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ABSTRACT 
 

On an international basis, coal is used extensively for power generation and this is 

likely to remain the case well into this century.  Although many standard tests are 

currently used to assess and select coals for combustion purposes, these have 

proven to be unable to predict coal burnout behaviour.  For a power station based 

on coal combustion, a clear knowledge and understanding of the coals offered in 

the market is essential to achieve optimum conversions and to meet environmental 

constraints.  There is, therefore, a need to develop suitable and efficient methods 

and techniques to characterise coals so that the combustion plant performance can 

be predicted more effectively. 

 

In the present work, a series of experiments were conducted to characterise chars 

obtained from a Drop Tube Furnace (DTF) and a 1 MW combustion rig from 

which the effect of particle size distribution on coal reactions during 

devolatilisation and combustion of pulverised coal have been studied.  The effect 

of temperature on coal pyrolysis in the DTF was also assessed.  The coals used in 

this study were mainly from South America whose coals are widely traded 

internationally, and were characterised by standard tests and a novel automated 

image analysis technique called the Reactivity Assessment Program (RAP).  The 

morphology of the chars were examined manually and using an automated image 

analysis technique and thermogravimetric analysis. 

 

The aim of this study was to provide a better understanding of the RAP and the 

automatic image analysis of chars, particularly related to South American coals.  

The results indicated that temperature significantly influences the coal behaviour 

during devolatilisation, and hence, the reactivity and morphology of the char 

generated.  The structure and morphology of the char were found to play a 

significant role in burnout of the residual char, with a significant effect of coal 

type and particle size. 

Multiple linear regressions of char properties, such as intrinsic reactivity, 
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 xvi

morphology, and burnout, against particle size and maceral content of the feed 

coal were performed.  The results showed that there was only a good correlation 

of high temperature volatiles with macerals.  Subsequently when rank was 

included in the regressions, the correlation remarkably improved in all cases.  

However, when a novel approach which involved the correlations of char 

properties with bands of the grey scale histogram (RAP profile) of the coals was 

performed, much better correlations were achieved.  The initial improvement is 

related, evidently, to the inclusion of the variation of vitrinite structure with rank.  

The grey scale histogram of coal takes this stage further by including the variation 

in reflectance for all the macerals.  Therefore, the results indicate that the RAP 

analysis provides a simple and objective technique to predict the combustion 

behaviour of coals. 
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CHAPTER 1 INTRODUCTION 
 

1.1 The Origins of Coal 
 

Coal is the altered remains of prehistoric vegetation that originally accumulated as 

plant material in swamps or river deltas.  With burial, caused by movements of the 

earth’s crust, the plant material underwent physical and chemical changes and was 

further transformed into coal.  Since coal-forming plant growth has occurred 

throughout the last 400 million years, a wide variety of coal types exist 

corresponding to various stages of coalification.  Initially, the peat, the precursor 

of coal, was converted into lignite or brown coal (coals with low organic 

maturity).  Over many more millions of years, additional changes in the lignite 

progressively increased its maturity and transformed it into the range known as 

sub-bituminous coals.  As this process continued, these coals became harder and 

more mature, at which point they are classified as bituminous or hard coals.  

Under the right conditions, the progressive increase in the organic maturity 

continued ultimately to form anthracite (World Coal Institute, 2000). 

 

The degree of coalification undergone by a coal, as it matures from peat to 

anthracite, has a remarkable effect on its physical and chemical properties, and is 

referred to as the rank of the coal.  Low rank coals, such as lignite and sub-

bituminous coals, are typically softer, friable materials with a dull, earthy 

appearance and are characterised by high moisture levels and a low carbon 

content, and hence a low energy content.  Higher rank coals are typically harder 

and stronger and often have a black vitreous lustre.  Increasing rank is 

accompanied by an increase in the carbon and energy contents and a decrease in 

the inherent moisture content (Smoot, 1993). 
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Coal is not a homogenous substance but contains various discrete entities named 

macerals (Stopes, 1935).  Macerals are analogous to the minerals of inorganic 

rocks and are divided into three main groups known as vitrinite, inertinite and 

liptinite.  Each group exhibits its own physical and chemical properties and they 

vary with increasing rank.  There is general agreement about the origin and 

evolution of the different maceral groups and also about the variations in their 

chemical composition brought about by their distinct genesis.  Despite the clear 

differences among these microscopic components, the behaviour of each maceral 

during any of the coal conversion processes is still a matter of discussion.  The 

maceral composition of a coal can be estimated by performing a microscopic 

identification and this is known as petrographic analysis.  This analysis is often 

carried out in order to distinguish different coals. 

 

Efforts have been made to classify the vast number of coals into broad 

classification systems, and to relate similarities among other coals to their 

potential behaviour in coal conversion processes.  The most common of these is 

the ASTM (American Society of Testing Materials) Classification, which is based 

upon fixed carbon and heating value of the coals.  This is discussed in more detail 

in the following chapter, section 2.2. 

 

Coal is the most abundant, safe and secure fossil fuel worldwide.  It has been 

estimated that, in 1996, there were around one thousand billion tonnes of total 

coal reserves economically accessible (BP Amoco plc, 2000).  These reserves are 

geographically spread over all continents and are currently mined in more than 50 

countries.  In particular, the largest reserves occur in North America, Eastern 

Europe and Asia.  At current levels of production, coal reserves are forecast to last 

for over 200 years (Smoot, 1993).  Some coal reserves which are not 

economically recoverable under present conditions may become accessible as 

further improvements are made in mining technology.  On an international basis, 

coal is used for combustion for electric power generation and this is likely to 

remain the case well into the century. 
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1.2 Coal Combustion 
 

Coal has been used as an energy source for hundreds of years.  It not only made 

possible the changes of the industrial revolution but also promoted the electric era 

in the last century.  Globally, coal is a competitive fuel for the generation of 

electricity and is at present the major energy source for power generation.  

Current estimates show that around 37% of global electricity is generated from 

coal (World Coal Institute, 2000).  Additionally, significant developments 

continue to be made in improving utilisation efficiencies so that the energy 

generated per unit mass of coal may be increased.  Apart from this, coal is of 

paramount importance in the iron and steel industry and is directly or indirectly 

essential for many aspects of everyday life. 

 

Many standard tests are currently used by power stations to assess and select coal.  

Certain characteristics such as rank, fuel ratio, particle size, maceral content, and 

ash yield have been found to influence the burnout performance of coal.  There 

has been, however, with the increasing trade of thermal coal, a growing concern 

that most of these properties are unable to successfully predict coal combustion 

behaviour.  The international coal market has provided utility operators with a 

wider selection of coals of varying geological origins.  This has led to operational 

problems, particularly in power stations that are accustomed to handle only local 

coals.  In some cases, in order to assess the suitability of a coal, expensive full-

scale tests are required.  There is, therefore, a need to develop internationally 

acceptable methods for assessing coal characteristics so that the combustion plant 

performance can be predicted more effectively. 

 

The maceral composition of coals, along with rank, is one of the characteristics 

that account for the wide range of variability in the physicochemical properties of 

coals.  An understanding of the maceral composition of coals would therefore 

seem to be a useful prerequisite before utilisation of coals in the combustion 

process.  However, there is no clear understanding about the transformation 

undergone by the different macerals when subjected to the conditions typical of 

pulverised fuel (pf) combustion.  In general, liptinite and vitrinite are more 
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reactive and therefore burn more effectively than inertinite (Nandi et al., 1977; 

Smith et al., 1993).  Nevertheless, this is not always the case, and although it is 

useful to obtain the maceral composition of a coal, there are other aspects 

affecting the reactivity of maceral groups such as origin and rank.  As a result, 

maceral content may not successfully predict combustion behaviour. 

 

The main drawback in the use of petrographic analysis in predicting combustion 

performance is that reactivity of the macerals can vary depending on the rank of 

the original coal.  An image analysis technique which takes this problem into 

consideration has been developed at Nottingham (Cloke et al., 1997b).  This 

analysis, known as the Reactivity Assessment Program (RAP), accounts for both 

maceral type and reflectance (expressed on a grey level scale) of the whole coal, 

and assumes that macerals with the same reflectance have the same reactivity.  

Because the effects of rank of all the macerals is taken into account it should be 

possible to assign a grey level threshold and divide the macerals into reactive and 

unreactive fractions.  This technique has been proven to successfully predict the 

burnout potential of coals from different origins (Cloke et al., 1997a & b).  The 

RAP technique has been used in this project to assess the behaviour of some 

South American coals during pyrolysis and burnout. 

 

1.3 Char Formation and Characterisation 
 

Char formation and burnout are typically studied at a laboratory scale to address a 

wide variety of combustion concerns ranging from char reactivity and 

morphology to environmental aspects such as pollution control and ash 

deposition.  Drop Tube Furnace (DTF) and other small-scale furnace systems are 

widely used for this purpose.  These systems are capable of reproducing high 

heating rates, high reaction temperatures, and atmospheres similar to those found 

during combustion in full-scale boilers.  Among the different methods of burning 

coal in power station boilers, only pulverised fuel combustion is considered in this 

research.  A DTF and a 1MW Combustion Test Facility were the main 

combustion apparatus used in this work to produce partially combusted chars. 
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The structure and reactivity of the resultant char are largely consequences of the 

pyrolysis behaviour of the parent coal.  It is generally agreed that intrinsic char 

reactivity decreases with increasing coal rank, particle size, density of the char, 

and content of ‘unreactive’ maceral forms in the char (Carpenter & Skorupska, 

1993).  The nature and structure of the char formed vary with coal rank and type, 

particle size, and operating conditions, such as final temperature, heating rate and 

residence time.  Similarly, the plastic properties of the different coal macerals and 

their degree of association will determine the morphology of chars, i.e., increased 

diameter due to swelling, sphericity, and thickness of walls (Alvarez et al., 1998).  

These properties could have a major influence on the efficiency with which a char 

will be combusted.  The reactivity of the char is an important consideration in 

relation to aspects such as incomplete combustion leading to carbon in fly ash.  

The extent to which loss of this unburnt coal can be minimised will significantly 

affect the economy of the coal combustion process. 

 

It has been proposed that the morphological characteristics of intermediate chars 

which remain after pyrolysis have a greater effect on burnout characteristics in 

comparison with the intrinsic reactivity (Cloke et al., 1997b).  The morphological 

features of these chars can, in turn, be related to the properties of the coal and 

particularly to its maceral composition.  Generally speaking liptinite, and vitrinite 

produce porous cenospheric thin-walled chars (Skorupska et al., 1987; Bend et al., 

1992).  Chars generated from the pyrolysis of inertinite range from porous thick-

walled chars to fused solids, depending on their reflectance, although some 

inertinites have been found to produce reactive chars (Vleeskens & Nandi, 1986).  

A maceral is deemed to be reactive if it exhibits thermoplasticity during pyrolysis 

and char formation, and the type of char generated has thin walls, is fused and 

highly porous. 

 

Classification methods to describe the morphological features of char produced 

after partial combustion of coal have been developed (Jones et al., 1985; Tsai & 

Scaroni, 1987; Lightman & Street, 1968; Bailey et al., 1990).  Study of the char 

types from a wide variety of coals revealed complex char structures that cannot 

easily be accommodated within these classification systems.  The microscopic 
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examination involved in this analysis has proven to be highly subjective and open 

to large degrees of error.  Once again, Lester et al. (1996a) developed an 

automatic technique using image analysis which allows the relative thickness of 

char to be measured and thus provides an indication of combustion reactivity (see 

chapter 3, section 3.5.3).  This image analysis technique is rapid and far more 

objective compared with manual assessments, and, therefore, has been used to 

assess the majority of chars generated throughout this project. 

 

1.4 Aims of the Project 
 

Fundamental understanding of the effect of operating conditions and coal 

properties on the coal reaction behaviour is essential for the development of 

advanced clean coal technologies.  In the present work, a series of experiments 

were conducted to characterise chars obtained from a DTF from which the effect 

of temperature and particle size on coal reactions during devolatilisation and 

combustion have been studied.  The coals selected for these experiments are 

mostly from South America, mainly from Colombia and Venezuela, and were 

chosen owing to their availability, their reasonable combustion potential, and their 

actual or future potential marketing as thermal coals.  The coals were 

characterised by using standard methods, petrographic analysis, and, more 

importantly, the Reactivity Assessment Program.  The morphological nature and 

the intrinsic reactivity of the remaining chars were investigated by means of 

image analysis and thermo-gravimetric analysis respectively. 

 

Coal combustion is hardly ever completed in practical pf combustion systems and 

a small proportion of the fuel is emitted from the boiler as partially burnt char.  

The economy of the combustion process depends heavily on the extent to which 

this loss of unburnt coal can be minimised.  Another study was undertaken in the 

DTF to investigate coal properties which have an impact on burnout, and whether 

they are relevant in predicting coal combustion behaviour.  For this purpose, 

various coals from South America were re-fired in the DTF over a range of 

residence times in order to provide a relative comparison of the combustion rates 

of each coal.  Three size fractions for each coal were used in order to evaluate the 
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effect of particle size in the re-firing process.  Correlations are drawn between 

predicted and actual burnout characteristics with maceral composition, rank and 

reflectance (grey level) of the macerals as determined from the RAP. 

 

The required performance of pulverised fuel milling plants has been largely based 

on the best practically attainable fineness from conventional equipment.  This 

does not necessarily produce the optimal particle size distribution for a particular 

coal.  By taking into consideration the potential improvements in mill product 

quality available through new classification technologies, a recent study in a 

1MW Combustion Test Facility (CTF) was carried out by Powergen, in 

collaboration with Nottingham University.  The primary aim of the combustion 

tests undertaken on the CTF was to quantify the effect of particle size distribution 

on combustion performance.  More specifically, it was intended that the tests 

should assess the improvement in combustion performance that could be achieved 

by retrofitting commercially available “high performance’’ static or dynamic 

classifiers to existing plant.  A coarse size distribution was also tested to assess 

the impact of poor mill maintenance.  These tests were compared with baseline 

results from the coals ground to a specification representative of the currently 

accepted standard for pf fineness (> 70% by mass <75 µm, < 1% by mass > 300 

µm).  A Colombian and a British coal were used and were selected to be 

representative of extremes in fuel characteristics experienced by coal importing 

utilities in Europe. 
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CHAPTER 2 LITERATURE REVIEW 
 

The following review firstly surveys the origins and formation of coal and 

provides information regarding its petrographic composition and classification.  

Secondly, a brief summary of the geology and occurrences of South American 

coals is presented with particular emphasis on Colombian and Venezuelan coals. 

Thirdly, it considers the coal combustion process including its different stages of 

pyrolysis and devolatilisation, and char formation and burnout.  Finally, the 

influence of coal properties and experimental conditions on this process is also 

addressed.  It is anticipated that this review will form a comprehensive 

background for the following chapters. 

 

2.1 Coal Origins and Formation 
 

Coal, one of the most important sources of energy, has been defined from 

different points of view.  It is deemed as a physically heterogeneous fossil fuel 

and chemically complex solid (Tsai, 1982; Grainger and Gibson , 1981; Osborne, 

1988).  It is, geologically, conceived as a rock, a sediment, a conglomerate 

composed primarily of fossilised plant remains named macerals and of inorganic 

crystalline minerals (Davidson, 1980; Van-Krevelen, 1993; Matthias, 1992).  It is 

also defined as a complex colloidal system, an enigma in solid-state physics and 

as an intriguing object for chemical and physical analysis (Van-Krevelen, 1993).  

Coal is not another kind of carbon.  It mainly consists of organic material 

containing carbon, hydrogen and oxygen, together with smaller amount of 

nitrogen, sulphur and some trace elements. 

 

Many theories have been suggested in order to elucidate or explain the formation 

of a coal deposit.  However, it is generally agreed that the organic coal material 

was formed from partially decomposed and subsequently metamorphosed plant 

debris which, under the influence of pressure and temperature, caused by 
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overlying sediments, movements of the earth crust and forces of erosion, 

underwent coalification over a period of up to several hundred million years. 

 

During the coalification process or maturity of the coal there is a gradual increase 

in carbon content of fossil organic material in the plant debris as it becomes 

transformed from peat to lignite and then through the higher ranks of coal to 

anthracite.  The degree of coalification is expressed as the rank of the coal.  

Similarly, the kind and condition of decaying vegetation; the depth; the average 

temperature; the degree of acidity; and the natural movement of the earths crust 

are determining factors of the nature, the quality and the relative position of the 

coal seams, and hence of the type of coal that will finally be formed. 

 

In general terms, the plant debris consisted of trees, ferns, rushes, lycopods, and 

several thousand plant species that have been identified in coal beds.  Similar 

types of plant remains may be found in all types (ranks) of coal but, of course, the 

relative amounts vary considerably.  On this basis, it is not surprising that coal 

differs markedly in composition from one location to another.  Indeed, 

pronounced differences in coals from one particular seam are not uncommon, due 

not only to the wide variety of plant debris that could have formed the precursor 

but also to the many different chemical reactions that can occur during the 

maturation process.  These differences, which could occur at all stages, created 

the dissimilarities in the characteristics of the various coals. 

 

2.2 Coal Classification 
 

Owing to the worldwide occurrence of coal, its great diversity, and different 

potential applications, a great deal of effort has gone over the years into the 

development of systems of classification.  The purpose of any of these 

classification systems is to group similar features together and to distinguish those 

that are not.  Some workers (Van-Krevelen, 1993; Carpenter, 1988) have 

identified two kinds of classification of coals which serve different purposes: 

“scientific” and “commercial”.  Scientific systems deal with origin, constitution 

and basic or fundamental properties.  Commercial systems are concerned with 
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aspects such as market value, utilisation, technological properties and suitability 

for particular end uses.  The majority of the classification systems of coal 

comprise both scientific and commercial features but either of them may be used 

for classification of any world coal. 

 

Coal classification systems are based on two main chemical analyses, ultimate 

and proximate, which provide the percentage of the main chemical elements 

present in coal (carbon, hydrogen, nitrogen, oxygen, total sulphur and chlorine) 

and the relative amounts of moisture, volatile matter, ash and fixed carbon 

respectively.  A number of technological properties of coal such as the calorific 

value, fusibility of coal ash, free swelling index and plasticity of coal, among 

others, have also been introduced as second classification parameters to 

characterise coal in different fields of utilisation. 

 

From the different classification systems proposed so far, the ASTM (American 

Society for Testing of Materials) is the most commonly used.  This system, as 

many others, is hierarchical and is based upon proximate analysis, calorific value 

and agglomerating tendency.  Coals that exhibit a fixed carbon content greater 

than 69%  are classified by their volatile matter and fixed carbon values.  Lower 

rank coals are differentiated according to their calorific value.  The agglomerating 

characteristics are used to differentiate coals of similar rank.  Table 2.1 shows this 

classification system (ASTM D388, 1991). 

 

Nowadays, the ECE (Economic Commission for Europe) Coal Committee is 

working (in close co-operation with the ICCP, the International Committee for 

Coal Petrology) on an international classification of coals which will cover the 

geological aspect of coal resources, coal mining and industrial uses. 

 

2.3 Coal Petrography 
 

The systematic study of coal as an organic sedimentary rock in terms of discrete 

microscopic constituents is the scientific discipline known as coal petrography.  

Its main goal is to look backward and attempt to understand fully how coal was 



CHAPTER 2 LITERATURE REVIEW 

 11

formed.  Petrography is of great importance as it is known that the different 

petrographic constituents of coal may behave differently under various processing 

conditions. 

 
Table 2.1 The ASTM Coal Classification System 
 

Fixed Carbon 
Limits  

Volatile Matter 
Limits  

Gross Calorific 
Valueb Class/Group 

(% dmmfa) (% dmmf) (BTU/Lb) 

Agglomerating 
Character 

 

I. Anthracitic 

1. Meta-anthracite 

2. Anthracite 

3. Semianthracite 

 

 

 

>98 

92-98 

86-92 

 

 

 

<2 

2-8 

8-14 

 

 

… 

… 

… 

Non-

agglomerating 

 

I. Bituminous 

1. Low Volatile 

2. Medium Volatile 

3. High Volatile A 

4. High Volatile B 

5. High Volatile C 

 

 

 

78-80 

69-78 

<69 

… 

… 

 

 

14-22 

22-32 

>31 

… 

… 

 

 

… 

… 

>14000 

1300-14000 

11500-15000 

10500-11500 

 

 

Commonly 

agglomerating 

 

 

 

Agglomerating 

 

 

I. Sub-bituminous 

1. Sub-bituminous A 

2. Sub-bituminous B 

3. Sub-bituminous C 

 

 

 

… 

… 

… 

 

 

 

… 

… 

… 

 

 

 

10500-11500 

9500-10500 

8300-9500 

Non-

agglomerating 

 

I. Lignitic 

1. Lignite A 

2. Lignite B 

 

 

 

… 

… 

 

 

 

… 

… 

 

 

 

6300-8300 

<6300 

Non-

agglomerating 

__________ 
a dmmf= Dry, Mineral Matter-Free Basis; b Moist, Mineral Matter-Free Basis. Moist refers to coal 
containing its natural moisture but not including visible water on the surface of the coal. 
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2.3.1 Coal Macerals 

 

Coal is not a homogenous substance, but contains various discrete organic 

constituents, named macerals by Stopes (1935) to correspond to the minerals of 

inorganic rocks.  The term maceral comes from Latin and means to soften or 

weaken, with or without heat, or to wear away.  This analogy among macerals is 

not a strict one; maceral groups are not crystalline.  They were derived from the 

structure of different plant materials and in different environments during the 

coalification process and they were also altered to various extents by geochemical 

forces after burial.  Consequently, each maceral has specific physical and 

chemical properties and they vary in composition, morphology, structure and 

reflectance.  Nevertheless, as metamorphosis progresses, the apparent differences 

between the maceral groups become less evident. 

 

Coal macerals may be divided broadly into three main maceral groups or principal 

petrographic components: Vitrinite (huminite in low rank coals and lignites), 

liptinite and inertinite.  These macerals can be identified by microscopy and 

concentrates can be prepared.  Their properties are found to be different, although 

the apparent differences become less evident as rank increases (Grainger and 

Gibson, 1981; Bustin et al., 1983).  Each maceral group includes a series of sub-

macerals which can be regarded as belonging together due to similar optical and 

chemical properties.  Figure 2.1 shows some photographs in which the differing 

reflectances and the various structures of the three maceral groups can be 

observed (Crelling, 1998). 

 

2.3.1.1 Vitrinite Group 

 

Vitrinite is commonly the most predominant petrographic constituent of coals and 

the most consistent in its properties.  In most coals the vitrinite content is greater 

than both liptinite and inertinite.  Many scientific investigations of coal have, 

therefore, concentrated mainly on the vitrinite component, which can often be 

prepared in reasonable purity from large lumps of coal.  (Grainger and Gibson, 

1981) 



CHAPTER 2 LITERATURE REVIEW 

 13

 
Figure 2.1 The three maceral groups 
 
 

 

 

 
 

V=Vitrinite, Liptinite (SP=Sporinite, R=Resinite), Inertinite (F=Fusinite, 
SF=Semifusinite, SC=Sclerotinite) 
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The vitrinite group is deemed to be derived from the cell wall material (woody 

tissue) of plants, which are chemically composed of polymers, cellulose and 

lignin.  It mainly originated from trunks, branches, stems, leaves and roots.  When 

a polished coal sample presents a quite clear picture of the structure of the woody 

tissue of a vitrinite particle, the maceral is called telinite (tela = tissue).  When 

structureless, it is named collinite (derived from greek: kolla = glue).  Collinite 

was formed when cell walls were thickened with gelatinous humus and hence it is 

responsible for the colloidal medium which dominates in all bright coal.  The 

vitrinite telinite is relatively rare but the structureless vitrinitic groundmass, called 

telocollinite, is common.  If broken gelified grains are mixed together or with 

other constituents of the vitrinite group, the maceral is called vitrodetrinite.  

Generally, identification of vitrinite macerals is difficult and confusion is 

possible, particularly when continuous transitions occur between vitrinite and 

inertinite.  For practical purposes, the undifferentiated vitrinite content of a coal is 

usually sufficient. 

 

Vitrinite is typically shiny and glass-like in appearance.  Observed in transmitted 

light it is translucent and of a light or dark orange colour, whereas under reflected 

light it is grey to yellowish white, depending on the coal rank.  In bituminous 

coals, the vitrinitic macerals show fissures and appear medium grey in reflected 

light under oil immersion under the microscope.  The reflectance of vitrinite is 

intermediate compared with the other maceral groups and provides an excellent 

indication of the coal rank since it increases as coalification advances.  

Accordingly, the measurement of the vitrinite reflectance on a polished coal 

surface has been selected as the parameter to determine the rank of a coal. 

 

2.3.1.2 Liptinite Group 

 

The liptinite group is usually a minor component of coal.  The former term exinite 

was originally used to describe the chemical-resistant exines of spores in coal.  

Subsequently, the designation of liptinite was incorporated in order to cover all 

the chemically distinct plant material other than woody tissues such as spores, 

cuticles, suberine, resins, waxes, fats and oil of vegetable origin.  This group 
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formerly comprised the macerals sporinite, cutinite, resinite, alginite, suberinite 

and liptodetrinite which are characterised by low reflectance and by green-yellow 

to brown-red fluorescence.  Further to this, when a coal sample is viewed under 

blue light, four other macerals may be identified; fluorinite, bituminite, 

exsudatinite and chlorophyllinite. 

 

The outstanding petrographic feature of the liptinite group is that they all have a 

reflectance that is lower than the vitrinite macerals in the same coal.  This group 

of macerals is very sensitive to advanced coalification and so they begin to 

disappear in coal of medium volatile rank and are absent in coals of low-volatile 

rank (Crelling, 1987).  Liptinites are the most volatile and lightest, with a specific 

gravity range from 1.18 to 1.28 for bituminous coals.  This maceral group also has 

the highest hydrogen content and contains more aliphatic groups if compared with 

vitrinite and inertinite of coals of the same rank (Chen and Bodily; 1985; Taulbee 

et al., 1989; Dyrkacz et al., 1984; Dormans et al., 1957).  As far as porosity is 

concerned, liptinites are deemed to be the least porous, appearing as a featureless 

material with irregular and tubular macropores (Harris and Yust, 1976). 

 

2.3.1.3 Inertinite Group 

 

Inertinite comprises a group of macerals derived from plant remains similar to 

vitrinite.  However, oxygen has usually played a stronger role during the first 

stage of deposition and has been incorporated into the macerals.  Depending upon 

the extent of the oxidation process, part of the cell structure of the woody material 

may appear to be preserved retaining the original well-defined plant tissue 

structures whilst in others they are not clearly perceived.  Accordingly, transitions 

between inertinite and vitrinite are to be expected.  The most abundant inertinite 

macerals are fusinite and semifusinite.  Fusinite usually shows well-conserved and 

easily recognised cellular structures.  Semifusinite, on the other hand, is 

intermediate between fusinite and vitrinite showing tissue structures that are not 

always easy to recognise and its reflectance is lower than that of fusinite. 
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Compared with the other macerals in coal, inertinite has the highest carbon and 

oxygen content, is the densest, and is the least volatile with lowest H/C ratio 

(Stach et al., 1982).  Generally, Inertinites have a higher reflectance than that of 

vitrinites, although the differences become less evidence with increasing rank.  

Fusinite is always the highest reflecting inertinite maceral and is distinguished by 

cell-texture.  It is normally broken into small shards and fragments.  Semifusinite 

has the largest range of reflectance among the coal macerals going from the upper 

end of the vitrinite range to fusinite.  Semifusinite is normally the most abundant 

of the inertinite submacerals. 

 

2.3.2 Coal Lithotypes 

 

An important contribution that can be made by petrographic analysis is to add to 

the understanding of the effect that the maceral composition has on the behaviour 

of coal in most of the technological processes of utilisation.  The way in which 

macerals are distributed and associated with each other is also significant in 

determining the behaviour of coal during utilisation.  These associations of 

macerals, at the macroscopic level, lead to the formation of particular layers 

named lithotypes. 

 

Coal lithotypes represent the macrostructure of coal and are, in fact, descriptive of 

the coal.  A piece of coal usually shows a distinctive banded appearance that may 

not only be due to the deposition of different organic substances, but also to the 

accumulation of debris of diverse plants and their different parts during the 

formation of the organic sediment.  Two distinct bands can be conveniently 

recognised by their general appearance as bright or dull.  The bright bands are 

deemed to result from the main structural portions of plants: wood or cortex, 

whereas, the dull bands are considered to originate from a variety of plant debris 

such as cellular tissue, leaves, spores, pollen grains, cuticle, and other amorphous 

materials. 

 

The complexity of coal maceral associations observed in further macroscopic 

examinations of coal lead workers to classify them in terms of four 
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macroscopically different bands.  Thus, bright coal has been further subdivided 

into vitrain and clarain whilst the dull coals are subdivided into fusain and 

durain.  Each of these lithotypes has definite individual features which are 

summarised below (Kural, 1994; Van-Krevelen, 1993). 

 

Vitrain.  Occurs as precise narrow bands usually not greater than 0.5 inches thick.  

It appears as uniform and vitreous bright layers showing orthogonal cracks which 

easily produce angular grains. 

 

Clarain.  Occurs in bands that are horizontal to the bedding plane and of variable 

thickness.  It appears less vitreous and less bright than vitrain bands. 

 

Durain.  Appears as bands of variable thickness which may be parallel to the 

bedding plane and which may have bands of clarain intercalated between its own 

bands.  Durain shows dull and hard layers with a close and firm texture. 

 

Fusain.  This lithotype occurs primarily as patches that are parallel to the bedding 

plane.  It consists of fibrous and soft layers which can be easily fractured and 

separated from a coal lump. 

 

2.3.3 Coal Microlithotypes 

 

At the microscopic level, the associations of coal macerals are named 

microlithotypes.  They have been classified into three main groups: monomaceral, 

bimaceral and trimaceral according to whether a microlithotype contains one, two 

or three maceral groups.  The monomaceral microlithotypes “vitrite”, “liptite” or 

“fusite” must contain not less than 95% vitrinite, liptinite or inertinite and not 

more than 5% other maceral groups, respectively.  The bimaceral and trimaceral 

microlithotypes are subdivided into three categories according to the maceral 

composition as shown in Table 2.2 (Kural, 1994; Stach et al., 1982). 

 

The composition of the coal microlithotypes seems to be limited by the types of 

organic matter present in the original coal precursor.  In the case that a 
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considerable amount of mineral matter is present in the microlithotype to be 

identified, the material is referred to as “carbominerite”.  The types of 

carbominerites usually recognised and the composition of mineral species present 

are also shown in Table 2.2. 

 

 

Table 2.2 Microlithotypes and inorganic associations of coal 
 

Composition  
Group  Name 

(vol%) 

Vitrite Vitrinite (V) > 95 

Liptite Liptinite (L) > 95 Monomaceral 

Inertite Inertinite (I) > 95 

Clarite V + L > 95 (each > 5%) 

Vitrinertite V + I > 95 (each > 5%) Bimaceral 

Durite I + L > 95 % (each > 5%) 

 Duroclarite V > I, L (each > 5%) 

Trimacerite Vitrinertoliptite L > I, V (each > 5%) Trimaceral 

 Clarodurite I > V, L (each > 5%) 

Carbargilite Coal + 20-60% clay minerals 

Carbopyrite Coal + 5-20% sulphide minerals 

Carbankerite Coal + 20-60% carbonate minerals 

Carbosilicite Coal + 20-60% quartz 

Carbominerite 

Carbopolyminerite Coal + 20-60% various minerals 

 

 

The chemical properties of microlithotypes are very similar to those of macerals 

of which they primarily consist.  Their physical properties are not only related to 

those of the macerals but also to the combined effect of their associations. 
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2.4 South American Coals 
 

2.4.1 Coal Occurrences and Geology 

 

The South American continent has abundant energy resource potential.  Coal and 

peat deposits have been found in all countries although available estimates of the 

amount of coal and peat present have been based on inadequate and, sometimes, 

unreliable information.  The range of physical and chemical characteristics of coal 

and peat is undefined in most reported resource areas.  However, the resource 

potential for the use of coal and peat as energy sources is large.  A better 

understanding of the quality and quantity of these resources is required for 

planning and efficient utilisation in an environmentally acceptable manner. 

