-consortium. Finally, the efficiency 

of the consortium was tested and enhanced in a fixed film bioreactor. 
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VIII.2 EXPERIMENTS CARRIED OUT IN OXFORD 

Three days spent in the team of Dr Ian Thompson (Microbial Degradation and 

Exploitation Laboratory CEH, Oxford) enabled information to be collected about the 

microbiology of the waste fluid. 

The set of experiments were used to assess the biodegradability of the UF permeate 

and to obtain information on the flora present in the waste metalworking fluid. In 

addition, the three days in Oxford were used to become more familiar with 

microbiology laboratory techniques. 

 

VIII.2.1 Plate counting 

Table VIII-1 shows the results of the bacterial count of 3 samples of three types of 

effluent. Raw Waste 1, 2 and 3 are waste metal working fluid Mobil cut 232. Clear UF 

is the ultrafiltrtaion permeate of fresh MWF5%. Fresh MWF5% is the fresh prepared 

Mobil cut 232 at a concentration of 5% in oil. 

 

MEDIUM Bacteria 
(million per ml) Results 

Raw Waste1 1.25 1.2 1.35 1.27 

Raw Waste2 0.8 0.8 1.1 0.90 

Raw Waste3 1.95 1.5 1.6 1.68 

Clear UF 0 0 0 no growth 

Fresh MWF 5% 0 0 0 no growth 

Table VIII-1: Bacteria count 

 

The average number of bacteria for the 3 samples of raw waste is 1.28 million cells per 

ml of exhausted fluid. This is a typical level of microbes that may be found in a waste 

metalworking fluid. 
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The fact that there was no growth in neither the ultrafiltration (UF) permeates nor in 

the fresh MWF does not mean that they did not contain micro-organisms. It indicates 

that Mobil cut 232 and its UF permeate are quite resistant to bacteriological attack. 

 

VIII.2.2 Bacteria consortia test 

Two types of bio consortia have been used for the bioremediation the waste effluent. 

The first type is a bio consortium developed by Microbial Degradation and 

Exploitation Laboratory CEH Oxford named here “Oxford consortia” The second one 

is “home made consortium” extracted and improved from a waste Mobil cut 232 

source and tested in SChEME, University of Nottingham. 

Oxford consortium was composed of five chosen strains of bacteria. The strains of 

bacteria were selected and found in various waste metalworking fluid. The authors, 

(van der Gast et al. 2001) and (van der Gast et al. 2002) give more details about the 

selection of the strategy adopted to assemble the consortium. The tests have been 

carried out in batch over 7 days to degrade the ultrafiltration permeate of Mobile cut 

232 that has been diluted to three times showing an original COD of 18000 mg/L to 

6000mg/L. Figure VIII-1 shows the results of COD reduction obtained using a 5 litres 

suspended batch bioreactor. 
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Figure VIII-1: Oxford bio consortia with dilute UF-permeate 

 

Figure VIII-1 shows the COD evolution of Mobile cut 232 ultrafiltration permeate 

diluted three times with distilled water when 5 litres batch suspension conditions 

reactor is set with Oxford bio-consortium. A 92% COD reduction can be achieved in 7 

days. This consortium is very effective in degrading the diluted UF permeate MWF. It 

was developed using other MWF. These results show that the Oxford consortium has a 

broad range of activity. This test also demonstrates that a lower level of COD than the 

level obtained by ultrafiltration is needed to achieve effective biodegradation. 

The results obtained gave precise indications for the application of a bioremediation 

process. A plan to build and test a home made bio-consortium is shown in the next 

paragraph. 

 

VIII.3 EXPERIMENTS CARRIED OUT IN NOTTINGHAM 

The development and the enrichment of the Indigenous Community (IC) took place in 

4 stages. The first stage consists of the extraction of the IC present in the waste 

metalworking fluid Mobil cut 232. The second stage enabled the evaluation of the 

feasibility of the bioremediation and gives indications of what level of pre-treatment of 
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the waste metalworking fluid would require. Therefore, the IC is inoculated to 

different strength of effluents, respectively NF, UF permeate and UF permeate diluted 

with RO water. The potential fast growth of the micro-organisms was assessed. The 

third stage was to collect the micro-organisms that have grown during the first stage 

and to inoculate a continuous suspended bioreactor. The bioreactor was fed with the 

suitable effluent found during the second stage investigation. This stage enables the 

adaptation and the enrichment of the IC to improve its degradation capability 

(reduction of the effluent’s COD). It also results in the harvest of a consortium named 

IC2. The fourth stage consisted of a fixed bed bioreactor being inoculated with IC2. 

This stage can be considered an improvement of the bio-consortium in its remediation 

function. This improvement is because micro-organisms that survive in batch, but do 

not multiply significantly fast, would leave the bioreactor by being washed out. 

In Nottingham, it was decided to use a home made bio-consortium that would treat the 

nanofiltration permeate. 

 

VIII.3.1 Development of a home made bio-consortium 

The second consortium was developed, improved and tested at the University of 

Nottingham. It was developed from the extraction of biological material present in a 

waste metalworking fluid Mobil cut 232. The development was carried out during 10 

months and consists of 4 stages as described previously. This paragraph gives the 

results obtained during the enrichment of the consortium and discusses the options 

taken to achieve effective biodegradation.  

 

VIII.3.2 Culturing the Indigenous Community 

The micro-organisms that have been extracted from waste metalworking fluid (IC) are 

grown in triplicate in 100ml solution batch suspension conditions and the growth and 

the level of COD is checked. Table VIII-2 shows the experimental plan that has been 

used. Parts of the trial were carried out using a general minimum media, M9. The 
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composition of the media is given in Chapter IV Section III 7.2. 3% in volume of full 

strength M9 is added in the flask. 

 

Effluent Effluent+ M9 Effluent 
UF permeate at 100% 

18 g/l COD 3 3 

UF permeate 33% + RO water  
6 g/l COD 3 3 

NF permeate at 
6 g/l COD  3 3 

Non inoculated flask for each cases 1 1 

Table VIII-2: Experimental plan 
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Figure VIII-2
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 shows the evolution of the COD when nanofiltration permeate is inoculated with the 

IC. Results obtained were encouraging. After 7 days the dilute broth showed a COD 

reduction of 40%. 
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Figure VIII-2: Nanofiltration permeate test with IC 
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Figure VIII-3 shows the evolution of the COD when the diluted ultrafiltration 

permeate is inoculated with the IC. After 7 days, the dilute broth showed a COD 

reduction of 38%.  
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Figure VIII-3: Diluted ultrafiltration permeate flask test with IC 

 

No significant COD reduction was measured in the case of none diluted UF permeate. 

However, bacterial growth did occur in the flasks. These results confirm the test done 

in Oxford using the Mobil cut 232 UF permeate diluted from 18,000 to 6,000 mg/L of 
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COD, that an acceptable maximum level of COD has to be used to feed an aerobic 

system. 

In the three cases, no difference in COD drop was observed between trials using the 

bacterial minimal media and the trial without. Therefore, the development of the 

consortium was continued without using the minimal media M9. 

 

Figure VIII-4: Biodegradability comparison between NF and UF permeate 

 

The results obtained with the bacteria extracted from the waste metalworking fluid are 

not as good as the one obtained with the Oxford built consortium. Two reasons can be 

given for this. The first reason is that the indigenous community is not selected to 

target the UF permeate specifically and needs to be adapted to this environment. It is 

difficult to colonise, as shown by the bacterial count in paragraph VIII.2.1. The second 

reason is that the bacteria used in Oxford were tested in a diluted media (UF plus 

distilled water). Therefore, the biocide that maybe found in the UF and NF permeate 

were accordingly diluted. During the test carried out with the Mobil cut 232’s 

indigenous community, microbes were exposed to a full strength biocide that may be 

present in both permeates. 
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VIII.3.3 Enrichment 

Enrichment aims to improve the tolerance and capability of the indigenous community. 

 

VIII.3.3.1 Definitions 

Bioremediation is defined as being the use of micro-organisms to accomplish a 

biological clean up of a specified contaminated area such as soil or water. Enrichment 

is the selection of micro-organisms to enhance the microbial populations of the 

operating waste treatment plant in order to improve its performances and the 

application of such selected micro-organisms. 

This technique of enrichment applied to enhance the treatment facilities is because 

microbes that populate a system (soil or wastewater) become acclimated to the 

influent. Therefore, to start with, microbes collected from the waste effluent are 

specific and an excellent basis to implement enrichment. The IC is already adapted to 

survive in the targeted environment. These micro-organisms are well-suited to handle 

the contaminants in this specific waste influent and maybe acclimated to provide best 

performances, assuming a steady state of operation is approximated. 

