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Abstract

Discrete breathers are time-periodic and spatially localised exact solutions

in translationally invariant nonlinear lattices. They are generic solutions, since

only moderate conditions are required for their existence. Closed analytic forms

for breather solutions are generally not known. We use asymptotic methods to

determine both the properties and the approximate form of discrete breather

solutions in various lattices.

We find the conditions for which the one-dimensional FPU chain admits

breather solutions, generalising a known result for stationary breathers to in-

clude moving breathers. These conditions are verified by numerical simula-

tions. We show that the FPU chain with quartic interaction potential supports

long-lived waveforms which are combinations of a breather and a kink. The

amplitude of classical monotone kinks is shown to have a nonzero minimum,

whereas the amplitude of breathing-kinks can be arbitrarily small.

We consider a two-dimensional FPU lattice with square rotational symme-

try. An analysis to third-order in the wave amplitude is inadequate, since this

leads to a partial differential equation which does not admit stable soliton so-

lutions for the breather envelope. We overcome this by extending the analy-

sis to higher-order, obtaining a modified partial differential equation which in-

cludes known stabilising terms. From this, we determine regions of parameter

space where breather solutions are expected. Our analytic results are supported

by extensive numerical simulations, which suggest that the two-dimensional

square FPU lattice supports long-lived stationary and moving breather modes.

We find no restriction upon the direction in which breathers can travel through

the lattice. Asymptotic estimates for the breather energy confirm that there is

a minimum threshold energy which must be exceeded for breathers to exist in

the two-dimensional lattice. We find similar results for a two-dimensional FPU

lattice with hexagonal rotational symmetry.
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Chapter 1

Introduction

Many-particle systems may be modelled as spatially discrete if the processes

under consideration involve length scales comparable to the interparticle dis-

tances in those systems. Modelling of these systems results in a set of ordinary

differential equations, each equation corresponding to a constituent particle. A

lattice (or crystal) is a repeating array of particles, atoms or molecules. More

formally, a lattice is a discrete system which possesses discrete translational in-

variance, or equivalently, spatial periodicity.

1.1 Historical development

1.1.1 Localisation in imperfect lattices

Let us first review some known facts about harmonic lattices, that is, lattices

for which the coupling forces between particles are linear. There is a large body

of literature describing the dynamics of perfect harmonic lattices in terms of

extended plane wave states (see for example, Maradudin et al. [88]).

In nature, one finds that within crystals, the perfect repeating arrangement

may extend over several thousand atoms before translational symmetry is in-

terrupted. Typically, this is manifested by the presence of impurities or defects

such as atomic vacancies (missing atoms) or interstitial atoms (extra atoms). Or,

1



1.1. HISTORICAL DEVELOPMENT 2

it could be that the lattice is disordered, by which we mean that the interparticle

couplings are random.

It is well known that localised vibrational modes can occur in harmonic lat-

tices when imperfections of the type mentioned above are present. For instance,

Maradudin writes in [87] that, “when an impurity atom is introduced into a

crystal the frequencies of the normal modes of vibration of the atoms in the

crystal and the pattern of the atomic displacements in these modes can be pro-

foundly altered. Localized vibration modes can appear . . . in which the vibra-

tion amplitudes of the atoms die off faster than exponentially with increasing

distance from the defect.” A slightly updated review of the theory on lattices

with isolated defects is presented by Lifshitz & Kosevich [83].

A similar localisation phenomenon is also known for disordered lattices.

The Hamiltonian for such a lattice with nearest-neighbour interactions (NNI)

has the form

H =
+∞∑

n=−∞

1
2
q̇2
n + 1

2
kn(qn+1 − qn)

2, (1.1)

where qn(t) gives the position of the nth particle at time t, and the constants kn,

n ∈ Z denote the different coupling strengths between adjacent particles. The

equation of motion for the nth particle in the lattice is thus

q̈n = kn(qn+1 − qn) − kn−1(qn − qn−1). (1.2)

Localised modes also occur in disordered lattices when there is a sufficiently

high level of disorder present. Intuitively, certain types of waves become trapped,

and the disorder hinders or completely prevents the spreading of any initial

wavepacket. This disorder-induced mechanism for localisation in imperfect

lattices is known as Anderson localisation, and the resulting waveforms are An-

derson modes [5].

Thus while the possibility of localised modes in imperfect lattices is well

known, in perfect harmonic lattices, typically one expects only spatially ex-

tended plane wave solutions. As noted by Campbell et al. [30], until relatively

recently, this notion was thought to extend to any periodic structure free from
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extrinsic imperfections. It was therefore surprising when Sievers & Takeno

[117] proposed that localised modes could exist quite commonly in perfect but

anharmonic lattices, that is, lattices with anharmonic (nonlinear) interparticle in-

teractions. Since the occurrence of this new type of localisation depended upon

properties of the lattice itself, and not upon extrinsic defects, they referred to the

corresponding modes as intrinsic localised modes (ILMs). These excitations have

since acquired a host of other names, including discrete breathers (DBs), nonlin-

ear localised excitations (NLEs), localised oscillations (LOs), self-localised anharmonic

modes (SLAMs), and no doubt several others too. Throughout this thesis, we use

the most popular of these, namely “discrete breathers”, or simply “breathers.”

We explain the origin of this particular name in Section 1.1.3.

1.1.2 Existence of discrete breathers: an intuitive argument

Discrete breathers are spatially localised time-periodic excitations in trans-

lationally invariant (perfect) anharmonic lattices. Pictorially, a typical breather

excitation may appear as a discrete nonlinear version of the well-known linear

wavepacket. That is, they take the form of a carrier wave with a bell-shaped

envelope.

In this thesis, we consider the ability of lattices to support discrete breather

solutions. A qualitative discussion of discrete breathers dates back to Ovchin-

nikov [94], while Kosevich & Kovalev [80] seem to have been the first to attempt

to find a solution for breathers in a Klein-Gordon type lattice. However, it was

Sievers & Takeno [117] who first conjectured that long-lived discrete breather

modes should occur commonly in nonlinear lattices. A much simplified version

of their intuitive argument for breather existence and stability against decay is

given by Campbell et al. [30]. The following is based on the version that appears

there, and also in Campbell [29].

We consider the continuum Klein-Gordon partial differential equation qtt −
qxx + V ′(q) = 0 where V ′ = q − q3, and its discrete analogue, the Klein-Gordon
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lattice (which we shall discuss further in Section 1.2.1), namely

qtt = qxx − q + q3, and (1.3)

q̈n =
1

(∆x)2
(qn+1 − 2qn + qn−1) − qn + q3

n. (1.4)

In (1.4), the term 1/(∆x)2 in the difference operator is included for reasons that

will become clear shortly. It may be thought of as a discreteness parameter,

with large ∆x corresponding to a lattice that is highly discrete, while ∆x → 0

corresponds to the continuum limit.

We look for small amplitude solutions of equations (1.4). This corresponds

to linearising about the zero solution qn = 0 and solving the resulting equation,

which is

q̈n =
1

(∆x)2
(qn+1 − 2qn + qn−1) − qn. (1.5)

Explicitly, we seek plane wave solutions of the form qn(t) = A exp(ikn + iωt).

Inserting this into the linearised equation (1.5) gives a relationship between the

temporal frequency ω and the wavenumber k. This is known as the dispersion

relation, which for (1.5) turns out to be

ω2 =
4

(∆x)2
sin2

(
k

2

)
+ 1. (1.6)

From (1.6), we see that different wavenumbers k correspond to different fre-

quencies ω, but for any wavenumber k, the frequency w is bounded above and

below with 1 < w2 < 1+(2/∆x)2. In other words, linear waves have a frequency

which must lie within this spectrum (known as the phonon band). Clearly, the

upper bound arises because of the discreteness of the lattice, and in addition,

the width of the phonon band depends upon the discreteness of the lattice (of

which ∆x is a measure).

Compare this with the dispersion relation of the continuum equation (1.3),

which is obtained by seeking small amplitude solutions of the form q(x, t) =

A exp(ikx+ iωt) to qtt = qxx − q, giving

ω2 =
1

(∆x)2
k2 + 1. (1.7)
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From (1.7), we see that for the continuum equation (1.3), there is no upper

bound on the frequency of linear waves (or phonons).

A common feature of nonlinear vibrations is that (unlike the say, the har-

monic oscillator), the frequency is dependent upon the amplitude of oscillation.

In fact, the manner in which the frequency is related to the amplitude is some-

times referred to as the nonlinear dispersion relation for the system. We find this

for the discrete nonlinear equation (1.4). For now, we use a method similar to

that described by Remoissenet [103] (see Chapter 4.4 therein), though later (see

Section 2.2) we use a more systematic method. We seek small amplitude solu-

tions to (1.4) of the form qn(t) = A exp(ikn + iωt) + c.c., where c.c. denotes the

complex conjugate. We substitute this into (1.4), and apply the rotating-wave

approximation (RWA). This means that we retain only those terms which are

of frequency w (and for instance, discard terms which oscillate with frequency

3ω). The RWA is discussed more fully in Section 1.7.1. Proceeding thus, we

obtain the nonlinear dispersion relation for (1.4).

ω2 =
4

(∆x)2
sin2

(
k

2

)
+ 1 + 3A2. (1.8)

From (1.8), we see that the frequency of oscillation increases with increasing

amplitude.

Putting these two facts together, we begin to see how discrete breather exci-

tations are possible in nonlinear discrete lattices. In order to be long-lived, the

frequency of the breather wb must lie outside of the spectrum of linear waves,

otherwise the breather is destroyed through resonance with linear phonon modes.

In addition, due to the nonlinearity of the lattice, higher harmonics of the ex-

citation are also generated. For stability, we must similarly avoid resonances

between the breather’s harmonics and linear phonons. Using the nonlinear dis-

persion relation (1.8), by choosing the amplitude A suitably, we can ensure that

the frequency of the breather wb lies outside (in this case, above) the phonon

band. Also, the discreteness of the system implies that the frequency of linear

waves is bounded above (see (1.6)). Since the fundamental frequency of the
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breather wb lies above the phonon band, clearly all of its harmonics will also

lie above the phonon band, and therefore potentially destructive resonances

between the breather’s harmonics and phonons are also avoided.

In this intuitive argument, we see how nonlinearity and discreteness are

two essential requirements for breather occurrence. Nonlinearity allows for

the shifting of the breather fundamental frequency outside the phonon band,

while (in general) the discreteness gives rise to gaps and cut-offs in the phonon

spectrum so that all the breather’s harmonics lie outside this band. Hence, the

breather is stable against decay through phonon emission.

As one would expect, there are additional subtleties. For example, one

might find that the frequency of small oscillations decreases with amplitude. In

this case, one sets the breather fundamental frequency below the phonon band.

If ∆x is large, then from (1.6) the phonon band is very narrow, and so this en-

sures that the breather’s harmonics still lie above here, avoiding resonances

once more. Nevertheless, the argument outlined above embodies the essence

of the phenomenon.

1.1.3 Breathers in continuous systems

We have seen in the previous section that discrete breathers exist in lat-

tices provided rather moderate conditions are met. As a consequence, they

occur widely in a large range of models, which we shall discuss further in

Section 1.2.1. The term “breather” was first applied to refer to a soliton solu-

tion of the continuum sine-Gordon PDE,

utt = uxx − sinu, (1.9)

which admits a time-periodic solution that is localised in space. This breather

solution (so-called because it resembles a “breathing” pulse) has the explicit

form (Ablowitz et al. [3])

u(x, t) = 4 arctan



γ sin

(
t√

1+γ2

)

cosh

(
γ(x−x0)√

1+γ2

)


 . (1.10)
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It is easily seen that u(x, t) is periodic in time with frequency wb = 1/
√

1 + γ2,

and exponentially localised in space around the point x0. The fundamental fre-

quency of the breather satisfies wb < 1. Linearising (1.9) (replacing sinu by u for

small values of u), we find that the dispersion relation for the sine-Gordon equa-

tion (1.9) is ω(k) =
√

1 + k2. Plane wave solutions of (1.9) therefore have a fre-

quency that is always greater than unity, and hence the fundamental frequency

of the breather ωb lies outside (below) the linear spectrum. However, what-

ever the size of γ, sufficiently high harmonics of the fundamental frequency lie

within the linear spectrum (which is not bounded above). One might expect,

therefore, that odd harmonics of ωb would couple with linear waves and decay.

However, as explained by Campbell et al. [30], these couplings all vanish, and

in fact the sine-Gordon breather soliton remains stable.

Indeed, the sine-Gordon equation is exceptional in this respect. It is one

of the few PDEs known to support continuum breathers. Many other nonlin-

ear wave equations have been shown not to support breather solutions, see

Kichenassamy [74] for instance. Notably, the nonexistence of breather solutions

of the φ4 equation, φtt = φxx − φ+ φ3, was eventually established by Segur and

Kruskal [115].

In closing, we mention the trivial point that discrete breathers in lattices are

named thus because of their similarity to continuum breather soliton solutions

of PDEs. They are both time-periodic excitations that are localised in space.

1.2 Rigorous results for discrete breathers

In Section 1.1.2, we mentioned the pioneering work of Ovchinnikov [94],

Kosevich & Kovalev [80], and Sievers & Takeno [117]. These early advances

generated intense interest in discrete breathers, resulting in a vast body of work

offering analytic approximations for discrete breather solutions (using a variety

of methods), heuristic arguments regarding existence, numerical analysis estab-

lishing results on stability, and a range of other topics. Of these, we will not go
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into any specific paper in fine detail, but in Section 1.7, we give a broad discus-

sion of some of the methods (and recent improvements thereupon) employed

to investigate discrete breathers in various lattice models. Firstly, we review

some of the early rigorous work on the abstract properties of discrete breathers.

A more exhaustive account is given by Flach & Willis (and Olbrich) [51, 52, 55].

1.2.1 Existence of discrete breathers

It was not until 1994 that a rigorous proof for the existence of discrete breathers

was established by Mackay & Aubry [84]. They prove the existence of discrete

breathers in Hamiltonian lattices with anharmonic on-site potential and weak

coupling, that is, of the Klein-Gordon (KG) type. The Hamiltonian for the Klein-

Gordon lattice has the form

H =
+∞∑

n=−∞

1
2
q̇2
n + 1

2
α(qn+1 − qn)

2 + V (qn), (1.11)

where α denotes the interparticle coupling strength, and V is a nonlinear on-

site potential. The equation of motion for the nth particle of the Klein-Gordon

lattice is

q̈n = α(qn+1 − 2qn + qn−1) − V ′(qn), (1.12)

where unlike (1.4), we have not specified the exact form of the potential V (qn).

Their existence proof is based on the principle of the anti-continuum limit,

first introduced by Aubry & Abramovici [7] in the study of variational prob-

lems. Specifically, one considers the limit in which there is zero coupling in the

lattice. Since the parameter α denotes the strength of coupling in the lattice, this

limit, called the anti-continuum limit, corresponds to α = 0. Thus the lattice is

reduced to an array of uncoupled oscillators, each governed by

q̈n = −V ′(qn). (1.13)

At this limit, it is a straightforward matter to find time-periodic spatially lo-

calised solutions. For instance, one may take the trivial breather for which only

one oscillator is excited, while all others remain at rest.
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It is then shown that this trivial breather at α = 0 can be continued to small

nonzero values of the coupling parameter α to obtain a breather solution of

(1.12). This is done in two stages. Firstly it is shown that the trivial breather

at the anti-continuum limit has a unique continuation which is a periodic so-

lution of the Klein-Gordon equation (1.12) for small α. This continuation has

the same period as the trivial breather. The proof of this requires that relatively

weak conditions are satisfied, namely, that V ∈ C2 (that is, twice continuously

differentiable), and that a nonresonance and anharmonicity condition are also

satisfied. These may be thought of as formalisations of the intuitive concepts

introduced in Section 1.1.2. It is then shown that this continuation decays ex-

ponentially in space, and so is the required breather solution of (1.12).

These breather solutions correspond to trivial breather solutions at the anti-

continuum limit for which only one particle oscillates. They are thus named

“1-site breathers.” The existence of “multi-site breathers” (breathers which cor-

respond to anti-continuum solutions for which more than one oscillator is ex-

cited) is also established. The proof proceeds in much the same way as before,

though several additional technical conditions must also be met.

In fact, one of the remarkable aspects of Mackay & Aubry’s work [84] is that

immensely useful results can be deduced for much more general networks of

oscillators, assuming only minimal additional constraints. For example, Mackay

and Aubry outline what further criteria need to be satisfied in order to in-

fer breather existence in networks of nonidentical oscillators at each site, or

for which the potential is different at each site. Or, the oscillators could have

more than one degree of freedom. The proof can also be extended to establish

breather existence in finite networks, or networks with longer-range interac-

tions. Of direct interest to us, breather existence is also established in lattices

of any dimension, thus confirming an earlier conjecture of Flach et al. [54]. We

will have much more to say on higher-dimensional breathers in Chapter 3.
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1.2.2 Stability of discrete breathers

Mackay and Aubry [84] establish rigorously that discrete breathers exist in

a broad range of networks. An important issue is whether these excitations are

stable. A useful general discussion of notions of stability for nonlinear systems

can be found in Chapter 2.5 of Scott, [114]. Though Mackay and Aubry do not

give a proof, they argue that discrete breathers are linearly stable for α small.

Furthermore, they conjecture that breathers are exponentially stable (also re-

ferred to as Nekhoroshev-stable) by which it is meant that an orbit which starts

within a distance of ε of a breather orbit in phase space must stay within O(ε)

of the breather until at least time t = C exp(−K/εβ), for some C, K and β > 0.

This was confirmed by Bambusi [11], who proved the exponential stability

of breathers. In doing so, Bambusi also gave a different and (slightly simpler)

proof of existence of breathers, and additionally provided new details on the

their shape (namely, a sharper result on the form of their exponential decay).

1.2.3 Discrete breathers and Anderson modes

It is worth asking whether there is any connection between the two types of

localised oscillations that we have discussed so far, namely discrete breathers

and Anderson modes. It was thought previously by some that no such link

existed. For instance, Scott (Chapter 5.3, [114]) comments that Anderson lo-

calisation is completely different from anharmonic localisation. He arrives at

this conclusion upon consideration of numerical work carried out by Fedder-

sen [44] on the localisation of vibrational energy in globular proteins. Fedder-

sen’s numerics show that Anderson modes delocalise rapidly as anharmonicity

is introduced. This is in contrast to anharmonic localised modes, which become

strongly localised as anharmonicity is increased.

Scott’s assessment is challenged by Archilla et al. [6], who consider a model

which interpolates between a weakly anharmonic lattice and a disordered har-

monic lattice. Using this model, they show numerically that discrete breather



1.3. MOBILITY OF DISCRETE BREATHERS 11

solutions can be continued virtually continuously to Anderson modes.

1.3 Mobility of discrete breathers

Thus far, our discussion has focused on stationary breathers, that is, breathers

in which oscillators vibrate but whose envelope as a whole does not move. A

natural question to ask is whether breathers can be mobile, that is, whether the

envelope can travel laterally through the lattice as the oscillators vibrate. Be-

fore we proceed to answer this, it is worth questioning whether such a notion

is even meaningful for discrete breathers. After all, if the centre of a breather

moves, then the wavepacket as a whole is translated several sites along the lat-

tice, and so the motion is certainly not time-periodic, contravening one of the

defining characteristics of a breather.

This problem can be overcome by formulating the notion of a travelling

breather more precisely (see Mackay & Sepulchre [85]). Travelling breathers

can be thought of as spatially localised solutions with two dynamical degrees

of freedom. One of these dictates the spatial location of the breather centre,

and the other is a vibrational degree of freedom which evolves periodically

in time. A functional form for describing these structures could be written as

qn(t) = q(t, n − ct, n), where the latter is time-periodic with respect to the first

variable (that is, q(t+T, ·, ·) = q(t, ·, ·)), and spatially localised with respect to the

second variable (for example, |q(·, n, ·)| could be exponentially localised in the

space variable n). Other formulations are also possible, see Aubry & Cretegny

[8], and Flach & Kladko [50]. Hence the notion of a moving breather can be

well-defined mathematically, though of course, this does not tell us anything

about the possibility of existence of such an entity.

1.3.1 Early work on moving discrete breathers

One might suspect that exact moving breather solutions do exist, for at least

two reasons. Firstly, it is known that, for instance, the continuum breather solu-
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tions (1.10) of the sine-Gordon PDE can be mobile. This follows from the invari-

ance of (1.9) under the Lorentz transformation (see Chapter 6.6 of Remoissenet

[103] for more details). One might expect this property to carry across to dis-

crete breathers as well. Indeed, a large number of the early papers on the subject

report the observation of moving breathers in one-dimensional Fermi-Pasta-

Ulam (FPU) lattices, obtained through numerical simulations (Takeno & Hori

[64, 65, 125] are a few such examples). The equation of motion for the nth par-

ticle of the FPU lattice is

q̈n = V ′(qn+1 − qn) − V ′(qn − qn−1), (1.14)

where the interaction potential V (φ) = 1
2
φ2 + 1

2
αφ2 + 1

2
βφ4. When the constant

α = 0 (β = 0), then the lattice governed by (1.14) is known as the β-FPU (α-

FPU) lattice. We derive the equations of motion for the FPU lattice and discuss

its properties more fully in Section 2.1.

Considering other early numerical works on breather mobility, a somewhat

complicated (and sometimes confusing) picture emerges. For example, San-

dusky et al. [110] provide further insights into the possibility of moving breathers.

They suggest an explanation for breather mobility, relating known unstable

breather modes to observed moving breather-like excitations in a β-FPU lattice.

They consider the stability of odd-parity and even-parity breathers. The odd-

parity mode, (often referred to as the ST mode) is of the type proposed by Siev-

ers and Takeno [117], and has a displacement pattern A(. . . , 0,−1
2
, 1,−1

2
, 0, . . .).

In other words, it is centred on a lattice site. The even parity mode (P mode)

proposed by Page [96] has a displacement pattern A(. . . , 0,−1, 1, 0, . . .), and is

centred between lattice sites. It is shown that the odd-parity breather is un-

stable against small perturbations of the amplitude and phase, whereas the

even-parity breather is stable. However, the instability does not destroy the

odd-parity breather, rather, it causes it to move.

Claude et al. [33] consider the stability properties of localised modes in both

a Fermi-Pasta-Ulam lattice with cubic and quartic nonlinearity, and also a Klein-

Gordon lattice with a cubic on-site potential. They show that the FPU lattice
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supports moving localised modes, even of large amplitude (or equivalently,

strongly localised). However, they report that the Klein-Gordon lattice cannot

support localised modes whose amplitude is greater than a certain threshold

value. If the amplitude exceeds this value, the localised mode radiates energy

and eventually becomes pinned to a lattice site. Bang & Peyrard [12] also report

the existence of a critical amplitude for the Klein-Gordon lattice, above which

moving breathers cannot exist.

These properties do not necessarily carry across to two-dimensional lattices.

Mobility properties for two-dimensional Klein-Gordon lattices are much the

same as for one-dimensional models (Tamga et al. [128]). Namely, provided that

the amplitude of breathers is small (or equivalently, they are weakly localised),

they can be mobile in two-dimensions. However, unlike the one-dimensional

FPU lattice, Burlakov et al. [22] report that the two-dimensional FPU lattice

does not support moving breathers of large amplitude.

Hence the overall picture obtained from these early works on breather mo-

bility is somewhat complicated. Both one- and two-dimensional Klein-Gordon

lattices support moving breathers provided the amplitude is small. One-dimensional

FPU lattices support large-amplitude moving breathers, while two-dimensional

FPU lattices do not. Overall, these observations seem to suggest that at the very

least, small-amplitude breathers can move within lattices. Although these ob-

jects resemble breather modes, they have not been proven to be exact breather

solutions of the lattice equations. To the best of our knowledge, we are not

aware of any rigorous existence proofs for exact moving breather solutions in

nonintegrable lattices (exact moving breather solutions do exist in the Ablowitz-

Ladik lattice [2], which is integrable).

1.3.2 Travelling kinks and the Peierls-Nabarro barrier

It has been speculated for some time that a concept similar to that of a

Peierls-Nabarro (PN) barrier for moving lattice kinks might also be useful for

discrete breathers. Unlike a pulse, a kink represents a monotonic change of
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amplitude by a certain height as n crosses from −∞ to +∞ in the lattice (see

Chapter 6, Remoissenet [103]). As kinks move through a lattice, they experi-

ence a potential barrier between one lattice site and the next. More precisely,

a PN potential characterises the dependence of the energy E of a kink on its

position in a lattice. Since the lattice is a periodic structure, the PN potential is a

periodic function of the same period as the lattice. Minima of the PN potential

correspond to stable positions, while maxima correspond to unstable positions.

The PN barrier height ∆E is equal to the difference between the maximum and

minimum energies.

For instance, the sine-Gordon lattice is known to support two stationary

kink solutions, one of which is centred at a lattice site, and another which is

centred between lattice sites. The first of these has higher energy, and is unsta-

ble to collapse into the lower energy solution. In order to propagate along the

chain, the kink must be activated with energy exceeding ∆E. In other words, a

stable kink may be “depinned” and set in motion if activated with this quantity

of energy. Further details may be found in Chapter 5.2 of Scott [114].

At this point, we recall the work of Sandusky et al. [110], who connected the

ability of certain breathers to be mobile to their instability (see Section 1.3.1). It

is tempting to conclude that the unstable ST and stable P breather modes be-

have in a similar manner to the two unstable and stable static kink solutions

of the sine-Gordon lattice. Specifically, one might conjecture that moving dis-

crete breathers also experience an effective PN potential, where the depinning

or barrier energy is equal to the difference between the energies of the ST and P

modes. In fact, some authors have reported such a phenomenon, even going as

far as calculating the depinning energy (see for example, Claude et al. [33], and

Kivshar & Campbell [76]).

However, further work on the matter conducted since seems to suggest

that no simple concept of Peierls-Nabarro potentials can be found for discrete

breathers. More details can be found in the paper by Flach & Willis [53]. Simi-

lar conclusions on the difficulty of PN potential concepts for breathers are made
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by Bang & Peyrard [12]. A more recent discussion is given by Flach & Willis in

Section 9 of [52].

1.4 Discrete breathers and bifurcations of plane waves

We now address another active area of research regarding discrete breathers.

Namely, we consider whether discrete breather solutions are connected to plane

wave solutions of the linearised equations of motion. More generally, the con-

cept of modulational or Benjamin-Feir instability has been used to establish a con-

nection between solutions of nonlinear systems and (unstable) plane wave so-

lutions of the corresponding linearised system. For instance, Remoissenet [103]

shows that the nonlinear Schrödinger (NLS) equation admits a plane wave so-

lution that is unstable against small perturbations of the amplitude and phase.

The plane wave breaks into a train of pulses as time evolves. It is possible

to show that these pulses are related to bright soliton solutions of the nonlin-

ear equation. We will come across the nonlinear Schrödinger equation often

throughout this thesis. A more complete account of modulational instability in

nonlinear systems can be found in Chapter 4.6 of Remoissenet [103].

A similar idea can also be applied to localised modes in lattices. In fact,

for many systems, it is observed that in the limit of small amplitude, breathers

typically widen and increasingly resemble solutions of the linearised equations.

In the following, we adopt the approach of Flach [49].

A simple argument indicates that, in looking for a relationship between dis-

crete breathers and plane wave solutions, we expect the connection to occur for

band edge plane waves (that is, those with frequencies at an edge of the phonon

spectrum; for example, in (1.6), these correspond to k = 0 and k = π). In the

limit of small amplitude, discrete breather solutions of the nonlinear equations

must approach the solutions of the linear equations. However, for breathers to

exist, resonances with the linear spectrum must be avoided (see Section 1.1.2).

In other words, the breather frequency wb (and its integer multiples) cannot co-
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incide with any phonon frequency, say ωq. The only way in which both these

requirements can be satisfied is if the breather frequency ωb tends to an edge ωe

of the phonon spectrum as the amplitude tends to zero.

In the light of these comments, one might suspect that discrete breathers

appear through a bifurcation of band edge plane waves. There is certainly evi-

dence which suggests this might be true (see Flach [49], and Sandusky & Page

[109]). Furthermore, this has actually been proved for certain one-dimensional

Fermi-Pasta-Ulam lattices by James [69]. However, this conjecture has not been

proven in general. Lastly, we mention that assuming this conjecture to be true,

Flach [49] calculates the critical energy Ec at which this bifurcation occurs. This

calculation has important consequences for higher-dimensional systems, as we

shall see in Chapter 3.

1.5 Applications: energy localisation and transfer

Discrete breathers are spatially localised excitations. It is widely thought

that discrete breathers could act as coherent agents of energy storage and trans-

port in many physical settings, on account of their ability to localise vibrational

energy. Many physical phenomena involve the localisation and transport of

energy in space. A wealth of examples can be found in a range of physical

settings, including the study of DNA denaturation [36, 37, 97], hydrocarbon

structures [78], photonic crystal waveguides [92], photosynthesis [66], and the

storage and transport of energy in proteins [13].

For example, Hu et al. [66] study a photosynthetic unit consisting of an

arrangement of chlorophyll molecules. The antenna-like component of this unit

captures light photons (sometimes known as “light-harvesting”). Energy self-

focusing then takes place and light is transferred in the form of an exciton in

a complex process involving pigment proteins. The energy is released upon

reaching a photosynthetic unit.

To take another example, experimental results suggest that the continuum
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model of the DNA molecule is inadequate (see Zhou & Zhang [142] for a recent

review). Peyrard and Bishop [97] propose a discrete model of DNA in which

nucleotides of the double helix are represented by point masses. The coupling

along each strand is assumed to be harmonic, and the stretched bonds con-

necting the two strands are assumed to be nonlinear. Dauxois et al. [36, 37]

consider the phenomenon of DNA transcription in a slightly more complicated

model than the one in [97]. The dynamics of DNA transcription is known to

involve local denaturation of the DNA double helix. This local denaturation

then exposes the coding bases to chemical reagents, and it is thought that this

may be a preliminary step towards understanding DNA transcription. Local

denaturation may be a precursor to global denaturation, namely the process

through which the two complementary strands of the molecule are separated

completely. Dauxois et al. show that a mechanism involving an energy localisa-

tion may initiate DNA denaturation, and so once more we see the importance

of energy localisation.

Tsironis [130] proposes several ways in which discrete breathers could be of

specific relevance to biomolecules. In another recent work, Kopidakis et al. [79]

outline a general mechanism for highly targeted energy transfer which uses dis-

crete breathers as the transfer agents. A specific amount of energy is injected as

a discrete breather at a donor system, and then transferred as a discrete breather

to a weakly coupled acceptor system. Such a mechanism could be relevant for

energy transfer in bioenergetics.

1.6 Experimental observation of discrete breathers

Recently, there have been numerous experimental observations of discrete

breathers in physical systems. We do not describe the technical details of the

experiments here, though we do mention some of the more prominent sight-

ings. Swanson [121] report the observation discrete of breathers in crystals of

the highly discrete and strongly nonlinear halide bridged mixed valence tran-
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sition metal complex {[Pt(en)2][Pt(en)2Cl2](ClO4)4} (hereupon denoted PtCl for

brevity), where “en” denotes ethylenediamine. By measuring resonance Raman

spectra, localised vibrational states are identified by the redshifts they impose

upon the resonances.

Discrete breathers have also been detected in coupled optical waveguides

(Eisenberg et al. [43]), antiferromagnetic materials (Schwarz et al. [113]), Joseph-

son junction arrays (Binder & Ustinov [18]) and molecular crystals (Edler &

Hamm [41]). Campbell et al. [30] give a highly readable account of several of

these experiments, describing some of the difficulties encountered in designing

suitable detection methods, as well as how these have been circumvented.

Very recently, Sato & Sievers [111] have reported the sighting of a breather

in a quasi-one-dimensional antiferromagnetic solid. The advanced detection

capability of their method permits the properties of the individual breathers to

be analysed. Campbell [29] gives a simplified account of their experiment and

also some of its implications.

1.7 Analytic methods

In Sections 1.1–1.5, we have documented various abstract properties of dis-

crete breathers in lattices, such as their existence or nonexistence, their spatial

decay, their mobility and their connection to band edge plane waves etc. Thus

far, we have said very little about the explicit form of breather solutions. This is

no accident, rather, it is because closed analytic forms for breather solutions are

unknown or difficult to obtain. Consequently little is known about them. There

are some notable exceptions, for example, the (integrable) Ablowitz-Ladik lat-

tice [2]. Ovchinnikov & Flach [95] also present Hamiltonian lattices (if per-

haps slightly artificial models) for which two- and three-dimensional discrete

breather solutions can be found explicitly.

However, there is a vast body of literature concerned with finding approxi-

mations to exact breather solutions. Nowadays, there are a number of sophisti-
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cated methods at our disposal for determining approximate solutions. In com-

parison, some of the methods used in the earlier works may appear a little

unrefined at times. Nevertheless, these papers document important progress

made in the study of discrete breathers, and their impact upon much of the

later rigorous work is plainly evident. In this section, we will not recount the

individual results of all of these papers, since this would prove unnecessarily

lengthy. However, we will describe some of the most commonly employed

methods in determining approximations to breather solutions.

1.7.1 The rotating-wave approximation

The rotating-wave approximation (RWA) (see Chapter 5.1 of Scott [114]) is

used frequently in papers that appeared in the late eighties and early nineties,

for instance, see [122, 123, 126, 127, 132]. Since breather solutions are time-

periodic, they can be expressed as a Fourier series,

qn(t) =
k=+∞∑

k=−∞

Anke
iωt, (1.15)

where Ank are coefficients to be determined, and ω = 2π/T , T being the period

of the motion. The ansatz (1.15) is substituted into the lattice equations, and

one equates coefficients of terms with the same frequency kω, k = 0,±1,±2, . . .

in the resulting equation. In the simplest approximation, only terms which

are resonant with the fundamental frequency eiωt are retained, and terms with

|k| ≥ 2 (namely, e2iωt, e3iωt, e4iωt, . . .) are neglected. The equations which are

retained give a set of nonlinear difference equations for the coefficients Ank.

For many lattices, the resulting system of difference equations is still diffi-

cult to solve, and so often further approximations are required to reduce the

equations to a simplified set. This can then be dealt with using Green’s lattice

function method (see Bickham et al. [17]), or a numerical scheme (see Takeno

[123]).

The RWA has been applied with considerable success to discrete breathers,

and yields better results when extended to include second harmonic terms (see
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Franchini et al. [59]). However, in reducing the set of difference equations to a

more manageable set, approximations of the form φ2
n+1 + φ2

n−1 + φn+1φn−1 ≈ 3φ2
n

and (φn+1 + φn−1)φn ≈ 2φ2
n are often employed. This makes it hard to quantify

the accuracy of the procedure, unlike other asymptotic methods (see Section 1.7.3),

which retain information on the size of error terms, and can also be corrected

by the calculation of higher-order terms. In fact, several authors point to the

limitations of some of the early results derived by applying the RWA, citing its

reliance on too many such approximations (see Bickham et al. [17]).

1.7.2 Continuum approximations

Another approach to solving equations for a lattice is through the method

of continuum approximation (see Chapter 2.4 of Remoissenet [103]). In this ap-

proach (illustrated using a simple example below), the equations defined on a

discrete lattice are replaced by some partial differential equation. The advan-

tages of this are obvious, after all, PDEs are more easily amenable to analy-

sis. Of course, such a procedure is only useful (and moreover, permissable) if

the replacement PDE accurately captures the dynamics of the original lattice

equations. As one would expect, some information is lost in replacing a fully

discrete system with an approximate continuous one. Nevertheless, there are

increasingly sophisticated ways of performing this which reflect phenomena

associated with the discrete lattice with increasing accuracy.

We illustrate some of these methods using the FPU lattice (discussed in

Section 1.3.1, see equation (1.14)) as an example. As we shall see in Section 2.2.1

(see equation (2.5)), the equation governing the difference in displacement be-

tween adjacent particles φn = qn+1 − qn in the FPU lattice is

φ̈n(t) = V ′(φn+1) − 2V ′(φn) + V ′(φn−1), (1.16)

where for example, V ′(φ) = φ + αφ2 + βφ3. In the simplest continuum approx-

imation, also known as the standard continuum approximation, one assumes

that the discrete index n can be replaced by a continuous variable x. In other
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words,

φn(t) → φ(x, t). (1.17)

This approximation is a reasonable one for excitations consisting of a slowly

varying envelope modulating a carrier wave. Terms of the form φn±1 in (1.16)

are replaced by derivatives by applying Taylor’s theorem and expanding,

φn±1(t) = φ(x± 1, t) = φ± ∂φ

∂x
± 1

2

∂2φ

∂x2
± 1

6

∂3φ

∂x3
± 1

24

∂4φ

∂x4
± . . . . (1.18)

Substituting for φn±1 in (1.16) using the expansion (1.18), and retaining terms

to the desired degree of accuracy, we arrive at some PDE (for example, a gen-

eralised Boussinesq equation, for which solutions can then be found, see Wattis

[134]). However, as pointed out by Remoissenet (Chapter 3.3, [103]), in some

cases, the standard continuum approximation is not sufficiently accurate. In

addition, Roseneau [104, 105] highlights more serious problems with this ap-

proximation (for instance, ill-posedness of the resulting PDE).

Collins & Rice [34, 35] introduce an improved quasi-continuum approxima-

tion, of which a simplified account is given later by Roseneau [104, 105]. We

follow the account given by Wattis [134]. Let us assume that a travelling wave

solution of (1.16) exists and has the form φn(t) = φ(n − ct) ≡ φ(z). Then (1.16)

becomes the differential delay-advance equation

c2φ′′(z) = V ′(φ(z + 1)) − 2V ′(φ(z)) + V ′(φ(z − 1)), (1.19)

which we rewrite as an operator equation. We use D to denote differentiation

with respect to z, that is, D ≡ ∂z. Using the fact that

φ(z ± 1) = φ(z) ± Dφ± 1
2
D2φ± 1

6
D3φ± . . . = e±Dφ, (1.20)

we find that equation (1.19) can be rewritten

c2D2φ =
[
4 sinh2(1

2
D)
]
V ′(φ(z)). (1.21)

Integrating this equation twice with respect to z, and taking the constants of

integration to be zero (since for localised solutions, we expect |φ(z)| → 0 as

|z| → ∞), we have

c2φ = Λ(D)V ′(φ), where Λ(D) =
4 sinh2(1

2
D)

D2
. (1.22)
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Approximations to the equation (1.22) can be made by treating D as a small

parameter and expanding the operator Λ(D) (this can be justified rigorously,

see Wattis [134]). For instance, by taking Λ(D) ∼ I + 1
12

D2 (where I is the

identity operator), we recover the standard continuum approximation.

Padé approximants

Padé approximation is a technique whereby a function is approximated by

the ratio of two polynomials (see Baker & Graves-Morris [10]). An (M,N) Padé

approximant is the ratio of a polynomial of degree M and a polynomial of de-

gree N . Roseneau [104, 105] suggested that this technique can be applied to the

operator Λ(D), replacing it by a ratio of two polynomials in the operator D. For

instance, the (0, 2) Padé approximant is Λ(D) ∼ [I − 1
12

D2]−1.

Larger values of M and N result in better approximations to the operator

Λ(D). However, the resulting continuum approximations become increasingly

complicated and thus harder to solve. Wattis [136] shows how this method

can be applied to obtain highly accurate approximations to discrete breather

solutions in a generalised Klein-Gordon lattice. We will come across Padé ap-

proximations again when we consider kink solutions in the FPU chain (see

Section 2.4).

Kevrekidis et al. [72] assess some of the successes and failures of the method

of Padé continuum approximations. For instance, properties such as the dis-

persion relation for the system, the wave profile and velocity are retained by

the continuum models. However, features such as Peierls-Nabarro barriers are

not captured.

1.7.3 The semi-discrete multiple-scale method

Another highly productive method for finding approximations to breather

solutions is given by Remoissenet [102]. Here, we refer to it as the semi-discrete

multiple-scale method, and it is valid in the limit of small amplitude when there
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is slow variation in time and space. As we explain shortly, in this method, one

introduces a small parameter ε, which represents the amplitude of the breather

solutions that we seek. We elaborate upon this, since no small parameter ε

occurs in the lattice equations that we have presented so far (see for example,

the Klein-Gordon lattice, (1.12), or the FPU lattice, (1.14)).