 

The age of South American coal deposits ranges from Late Mississippian (Lower 

Carboniferous) to Quaternary, although the deposits are mainly of the Tertiary 

and Cretaceous periods (Weaver and Wood, 1994).  Some of the age 

determinations of these coals have been based on investigations of the fossil flora 

in the coal beds or in immediately adjacent strata and of the fossil fauna in 

adjacent terrestrial and marine rocks.  Most of South America’s coal-bearing 

rocks are concealed from view by thick jungle and associated soils; younger 

volcanic rocks; non-coal-bearing Tertiary and Quaternary valley fill adjacent to 

mountain ranges and complex structural features within barely accessible high 

mountain ranges.  These factors have made it extremely difficult for geologists 

and explorers, who have mostly worked without the aid of adequate maps, to find 

and evaluate the coal potential of South America. 

 

The oldest known coal beds, from the Late Mississippian period, are located in 

Brazil and Peru.  They are reportedly thin and none have ever been mined.  Coal 

beds of Pennsylvanian and Permian age are known in Brazil, Argentina and Peru, 

and they are of particular economic value to Brazil.  Coal beds of Triassic age are 

rare in South America, and they are only in north-western Argentina and northern 

Chile.  Jurassic coal deposits are generally of small lateral extent and are found 

only in Argentina and Peru.  In these two countries and in Colombia, coal beds of 
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Cretaceous age have been identified.  They are concentrated in the intermontane 

valleys of the Andes.  Tertiary coal fields and occurrences comprise 

approximately one-half of all coal deposits of all ages in South America.  The 

extent of Tertiary coal deposits is several times greater than the extent of all other 

deposits of other ages.  More than 55 percent of these coal fields and occurrences 

are in Venezuela.  Most of the estimated tonnage of Tertiary coal underlies the 

Amazon River drainage basin in Brazil, Peru and Colombia.  The remainder of the 

Tertiary coal appears to be evenly distributed throughout the coal-bearing nations 

of the continent.  Tertiary coal is not found in Paraguay and Uruguay (Weaver and 

Wood, 1994). 

 

South America was part of Gondwanaland until Cretaceous times, when 

continental fragmentation occurred.  In mid-Cretaceous times Africa and South 

America drifted apart and by the late Cretaceous age, the South Atlantic Ocean 

had formed.  In late Cretaceous to Tertiary times, conditions within many 

intermontane basins of the evolving cordillera of northern South America were 

suitable for the development of coal-forming deposits (Walker, 1993).  The El 

Cerrejon, La Jagua, and La Loma coal fields of the eastern Cordillera de 

Colombia and the coal fields of the neighbouring Zulia region of Venezuela are 

the most significant of these deposits.  The geological history of Colombia and 

northern Venezuela is fairly complex as a result of the interactive effects of the 

differential movements of a number of adjacent crustal plates. 

 

Since the significant coal deposits of South America occur in northern Colombia 

and Venezuela, coals from only these two countries were discussed in this study.  

These coals are widely traded internationally. 

 

2.4.2 Colombian Coals 

 

There are 36 identified coal basins in Colombia grouped into seven main coal 

regions (Jamieson 1985; Gomez, 1995).  The export mines are located in the 

counties of La Guajira and Cesar, 120-350 km from Atlantic ports (Coalportal, 

2000a).  The coal samples examined in this work were all from these counties and 
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from Cordoba.  In these coal zones the seams are generally thicker and less 

disturbed than those in the inland coal fields of Cundinamarca, Boyaca, 

Santander, Antioquia, and Cauca that are geared towards domestic markets for 

coking and thermal coal (see Table 2.3) 

 

Colombia has proven coal reserves of 6,648 Mt, with another 2,596 Mt estimated, 

these being the highest figures in Latin America.  This is high-grade, low-

pollutant coal which is much sought after in international markets.  Colombia 

exports 85% of total production making it one of the largest exporters in the 

world.  Coal ranks third in the list of exports (8%) after coffee and oil (Coinvertir, 

2000).  The largest proportion of resources lies in the La Guajira and Cesar 

counties, which reflect the greater export potential of these coal fields rather than 

the actual distribution of coal.  Thermal coals account for approximately 90% of 

Colombia’s measured coal resources, with measured reserves of coking coal in 

the counties of Cundinamarca and Boyaca amounting to only 670 Mt.  Measured 

resources of anthracite are only 18 Mt and are confined to the county of 

Santander. 

 

Table 2.3 Colombia coal reserves 
 

Measured 
Reserves 

Indicated 
Reserves County 

(Mt) (Mt) 
Coal Type 

Guajira 3,670 - Thermal 

Cesar 1,933 589 Thermal 

Cundinamarca and Boyaca 412 1,221 Thermal/Coking 

Cordoba 381 257 Thermal 

Antioquia 90 225 Thermal 

North Santander 68 101 Thermal/Coking 

Santander 57 114 Thermal/Coking 

Valle del Cauca and Cauca 37 89 Thermal 

Total 6,648 2,596 Thermal/Coking 
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The Cesar coal zone has four important coal fields: Boquerón, El Descanso, La 

Jagua and La Loma (Gomez, 1995).  La Loma and La Jagua deposits are near the 

towns of the same name.  In the Cordoba county the Alto San Jorge-San Pedro is 

the main coal basin and consists of two major fields: Alto San Jorge, in the west, 

and San Pedro, in the east.  The coal sample Bijao, which was used in this study, 

came from the San Pedro coal field. 

 

The El Cerrejon deposit, located in La Guajira county, north-eastern Colombia, 

extends for some 50 km from north to south and is up to 5 km wide.  Substantial 

resources of coal occur close to surface (Walker, 1993).  Development of 

Colombian coal for export has centred on the El Cerrejon deposits from which the 

first shipments of 1Mt were made in 1984.  Colombia had entered the 

international coal export market and by 1987 shipments had grown to about 9.6 

Mt.  A completely new infrastructure was required for the project, including 

transport and port facilities, which were installed with the aim of being able to 

handle increasing tonnages of export coal.  El Cerrejon is now claimed to be the 

largest export mine in the world with 1998 sales of 18.7 Mt (Ecocarbon, 1998).  

The main market for this coal has been Germany, Holland, Denmark, North 

America and the United Kingdom. 

 

The Cerrejon deposit is divided into three blocks, North, Central and South.  The 

North block covers an area of 380 km² with about 55 seams and contains high-

volatile B bituminous rank coal according to the ASTM coal classification 

system.  The Central block extends over 100 km² with 38 seams.  This block also 

contains high-volatile B bituminous rank coal at surface mineable depth.  The 

South block covers an area of 200 km² with at least 15 seams.  It is the least 

explored of the three blocks (Walker, 1993).  The coal sample Carbocol comes 

from the North block, Prodeco and Caypa comes from the Central Block and 

Oreganal from the South Block. 

 

As coal from El Cerrejon, coals from Cordoba and Cesar are of bituminous rank, 

ranging from bituminous A through C.  These coals generally have low ash and 
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sulphur contents and have been found to exhibit no coking properties (Gomez, 

1995).  A summary of the properties of the coals from La Guajira and Cesar 

region is presented in Table 2.4 (Walker, 1993, International Coal Report, 1991, 

Gomez, 1995). 

 

The two mines in Colombia that currently have access to modern transportation 

systems and ports have a major cost advantage over all other mines.  Output from 

these mines is expected to double within the next 10 years, growing from 35.7 Mt 

in 2000 to 70.5 Mt in 2010 (Fossil Energy International, 2001) 

 

Table 2.4 Quality of Colombian coals from La Guajira and Cesar counties 
 

La Guajira –El Cerrejon Cesar 
Coal Property 

North Central South La Jagua La Loma 

Heating Value(MJ/Kg) 26.9-28.5 27.4-28.4 28.2 23.1-31.2 32.1-32.2 

Moisture (wt%) 8.3-10.3 10.0-12.0 11.0 11.8 10.3-14.3 

Volatiles (wt%) 31.5-36.5 35.0-37.0 36.6 33.6-40.0 41.8-43.5 

Ash (wt%) 5.5-11.5 5.0-7.0 4.5 0.6-5.1 1.4-6.2 

Sulphur (wt%) 0.4-0.8 0.6-0.8 0.5 0.4-0.8 0.3-0.8 

 

2.4.3 Venezuelan Coals 

 

Venezuelan coal resources were discovered in the early 19th century, but it was 

not until 1988 that the coal industry began to play a role in international markets 

(Vasquez, 1991).  Venezuela possesses the second largest inventory of coal in 

South America after Colombia.  Total resources are estimated at 8,283 Mt, of 

which 6,643 occur in the Guasare Basin, in Zulia county, on the far western 

border of Venezuela, adjoining the Colombian Cerrejon coalfield.  The Guasare 

coalfield is in the best position to increase Venezuela's coal exports with the Paso 

Diablo-Socuy Complex likely to remain the nation’s largest (Coalportal, 2000b). 



CHAPTER 2 LITERATURE REVIEW 

 24

The major coal producing regions in the country are Zulia, Tachira and 

Anzoategui (see Table 2.5).  Total reserves in Tachira amount to 1,541 Mt, the 

majority of which is best suited for coking.  Production is centred near the town of 

Lobatera, some 12 km north of San Cristobal.  However, the largest reserves are 

located around Santo Domingo.  Anzoategui is Venezuela's third major coal 

region, with total reserves estimated at 133 Mt.  Production is centred around two 

mining areas; Fila Maestra and Naricual.  The Maturin coal sample also comes 

from this region.  Coal production in Anzoategui totalled 272 Mt in 1992, most of 

which was exported to Europe (Corporate Information, 2001). 

 

Table 2.5 Venezuela coal reserves 
 

Reserves  
(Mt) 

Possible 
Resources 

Total  
Resources Coalfield/County 

Measured Indicated (Mt) (Mt) 

Guasare Basin 983 2,060 3,600 6,643 

Others 34 62 64 160 

Zulia county 1,017 2,122 3,664 6,803 

Santo Domingo 135 145 22 302 

Lobatera 9 7 9 25 

Las Adjuntas 30 61 184 275 

Other 4 40 425 469 

Tachira county 178 253 640 1,071 

Naricual 117 23 19 159 

Fila Maestra   2 5 7 

Anzoategui county 117 25 24 166 

Falcon county 16 27 111 154 

Others     89 89 

Total 1,328 2,427 4,528 8,283 
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Zulia state is the most important coal-producing region in Venezuela in which the 

Guasare coal basin is located.  Guasare has proven reserves of 353 Mt and total 

reserves estimated at 8,489 Mt.  This coal is of bituminous rank and is an 

excellent quantity steam coal for electrical power generation (high heat value, low 

sulfur and ash).  In late 1987, the first coal was produced from Paso Diablo and 

exported to Italy and France.  Paso Diablo is Venezuela's largest coal mine.  

Production at Paso Diablo totalled 4 Mt in 1994, 15 percent more than in 1993.  

Approximately 75 percent of Guasare coal exports went to western Europe.  Paso 

Diablo is estimated to have economically recoverable reserves of some 200 Mt.  

Maximum yearly production at the mine is likely to reach a level of 10 Mt in the 

near future.  Table 2.6 shows quality information for Guasare basin coal obtained 

from the Paso Diablo mine (Walker, 1993). 

 

Table 2.6 Quality of coal from Paso Diablo – Guasare basin  
 

Guasare Basin-Zulia 
Coal Property 

Paso Diablo Mine 

Heating Value(MJ/Kg) 29.4 

Moisture (wt%) 7.0 

Volatiles (wt%) 34.5 

Ash (wt%) 7.5 

Sulphur (wt%) 0.6 

 

Venezuela has increased coal production by 8% between 1998 and 1999 to about 

7.4 Mt per annum.  Without opening new mines during 2000, the industry predicts 

a 20% increase in production to reach 9.0 Mt this year.  The majority of coal 

produced is exported because there is little domestic demand for coal.  The power 

sector has large reserves of oil, gas and hydroelectric power and consequently has 

no plans at this stage to invest in coal-fired power generation.  Venezuelan 

production had lagged in previous years as a result of delays in developing export 

infrastructure (Coalportal, 2000b). 
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Venezuela’s coal exports in 1999 totalled 6.9 Mt, a 16.9% increase over 1998 

when exports totalled 5.9 Mt.  During 2000 Paso Diablo produced about 6.5 Mt, a 

23% increase on 1999 exports, which totalled 5.3 Mt.  The principal coal export 

markets are in Europe (40%), i.e. the Netherlands, France, Germany, and Italy, 

where Venezuela favourably competes with American higher sulphur content 

coal.  About 30% of the market is in the USA, and 30% in Central and South 

America (Coalportal, 2000b). 

 

2.5 Coal Combustion 
 

The combustion processes in industrial combustors occur in complex turbulent 

gas and solid phase flame reactors.  Among the different methods of burning coal 

in power station boilers, only pulverised fuel combustion is considered in this 

research.  During this process, a mixture of air and finely ground coal is 

introduced into the utility boiler in which most of the particles (>70%) are 

typically below 75 µm (Essenhigh, 1981; Carpenter and Skorupska, 1993), 

although, the actual particle size distribution is generally dependent on the rank of 

the coal (Clarke, 1988).  The coal particles are subjected to temperatures between 

1300 and 1700°C and rapid heating rates around 104-106 °C/s (Skorupska and 

Marsh, 1989), depending on the size of the particles. 

 

During combustion, coal not only produces a large quantity of gaseous products 

of changing composition, but also a residual solid (‘char’) whose chemical and 

physical structure undergoes changes during burnout.  Moreover, a large quantity 

of heat energy is released, transferred, and emitted from the distinctive reaction 

region containing hot gases, fine particles, and products of the reaction.  For 

maximum efficiency, all the carbonaceous material of the residual char should be 

consumed by the oxidising atmosphere within the operational time of 

approximately one second (Skorupska and Marsh, 1989). 

 

Laboratory experiments were designed to simulate the coal combustion process as 

closely as possible.  However, since this process is extremely complex it is 

conveniently divided into two separate stages: rapid pyrolysis and devolatilisation 
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of the coal producing a solid char, followed by the relatively slow process of char 

combustion.  These two processes, which are partly overlapping, may be the rate-

determining step and may be related to both reaction conditions and properties of 

the coal (Laurendeau, 1978; Essenhigh, 1981; Morrison, 1986).  Therefore, the 

performance of a particular coal in the boiler will be governed by its behaviour in 

each of the stages of pyrolysis and char combustion. 

 

2.5.1 Coal Pyrolysis and Devolatilisation 

 

Rapid heating rates have a substantial effect on the coal particles during pyrolysis, 

initially inducing thermal decomposition of the carbonaceous material, 

accompanied in many cases by swelling and followed by release of volatiles.  The 

overall yield of substances from coal on heating includes volatile gas release (e.g. 

CO, CO2, H2, HCN and light hydrocarbons), and, at higher temperatures, heavier, 

high molecular weight compounds (e.g. tars, bitumens).  Volatiles released during 

devolatilisation can account for up to 50% of the heating value of the coal 

(Sarofim and Beér, 1979).  The rate of volatile release is important in determining 

the ignition characteristics of a coal flame which affects the efficiency of pollutant 

formation (Carpenter and Skorupska, 1993). 

 

The extent of devolatilisation during pf combustion has a significant effect on the 

characteristics of the residual char.  For instance, a higher volatile yield produces 

smaller quantities of chars with lower densities, higher porosities and significantly 

different pore structure (Jamaluddin, 1992).  Both the volatile yield and 

composition during pyrolysis can be affected by the operating conditions of the 

process as well as the properties of the coal.  These two topics are discussed 

below. 

 

2.5.1.1  The Effect of Experimental Conditions 

 

The rate and final temperature of heating during pyrolysis have been found to 

influence the quantity of volatiles evolved and the composition of the residual char 

(Solomon et al., 1986).  Nevertheless, investigations have shown that it is the final 



CHAPTER 2 LITERATURE REVIEW 

 28

temperature which mainly determines the total yield of volatiles (Jamaluddin, 

1992; Lester et al., 1994).  Furthermore, the gaseous environment in which the 

pyrolysis takes place has also been identified as an important factor affecting 

devolatilisation.  For example, by increasing the heating rate, McCown et al 

(1982) found that there was an increase in volatile yields under nitrogen 

atmosphere, whereas a decrease was noted when using hydrogen. 

 

On the other hand, work on the effect of pressure revealed that an increase in 

pressure decreases the rate of volatiles release, reduces tar yield, and affects the 

quantity and type of volatile species (Lee et al., 1991).  The type of product 

released during devolatilisation and pyrolysis from a single coal is also influenced 

by the geometric configuration of the experimental equipment utilised 

(Skorupska, 1987). 

 

2.5.1.2 The Effect of Coal Properties 

 

The ultimate yield of volatile matter and composition is not only affected by the 

experimental conditions during pyrolysis but also by coal properties such as 

particle size, coal rank, maceral composition and mineral matter content. 

 

Studies involving the pyrolysis of concentrated coal macerals and coals of diverse 

petrographic composition indicate that the total yield of volatiles decreases in the 

order liptinite > vitrinite > inertinite (Howard, 1981, Stach et al., 1982).  The 

volatiles evolved from vitrinitic coal particles generally contain a higher 

proportion of phenolic and aromatic compounds whereas liptinites usually yield 

volatiles with a higher proportion of hydrocarbons (Howard, 1981; Stach et al., 

1982; Nip et al., 1987). 

 

Volatile yield and composition also vary as a function of rank.  Ultimate yields 

have been shown to be very similar at about 50 wt% for coals through the high-

volatile bituminous rank, then decrease in higher ranked coals (Skorupska, 1987).  

Nevertheless, the proportion of gases and tars differ extensively with gases 
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governing the yields of low-ranked coals whereas tars dominate the yields of 

bituminous and coals of higher rank (Solomon, 1986, Smoot, 1993). 

 

Coals of medium rank exhibit thermoplastic behaviour, and plasticise when 

heated.  This thermoplasticity normally occurs in coals with 81-92% C, although 

it depends on oxygen and hydrogen content, and heating rate (Smoot, 1993).  The 

fluid behaviour of coals becomes more apparent at high heating rates.  However, 

cross-linking reaction temperatures can be rapidly reached, as the heating rate 

becomes excessively high, and hence, the thermoplastic behaviour of coals is 

impeded.  As coal pores melt and fuse, the subsequent formation of light gas and 

tar vapour-filled bubbles results in swelling.  Volatiles are transported via bubble 

formation.  By contrast, high rank coals normally exhibit little fluidity and 

plasticity, and preserve their pore structure during devolatilisation.  In this case, 

volatiles are transported by diffusion via pore structures (Smoot, 1993). 

 

2.5.2 Char Formation and Morphology 

 

Following the process of coal devolatilisation and the combustion of volatiles, the 

slower process (> 1 s) of char combustion occurs.  The overall reaction scheme 

involving this process includes the diffusion of mass (reactants and products 

species) and heat across the char particle boundary layer (gas/solid interface), 

accompanied by the diffusion of mass and heat through the char particle structure 

and a heterogeneous gas/solid reaction (Laurendeau, 1978; Skorupska, 1987). 

 

The rate of oxidation is deemed to be controlled by chemical kinetics, mass 

transport processes, or a combination of the two, depending upon the temperature 

under which the reactions take place, the size and the porosity of the particle 

undergoing oxidation (Essenhigh, 1981; Morrison, 1986; Laurendeau, 1978; 

Young and Smith, 1987).  For instance, at low temperature (<1000°C), where the 

reactivity of the char is low, the rate of combustion will be controlled by chemical 

kinetics, reactivity of the carbon, hydrogen and other heteroatoms such as 

nitrogen and sulphur.  As the temperature increases, the chemical reactivity 
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increases and oxygen pore diffusion and bulk diffusion become more important in 

determining the overall rate of char combustion (Bailey et al., 1990). 

 

Experiments have shown that combustion of char is the rate-determining step in 
the overall combustion of pulverised fuel.  While devolatilisation takes place in 
less than 50 ms, char combustion may take several seconds (Bailey et al., 1990).  
It is therefore important to consider how original coal structure, and volatile yield 
and composition during rapid pyrolysis have an effect on the physical and 
chemical structure of the char, as these properties control the overall reactivity of 
the char combustion reactions (Carpenter and Skorupska, 1993; Skorupska, 1987). 
 
Classification systems for chars have been presented by various authors 
(Lightman and Street, 1968; Jones et al., 1985a; Young et al., 1986; Tsai and 
Scaroni; 1987).  Studies of chars produced from a wide variety of coal ranks have 
revealed some complex char structures that cannot be easily accommodated 
within these classification systems.  In 1990, Bailey et al. (1990) developed a new 
classification system which is based on the physical properties that determine char 
reactivity. The most important parameters considered in the determination of the 
different char types were wall thickness, porosity and basic char structure.  A 
modified set of Bailey’s char classification system was used in this work to 
classify the different chars obtained after pyrolysis (Table 2.7).  Photographs of 
these char types are provided in Figures 2.2 to 2.7 (Alvarez and Lester, 2001). 
 
2.5.3 Char Burnout and Reactivity 
 
The structure and reactivity of the resultant char are largely consequences of the 
pyrolysis behaviour of the parent coal.  Basically, the characteristics of the char 
that influence the progress of burnout are the external dimension of the particles; 
the volume; size and distribution of pores within the particles; the total internal 
surface area of the char available for reaction and the intrinsic reactivity (Bailey et 
al., 1990).  The intrinsic reactivity of char can be defined as the rate of reaction 
between the oxidising gas an the internal surface, in the absence of any mass 
transfer or pore diffusion limitation, i.e. the rate of the chemical reaction alone 
(Harris and Smith, 1991).  For the purpose of this work, the parameters of peak 
temperature (PT) and burnout temperature (BT) are used to represent intrinsic 
reactivity as defined by Unsworth et al. (1991).  This provides a comparative 
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measure between different char samples.  The intrinsic reactivity analysis 
procedure is presented in the following chapter, section 3.5.4. 
 

Table 2.7 Char morphology classification 
 

Char Type Description 

Tenuisphere Spherical to angular, porosity >80%, >50% of wall area <3µm. 

Crassisphere Spherical to angular, porosity >60%, >50% of wall area >3µm. 

Tenuinetwork Internal network structure, porosity >70%, >50% of wall area <3µm. 

Crassinetwork 

 
Char with internal network structure, porosity >40%, >50% of wall area 
>3µm or char with a fused and unfused part, porosity 40-60%. More than 
25% but less than 75% unfused. 
 

Inertoid Dense char, porosity 5–40%, can be either fused or unfused. 

Fusinoid/Solid Inherited cellular fusinite structure or solid particle with <5% porosity. 

 
 

Figure 2.2 Tenuispheres 
 

 

Figure 2.3 Crassispheres 
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Figure 2.4 Tenuinetworks 
 

 
 
Figure 2.5 Crassinetworks 
 

 
 
Figure 2.6 Inertoids 
 

 
 
Figure 2.7 Fusinoids/Solids 
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It is generally agreed that intrinsic char reactivity decreases with increasing rank 

of the coal, anisotropy of the char material, particle size, density of the char, and 

content of ‘unreactive’ inertinite forms in the char (Carpenter and Skorupska, 

1993).  The nature and structure of the char vary with coal rank and type, particle 

size as well as operating conditions, such as final temperature, heating rate and 

residence time (Lester, 1994 a & b; Cloke and Lester, 1994).  Similarly, the 

plastic properties of the different coal macerals and their degree of association 

will determine the morphology of chars, i.e., increased diameter due to swelling, 

sphericity, and thickness of walls.  These properties could have a major influence 

on the efficiency with which a char will be combusted (Alvarez et al., 1998). 

 

The extent of the overall coal burnout is influenced by the amount of char formed 

on pyrolysis and by how fast the char burns out.  Burnout is dependent on the size 

and morphology of the chars, which determine the rate of mass transfer to and 

within particles, and on the chemical reactivity of chars, which determine the rate 

of surface reactions (Unsworth, 1991).  The reactivity of the char is an important 

consideration in relation to aspects such as incomplete combustion leading to 

excessive carbon in fly ash.  The extent to which loss of this unburnt coal can be 

minimised will significantly affect the economy of the coal combustion process. 

 

2.5.4 Rank Effects 

 

There is general agreement concerning the influence that rank or vitrinite 

reflectance has on the performance of coal in combustion (Carpenter, 1988; 

Essenhigh, 1981; Kopp and Harris, 1984; Steller et al., 1991; Bailey et al., 1990).  

Vitrinite reflectance, for instance, is found to be a good parameter to differentiate 

burnout performance of coal with significant differences in rank (Bailey et al., 

1990).  Similarly, coal rank has shown to be a major factor governing 

combustibility and reactivity in pulverised coal combustion (Steller et al., 1991; 

IEA Coal Industry Advisory Board, 1985; Milligan et al., 1997).  However, other 

technological properties of coal, such as petrographic composition, mineral 

matter, and caking capacity also play a part.  Correspondingly, particle size, as 

well as combustion conditions have a relative effect on combustion rates, so that 
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any attempts made to establish empirical correlations between parameters of 

combustion behaviour and rank, are generally valid only for coals with similar 

particle size at specific operating conditions (Carpenter, 1988). 

 

Efficiency of combustion can also be related to rank.  For example, work carried 

out by Vleeskens and Nandi (Vleeskens, 1983; Nandi et al., 1977), showed that 

combustion efficiency, measured as the amount of combustible material 

remaining, decreased with increasing rank.  Nevertheless, the level of unburnt fuel 

is expected to vary with different experimental conditions, e.g. maximum gas 

temperature and oxygen concentration (Shibaoka et al., 1985).  On the other hand, 

the reactivity of coals of similar rank have been shown to be related to differences 

in ash and inertinite contents (Steller et all, 1991).  In some studies, these inert 

constituents were found to be more significant than rank in predicting coal 

combustion efficiency (Vleeskens and Nandi, 1986). 

 

Experiments have shown that variations in the rank in combination with the 

maceral composition have an effect on the specific physical and chemical 

properties of chars (Crelling et al., 1988; Skorupska et al., 1989).  From 

experiments based upon nine vitrinite-rich coals of increasing rank in an entrained 

flow reactor, Bend et al.  (1992) found that char characteristics such as optical 

texture, the degree of vesiculation, porosity, surface area, and thermoplasticity are 

related to the molecular structure of the original vitrinite and vary as a function of 

rank. 

 

It is generally agreed that char reactivity in pf combustion increases with decrease 

in rank (Bend et.  al., 1992; Morgan and Roberts, 1987; Haley et al., 1991).  

Accordingly, it might be expected that the lower rank fuels would be the preferred 

feedstock of a power station.  However, these coals have lower calorific values 

and are less efficient as an energy source than bituminous coals.  Hence, for many 

reasons, in order to evaluate coals for combustion, it is essential to investigate the 

separate effects of a classification parameter but its interpretation should be 

referred to the other technological properties. 
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2.5.5 Macerals Effects 

 

Maceral composition has an important influence on the combustion of pulverised 

coal.  Differences in their chemical and physical properties as well as their 

response to process conditions are reflected in their combustion behaviour 

producing differences in char yield and char morphology, i.e. different particle 

densities and porosity and varying chemical structure.  Several studies (Lightman 

et al., 1968; Jones et al., 1985b; Milligan et al., 1997) have demonstrated how 

different macerals behave under simulated pf combustion conditions and have 

shown the diverse morphologies of the partially reacted char particles (Street et 

al., 1969; Hamilton, 1981). 
 

Generally speaking, vitrinite and liptinite are chemically reactive during pyrolysis 

(Nandi et al., 1977; Milligan et al., 1997).  In the case of inertinite, however, there 

are some points of controversy.  Several workers have considered this maceral 

group as inert during combustion and this behaviour has been attributed to being 

primarily due to its aromatic nature (Milligan et al., 1997). 
 

Part of the inertinite group, mainly low reflectance semifusinite, may also be 

deemed as reactive (Vleeskens and Nandi, 1986).  Workers in South Africa and 

Australia, for instance, have emphasised the fact that, although southern 

hemisphere coals are highly rich in macerals of the inertinite group, the properties 

of this group can range from being almost inert to showing a reactivity close to 

that of vitrinite (Phong-Anant, 1991, Thomas et al., 1989a).  This debate has led 

researchers to define a coal maceral in terms of its reactivity.  Thus, a maceral is 

deemed to be reactive if it exhibits thermoplasticity during pyrolysis and char 

formation, and the type of char generated is referred to as fused char by several 

workers (Thomas et al., 1989b).  Further to this, the proportion of the reactive 

fraction of a coal has usually been determined by combining the liptinite and 

vitrinite percentages with the fusible inertinite fraction of the inertinite (Thomas 

et al., 1989b). 
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The relationship between char type and petrographic composition is not a simple 

one (Thomas et al., 1991), and the effect of macerals on combustion reactivity is 

unpredictable (Milligan et al., 1997).  There is also evidence to suggest that 

interaction between macerals may occur which affects the coal combustion 

process (Milligan et al., 1997; Crelling et al., 1992).  The type of maceral 

interaction depends on rank.  Therefore, in order to predict the reactivity of a coal 

it is necessary to have an understanding of maceral composition.  The effect of 

individual macerals on coal pyrolysis and combustion is further examined in the 

following sections with particular emphasis on the inertinite group. 

 

2.5.5.1 Vitrinite 

 

Of the three maceral groups vitrinites exhibit greater thermal alteration and their 

behaviour during combustion is best understood (Shibaoka et al., 1985).  The 

degree of oxidation or pyrolisation of a coal is related to the rank of the vitrinite 

content (Carpenter, 1988).  Vitrinites have been found to combust at slightly 

higher temperatures than the other macerals, although they burn considerably 

faster and more intensely (Crelling et al., 1992).  Although vitrinite is generally 

deemed to be reactive, Bengtsson (1987a) noted that pseudovitrinite behaved as 

relatively unreactive since a considerable amount of unburnt material in the fly 

ash was observed.  Some workers have also identified some inertinite to be more 

reactive than some vitrinites (Thomas et al., 1989b; Suarez et al., 1991; Phong-

Anant et al., 1989; Cai et al., 1997). 

 

Pyrolysis of high vitrinite coals may produce vesiculated and swollen chars 

depending on the fluidity development and rate of volatile release.  Pure vitrinite 

chars are mainly highly vesiculated and porous cenospheric (hollow, single 

chambered, thin-walled or tenui- spherical particles) (Skorupska et al., 1987; 

Bend et al., 1992, Thomas et al., 1989a; Lightman and Street, 1968).  However, 

the extent of porosity development in the char is found to be highly rank 

dependent (Bend et al., 1992, Bailey at al., 1991; Hamilton, 1981).  With 

decreasing rank vitrinite-rich coals generate chars that are of increasing structural 

complexity (Hamilton, 1981).  Tenuispheres with high porosity as well as 
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networks have been regarded as the major chars produced from vitrinite coals of 

lower rank (Lightman and Street, 1968, Bailey et al., 1990), whilst higher ranked 

coals may give crassinetworks and crassispheres (Oka et al., 1987).  Thin-walled 

or tenui-networks or porous mixed chars have also been produced from vitrinite-

rich particles but their formation has been attributed to association of different 

macerals with vitrinite (Bend et al., 1989). 

 

2.5.5.2 Liptinite 

 

The liptinite group of macerals, which has the highest hydrogen content, volatile 

yield, and heating value, is regarded as the most reactive maceral group in coals 

of the same rank.  Because of the aliphatic nature of the organic matter of the 

liptinite macerals, they usually decompose as volatile matter leaving a small 

amount of combustible remaining (Skorupska et al., 1989).  Thus, liptinite 

promotes good ignition and burnout and, in some cases, when the coal is liptinite-

rich, a low ignition temperature is expected (Tsai and Scaroni, 1987).  

Nevertheless, as rank increases the combustion properties become similar to those 

of vitrinite. 

 

Although liptinite is deemed to be mainly reactive, interestingly, Crelling et al.  