This approach assumes that the indigenous population introduced via routes such as 

windblown solids, rainwater and the plant influent stream will always contain the  

best-suited organisms. In practice, even though the natural population may develop 

into an acceptable one, there may be performance limitations that only can be 

overcome by the introduction of superior strains of micro-organisms. 
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The worked that has been proposed over a month is the continuous suspended 

bioreactor which aims at helping microbes that develop well (in numbers) and quickly. 

The population that is needed to enhance the bioremediation of the nanofiltration 

permeate is selected. 

 

 

 

Figure VIII-5: Illustration of the impact of enrichment on indigenous population. 

 

Figure VIII-5 illustrates the impact that enrichment can have on a microbial population 

(A and B) in a system. In this case, the population wanted is Population B. 

Population B is constituted of fast growing microbes that adapted well from their 

original environment, the waste MWF (with a very high COD content, with little 

available oxygen) to the new environment, the NF permeate. The NF permeate has a 

very little oil content and a COD of 7300mg/L. The system operates in continuous 

mode and oxygen is not limited. Population A represents the fraction of the 

population that does not adapt to the new conditions. They are slow growing and are 

discarded by the wash out effect. They do not adapt to the new oxygen level, to the 

permanent renewal of feed stream or to the utilisation of  molecule that are not present 

in the new environment. Population C represents the fraction of new organism able to 

grow in the NF permeate, selected by enrichment. The purpose of the trials is to 
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enhance the growth of Population B, minimise Population A and allow the 

establishment of the Population C. The net result is to improve both the quality and 

quantity of the bacterial population for it to reduce the COD level of the influent in a 

minimum period of time.  

 

VIII.3.3.2 Strategy adopted 

The strategy adopted uses a stirred suspended continuous bioreactor. This bioreactor 

consists of a continuous open 1.75 litre bioreactor, used at a constant volume. The 

bioreactor is continuously stirred and thin air bubbles are constantly pulsed. All inner 

flux passed through a filter 0.45 µm to prevent any bacterial contamination. The 

bioreactor is described in Chapter III. Micro-organisms that develop and have a growth 

rate fast enough to stay in the bioreactor at a given dilution rate will be selected. The 

others will be washed out. Therefore, by scaling the feed rate, it is expected that the 

most adapted micro-organisms survive and develop the best ability to biodegrade the 

NF permeate. The decrease in COD at the bioreactor outlet is measured. 

When a maximum COD is transformed, the consortium surviving in the bioreactor will 

be introduced into a 5 litres bioreactor load with a plastic matrix to encourage biofilm 

growth. It is likely that the fixed film bioreactor will have a better performance than 

the bioreactor. 

The IC growth rate was measured before starting the bioreactor in order to prevent any 

premature and total washing out of the micro-organisms. 200ml NF permeate was 

inoculated with IC and left agitated in incubator. 200µl samples were taken regularly 

and a bacterial count using a haemocytometer was carried out. 
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Figure VIII-6 shows the growth rate of the indigenous community. On 
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Figure VIII-6 a short lag phase of 1 hour can be seen; then the IC starts to increase. 

After the second hour, exponential growth is measured. The exponential growth stops 

after the fifth hour. The IC’s generation time was calculated to be 45 minutes from 
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Figure VIII-6. The lag phase is very short in this measurement due to the fact that the 

IC cultivated in nanofiltration permeate was transferred at 10% in volume to the new 

flask where the growth rate measurement took place. Therefore, the IC was ready to 

colonise the new environment. 
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Figure VIII-6: Indigenous community growth curve 
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The continuous suspended bioreactor is filled up with nanofiltration permeate, adjusted 

to 6000 mg/L COD. The IC from the broth used to measure growth rate is used to 

inoculate the bioreactor. The bioreactor stands in batch mode for 3 days before the 

continuous mode is started. 

 

VIII.3.3.3  Continuous suspended bioreactor 

After 3 days in batch, the continuous mode is started at a rate of 800 ml/day, so the 

retention time was 2.2 days. Different retention times were tested. Figure VIII-7 shows 

the COD reduction achieved in suspended continuous bioreactor according to the 

retention time. At 2.2 days the micro-organisms grew well and a decrease in COD of 

20% is observed, but after the third day, an increase in COD and pH occurred. In 

addition, a drop in turbidity was indicative that the bioreactor started to wash out. 

Micro-organisms were leaving the bioreactor quicker than they were multiplying. 

Therefore, after the fifth day, the feed rate was reduced, giving a retention time of 4.4 

days in order to avoid total wash out of the micro-organisms. 

 

Figure VIII-7: Influence of the retention time on the COD removal 
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At best, the results are 53% COD decrease and a pH stabilised at 7.8 against a pH 9.2 

for the NF permeate. This result is obtained with a retention time of 4.4 day and in 

inlet COD of 6000mg/L. This regime corresponds to an organic load of 2400 mg of 

COD per day. Increasing the retention time further does not improve the 

biodegradation. Figure VIII-7 at a retention time of 5.3 day and 9.7 day the 

performances are reduced. At 9.7 day retention time, the biological process stops after 

24 hours. During the 24 hours the COD level and the pH increase respectively from 

3180 to 3600 mg/L and from 7.9 to 8.3. After 5 days, the COD level measured is 

4750mg/L which is less than 20% of COD reduction. The biological process has 

stopped. This is due to the non-removal of waste produced by the micro-organisms and 

by an impoverishment of the bioreactor in fresh nutrients. 

These results show that the indigenous community does not totally reduce the COD 

level of the effluent. Nevertheless, through the 30 days of being cultivated in the 

suspended continuous bioreactor, the culture has improved its ability to degrade the 

nanofiltration permeate. Figure VIII-8 shows the performances of the suspended 

bioreactor over 1 month. The inlet flow rate is indicated with horizontal bars. When 

the retention time is 4.4 days the best performances are achieved. After a dramatic 

decrease in performance due to the high retention time set-up of 9.7 days, a return to a 

retention time of 4.4 days leads to a performance improvement. 
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Figure VIII-8: COD reduction ability of the IC (retention times indicated in day) 

 

Figure VIII-8 shows the evolution of the bioreactor outlet COD relative to the retention time. The 
dotted lines shown on Figure VIII-8 represent the improvement in COD reduction performances 

when the residence time is set-up at 4.4 day. During the month of growth in the continuous 
reactor, 960 generations of micro-organisms were produced, basing this calculation on the cell 

count shown in 
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Figure VIII-6. The IC is adapted and specialised to degrade the nanofiltration permeate. In batch, 
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a decrease of 31% at most is obtained in 7 days, as seen in 

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6 7 8 9
Time (day)

C
O

D
 (m

g/
l)

NF permeate

NF permeate+M9

Abiotic

 

Figure VIII-2
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, whereas a decrease of 53% in 4.4 days is obtained in continuous mode. The culture of 

the continuous bioreactor is harvested and frozen at -80°C to be used in the next stage. 

The new culture is named IC2. The bioreactor is sensitive to the retention time and the 

optimum is found to be 4.4 day or may be slightly below with a feed of 6000mg of 

COD per litre. The optimum retention time will be found using the fixed bed 

bioreactor. 
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VIII.4 FIXED BED BIOREACTOR 

A fixed bed bioreactor was used to perform the biodegradation of the nanofiltration 

permeate. This bioreactor was described in Chapter III Experimental Equipment and 

Procedures paragraph 6.4. The fixed bed bioreactor is inoculated with the IC2. They 

establish themselves and colonise the plastic matrix rapidly (batch process). The outlet 

is opened, the feed is dripping at the open top of the bioreactor and the flow rate is 

controlled by a peristaltic pump. The trial lasted 240 days. 

The effect of the feed flow rate on the bioreactor performance was studied and related 

to the feed COD load. The feed organic load corresponds to feed COD (mg/L) 

multiplied by the feed rate giving a value of COD per day that feed to the bioreactor. 

Figure VIII-9 shows the evolution and variations of the bio-permeate. It can be seen on 

the figure that globally and independently of the feed load, the performances of the 

bioreactor have significantly improved, from 40% to 90% of COD reduction, over the 

240 days. 

  

Figure VIII-9: Reduction in effluent COD 
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last point is justified by the fact that during the 20 first days, the COD feed loading 

was set at 8550 mg/day of COD and the reduction of COD was 40%, similar to the 

results obtained previously with the suspended bioreactor. At the end of the period trial 

when the COD feed loading time was optimised, 8500 mg/day of COD, a reduction in 

COD of 90% was obtained. Figure VIII-9 shows that after day 181, the optimum feed 

loading and the recycling loop are implemented the reduction in COD is optimum and 

more consistent. 