Following Infeld & Rowlands [68], we comment that in general, when pre-

sented with a system of nonlinear physical equations, one can set about finding

all manner of complex and exotic solutions. By introducing a small parameter,

we confine our attention to a restricted class of solutions, for example, those of

small amplitude. We assume an expansion for the solution in the amplitude ε.

The solution can be found to a higher degree of accuracy by determining more

coefficients of εn in the expansion. An in-depth survey of small-amplitude for-

malism applied to nonlinear equations can be found in Chapters 5 and 8 of

Infeld and Rowlands [68], and also in Krylov & Bogoliubov [81].

Returning to the semi-discrete multiple-scale method, similarly, there are

many types of discrete breather solutions that we could seek (Flach & Willis

[52] describe some of the more exotic strains), but we will restrict our attention

to breathers of small amplitude. Hence, we shall assume a perturbation expan-

sion for the solution in the amplitude, which we denote ε. In addition, we will

assume that the breather envelope varies very slowly in space compared to the

rapid carrier wave. Consequently, we apply the method of multiple scales (see

Bush [23], Chapter 4), and introduce a hierarchy of new slow variables defined

by X = εn, τ = εt and T = ε2t. We consider the displacement qn(t) to be a func-

tion of the independent variables n, t, X , τ and T , so that qn(t) = q(n, t,X, τ, T ).

We thus assume a small amplitude expansion for qn(t) of the form

qn(t) = εeiψF + ε2(G0 + eiψG1 + e2iψG2)

+ ε3(H0 + eiψH1 + e2iψH2 + e3iψH3) + · · · + c.c., (1.23)

where ψ = pn + ωt, the variables F , Gi, Hi, . . . , are all functions of X , τ and

T , and c.c. denotes the complex conjugate. Notice that in the ansatz (1.23), the
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oscillations of the carrier wave are treated exactly. This ansatz is then substi-

tuted into the lattice equations, and we then equate coefficients of each power

of ε at each frequency (that is, at each power of eiψ). This results in a system of

equations for the unknown quantities F , Gi, Hi, . . . , where F gives the form of

the breather envelope at leading order, and Gi, Hi, . . . , are higher order correc-

tion terms. Unlike other approaches such as the RWA (see Section 1.7.1), this

asymptotic approach gives more precise information on the size of the error in

the approximate solution. The error can be reduced by determining more of the

unknown terms in the expansion (1.23).

We use this method extensively throughout this thesis. As with all approx-

imate methods for breathers, it is vital to know whether approximations gen-

erated by it are close to exact breather solutions of the lattice (the notion of

“closeness” can be made precise). This is an active area of research, and we

note that rigorous results have been established recently. We discuss these in

Section 2.5.

1.8 Overview of thesis

In this chapter, we have discussed the existence and properties of discrete

breathers. We have also summarised some of the most important work to have

been carried out in the field to date. There are still many open questions regard-

ing discrete breathers and their properties. For example, as we have described,

breather mobility is just one of many active areas of research within the subject.

As well as abstract properties, we have reviewed several methods used com-

monly to obtain approximations to breather solutions. These have been em-

ployed extensively to yield a great deal of useful information about breathers

and their properties in a broad range of lattice models. In addition, they pro-

vide direct and tangible information on breather profiles. Often, analytic work

has inspired or guided rigorous work, as well as confirming results obtained

therein.
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In this thesis, we use asymptotic methods (the semi-discrete multiple-scale

method) to determine breather existence and properties in lattices of the Fermi-

Pasta-Ulam type. We consider both one- and two-dimensional lattices, with

several different geometries in the latter case.

We begin by considering a one-dimensional FPU chain in Chapter 2. Us-

ing the semi-discrete multiple-scale method, we determine the conditions for

which the FPU chain supports moving breather solutions, thereby generalis-

ing known conditions for the existence of stationary breathers. We also give

leading-order analytic approximations to these solutions. Numerical simula-

tion of the lattice verifies the breather properties determined by the asymptotic

analysis. By considering small wavenumbers, we show that the quartic FPU lat-

tice (with no cubic term in the potential energy function) supports waveforms

that are combinations of a breather and a kink. We show that the amplitude

of these “breathing-kinks” can be arbitrarily small, as opposed to traditional

monotone travelling-wave kinks, which have a nonzero minimum amplitude

in such systems. Numerical simulations confirm the long-lived nature of the

combined modes.

In Chapter 3, we investigate discrete breathers in a two-dimensional square

FPU lattice. A third-order multiple scales analysis in the semi-discrete limit

is shown to be inadequate, since at this order, the lattice equations reduce to

the (2+1)-dimensional cubic nonlinear Schrödinger equation, which does not

support stable soliton solutions for the breather envelope. We therefore ex-

tend the analysis to higher order and find a generalised (2 + 1)-dimensional

NLS equation which incorporates higher order dispersive and nonlinear terms

as perturbations. We find an ellipticity criterion for the wavenumbers of the

carrier wave. Numerical simulations suggest that both stationary and moving

breathers are supported by the system. Calculations of the energy show the ex-

pected threshold behaviour whereby the energy of breathers does not go to zero

with the amplitude. In other words, the energy of any breather solution must

exceed an excitation threshold. We find that the energy threshold is maximised

by stationary breathers, and becomes arbitrarily small as the boundary of the
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domain of ellipticity is approached.

In Chapter 4, we consider a two-dimensional FPU lattice with hexagonal

symmetry. We aim to determine whether the different rotational symmetry

properties of this lattice model affect the properties of discrete breathers found

therein. The results obtained are similar to those obtained for the square FPU

lattice, though we find that the square and hexagonal lattices exhibit quite dif-

ferent properties in regard to the generation of higher harmonics. The hexag-

onal lattice equations are reduced to a cubic nonlinear Schrödinger equation

at third order. As before, we carry out a higher order analysis, and find a

slightly simpler generalised NLS which includes known stabilising terms. We

present numerical results which suggest that long-lived stationary and moving

breathers are supported by the lattice. We also find asymptotic estimates for

the breather energy, and determine a minimum threshold energy below which

breathers cannot be found. This energy threshold is again maximised for sta-

tionary breathers, and becomes vanishingly small near the boundary of the el-

liptic domain.

We conclude in Chapter 5 with a brief discussion of the work carried out in

this thesis. We also propose several problems and related lattice models which

could prove interesting for further study.



Chapter 2

A one-dimensional

Fermi-Pasta-Ulam chain

In this chapter, we consider discrete breathers in a Fermi-Pasta-Ulam (FPU)

chain. We have already come across this model in Sections 1.3.1 and 1.7.2.

Firstly, we explain the origin of this much studied model, and derive the gov-

erning equations. Before discussing discrete breathers in this system, we men-

tion that the FPU lattice has a rich history in itself, which we now review briefly.

2.1 Introduction

The numerical experiments carried out by Fermi, Pasta and Ulam [45] in

1940 are well documented. They were studying the transfer of heat energy in a

solid modelled by a one-dimensional chain composed of particles of equal mass

connected by identical nonlinear springs. Figure 2.1 (a) shows the arrangement

in its equilibrium state, and Figure 2.1 (b) depicts a non-equilibrium state. Se-

lecting any fixed particle to be the zeroth particle in the array, all of the particles

can then be labelled with an integer n ∈ Z. We will suppose that the central

particle in Figure 2.1 (a) is the nth particle, and that the adjoining spring on the

right-hand side is the nth spring.

The equation of motion governing the nth particle is obtained by a straight-

27
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(a)

(b)

nth
particle

qnqn−1 qn+1

Figure 2.1: A one-dimensional spring-mass system.

forward application of Newton’s second law. Letting qn denote the displace-

ment of the nth particle from its equilibrium position (see Figure 2.1 (b)), the

extension in the nth spring is qn+1 − qn. Similarly, the extension in the (n− 1)th

spring (to the left of the nth particle) is qn− qn−1. Letting V (φ) denote the elastic

potential energy of each spring as a function of its extension φ, the force exerted

by each spring is −V ′(φ). Applying Newton’s second law to the nth particle,

and assuming the particles to be of unit mass, we have

q̈n(t) = V ′(qn+1 − qn) − V ′(qn − qn−1). (2.1)

Equation (2.1) is the FPU equation. It can also be derived directly from the

Hamiltonian H (which is equal to the total mechanical energy of the system)

given by

H =
+∞∑

n=−∞

1
2
p2
n + V (qn+1 − qn), (2.2)

where the first term in the summand gives the kinetic energy of the nth parti-

cle, and the second term is the elastic potential energy of the nth (right-hand)

spring. Formally, pn and qn are canonically conjugate momenta and displace-

ment variables of the system (see for instance, Chapter 12, Kibble & Berkshire

[73]), satisfying

dqn
dt

= pn and
dpn
dt

= V ′(qn+1 − qn) − V ′(qn − qn−1). (2.3)
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2.1.1 Some historical remarks

We return to the work of Fermi, Pasta and Ulam [45] into heat conduction

modelled by the above spring-mass system. They had expected that upon excit-

ing a normal mode, the nonlinear interactions would cause the energy to flow

evenly into all the normal modes resulting in energy equipartition (or ther-

malisation). Computer simulations carried out by them failed to verify this

hypothesis. The system did not approach energy equipartition, instead, the

energy returned almost periodically to the originally excited mode and a few

others nearby. This unexpected phenomenon is known as FPU recurrence, and

attracted much interest at the time.

One of the most important advances was made by Zabusky and Kruskal

[139]. They approximated the FPU spring-mass system by the Korteweg-de

Vries (KdV) equation. Results of their numerical investigation allowed them

establish a link between FPU recurrence and the nondestructive collisions of

soliton solutions of the KdV equation. They proposed the following explana-

tion for the FPU recurrence phenomenon. The initial condition u(x, 0) generates

a family of solitons with different velocities moving in the (x, t)-plane. Since the

lattice is of finite length, the solitons cannot move indefinitely far apart (reflec-

tion at the ends of the lattice prevents this). Thus the solitons collide, but pre-

serve their shapes and velocities. At some later time TR, the solitons reassemble

and approximately recreate the initial condition u(x, 0). The first time at which

this occurs is the recurrence time. Whilst this shows a connection between re-

currence and solitons in the integrable KdV equation, it is known that the FPU

system is not integrable. Even though the FPU chain supports nonlinear waves,

they do not interact elastically. Hence, the explanation of recurrence in the FPU

chain is not so simple.

The work of Tuck and Menzel [131] provides further insight into the phe-

nomenon of FPU recurrence. By simulating FPU chains over many FPU recur-

rence times, they found a recurrence with a longer period, the so-called super-

period. It was found that more energy is returned to the originally excited mode
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after a superperiod recurrence than after a single FPU recurrence. In a later

paper, Sholl [116] derives analytic expressions for the FPU recurrence superpe-

riod. A comprehensive historical overview of the FPU problem and suggested

resolutions are given by Ford [58].

2.1.2 Discrete breathers in Fermi-Pasta-Ulam lattices

We are interested in whether discrete breathers are supported by FPU lat-

tices. Unfortunately, the anti-continuum method, which has proved so useful in

establishing existence in a broad range of other lattice models (see Section 1.2.1),

is not applicable to FPU lattices. This is because, as can be seen from the gov-

erning equation (2.1), FPU lattices do not posses an uncoupled limit in which

trivial breathers exist. Nevertheless, much of the early analytical and numeri-

cal work on discrete breathers applied to FPU lattices, indicating that FPU lat-

tices do support breathers. We do not give an exhaustive list of such work but

we mention, for example, the work of Bickham et al. [17] and Takeno et al.

[64, 65, 117, 122–127].

For some time, the only rigorous result concerning existence in a certain

class of FPU lattices was established by Flach [48], who proves the existence of

breathers in FPU lattices with interaction potentials of the form V (φ) = φ2m in

(2.2), wherem ≥ 2. Aubry et al. [9] present a variational method for establishing

the existence of breathers whose frequency lies above the phonon band. Their

method applies to lattices for which the interaction potential is convex. Discrete

breathers are obtained as extrema (in fact, maxima) of a certain variational form.

Since this variational method does not rely on the concept of an anti-continuum

limit, it can be applied to FPU lattices. Aubry et al. apply the method to prove

existence of discrete breathers in a class of FPU lattices, namely, those for which

the potential V in (2.2) is a convex polynomial of degree 4.

More recently, James [69] gives a more general result, which establishes the

existence (nonexistence) of small-amplitude discrete breathers with frequencies

slightly above the phonon band in FPU lattices when the potential V satis-
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fies (violates) a local hardening condition. Specifically, the existence of such

breathers is obtained for B > 0, where B = V (4)(0)/2 − (V (3)(0))2, and their

nonexistence is proved for B < 0. Once more, V is the interaction potential in

(2.2), and is chosen to satisfy V ′(0) = 0 and V ′′(0) = 1. James’s proof is based

on a centre manifold technique.

Later in this chapter (see Section 2.2.4), we will show how this inequality

arises. Specifically, we construct a family of approximate breather solutions

parametrised by the carrier’s wavenumber, which exist in parameter regions

given by the inequality B > 0. We show that as B is increased through zero,

stationary breathers are the first to exist, satisfying James’s inequality exactly.

The results of James [69] are accompanied by numerical work presented

later by Sánchez-Rey et al. [108]. In this, the range of validity of James’s centre

manifold technique is tested. Small amplitude breathers are computed numer-

ically and are found to be in very good agreement with approximate leading-

order analytical expressions derived by James. The interaction potential V is

chosen to be a polynomial of degree 4 (of the same form that we shall con-

sider in Section 2.2.1). The range of validity of James’s proof is verified, since

breathers are in fact found for B > 0.

2.1.3 Overview

In this chapter, we use asymptotic methods (the semi-discrete multiple-scale

method) to find leading-order expressions for both stationary and moving dis-

crete breathers in a one-dimensional Fermi-Pasta-Ulam (FPU) lattice with an-

harmonic potential.

In Section 2.2, the lattice equations are reduced to a nonlinear Schrödinger

(NLS) equation at leading order. This equation admits two different types of

soliton solution (bright or dark) for the breather envelope, depending on the

coefficients of the cubic and quartic terms in the potential energy function. Our

asymptotic analysis yields inequalities which illustrate how the sizes of these

coefficients determine the type of solution. This leads to conditions for which
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the FPU lattice supports bright breathers. Stationary breathers satisfy James’s

inequality B > 0, and for moving breathers, we find a generalised version of

James’s inequality.

Soliton solutions of the NLS equation are used to construct leading-order

analytic forms for bright and dark breathers in the FPU chain. We present re-

sults of numerical simulations of the FPU lattice in Section 2.3. We find good

agreement with the results obtained through the asymptotic analysis.

In Section 2.4, we show by considering small wavenumbers, that there also

exist waveforms which are combinations of a breather and a kink. The order of

magnitude of the wavenumber determines which of the two components domi-

nates for such a waveform, and hence whether a breather or kink or a combined

breathing-kink is exhibited ultimately. We present numerical simulations which

show that these combined modes move as travelling waves over intermediate

timescales. We show that traditional, monotone, kinks in the quartic FPU lat-

tice have a nonzero minimum amplitude, and that the combined modes allow

travelling waves with a kink amplitude below this minimum. Some closing

comments are made in Section 2.5.

2.2 Asymptotic analysis

2.2.1 Preliminaries

In this section, we use asymptotic methods to find an approximate form

for breather solutions of the one-dimensional FPU chain. Firstly, we introduce

a transformation variable φn, defined as the difference between the displace-

ments of the (n+ 1)th and nth particles, namely

φn = qn+1 − qn. (2.4)

The FPU equation (2.1) can then be rewritten in terms of the variable φn. Equa-

tion (2.1) becomes q̈n = V ′(φn) − V ′(φn−1), and so q̈n+1 = V ′(φn+1) − V ′(φn).
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Subtracting the former equation from the latter (φ̈n = q̈n+1 − q̈n) gives

φ̈n = V ′(φn+1) − 2V ′(φn) + V ′(φn−1). (2.5)

This is the same as equation (1.16), which we introduced in Section 1.7.2 for our

discussion of continuum approximations.

Since we shall be using asymptotic methods to determine the form of small

amplitude solutions, we shall only be concerned with the first few terms in the

expansion of V (φ). Thus we may approximate the potential function V (φ) by a

quartic polynomial

V (φ) = 1
2
φ2 + 1

3
aφ3 + 1

4
bφ4, (2.6)

where a and b are real constants. The equations of motion (2.5) therefore become

φ̈n = (φn+1 − 2φn + φn−1) + a(φ2
n+1 − 2φ2

n + φ2
n−1) + b(φ3

n+1 − 2φ3
n + φ3

n−1). (2.7)

Since we seek localised solutions, we expect the energy to vanish as n → ±∞,

hence we impose the boundary conditions qn → 0 as n → −∞ and qn → q∞ as

n → +∞ for some q∞ ∈ R. Recalling the definition of φn in terms of qn in (2.4),

we find

qn =
n−1∑

k=−∞

φk, (2.8)

hence we express the latter boundary condition as

qn → q∞ =
∞∑

n=−∞
φn as n→ ∞. (2.9)

We shall in general consider both q∞ = 0 and q∞ 6= 0 so that the variable qn

describes a modulated pulse (q∞ = 0) or a modulated kink (q∞ 6= 0) of some

description.

2.2.2 Hamiltonian formulations for Fermi-Pasta-Ulam equations

We have seen that by introducing the transformation of variables (2.4), we

have derived two formulations of the FPU equation. The first of these (2.1) is

expressed in terms of the displacement qn, and is derived from the Hamiltonian
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H given in (2.2). The second (2.5) is expressed in terms of the difference between

neighbouring displacements, namely φn. We note that this formulation can also

be derived directly from a Hamiltonian form H̃ distinct from (2.2). Applying

Hamilton’s equations to H̃ defined by

H̃ =
∑

n

1
2
(ψn+1 − ψn)

2 + V (φn), (2.10)

gives
dφn
dt

= −(ψn+1 − 2ψn + ψn−1) and
dψn
dt

= −V ′(φn), (2.11)

from which (2.5) can be recovered. In this form, we note that the nearest-

neighbour coupling and nonlinearity have been separated; the coupling now

appears in a harmonic term and the nonlinearity involves only one site.

We now show that H̃ (2.10) and H (2.2) are numerically equal even though

they arise from different Hamiltonian formulations. We introduce forward and

backward difference operators δ± defined by δ+An = An+1 − An and δ−An =

An − An−1, where An is a quantity referenced by the index n. Then δ2, defined

by δ2An = An+1−2An+An−1, satisfies δ2 = δ+δ− = δ−δ+. Hamilton’s equations

applied to (2.10) imply φ̇n = −δ2ψn (see (2.11)). Since φn := δ+qn we have

δ+q̇n = δ+δ−(−ψn), so q̇n = pn = C − δ−ψn for some quantity C, independent of

n. Now consider 2(H̃−H) =
∑

n(ψn+1−ψn)2−∑n p
2
n; then 2(H̃−H) = −∑nC

(assuming that both H and H̃ are finite, and that limn→±∞ ψn = 0). Hence, we

deduce C = 0, and so H = H̃ , as required.

We shall see the significance of the alternative Hamiltonian formulation

H̃ for Fermi-Pasta-Ulam systems, particularly in reference to non-mechanical

models such as those studied in Chapters 3 and 4.

2.2.3 Asymptotic analysis

As we have already discussed in Section 1.7, a closed analytic form for gen-

eral breather solutions of the FPU lattice (2.7) is not known. We restrict our

attention to a class of breather solutions, namely those of small amplitude,

and whose envelope varies very slowly compared to the carrier oscillations.
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In this case, we apply the semi-discrete multiple-scale method described in

Section 1.7.3 to determine approximations to breather solutions. We discuss

the validity of this procedure in Section 2.5.

Hence, in addition to the variables n and t, we introduce new slow variables

X , τ and T defined by

X = εn, τ = εt and T = ε2t. (2.12)

We consider the displacement φn(t) to be a function of the independent vari-

ables n, t, X , τ and T so that φn(t) = φ(n, t,X, τ, T ). Applying the chain rule for

partial differentiation, the derivative operator d/dt is replaced by

d

dt
≡ ∂

∂t
+ ε

∂

∂τ
+ ε2 ∂

∂T
. (2.13)

We assume a small-amplitude asymptotic expansion for modulated solutions

of (2.7) of the form

φn(t) = εeiωt+ipnF (X, τ, T ) + ε2G0(X, τ, T )

+ ε2eiωt+ipnG1(X, τ, T ) + ε2e2iωt+2ipnG2(X, τ, T )

+ ε3H0(X, τ, T ) + ε3eiωt+ipnH1(X, τ, T )

+ ε3e2iωt+2ipnH2(X, τ, T ) + ε3e3iωt+3ipnH3(X, τ, T ) + · · · + c.c., (2.14)

where c.c. denotes the complex conjugate, and ω and p are the frequency and

wavenumber of the linear carrier wave respectively. Taylor’s theorem enables

us to replace terms such as φn+1(t) by

φn+1(t) = εeiωt+ipn+ipF (X + ε, τ, T ) + · · · + c.c.

= εeiωt+ipn+ip
(
F + εFX + 1

2
ε2FXX + · · ·

)
+ · · · + c.c. (2.15)

A similar expansion may also be found for terms such as φn−1(t).

We then substitute the ansatz (2.14) into the equations of motion (2.7) and

equate coefficients of each harmonic in t at each order of ε. This yields the

following equations

O(εeiωt+ipn):

− ω2F = eipF + e−ipF − 2F, (2.16)
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O(ε2eiωt+ipn):

ωFτ = sin(p)FX , (2.17)

O(ε2e2iωt+2ipn):

ω2G2 = sin2(p)(G2 + aF 2), (2.18)

O(ε3eiωt+ipn):

2iωFT + Fττ + 2iωG1τ = cos(p)FXX + 2i sin(p)G1X

−8a sin2
(p

2

)
[FG0 + FG0 + FG2]

−12b sin2
(p

2

)
|F |2F, (2.19)

O(ε4e0):

G0ττ = G0XX + a
(
|F |2

)
XX

. (2.20)

The equation from O(ε2e0) is the trivial equation 0 = 0, and so may be dis-

carded.

We proceed to solve the above set of equations. Equation (2.16) yields the

dispersion relation, which relates the temporal frequency of the carrier wave ω

to the wavenumber p,

ω2 = 4 sin2
(p

2

)
. (2.21)

Taking the positive root of (2.21), we conclude that

ω = 2 sin
(p

2

)
. (2.22)

A plot of the dispersion relation (2.22) is shown in Figure 2.2(a). From this we

see that the temporal frequency ω is maximised at the point p = π, where ω = 2.

Considering (2.17), this becomes (after substituting for ω from (2.22))

Fτ = cos
(p

2

)
FX . (2.23)

Equation (2.23) shows that the temporal derivative Fτ and spatial derivative FX

are multiples of one another. From this we infer that F is a travelling wave of

the form

F (X, τ, T ) ≡ F (Z, T ), (2.24)
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Figure 2.2: The dispersion relation ω and velocity v against wavenumber p.

where Z is the travelling wave coordinate given by Z = X − vτ , with velocity

v = − cos (p/2). A plot of the velocity against the wavenumber p is shown in

Figure 2.2(b). We see from this that for p = π we have a stationary wave, and

for other values of p a wave which moves with speed below unity.

Equation (2.18) is a straightforward algebraic equation, and hence it is solved

easily to give G2 in terms of F 2. Rearranging, we find after substituting for ω

and simplifying that

G2 = a cot2
(p

2

)
F 2. (2.25)

Note that for stationary waves (which occur when p = π), there is no generation

of a second harmonic. Note also that when a 6= 0 the expression for G2 becomes

singular as p→ 0. In particular, from (2.25), we see that if p = O(ε1/2) or smaller,

then the F term in (2.14) is not dominant, but of similar size to the G2 term.

Turning our attention to (2.19), we anticipate that this should reduce to a

nonlinear Schrödinger (NLS) equation in the variable F , as is the case for other

lattice models (see Remoissenet [102], or Bang & Peyrard [12]). However, at

present, it is clear that (2.19) also includes terms involving G1 and G0. These

must be found in terms of F before reduction to the NLS equation can occur.

The quantitiesG1 andG0 are higher-order correction terms to the leading or-

der quantity F . If we assume that G1 and G0 represent perturbations travelling
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at the same velocity as F , we have that

G1(X, τ, T ) = G1(Z, T ) and G0(X, τ, T ) = G0(Z, T ), (2.26)

where as before, Z = X − vτ and v = − cos (p/2). It follows from the left-hand

equality in (2.26) that the terms involving G1 on either side of (2.19) disappear.

Also, using the right-hand equality in (2.26), we find that G0ττ = v2G0ZZ , and

so equation (2.20) becomes

(v2 − 1)G0ZZ = a(|F |2)ZZ . (2.27)

Integrating this equation twice with respect to Z gives

G0 =
a

v2 − 1
|F |2 = −a cosec2

(p
2

)
|F |2. (2.28)

Note that in (2.28), we have taken the constants of integration to be zero. This

follows from the comments regarding boundary conditions made immediately

after (2.7). Also, again, we see that the expression forG0 (2.28) becomes singular

as p→ 0.

We now return to (2.19). Substituting for G2 and G0 using (2.25) and (2.28)

respectively, we arrive at the NLS equation for F as anticipated

iFT + PFZZ +Q|F |2F = 0. (2.29)

In (2.29), the coefficients P and Q of FZZ and |F |2F respectively are given by

P = 1
4
sin
(p

2

)
and Q =

2a2 cos2
(
p
2

)
− 4a2 + 3b sin2

(
p
2

)

sin
(
p
2

) . (2.30)

In other words, the multiple-scale ansatz (2.14) reduces the FPU equations (2.7)

defined upon a discrete chain to a continuum partial differential equation (the

NLS equation, (2.29)) for the breather envelope F . The next task is to determine

soliton solutions of (2.29) which give an analytic formula for the envelope F .

2.2.4 Bright soliton solutions

A vast body of literature on the nonlinear Schrödinger equation is available.

It is a generic equation which arises in a wide range of different physical con-

texts. In general, it describes the propagation of the envelope over a carrier
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wave, and is obtained when one takes into account the lowest-order effects of

dispersion and nonlinearity upon a wavepacket. It is integrable, and is known

to admit soliton solutions. We will not derive the solutions here. However, a

concise review of the theoretical properties of the NLS equation can be found

in Chapter 4 of Remoissenet [103], or Chapter 3 of Scott [114]. We will quote

relevant results from therein when necessary.

It is known that the nonlinear Schrödinger equation (2.29) admits bright

soliton solutions (also known as envelope solitons) if the coefficients P and Q

are of the same sign, and dark solitons (also known as hole solitons) if P and

Q are of opposite sign (see also Dodd et al. [40]). Clearly P is positive for all

p in the interval [0, 2π] (except at p = 0 and p = 2π). Hence for bright soli-

ton solutions, the above condition reduces to Q > 0, which upon rearranging

becomes (
3b

2a2
− 1

)
sin2

(p
2

)
> 1. (2.31)

A great deal of information can be derived from this inequality, as we now

show. In particular, inequality (2.31) is critical for determining the existence and

nonexistence of stationary discrete breathers and long-lived moving breather

modes in the one-dimensional FPU chain.

In analysing this inequality, it is instructive to consider the (a, b)-parameter-

space. For a fixed wavenumber p, we see that in order for the inequality to be

satisfied, b must be greater than some simple quadratic function of a, namely

b >
2

3

[
cosec2

(p
2

)
+ 1
]
a2. (2.32)

This inequality is illustrated in Figure 2.3, which shows the inequality (2.32) for

four distinct wavenumbers p = jπ/4 with j = 1, 2, 3, 4. For any given value

of a, the lowest possible value of b satisfying (2.32) occurs when p = π (that

is, when cosec2(p/2) is minimised and has value 1). For this wavenumber, for

which breathers are stationary, we have b > 4
3
a2. We mention that this is exactly

the inequality proven by James [69] for the existence of stationary breathers

that we discussed in Section 2.1.2. From (2.6), we find that V (3)(0) = 2a and
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V (4)(0) = 6b. Hence James’s condition for breather existence in the FPU chain

gives B = 3b− 4a2 > 0, which is the same inequality that we arrive at above.

This inequality tells us that no bright breathers at all can exist below the

curve which corresponds to p = π (see Figure 2.3), and so this is effectively a

necessary condition for breather existence in the 1D FPU chain.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

a

b

p=π
p=3π/4
p=π/2
p=π/4

Figure 2.3: Illustration of the inequality (2.32).

Returning to the remaining curves in Figure 2.3 for a moment, we comment

that anywhere above the solid curve, stationary breathers with p = π exist.

Similarly, above the dashed curve (−−), breathers with p ≥ 3π/4 exist. These

are slowly moving, since |v| < cos(3π/8) ≈ 0.38 units per second. Above the

dash-dotted curve (− ·), breathers with p ≥ π/2 exist; these move with speed

|v| < 1/
√

2 ≈ 0.707 units per second. Above the dotted curve (· · · ), breathers

with p ≥ π/4 exist. These travel with speed |v| < cos(π/8) ≈ 0.92 units per

second. If we choose to consider arbitrarily small wavenumbers, then it is clear

from (2.32) that breathers exist only in a neighbourhood of the b-axis, that is,
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when b� a.

So, given (a, b) satisfying the condition for the existence of a moving breather

with wavenumber p, namely (2.32), then we also expect to find breathers with

larger p values, and in particular p = π and hence a stationary breather mode

to exist. A rearrangement of (2.31) shows there is a threshold wavenumber,

pmin, above which the inequality (2.31) is satisfied. Explicitly, for bright soliton

solutions, the wavenumber p must satisfy pmin < p < π where

pmin = 2 sin−1

√
2a2

3b− 2a2
. (2.33)

In Section 2.3, we investigate the properties of breathers which correspond to

wavenumber p, where p→ p+
min. For now, we note that if we consider the special

case of a lattice with symmetric quartic potential (a = 0), then from (2.30), we

see that the condition Q > 0 reduces to b > 0. In other words, provided b > 0,

the NLS equation (2.29) yields bright soliton solutions for all p ∈ (0, 2π), and we

find no threshold for the wavenumber p (that is, pmin = 0). Formally, breathers

with p = 0 exist only in the case a = 0, b > 0. This limit is considered in more

detail in Section 2.4.

2.2.5 Analytic forms for breather solutions in the FPU chain

In this section, we firstly use formulae for bright soliton solutions to deter-

mine an expression for the breather in the difference variable φn. We then show

how this can be used to find a leading-order expression for the breather in the

original displacement variable qn.

In the region above the curve corresponding to a particular wavenumber p

in Figure 2.3, we expect to find bright soliton solutions to (2.30) of the form

F = A sech

(
A

√
Q

2P
Z

)
exp

(
i
Q

2
A2T

)
, (2.34)

where A is a free parameter which parametrises the soliton amplitude (see

Chapter 4.5 of Remoissenet [103]). We note that both the soliton width and
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frequency depend upon the amplitude A, with larger amplitude solitons being

narrower and having a higher temporal frequency.

The expression (2.34) for the envelope F is then substituted into the breather

ansatz (2.14), giving the breather solution of (2.7) in terms of our original vari-

ables,

φn(t) = 2εA sech

[
εA

√
Q

2P

(
n+ cos

(p
2

)
t
)]

cos (Ωt+ pn)

+ 2aε2A2cosec2
(p

2

)
sech2

[
εA

√
Q

2P

(
n+ cos

(p
2

)
t
)]

×
(
cos2

(p
2

)
cos (2Ωt+ 2pn) − 1

)
+ O(ε3), (2.35)

where P and Q are defined in (2.30) above, also

Ω = 2 sin (p/2) +Qε2A2/2, (2.36)

and the combination εA is a single free parameter. Note that in (2.35), we have

given the form of the breather to second-order, since we have also determined

the second-order terms G0 and G2 in (2.28) and (2.25) respectively. Equation

(2.36) gives the relationship between the frequency and amplitude for the non-

linear system. This has been obtained through a more systematic method than

that used in Section 1.1.2.

We use the leading-order solution for φn(t) in (2.35) to obtain an expression

at leading-order for qn, the original displacement variable. We assume that qn

is of the form

qn(t) = 2εA[λ cos(Ωt+ pn) + µ sin(Ωt+ pn)]

× sech

[
εA

√
Q

2P
(n− vt)

]
+ O(ε2), (2.37)

where v = − cos(p/2) is the envelope velocity given in (2.24), and λ and µ are

constants to be determined in terms of p, which is taken to be O(1).

We substitute (2.37) into the defining equation for φn (2.4) giving a second
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expression for φn(t) at leading order. Specifically, we find that

qn+1(t) − qn(t) = 2εAsech

[
εA

√
Q

2P
(n− vt)

]
{cos(Ωt+ pn)[λ cos p+ µ sin p− λ]

+ sin(Ωt+ pn)[−λ sin p+ µ cos p− µ]} + O(ε2).

(2.38)

Equating coefficients of corresponding terms in the two leading-order expres-

sions for φn (2.35) and (2.38) yields the following simultaneous equations for λ

and µ:

λ cos p+ µ sin p− λ = 1, (2.39)

−λ sin p+ µ cos p− µ = 0. (2.40)

The second equation (2.40) is used to find that λ/µ = − tan(p/2), and substitut-

ing this into (2.39) gives λ = −1/2 and µ = (1/2) cot(p/2). Hence overall we

obtain an expression for the bright breather to leading-order

qn(t) = −εA
[
cos(Ωt+ pn) − cot

(p
2

)
sin(Ωt+ pn)

]

×sech

[
εA

√
Q

2P
(n− vt)

]
+ O(ε2), (2.41)

which is valid when ε � 1 and p = O(1). Note that equations (2.39) and (2.40)

are ill-posed in the limit p→ 0.

Lastly in this section, we make a few remarks comparing the phase (or crest)

velocity vcrest and the group (or envelope) velocity venvelope of the carrier wave

of the breather solution (2.41). Clearly, venvelope = − cos(p/2) is always less than

unity. The crest velocity is given by −Ω/p and so from (2.36) this is also less than

unity. For general p the two will differ, since sin θ > θ cos θ. In the limit of small

p, the envelope and crest velocities − cos(p/2) and −Ω/p respectively are close,

but vcrest = −Ω/p is always larger in magnitude when the O(ε2) correction term

is included. Thus there is no value of p for which vcrest = venvelope.

Also, it is possible to use the existence criterion (2.31) (in particular, its re-

arrangement (2.33)) to find an upper bound for the envelope velocity venvelope.
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Since the wavenumber p is restricted to the range pmin ≤ p ≤ π, the breather

velocity venvelope = − cos(p/2) is restricted to the range

|venvelope| <
√

3b− 4a2

3b− 2a2
. (2.42)

Thus for nonzero values of a, breather modes have a velocity which is bounded

away from the speed of sound in the lattice. The phrase ”speed of sound” refers

to maximum speed at which linear waves of the formA exp(ipn+iωt) can travel

through a lattice. The speed of such waves is given by c = ω/p. For an FPU

lattice of the form (2.7), the speed c = 2 sin(p/2)/p, which has a maximum value

c = 1 at p = 0. Waveforms which travel at greater (lower) speeds than this are

referred to as supersonic (subsonic).

2.2.6 Asymptotic estimate for breather energy

In this section we use our solution for qn (2.41) to find a leading-order esti-

mate for the total energy of the system, H , defined by (2.2). We see from the

potential function V in (2.6) that to leading-order, H is given by

H ∼
∞∑

n=−∞

1
2
q̇2
n + 1

2
(qn+1 − qn)

2 =
∞∑

n=−∞

1
2
q̇2
n + 1

2
φ2
n. (2.43)

An expression for φn has already been obtained in (2.35). Differentiating qn

(2.41) with respect to time gives

q̇n(t) ∼ 2εA sin
(p

2

) [
sin(Ωt+ pn) + cot

(p
2

)
cos(Ωt+ pn)

]
sech

[
εA

√
Q

2P
(n− vt)

]
.

(2.44)

Substituting (2.35) and (2.44) into the expression for the energy H (2.43) gives a

complicated sum. We replace this sum by an integral since the variable X = εn

varies slowly with n. Therefore, we have

H(t) = I1 + I2 + I3, (2.45)
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where the integrals I1, I2 and I3 are given by

I1 =

∫ ∞

−∞
2ε2A2

[
1 + cos2

(p
2

)]
cos2(Ωt+ pn)sech2

[
εA

√
Q

2P
(n− vt)

]
dn,

(2.46)

I2 =

∫ ∞

−∞
2ε2A2 sin2

(p
2

)
sin2(Ωt+ pn)sech2

[
εA

√
Q

2P
(n− vt)

]
dn, (2.47)

I3 =

∫ ∞

−∞
ε2A2 sin(p) sin(2Ωt+ 2pn)sech2

[
εA

√
Q

2P
(n− vt)

]
dn. (2.48)

Since the energy in the FPU chain (2.43) is conserved, we have thatH(t) = H(0),

and therefore we may set t = 0 in each of the integrands in I1, I2 and I3. Clearly

I3 = 0, since the integrand in (2.48) is an odd function. The remaining integrals

can be evaluated using the following result (formula 3.982.1 of Gradshteyn &

Ryzhik [63]),
∫ ∞

−∞
cos(αx) sech2(βx) dx =

απ

β2
cosech

(
απ

2β

)
. (2.49)

Using (2.49) to evaluate (2.46) and (2.47), we therefore find a leading-order ex-

pression for the energy H

H ∼ 4εA sin
(
p
2

)
√

(6b− 4a2) sin2
(
p
2

)
− 4a2

+
pπ sin2(p)cosech

(
pπ
εA

√
2P
Q

)

(6b− 4a2) sin2
(
p
2

)
− 4a2

. (2.50)

If we take all parameters to be O(1) except for ε � 1, then the second term

on the right-hand side of (2.50) is exponentially small in ε. Hence overall, the

energyH is an O(ε) quantity. In calculating the estimate for the energyH (2.50),

we have used the expression for qn given in (2.41). Since (2.41) is valid when

p = O(1), it follows that the estimate for H (2.50) is also valid for this parameter

regime.

2.2.7 Dark solitons

In the region below the curves in Figure 2.3 corresponding to wavenumbers

pwhere (2.32) fails, we expect to find dark soliton solutions of the NLS equation.
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These solutions have the form F (Z, T ) = D(Z, T )eiµ(Z,T ), where (see Chapter 4.5

of Remoissenet [103])

D(Z, T ) = B

[
1 −m2 sech2

(
mB

√
−Q
2P

Z

)] 1

2

, (2.51)

µ(Z, T )=

√
−Q
2P

[
√

1−m2BZ + tan−1

{
m√

1−m2
tanh

(
mB

√
−Q
2P

Z

)}]
−B

2Q

2
(3−m2)T.

(2.52)

In (2.52),B is a free parameter (distinct from the quantity introduced in Section 2.1.2)

and m (0 ≤ m ≤ 1) is a parameter that controls the depth of the modulation of

amplitude [103]. In this case, the overall solution of (2.7) in terms of the original

variables to first order is φn(t) = 2εDn(t) cos(ψn(t))+O(ε2), where, using B and

m as before,

Dn(t) = B

[
1 −m2 sech2

{
mBε

√
−Q
2P

(
n+ cos

(p
2

)
t
)}] 1

2

, (2.53)

ψn(t) = B

√
−Q(1 −m2)

2P

[
n+ cos

(p
2

)
t
]
− B2Q

2
ε2(3 −m2)t+ 2 sin

(p
2

)
t+ pn

+

√
−Q
2P

tan−1

[
m√

1−m2
tanh

{
mB

√
−Q
2P

(
n+cos

(p
2

)
t
)}]

. (2.54)

These solutions have been observed previously, for example, by Flytzanis et al.

[57].

2.2.8 The Toda lattice

We illustrate the results of our above analysis by referring to the Toda lattice,

[129]. This lattice corresponds to V (φ) = α[e−βφ + βφ − 1]/β in (2.5). Hence

V ′(φ) = α(1 − e−βφ), giving the Toda lattice equation

φ̈n = −α
(
e−β φn+1 − 2e−β φn + e−β φn−1

)
. (2.55)

The Toda lattice is an integrable system, and is known to support travelling

wave solutions and elastically interacting N -soliton solutions (see Chapter 5 of

Scott, [114]).
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Performing a Taylor expansion of V (φ) about φ = 0, we find that V ′(φ) ∼
αβ[φ − βφ2/2 + β2φ3/6]. Comparing this (2.6), we see that for the Toda lattice

a = −αβ2/2 and b = αβ3/6. It follows that 3b = 2a2, and therefore the inequal-

ity (2.32) fails to hold for any p. We conclude that bright breathers can never

exist in the Toda lattice. This nonexistence result is entirely consistent with the

literature on Toda lattice (see [129]).

