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ABSTRACT 

 

In areas where heavy metals are introduced into or onto land where they would 

not normally be present at elevated concentrations, then that land could be 

considered to be contaminated. A simple way of determining the magnitude of 

contamination by heavy metals is to measure the total metal concentration in 

the soil. However, this simple measure is a poor way of assessing the potential 

risks to the environment and human health. A more effective risk assessment 

can be achieved by analysing the proportion of the total metal that exists in a 

mobile or bioavailable form, in other words, the metal solubility. Unfortunately 

metal solubility is more difficult and costly to measure than total metal 

concentration in the soil. 

 

This thesis examines the application of a metal solubility model to geochemical 

survey data consisting of pH and metal concentrations. The solubility 

predictions were interpolated in order to produce maps; however, the 

interpolated data had very high uncertainties. Further analysis showed that pH 

was the greatest source of uncertainty in the algorithm, contributing the most 

for lead, with 76% of the uncertainty being due to pH. pH was least influential 

for copper, contributing 49% of the uncertainty, but pH was the highest 

contributor in each metal. 

 

In order to examine the accuracy of the algorithm without geostatistical 

influences, a field work study was undertaken to measure metal solubility 

directly at the original survey sites. This showed that the algorithm was very 

good at predicting metal solubility at point sources. In order to assess the short-

scale spatial variability of pH, and the errors in pH measurements, a second 

field work project was conducted, measuring the pH on 200 samples from a 

single field. This work showed that pH does vary across a field, but more 

importantly allowed a quantification of the uncertainty involved in sampling 

and measuring pH. 

 

Results show that despite the short-scale variability in pH, point predictions are 

accurate (the average difference between measured and predicted pZn2+ is 6%), 



 xvi

and might be of use to land managers. However, interpolating solubility 

predictions for mapping produces unacceptably high uncertainties (mean 

values were 188% for Pb, 417% for Cu and 153% for Zn) for land management 

or the development of policy measures related to soil.  

 

Further work could include calculating the measured Pb and Cu solubility and 

comparing these to the predictions. A study to investigate how pH and Zn2+ 

vary together across a field would also be of interest. 
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1. INTRODUCTION 
 

1.1 LAND CONTAMINATION 

 

Where substances are introduced into or onto the land where they 

would not normally be, then that land could be considered to be 

contaminated.  In a small number of these situations where certain 

criteria are met, a site might be designated as ‘contaminated land’ 

which has a specific legal definition set out in Part IIA of the 

Environmental Protection Act (1990). 

 

The contamination of land is of growing importance. Many potentially 

toxic metals are accumulated in polluted soils, with an associated risk 

of contamination of underlying ground waters or adjacent surface 

waters. Toxic metals in the soil may arise either directly from a range 

of anthropogenic activities or indirectly from the mobilisation of 

naturally occurring metals by mining, or acid rain (Cancès et al., 2003). 

Land is at a premium in urban areas, and in order to preserve green belt 

land, development often takes place on “brownfield” sites which might 

be contaminated by past use and where remediation might have to be 

undertaken before development.  

 

On agricultural land the question is not whether the land is suitable for 

redevelopment but whether the food produced on that land is suitable 

for human consumption. Agricultural land can be contaminated, either 

as a result of normal agricultural practices (for example metal 

enrichment can occur from the application of some fertilisers) or from 

the application of sewage sludge (Gardiner et al., 1995) or from 

historical industrial activities, such as mining and smelting.  

 

Sewage sludge is an important source of metal contamination. This is 

the solid waste accumulated during primary, secondary and tertiary 

waste water treatment. To dispose of the sludge produced in the UK, 
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much of it is recycled onto agricultural land. Total sewage sludge 

production in 1996/7 was 1.16 Mtds (Million tonnes dry solids). 

Production in 2005/6 was predicted to be 1.467 Mtds, of which 0.732 

Mtds would be recycled to agricultural land (Environment Agency, 

1999). Sewage sludge contains appreciable levels of N and P, which 

can replace the need for artificial fertilisers. As well as this benefit, the 

organic matter in sludge can improve the physical condition of soil. 

However, sewage sludge also often contains high levels of heavy 

metals, leading to an accumulation of metals such as Cd, Zn, Cu and Ni 

(Gardiner et al., 1995). These metals can then accumulate in crops and 

livestock, increasing human exposure through the food chain. 

 

Under section 78A(2) of part IIA of the Environment Protection Act 

1990, land is ‘contaminated’ if significant harm is being caused to a 

specific receptor (an end product such as food crops, livestock or 

humans). In the case of crops and livestock, a ≥20% loss is considered 

to be the threshold for ‘significant harm’. This loss is characterised by 

crops or livestock that are either dead or are no longer fit-for-purpose. 

Food is regarded as being no longer fit-for-purpose when it fails to 

comply with the provisions of the Food Safety Act 1990.  

 

1.2 METAL SOLUBILITY 

 

The suitability of land for agricultural production is called into 

question when heavy metal concentrations in the soil exceed specified 

totals (MAFF, 1998). However, these simple determinations are a 

rather crude way of quantifying the potential environmental and human 

health risks. Evaluation of the potential risks and toxicity of metals in 

soil may be more accurately assessed by analysing the proportion of 

total metal in a mobile or bioavailable form (Sauvé et al., 2000). This 

approach assumes that dissolved metals are mobile and could possibly 

be taken up by plant roots (Sauvé et al., 2000). The term bioavailable 

often refers to an exchangeable or extractable fraction of the metal in 

the soil phase, not just that dissolved in water. However, solubility is a 
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closer estimate of this than total metal content. Using solubility or 

bioavailability can lead to a direct assessment of whether significant 

harm might occur as set out in section 78 A(2) of the Environment Act. 

Although assessing levels of metal solubility appears to be a simple 

way of predicting any future problems with metal uptake into food, in 

reality, directly measuring metal solubility is time consuming and 

expensive. Much work has been done on methods to predict metal 

solubility from more easily measured parameters, for example Jopony 

and Young (1994), McBride et al. (1997) and Tye et al. (2003). 