 

VIII.4.1 Optimisation of the ratio COD/flow rate 

The nanofiltration permeate’s COD evolved with time. This is mainly because the 

permeate is vulnerable to biodegradation and due to the filtration conditions such as 

fouling, temperature and nanofiltration feed concentration. The control of the 

nanofiltration permeate was discussed in chapter V. The fact that the permeate is 

vulnerable to contamination means that it cannot be stored too long without 

experiencing microbial growth. Therefore, the nanofiltration permeate that is used for 

the bioreactor feed is stored at +4°C. This inhibits microbial growth at least for one 

month. Nevertheless, the tank to feed the bioreactor is a 5 litre container, and 

regardless of the fact that it is washed with a biocide solution prior each feed reload, 

sometimes microbial growth was observed and lower pH and COD values were 

measured. This can be explained by the fact that the feed flow rate is very low at the 

study scale and microbes from the bioreactor may contaminate the feed tank. 

The feed COD load is an important factor to optimise the fixed bed bioreactor. When 

this COD load is known, the feed flow rate may be tuned to the feed COD.          

Figure VIII-10 shows the relation between the COD load (Orange curve) and the COD 

measured at the bioreactor outlet. The line across the diagram represents the optimum 

level of feed COD load for the system. It can be seen that when the feed load varies 

from the value of 8550 mg/day, the COD removal decreases. The blue arrow show the 

point at which the recirculation loop was started at 0.5 l/day. At the optimum, a COD 

reduction of 90% can be observed. 
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Figure VIII-10: Feed COD load and COD removal 

 

During the 240 days, COD varied from 3700 to 9100 mg/L with an average of 7332 

mg/L. This average value is in the average of the nanofiltration permeate that can be 

obtained when an ultrafiltration system is used as pre-treatment. The best ratio feed 

COD/retention time found to be between 8500 to 8600 mg of COD per day from day 

170 to day 240. 

 

VIII.4.2 Recycling loop 

The recycling loop was introduced at day 148. The effect is to add more mixing to the 

fixed bed. This technique enables the dilution of the feed concentration and to recycle 

biological material back into the reactor. 

Recirculation helps distribute the loading evenly throughout the depth of the 

bioreactor. It also helps to manage the variation in loading while maintaining a 

minimum wetting rate throughout the day. It is generally admitted that the higher 

recirculation ratios (recirculation flow rate/influent flow rate) the better the effluent 

quality, at least to the point where the hydraulic retention time in the bioreactor bed 

becomes too short. The recycling loop over-all allows the system to reach and maintain 

a steady state. 
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The effect of the recycling loop in the bioreactor inlet had an immediate effect on the 

bio outlet. Over night the 7 litres is recycled into the bioreactor. The turbidity value of 

the bioreactor outlet considerably decreased from an average value of 65 NTU before 

recycling down to 12 NTU after recycling. The explanation is that the biological fixed 

bed acts as a filter that retains particles, extra-cellular polysaccharides and detaches 

micro-organisms. The second effect is the effluent buffering effect, although large 

variations of COD inlet (down to 3700mg/L and up to 7350 mg/L), the outlet has not 

varied widely as seen on Figure VIII-10 from day 141 to day 171. 70-75% of the COD 

was reduced. After that period, the bioreactor was provided with a constant organic 

load of 8550 mg/day of COD and its performances improved. 

 

VIII.5 SYNTHESES 

The fifth section summarises the chapter on biological process and points out the 

improvement of the biological system used. In addition, further improvements are 

proposed. 

 

VIII.5.1 Achievements 

A bio consortium was developed from a batch of waste metalworking fluid. It has been 

proven over several months to be efficient to remediate the NF permeate of the waste 

effluent. Table VIII-3 summarises the bioreactor parameter optimised.  

 

COD in 
(mg/L) 

Feed flow 
(l/day) 

COD 
(mg/day) 

Effluent 
Recycled 

Turbidity 
(NTU) 

COD outlet 
(mg/L) 

Yes (0.5 l/h) 10-15 800-1200 6000-9000 1.38-1.08 8550 No 65 – 90 700-2000 

Table VIII-3: Summary of the bioreactor optimum parameters and performances 
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More than 90% of the COD is removed from the effluent when the bioreactor is used 

in optimum conditions with the developed bio consortium.  

The difficulties to set correctly the bioreactor arose due to the fact that the COD inlet is 

not always known and well controlled. This represents the situation that maybe 

encountered in an indusial environment. The study showed that the variation can be 

buffered by adding a recycling loop. 

An optimum of 90% of COD reduction with a single stage trickling filter is a very 

good achievement when compared with level of removal found in literature (Benefield 

and Randall 1980). 

 

VIII.5.2 Additional improvements 

Adding a second stage to the filtration will enhance the performance of the biological 

system and reduce the total reactor volume. The performance achieved with the system 

proposed lowering the COD of the effluent down to 800 mg/L. This performance may 

be enhanced by adding a second bioreactor in series. According to (Benefield and 

Randall, 1980), the addition of another reactor in series with identical volume and 

recirculation ratios will improve the overall performances of the system. The second 

benefit is that a new microbial population can establish itself in the second bioreactor 

more adapted to a lower level of COD and pH. This is the effect was explained in 

encouragement of a new microbial colonisation (Population C shown in Figure VIII-5). 

The media used to grow the microbes is of importance too and choosing a better 

growth media then the pall ring used in the small-scale reactor. In Chapter III are the 

details of the Bio-deck used in the large-scale bioreactor. 

The feed temperature is a factor not studied in this work. An increase in feed 

temperature can have a beneficial effect on the bioremediation performances. Designed 

for an industrial scale, it would be economically difficult to justify the heating of the 

media. Nevertheless, when on line with the filtration process, the permeate is flowing 

at a higher then ambient temperature during continuous filtration mode. It was 

observed that the permeate temperature varies from ambient, when starting filtration, 
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to a temperature of 30°C. This range of temperature could be beneficial to the 

biodegradation process. 
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CHAPTER IX 

System Design 
 

IX.1 INTRODUCTION 

This chapter concentrates on the design aspects of a full process bringing together all 

different processes that have been discussed in the previous chapters. Starting with the 

initial design proposed by CARDEV Ltd, the different options are investigated and a 

final design is proposed. Modifications to the process and procedures also are 

proposed. 

 

IX.2 INITIAL DESIGN 

The initial design proposed by Cardev Ltd, was composed of 4 different main 

components; a waste storage tank, ultrafiltration unit including holding tank 180 litres, 

a 2m3 bioreactor and a nanofiltration unit including a 600 litres holding tank. The 4 

units have been described in more details in Chapter III, and the schematics are 

presented in Appendix C. Some general problems have been identified with this 

design, and are discussed below. 

 

IX.2.1 Liquid handling 

One of the general problems when dealing with emulsion and oily wastewater is the 

phase separation and one has to avoid the mixing effect. On the original design, it can 

be seen that the effluent before going into the coalescer tank is often mixed, this allow 

the free oil and aggregates to be re-emulsified. The floating pickup point in both the 

waste coolant tank and the main tank are the first problems to be solved. Floating 

pickup draws preferentially the floating oil that separates naturally by gravity into the 

system, and remixes it. This affects the filters increasing their clogging, and re-mixing 
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of the oil with the effluent that once tries to separate in first place. In addition more 

liquid than necessary is handling by the different pumps; to pass the free oil through 

the all system from coolant tank to the membrane inlet. The pumps energy is not used 

efficiently. This problem can be solved by using sinking pick-up points, so the pump 

draws only the emulsion, leaving the free oil in the coolant and main tank. A tap 

should be added on the side of the coolant tank to enable the drainage of the free oil. 

The inlet of the coalescing tank was designed to spray the effluent on the top of the 

coalescing media. This increases the mixing of the effluent and diminishes the 

efficiency of the coalescing media regarding that type of media separates large oil 

droplets but not emulsified oil. The effluent must be introduced into the coalescing 

tank under the liquid level to avoid turbulence. Therefore, any oil droplets arriving at 

that point would be removed by the coalescing media. 

The return of the effluent from the membrane into the process tank makes this tank 

over flow into the main tank. The return of the retentate into the process tank is 

necessary to maintain the process tank full, in addition the over flow into the main tank 

is beneficial to re-dilute the retentate with the main tank effluent. Nevertheless, the 

over flow returns the main tank creates turbulence and mixing. This over flow should 

be collected and drained to the main tank under the liquid level arriving smoothly 

against a wall of the tank. 

All these measures can protect the filters and the coalescing media because oil plus 

particle tend to clog filters. The membranes are also protected; free oil and particles 

entering the membrane tubes have a great fouling and damaging potential. They reduce 

the overall running cost of the system. In addition they do not add any additional 

manufacturing cost, actually only a tap was added to the coolant tank and a pipe 

collecting the over flowing concentrate return from the process tank to the main tank. 