2.3 Numerical results

In this section we solve the equations for the FPU lattice (2.1) numerically.

This infinite system of nonlinear coupled second-order ordinary differential

equations can be converted to a first-order system in the variables qn and pn,

where pn = q̇n is the generalised momentum of the nth particle (see equations

(2.2) and (2.3)). Hence, the system (2.1) is equivalent to

q̇n = pn,

ṗn = V ′(qn+1 − qn) − V ′(qn − qn−1). (2.56)

We carry out the numerical simulation of the system using a fourth-order Runge-

Kutta scheme (see for example, Chapter 8 of Boyce & DiPrima [21]) coded in

Fortran90 (see Chapman [31]). Our program solves the equations of motion

for N particles where N is any natural number greater than or at least equal to

three, but typically around 100.

2.3.1 Initial data and boundary conditions

The first task is to generate initial data for qn and pn to input into the numer-

ical routines. This is done using the formula for φn(t) given in (2.35). From the

definition of φn, it may be verified that

qn(t) = q1(t) +
n−1∑

i=1

φi(t) =
n−1∑

i=1

φi(t), (2.57)
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where for a breather initially located centrally in the lattice, we take q1 = 0 fol-

lowing the comments on our choice of boundary conditions in (2.9). A similar

equation holds for pn. Setting t = 0 in (2.57), we evaluate the analytical solution

for φn(0) given by (2.35) on the lattice, and then take the cumulative sum to

determine initial data for qn at each lattice site. It also follows from our chosen

boundary conditions in (2.9) that the constant q∞ = qN(0).

One is entitled to ask why we have used an indirect route (by summing

φi) in (2.57) to determine initial data for qn, when an analytic expression for qn

(2.41) is already known. This is because, as we have already pointed out after

equations (2.41) and (2.50), the expansion for qn (2.41) is not valid for small p

(specifically when p ∼ ε). Hence it cannot be assumed that (2.41) gives the form

of the breather correctly in this domain. Therefore, we choose to use the sum

given by (2.57) instead, since the leading-order expression for φn(t) obtained

from (2.35) is valid for arbitrarily small p.

Returning to the system (2.56), we see that the equations are defined for each

of the particles n = 2 . . . N − 1. However, the 1st and N th particles are missing

left- and right- neighbours respectively. We remedy this by imposing periodic

boundary conditions. That is, the linear chain is effectively formed into a closed

ring where the 1st and N th particles are placed next to one another. To this end,

we introduce fictitious particles at either end of the lattice, satisfying

qN+1(t) = q1(t) + q∞, and q0(t) = qN(t) − q∞,

pN+1(t) = p1(t), and p0(t) = pN(t). (2.58)

This has the consequence that breathers moving to the right- (left-) hand edge

of the chain eventually reemerge from the left- (right-) hand edge.

2.3.2 Results

In this section, we present the results of breather simulations for a range of

different parameter values. In particular, we aim to verify the analytical results
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of Section 2.2. Amongst other properties, we will observe whether long-lived

breather modes exist in the parameter regions where expected, that is, when

a, b and p satisfy the inequality (2.31). We will also check if the analysis of

Section 2.2 correctly predicts the shape and velocity of stationary and moving

waveforms in the chain.

In addition to this, we use the conservation of mechanical energy H (2.2) of

the system to check the validity of the numerical routines. The total energyH of

the lattice is computed easily since it is a simple combination of the variables qn

and pn returned by the numerical scheme. We compute this at regular intervals

to check that it is conserved. Also, we shall compare the numerically computed

total energy with the asymptotic estimate given by (2.50).

Firstly, we present a simulation of a stationary breather with p = π. We

choose the remaining parameter values to be a = 0.1, b = 2.0, N = 101, A = 1.0

and ε = 0.1 which satisfy the existence criterion (2.31). The temporal frequency

of the carrier wave is Ω = 2.2098, and hence it follows that the period of os-

cillation is T = 2π/Ω = 3.0955. The breather is initially located at the centre

of the chain (as is the case for all of our simulations), and is shown in Figure

2.4 (a). The profile of the breather is also shown at later time t = 32.31T = 100

in Figure 2.4 (c). At both times, a plot of the cell energy (discussed shortly) is

also given. From the energy plots, it is clear that after 100 seconds, the breather

has not spread or distorted significantly. We have also included the numeri-

cally computed values of the total energy H . After 100 seconds, we see that the

change in H is negligible, with ∆H/H = 0.00084. The asymptotic estimate of H

given by (2.50) is 0.1159, which is a little lower than the numerically obtained

values. This is to be expected, since in deriving (2.50), we ignored O(ε2) terms,

which make a small contribution. In Figure 2.5, we have shown a montage of

snapshots of the breather at times t = 0, 5T , 10T , 15T , 20T and 25T . From this,

we see that the breather does not spread or diminish in amplitude over this

time interval.
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(c) Profile at 32.34T = 100.
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(d) Plot of en, H = 0.1190.

Figure 2.4: Stationary breather, wavenumber p = π.

We now present a simulation of a moving breather. For this, we set wavenum-

ber p = π/2, for which v = − cos(p/2) = −1/
√

2 units per second. The remain-

ing parameters are chosen as follows: a = 0.1, b = 2.0, N = 101, A = 1.0 and

ε = 0.1, which satisfy the existence inequality (2.31). In this case, the breather

frequency is Ω = 1.4353, and so the oscillation period is T = 4.3779.

We do not show the initial profile of the breather this time, though we have

shown the profile at times t = 50 and t = 91.76 in Figures 2.6 (a) and 2.6 (c) re-

spectively. In the first of these, we see that the breather has moved to the left and

has almost reached the left-hand edge of the chain. A little while later, it disap-

pears from this side and reappears from the right-hand edge (see Figure 2.6 (c)).

This is due to the periodic boundary conditions.
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Figure 2.5: Snapshots of a stationary breather at times t = 0, 5T , 10T , 15T , 20T

and 25T , T = 3.0955.

Since the breather’s exact position is hard to determine from plots of the

breather profile, measuring the velocity of the breather accurately is difficult.

We find that this is better achieved using a plot of the cell energy en, where

en = 1
2
p2
n + V (qn+1 − qn), (2.59)

and H =
∑N

n=1 en from (2.2). As we are dealing with a solitary waveform (that

is, a localised disturbance whose amplitude decays to zero as n → ±∞), the

energy associated with the wave is also localised. Hence in order to track the

position of the breather (and thus determine its velocity), we may equally use

the location of the maximum value of en at each value of t. Using this method,

we find from Figure 2.6 (d) that the average velocity of the breather is −0.703

units per second. Hence the percentage difference between the analytical and

numerical velocities is −0.58%.

In Figure 2.6, we have included the numerically computed values of the en-

ergy H . Again, we see that there is only a tiny change in the computed value

over the entire duration, with ∆H/H = −0.00083. There is also a close match

with the asymptotic estimate for H , which turns out to be 0.1161. In Figure 2.7,
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(a) Profile at t = 50.
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(b) Plot of en, H = 0.1199.
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(c) Profile at t = 91.76.
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(d) Plot of en, H = 0.1198.

Figure 2.6: Moving breather, wavenumber p = π/2.

we have shown the breather at various stages of its motion as it travels left-

wards through the chain. The last snapshot at t = 142.86 shows the breather as

it has just completed one whole circuit and returned to its initial position.

We also use our numerical scheme to further test the existence inequality

(2.31). In Section 2.2.4, we showed that a necessary condition for breather ex-

istence in the FPU chain is that 3b > 4a2. In addition to this, for a 6= 0, the

wavenumber p must be greater than the minimum wavenumber pmin given by

(2.33). It is natural to question what happens as wavenumber p → p+
min, that is,

when the existence condition (2.31) is only just satisfied. We now show that the

breather becomes wider as p approaches this threshold.
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Figure 2.7: Snapshots of a moving breather at times t = 0, 50, 91.76 and 142.86.

In order to quantify this, we introduce the notion of a breather’s width. If we

consider the envelope of the breather given by (2.41), the envelope half-width

Lhw is measured at half the maximum amplitude of the breather, which is εA.

In other words, Lhw satisfies

2εAsech

(
εA

√
Q

2P
Lhw

)
= εA =⇒ Lhw =

1

εA

√
2P

Q
sech−1

(
1

2

)
. (2.60)

The full width of the breather Lfw is simply twice the half-width, that is, Lfw =

2Lhw. This is illustrated in Figure 2.8. Rewriting the term
√
Q/2P as

√
Q

2P
=

√
6b− 4a2 − 4a2cosec2

(p
2

)
, (2.61)

we see that
√
Q/2P decreases as p decreases, hence the width of the breather

Lfw increases as p → p+
min. We can use our numerical program to verify this.

If we choose a = 1 and b = 2, then from (2.33) it follows that pmin = π/2. In

Figure 2.9, we show the initial profiles of two breathers which correspond to

two different wavenumbers. For both, we have set a = 1.0, b = 2.0, N = 101,

A = 1.0 and ε = 0.1. In Figure 2.9 (a), we set p = π, and in Figure 2.9 (b) we set

p = 1.7, which is much closer to the threshold value of π/2 ≈ 1.57. As expected,
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Figure 2.8: Full width Lfw of a breather in one dimension.
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(b) p = 1.7.

Figure 2.9: Widening of breather profile as p → p+
min = π/2.

the breather is much wider for p = 1.7 than for p = π. Using the definition

(2.60), for p = π we find that Lfw = 13.17, while for p = 1.7 we find Lfw = 27.57,

which is therefore more than twice as wide.
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2.4 The limit of small wavenumber: p→ 0

2.4.1 Preliminary results

In this section we show that the FPU lattice can support waveforms more

complex than bright or dark breathers or travelling kinks. These more complex

waveforms arise when we consider small wavenumbers p (we quantify what

we mean by “small” more precisely in Section 2.4.3). Since we consider arbi-

trarily small wavenumbers p, most of this section is concerned with the case of

the quartic lattice, that is, b > 0, a = 0. Recalling the comments following (2.33)

in Section 2.2.4, this is because for the quartic lattice, the existence inequality

(2.31) is satisfied for all p ∈ (0, 2π). Hence, only in the case a = 0 can we jus-

tifiably consider the limit p → 0. However, in Section 2.4.2, we will also note

the behaviour of kinks in the lattice with cubic nonlinearity in the potential en-

ergy, (that is, a > 0, b = 0). This is to demonstrate that behaviour in the lattice

with quartic potential is quite distinct and unusual when compared with that

observed in the lattice with a cubic potential.

Firstly, we show that for the quartic lattice (a = 0, b > 0), the solution (2.35)

reduces to a kink in the limit p → 0. We use the asymptotic analysis of Section

2.2 and the solution for φn(t) in (2.35) to find an exact formula for the kink.

Considering only the leading-order expansion for φn(t), we note that as p → 0,

cos(p/2) → 1, and also from (2.36), Ω → 0 and hence cos(Ωt+ pn) → 1. Overall,

when p� ε� 1, we have

φn(t) = 2εA sech

[
A

√
Q

2P
(εn+ εt)

]
+ O(ε3). (2.62)

Since φn is slowly varying in n, (2.8) can be replaced by qn =
∫ n

φk dk, and so

(2.62) gives

qn(t) = 4

√
2P

Q
arctan

[
exp(εA

√
Q

2P
(n+ t))

]
, (2.63)

which describes a kink travelling leftwards through the chain whose speed to

leading order is unity. Using (2.63) and (2.9), we find that the amplitude of the
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kink is given by

q∞ = 2π

√
2P

Q
=

2π√
6b
. (2.64)

So we see that in the limit p → 0, the bright breather solution given in (2.35)

reduces to qn as given in (2.63) which describes a travelling kink.

We use our numerical simulation to test whether kinks are observed in the

lattice for very small wavenumbers p. We run our simulation for the parameter

values p = 0.01, a = 0.0, b = 2.0, N = 101, A = 1.0 and ε = 0.1. In Figure 2.10,

we show the kink at intervals of 10 seconds as it moves leftwards through the

chain. For instance, by the time t = 30, we see that the kink is close to the left-

hand edge of the chain. From (2.24), for very small wavenumbers we expect
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Figure 2.10: Kink for wavenumber p → 0: a = 0, b = 2 and p = 0.01.

the speed of the kink to be very close to unity. Using the method described in

Section 2.3, we measure the velocity of the kink and find it to be −1.03 units per

second. Hence there is a 3% difference between the theoretical and observed

values of −1 and −1.03 units per second respectively. We also measure the

height of the kink to be 1.8, which is in close agreement (a difference of −0.6%)
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with the calculated value of 1.81 given by (2.64).

The calculation presented in (2.64) gives the amplitude of the kink for the

small wavenumber limit p → 0. Later in Section 2.4.3 we will present details of

the calculation of q∞ for the more general case p = O(ε). Firstly, we summarise

some known properties of kinks in the FPU lattice.

2.4.2 Travelling kinks in the classical continuum limit

In this section, we consider the FPU lattice with either a cubic or a quar-

tic potential. We saw in the previous section that for very small wavenumbers

(p � ε � 1), the breather solution of the quartic FPU lattice reduces to a trav-

elling wave which has the form of a kink. However, kink solutions can be de-

termined directly from the equations of motion (2.7) provided the parameters

a and b are chosen appropriately. The discrete lattice equations are not solvable

exactly, hence they must be approximated in some way before analytic expres-

sions for solutions can be found. This is done by the method of continuum ap-

proximation (in which the discrete index n in (2.7) is replaced by a continuous

variable), which we discussed in Section 1.7.2. Moreover, in Section 1.7.2, we

saw that there are many different ways in which (2.7) can be approximated by

a PDE. Each of these has its own merits and drawbacks. As might be expected,

more accurate approximations to (2.7) result in PDEs which are complicated,

and for which analytic solutions are thus difficult to obtain.

In fact, Wattis [134] applies quasi-continuum techniques to find travelling

kink solutions in a variety of FPU lattice models, to different degrees of accu-

racy. We do not reproduce details of the calculations here. Instead, we sum-

marise those results which are relevant to the current work. We are concerned

with kink solutions in the two special cases of lattices with a symmetric quartic

potential (a = 0, b 6= 0) and an asymmetric cubic potential (a 6= 0, b = 0).
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The lattice with a cubic potential

In the simplest approximation (that is, the standard continuum approxima-

tion, see Section 1.7.2) the lattice (2.7) is governed by the partial differential

equation

φtt = φxx + 1
12
φxxxx + a(φ2)xx. (2.65)

This is the Boussinesq equation, which has a travelling wave solution in the

form of a pulse for φ

φ2s(z) =
3(c2 − 1)

2a
sech2

(
z
√

3(c2 − 1)
)
, (2.66)

where z = x− ct (taking care not to confuse this with the variable Z as defined

in (2.24)), and c is the velocity of the travelling wave. This gives rise to a kink

travelling wave in the variable q which has a kink-amplitude and energy given

by

q(2s)
∞ =

√
3(c2 − 1)

a
, H2s =

√
3(c2 − 1)3/2(9c2 + 1)

10a2
. (2.67)

If, as described in Section 1.7.2, we use the (0, 2) Padé approximation of the

operator Λ(D), (which we shall refer to as the improved approximation), then

we obtain a different PDE approximation of (2.7), namely

φtt = φxx + 1
12
φxxtt + a(φ2)xx. (2.68)

This supports a travelling pulse for φ of the form

φ2i(z) =
3(c2 − 1)

2a
sech2

(
z
√

3(c2 − 1)

c

)
. (2.69)

From this, we find slightly more accurate estimates for the kink-amplitude and

energy, namely

q(2i)
∞ =

c
√

3(c2 − 1)

a
, H2i =

c3
√

3(c2 − 1)3/2

a2
. (2.70)

We note that these have the same behaviour as c → 1 as those generated from

the standard continuum approximation. In particular for both, we observe that
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Figure 2.11: Height and energy of kinks in a chain with cubic potential,

(a = 2, b = 0) (see equations (2.67) and (2.70)).

as c → 1+, q∞ → 0+ and H → 0+. Also both approximations yield similar

behaviour for large values of c. That is, as c→ ∞ we have q∞ → ∞ andH → ∞.

The properties for both the standard and improved continuum approximations

are illustrated in Figure 2.11, which shows plots of the kink-amplitude q∞ in

Figure 2.11 (a) and the energyH in Figure 2.11 (b), against the velocity c. In both

plots, the upper curve corresponds to the improved continuum approximation.

This behaviour is as expected and contrasts with the lattice with a quartic term

and no cubic term in the interaction potential as we shall now see.

The lattice with a quartic potential

In this case the standard continuum approximation of (2.7) gives the modi-

fied Boussinesq equation,

φtt = φxx + 1
12
φxxxx + b(φ3)xx, (2.71)

which in the φ variables gives rise to the pulse solution

φ3s(z) =

√
2(c2 − 1)

b
sech

(
2z
√

3(c2 − 1)
)
. (2.72)
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Following the transformation back to the q variables we again have a travelling

kink with kink-amplitude and energy

q(3s)
∞ =

π√
6b
, H3s =

(5c2 + 1)

3b

√
c2 − 1

3
. (2.73)

Note that H3s has the expected behaviour of H → ∞ as c → ∞ and H → 0+ as

c → 1+. However, q(3s)
∞ does not share these properties as it is independent of

the speed c. Partly this is due to the expression (2.72) being a poor approxima-

tion to the waveform of the travelling pulse solution.

If instead we use the (0, 2) Padé approximation of the operator Λ(D), we

obtain the improved approximation to (2.7)

φtt = φxx + 1
12
φxxtt + b(φ3)xx, (2.74)

which supports a pulse solution of form

φ3i(z) =

√
2(c2 − 1)

b
sech

(
2z
√

3(c2 − 1)

c

)
. (2.75)

From this, we find more accurate expressions for the kink-amplitude and en-

ergy than those in (2.73), namely

q(3i)
∞ =

πc√
6b
, H3i =

2c3

b

√
c2 − 1

3
. (2.76)

In (2.76), we note thatH3i shares similar properties withH3s. However, q(3i)
∞ now

satisfies the condition q
(3i)
∞ → ∞ as c → ∞, but as c → 1+, q(3i)

∞ → π/
√

6b 6= 0.

The amplitude q∞ and energy H of the kink solutions for the quartic potential

is plotted in Figure 2.12. Again, the upper curve corresponds to the improved

continuum approximation.

Thus for quartic systems which are initiated with boundary data of the form

qn → q∞ as n→ ∞
qn → 0 as n→ −∞,

(2.77)

with q∞ > π/
√

6b we expect the large-time evolution of the system to be gov-

erned by a kink of amplitude q∞, which travels at a speed approximately equal
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Figure 2.12: Height and energy of kinks in a chain with quartic potential,

(a = 0, b = 2) (see equations (2.73) and (2.76)).

to q∞
√

6b/π. However, for a system which is initiated with boundary data of

the form (2.77) with q∞ < π/
√

6b, there is no travelling kink of this amplitude

which can be an attractor for the large-time dynamics. This leaves the open

problem of what (if any) coherent structures would be observed at large times

in a system with such initial data. For convenience, we will hereupon define

q
(c)
∞ by q(c)

∞ := π/
√

6b.

2.4.3 Combinations of breathers and kinks in the FPU chain

We return to the moving breather modes for which asymptotic approxi-

mations were calculated in Section 2.2.5. In this section, we are concerned

with small wavenumbers, (p � 1). Recalling our comments at the start of

Section 2.4.1, we therefore confine our attention to the quartic FPU lattice (a = 0,

b > 0) throughout this section.

We show that, in the qn(t) variables, the moving breather mode appears to be

a combination of a kink and a breather, and we analyse the relative importance

of each component. From (2.35), the amplitude of the breather component is

O(ε). We now calculate the size of the kink component q∞, which is given by

the sum in (2.9). We are unable to find an exact expression for q∞ for general
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small p, but we can find q∞ to leading order. We will see that q∞ depends upon

the relative sizes of p and ε. Note from (2.30) that
√
Q/2P =

√
6b, since a = 0.

From the definition of q∞, (2.9), and the solution for φn (2.35), we have

q∞ =
∞∑

n=−∞
φn ∼

∞∑

n=−∞

2εA cos(pn+ Ωt− s)

cosh[εA
√

6b(n− n0 − vt)]
, (2.78)

where n0 and s represent arbitrary shifts in the waveform of the envelope and

the phase of the carrier wave. Replacing the sum by an integral (since the sum-

mand is slowly varying in n due to ε� 1 and p� 1) we obtain

q∞ ∼ 2π√
6b

sech

(
πp

2εA
√

6b

)
cos ((pn0−s) + (pv+Ω)t) . (2.79)

using formula 3.981.3 of [63].

We note that somewhat puzzlingly, the estimate for q∞ (2.79) appears to

time-dependent, though it evolves over an extremely long time-scale, since for

small p and small ε, we have

pv + Ω ∼ 1
12
p
(
p2 + 9bε2A2

)
. (2.80)

by (2.36) and v = − cos(p/2). Thus if, for example, p = O(ε) then q∞ evolves

over a timescale of t = O(ε−3). If we are concerned with the evolution over

timescales up to O(ε−2), then (2.79) can be treated as time-independent.

Clearly from (2.79), the size of q∞ depends upon the relative magnitudes of

p and ε. For instance, if p � ε then the amplitude of the kink is small. Indeed

as p approaches O(1), the amplitude of the kink becomes exponentially small

in ε, and hence in this regime, the amplitude of the breather dominates that of

the kink. However, if p� ε or p ∼ ε, then the amplitude of the kink is O(1).

We also note from (2.79) that (i) the amplitude q∞ is maximised when s =

pn0, that is, when the maximum of the envelope n = n0 coincides with a max-

imum of the carrier wave cos(pn + Ωt − s); (ii) there is a one-parameter family

of breathers with accompanying zero kink-amplitude, that is, for s = pn0 + π/2

the amplitude of the kink component vanishes, leaving a pure breather.

We mention in passing that in the limit p→ 0, (2.79) agrees with the prelim-

inary result (2.64), both giving a kink height of 2π/
√

6b. We show a plot of q∞
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(2.79) against wavenumber p for two different values of ε in Figure 2.13. The

upper curve corresponds to ε = 0.025, and the lower to ε = 0.01. The remaining

parameters in (2.79) are set as n0 = 0, s = 0, A = 1 and b = 2 in both plots. Note

that the curves have the same value in the limit p→ 0, that is, 2π/
√

6b ≈ 1.81.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1
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p

q∞

Figure 2.13: Plot of q∞ given by (2.79) against wavenumber p. The upper and

lower curves correspond to ε = 0.025 and ε = 0.01 respectively.

There is an intermediate regime in which p� 1 and ε� 1 in which kink and

breather have comparable amplitudes. As we reduce p, it is at this magnitude

that coupled breather-kinks (which we term breathing-kinks for convenience)

become apparent. To determine the magnitude of this wavenumber, we first

note that the amplitude of the breather is ε. The amplitude of the kink as given

by (2.79) then satisfies

q∞ ∼ 4π√
6b

exp

( −πp
2εA

√
6b

)
∼ ε, (2.81)

from which we deduce that

p ∼ 2εA
√

6b

π
log

(
4π

ε
√

6b

)
. (2.82)
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Hence for p = O(ε log(1/ε)), the breather and kink components have compara-

ble amplitudes, and we have ε� p� 1.

The most natural range to study further is p = O(ε) which differs only

slightly from (2.82). We calculate the energy H to leading order. Since p ∼ ε,

we write p = κε, where κ = O(1). The total energy, H , is given by (2.2).

To simplify the ensuing calculations, we use θ and ψ to denote pn + Ωt and

εA
√
Q/2P (n + cos(p/2)t) respectively (where ψ is not to be confused with the

quantity introduced in (2.10)). After differentiating qn(t) (2.41) with respect to

t, and substituting for q̇n and φn in (2.2), we have

H ∼
∞∑

n=−∞

1
2
ε2A2sech2ψ

{
4 cos2 θ + Ω2

[
sin θ + cot

(p
2

)
cos θ

]2}
. (2.83)

Since p = κε, it follows that cot(p/2) ∼ 2/εκ and that Ω ∼ 2 sin(p/2) ∼ εκ. Also,

we have that ψ = εA
√

6b(n + t) and θ = εκ(n + t) = κψ/A
√

6b. Thus, retaining

terms to leading order only, we find that (2.83) becomes

H ∼ 4εA√
6b

∫ ∞

−∞
cos2

(
κψ

A
√

6b

)
sech2ψ dψ, (2.84)

where the sum in (2.83) has been replaced by an integral. Applying formula

3.982.1 of [63], we then have an estimate for the energy for wavenumbers p = O(ε)

H ∼ 4εA√
6b

+
2κεπ

3b sinh
(

κ
A
√

6b

) = O(ε). (2.85)

2.4.4 Numerical results

We have run numerical simulations of the system with small wavenumbers

to investigate the behaviour of breathing-kinks. To illustrate their stability we

present the results of a lattice of size N = 400, simulated for a time of T = 2400

time units. The nonlinear interaction potential has a = 0, b = 2 and we set

ε = 0.01, p = 0.075 and A = 1. The results are displayed in Figure 2.14.

A snapshot is shown every other time that the wave passes the centre of

the lattice (since the lattice has size N = 400, and the velocity of the wave is

very close to unity, this occurs every 800 seconds). The wave moves to the
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Figure 2.14: Breathing-kink with q∞ < q
(c)
∞ displayed every 800 time units

from t = 0 to t = 2400.

left, so that every circuit, the lattice site displacements qn(t) register a raise of

q∞ ≈ 0.12 (recall that we are using periodic boundary conditions). Whilst each

individual snapshot of the wave in Figure 2.14 clearly shows both “breather”

and “kink” characteristics of the waveform, from the montage of results, the

wave actually appears to have the form of a travelling wave. This is because

for small p, the phase velocity (ω/p = 1 − p2/24 + O(p4)) and the envelope ve-

locity (v = 1 − p2/8 + O(p4)) are almost identical. Any internal breathing in the

wave occurs on the timescale O(1/p2) which is too long to observe in the sim-

ulations we have carried out. With the parameter values as in Figure 2.14, we

estimate that it would take a simulation of length in excess of t = 100/p2 (that is,

t ≈ 20000) to observe any possible internal oscillation (i.e. proper breathing) of

this mode. The simulation illustrated above, however, confirms that the mode

is extremely long-lived and satisfies boundary conditions which are inacces-

sible to traditional kink travelling wave solutions of FPU lattices with quartic

interaction potentials (see the closing comments of Section 2.4.2). Lastly, we
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mention that the leading-order estimate for q∞ given by (2.79) for the parame-

ter values used in this simulation gives a value of 0.1208, which is very close to

the measured value 0.12.

Whilst the above example shows that breathing-kinks exist with q∞ < q
(c)
∞ ,

that is, in the range of amplitudes where traditional travelling kinks are for-

bidden (see Section 2.4.2), we now examine breathing-kinks in the range q(c)
∞ <

q∞ < 2q
(c)
∞ . In this latter parameter range, both breathing-kinks and traditional

kinks exist. We therefore investigate numerically the stability of breathing-

kinks, since for example, it is possible that the mode could decompose into

a supersonic (c > 1) classical (monotone) kink and a subsonic (c < 1) classical

breather. Figure 2.15 shows the results of such a simulation. For this, we have

set a = 0, b = 2, ε = 0.01, A = 1 and p = 0.025. Of course, since this corresponds

to an even smaller wavenumber than the previous example, the expected time

for breathing to be observed is once again beyond a straightforward numerical

simulation (requiring an integration in excess of t = 105). The wave moves to

the left, and is depicted in Figure 2.15 at times t = 0, 550 and 1250 seconds.

During these intervals, it makes a complete circuit (or thereabouts) of the lat-

tice. The vertical displacement is adjusted by q∞ to allow easy comparison of

the waveform. We therefore see that the mode is a travelling wave of perma-

nent form over this timescale. Again, we remark that the observed value of

q∞ is approximately 1.05, whereas the theoretical value given by (2.79) is 1.058,

which is in close agreement.

In this section we have demonstrated that in the quartic FPU lattice, tradi-

tional kink travelling wave solutions must have an amplitude of q∞ > q
(c)
∞ :=

π/
√

6b (see the right-hand side of Figure 2.16), and travel at supersonic speeds,

(c > 1). We have then shown that for small wavenumbers p, our breather modes

give rise to waves which share features of both travelling kinks and breathers,

and in particular can exist with kink amplitudes in the range 0 < q∞ < 2q
(c)
∞

(see the left-hand side of Figure 2.16). These combined breathing-kinks travel

subsonically, that is, at speeds less than unity.
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Figure 2.15: Breathing-kink with q
(c)
∞ < q∞ < 2q

(c)
∞ displayed approximately

every 600 seconds.
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conditions q∞ > q
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(2.75) exist here

Figure 2.16: Types of waveform which may occur in the quartic FPU chain,
depending upon the size of q∞. Note that q

(c)
∞ := π/

√
6b.
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Thus for lattices with boundary conditions (2.77) in the range 0 < q∞ < q
(c)
∞

we have a waveform which may be observed in the large time limit. Also for

lattices with boundary conditions in the range q(c)
∞ < q∞ < 2q

(c)
∞ there is now

the possibility of two types of kink solution – namely the traditional monotone

travelling wave, and the breathing-kink. This corresponds to the shaded band

in Figure 2.16. Equation (2.79) gives an asymptotic estimate for the relationship

between q∞ and p (when p � 1) which any breathing-kink must satisfy. This

relationship is illustrated in Figure 2.13.

2.5 Discussion

In this chapter, using asymptotic methods, we have reduced the equations of

motion for an FPU lattice with a polynomial potential V to a nonlinear Schrödinger

(NLS) equation. Requiring the NLS equation to have localised soliton solutions

leads to the identification of a region of parameter space in which the FPU lat-

tice can support breathers. This is a region in which the coefficient of the quar-

tic nonlinearity must exceed the square of the cubic coefficient. There is then

a range of wavenumbers for which breather modes exist. The inequality (2.31)

generalises an existence condition for stationary breathers obtained by James

(see Section 2.1.2), to also include moving breathers.

Conversely when localised modes do not exist, dark soliton solutions of the

NLS lead to dark breathers in the FPU lattice, as already noted by other authors

(see Flytzanis et al. [57]). The calculation of the breather shape given by (2.35) is

technically cumbersome since equations from O(ε) up to O(ε4) must be solved

just to obtain the leading order O(ε) solution for the breather.

Numerical simulations in Section 2.3 verified the inequality (2.31), since we

observed bright breather solutions for the appropriate parameter values. We

have also noted that when there are both cubic and quartic anharmonicities

present in the interaction potential, the bright breather solution ceases to exist

as the wavenumber is reduced. This is due to the width of the envelope function
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diverging at some critical wave number given by (2.33). This gives rise to a

maximum velocity for breathers, that is, rather than existing at all speeds from

zero up to the speed of sound, there is an upper limit on the speed, namely

(2.42).

In Section 2.4, by considering small wavenumbers, we found waveforms

supported by the lattice that are more complex than breathers. We have termed

these “breathing-kinks” because although they appear to have the form of trav-

elling waves, a snapshot looks like a combination of a breather and a kink.

We have shown that the symmetric FPU lattice (with only a quartic nonlinear-

ity, no cubic component) supports traditional monotone travelling kinks only

above a critical amplitude q(c)
∞ , whereas breathing-kinks have kink amplitudes

in the range 0 < q∞ < 2q
(c)
∞ . The type of waveform exhibited ultimately is de-

termined by the order of magnitude of q∞, which depends in turn upon the

relative magnitudes of p and ε. We found that in the limit p → 0, the kink

dominates and the breather component has vanishingly small amplitude. For

O(1) wavenumbers, the amplitude of the breather dominates that of the kink.

Numerical simulations presented in Section 2.4 confirmed that breathing-kinks

propagate as travelling waves for long periods of time with unit speed, and el-

ementary analysis with wavenumbers p of the same order as the amplitude of

the breather (ε) suggests that this should not fail before t = O(ε−2).

The asymptotic methods we have used are similar to those used by Flytzanis

et al. [57], Remoissenet [102] and Wattis [136], with the exception that the initial

solution ansatz which we make is different to that previously used. We believe

the treatment given here is simpler than that given by Flytzanis et al. [57] since

we analyse the φ-equation (2.7) rather than the q-equation (2.1). Our analysis

also yields the first correction term as well as the leading order behaviour.

Whilst Flytzanis et al. [57] find approximations to travelling breathers in this

system and the shape of the breathing-kinks, their solution ansatz assumes the

existence of both an oscillatory and a slowly varying component with similar

amplitudes.
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Also, our approach makes no assumption about the existence of moving

breathing-kinks, rather they arise naturally from the analysis. Our ansatz (2.14)

has only an oscillatory term (φn ∼ εeiωt+ipnF + O(ε2) + c.c.). The existence of a

slowly varying component (which has the form of a kink) then arises naturally.

The amplitude of this resultant mode is then determined as part of the problem,

and whilst an amplitude of O(ε) is possible, we find that amplitudes may lie

anywhere from O(1) to exponentially small in ε.

In contrast, the ansatz of Flytzanis et al. [57] postulates the existence of both

kink and breather components (qn ∼ εF10 +εeiωt+ipnF11 +O(ε2)+c.c.), implicitly

assuming that their amplitudes have the same order of magnitude.

We mention that whilst such combined breathing-kink modes have been

observed in numerical simulations before (see Huang et al. [67], Wang [133],

Gaididei et al. [60] and Bickham et al. [17], for example), such a general theory

giving their size, shape and speed has, until now, been lacking. A précis of the

work in this chapter can be found in Butt & Wattis [24].

In this chapter, using the semi-discrete multiple-scale method, we have made

considerable progress on a discrete system for which exact analytic solutions

are not known. However, recalling the discussion in Section 1.7.3, we note that

we have not yet commented on the validity of this method. This is an active area

of research. Most notably for us, a rigorous justification of this method (which is

more precise than estimating errors) has been presented recently by Giannoulis

& Mielke [61]. Their results can be applied directly to our analytic work on

breathers in the FPU chain, though they actually consider a much broader class

of waveforms than this. They show that an ansatz of the form (2.14) is justified

by proving that solutions of the discrete lattice (2.7) which are initially approxi-

mated by the leading-order form of (2.14), where F is a solution of the nonlinear

Schrödinger equation (2.29), remain in this form for times up to t = O(1/ε2). In

other words, if the approximate solution φn(0) ∼ εeipnF (Z, 0) + c.c. (where F

solves the NLS equation (2.29)) is close to the exact breather solution at t = 0,
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then φn(t) ∼ εeiωt+ipnF (Z, T )+c.c. is also close to the exact breather solution for

t ∈ [0, t0/ε
2] for some t0. The notion of “close” in this context is made precise by

specifying a norm in a suitable Banach space. More recently, these results have

been extended to include spring-mass systems with general interaction poten-

tials andmth neighbour interactions wherem is finite (see Giannoulis & Mielke

[62]).



Chapter 3

A two-dimensional square

Fermi-Pasta-Ulam lattice

In the last chapter, we considered discrete breathers in a one-dimensional

chain. The remainder of this thesis is concerned with discrete breathers in

various two-dimensional lattices. Before proceeding further, we review some

known results on breathers in higher-dimensional systems.

3.1 Introduction

In this chapter, we discuss the effects of lattice dimension upon the exis-

tence and properties of discrete breathers. A large body of early analytical and

numerical work seemed to suggest that the dimensionality of a system has no

major effect upon breather existence. For example, Takeno [124] uses lattice

Green’s functions to find approximations to breather solutions in one-, two- and

three-dimensional lattices. Later, Takeno [122] uses a similar method to find the

profile and properties of localised modes in general d-dimensional lattices.

Other authors present numerically-obtained breather solutions in two-dimensional

lattices. For example, Burlakov et al. [22] find stationary breather solutions

in a two-dimensional square lattice with cubic and quartic nonlinearity. Also,

using a numerical procedure derived from the rotating-wave approximation,

72
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Bonart et al. [20] show simulations of localised excitations in one, two- and

three-dimensional scalar lattices (that is, lattices with one degree of freedom at

each site). The stability of these modes is also investigated. However, as with

all such early approximate work, one cannot say that the observed waveforms

genuinely correspond to exact breather solutions in those systems.

A rigorous analysis of the origins and features of localised excitations in lat-

tices is presented in a series of papers by Flach et al. [51, 55]. They argue that the

theory for one-dimensional systems discussed in [51, 55] holds irrespective of

lattice dimension. Therefore Flach et al. [54] conjecture the existence of localised

excitations in lattices of arbitrary dimension. This conjecture was confirmed by

Mackay and Aubry [84], who outlined how their proof of existence using the

anti-continuum method could be extended to establish breather existence in

lattices of any dimension.

While some fundamental properties such as the existence of breathers are es-

sentially unaffected by lattice dimension, other properties do depend strongly

upon this, for instance, the energy properties of breathers. Intuitively, one

might expect the energy of breathers to go to zero with amplitude. However,

this may not be so, depending upon the lattice dimension. In fact, breather en-

ergies have a positive lower bound if the lattice dimension is greater than or

equal to a certain critical value dc. In other words, the energy of any breather

solution must exceed some excitation threshold, as we now explain.

In Section 1.4, we mentioned attempts to link discrete breather solutions of

a nonlinear system to plane wave solutions of the linearised equations of mo-

tion. In particular, we considered the emergence of discrete breathers through a

bifurcation of band-edge plane waves. So far, this has been proved only for cer-

tain one-dimensional lattices (see James [69]), and numerical work supports the

conjecture in others (Sandusky & Page [109]). Assuming this conjecture to be

true, Flach [49] calculates the critical energy Ec at which this bifurcation occurs.

The quantity Ec represents the minimum energy of discrete breathers in the

lattice. One might expect Ec = 0 as occurs in one-dimensional lattices, where
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discrete breathers of arbitrarily small energy can be found (see Section 11, Flach

& Willis [52]). However, in higher dimensions it is possible that Ec > 0. Then

no breathers with energies E in the range 0 < E < Ec exist.

For instance, Flach et al. [56] consider d−dimensional hypercubic lattices of

N sites, and calculate the bifurcation energy Ec ∼ N1−2/d. Clearly, for an infi-

nite lattice, as N → ∞, different limiting values of Ec are obtained depending

on the dimension d of the lattice. Thus for d < 2, the energy of small ampli-

tude breathers tends to zero in the limit of large system size. Hence, breathers

of arbitrarily small energy can be found. However, for d ≥ 2, the energy of

small amplitude breathers is nonzero in the limit of infinite lattice size. In other

words, breather energies do not approach zero even as the amplitude tends to

zero, and hence there exists a positive lower bound on the energy of discrete

breathers. In this case, dc = 2.

Kastner [71] obtains different results by considering an alternative class of

interaction potentials. In calculating Ec, Flach [49] assumes the on-site and

nearest-neighbour interaction potentials to be infinitely differentiable. Kast-

ner [71] obtains estimates for the energy Ec in the degenerate case where the

interaction and on-site potentials are not smooth but only twice continuously

differentiable (that is, C2 but not C3). In this unusual case, it can be shown that

the bifurcation energy Ec ∼ N1−4/d. Hence, in this case, dc = 4, since in the

limit N → ∞, for d < 4, such systems can support breathers of arbitrarily small

energy. However, for d ≥ 4, there exists a positive lower bound on the energy

of discrete breathers.

Both these sets of results obtained by Flach et al. [56] and Kastner [71]

rely upon the conjecture that discrete breathers bifurcate from band-edge plane

waves. The existence of energy threshold phenomena has since been proved

rigorously using variational methods for lattices of the nonlinear Schrödinger

type (see Weinstein [137]).

We also mention an interesting series of papers by Marin, Eilbeck and Rus-

sell who investigate breather mobility in two-dimensional lattices of various
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geometries. Their work is motivated by the observation by Russell [106] of

dark lines or “tracks” along crystal directions in white mica. A highly readable

account of the track forming (or “recording”) process is given by Marin et al.

[90], who also posit that breather modes are responsible for track-creation.