 

Metal solubility is generally thought to depend on total metal content, 

pH, organic matter content and ionic strength in the pore water (Sauvé 

et al., 2000). The importance of the effect of pH on metal solubility is 

well recognised but difficult to separate from the influence of other soil 

characteristics. However, it is known that the effect of pH dominates 

because it has a major influence on most of the chemical species in the 

soil (especially carbonates and dissolved organic matter) (Sauvé et al., 

2000).  

 

There is much circumstantial evidence for the importance of the effect 

of dissolved organic matter (DOM) on metal solubility. Evidence 

comes both from the effect of DOM on solubility observed by 

removing or adding organic matter to experiments and from the 

observation that in most situations, a majority of the dissolved metal is 

found in metal-organic complexes (for example, more than 98% of 

dissolved copper is bound to DOM in non-acidic soil solution (Sauvé et 

al., 2000). However, despite all the circumstantial evidence, metal 

adsorption experiments in soils often fail to reveal a strong correlation 

between DOM and metal solubility. There are several possible reasons 

for this. Firstly, pH is a controlling variable on metal complexation by 

organic matter, so there is no way to separate pH from DOM to assess 

the effects on solubility separately. Second DOM is heterogeneous, and 

is very difficult to treat as one single variable. Fresh organic materials 
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are chemically different from residual humus in soils and will therefore 

react differently with metals in the soil (McBride et al., 1997). 

 

One commonly used index for expressing bioavailability is the 

distribution coefficient, Kd. This is simply the partitioning of the total 

metal burden between the fraction bound to the soil solids and the part 

that is dissolved in soil solution. However, the impact of variation in 

pH, DOM etc on Kd is not well described (Sauvé et al., 2000). Kd is 

highly variable and often soil-specific, so any expression of solubility 

which includes its principal determinant (pH) will give improved 

prediction of metal solubility. This kind of approach assumes that free 

metal (Mex+) and H+ compete for adsorption on the soil’s exchange 

sites. This has been successfully applied to Cd, Cu, Pb and Zn by many 

workers (e.g. Tipping et al., 2003; Weng et al., 2002; McBride et al., 

1997; Sauvé et al., 1997) 

 

1.3 PREDICTING METAL SOLUBILITY  

 

The algorithm used to predict metal solubility in this thesis was 

developed by Tye et al. (2003). Their aim was to create a simple 

solubility model to predict the solution activity of free metal ions 

requiring information commonly included in soil geochemical surveys. 

The algorithm was developed using data from a soil incubation 

experiment and a collection of historically contaminated soils, and 

compared to literature data sets (Tye et al., 2003) 

 

The algorithm for estimating free metal ion activity in the soil solution 

(including organic matter) is shown in Equation 1.1: 
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where p(M2+) = –log10(M2+) 
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 C = organic carbon content of the soil as a % 

 I = ionic strength; a typical or default value is 0.01. 

Msoil = metal content of the soil (mol kg-1) 

M2+ = activity of the free metal ion in the soil pore water  

a,b,c, n = constants unique to each metal 

 

Alternatively, soil metal content may be expressed on a “whole soil” 

basis, to give: 

 
++ −+= 2

10
2 log McbpHapM      1.2 

 

The values for the parameters a, b and c for three metals are given in 

Table 1.1. They are derived using “solver” in Excel to find the best fit 

to the data set.   

 

 Pb Zn Cu 
a -2.44 -1.859 -2.766
b 1.531 0.913 1.255
c 0.979 0.628 1.253

 

Table 1.1: Parameter values for the metal solubility algorithm. 

 

The algorithms were developed using a data set collected from a soil 

incubation experiment and a collection of historically contaminated 

soils. Comparison was made to a literature data set to validate the 

model using independent data. Algorithms for labile metal were also 

defined ('labile' is defined as 'chemically responsive to changes in the 

metal free ion activity within the time of the measurement'). Radio-

labile Cd and Zn were determined by isotopic dilution. The radio-labile 

measurement discriminates between the “chemically responsive” and 

“fixed” pools of soil metal.  
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1.4 THE G-BASE SURVEY 

 

The Geochemical Baseline Survey of the Environment (G-BASE) is a 

systematic survey to establish a geochemical baseline across the United 

Kingdom run by the British Geological Survey (BGS). It is a 

programme of systematic high-resolution geochemical mapping, and 

aims to have complete coverage of the UK by 2012. Geochemical data 

is derived from soil samples and stream sediments at an average 

density of 1 sample every 1-2 km2 of land surface, which is dependent 

in the case of sediments, on drainage density. The aim is to obtain a 

natural background level of the various elements measured. In order to 

minimise the influence of anthropogenic contamination, roads, tracks, 

railways, human habitation and other disturbed ground is avoided. The 

G-BASE project does not sample in urban environments, although a 

related project GSUE (Geochemical Survey of the Urban Environment) 

does sample exclusively in the urban environment (Rawlins et al., 

2002). 

 

Soil is collected using a hand held Dutch soil auger and samples are 

taken from mineral top-soil (from 0 to 15 cm depth) and sub-soil (from 

40 to 50 cm depth) from the centre and four corners of a 20 × 20 m 

square. The soil samples from each of the five holes are combined to 

form an aggregated sample (Rawlins et al., 2002). In this thesis only 

top-soil data is used because i) the solubility algorithm was developed 

using top soil data, and ii) top-soil is the dominant source of metals for 

plant growth and animal grazing. 

 

All G-BASE samples are returned to the BGS laboratories in Keyworth 

for preparation and analysis. The soil samples are air dried, ground and 

sieved to a less than 2 mm size fraction and then ground using an agate 

ball mill prior to analysis by X-ray fluorescence (XRF – see section 

2.4.5). A sub-sample of each soil is stored in an archive for future 

reference. The total concentration of a broad spectrum of elements is 
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measuredi and Loss on Ignition (LOI), a crude proxy for soil organic 

matter content (see section 2.3.2), is also carried out on each sample 

(Rawlins et al., 2002). In the G-BASE survey of the Humber Trent 

region pH was measured on the sub-soil only, so samples of top-soil 

were retrieved from storage and their pH determined for use in this 

study. 