 

IX.2.2 Concentrate tank and bioreactor feed 

On the design of membrane filtration system 1, the concentrate tank receives all 

concentrated emulsion and recovered oil. This again causes the mixing of two streams 
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that have been separated by the process. These two streams have different nature and 

are of different interest. It has been seen in Chapter V-3 that the oil has a calorific 

value, which makes it valuable as a fuel or at least could be supplied to waste 

contractors at no cost. The second problem is that the mixed oil concentrated tank is 

transferred to the bioreactor. This was unrealistic because whatever the efficiency of 

the bioreactor used, this part of the process denied absolutely the all separation 

process. If a bioreactor can be designed to sustain the COD charge of the raw effluent, 

there would be no reason to propose a separation process prior to the bioreacvtor. It 

has been seen in Chapter IV that the direct aerobic biodegradation of the emulsion is 

not feasible due to oil content COD charge and emulsion nature. Therefore, separation 

process was set-up to enable the biodegradation of the MWF by using the permeate as 

feed for the bioreactor. The membrane filtration is used to remove the oil droplets from 

the bioreactor feed stream and to lower its COD. 

The solution was therefore to use effectively the membrane separation process to 

enable good functioning of the bioreactor, providing a consistent permeate flux. On the 

other hand, the recovered oil from the coalescing tank as well as the steeling oil 

recovered from the cooling tank is kept separate from the concentrate stream. The 

concentrate stream can be disposed of or be chemically treated on site as it has been 

proposed in Chapter V-3. This matter is discussed later, it involves an additional tank 

to be built a motor to stir the emulsion, a holding tank for the concentrated acid used to 

treat the retentate and a dosing pump to progressively inject the amount of acid needed. 

It has been found in Chapter V that with sulphuric acid at 5 Normal 10 ml were needed 

to treat 500 ml of UF concentrate MWF20.8%. 

 

IX.2.3 Post bioreactor treatment 

The post bioreactor treatment proposed in the original design was to used a 

nanofiltration membrane including a 600 litre holding tank. Two major remarks can be 

made here the nanofiltration is not the usual type of membrane chosen to use with a 

bioreactor. On one hand, NF membranes have a great retention potential and a low 

flow rate when compare to microfiltration system. On the other hand the biological 
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system is used in this system to polish the permeate, this is why when using a NF 

system to clarify a biological effluent where the primary purpose would be to retain the 

micro-organisms, for this task microfiltration would be the right choice. The second 

remark concernes the size of the holding tank; 600 litres takes a lot of space and 

holding so much biological effluent creates odorous problems due to micro-organisms 

development in eventual anaerobic conditions. Therefore, as a post treatment, an 

online microfiltration system should be preferred, allowing the recirculation of the 

retentate to the bioreactor. It has been seen in Chapter VI that activated carbon 

columns can be used as a post bioreactor treatment the scale-up and feasibility being 

discussed in IX.6 later. 

 

IX.3 CHOICE OF FILTRATIONS 

In Chapter IV and V the results of the filtration of metalworking fluid using mobil cut 

232 with 3 different filtration systems were presented. It has been seen that coupling 

UF and NF filtration enhances the whole filtration process enabling the production of a 

constant feed stream for the bioreactor. Therefore, the solution chosen is the use of 

ultrafiltration FP100 of the raw effluent in a semi-batch system followed by an on line 

nanofiltration using AFC30 tubular membrane. The system is shown in Figure IX-1 

and the filtration parameters are shown in Table IX-1. 
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Figure IX-1: Filtration system 

1: UF process tank; 2: FP 100 ultrafiltration membrane 3: UF permeate tank/NF process tank; 

 4: AFC30 nanofiltration membrane;  pump 

 

Membrane 
Inlet P 

(bar) 

Outlet P 

(bar) 

TMP 

(bar) 

Flow 

velocity 

(m/s) 

Permeate 

flux 

(L/h/m2) 

Permeate 

Turbidity 

(NTU) 

FP100 4 1.5 2.75 2.5 45 to 25 5 

AFC30 8 6 7 2-2.5 23-19 0.2 

Table IX-1: Filtration parameters 

 

The TMP of 2.75 bar allows the best permeate flux for the best oil retention for feed 

concentration between 5 and 20% to be obtained. When using The UF permeate in 

semi-batch instead of batch system the retentate is maintained at a lower concentration 

which enhance the permeate flux and the permeate quality. The choice of using UF 

membrane pre-treatment is in the view of removing the oil droplets is positive and this 

study can be related to the study carried out by (Kim et al. 2002). They used membrane 

filtration to treat a secondary effluent from a sewage mixed industrial and municipal 

wastewater treatment works. They studied the effect of pre-treating the stream for a 

reverse osmosis system. In the study, the authors compared three pre-treatment 
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systems; UF, activated carbon and dual media filtration combined with coagulation. 

The first system shows best performances with the least RO permeate flux decline by 

removing the feed turbidity. The removal of the effluent turbidity is an important 

factor to take into account when designing a pre-treatment system for a RO/NF 

filtration. Therefore, the FP100 ultrafiltration membrane is chosen to reduce the 

turbidity of the nanofiltration effluent. 

The effect is immediate on the overall filtration treatment, the nanofiltration system. 

The working cycle is longer and NF unit shut-down for washing and cleaning is less 

frequent. 

 

IX.4 TREATING THE CONCENTRATE 

The UF concentrate consists of an emulsion of oil in water at 20% of oil and is a 

residue of the membrane process. Whatever the membrane process used UF, NF or 

combination of both the separation is limited by the concentration and the physical-

chemical change of the feed. The limit of retentate concentration has been found to be 

20%. Over this limit the membrane is severely fouled and oil permeates through. 

Nevertheless, a chemical treatment of the concentrate has been found to be effective. 

The chemical treatment has been studied in Chapter V and consists of slow 

acidification at low shear rate of the UF concentrate. 

 

IX.4.1 UF concentrate 

20% of the initial volume of waste treated remains as concentrate. Therefore, a 200 

litres tank can be used to coagulate the concentrate it required a mixing unit and an 

acid injection point. Baffles may be added to the wall of the tank in order to avoid gel 

formation. The principle is to avoid mixing the coagulated oil and to neutralise the pH 

of the aqueous phase. Figure IX-2 present the arrangement for the acidification 

process. 
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Figure IX-2: Acidification process 

 

The aqueous phase recovered from the chemical treatment is re-directed to the UF unit. 

A white precipitate was formed when the acidic aqueous phase was returned to caustic 

pH values. This precipitate must be removed which can be done by adding a buffering 

tank on the side of the UF unit main tank as shown on Figure IX-2. 

 

IX.4.2 NF concentrate 

The turbidity of the nanofiltration concentrate increased during filtration, this is 

essentially due to the accumulation of residual oil droplets that comes from the UF 

separation stage. Therefore, it is possible to send this concentrate to the chemical 

treatment with the UF concentrate as shown in Figure IX-2. The aqueous phase is 

returned to the UF filtration system. In the case of the nanofiltration the acidification is 
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not a polishing treatment, but a purge of the NF filtration system to be returned to the 

UF filtration system in order to remove the oil that was concentrated during the 

nanofiltration process. 

 

Table IX-2: Evolution of the concentrate quality during the nanofiltration of the UF permeates 
FP200 and FP100 respectively 

 

Table IX-2 show the increase in NF concentrate during filtration of FP200 and FP100 

permeates. The nanofiltrations have been carried out separately using 600 litres of both 

UF permeates. The increase in COD is not linear with the volume of concentrate 

treated because the nanofiltration permeate contains part of the original COD and this 

part increases with the concentration ratio. In addition the sharp increase in concentrate 

turbidity may indicate a change in particle size because turbidity is related to particle 

size and concentration. At the end of the nanofiltration it has been seen in chapter V 

that in both case the permeate flux and permeate quality do not worsen dramatically. 

Therefore the purge does not need to take place after only 500 litres of permeate 

treated. Maintaining a good UF permeate quality enhances the nanofiltration system 

and reduces the frequency of purge to be made. 

 

 

 

Turbidity 
(NTU) COD (mg/l) Turbidity

(NTU) COD (mg/l)

600 127 7989 75 6700 
400 325   11098 247 9246 
300 500   12995 419 10848 
200 764    15058 653 12529 
100 1978   20436 1403 17139 

FP 200 FP 100 
Concentrate volume 

(litre)
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IX.5 THE BIOLOGICAL TREATMENT 

The biological treatment using an indigenous community of micro-organisms has been 

proven to be effective to treat the NF permeate of MWF5%. In this section the 

functioning parameter of the bioreactor are summerised and the scale-up of the 

bioreactor investigated. 