Marin et al. [89] test this hypothesis by numerically simulating the hexago-

nal Potassium planes within mica. Their results suggest that moving breathers

do exist, and that the lattice exhibits a strong directional preference whereby

breathers travel only along lattice directions. Breathers are easily generated in

the lattice by imparting an initial velocity to a few consecutive atoms. After

an initial transient (wherein a small amount of energy is radiated), a robust

breather, slightly elongated in shape, emerges and travels with almost no fur-

ther change in shape. The breather is stable against lateral spreading, with per-

haps one or two atoms oscillating in the direction perpendicular to the line of

travel. Along the breather path, typically no more than three or four consecu-

tive atoms oscillate. The initial velocities can be directed as much as ±15◦ from

a lattice direction, and a moving breather still emerges along the crystal axis.

Larger deflections (around ±30◦) result in two breathers, each moving along

the nearest lattice axes. However, it is not possible to generate breathers which

travel in directions other than these.

Similar results (termed “quasi-one-dimensional” effects, see Russell & Collins

[107]) are obtained by Marin et al. [91] in a later study on two- and three-

dimensional lattices with different geometries.

In this section, we have reviewed some of the rigorous results known for dis-

crete breathers in higher-dimensional lattices. Much of this is concerned with

abstract properties of breathers in such systems, and not with breather profiles

or approximations. While such work has been extensive for one-dimensional

systems (see Kivshar & Malomed [75] for a review), we are not aware of many

recent analytic studies carried out on higher-dimensional breathers (we have

already discussed some of the limitations of early work based on methods such

as the rotating-wave approximation in Section 1.7.1). There are some notable
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exceptions, for instance, Tamga et al. [128] apply analytic methods to find dis-

crete breathers in a two-dimensional sine-Gordon lattice. We will have more to

say on this paper in Section 3.8. Also, we have already mentioned the work of

Ovchinnikov & Flach [95] in Section 1.7, who present a class of two- and three-

dimensional Hamiltonian lattices for which exact solutions can be found. How-

ever, these models are admittedly somewhat artificial.

3.1.1 Overview

In this chapter, using analytic methods, we aim to find a leading-order asymp-

totic form for a restricted class of breather solutions in a two-dimensional Fermi-

Pasta-Ulam lattice. To begin with, we proceed in much the same way as in

Chapter 2, and we apply the semi-discrete multiple-scale method to determine

approximations to small amplitude breathers with a slowly varying envelope.

There are several important differences between the analysis that was car-

ried out for the one-dimensional FPU chain in Chapter 2 and that which is pre-

sented in this chapter. As one would expect, the analysis proves to be con-

siderably more complicated. Recalling the analysis of Chapter 2, we were able

to reduce the governing equations to a one-dimensional nonlinear Schrödinger

equation. Formulae for bright soliton solutions of this equation are known,

giving the form of the breather envelope. Thereafter, a straightforward sub-

stitution back into the breather ansatz enabled us to construct a leading-order

formula for breather solutions in the chain.

Moreover, reduction to the NLS equation could be completed successfully,

even for moving breathers, and for lattices with asymmetric potentials. We

were therefore able to produce a single formula (2.35), giving the form to second-

order of moving breathers in lattices with asymmetric potentials.

For the two-dimensional FPU lattice, this is no longer the case; no such sin-

gle formula can be obtained. In fact, in Section 3.3, we find that we are able to

reduce the lattice equations to a (cubic) two-dimensional NLS equation (that

is, with cubic nonlinear term) only for two special cases; firstly, for lattices
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with symmetric interaction potential, in which case the reduction can be per-

formed for moving breathers. In this case, we find an ellipticity criterion for

the wavenumbers of the carrier wave. Secondly, a cubic NLS equation can be

derived for lattices with asymmetric interaction potential, provided we confine

our attention to stationary breathers only.

For each of these cases, a different two-dimensional NLS equation (and

hence a different leading-order breather form) is generated. As such, the anal-

ysis in this chapter may appear somewhat fragmented. To remedy this, we

have emphasised clearly which formulae and results apply where any confu-

sion might arise.

In addition, we find more serious limitations of a third-order analysis of

the two-dimensional FPU lattice. In Section 3.4, we explain that the cubic NLS

equation exhibits behaviour that is unrealistic within the context of discrete

systems. Hence, the NLS equations obtained in Section 3.3 do not fully describe

the evolution of a breather envelope.

Specifically, the cubic NLS equation over R
2 does not support stable soli-

ton solutions, only unstable Townes solitons. When subjected to small pertur-

bations, these may blow up (the amplitude diverges within a finite time), or

disperse completely. However, it is known that unstable Townes solitons may

be stabilised by including higher-order effects in the model. In Section 3.5 we

extend our asymptotic analysis to incorporate higher-order dispersive and non-

linear terms. We show that the two-dimensional FPU lattice equations reduce

to a generalised nonlinear Schrödinger equation which includes terms known

to stabilise Townes solitons. We carry out extensive numerical simulations

(presented in Section 3.7), demonstrating the stability and long-lived nature of

breathers in the two-dimensional FPU system.

We also obtain asymptotic estimates for the breather energy in Section 3.6,

verifying the expected threshold phenomena described in this section. That is,

the breather energy is always greater than some positive lower bound, and in

particular does not tend to zero in the limit of small amplitude. We find that the
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energy threshold is maximised for stationary breathers, and becomes arbitrarily

small as the boundary of the elliptic domain is approached.

In Section 3.8, we review the progress made in this tentative multiple-scale

approach to finding breathers in two-dimensional systems. Some of the prin-

cipal difficulties that have arisen are discussed, and we outline the ways in

which these may be overcome. An abridged version of the results obtained in

this chapter can be found in Butt & Wattis, [26].

3.2 Derivation of model equations

The two-dimensional square electrical transmission lattice (SETL) comprises

a network of repeating unit sections, each consisting of two identical linear in-

ductors and a nonlinear capacitor. The arrangement is illustrated in Figure 3.1.

We define lattice sites by the locations of capacitors. Fixing an arbitrary node to

be the site (0, 0) and using the basis vectors i = [1, 0]T and j = [0, 1]T , it is clear

what is meant by site (m,n) in the lattice. The area surrounding the (m,n)th ca-

pacitor is illustrated in greater detail in Figure 3.2. The variable Vm,n(t) denotes

the voltage across the (m,n)th capacitor and Qm,n(t) denotes the charge stored

by the (m,n)th capacitor. Also, Im,n(t) denotes the current through the (m,n)th

inductor that lies parallel to the basis vector i, and Jm,n(t) denotes the current

through the (m,n)th inductor that lies parallel to the vector j.

First, we derive the equations governing voltage Vm,n, currents Im,n and Jm,n,

and charge Qm,n in the lattice. Considering the section of the lattice shown in

Figure 3.2 and applying Kirchoff’s law, the difference in shunt voltage between

the sites (m,n) and (m+ 1, n) is given by

Vm+1,n − Vm,n = −LdIm,n
dt

, (3.1)

while the difference in shunt voltage between the sites (m,n) and (m,n + 1) is

given by

Vm,n+1 − Vm,n = −LdJm,n
dt

, (3.2)
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Figure 3.1: The 2D square electrical transmission lattice (SETL).

Vm+1,nVm−1,n

Vm,n

Vm,n+1

Vm,n−1

Im,nIm−1,n

Jm,n

Jm,n−1

Figure 3.2: Enlarged view of the SETL at site (m, n).
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where the inductance L is a constant. Since the total charge is conserved, we

also have

Im−1,n + Jm,n−1 − Im,n − Jm,n =
dQm,n

dt
. (3.3)

We differentiate (3.3) with respect to time, and use (3.1) and (3.2) to substitute

for İm−1,n, J̇m,n−1, İm,n and J̇m,n (it is straightforward to find expressions for

İm−1,n and J̇m,n−1 from (3.1) and (3.2)). Proceeding thus, we find that

L
d2Qm,n

dt2
= (Vm+1,n − 2Vm,n + Vm−1,n) + (Vm,n+1 − 2Vm,n + Vm,n−1), m, n ∈ Z.

(3.4)

For the sake of brevity, we employ notation that shortens the appearance of

many equations such as (3.4). We use δ2
k to denote the centred second-difference

of quantities indexed by k. For higher-dimensional lattices, it is necessary to

introduce several such indices. Equation (3.4) may thus be rewritten

L
d2Qm,n

dt2
= (δ2

m + δ2
n)Vm,n, (3.5)

where we shall sometimes refer to δ2
m and δ2

n as the “horizontal” and “vertical”

second-difference operators respectively. Explicitly, these operators are defined

by

δ2
mAm,n = Am+1,n − 2Am,n + Am−1,n

and δ2
nAm,n = Am,n+1 − 2Am,n + Am,n−1, (3.6)

where Am,n is an arbitrary quantity referenced by two indices.

Equation (3.5) represents a system of equations in two unknown quantities,

Qm,n and Vm,n. To close the system (3.5), we need to express Qm,n as a function

of Vm,n or Vm,n as a function of Qm,n. The first of these is easier to do, though as

we shall see, the latter route leads to a more useful formulation.

The nonlinear capacitance is a function of the voltage, and for small volt-

ages, the capacitance-voltage relationship can be approximated by a polyno-

mial expansion

C(Vm,n) = C0(1 + 2ãVm,n + 3b̃V 2
m,n + 4c̃V 3

m,n + 5d̃V 4
m,n), (3.7)
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where C0, ã, b̃, c̃ and d̃ are constants. Since the capacitance Cm,n is defined by

Cm,n = dQm,n/dVm,n, it follows upon integrating (3.7) that

Qm,n = C0(Vm,n + ãV 2
m,n + b̃V 3

m,n + c̃V 4
m,n + d̃V 5

m,n). (3.8)

Hence (3.5) becomes

(δ2
m + δ2

n)Vm,n = LC0
d2

dt2
(Vm,n + ãV 2

m,n + b̃V 3
m,n + c̃V 4

m,n + d̃V 5
m,n). (3.9)

By choosing a suitable timescale, we may put LC0 = 1 without loss of general-

ity.

Though we have reformulated (3.5) in terms of a single unknown quan-

tity Vm,n in (3.9), it is advantageous to rewrite (3.9) in terms of the charge Qm,n

instead. The reason for this is that (3.9) then takes on a form more familiar

from our work on one-dimensional FPU lattice equations (see equation (2.7) of

Chapter 2). To do this, Vm,n must first be found in terms ofQm,n. The right-hand

side of equation (3.8) is a quintic polynomial in Vm,n which must be inverted to

give Vm,n in terms of Qm,n. Since we are interested only in leading order solu-

tions to (3.9), we approximate the expression for Vm,n by a quintic polynomial

in Qm,n. Hence we assume the following expansion for Vm,n

Vm,n = V (Qm,n) ∼
Qm,n

C0

+
a′Q2

m,n

C2
0

+
b′Q3

m,n

C3
0

+
c′Q4

m,n

C4
0

+
d′Q5

m,n

C5
0

, (3.10)

where a′, b′, c′ and d′ are combinations of ã, b̃, c̃ and d̃ obtained by substituting

the expansion for Vm,n (3.10) into (3.8) and matching coefficients of correspond-

ing powers of Qm,n. Proceeding so, we find that

a′ = −ã,

b′ = −b̃+ 2ã2,

c′ = −c̃− 5ã(ã2 − b̃),

d′ = −d̃+ 6ãc̃− 21ã2b̃+ 3b̃2 + 14ã4. (3.11)

Finally, substituting (3.10) into (3.9) enables the latter to be expressed in terms of

Qm,n alone, giving the following equation governing charge Qm,n in the lattice

d2Qm,n

dt2
= (δ2

m + δ2
n)[Qm,n + aQ2

m,n + bQ3
m,n + cQ4

m,n + dQ5
m,n], (3.12)
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where m,n ∈ Z, and a = a′/C0, b = b′/C2
0 , c = c′/C3

0 and d = d′/C4
0 .

Equation (3.12) is a two-dimensional analogue of the one-dimensional Fermi-

Pasta-Ulam equation (2.7) derived in Chapter 2. It may be verified that the lat-

tice equations (3.12) can be derived from the Hamiltonian H̃ defined by

H̃ =
∑

m,n

1
2
(Pm+1,n − Pm,n)

2 + 1
2
(Pm,n+1 − Pm,n)

2 + Υ(Qm,n), (3.13)

where Υ(Qm,n) satisfies Υ ′(Qm,n) = V (Qm,n) given by (3.10), and Pm,n and Qm,n

are canonically conjugate momenta and displacement variables of the system,

satisfying

dQm,n

dt
= −

(
δ2
m + δ2

n

)
Pm,n,

dPm,n
dt

= −Υ′(Qm,n). (3.14)

The Hamiltonian (3.13) for the two-dimensional system is analogous to the

Hamiltonian (2.10) of the one-dimensional system. However, we have been un-

able to find a Hamiltonian of the two-dimensional system which is analogous

to the one-dimensional form (2.2).

In the one-dimensional case, the first Hamiltonian form (2.2) represents the

total mechanical energy of the chain, and in Section 2.2.2, we showed that it

is numerically the same as the second Hamiltonian form (2.10). Returning to

the two-dimensional system (3.12), it is natural to ask whether the correspond-

ing Hamiltonian H̃ (3.13) represents some physical quantity associated with

the system. In light of the calculations presented in Section 2.2.2, one might

suspect that the Hamiltonian H̃ is related to the total electrical energy of the

system depicted in Figure 3.1. We will pursue this question in greater detail in

Section 3.6.1.

For now, we give an expression for the total electrical energy, which we

denote E. Taking care to avoid double-counting, the electrical energy in one

single unit of the lattice (see Figure 3.2), denoted em,n is

em,n = 1
2
C(Vm,n)V

2
m,n + 1

2
L
(
I2
m,n + J2

m,n

)
. (3.15)

The total electrical energy E in the lattice is therefore

E =
∑

m,n

em,n =
∑

m,n

1
2
C(Vm,n)V

2
m,n + 1

2
L
(
I2
m,n + J2

m,n

)
. (3.16)
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The SETL is a lossless network, and so the total electrical energy E is a con-

served quantity. We obtain leading-order estimates for the energy of breathers

in the lattice in Section 3.6.

3.3 Asymptotic analysis

3.3.1 Preliminaries

We seek breather solutions of the system of equations (3.12). As in the one-

dimensional case, no explicit analytic formulae can be found for breather so-

lutions, and so asymptotic methods are used to determine an approximate an-

alytic form for small-amplitude breathers with slowly varying envelope. We

apply the semi-discrete multiple-scale method, and introduce new variables

defined by

X = εm, Y = εn, τ = εt and T = ε2t. (3.17)

We look for solutions of (3.12) of the form

Qm,n(t) = εeiψF (X,Y, τ, T ) + ε2G0(X,Y, τ, T ) + ε2eiψG1(X,Y, τ, T )

+ε2e2iψG2(X,Y, τ, T ) + ε3H0(X,Y, τ, T ) + ε3eiψH1(X,Y, τ, T )

+ε3e2iψH2(X,Y, τ, T ) + ε3e3iψH3(X,Y, τ, T ) + ε4I0(X,Y, τ, T )

+ε4eiψI1(X,Y, τ, T ) + ε4e2iψI2(X,Y, τ, T ) + ε4e3iψI3(X,Y, τ, T )

+ε4e4iψI4(X,Y, τ, T ) + ε5J0(X,Y, τ, T ) + ε5eiψJ1(X,Y, τ, T )

+ · · · + c.c., (3.18)

where the phase of the carrier wave ψ is given by km + ln + ωt, and k = [k, l]T

and ω are its wavevector and temporal frequency respectively. We substitute

the ansatz (3.18) into the governing equations (3.12) and equate coefficients of

each harmonic frequency at each order of ε. This yields the following equations

O(εeiψ):

ω2F = 4 sin2

(
k

2

)
F + 4 sin2

(
l

2

)
F, (3.19)
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O(ε2eiψ):

ωFτ = sin(k)FX + sin(l)FY , (3.20)

O(ε2e2iψ):

ω2G2 = [sin2 k + sin2 l]G2 + a[sin2 k + sin2 l]F 2, (3.21)

O(ε3eiψ):

2iωFT + Fττ = cos(k)FXX + cos(l)FY Y

− 8a

[
sin2

(
k

2

)
+ sin2

(
l

2

)]
[F (G0 +G0) + FG2]

− 12b

[
sin2

(
k

2

)
+ sin2

(
l

2

)]
|F |2F, (3.22)

O(ε3e3iψ):

9ω2H3 = 4

[
sin2

(
3k

2

)
+ sin2

(
3l

2

)]
(H3 + bF 3), (3.23)

O(ε4e0):

G0ττ = G0XX +G0Y Y + a
(
|F |2

)
XX

+ a
(
|F |2

)
Y Y

. (3.24)

A quick inspection of equations (3.19)–(3.24) reveals that (3.19) is the dispersion

relation for the system (3.12). Since we are interested only in solutions for which

F 6= 0, F can be cancelled from (3.19), giving the dispersion relation for the

system

ω2 = 4 sin2

(
k

2

)
+ 4 sin2

(
l

2

)
. (3.25)

This is discussed in further detail in Section 3.3.2. Equation (3.20) gives the

relationship between the temporal and spatial derivatives of F , and from it we

deduce that F is a travelling wave of the form

F (X,Y, τ, T ) ≡ F (Z,W, T ), (3.26)

where Z = X − uτ , W = Y − vτ . The horizontal and vertical velocities u and v

of the travelling disturbance F are

u = −sin k

w
and v = −sin l

w
. (3.27)

Equation (3.25), together with (3.27), enables the elimination of terms involv-

ing G1 from (3.22) in the same manner as shown in Section 2.2.3 (see equations

(2.19) and (2.26) from therein). Hence these terms have not been shown in (3.22).
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We denote the angle of propagation of the envelope F through the lattice by

Ψ, that is, the angle between the line of travel of F and the vector i = [1, 0]T (not

to be confused with ψ, which denotes the phase of the carrier wave in (3.18)).

The angle Ψ is given by tan−1(v/u) = tan−1(sin l/ sin k), using (3.27). Following

our discussion of the work of Eilbeck et al. in Section 3.1 regarding the per-

mitted directions of travel within two-dimensional lattices, we will investigate

whether any such restrictions arise in either our analytic or numerical work.

For now, we note that the velocities u and v (and hence also Ψ) are functions of

the wavevector k = [k, l]T . At this stage, we have found no restrictions upon

k or l, and hence we can say only that (k, l) ∈ T 2, where T 2 = [0, 2π] × [0, 2π].

However, we shall see in the following that for all cases that we consider, there

are indeed constraints on k and l which affect the velocities u and v.

Returning to (3.22), we expect this equation to reduce to a version of the

nonlinear Schrödinger equation in F (as occurred in the one-dimensional FPU

analysis, see Section 2.2.3). Before this can be done however, clearly the quanti-

ties G0 and G2 must be found in terms of F . The latter is found easily from the

algebraic equation (3.21). However, in general, the partial differential equation

(3.24) cannot be solved for G0, save for two special cases. These two cases are

detailed in Sections 3.3.3 and 3.3.5.

Firstly, we discuss the properties of the dispersion relation (3.25) for the sys-

tem in greater detail.

3.3.2 The dispersion relation for the SETL

In this section, we consider the dispersion relation for the system, given by

(3.25). A contour plot of ω against k and l is shown in Figure 3.3. It is found

that w is periodic in k and l, with period 2π in both directions. The function

w is minimised at the points (0, 0), (2π, 0), (2π, 2π) and (0, 2π), where it as-

sumes the value zero. It is maximised at the point (π, π) (marked at the centre

of Figure 3.3), where it takes the value w = 2
√

2. We will denote the wavevector

[π, π]T by k1. Note from (3.27) that for the wavevector k1, the horizontal and
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vertical velocities u and v are both zero. In other words, k1 corresponds to sta-

tionary modes. Recalling the closing comments of Section 3.3.1, we remark that

in general, the analysis becomes simpler if we consider stationary breathers. In

fact, for some of the following analysis, (see Sections 3.3.5 and 3.5), reduction

to an NLS equation is possible only if we restrict our attention to stationary

breathers. In other words, the significance of the wavevector k1 in Figure 3.3 is

clear; analysis that might otherwise prove to be intractably difficult at a general

point in (k, l)-parameter space can often still be carried for k1.

0 1 2 3 4 5 6
k

0

1

2

3

4

5

6

l• k1

Figure 3.3: Contour plot of ω, showing k1 = [π, π]T .

3.3.3 Lattices with a symmetric potential

By a symmetric interaction potential, we mean one for which Υ ′(−Q) =

−Υ ′(Q), that is, one for which Υ ′(Q) has odd symmetry and Υ(Q) is even.

This corresponds to a = c = 0 in (3.10) and (3.12), and Υ(Q) has only fourth-

order and sixth-order nonlinear terms in addition to the harmonic term. In this

case, it is immediately clear that G0 = G2 = 0, since a vibration controlled by
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a symmetric potential cannot generate any even harmonics (see for example,

Chapter 7.1 of Main [86]).

Inspecting (3.22), it remains to find the temporal derivative Fττ in terms of

FZZ , FZW and FWW before (3.22) can be cast into a standard form. This is done

using (3.26) and (3.27), from which we find that

Fττ = u2FZZ + 2uvFZW + v2FWW . (3.28)

Substituting this into (3.22), we obtain

2iωFT + [u2−cos k]FZZ + [v2−cos l]FWW + 2uvFZW + 3bω2|F |2F = 0. (3.29)

Equation (3.29) is a two-dimensional NLS equation with cubic nonlinearity. The

presence of mixed derivative terms of the form FZW in (3.29) complicates mat-

ters. The equation can be reduced to a standard form by eliminating the mixed

term FZW . This is done by introducing new variables ξ and η defined by

ξ =
Z√

u2 − cos k
and

η =
−uvZ + [u2 − cos k]W√

(u2 − cos k)[cos k cos l − u2 cos l − v2 cos k]
. (3.30)

Applying the above transformation maps (3.29) to a new equation in the vari-

ables ξ, η and T , namely

2iωFT + ∇2F + 3bω2|F |2F = 0, (3.31)

where the Laplacian operator in (3.31) is defined by ∇2F = Fξξ + Fηη. To mo-

tivate the choice of variables ξ and η in (3.30), we mention that in practice, one

considers variables defined by ξ = Z and η = −ÂZ + B̂W , where Â and B̂ are

constants to be determined. Rewriting (3.29) in the variables ξ and η, Â and B̂

are chosen so that terms of the form Fξη are eliminated. A further rescaling may

be necessary to ensure that the coefficients of Fξξ and Fηη are identical.

Equation (3.31) is a canonical two-dimensional cubic NLS equation (3.39),

of which we shall have much more to say in Section 3.4. For now, we remark

that in this special case (namely, a two-dimensional square FPU lattice with
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symmetric potential), we have been able to reduce the equations (3.19)–(3.24)

to a cubic two-dimensional NLS equation in the variable F as required. Since

the differential operator in (3.31) is isotropic, we seek radially symmetric soliton

solutions of the form F = eiλTφ(r) where r2 = ξ2 + η2. Approximations to φ(r)

can be generated using the method outlined in Appendix B. Once a formula for

F is known, it can be substituted into the ansatz (3.18) giving an expression for

the form of a breather in a lattice with symmetric potential. This is presented in

Section 3.6.3.

3.3.4 Determining the domain of ellipticity

The two-dimensional NLS equation admits different types of solution de-

pending on whether the equation is elliptic or hyperbolic. We discuss this fur-

ther in Section 3.4. We shall confine our attention to elliptic NLS equations. By

definition, the equation (3.29) is elliptic when u2v2 < (u2 − cos k)(v2 − cos l). We

aim to determine the region D of (k, l)-parameter space (which is the two-torus

T 2 = [0, 2π]× [0, 2π]) in which this inequality is satisfied. As we now show, it is

possible to determine this region exactly.

Substituting for u, v and ω from (3.25) and (3.27), the criterion for ellipticity

becomes

sin4
(

1
2
k
) [

1 − 2 sin2
(

1
2
l
)]

+ sin4
(

1
2
l
) [

1 − 2 sin2
(

1
2
k
)]
< 0. (3.32)

Since the function on the left-hand side of (3.32) is symmetric in k and l about

π, it is only necessary to consider one-quarter of the two-torus T 2, namely the

subspace [0, π] × [0, π].

Defining θ and σ by θ = sin2(1
2
k) and σ = sin2(1

2
l), then 0 ≤ θ ≤ 1 , 0 ≤ σ ≤ 1,

and the condition for ellipticity (3.32) becomes

θ2(1 − 2σ) + σ2(1 − 2θ) < 0. (3.33)

Substituting θ = ρ cos ζ, σ = ρ sin ζ, into (3.33) leads to the inequality

ρ >
1

2 cos ζ sin ζ(cos ζ + sin ζ)
. (3.34)
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It is straightforward to show that π/8 ≤ ζ ≤ 3π/8, (since 0 ≤ θ ≤ 1, 0 ≤
σ ≤ 1). The inequality (3.34) defines in parametric form the curve in (ρ, ζ)-

space which constitutes the boundary of the region where the equation (3.29) is

elliptic; this boundary is shown in Figure 3.4(a). Reverting back to the variables

θ and σ, the boundary of the region of ellipticity of (3.29) in (θ, σ)-space can be

found; D is the shaded area shown in Figure 3.4(b). Reverting back to k and l

variables, we find the curve in (k, l)-space which corresponds to the one shown

in Figure 3.4(b). This forms the boundary of the domain of ellipticity D in (k, l)-

space, illustrated in Figure 3.4(c) (shaded). Hence, if we are to consider elliptic

NLS equations, then (k, l) cannot be an arbitrary point in T 2, rather, (k, l) must

lie inside the region D. We remark that some of our numerical work involves

points that lie very close to the boundary of D; the effects of this are discussed

in Section 3.7.5.

Permitted directions of travel within the lattice

The velocities u and v and hence the angle of travel Ψ are functions of the

wavevector k = [k, l]T (see equations (3.26) and (3.27), and the comments fol-

lowing). Bearing in mind the numerical work of Eilbeck et al. described in

Section 3.1, we would like to determine whether the constraints upon (k, l)

shown in Figure 3.4 also restrict the range of values that can be assumed by

the angle Ψ. We now show that there are no such restrictions, namely, that Ψ

can take any value in the interval [0, 2π). To simplify matters, we consider a

subspace of D′ of D, where D′ = [π/2, 3π/2] × [π/2, 3π/2], shown in Figure 3.5.

If D′ is partitioned into four quadrants, then it is easily verified that in any one

of the four quadrants, the sign of the velocity u remains the same throughout

(that is, it remains either positive or negative throughout any single quadrant).

The same is true of the velocity v. The signs assumed by u and v in D′ are

summarised in Figure 3.5(b).

From Figure 3.5(b), focusing on the top-right quadrant of D′ for a moment,

it may therefore be deduced that wavevectors here correspond to an angle Ψ
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(a) Boundary of the region of ellipticity in

(ρ, ζ)-space.

ρ = 0.5 ρ = 1 ρ = 1.5

ζ = π/8

ζ = 3π/8

(b) The region of ellipticity shown in

(θ, σ)-space.

θ

σ

0 1
2 1

1
2

1

(c) The domain D in (k, l)-space.

k

l

0 π 2π

π

2π

D

Figure 3.4: The domain D in which the NLS equation (3.29) is elliptic.
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(a) (sgn(sin k), sgn(sin l)).

k
3π
2π

π
2

l
3π
2

π

(+,+) (−,+)

(−,−)(+,−)

D′

(b) (sgn(u), sgn(v)).

k
3π
2π

π
2

l
3π
2

π

(−,−) (+,−)

(+,+)(−,+)

D′

Figure 3.5: Signs of velocities u and v in D′.

which must lie in [0, π/2). In fact, we now show that there is some (k, l) in this

quadrant which corresponds to any angle in [0, π/2).

For instance, suppose we start at the point (k, l) = (7π/6, 7π/6), where sin l =

sin k = −1/2, so that Ψ = π/4. If we now let k → π+, then 1/ sin k → −∞.

Hence, tan Ψ → ∞, and so Ψ → π/2 from below. Alternatively, ψ can also

be arbitrarily small; if instead we let l → π+, then tan Ψ → 0 and therefore

Ψ → 0 from above. In this way, a suitable point (k, l) ∈ D may be chosen which

corresponds to any angle Ψ ∈ [0, π/2). Applying an identical argument in each

of the other quadrants of D′, we conclude that Ψ may assume any value in the

interval [0, 2π).

3.3.5 Lattices with an asymmetric potential

In this section, we consider more general lattices for which the potential

function V may be asymmetric. In this case, the terms a and c in (3.10) and (3.12)

are not necessarily zero. Clearly, in order to reduce (3.22) to an NLS equation in

F alone, it is first necessary to find expressions for G0 and G2 in terms of F . The

term G2 is found easily; it is obtained by solving a simple algebraic equation,

(3.21). However, the partial differential equation for G0 (3.24) is more difficult

to solve.
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Since G0 is a higher-order correction term to the leading order quantity F ,

we assume that it travels at the same velocity as F . Hence, G0(X,Y, τ, T ) ≡
G0(Z,W, T ). Eliminating the term G0ττ and rewriting (3.24) in terms of the vari-

ables Z and W therefore yields

(u2−1)G0ZZ + (v2−1)G0WW + 2uvG0ZW = a(|F |2)ZZ + a(|F |2)WW . (3.35)

Unfortunately, there is no straightforward asymptotic procedure for determin-

ing solutions of this partial differential equation for arbitrary u and v (that is,

for general (k, l) ∈ D). In fact (recalling the comments made in Section 3.3.2), it

is possible to obtain G0 analytically only when u and v are both zero; in other

words, for k = k1 = [π, π]T (illustrated in Figure 3.3), where the breather enve-

lope F is stationary. When u = v = 0, (3.35) reduces to ∇2G0 = −a∇2|F |2 and

hence G0 = −a|F |2, where the operator ∇2 defined by ∇2
(Z,W ) ≡ ∂ZZ + ∂WW is

equivalent to ∇2
(X,Y ) ≡ ∂XX + ∂Y Y . From (3.21), clearly G2 = 0.

Substituting for G0 = −a|F |2 in (3.22) gives

2iωFT + ∇2F + ω2(3b− 4a2)|F |2F = 0, (3.36)

where ω = 2
√

2. Hence, provided we consider only stationary breathers, we

see that it is possible to reduce the lattice equations (3.19)–(3.24) with asymmet-

ric potential to a two-dimensional cubic NLS equation in F (X,Y, T ). As with

(3.31), in Appendix B we seek radially symmetric soliton solutions to (3.36) of

the form F = eiλTφ(r) where r2 = X2 + Y 2. This will enable us to produce an

analytic approximation for the form of stationary breather solutions in lattices

with asymmetric potentials, which we give in Section 3.6.2.

3.4 Blow-up in nonlinear Schrödinger equations:

a brief review

We have seen that it is possible to reduce the lattice equations (3.12) to a

two-dimensional NLS equation (with cubic nonlinearity) in F for the two cases
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considered in Sections 3.3.3 and 3.3.5, where F determines the form of the en-

velope of a breather solution. At this point, one might consider proceeding as

in the one-dimensional case (see Chapter 2), and using a soliton solution for

F to substitute back into the ansatz (3.18). This in turn would give a leading-

order analytic form for the charge Qm,n. Unfortunately, this approach cannot be

used directly for the two-dimensional case, because the two-dimensional cubic

nonlinear Schrödinger equation does not support stable soliton solutions. In

this section, we review some properties of generalised higher-order nonlinear

Schrödinger equations, some of which do support stable soliton solutions.

3.4.1 Structural properties

Firstly, we summarise some of the structural properties of the d-dimensional

nonlinear Schrödinger equation with general power nonlinearity,

iFT +D∇2F +B|F |2σF = 0, (3.37)

where F (x, T ) ∈ C, with x = [x1, . . . , xd]
T ∈ R

d and T ∈ [0,∞). The opera-

tor ∇2 = ∂2
x1

+ · · · + ∂2
xd

. The NLS equation (3.37) is generic. It arises as the

evolution equation for the envelope of a wavepacket propagating in weakly

dispersive nonlinear media. Consequently, the NLS equation (3.37) occurs in

a wide variety of different physical settings, ranging from deep-water gravity

waves (Yuen & Lake [138]), to nonlinear optics (Chiao et al. [32], Anderson et al.

[4]), to plasma physics (Zakharov [140]).

Several important conservation laws are known for solutions of the NLS

equation. These follow from the symmetries (that is, invariance under certain

transformations) of an action integral associated with the NLS equation, upon

applying Noether’s theorem. An in-depth account of the derivation of conser-

vation laws for the NLS equation is given by Rasmussen & Rypdal (Section 2,

[99]) and Sulem & Sulem (Chapter 2, [120]). Two important conserved quanti-

ties of solutions of (3.37) are the Hamiltonian H, and the power N , given by

H =

∫∫ {
D|∇F |2 − B

σ + 1
|F |2σ+2

}
dx and N =

∫∫
|F |2 dx. (3.38)
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There are two cases for (3.37) that one may consider, depending upon the sign

of the productDB. WhenDB > 0, (3.37) is known as the focusing NLS equation.

This case is also known as the anomalous dispersion regime. When DB < 0,

(3.37) is known as the defocusing NLS equation, also referred to as the normal

dispersion regime. It is known that solutions of the defocusing NLS equation

exist for all time (see Fibich [47], Section 2). That is, they are said to exist glob-

ally, for all T ∈ [0,∞). Some useful theorems regarding global existence of

solutions of certain NLS equations are presented by Strauss (Chapter 3, [119]).

However, in this case, it is also known that (3.37) admits no localised solutions

(see Davydova et al. [38]). In particular, the defocusing (DB < 0) NLS equation

does not admit soliton solutions. Since we are interested only in soliton solu-

tions of (3.39), we will concern ourselves primarily with the focusing (DB > 0)

NLS equation.

It is known that solutions of the focusing NLS equation with smooth ini-

tial conditions can become singular in a finite time. That is, the amplitude of

a wavepacket becomes infinite within a time T ∗ > 0, where T ∗ ∈ R. The so-

lution is said to exist locally. This phenomenon is known generally as blow up,

though it is also referred to as self-focusing within the context of optics, or wave

collapse within the context of plasma physics. The blow-up properties of the

focusing NLS equation (3.37) depend critically upon the dimensionality d and

the nonlinear power σ. There are three broad cases that we may consider:

(i) In the subcritical case, (σD < 2), dispersive effects always dominate, and

focusing singularities do not form.

(ii) In the critical case, (σD = 2), solutions can become singular within a finite

time. For this case, there is a very fine balance between nonlinear and

dispersive effects. Consequently, small perturbing terms can have a large

effect upon blow-up, even leading to the prevention of collapse.

(iii) In the supercritical case, (σD > 2), there is a large class of smooth ini-

tial conditions for which singularities form. For this case, nonlinearity
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dominates over dispersion, hence, perturbing terms have little effect upon

blow-up.

For the NLS equations obtained in Sections 3.3.3 and 3.3.5, comparing with

(3.37), we have σ = 1, d = 2, implying that we are in the critical case σD = 2.

Hence, the rest of this section will be concerned only with the critical nonlinear

Schrödinger (CNLS) equation,

iFT +D∇2F +B|F |2F = 0, (3.39)

where F (ξ, η, T ) ∈ C, and the operator ∇2 = ∂ξξ + ∂ηη.

Of central importance is the establishment of conditions under which the

formation of a singularity either occurs or is prevented. Conservation laws

of the NLS equation (such as those given in (3.38)), are vital tools with which

the blow-up properties of the NLS equation (3.37) can be analysed. A well-

known result is that H < 0 is a sufficient condition for blow-up. The proof of

this requires the invariance of H, the “uncertainty principle,” and the variance

identity (we shall return to the last of these shortly). A necessary condition for

blow-up in the CNLS is also known. Namely, the initial power N0 = N (0) must

exceed some critical threshold Nc (N0 > Nc) in order for blow-up to occur. The

threshold Nc is a number that depends only upon the dimension, and typically,

for B = D = 1, Nc ≈ 1.862. Formal proofs for both of these results are given

by, for example, Rasmussen & Rypdal (Sections 4 and 5 of [99]), Sulem & Sulem

(Chapter 5, [120]), and Fibich & Papanicolaou (Section 2, [47]).

3.4.2 Townes solitons

It is well known that in one-dimensional systems, the competing effects of

nonlinearity and dispersion in (3.37) may balance each other, giving rise to

long-lived solitonic structures (see Section 2.2.4). This is not so for the CNLS

equation (3.39), for which there exists a very fine balance between focusing

and dispersive effects. The CNLS supports a one-parameter family of radially

symmetric soliton solutions of the form F (x, T ) = eiλTR(r), where the profile
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R(r) ∈ R satisfies the nonlinear eigenvalue problem

− λR +D∇2R +BR3 = 0, (3.40)

where r = |x| =
√
ξ2 + η2 and λ > 0. The solution with the lowest power

amongst all of these (also known as the ground state solution) is known as the

Townes soliton (see Chiao et al. [32]).

The Townes soliton possesses exactly the critical power required for blow-

up, that is, it has power N = Nc. Also, its Hamiltonian H = 0. Clearly, the

Townes soliton is highly unstable since a tiny perturbation could give H < 0 or

N > Nc, leading to blow-up.

An exact analytic formula for the Townes soliton solution of (3.39) is not

known, and so we apply the Rayleigh-Ritz variational method (see for example,

Chapter 8.3 of Spencer et al. [118]) to generate an approximate formula. Details

of this calculation are given in Appendix B.I. There, we seek approximate solu-

tions to the nonlinear eigenvalue problem (3.40) of the form R(r) = α sech(βr),

where the variational parameters α and β are determined in terms of the pa-

rameters that occur in (3.40), namely, λ, D and B. Using this method, we find

that

α =

√
12λln2

B(4ln2 − 1)
and β =

√
6λln2

D(2ln2 + 1)
, (3.41)

and thus an approximate form for the Townes soliton solution of (3.39) is

F = α exp(iλT )sech(βr)

=

√
12λ log 2

B(4 log 2 − 1)
exp(iλT ) sech

(√
6λ log 2

D(2 log 2 + 1)

√
ξ2 + η2

)
. (3.42)

The approximate formula (3.42) for soliton solutions of the two-dimensional

NLS equation should be compared with the exact expression for bright solitons

of the one-dimensional NLS equation (2.34). In (3.42), the quantity λ represents

the temporal frequency at which the soliton solution of (3.39) oscillates, and α is

the amplitude of the soliton. From (3.41), we see that the two are related; this is

to be expected, since (3.42) is the solution of a nonlinear wave equation. Specifi-

cally, the frequency varies as amplitude squared, or equivalently, α ∼
√
λ. From
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(2.34), we see that the amplitude and temporal frequency of soliton solutions of

the one-dimensional NLS equation are related in the same manner. We will

return to these scalings in our discussion of the breather energy in Section 3.6.

3.4.3 Stable soliton solutions of generalised

nonlinear Schrödinger equations

The CNLS equation (3.39) exhibits behaviour that is impossible in the con-

text of our spatially discrete system: in a discrete system, the focusing of all

the system’s energy at a single point will not lead to blow-up, and the am-

plitude would not diverge. In Section 3.7 we present numerical simulations

which suggest that long-lived breather modes are supported by the scalar two-

dimensional Fermi-Pasta-Ulam lattice. We therefore conclude that the cubic

two-dimensional NLS equation does not completely capture the full dynamics

of the two-dimensional Fermi-Pasta-Ulam lattice.

In physical systems, blow-up cannot proceed indefinitely. That is to say, the

amplitude of a wavepacket cannot grow to infinity. When blow-up arises in an

evolution equation, it indicates a failure of the model of the system under con-

sideration, or equivalently, that the assumptions made in deriving the model

are not valid.

In applications, blow-up is prevented by a variety of mechanisms, for exam-

ple, by dissipation, or damping, or by higher-order effects. We discuss specific

models which incorporate higher-order effects shortly. Useful summaries of

mechanisms for the suppression of collapse are given by Rasmussen & Rypdal

[99], and more recently by Kivshar & Pelinovsky (Section 2, [77]). For lattice

models such as ours, quasi-continuum methods approximate discreteness by

a continuous variable. Discrete differences are then replaced by derivatives,

where depending upon the accuracy of the model, higher-order derivatives

may be retained in the resulting Taylor expansions. As pointed out by Kivshar

& Pelinovsky [77], since higher-order dispersive and nonlinear effects can have

a critical effect upon self-focusing, these must also be included in the model.
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Returning to the two-dimensional FPU lattice, in particular, we are inter-

ested in collapse-arresting, whereby the blowing-up of a localised solution is pre-

vented by some mechanism. However, this in itself is not enough to guarantee

the existence of robust soliton solutions, since it does not preclude the possibil-

ity of decay through dispersion or dissipation. Hence, in addition, it is essential

to check for soliton regularisation or soliton management, which ensures that ro-

bustness follows collapse inhibition (see Bergé, [14]). In fact, it is known that

unstable Townes soliton solutions of the two-dimensional cubic NLS equation

may be stabilised through a variety of mechanisms (Schjødt-Eriksen et al. [112],

Abdullaev et al. [1], and Montesinos et al. [93] present a few such examples).