 

G-BASE does not measure soil solution concentration and only 

measures total soil metal content, therefore as discussed earlier, the 

data does not directly relate to a risk of contamination of crops or 

livestock by heavy metals. However, this data can be used in 

conjunction with the metal solubility algorithm in order to assess the 

risks. 

 

This thesis uses G-BASE data from the Humber-Trent region in the 

north of England (see §3.1.1). 

 

1.5 SOIL GEOCHEMICAL MAPS 

 

Most properties of the environment, pH or metal concentration for 

example, are contiguous but are measured at only a few points for 

practical and economic reasons. If we want to know what the values 

are where we haven’t sampled they need to be predicted from the data 

we do have. One of the most powerful ways of making predictions 

based on existing data is to use geostatistics. Some of the techniques 

that are collectively known as geostatistics have been used in this 

project to describe spatial patterns and predict the values of soil 

properties at un-sampled locations.  

 

Geostatistics has its roots in the 1950s South African mining industry 

as a method of estimating ore grades from limited data. Pioneered by 

                                                           
i The following element concentrations are measured: Mg, P, K, Ca, Ti, Mn, Fe, V, 
Cr, Co, Ba, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Pb, Bi, Th, U, Ag, Cd, Sn, 
Sb, Cs, La, Ce. 
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D. G. Krige, the field has grown in terms of methods and application 

(Cressie, 1993). Formal geostatistics began life as “the theory of 

regionalised variables” as proposed by Matheron (1963). Geostatistics 

is now used in many areas, such as petroleum, forestry, ecology, 

farming and contaminated land. Its strength over more classical 

approaches to ore-reserve estimation is that it recognises spatial 

variability at both the large and small scale, or in other words, it 

models both spatial trend and spatial correlation (Cressie, 1993).  

 

When data are abundant, most interpolation techniques (used to 

estimate the value of properties at un-sampled sites within the area 

covered by existing observations) give similar results. However, in 

most situations the data collected are sparse owing to constraints on 

resources. When data are sparse, the assumptions made about the 

underlying variation and the choice of method and parameters can be 

critical in avoiding misleading results. Comparisons of different 

interpolation methods on a data set will provide a variety of answers, 

but geostatistics is the only method that provides an estimate of 

uncertainty which allows the best use of the result (Burrough and 

McDonnell, 2000). It is the robustness of the assumptions behind 

geostatistics that make it such a valuable tool in comparison to simple 

interpolation methods such as regression, trend surface analysis, 

nearest neighbour methods and splines.  

 

The main observation behind geostatistics is that samples are more 

likely to be similar to each other the closer they are located in space. 

Geostatistics uses this idea in attempting to model the relationship 

between points as the distance between them changes. A regionalised 

variable Z(x) (Matheron, 1963) is a random variable that takes different 

values according to its location x within some region. The term 

regionalised variable was coined to emphasise the two apparently 

contradictory aspects of Z(x) – that it combines both random and 

structured components. The random element comprises local 
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irregularities and the structured elements are large-scale trends and 

tendencies in the data. 

 

The basic steps of a geostatistical analysis consist of the creation of an 

experimental variogram (described in §2.2), fitting a model to the 

variogram and using the information from this to carry out kriging 

(assuming the aim is to create a map). Section 2.2 details the specific 

methods used in this thesis. Kriging is a generic name adopted by 

geostatisticians for a family of generalised least-squares regression 

algorithms (Goovaerts, 1999). It is a technique of making optimal, 

unbiased estimates of regionalised variables at unsampled locations 

using the theory of stationarity, the structural properties of the 

covariance and the initial set of data values (Militano and Ugarte, 

2001). The theory of stationarity states that the moments of a 

distribution of a random variable are the same everywhere (Webster, 

2000). Kriging divides spatial variation into three components – (i) 

deterministic variation (different levels or trends), (ii) spatially 

autocorrelated variations, and (iii) uncorrelated noise (Burrough and 

McDonnell, 2000).  

 

Kriging provides a solution to the problem of estimation based on a 

continuous model of stochastic spatial variation. It makes the best use 

of existing knowledge by taking account of the way that a property 

varies in space through the variogram model (Webster and Oliver, 

2001). There are many kinds of kriging, some developed to tackle 

specific problems in areas such as mining and petroleum engineering. 

Ordinary punctual kriging is the most common form of kriging. It was 

used in this thesis because it predicts values at the same scale or 

support of the original data and the predictions can be easily compared 

to the original values. It is also a relatively simple technique. 
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1.5.1 Previous studies  

  

Many studies have used geostatistics to analyse heavy metal 

concentration in soil (e.g. Atteia et al., 1994; Steiger et al., 1996; 

Saldaña et al., 1998) but there does not appear to have been much work 

on using derived values (solubility in this case) within geostatistics. In 

this thesis it is proposed to use geostatistics to interpolate metal 

solubility values derived from G-BASE data in order to create maps of 

solubility to assess the risk of food contamination. 

 

1.6 THESIS SUMMARY 

 

In summary, the availability of metals depends on their free ion 

concentration (M2+) in the soil solution. Equations predicting (M2+) 

have to be simple if they are to be used with geochemical survey data. 

The spatial resolution of large geochemical surveys is often not down 

to a field scale that would be useful to individual farmers. When 

completed with full coverage of the UK, G-BASE will be the highest 

resolution geochemical survey. The objective of this thesis is to test the 

viability of applying metal availability models to a large scale 

geochemical survey and attempt to quantify the separate sources of 

prediction error. 

 

Chapter 2 outlines details of methods used throughout the 

investigation. This includes all the analytical methods, details of 

geostatistical analysis and procedures used in the two fieldwork 

campaigns.  

 

Chapter 3 describes the initial investigation into the G-BASE data and 

the geostatistical analysis and mapping of total soil metal concentration 

and pH. The metal solubility algorithm was then applied to the G-

BASE data and the resulting metal solubility predictions were kriged 

and mapped. The kriging results indicated that the uncertainty of the 

predicted solubility values were very high, so an uncertainty analysis of 

 



Chapter 1  11 

the solubility algorithm was carried out. The analysis in Chapter 3 

showed that the sampling scale of the G-BASE survey misses much of 

the short-scale variability, and that pH is the greatest contributor to 

total uncertainty.  