 

IX.5.1 Functioning parameters of the bioreactor developed 

The bioreactor was developed at a scale of 4.5 litres and had worked for 8 months. 

Table IX-3 shows the optimised biodegradation parameters found for the bioreactor 

used. The bioreactor was used at 21ºC  

Parameters  Values 

Feed temperature (°C) 21 

Feed Flow (l/h) 0.054 
COD load COD/flow rate 

(mg of COD/day) 8550 

Recirculation rate 
(litre per hour) 0.5 

Table IX-3: 4.5 litres bioremediation optimised parameters 

 

The bioreactor feed is the nanofiltration permeate produced by the system NF 

combined with UF. This filtration unit produced a fairly constant stream with the 

flowing characteristics using FP100 (from Table V-2) turbidity between 0.1 and 0.23 

NTU a COD level of 6400 mg/L at 20ºC the COD varies between 5900 and 8200 mg/L 

mainly depending on feed temperature and concentration the flux is 24 L/h/m2. The 

bioreactor feed has to be set at 1.34 L/day when using the 4.5 litre bioreactor (1.45 to 

1.05 L/day)  
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IX.5.2 Bioreactor scale-up 

The bioreactor is scaled-up to treat 500 litres per day of NF permeate. A very 

important factor related to the bioreactor performances is the feed COD load. Equation 

IX-1 reminds the definition of the feed COD load. 

 

Feed COD load [mg/day] = Feed flow rate [L/day] x Feed COD [mg/L]  Equation IX-1 

 

Therefore, the new COD load based on the optimum parameter of the small-scale 

bioreactor is recalculated to fit a similar bioreactor able to treat 500 litres per day of 

NF permeate. 

With an average feed flow rate of 1.34 L/day and a volume of 4.5 L the retention time 

is 3.36 days using a bioreactor of 1.679 m3 of effective volume enable to treat 500 

litres of NF permeate per day. Therefore, the feed flow is 20.8 L:/hour and the COD 

load 3200 grams of COD per day. This COD load calculated corresponds to the best 

performance of the small-scale bioreactor. This allows the set-up of the bioreactor 

feeding flow rate, which may depend on the actual feed COD. Nevertheless, the feed 

load must be maintained at 3200 grams of COD per day. 

In Chapter III, the large-scale bioreactor has been presented and has an internal matrix 

with different parameters from the small scale bioreactor. Therefore, changing the 

growth media may influence bioreactor performances. New functioning parameters are 

given in Table IX-4. These parameters are recalculated in order to maintain the 

bioreactor COD removal performances. Taking into account the feed flow rate and its 

strength, enable the bioreactor scale-up with a constant recirculation ratio. 
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Parameters  Values 
Feed temperature (ºC) 20 to 35 

Flow rate 
(L/h) 20.8 

Feed load COD/flow rate 
(g of COD/day) 3200 

Recirculation rate 
(litre per hour) 192.6 

 

Table IX-4: Large-scale bioreactor functioning parameters 

 

IX.6 SCALING UP ACTIVATED CARBON COLUMN 

Activated carbon unit has been described in chapter VII. It was found that using 212g 

of activated carbon in a column of 0.935 m high and 3 cm in diameter was able to treat 

over 50 litres of bioreactor effluent fed at a rate of 0.7 litres per day. The column 

performances were such that all colour and COD were removed. To scale-up the AC 

column the surface area of the column and the quantity of AC are recalculated 

relatively to the flow rate of effluent to be treated. The column high is brought to 1m 

(instead of the 0.935m) in order to simplify the calculation. Nevertheless, increasing 

the column height may seriously affect its performances; the risk of compaction to be 

compacted leading to column blockage. In the following calculations, it is assumed 

that each drop of effluent arriving at the inlet of the column surface takes a random 

vertical path through the column. This is the reason that the surface of the scaled-up 

column is re-calculated relative to the flow rate of the effluent, in order to simulate the 

quantity of effluent going through a given surface of activated carbon column and 

following a drop of 1 meter. With the column dimensions given above, it can be 

calculated that 0.99m3 per day passes through 1m2. The principle of scale-up based on 

constant column flux is explained in Figure IX-3.  
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Figure IX-3: Activated carbon column scale-up 

 

Therefore, based on a system treating 0.5 m3 per day, when compared to the 

performances of the bench-scale column, 715 similar columns should be used that 

correspond to a larger column of inlet surface of 0.5 m2. 

 

Column parameters  Values 
Height (m) 1 

Diameter (m) 45x10-2 
Volume (m3) 0.16 

Quantity of activated carbon (kg) 151 

Table IX-5: Parameters of the large activated carbon filter 

With 151.6 kg of activated carbon in the column, it can be calculated that a minimum 

of 28.6 m3 bio-permeate can be treated before the column starts to saturate. A trickling 

distributor must be mounted at the activated carbon filter inlet to enable homogenous 

1m 1m

0.7 l/day 500 l/day
Inlet flow rate    

x 715

Outlet flow rate           
x 715

Surface x 715

Number of column               
x 715

Flux constant
1m1m 1m

0.7 l/day 500 l/day
Inlet flow rate    

x 715

Outlet flow rate           
x 715

Surface x 715

Number of column               
x 715

Flux constant
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distribution of the effluent. An additional back washing system can be used to remove 

eventual microbial growth at the top of the column. Figure IX-4 shows the activated 

carbon assembly and expected performances. 

 

 

Figure IX-4: Activated carbon assembly  

 

IX.7 SCALE-UP OF THE WHOLE PROCESS 

This section will consider that 500 litres of waste metalworking fluids with an initial 

concentration in emulsified oil of 5% is treated through the system per day. The 

complete integrated design which takes into considerations all investigated process 

throughout this thesis is shown in Figure IX-5 
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COD 1000mg/l
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Figure IX-5: Final integrated process 

It can be seen that the integrated process generates two final products: (i) recovered oil 

with high calorific values of 42,000kJ/kg, which can be used as fuel, and (ii) an 

aqueous phase with very low COD value satisfies the regulation. This aqueous phase 

can either be drained to sewer system or can be used to dilute the original MWF. Each 

component of this design and the whole setting were recognised as an enormous 

benefit for potential clients and the environment (see Appendix A). 

 

IX.8 SYNTHESIS 

Both the bioreactor and activated carbon filter, can be scaled up to suite the stream flux 

that is provided by the membrane unit provided originally by Cardev International Ltd. 

When integrated to the system UF/NF the performances of FP100 are better then 

FP200. There are 4 benefits of using FP100 over FP200: 
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 The retentate obtained has a much higher concentration 20%  

 More raw effluent can be treated by filtration using FP100 76% of the initial 
volume 

 The enhancement of the NF filtration is greater by 5% 

 The quality of the permeate produce implies that less nanofiltration concentrate 
will be treated chemically.(seeIX.4.2) 

 

Over the period of the contract between Cardev International Ltd and the University of 

Nottingham, a prototype using a strategic combination of membrane filtration and 

biodegradation technologies has been developed.  

What does the platform do? 

 This prototype transforms the waste metalworking fluid into two products:  
Water, which can be used to mix new coolant and  

 Oil which could be a saleable commodity. 

 It reduces the waste volume by 95 % 

 The system is modular and has been combined with two complimentary 
processes allowing this to: 

 Recover oil from concentrate (for semi-synthetic fluids) and further reduce the 
waste volume  

 Polish the aqueous phase using Activated carbon 

 Numerous technical key points of the original filtration system have been 
improved. 

 The new system improves the operation of the traditional membrane filtration 

 It has been tested with semi-synthetic fluid with some success. 

 The use of Activated Carbon further reduces the COD to approximately 0-30 

mg/L removing the need for a post bio-separation process. 

 A Recycling loop in the biological process enhances the performance of the 

Bioremediation  system. This further reduces  the final COD and cuts down on 

the turbidity) 
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Benefit of the system can be seen for potential clients and for the manufacturer and 

environment. 

For the client 
 

 After polishing permeate may be sent to drain or recycled as process water 

(30mg/l COD) depending on the application. 

 Concentrate can be treated on site, at low cost due to volume reduction, to less 

then 20% of the original volume with the aqueous phase being recycled back 

into the filtration system i.e. No Disposal cost.  

 Waste volume reduction of 95% (based on an initial concentration of 5% oil) 

 

For Cardev 
 

 The new system has taken the previous system tested by Cardev Intenatioanl 

Ltd. and made it work! 

 Smaller unit can reduce manufacturing costs thereby increasing margin and/or 

enabling Cardev to enter new markets. Unit can be marketed has having a 

smaller footprint. 

 Process is easily adaptable for other MWF than Mobilcut 232 and for synthetic 

fluids. 