However, we concern ourselves only with those mechanisms which are rele-

vant and applicable to lattice models.

For example, it is shown by Karpman [70] that an additional higher-order

dispersive term can have a stabilising effect. Specifically, the generalised two-

dimensional NLS equation with higher order dispersion

iFT +D∇2F +B|F |2F + P∇4F = 0, (3.43)

can support stable soliton solutions when PD < 0. Of greatest relevance to us is

a result of Davydova et al. [38], who establish the existence of stable solitons for

a generalised two-dimensional NLS equation which incorporates higher-order

dispersion and an additional quintic nonlinear term, namely

iFT +D∇2F +B|F |2F + P∇4F +K|F |4F = 0. (3.44)

The possibility of stable soliton solutions is investigated in both the anomalous

(BD > 0) and normal (BD < 0) dispersive regimes. It is found that stable

soliton solutions exist in both regimes.

Both the above results are established using a variational method, some-

times referred to as the method of constrained minimisation, first introduced

by Pohožaev [98], though an updated account is given by Kuznetsov et al. [82],

and also by Bergé (Section 2, [15]). In this method, one seeks localised standing

wave solutions of the form eiλTφ(x) (λ > 0) of the NLS equation in question,
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which leads to a nonlinear eigenvalue problem for φ(x) (as in Section 3.4.2). We

define an action integral S(φ) = H(φ) + λN (φ), where H is the Hamiltonian for

the NLS equation. It is easily verified that the corresponding Euler-Lagrange

equation δ{H + λN} = 0 is none other than the nonlinear eigenvalue equation

in φ(x). In other words, soliton solutions of the NLS equation are obtained as

extrema (actually expected to be minima) of the action S, or equivalently, as

extrema of H subject to the constraint that the power N is constant. A common

approach to identify minima of S follows a procedure developed by Derrick

[39]. Application of this procedure also reveals conditions for the existence of

soliton solutions.

Once the existence of soliton solutions has been proved, their stability prop-

erties must then be established. It is shown (see Kuznetsov et al. [82], for in-

stance) that the action integral S(φ) = H(φ)+λN (φ) constitutes an appropriate

Lyapunov function (up to some constant quantity rendering it positive defi-

nite). Soliton stability follows upon applying Lyapunov’s theorem. However,

this approach to soliton stability in NLS systems has its limitations; a more suit-

able approach is that of orbital stability (a thorough account of this is given by

Bergé, Section 2, [15]).

A useful tool for analysing the blow-up properties of localised waves is the

variance identity, also known as the virial theorem. One defines an effective

“beam” radius reff,

r2
eff(T ) =

1

N

∫∫
|x|2|F (x, T )|2 d2x. (3.45)

The virial theorem gives the time evolution of the beam width. By differentiat-

ing r2
eff given by (3.45) with respect to time, we determine whether the radius of

a soliton grows without limit (soliton dispersal) or decreases to zero (blow-up)

as time evolves. In particular, the effect of the individual equation parameters

on soliton stability becomes clear. In fact, by analysing r̈2
eff for (3.44), Davy-

dova et al. [38] show that the term proportional to PK is the dominant term,

and provided PK > 0, this corresponds to a defocusing term. In other words,

if PK > 0, the dominant term provides a “repulsive force” which prevents
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collapse in both regimes. Hence stable soliton solutions can be found in the

parameter regime PK > 0 for both anomalous and normal cases.

As we shall see in Section 3.5, the higher-order NLS equation (3.44) studied

by Davydova et al. is directly relevant to our analysis of the two-dimensional

FPU lattice. Approximations to soliton solutions of (3.44) of the form F =

α exp(iλT )sech(βr) can be generated in the same way that is done for the cubic

CNLS equation (3.39) (see Section 3.4.2 and Appendix B.I). Details of this calcu-

lation are given in Appendix B.II. When P and K are small compared to B and

D in (3.44) (as is the case for the two-dimensional FPU lattice, see Section 3.5),

we expect the inclusion of these terms to have only a small effect on the varia-

tional parameters α and β obtained by the third-order procedure, (3.41). Hence,

when an analytic formula for Townes solitons is required, we will use the third-

order approximation given by (3.42), instead of the fifth-order approximation

given by (B.15) and (B.16).

3.5 Higher-order asymptotic analysis

In the light of comments made in Section 3.4.3, we extend our analysis of

(3.12) to fifth-order and reduce the lattice equations (3.12) to a generalised non-

linear Schrödinger equation which also includes higher-order terms. The prin-

cipal task is to determine whether the new terms are stabilising, and in partic-

ular, whether the generalised NLS equation admits stable soliton solutions for

the breather envelope F .

As we saw in Section 3.3, a third-order analysis of moving breathers in lat-

tices with asymmetric potentials in not analytically solvable. At third-order, we

were able to perform a reduction to a nonlinear Schrödinger equation in two

cases; for moving breathers in lattices with symmetric potentials (see Section 3.3.3)

and for stationary breathers in lattices with asymmetric potentials (see Section 3.3.5).

Unsurprisingly, at fifth-order, the analysis is much more involved, and so

we consider only lattices with symmetric potentials. Hence, as in Section 3.3.3,
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we have a = c = 0 in (3.12). This means that no second or fourth harmonic

terms are generated by the nonlinearity. Hence, we can use a much simpler

ansatz, of the form

Qm,n(t) = εeiψF (X,Y, τ, T ) + ε3e3iψH3(X,Y, τ, T ) + · · · + c.c., (3.46)

where the phase ψ = km + ln + wt. In this case, in addition to the equations

(3.25), (3.26), (3.27), (3.29) and (3.23), we also have the following equation at

fifth-order

O(ε5eiψ):

FTT = 1
12

cos(k)FXXXX + 1
12

cos(l)FY Y Y Y

+ 3b cos(k)[F 2FXX + 2FFFXX + 4FFXFX + 2FF 2
X ]

+ 3b cos(l)[F 2F Y Y + 2FFFY Y + 4FFY F Y + 2FF 2
Y ]

− 3bω2F
2
H3 − 10dω2|F |4F. (3.47)

Unfortunately, this equation proves too difficult to handle in general. However,

the analysis becomes manageable if we consider stationary breathers only. In

other words, the following analysis is carried out for the wavevector k1 = [π, π]T

in D. Since we seek stationary breathers, only one further timescale T = ε2t is

required, and the simplified ansatz (3.46) takes the form

Qm,n(t) = εeiψF (X,Y, T ) + ε3e3iψH3(X,Y, T ) + · · · + c.c., (3.48)

where exp(iψ) = exp(iπm+iπn+iωt) = (−1)m+n exp(iωt). Substituting the ansatz

(3.48) into equations (3.12) yields the following equations.

O(εeiψ):

ω2 = 8 ⇒ ω = 2
√

2, (3.49)

O(ε3eiψ):

2iωFT + FXX + FY Y + 3bω2|F |2F = 0, (3.50)

O(ε3e3iψ):

9ω2H3 = 8H3 + 8bF 3 ⇒ H3 = 1
8
bF 3, (3.51)
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O(ε5eiψ):

FTT = − 1
12
FXXXX − 1

12
FY Y Y Y − 3b∇2(|F |2F )− 3bω2F

2
H3 − 10dω2F 3F

2
, (3.52)

since in (3.47) the terms in square brackets on the right-hand side are simply

(|F |2F )XX and (|F |2F )Y Y .

In order to obtain a higher-order generalised NLS equation, we combine

the higher-order equation (3.52) with the cubic two-dimensional NLS equation

(3.50). If we are to arrive at an NLS equation of a form similar to those discussed

in Section 3.4, the temporal derivative FTT in (3.52) must be eliminated. This is

done by differentiating (3.50) with respect to T , which gives FTT in terms of

spatial derivatives of F . Thus, differentiating (3.50) gives

2iωFTT = −FXXT − FY Y T − 3bω2(|F |2F )T = 0

= −FTXX − FTY Y − 3bω2(2|F |2FT + F 2F T ). (3.53)

Using (3.50) again gives

FTT = − 1
32
∇4F − 3

4
b∇2(|F |2F ) − 54b2|F |4F

− 3
2
b|F |2∇2F − 3

4
bF 2∇2F. (3.54)

Equation (3.54) allows for the term FTT on the left-hand side of (3.52) to be re-

placed, and from (3.51), we haveH3 = bF 3/8. The resulting fifth-order equation

can then be added to the third-order NLS equation (3.50). Overall, we arrive at

the following equation for F

4
√

2 iFT + ∇2F + 24b|F |2F + ε2
[

5
96
∇4F − (51b2 − 80d)|F |4F

]

−1
6
ε2FXXY Y + 9

4
bε2∇2(|F |2F ) − 3

4
bε2(2|F |2∇2F + F 2∇2F ) = 0. (3.55)

In other words, if we seek stationary breather solutions in lattices with symmet-

ric potentials of the form (3.10), then the lattice equations (3.12) reduce to the

generalised two-dimensional NLS equation (3.55) for the breather envelope F .

Clearly, we would like to know whether (3.55) supports stable soliton so-

lutions. We are aware of many papers which determine the (non)stability of
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solitons in perturbed NLS equations (see for example, Section 3.4.3). However,

to the best of our knowledge, equation (3.55) has not been studied in the litera-

ture before. We note the similarity between it and the perturbed NLS equation

(3.44) studied by Davydova et al. [38]. Indeed, the first line of (3.55) is iden-

tical to the two-dimensional NLS equation (3.44), and hence includes known

stabilising terms. However, (3.55) also has several additional terms, including

anisotropic dispersive terms. The (de)stabilising effects of these upon Townes

solitons are as yet unknown to us.

At the time of writing, we have been unable to find a variational formulation

for (3.55), hence Pohožaev’s constrained minimisation technique for determin-

ing soliton existence and stability (see Section 3.4.3) cannot be applied directly.

In fact, given the complexity of (3.55), a more suitable approach might be

to apply the modulation theory for perturbed NLS equations, covered in depth

by Fibich & Papanicolaou [46, 47]. This approach reduces a perturbed NLS

equation to a simpler set of equations from which one can (in principle) deter-

mine the effect of small perturbations upon self-focusing. Fibich & Papanico-

laou [46, 47] consider several classes of common perturbing terms, and show

that depending upon the type of perturbation terms present, one of several dif-

ferent outcomes can result. For instance, blow-up may occur, or on the other

hand, it may be prevented completely. In addition, one might find a solitary

wave solution which undergoes small oscillations in radial width. Analysis of

(3.55) using one of the above methods is the subject of future work. We return

to this matter in Section 3.8.

For now, we rely on Davydova’s criteria for soliton existence (see Section 3.4.3).

Hence, anomalous dispersion in (3.55) corresponds to b > 0 and the condition

PK > 0 becomes 80d > 51b2. Numerical simulations presented in Section 3.7

suggest that long-lived stationary breather solutions are supported by lattices

with symmetric potentials. This implies that the additional terms in (3.55) do

have a stabilising effect upon Townes solitons. At this point, it would be useful

to determine formulae for approximations to soliton solutions of (3.55), as was
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done in Section 3.4.2. This could then be substituted into the breather ansatz

(3.18), giving its leading-order form in this case. However, as noted at the end

of Section 3.4.3, if we seek soliton solutions of the form F = α exp(iλT )sech(βr)

for higher-order NLS equations, then typically, the correction terms have only

an asymptotically small effect on the variational parameters α and β. In fact,

simulations using a fifth-order formula for Townes solitons given by (B.15) and

(B.16) (see Appendix B.II) show no significant improvement upon the results

obtained using the third-order formula (3.42). Hence, in finding leading-order

formulae for stationary breather solutions in lattices with symmetric potentials,

we will use the third-order formula for the envelope, given by (3.42).

For more general cases (that is, moving breathers and asymmetric poten-

tials), the resulting NLS equations feature yet more perturbative terms, and

their stability properties are still harder to establish. As we show in Section 3.7,

numerical work suggests that breathers are long-lived in both these cases, again

implying that the NLS equations corresponding to these cases do support sta-

bilised Townes solitons. This is covered in greater depth in Section 3.7. For

the same reasons as outlined above, we will use the third-order formula (3.42)

for the breather envelope F when finding a leading-order analytic form for

breather solutions in these cases.

3.6 Approximate analytic forms for breather solutions

In this section, we use the third-order formula (3.42) for soliton solutions

of (3.39) to find expressions for breather solutions in all cases where we have

successfully performed a reduction to the NLS equation. Care must be taken

when applying this formula for the breather envelope F , because for both of

the cases that we have considered (Sections 3.3.3 and 3.3.5), the values of B

and D in (3.42) are not the same, and also the form of r2 may also differ (see

Section 3.4.2). In order to prevent any possible confusion, we present formulae

for each case separately, starting with the simplest first (namely, lattices with
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an asymmetric potential). These formulae are then used to find asymptotic

estimates for the breather energy, and also to generate initial data for numerical

simulations (see Section 3.7.2). First, we discuss the calculation of the energy E

of breathers in the two-dimensional SETL, given by (3.16).

3.6.1 Asymptotic estimates for breather energy

The two-dimensional SETL is a lossless network, and so the total electrical

energy is conserved. We derive leading-order estimates for the total electrical

energy, which we denote E(0). Accordingly, we use leading-order expressions

for each of the quantities in (3.16). It follows from (3.7) that C(Vm,n) ∼ C0, and

from (3.10) that Vm,n ∼ Qm,n/C0. Substituting this into (3.16), the first term of

the summand em,n is simply Q2
m,n/(2C0). To leading-order, the energy of the

lattice E(0) is therefore given by

E(0) ∼
∑

m,n

e(0)m,n =
∑

m,n

Q2
m,n

2C0

+
L

2
(I2
m,n + J2

m,n). (3.56)

We use leading-order expressions for the charge Qm,n obtained later in this sec-

tion to substitute for the terms in the summand in (3.56). It remains to find

leading-order expressions for the currents Im,n and Jm,n. These can be obtained

from the expressions for Qm,n by using the relationship between voltage and

current in equations (3.1) and (3.2). Using the fact that Vm,n ∼ Qm,n/C0, and

substituting into equations (3.1) and (3.2), these become

Qm+1,n −Qm,n ∼ −dIm,n
dt

, (3.57)

Qm,n+1 −Qm,n ∼ −dJm,n
dt

, (3.58)

where as explained in Section 3.2, we have put LC0 = 1. The currents Im,n

and Jm,n are obtained by inserting the leading-order expression for Qm,n into

equations (3.57) and (3.58) and then integrating with respect to time.
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Before finding explicit formulae for the breather energy, we return to the

relationship between the Hamiltonian H̃ for the system (3.13), and the leading-

order electrical energyE(0) given by (3.56) (see the closing comments of Section 3.2).

The dominant contribution to the energy stored in the capacitors is Υ(Qm,n) =

Q2
m,n/2. Comparing the resulting expression for H̃ (3.13) with E(0) (3.56), we

see that it necessary to establish a link between the currents Im,n and Jm,n and

the generalised momenta Pm,n. Applying Hamilton’s equations (the second

equation in (3.14)) gives dPm,n/dt = −Qm,n. Also, equation (3.57) relates the

charge Qm,n to the current Im,n. Replacing Qm,n by −dPm,n/dt in (3.57) and then

integrating gives Im,n = Pm+1,n − Pm,n. Using (3.58) in an identical manner

gives Jm,n = Pm,n+1 − Pm,n. Therefore, LI2
m,n = (1/C0)(Pm+1,n − Pm,n)

2 and

LJ2
m,n = (1/C0)(Pm,n+1 − Pm,n)

2, and so E(0) = (1/C0)H̃ .

3.6.2 Lattices with an asymmetric potential

For lattices with an asymmetric potential (see Section 3.3.5), the equations

(3.12) reduce to the NLS equation (3.36). Recalling the discussion in Section 3.4.2,

we seek soliton solutions of the form F = eiλTφ(r), where r2 = X2 + Y 2. Com-

paring (3.36) with (3.39), we see that D =
√

2/8 and B =
√

2(3b − 4a2). Note

that our analysis for asymmetric lattices was carried out only for the point

(k, l) = (π, π) ∈ D, at which ω = 2
√

2, and u = v = 0, that is, for station-

ary breathers. Soliton solutions for F are given by (3.42). Since we also know

that G0 = −a|F |2 and G2 = 0, we can then determine the stationary breather

solution to second-order by substituting for these in the breather ansatz (3.18).

Overall, we have

Qm,n(t) = 2εα cos[πm+ πn+ (ω + ε2λ)t] sech(βr) − 2aε2α2 sech2(βr) + O(ε3),

(3.59)

where α and β are given by (3.41) with the values of B and D above, and

r =
√
X2 + Y 2 = ε

√
m2 + n2. Surprisingly the presence of the quadratic nonlin-

earity (a 6= 0) in (3.59) does not generate any second harmonic term (G2 = 0),

but does cause a small shift of the oscillation to lower Q values.
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Breather energy

We calculate the leading-order energy E(0) of stationary breathers in lattices

with an asymmetric potential. It is convenient to rewrite the leading-order ex-

pression for Qm,n given by (3.59) in the form

Qm,n ∼ 2εα cos Θsech(βr), (3.60)

where Θ = πm + πn + Ωt describes the phase of the carrier wave, Ω = ω + ε2λ

is the breather frequency including the first correction term, λ parametrises the

amplitude of the breather (see Section 3.4.2), α and β are as explained above,

and r =
√
X2 + Y 2 = ε

√
m2 + n2 is a scaled distance from the centre of the

breather. We turn our attention to the currents Im,n and Jm,n.

Substituting the expression for Qm,n (3.60) into the right hand side of (3.57)

and integrating with respect to t gives the current Im,n

Im,n ∼ −4εα

ω
sin Θsech(βr), (3.61)

where we have taken the constant of integration to be zero, and Ω ∼ ω to lead-

ing order. Similarly, substituting for Qm,n given by (3.60) in (3.58) and integrat-

ing gives the following expression for the current Jm,n

Jm,n ∼ −4εα

ω
sin Θsech(βr). (3.62)

Substituting the expressions for Qm,n, Im,n and Jm,n given by (3.60), (3.61) and

(3.62) respectively into (3.56) gives an expression for the total energy E(0)

E(0) ∼
∑

m,n

2ε2α2

C0

cos2 Θsech2(βr) +
16Lε2α2

ω2
sin2 Θsech2(βr). (3.63)

Using the fact that (k, l) = (π, π), ω2 = 8 and LC0 = 1 (or equivalently, L =

1/C0), the sum in (3.63) simplifies considerably, becoming

E(0) ∼
∑

m,n

2ε2α2

C0

sech2(βr). (3.64)

Since the variables X = εm and Y = εn vary slowly with m,n, so does r =

ε
√
m2 + n2 and we can justifiably replace the sum in (3.64) by an integral. Hence,
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we find that the energy E(0) is given by

E(0) ∼ 2α2

C0

∫∫
sech2(β

√
X2 + Y 2) dXdY,

=
4π log 2

C0

α2

β2
=

8πD log 2(2 log 2 + 1)

BC0(4 log 2 − 1)
, (3.65)

after substituting for α and β from (3.41). Substituting further for B =
√

2(3b−
4a2) and D =

√
2/8, (3.65) becomes

E(0) ∼ π log 2(2 log 2 + 1)

C0(4 log 2 − 1)(3b− 4a2)
, (3.66)

which can be approximated by E(0) ≈ 2.935/(3b − 4a2)C0.

Note that this leading-order expression is independent of breather ampli-

tude (parametrised by λ), illustrating the threshold energy property for breathers

in two-dimensional systems. That is, no matter how small the amplitude of a

breather (2εα), the energy required to create it is an O(1) quantity, confirming

the observations of Flach et al. [56] discussed in Section 3.1.

3.6.3 Lattices with a symmetric potential

For lattices with a symmetric potential, the equations (3.12) reduce to the

NLS equation (3.31), and we seek soliton solutions of the form F = eiλTφ(r),

where r2 = ξ2 + η2. Comparing (3.31) with (3.39), we see that D = 1/2ω(k, l)

and B = 3bω(k, l)/2, where ω(k, l) is given by (3.25), and (k, l) ∈ D. In this case,

u and v may be nonzero, corresponding to moving breathers. Soliton solutions

for F given by (3.42) are substituted into the breather ansatz (3.18), giving at

leading-order

Qm,n(t) = 2εα cos[km+ ln+ (ω + ε2λ)t] sech(βr) + O(ε3), (3.67)

where α and β are given in (3.41) with the above values for B and D. Also, in

terms of the original variables Z and W , from (3.30) we have

r2 = ξ2 + η2 =
[v2 − cos l]Z2 + [u2 − cos k]W 2 − 2uvZW

cos k cos l − u2 cos l − v2 cos k
, (3.68)

where Z = ε(m − ut), W = ε(n − vt), and u, v and ω are given by (3.27) and

(3.25) respectively.
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Breather energy

We calculate the leading-order energy E(0) of moving breathers in lattices

with a symmetric potential, whose form is given by (3.67). We rewrite this as

Qm,n ∼ 2εα cos Φsech(βr), (3.69)

where this time Φ = km+ln+Ωt is the phase of the carrier wave, (k, l) ∈ D, Ω =

ω + ε2λ is the breather frequency, and α, β and r are as described immediately

above. Note that Φ = km + ln + Ωt is distinct from Θ = πm + πn + Ωt and

ψ = km+ lm+ ωt, which appear in (3.60) and (3.18) respectively.

Again, the first term of the summand in (3.56) is simply Q2
m,n/(2C0), and

the current Im,n is determined by (3.57). The expression for Qm,n (3.69) is sub-

stituted into (3.57). However, considering the expression for r given by (3.68),

this time the left-hand side of (3.57) cannot be directly integrated with respect

to time. To overcome this, we note that in (3.69), the variable r varies slowly in

time compared to the phase of the oscillatory component Φ = km + ln + Ωt.

Integration by parts of (3.57) using (3.69) (and
∫
f ′(t)g(εt)dt = [f(t)g(εt)] −

ε
∫
f(t)g′(εt)dt) then implies that to leading order we have

Im,n ∼ −2εα

ω
sech(βr)[(cos k − 1) sin Φ + sin k cos Φ]. (3.70)

Similarly, using (3.58), the current Jm,n is given by

Jm,n ∼ −2εα

ω
sech(βr)[(cos l − 1) sin Φ + sin l cos Φ]. (3.71)

Substituting the expressions for Qm,n, Im,n and Jm,n given by (3.69), (3.70) and

(3.71) respectively into (3.56) gives the total energy E(0)

E(0) ∼
∑

m,n

2ε2α2

C0

cos2 Φsech2(βr)

+
2Lε2α2

ω2
sech2(βr)

[
{(cos k − 1) sin Φ + sin k cos Φ}2

+ {(cos l − 1) sin Φ + sin l cos Φ}2] . (3.72)

Unfortunately, the summand on the right-hand side of (3.72) does not simplify

greatly, and therefore subsequent sums (and integrals) become too difficult to
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evaluate exactly. We overcome this by approximating the expression in square

brackets. Specifically, using the fact that r varies slowly with m and n, we take

the average value of cos2 Φ and sin2 Φ, which is 1
2
, whilst the average value of

sin Φ cos Φ is zero. The expression within square brackets simplifies to ω2/2,

hence overall, (3.72) becomes

E(0) ∼
∑

m,n

ε2α2

C0

sech2(βr) +
ε2α2

C0

sech2(βr)

=
∑

m,n

2ε2α2

C0

sech2(βr). (3.73)

This expression has the same form as that obtained for the energy of a breather

in a lattice with asymmetric potential (see equation (3.64) of Section 3.6.2). The

first line in (3.73) shows the individual contributions to the summand made by

the capacitors and inductors of a lattice unit; on average, these amounts are both

equal. This is to be expected; it is the electrical analogue of the equipartition

of energy between kinetic and potential energy in a mechanical system (for

instance, as exhibited by a simple harmonic oscillator).

We replace the double sum in (3.73) by a double integral over all space.

For this case, the definition of r is given by (3.68), and so the expression for

E(0) is more complex than that obtained in (3.65) for asymmetric potentials. In

particular, the envelope of the breather is not in general radially symmetric.

The resulting integral is easier to evaluate in ξ and η variables. Hence, after

evaluating the Jacobian associated with the transformation from (m,n) to (ξ, η)

variables, we have

E(0) ∼ 2α2

C0

√
cos k cos l − u2 cos l − v2 cos k

∫∫
sech2(β

√
ξ2 + η2) dξdη. (3.74)

The integral on the right-hand side can be evaluated, giving (after substituting

for u = − sin k/ω and v = − sin l/ω inside the radical)

E(0) ∼ 4πα2 log 2

β2C0ω

√
ω2 cos k cos l − cos k sin2 l − cos l sin2 k. (3.75)

After substituting for α and β in terms of B and D (which are 1/2ω(k, l) and

3bω(k, l)/2 respectively), the expression for E(0) in (3.75) becomes

E(0) ∼ 8π(1 + 2 log 2) log 2

3 bC0 ω3(4 log 2 − 1)

√
ω2 cos k cos l − cos k sin2 l − cos l sin2 k . (3.76)
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The expression for the breather energy (3.76) is independent of the breather am-

plitude since from (3.41), the ratio α/β is independent of the envelope parame-

ter λ. Hence, as with asymmetric potentials, the energy of moving breathers in

lattices with symmetric potentials does not tend to zero as the breather ampli-

tude becomes very small. This demonstrates that there is a minimum threshold

energy required to create moving breathers. Although this threshold does not

depend on the amplitude, it does depend upon the wavenumbers k and l.

A plot of the expression (3.76) in Figure 3.6 (for b = 1) shows that it is strictly

positive in the region of ellipticity D (see Figure 3.4). It has a maximum at

(k, l) = (π, π), (which corresponds to stationary breathers), and decays to zero

at the edge of the domain of ellipticity D. Thus the energy threshold for moving

breathers is lower than that for stationary breathers. The threshold becomes

small as the boundary of the domain of ellipticity is approached.

As a check, we mention that if we put k = l = π in (3.76), the resulting

expression for E(0) reduces to the expression obtained in (3.66) if we put a = 0

in the latter, as expected.
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Figure 3.6: Plot of E(0) for lattices with a symmetric potential.
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3.7 Numerical results

3.7.1 Preliminaries

In this section, the equations governing charge Qm,n in the lattice, (3.12),

are solved numerically. Equations (3.12) comprise an infinite set of coupled

second-order nonlinear ordinary differential equations. In order to solve these

numerically, we consider these equations defined on a finite square lattice of

N × N sites. To allow for computation within reasonable times, typically we

consider lattices for which N ≤ 50. Firstly, the system of N2 second-order

ordinary differential equations (3.12) is converted to an equivalent system of

2N2 first-order equations. This is done by introducing the variable Rm,n, where

Rm,n = dQm,n/dt. Equations (3.12) are thus equivalent to

dQm,n

dt
= Rm,n, and

dRm,n

dt
= (δ2

m + δ2
n)[Qm,n + aQ2

m,n + bQ3
m,n + cQ4

m,n + dQ5
m,n],

m, n = 1, 2, . . . , N, (3.77)

where the second-difference operators δ2
m and δ2

n are defined in (3.6). The nu-

merical algorithm used to solve the first-order system (3.77) is based on a fourth-

order Runge-Kutta scheme, implemented by MATLAB (see for example, Red-

fern & Campbell, [101]).

We present the results of numerical simulations carried out for a broad range

of parameter values. In particular, we show the results of simulations of sta-

tionary and moving breathers in lattices with symmetric and asymmetric po-

tentials. We also show a simulated collision between two breathers.

Since from (3.27) the breather velocity v = [u, v]T depends entirely upon

the wavevector k, it follows that we obtain moving breathers by choosing the

wavevector [k, l]T such that (k, l) ∈ D (depicted in Figure 3.4(c)) and (k, l) 6=
(π, π) (see Section 3.3.2).
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We summarise this in Figure 3.7 by showing the points in D for which we

solve the lattice equations (3.77) numerically. These points correspond to the

wavevectors k1 = [π, π]T , ka = [π/2, π]T , kb = [3π/4, 3π/4]T and kc = [3π/4, 2.881]T .

In Sections 3.7.4–3.7.7, we present numerical simulations of stationary and

moving breathers in lattices with symmetric potentials, that is a = c = 0. Sys-

tems with asymmetric potentials (a, c 6= 0) are covered in Section 3.7.8.
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Figure 3.7: Wavevectors in D for which breathers are simulated.

3.7.2 Initial data and boundary conditions

We generate initial data by using the analytic expressions for breather solu-

tions given in Section 3.6. The relevant function is found in terms of the original

discrete variables m and n and then shifted by approximately N/2 units in both

horizontal and vertical directions, so that it is centred on the N ×N lattice.

We impose periodic boundary conditions in both the horizontal and vertical

directions in the lattice. The planar two-dimensional arrangement in Figure 3.1

thus becomes in effect a two-torus. These boundary conditions allow for long-

time simulations of moving breathers, by ensuring that disturbances moving
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horizontally to the right (left) through the lattice disappear from the far right-

(left-) hand edge and reemerge from the left- (right-) hand edge. A similar effect

is observed for disturbances travelling in the vertical direction.

Selecting the site (1,1) to lie at the bottom left-hand corner of the square

arrangement in Figure 3.8, the remaining lattice sites are labelled with a coordi-

nate pair (m,n) denoting their relative horizontal and vertical positions. That

is, site (m,n) denotes the site which lies in themth column across and in the nth

row up from site (1,1).

From (3.77), we see that the charge Qm,n stored on each capacitor depends

on the charge stored on the capacitors located at the four nearest neighbour-

ing sites; namely, the capacitors located at either side and also above and be-

low. This is depicted in Figure 3.8 (looking at the lattice from above), where the

solid circles represent capacitors located at lattice sites, and the lines represent

inductors that connect capacitors. Whilst it is clear that equations (3.77) are de-

fined at interior lattice sites, sites along the boundary are missing at least one

neighbour (two neighbours are missing for each of the corner sites). To impose

periodic boundary conditions, we introduce fictitious points (represented by

hollow circles) adjacent to the lattice boundaries as follows, where 1 ≤ m ≤ N

and 1 ≤ n ≤ N (this is summarised in Figure 3.8);

QN+1,n = Q1,n, Qm,N+1 = Qm,1, Q0,n = QN,n, Qm,0 = Qm,N ,

RN+1,n = R1,n, Rm,N+1 = Rm,1, R0,n = RN,n, Rm,0 = Rm,N . (3.78)

3.7.3 Numerical computation of breather energy

The SETL is a lossless network, and therefore we expect the total electrical

energy to be conserved. To check the accuracy of our numerical solutions, we

compute the leading-order energy E(0), given by (3.56). We express the sum-

mand e
(0)
m,n in (3.56) in terms of the output variables of the numerical solver,

which are Qm,n and Rm,n. Clearly, this is trivial for the first term of e(0)m,n. It re-

mains to find the currents Im,n and Jm,n in terms of Qm,n and Rm,n. The details
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Figure 3.8: Periodic boundary conditions for the two-dimensional SETL.

are slightly different depending upon whether the lattice interaction potential

is symmetric or asymmetric.

Lattices with an asymmetric potential

Firstly, we find the current Im,n in terms ofQm,n andRm,n. Using the leading-

order expression for a stationary breather in (3.60), differentiating with respect

to time t gives

Q̇m,n = Rm,n = −2εαω sin Θ sech(βr). (3.79)

Comparing (3.79) with the expression for the current Im,n (3.61), we see that the

current Im,n is simply

Im,n =
2

ω2
Rm,n. (3.80)

Similarly, comparing the expression for the current Jm,n (3.62) with (3.79) gives

Jm,n =
2

ω2
Rm,n. (3.81)
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Substituting the expressions for Im,n and Jm,n given by (3.80) and (3.81) respec-

tively into the sum E(0) (3.56) gives

E(0) =
∑

m,n

1

16C0

[R2
m,n + ω2Q2

m,n], (3.82)

which expresses E(0) as a combination of Qm,n and Rm,n as required. The quan-

tity on the right-hand side of (3.82) is summed over the entire lattice for simu-

lations of lattices with asymmetric potentials. We check whether this quantity

is conserved, and also whether it matches with the asymptotic estimate given

by (3.66) in Section 3.6.2.

Lattices with a symmetric potential

Once again, the first term in the summand (3.56) is trivially found in terms

of Qm,n. To substitute for the currents Im,n and Jm,n, we differentiate (3.69).

Retaining leading-order terms only, we have that

Q̇m,n = Rm,n = −2εαω sin Φ sech(βr). (3.83)

Using (3.69) and (3.83), the currents Im,n and Jm,n given by (3.70) and (3.71)

respectively can be expressed in terms of Qm,n and Rm,n as follows

Im,n =
cos k − 1

ω2
Rm,n −

sin k

ω
Qm,n,

Jm,n =
cos l − 1

ω2
Rm,n −

sin l

ω
Qm,n. (3.84)

The expressions for Im,n and Jm,n given by (3.84) are then substituted into the

sum (3.56) to give an overall expression for E(0) in terms of Qm,n and Rm,n as

follows

E(0) =
∑

m,n

Q2
m,n

2C0

+

+
1

2C0ω4

[
(cos k − 1)2R2

m,n − 2ω sin k(cos k − 1)Qm,nRm,n + ω2 sin2(k)Q2
m,n

]

+
1

2C0ω4

[
(cos l − 1)2R2

m,n − 2ω sin l(cos l − 1)Qm,nRm,n + ω2 sin2(l)Q2
m,n

]

(3.85)
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It may be verified that when k = l = π, the expression (3.85) reduces to that

obtained for asymmetric potentials in (3.82) when we put a = 0 in the latter. We

sum the right-hand side of (3.85) for simulations of lattices with asymmetric

potentials.

Effective breather width

Although we may compute the expressions for E(0) in (3.82) and (3.85) to

check that the total energy in the lattice is conserved, this in itself does not

tell us much about the preservation (or distortion) of the breather form. To do

this, we define breather widths in the m and n directions, the sum of which we

denote Wbr, given by

W2
br =

r20
E(0)

+
r02
E(0)

−
(
r10
E(0)

)2

−
(
r01
E(0)

)2

, (3.86)

where r10, r01, r20 and r02 are defined by

r10 =
∑

m,nmem,n r20 =
∑

m,nm
2em,n

r01 =
∑

m,n nem,n r02 =
∑

m,n n
2em,n

We will use this measure to quantify the distortion suffered by the breather if

it becomes clear that its profile undergoes appreciable degradation over time.

In addition to these tools, we will also observe and record other physical prop-

erties (for example, the breather velocity) of the breather to check whether they

match with the theoretical values predicted by the analysis of Section 3.3.
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3.7.4 Stationary breather in a lattice with symmetric potential

Firstly, we seek stationary breathers in the anomalous dispersion regime.

From (3.55) in Section 3.5, this corresponds to b > 0. We also impose k =

l = π so that the velocities u and v are both zero, corresponding to k = k1

in Figure 3.7. Following the discussion in Section 3.5, stable solitons are ex-

pected when PK > 0; since P = 5ε2/96, this inequality corresponds to K > 0,

or 51b2 < 80d. As an example, we set b = d = 1. The remaining parameters are

the lattice size N = 31, ε = 0.2 and λ = 1.

The variational parameters (3.41) are calculated as α = 1.0517 and β =

3.1399. The breather frequency is ω + λε2 = 2.868, and hence the period of

oscillation is T = 2.190. Figure 3.9 (a) shows the initial profile of the breather,

located at the lattice centre (as is the case for all our simulations). At time t = 0,

we calculate that the breather energy E(0) = 0.9772. Also, we find that the

breather width Wbr = 2.22.

We also show the breather after it has completed thirty complete oscilla-

tions in Figure 3.9 (c). We observe from this that the breather is a long-lived

mode, which remains highly localised with almost no spreading in any direc-

tion, even after long times. We find that at t = 30T , Wbr = 2.03, implying

that the breather undergoes a slight narrowing over thirty complete cycles,

with ∆Wbr/Wbr = −0.086. Also, we find that E(0) = 0.9905, which shows

that the computed energy remains almost constant as expected; in particular,

∆E(0)/E(0) = 0.014. The asymptotic estimate of the breather energy E(0) given

by (3.76) is 0.9772, which shows good agreement with the numerically obtained

value. The plots of the cell energy em,n shown in Figures 3.9 (b) and 3.9 (d) con-

firm that the breather preserves its form with negligible spreading after thirty

oscillations.
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(a) Profile at t = 0.
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(b) Plot of em,n, E(0) = 0.9772.
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(c) Profile at 30T = 65.7.
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(d) Plot of em,n, E(0) = 0.9905.

Figure 3.9: Stationary breather in a lattice with symmetric potential.
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3.7.5 Breather moving along a lattice direction (Ψ = 0◦)

We now present a simulation of a breather which travels along the lattice

direction parallel to the m−axis (or equivalently, the basis vector i). We choose

wavevector k = ka = [π/2, π]T , shown in Figure 3.7. For this choice of k and l

we find that u = −1/
√

6 ≈ −0.40823 and v = 0; hence the calculated angle of

travel is Ψ = 0◦. Also, we calculate the breather frequency ω =
√

6 and period

T =
√

2/3π ≈ 2.565.

The remaining parameters are chosen as follows; b = d = 1, N = 31, ε = 0.1

and λ = 1. It turns out that the variational parameters α and β are 1.1301 and

2.9220 respectively. The initial profile of the breather (at the centre of the lattice)

is shown in Figure 3.10 (a), where the orientation of the carrier wave can be seen

clearly. Clearly, the breather envelope is not radially symmetric, rather, it is

sharply elongated in the n-direction. This is because, in (k, l)-parameter space,

the wavevector ka to which this simulated breather corresponds lies extremely

close to the boundary of the region of ellipticity D, shown in Figure 3.7. In

the expression for r2 given by (3.68), substituting k = π/2 and l = π gives

r2 = 6Z2 + W 2. From this, it is clear that the level curves of a travelling wave

function of r2 are elongated in the direction of the n-axis.

Figure 3.10 shows the breather at various stages as it travels through the lat-

tice. Clearly, this is a long-lived mode, not suffering major degradation even

after sixty seconds or more. The breather also leaves behind very little radia-

tion during its near complete circuit of the lattice. The computed values of the

energy E(0) (given in the captions of Figure 3.10) barely fluctuate throughout

the simulation. The asymptotic estimate of E(0) given by (3.76) is 0.5319, which

is very close to the numerical values.

Figure 3.10 (b) shows the breather as it approaches the left hand edge of the

lattice. It is not possible to read the exact position of the breather from a plot of

Qm,n(t) with great precision, since the breather is spread over a number of lat-

tice sites. Nevertheless, one may observe that by t = 9T = 23.086, the breather

has traversed approximately 9 sites. The theoretical value for the velocity is
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calculated as −0.40823 units per second, by which time the breather should

have travelled 9.4 units, which is in good agreement with the measured value.

Figure 3.10 (c) shows the breather disappearing from the left hand edge and

reappearing from the right, which is a consequence of the periodic boundary

conditions in place. After approximately sixty seconds, the breather has com-

pleted nearly a full circuit, remaining localised with very little spreading, leav-

ing only a little radiation in its wake (see Figure 3.10 (d)). However, we observe

from Figure 3.10 (d) that the amplitude of the breather appears to have dimin-

ished very slightly. In fact, the breather width at t = 0 is found to be Wbr = 3.63,

whereas at t = 24.83T , we find that Wbr = 4.71. Clearly, the breather has spread

slightly, which is consistent with the observed emission of radiation as it propa-

gates. It is not clear from these simulations whether the shedding of radiation is

due to a short-term transient effect as the approximate initial conditions adjust

to the true shape of a travelling breather, or whether the breather will continue

to lose energy as it moves through the lattice.

From the plot of the breather profile in Figure 3.10 (d), we record that the

breather has travelled a total of 24 units parallel to the basis vector i, and so

the measured velocity is -0.38 units per second, which is slightly lower than the

expected value. Again, this is to be expected, given the comments immediately

above.
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(a) Profile at t = 0, E(0) = 0.5358.
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(b) Profile at 9T , E(0)=0.5357.
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(c) Profile at t = 17.41T , E(0) = 0.5360.
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(d) Profile at t = 24.83T , E(0) = 0.5359.