 

Chapter 4 presents the results of fieldwork conducted to assess the 

accuracy of the solubility algorithm by returning to G-BASE sampling 

sites and measuring the zinc concentration in the soil solution to 

compare with predicted zinc solubility.  

 

Chapter 5 presents the investigation into the short-scale spatial 

variability of pH prompted by the results in Chapter 3. The pH across a 

field was measured and analysed using geostatistics. Metal uptake by 

plants was estimated using the pH values across the field compared to 

using the average for the field. 

 

Chapter 6 provides a summary of the key findings of the thesis. 
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2. METHODS 
 

2.1 ANALYTICAL METHODS 

 

2.1.1 pH 

 

2.1.1.1 Introduction 

 

In this thesis pH has been measured using two different procedures, one for 

measuring the pH of archived G-BASE samples and one for a short-scale 

spatial variability study.  

 

The G-BASE project only measured the pH of sub-soil samples for the 

Humber-Trent study region, using a salt solution (0.01 M CaCl2) as a 

suspending electrolyte. This gives rise to two problems with respect to utilising 

survey pH values to predict metal solubility. Firstly, G-BASE measures metal 

concentrations on the top-soil samples and secondly the metal solubility 

algorithm has been calibrated using pH values determined with water as the 

suspending electrolyte. Therefore, the pH values of the archived G-BASE top-

soil samples for the region of interest had to be measured in water.  

 

In a second study, examining the short scale variability in pH, greater care was 

taken in establishing a reliable method. The theory of pH measurement is 

discussed briefly below, before the methods used to measure pH in the short 

scale variability study and in the G-BASE sample pH measurement are 

outlined. 

 

2.1.1.2  pH theory and measurement 

 

pH is defined as the negative logarithm of the hydrogen ion activity, pH = -

log10 H+. It is a direct measure of acidity according to the Brønsted definition 

of acids as substances that are able to donate hydrogen ions, and bases as 

substances that are able to combine with hydrogen ions (Linnet, 1970).  
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Despite pH measurements being a routine part of any soil survey it is difficult 

to quantify the errors involved in measurement. pH values of colloidal 

suspensions such as soils have often been measured with little attention being 

paid to the operational factors which affect the electrochemical measurements 

that result. These problems arise primarily from uncertainties associated with 

liquid junction potentials, and the heterogeneity of soil suspensions resulting in 

the ‘suspension effect’ and ‘salt effect’ amongst others (Sumner, 1994). There 

is also a great deal of uncertainty in the literature over the length of time 

required to establish an equilibrium between the solid and solution phases. 

 

As one of the aims of the short-scale pH study was to minimise uncertainty in 

pH measurement, an understanding of the suspension effect and salt effect is 

needed in order to design the best method for pH measurement. 

 

A pH measurement is usually carried out using a combined electrode 

containing a pH sensitive glass electrode and a reference electrode. The 

reference electrode is filled with a concentrated KCl solution which slowly 

leaks into the test solution through a porous liquid junction. The filling 

solution makes a contact between the internal reference element and the liquid 

junction (and hence the test solution outside the electrode) and so is sometimes 

referred to as a salt bridge. KCl is used as K+ and Cl- have nearly equal 

mobilities, so that each conducts almost the same amount of current (Bloom, 

2000). A ‘liquid junction potential’, EJ, is the result of the salt bridge solution 

containing different concentrations of ions to the test solution. The 

interdiffusion between the two solutions carries electrical charge unequally 

across the liquid junction affecting the pH measurement (Sumner, 1994). Soils 

are cation exchangers, so can have a disproportionate effect on the rate of K+ 

diffusion compared to Cl- diffusion into solution. The effect increases with 

increasing suspension concentration, and results in a decrease in the measured 

pH. This is known as the ‘suspension effect’. The common practice of stirring 

soil water suspensions while measuring pH greatly increases the suspension 

effect (Sumner, 1994). The effect can be minimised by measuring pH in salt 

solutions greater than 0.01 M and by placing the electrode in the supernatant. 
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The salt effect can be illustrated as follows: the pH value of an aqueous 

solution of 0.01 molal hydrochloric acid would be exactly 2.00 if no salt effect 

was present, i.e. if the hydrogen ion activity was equal to its concentration. 

However, the pH of this solution is actually 2.05 (at room temperature) owing 

to the salt effect of the hydrochloric acid itself (Linnet, 1970). 

 

All soils will produce a certain level of electrolyte in their pore water, which 

might have an effect on the soil pH measured. It has been demonstrated that 

when the pH of a soil is measured in an electrolyte such as KCl or CaCl2, the 

pH value for a negatively charged soil is lower than when measured in water 

(Sumner, 1994; Blake et al., 2000). There are two reasons for the difference 

between pH measured in salt solution and water. First, when water is added to 

a soil in order to measure the pH, the concentration of electrolyte which would 

have been present under field conditions is diluted. This reduces the salt effect 

and gives a lower pH measurement than the soil should produce. Secondly, 

when a salt solution such as 1M KCl is added to a soil, there is an exchange of 

the added cations and anions with H+ (and Al3+) and OH- on solid surfaces, 

lowering the pH measured (Sumner, 1994).  

 

Sumner (1994) and Blake et al. (2000) conclude that pH should preferably be 

measured in a 0.01 M CaCl2 solution, (which approximates the salt 

concentration of the natural soil solution) to minimise the liquid junction 

potential. However, we are limited to measuring pH in water, as all the pH 

measurements used in the creation of the metal solubility algorithm (Tye et. 

al., 2003) have been measured in water. If using water is unavoidable, Sumner 

proposes that as small a soil:water ratio as possible is used and that the 

suspension is allowed to settle so that the calomel electrode salt bridge can be 

placed in the clear supernatant liquid.  

 

Contrary to Sumner’s conclusions, many pH measurements are now carried 

out in de-ionised water (for example Blake et al (2000), Webb et al (2001), 

Zhang et al(2002)). Gascho et al (1996) found that the correlation between pH 

values measured in water and those measured in CaCl2 was high (r = 0.97) and 
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concluded that there was no clear reason to use salt over water for soil pH 

measurements. 