(1992) found that the sporinite sub-maceral may also behave as unreactive during 

combustion.  The results shown that although sporinite appeared very reactive 

initially, at temperatures above volatile ignition, it became the least reactive 

maceral.  This conclusion was drawn after looking at the char burning profiles 

obtained during the study.  High char burnout temperatures and the lowest 

maximum rate of weight loss were given by the sporinite.  This behaviour was 

assumed to be due to its greater yield of volatile matter and low ignition 

temperature during pyrolysis. 

 

According to a recent investigation (Milligan et al., 1997), some of the material 

evolved during pyrolysis of the liptinitic material may react with the surface of the 

other materials, or may enhance fluidity leading to agglomeration of particles. 
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2.5.5.3 Inertinite 

 

It should be emphasised that by considering the inertinite group as one entity, the 

very different behaviour of the individual macerals within the inertinite group is 

very often disregarded (Thomas et al., 1989b).  The different sub-macerals within 

this maceral group can exhibit more significant differences in chemical 

composition than those from the other maceral groups and, therefore, slight 

differences in their behaviour during combustion may be expected.  This fact has 

increased the interest of coal researchers in assessing the behaviour of inertinite 

macerals during pyrolysis and combustion. 

 

Disagreements regarding the reactivity of inertinite macerals are clear from the 

literature.  Subdivision of the group into ‘reactive’ and ‘unreactive’ components 

on the basis of their reflectance values with respect to the vitrinite maceral was 

intended to clarify these discrepancies.  Schapiro et al. (1961), for example, 

adopted a reflectance of 2.2% to differentiate between fusible and non-fusible 

inertinite.  Conversely, by studying a wide variety of coals, Jones et al.  (1985b) 

reported that there was a fairly well defined reflectance level below which 

inertinite became fluid during pyrolysis.  This boundary was found to be coal 

dependent and increased with rank from 1.3% to 1.8% for coals of vitrinite 

random reflectance ranging from 0.5-1.2%.  Furthermore, it should be highlighted 

that the overall reactivity of inertinite is affected not only by its chemical 

composition but also by its morphological properties, such as particle size, 

fineness of texture, specific area, pore size distribution, fluid permeability and 

mode of association with other macerals (Shibaoka et al., 1987). 

 

The char particles generated from inertinite during pyrolysis depend upon the 

reflectance of the inertinite sub-maceral and range from solid type chars to open 

chars of different morphology and properties.  For instance, inertinite can give 

crassispheres showing development of anisotropy (Tsai, 1987), unfused char with 

little or no porosity (Jones et al., 1985a), or vesicular and rounded particles 

(Goodarzi and Murchinson, 1978).  Quantities of high-density chars in 

combustion residue can be related to petrographic properties including infusible 
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inertinite content and percentage of microlithotypes of high inertinite content 

(Bailey et al., 1990). 

 

Although the poor combustion characteristics of a coal are sometimes attributed to 

a high inertinite concentration, variation of rank is also significant (Lee and 

Whaley, 1983).  When dealing with low and medium reflectance inertinite 

macerals, using a laser microreactor as heating source in air, Thomas et al.  

(1989b) found that the produced char exhibited swelling, plasticity and fusion.  

This char type appears mostly as thin walled in the lower rank coals (<5µm thick) 

with few intances of unfused chars from inertinite of high reflectance.  Similarly, 

Skoruspka (1987) found that char particles obtained from the reactive inertinite 

macerals are mainly of irregular shape, usually elongated, with long, tight and 

parallel pores.  Their morphologies indicate limited fluidity during pyrolysis. 

 

By conducting experiments in both a fluidised bed and a drop tube furnace, 

Vleeskens and Nandi (1986) found that there was a general trend towards 

increasing unburnt coal during combustion with increasing inertinite content of 

coal.  Not only high inertinite content but also oxidised vitrinite content was 

deemed to be responsible for this tendency.  Similarly, other workers found that 

some inertinite-rich coals gave char particles that were predominantly of the same 

or smaller size than the original coal and denser (Cai et al., 1997).  The 

morphology of these chars was described as being solid with angular edges, 

showing a dearth of fluidity during char formation and no development of 

anisotropy.  From samples of broadly similar carbon content, relative reactivity of 

inertinite-rich chars was found to be greater than that of some vitrinitic chars 

(Borrego et al., 1997; Cai et al., 1997).  This behaviour was assumed by Borrego 

et al. (1997) to be due to the disordered structure of some inertinites, although 

oxidised vitrinite could also have played a part. 

 

Vleeskens and Nandi (1986) found that low reflectance semifusinite was more 

reactive than other inertinite macerals owing to its fluidity during combustion 

which leads to the formation of highly porous chars.  By using a laser beam rather 

than conventional combustion apparatus, Shibaoka et al.  (1989a) reported similar 
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results.  High reflectance semifusinite, however, has been deemed to be one of the 

least reactive macerals among this group, due most likely, to its aromatic nature 

(Crelling et al., 1992).  This specific, high reflectance sub-maceral has a lower 

porosity in relation to lower ranked inertinite and, therefore, it is less likely to 

swell and fluidise, even under high heating rates (Vleeskens and Nandi 1986). 

 

2.5.6 Particle Size Effects 

 

It is well known that particle size affects the behaviour of coal during combustion 

in different ways (Carpenter, 1988; Lester, 1994).  Microscopic analysis, for 

instance, has shown that maceral disproportionation can occur during the grinding 

of pulverised coal sized fractions of inertinite-rich, low-rank bituminous coals 

(Jones et al., 1985a).  The cause of size segregation is because of differences in 

grindability between macerals.  In low-rank coals vitrinite is harder to grind than 

inertinite. 
 

The largest particles of low-rank bituminous coals have been found to be enriched 

in vitrinite by 10-20% compared with the parent coal, whereas inertinite was 

concentrated in the smaller particles (Jones et al., 1985a).  Therefore, the former 

coal particles have a higher volatile yield than the average for the coal and will 

yield less char on pyrolysis.  It has been found, however, that the relative 

grindability of macerals can reverse at higher rank (Unsworth et al., 1991).  

Consequently, concentration of vitrinite in smaller size fractions would be 

expected for such coals.  Those findings suggest that when dealing with 

pulverised coal the effect of maceral segregation on coal combustion must be 

considered rather than just the effect of particle size itself. 
 

The particle size distribution of the pulverised coal affects burnout directly as 

particle lifetime increases with increasing feed coal particle size (Unsworth et al., 

1991). 
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2.5.7 Mineral Effects 

 

The mineral matter associated with coal includes a wide range of minerals, the 

most abundant forms being clay, quartz, carbonates, pyrite, marcasite and other 

forms of oxides.  Some minerals are easily liberated by milling and can therefore 

be removed by beneficiation processes (Skorupska and Marsh, 1989).  However, 

the mineral matter that is associated with the organic structure of the coal remains 

after beneficiation.  It can be analysed and detected microscopically and by 

chemical analysis techniques in order to determine its effects on the whole 

combustion process of coal. 

 

Depending upon the physical properties of mineral matter during pyrolysis it may 

alter the chemical and thermal behaviour of char, particularly when phase changes 

are involved (Smoot and Smith, 1985).  For example, decomposition of clay 

hydrates, carbonates and sulphides may delay the rise in temperature of the coal 

particle and hence its ignition (Vleeskens and Nandi, 1986).  Several studies 

(Solomon et al., 1986; Best et al., 1987) have shown that higher reactivity of 

lower rank coals/chars can be associated with the catalytic effect of minerals.  The 

composition and amount of mineral matter can also influence the particle break-

up process and hence the particle size of the char (Skorupska, 1987).  A portion of 

the mineral matter can sometimes be emitted with the volatiles (Smoot and Smith, 

1985). 

 

Mineral mater in the form of salt can act as a catalyst and hence may affect the 

final reactivity of the char (Pullen, 1984), especially at low reaction temperatures 

(Skorupska and Marsh, 1989).  The dispersion of calcium, for instance, has been 

shown to be one of the most important factors influencing char reactivity 

(Carpenter and Skorupska, 1993).  The presence of calcium chloride may increase 

the reactivity of lignite char when the oxidation rate of char is controlled by 

chemical kinetics.  However, when mass transport is the main process controlling 

the combustion rate of the char, this compound does not have any considerable 

effect on char reactivity (Serageldin and Pan, 1986). 
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CHAPTER 3 EXPERIMENTAL 
 

3.1 Coal Sample Preparation 
 

3.1.1 Origin of Samples 

 

A total of thirteen coals were used in the course of this research.  The samples 

were supplied by Powergen UK plc, Carbones del Guasare (Venezuela), and 

Inspectorate de Colombia and Carbones del Caribe (Colombia).  Of the thirteen 

coals, eleven are from South America (seven from Colombia and four from 

Venezuela), one from North America (Ashland), and the other from the UK 

(Thoresby).  The North American coal, as well as the British coal, were included 

for comparative purposes for the initial experiments in the DTF and the CTF 

experiments, respectively.  Figure 3.1 shows the location of the South American 

coals.  The criteria for choosing these coals include their availability, their 

combustion potential, and their actual or future potential marketing as thermal 

coals. 

 

3.1.2 Screening 

 

For the CTF experiments, coals were sourced by Powergen UK plc who arranged 

for contract grinding of the samples.  Therefore, only the screening procedure 

regarding the DTF experiments will be discussed in this section. 

 

3.1.2.1 Wet Sieving 

 

Size fractions of 53-75 µm, 106-125 µm and 150-180 µm were produced from the 

pf samples of each coal by wet screening on a wet sieve cascade.  The fractions 

were filtered in a vacuum filter device and were then air dried.  The sieving 

procedure was performed using standard sieves conforming to British 
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Figure 3.1 Location of the South American coal samples used in this study 
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Standard 410.  Those samples obtained as lumps (> 212 mm) were ground to pf 

size, prior to sieving, using a mechanical jaw crusher.  The 53-75 µm and the 106-

125 µm fractions were used for the initial experiments in the DTF, whereas all 

size fractions were used in the re-firing experiments. 

 

3.1.2.2 Alpine Jet Sieve 

 

An Alpine Air Jet sieve was used for further elimination of fines from the three 

size fractions.  This equipment allows suction to be maintained on the under side 

of modified Endecott sieves while allowing a rotating finger to blow a thin jet air 

back through the sieve.  This thin jet of air releases coal particles stuck on the 

surface of the sieve, hence agitates the sieving process and decreases the time 

required for a particular size range to be obtained.  Figure 3.2 shows a photograph 

of the Alpine Air Jet sieve.  Samples were stored in sealable plastic bags while not 

in use. 

 

3.2 Coal Sample Characterisation 
 

The coal fractions were characterised using standard techniques such as proximate 

and ultimate analysis, and maceral and rank analysis as well as image analysis and 

intrinsic reactivity by means of thermo-gravimetric analysis.  The characterisation 

procedures are described in the following sub-sections. 

 

3.2.1 Proximate Analysis 

 

Coal fractions were analysed using a Stanton Redcroft STA 1000 thermo-

gravimetric analyser (TGA) in order to determine their moisture content, volatile 

matter, fixed carbon and ash content.  The analysis procedure developed, closely 

simulates the general standard method for the proximate test (British Standard 

1016-104.3, 1998).  The analyser is equipped with a single arm facility which 

allows up to 200 mg of sample to be loaded into the sample cup.  Figure 3.3 

shows a photograph of the TGA apparatus. 
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Figure 3.2 The Alpine Air Jet Sieve 
 

 

 

Figure 3.3 The Stanton Redcroft STA 1000 thermo-gravimetric analyser 
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Approximately 150 mg of sample were loaded into the sample cup of the analyser.  

Two replicates of each fraction were analysed in order to provide an estimate of 

the repeatability of the analysis.  Under the conditions at which the analysis was 

performed, this weight was found to give a repeatability of ±1% for the 

determination of ash and less than ±0.8% for volatiles and moisture content. 

 

The program developed involves the heating of the sample through a sequence of 

ramps as follows. 

 

(1) Heat from ambient temperature to 120°C at 50°Cmin-1 

(2) Hold at 120°C for 5 minutes 

(3) Heat from 120°C to 920°C at 50°Cmin-1 

(4) Hold at 920°C for 10 minutes 

(5) Cool from 920°C to 820°C at 50°Cmin-1 

(6) Hold at 820°C for 45 minutes 

 

The gas supply for devolatilisation was nitrogen at a flow of 50 ccmin-1.  This was 

changed to air after devolatilisation to allow combustion char residue.  A plot of 

weight loss and temperature against time is produced during the analysis.  Figure 

3.4 shows an example of this plot in which the different stages in the 

decomposition of the coal have been highlighted. 

 

3.2.2 Elemental Analysis 

 

Elemental analysis (carbon, hydrogen, nitrogen, and sulphur) of the coal fractions 

was carried out using a Leco 600 CHNS analyser.  Approximately 100 mg of each 

fraction were used for the analysis.  A photograph of the analyser is shown in 

Figure 5. 
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Figure 3.4 TGA curve showing proximate analysis of coal 
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Figure 3.5 The Leco 600 CHNS analyser 
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3.2.3 Petrographic Characterisation 

 

3.2.3.1 Sample Preparation 

 

Coal blocks for point count and image analysis were produced by mounting the 

coal fractions in polished resin.  The blocks were made by mixing a powdered 

dental epoxy resin called Simplex Rapid with the coal sample in a proportion of 

2:5 by weight respectively.  The mixture was then wetted with several drops of 

methyl methacrylate.  The block was finally moulded by using either a Pressi 

Mecapress C or a Struers Prontopress-2 mounting presses (Figure 3.6).  The block 

was subjected to a temperature of 150°C and a pressure of 250 kPa for about 15 

minutes, followed by a cooling time of 3 minutes. 

 

3.2.3.2 Polishing Procedure 

 

For grinding and polishing the surface of the particulate block a Struers Pedemat 

Rotapol polisher was used (Figure 3.7).  The aim was to reduce the amount of 

scratches on the surface of the coal block.  Firstly, the surface of the block was 

ground using water-resistant silicon carbide paper of grit sizes 500 and 1200, for a 

period of one minute respectively.  Then, polishing was carried out on a separate 

plate using one-micron alumina suspension on synthetic silk for one minute.  The 

final polishing was performed by means of 0.04 µm colloidal silica suspension.  

Up to six blocks can be polished at once and each has a force of 30 N applied to it 

from above, via individual extendible pressure feet. 

 

3.2.3.3 The Microscope 

 

The microscope used for petrographic as well as image analysis of coal and char 

samples was a Leitz Ortholux II POL-BK.  Figure 3.8 shows the microscope with 

a fluorescent attachment on the left hand side.  For all the different analyses, a 32x 

magnification oil-immersion lens and non-fluorescing oil from Leitz are used.  

The eyepiece of the microscope has a 10x magnification lens. 
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Figure 3.6 The Pressi Mecapress C and Struers Prontopress-2 mounting 
presses 

 

 

Figure 3.7 The Struers Pedemat Rotapol polisher 
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Figure 3.8 The Leitz Ortholux II POL-BK microscope 
 

 

3.2.3.4 Maceral Analysis 

 

For maceral analysis, a semi-automatic stage which was connected to a Swift 

point counting device was fitted to the microscope.  500 separate maceral points 

were counted for each analysis with stage movements of 1/3 mm in accordance 

with British Standard 6127:3 (1981). 

 

The polished coal block was placed under the lens of the microscope on the 

mobile stage and the maceral lying under the cross hairs of the microscope was 

identified.  Only the three main maceral groups were recorded, with the exception 

of inertinite which was split into fusinite and semifusinite.  The number of counts 
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recorded was converted automatically by the point counter to a proportion by 

volume of the total. 

 

3.2.3.5 Vitrinite Reflectance Measurements 

 

For the vitrinite reflectance determination, a Leitz photometer was used which 

was calibrated using Leitz light standards.  A manual stage was fitted to the 

microscope, allowing the operator to move to any particular position on the block.  

100 measurements of reflectance of any homogeneous and smooth vitrinite area 

that fell under the cross-hair was recorded.  The mean value of the measurements 

represents the random mean vitrinite reflectance (VRo) and is an indication of the 

rank of the coal sample.  Two separate analyses of each sample were performed 

and the mean VRo values reported. 

 

The photometer was standardised using a glass prism light standard from Leitz 

with a nominal reflectivity value in oil of 1.24%.  The calibration of the 

photometer system was subsequently verified by using a sapphire light standard 

with a nominal reflectance index of 0.54%.  This value was closer to the mean 

vitrinite reflectance value of most of the coal samples.  After each measurement, 

the standards were placed back under the lens in order to check for variations in 

the reference line. 

 

3.2.4 Image Analysis 

 

3.2.4.1 The Image Analyser 

 

The system used to perform image analysis of the coal and char is called an IBAS 

2000 Image Analyser manufactured by the Kontron Image Associates.  The 

system is based on a 386 host processor connected to a hardwired image processor 

which captures images under the microscope via a high resolution Hamamatsu 

C2400-SIT black and white video camera.  The on-line image from the camera 

may be displayed on a RGB monitor.  The software for the IBAS system allows 

the user to interact via a keyboard, digitiser and a VGA monitor.  An auto-stage 
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fitted under the microscope and connected to the IBAS allows a running program 

to move the stage automatically using the appropriate software command.  Figure 

3.9 shows the IBAS image analyser. 

 

Figure 3.9 The IBAS 2000 Image Analyser 
 

 

3.2.4.2 The Reactivity Assessment Program 

 

By using the image analyser system, fifty images consisting of 512x512 pixels 

were captured for each coal fraction.  Each pixel was then assigned a grey scale 

value ranging from 0 to 255 depending upon its reflectance.  From the captured 

images, the coals were characterised using the Reactivity Assessment Program 

(RAP).  This rapid analysis, which was developed at Nottingham by Lester (1994) 

and Cloke et al, (1995), makes the fundamental assumption that the behaviour of a 

maceral is associated primarily with its reflectance and not its type. 

 

The main objective of the RAP analysis is to determine the ‘% unreactives’ i.e. 

the cumulative percentage of material that lies above a specific reflectance 

threshold.  The determination of this boundary is arbitrary and it has been found 

to be dependent on the rank of the coal (Lester, 1994; Cloke et al., 1997a).  A grey 

scale value of 190 have been chosen so that material above this is deemed to be 
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inert whilst the material below the threshold is considered reactive.  This value 

has been determined experimentally using a wide range of world coals (Lester et 

al., 1995; Gilfillan, 1999).  The cumulative percentage of material lying below the 

threshold is known as the ‘reactive number’. 

 

As mentioned in section 3.2.3.5, a sapphire light standard was used to standardise 

the light levels of the camera and microscope.  The captured image of the light 

standard also acts as a light filter, which allows each image to be corrected for 

light variations over the image field. 

 

Figure 3.10 shows a typical grey scale histogram plot generated using the RAP.  

The histogram starts with the synthetic liptinite column at the left-hand side.  The 

percentage of liptinite is taken from the point counting analysis for each fraction 

and substituted for a peak due to resin overlapping.  The thicker line in the profile 

represents the cumulative percentage curve of the histogram over the grey scale 

range. 

 

Figure 3.10 A typical reflectance histogram of coal 
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3.3 The Drop Tube Furnace 
 

3.3.1 Description of Rig 

 

A Drop Tube Furnace (DTF) system, which was developed at Powergen UK plc, 

was used to produced reasonable quantities of char under similar conditions to 

those of industrial pulverised fuel combustors at a power station.  The main 

components of the system include a fuel feeder, a work tube and probe, ancillary 

equipment for gas supply and flow regulation, a product collector, a gas filter, 

temperature monitoring and other data measuring devices.  A brief description of 

each of the components is given in the subsequent sub-sections.  A schematic 

representation of the system and a photograph of the main working area of the rig 

are shown in Figures 3.11 and 3.12 respectively. 

 

This particular DTF apparatus is able to achieve heating rates of the order of 104 

to 105 K.s-1, a maximum temperature of 1400°C, and oxygen levels can be 

regulated to simulate the atmosphere found during full-scale combustion.  The 

average operating temperature is determined by changing the temperature setting 

of the oven.  The residence time of the particles in the high temperature region of 

the DTF is estimated by considering, the separation between the feeder and 

collector probes, and the temperature and flow rate of the gas.  The composition 

of the carrier gas can be predetermined using air and nitrogen cylinders.  A 

cyclone device at the end of the collector probe allows the char material to be 

separated from any gaseous volatiles that may still remain in the carrier gas.  In 

the DTF, a temperature of 1300°C, a residence time of 100-200 ms and a carrier 

gas of 1 % oxygen in nitrogen have been used to reproduce the conditions 

experienced by coal in the initial stage of combustion. 

 

3.3.1.1 Gas Supply 

 

The atmosphere for the DTF experiments is provided by high-pressure air and 

nitrogen cylinders using standard regulator valves.  A small flow of nitrogen is 
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fed directly into the feeder assembly (see section 3.3.1.2).  The main inlet stream 

to the system is monitored using an oxygen analyser to enable the desired inlet 

concentration to be achieved. 

 

 

Figure 3.11 Schematic of the Drop Tube Furnace 
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Figure 3.12 The main working are of the Drop Tube Furnace 
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3.3.1.2 Feeder System 

 

A specially designed feeder system, made in the Chemical Engineering workshop 

at Nottingham University, was utilised to provide a steady flow rate throughout 

each experiment.  Figure 3.13 shows a photograph of the feeder.  The same 

system was used in the work of Lester (1994), Aquino (1999), and Gilfillan 

(1999).  The coal is placed in a hopper and falls onto a rotating screw thread and 

is carried into a vertical tube where the coal falls under gravity and is swept into 

the DTF with a nitrogen stream of 1 lmin-1.  In order to provide a fluidised 

movement of the coal sample, a combination of battery-driven motors with 

eccentric weights was used to vibrate the assembly and prevent hold-up of the 

coal in the hopper.  A modification of the original configuration of the motors was 

done to allow, not only horizontal, but also vertical movements of the system.  

This increased the feed rate of the sample and did not allow the sample to grip the 

edges of the internal hopper.  Feed rates varied considerably depending upon the 

coal sample and particle size and were in the range 5 to 10 grams per hour. 

 

 

Figure 3.13 The screw feeder system of the Drop Tube Furnace 
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3.3.1.3 Heating System and Controls 

 

The heating system of the DTF consists of three separate heaters as shown in 

Figure 3.11.  Firstly a preheater is fitted which heats the gases as they enter at the 

top of the apparatus and is essentially a coiled carbon graphite plate wrapped 

round the feeder probe.  Secondly, the major source of heating is provided by the 

main heater which consists of four carbon graphite rods at each corner of the 

DTF.  Finally, a trim heater is fitted which compensates for the effect of the large 

water cooled collector probe that causes a drop in temperature near the bottom of 

the DTF.  The temperature in each heater is measured via two Pt/Rh (13%) 

thermocouples, positioned at right angles to the reaction tube. 

 

3.3.1.4 Reaction Tube and Probes 

 

The work tube, where the combustion of the coal sample takes place, is a 2 metre 

ceramic tube with an internal diameter of 50 mm, and a wall thickness of 5 mm.  

Both the feeder and collector probes are made of stainless steel, hence the need 

for water cooling when operating a high temperatures (>600°C).  Cooling is 

provided by an internal closed circuit system that contains 60 litres of water.  The 

coolant recirculates from a chiller unit at about 5-6 lmin-1, through the control unit 

and a fine filter.  The flow is divided between both probes, and is then fed back to 

the chiller unit. 

 

3.3.1.5 Filter System 

 

The gas filter system contains of a circular piece of filter paper and a pad of 

fibreglass.  These were found to be effective in removing tar and particulate 

matter from the exit gases before they were passed to the fume cupboard.  Two 

filters were used in a parallel arrangement enabling operation to continue whilst 

one or other of the filters was being changed.  The filter paper and the fibreglass 

from the filters are changed when saturated with waste tar and soot.  The 

frequency of these changes depends on the DTF operating conditions and on the 

type of carbonaceous material being passed through the DTF system. 
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The pump in the system has been configured to extract gas from its own exhaust, 

as well as gas from inside the DTF.  By altering the valve on the pump bypass the 

suction from the DTF may be increased or decreased, as required, during the 

experiments.  The gas outlet flow rate should be approximately 1 lmin-1 greater 

than the total inlet flow.  The pump has its own filters and these should be 

checked regularly and cleaned as necessary. 

 

3.3.2 Drop Tube Furnace Experiments 

 

For the initial experiments, two size fractions, 53-75 and 106-125 µm for three 

Colombian coals, were passed through the DTF operating at three different 

temperatures: 1000, 1150, and 1300°C.  The residence time in the active length of 

the reactor was approximately 200 ms, with an oxygen concentration of 1% and a 

coal feed rate of 0.1 to 0.15 gmin-1 approximately.  In order to assess the 

repeatability of the DTF two replicates  at 1150°C were carried out.  This initial 

study was undertaken to investigate possible effects of the operating temperature, 

particle size and coal type on char characteristics during combustion. 

 

The second part of the DTF study was a large scale investigation.  Six additional 

South American coals and one from USA were fired.  The chars were prepared 

under the same conditions as those used in the initial experiments.  The effects of 

particle size and DTF temperature on the devolatilisation of the coal and the 

morphological nature and intrinsic reactivity of the chars were investigated. 

 

3.3.3 DTF Re-firing Experiments 

 

The third part of the study involved the re-firing of six of the coals over a series of 

different residence times on the DTF in order to provide a relative comparison 

of the combustion rates of each coal.  For these experiments, three size fractions 

of each coal were used (53-75, 106-125, and 150-180 µm).  The samples were 

passed though the DTF, operating at 1300°C in a 1% oxygen in nitrogen 

atmosphere with a residence time of 200 ms.  The coal and the chars (collected at 

the bottom of the cyclone), were carefully weighed.  Ash content of the coals and 
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chars, together with the weight of coal fed and char collected, enable the 

collection efficiency of the process to be determined.  This is known as the ash 

tracer method.  Each char, so obtained, was re-fired in the DTF, again at 1300°C, 

over a series of different residence times (200, 400 and 600 ms), in an atmosphere 

containing 5% oxygen in nitrogen.  The samples were carefully weighed as 

before. 

 

3.4 The 1 MW Combustion Test Facility 
 

3.4.1 Description of Rig 

 

The purpose of this equipment is to simulate the time/temperate history that the 

coal and flue gas would see in a full size furnace under controlled and realistic 

conditions.  The CTF includes all the necessary features to ensure maximum 

similarity with the process encountered in real furnaces. 

 

The facility is capable of assessing: 

 

(1) Fuel quality effects on combustion and related equipment, 

(2) The characteristics of novel fuels, 

(3) Combustion equipment performance, and 

(4) The effectiveness of pollution control techniques. 

 

The system is designed for a thermal input of 1 MW.  Initial operation is with a 

single burner, but provision is in place for inclusion of up to four burners to 

enable closer simulation of multi-burners systems.  The CTF was constructed in 

such a way as to allow flexibility in the choice of fuel as well as the position from 

which samples can be taken.  Thus, the furnace may be fired using pulverised 

fuel, residual fuel, oil, Orimulsion, natural gas, or gas oil, with provision for 

unconventional fuels. 

 

The CTF is provided with extensive, cooled, wall-mounted slagging panels, 

extensive probing and sampling ports, and gas analysis equipment.  
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Comprehensive computerised data-logging and processing equipment makes the 

facility ideally suited to the development of sophisticated test programmes.  A 

schematic of the CTF showing the numerous sample ports is presented in Figure 

3.14. 

 

The temperature of the flue gases is conditioned by a water-cooled refractory-

lined combustion chamber and convection duct, air-cooled ducting, and two water 

spray units.  Operation of the apparatus is similar to that of a full-sized boiler with 

the exception that no steam is raised. 

 

3.4.2 Combustion Experiments 

 

The main aim of the CTF work was to evaluate the effect of particle size 

distribution of a coal with its combustion burnout performance.  Intermediate 

chars were obtained using sampling ports at various locations along the CTF.  The 

three ports that were used are indicated in Figure 3.14.  Since the CTF was 

installed, experience has been gained that established certain ports as the most 

suitable for obtaining particles such as char or fly ash.  Port one samples relate to 

the chars that have just undergone pyrolysis, and are just entering the first stage of 

combustion. 

 

Two coals were selected for these experiments, Carbocol, a sample from the El 

Cerrejon coal mine in Colombia, and a British coal, Thoresby, for comparative 

purposes.  Five samples of different grind specifications for each coal were fired 

under the following test condition: 15% Over Fire Air, 1% oxygen. 

 

3.5 Char Characterisation 
 

The changes in the characteristics of the char produced during the course of this 

work were assessed using a number of different techniques including loss-on-

ignition, intrinsic reactivity analysis, and manual and automatic image analysis. 
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Figure 3.14 Schematic of the 1 MW Combustion Test Facility 
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3.5.1 Loss-on-Ignition Test 

 

A measurement of the loss-on-ignition of the samples obtained from the DTF was 

performed in the TGA analyser.  The test of heating 10-12 mg of char sample in 

air to 820°C for one hour.  Weight changes were assumed to be as a result of the 

remaining carbonaceous material present in the samples.  The analysis of the 

samples from the 1 MW rig were carried out in a muffle furnace by staff at the 

Powergen Technology Centre of Powergen UK plc. 

 

3.5.2 Microscopic Analysis 

 

3.5.2.1 Char Block Preparation 

 

Char blocks needed to be prepared before microscopic analysis were carried out.  

Originally this was done in a similar way as that for the coal samples.  In this 

case, a reduction in pressure and temperature was required because of the fragility 

of the char walls.  In spite of this, the mounting procedure produced blocks which 

showed a considerable amount of char particle fracture.  Consequently, a new 

mounting method was developed which considerably reduced this problem.  In 

this case, a liquid polyester resin was utilised.  The resin called Estratil 2195 was 

provided by Cray Valley Ltd (Spain).  The procedure for the preparation of the 

char blocks is as follows: 

 

Methyl-ethyl-ketone (MEK), at 50% w/w, is added to the resin in a proportion of 

6 parts by 100 parts of resin.  The mixture so obtained is then stirred, and any air 

bubbles are removed by placing it in a desiccator which is connected to a vacuum 

pump.  After this, 2 grams of resin are then mixed with 0.10 to 0.15 grams of char 

depending on the density of the char.  This is done in a 25 mm diameter plastic 

mould by adding the resin first and then the char, followed by gently stirring to 

avoid char particle breakage.  The air bubbles produced were evacuated in the 

same way as with the resin alone.  Once set, pure resin was added on top of the 

dried layer to form a back to the block (9 to10 g of resin approximately per 

block).  The polishing of the blocks was performed in a similar way to that used 
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with the coal blocks, although extra force was applied via individual extendible 

pressure feet due to the greater hardness of the polyester resin. 

 

3.5.2.2 Morphological Characterisation 

 

Morphological characterisation of the individual char structures was performed by 

reflected light microscopy using the same equipment as for the maceral analysis 

of the coals samples.  The char block is set on a semi-automatic stage coupled to a 

Swift point counting device The selection of the particles was carried out by 

manual point counting on polished surfaces, individual particles being chosen 

when the cross hairs fell on the carbonaceous material.  250 morphological points 

were identified for each char block.  The most important parameters considered in 

the determination of the different char types were wall thickness and basic char 

structure using the modified set of the ICCP classification system which was 

described in chapter 2 (section 2.5.2). 

 

3.5.3 Image Analysis 

 

A novel system for Automatic Char Analysis (ACA), developed at Nottingham 

(Lester, 1994; Cloke et al., 1997a,b), which allows the relative thickness of chars 

to be measured, was also used.  The program was developed because manual 

analysis methods did not allow accurate evaluation of chars owing to the 

increased subjectivity involved during char analysis (Lester et al., 1996). 

 

The program was developed using distance transform techniques.  The char 

particles are singled out into binary images.  The edges of any particle are given 

the grey scale number one.  Any neighbouring white pixels are within the second 

contour, the row of pixels after this are then ‘3’ and so on until the particle has 

been completely covered.  The cumulative percent of char within five contours 

(ACA5) was taken as the most meaningful result.  Since the thickness of the char 

material will affect burnout, whether mass transfer limited or not, ACA5 was 

though to be a useful parameter.  The distance transform mapping process is 
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schematically represented in Figure 3.15, where an idealised cenosphere char is 

used as an example. 