Figure 3.10: Breather moving along a lattice direction, Ψ = 0◦.

3.7.6 Breather moving at Ψ = 45◦

We now show that is it possible to simulate breathers moving in directions

other than Ψ = 0◦ (as in Section 3.7.5). Recall from (3.27) that the angle of propa-

gation of the envelope Ψ is given by tan−1(sin(l)/ sin(k)). We investigate the di-

rection Ψ = 45◦, and so we set k = l. Noting the extremely elongated breathers

of Section 3.7.5, we choose a point in (k, l)-parameter space that is not too near

the boundary of ellipticity. Hence, we select k= l=3π/4, which corresponds to

the wavevector kb in Figure 3.7. The horizontal and vertical velocities are there-

fore both −0.2706 units per second. Also, the breather frequency is ω = 2.6131

and hence the period of oscillation is T = 2.3953. The remaining parameters are
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b = d = 1, N = 31, ε = 0.1 and λ = 1. We find that the variational parameters

are α = 1.0941 and β = 3.0180.

Although it is not easy to track the position of a moving breather accurately

from a plot of the breather profile Qm,n, a much greater level of accuracy can be

attained if we plot the cell energy em,n. Since breathers are spatially localised

waveforms, it follows that their energy is also localised. Typically, a plot of the

cell energy yields a single smooth peak, the centre of which gives the breather

position. In practise, even greater accuracy can be achieved through the use of

a plot of e3m,n since this is more sharply peaked than em,n.

The breather starts at the centre of the lattice (not shown), and is shown at

later times t = 20, 40, 60 and 80 seconds in Figure 3.11. Overall, it can be seen

that the breather remains a localised coherent structure even after 80 seconds,

without any obvious degradation as it completes a whole loop. The energy is

also given at each of these times. This remains virtually constant throughout

the motion. The numerically computed value is also very close to the estimate

(3.76) obtained through the asymptotic analysis, which is E(0) = 0.8894.

To measure the velocity of the breather, we record the horizontal and vertical

displacements travelled by the breather at intervals of 20 seconds, and record

these in Table 3.1. The calculated average horizontal and vertical velocities are

also recorded therein. By way of illustration, we show plots of the energy em,n

and e3m,n in Figure 3.11 (e) and Figure 3.11 (f). The breather position is easiest to

read off when either of these plots are viewed from above (not shown). From

Table 3.1, we have tan Ψ = 1 and hence Ψ = 45◦. The final computed value for

the velocities is −0.2625 units per second, which is very close to the theoretical

prediction of −0.2706 units per second (a relative error of 3%).
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(a) Profile at t = 20, E(0) = 0.8911.
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(b) Profile at t = 40, E(0) = 0.8900.
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(c) Profile at t = 60, E(0) = 0.8880.
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(d) Profile at t = 80, E(0) = 0.8870.
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(e) Plot of em,n at t = 20.
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(f) Plot of e3
m,n at t = 20.

Figure 3.11: Breather moving at Ψ = 45◦.
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Time Horizontal Vertical Average horizontal Average vertical

(s) displacement displacement velocity (units s−1) velocity (units s−1)

20 −5 −5 −0.25 −0.25

40 −10.5 −10.5 −0.2625 −0.2625

60 −15.5 −15.5 −0.2583 −0.2583

80 −21 −21 −0.2625 −0.2625

Table 3.1: Summary of breather motion (Ψ = 45◦).

3.7.7 Breather moving at Ψ = 20◦

We recall the work of Marin et al. described in Section 3.1, whom observed

that breathers could travel through the lattice only along directions of symme-

try. A natural question to consider is whether our scalar (one-component) two-

dimensional system supports breathers that move in directions which are not

axes of symmetry of the lattice. From the asymptotic analysis of Section 3.3.4,

we conclude that there is no restriction upon the direction in which breathers

may travel through the lattice, that is, Ψ may take any value in the interval

[0, 2π).

We would like to test this conjecture in our numerical work. We have tried

propagating breathers in a wide range of directions, including at an angle Ψ =

20◦ to the m-axis. The results of this are shown in Figure 3.12. To preclude

waveforms that are severely elongated, we avoid values of (k, l) which are too

close to the boundary of the elliptic domain D. Thus we initiate the numerical

scheme with k = 3π/4 and l = 2.881 radians; this corresponds to the wavevector

kc shown in Figure 3.7. It may be checked that for this choice of wavenumbers,

the theoretical values for u and v are −0.2609 and −0.0950 respectively, giving

an angle of travel Ψ = 20◦. Also, the breather has frequency ω = 2.710 and so

the time period for an oscillation is T = 2.318. Once more, we set b = d = 1,

N = 31, ε = 0.1 and λ = 1. The variational parameters turn out to be α = 1.0743

and β = 3.0737. The breather is initially located at the centre of the lattice (not
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Time Horizontal Vertical Average horizontal Average vertical

(s) displacement displacement velocity (units s−1) velocity (units s−1) tan Ψ Ψ

40 −10 −3.5 −0.25 −0.0875 0.35 19.29◦

75 −18.5 −7 −0.2466 −0.0933 0.3783 20.72◦

120 −30 −11 −0.25 −0.0917 0.3667 20.14◦

160 −41.5 −15.5 −0.2594 −0.0969 0.3737 20.48◦

Table 3.2: Summary of breather motion (Ψ = 20◦).

shown).

Figure 3.12 shows the breather at times t = 40, 75, 120 and 160 seconds.

Clearly the breather moves through the lattice and preserves its form remark-

ably well, leaving behind very little radiation as it moves, nor spreading no-

ticeably in any direction. We also include the computed energy at each of

these times in Figure 3.12. The energy remains almost constant throughout,

with the relative difference between the first and last computed values being

∆E(0)/E(0) = −0.015. The asymptotic estimate for the breather energy given by

(3.76) is E(0) = 0.9248.

The motion of the breather is summarised in Table 3.2. The final measure-

ment for the average velocities u and v are −0.2594 and −0.0969 units per sec-

ond respectively, yielding relative errors of 1% and 2%. The direction of travel

is measured to lie at 20.48◦ to the m-axis, which is very close to the expected

angle Ψ = 20◦.

Though we do not show all the results we have obtained here, we have

successfully propagated breathers in a range of different angles, which supports

the conjecture that breathers can travel in any direction through the lattice.
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(a) Profile at t = 40, E(0) = 0.9260.
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(b) Profile at t = 75, E(0) = 0.9218.
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(c) Profile at t = 120, E(0) = 0.9210.
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(d) Profile at t = 160, E(0) = 0.9140.

Figure 3.12: Breather moving at Ψ = 20◦.

3.7.8 Stationary breather in a lattice with asymmetric potential

The above numerical results all feature lattices with symmetric potentials,

namely, those for which a = c = 0 so that V (−Q) = −V (Q) in (3.10). We now

present results of a simulation for which the potential function is asymmetric.

In this case, initial data is generated using the results of Section 3.6.2. Also,

from (3.36) in Section 3.3.5, we see that anomalous dispersion corresponds to

3b > 4a2. As an example, we set a = 1 and b = 2. Also, c = 0 and d = 1. The

remaining parameters are assigned the values N = 41, ε = 0.1 and λ = 1. The

breather frequency is ω = 2.8284, and the period is T = 2.2214. The variational

parameters are computed to be α = 1.2880 and β = 3.1399.
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The breather is initially situated at the centre of the lattice (not shown), at

which time the energy E(0) = 1.4657. The breather width, given by (3.86), is

found to be Wbr = 4.45 at time t = 0. The breather is shown after it has

completed ten and thirty oscillations in Figure 3.13. The numerically com-

puted energy is shown at each of these times in Figure 3.13. Note that the en-

ergy E(0) remains more or less unchanged, and even after thirty oscillations,

∆E(0)/E(0) = 0.014. From the plots of the cell energy em,n shown in figures

3.13 (b) and 3.13 (d), we observe that the breather remains localised with very

little loss of form, even after almost seventy seconds. As with static breathers in

a lattice with symmetric potential (see Section 3.7.4), very little energy is shed

in the form of radiation. At t = 30T , we find that Wbr = 4.35, and so the relative

difference between the first and last measured values of the effective breather

width is ∆Wbr/Wbr = −0.022, reflecting a tiny contraction. Also, the asymp-

totic estimate for the breather energy given by (3.66) is E(0) = 1.4658, which is

in good agreement with the numerically computed value.
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(a) Profile at t = 10T = 22.21.
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(b) Plot of em,n, E(0) = 1.4907.
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(c) Profile at t = 30T = 66.64.
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(d) Plot of em,n, E(0) = 1.4864.

Figure 3.13: Stationary breather in a lattice with an asymmetric potential.

3.7.9 Breather collisions

Thus far, all the numerical results that we have presented have been con-

cerned with the evolution of a single breather over time. In this section, we

simulate a collision between two breather modes. In doing so, we aim to gain

insight into the stability and robustness of breathers. To make it possible to

follow the progress of the simulation on a lattice of size N = 31, we choose to

initiate a collision between two breathers moving in opposite directions. In gen-

eral though, one could consider a greater number of breathers, each travelling

in different directions through the lattice.

Amongst other things, we aim to find whether the breathers regain their
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form following a collision, whether individual velocities are altered signifi-

cantly, whether breather stability depends upon the relative orientation of in-

coming breather paths, and other properties besides these.

In Figure 3.14, we show the evolution of two breathers which move towards

one another and interact as they collide. We also show the two breathers at later

times. One breather is initially located towards the left-hand edge of the lattice,

at the grid point (7.5, 15). A second breather begins near the right-hand edge

of the lattice, at the point (22.5, 15). In order to ensure that the breathers move

towards one another parallel to the m-axis, we choose kL = 5π/4, lL = π, and

kR = 3π/4, lR = π; hence ω = 2.7229 and T = 2.3075. It may be checked that the

corresponding velocities of the left-hand and right-hand breather are 0.2597 and

−0.2597 units per second respectively. The initial configuration of the lattice is

shown in Figure 3.14 (a). The breathers then approach one another and undergo

a complicated interaction as they collide. This result of this interaction is shown

at an early stage in Figure 3.14 (b) and at a slightly later stage in Figure 3.14 (c).

They then pass through one another and begin to separate. This is seen

clearly in Figure 3.14 (d), where the breathers can be recognised as two visibly

distinct structures in the lattice. Comparing Figure 3.14 (a) and Figure 3.14 (d),

it is also apparent that both breathers emerge having undergone little over-

all change. We note that some energy is clearly shed during the collision, but

this is to be expected since the FPU system is in general known to be noninte-

grable. Though we do not include a tabulated record of measurements here, we

find that the velocities of both breathers are preserved almost exactly even after

collision. The overall picture becomes complicated for much longer times be-

cause of the periodic boundary conditions that are imposed on the lattice. (This

means that breathers emerging from the first collision will collide again at the

boundary).

Again, though we have not presented the results here, other simulations of

colliding breathers which are initially located at different places in the lattice

and move along different paths to those detailed above give similar results.
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(a) Profile at t = 0
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(b) Profile at t = 26.51.
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(c) Profile at t = 45.89.
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(d) Profile at t = 70.80.

Figure 3.14: Colliding breathers interact and separate.

Namely, after a complex interaction during which a small quantity of energy

is lost, both breathers emerge and regain their forms. After they have sepa-

rated completely, they continue to move at the velocities with which they were

travelling initially.
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3.8 Discussion

In this section, we have applied analytic methods to find approximations

to discrete breathers in a two-dimensional square FPU lattice, governed by

(3.12). In essence, the semi-discrete multiple-scale method reduces the gov-

erning equations for the lattice to a partial differential equation for the breather

envelope. In one-dimensional lattices such as those considered in Chapter 2,

few difficulties arise, since the resulting partial differential equation (the one-

dimensional NLS equation), is essentially well-behaved. Specifically, it is inte-

grable, and explicit formulae for soliton solutions are known.

In contrast, we showed in Section 3.3 that a similar reduction of (3.12) to

a two-dimensional cubic NLS equation is more complicated, and can be done

only for selected cases. In Section 3.3.3, we considered moving breathers in lat-

tices with symmetric interaction potentials, and we found an ellipticity criterion

for the wavenumbers of the carrier wave. For lattices with asymmetric poten-

tials (see Section 3.3.5), reduction to the two-dimensional cubic NLS equation

could be performed only for stationary breathers.

Unfortunately, a third-order analysis of this kind is inconclusive, since the

two-dimensional cubic NLS equation does not support stable soliton solutions

for the form of the breather envelope, only unstable Townes solitons. These are

marginally stable, and either blow up or disperse completely when perturbed.

Hence, the two-dimensional cubic NLS equation does not completely capture

the actual dynamics of the two-dimensional FPU lattice. The phenomenon

of blow-up is discussed at length in Section 3.4. We have shown that these

problems may be overcome by including higher-order effects. Our motivation

comes from a review (see Section 3.4.3) of results available for generalised NLS

equations which incorporate higher-order nonlinearity and dispersion.

The NLS equation (3.39) is generic, in that it describes the envelope of a

wavepacket in many models which take into account nonlinearity and disper-

sion at the lowest orders. However, the derivation of higher-order equations

yields many possible perturbations, not all of which have been considered in
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the literature. Generality of the cubic two-dimensional NLS equation is lost

when higher-order terms are included. For some perturbations it is known that

blow-up is suppressed, and stable solitons exist.

In Section 3.5, we derived a higher-order NLS equation (3.55) by apply-

ing a fifth-order multiple-scale analysis to the two-dimensional Fermi-Pasta-

Ulam equations (3.12). Unfortunately the equation (3.55) has several perturbing

terms, and as far as we are aware, only some of the perturbing terms have been

studied previously in the literature. The analysis of (3.55), namely the rigorous

determination of which parameter values support stable soliton solutions, is

left for future work. As discussed in Section 3.4.3, if a variational formulation

can be found for (3.55), then the methods of Pohožaev [98] can be used to anal-

yse its properties. We suspect that a variational formulation for (3.55) exists,

since one can be found for similarly complicated generalised NLS equations

(see Zakharov & Kuznetsov, [141]).

On the other hand, we mentioned in Section 3.5 that the modulation theory

described by Fibich and Papanicolaou [46, 47] might be better suited for an

equation of this complexity. An advantage of this method is that it applies to

a broad class of perturbing terms. One reduces the perturbed NLS equation

to a much simpler system of modulation equations which do not involve the

“transverse” variables (in our case, the spatial variables x = [ξ, η]T ). The effect

of small perturbations upon self-focusing in the critical nonlinear Schrödinger

equation is easier to determine from the modulation equations.

Of course, numerical analysis of the modified NLS equation is another pos-

sible approach, but then one may as well bypass analysis of the continuum

equation (3.55), and instead numerically solve the lattice equations (3.12) to be-

gin with.

There are other possibilities that may be pursued in addition. We mention

the work of Tamga et al. [128], who apply a simple one-term multiple-scale ex-

pansion to a two-dimensional lattice. They show that the lattice equations can

be reduced to a cubic two-dimensional NLS equation at third order, which they



3.8. SETL: DISCUSSION 134

recognise “cannot be used to predict the time evolution” of nonlinear localised

modes. Rather than pursuing soliton solutions, they instead consider modula-

tional instability of their NLS equation, and (aided by numerical simulations),

show that localised modes exist in the regions where a uniform solution is un-

stable. As pointed out by Marin et al. [89], the drawback to this approach is

that the observed “nonlinear localised modes” cannot reliably be identified as

discrete breathers. The authors of [128] thus describe the modes as “breathing

solitary waves,” rather than discrete breathers.

One of our aims has been to find criteria for the existence of breathers in the

two-dimensional Fermi-Pasta-Ulam equation. From our fifth-order analysis in

Section 3.5, we found various conditions on the lattice interaction parameters a,

b, c, d, and on the form of the carrier wavenumbers k and l. These results have

been supplemented and supported by numerical simulations. Several inter-

esting breather properties are presented in the numerical results of Section 3.7.

Firstly, we note that stationary and moving breathers appear to be long-lived

modes of the lattice; their profiles do not change over time and they shed very

little energy as they evolve. We have shown this to be true for a range of dif-

ferent parameter values, including asymmetric as well as symmetric potentials.

The fact that breather modes are observed to reform following collisions sup-

ports the claim that these modes are robust structures.

One of the more surprising results that emerges from the numerics is that

there appears to be no restriction upon the direction in which breathers can

travel in the lattice, in contrast to the scenario reported by Marin et al. [89, 90]

for two-component two-dimensional lattices. We have found, for instance,

breathers which move at 20◦ to the lattice, suffering no appreciable distortion or

spreading, even after relatively long times. In fact, we have obtained breathers

moving at many other angles not parallel to the lattice axes, though we have not

presented results of those simulations here. Breathers which move along lattice

directions are elongated in the direction perpendicular to their motion. Previ-

ous work on the two-dimensional lattice analysed here has focused on other

types of excitation. In [42], Eilbeck found highly accurate numerical approxi-
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mations to the shape of travelling solitary plane waves. These were also found

to travel at any angle to the lattice, and showed a more subtle angle-dependence

in their amplitude-speed characteristics, which was explained using high-order

quasi-continuum expansions by Wattis [135].

In Section 3.6 we derived asymptotic estimates for the energy of breathers.

This has the expected form that the energy does not vanish as the amplitude

becomes arbitrarily small. Rather, there is a threshold energy required to create

a breather, in agreement with the results of Flach et al. [56]. We have provided

formulae for these energy thresholds in Sections 3.6.2 and 3.6.3. Contrary to

what one might expect, the energy threshold for moving breathers is smaller

than that for stationary breathers. It is independent of the breather amplitude,

but is dependent on the wavenumbers, and becomes vanishingly small as one

approaches the boundary of the domain of ellipticity.



Chapter 4

A two-dimensional hexagonal

Fermi-Pasta-Ulam lattice

4.1 Introduction

The previous chapter was concerned with a two-dimensional square lat-

tice. As well as possessing translational symmetry, the square lattice consid-

ered in Chapter 3 possesses axes of rotational symmetry. Formally, the lattice

in Chapter 3 has C4 (or square) rotational symmetry, which we now explain.

Suppose we rotate the lattice about an axis perpendicular to the plane, which

passes through any lattice site. Then a rotation through any multiple of the an-

gle 2π/4 = π/2 maps the lattice back onto itself. Equivalently, such an axis is

said to be a “four-fold” axis, and its multiplicity is equal to 4. A comprehensive

group-theoretic approach to describing the full symmetry properties of two-

and three-dimensional lattices is detailed by Boardman et al. (see Chapters 1

and 4 of [19]).

In this chapter, we consider a hexagonal electrical transmission lattice (HETL).

This two-dimensional network possesses C6 (or hexagonal) rotational symme-

try. That is, rotation through any multiple of the angle 2π/6 = π/3 maps the

lattice back onto itself. The HETL is shown in Figure 4.1, pictured from a point

vertically above the plane of the lattice. Before we comment on the compo-

136
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Figure 4.1: The 2D hexagonal electrical transmission lattice (HETL).

sition of the HETL, we mention that geometrically, it consists of a repeating

array of hexagons, with nodes at the vertices and centre of each hexagon. As

such, we note that the HETL appears to be an arrangement of tessellating tri-

angles, and not hexagons. One is entitled to enquire why such an arrangement

is not referred to instead as a “triangular” lattice, and why say, the description

“hexagonal” isn’t reserved for lattices in which every site possesses three near-

est neighbours (such as that shown in Figure 4.2). In this work, we adopt the

convention that the descriptions “hexagonal” and “triangular” refer to a lat-

tice’s symmetry properties and not to the repeating geometrical shapes which

comprise the array. The lattice depicted in Figure 4.1 possesses C6 rotational

symmetry, hence, it is “hexagonal.” Likewise, the lattice shown in Figure 4.2

possesses C3 rotational symmetry, and so it is “triangular.” As a note of cau-

tion, we emphasise that not all authors follow this convention.

4.1.1 Overview

In this chapter, we apply analytic methods to find approximations to breathers

in a two-dimensional Fermi-Pasta-Ulam lattice with hexagonal rotational sym-
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Figure 4.2: A “triangular” (C3 rotationally symmetric) lattice.

metry. We restrict our attention to breathers of small amplitude which have a

slowly varying envelope. We aim to investigate how the rotational symmetry

of the hexagonal lattice impacts upon the properties of discrete breathers found

therein, and in particular whether breather properties for the hexagonal lattice

differ greatly from those found for breathers in the square lattice.

As such, we follow essentially the same steps as in Chapter 3, and it is

instructive to contrast corresponding results of this and the previous chapter

throughout. Speculating for a moment, one might expect the analysis for the

hexagonal lattice to be more involved, since geometrically, it is a more com-

plicated arrangement after all. However, one might also reasonably expect the

different rotational symmetry properties of the hexagonal lattice to result in a

system of equations of greater structural simplicity than those obtained for the

square lattice.

We derive the equations of motion and demonstrate a Hamiltonian formal-

ism in Section 4.2. In Section 4.3, we present two cases for which the hexagonal

FPU lattice equations can be reduced to a two-dimensional NLS equation with
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cubic nonlinearity. We consider lattices with a symmetric interaction potential,

in which case reduction to a cubic NLS equation can be performed for moving

breathers. We find an ellipticity criterion for the wavenumbers of the carrier

wave. A reduction to a cubic NLS equation can also be carried out for lattices

with an asymmetric potential, provided we consider only stationary breathers.

We find that the hexagonal lattice differs from the square lattice in regard to the

generation of second and third harmonics.

As we know from Section 3.4, the cubic NLS equation does not fully describe

the evolution of the breather envelope, since it admits only unstable Townes

solitons. Hence in Section 4.4, we extend our asymptotic analysis to higher or-

der and find a generalised NLS equation which incorporates known stabilising

terms. This equation is similar to the generalised NLS equation obtained for

the square lattice, except that here, the perturbing terms are isotropic. Our ana-

lytic work is supplemented by numerical simulations presented in Section 4.5,

which suggest that long-lived stationary and moving breather modes are sup-

ported by the system.

In Section 4.3, we obtain leading-order analytic estimates for the breather

energy, and show that as expected, there is a minimum energy below which

breathers cannot exist in the hexagonal FPU lattice. As before, we find that

the energy threshold is dependent upon the wavevector of the carrier wave. It

is maximised for stationary breathers, but becomes arbitrarily small near the

boundary of the elliptic domain. In Section 4.6, we discuss the results obtained

in this chapter.

The theoretical methods used in this chapter closely follow those of the pre-

vious chapter, and hence it is necessary to employ some key formulae from

therein. To avoid continual references to the previous chapter, we have repro-

duced several essential formulae and results where appropriate, in order that

both chapters may be read more or less independently.
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4.2 Derivation of model equations

We aim to derive the equations governing the charge at each capacitor in

the HETL. The first task is to decide upon a scheme to index all of the nodes, at

which the capacitors are located. This depends upon the choice of basis vectors

for the lattice. For the SETL, a natural choice for a basis pair was {i , j}, where

i = [1, 0]T and j = [0, 1]T (see Section 3.2). For the HETL, we are presented with

a number of possibilities, one of which is shown in Figure 4.3, along with the

corresponding node labelling, centred about the site (m,n). The lattice basis

vectors in this case are i′ = i = [1, 0]T and j′ = [−1
2
,
√

3
2

]T .

(m,n)
(m+ 1, n)

(m+ 1, n+ 1)(m,n+ 1)

(m− 1, n)

(m− 1, n− 1) (m,n− 1)

i′

j′

Figure 4.3: An alternative choice of basis {i′ , j′} for the HETL.

However, we instead introduce a rectangular lattice with basis vectors B = {i′ , j′},

where i′ = i = [1, 0]T and j′ = [0, h]T , illustrated in Figure 4.4. We use only half

of the (m,n) indices, namely, those for which the sum m+n is even. We choose

an origin with coordinates (0, 0). The position of the site (m,n) is then mi′ +nj′.

Clearly for this choice of basis and general h, the hexagonal units which com-

prise the array are not regular. This is remedied by choosing an appropriate

scaling for the lattice in the vertical direction, namely h =
√

3. Consequently,

we introduce the scaling factor h in various expressions throughout the analysis

(in particular, see equations (4.16) and (4.17)).

We describe the composition of the HETL. At every node lies a nonlinear
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(m,n)
(m+ 2, n)

(m+ 1, n+ 1)(m− 1, n+ 1)

(m− 2, n)

(m− 1, n− 1) (m+ 1, n− 1)

i′

j′

Figure 4.4: Labelling of nodes in the HETL with basis B = {i′ , j′}.

capacitor (not shown in Figure 4.1), and also between every node and each of

its six nearest neighbours is a linear inductor. An enlarged view of the area

surrounding the (m,n)th capacitor is shown in Figure 4.5, where the capaci-

tor is visible. As before, Vm,n denotes the voltage across the (m,n)th capacitor

and Qm,n denotes the total charge stored on the (m,n)th capacitor. Also, Im,n,

Jm,n and Km,n are the currents through the (m,n)th inductors which lie in the

direction parallel to the vectors ei = [2, 0]T , ej = [1,−
√

3]T and ek = [1,
√

3]T

respectively, as illustrated in Figure 4.5.

The equations relating current, charge and voltage in the lattice can now be

derived. Applying Kirchoff’s law as before, we have that

Vm+2,n − Vm,n = −LdIm,n
dt

, (4.1)

Vm+1,n−1 − Vm,n = −LdJm,n
dt

, (4.2)

and Vm+1,n+1 − Vm,n = −LdKm,n

dt
, (4.3)

where the inductance L is constant. Conservation of total charge gives

Im−2,n − Im,n + Jm−1,n+1 − Jm,n +Km−1,n−1 −Km,n =
dQm,n

dt
. (4.4)

Differentiating (4.4) with respect to time, and then using (4.1), (4.2) and (4.3) to



4.2. HETL: DERIVATION OF MODEL EQUATIONS 142

eplacements

Vm,n

Vm+1,n−1

Vm+2,n

Vm+1,n+1

Im,n

Jm,n

Km,n

ei

ej

ek

Figure 4.5: Enlarged view of the HETL at site (m, n).

find İm−2,n, J̇m−1,n+1 and K̇m−1,n−1, after substituting we arrive at

LQ̈m,n = (Vm+2,n − Vm,n + Vm−2,n)

+ (Vm+1,n−1 − Vm,n + Vm−1,n+1)

+ (Vm+1,n+1 − Vm,n + Vm−1,n−1). (4.5)

Equation (4.5) may be written in the abbreviated form

LQ̈m,n = (δ2
I + δ2

J + δ2
K)Vm,n, (4.6)

where the centred second-difference operators on the right-hand side of (4.6)

are defined by

δ2
IAm,n = Am+2,n − 2Am,n + Am−2,n, (4.7)

δ2
JAm,n = Am+1,n−1 − 2Am,n + Am−1,n+1, (4.8)

and δ2
KAm,n = Am+1,n+1 − 2Am,n + Am−1,n−1, (4.9)

and Am,n is an arbitrary quantity referenced by two indices. In other words, δ2
I ,

δ2
J and δ2

K are centred second-difference operators in the directions of ei, ej and

ek respectively, as shown in Figure 4.5. As before, we would like to reformulate
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(4.6) in terms of a single quantity, namely, charge. This is done by using the

expansion (3.10), which gives Vm,n in terms of Qm,n. We have reproduced this

for convenience

Vm,n = V (Qm,n) ∼
Qm,n

C0

+
a′Q2

m,n

C2
0

+
b′Q3

m,n

C3
0

+
c′Q4

m,n

C4
0

+
d′Q5

m,n

C5
0

, (4.10)

where a′, b′, c′ and d′ are known in terms of the parameters ã, b̃, c̃ and d̃ which

express the nonlinear capacitance C(Vm,n) as a function of Vm,n (see equations

(3.7) and (3.11)). The expansion for Vm,n (4.10) is substituted into the HETL

equations (4.6), giving a set of equations in terms of the charge Qm,n alone. We

set LC0 = 1 without loss of generality, giving

d2Qm,n

dt2
= (δ2

I + δ2
J + δ2

K)
[
Qm,n + aQ2

m,n + bQ3
m,n + cQ4

m,n + dQ5
m,n

]
, (4.11)

where m,n ∈ Z, and a = a′/C0, b = b′/C2
0 , c = c′/C3

0 and d = d′/C4
0 . Thus

we have shown that the equation governing charge in the HETL (4.11) is a two-

dimensional analogue of the one-dimensional Fermi-Pasta-Ulam equation (2.7).

It is found that the lattice equations (4.11) can be derived from the Hamilto-

nian H̃ given by

H̃ =
∑

m,n

1

2
(Pm+2,n − Pm,n)

2 +
1

2
(Pm+1,n−1 − Pm,n)

2

+
1

2
(Pm+1,n+1 − Pm,n)

2 + Υ(Qm,n), (4.12)

where Υ(Qm,n) satisfies Υ′(Qm,n) = V (Qm,n) given in (4.10). Also, Pm,n andQm,n

are canonically conjugate momenta and displacement variables of the system

satisfying

dQm,n

dt
= −(δ2

I + δ2
J + δ2

K)Pm,n,
dPm,n

dt
= −Υ ′(Qm,n). (4.13)

The Hamiltonian (4.12) for the HETL is analogous to the Hamiltonian (2.10) of

the one-dimensional FPU system. Again, we have been unable to find a two-

dimensional analogue of (2.2) for the HETL. Recalling the discussion in Sections

2.2.2 and 3.6.1, one might expect the Hamiltonian H̃ given in (4.12) to be related

to the total electrical energy of the HETL. In Section 4.3.1, we show that H̃ is a
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constant multiple of E(0), which is the electrical energy of the lattice calculated

to leading-order.

The electrical energy em,n in one single unit of the lattice is (see Figure 4.5)

em,n = 1
2
C(Vm,n)V

2
m,n + 1

2
L
(
I2
m,n + J2

m,n +K2
m,n

)
, (4.14)

and hence the total electrical energy of the HETL, which we denote E, is

E =
∑

m,n

em,n =
∑

m,n

1
2
C(Vm,n)V

2
m,n + 1

2
L
(
I2
m,n + J2

m,n +K2
m,n

)
. (4.15)

The total electrical energy E is conserved, since the HETL is a lossless network.

We obtain leading-order estimates for the energy of breathers in the HETL in

Section 4.3.

4.3 Asymptotic analysis

4.3.1 Preliminaries

We apply the semi-discrete multiple-scale method to determine an approxi-

mate analytic form for small amplitude breather solutions of (4.11), with slowly

varying envelope. We introduce new variables defined by

X = εm, Y = εhn, τ = εt and T = ε2t. (4.16)

In comparing (4.16) with (3.17), we note the presence of the additional scaling

factor h in the definition of Y (see the comments made in Section 4.2). We seek

solutions of (4.11) of the form

Qm,n(t) = εeiψF (X,Y, τ, T ) + ε2G0(X,Y, τ, T ) + ε2eiψG1(X,Y, τ, T )

+ ε2e2iψG2(X,Y, τ, T ) + ε3H0(X,Y, τ, T ) + ε3eiψH1(X,Y, τ, T )

+ ε3e2iψH2(X,Y, τ, T ) + ε3e3iψH3(X,Y, τ, T ) + ε4eiψI1(X,Y, τ, T )

+ ε4e2iψI2(X,Y, τ, T ) + ε4e3iψI3(X,Y, τ, T ) + ε4e4iψI4(X,Y, τ, T )

+ ε5eiψJ1(X,Y, τ, T ) + · · · + c.c., (4.17)
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where the phase ψ of the carrier wave is given by km + lhn + ωt (once again

noting the presence of the extra factor h), and k = [k, l]T and ω are its wavevec-

tor and temporal frequency respectively. We substitute the ansatz (4.17) into

the lattice equations (4.11) and equate coefficients of each harmonic frequency

at each order of ε. This yields the following system of equations (after much

simplification):

O(εeiψ):

ω2F = 4 sin2(k)F + 4 sin2

(
k + lh

2

)
F + 4 sin2

(
k − lh

2

)
F, (4.18)

O(ε2eiψ):

ωFτ = 2 sin k[2 cos k + cos(lh)]FX + 2h cos k sin(lh)FY , (4.19)

O(ε2e2iψ):

ω2G2 = [sin2(2k) + sin2(k + lh) + sin2(k − lh)](G2 + aF 2), (4.20)

O(ε3eiψ):

2iωFT = − Fττ + [4 cos(2k) + 2 cos k cos(lh)]FXX + 2h2 cos k cos(lh)FY Y

− 4h sin k sin(lh)FXY

− 8a

[
sin2(k) + sin2

(
k + lh

2

)
+ sin2

(
k − lh

2

)]
[F (G0 +G0) + FG2]

− 12b

[
sin2(k) + sin2

(
k + lh

2

)
+ sin2

(
k − lh

2

)]
|F |2F, (4.21)

O(ε3e3iψ):

9ω2H3 = 4

[
sin2(3k) + sin2

(
3k + 3lh

2

)
+ sin2

(
3k − 3lh

2

)]
H3

+ 8a

[
sin2(3k) + sin2

(
3k + 3lh

2

)
+ sin2

(
3k − 3lh

2

)]
FG2

+ 4b

[
sin2(3k) + sin2

(
3k + 3lh

2

)
+ sin2

(
3k − 3lh

2

)]
F 3, (4.22)

O(ε4e0):

G0ττ = 6G0XX + 2h2G0Y Y + a
[
6
(
|F |2

)
XX

+ 2h2
(
|F |2

)
Y Y

]
. (4.23)
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Each of these equations should be compared with its counterpart from Section 3.3.1.

Clearly, equations (4.18)–(4.23) are more complicated than equations (3.19)–

(3.24), though each equation plays a similar role. Hence, (4.18) is the dispersion

relation for the system (4.11). Since we are interested only in solutions for which

F 6= 0, (4.18) yields

ω2 = 4 sin2(k) + 4 sin2

(
k + lh

2

)
+ 4 sin2

(
k − lh

2

)
, (4.24)

which does not simplify significantly. From equation (4.19), we determine the

velocity of the travelling wave F , finding that

F (X,Y, τ, T ) ≡ F (Z,W, T ), (4.25)

where Z = X − uτ and W = Y − vτ , and the horizontal and vertical velocity

components u and v are found to be

u =
−2 sin k[2 cos(k) + cos(lh)]

ω
and v =

−2h cos(k) sin(lh)

ω
. (4.26)

Equation (4.26), along with (4.24) enables the elimination of terms involving

G1 from (4.21) which are not shown. We use Ψ to denote the angle at which the

envelope F propagates through the lattice (not to be confused with ψ, which de-

notes the phase of the carrier wave in (4.17)). It is measured from the direction

of the basis vector ei to the line of travel. The angle Ψ is given by tan−1(v/u),

which unlike before (see Section 3.3.1) does not simplify greatly. The angle of

travel depends upon the velocities u and v, which in turn depend upon the

wavevector k = [k, l]T . For both cases that we consider (namely, symmet-

ric and asymmetric interaction potentials), we shall find constraints upon the

wavenumbers k and l which affect the velocity components u and v. However,

recalling the results on permitted directions of travel presented in Section 3.3.4,

as one might expect, we find that Ψ can still take any value in the interval [0, 2π).

In all cases, our priority is to reduce (4.21) to a nonlinear Schrödinger (NLS)

equation in F . From this, a soliton solution for the form of the breather en-

velope F can be found and substituted into the ansatz (4.17). This then gives

a leading-order analytic form for breather solutions. Before this can be done,
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the quantities G0 and G2 in (4.21) must be found in terms of F . As for the

SETL, it is straightforward to determine G2 from the algebraic equation (4.20).

However, the partial differential equation (4.23) for G0 can be solved for two

special cases only. Namely, we consider symmetric potentials, in which case

the reduction of (4.21) to an NLS equation can be completed even for moving

breathers, and also asymmetric potentials, provided we confine our attention to

stationary breathers only. These two cases are considered in Sections 4.3.3 and

4.3.5 respectively. In Sections 4.3.3 and 4.3.5, we use the formulae for breather

solutions to obtain estimates for the breather energy, which we now discuss.

Asymptotic estimates for breather energy

Since the HETL is a lossless network, the total electrical energy E given by

(4.15) is conserved. We derive leading-order estimates for the electrical energy,

which we denote E(0). Hence, we use leading-order expressions for each of

the terms in the terms in the summand of (4.15). From (4.10), it follows that

Vm,n ∼ Qm,n/C0 to leading order, and so the first term in the summand of (4.15)

is Q2
m,n/(2C0). To leading-order, the energy of the HETL, E(0), is therefore

E(0) =
∑

m,n

e(0)m,n =
∑

m,n

Q2
m,n

2C0

+
L

2

(
I2
m,n + J2

m,n +K2
m,n

)
. (4.27)

It remains to find leading-order expressions for the currents Im,n, Jm,n andKm,n,

which can then be substituted into (4.27). These are obtained from equations

(4.1)–(4.3), which upon substitution of Vm,n ∼ Qm,n/C0 become

Qm+2,n −Qm,n = −dIm,n
dt

, (4.28)

Qm+1,n−1 −Qm,n = −dJm,n
dt

, (4.29)

and Qm+1,n+1 −Qm,n = −dKm,n

dt
, (4.30)

where LC0 = 1. The currents are determined by substituting the expression for

the breather Qm,n into (4.28)–(4.30) and then integrating with respect to time.
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Firstly, using equations (4.28)–(4.30), we establish a relationship between the

Hamiltonian H̃ for the system (4.12), and the leading-order electrical energy

E(0) given by (4.27) (see the comments following equation (4.12)). The domi-

nant contribution to the energy stored in the capacitors is Υ(Qm,n) = Q2
m,n/2.

Comparing the resulting expression for H̃ (4.12) with E(0) (4.27), we see that

it remains to establish a link between the currents Im,n, Jm,n and Km,n and the

generalised momenta Pm,n. From Hamilton’s equations (the second equation in

(4.13)), we have dPm,n/dt = −Qm,n. Also, equation (4.28) relates the chargeQm,n

to the current Im,n. We substitute for Qm,n by −dPm,n/dt in (4.28) and then inte-

grate, giving Im,n = Pm+2,n−Pm,n (where we have taken the constant of integra-

tion to be zero). Similarly, we find from (4.29) and (4.30) that Jm,n = Pm+1,n−1 −
Pm,n and Km,n = Pm+1,n+1 − Pm,n. Therefore, LI2

m,n = (1/C0)(Pm+2,n − Pm,n)
2,

LJ2
m,n = (1/C0)(Pm+1,n−1−Pm,n)2 and LK2

m,n = (1/C0)(Pm+1,n+1−Pm,n)2. Hence,

we find E(0) = (1/C0)H̃ , as for the SETL (see Section 3.6.1).

Before proceeding any further, the dispersion relation given by (4.24) merits

further discussion.

4.3.2 The dispersion relation for the HETL

In this section, we analyse the dispersion relation (4.24) for the system (4.11).

A contour plot of ω against k and l is shown in Figure 4.6. It is found that w

is periodic in both k and l, with period 2π along the k-direction, and 2π/h in

the l-direction. In other words, we consider k and l such that (k, l) ∈ T 2 =

[0, 2π] × [0, 2π/h].

The function ω is minimised, and assumes the value zero, at the centre of

the circular patterns in Figure 4.6. It is maximised at the centre of the triangular

structures, where ω = 3. Of course, it is ambiguous to refer to a triangle’s centre

without first specifying which centre (circumcentre, orthocentre, centroid etc.) is

meant. However, the contour plot of ω shown in Figure 4.7 allows for a closer

analysis of the geometry of the pattern in Figure 4.6. From this, one deduces

that the triangles in Figure 4.6 are equilateral, for which the various centres are
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Figure 4.6: Plot of w against k and l.

coincident. Further, we determine the coordinates of other significant points

shown in Figure 4.7, as well as the length of the equilateral triangles, which is

found to be π/h. The circles in Figure 4.7 mark the points in (k, l)-space at which

w attains its minimum value, zero. These points are located at (0, 0), (2π, 0),

(2π, 2π/h), (0, 2π/h) and (π, π/h) (see Figure 4.7). The crosses mark points at

which ω is maximised and assumes the value ω = 3. The wavevectors corre-

sponding to these points are denoted k1, . . . ,k6, where

k1 = [π/3, π/h]T , k4 = [5π/3, π/h]T ,

k2 = [2π/3, 0]T , k5 = [4π/3, 2π/h]T ,

k3 = [4π/3, 0]T , k6 = [2π/3, 2π/h]T .