 

2.1.1.3 Method used for measuring pH of archived G-BASE samples 

 

A 1:2.5 volume ratio of soil to water was used. Ten grams of air dried soil was 

mixed with 25 ml of deionised water. This was mixed well and left to stand for 

30 minutes. After this time the slurry was re-suspended by mixing with a glass 

rod. The electrode was rinsed thoroughly and stirring applied to the solution at 

a constant rate until a stable pH reading was obtained. Soils were tested in 

batches of 10 samples and the highest and lowest of each batch was re-tested 

as a check. 

 

2.1.1.4 Method of pH measurement for electrode selection 

 

Three ‘Red Rod’ combined electrodes from Radiometer Analytical (pHC2005, 

pHC2401 and pHC2701) were tested to see which was most suitable to use for 

testing the samples from the fieldwork. The electrodes are characterised by the 

relative flow rate of the internal filling solution across the liquid junction: 

‘slow’ (pHC2005), ‘medium’ (pHC2401) and ‘fast’ (pHC2701). Red Rod 

electrodes use silver/silver chloride reference electrodes. The ‘slow’ electrode 

had a porous pin liquid junction and was designed to be “robust”. The 

‘medium’ electrode had an annular ring liquid junction. These two are both 

classed as “general purpose” by the manufacturer. The ‘fast’ electrode was 

classed as “high KCl flow” and also had an annular ring. The pH meter used 

was a Radiometer Analytical pHM82 Standard pH meter with a chart reader. 

 

Two soils, ‘U’ and ‘Q’ were chosen from archived control soils used in a 

previous study (Tye et al., 2003). ‘U’ had a pH of 4 and ‘Q’ a pH of 7 in order 

to see if the electrode responses were pH-dependant. 

  

The soils were made into a slurry in 50 ml plastic centrifuge tubes using a 10 

ml scoop of soil and 25 ml of deionised water. The tubes were placed on an 

end-over end shaker for an hour. The tubes were centrifuged to separate the 

 



Chapter 2  16 

soil from the supernatant. The first measurement was carried out with the 

electrode in the supernatant and was left for at least 10 minutes before 

recording the final reading. The tube was then shaken vigorously and a second 

measurement was carried out on the re-suspended slurry. The electrode was 

placed with the bulb near the bottom of the tube and the sediment allowed to 

settle around it. For each electrode, the pH of two samples of each soil were 

measured, resulting in 12 samples, and 24 measurements, in total. 

 

2.1.1.5 Method of  pH measurement for short-range field study 

 

Based on an investigation into electrode response (the results of which can be 

found in Chapter 3) the following method was chosen. A combined pH 

electrode (the ‘slow’ ‘Red Rod’ pHC2005 described above) from Radiometer 

Analytical was used with the same meter for the duration of the project. The 

electrode was selected because it had the minimum difference between 

measurements on the supernatant and the slurry and had the fastest response 

time. 

 

Ten ml of soil was mixed with 25 ml deionised water in a centrifuge tube and 

mixed on an end-over-end shaker for one hour. The reading was taken by 

inserting the electrode to the bottom of the tube, allowing the sediment to 

settle, and taking the reading after 6 minutes. The measurement was taken 

using the slurry rather than the supernatant because in general the slurry gave a 

more consistent reading in the electrode test. It also saved time by cutting out a 

centrifugation step to separate the supernatant. The equilibration time was 

chosen after monitoring the drift in soil pH for 2 soils with contrasting pH 

values. The soils were randomised and split into batches of 10, with a QC 

sample in each batch.  

 

2.1.2 Loss on Ignition 

 

Soil samples were dried overnight at 105 ºC. Approximately 10 g of oven-dry 

soil was weighed into a crucible and heated at 500 ºC in a muffle furnace over 
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night. The loss of mass recorded between 105 and 500 ºC is the loss on 

ignition (LOI) and is an estimate of organic matter content (Rowell, 1995). 

 

2.1.3 Analysis of total soil metal content 

 

An aqua regia digest was used to extract the metals from the soil samples for 

the subsequent determination of pseudo-total concentrations. Between 1 and 2 

g of finely ground soil were digested in a mixture of 15 ml concentrated 

hydrochloric acid and 5 ml concentrated nitric acid. The solutions were boiled 

on a hot plate until reduced to approximately 5 ml. When cool, deionised water 

was added and the samples filtered and made up to 50 ml. 

 

The resulting solutions were analysed for several trace metals using a Varian 

SpectrAA 220FS Atomic Absorption Spectrometer with a SIPS auto-dilution 

attachment. The SpectrAA has two thermal devices for atomisation, flame 

atomisation and thermoelectric atomisation. Table 2.1 shows the elements 

measured and the methods used. 

 
Element SIPS 

matrix 
Instrument 
Type 

Instrument 
Mode 

Top 
calibration

Wavelength 
(nm) 

Modifier 

Cd N/A Furnace  10 µg L-1 228.8 (NH4)2HPO4
2% 

Cu Flame (Air) Absorbance 5 mg L-1 324.8 None 
Pb Flame (Air) Absorbance 10 mg L-1 217.0 None 
Zn 

7.5% 
HCl and 
2.5% 
HNO3

Flame (Air) Absorbance 5 mg L-1 213.9 None  

 

Table 2.1:  Elements measured on the SpectrAA FAAS 

 

2.1.4 Soil pore water extraction for large scale field study 

 

Total soil metal content alone is not a good measure of short-term 

bioavailability and is not a useful tool to determine potential risks from soil 

contamination (Hough et al., 2004). Analysis of the soil pore water can provide 

a better measure, with the assumption that rates of transfer across biological 

membranes are proportional to the free ion activity of trace metals in solution 
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(Sauvè et al., 2000). Centrifugation is one method of extracting pore water 

from soil (di Bonito, 2004). 

 

A preliminary study found that soil at field conditions was not wet enough to 

yield sufficient pore water for analysis. Therefore the following method was 

devised. Field-moist soils were sieved to less than 4mm and initially stored in 

plastic food boxes with air holes to avoid changing the redox status of the soil. 