 

 

Figure 3.15 The distance transform mapping process 
 

 

 

Original Char 

 

 

Binary Image 

 

 

Contoured Char 
 

 

3.5.4 Intrinsic Reactivity Analysis 

 

In order to determine the intrinsic reactivity of the char samples, a non-isothermal 

technique, which was described by Unsworth (1991), was used.  For this purpose, 

10 to 12 mg of ground char is loaded into the crucible of the TGA/DTA 

configuration system.  The furnace is heated initially to 300°C at a constant 

heating rate of 50°Cmin-1 in air, then at 15°Cmin-1 up to around 800°C, depending 

upon the burnout behaviour of the char material.  The TGA records the 

instantaneous sample mass for a given temperature.  The resultant burning profile 

is a plot of the rate of weight loss against temperature and is shown in Figure 

3.16. 

 

Two main parameters were considered to assess the intrinsic reactivity of the char, 

the peak and burnout temperatures (PT, BT).  The peak temperature is that where 

the burning rate is at a maximum and coincides with the peak on the DTA (Figure 

3.16).  The burnout temperature represents the temperature where sample 

oxidation is complete.  This was taken as the point immediately before 

combustion ceases when the rate of weight loss is 1% per minute. 

Resin 
Char 

Contour 1    Contour 2

Contour 3 
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Figure 3.16 A typical burning profile from the intrinsic reactivity analysis 
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3.5.5 Scanning Electron Microscopy Analysis 

 

An ISI Sx-30 scanning electron microscope was used to examine the coal 

fractions and chars.  The samples were mounted onto double-sided carbon sticky 

stubs.  The equipment used a Robinson backscatter electron detector and was run 

under an accelerating voltage of 30 kV. 

 



67 

CHAPTER 4 DROP TUBE FURNACE EXPERIMENTS 
 

The first part of this chapter presents the results for the initial experiments 

performed in the Drop Tube Furnace (DTF) after the rig had been modified and 

some of its parts renovated or adjusted.  Gas temperature profiles along the 

working tube were obtained before the DTF tests were conducted.  Three 

Colombian coals and two size fractions were selected for this initial stage.  The 

experiments were an attempt to investigate the changes that take place when coal 

particles are heated rapidly at high temperatures under a slightly oxidising 

atmosphere during the first 200 milliseconds.  Additionally, the study was to act 

as an assessment of the repeatability of the DTF system. 

 

In the second section of the chapter, the initial experimental design matrix was 

augmented by adding six additional South American coals and one from the USA.  

The American coal was selected for comparison purposes.  The study was 

undertaken to investigate possible effects of the operating temperature, particle 

size and coal type on char characteristics during the combustion process. 

 

4.1 Initial Drop Tube Furnace Experiments 
 

Three vitrinite-rich coals from Colombia were selected for this initial study, on 

the basis of their different rank and location along the Caribbean region of the 

country.  The first coal Bijao comes from Cordoba County, Caypa (CA) from the 

Central Cerrejon mine, in La Guajira County, and La Jagua (JA) from Cesar 

County.  Bijao (BI) coal of lower rank, although, according to the ASTM coal 

classification system, along with the other two coals is ranked as high-volatile 

bituminous coal. 

 

Since particle size is known to affect coal combustion behaviour, two different 

size fractions (53-75 and 106-125 µm) for each coal were used.  These size ranges 

were used for two main reasons; firstly, pulverised fuel tends to block the screw 
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or weir feeder as well as the feeder probe of the DTF, when fines are present, and 

secondly, the presence of a wider size range would make it difficult to relate char 

properties to the original feed coal material since certain chars could be the result 

of coal particle fragmentation. 

 

4.1.1 Coal Characterisation 

 

Proximate and ultimate analysis data for each coal fraction are presented in Table 

4.1, whilst Table 4.2 gives the results of the point count maceral analysis, rank, 

and % unreactives.  The variations of volatile matter (VM), fixed carbon (FC), 

fuel ratio (FR), and carbon content with coal rank, as expressed by the vitrinite 

reflectance, clearly reflect the expected trends of increasing FR, FC and %C and 

decreasing VM with the increase of coal rank.  Maceral composition of the coals 

indicates generally high vitrinite content (>84%) and low liptinite (<6%).  Caypa 

and La Jagua both have similar proximate analyses but Caypa shows a slightly 

higher carbon content and higher vitrinite reflectance value.  Another clear 

difference is that La Jagua coal exhibits a higher inertinite content in both 

semifusinite and fusinite sub-macerals.  This explains the relatively high % 

unreactives value with respect to the other two coals. 

 

Variations of coal properties with particle size for the coals used here will be 

discussed in section 4.2 and also in chapter 5 (section 5.1). 

 

The vitrinite reflectance histograms of the coal fractions and the profiles from the 

Reactivity Assessment Program (RAP) analysis are given in Appendices A and B 

respectively.  The RAP profiles take the form of frequency versus grey scale 

histograms.  The % unreactives parameter, derived from the RAP profile, are 

given as figures in Table 4.2.  Note that the RAP profile of each coal exhibits a 

rectangular peak at the low end of the reflectance range which corresponds to a 

synthetic liptinite peak (less than grey scale 55, although exact position is rank 

dependent).  The liptinite concentration is taken from the point count analysis for 

each fraction and substituted for this peak.  This substitution is necessary as the 

resin and liptinite have similar reflectance values and their respective peaks 

overlap (Cloke & Lester, 1994; Gilfillan, 1995).  These liptinite peaks are barely 
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discernible for Caypa coal fractions due to the low concentration of liptinite 

maceral in this coal. 

 

Table 4.1 Proximate and elemental analyses for the three coals 
 

Particle 
Size Ash VM FC FR C H N S Oa 

Coal 
µm (%db) (%daf) (%daf) FC/VM (%daf) (%daf) (%daf) (%daf) (%daf)

Bijao 53-75 4.2 45.6 54.4 1.19 73.80 5.27 1.86 0.68 18.40 

 106-125 4.1 45.2 54.8 1.21 73.82 5.42 1.78 0.63 18.35 

Jagua 53-75 2.9 38.9 61.1 1.57 84.12 5.51 1.78 0.59 8.00 

 106-125 2.5 39.2 60.8 1.55 84.36 5.61 1.79 0.58 7.65 

Caypa 53-75 1.9 38.6 61.4 1.59 84.78 5.68 1.89 0.67 6.97 

 106-125 2.2 38.9 61.1 1.57 85.43 5.76 1.86 0.64 6.31 

__________ 
a by difference; VM=Volatile Matter; FC=Fixed Carbon; FR=Fuel Ratio (FC/VM); db=Dry Basis; daf=Dry, 
ash-free Basis. 
 

Table 4.2 Petrographic and image analyses for the six coal fractions 
 

Particle 
Size Rank Maceral Content (vol%) U190

b 
Coal 

µm VRo (%)a Vitrinite Liptinite Semifusinite Fusinite (vol%) 

Bijao 53-75 0.50 94.2 3.6 1.6 0.6 1.1 

 106-125 0.50 90.8 6.0 2.6 0.6 1.1 

Jagua 53-75 0.54 85.2 2.0 7.8 5.0 4.1 

 106-125 0.53 84.2 2.4 10.2 3.2 4.5 

Caypa 53-75 0.60 96.8 0.4 2.4 0.4 3.4 

 106-125 0.59 95.2 0.4 3.6 0.8 3.6 

__________ 
a VRo = Mean Random Vitrinite Reflectance; b U190= % unreactives 
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The threshold used to calculate the percent of unreactive material is shown in the 

RAP profiles (grey scale 190).  The S-like curves in each plot represent the 

cumulative percentage curve of the histogram over the grey scale range.  The 

shape of this curve is characteristic of the reactivity of the coal (Cloke et al., 

1997b).  High-sided S-like curves generally denote coals with low inertinite 

figures and low variations in vitrinite reflectance.  Long sloping curves are 

generally characteristic of coals which exhibit high semifusinite levels or contain 

mainly high-rank vitrinite.  Blending of various coals may also produce sloped 

curves.  The coals used in the initial experiments, for instance, all give steep 

curves due to their low variations in vitrinite reflectance and low semifusinite 

content. 

 

4.1.2 Drop Tube Furnace Conditions 

 

All chars were prepared at three different gas temperatures (1000, 1150, and 

1300°C), with a residence time of 200 ms.  It was envisaged that fundamental 

differences between char samples would be observed over this temperature range.  

The combustion process was completed at 1 atm and under a slightly oxidising 

atmosphere (1% oxygen in nitrogen).  This was considered necessary to avoid 

contamination of the char samples with soot and condensed tars.  In order to 

assess the repeatability of the system, two replicates at 1150°C were carried out.  

Only the mean value of the two replicates for each char parameter was reported.  

Ash repeatability between replicates was found to be within ±1.7 % on a dry 

basis, whilst variations in peak and burnout temperatures were in the order of 1-

3°C.  This initial study was undertaken to investigate the possible effects of the 

operating temperature, particle size and coal type on char characteristics during 

combustion in the DTF. 

 

Gas temperature profiles along the centre line of the working tube were obtained 

as a function of axial distance from the bottom of the feeder probe.  Figure 4.1 

shows the profiles obtained for the three different operating temperatures.  It can 

be seen from the figure that high temperature gradients near both the feeder and 

collector probes, and a long isothermal zone were attained. 
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Figure 4.1 Temperature profiles along the reaction zone in the DTF 
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4.1.3 Char Collection Efficiency 

 

The weight loss incurred in coal pyrolysis/combustion experiments is often 

measured to determine the extent of the reaction.  However, the preparation of 

char at high temperature and under slightly oxidising atmospheres produces a 

complex mixture of tars, gases and soot, which make it practically impossible to 

perform a reliable mass balance by direct weighing.  Therefore, an alternative 

method to determine char yield is necessary.  This is usually carried out indirectly 

by the ‘ash tracer method’, which makes use of the ash associated with the coal as 

tracer (Xian et al., 1988).  By knowing the ash content of the coal and that of the 

char collected in the cyclone after passing through the furnace, the collection 

efficiency can be calculated.  A similar collection efficiency for each set of runs in 

the DTF would provide a way of assessing the repeatability of the experiments.  

For this reason the collection efficiency was determined for every sample by the 

formula given below (Badzioch et al., 1968): 
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100
AcoalFeedCoalofMass

AcharCollectedCharofMass
(%)ε ×

×
×

=  ( 4.1 ) 

 

Where ε is the collection efficiency and Acoal and Achar are the coal and char 

ash content respectively on a dry basis. 

 

Table 4.3 Ash content of coals and chars 
 

Particle Size Coal Ash 
Content Char Ash Content (wt% db) 

Coal 
µm (wt% db) 1000°C 1150°C 1300°C 

Bijao 53-75 4.2 9.90 11.64 13.42 

 106-125 4.1 8.86 10.94 12.16 

Jagua 53-75 2.9 5.86 7.06 7.94 

 106-125 2.5 4.82 5.55 6.56 

Caypa 53-75 1.9 4.15 4.94 5.56 

 106-125 2.2 4.87 5.60 6.07 

 

Table 4.4 Char yield and collection efficiency data for the three coals 
 

Particle 
Size Char Yield (g/g of coal fed) Collection Efficiency (%) 

Coal 
µm 1000°C 1150°C 1300°C 1000°C 1150°C 1300°C 

Bijao 53-75 0.496 0.369 0.270 116.0 101.6 85.7 

 106-125 0.461 0.401 0.299 100.6 108.0 89.7 

Jagua 53-75 0.489 0.395 0.349 99.5 97.0 96.4 

 106-125 0.466 0.371 0.347 91.0 83.3 92.2 

Caypa 53-75 0.473 0.401 0.343 104.5 105.6 101.7 

 106-125 0.472 0.418 0.359 102.6 104.4 97.3 

 

Ash content of the coals and chars are presented in Table 4.3 whilst Table 4.4 

gives the data for the mass of char collected and the collection efficiency for all 
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the samples.  It can be seen from the tables that collection efficiency figures vary 

in accordance with changes in ash levels, particle size, and the operating 

temperature.  At 1000°C, for instance, collection efficiency values were higher for 

the smaller size fraction.  For 1150 and 1300°C the same trend was observed for 

Caypa and La Jagua coal samples but not Bijao.  Collection efficiency values 

were all greater than 80% and in half of the cases greater than 100%.  This 

problem highlights the deficiencies in the ash tracer method since any 

inaccuracies in the ash content of the coal or char will result in either unexpected 

high or low collection efficiencies.  Inaccuracies and poor reproducibility that 

occur during indirect determinations of weight losses may arise for several 

reasons and they are discussed below. 

 

When the ash content of the coal or char is low (as for the coals used here), a wide 

scatter of results can arise from even small analytical errors in the determination 

of ash.  This is particularly serious when the amount of decomposition is small so 

that the change in the ash content may be too small to be detected (Carpenter, 

1993).  Nevertheless, the extent of devolatilisation of these particular coals during 

the pyrolysis experiment is high enough so that the error becomes less significant. 

 

It was anticipated that at the operating conditions of the DTF in this study, in 

particular at the highest temperature, some ash volatilisation may be likely to take 

place.  However, the residence time of the pyrolysing coal particles in these 

experiments is very low compared with the standard coal ashing method (British 

Standard, 1016-104.3, 1998).  Therefore, the errors that might be introduced in the 

char yield determinations would be rather small as suggested by other workers 

(Thompson et al., 1993). 

 

Coal particles undergoing pyrolysis may experience unexpected trajectories on 

expulsion of the volatiles in the reactor, which may cause different flow patterns 

(Carpenter, 1993).  The particles may also become sticky, adhering to the walls of 

the reactor tube and the collector so that they cannot be recovered quantitatively.  

Even if the flow pattern were theoretically laminar, lighter particles in particular, 

may be lost in the gas flow.  Additionally, the rapid thermal quenching 

experienced by the char particles may induce recondensation of volatiles on the 
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walls of the collector probe.  Therefore, as the number of experiments increase, 

the amount of tar and soot residues builds up.  Consequently, ash particles may 

adhere more readily to the surface.  In order to reduce the chance of this 

occurring, the collector probe was cleaned after about ten grams of coal had been 

passed through the DTF. Note also that the cyclone used to collect char does not 

trap all of the particles passing through it, so collection efficiency may be lower 

than expected. 

 

As can be seen from the previous discussion, the ash tracer method is not without 

some error.  However, this method is very simple and the most widely used, and 

alternative methods are not always practical.  As a result, the ash tracer method 

has been utilised throughout this study. 

 

4.1.4 DTF Volatiles and R Factor 

 

It is well known that the amount of volatiles emitted from coal under higher 

temperatures and heating rates can exceed the volatile matter measured in 

standard proximate analysis (Gibbins et al., 1991).  Currently, a variety of test 

methods are used in research laboratories to measure volatiles release under rapid 

heating conditions.  Experiments in drop-tube furnaces, and similar devices, have 

been found to simulate more closely the conditions encountered in real 

combustion processes, since the individual particles are dispersed in a gas stream 

during heating.  Nevertheless, they experience the problem of having to recapture 

the particles for analysis.  In practice, complete sample recovery is not possible 

and hence the measurements of volatile release in DTF experiments normally rely 

on the use of the ash tracer technique.  As with the collection efficiency, by 

knowing the ash content of the coal (Acoal) and that of the char (Achar) on a dry 

basis, the DTF volatiles yield (VDTF), can be estimated as follows: 

 

coal)dry(%
Achar

)Acoal-Achar(100
=   V  DTF

×
 ( 4.2 ) 

 

coal)daf(%
Acoal) -100(Achar

)Acoal-Achar(10 V
4

 DTF ×
×

=  ( 4.3 ) 
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Given the uncertainty associated with indirect weight loss determinations by using 

the ash tracer technique, it is usual practice to calculate the so-called R factor.  

The purpose of this factor is to compare the weight loss that occurs in a DTF with 

the coal’s proximate volatile matter (VM).  For practical purposes, the R factor 

under pf combustion conditions can provide the ‘true’ volatile release potential of 

different coals.  The R factor may also be used as a qualitative indicator of the 

behaviour of a coal during rapid heating.  It can be calculated as follows (Kimber 

and Gray, 1967): 

 
 

)daf%(V
)daf%(V

)daf(%coalofcontentVMoximatePr
)daf(%coaloflossWeight

FactorR
coal

DTF==  ( 4.4 ) 

 

 

As can be seen, estimates of R factor make use of the ash tracer technique, and 

hence, clearly rely on ash analyses being undertaken for the coal feed and the 

product char. 

 

Table 4.5 Proximate and DTF volatiles and R Factor data for the three 
coals and chars 

 

Particle 
size 

Proximate 
Volatiles 

DTF Volatiles - VDTF 
(wt% daf) R factor 

Coal 

µm (wt% daf) 1000°C 1150°C 1300°C 1000°C 1150°C 1300°C

Bijao 53-75 45.3 59.8 66.4 71.5 1.32 1.47 1.58 

 106-125 45.3 56.5 65.6 69.4 1.25 1.45 1.53 

Jagua 53-75 38.7 52.4 61.0 65.7 1.35 1.57 1.70 

 106-125 39.2 50.0 56.9 63.9 1.28 1.45 1.63 

Caypa 53-75 38.5 55.8 63.3 67.5 1.45 1.64 1.75 

 106-125 38.9 55.2 61.4 64.5 1.42 1.58 1.66 
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DTF volatiles data (expressed on a dry, ash-free basis) and R factor values for the 

coal fractions are presented in Table 4.5.  Figure 4.2 shows the change in the R 

factor, for the six coal fractions as a function of the DTF operating temperature.  It 

is apparent from the data and figures that R factor (and hence DTF volatiles) 

increases as the DTF operating temperature rises, independent of coal type.  This 

would be expected, since the higher the temperature a coal is exposed to, the 

greater the chance of residual volatiles being emitted (Lester et al., 1995; Kimber 

and Gray, 1967; Gibbins et al., 1991).  There is also an increase of R factor with 

increasing coal rank (Caypa>La Jagua>Bijao).  However, La Jagua gave lower 

DTF volatiles content than Caypa even though the proximate volatiles of both 

coals are fairly similar.  This confirms the inadequacy of standard proximate 

volatiles to characterise or predict coal’s rapid heating behaviour. 

 

Figure 4.2 A plot of R Factor as a function of operating temperature and 
particle size for the three coals 
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As far as particle size is concerned, the 106-125 µm fraction tends to give lowest 

R factor values which indicates that these particles require a longer time in the 

furnace at higher temperatures before they will emit more volatiles than that 
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detected using standard proximate analysis.  An explanation for this might be that 

the surface area per gram of coal would be lower and pore length higher for this 

fraction, thus making loss of volatiles more difficult. 

 

4.1.5 Char Intrinsic Reactivity 

 

Table 4.6 shows the intrinsic reactivity data for the char samples.  A plot for each 

reactivity parameter (PT and BT), as a function of both particle size and the 

operating temperature, are presented in Figure 4.3 and Figure 4.4 respectively.  

Char burning profiles, derived from the intrinsic reactivity analysis, are given in 

Appendix C.  The profiles take the form of DTA output (µVmg-1) as a function of 

temperature. 

 

 

Table 4.6 Intrinsic reactivity data of chars as a function of temperature 
and particle size 

 

Particle 
Size Peak Temperature (°C) Burnout Temperature (°C) 

Coal 
µm 1000°C 1150°C 1300°C 1000°C 1150°C 1300°C 

Bijao 53-75 384 442 474 535 537 544 

 106-125 392 444 478 540 545 560 

Jagua 53-75 503 535 590 552 584 626 

 106-125 516 562 600 554 604 646 

Caypa 53-75 502 541 594 547 579 635 

 106-125 505 567 627 560 612 670 

 

 

The most obvious feature is that the intrinsic reactivity decreases (higher PT and 

BT values) as the operating temperature increases.  For Bijao coal the increase in 

BT is not as significant as the increase in PT as can be seen from the plots 

(Figures 4.3 and 4.4).  The 106-125 µm fraction gave higher PT and BT values 
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Figure 4.3 Peak temperature as a function of coal particle size and DTF 
operating temperature 
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Figure 4.4 Burnout temperature as a function of coal particle size and DTF 
operating temperature 
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than the 53-75 µm fraction.  However, these differences are more significant for 

Caypa and La Jagua at 1150 and 1300°C for BT.  It is clear from the results that 

Bijao coal exhibits higher intrinsic reactivity, whilst there are little differences in 

the figures between La Jagua and Caypa. 

 

4.1.6 Optical and Automatic Image Analyses of Chars 

 

The manual char analysis reveals that the characteristics of the initial coal material 

has a significant effect on the type and morphological properties of the char 

produced (Tables 4.7 to 4.9).  The lower rank coal Bijao, for instance, produces 

predominantly network chars as shown in Figure 4.5.  Caypa and La Jagua coals 

both tend to form mainly cenospheres, although La Jagua also produces a slightly 

higher percentage of fusinoid and solid char particles (see Figure 4.6 and figure 

4.7 respectively).  This can be explained by the higher inertinite content of La 

Jagua coal. 
 

From the manual char analysis, it can be seen that the larger size fractions (II) 

give the thickest walled chars.  These fractions gave consistently lower ACA5 

values indicating thicker chars as shown in Figure 4.8.  It was observed that when 

the operating temperature in the DTF was increased the amount of thin-walled 

chars increased quite substantially for coals Caypa and La Jagua regardless of the 

particle size.  For Bijao the percentage of thin chars was already very high at 

1000°C as indicated by the high ACA5 value. 
 

Bijao which has the lowest % unreactive material, produced the highest ACA5 

values followed by coal Caypa and La Jagua.  This same trend was observed at 

the different temperatures of operation of the DTF, as shown in Figure 4.9, for all 

fractions.  This leads to the conclusion that the % unreactives parameter derived 

from the grey-scale histogram, obtained by image analysis of the coal, provides a 

useful parameter for the prediction of coal combustion behaviour. 
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Table 4.7 Manual char analysis for the samples at 1000°C 
 

Coal Particle 
Size (µm) TS CS TN CN I F/S 

Bijao 53-75 0.0 1.1 51.5 45.9 1.3 0.2 

 106-125 0.0 0.7 49.6 47.7 1.6 0.4 

Jagua 53-75 25.7 39.4 5.3 15.8 7.9 5.9 

 106-125 13.6 40.1 1.7 31.6 7.2 5.8 

Caypa 53-75 42.3 52.3 0.5 2.4 1.1 1.5 

 106-125 29.5 64.0 0.7 3.1 0.8 1.9 

__________ 
TS=Tenuisphere; CS=Crassisphere; TN=Tenuinetwork; CN=Crassinetwork; I=Inertoid; F/S=Fusinoid/Solid 
 

Table 4.8 Manual char analysis for the samples at 1150°C 
 

Coal Particle 
Size (µm) TS CS TN CN I F/S 

Bijao 53-75 0.5 0.5 63.5 34.4 0.8 0.4 

 106-125 0.4 0.3 56.1 41.2 1.6 0.4 

Jagua 53-75 41.3 29.0 3.3 15.1 6.6 4.9 

 106-125 28.6 33.9 1.3 24.6 6.4 5.3 

Caypa 53-75 63.4 30.7 0.5 3.2 0.9 1.5 

 106-125 47.6 46.2 0.7 3.2 0.8 1.6 

 

Table 4.9 Manual char analysis for the samples at 1300°C 
 

Coal Particle 
Size (µm) TS CS TN CN I F/S 

Bijao 53-75 0.7 0.1 75.2 22.7 0.9 0.4 

 106-125 0.5 0.3 58.4 39.1 1.3 0.4 

Jagua 53-75 56.8 18.6 1.3 14.3 5.2 3.8 

 106-125 43.5 27.7 0.8 17.6 5.6 4.8 

Caypa 53-75 84.5 9.4 0.4 3.9 0.6 1.2 

 106-125 66.2 27.7 0.7 3.2 0.7 1.5 
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Figure 4.5 Scanning Electron Micrograph showing typical network 
structure of Bijao chars 

 

 
 

 
Figure 4.6 Scanning Electron Micrograph showing cenospheres from Caypa 

chars 
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Figure 4.7 Scanning Electron Micrograph showing cenospheres and 

fusinoid chars in La Jagua 
 

 
 

 

Figure 4.8 Changes in ACA5 as a function of temperature and particle size 
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Figure 4.9 A plot of ACA5 against % unreactives 
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4.2 Further Drop Tube Furnace Experiments 
 

As mentioned in the introduction of the chapter, the second part of the DTF study 

was a larger scale investigation.  This involved the pyrolysis of six additional 

South American coals and one from the USA.  The study was undertaken to 

investigate the behaviour of the different coals during pyrolysis when changing 

the operating temperature in the DTF and the particle size of the coals.  The 

morphological nature and the intrinsic reactivity of the remaining chars were also 

investigated along with the volatiles yield and ash content of the chars. 

 

4.2.1 Proximate and Ultimate Analysis of Coals 

 

Proximate analysis data for the various coal fractions (determined by 

thermogravimetric analysis) is shown in Table 4.10.  The data is presented on a 

dry, and dry, ash-free bases.  Coals have been ordered by rank (expressed as the 

random vitrinite reflectance).  Note that the fuel ratio parameter, i.e. fixed 



CHAPTER 4 DROP TUBE FURNACE EXPERIMENTS 

 84

carbon/volatile matter content (dry, ash-free basis), has also been recorded in the 

table for each sample.  The fuel ratio shows a clear increase with rank and ranges 

from 1.21 for the low rank Colombian coal, Bijao, up to 1.87 for the higher rank 

American coal, Ashland. 

 

Table 4.10 Proximate analysis data for the coal fractions 
 

Moisture Dry Basis (wt%) Dry, ash-free 
basis (wt%) 

Fuel 
Ratio Coal/Fractiona 

(wt%) VMb FCc Ash VM FC FC/VM

I 7.9 43.4 52.4 4.2 45.3 54.7 1.21 Bijao 
(BI) 

II 6.2 43.5 52.5 4.1 45.3 54.7 1.21 

I 5.4 41.7 52.5 5.9 44.3 55.7 1.26 Fila Maestra 
(FM) II 5.0 41.5 52.3 6.2 44.2 55.8 1.26 

I 5.1 38.6 56.8 4.6 40.5 59.5 1.47 La Loma 
(LO) II 4.8 38.8 56.8 4.4 40.6 59.4 1.46 

I 4.2 37.6 58.7 3.7 39.1 60.9 1.56 Oreganal 
(OR) II 4.0 38.0 59.5 2.5 39.0 61.0 1.56 

I 3.3 37.6 59.5 2.9 38.7 61.3 1.58 La Jagua 
(JA) 

 II 3.2 38.2 59.3 2.5 39.2 60.8 1.55 

I 3.4 37.1 58.5 4.5 38.8 61.2 1.58 El Cerrejon 
(CE) II 3.3 37.7 58.8 3.5 39.1 60.9 1.56 

I 2.4 37.8 60.4 1.9 38.5 61.5 1.60 Caypa 
(CA) II 2.3 38.1 59.7 2.2 38.9 61.1 1.57 

I 2.3 36.2 58.9 4.9 38.0 62.0 1.63 Paso Diablo 
(PD) II 2.1 37.3 60.0 2.7 38.3 61.7 1.61 

I 1.3 34.8 61.1 4.1 36.3 63.7 1.76 Maturin 
(MA) II 1.0 35.2 61.1 3.7 36.6 63.4 1.73 

I 1.6 31.2 58.3 10.5 34.9 65.1 1.87 Ashland 
(AL) II 1.3 33.1 57.8 9.2 36.4 63.6 1.75 

__________ 
a I=53-75 µm, II=106-125 µm; b VM=Volatile Matter; c FC=Fixed Carbon. 
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Volatile matter is known to decrease (and fixed carbon increases) progressively 

with increasing coal rank (Unsworth, 1991; Van Krevelen, 1993).  Clearly from 

the data in Table 4.10, this general trend can be observed.  Volatile matter 

contents range from 45.3 (%dry, ash-free basis) for Bijao to 34.9 (%dry, ash-free 

basis) for Ashland.  Further to this, the 106-125 µm coal fractions tend to exhibit 

higher volatile matter contents than the 53-75 µm fractions.  These variations are, 

however, within the experimental error of the analysis (0.8%) for all the coals, 

other than Ashland, where an increase is clearly evident with increasing particle 

size. 

 
Bijao and Fila Maestra fractions contain higher moisture contents than the other 

coal fractions, whilst Maturin and Ashland exhibit the lowest figures.  This is 

consistent with the observation that inherent moisture content decreases with rank 

(Unsworth et al., 1991).  Most of the coals have a very low ash content (lower 

than 5%) excluding the Venezuelan coal Fila Maestra (~6%) and the American 

coal (~10%). 

 

Elemental analysis (ultimate analysis) of the coal fractions is shown in Table 4.11.  

The data consists of percentage by weight of carbon, hydrogen, nitrogen and 

sulphur.  Oxygen is calculated by difference and all data is on a dry, ash-free 

basis.  A general trend can be identified from this data.  The carbon content 

increases with rank, whilst the oxygen content shows a decrease.  All the coals 

contain very small amounts of sulphur (less than 1%). 

 

4.2.2 Petrographic Characterisation of Coals 

 

Petrographic analysis for the twenty coal fractions, including maceral analysis and 

rank (random vitrinite reflectance, VRo) is given in Table 4.12.  The data is 

provided on a volume/volume, mineral matter-free basis.  The vitrinite reflectance 

histograms of the samples are shown in Appendix A. 

 

From the maceral analysis results, it can be concluded that all the South American 

coals in this study are rich in vitrinite with low concentrations of liptinite.  The 

North American coal, Ashland, is also a vitrinite-rich coal although its liptinite 
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content is relatively higher in comparison with the South American coals.  The 

results show a significant variation in maceral composition from 68.5-96.8% for 

vitrinite, 0.4-14.3% for liptinite, 0.4-10.2% for semifusinite, and 0.4-12.6% for 

fusinite. 

 

Table 4.11 Ultimate analysis data for the coal fractions 

 

C H N S O 
Coal/Fraction 

(wt% daf) (wt% daf) ) (wt% daf) (wt% daf) (wt% daf)

I 73.80 5.27 1.86 0.68 18.40 
Bijao 

II 73.82 5.42 1.78 0.63 18.35 

I 76.81 5.67 2.01 0.87 14.63 
Fila Maestra 

II 78.19 5.77 2.03 0.85 13.16 

I 78.79 5.42 1.72 0.64 13.42 
La Loma 

II 78.37 5.42 1.84 0.69 13.68 

I 82.23 5.49 1.82 0.63 9.83 
Oreganal 

II 81.97 5.54 1.81 0.61 10.06 

I 84.12 5.51 1.78 0.59 8.00 
La Jagua 

II 84.36 5.61 1.79 0.58 7.65 

I 84.23 5.53 1.83 0.68 7.73 
El Cerrejon 

II 83.80 5.58 1.83 0.65 8.14 

I 84.78 5.68 1.89 0.67 6.97 
Caypa 

II 85.43 5.76 1.86 0.64 6.31 

I 86.12 5.65 1.90 0.82 5.51 
Paso Diablo 

II 86.53 5.76 1.90 0.74 5.07 

I 87.02 5.83 1.83 0.70 4.62 
Maturin 

II 87.41 5.77 1.83 0.66 4.33 

I 87.77 5.60 1.90 0.83 3.91 
Ashland 

II 88.91 5.71 1.85 0.78 2.75 
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Table 4.12 Petrographic Analysis of the coal fractions 

 

Rank Maceral Content (vol%) U190 
Coal/Fraction 

VRo (%) Vitrinite Liptinite Semifusinite Fusinite (vol%) 

I 0.50 94.2 3.6 1.6 0.6 1.1 
Bijao 

II 0.50 90.8 6.0 2.6 0.6 1.1 

I 0.50 95.6 2.6 0.6 1.2 1.7 
Fila Maestra 

II 0.51 95.4 3.4 0.4 0.8 2.3 

I 0.51 95.6 0.4 3.6 0.4 2.2 
La Loma 

II 0.53 96.8 0.2 2.6 0.4 2.8 

I 0.53 91.8 0.8 1.8 5.6 3.3 
Oreganal 

II 0.55 91.2 1.8 0.8 6.2 3.2 

I 0.54 85.2 2.0 7.8 5.0 4.1 
La Jagua 

II 0.53 84.2 2.4 10.2 3.2 4.5 

I 0.56 90.8 2.4 3.4 3.4 3.3 
El Cerrejon 

II 0.59 90.6 1.6 3.2 4.6 3.9 

I 0.60 96.8 0.4 2.4 0.4 3.4 
Caypa 

II 0.59 95.2 0.4 3.6 0.8 3.6 

I 0.64 88.8 2.4 2.0 6.8 5.5 
Paso Diablo 

II 0.61 88.0 2.8 2.4 6.8 6.0 

I 0.74 88.0 2.0 3.0 7.0 5.9 
Maturin 

II 0.71 86.8 1.2 2.6 9.4 7.0 

I 0.76 78.8 7.5 4.2 9.5 6.3 
Ashland 

II 0.75 68.5 14.3 4.6 12.6 8.4 

 

From the maceral analysis data in Table 4.12, it is possible to identify some 

general trends.  It is clearly evident that vitrinite often concentrates in the smaller 

size fractions.  Although this may not always be the case, the behaviour of 

vitrinites during grinding is a possible explanation for this.  Vitrinites are 
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characterised by their high degree of brittleness, and so, during grinding, they 

fracture and splinter easily to from very small fragments which are concentrated 

in the fines (Stach et al., 1982).  Conversely, liptinites shows a tendency to 

concentrate in the larger fractions.  This fractionation behaviour of liptinites has 

been observed in other coals (Thompson et al., 1993), and can be attributed to 

their toughness and resistance to crack formation, which may impede 

fragmentation during grinding (Stach et al., 1982). 