 There is a market for replacement consumables which are added to the system. 

Replacement membrane elements 

Acidification process (A specific Cardev brand may be formulated) 

Activated carbon to be regularly regenerated/replaced 

 

Other benefits 

 

 The platform can be sold as an on site total remediation system 

 Good press, marketing bioremediation as environmentally friendly 

 The modular nature of the system makes it easy to integrate into an existing 

MWF maintenance program including MWF recycling. 

 The system can be adapted to other suitable applications such as waste effluent 

from food industries. 
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CHAPTER X 

Conclusions and Recommendations 
 

The present investigation into treatment of metalworking fluids aimed at the 

development of a robust, effective treatment system to treat liquid waste material 

produced in engineering industry. Not only did the research culminate in a pilot model, 

which would be suitable for on-site treatment, but also produced a combination of 

technologies, which treated the full volumes of waste fluids and separated the 

components into two streams. 

One stream is the concentrated oil which was reduced in volume but could be suitable 

for use as a fuel and the other was a low chemical oxygen demand aqueous phase 

which could go to the drain via municipal sewage system at very low disposal cost. 

Alternatively, this source of water which when polished through activated carbon 

could be of suitable quality to recycle back as feed water into a new mixture of 

coolant. 

The experimental programme of this study has been designed to test a number of 

processes that can be used for the treatment of metal working fluids. The programme 

covered a wide range of experimental variables to find optimal conditions for each 

process. A design of integrated process has been developed, the final process is 

suitable for on-site treatment and is being developed commercially by Cardev 

International Ltd (see Appendix A). 

 

The following conclusions were made from this research: 

The waste stream used was a stable oil microemulsion when mixed under 20% of oil. 

The concentrate of the emulsion produce during the filtration stage is still an emulsion 

of oil in water, but is less stable than the original oil. This is attributed to a phenomena 

of oil aggregation due to oil concentration and surfactant impoverishment. Two 

methods of chemical treatment have been studied. The chemical treatment finds its 
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justification in completing the filtration system by treating the irreducible concentrate 

produced during the ultrafiltration process. At the stage using acidification, a valuable 

product is recovered. This product is recovered oil with a calorific value of          

42,000 kJ/kg that may be used as fuel. 

This research showed that ultrafiltration was suitable to remove the oil droplets of the 

waste stream. Different factors have been investigated for the filtration of the waste 

stream. These factors were trans-membrane pressure, fluid velocity, temperature and 

stability of the emulsion in the feed stream. For ultrafiltration and nanofiltration, low 

TMP, low feed temperature (ambient), high feed velocity and stable emulsion 

produced a best permeate flux and quality. If TMP and feed velocity can be optimised, 

feed temperature and concentration cannot be technically maintained during filtration. 

The feed stream tends to heat-up and the emulsion deteriorates with the concentration 

ratio during filtration. Therefore, fouling appears and oil permeates both UF and NF 

membranes. This limits in the experiment to a concentration ratio of concentrate at 

20% of oil. Above this limit even after membrane regeneration, oil permeates through 

the membrane and the permeate flux declines rapidly. 

Membrane fouling was addressed by three means; optimisation of membrane surface 

regeneration using surfactant solution, gas injection during MWF filtration and 

ultrafiltration of the waste stream in order to improve the nanofiltration system. 

At large scale, it was shown that for any method and filtration parameters the permeate 

flux declines during filtration. 

It has been shown that the combination of UF and NF modules to treat the waste 

stream is very beneficial for the overall filtration and an increase of 240% in volume 

treated was calculated when using UF/NF instead of nanofiltration alone. 

The feed concentration and stability greatly influence the effect on membrane fouling. 

The gel layer model applied to the filtration curve shows that the concentration of the 

gel layer increases during filtration. This phenomenon is attributed to the change in 

bulk concentration and nature of the emulsion.  

The permeation of the oil through the membrane is attributed to the phase inversion 

that occurs in the gel layer. 
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The research has also shown that activated carbon is very efficient in removing the 

effluent COD and colour for the three different effluents investigated. Best 

performances were for the effluent coming directly from the bioreactor and containing 

microorganisms. This attributed to a synergetic effect between carbon adsorption and a 

continuity of microbial activity. 

A bio consortium may be developed using microorganisms extracted from waste 

metalworking fluids. A fixed bed bioreactor using the bio-consortium was run 

successfully over 8 months and its performances were improved. 90% of the chemical 

oxygen demand was removed from the nanofiltration permeate, lowering its value 

from 7300 mg/L down to 800 mg/L using a one stage fixed bed reactor. 

An integrated design including the different processes tested in this work. This design 

clearly shows the enormous benefits for potential clients and the environment. Cardev 

International Ltd have recognised the huge benefits from the proposed integrated 

system and are in the process of developing it (see Appendix A). 

 

The following recommendations for further work can be suggested.  

1- The study of the coalescence of semi-synthetic metalworking fluid concentrate and 

coalescing media performances could be investigated. 

2- Use of a two stages bioremediation process for the treatment of nanofiltration 

permeates of metalworking fluid. 

3- Modelling of full scale filtration (micro)emulsion at high oil concentration. 

4- Developing the design to suit new markets such as food processing industry. 
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Full Report Set 
 
ASAP 2010 V4.02 C Unit 1  Serial # 201Page  1 
  
  Sample: Act Carbon - Phil Windsor 
Op: K.S. 
  Submitter Id: E.L. 
  File Name: C:\ASAP2010\DATA\KARL\X66369.SMP 
  
 Started: 07/01/80 16:26:18 Analysis Adsorptive: N2 
  Completed: 08/01/80 05:31:14 Analysis Bath: 77.35 K 
  Report Time: 10/01/80 12:15:26  Thermal Correction: No 
  Sample Weight: 0.5616 g  Smoothed Pressures: No 
  Warm Freespace: 28.3408 cm³Cold Freespace: 92.1340 cm³ 
  Equil. Interval: 10 secs Low Pressure Dose: None 
 
Analysis Log 
 
  RelativePressure Vol Adsorbed Elapsed TimeSaturation 
  Pressure (mmHg)  (cm³/g STP)  (HR:MN) Press.(mmHg) 
 
  01:11 759.89935 
 
0.0100063607.61194207.044103:28 
0.015992580  12.16875216.844004:00 
0.025038053  19.05574226.899104:29 
0.049997956  38.05969244.265404:55 
  05:16 761.34924 
0.075019372  57.11544255.436005:20 
0.100052279  76.17119263.681105:37 
0.135221300 102.94244272.477405:52 
0.162854447 123.97622277.877206:03 
0.208426874 158.66493285.214806:15 
0.261891915 199.36034292.112306:26 
0.314059503 239.06665297.917106:36 
0.364888512 277.75290303.015406:45 
0.400212724 304.63290306.526506:58 
0.502882470 382.77179315.794207:11 
  07:19 761.14209 
0.650286243 494.89511331.212207:28 
0.801519818 609.79401355.180807:50 
0.953063563 724.79114392.620208:18 
0.991596233 753.58716409.626809:04 
  09:20 759.79578 
1.000137079 759.83728415.426409:23 
0.990948464 752.19427412.105409:55 
0.952032852 721.83978401.873610:36 
0.852832391 645.82379380.718311:21 
  11:24 757.20667 
0.800034161 605.79120370.347912:01 
0.699288752 529.50610352.376712:16 
0.598987883 453.55762337.171012:31 
0.499699139 378.37552324.953412:47 
0.398550218 301.78488306.775413:06 
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Full Report Set 
 
ASAP 2010 V4.02 C Unit 1  Serial # 201Page  3 
  
  Sample: Act Carbon - Phil Windsor 
Op: K.S. 
  Submitter Id: E.L. 
  File Name: C:\ASAP2010\DATA\KARL\X66369.SMP 
  
  Started: 07/01/80 16:26:18  Analysis Adsorptive: N2 
  Completed: 08/01/80 05:31:14  Analysis Bath: 77.35 K 
  Report Time: 10/01/80 12:15:26  Thermal Correction: No 
  Sample Weight: 0.5616 g  Smoothed Pressures: No 
  Warm Freespace: 28.3408 cm³  Cold Freespace: 92.1340 cm³ 
  Equil. Interval: 10 secsLow Pressure Dose: None 
 
 
BET Surface Area Report 
 
 BET Surface Area:846.4151±30.6184 m²/g 
 Slope: 0.005253 ± 0.000182 
 Y-Intercept:-0.000109 ± 0.000039 
 C:-46.983317 
 VM:  194.435209 cm³/g STP 
 Correlation Coefficient: 9.958251e-01 
  