Field capacity was determined on re-packed cores using a sand bath at 0.005 

MPa for 48 hours. Moisture contents were determined gravimetrically by 

drying sub-samples overnight at 105ºC. De-ionised water was added to each 

soil in order to create a moisture content of 110% field capacity. The soil and 

water were mixed in a plastic bag and incubated for a further 48 hours to allow 

the added water to reach equilibrium with the soil. Each day the boxes were 

weighed to check for evaporation, and any water lost was replaced by spraying 

de-ionised water onto the surface of the soil. After the incubation time the soils 

were centrifuged to extract the soil pore water.  

 

Six polyoxymethylene (Acetal) tubes with 316 stainless steel 20 µm mesh 

filters were manufactured at the BGS (see Figure 2.1) to fit in the fixed-angle 

rotor available with a Beckman J2-21 high speed refrigerated centrifuge. The 

tubes consist of a bottom cup (part 1 in Figure 2.1), to collect the extracted 

pore water, into which is screwed a plastic filter (part 4 in Figure 2.1). A 

stainless steel filter is placed on top, followed by a filter paper; the top section 

(part 2 in Figure 2.1) is screwed on and filled with soil. The 6 tubes are 

weighed to ensure they are of equal weight. A lid is screwed on firmly before 

centrifugation (part 3 in Figure 2.1). The soils were centrifuged for 1 hour 30 

minutes at 3000 rpm at 16ºC (the temperature of the soil storage room). Six 

tubes of soil yielded on average about 100 ml of solution per soil. The 

centrifugation method was adapted from di Bonito (2004) 
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Figure 2.1: Centrifuge tubes for soil pore water separation, designed and 

manufactured by R&D Workshop. BGS, Keyworth. 

  

Each sample was split into sub-samples for the different analyses required; 

some were acidified to 1% HNO3 v/v and the unacidified sub-samples were 

frozen to preserve them until all samples were collected. The acidified sub-

samples were stored in the fridge.   

 

2.1.5 Analysis of soil pore water 

 

The extracted soil pore water was analysed for trace metal content, carbon 

content and major anions and cations. 

 

Trace element analysis was carried out using inductively coupled plasma mass 

spectrometry (ICP-MS), at the BGS, Keyworth. Samples were acidified to 1% 

HNO3 using aristar grade concentrated acid. The quadrupole ICP-MS 

instrument used was a VG Plasmaquad PQ 2+ in combination with a Gilson 

222 autosampler. The system was controlled by a PC through dedicated 

software.  

 

Major elements were also measured at the University of Nottingham using a 

Varian SpectrAA 220FS Atomic Absorption Spectrometer with a SIPS 

(sample introduction pump system) auto-dilution attachment. As with the ICP-
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MS measurements, the samples were acidified. Table 2.2 shows the elements 

measured and the methods used. 

 
Element SIPS 

matrix 
Instrument 
Type 

Instrument 
Mode 

Top 
calibration

Wavelength 
(nm) 

Modifier 

Ca Flame (N2O) Emission 50 mg L-1 422.7 
Mg Flame (Air) Absorbance 10 mg L-1 202.6 
K Flame (Air) Emission 50 mg L-1 766.5 
Na 

1% 
HNO3

Flame (Air) Emission 100 mg L-1 589.0 

Cs/Sr 10%

 

Table 2.2:  Elements measured on the SpectrAA and conditions used. 

 

Ion chromatography was used to measure major anions (Cl, NO3, SO4 and 

PO4). The analysis was carried out using a Dionex DX500 with AS-14 4 mm 

anion exchange column. A standard eluent of Na2CO3 (0.371 g/l) and NaHCO3 

(0.084 g/l) was used. 

 

Total organic carbon (TOC) in the filtered pore water was determined using a 

Shimadzu TOC-V CPH/CPN Total Organic Carbon Analyser using a carrier 

gas of O2. 

 

2.1.5.1 Speciation of soil pore water using WHAM-VI 

 

Total dissolved Zn in soil solutions [MSol] was speciated using the Windermere 

Humic Aqueous Model (WHAM) which incorporates the ‘Humic Ion Binding 

Model VI’ (Tipping, 1998). Input files included the variables [Cu], [Pb], [Zn], 

[Cd], [Cl], [NO3], [SO4], [Ca], [K], [Mg] and [Na], pH, and the temperature 

was set at 14°C.  In addition estimated values of (Fe3+) were included in the 

input data set, calculated from the solubility product of Fe(OH)3 and its 

standard enthalpy (S. Lofts, personal communication.). Instead of using 

atmospheric CO2, the inorganic carbon value measured by TOC was used. This 

gives a more accurate measurement of the total carbonate (CO3) than the 

atmospheric CO2. 

 

Organic speciation within WHAM allows for complex formation with both 

humic acid (HA) and fulvic acid (FA).  It is assumed that 30% dissolved 
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organic carbon (DOC) is HA, 30% is FA and 40% is inert (Weng et al., 2002). 

50% of the HA and FA is assumed to be carbon. Output from WHAM VI 

includes the free metal ion activity, (M2+) and an inventory of all inorganic and 

organic (FA) complexes; ionic strength (I) in solution was also calculated from 

the output of the speciation model. 

 

2.1.6 Analysis of solid soil samples by XRF 

 

Solid soil samples were analysed for selected elements. Determination of 

major, minor and trace element content was carried out by wavelength-

dispersive X-ray fluorescence spectrometry and energy-dispersive X-ray 

fluorescence spectrometry at BGS (Rawlins et al., 2003). Two Philips PW2400 

sequential x-ray fluorescence spectrometers fitted with rhodium-anode X-ray 

tubes (3 kW 60 kV) were used for Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, 

TiO2, MnO, Fe2O3, Sc, V, Cr, Co, Cs, Ba, La, Ce, Nd and Sm as one suite and 

Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Hf, Ta, W, Tl, Pb, Bi, 

Th and U as another. The spectrometers were controlled using Philips X40 

application software package, version 3.2 and 4.01 (PW1480) and version 3.9F 

and 4.02 (PW2400) running under DEC VMS operating system on a 

VAX4000 computer. The laboratory operates under UKAS. 