 

Fusinite is known to be denser and harder than the other macerals, however, it is 

much more brittle and, therefore, it is likely to concentrate in the lowest size 

fractions (Stach et al., 1982).  However, fusinite may become harder when 

impregnated with minerals, and as a result will be found mostly in the larger size 

fractions.  Semifusinite exhibits properties which range between those of vitrinite 

and fusinite but mineral impregnations are less likely to occur.  From the 

petrographic analysis data in Table 4.12, both inertinite sub-macerals fusinite and 

semifusinite do not show a definite trend with particle size. 

 

In terms of rank, small variations in the figures are reported between the two size 

fractions.  The results indicate that all are bituminous coals.  From the vitrinite 

reflectance histograms it was observed that most of the coals gave a normal or 

'quasi-normal' distribution which is characteristic of an unblended coal sample. 

 

4.2.3 Image Analysis of Coals 

 

The grey scale histograms of the coal fractions, as derived from the RAP analysis, 

are shown Appendix B.  The profiles take the form of frequency versus grey scale 

histograms.  The % unreactives figures for each fraction are given in Table 4.12. 

 

From the grey scale histograms, it is possible to tentatively assign various peaks to 

the major maceral groups.  Nevertheless, the exact position of these peaks is rank 

dependent, and there can be a considerable degree of overlap, particularly between 

vitrinite and semifusinite.  For instance, for the lowest ranked coals, Bijao, Fila 

Maestra, and La Loma, the liptinite peaks lie below grey level 38, whilst for the 

subsequent coals in the rank series (Oreganal, La Jagua, El Cerrejon, Caypa, and 
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Paso Diablo), this grey level boundary is around 45.  For the higher ranked coals 

(Maturin and Ashland), the liptinite peak is moderately higher (approximately 55).  

The vitrinite peaks lie between the liptinite boundary and a maximum grey level 

on the range of 100-120 for most of the coals, excluding the higher ranked coals 

Paso Diablo, Maturin, and Ashland, where the boundaries are approximately 140, 

160, and 175 respectively.  Regarding inertinite, one or more distinctive peaks can 

be distinguished beyond a grey level of 210 for all of the coals, and this can be 

assigned to semifusinite (specially that of high reflectance), fusinite, and mineral 

matter. 

 

The cumulative percentage curve of the histograms of La Jagua, Oreganal, Caypa, 

Bijao, El Cerrejon, and La Loma, appear to be rather steep indicating low 

variation in vitrinite reflectance and low levels of semifusinite.  Paso Diablo, 

Ashland and Maturin show relatively large amounts of material with a grey scale 

greater than 190 and are clearly different from the other coals.  These differences 

may be manifested in combustion performance and in the pyrolysed chars that are 

formed. 

 

4.2.4 Drop Tube Furnace Conditions 

 

All chars were prepared at the same conditions used in the previous section, i.e. 

three different gas temperatures (1000, 1150, and 1300°C), a residence time of 

200 ms, and a slightly oxidising atmosphere (1% oxygen in nitrogen). 

 

4.2.5 Char Collection Efficiency 

 

Ash content of the coals and chars are given in Table 4.13 whereas Table 4.14 

contains data on the char yields and the collection efficiency for all the samples.  

A variation of collection efficiency in accordance with changes in ash levels, 

particle size, and the operating temperature can be seen from the tables.  As in the 

previous section, collection efficiency values were all greater than 80% and in 

some cases greater than 100%.  Generally speaking, a decrease in collection 

efficiency occurs with increasing particle size.  This is more apparent at 1000°C 

where collection efficiency values were all higher for the smaller size fraction.  
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There is also a general trend of decreasing collection efficiency with increasing 

the DTF operating temperature for most of the coals.  It is not clear why larger 

particles tend to give lower collection efficiencies, although it is most likely 

associated with the way these particles behave inside the hot zone before they are 

collected. 

 

Table 4.13 Ash content of coal and chars 
 

Particle Size Coal Ash 
Content Char Ash Content (wt% db) 

Coal 
µm (wt% db) 1000°C 1150°C 1300°C 

53-75 4.2 9.90 11.64 13.42 
Bijao 

106-125 4.1 8.86 10.94 12.16 

53-75 5.9 13.29 14.79 16.42 
Fila Maestra 

106-125 6.2 13.08 14.52 15.82 

53-75 4.6 10.07 11.14 14.01 
La Loma 

106-125 4.4 9.14 10.36 12.01 

53-75 3.7 8.32 9.06 9.96 
Oreganal 

106-125 2.5 5.56 6.35 6.98 

53-75 2.9 5.86 7.06 7.94 
La Jagua 

106-125 2.5 4.82 5.55 6.56 

53-75 4.5 9.36 11.03 12.54 
El Cerrejon 

106-125 3.5 7.42 8.33 9.56 

53-75 1.9 4.15 4.94 5.56 
Caypa 

106-125 2.2 4.87 5.60 6.07 

53-75 4.9 9.28 10.66 11.54 
Paso Diablo 

106-125 2.7 5.42 6.24 7.07 

53-75 4.1 7.90 9.46 10.43 
Maturin 

106-125 3.7 7.07 7.78 8.91 

53-75 10.5 17.81 19.95 21.92 
Ashland 

106-125 9.2 15.23 16.02 17.83 
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Table 4.14 Char yield and collection efficiency results 

 

Particle 
Size Char Yield (g/g of coal fed) Collection Efficiency (%) 

Coal 

µm 1000°C 1150°C 1300°C 1000°C 1150°C 1300°C 

53-75 0.496 0.369 0.270 116.0 101.6 85.7 
Bijao 

106-125 0.461 0.401 0.299 100.6 108.0 89.7 

53-75 0.431 0.364 0.317 97.6 91.8 88.8 Fila 
Maestra 

106-125 0.430 0.396 0.333 90.8 92.9 85.1 

53-75 0.471 0.343 0.290 104.0 83.6 89.1 
La Loma 

106-125 0.448 0.382 0.316 92.7 89.7 86.0 

53-75 0.503 0.384 0.337 112.6 93.7 90.2 
Oreganal 

106-125 0.453 0.346 0.329 101.4 88.4 92.6 

53-75 0.489 0.395 0.350 99.5 97.0 96.5 
La Jagua 

106-125 0.466 0.371 0.347 91.0 83.3 92.2 

53-75 0.499 0.384 0.349 104.4 94.8 97.8 
El 

Cerrejon 
106-125 0.470 0.373 0.358 100.3 89.4 98.5 

53-75 0.473 0.401 0.343 104.5 105.6 101.7 
Caypa 

106-125 0.472 0.418 0.359 102.6 104.4 97.3 

53-75 0.504 0.436 0.413 95.7 95.0 97.6 
Paso 

Diablo 
106-125 0.467 0.423 0.367 92.4 96.4 94.9 

53-75 0.475 0.433 0.438 91.4 99.9 111.5 
Maturin 

106-125 0.454 0.438 0.404 86.6 92.0 97.1 

53-75 0.541 0.461 0.435 91.4 87.1 90.3 
Ashland 

106-125 0.548 0.468 0.418 90.9 81.7 81.2 
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4.2.6 DTF Volatiles and R Factor 

 

Proximate and DTF volatiles data along with R factor values for the coal and char 

fractions are given in Table 4.15.  Plots of the R factors versus the DTF operating 

temperature were produced for each size fraction and they are shown in Figures 

4.10 and 4.11.  It can be seen from the tables and figures that the R factors and 

DTF volatiles increase with increasing DTF temperature.  In most cases, the R 

factors were correspondingly higher for the smaller particle size.  However, 

Oreganal and Paso Diablo did not follow this trend. 

 

It is evident from these results that a coal that is exposed to high temperatures and 

heating rates will emit more volatiles than that determined by standard proximate 

analysis and this agrees with the findings of other researchers (Gibbins et al., 

1991; Thompson et al., 1993).  In effect, these particular coals emitted 

approximately 20% to 47% more volatiles at 1000°C, from 29% to 64% at 

1150°C, and from 47% to 75% at 1300°C.  The variation in R factor serves to 

demonstrate the inadequacy of the proximate volatile matter as a suitable indicator 

of the behaviour of coal during rapid heating. 

 

4.2.7 Char Intrinsic Reactivity 

 

The intrinsic reactivity results for all the char samples are given in Table 4.16.  

Char burning profiles, as derived from the intrinsic reactivity analysis, are 

presented in Appendix C.  The profiles take the form of DTA output (µVmg-1) as 

a function temperature, and are provided for each coal fraction as a function of 

DTF temperature. 

 

4.2.7.1 Peak Temperature 

 

Plots of the peak temperature data as a function of the DTF operating temperature 

for both the smaller, and the coarser fractions, are presented in Figures 12 and 13, 

respectively.  It is clearly evident from the graphs that char reactivity decreases as 

the operating temperature increases, independently of particle size, and coal type.  

With the exception of the American coal Ashland, there is an increase in PT with 
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coal rank.  Bijao, La Loma, and Fila Maestra show high reactivity (low PT 

values), whilst Paso Diablo and Maturin exhibit high PTs.  El Cerrejon is the clear 

exception since it exhibits higher reactivity than La Jagua.  However, it is well 

known that char intrinsic reactivity is not only affected by the rank of the parent 

coal, but also by its chemical composition and maceral content. 

 

Table 4.15 Proximate and DTF volatiles and R factor data for the ten coals 
and chars 

 

Particle 
size 

Proximate 
Volatiles DTF Volatiles (wt% daf) R factor 

Coal 
µm (wt% daf) 1000°C 1150°C 1300°C 1000°C 1150°C 1300°C

53-75 45.3 59.8 66.4 71.5 1.32 1.47 1.58 
Bijao 

106-125 45.3 56.5 65.6 69.4 1.25 1.45 1.53 

53-75 44.3 59.3 64.1 68.3 1.34 1.45 1.54 Fila 
Maestra 106-125 44.2 56.1 61.1 64.9 1.27 1.38 1.47 

53-75 40.5 57.3 61.9 70.7 1.42 1.53 1.75 
La Loma 

106-125 40.6 54.1 60.0 66.2 1.33 1.48 1.63 

53-75 39.1 57.4 61.3 65.1 1.47 1.57 1.67 
Oreganal 

106-125 39.0 56.8 62.4 66.1 1.45 1.60 1.69 

53-75 38.7 52.4 61.0 65.7 1.35 1.57 1.70 
La Jagua 

106-125 39.2 50.0 56.9 63.9 1.28 1.45 1.63 

53-75 38.8 54.7 62.2 67.3 1.41 1.60 1.74 El 
Cerrejon 106-125 39.1 55.1 60.4 65.9 1.41 1.55 1.69 

53-75 38.5 55.8 63.3 67.5 1.45 1.64 1.75 
Caypa 

106-125 38.9 55.2 61.4 64.5 1.42 1.58 1.66 

53-75 38.0 49.8 57.0 60.6 1.31 1.50 1.59 Paso 
Diablo 106-125 38.3 50.9 57.7 63.0 1.33 1.51 1.64 

53-75 36.3 50.1 59.1 63.3 1.38 1.63 1.75 
Maturin 

106-125 36.6 49.4 54.3 60.6 1.35 1.48 1.66 

53-75 34.9 45.6 52.7 58.0 1.31 1.51 1.66 
Ashland 

106-125 36.4 43.8 47.0 53.4 1.20 1.29 1.47 
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Table 4.16 Char intrinsic reactivity data as a function of temperature and 

particle size 
 

 

Particle 
Size Peak Temperature (°C) Burnout Temperature (°C) 

Coal 

µm 1000°C 1150°C 1300°C 1000°C 1150°C 1300°C 

53-75 384 444 474 535 537 544 
Bijao 

106-125 392 444 478 540 545 560 

53-75 419 483 515 495 533 558 Fila 
Maestra 106-125 426 483 532 540 542 564 

53-75 401 459 536 530 562 573 
La Loma 

106-125 426 492 545 560 565 585 

53-75 458 530 566 535 577 607 
Oreganal 

106-125 474 538 571 560 585 619 

53-75 503 535 590 552 584 621 
La Jagua 

106-125 516 562 600 554 604 646 

53-75 457 514 577 539 577 627 
El Cerrejon

106-125 469 540 577 553 591 630 

53-75 502 541 594 547 579 635 
Caypa 

106-125 505 567 627 560 612 670 

53-75 507 547 612 565 600 641 
Paso Diablo

106-125 511 557 629 579 611 695 

53-75 503 543 618 563 607 650 
Maturin 

106-125 508 550 623 573 613 656 

53-75 461 532 546 562 607 624 
Ashland 

106-125 476 564 577 567 622 637 
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Figure 4.10 A plot of R Factor as a function of operating temperature for the 
53-75 µm char fractions 
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Figure 4.11 A plot of R Factor as a function of operating temperature for the 
106-125 µm char fractions 
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Figure 4.12 A Plot of peak temperature as a function of the DTF operating 
temperature for the 53-75 µm char fractions 
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Figure 4.13 A Plot of peak temperature as a function of the DTF operating 
temperature for the 106-125 µm char fractions 
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Figure 4.14 A Plot of burnout temperature as a function of the DTF 
operating temperature for the 53-75 µm char fractions 
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Figure 4.15 A Plot of burnout temperature as a function of the DTF 
operating temperature for the 106-125 µm char fractions 

 

530

560

590

620

650

680

710

950 1000 1050 1100 1150 1200 1250 1300 1350
DTF Temperature (°C)

B
ur

no
ut

 T
em

pe
ra

tu
re

 (°
C

)

BI FM LO OR JA

CE CA PD MA AL

 



CHAPTER 4 DROP TUBE FURNACE EXPERIMENTS 

 98

Overall, the 106-125 µm fractions gave higher PTs than the 53-75 µm fractions.  

Nevertheless, these differences are not very significant (do not exceed 8°C) for 

Bijao and Maturin under any condition.  Ashland is the only coal where the PT 

values for the 106-125 µm fraction is significantly higher than the values for the 

smaller fraction at any given condition.  For some coals, the effect of particle size 

is influenced by the temperature of operation of the DTF.  For La Loma, 

Oreganal, La Jagua, and El Cerrejon the effect of particle size is more pronounced 

at the lowest temperatures (1000°C, or 1150°C, or both).  Conversely, for the 

remaining coals (Fila Maestra, Caypa and Paso Diablo), the particle size effect is 

more evident as the DTF temperature increases (only at 1300°C for Fila Maestra). 

 

From the plots (Figures 12 and 13), it can be seen that all the South American coals 

show a gradual increase in PT with increasing DTF temperature.  These differences 

vary from 71°C to 14°C, and from 88°C down to 13°C, for the smaller and the 

coarser fractions respectively.  For the USA coal (Ashland), the increase in PT from 

1000°C to 1150°C is considerably higher than that from 1150°C to 1300°C. 

 

4.2.7.2 Burnout Temperature 

 

Figure 4.14 shows a plot of the burnout temperature as a function of the DTF 

operating temperature for the 53-75 µm fractions.  Similarly, a plot for the 106-

125 µm fractions is presented in Figure 4.15.  The results are similar to those of 

the peak temperature, i.e. char reactivity decreases (BT increases) as the operating 

temperature increases, independently of particle size, and coal type. 

 

As with the PT, the lower rank coals (Bijao, La Loma, and Fila Maestra) gave the 

lowest BT values, indicating high reactivity.  Further to this, little variations of BT 

with increasing DTF temperature was observed for these coals.  The higher rank 

coals, such as Caypa, Paso Diablo, Maturin, and to some extent Ashland, all tend 

to give higher BTs, indicating lower reactivity. 

 

The spread of results is, generally, smaller than for PT for the char samples 

pyrolysed at 1000°C, particularly for the 106-125 µm fractions.  This indicates 

that the burnout of the most inert fraction of char within any of these samples, 
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takes place at similar temperatures.  With increasing DTF operating temperature, 

however, the spread of results increases as can be seen in Figures 4.14 and 4.15.  

Thus, for the 106-125 µm fractions, BT values range only from 540 to 579°C at a 

DTF temperature of 1000°C, from 542 to 622°C at 1150°C, and from 560 to 

695°C at 1300°C. 

 

4.2.8 Optical Morphology and Automatic Analysis of Chars 

 

All the samples were analysed for optical morphology using reflected light 

microscopy.  The most important parameters considered in the determination of 

the different char types were wall thickness, and basic char structure, using a 

modified version of Bailey’s char morphology system, which has been explained 

in chapter 2 (section 2.5.2).  Tables 4.17 to 4.19 show the results of the manual 

char analysis for the samples produced in the DTF at 1000°C, 1150°C, and 

1300°C respectively.  Previous work in this laboratory suggested grouping all 

thin-walled chars together (tenuispheres and tenuinetworks), all thick-walled 

chars together (crassispheres and crassinetworks), and combining inertoid and 

solid with fusinoid chars as solids (Lester, 1994, Gilfillan, 1999).  This facilitates 

the interpretation and discussion of the data, which is summarised in Table 4.20. 

 

Automatic char analysis was performed on all the char samples.  The results 

obtained are presented in Table 4.21, and are presented as relative char wall 

thicknesses (ACA5).  This parameter is the cumulative percentage of char 

material covered by five contours as described in chapter 3 (section 3.5.3.  ACA5 

was taken as the most meaningful result, since the thickness of the char material 

may be use to provide an indication of burnout potential during actual 

combustion, whether mass transfer limited or not.  For thin-walled chars, most of 

the material is effectively enclosed by five contours whereas thick-walled chars 

require more contours, and even more for the solid chars (fusinoid and inertoid 

chars included).  High ACA5 values are hence associated with high 

concentrations of thin-walled chars and low values of ACA5 with a high 

percentage of thick-walled and solid chars. 
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Table 4.17 Manual char analysis results for the samples at 1000°C 
 

 

Particle 
Size Char Type Composition (vol%)a 

Coal 

(µm) TS CS TN CN I F/S 

53-75 0.0 1.1 51.5 45.9 1.3 0.2 
Bijao 

106-125 0.0 0.7 49.6 47.7 1.6 0.4 

53-75 8.9 12.4 26.5 50.1 1.1 1.0 Fila 
Maestra 106-125 4.5 16.7 20.3 56.1 1.0 1.4 

53-75 18.7 33.5 15.7 29.8 1.3 1.0 
La Loma 

106-125 8.4 19.8 19.7 49.3 1.3 1.5 

53-75 28.7 31.5 12.5 24.3 2.1 0.9 
Oreganal 

106-125 19.8 38.4 9.8 28.7 1.8 1.5 

53-75 25.7 45.4 5.8 18.8 2.2 2.1 
La Jagua 

106-125 13.6 46.6 1.7 33.5 2.2 2.4 

53-75 33.1 40.5 4.9 18.4 2.0 1.1 
El Cerrejon

106-125 20.1 50.0 2.2 23.5 1.9 2.3 

53-75 42.3 52.3 0.5 2.4 1.1 1.4 
Caypa 

106-125 29.5 64.0 0.7 3.1 0.8 1.9 

53-75 35.3 37.2 5.1 17.2 1.9 3.3 Paso 
Diablo 106-125 5.4 53.6 0.3 34.1 2.8 3.8 

Maturin 53-75 15.6 45.0 0.0 32.9 2.6 3.9 

 106-125 5.5 45.1 0.0 42.7 2.3 4.4 

53-75 17.3 38.5 3.2 35.0 4.1 1.9 
Ashland 

106-125 12.8 42.8 2.3 33.5 5.4 3.2 

__________ 
aTS=Tenuisphere; CS=Crassisphere; TN=Tenuinetwork; CN=Crassinetwork; I=Inertoid; F/S=Fusinoid/Solid 
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Table 4.18 Manual char analysis results for the samples at 1150°C 
 

 

Particle 
Size Char Type Composition (vol%)a 

Coal 

(µm) TS CS TN CN I F/S 

53-75 0.5 0.5 63.5 34.4 0.8 0.3 
Bijao 

106-125 0.4 0.3 56.1 41.2 1.6 0.4 

53-75 24.5 7.0 34.6 32.0 1.0 0.9 Fila 
Maestra 106-125 7.7 15.8 25.5 48.8 1.0 1.2 

53-75 28.5 20.2 22.2 26.4 1.4 1.3 
La Loma 

106-125 6.2 9.7 34.8 46.7 1.3 1.3 

53-75 50.6 15.8 14.6 16.1 2.0 0.9 
Oreganal 

106-125 27.2 31.9 13.5 24.5 1.6 1.3 

53-75 48.8 29.0 3.3 15.1 2.4 1.4 
La Jagua 

106-125 27.2 43.5 1.3 24.6 2.2 1.2 

53-75 49.5 24.3 6.1 17.7 1.4 1.0 
El Cerrejon

106-125 25.6 50.2 3.7 16.6 1.7 2.2 

53-75 63.4 30.7 0.3 3.5 0.8 1.3 
Caypa 

106-125 46.2 47.6 0.5 3.2 0.8 1.7 

53-75 38.6 27.6 6.3 23.2 1.7 2.6 Paso 
Diablo 106-125 8.0 63.4 0.1 22.4 2.0 4.1 

53-75 23.2 45.1 0.0 26.5 2.0 3.2 
Maturin 

106-125 12.9 43.7 0.0 37.8 1.9 3.7 

53-75 19.8 41.2 2.8 30.8 4.0 1.4 
Ashland 

106-125 13.7 47.1 2.2 28.8 4.7 3.5 

__________ 
aTS=Tenuisphere; CS=Crassisphere; TN=Tenuinetwork; CN=Crassinetwork; I=Inertoid; F/S=Fusinoid/Solid 
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Table 4.19 Manual char analysis results for the samples at 1300°C 
 

 

Particle 
Size Char Type Composition (vol%)a 

Coal 

(µm) TS CS TN CN I F/S 

53-75 0.7 0.1 75.2 22.7 0.9 0.4 
Bijao 

106-125 0.5 0.3 58.4 39.1 1.1 0.6 

53-75 28.9 7.8 35.9 25.9 0.8 0.7 Fila 
Maestra 106-125 22.3 13.2 27.8 35.1 1.0 0.6 

53-75 37.7 15.4 34.5 11.1 0.8 0.5 
La Loma 

106-125 5.3 8.4 48.1 36.7 1.1 0.4 

53-75 58.1 9.9 14.7 14.8 1.8 0.7 
Oreganal 

106-125 35.4 22.4 14.3 25.2 1.7 1.0 

53-75 56.8 19.7 4.4 15.6 1.8 1.7 
La Jagua 

106-125 30.2 54.3 1.6 11.3 2.0 0.6 

53-75 60.7 18.9 4.9 13.4 1.2 0.9 
El Cerrejon

106-125 30.5 49.0 4.8 12.7 1.6 1.4 

53-75 74.5 19.4 0.4 3.9 0.6 1.2 
Caypa 

106-125 66.2 27.7 0.7 3.2 0.7 1.5 

53-75 48.4 20.1 6.2 21.4 1.5 2.4 Paso 
Diablo 106-125 15.9 52.5 0.3 26.4 1.5 3.4 

53-75 38.3 39.1 0.5 17.6 1.8 2.7 
Maturin 

106-125 20.2 32.3 0.0 42.4 1.7 3.4 

53-75 23.7 40.9 2.7 27.9 3.8 1.0 
Ashland 

106-125 16.2 45.8 2.0 29.4 5.5 1.1 

__________ 
aTS=Tenuisphere; CS=Crassisphere; TN=Tenuinetwork; CN=Crassinetwork; I=Inertoid; F/S=Fusinoid/Solid 
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Table 4.20 Summary of manual char analysis at the three DTF 
temperatures 

 

 

Particle 
Size  1000°C 1150°C 1300°C 

Coal 
(µm) Thin 

Walled
Thick 

Walled Solids Thin 
Walled

Thick 
Walled Solids Thin 

Walled 
Thick 

Walled Solids

53-75 51.5 47.0 1.5 64.0 34.9 1.1 75.9 22.8 1.3 
Bijao 

106-125 49.6 48.4 2.0 56.5 41.5 2.0 58.9 39.4 1.7 

53-75 35.4 62.5 2.1 59.1 39.0 1.9 64.8 33.7 1.5 Fila 
Maestra 106-125 24.8 72.8 2.4 33.2 64.6 2.2 50.1 48.3 1.6 

53-75 34.4 63.3 2.3 50.7 46.6 2.7 72.2 26.5 1.3 
La Loma 

106-125 28.1 69.1 2.8 41.0 56.4 2.6 53.4 45.1 1.5 

53-75 41.2 55.8 3.0 65.2 31.9 2.9 72.8 24.7 2.5 
Oreganal 

106-125 29.6 67.1 3.3 40.7 56.4 2.9 49.7 47.6 2.7 

53-75 31.5 64.2 4.3 52.1 44.1 3.8 61.2 35.3 3.5 
La Jagua 

106-125 15.3 80.1 4.6 28.5 68.1 3.4 31.8 65.6 2.6 

53-75 38.0 58.9 3.1 55.6 42.0 2.4 65.6 32.3 2.1 El 
Cerrejon 106-125 22.3 73.5 4.2 29.3 66.8 3.9 35.3 61.7 3.0 

53-75 42.8 54.7 2.5 63.7 34.2 2.1 74.9 23.3 1.8 
Caypa 

106-125 30.2 67.1 2.7 46.7 50.8 2.5 66.9 30.9 2.2 

53-75 40.4 54.4 5.2 44.9 50.8 4.3 54.6 41.5 3.9 Paso 
Diablo 106-125 5.7 87.7 6.6 8.1 85.8 6.1 16.2 78.9 4.9 

53-75 15.6 77.9 6.5 23.2 71.6 5.2 38.8 56.7 4.5 
Maturin 

106-125 5.5 87.8 6.7 12.9 81.5 5.6 20.2 74.7 5.1 

53-75 20.5 73.5 6.0 22.6 72.0 5.4 26.4 68.8 4.8 
Ashland 

106-125 15.1 76.3 8.6 15.9 75.9 8.2 18.2 75.2 6.6 
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Table 4.21 Automatic char analysis data as a function of DTF temperature 
 

 

Particle Size ACA5 (vol%) 
Coal 

(µm) 1000°C 1150°C 1300°C 

53-75 94.8 97.6 98.3 
Bijao 

106-125 93.1 96.0 96.9 

53-75 92.2 94.5 97.0 
Fila Maestra 

106-125 88.5 91.3 95.2 

53-75 90.2 93.4 96.3 
La Loma 

106-125 87.4 90.5 93.3 

53-75 88.5 91.5 94.4 
Oreganal 

106-125 87.5 90.2 93.2 

53-75 87.2 91.5 96.0 
La Jagua 

106-125 84.3 87.2 93.5 

53-75 88.7 91.3 95.6 
El Cerrejon 

106-125 84.3 89.3 92.6 

53-75 89.0 92.3 96.6 
Caypa 

106-125 87.1 90.3 94.0 

53-75 76.3 84.3 90.1 
Paso Diablo 

106-125 73.9 78.9 86.1 

53-75 77.5 84.0 89.6 
Maturin 

106-125 73.4 80.0 86.4 

53-75 74.7 82.6 87.4 
Ashland 

106-125 69.6 77.9 83.6 
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From examination of the data in Tables 4.17 to 4.20, it is clear that the 

morphological properties and concentration of certain type of chars, is dependent 

on the characteristics of the parent coal.  Bijao and Fila Maestra, the lower rank 

coals, for instance, tend to produce predominantly network chars.  The other coals 

(excluding La Loma) tend to give cenospheric chars (more than 50%).  At least 

93% of the chars produced by Caypa coal are cenospheric and this is related to the 

very high vitrinite content of this coal (~95%).  La Loma, in contrast, produced a 

combination of networks and cenospheres, due primarily to the lower rank 

vitrinite and maceral association observed during point count maceral analysis and 

vitrinite reflectance measurements.  Despite the fact that all the coals used in this 

study are all vitrinite-rich coals, variations in char morphology were evident.  This 

demonstrates that it is impossible to assign any one char type to a single maceral 

group.  It is apparent that vitrinite, in fact, generates a wide range of char types 

depending on the rank of the parent coal and on the maceral association within the 

coal.  Furthermore, some studies (Bend et al., 1992) suggest that cenosphere 

formation is linked to the inherent caking/non-caking propensity of coals.  

Generally, caking propensity has been found to be more typical of high volatile 

and medium volatile bituminous coals.  Conversely, vitrinite-rich sub-bituminous 

and low rank coals in general are normally considered non-caking and tend to 

generate a greater proportion of network chars. 

 

From the data in Table 4.20, it can be observed that the operating temperature has 

an effect on the amount of thin and thick-walled chars generated.  It is clearly 

evident that the higher the temperature, the greater the amount of thin-walled 

chars and the lower the concentration of thick-walled chars.  Plots of ACA5 

values versus DTF operating temperature are shown in Figures 4.16 and 4.17 for 

the 53-75 µm fraction and the 106-125 µm fraction respectively.  The increase in 

ACA5 values with increasing DTF temperature is in agreement with the manual 

char data.  A trend of increasing solid chars with decreasing temperature was also 

noticed, although these variations are less apparent due to the very low 

proportions of these types of chars.  The higher rank coals (Maturin, Paso Diablo, 

and Ashland) exhibit a higher proportion of thick-walled chars and solids, and 

gave consistently lower ACA5 values (Table 4.21). 
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Figure 4.16 A Plot of ACA5 against DTF temperature for the 53-75 µm char 
fractions 
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Figure 4.17 A Plot of ACA5 against DTF temperature for the 106-125 µm 
char fractions 
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It can be seen from the manual char analysis results (Tables 4.17 to 4.20) that the 

larger fractions gave the thickest walled chars (crassinetworks, crassispheres, and 

solids).  This is in agreement with data obtained from the automatic char analysis 

(Table 4.21). 

 

4.2.9 Correlation of Char Properties and DTF Volatiles with Coal 

Characteristics 

 

Multiple linear regressions were performed in order to compare the results of the 

char properties and DTF volatiles with some of the characteristics of the parent 

coals.  Linear regression simply means that the functional relationship between 

the dependent variable (a char property, for instance) and the independent 

variables (coal properties) can be expressed by a linear equation or, in other 

words, a sum of terms including the error: 

 

errorxb  . . . xb xb b = y  ii22110 +++++  ( 4.5 ) 
 

In this equation y represents the dependent variable, x1, x2, …xi, the independent 

variables and b0, b1, b2, … bi, the parameters or coefficients of the model. 