 Molecular Cross-section: 0.1620nm² 
  
 Relative Vol  1/ 
 Pressure  Adsorbed [VA*(Po/P - 1)] 
(cm³/g STP) 
   
0.049997956 244.26540.000215 
0.075019372 255.43600.000318 
0.100052279 263.68110.000422 
0.135221300 272.47740.000574 
0.162854447 277.87720.000700 
0.208426874 285.21480.000923 
0.261891915 292.11230.001215 
0.314059503 297.91710.001537 
0.364888512 303.01540.001896 
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Full Report Set 
 
ASAP 2010 V4.02 C Unit 1  Serial # 201Page  5 
  
  Sample: Act Carbon - Phil Windsor 
Op: K.S. 
  Submitter Id: E.L. 
  File Name: C:\ASAP2010\DATA\KARL\X66369.SMP 
  
 Started: 07/01/80 16:26:18 Analysis Adsorptive: N2 
 Completed: 08/01/80 05:31:14 Analysis Bath: 77.35 K 
 Report Time: 10/01/80 12:15:26  Thermal Correction: No 
 Sample Weight: 0.5616 g  Smoothed Pressures: No 
 Warm Freespace: 28.3408 cm³Cold Freespace: 92.1340 cm³ 
 Equil. Interval: 10 secs Low Pressure Dose: None 
 
  t-Plot Report 
 
 Micropore Volume:   0.262755 cm³/g 
 Micropore Area:    445.8341m²/g 
 External Surface Area:   400.5811m²/g 
 Slope:       25.897407  ± 1.672441 
 Y-Intercept:     169.870173  ± 7.029130 
 Correlation Coefficient:  9.93802e-01 
 Thickness Range:     3.5000 to5.0000 A 
 
 
  t = [13.9900 / (0.0340 - log(P/Po))] 0.5000 
 
 
 Surface Area Correction Factor:  1.00 
 Density Conversion Factor:   0.001547 
 Total Surface Area (by  BET):   846.4151 
  
 Relative Statistical  Vol Adsorbed 
 Pressure  Thickness, (A)  (cm³/g) 
   
0.010006360  2.6228207.0441 
0.015992580  2.7649216.8440 
0.025038053  2.9248226.8991 
0.049997956  3.2371244.2654 
0.075019372  3.4746255.4360 
0.100052279  3.6787263.6811 
0.135221300  3.9362272.4774 
0.162854447  4.1250277.8772 
0.208426874  4.4233285.2148 
0.261891915  4.7661292.1123 
0.314059503  5.1042297.9171 
0.364888512  5.4452303.0154 
0.400212724  5.6926306.5265 
0.502882470  6.4862315.7942 
0.650286243  7.9582331.2122 
0.801519818 10.3704355.1808 
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Full Report Set 
 
ASAP 2010 V4.02 C Unit 1  Serial # 201Page  7 
  
  Sample: Act Carbon - Phil Windsor 
Op: K.S. 
  Submitter Id: E.L. 
  File Name: C:\ASAP2010\DATA\KARL\X66369.SMP 
  
Started: 07/01/80 16:26:18  Analysis Adsorptive: N2 
Completed: 08/01/80 05:31:14  Analysis Bath: 77.35 K 
Report Time: 10/01/80 12:15:26  Thermal Correction: No 
Sample Weight: 0.5616 g  Smoothed Pressures: No 
Warm Freespace: 28.3408 cm³  Cold Freespace: 92.1340 cm³ 
Equil. Interval: 10 secs  Low Pressure Dose: None 
  
  Options Report 
 
 Analysis Adsorptive: Nitrogen @ 77.35 K 
 Maximum manifold pressure: 925.00 mmHg 
 Non-ideality factor: 0.000062 
 Density conversion factor: 0.0015468 
  Therm. tran. hard-sphere diameter: 3.860 A 
  Molecular cross-sectional area: 0.162 nm² 
  
  Fast evacuation: No 
  Unrestriced evac from: 5.0 mmHg 
  Leak test: Yes 
  Leak test duration: 120 secs 
  Evacuation time: 0.1 hours 
  Backfill Gas: Analysis 
  Equilibration interval: 10 secs 
  Maximum volume increment: No 
  Target tolerance: 5.0 %  or 0.0 mmHg 
  Min. equil. delay at P/Po >= 0.995:0 secs 
  
  Free space group: Measured 
  Lower dewar after free space: No 
  Evacuation time: 0.1 hours 
  Leak test: Yes 
  Leak test duration: 180 secs 
  
  Low pressure dosing: No 
  Dose amount:0.00 cm³/g STP 
  Minimum equilibration delay:0.00 hours 
  Maximum equilibration delay: 999.00 hours 
  
  Po type: Measured 
  Temperature type: Entered 
  Temperature:  77.35 K 
  Measurement interval: 120 minutes 
  
  Inside diameter of sample tube: 9.530 mm 
 
 
 



Appendix E  Activated Carbon BET Surface 

297 

Full Report Set 
 
ASAP 2010 V4.02 C Unit 1  Serial # 201Page  9 
  
  Sample: Act Carbon - Phil Windsor 
Op: K.S. 
  Submitter Id: E.L. 
  File Name: C:\ASAP2010\DATA\KARL\X66369.SMP 
  
 Started: 07/01/80 16:26:18  Analysis Adsorptive: N2 
  Completed: 08/01/80 05:31:14  Analysis Bath: 77.35 K 
Report Time: 10/01/80 12:15:26  Thermal Correction: No 
 Sample Weight: 0.5616 g  Smoothed Pressures: No 
Warm Freespace: 28.3408 cm³  Cold Freespace: 92.1340 cm³ 
  Equil. Interval: 10 secsLow Pressure Dose: None 
 

 
Summary Report 

 
 
 

Area 
 
 

Single Point Surface Area at P/Po 0.31405950 :  889.5909m²/g 
 

BET Surface Area: 846.4151m²/g 
 

BJH Adsorption Cumulative Surface Area of pores 
between 20.000000 and 500.000000 A Diameter: 115.7807m²/g 

 
BJH Desorption Cumulative Surface Area of pores 

between 20.000000 and 500.000000 A Diameter: 153.2664m²/g 
 

Volume 
 
 

Single Point Total Pore Volume of pores less than 
429.7189 A Diameter at P/Po 0.95306356:  0.607305 cm³/g 

 
BJH Adsorption Cumulative Pore Volume of pores 

between 20.000000 and 500.000000 A Diameter:0.223796 cm³/g 
 

BJH Desorption Cumulative Pore Volume of pores 
between 20.000000 and 500.000000 A Diameter:0.246212 cm³/g 

 
Pore Size 

 
 

Average Pore Diameter (4V/A by BET):  28.7001A 
 

BJH Adsorption Average Pore Diameter (4V/A):77.3170A 
 

BJH Desorption Average Pore Diameter (4V/A):64.2572A 
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CARDEV BIO-REMEDIATION / MEMBRANE 
FILTRATION SYSTEM 

 
Power 
 
Power for the entire system is provided via one 415V “3-phase and neutral” plug, 
which is located on the first membrane system, and is connected to the socket 
underneath the stairwell. Power to membrane system two is switched on via the 
main control panel. 
 

Waste Coolant tank 
 
The waste coolant tank has a capacity of approximately 2000 litres, with a sight 
glass indicating fluid level. Fluid is drawn from the waste oil tank via a floating pick 
up (drawing fluid for the top prevents a build up of separated free/tramp oil. The 
fluid then passes through the clear hose, along the side of the stairs, and into the 
long stainless steel pre-filter on system 1. This pre-filter is fitted with a reusable 
nylon mesh bag filter rated at 300 microns. 

 
Processing (system 1) 
 
 
From the pre-filter, the fluid is drawn through the charge pump (pump M3, 
operated via charge pump stop/start buttons on main control panel) and into the 
main tank of system 1. The charge pump will continue to run until the fluid level in 
the main tank rises to the bottom of the internal process tank, at which point the 
high level float switch is made and the pump is stopped.  
 
Once the main tank of membrane system 2 is full, the circulation pump (M2) 
should be started (circulation pump start button on the main control panel). The 
circulation pump draws from the floating pick up in the main tank of system 1 and 
through the pump. Fluid is then pumped through the large blue filter (fitted with a 
reusable bag rated at 100 microns) and into the coalescing tank. A pressure 
switch is fitted to the pump to stop the pump when the pressure reaches approx 
3.5 bar (i.e. when the blue filter is blocked) as well as a pressure gauge to give 
visual confirmation. 
 
Once fluid is in the coalescer, it passes down through the coalescing media, 
returns up through the rear chamber and floods into the internal process tank. 
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Once the internal process tank has filled, processing can be started. Before 
starting the process pump (M1) ensure that the membrane pressure control valve 
is fully open (ie fully turned anti-clockwise) and that the membrane valve opposite 
is set to “membrane open”. 
 