 

Samples were prepared for analysis by grinding 12 g of sample and 3 g of 

Elvacite 2013 (n-butyl methacrylate copolymer, Dupont & Co) in an agate 

planetary ballmill (Fritsch P5) for 30 minutes. The mixture was then pressed at 

25 t load into 40 mm diameter pellets using a Herzog (HTP-40) semi-

automatic press. 

  

Calibration was carried out using numerous reference materials. Analytical 

results for six reference materials for each element, covering the analytical 

concentration range compared with their recommended values (Govindaraju, 

1994), have been published elsewhere (British Geological Survey, 2000). 
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2.2 GEOSTATISTICS 

 

2.2.1 Introduction 

 

The techniques that are collectively known as geostatistics have been used in 

this project to describe spatial patterns and predict the values of soil properties 

at un-sampled locations. In this section some aspects of geostatistical theory 

and the processes involved in a geostatistical analysis are explained. 

 

Land management decisions are usually made on a field scale, which can be 

predicted from the G-BASE data using geostatistics. Interpolating G-BASE 

data using geostatistics can create continuous surface maps which can be used 

to visualise spatial trends and distributions. In certain circumstances, a 

geostatistical approach can also provide a measure of the uncertainty 

associated with estimates at unsampled locations. 

 

The central theory behind geostatistics is that of the regionalised variable 

(Z(x)), a random variable that takes different values according to its location x 

within a region. The value of Z is given in 2.1. 

 

εε ′′+′+= )()()( xxmxZ      2.1 

 

where m(x) is a deterministic function describing the “structural” component of 

Z(x); ε′(x) is the term denoting the stochastic, locally varying but spatially 

dependant residuals from m(x) – the regionalised variable and ε″ is a residual, 

spatially independent Gaussian noise term having zero mean (Burrough and 

McDonnell, 2000). 

 

The variogram, described in detail in §2.2.4, is a central part of a geostatistical 

analysis. It gives a picture of the relationship (difference) between sample 

values versus the distance between their locations. 
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2.2.2 Exploratory Data Analysis 

 

The first stage in the geostatistical analysis is to explore the data. Boxplots are 

an ideal graphical way to describe the frequency distribution, showing the 

interquartile range and any outliers. Histograms and descriptive statistics 

highlight any skewness in the data. Any obvious outliers are removed to 

reduce the skewness of the data. Skewness is a measure of the asymmetry of 

the data, the most common departure from normality in environmental data. If 

the data is skewed then there is doubt over which measure of centre to use, 

causing uncertainty in further analysis. The estimates obtained with the usual 

computing formula for the variogram are sensitive to outliers and strong 

skewness in distributions. If data are skewed then the confidence limits on the 

variogram are wider than they would otherwise be, and as a result the semi-

variances are less reliable (Webster and Oliver, 2001).  

 

If the data is strongly skewed (i.e. > 1) the variances are considered too 

unstable to compute a variogram, and the data must be transformed using a 

function that produces data closer to a normal distribution. The transformation 

used in this thesis is the log transform. Data is transformed back to the original 

scale at the end of the analysis. 

 

It is very important to ensure that there are sufficient data points to produce 

reliable estimates of the regionalised variable. The larger the sample size, the 

more precisely the variogram is estimated. The number of individual samples 

should always be greater than 50 and preferably greater than 100 (Webster and 

Oliver, 2001) for calculating a reliable variogram. 

 

2.2.3 Assessment of Trend 

 

Variation in Z(x) might contain a systematic component in addition to the 

random one, in which case. 

 

)()()( xxuxZ ε+=       2.2 
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where u(x) is the drift. The presence of drift or trend present means that the 

assumptions of the random function model no longer hold. Semi-variances 

computed on data with trend will be biased. The variogram describing random 

variation in the presence of trend must be calculated on the residuals after 

removal of the trend. In order to separate the trend from the data a multiple 

regression analysis is carried out. The predictors are the spatial coordinates, 

such that 

 

12121 ),(),( ε+= xxfxxZ      2.3 

 

where Z(x1,x2) is the predicted value at {x1,x2} and f denotes a function of the 

spatial coordinates at this location. The model also contains an error term, ε1. 

Plausible functions, usually simple polynomials such as planes, quadratics and 

cubics are fitted by least squares to the spatial coordinates thereby minimising 

the sum of squares. The equation used in this study is the quadratic function 
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Geostatisticians generally remove trend if it accounts for more than 20% of the 

variance (R. Webster, personal communication). 

 

2.2.4 The Variogram 

 

2.2.4.1 Estimating the Variogram 

 

Once the data has been examined and determined fit for geostatistical analysis, 

the experimental variogram can be computed. Three variograms can be 

distinguished: the experimental variogram, the regional variogram and the 

theoretical variogram (the experimental variogram summarises the spatial 

distribution of z in the absence of trend). The experimental variogram is the 

variogram computed from the data and is represented by symbols in Figure 

2.2.  
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The semivariance (half a variance) is the variance per sample point when the 

points are considered in pairs. As a function of h (the distance between the 

points, or the ‘lag’) it is the semivariogram, now usually termed the variogram 

(Webster and Oliver, 2001). The semivariance can be estimated from sample 

data 

 

∑
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where n is the number of pairs of sample points of observations of the values 

of attribute z separated by distance h. A plot of γ̂ (h) against h is known as the 

experimental variogram (see the symbols in Figure 2.2).  

 

 

 

 



Chapter 2  26 

 
 

Figure 2.2: Sample variogram with key features highlighted. Symbols (●) show 

the experimental variogram, and the solid black line is the model of the 

theoretical variogram, in this case a double spherical model. 

   

2.2.4.2 Modelling the Variogram 

 

The regional variogram is the variogram that would be computed if the 

complete information for a region was available. As this is never the case, this 

is approximated by the theoretical variogram. The theoretical variogram is the 

variogram of the process that you imagine generated the field of which the 

measured data are a sample. A mathematical function must be fitted to the 

experimental variogram as a model or approximation to the theoretical 

variogram (Webster and Oliver, 2001). 
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A variety of simple, authorised models can be used (authorised in the sense 

they cannot return negative variances (Oliver and Webster, 1991)), and the fit 

(percentage of variance accounted for) of these is calculated by a conventional 

regression analysis. The most commonly used models are described below. 