 

The F-statistic, which is based on the F-distribution, is normally used to determine 

whether there is a linear relationship between the dependent variable and the 

independent variables (Aiken and West, 1991; Montgomery, 1997).  A confidence 

level of 95% is normally selected in order to allow definite statements to be made 

in the presence of statistical error.  The remaining 5% represents the probability of 

erroneously concluding that there is a relationship among the variables.  The term 

"Alpha" is used in the F-statistic to account for this error on a fractional level so 

that in this particular case Alpha (α) is equal to 0.05.  There is a relationship 

between the variables if the F-observed statistic is greater than the F-critical value.  

The F-critical value can be obtained by referring to a table of F-critical values 

which appear in standard statistics textbooks.  A table of the percentage points of 

the F-distribution for a confidence level of 95% (α = 0.05) have been reproduced 

from the book by Draper and Harry (1998) and is presented in Appendix D.  Note 
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that the F-distribution depends on two separate degrees of freedom which are 

abbreviated as v1 and v2.  They can be calculated as follows; v1 = k and v2 = n - (k 

+ 1), where k is the number of independent variables in the regression analysis 

and n is the number of data points. 

 

The coefficient of multiple determination R² is used almost universally to judge a 

regression analysis.  R², when multiplied by 100, represents the percentage of the 

total variation in the data which can be explained by the fitted regression equation.  

The coefficient of determination is an extremely useful indicator even if there are 

no absolute rules about how large it should be (Vinod and Ullah, 1981).  For the 

regressions carried out in this study a confidence level of 95% was selected.  Both 

the F-observed statistic and the coefficient of determination were estimated to 

evaluate the variance and significance of the regressions.  These values appear in 

the table of the correlation results.  The F values are highlighted when the 

regression is found to be significant. 

 

4.2.9.1 Automatic Char Analysis 

 

Maceral composition is known to affect the combustion propensity of coals.  

Correlation of the char automatic analysis data (ACA5) against maceral analysis 

and particle size have been performed.  This has been done using multiple linear 

regression.  The results shows that there is some correlation between maceral 

analysis and the ACA5 parameter with R² values of 0.80, 0.79, and 0.85, with 

increasing DTF temperature.  The plot obtained for the correlation at 1300°C is 

shown in Figure 4.18, where a wide spread of the data can be seen.  This is mainly 

due to the variations of the reflectance of macerals in different coals, in particular, 

vitrinite with rank.  Subsequently, when rank is included in the correlation, as 

mean random vitrinite reflectance, as shown in Figure 4.19 again for a DTF 

temperature of 1300°C, the correlation is significantly improved with R² value of 

0.90, 0.87, and 0.91 with increasing DTF temperature.  This demonstrates the 

important effect of rank on the structure of the coal, where the varying structure of 

vitrinite with rank is now taken into account.  However, inertinites also vary in 

reflectance and this is accounted for by using the grey scale histogram.  This is 

discussed below. 
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Figure 4.18 Actual values of ACA5 against predicted values following linear 
regression with maceral content - DTF temp.: 1300°C 
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Figure 4.19 Actual values of ACA5 against predicted values following linear 
regression with maceral content and rank - DTF temp.: 1300°C 
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Previous work in this laboratory has shown that the % unreactives of coal 

correlates well with the burnout potential of coals from different origins (Cloke et 

al., 1997a & b).  Essentially, this represents a split between coal material which 

will burn effectively and that which will be unreactive or more inert during 

combustion.  This parameter makes no distinction as to the source of the inert or 

reactive material in terms of maceral type.  Instead, an objective measure is 

obtained which accounts for differences in maceral reactivity due to its reflectance 

(or grey scale value). 

 

Figure 4.20 A Plot of ACA5 against % unreactive as a function of DTF 
temperature 
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Following the aforementioned approach, automatic char analysis data (ACA5) 

may be correlated with the % unreactives.  Plots of this data have been obtained 

and are given as a function of DTF temperature in Figure 4.20.  A good linear 

correlation between ACA5 and % unreactives is obtained, independently of DTF 

temperature, with R² ranging from 0.88 to 0.95.  Note that the particle size effect 

has not been accounted for in these correlations.  When the particle size effect is 

taken into account, by performing a multiple linear regression, a slightly 
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improvement in the correlations is achieved with R² values ranging from 0.90 to 

0.95.  It is clear from the correlations that coals with high % unreactives figures 

produces thicker walled chars. 

 

Figure 4.21 Actual values of ACA5 against predicted values following linear 
regression with image analysis, grey scale histograms- DTF 
temp.: 1300°C 
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In a more recent work (Cloke et al, 1997d) in this laboratory, FTIR data has been 

successfully correlated with percentages of certain bands of the grey scale 

histogram.  It was necessary to consider the whole histogram since the % 

unreactives threshold ignores part of the coal which may be contributing to the 

FTIR data.  By taking into account this novel approach, correlation of the 

automatic char analysis with bands of the grey scale histogram has been carried 

out.  These bands are represented by the percentage below [50], the percentage 

above [210] and the percentages in-between, sub-divided into 40 grey scale units, 

i.e. between [50] and [90], [90] and [130], and so forth.  The value [50] represents 

mainly the liptinite content which has been inserted into the histograms.  As 

explained in section 4.2.3 the liptinite boundary for the coals fluctuates from 

approximately [38] to [55] grey scale units, so a value of [50] will take account of 
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all the liptinite and part of the low reflectance vitrinite or nearly all of the liptinite.  

The percentage of coal material obtained at each of the above cut-off points is 

given in Table 4.22.  The correlation of ACA5 values with the grey scale 

histogram gave much better correlations (R² ≥ 0.93) than with macerals plus rank, 

and quite similar results to those with % unreactives alone.  A plot of the ACA5 

predicted values versus actual values is shown in Figure 4.21, for a DTF 

temperature of 1300°C.  A summary of the correlation results is given in Table 

4.23. 

 

4.2.9.2 DTF Volatiles and Char Intrinsic Reactivity 

 

In a similar way as with automatic char analysis, the DTF volatiles and the 

intrinsic reactivity data (PT and BT) has been correlated with maceral content 

alone, maceral content and rank, and the grey scale histogram of the coals.  The 

results are summarised in Table 4.23.  According to the results, it is evident that 

the grey scale histogram can predict the intrinsic reactivity of the chars and the 

high temperature volatiles released during pyrolysis of the coals.  Correlation 

coefficients were found to range from 0.83 to 0.93 and from 0.90 to 0.94, 

respectively.  The % unreactives alone is only able to predict the DTF volatiles 

released but not the intrinsic reactivity of the chars. 

 

The grey scale (reflectance) of the coal particles is a good measure of their 

reactivity, irrespective of maceral type.  The RAP profile accounts for both 

maceral type and reflectance, and assumes that macerals with the same grey scale 

level have the same reactivity.  This is supported by the data presented here, 

where linear regression of char properties with grey scale produce good 

correlation coefficients.  This is reinforced by the improvement in the correlations 

when rank is included in the correlation with maceral content.  The improvement 

is related, evidently, to the inclusion of the variation of vitrinite structure with 

rank.  The RAP analysis takes this stage further by including the variation in 

reflectance for all the macerals.  Therefore, the results indicate that the RAP 

analysis provides a simple and objective technique to predict the combustion 

behaviour of coals. 
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Table 4.22 Percentage of material at different grey scale bands on grey scale 
histograms of the coals 

 

 

Particle 
Size Grey Scale Bands 

Coal 
(µm) <50 [50-90] [90-130] [130-170] [170-210] >210 

53-75 28.29 61.12 7.75 1.59 0.34 0.92 
Bijao 

106-125 22.31 51.32 16.95 7.60 0.92 0.90 

53-75 17.03 65.50 10.63 4.36 1.17 1.30 
Fila Maestra 

106-125 16.61 62.23 11.78 5.98 1.74 1.67 

53-75 14.88 74.46 5.49 2.20 1.16 1.81 
La Loma 

106-125 19.14 69.85 4.91 2.40 1.45 2.25 

53-75 9.45 78.48 6.44 1.83 1.00 2.80 
Oreganal 

106-125 6.86 75.53 11.54 2.30 1.09 2.69 

53-75 12.64 69.75 8.57 3.83 2.08 3.14 
La Jagua 

106-125 6.21 67.12 17.06 3.89 1.99 3.74 

53-75 11.18 73.94 8.83 2.12 1.13 2.80 
El Cerrejon 

106-125 7.29 72.47 13.53 2.22 1.16 3.32 

53-75 6.89 74.08 12.63 2.26 1.34 2.81 
Caypa 

106-125 4.42 69.52 19.40 2.35 1.33 2.98 

53-75 7.12 55.83 26.26 4.34 2.19 4.26 
Paso Diablo 

106-125 6.20 53.39 28.29 5.01 2.47 4.64 

53-75 1.28 40.29 43.94 6.36 3.92 4.20 
Maturin 

106-125 1.60 28.03 52.84 8.14 4.16 5.23 

53-75 9.92 35.72 38.33 7.73 3.61 4.69 
Ashland 

106-125 10.24 26.19 41.18 11.60 3.99 6.80 
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Table 4.23 Coefficients of determination and F values results from the 
regressions of char properties and DTF volatiles with coal 
characteristics 

 

Independent Variablesa DTF 
Temp. Maceral 

Contentb 
Macerals 
+Rankc % unreactivesd

 
Grey-scale 
Histograme 

Dependent 
Variables

(°C) R² F R² F R² F R² F 

 1000 0.80 12.09 0.90 20.02 0.95 162.78 0.95 33.55 

ACA5 1150 0.79 11.61 0.87 15.52 0.95 156.17 0.94 28.23 

 1300 0.84 16.33 0.91 24.41 0.91 89.60 0.93 44.71 

 1000 0.65 5.46 0.71 5.64 0.50 8.67 0.83 9.18 

PT 1150 0.65 5.49 0.70 5.32 0.62 13.67 0.92 20.42 

 1300 0.65 5.58 0.74 6.58 0.48 7.96 0.90 16.64 

 1000 0.69 6.55 0.80 9.60 0.76 26.51 0.83 9.18 

BT 1150 0.76 9.55 0.88 17.33 0.81 35.81 0.93 25.66 

 1300 0.61 4.67 0.71 5.79 0.59 12.06 0.88 13.46 

 1000 0.80 11.91 0.91 24.66 0.86 51.51 0.91 18.75 

VDTF 1150 0.80 11.92 0.85 13.06 0.86 52.00 0.94 28.01 

 1300 0.80 12.04 0.86 13.90 0.85 48.19 0.90 16.74 

__________ 
a Including Mean Particle Size;  
b v1=5, v2=14, F-critical=2.96; c v1=6, v2=13, F-critical=2.92;  
d v1=2, v2=17, F-critical=3.59; e v1=7, v2=12, F-critical=2.91 
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CHAPTER 5 DTF CHAR RE-FIRING EXPERIMENTS 
 

This chapter presents the results for the char re-firing experiments in the DTF.  

Six coals were re-fired over a series of different residence times in order to 

provide a relative comparison of the combustion rates of each coal.  For these 

experiments, three size fractions for each coal were used in order to evaluate the 

effect of particle size in the re-firing process. 

 

5.1 Coal Selection and Properties 
 

Five Colombian coals which have been already used in the pyrolysis experiments 

were selected for the re-firing experiments.  An additional coal sample from 

Venezuela (Guasare) was obtained and was included in the design matrix.  This 

particular coal has been found to give burnout problems at power stations.  The 

size fractions used were 53-75, 106-125, and 150-180 µm.  For simplicity of 

discussion, these fractions are referred to as fractions I, II and III respectively. 

 

5.1.1 Proximate and Ultimate Analysis 

 

Proximate analysis data for the various coal fractions is shown in Table 5.1.  The 

data is presented on a dry, and dry, ash-free bases.  As in the previous chapter, 

coals have been ordered by rank, expressed as random vitrinite reflectance.  Note 

that the fuel ratio, which has been recorded for each sample, shows a clear 

increase with rank and ranges from 1.16 for the low rank Colombian coal, Bijao, 

to 1.62 for the higher rank Venezuelan coal, Guasare.  There is a slight decrease 

of the fuel ratio with particle size. 

 

From examination of the data in Table 5.1, it can be seen that volatile matter tends 

to decrease with increasing coal rank, although little variation among La Jagua, El 



CHAPTER 5 DTF CHAR RE-FIRING EXPERIMENTS 

 116

Cerrejon, Caypa and Guasare can be noticed.  A slight increase in volatile matter 

content with particle size was also observed. 

 
 
 
Table 5.1 Proximate analysis data for the coal fractions 
 

Moisture Dry Basis (wt%) Dry, ash-free 
Basis (wt%) 

Fuel 
Ratio Coal/Fraction 

(wt%) VMa FCb Ash VM FC FC/VM

 I 7.9 43.4 52.4 4.2 45.3 54.7 1.21 

Bijao II 6.2 43.5 52.5 4.1 45.3 54.7 1.21 

 III 6.2 44.3 51.5 4.2 46.2 53.8 1.16 

 I 5.1 38.6 56.8 4.6 40.5 59.5 1.47 

La Loma II 4.8 38.8 56.8 4.4 40.6 59.4 1.46 

 III 4.1 39.6 56.2 4.3 41.3 58.7 1.42 

 I 3.3 37.6 59.5 2.9 38.7 61.3 1.58 

La Jagua II 3.2 38.2 59.3 2.5 39.2 60.8 1.55 

 III 3.1 38.6 58.4 3.0 39.8 60.2 1.51 

 I 3.4 37.1 58.5 4.5 38.8 61.2 1.58 

El Cerrejon II 3.3 37.7 58.8 3.5 39.1 60.9 1.56 

 III 2.8 37.8 58.9 3.3 39.1 60.9 1.56 

 I 2.4 37.8 60.4 1.9 38.5 61.5 1.60 

Caypa II 2.3 38.1 59.7 2.2 38.9 61.1 1.57 

 II 2.1 38.5 59.7 1.8 39.2 60.8 1.55 

 I 2.8 35.6 57.4 7.0 38.2 61.8 1.62 

Guasare II 2.1 36.1 57.3 6.6 38.6 61.4 1.59 

 III 1.6 36.5 57.0 6.5 39.0 61.0 1.56 

__________ 
a VM=Volatile Matter; b FC=Fixed Carbon 
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There is a decrease in moisture content with coal rank, with Caypa and Guasare 

exhibiting the lowest figures, Bijao and La Loma the highest, and La Jagua and El 

Cerrejon very similar values.  The moisture content also decreases with increasing 

particle size.  All coals have a very low ash content (less than 7%) with Guasare 

exhibiting the highest figures. 

 

Table 5.2 Ultimate analysis data for the coal fractions 
 

C H N S O 
Coal/Fraction 

(wt% daf) (wt% daf) ) (wt% daf) (wt% daf) (wt% daf) 

 I 73.80 5.27 1.86 0.68 18.40 

Bijao II 73.83 5.42 1.78 0.63 18.35 

 III 73.75 5.34 1.79 0.63 18.49 

 I 78.79 5.42 1.72 0.64 13.42 

La Loma II 78.37 5.42 1.84 0.69 13.68 

 III 79.23 5.55 1.77 0.65 12.81 

 I 84.12 5.51 1.78 0.59 8.00 

La Jagua II 84.36 5.61 1.79 0.58 7.65 

 III 84.35 5.62 1.81 0.60 7.62 

 I 84.23 5.53 1.83 0.68 7.73 

El Cerrejon II 83.80 5.58 1.83 0.65 8.14 

 III 83.52 5.56 1.85 0.65 8.41 

 I 84.78 5.68 1.89 0.67 6.97 

Caypa II 85.43 5.76 1.86 0.64 6.31 

 II 85.04 5.73 1.86 0.65 6.71 

 I 86.78 5.70 1.90 0.76 4.86 

Guasare II 87.35 5.84 1.89 0.74 4.18 

 III 87.07 5.78 1.93 0.76 4.45 
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Data from the elemental analysis of the coal fractions is shown in Table 5.2.  The 

data consists of the percent composition of carbon, hydrogen, nitrogen, sulphur 

and oxygen (calculated by difference) on a dry, ash-free basis.  As would be 

expected, there is a general trend of increasing carbon content with increasing 

rank.  Similarly, oxygen content tends to decrease with coal rank.  No definite 

trend for % C or % O can be seen with particle size.  All the coals exhibit low 

sulphur contents (less than 0.8%). 

 

5.1.2 Petrographic Characterisation 

 

Petrographic analysis for the various coal fractions, including maceral analysis 

and rank is given in Table 5.3.  The data is provided on a volume/volume, mineral 

matter-free basis.  The vitrinite reflectance histograms of the samples are shown 

in Appendix B. 

 

From the maceral analysis data in Table 5.3, it is to possible identify some general 

trends.  It is evident that vitrinites concentrate in the smaller size fractions.  

Liptinites, on the contrary, show a tendency to concentrate in the larger size 

fractions.  This fractionation behaviour of macerals has been observed in other 

coals (Thompson et al., 1993), and can be attributed to the behaviour of macerals 

during grinding as explained in the previous chapter (section 4.2.2).  Fusinite and 

semifusinite, do not show a definite trend with particle size. 

 

In terms of rank, small variation in the figures are reported between the three size 

fractions.  From analysis of the vitrinite reflectance histograms in Appendix B, it 

was observed that most of the coals give a normal or 'quasi-normal' distribution 

characteristic of an unblended coal sample. 

 

5.1.3 Image Analysis 

 

The grey scale histograms of the coal fractions, derived from the RAP analysis, 

are given in Appendix C.  These profiles take the form of frequency versus grey 
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scale histograms.  The % unreactives parameter (U190), derived from the RAP 

profiles, are given in Table 5.3. 

 

Table 5.3 Petrographic Analysis of the coal fractions 
 

Rank Maceral Content (vol%) U190 
Coal/Fraction 

VRo (%) Vitrinite Liptinite Semifusinite Fusinite (vol%) 

 I 0.50 94.2 3.6 1.6 0.6 1.1 

Bijao II 0.50 90.8 6.0 2.6 0.6 1.1 

 III 0.54 90.2 7.4 2.0 0.4 1.7 

 I 0.51 95.6 0.4 3.6 0.4 2.2 

La Loma II 0.53 96.8 0.2 2.6 0.4 2.8 

 III 0.54 92.8 2.4 3.2 1.6 3.1 

 I 0.54 85.2 2.0 7.8 5.0 4.1 

La Jagua II 0.53 84.2 2.4 10.2 3.2 4.5 

 III 0.56 83.2 2.8 8.4 5.6 4.5 

 I 0.56 90.8 2.4 3.4 3.4 3.3 

El Cerrejon II 0.59 90.6 1.6 3.2 4.6 3.9 

 III 0.60 85.4 4.6 4.2 5.8 4.8 

 I 0.60 96.8 0.4 2.4 0.4 3.4 

Caypa II 0.59 95.2 0.4 3.6 0.8 3.6 

 III 0.56 94.8 1.2 2.2 1.8 3.7 

 I 0.66 90.0 1.6 5.2 3.2 4.5 

Guasare II 0.68 85.4 2.6 7.2 4.8 4.9 

 III 0.71 83.6 4.4 6.6 5.4 5.5 

 

From the grey scale histograms, it is possible to tentatively assign various peaks 

to the major maceral groups.  The exact position of these peaks is rank dependent, 

and there can be a considerable degree of overlap, particularly between vitrinite 

and semifusinite.  This has already been discussed in the previous chapter for all 
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the coal excluding Guasare.  For this coal, the liptinite peak lies on a similar grey 

scale level as La Jagua, El Cerrejon, and Caypa, i.e. around 45.  The vitrinite 

peaks lie between this grey level and approximately 130.  Other distinctive peaks 

can be distinguished beyond a grey level of 230 and can be ascribed to high 

reflectance semifusinite, fusinite, and mineral matter.  The cumulative percentage 

curves from the RAP profiles of the size fractions of this coal are all steep 

indicating low variation in vitrinite reflectance and a low level of semifusinite. 

 

5.2 Drop Tube Furnace Conditions 
 

The samples were initially pyrolysed in the DTF operating at 1300°C in order to 

allow extensive devolatilisation in all size fractions.  The combustion process was 

completed at 1 atm and under a slightly oxidising atmosphere (1% oxygen in 

nitrogen), with a residence time of 200 ms.  Again, a small amount of oxygen was 

considered necessary to avoid contamination of the char samples with soot and 

condensed tars.  Twenty grams of each coal fraction were used during this initial 

stage, although two separate runs of ten grams each were carried out to avoid 

blockage of the collector probe.  This means that two replicates for each sample 

were performed which enabled the repeatability of the system to be tested.  The 

coal used and the chars obtained carefully weighed for ash tracer purposes.  Each 

char was then re-fired in the DTF, again at 1300°C, over a series of different 

residence times (200, 400 and 600 ms), in an atmosphere containing 5% oxygen 

in nitrogen.  In order to produce a reasonable amount of re-fired char for analysis, 

one to three grams of each pyrolysed char sample were utilised, depending on 

coal type, particle size, and residence time.  The samples were carefully weighed, 

as before, to determine collection efficiencies. 

 

Gas temperature profiles along the centre line of the working tube were obtained 

as a function of axial distance from the bottom of the feeder probe.  Figure 5.1 

shows the profiles obtained for the three different residence times.  Note that the 

separation of the collector probe from the feeder probe varies with residence time 

since the gas flow is kept constant.  It can be seen from the figure that high 

temperature gradients exist near the feeder and collector probes, and a long 



CHAPTER 5 DTF CHAR RE-FIRING EXPERIMENTS 

 121

isothermal zone was attained.  Additionally, the results revealed that the 

temperature profile is independent of the position of the collector probe, which is 

inserted from the bottom of the reactor. 

 

Figure 5.1 Temperature profiles as a function of residence time along the 
reaction zone in the DTF  
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5.3 Char Collection Efficiency 
 
Ash contents of the coal fractions and chars produced in this study are given in 

Table 5.4, whilst Table 5.5 contains data on the char yields and the collection 

efficiencies.  From analysis of this data, it can be seen that collection efficiency 

varies in accordance with changes in ash levels, particle size, and percentage of 

burnout.  As in the previous chapter, collection efficiency values were all greater 

than 80% for the pyrolysed char samples and in only one case exceeds 100%.  

Generally speaking, a decrease in collection efficiency occurs with increasing 

residence time particularly for fractions I and II, although this trend is more 

evident for fraction I.  Collection efficiency figures range from around 72-95% for 

a residence time of 200 ms, and fall to approximately 50-85% for 600 ms.  
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Fractions I and II tend to give a higher collection efficiency than fraction III for 

the pyrolysed chars and for the 200 ms re-fired chars.  As the residence time is 

increased to 400 ms this trend tends to reverse, becoming more apparent at 600 

ms with fraction III giving the highest collection efficiency (greater than 72%).  

The fact that larger particles tend to give high collection efficiency values as the 

residence time increases, is likely to be associated with the low burnout level of 

these fractions. 

 

Table 5.4 Ash content of coal fractions and pyrolysed and re-fired chars 
 

Coal Ash 
Content Char Ash Content (wt% db) 

Re-fired Chars Coal/Fraction 
(wt% db) Pyrolysed 

Char 200 ms 400 ms 600 ms 

 I 4.2 13.59 51.30 88.02 100.00 

Bijao II 4.1 11.91 29.61 61.81 97.96 

 III 4.2 10.11 22.09 42.90 79.15 

 I 4.6 14.04 45.65 83.87 100.00 

La Loma II 4.4 11.91 29.31 56.47 97.77 

 III 4.3 10.66 23.05 41.76 82.29 

 I 2.9 8.03 16.18 42.71 95.00 

La Jagua II 2.5 6.35 12.04 22.99 52.92 

 III 3.0 6.47 11.07 19.67 34.96 

 I 4.5 12.69 24.66 45.13 92.27 

El Cerrejon II 3.5 8.96 18.15 26.47 39.44 

 III 3.3 7.30 13.36 19.74 32.54 

 I 1.9 5.57 11.62 31.38 94.38 

Caypa II 2.2 5.99 10.95 19.31 38.32 

 III 1.8 4.33 8.19 13.31 24.17 

 I 7.0 17.96 27.93 49.68 93.34 

Guasare II 6.6 15.27 20.73 27.59 40.68 

 III 6.5 12.68 15.97 19.58 29.79 
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Table 5.5 Char yield and collection efficiency for the pyrolysed and re-
fired chars 

 

Char Yield (g/g of feed) Collection Efficiency (%) 
Coal/Fraction 

char 200 ms 400 ms 600 ms char 200 ms 400 ms 600 ms

 I 0.282 0.224 0.115 0.071 90.6 84.5 74.6 52.3 

Bijao II 0.311 0.345 0.152 0.080 91.3 85.7 78.6 65.9 

 III 0.363 0.362 0.188 0.095 88.3 79.1 79.9 74.0 

 I 0.293 0.247 0.118 0.071 90.1 80.3 70.4 50.6 

La Loma II 0.331 0.303 0.156 0.077 89.3 74.6 73.8 63.0 

 III 0.324 0.334 0.199 0.093 80.7 72.4 78.1 72.1 

 I 0.332 0.444 0.145 0.055 92.6 89.5 77.2 65.2 

La Jagua II 0.337 0.426 0.217 0.081 86.7 80.7 78.7 67.7 

 III 0.397 0.467 0.262 0.141 85.7 79.9 79.7 76.3 

 I 0.335 0.449 0.216 0.093 94.9 87.2 76.7 68.0 

El Cerrejon II 0.366 0.432 0.288 0.178 94.2 87.6 85.2 78.5 

 III 0.404 0.451 0.297 0.192 88.3 82.5 80.4 85.6 

 I 0.337 0.455 0.139 0.038 100.2 94.8 78.4 63.8 

Caypa II 0.362 0.502 0.272 0.128 96.9 91.8 87.5 82.0 

 III 0.404 0.477 0.287 0.147 95.2 90.1 88.0 82.1 

 I 0.382 0.554 0.295 0.120 98.1 86.1 81.6 62.5 

Guasare II 0.422 0.613 0.430 0.275 97.0 83.3 77.8 73.2 

 III 0.497 0.664 0.489 0.323 97.0 83.6 75.5 75.8 

 

 

5.4 DTF Volatiles and R Factor 
 

Table 5.6 contains data on proximate and DTF volatiles figures along with R 

factor values for the coal fractions and the pyrolysed chars.  Plots of the DTF 

volatiles and R factors versus mean particle size for each coal are shown in 

Figures 5.2 and 5.3 respectively.  It can be seen from the tables and figures that R 
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factor and DTF volatiles decrease with increasing particle size.  This indicates 

that the coarser particles require a longer time in the DTF system to emit their 

volatile matter.  An explanation for this might be transport limitations within 

particles (Suuberg et al., 1979).  The coarsest particles would have a lower surface 

area per unit weight and a higher pore length, which make loss of volatiles more 

difficult. 

 

Table 5.6 Proximate and DTF volatiles and R factor data for the coals and 
the pyrolysed chars 

 

Proximate 
Volatiles DTF Volatiles 

Coal/Fraction 
(wt% daf) (wt% daf) 

R Factor 

 I 45.3 71.9 1.59 

Bijao II 45.3 68.7 1.52 

 III 46.2 61.4 1.33 

 I 40.5 70.7 1.75 

La Loma II 40.6 65.8 1.62 

 III 41.3 62.5 1.51 

 I 38.7 66.1 1.71 

La Jagua II 39.2 62.7 1.60 

 III 39.8 55.4 1.39 

 I 38.8 67.8 1.75 

El Cerrejon II 39.1 63.4 1.62 

 III 39.1 56.1 1.44 

 I 38.5 67.6 1.76 

Caypa II 38.9 64.0 1.64 

 III 39.2 58.6 1.50 

 I 38.2 65.6 1.72 

Guasare II 38.6 60.5 1.57 

 III 39.0 52.1 1.34 
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Figure 5.2 A plot of DTF volatiles as a function of particle size for each coal 
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Figure 5.3 A plot of R Factor versus particle size for each coal 
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Once again, these results serve to demonstrate that a coal which is exposed to high 

temperatures and heating rates emits more volatiles than that obtained during 

standard proximate analysis.  In fact, the coals used in this study emitted from 

33% to 76% more volatiles (R factor values of 1.33 to 1.76 respectively). 

 

5.5 Properties of the Pyrolysed Char 
 

5.5.1 Char Intrinsic Reactivity 

 

The intrinsic reactivity results for all the pyrolysed char samples are given in 

Table 5.7.  Char burning profiles, as derived from the intrinsic reactivity analysis, 

are presented in Appendix E.  The profiles take the form of DTA output as a 

function of temperature.  The DTA output (µV.mg-1) was normalised to the 

maximum value, i.e. the value given by the curve when reaching the maximum 

rate of weight loss.  This was necessary to facilitate the interpretation of profiles, 

particularly when comparing pyrolysed char burning profiles with those of the re-

fired chars or from different coals.  Appendix E  presents the burning profiles of 

the pyrolysed char for each coal as a function of particle size.  Additionally, 

Figure 5.4 shows the burning profiles of the fraction I chars in order to assess the 

effect of coal rank.  Plots of PT and BT as a function of mean particle size are 

given in Figures 5.5 and 5.6 respectively. 

 

The most evident feature from Table 5.7 and Figures 5.5 and 5.6  is that intrinsic 

reactivity decreases (PT and BT increase) with particle size.  The increase in PTs 

is not as significant as the increase in BTs.  Generally speaking, there is an 

increase of PT and BT with coal rank as shown in Figure 5.4.  El Cerrejon is the 

only exception, since it exhibits lower PTs than La Jagua, although the BT values 

are higher.  A possible explanation for this is that the burning profiles of El 

Cerrejon chars tend to give a main peak followed by a wide shoulder (fraction I 

and II) or a wide peak (fraction III).  This indicates that the most reactive material 

of El Cerrejon char reacts very quickly but the inert fraction left after reaching the 

maximum rate of weight loss takes a longer time to complete burnout.  The chars 
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derived from Bijao coal fractions also tend to give a main peak follow by a 

shoulder. 

 

 
Table 5.7 Intrinsic reactivity data for the pyrolysed chars as a function of 

particle size 
 

Peak Temperature Burnout Temperature 
Coal/Fraction 

(°C) (°C) 

 I 480 550 

Bijao II 486 554 

 III 503 568 

 I 535 575 

La Loma II 545 586 

 III 546 596 

 I 587 619 

La Jagua II 593 625 

 III 597 645 

 I 563 631 

El Cerrejon II 574 631 

 III 594 646 

 I 595 
635 

Caypa II 630 
669 

 III 642 
669 

 I 626 668 

Guasare II 631 670 

 III 637 676 
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Figure 5.4 DTA burning profiles for the 53-75 µm fraction pyrolysed chars 
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Figure 5.5 A plot of peak temperature as a function of mean particle size for 
the pyrolysed chars 
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Figure 5.6 A plot of burnout temperature as a function of mean particle size 
for the pyrolysed chars 
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From analysis of the profiles in Appendix E, some differences in the effect of 

particle size can be seen for different coals.  Guasare, for instance, shows little 

variation in the profiles and hence very similar PTs and BTs, as shown in Table 

5.7.  For Bijao and El Cerrejon chars, the profiles of fraction I and II are very 

similar but that of fraction III gives higher PT and BT values.  For La Jagua, 

similar variations can be seen, although there is only a significant difference in 

BT values.  Caypa shows the greatest differences in the profiles as a function of 

particle size.  All the three fractions show significant differences in PT values.  

However, BT values for fractions II and III are identical and far higher than that 

of fraction I. 

 

5.5.2 Optical Morphology and Automatic Analysis 

 

The results for the manual and automatic char analysis are given in Table 5.8.  

The data consists of the different char types derived from the ICCP char 

classification system and the relative wall thickness parameter (ACA5).  A 

summary of the manual char analysis which consists of thin-walled, thick-walled 

and solid chars, is shown in Table 5.9.  In addition, tenuispheres and crassispheres 

have been group together as cenospheres, and crassinetworks and tenuinetworks 

as networks.  These two categories were included in Table 5.9. 

 

The results related to fraction I and II of the five Colombian coals are very similar 

to the data obtained in the previous chapter.  Therefore, since this data has already 

been discussed, only the trends related to the inclusion of the new fraction (III) 

will be addressed here along with the results for the Venezuelan coal. 