The dispersion relation for the system (4.11) should be compared with that

obtained for the SETL in Section 3.3.2, along with the corresponding contour

plot (Figure 3.3). Recall from Section 3.3.2 that for the SETL, the point (π, π) in

(k, l)-space at which ω (3.25) was maximised played a special role. Namely, at

this point, the velocity components u and v were both found to be zero, and

consequently, the analysis at this point became simpler in all cases (see Sec-
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Figure 4.7: Contour plot of w.

tions 3.3.5 and 3.5). For the HETL, there are now six such points, reflecting the

lattice’s hexagonal symmetry. It may be verified using (4.26) that the velocity

components u and v are both zero for each of the wavevectors {k1, . . . ,k6}. In

sections 4.3.5 and 4.4, our analysis shall focus exclusively on the points corre-

sponding to these wavevectors.

4.3.3 Lattices with a symmetric potential

In this section, we consider lattices with a symmetric interaction potential,

namely, those which satisfy Υ ′(−Q) = −Υ ′(Q). In other words, Υ ′(Q) has

odd symmetry and Υ(Q) is even. This corresponds to a = c = 0 in (4.10) and

(4.11). Since there are no even harmonics for vibrations controlled by symmetric

potentials, it follows that G0 and G2 are both zero. In (4.21), the term Fττ is

substituted for using (4.25), from which it is found that

Fττ = u2FZZ + 2uvFZW + v2FWW . (4.31)
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Substituting thus gives an NLS equation in F at third-order,

2iωFT +
[
u2 − 4 cos(2k) − 2 cos k cos(lh)

]
FZZ +

[
v2 − 2h2 cos k cos(lh)

]
FWW

+ [2uv + 4h sin k sin(lh)]FZW + 3bω2|F |2F = 0,

(4.32)

where the velocities u and v are given in (4.26). By applying an appropriate

transformation of variables, we eliminate the mixed term FZW in (4.32), and

thus reduce the equation to a standard form. It so happens that none of the

subsequent expressions simplify greatly, and therefore in order to avoid unnec-

essary clutter, we rewrite (4.32) as

2iωFT +D1FZZ +D2FWW +D3FZW + 3bω2|F |2F = 0, (4.33)

where D1 = u2 − 4 cos(2k) − 2 cos k cos(lh), D2 = v2 − 2h2 cos k cos(lh) and D3 =

2uv + 4h sin k sin(lh). A suitable transformation is

ξ =
hZ√
D1

and η =
h(2D1W −D3Z)√
D1(4D1D2 −D2

3)
, (4.34)

upon which (4.33) becomes

2iωFT + 3∇2F + 3bω2|F |2F = 0, (4.35)

where the differential operator ∇2F ≡ Fξξ + Fηη is isotropic in the (ξ, η) vari-

ables. The new variables ξ and η are chosen in the manner suggested in Section 3.3.3.

Equation (4.35) has the same form as (3.39), with D = 3/2ω and B = 3bω/2.

Formulae for approximations to Townes soliton solutions of (4.35) are given by

(3.42) with these values for B and D. The resulting expression for the envelope

F is then substituted into the breather ansatz (4.17), yielding a leading-order

analytic expression for the breather

Qm,n(t) = 2εα cos[km+ lhn+ (ω + ε2λ)t] sech(βr) + O(ε3), (4.36)

where α and β are determined from (3.41) using D = 3/2ω, B = 3bω/2. Further,

r =
√
ξ2 + η2 is found in terms of the physical discrete variables m and n by
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inverting the transformations (4.34) and reverting back to the variables Z and

W , using

r2 = ξ2 + η2 =
4h2(D2Z

2 +D1W
2 −D3ZW )

4D1D2 −D2
3

. (4.37)

The terms D1, D2 and D3 are found from (4.33), Z = ε(m− ut) and W = ε(hn−
vt) in terms of the discrete variables m and n, the velocities u and v are given

by (4.26), and ω is given in (4.24).

4.3.4 Determining the domain of ellipticity

We confine our attention to elliptic NLS equations, as we did for the square

lattice (see Section 3.3.4). We seek to determine the region D of (k, l)-parameter

space (that is, the two-torus T 2 = [(0, 2π)] × [0, 2π/h]) where the NLS equation

(4.32) is elliptic. By definition, this equation is elliptic whenD2
3 < 4D1D2, where

D1, D2 and D3 are known combinations of the wavenumbers k and l, given in

(4.33). Unlike the square lattice (see Section 3.3.4), we have not been able to

find analytically the region D in (k, l)-parameter space where this inequality is

satisfied. However, the region D can be determined numerically using Maple

(see for example, Redfern [100]). In order to do this, we define a function e(k, l)

by e(k, l) = 4D1(k, l) ·D2(k, l) − D3(k, l)
2. Clearly, we are concerned with the

region(s) of (k, l)-space for which e(k, l) > 0. This can be found from a contour

plot of e(k, l), shown in Figure 4.8. Again, the hexagonal symmetry properties

of the HETL are reflected clearly in the function e(k, l). The six maxima (at

which e(k, l) = 36) lie at the (red) centres of the concentric closed curves in

Figure 4.8. The maxima of e(k, l) coincide with the six maxima of ω(k, l) shown

in Figure 4.7, namely, at the points in T 2 which correspond to the wavevectors

{k1, . . . ,k6}. We mention in passing that e(k, l) is minimised (e(k, l) = −48) at

the six midpoints of the line segments which connect adjacent maxima, that is,

at the centres of the (purple) rectangle-like regions.

The contour plot of e(k, l) in Figure 4.9 shows the subset of T 2 for which

e(k, l) = 0, and the function e(k, l) is strictly positive within the interior of the

six closed curves. In other words, the closed curves form the boundary of the
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Figure 4.8: Plot of e(k, l) viewed from above the (k, l)-plane.

region D, and the NLS equation (4.32) is elliptic within the interior of these

closed curves. For the hexagonal lattice therefore, D is a disconnected subset

comprising six hexagonally-arranged local neighbourhoods around each of the

points corresponding to {k1, . . . ,k6}. These subdomains have been labelled

{D1, . . . ,D6} in Figure 4.9, where D = D1 ∪ . . . ∪ D6. This should be compared

with the corresponding domain for the SETL determined in Section 3.3.4, which

comprised a single connected subset of the two-torus [0, 2π] × [0, 2π].

Permitted directions of travel within the lattice

The angle of travel Ψ = tan−1(v/u) depends upon the velocity components

u and v, which in turn depend upon the wavevector k = (k, l) (see equation

(4.26)). Bearing in mind the restrictions upon the wavevector obtained in this

section, we would like to determine whether this leads to any restrictions upon

the values assumed by the angle of travel Ψ. In Section 3.3.4, using our formu-

lae for u, v and Ψ, we were able to demonstrate that there are no such constraints

upon Ψ in the SETL. In fact, the same is true for the HETL, for which it can be

shown that Ψ may assume any value in the interval [0, 2π). The argument takes

exactly the same form as before, though the details for the HETL are messy, and
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Figure 4.9: The domain D = D1∪ . . .∪D6 in which the NLS equation (4.32) is elliptic.

so we do not include them here.

Breather energy

We calculate the leading-order energy E(0) of moving breathers in lattices

with a symmetric potential using the breather formula given by (4.36), which

for convenience we rewrite as

Qm,n(t) ∼ 2εα cos Φ sech(βr), (4.38)

where Φ = km+ lhn+Ωt is the phase of the carrier wave, (k, l) ∈ D, Ω = ω+ε2λ

is the breather frequency including the first correction term, and λ parametrises

the breather amplitude (see Section 3.4.2). Also, α, β and r2 are as described in

Section 4.3.3. Note that Φ = km + lhn + Ωt is distinct from ψ = km + lhn + ωt,

which appears in (4.17). The expression (4.38) is substituted into (4.27).

We now find expressions for the currents Im,n, Jm,n andKm,n, as explained at

the end of Section 4.3.1. The current Im,n is obtained by substituting the expres-

sion for Qm,n (4.38) into (4.28) and integrating with respect to time. Given the
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complexity of the expression for r given by (4.37), the left-hand side of (4.28)

is not easily integrated with respect to time. However, in (4.38), the variable

r varies slowly in time compared to the oscillatory component Φ. Hence, as

explained in Section 3.6.3, integration by parts gives (to leading-order)

Im,n ∼ 2εα

ω
[1 − cos(2k)] sin Φ sech(βr) − 2εα

ω
sin(2k) cos Φ sech(βr), (4.39)

where we have taken the constant of integration to be zero, and Ω ∼ ω to lead-

ing order. Similarly, substituting for Qm,n in equations (4.29) and (4.30) and

integrating, it is found that

Jm,n ∼ 2εα

ω
[1 − cos(k − lh)] sin Φ sech(βr) − 2εα

ω
sin(k − lh) cos Φ sech(βr),

(4.40)

Km,n ∼ 2εα

ω
[1 − cos(k + lh)] sin Φ sech(βr) − 2εα

ω
sin(k + lh) cos Φ sech(βr).

(4.41)

Hence substituting for Qm,n, Im,n, Jm,n and Km,n using (4.38) and (4.39)–(4.41),

the overall sum (4.27) for E(0) becomes

E(0) ∼
∑

m,n

2ε2α2

C0

cos2 Φ sech2(βr)

+
2Lε2α2

ω2
sech2(βr)

{
[(1 − cos(2k)) sin Φ − sin(2k) cos Φ]2

+ [(1 − cos(k − lh)) sin Φ − sin(k − lh) cos Φ]2

+ [(1 − cos(k + lh)) sin Φ − sin(k + lh) cos Φ]2
}
. (4.42)

Since the variables X = εm and Y = εhn vary slowly with m and n, so does

r2, and so we replace the sum in (4.42) by an integral. The summand in (4.42)

is rather complicated, making the resulting integral difficult to evaluate exactly.

To simplify the summand, using the fact that r varies slowly with m and n, we

approximate the term in square brackets by taking the average values of cos2 Φ,

sin2 Φ and sin Φ cos Φ, which are 1
2
, 1

2
and 0 respectively. Hence the sum (4.42)

becomes

E(0) ∼
∑

m,n

2ε2α2

C0

sech2(βr). (4.43)
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We mention that the average energy stored by the capacitor (given by the first

term in the summand in (4.42)) is equal to the average energy stored by the

three inductors in a single unit, as one would expect. Again, this represents the

electrical analogue of the equipartition between kinetic and potential energy in

mechanical systems.

Replacing the double sum (4.43) by an integral over all space, we note from

the definition of r that the function sech(βr) is not in general radially symmetric.

We work in (ξ, η)-space to facilitate evaluation of this integral. Hence, after

evaluating the Jacobian associated with the transformation from (m,n) to (ξ, η)

coordinates, we have that

E(0) ∼
∑

m,n

2ε2α2

C0

sech2(βr)

=
α2

h3C0

√
4D1D2 −D2

3

∫∫
sech(β

√
ξ2 + η2) dξdη. (4.44)

Evaluating the integral on the right-hand side of (4.44) gives

E(0) ∼ 2π log 2

h3C0

α2

β2

√
4D1D2 −D2

3. (4.45)

Substituting for α and β in terms of D = 3/2ω(k, l) and B = 3bω(k, l)/2 (see

Section 4.3.3) we find that (4.45) becomes

E(0) ∼ 4π log 2(2 log 2 + 1)

3h3C0 b ω2(4 log 2 − 1)

√
4D1D2 −D2

3. (4.46)

It is evident from (4.46) that the leading-order energy E(0) is independent of

the breather amplitude, again confirming the existence of a minimum energy

of moving breathers in the two-dimensional HETL with symmetric potential.

However, the threshold energy does depend upon the wavenumbers k and l.

A plot of the expression (4.46), shown in Figure 4.10, has features similar to

the corresponding plot for the SETL, which is depicted in Figure 3.6. We see

that E(0), given by (4.46), is strictly positive in the region of ellipticity D, and

is maximised (attaining the same value) at each of the points corresponding

to wavevectors {k1, . . . ,k6}, that is, at the points which correspond to station-

ary breathers. It decays to zero towards the boundary of the elliptic domain
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D (see Figure 4.9). Hence, just as we found for the SETL in Section 3.6.3, the

energy threshold for moving breathers is lower than for stationary breathers.

The threshold becomes arbitrarily small near the boundary of the domain of

ellipticity.
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Figure 4.10: Plot of E(0) for lattices with a symmetric potential.

4.3.5 Lattices with an asymmetric potential

In this section, we consider the more general scenario for which the poten-

tial Υ ′(Q) may be asymmetric. In this case, the terms a and c in (4.10) and

(4.11) are not necessarily zero. Clearly if (4.21) is to be reduced to an NLS equa-

tion in F , the terms G0 and G2 must be found in terms of F . It is a straight-

forward task to find G2 in terms of F , since it is given by a simple algebraic

equation (4.20). In order to find G0, the partial differential equation (4.23) must

be solved. The term G0 is a higher order correction term to the leading order

term F , and hence we assume that it travels at the same velocity as F . In other

words, G0(X,Y, τ, T ) ≡ G0(Z,W, T ). Eliminating the term G0ττ and rewriting
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(4.23) in terms of the variables Z and W , this equation becomes

(u2 − 6)G0ZZ + (v2 − 2h2)G0WW + 2vcG0ZW = 6a|F |2ZZ + 2ah2|F |2WW . (4.47)

For general k and l, it is difficult to solve for G0 explicitly. We focus on points

in the (k, l) plane for which (4.47) can be solved. As expected (in the light of

comments made at the end of Section 4.3.2), equation (4.47) simplifies greatly if

we consider any of the wavevectors {k1, . . . ,k6}. For all of these wavevectors,

the velocities u and v become zero, and so (4.47) becomes ∇2G0 = −a∇2|F |2,

where the operator ∇2 defined by ∇2
(Z,W ) ≡ ∂ZZ+∂WW is equivalent to ∇2

(X,Y ) ≡
∂XX + ∂Y Y . It follows that G0 = −a|F |2 for all of these wavevectors.

It may also be verified that the remaining equations (4.18)–(4.23) are identi-

cal no matter which of the wavevectors {k1, . . . ,k6} is taken. That is to say, it is

not necessary to specify which of the wavevectors {k1, . . . ,k6} we are referring

to, since the analysis for any of these is completely identical. Thus, (4.18) gives

ω = 3, and from (4.20) it is found that G2 = aF 2/3. Interestingly, comparing

this with the corresponding result for the SETL (see Section 3.3.5), G0 is found

to be exactly the same for both the SETL and HETL, though unlike before, G2 is

now found to be nonzero.

Substituting these expressions for G0 and G2 in (4.21) gives the following

NLS equation for asymmetric potentials for any of the wavevectors {k1, . . . ,k6}

2iωFT + 3∇2F + ω2(3b− 10
3
a2)|F |2F = 0, (4.48)

which is similar to its counterpart for the SETL (see equation (3.36)). Equation

(4.48) has the same form as (3.39), with D = 3/2ω = 1/2 and (after simplifying)

B = (9b − 10a2)/2. The anomalous dispersive regime thus corresponds to b >

10a2/9. Again, we note that this describes a different region of (a, b)-parameter

space to the corresponding regime for the SETL (see Section 3.7.8). Using the

results of Section 3.4.2, soliton solutions of (4.48) are given by (3.42), this time

with D = 1/2 and B = (9b − 10a2)/2, and also r2 = X2 + Y 2. Substituting the

solution for F into the lattice ansatz (4.17), along with the known expressions

forG0 andG2 gives the following second-order formula for stationary breathers
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in lattices with an asymmetric potential

Qm,n(t) =2εα cos[km+ lhn+ (ω + ε2λ)t] sech(βr)

+ 2
3
aε2α2sech2(βr)

{
cos[2km+ 2lhn+ (2ω + 2ε2λ)t] − 3

}
+ O(ε3),

(4.49)

where α, β are determined from (3.41) using the values of B and D described

immediately above, r =
√
X2 + Y 2, and X = εm and Y = εhn in terms of the

original discrete variables m and n.

Breather energy

We calculate the leading-order energy E(0) of stationary breathers in lattices

with an asymmetric potential. In this case, stationary breathers are given by

(4.49), which we rewrite in the form

Qm,n(t) ∼ 2εα cos Θ sech(βr), (4.50)

where Θ = km+ lhn+ Ωt is the phase of the carrier wave, (k, l) corresponds to

one of {k1, . . . ,k6}, Ω = ω + ε2λ is the breather frequency, and w = 3. Also α, β

and r2 = X2 + Y 2 are as described above. We remark that Θ = km + lhn + Ωt

is distinct from Φ introduced in (4.38), since for the former, (k, l) corresponds to

one of {k1, . . . ,k6}, whereas for the latter, (k, l) can be any point in D.

The expression for Qm,n given by (4.50) is substituted into (4.27). The cur-

rents Im,n, Jm,n and Km,n are obtained by substituting (4.50) into equations

(4.28)–(4.30) and integrating with respect to time, taking the constant of inte-

gration to be zero. Also, the breather frequency Ω ∼ ω to leading order. Thus

we find

Im,n ∼ 3εα

ω
sin Θ sech(βr) −

√
3εα

ω
cos Θ sech(βr), (4.51)

Jm,n ∼ 3εα

ω
sin Θ sech(βr) +

√
3εα

ω
cos Θ sech(βr), (4.52)

Km,n ∼ 3εα

ω
sin Θ sech(βr) +

√
3εα

ω
cos Θ sech(βr). (4.53)
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Substituting for Qm,n, Im,n, Jm,n and Km,n in (4.27) using (4.50) and (4.51)–(4.53)

gives a leading-order expression for the total energy E(0)

E(0) ∼
∑

m,n

2ε2α2

C0

cos2 Θ sech2(βr)

+
Lh2

2ω2
ε2α2

[
3h2 sin2 Θ + 2h sin Θ cos Θ + 3 cos2 Θ

]
sech2(βr) (4.54)

Unfortunately, the summand in (4.54) does not simplify much further, and

hence we approximate the term in square brackets by taking the average values

of cos2 Θ and sin2 Θ (both equal 1
2
), whilst the average value of sin Θ cos Θ is 0.

Proceeding thus, the expression for E(0) (4.54) becomes

E(0) ∼
∑

m,n

2ε2α2

C0

sech2(βr). (4.55)

We replace the double sum (4.55) by an integral over space, giving

E(0) ∼ 2α2

hC0

∫∫
sech2(β

√
X2 + Y 2) dXdY, (4.56)

(noting the extra factor of h in the denominator, compared to (3.65)). Evaluating

the integral in (4.56) gives

E(0) ∼ 4π log 2

hC0

α2

β2
=

8πD log 2(2 log 2 + 1)

BC0h(4 log 2 − 1)
, (4.57)

where D = 1/2 and B = (9b − 10a2)/2 as explained above. Evaluating (4.57)

numerically, we find that E(0) ≈ 13.5401/(9b− 10a2)C0. Again, we find that this

estimate for energy is independent of the breather amplitude λ, demonstrating

the energy threshold properties of the two-dimensional HETL; namely, the ac-

tivation energy required to create a breather in the HETL is an O(1) quantity,

irrespective of the smallness of its amplitude (2εα).

We mention that if we put a = 0 in the expression (4.57) for E(0) for sta-

tionary breathers in lattices with an asymmetric potential, it reduces to the

expression (4.46) obtained for lattices with a symmetric potential when (k, l)

corresponds to one of {k1, . . . ,k6} in the latter, as expected.
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4.4 Higher-order asymptotic analysis

As discussed extensively in Section 3.4, it is known that the two-dimensional

cubic NLS equations derived in Sections 4.3.3 and 4.3.5 do not completely de-

scribe the evolution of the breather envelope, since the cubic NLS equation ex-

hibits blow-up, which is not physically realistic within the context of discrete

systems. We explained in Section 3.4.3 that higher-order dispersive and nonlin-

ear effects play an important role in the dynamics of quasi-continuum models

such as (4.11), and therefore must also be incorporated.

Acting upon this, in this section we extend our analysis of the lattice equa-

tions (4.11) to fifth-order, and derive a generalised NLS equation which includes

higher-order dispersive and nonlinear terms. It then remains to determine

whether this generalised NLS equation supports stable soliton solutions for the

form of the breather envelope F . As for the SETL, we expect to find several ad-

ditional perturbing terms. What is of interest is whether the perturbing terms

for the HETL are any simpler than those obtained for the SETL (see equation

(3.55) of Section 3.5).

As one might expect, the fifth-order analysis is extremely complicated, and

so we consider only lattices with symmetric potentials, namely, those for which

a = c = 0 in (4.10) and (4.11). Since no second or fourth harmonic terms are

generated by the nonlinearity, we also use a much simpler ansatz, namely

Qm,n(t) = εeiψF (X,Y, τ, T ) + ε3e3iψH3(X,Y, τ, T ) + · · · + c.c., (4.58)

where the phase ψ = km + lhn + ωt. In this case, in addition to the equations

(4.24), (4.25), (4.26), (4.32) and (4.22), we also have the following equation at

fifth-order:
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O(ε5eiψ):

FTT =
1

6
[8 cos(2k) + cos k cos(lh)]FXXXX

+ h2 cos k cos(lh)FXXY Y +
h

6

4

cos k cos(lh)FY Y Y Y

− 2h

3
sin k sin(lh)FXXXY − 2h

3

3

sin k sin(lh)FXY Y Y

+ 6b [2 cos(2k) + cos k cos(lh)] (|F |2F )XX + 6bh2 cos k cos(lh)(|F |2F )Y Y

− 12b sin k sin(lh)
[
2hFFXF Y + 2hFFY FX + 2hFFXFY + hF 2FXY + 2hFFFXY

]

− 3bω2F
2
H3 − 10ω2d|F |4F. (4.59)

Clearly, this equation is still rather complicated, so we simplify matters by

restricting our attention to stationary breathers. Accordingly, only one extra

timescale T = ε2t is required, and we fix the wavenumbers k and l to cor-

respond to one of the wavevectors {k1, . . . ,k6}. Hence the simplified ansatz

becomes

Qm,n(t) = εeiψF (X,Y, T ) + ε3e3iψH3(X,Y, T ) + · · · + c.c., (4.60)

where the phaseψ is as before, except that (k, l) corresponds to one of {k1, . . . ,k6}.

Substituting the ansatz (4.60) into the lattice equations (4.11) yields the follow-

ing set of equations:

O(εeiψ):

ω2 = 9 ⇒ ω = 3, (4.61)

O(ε3eiψ):

2iωFT + 3∇2F + 3bω2|F |2F = 0, (4.62)

O(ε3e3iψ):

H3 = 0, (4.63)

O(ε5eiψ):

FTT = −3
4
∇4F − 9b∇2(|F |2F ) − 10ω2d|F |4F. (4.64)
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It may be verified that exactly the same set of equations (4.61)–(4.64) results,

irrespective of which of the wavevectors {k1, . . . ,k6} is chosen. Interestingly,

it emerges from (4.63) that for the HETL, H3 = 0, unlike for the SETL (see

Section 3.5), where H3 was found to be nonzero. This result should be com-

pared with the remarks on G2 (see Section 4.3.5), which is zero for square lat-

tices with asymmetric potentials, but nonzero for hexagonal lattices.

Also, recalling the opening comments of this section, we note that all dif-

ferentials on the right-hand side of (4.64) are isotropic. This is a direct conse-

quence of the hexagonal symmetry of the HETL. In comparison, the differential

operator in the corresponding equation (3.52) for the SETL was found to be

anisotropic.

In order to obtain a higher-order NLS equation, we combine the higher-

order equation (4.64) with the cubic two-dimensional NLS equation (4.62). Firstly,

the term FTT on the left-hand side of (4.64) is eliminated. This is done by differ-

entiating (4.62) with respect to T and substituting. We find that

FTT = − 9

4ω2
∇4F−9b

4
∇2(|F |2F )−27

4
b2ω2|F |4F−9b

2
|F |2∇2F−9b

4
F 2∇2F . (4.65)

Substituting for FTT in (4.64) using (4.65), and then adding the resulting fifth-

order equation to the third-order NLS equation (4.62), gives overall

6iFT + 3∇2F + 27b|F |2F +
ε2

2
∇4F +

9ε2

4
(40d− 27b2)|F |4F

+
27bε2

4
∇2(|F |2F ) − 9bε2

2
|F |2∇2F − 9bε2

4
F 2∇2F = 0. (4.66)

Hence, if we confine our attention to stationary breathers and symmetric poten-

tials, we find that the equations for the HETL (4.11) reduce to the generalised

NLS equation (4.66) for the breather envelope F . Equation (4.66) should be

compared with its counterpart for the SETL, which is equation (3.55). Clearly,

(4.66) is isotropic, unlike (3.55). Other than this, the terms present in both equa-

tions are identical, occurring only with different coefficients. To the best of our

knowledge, (4.66) has not been studied in the literature before. We note that

(4.66) is similar to the perturbed NLS equation (3.44) considered by Davydova

et al. [38], and therefore includes known stabilising terms. We have been unable
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to find a variational formulation of (4.66), and therefore we cannot determine

its stability properties using the methods outlined in Section 3.4.3. Alternative

methods have been discussed in Sections 3.5 and 3.8.

For now, we rely on Davydova’s criteria for soliton existence, discussed in

Section 3.4.3. Anomalous dispersion corresponds to b > 0, and the condition

PK > 0 becomes 40d > 27b2. Hence, it is in this parameter regime that we

seek breathers solutions of the HETL for the numerical work in Section 4.5. As

we shall see in Section 4.5, numerical simulations show that long-lived breather

solutions are supported by the two-dimensional hexagonal FPU lattice, which

suggests that the additional perturbing terms in (4.66) have a stabilising effect

upon Townes solitons.

4.5 Numerical results

4.5.1 Preliminaries

In this section, we solve the equations governing charge Qm,n in the lat-

tice numerically. The lattice equations (4.11) form a system of infinitely many

coupled second-order nonlinear ordinary differential equations. To allow for

numerical solution of this system, we consider the equations defined upon a

finite lattice. We use MATLAB to implement a numerical algorithm based on

a fourth-order Runge-Kutta scheme. Firstly, by introducing the variable Rm,n,

defined by Rm,n = dQm,n/dt, the system of second-order ordinary differential

equations (4.11) is converted to an equivalent system of first-order differential

equations,

dQm,n

dt
= Rm,n,

dRm,n

dt
= (δ2

I + δ2
J + δ2

K)
[
Qm,n + aQ2

m,n + bQ3
m,n + cQ4

m,n + dQ5
m,n

]
, (4.67)

where the second-difference operators δ2
I , δ2

J and δ2
K are defined in (4.7)–(4.9).
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We present the results of simulations for a range of parameter values. From

(4.26), the breather v = (u, v) depends upon the wavevector k = [k, l]T , and

hence we obtain moving breathers by choosing (k, l) ∈ D (see Figure 4.9) and

[k, l]T /∈ {k1, . . . ,k6} (see Section 4.3.2). In Figure 4.11, we show the points in

D1 ⊂ D (see Figure 4.9 and Section 4.3.4) for which we solve the lattice equa-

tions (4.67) numerically. These points correspond to the wavevectors k1 =

[π/3, π/h]T , ka = [1.4, π/h]T , kb = [0.79, 1.7324]T and kc = [0.8, 1.9987]T .

We present simulations of stationary and moving breathers in lattices with

symmetric potentials (that is, a = c = 0 in (4.67)) in Sections 4.5.4–4.5.7. Nu-

merical results for systems with asymmetric potentials (a, c 6= 0) are presented

in Section 4.5.8.

k

l

0.4 0.6 0.8 1 1.2 1.4 1.6
1.2

1.4

1.6

1.8

2

2.2

2.4

k1 ka

kb

kc

D1

Figure 4.11: Wavevectors in D1 ⊂ D for which breathers are simulated.

4.5.2 Initial data and boundary conditions

We generate initial data by using the analytic expressions for breather solu-

tions derived in Section 4.3. The formulae for Qm,n and Rm,n are found in terms

of the original discrete variables m and n, and then shifted in both the horizon-
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tal and vertical directions so that initially the breather lies at the centre of the

finite lattice.

We impose periodic boundary conditions for the lattice in both the hori-

zontal and vertical directions, so that the flat two-dimensional arrangement in

Figure 4.1 is effectively a two-torus. This is implemented so that for long-time

simulations of moving breathers, waveforms which approach any edge of the

lattice reappear from the opposite edge. Setting up periodic boundary condi-

tions for the HETL to this effect is far more complicated than for the SETL (see

Section 3.7.2).

An illustration of a small finite lattice is shown in Figure 4.12. Care must be

taken to ensure that the truncated finite lattice (that is, the two-torus) retains the

same translational invariance as the original infinite lattice. The dots represent

capacitors located at lattice sites, and the lines represent inter-connecting induc-

tors. For the sake of clarity, the inductors connecting the capacitors at the center

of each hexagon to its six nearest neighbours are not shown (see Figure 4.1). It is

not necessary that the lattice should be “square,” meaning that the lattice could

comprise M × N lattice sites, with M 6= N . However, typically, we consider

M = N as in Figure 4.12, since the numerical routines become considerably

simpler to encode when the lattice is square. We will usually consider lattices

with N ≤ 50.

We select the site (1, 1) to lie at the bottom left-hand corner of the arrange-

ment in Figure 4.12, which has coordinate position (1,1). The remaining lattice

sites are labelled according to scheme described in Section 4.2, that is, using the

lattice basis B = {i′ , j′} where i′ = [1, 0]T and j′ = [0, h]T .

From equations (4.67), the charge Qm,n stored on each capacitor depends

upon the charge stored on the capacitors located at its six neighbouring sites.

These are located at the two nearest neighbouring sites in each of the directions

parallel to the vectors ei, ej and ek (see Figure 4.5). Clearly from Figure 4.12,

for the finite lattice, not all lattice sites possess six nearest neighbours. We see
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Q1,1 Q2N−1,1

Q2,N Q2N,N

Figure 4.12: Periodic boundary conditions for the two-dimensional HETL.

from this that equations (4.67) are defined at interior lattice sites, but sites along

the boundaries and corners are missing between one and four neighbours. We

introduce fictitious point along the boundaries and corners where necessary

to effect periodic boundary conditions. The full details are rather complicated,

though the underlying principle is exactly the same as before (see Section 3.7.2),

and so we have not included the details here.

4.5.3 Numerical computation of breather energy

Since the HETL is a lossless network, we expect the total energy E to be

conserved. We check the accuracy of our numerical scheme by computing the

leading-order energy E(0), given by (4.27). To do this, we express the summand

e
(0)
m,n in terms of the output variables of the numerical routine, namely Qm,n and

Rm,n. The first term of e(0)m,n is already given in terms of Qm,n. It remains to

find the currents Im,n, Jm,n and Km,n in terms of Qm,n and Rm,n. The actual

details of this depend upon whether the interaction potential is symmetric or

asymmetric.
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Lattices with a symmetric potential

First, we find the current Im,n in terms of Qm,n and Rm,n. Differentiating the

leading-order expression for the breather given by (4.38), we have (retaining

leading-order terms only)

Q̇m,n = Rm,n ∼ −2εαω sin Φ sech(βr), (4.68)

where α, β and r2 are as defined in Section 4.3.3. Comparing the analytic ex-

pression (4.39) for the current Im,n with the expressions for Qm,n (4.38) and Rm,n

(4.68), we see that

Im,n =
cos(2k) − 1

ω2
Rm,n −

sin(2k)

ω
Qm,n. (4.69)

Similarly, comparing the expressions (4.40) and (4.41) for the currents Jm,n and

Km,n respectively with equations (4.38) and (4.68), we find that

Jm,n =
cos(k − lh) − 1

ω2
Rm,n −

sin(k − lh)

ω
Qm,n, (4.70)

Km,n =
cos(k + lh) − 1

ω2
Rm,n −

sin(k + lh)

ω
Qm,n. (4.71)

The expressions for Im,n, Jm,n and Km,n given by equations (4.69)–(4.71) are

then substituted into the sum (4.27), giving an overall expression for E(0) in

terms of Qm,n and Rm,n. The resulting expression does not simplify greatly,

so we do not reproduce it here. We check whether this sum is conserved for

simulations of lattices with symmetric potentials, and also whether it matches

with the asymptotic estimate given by (4.46).

Lattices with an asymmetric potential

Differentiating the leading-order expression (4.50) for the chargeQm,n in lat-

tices with an asymmetric potential gives

Q̇m,n = Rm,n ∼ −2εαω sin Θ sech(βr). (4.72)

Using (4.50) and (4.72), the current Im,n which is given by (4.51) can be ex-

pressed in terms of Qm,n and Rm,n,

Im,n ∼ −
√

3

2ω

[√
3Rm,n

ω
+Qm,n

]
. (4.73)
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Similarly, from equations (4.52) and (4.53), we also have

Jm,n = Km,n ∼ −
√

3

2ω

[√
3Rm,n

ω
−Qm,n

]
. (4.74)

Inserting the expressions for Im,n, Jm,n and Km,n given by equations (4.73) and

(4.74) respectively into (4.27) becomes after simplification

E(0) ∼
∑

m,n

1

72C0

[
45Q2

m,n + 3R2
m,n − 2

√
3Qm,nRm,n

]
, (4.75)

which is the required expression giving E(0) as a combination of Qm,n and Rm,n.

The quantity on the right-hand side of (4.75) is summed over the entire lattice

for simulations of lattices with an asymmetric potential. It may be verified that

if we put a = 0 in the expression (4.75) for E(0), it matches the estimate obtained

for symmetric potentials when (k, l) corresponds to one of {k1, . . . ,k6} in the

latter.

Effective breather width

Numerical computation of the energy as described above allows us to check

that the total lattice energy is conserved, but does not indicate whether a breather

changes shape significantly with time. To remedy this, we define a measure of

breather width Wbr in the same manner as in Section 3.7.3,

W2
br =

r20
E(0)

+
r02
E(0)

−
(
r10
E(0)

)2

−
(
r01
E(0)

)2

, (4.76)

though the form of r10, r01, r20 and r02 is slightly different (note the presence of

an additional factor h)

r10 =
∑

m,nmem,n r20 =
∑

m,nm
2em,n

r01 =
∑

m,n hnem,n r02 =
∑

m,n h
2n2em,n

The quantity Wbr gives a measure of the degree of distortion suffered by a

breather over time.
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4.5.4 Stationary breather in a lattice with symmetric potential

We seek stationary breather solutions in the anomalous dispersion regime.

From (4.66), this corresponds to b > 0. The horizontal and vertical velocities

u and v respectively are zero when (k, l) corresponds to one of {k1, . . . ,k6};

we set k = π/3 and l = π/h, corresponding to k1 in Figure 4.11. Following

the discussion in Section 4.4, we expect to find stable soliton solutions when

PK > 0. From (4.66), P = ε2/2, hence this inequality becomes 40d > 27b2. For

instance, this is satisfied when b = d = 1. The following values are chosen for

the remaining parameters: N = 30, ε = 0.2 and λ = 1.

The variational parameters (3.41) are calculated as α = 1.0212, β = 1.8670.

The breather frequency is ω+ε2λ = 3.040, and therefore the period of oscillation

is T = 2.0668. In Figure 4.13 (a), the initial profile of the breather is shown,

located at the centre of the lattice (this is the case for all our simulations). At

time t = 0, we find that the breather energy E(0) = 0.7606, and the breather

width Wbr = 3.74.

In Figure 4.13 (c) we show the breather after it has completed 30 full oscilla-

tions. Plots of the cell energy em,n at t = 0 and t = 30T are presented in Figures

4.13 (b) and 4.13 (d). We note that after thirty oscillations, the breather has shed

a small amount of energy, which manifests itself as background noise through-

out the lattice. Accordingly, the breather appears a little distorted in shape com-

pared to its initial profile in Figure 4.13 (a), though not greatly so. In particular,

at t = 30T , we find that Wbr = 4.21, and so ∆Wbr/Wbr = 0.13. Clearly, after

thirty cycles, the breather has not preserved its form as well as was recorded

for the SETL, described in Section 3.7.4. It should also be noted that the calcu-

lated energy of the breather at t = 30T is 0.7087, giving ∆E(0)/E(0) = −0.0682,

which marks a significantly greater fluctuation in the calculated values of E(0)

than obtained in Section 3.7.4. The asymptotic estimate for E(0) given by (4.46)

is 0.7523, which is in close agreement with the numerically obtained value.
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(b) Plot of em,n, E(0) = 0.7606.
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(c) Profile at t = 30T = 62.82.
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(d) Plot of em,n, E(0) = 0.7087.

Figure 4.13: Stationary breather in a lattice with symmetric potential.
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4.5.5 Breather moving along a lattice direction (Ψ = 0◦)

In Figure 4.14, we show a simulation of a breather moving along a lattice

direction parallel to the m-axis, that is, Ψ = 0◦. The angle of direction of travel

Ψ satisfies tan Ψ = v/u. We choose wavevector k = ka = [1.4, π/h]T shown in

Figure 4.11, so that u = 0.4445 and v = 0 and thus Ψ = 0◦. It turns out that the

breather frequency ω = 2.9265, and hence the period T = 2.1470. Also, the vari-

ational parameters are α = 1.0339 and β = 1.8440. The remaining parameters

are set as follows; b = 1, d = 1, N = 30, ε = 0.1 and λ = 1.

The initial profile of the breather is shown in Figure 4.14 (a), and at this time,

the calculated energy is E(0) = 0.5537. It may be observed that the breather is

not radially symmetric. In fact, it is slightly elongated in the direction parallel

to the m-axis, that is, parallel to the direction of motion. This is because the

point corresponding to the wavevector [1.4, π/h]T in (k, l)-parameter space is

near the boundary of the region of ellipticity D1 in Figure 4.9.

The breather is shown in Figure 4.14 (b) at a later stage at t = 21.58T =

46.3513, at which time we find that E(0) = 0.5562. By this time, the breather

has reached the right-hand edge of the lattice. Owing to the periodic boundary

conditions, it is seen to disappear from this end and reemerge from the left-

hand side. This is shown in Figure 4.14 (c), for which t = 46.59T = 100. At

this time, the breather has almost completely reappeared on the left-hand side,

and we find that E(0) = 0.5696. This is clearly a long-lived mode, though the

breather form distorts noticeably as it travels, as well as leaving behind a small

amount of energy in its path (visible in Figures 4.14 (b) and 4.14 (c)). Overall

though, the breather remains localised, without spreading greatly. We also note

that the computed energy changes very little, with ∆E(0)/E(0) = 0.0287, which

is much smaller than for the previous simulation. The asymptotic estimate for

the energy of moving breathers (4.46) gives E(0) = 0.5522.

We would also like to check whether the velocity of the breather as mea-

sured from Figure 4.14 matches with the theoretical velocity u, which is 0.4445

units per second. This is easier to determine from a plot of the energy em,n,
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(a) Profile at t = 0, E(0) = 0.5537.
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(b) Profile at 21.58T , E(0) = 0.5562.
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(c) Profile at t = 46.59T , E(0) = 0.5696.
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(d) Plot of em,n.

Figure 4.14: Breather moving along a lattice direction, Ψ = 0◦.

which is shown in Figure 4.14 (d), viewed from directly above the plane of the

lattice. From this plot, we record the final position of the breather, and then

determine the total distance travelled, which is 42 units to the right. Hence the

measured velocity is 0.42 units per second. This value is 5.5% lower than the

theoretical value. This is consistent with the observation that a small amount of

energy was shed during travel.
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4.5.6 Breather moving at Ψ = 210◦

We now show that it is possible to simulate breathers moving in directions

other than Ψ = 0◦. In this section, we aim to simulate a breather moving at

Ψ = 210◦. Recalling the results of the previous simulation in Section 4.5.5,

we note that although k and l can be chosen such that (k, l) lies anywhere

within the elliptic domain D, selecting (k, l) to lie too near the boundary of

D results in a sharply elongated breather, which as we have seen, may yield

poorer results than expected. On the other hand, wavevectors very close to

any of {k1, . . . ,k6} (which correspond to stationary breathers), lead to breather

modes with very low speeds (see equation (4.26)). This necessitates excessively

long running times, since very slowly moving breathers do not traverse appre-

ciable distances over intermediate times. In practice then, we aim to determine

“optimal” wavenumbers k and l; that is, wavenumbers which on the one hand

do not lead to a severely elongated breather envelope, and on the other, yield

velocities of a magnitude which result in measurable displacements over rea-

sonable times. Unfortunately, unlike the SETL, the expressions for the quanti-

ties u, v, tan Ψ = v/u and
√
u2 + v2 do not simplify greatly, and therefore the

task of selecting suitable k and l which result in a measurable velocity with a

required direction is rather tedious.