The process pump (M1) can now be started (process pump start button on main 
control panel). Once running, the membrane pressure control valve can be 
carefully closed until the membrane inlet pressure gauge reads 9 Bars, and the 
membrane back pressure gauge reads 7 Bars. The process pump will now feed 
from the internal process tank and pump through the membranes, returning the 
concentrate to the main tank and the permeate (via a flowmeter & valve V3) to the 
permeate tank (if V3 set to process mode), or back to the internal process tank (if 
V3 is set to flush mode).  
During normal operation, processing will continue until the level in the main tank 
drops to the bottom float switch. At this point, the circulation pump will stop, and 
the process tank level will slowly drop until the process tank float switch is no 
longer made, at which point the process pump will also stop. 
 
 

System 1 - Flushing 
 
 – A hose pipe should be attached to the cam-lock fitting on the inlet of the 
process pump. Clean water should be passed through until the water spilling out 
of the internal process tank is relatively clean. 500 ml of surfactant should than be 
added to the process tank, and the process pump started in the usual manor. 
Valve V3 should be turned to the flush position to divert permeate back into the 
process tank. This processing will continue until you decide to turn the system off 
(usually 30 – 60 mins is sufficient).  
The concentrated solution can then be drained from the system by using pump 
m4 (drain pump 1) via valve V10 – when V10 is turned fully clockwise, the 
coalescer is drained. When the valve is turned fully anticlockwise the main tank is 
drained. (The internal process tank should be drained into the main tank via valve 
V6) 
 
 

Permeate, nutrient & air – Bio 
 
Permeate is pumped from the permeate tank on the first membrane unit into the 
bioreactor via pump M5 (permeate pump start). The rate at which the permeate is 
delivered is variable (via the knob adjuster) between 0 and 100% of its maximum 
flow rate, which is 1.8 litres per minute.  
 
Nutrient is pumped from the nutrient tank in the first membrane unit via pump M7 
(nutrient pump start).  Again, the rate at which the nutrient is delivered is variable 
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(via the knob adjuster) between 0 and 100% of its maximum flow rate, which is 4 
litres per hour.  
 
Air is delivered to the bioreactor via the air regulator mounted on the first 
membrane unit: air pressure/volume can be adjusted via the knob on the top of 
the regulator. Air passes through one-way valves and into each side of the 
bioreactor, where the air is infused through a ceramic air stone (one air stone 
each side of the central partition). 
 

 
The Bioreactor 
 
The bioreactor has 3 x ½ “ inlets, and 1 x 1”outlet, which is set slightly lower in the 
tank to allow a gravity feed on the outfall. The tank is partitioned across the middle 
of the tank meaning all fluids must feed in through the top, flow down through the 
bio-decking and then back up through the bio-decking before they can escape.  
 
Sample points are fitted to the permeate inlet and the rector outlet – open the tap 
to take a sample. 
 

System 2 
 
(NOTE – the second membrane system has its own control panel (local to the 
unit) and an external flush tank. The large double valve under the external flush 
tank must be facing outwards during normal operation i.e. processing, and 
towards the ground during flushing) 
 
 From the bioreactor, fluid is gravity fed through the sleeved pipe on the wall to the 
second membrane unit (note – the 2nd membrane unit will not overflow – the high 
level float switch in the main tank of the second system will cut out the permeate 
and nutrient dosing pumps which will in turn stop the flow from the bioreactor.  
 
When the second membrane system is “full” (i.e. level just meets bottom of 
internal float tank), the circulation pump (M2A) should be started. This pump 
draws from the bottom of the main tank and into the internal process tank.  
 
When the internal process tank is full, the process pump can then be started. 
Before starting the process pump ensure that the membrane pressure control 
valve is fully open (ie fully turned anti-clockwise) and that the membrane valve 
opposite is set to “membrane open”. Once running, the membrane pressure 
control valve can be carefully closed until the membrane inlet pressure gauge 
reads 8 Bar, and the membrane back pressure gauge reads 6 Bar. 
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 Fluid from the main tank is pumped through the membrane pod. Concentrate is 
returned to the main tank, whilst permeate is fed into an IBC, via a flow meter. 
This process will continue until the low-level float switch is reached. At this point, 
the process pump will cut off and the level in the internal float tank will drop until 
its float switch breaks contact – this will cut off the process pump.  The resulting 
concentrate can then be drained via drain pump 2 (M6), which is controlled from 
the main panel. Valve 22 must be opened to drain the system.  
 

 
System 2  - Flushing 
 
To flush system 2, the external flush tank must be used. Fill the external flush tank 
with fresh water until the top float switch is made. Add 500ml surfactant to the 
water.  Valve V?? should be turned to divert permeate back into the process tank. 
 
(NB the large double valve underneath the flush tank must be pointing to the floor 
for flushing. This diverts the feed and return of the process pump from the internal 
flush tank to the external flush tank, and changes over the float switches that are 
in operation).  
 
Before starting the process pump ensure that the membrane pressure control 
valve is fully open (ie fully turned anti-clockwise) and that the membrane valve 
opposite is set to “membrane open”. Once running, the membrane pressure 
control valve can be carefully closed until the membrane inlet pressure gauge 
reads 8 Bar, and the membrane back pressure gauge reads 6 Bar. Flushing will 
continue for as long as necessary (usually 30-60 minutes).  
 
The external flush tank can be drained via V19B, using drain pump 2 (controlled 
on main panel). 
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Band Content of discharge Factor (C)

A Where the consent conditions contain numeric conditions for any 

of the following; (excluding any condition for total oil and grease)  

pesticides, herbicides, fungicides  

polyhalogenated biphenyls  

polynuclear aromatic hydrocarbons; aliphatic, aromatic, 

heterocyclic and halogenated hydrocarbons  

alcohols (except methanol, ethanol, butanol, propanol and glycols)  

aromatic nitrogen compounds  

phenolic compounds (except total and monohydric phenols)  

esters; ethers; ketones; aldehydes (except formaldehyde)  

viruses; effluents where consent requires toxicity tests (other than 

rapid bacterial toxicity tests)  

14 

B Except where the consent falls in Band A or authorisation falls in a 

Band A substance -  

Where the consent conditions contain numeric conditions for any 

of the following:  

metals, metalloids  

cyanides; sulphides  

total and monohydric phenolic compounds  

methanol, ethanol, butanol, propanol; glycols  

carboxylic acids  

organic nitrogen compounds (except those in Band A, urea and 

5 



Appendix G  Weighing Factor 

305 

quaternary ammonium salts)  

bacteria  

effluent where consent requires rapid bacterial toxicity tests  

C Except where the consent falls into A or B  

sewage and organic trade effluent with numeric consent conditions 

(except those specified in Bands E or G)  

all discharges of trade effluent of an organic nature with numeric 

conditions other than included in Band E,F,G and H.  

3 

D Except where consent falls into A,B,or C  

sewage with no numeric conditions; trade effluent not specified in 

E  

all other discharges of trade effluent other than those specified in 

bands E, F, G and H  

2 

E Except where consent falls into A,B,C, or D  

site drainage from trade premises  

storm and emergency discharges at treatment works, pumping 

stations and from drainage systems  

all trade effluents of direct cooling water other than those specified 

in Band G  

trade effluent from prevention of interference with mining, etc, 

other than those specified in band F  

1 

F surface water (not containing trade effluent)  

trade effluent from prevention of interference with mining, etc, for 

0.5 
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which only conditions are volume, suspended solids, iron, pH and 

chloride  

trade effluent where the consent permits the discharge of water 

abstracted from the controlled water after use in a trade, subject to 

limits only in the increase of concentration of biological oxygen 

demand, suspended solids, and ammonia  

any effluent not identified elsewhere  

G cooling water where only conditions are volume, temperature, pH, 

chlorine  

trade effluent where the consent permits the discharge of water 

after use for cultivation of plants  

0.3 

H Any effluent or substance with no numeric conditions other than 

volume discharged,  

a maximum daily volume of 5m3 or less per day  

a discharge on not more than 6 days per year or any such 

equivalent  

a discharge only at specific periods of the year  

1.5 

 
 
Volume of discharge 

(m3/day) 

Factor (V) Volume of discharge 

(m3/day) 

Factor (V) 

0 – 5 0.3 > 1,000 – 10,000 3.0 

> 5 – 20 0.5 > 10,000 – 50,000 5.0 

> 20 – 100 1.0 > 50,000 – 150,000 9.0 
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> 100 – 1,000 2.0 > 150,000 14.0 

 
Type of receiving water Factor (RW) 

Surface 1.0 

Coastal 0.8 

Ground 0.5 

 