 

For Bijao and La Loma coals, which have the lowest rank of the coals tested, 

tenuinetworks comprise most of the thin-walled or low-density chars.  For the rest 

of the coals, tenuispheres are the dominant low-density, thin-walled char type.  It 

can be seen from Table 5.9 that the greater the particle size, the lower the 

proportion of thin-walled chars.  This is in agreement with data obtained from the 

automatic char analysis i.e. ACA5 decreases with increasing particle size. 
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Guasare coal, as most vitrinite-rich bituminous coals, tends to produce mainly 

cenospheric chars.  Tenuispheres make up most of the cenosphere population for 

fraction I.  Fraction II and III, however, tend to give thicker walled chars 

(crassispheres) and, consistently, lower ACA5 values. 

 

Table 5.8 Manual and automatic char analysis results 
 

ACA5 Char Type Composition (vol%)a 
Coal/Fraction 

(vol%) TS CS TN CN I F/S 

 I 98.5 0.5 0.1 77.1 21.3 0.5 0.5 

Bijao II 97.0 0.5 0.2 55.9 41.9 0.9 0.6 

 III 93.4 0.0 0.1 36.8 61.3 1.2 0.6 

 I 96.4 37.4 18.9 34.1 8.3 0.8 0.5 

La Loma II 93.6 8.9 11.3 46.1 32.1 0.7 0.9 

 III 91.9 0.2 17.9 31.3 48.9 0.8 0.9 

 I 95.2 60.2 22.4 6.9 8.3 1.3 0.9 

La Jagua II 92.6 33.2 47.6 1.6 14.5 2.4 0.7 

 III 88.7 13.6 56.5 3.2 22.1 2.4 2.2 

 I 95.3 63.2 23.4 7.3 4.1 1.4 0.6 

El Cerrejon II 92.9 35.7 44.3 6.4 11.4 1.2 1.0 

 III 88.8 10.7 61.8 4.0 18.2 1.9 3.4 

 I 96.3 77.9 15.7 0.2 4.8 0.4 1.0 

Caypa II 93.8 55.9 36.9 0.4 5.2 0.5 1.1 

 III 89.9 14.6 70.5 0.0 10.6 1.3 3.0 

 I 91.1 62.7 29.8 1.4 3.4 1.5 1.2 

Guasare II 89.5 24.8 65.5 0.9 5.7 2.0 1.1 

 III 85.6 13.3 69.2 0.2 10.2 2.9 4.2 

__________ 
a TS=Tenuisphere; CS=Crassisphere; TN=Tenuinetwork; CN=Crassinetwork; I=Inertoid; F/S=Fusinoid/Solid 
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Table 5.9 Summary of the manual char analysis results 
 

Proportion of Char Type (vol%) 
Coal/Fraction 

Thin Walled Thick Walled Solids Cenospheres Networks 

 I 77.6 21.4 1.0 0.6 98.4 

Bijao II 56.4 42.1 1.5 0.7 97.8 

 III 36.8 61.4 1.8 0.1 98.1 

 I 71.5 27.2 1.3 56.3 42.4 

La Loma II 55.0 43.4 1.6 20.2 78.2 

 III 31.5 66.8 1.7 18.1 80.2 

 I 67.1 30.7 2.2 82.6 15.2 

La Jagua II 34.8 62.1 3.1 80.8 16.1 

 III 16.8 78.6 4.6 70.1 25.3 

 I 70.5 27.5 2.0 86.6 11.4 

El Cerrejon II 42.1 55.7 2.2 80.0 17.8 

 III 14.7 80.0 5.3 72.5 22.2 

 I 78.1 20.5 1.4 93.6 5.0 

Caypa II 56.3 42.1 1.6 92.8 5.6 

 III 14.6 81.1 4.3 85.1 10.6 

 I 64.1 33.2 2.7 92.5 4.8 

Guasare II 25.7 71.2 3.1 90.3 6.6 

 III 13.5 79.4 7.1 82.5 10.4 

 

 

5.5.3 Correlation of DTF Volatiles and Char Properties with Coal 

Characteristics 

 

In a similar way as in chapter 4, correlation of the DTF volatiles and char 

properties such as PT, BT and ACA5 against some coal properties have been 

performed.  The coal properties or independent variables considered were maceral 

content, maceral content and rank, and bands of the grey scale histograms.  This 

was done by means of multiple linear regressions where the mean particle size of 
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the parent coal has been considered as an additional independent variable.  The 

way in which the grey scale histogram of the coal was subdivided into different 

grey scale bands was explained in chapter 4, section 4.2.9.1.  The percentage of 

the coal material covered by the different grey scale bands is given in Table 5.10 

for all the coal fractions.  Figure 5.7 shows the different grey scale bands for the 

106-125 fraction for each coal. 

 

Table 5.10 Percentage of coal material at different grey scale bands  
 

Grey Scale Bands 
Coal/Fraction 

<50 [50-90] [90-130] [130-170] [170-210] >210 

I 28.29 61.12 7.75 1.59 0.34 0.92 

II 22.31 51.32 16.95 7.60 0.92 0.90 Bijao 

III 27.13 64.47 5.19 1.38 0.55 1.29 

I 14.88 74.46 5.49 2.20 1.16 1.81 

II 19.14 69.85 4.91 2.40 1.45 2.25 La Loma 

III 22.56 68.43 3.72 1.65 0.83 2.81 

I 12.64 69.75 8.57 3.83 2.08 3.14 

II 6.21 67.12 17.06 3.89 1.99 3.74 La Jagua 

III 7.09 70.14 12.57 4.28 2.20 3.72 

I 11.18 73.94 8.83 2.12 1.13 2.80 

II 7.29 72.47 13.53 2.22 1.16 3.32 El Cerrejon 

III 10.23 68.25 13.32 2.66 1.18 4.35 

I 6.89 74.08 12.63 2.26 1.34 2.81 

II 4.42 69.52 19.40 2.35 1.33 2.98 Caypa 

III 7.80 79.06 7.40 1.55 0.84 3.36 

I 5.47 74.53 12.04 2.64 1.57 3.75 

II 4.29 51.46 34.52 3.67 2.02 4.04 Guasare 

III 6.31 52.57 30.87 3.64 2.01 4.59 
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Figure 5.7 Grey scale histograms for the 106-125 µm coal fractions showing 
the different grey scale bands 
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The correlation results are summarised in Table 5.11.  According to this data, 

some correlation between maceral analysis and the dependent variables exists 

particularly with DTF Volatiles (R²=0.91) and ACA5 (R²=0.82).  When the rank 

was included in the regressions, the correlations remarkably improved with R² 

values greater than 0.84.  Once again, the regressions against the grey scale 

histogram gave, in general, better correlation coefficients (R²>0.91). 

 

Table 5.11 Correlation coefficients and F values results from the regressions 
of the pyrolysed char properties with coal characteristics 

 

Independent Variablesa 

Maceral Contentb Macerals plus Rankc Grey-Scale Histogramd
Dependent 
Variables 

R² F R² F R² F 

VDTF 0.91 25.14 0.96 48.98 0.95 29.75 

PT 0.63 4.45 0.85 11.68 0.91 16.52 

BT 0.59 3.71 0.84 10.49 0.93 19.60 

ACA5 0.82 11.79 0.93 27.80 0.94 26.84 

__________ 
a Including Mean Particle Size;  
b v1=5, v2=12, F-critical=3.11; c v1=6, v2=11, F-critical=3.09; d v1=7, v2=10, F-critical=3.14 
 

 

5.6 Properties of the Re-Fired Chars 
 

5.6.1 Char Reactivity and Burnout 

 

Coal combustion is hardly ever completed in practical pf combustion systems and 

a small proportion of the fuel is emitted from the boiler as partially burnt char.  

This is normally named unburnt carbon and typically accounts for approximately 

0.5% within the range 0.2-1.0%, compared with unburnt fuel levels of 

approximately 0.1% for oil and virtually nil for gas (Unsworth et al., 1991; 

Singer, 1981).  Basically the unburnt carbon can be defined as the weight 

percentage of dry, ash-free coal that is not burnt in the furnace.  In this work, 

unburnt carbon will be referred to as unburnt combustible.  The amount of 



CHAPTER 5 DTF CHAR RE-FIRING EXPERIMENTS 

 136

unburnt combustible depends on coal type, boiler design and operating conditions.  

The combustion burnout performance of a coal is of considerable commercial 

importance.  Unburnt combustible represent a direct loss in thermal efficiency and 

the performance of electrostatic dust collection equipment can be seriously 

damaged by high levels of carbon in ash. 

 

The reactivity of pf coal char has been widely studied because of its importance in 

the combustion process.  The efficiency of char combustion within the DTF 

system may be measured by the proportion of combustible remaining within the 

re-fired char residue.  This can be easily calculated if the ash content of the feed 

coal and that of the char product are known.  It is assumed that the ash is inert in 

the system and the mass of ash in the feed coal equals the mass of the ash product.  

The re-fired char residue is the result of the burnout of a previously pyrolysed 

char, therefore, unburnt combustible can be determined either relative to the 

pyrolysed char or to the feed coal.  Since most of the volatile matter is released 

during high temperature pyrolysis, the unburnt combustible figures relative to the 

pyrolysed char would comprise the percentage of fixed carbon remaining.  

Unburnt combustible determination relies on the ash tracer technique, and can be 

estimated as follows: 

 

(1) Relative to the pyrolysed char: 

 

)A -100(A
)A-100(A100

  )  wt%(e Combustibl  Unburnt
PR

RP
×

××
=  ( 5.1 ) 

 

(2) Relative to the feed coal: 

 

)A -100(A
)A-100(A100

  )  wt%(e Combustibl  Unburnt
CP

PC
×

××
=  ( 5.2 ) 

 

Where AC, AP and AR are the ash content of the parent coal, the pyrolysed and the 

re-fired chars, respectively, on a dry basis. 



CHAPTER 5 DTF CHAR RE-FIRING EXPERIMENTS 

 137

Frequently, the efficiency of combustion is measured by the burnout level of the 

char sample relative to the parent coal.  That is, the percentage of the combustible 

matter in the feed coal which has been devolatilised or burnt out after pyrolysis 

and re-firing.  According to its definition, the burnout level of a coal can be easy 

calculated by simply subtracting the percentage of unburnt combustible in the 

char from 100%. 

 
Table 5.12 contains the results of the unburnt combustible for the re-fired chars 

relative to both the pyrolysed char and to the parent coal.  For the re-fired chars at 

600 ms, unburnt combustible levels of the coal studied range from zero to 16.4% 

indicating that the majority of the original coal particles have completely burnt 

out in the presence of oxygen.  The data shows the highly reactive nature of Bijao 

and La Loma, where the burnout is significantly higher than for any of the other 

coals.  In fact, the unburnt combustible figures for the re-fired chars at 200 ms of 

these two coals range from around 15% for fraction III, approximately 10% for 

fraction II, and only 5% for fraction I. 

 

The data obtained confirms the importance of particle size on burnout.  The 

average proportion of unburnt combustible in the chars range from 0.2 to 12.2% 

for fraction I, from 3.7 to 17% for fraction II, and from 6.2 to 22.5% for the 

coarsest coal fraction III.  It is also notable that differences occur between coals 

with Guasare showing the poorest combustible conversion efficiency and Bijao 

and La Loma the best.  Since chars derived from low rank coals are more porous 

than chars from higher rank coals, this offers an explanation of why chars from 

low rank coals are generally more reactive than those from higher rank coals. 

 

As mentioned in chapter 4, previous work in this laboratory has shown that the % 

unreactives correlates well with burnout potential of coals (Cloke et al., 1997a & 

b).  Following this approach, plots of unburnt combustible data against % 

unreactives have been obtained and are shown in Figures 5.8 to 5.10 for the 200 

ms, 400 ms and 600 ms samples, respectively. 
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Table 5.12 Unburnt combustible and burnout results for the re-fired chars 
 

 

Unburnt Combustiblea 
(wt% daf)  

Unburnt Combustibleb 
(wt% daf) Coal/Fraction 

200 ms 400 ms 600 ms 200 ms 400 ms 600 ms 

 I 14.93 2.14 0.00 4.19 0.60 0.00 

Bijao II 32.13 8.35 0.28 10.06 2.62 0.09 

 III 39.68 14.97 2.96 15.30 5.77 1.14 

 I 19.44 3.14 0.00 5.69 0.92 0.00 

La Loma II 32.61 10.42 0.31 11.14 3.56 0.11 

 III 39.81 16.63 2.57 14.91 6.23 0.96 

 I 45.26 11.72 0.46 15.34 3.97 0.16 

La Jagua II 49.53 22.71 6.03 18.50 8.48 2.25 

 III 55.54 28.22 12.86 24.79 12.60 5.74 

 I 44.39 17.67 1.22 14.30 5.69 0.39 

El Cerrejon II 44.37 27.33 15.11 16.24 10.00 5.53 

 III 51.10 32.03 16.33 22.44 14.07 7.17 

 I 44.88 12.90 0.35 14.53 4.18 0.11 

Caypa II 51.84 26.64 10.26 18.64 9.58 3.69 

 III 50.79 29.51 14.21 21.03 12.22 5.88 

 I 56.48 22.17 1.56 19.41 7.62 0.54 

Guasare II 68.88 47.27 26.27 27.19 18.66 10.37 

 III 76.46 59.65 34.24 36.61 28.56 16.40 

__________ 
a Relative to the pyrolysed char; b Relative to the parent coal 
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Figure 5.8 Unburnt combustible against % unreactives for the 200 ms re-
fired chars 
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Figure 5.9 Unburnt combustible against % unreactives for the 400 ms re-
fired chars 
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Figure 5.10 Unburnt combustible against % unreactives for the 600 ms re-
fired chars 
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From examination of the previous figures and the data in Table 5.12, it can be 

seen that fractions II and III of Guasare coal appear to burnout slowly.  Fraction I 

does not show poor burnout implying that particle size considerably affects the 

burnout behaviour of this particular coal.  This means that the percentage of 

combustible in ash will increase significantly for Guasare if it is not properly 

milled before combustion. 

 

The combustible burnout data of the re-fired chars was compared with the 

automatic char analysis of the pyrolysed char in order to determine whether there 

was any correlation.  A plot of unburnt combustible for the 400 ms re-fired chars 

against ACA5 for all the coal fractions is given in Figure 5.11.  It shows a general 

trend of decreasing unburnt combustible with increasing ACA5.  It can be noticed 

from the plot that Guasare does not reveal any unusual behaviour.  This confirms 

the usefulness of high temperature pyrolysis char as a predictor of burnout 

behaviour.  The poor burnout performance of Guasare is clearly due to the 
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formation of thicker walled chars during pyrolysis (mainly cenospheric chars) and 

this agrees with the finding of Cloke et al. (1997a). 

 

In a similar way as with automatic char analysis data, a plot of unburnt 

combustible for the 400 ms re-fired char against peak temperature of the 

pyrolysed char was produced (Figure 5.12).  The graph shows a general trend of 

increasing unburnt combustible with decreasing intrinsic reactivity (increasing 

PT).  The clear outlier from the trend is Guasare which shows a higher-than-

expected percentage of unburnt combustible.  Only fractions II and III of this coal 

appear to burn out slower than expected.  Fraction I does not show poor burnout 

and this is in agreement with the prediction of the % unreactives parameter as 

discussed above.  It can be concluded that particle size considerably affects the 

burnout behaviour of Guasare coal.  The better prediction of unburnt combustible 

from the ACA5 parameter suggests that the initial char morphology is the most 

important controlling factor in the final combustion performance of the char.  

However, the intrinsic reactivity of the initial char also plays a part. 

 

Figure 5.11 Relation between unburnt combustible of the 400 ms re-fired 
chars and the automatic char analysis of the pyrolysed chars 
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Figure 5.12 Relation between unburnt combustible of the 400 ms re-fired 
chars and the peak temperature of the pyrolysed chars 
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5.6.2 Char Intrinsic Reactivity 

 

Table 5.13 contains the intrinsic reactivity data for the re-fired chars.  The DTA 

burning profiles are presented in Appendix F as a function of particle size at each 

different residence time. The DTA output was normalised as explained in section 

5.5.1. 

 

The results obtained suggest that the intrinsic reactivity, as measured by the BT, 

decreases with increasing burnout, i.e. with increasing residence time.  However, 

as the residence time increases, most of the chars from the same parent coal 

appear to change very little as far as PT is concerned.  This implies that during the 

initial stage of the TGA analysis, the rate at which a char particle burns is 

practically independent of degree of burnout.  In many cases, a slight decrease of 

PT with increasing burnout was observed.  It is expected that diffusion of oxygen 

into the char particle has a smaller influence on a char which has achieved greater 
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Table 5.13 Char intrinsic reactivity data as a function of temperature and 
particle size 

 

 

Peak Temperature (°C) Burnout Temperature (°C) 
Coal/Fraction 

200 ms 400 ms 600 ms 200 ms 400 ms 600 ms 

 I 569 563 551 601 638 650 

Bijao II 552 572 573 596 606 640 

 III 550 564 578 595 603 613 

 I 572 579 573 615 635 660 

La Loma II 569 584 599 616 636 656 

 III 577 580 585 628 635 649 

 I 597 595 597 638 641 658 

La Jagua II 609 602 599 656 658 660 

 III 611 608 605 670 670 670 

 I 630 619 620 679 681 685 

El Cerrejon II 632 624 622 682 685 690 

 III 634 636 635 690 694 707 

 I 618 611 616 638 677 680 

Caypa II 645 641 630 680 709 715 

 III 647 647 637 690 720 724 

 I 636 632 622 680 704 706 

Guasare II 638 646 635 680 711 711 

 III 648 650 639 701 715 715 
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burnout.  The chars with higher burnout exhibit more open pores which are 

accessible for gas phase transport so that the reactive material remaining in the 

char will burn very effectively and may, therefore, give similar, or even lower, PT 

values than chars with less burnout. 

 

A general trend of increasing PT and BT values for La Jagua, El Cerrejon, Caypa 

and Guasare chars with increasing particle size can be observed from Appendix E 

and Table 5.13.  Bijao shows the opposite trend, particularly with BT values.  For 

La Loma chars, no definite trend of intrinsic reactivity with particle size is 

observed and this appears to vary with burnout.  Thus, char of different size, 

although from the same coal, are intrinsically different.  Not only must maceral 

segregation effects be considered, but also the intrinsic size dependence on 

particle size may need to be taken into account.  Hence, some caution is necessary 

when reactivity data obtained on a single char size range is applied to a total coal. 

 

Overall, there is an increase of intrinsic reactivity (PT and BT), with increasing 

coal rank.  Figure 5.13 shows the DTA burning profiles of the 400 ms re-fired 

chars in which this general trend can be observed.  It can also be seen from the 

figure that the higher the rank of the coal char the broader the burning profile.  

Since chars from low rank coals are generally more porous than chars from higher 

rank coals, this may be an explanation of why chars from low rank coals are 

generally more reactive than those from higher rank coals.  Variations in char 

reactivity can be further related to catalytic effects of trace minerals in the char.  

This is, however, beyond the scope of this study. 

 

5.6.3 Scanning Electron Microscope Examination 

 

Scanning electron microscope (SEM) photographs of the parent coal (fraction II), 

the pyrolysed and the 400 ms re-fired chars were obtained to identify any changes 

in external appearance which may have occurred during pyrolysis and char re-

firing.  The SEM photograph for the various coal/char samples (fraction II) are 

presented in Figures 5.14 to 5.19, whereas Table 5.14 gives a brief description of 

the visual examination features of the pyrolysed and re-fired chars. 
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Figure 5.13 DTA burning profiles for the 400 ms re-fired chars (Fraction II) 
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Table 5.14 External appearance of pyrolysed and re-fired chars, fraction II 
 

Morphology and External Appearance 
Coal 

Pyrolysed Char Re-fired Char @ 400 ms 

Bijao 

 
Chars which exhibit fissure-type 
macropores and an extended 
network of micropores.  Discrete 
particles, mostly intact, and with 
irregular to subangular appearance. 
 

Char with a network-like structure, 
some are solid with some degree of 
porosity, and others are fragmented.  
Mineral inclusions and high ash 
level. 

La Loma 

 
Similar to Bijao although the 
fissure-type micropores are not 
evident.  Discrete particles, 
elongated with subangular to oblate 
appearance and few spherical. 
 

Similar to Bijao although the 
remaining solid particles are more 
spherical. 

La Jagua 

 
Chars that have many large 
vesicules.  Discrete particles, 
mainly spherical to subspherical in 
appearance, typical of cenospheric 
chars. 
 

Cenospheres with different burnout 
level; some very lacy.  Most of the 
particles are intact.  Mineral 
inclusions and ash associated with 
the particles. 

El Cerrejon

 
Some chars exhibit large vesicules 
others extended network of 
micropores.  Discrete particles, 
mostly spherical, few irregular and 
others subangular and oblate in 
appearance. 
 

Similar to La Jagua, although the 
cenospheres exhibit, generally, less 
burnout.  Very little fragmentation. 

Caypa 

 
Similar to La Jagua although some 
particles show larger vesicules and 
a higher degree of swelling.  
Discrete particles, spherical in 
appearance typical of high vitrinite 
bituminous coals. 
 

Cenospheres with different stages 
of burnout as El Cerrejon and La 
Jagua although most particles have 
larger vesicules and are more 
rounded in shape. 

Guasare 

 
Similar to La Jagua and Caypa.  
Discrete particles, mainly spherical 
in appearance.  Some particles 
appear to be larger than those from 
the coal. 
 

Cenospheres with different burnout 
level.  Some chars exhibit a high 
percentage of mineral matter. 
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Figure 5.14 SEM photomicrograph of Bijao coal/chars, fraction II 
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Figure 5.15 SEM photomicrograph of La Loma coal/chars, fraction II 
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Figure 5.16 SEM photomicrograph of La Jagua coal/chars, fraction II 
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Figure 5.17 SEM photomicrograph of El Cerrejon coal/chars, fraction II 
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Figure 5.18 SEM photomicrograph of Caypa coal/chars, fraction II 
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Figure 5.19 SEM photomicrograph of Guasare coal/chars, fraction II 
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Bijao and La Loma coal changed very little in shape and size after pyrolysis.  

Most of the particles from the other coals were angular and elongated in shape but 

became rounded or spherical as they softened during pyrolysis.  The stronger 

chemical cross-linkage of hydrocarbon chains in the low rank coals prevents them 

from fusing properly in the furnace, so that they have limited ability to form 

spherical chars (Bailey et al., 1990).  Instead, these coals devolatilise without 

caking, by releasing volatiles from many enlarged pores to form networks.  The 

Guasare photographs do not offer any morphological explanation as to its poor 

burnout, since it is clearly able to form open chars.  Although most of the chars 

produced by this coal during pyrolysis are mostly cenospheric, their high values 

of ACA5 indicate that these chars are thick and will therefore require more time 

to complete burnout. 

 

5.1.1 Correlation of Re-fired Char Properties with Coal Characteristics 

 

Correlations between unburnt combustibles and the intrinsic reactivity data of the 

re-fired chars with maceral content, maceral content and rank, and bands of the 

grey scale histograms have been performed.  The mean particle size of the parent 

coal has been considered as an additional independent variable.  The percentage 

of the coal material covered by the different grey scale bands has been presented 

in Table 5.10 for all the coal fractions. 

 

The correlation data is presented in Table 5.15 as a function of residence time.  

The coefficients of determination R² and the F-observed values along with the F-

critical values have been included.  According to the results, a weak correlation 

between maceral analysis and the dependent variables can be observed in most 

cases as explained by the low R² and F values.  When the rank is taken into 

account in the regressions, the correlations improved with R² values greater than 

0.75.  The unburnt combustible of the samples obtained at 200 and 400 ms gave 

the best correlations as shown by their high R² (0.96 and 0.91 respectively).  The 

correlation for the unburnt combustible of the samples at 600 ms is not as good 

due mostly to the higher error involved in the ash determinations as the burnout 

level increases.  The fact that fraction I of Bijao and La Loma gave virtually 
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100% burnout when re-fired at 600 ms suggests that these samples could have 

completed burnt out in less time.  Once again, the best regressions are achieved 

when correlating the dependent variables against the bands of the grey scale 

histogram.  Coefficients of determination are all greater than 0.86 and F values at 

least three times greater than the F-critical values. 

 

Table 5.15 Correlation coefficients and F Values results from the 
regressions of char properties with coal characteristics 

 

Independent Variablesa Residence 
Time 

Maceral Contentb Macerals plus Rankc Grey-Scale Histogramd
Dependent 
Variables

ms R² F R² F R² F 

 200 0.69 5.75 0.96 43.15 0.92 17.43 

UC 400 0.63 4.50 0.91 19.56 0.93 19.70 

 600 0.59 3.71 0.80 7.91 0.87 10.82 

 200 0.58 3.60 0.77 6.53 0.94 26.43 

PT 400 0.54 3.07 0.80 7.89 0.93 20.57 

 600 0.56 3.36 0.80 7.83 0.87 10.33 

 200 0.70 6.03 0.81 8.59 0.92 18.31 

BT 400 0.53 2.93 0.79 7.35 0.91 16.06 

 600 0.53 2.94 0.75 6.08 0.86 9.30 

__________ 
a Including Mean Particle Size;  
b v1=5, v2=12, F-critical= 3.11; c v1=6, v2=11, F-critical=3.09; d v1=7, v2=10, F-critical=3.14 
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CHAPTER 6 EXPERIMENTS IN THE 1MW RIG 
 

6.1 Introduction 
 

Owing to recent developments in milling technology, significant improvements in 

mill product quality are now achievable.  This can, potentially, provide 

combustion efficiency improvements with associated reductions in combustible-

in-ash levels, CO production, and particulate and gaseous emissions. 

 

The performance of current pf milling plant is limited by the best practically 

attainable fineness from conventional equipment.  This, however, does not 

necessarily indicate the optimal particle size distribution for a particular coal.  By 

taking into consideration the potential improvements in mill product quality 

available through new classification technologies, a recent study has been carried 

out by Powergen UK plc, in collaboration with Nottingham University, to 

determine the effect of pf particle size distribution on coal burnout propensity.  

The programme of work is entitled “Combustion Test Facility testing to assess the 

effects of PF grind quality on combustion”.  The study involved combustion tests 

on two different coals in the 1 MW combustion test facility rig (CTF) at 

Powergen Technology Centre. 

 

In this work coals were sourced by Powergen UK plc who arranged for contract 

grinding of the coals and carried out combustion tests on their 1 MW CTF at 

Power Technology Centre, Ratcliffe-on-Soar, Nottingham.  Powergen carried out 

particle-size analysis on the pf and proximate and ultimate analysis on all coals 

and char samples.  Petrographic analysis of coals, morphology and reactivity of 

chars, and image analysis of coals and chars was carried out by the author at 

Nottingham University.  All relevant results from this study are now presented. 
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For these tests, the coals selected were Carbocol (a sample from the El Cerrejon 

coal mine in Colombia), and a British coal, Thoresby, for comparative purposes.  

On some Figures and Tables, these coals will be referred as CAR and THO 

respectively.  Each coal was milled to five different particle size distributions.  

The coals themselves were selected to be representative of extremes in fuel 

characteristics experienced by coal-importing utilities in Europe.  Suitable milling 

contractors were selected and the coals were ground according to different grind 

specifications which are discussed in the next section. 
 
 

6.2 Sample Preparation 
 

The primary aim of the combustion tests undertaken on the CTF was to quantify 

the effect of particle size distribution on combustion performance.  More 

specifically, it was intended that the tests assess the improvement in combustion 

performance that could be achieved by retrofitting commercially available “high 

performance’’ static or dynamic classifiers to existing plant.  A poorly ground 

sample labelled COARSE was also tested to assess the impact of poor mill 

maintenance.  These tests were compared with baseline results from the coals 

ground to a specification representative of the currently accepted standard for pf 

fineness (> 70% by mass < 75 µm, < 1% by mass > 300 µm). 

 

Thus, the grinds specified for the combustion tests were intended to be 

representative of the products that would be produced by: 
 
(a) A typical power station mill equipped with a static classifier, in good 

condition, and operating according to the regular guidelines for mill 

performance (STD grind specification). 
 
(b) A standard mill fitted with a high performance static classifier (HPSTAT). 
 
(c) A standard mill fitted with a high performance dynamic classifier (HPDYN). 
 
(d) A typical power station mill equipped with a static classifier, in poor 

condition and giving the worst performance that could reasonably be expected 

on plant labelled BAD. 
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Comparison of the required specifications and the predictions for the mill product 

showed that the HPSTAT and the HPDYN distributions could be accurately 

replicated particularly for the particle size range of greater than 100 µm.  The 

STD and BAD specifications could not be accurately reproduced.  It was 

predicted that the mill would produce too small a proportion of particles in the 

>150 µm size fraction.  Therefore, two additional grinds, designated COARSE 

and FINE were defined, which would produce the desired STD and BAD grinds 

when blended.  The STD blend was produced from equal proportions of each coal 

(50:50), whilst the BAD grind was obtained from a 70:30 blend. 

 

The specifications for the size distribution, as shown in Table 6.1, were based on 

typical plant data and manufacturers’ claims.  The COARSE and FINE grinds 

specifications have also been included in this Table. 

 

Table 6.1 Size distribution specifications for combustion tests 

 

Size 
Fraction COARSE BAD STD HPSTAT HPDYN FINE 

(µm) (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) 

>300 2 1 0.2 Trace 

150-300 
20 

14 8 4.8 1 
Trace 

75-150 30 24 21 24 16 10 

<75 50 60 70 71 83 90 

 
 

The >150 µm size fraction is believed to be the most significant in determining 

combustible-in-ash levels.  The <75 µm size fraction is not thought to have a 

significant impact on combustible-in-ash levels, and is mainly thought to be 

important for flame stability, particularly when firing low-volatile coals.  Hence, 

discrepancies between the desired grind specifications and those 

predicted/produced for the smaller size fractions were not expected to 

significantly affect the tests. 
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The particle size distribution of each grind for the two coals is presented below in 

Table 6.2.  These results were obtained by dry sieving control samples supplied 

by the contract grinder. 

 

The required grind specifications were well reproduced for the HPSTAT, HPDYN 

and FINE grinds.  The COARSE was not as well produced (slightly fine).  As a 

result it was envisaged that the BAD grind would be better replicated by an 80:20 

blend of the COARSE and FINE grinds. 

 
Table 6.2 Summary of results of the grinding and blending 
 

Percentage (wt%) 
Grind Sample 

>300 µm 150-300 µm 75-150 µm <75 µm 

 Specification Trace 10 90 

FINE Thoresby 0 0.3 12.4 87.3 

 Carbocol 0 0.2 12.1 87.7 

 Specification Trace 1 16 83 

HPDYN Thoresby 0 1.3 17.1 81.6 

 Carbocol 0 1.0 19.2 79.8 

 Specification 0.2 4.8 24 71 

HPSTAT Thoresby 0.4 7.6 23.4 68.6 

 Carbocol 0.4 7.8 28.8 63 

 Specification 1 8 21 70 

STD Thoresby 4.2 17.4 21.0 57.4 

 Carbocol 1.6 10.2 22.6 65.6 

 Specification 2 14 24 60 

BAD Thoresby 3.6 14.4 21.0 61.0 

 Carbocol 2.1 13.2 24.1 60.6 

 Specification 20 30 50 

COARSE Thoresby 3.8 19.4 23.4 53.4 

 Carbocol 1.1 13.5 28.4 57.0 



CHAPTER 6 EXPERIMENTS IN THE 1MW RIG 

 159

It can be seen from Table 6.2 that significantly coarser grinds than expected were 

produced for the STD grind of both coals.  Most significantly, the fraction of 

particles >150 µm was higher than specification, particularly for Thoresby coal.  

As far as the BAD grind is concerned, the required size distribution was well 

replicated for both coals.  For both STD and BAD grinds, analysis of samples 

taken throughout the day showed that blending was consistent. 