We set k = 0.79 and l = 1.7324, which corresponds to kb in Figure 4.11. It

may be verified that u = −0.1999 and v = −0.1154 units per second, leading to

Ψ = arctan(0.5774) = 210◦ as required. Also, we have that ω = 2.9675 and hence

T = 2.1174. The remaining parameters are b = 1, d = 1, N = 30, ε = 0.1 and

λ = 1. The variational parameters α and β are 1.0267 and 1.8568 respectively.

The breather is shown at times t = 25, 50, 75 and 100 seconds in Figure 4.15. It

may be observed that the breather does not deform significantly as it travels,

nor does it radiate much energy. The initial energy is computed to be E(0) =

0.6306, and at t = 100, the energy is 0.6275. Thus we have ∆E(0)/E(0) = −0.005,

and hence the energy does not fluctuate greatly. The asymptotic estimate for

the energy is E(0) = 0.6184, which is close to the numerically computed values.
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(a) Profile at t = 25, E(0) = 0.6295.
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(b) Profile at t = 50, E(0) = 0.6292.
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(c) Profile at t = 75, E(0) = 0.6235.
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(d) Profile at t = 100, E(0) = 0.6275.

Figure 4.15: Breather moving at Ψ = 210◦.

It remains to find the velocity of the breather. For this simulation, we have

not shown plots of the energy em,n, rather, the motion of the breather is charted

in Table 4.1. The measured displacement, velocities and angle of direction of

travel Ψ are recorded therein. As calculated from the last row, the final mea-

sured values for the velocities u and v are −0.185 and −0.11 units per second,

and hence the overall speed is 0.2152 units per second. The predicted speed

(corresponding to u = −0.1999 and v = −0.1154) is 0.2308 units per second.

Hence the measured speed is 6.8% lower than predicted, though the angle of

travel is found to be almost identical to the expected value Ψ = 210◦.
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Time Horizontal Vertical Average horizontal Average vertical

(s) displacement displacement velocity (units s−1) velocity (units s−1) tan Ψ Ψ

25 −3.5 −2 −0.14 −0.08 0.5714 209.74◦

50 −8 −4.5 −0.16 −0.09 0.5625 209.36◦

75 −13 −7.5 −0.1733 −0.1 0.5770 209.99◦

100 −18.5 −11 −0.185 −0.11 0.5946 210.74◦

Table 4.1: Summary of breather motion (Ψ = 210◦).

4.5.7 Breather moving at Ψ = 130◦

We have presented simulations of breathers which move along axes of sym-

metry of the lattice. In Section 4.3.4, from the results of our asymptotic analysis,

we found no constraints upon the permitted directions of travel within the lat-

tice. In other words, the angle of travel Ψ can take any value in the interval

[0, 2π). In this section, we use our numerical routines to test the conjecture that

breathers may move along directions which do not correspond to axes of sym-

metry of the lattice.

We mention that we have successfully propagated breathers in a range of

directions. We show only one such simulated breather in this section, namely, a

breather moving at an angle Ψ = 130◦. We set k = 0.8 and l = 1.9987, for which

it is found that u = −0.2160, v = 0.2575, and hence Ψ = arctan(−1.1918) = 130◦.

Also, ω = 2.9502 and so the period T = 2.1298. The remaining parameters are

b = 1, d = 1, N = 30, ε = 0.1 and λ = 1. The variational parameters α and β are

1.0297 and 1.8514 respectively. We observe that the breather remains localised

without suffering appreciable degradation even after 120 seconds or more, nor

is a much radiation left behind in its wake. Initially the energyE(0) is computed

as 0.5977, and after 120 seconds, E(0) is 0.5897, giving ∆E(0)/E(0) = −0.0133.

The asymptotic estimate for the energy is E(0) = 0.5965.

To find the velocity of the breather, we have again recorded its motion at

each of the stages depicted in Figure 4.16. The relevant data is presented in



4.5. HETL: NUMERICAL RESULTS 177

10
20

30
40

50
60

10
20

30
40

50

−0.2

−0.1

0

0.1

0.2

mn

Q

(a) Profile at t = 30, E(0) = 0.5961.
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(b) Profile at t = 60, E(0) = 0.5966.
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(c) Profile at t = 90, E(0) = 0.5939.
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(d) Profile at t = 120, E(0) = 0.5897.

Figure 4.16: Breather moving at Ψ = 130◦.

Table 4.2. The final measured velocity components of the breather (see the last

row of Table 4.2) are u = −0.2083 and v = 0.25, giving a measured speed of

0.3254 units per second. The predicted velocity components are u = −0.2160

and v = 0.2575, giving a speed of 0.3361 units per second. Hence the measured

speed is 3.2% lower than the expected speed. However, the measured angle of

travel is almost exactly the same as the theoretical value Ψ = 130◦.

4.5.8 Stationary breather in a lattice with asymmetric potential

In Sections 4.5.4–4.5.7, we have shown simulations of lattices with a sym-

metric potential, namely, those for which a = c = 0 in (4.67). We now consider
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Time Horizontal Vertical Average horizontal Average vertical

(s) displacement displacement velocity (units s−1) velocity (units s−1) tan Ψ Ψ

30 −6 7 −0.2 0.2333 −1.1667 130.60◦

60 −11 13.5 −0.1833 0.225 −1.2273 129.17◦

90 −17.5 21.5 −0.1944 0.2389 −1.2286 129.14◦

120 −25 30 −0.2083 0.25 −1.2 129.81◦

Table 4.2: Summary of breather motion (Ψ = 130◦).

the more general case for which the interaction potential is asymmetric. Initial

data is generated using the formula given (4.49). As discussed in Section 4.3.5,

anomalous dispersion corresponds to b > 10a2/9. As an example, we set a = 1,

b = 2.5, c = 0 and d = 1. Also, recalling the analysis of Section 4.3.5 we choose

wavevector k = k1, that is k = π/3 and π/h, which corresponds to a station-

ary breather. The remaining parameter values are N = 30, ε = 0.1 and λ = 1.

The variational parameters are α = 0.8665 and β = 1.8670, and the breather

frequency ω = 3, hence T = 2.0668.

The breather is shown in Figure 4.17 after 10, 30 and 40 full oscillations. Ini-

tially, we find the energy E(0) = 0.5429, and the breather width Wbr = 7.46.

The accompanying plots of em,n demonstrate clearly that the breather preserves

its form and remains localised, even after 80 seconds. At t = 40T , we find

that Wbr = 6.83, in which case ∆Wbr/Wbr = −0.08, showing that the breather

has contracted very slightly over this time. Also, at t = 40T , the numerically

computed value of the energy E(0) = 0.5371, showing that the energy does

not fluctuate significantly. Specifically, we find that ∆E(0)/E(0) = −0.01. The

asymptotic estimate of the energy given by (4.57) is 0.5416.
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(a) t = 10T = 20.69.
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(b) Plot of em,n, E(0) = 0.5453.
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(c) t = 30T = 41.34.

10
20

30
40

50
60

10

20

30

40

50

0

0.005

0.01

0.015

0.02

0.025

0.03

mn

e

(d) Plot of em,n, E(0) = 0.5425.
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(e) t = 40T = 82.67.
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(f) Plot of em,n, E(0) = 0.5371.

Figure 4.17: Stationary breather in a lattice with an asymmetric potential.
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4.6 Discussion

In this chapter, we have found approximations to discrete breathers in a two-

dimensional hexagonal FPU lattice. We have shown that the lattice equations

can be reduced to a cubic NLS equation for two special cases. In Section 4.3.3,

we considered moving breathers in lattices with a symmetric interaction poten-

tial, in which case an ellipticity criterion for the wavevector was found. Also,

in Section 4.3.5, we considered lattices with an asymmetric potential, in which

case a reduction could be performed only for stationary breathers. We used

formulae for soliton solutions of the NLS equation derived in Section 3.4.2 to

generate leading-order forms for breather solutions in both cases. Although

the theoretical methods used for the square lattice of Chapter 3 and the hexag-

onal lattice are similar, several important differences emerge in the course of

the analysis. For example, we find that the higher-order correction term G2 is

nonzero in hexagonal lattices with an asymmetric potential, unlike in square

lattices, where G2 is zero. Similarly, we found that the anomalous dispersion

regime corresponds to a different region of (a, b)-parameter space.

We also presented asymptotic estimates for the breather energy in Sections

4.3.3 and 4.3.5. As expected, we found a minimum energy required to create

breathers in the hexagonal lattice. The threshold energy for moving breathers

is smaller than that required for stationary breathers, becoming vanishingly

small near the boundary of the elliptic domain.

In Section 4.4, we extended the analysis to fifth-order to derive a higher-

order equation which correctly describes the evolution of the breather enve-

lope. We obtained a generalised NLS equation (4.66) with known stabilising

terms. This equation is slightly simpler than the corresponding equation (3.55)

obtained for the SETL. In particular, the higher-order dispersive terms in (4.66)

are isotropic, reflecting the hexagonal rotational symmetry of the lattice. Also,

we found that the higher-order correction term H3 is zero, unlike for the square

lattice, whereH3 is nonzero. The stability properties of (4.66) can be established

rigorously using methods such as those outlined in Sections 3.5 and 3.8. From
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our fifth-order analysis, we determined regions of parameter space in which

we expect to find breather solutions. These results are tested and supported by

numerical simulation of the lattice, presented in Section 4.5.

In Section 4.5, we showed that the hexagonal FPU lattice supports both

long-lived stationary and moving breathers. On the whole, the breather pro-

files change very little over time, and only a small amount of energy is shed

as the breathers propagate. This is true for lattices with symmetric as well as

asymmetric interaction potentials. We have successfully propagated long-lived

breathers moving in directions which are not axes of symmetry of the lattice

(for instance, Ψ = 130◦). This suggests that there is no restriction upon the an-

gle of travel Ψ, in contrast to the observations reported by Marin et al. [89, 90]

for two-component lattices (see Section 3.1).

A shortened version of the work in this chapter is presented in Butt & Wattis

[25].



Chapter 5

Conclusions

In this thesis, we have discussed discrete breathers, that is, spatially lo-

calised time-periodic excitations in translationally invariant lattices. In Chapter 1,

we described how the paired effects of nonlinearity and discreteness allow dis-

crete breathers to occur and remain stable against decay though phonon reso-

nances. Breathers occur in a wide range of lattice models, since only relatively

weak conditions are required for their existence. The existence of (continuum)

breather solutions of partial differential equations is quite rare in comparison.

Discrete breathers have attracted a great deal of interest because of their ability

to focus or localise vibrational energy. It is thought that breathers act as agents

of energy storage and transfer in a broad range of physical settings.

A large body of literature is concerned with the existence and properties

of breathers in different lattices. In Chapter 1, we reviewed several seminal

papers on discrete breathers, for instance, those which establish existence and

stability rigorously. We discussed current active areas of research, concerned

with, for example, moving breathers, and the connection with band-edge plane

waves. We also described several recent experiments in which breathers have

been observed directly.

In Section 1.7, we reviewed several analytic methods used to investigate

properties of discrete breathers in lattices. We have used the semi-discrete

multiple-scale method (due to Remoissenet [102]) extensively throughout this

182
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thesis. The validity of this method is proved by Giannoulis & Mielke [61, 62].

In Chapter 2, we considered an FPU chain for which the interaction po-

tential is given by a quartic polynomial. We reduced the lattice equation to

a nonlinear Schrödinger (NLS) equation for the breather envelope. From this

NLS equation, we determined the conditions for which stationary and moving

breathers exist in the FPU chain. For stationary breathers, we recover James’s

inequality 3b > 4a2, and for moving breathers, we obtained a generalised ver-

sion of this inequality.

When the coefficient of the cubic term in the potential is nonzero, we found

a critical wavenumber pmin below which breathers cease to exist. This also led

an upper bound for the velocity of breathers in the FPU chain, which is lower

than the speed of sound. We presented simulations of breathers in the chain,

and verified the existence inequality by finding breathers in the appropriate re-

gions of parameter space. When the interaction potential includes a cubic term,

we observed that breather solutions widen and diverge as the wavenumber

approaches the critical wavenumber pmin.

In Section 2.4, we showed that the symmetric FPU chain (which has no cubic

component in the potential) supports classical monotone kinks only above a

critical amplitude q(c)
∞ . It also supports waveforms which are combinations of a

breather and a kink (breathing-kinks). We found that the kink amplitude q∞ of

breathing-kinks lies in the range 0 < q∞ < 2q
(c)
∞ , and depends upon the relative

magnitudes of p and ε. This is summarised by equation (2.79). When p is much

smaller than ε, the kink amplitude is larger than that of the breather. When

p = O(1) (that is, when p is large compared to ε), the breather amplitude is

larger than that of the kink. We determined a region of (ε, p)-parameter space

where both breather and kink are of comparable size; this is where breathing-

kinks are observed. Numerical simulations showed that breathing-kinks are

long-lived modes. They propagate as travelling waves (as expected), moving

with unit speed. Lastly, we also explained some of the differences between our

approach and that used by Flytzanis et al. [57], who consider a similar problem.
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In Chapter 3 we applied the semi-discrete multiple-scale method to a two

dimensional FPU lattice with square (C4) symmetry. We were able to reduce

the lattice equations to a two-dimensional NLS equation with cubic nonlinear-

ity only for two cases. Namely, for lattices with a symmetric potential, in which

case the reduction was possible even for moving breathers. This led to an el-

lipticity criterion for the wavenumbers of the carrier wave. Secondly, we also

considered lattices with an asymmetric potential, for which we found that the

reduction to an NLS equation could be performed only for stationary breathers.

In Section 3.4, we reviewed the phenomenon of blow-up in depth, and con-

cluded that a third-order analysis of the two-dimensional FPU lattice is insuf-

ficient. The cubic NLS equation supports a family of highly unstable Townes

solitons which either blow-up or disperse when perturbed. Hence, this equa-

tion does not fully capture the true dynamics of the FPU lattice, in which we

would not expect amplitudes to diverge. In Section 3.4.3, we explained that

higher-order effects moderate blow-up, resulting in stable solitons. Hence, for

lattice models such as ours, the effects of higher-order dispersion and nonlin-

earity must be taken into account. Acting on this, we derived a generalised

fifth-order NLS equation (3.55) which includes various perturbing terms, some

of which are known to be stabilising. Other perturbing terms (as far as we are

aware) have not yet been studied. A rigorous analysis of (3.55) is left for future

work.

We supplemented our analytic work with numerical simulations, which

showed that the two-dimensional FPU lattice supports long-lived stationary

and moving breathers. These are robust structures, and do not distort or shed

much energy as they evolve. We were also able to simulate breathers moving

in any direction in the lattice. This stands in contrast to the numerical work

of Marin et al. [89, 90], who found that breathers can move only along lines of

symmetry of two-component lattices.

In Section 3.6, we derived estimates for the energy of breathers, and found

that the breather energy does not go to zero with the amplitude. In other words,
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we found a threshold energy, below which breathers cannot exist, confirming

the results of Flach et al. [56] and Kastner [71]. Surprisingly, we found that

the energy threshold for moving breathers is smaller than that for stationary

breathers, and becomes vanishingly small near the boundary of the elliptic do-

main.

In Chapter 4, we considered a two-dimensional lattice with hexagonal (C6)

rotational symmetry. We expected the different rotational symmetry properties

of the lattice to result in a system of equations of greater structural simplicity

than that obtained for the square lattice. We were able to reduce the hexag-

onal lattice equations to a two-dimensional cubic NLS equation for the same

two cases as before, though we obtained significantly different results for the

hexagonal lattice. In particular, we found that for asymmetric potentials, the

higher-order correction termG2 is nonzero for the hexagonal lattice, whereasG2

is zero for the square lattice. The region of (a, b)-parameter space correspond-

ing to the anomalous dispersion regime is also different for the hexagonal and

square lattices.

We extended the analysis to fifth-order, and derived a generalised NLS equa-

tion (4.66) very similar to the one obtained for the square lattice. The two differ

in that the dispersive terms in (4.66) are isotropic, and also the H3 correction

term is zero (unlike the square lattice, where it is nonzero).

Our numerical simulations of the hexagonal lattice suggest that long-lived

stationary and moving breather modes are supported by the system. Again,

we were able to propagate breathers moving in directions other than axes of

symmetry of the lattice. Also, we obtained estimates for the breather energy,

and found a minimum threshold requirement for the creation of breathers as

expected.

In the course of this thesis, we have identified several problems which re-

quire further work. These include the determination of the stability properties
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of the generalised NLS equations (3.55) and (4.66) derived for the SETL and

HETL respectively. As we discussed in Section 3.4.3, if a variational formu-

lation for these equations exists (we suspect that one does, see Zakharov &

Kuznetsov [141]), then Pohožaev’s method of constrained minimisation is ap-

plicable. On the other hand, the modulation theory of Fibich & Papanicolaou

[46, 47] is perhaps better suited for equations of this complexity.

There are also other problems that could be pursued in addition. An ob-

vious candidate for further study is a two-dimensional FPU lattice with trian-

gular (C3) rotational symmetry, as shown in Figure 4.2. Bearing in mind the

results of Chapter 3 and Chapter 4, one would expect to find a higher-order

generalised NLS equation similar to (3.55) and (4.66), with perhaps different

dispersive terms.

All of the two-dimensional lattices that we have considered in this thesis

have been scalar (or one-component) electrical networks, namely, lattices for

which there is one degree of freedom at each lattice site. We could consider two-

dimensional mechanical spring-mass lattices, for which there are two degrees of

freedom at each lattice site (assuming that vibrations are restricted to the lattice

plane). We describe such a lattice in Appendix A, where we have outlined

a preliminary analysis using the semi-discrete multiple-scale method. Since

this is a two-component lattice (that is, there are two unknowns at each site),

we obtain coupled systems of equations for the leading-order horizontal and

vertical displacements of each particle. Naturally, a similar analysis of two-

dimensional spring-mass lattices with hexagonal or triangular symmetry is also

possible. Bearing in mind our results for the SETL and HETL, we would expect

the resulting systems of equations for hexagonal and triangular spring-mass

lattices to be similar to those obtained for the square lattice (A.11) described in

Appendix A.

As an intermediate problem, we could consider a one-dimensional analogue

of (A.11), namely a spring-mass chain with transverse displacements (see for

example, Cadet [27, 28]), unlike Chapter 2, where we considered longitudinal
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disturbances only. This would lead to a coupled system of one-dimensional

NLS equations for the horizontal and vertical displacements of each particle. In

this way, we would avoid the blow-up properties associated with two-dimensional

NLS equations. We expect that such a system would provide insights into the

two-dimensional spring-mass lattice (A.11) of Appendix A.

We could also apply similar analytic methods to three-dimensional lattices.

In this case, we would expect the lattice equations to reduce to a three-dimensional

NLS equation at third-order. As discussed in Section 3.4, this also exhibits blow-

up. Unlike the two-dimensional (critical) NLS equation, which is finely bal-

anced between nonlinear focusing and dispersive effects, the nonlinear focus-

ing effects dominate when the dimensionality is greater than two. Hence, we

suspect that it would be more difficult to find stabilising terms by extending the

analysis of a three-dimensional lattice to higher order.



Appendix A

A two-dimensional spring-mass

system

In Chapters 3 and 4, we considered small amplitude breathers in differ-

ent two-dimensional electrical networks, with square and hexagonal rotational

symmetry. These are examples of scalar lattices, where there is one degree of

freedom at each lattice site.

Here, we consider small amplitude breathers in a two-dimensional spring-

mass lattice with square symmetry, depicted in Figure A.1. This comprises a re-

peating arrangement of identical particles of unit mass, connected by identical

nonlinear springs of natural length h. As well as relative FPU-type interactions,

we also assume that each particle experiences a nonlinear onsite potential. At

equilibrium, the particles are spaced regularly in both the horizontal and ver-

tical directions, with all of the springs unextended. Vibrations are restricted

to the plane of the lattice, and hence there are two-degrees of freedom at each

lattice site, making this model considerably more complicated than the scalar

one-component lattices analysed in Chapter 3 and 4.

We select an arbitrary site to be the site (0, 0), and the remaining sites are

labelled using the lattice basis vectors i = [1, 0]T and j = [0, 1]T , as in Chapter 3.

The particle located at site (m,n) is labelled Pm,n. At general time t, particle

Pm,n is displaced from its equilibrium position, as shown in Figure A.2. We

188



A.I. DERIVATION OF MODEL EQUATIONS 189

m m + 1 m + 2 m + 3

n + 3

n + 2

n + 1

n

h

h

Figure A.1: A two-dimensional square spring-mass lattice.

denote the displacement of particle Pm,n from its equilibrium position at time t

by (um,n(t), vm,n(t)).

A.I Derivation of model equations

First, we derive the Hamiltonian (total energy) of the lattice. We assume that

the elastic potential energy Vs stored by each spring is given by

Vs(φ) = 1
2
φ2 + 1

3
aφ3 + 1

4
bφ4, (A.1)

where φ is the extension of the spring (see Section 2.2.1). The onsite potential Vo

experienced by each particle has the form

Vo(r) = 1
2

Ω2r2 + 1
4
λr4, (A.2)
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um,n(t)

vm,n(t)

Pm,n

Figure A.2: Particle Pm,n at general time t.

where r =
√
u2
m,n + v2

m,n is the magnitude of the displacement of each particle

from its equilibrium position (see Figure A.2), and Ω and λ are constants.

The total energy of the system H is given by the sum of the kinetic energy

of every particle, as well as the energy due to the springs and onsite potential.

Taking care to avoid repeat counting, the energy of the spring-mass lattice is

therefore

H =
∑

m,n

1
2
u̇2
m,n + 1

2
v̇2
m,n + Vo

(√
u2
m,n + v2

m,n

)

+ Vs (‖(um+1,n, vm+1,n) − (um,n, vm,n)‖)

+ Vs (‖(um,n+1, vm,n+1) − (um,n, vm,n)‖) , (A.3)

where ‖·‖ denotes distance. Also in (A.3), the second and third lines of the

summand represent the potential energy of the springs which connect particle

Pm,n to particles Pm+1,n and Pm,n+1 respectively. We derive an expression for the

total energy H by calculating each of the terms in (A.3) explicitly.

Firstly, we calculate the energy of the spring which connects particle Pm,n to

particle Pm+1,n. This spring lies horizontally in the plane of the lattice, to the

right of particle Pm,n, as shown in Figure A.3. The particles have been omitted

for the purpose of clarity. At equilibrium, this spring is of total length h, as

shown in Figure A.3(a). At later time t, the spring occupies the general position
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shown in Figure A.3(b).

(a) At equilibrium.

Pm,n Pm+1,n

h

(b) At later time t.

um,n

vm,n

h + um+1,n

vm+1,n

Figure A.3: Spring connecting particles Pm,n and Pm+1,n.

The overall extension of this spring at time t, denoted φh(t), is therefore

φh(t) =
[
(h+ um+1,n(t) − um,n(t))

2 + (vm+1,n(t) − vm,n(t))
2
] 1

2 − h. (A.4)

Equivalently, denoting um+1,n(t) − um,n(t) and vm+1,n(t) − vm,n(t) by δu(t) and

δv(t) respectively, (A.4) can be rewritten as

φh(t) =
[
(h+ δu)2 + δv2

] 1

2 − h. (A.5)

The presence of the radical in (A.5) makes further calculations extremely cum-

bersome. Since we are interested only in small amplitude oscillations, we as-

sume that δu/h and δv/h are small, and of size O(ε). Hence, we expand the

expression (A.5) for the extension φh(t) using the Binomial theorem. We aim to

reduce the governing equations of motion to a nonlinear Schrödinger system at

third-order in ε, and so we retain terms up to fourth-order in the expansion for

φh(t)/h, giving

φh
h

=
δu

h
+
δv2

2h2
− δuδv2

2h3
+
δu2δv2

2h4
− δv4

8h4
+ O(ε5). (A.6)

Substituting (A.6) into (A.1) gives the elastic potential energy stored in the hor-

izontal spring depicted in Figure A.3. We denote the energy of this spring Vh,
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where

Vh =

(
δu2

2
+
δuδv2

2h
+
δv4

8h2
− δu2δv2

2h2

)
+ a

(
δu3

3
+
δu2δv2

2h

)
+ b

(
δu4

4

)
+ O(ε5).

(A.7)

In an identical manner, we find that the extension in the spring which con-

nects particle Pm,n to particle Pm,n+1 (lying vertically in the plane of the lattice)

is given by

φv(t) =
[
(h+ ∆v)2 + ∆u2

] 1

2 − h, (A.8)

where ∆u(t) = um,n+1(t) − um,n(t) and ∆v(t) = vm,n+1(t) − vm,n(t). Expanding

the expression (A.8) for the extension φv(t) and retaining terms to fourth-order

gives
φv
h

=
∆v

h
+

∆u2

2h2
− ∆v∆u2

2h3
+

∆v2∆u2

2h4
− ∆u4

8h4
+ O(ε5). (A.9)

Substituting the expansion for the extension (A.9) into (A.1) gives the elastic po-

tential energy Vv stored in the spring connecting particle Pm,n to particle Pm,n+1

to fourth-order, where

Vv =

(
∆v2

2
+

∆v∆u2

2h
+

∆u4

8h2
− ∆v2∆u2

2h2

)
+a

(
∆v3

3
+

∆v2∆u2

2h

)
+b

(
∆v4

4

)
+O(ε5).

(A.10)

Using equations (A.7) and (A.10), the Hamiltonian H for the spring-mass

lattice (A.3) is therefore

H =
∑

m,n

1

2
u̇2
m,n +

1

2
v̇2
m,n +

Ω2

2
(u2

m,n + v2
m,n) +

λ

4
(u2

m,n + v2
m,n)

2

+

(
δu2

2
+
δuδv2

2h
+
δv4

8h2
− δu2δv2

2h2

)
+

(
∆v2

2
+

∆v∆u2

2h
+

∆u4

8h2
− ∆v2∆u2

2h2

)

+ a

(
δu3

3
+
δu2δv2

2h

)
+ a

(
∆v3

3
+

∆v2∆u2

2h

)

+ b

(
δu4

4

)
+ b

(
∆v4

4

)
+ O(ε5), (A.11)

where δu(t), δv(t), ∆u(t) and ∆v(t) have been defined immediately above.

Applying Hamilton’s equations to (A.11) gives the equations of motion for
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the spring-mass lattice,

üm,n = −Ω2um,n − λ(u2
m,n + v2

m,n)um,n + (um+1,n − 2um,n + um−1,n)

+
1

2h

[
(vm+1,n − vm,n)

2 − (vm,n − vm−1,n)
2
]

+
1

h
[(vm,n+1 − vm,n)(um,n+1 − um,n) − (vm,n − vm,n−1)(um,n − um,n−1)]

+
1

2h2

[
(um,n+1 − um,n)

3 − (um,n − um,n−1)
3
]

+ a
[
(um+1,n − um,n)

2 − (um,n − um−1,n)
2
]

+
ah− 1

h2

[
(vm+1,n − vm,n)

2(um+1,n − um,n) − (vm,n − vm−1,n)
2(um,n − um−1,n)

]

+
ah− 1

h2

[
(vm,n+1 − vm,n)

2(um,n+1 − um,n) − (vm,n − vm,n−1)
2(um,n − um,n−1)

]

+ b
[
(um+1,n − um,n)

3 − (um,n − um−1,n)
3
]
, (A.12)

v̈m,n = −Ω2vm,n − λ(u2
m,n + v2

m,n)vm,n + (vm,n+1 − 2vm,n + vm,n−1)

+
1

2h

[
(um,n+1 − um,n)

2 − (um,n − um,n−1)
2
]

+
1

h
[(vm+1,n − vm,n)(um+1,n − um,n) − (vm,n − vm−1,n)(um,n − um−1,n)]

+
1

2h2

[
(vm+1,n − vm,n)

3 − (vm,n − vm−1,n)
3
]

+ a
[
(vm,n+1 − vm,n)

2 − (vm,n − vm,n−1)
2
]

+
ah− 1

h2

[
(um,n+1 − um,n)

2(vm,n+1 − vm,n) − (um,n − um,n−1)
2(vm,n − vm,n−1)

]

+
ah− 1

h2

[
(um+1,n − um,n)

2(vm+1,n − vm,n) − (um,n − um−1,n)
2(vm,n − vm−1,n)

]

+ b
[
(vm,n+1 − vm,n)

3 − (vm,n − vm,n−1)
3
]
. (A.13)

A.II Asymptotic analysis

We seek small amplitude breather solutions of (A.12) and (A.13), and apply

the semi-discrete multiple-scale method. We introduce new variables defined

by

X = εm, Y = εn, τ = εt and T = ε2t, (A.14)
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and look for solutions for um,n(t) and vm,n(t) of the form

um,n(t) = εeiψF (X,Y, τ, T ) + ε2G0(X,Y, τ, T ) + ε2eiψG1(X,Y, τ, T )

+ε2e2iψG2(X,Y, τ, T ) + ε3H0(X,Y, τ, T ) + ε3eiψH1(X,Y, τ, T )

+ε3e2iψH2(X,Y, τ, T ) + ε3e3iψH3(X,Y, τ, T ) + · · · + c.c., (A.15)

vm,n(t) = εeiψP (X,Y, τ, T ) + ε2Q0(X,Y, τ, T ) + ε2eiψQ1(X,Y, τ, T )

+ε2e2iψQ2(X,Y, τ, T ) + ε3R0(X,Y, τ, T ) + ε3eiψR1(X,Y, τ, T )

+ε3e2iψR2(X,Y, τ, T ) + ε3e3iψR3(X,Y, τ, T ) + · · · + c.c., (A.16)

where the phase ψ = km + ln + ωt. We substitute the ansatz (A.15) and (A.16)

into the governing equations (A.12) and (A.13), and equate coefficients of each

harmonic frequency at each order of ε. This yields the following sets of equa-

tions:

O(εeiψ):

ω2F = 4 sin2

(
k

2

)
F + Ω2F, (A.17)

O(ε2):

Ω2G0 = 0 ⇒ G0 = 0, (A.18)

O(ε2eiψ):

ωFτ = FX sin k, (A.19)

O(ε2e2iψ):

4ω2G2 =4 sin2(k)G2 + Ω2G2

+
8i

h
sin3

(
k

2

)
cos

(
k

2

)[
P 2 + 2haF 2

]

+
16i

h
sin3

(
l

2

)
cos

(
l

2

)
FP, (A.20)
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O(ε3eiψ):

2iωFT + Fττ + 2iωG1τ = cos(k)FXX + 2i sin(k)G1X

+
16i

h
sin3

(
k

2

)
cos

(
k

2

)[
PQ2 + 2ahFG2

]

+
16i

h
sin3

(
l

2

)
cos

(
l

2

)[
PG2 + FQ2

]

−16

h2
sin4

(
k

2

)[
(ah− 1)(2FPP + P 2F ) + 3bh2F 2F

]

− 8

h2
sin4

(
l

2

)[
2(ah− 1)(2FPP + P 2F ) + 3F 2F

]

−3λF 2F + λ(2FPP + P 2F ). (A.21)

The second set of equations is

O(εeiψ):

ω2P = 4 sin2

(
l

2

)
P + Ω2P, (A.22)

O(ε2):

Ω2Q0 = 0 ⇒ Q0 = 0, (A.23)

O(ε2eiψ):

ωPτ = PY sin l, (A.24)

O(ε2e2iψ):

4ω2Q2 = 4 sin2(l)Q2 + Ω2Q2

+
8i

h
sin3

(
l

2

)
cos

(
l

2

)[
F 2 + 2ahP 2

]

+
16i

h
sin3

(
k

2

)
cos

(
k

2

)
PF, (A.25)
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O(ε3eiψ):

2iωPT + Pττ + 2iωQ1τ = cos(l)PY Y + 2i sin(l)Q1Y

+
16i

h
sin3

(
l

2

)
cos

(
l

2

)[
FG2 + 2ahPQ2

]

+
16i

h
sin3

(
k

2

)
cos

(
k

2

)[
FQ2 + PG2

]

−16

h2
sin4

(
l

2

)[
(ah− 1)(2PFF + F 2P ) + 3bh2P 2P

]

− 8

h2
sin4

(
k

2

)[
2(ah− 1)(2PFF + F 2P ) + 3P 2P

]

−3λP 2P + λ(2PFF + F 2P ). (A.26)

We do not present a full analysis of the above system of equations here.

However, we note these equations are similar in structure to those obtained for

the SETL and HETL (see Chapters 3 and 4). Both equations (A.17) and (A.22)

give a dispersion relation for the system, leading to a contradiction except in

two cases. In the first case, one of F or P is zero, and we may take P = 0 without

loss of generality. Then (A.21) leads to an NLS equation in F . However, we note

that (A.21) contains only derivatives of the form FXX , with no corresponding

FY Y term (unlike the corresponding equations (3.22) and (4.21) obtained for

the SETL and HETL respectively). Hence (A.21) admits only solutions that are

localised in one direction (“planar solitons”), but not in both. It could be that

the scalings chosen above for the variables X , Y , um,n and vm,n are incorrect,

and that different scalings are applicable.

In the second case, a contradiction in equations (A.17) and (A.22) can be

avoided by setting k = l, in which case both F and P may be nonzero. Equa-

tions (A.21) and (A.26) lead to a pair of coupled NLS equations for F and P .

Again, we note that (A.26) includes terms of the form PY Y , and no terms of the

form PXX , leading to solutions which are localised in the Y direction alone. In

addition, the stability properties of this pair of coupled two-dimensional NLS

equations are unknown to us, though we note that the results of Bergé et al. [16]

could prove relevant.

Hence, equations (A.12) and (A.13) require more detailed study, with scal-
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ings more general than those used in equations (A.14)–(A.16). Also, a higher-

order analysis of the type done for the SETL and HETL (to determine soliton

stability) would prove considerably more complicated for this spring-mass sys-

tem. This is left for future work.



Appendix B

Approximations to Townes solitons

B.I The critical NLS equation

In this section, using the Rayleigh-Ritz variational method (see Chapter 8.3

of Spencer et al. [118]), we determine approximations to soliton solutions of the

CNLS equation (see equation (3.39) of Section 3.4.2)

iFT +D∇2F +B|F |2F = 0, (B.1)

where F (ξ, η, T ) ∈ C, and the operator ∇2 = ∂ξξ + ∂ηη. We look for time-

harmonic radially symmetric solutions of (B.1) of the form F (x, T ) = eiλTφ(r),

where r = |x| =
√
ξ2 + η2 and φ(r) ∈ R. Substituting for F in (B.1) leads to the

real nonlinear eigenvalue problem

− λφ+D∇2φ+Bφ3 = 0. (B.2)

As explained in Section 3.4.3, equation (B.2) is the Euler-Lagrange equation cor-

responding to the action integral S(φ) = H(φ) + λN (φ), which for (B.1) is

S(φ) =

∫
1
2
λ|φ|2 + 1

2
D|∇φ|2 − 1

4
B|φ|4d2r. (B.3)

We use a radially symmetric trial solution of the form φ(r) = α sech(βr), where

α and β are parameters to be determined and r =
√
ξ2 + η2. Substituting this

form for φ into (B.3), and evaluating the resulting integral (using Maple to eval-

uate a few of the trickier integrals) gives an expression for S in terms of the

198
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variational parameters α and β. After much simplification, it turns out that

S(α, β) =
D(1 + 2ln2)

12
α2 +

1

24

α2

β2

[
12λln2 −B(4ln2 − 1)α2

]
. (B.4)

The soliton solution of (B.1) corresponds to a stationary point of the action S,

and therefore the parameters α and β are determined by the equations

∂S
∂α

= 0,
∂S
∂β

= 0. (B.5)

The two equalities in (B.5) form a pair of nonlinear simultaneous equations in α

and β, which must be solved. After further simplification, it emerges that both

equations are in fact linear in α2 and β2, and hence solving them is straight-

forward. Differentiating S with respect to β (the right-hand equation in (B.5))

results in an equation in α2 alone, which can be solved to give α. The left-hand

equation in (B.5) gives a linear equation in β2 and α2, which is then easily solved

to give β. In this way, the variational parameters α and β are found in terms of

the parameters that occur in the nonlinear eigenvalue problem (B.2), λ, B and

D. We have

α =

√
12λln2

B(4ln2 − 1)
and β =

√
6λln2

D(2ln2 + 1)
. (B.6)

An approximate form for the Townes soliton solution of (B.1) is therefore

F = α exp(iλT )sech(βr)

=

√
12λ log 2

B(4 log 2 − 1)
exp(iλT ) sech

(√
6λ log 2

D(2 log 2 + 1)

√
ξ2 + η2

)
. (B.7)

B.II A higher-order NLS equation

In this section, we use the Rayleigh-Ritz procedure to obtain approximations

to soliton solutions of the higher-order NLS equation studied by Davydova et

al. [38] (see equation (3.44) of Section 3.4.3),

iFT +D∇2F +B|F |2F + P∇4F +K|F |4F = 0, (B.8)
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where the operator ∇2 is defined above. Seeking solutions of (B.8) of the form

F (x, T ) = eiλTψ(r) as above leads to the nonlinear eigenvalue equation

− λψ +D∇2ψ +Bψ3 + P∇4ψ +Kψ5 = 0. (B.9)

The action integral E(ψ) = H(ψ) + λN (ψ) corresponding to (B.9) is

E(ψ) =

∫
1
2
λ|ψ|2 + 1

2
D|∇ψ|2 − 1

4
B|ψ|4 − 1

2
P |∇2ψ|2 − 1

6
K|ψ|6d2r. (B.10)

Using a trial solution of the form ψ(r) = α̃ sech(β̃r), and substituting into (B.10)

gives the action integral E in terms of the variational parameters α̃ and β̃,

E(α̃, β̃) =
D(1 + 2ln2)

12
α̃2 − P

30
[15I1 + 7ln2 − 1] α̃2β̃2

+
1

360

α̃2

β̃2

[
180λln2 − 15B(4ln2 − 1)α̃2 −K(32ln2 − 11)α̃4

]
, (B.11)

where I1 =
∫∞
0
u−1sech2(u) tanh2(u) du ≈ 0.384928. The soliton solution of (B.8)

corresponds to an extremum of the action E(α̃, β̃) given by (B.11). Hence the

parameters α̃ and β̃ are determined by the equations

∂E
∂α̃

= 0,
∂E
∂β̃

= 0. (B.12)

The resulting simultaneous equations for α̃ and β̃ given by (B.12) are harder to

solve than before, since both equations are nonlinear in α̃2 and β̃2.

However, when P and K in (B.8) are small compared to B and D, we ex-

pect the variational parameters generated from (B.12) to be close the parame-

ters given by (B.6). This applies to the nonlinear Schrödinger equation (3.55)

derived in Section 3.5, where we see that B and D are O(1), and P and K are

O(ε2). We rewrite P = ε2P̂ and K = ε2K̂ where P̂ and K̂ are both O(1). Hence

we assume perturbation expansions for solutions of (B.12), where α̃2 and β̃2

assume the form

α̃2 ∼ α2 + α2
1ε

2 + α2
2ε

4 + α2
3ε

6 + · · · , (B.13)

β̃2 ∼ β2 + β2
1ε

2 + β2
2ε

4 + β2
3ε

6 + · · · , (B.14)

where α and β are the variational parameters generated for the CNLS, given

by (B.6). Substituting the expansions (B.13) and (B.14) into the simultaneous
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equations (B.12), we determine the first correction term for solutions of α̃2 and

β̃2, finding that

α̃2 = α2 + α2
1ε

2 + O(ε4), (B.15)

β̃2 = β2 + β2
1ε

2 + O(ε4), (B.16)

where

α2
1 =

12(ln2)2 [15I1 + (7ln2 − 1)]

(1 + 2ln2)2(4ln2 − 1)

λ2P̂

D2B
− 4(ln2)2(32ln2 − 11)

5(4ln2 − 1)3

λ2K̂

B3
, (B.17)

β2
1 =

18(ln2)2 [15I1 + (7ln2 − 1)]

(1 + 2ln2)3

λ2P̂

D3
+

18(ln2)2(32ln2 − 11)

5(1 + 2ln2)(4ln2 − 1)2

λ2K̂

DB2
. (B.18)
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