 

6.3 Coal Properties 
 

The coals used in this study were selected to be representative of extremes in fuel 

characteristics experienced by coal-importing utilities in Europe.  From the 

beginning of the project it was intended to fully characterise the different coal 

grinds.  However, due to financial constraints and from the analysis of the 

combustion test results, the characterisation of some of the different coal grinds 

could not be performed.  Additionally, due to fuel shortage, the COARSE grind of 

Thoresby coal was not tested and, therefore, analyses of this sample were not 

carried out. 

 

Proximate analysis data for the various coal grinds is presented in Table 6.3.  The 

results are presented on a dry, and dry-ash-free basis and include the fuel ratio for 

each grind.  It can be seen that small changes occur in fuel ratio and ash content 

between the grinds.  Carbocol exhibits higher volatile matter content (therefore, 

lower fuel ratio) and lower ash content than Thoresby. 

 

Data from the elemental analysis of the coal grinds is shown in Table 6.4.  The 

data consists of the percent composition of carbon, hydrogen, nitrogen, sulphur 

and oxygen (calculated by difference) on a dry-ash-free basis.  Note that only the 

HPSTAT grind of Carbocol coal was analysed.  It can be seen from the Table that 

both coals exhibit similar carbon and hydrogen content.  Thoresby has a slightly 

higher nitrogen content and a very high sulphur content (over 2%) and 

consequently lower oxygen content compared to Carbocol.  This could have an 

impact on NOx and SOx emissions during combustion. 
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Table 6.3 Proximate analysis data for the coal grinds 
 

Moisture Dry Basis  
(wt%) 

Dry, ash-free 
basis (wt%) 

Fuel 
Ratio Coal/Grind 

(wt%) VMa FCb Ash VM FC FC/VM

 FINE 2.5 30.1 49.9 20.0 37.6 62.4 1.66 

 HPDYN 2.5 30.3 49.7 20.0 37.8 62.2 1.64 

THO HPSTAT 2.5 30.8 50.6 18.7 37.8 62.2 1.64 

 STD 3.0 30.6 50.4 19.0 37.8 62.2 1.65 

 BAD 3.0 30.1 50.2 19.7 37.5 62.5 1.67 

 HPDYN 3.6 37.0 53.7 9.2 40.8 59.2 1.45 

CAR HPSTAT 3.9 37.1 53.8 9.1 40.8 59.2 1.45 

 STD 5.3 37.5 54.4 8.1 40.8 59.2 1.45 

 BAD 4.8 37.6 54.1 8.3 41.0 59.0 1.44 

__________ 
a VM=Volatile Matter; b FC=Fixed Carbon 
 
 

Table 6.4 Ultimate analysis data for the coal grinds 
 

C H N S O 
Coal/Grind 

(wt% daf) (wt% daf) ) (wt% daf) (wt% daf) (wt% daf) 

 FINE 83.39 5.81 1.84 2.27 6.69 

 HPDYN 82.59 5.95 1.81 2.28 7.37 

THO HPSTAT 83.30 5.83 1.92 2.26 6.70 

 STD 82.18 5.63 1.79 2.48 7.92 

 BAD 84.25 5.68 1.86 2.44 5.78 

CAR HPSTAT 82.09 5.65 1.68 0.81 9.762 

 

Petrographic analysis for the various coal grinds, including, maceral analysis and 

rank is given in Table 6.5.  The data is provided on a volume/volume, mineral-

matter-free basis.  The vitrinite reflectance histograms of the samples are shown 
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in Figures 6.1 and 6.2 for Thoresby and Carbocol coal grinds respectively.  In 

order to elucidate the differences in vitrinite reflectance among the grinds, the 

histograms are presented in a continuous-scale plot. 

 

The  maceral analysis results indicate that both coals are rich in vitrinite with 

Carbocol containing more that 90% and Thoresby around 80%.  The liptinite and 

inertinite content of Thoresby is higher by comparison with Carbocol.  The 

maceral composition of the different grinds of the two coals does not vary 

considerably.  Vitrinite tends to concentrate in the finest grinds (FINE, HPDYN 

and HPSTAT) whereas liptinite and inertinite concentrate in the coarsest grinds.  

In terms of rank, little variation in mean random vitrinite reflectance was 

observed.  Thoresby is a coal of higher rank (0.75%) than Carbocol (0.60%). 

 

 

Table 6.5 Petrographic Analysis of the coal grinds 
 

Rank Maceral Content (vol%) U190 
Coal/Grind 

VRo (%) Vitrinite Liptinite Inertinite (vol%) 

 FINE 0.73 81.1 8.2 10.7 4.7 

 HPDYN 0.77 79.6 8.4 12.0 5.2 

THO HPSTAT 0.76 79.8 8.2 12.0 5.5 

 STD 0.75 79.4 8.5 12.1 6.2 

 BAD 0.76 79.0 9.0 12.0 6.0 

 FINE 0.59 93.8 0.8 5.4 3.2 

 HPDYN 0.59 92.4 0.8 6.8 3.4 

HPSTAT 0.56 91.6 0.8 7.6 3.5 
CAR 

STD 0.60 91.4 1.0 7.6 3.5 

 BAD 0.59 91.2 1.2 7.6 3.8 

 COARSE 0.60 90.1 1.6 8.3 4.2 
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From examination of the vitrinite reflectance plots of Carbocol (Figure 6.2) it is 

clearly evident that the BAD and STD grinds are the result of a blend.  Two 

distinctive peaks can be noticed in the plots which can be ascribed to the FINE 

and COARSE grind respectively.  For Thoresby coal no significant differences in 

the vitrinite reflectance plots can be distinguished among grinds as shown in 

Figure 6.1. 

 

The grey scale histograms of Thoresby and Carbocol coal grinds, derived from the 

RAP analysis, are given in Figure 6.3 and Figure 6.4 respectively.  These profiles 

take the form of frequency versus grey scale.  The % unreactives parameter, 

derived from the RAP profiles, are given in Table 6.5.  It can be seen from the 

histograms that the liptinite peak lies below grey level 50 (slightly lower for 

Carbocol due to its lower rank).  The vitrinite peak lies between this boundary to a 

grey level of around 100 for Carbocol and 120 for Thoresby.  This is in agreement 

with the vitrinite reflectance histograms which show the broader range in vitrinite 

reflectance for Thoresby.  A distinctive peak beyond a grey level of 230 can be 

distinguished from the grey scale histograms and this is attributed to high 

reflectance inertinite and mineral matter.  This peak contributes the most to the % 

unreactives parameter.  Since this peak is slightly higher for Thoresby coal, this 

offers an explanation for its higher % unreactives. 

 

6.4 Test Programme 
 

Testing was undertaken on Powergen’s 1 MW Combustion Test Facility (CTF) at 

Ratcliffe-on-Soar, Nottingham.  Both coals were fired at each grind specification 

under the following test conditions: 15% over-fire Air, 1% excess oxygen.  As 

explained earlier, the COARSE grind of Thoresby could not be tested due to fuel 

shortage.  For each of the grinds tested, extractive wet sampling of char was taken 

from three different points along the system, i.e. a sample at the burner region 

(Port 1) and two samples in the convective pass (Ports 2 and 3).  Figure 3.16 

shows a schematic of the CTF rig showing these ports.  Since the CTF was built, 

experience has been gained that established these particular ports as the most 

suitable for obtaining representatives samples from the combustion process.  
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Samples from Port 1 resemble chars that have just undergone pyrolysis and are 

just entering the first stage of combustion. 

 
Figure 6.1 Vitrinite reflectance histograms of Thoresby coal grinds 
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Figure 6.2 Vitrinite reflectance histograms of Carbocol coal grinds 
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Figure 6.3 Grey scale histograms of Thoresby coal grinds 
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Figure 6.4 Grey scale histograms of Carbocol coal grinds 
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Apart from the aforementioned test programme, the project at Powergen involved 

the firing of the same samples at 1.5, 2.5 and 4% excess oxygen with and without 

over-fire air.  Additionally, back-end gas analysis for NO, SO2, O2 and CO were 

carried out for all conditions.  However, this was not part of the collaboration 

programme between the company and Nottingham University and these results 

will not be discussed. 

 

Table 6.6 Intrinsic reactivity data for the chars obtained at Port 1 
 

>150 µm Peak  
Temperature 

Burnout 
Temperature Coal/Grind 

(wt%) (°C) (°C) 

 FINE 1.4 571 655 

 HPDYN 2.0 571 672 

Thoresby HPSTAT 8.0 570 680 

 STD 21.6 572 689 

 BAD 18.0 570 693 

 FINE 1.0 576 651 

 HPDYN 2.2 576 658 

HPSTAT 8.2 577 660 
Carbocol 

STD 11.8 575 660 

 BAD 16.2 575 657 

 COARSE 20.4 576 665 

 

6.5 Properties of the Chars from the Near-Burner Region 
 

6.5.1 Intrinsic Reactivity 

 

The intrinsic reactivity results for all the char samples from the near-burner region 

(Port 1) are given in Table 6.6.  The results are given as a function of the weight 

percentage of coal particles above 150 µm, the size fraction believed to impact 
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most on unburnt combustible formation.  Char burning profiles, as derived from 

the intrinsic reactivity analysis, are presented in Figure 6.5 and Figure 6.6 for 

Thoresby and Carbocol grinds respectively.  As in the previous chapter, the DTA 

output (µV.mg-1) was normalised to the value of maximum rate of weight loss, as 

this facilitates the interpretation of the profiles. 

 

The most evident feature from the data in Table 6.6 is that the peak temperature 

parameter is fairly similar for all the char grinds.  This suggests that fineness, 

within the range of grind size tested, has no significant effect on peak temperature 

for both coals.  The DTA burning profiles in Figures 6.6.  and 6.7 clearly show 

this similarity among the grinds.  In contrast, burnout temperature (BT) shows a 

tendency to increase with increasing fraction of particles above 150 µm and this is 

shown in Figure 6.7.  This increase is more apparent for Thoresby chars.  An 

additional plot of BT as a function of % unreactives was obtained (Figure 6.8).  A 

general trend of decreasing intrinsic reactivity with increasing % unreactives can 

be observed from the plot.  Once again, this trend is more evident for Thoresby 

chars. 

 

6.5.2 Automatic Char Analysis 

 

Automatic char analysis was carried out for all the char samples.  The results 

obtained are presented in Table 6.7, and are given as relative char wall thickness 

(ACA5).  High ACA5 values are associated with high concentration of thin-

walled chars and low values of ACA5 to high percentage of thick-walled and 

solid chars.  In the results from previous chapters, variations of ACA5 figures 

with % unreactives as well as particle size were observed.  Therefore, plots of 

ACA5 against both % unreactives and the percentage of material above 150µm 

were produced for both coals and are given in Figures 6.9 and 6.10 respectively.  

Note that the % unreactives and the percentage of coal material above 150µm 

have been included in the results (Table 6.7).  According to the results and plots, 

the grinds with the lowest % unreactives material produced the highest ACA5 

values irrespective of the coal.  Consistently, a decrease of ACA5 figures with 

decreasing fineness of the coal grind can be noticed in Figure 6.10. 
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Figure 6.5 DTA burning profiles for Thoresby chars from Port 1 
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Figure 6.6 DTA burning profiles for Carbocol chars from Port 1 
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Figure 6.7 A plot of BT as a function of percentage of particles above 
150µm for chars from Port 1 
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Figure 6.8 A plot of BT against % unreactives for chars from Port 1 
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Table 6.7 Automatic char analysis data for the char from Port 1 
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>150 µm % unreactives ACA5 
Coal/Grind 

(wt%) (vol%) (vol%) 

 FINE 1.4 4.7 83.5 

 HPDYN 2.0 5.2 82.3 

Thoresby HPSTAT 8.0 5.5 79.4 

 STD 21.6 6.2 73.7 

 BAD 18.0 6.0 78.8 

 FINE 1.0 3.2 89.4 

 HPDYN 2.2 3.4 88.9 

HPSTAT 8.2 3.5 85.6 
Carbocol 

STD 11.8 3.5 87.5 

 BAD 16.2 3.8 83.1 

 COARSE 20.4 4.2 80.5 

 

Figure 6.9 A plot of ACA5 against % unreactives for chars from Port 1 
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Figure 6.10 A plot of ACA5 against percentage of particles above 150µm for 
chars from Port 1 
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6.6 Properties of the Chars from the Convective section 
 

6.6.1 Loss-on-Ignition and Unburnt Combustible 

 

The two coals tested show significantly different behaviour in terms of the loss-

on-ignition (LOI) and unburnt combustible (UC) and this will be discussed 

separately.  The results are presented in Table 6.8 and consist of the percentage of 

coal material above 150µm, the % unreactives, LOI and UC for both ports at the 

convective section. 

 

Unburnt combustible levels for the lower volatile coal Thoresby range from 1.22 

to 4.13% at Port 2, and from 0.77 to 1.28% at Port 3.  This indicates an overall 

combustion efficiency for this coal greater than 98.7%.  Unburnt combustible has 
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been plotted against the percentage of particles above 150µm, the fraction which 

has the most impact on unburnt combustible formation.  This plot (Figure 6.11) 

indicates that the unblended coals behaved considerably differently to the blended 

coals, particularly when considering the results from Port 2.  In another plot, in 

Figure 6.12, a similar behaviour of unburnt combustible against % unreactives can 

be seen. 

 
 

Table 6.8 Loss-on-ignition and unburnt combustible data for chars from 
Ports 2 and 3 

 

>150 µm U190
a LOI (wt%) UC (wt%)b 

Coal/Grind 

(wt%) (vol%) Port 2 Port 3 Port 2 Port 3 

 FINE 1.4 4.7 7.16 3.62 1.93 0.94 

 HPDYN 2.0 5.2 7.60 4.17 2.06 1.09 

THO HPSTAT 8.0 5.5 15.24 4.39 4.13 1.05 

 STD 21.6 6.2 6.28 5.18 1.57 1.28 

 BAD 18.0 6.0 4.75 3.06 1.22 0.77 

 FINE 1.0 3.2 15.62 8.72 ND ND 

 HPDYN 2.2 3.4 10.99 7.67 1.26 0.85 

HPSTAT 8.2 3.5 17.91 8.86 2.17 0.97 
CAR 

STD 11.8 3.5 14.12 7.88 1.45 0.76 

 BAD 16.2 3.8 11.20 7.33 1.14 0.72 

 COARSE 20.4 4.2 16.10 7.86 ND ND 

__________ 
a U190=% unreactives; b ND = Not Determined 
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Figure 6.11 A plot of unburnt combustible against percentage of particles 
above 150µm for Thoresby chars from Ports 2 and 3 

 

STD

BAD

HPDYN

FINE

HPSTAT

0

1

2

3

4

5

0.0 4.0 8.0 12.0 16.0 20.0 24.0
> 150µm (wt%)

U
nb

ur
nt

 C
om

bu
st

ib
le

 (w
t%

 d
af

)
Port 2 Port 3

 
 

Figure 6.12 A plot of unburnt combustible against % unreactives for 
Thoresby chars from Ports 2 and 3 
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Across the range of tests, unburnt combustible levels tend to increase with 

increasing fraction of particles above 150µm, for unblended grinds.  This is an 

expected trend, and indicates that the installation of improved classification 

technology, leading to a finer product, will reduce combustible-in-ash levels.  

However, further data is required to determine the point of diminishing returns, 

where little reduction in combustible-in-ash levels is achieved for further 

improvements in grind quality (Hill et al., 2000). 
 

The LOI and unburnt combustibles results for the blended coals are surprising, 

particularly for those at Port 2.  The particle size distribution of the coals (section 

6.2) shows the progressive decrease in overall particle fineness from the FINE 

grind through the BAD and COARSE blends.  Results from the unblended coal 

would imply that further increases in unburnt combustible should have resulted 

from the combustion of the STD and BAD grinds.  This was not the case, with the 

STD and BAD grinds producing unburnt combustible figures comparable with the 

FINE and HPDYN coals (Figure 6.11). 
 

The unexpected behaviour of the blended coals was unclear.  As a result, the 

Thoresby char samples from Port 2 were sized using a laser diffraction technique 

(Malvern), in order to find a possible explanation to this inconsistency.  The 

Malvern sizing technique generates a particle size distribution profile of a sample 

on a volumetric basis.  Three parameters are used to summarise the analysis – 

D10, D50 and D90.  ‘’Dx’’ represents the largest particle diameter present in the 

smallest ‘’x’’ percent of the sample.  Thus, the D10, D50 and D90 values 

represent the percentage of coal material with a maximum particle diameter of 10, 

50, and 90 µm respectively.  The results of the Malvern analysis for Thoresby 

chars at Port 2 are presented in Figure 6.13.  The results revealed that the 

unblended grind (FINE, HPDYN, and HPSTAT) produced progressively larger 

chars.  It would, therefore, be expected that the STD and BAD blended grinds 

would produce further increases in char size. 
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It would appear that, for the blended grinds, small chars were collected 

irrespective of the coarse particle content.  This is not a feature of the extractive 

sampling technique.  The possibility exists that coarser particles dropped out of 

suspension in the flue gas stream and were deposited on the floor of the 

convective pass.  This would obviously lead to the sampling of smaller chars.  

Anecdotal information suggests that this phenomenon has been exhibited on the 

CTF in the past, although measured gas velocities of between 12 and 20 m/s in the 

convective pass suggest that particle fall out should not be a problem (Hill et al., 

2000). 

 

Figure 6.13 Comparison of Malvern size parameter for Thoresby chars from 
Port 2 
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Another possible explanation is that larger chars from the coarser grinds formed 

in the early stages of combustion fragment or deflagrate to form smaller particles 

that lead to improved burnout.  Alternatively, the behaviour of these grinds may 



CHAPTER 6 EXPERIMENTS IN THE 1MW RIG 

 178

be attributable to differences in properties of the fine and coarse particles 

produced during grinding.  However, the maceral analysis and the % unreactives 

results of the different grinds do not show significant differences between the 

grinds.  In fact, the % unreactives of the BAD and STD grinds is slightly higher 

than those of the unblended grinds which suggests poorer burnout of the blended 

grinds. 

 

The testing of the COARSE grind would have determined if the unexpectedly low 

unburnt combustible level for the blended grinds are attributable to the blending, 

or attributable to an increase in increased mean particle size, but these tests were 

not possible due to shortage of coal. 

 

The LOI and unburnt combustible results for the higher volatile coal Carbocol 

were presented in Table 6.8 along with the results for Thoresby.  Unburnt 

combustible levels range from 1.14 to 2.17% at Port 2, and from 0.72 to 0.85% at 

Port 3.  This indicates and overall combustion efficiency for this coal greater than 

99.1%.  It can be seen from the data that grind size has virtually no impact upon 

unburnt combustible levels.  Improved pf fineness impacts on both volatile and 

char combustion.  However, pilot scale combustion tests indicate that for higher 

volatile coals, the combustion of volatiles is enhanced, whereas for lower volatile 

coals, char combustion is enhanced.  Carbocol is a fairly high volatile coal and, 

therefore, it could be expected that improved grind quality would have a minimal 

impact on combustible-in-ash. 

 

6.6.2 Intrinsic Reactivity 

 

Table 6.9 contains the data of the intrinsic reactivity results for the chars obtained 

at the convective section for both coals.  The DTA burning profiles for Thoresby 

chars from Ports 2 and 3 are given in Figure 6.14 and Figure 6.15 respectively.  

Similar DTA burning profiles for Carbocol char samples are shown in Figure 6.16 

and Figure 6.17.  The intrinsic reactivity data has been plotted against the 

percentage of particles above 150µm and the graphs obtained are shown in Figure 

6.18 and Figure 6.19 for Thoresby and Carbocol coals respectively. 
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The results for Thoresby follow a similar trend as with unburnt combustibles, i.e. 

a progressive decrease of reactivity with increasing the percentage of particles 

above 150µm.  Results for Carbocol show a tendency of decreasing intrinsic 

reactivity with increasing fraction of particles above 150 µm, particularly for the 

BT.  It is very apparent that all the samples from Port 2 exhibit higher intrinsic 

reactivity (lower PTs and BTs values) than the samples from Port 3. 
 

 

Table 6.9 Intrinsic reactivity data for the chars from Ports 2 and 3 
 

>150 µm Peak Temperature 
(°C) 

Burnout Temperature 
(°C) 

Coal/Grind 

(wt%) Port 2 Port 3 Port 2 Port 3 

 FINE 1.4 573 575 656 660 

 HPDYN 2.0 577 580 675 677 

Thoresby HPSTAT 8.0 590 591 702 705 

 STD 21.6 586 589 692 693 

 BAD 18.0 570 583 681 692 

 FINE 1.0 580 580 660 661 

 HPDYN 2.2 572 578 665 670 

HPSTAT 8.2 573 581 665 670 
Carbocol 

STD 11.8 582 585 674 681 

 BAD 16.2 586 588 682 686 

 COARSE 20.4 589 593 685 689 
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Figure 6.14 DTA burning profiles for Thoresby chars from Port 2 
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Figure 6.15 DTA burning profiles for Thoresby chars from Port 3 
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Figure 6.16 DTA burning profiles for Carbocol chars from Port 2 
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Figure 6.17 DTA burning profiles for Carbocol chars from Port 3 
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Figure 6.18 PT and BT data as a function of the percentage of particles 
above 150µm for Thoresby chars from Ports 2 and 3 
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Figure 6.19 PT and BT data as a function of the percentage of particles 
above 150µm for Carbocol chars from Ports 2 and 3 
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6.7 Summary 
 

The main conclusions from the experimental work can be summarised as follows: 

 

(1) The automatic image analysis of the chars obtained from the near-burner 

region of the CTF indicates a general trend of increasing concentration of 

thin-walled char (highest ACA5 values) with increasing particle fineness for 

both coals. The grinds with the lowest percentage of unreactives material 

gave, consistently, highest ACA5 values. 

 

(2) A general trend of increasing reactivity with increasing fineness of the coals 

was observed from the intrinsic reactivity analysis carried out to the chars 

form Port 1. 

 

(3) For the unblended coal (FINE, HPDYN and HPSTAT) of the low volatile 

coal Thoresby, unburnt combustible was found to decrease with increasing 

particles fineness. 

 

(4) The coarser grinds of Thoresby coal produced significantly lower unburnt 

combustible values than expected, comparable with the finest coal grinds. It 

is unclear if this is attributable to grind size or to the blending procedure. 

 

(5) For the higher volatile coal Carbocol, unburnt combustible was found to be 

insensitive to grind quality. It is expected that this phenomenon would not 

be repeated on full-scale plants. The intrinsic reactivity of the chars was 

found to increase with increasing particle fineness  

 

(6) The high performance dynamic classifier is currently the best technology for 

improving pf quality using standard milling equipment that will reduce 

combustible-in-ash levels. 
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CHAPTER 7 CONCLUSIONS AND FURTHER WORK 
 

7.1 Drop Tube Furnace Experiments 
 

In this part of the project, a series of experiments were conducted to characterise 

chars obtained from a Drop Tube Furnace.  The main objective was to investigate 

the effects of temperature and particle size on char characteristics during high 

temperature devolatilisation and combustion.  An eventual aim of the project was 

to identify coal properties which have an impact on burnout and how relevant they 

are in the prediction of coal combustion behaviour.  In particular, it was envisaged 

that this study would help to provide a better understanding of the Reactivity 

Assessment Program (RAP) and the automatic image analysis of chars. 

 

The coals used in this study, mainly from South America, were found to be 

vitrinite-rich coals and were all within the bituminous coal range.  Vitrinite 

reflectance analysis of the different coal fractions indicated a narrow range for 

most of the coals. 

 

The conclusions which arose from the analysis of the pyrolysed and re-fired chars 

and the correlation of their properties with coals parameters can be summarised as 

follows: 

 

(1) The morphological features and concentration of certain types of chars, after 

pyrolysis, were found to be dependent on the characteristics of the parent 

coal.  The lower rank coals tended to produce predominantly network chars, 

whereas the higher rank coals produced mainly cenospheric chars. 

 

(2) Despite the fact that all the coals used in this study were vitrinite-rich, 

variations in char morphology were evident.  This demonstrated that it was 

impossible to assign any one char type to a single maceral group.  It was 
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apparent that vitrinite generates a wide range of char types depending upon 

the rank of the parent coal and on the maceral associations within the coal.   

 

(3) From the data on image analysis of the chars, it was observed that the DTF 

operating temperature and particle size of the coals have an effect on the 

amount of thin and thick-walled chars generated.  It was clearly evident that 

the higher the temperature and the lower the particle size, the greater the 

amount of thin-walled chars and the lower the concentration of thick-walled 

chars.  The increase in ACA5 values with increasing DTF temperature and 

decreasing particle size was in agreement with the manual char data. 

 

(4) The intrinsic reactivity, as measured by TGA, of the initial chars was found 

to decrease with increasing operating temperature and increasing particle 

size of the coal (i.e.  decreasing external surface area of particles).  Thus, 

chars of different size, although from the same coal, are intrinsically 

different. 

 

(5) Guasare coal was found to burnout slowly, particularly the coarsest 

fractions.  Its poor burnout performance is clearly due to the formation of 

thick-walled cenospheric chars during pyrolysis.  This means that the 

percentage of combustible remaining in ash for this coal will increase 

significantly if it is not properly milled before combustion. 

 

(6) Some correlation between the properties of the pyrolysed chars and high 

temperature volatiles with maceral analysis were obtained.  However, with 

the inclusion of rank in the regressions, the correlations improved and this 

demonstrated the importance of the variation of reflectance of vitrinite.  

Further correlations of the char properties and high temperature volatiles 

with % unreactives demonstrated the importance of the Reactivity 

Assessment Program to assess burnout behaviour of coal.  Nevertheless, 

when considering the complete grey scale histogram, which accounts for the 

variations in reflectance for all macerals, the correlations were far better.  

This final approach was considered to be more reliable than the % 
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unreactives itself since the 190 grey level threshold ignores or includes part 

of the coal which may or may not be contributing to its reactivity. 

 

7.2 Experiments in the 1MW Combustion Rig 
 

The work in the 1 MW combustion rig was undertaken with the aim of 

determining the effect of pf particle size distribution on combustion performance 

of coal.  High volatile and a low volatile coals were used for this purpose.  Grind 

specifications were selected to be representative of products that could reasonably 

be expected from currently available classification technologies.  In order to 

assess the impact of poor mill maintenance a coarse grind was tested. 

 

Maceral composition and most of the properties of the coals did not vary 

significantly.  Vitrinite tended to concentrate in the finest grinds and liptinite and 

inertinite in the coarsest grinds.  The low volatile coal was found to be of higher 

rank, higher ash content and of similar carbon and hydrogen content to the high 

volatile coal. 

 

The automatic image analysis of the chars obtained from the near-burner region of 

the rig (Port 1) indicated a general trend of increasing concentration of thin-

walled char (highest ACA5 values) with increasing particle fineness for both 

coals.  The sizes with the lowest percentage of unreactives material gave, 

consistently, highest ACA5 values. 

 

A general trend of increasing reactivity, decreasing burnout temperature, with 

increasing fineness of the coals was observed from analysis carried out on the 

chars from Port 1.  A progressive decrease of reactivity with increasing burnout of 

the chars, from Port 1 to Port 3, was observed. 

 

For the unblended grinds of the low volatile coal, unburnt combustible was found 

to decrease with increasing particle fineness.  The coarser grinds produced 

significantly lower unburnt combustible values than expected, comparable with 

the finest coal grinds.  It is unclear if this is attributable to grind size or to the 
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blending procedure.  For the higher volatile coal, unburnt combustible was found 

to be insensitive to grind quality.  It is expected that this phenomenon would not 

be repeated on full-scale plants.   

 

On the basis of the CTF tests, it can be seen that the high performance dynamic 

classifier is a better option for producing improved pf size distributions. 

 

7.3 Recommendations for Further Work 
 

Image analysis techniques offer advantages in that they are faster and provide 

more quantitative information and a better degree of objectivity than manual point 

counting.  However, image analysis systems have some difficulties in emulating 

certain aspects of the human visual system.  Despite these inherent difficulties, 

there has been much success and new improvements in image analysis applied to 

coal and char characterisation in recent years. 

 

Further refinement of the image analysis techniques for the analysis of coal 

reactivity and char morphology is required.  This should include the ability to 

distinguish and analyse single coal particles.  Useful data would comprise particle 

size-related measurements, grey scale histogram and maceral associations.  This 

will allow the prediction of char morphology from individual coal particles.  The 

image analysis techniques can be further refined to present char morphology in a 

format suitable for inclusion in char burnout models. 
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APPENDIX A. Vitrinite Reflectance Histograms of the Coal Fractions 
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APPENDIX A. Vitrinite Reflectance Histograms of the Coal Fractions 
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APPENDIX A. Vitrinite Reflectance Histograms of the Coal Fractions 
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APPENDIX A. Vitrinite Reflectance Histograms of the Coal Fractions 
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APPENDIX B. Grey Scale Histograms of the Coal Fractions 
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APPENDIX B. Grey Scale Histograms of the Coal Fractions 
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APPENDIX B. Grey Scale Histograms of the Coal Fractions 
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APPENDIX B. Grey Scale Histograms of the Coal Fractions 
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APPENDIX B. Grey Scale Histograms of the Coal Fractions 
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APPENDIX B. Grey Scale Histograms of the Coal Fractions 
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APPENDIX C. DTA Profiles of the Chars as a Function of DTF Temperature 
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APPENDIX C. DTA Profiles of the Chars as a Function of DTF Temperature 

 

C.3 Fila Maestra (53-75 µm fraction) 
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APPENDIX C. DTA Profiles of the Chars as a Function of DTF Temperature 

 

C.5 La Loma (53-75 µm fraction) 
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APPENDIX C. DTA Profiles of the Chars as a Function of DTF Temperature 

 

C.7 Oreganal (53-75 µm fraction) 
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APPENDIX C. DTA Profiles of the Chars as a Function of DTF Temperature 

 

C.9 La Jagua (53-75 µm fraction) 
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APPENDIX C. DTA Profiles of the Chars as a Function of DTF Temperature 

 
C.11 El Cerrejon (53-75 µm fraction) 
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APPENDIX C. DTA Profiles of the Chars as a Function of DTF Temperature 

 

C.13 Caypa (53-75 µm fraction) 
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APPENDIX C. DTA Profiles of the Chars as a Function of DTF Temperature 

 

C.15 Paso Diablo (53-75 µm fraction) 
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APPENDIX C. DTA Profiles of the Chars as a Function of DTF Temperature 

 

C.17 Maturin (53-75 µm fraction) 
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APPENDIX C. DTA Profiles of the Chars as a Function of DTF Temperature 

 

C.19 Ashland (53-75 µm fraction) 
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APPENDIX D. F-Distribution, F-values [Confidence level 95%: α = 0.05] 
 

 

Degrees of Freedom for Numeratora v1 
v2 

1 2 3 4 5 6 7 

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 

        

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 

        

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 

        

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 

__________ 
a v1 = Number of Independent Variables; v2 = Number of Data Points – (v1 – 1) 
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APPENDIX E. DTA Profiles of the Pyrolysed Chars 
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APPENDIX E. DTA Profiles of the Pyrolysed Chars 

 

E.3 La Jagua 
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APPENDIX E. DTA Profiles of the Pyrolysed Chars 

 

E.5 Caypa 
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APPENDIX F. DTA Profiles of the Re-fired Chars 

 

F.1 Bijao – 200 ms 
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APPENDIX F. DTA Profiles of the Re-fired Chars 

 

F.3 Bijao – 600 ms 
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APPENDIX F. DTA Profiles of the Re-fired Chars 

 

F.5 La Loma – 400 ms 
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APPENDIX F. DTA Profiles of the Re-fired Chars 

 

F.7 La Jagua – 200 ms 
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APPENDIX F. DTA Profiles of the Re-fired Chars 

 

F.9 La Jagua – 600 ms 
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APPENDIX F. DTA Profiles of the Re-fired Chars 

 

F.11 El Cerrejon – 400 ms 
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APPENDIX F. DTA Profiles of the Re-fired Chars 

 

F.13 Caypa – 200 ms 
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APPENDIX F. DTA Profiles of the Re-fired Chars 

 

F.15 Caypa – 600 ms 
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F.16 Guasare – 200 ms 
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F.17 Guasare – 400 ms 
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F.18 Guasare – 600 ms 
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