 

Figure 2.2 shows an example variogram from this research with a fitted curve. 

The curve shows three important features. (i) At large values of the lag h, it 

levels off. This horizontal part is known as the sill and implies that at these 

values of the lag there is no spatial dependence between the data points. The 

lag is the separation between the two samples in a pair, in two dimensions this 

is a vector, with both distance and direction (Webster and Oliver, 2001). (ii) 

The curve rises from a low value of γ̂ (h) to the sill, reaching it at a value of h 

known as the range. This describes how inter-site differences are spatially 

dependent within the range, the closer sites are together the more similar they 

are likely to be. (iii) The fitted model does not pass through the origin, but cuts 

the y-axis at a positive value of γ̂ (h). This is an estimate of ε″, the residual, 

spatially uncorrelated noise, known as the ‘nugget’ (Burrough and McDonnell, 

2000). The nugget consists of two components: i) analytical error and ii) short-

scale variability that occurs at scales smaller than the shortest sampling 

interval. 

 

2.2.4.3 Commonly used variogram models 

 

There are a number of different models that can be fitted to the variogram. 

Spherical, double spherical, exponential and linear models have been used in 

this study. 

 

The spherical model was first proposed by Matheron (1963) and represents the 

non-overlap of two spheres of influence. The formula is cubic since it 

represents volumes, and relies on two parameters, the range of influence 

(radius of the sphere) and the sill which the experimental variogram reaches at 

the range. In addition to these there may also be a nugget effect.  
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where γ  is the semi-variogram and h the distance between the two points of 

interest. The parameter a represents the range of influence of the semi-

variogram. C is the sill of the spherical component and C0 the nugget effect on 

the γ axis (Clark and Harper, 2000).  

There are modifications that may be made to the standard spherical model. 

There are often cases where the semi-variogram reaches a definite sill but does 

not quite match the shape of a single spherical model. It is possible to mix 

spherical components with different ranges of influence and/or sill values. 

Hence the formula for a double spherical model is  
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(Clark and Harper, 2000). 

The exponential model was developed to represent the notion of exponential 

decay of “influence” between two samples. It has two main parameters: the 

range of influence and the sill, which the graph tends to at large distances. 

There is also a possible nugget effect. 

 0)0( =γ  
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Where γ  is the semi-variogram and h the distance between the two points of 

interest. The parameter a represents the range of influence of the semi-

variogram. C is the sill of the exponential component and C0 the nugget effect 

on the γ axis (Clark and Harper, 2000). 

 

The linear model is the simplest model for a semi-variogram, a straight line 

with a positive (or zero) intercept with the y-axis.  

 0)0( =γ  

  

 jhCh += 0)(γ  when h > 0   2.9 

 

where γ  is the semi-variogram and h the distance between the two points of 

interest. The parameter j represents the slope of the line and C0 the nugget 

effect on the γ axis. 

 

The fit of models can be improved by changing the step length, which 

determines the lag distance (λ) and maximum lag distance. 

 

The geostatistical analysis in this project has been carried out using GenStat® 

for Windows (5th and 6th editions). An example of the code used to create a 

variogram is in Appendix I and its output in Appendix II.  

 

2.2.5 Kriging 

 

The aim of kriging is to estimate or predict the values of z at unsampled places 

from the data. Ordinary kriging is used in approximately 90% of cases. The 

original data and the model of the variogram are used. When the nugget 

variance ε'' so dominates the local variation that the experimental variogram 

shows no tendency to diminish as h  0, the interpretation is that the data are 

so noisy that interpolation is not sensible. In this situation, the best estimate of 

z(x) is the overall mean computed from all sample points in the region, without 

taking spatial dependence into account. 
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In this study punctual kriging has been used – where the predictions made are 

for points. Block kriging is also commonly used where the predictions made 

are for areas of specified dimensions. 

 

Ordinary kriging computes a weighted average of the data and is the most 

commonly used form of kriging. Given that the spatially dependent random 

variations are not swamped by uncorrelated noise, the fitted variogram can be 

used to determine the weights λi needed for local interpolation. The procedure 

is similar to that used in weighted moving average interpolation except that 

now weights are derived from a geostatistical analysis (i.e. the shape of the 

variogram) rather than a general model. 

 

The value z(x0) is given by: 
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With Σn
i=1 λi =1. The weights λi are chosen so that the estimate  is 

unbiased, and that the estimation variance σ

)(ˆ 0xz

e
2 is less than for any other linear 

combination of observed values. The minimum variance of [ ], 

the prediction error, or kriging variance is given by: 
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And is obtained when 
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γ(xi,xj) is the semivariance of z between sampling points xi and xj: γ(xi,x0) is the 

semivariance between the sampling point xi and the unvisited point x0. Both are 

obtained from the fitted variogram. The quantity φ  is a lagrange multiplier 

 



Chapter 2  31 

required for minimisation. Ordinary kriging is an exact interpolator in the 

sense that the interpolated values, or best local average, will coincide with the 

values at data points. In mapping, values will be interpolated for points on a 

regular grid that is finer than the spacing used for sampling (Burrough and 

McDonnell, 2000). 

 

Another form of kriging is Simple Kriging. This is prediction by generalised 

linear regression under the assumption of 2nd order stationarity with a known 

mean. This is often too restrictive for most data and is therefore not commonly 

used. 

 

2.2.6 Cross-Validation 

 

Cross-validation has often been misused (and confused with jackknifing), but 

its primary use in geostatistics is to find the “best” model for a variogram 

(Davis, 1987). Cross-validation uses kriging retrospectively to check the 

variogram model. It involves computing the moments of the distribution of 

residuals for all data points when each data point is successively left out and 

predicted from the rest of the data (Burrough and McDonnell, 2000). In this 

thesis cross-validation has been used as a way of estimating the uncertainty of 

the kriging predictions when a transformation has taken place and kriging 

variances are not produced. 

 

2.2.7 Is kriging better than simple interpolation? 

 

Kriging is referred to as a Best Least squares Unbiased Estimator (BLUE) and 

as such provides more reliable predictions than other interpolators. Laslett and 

McBratney (1990) showed that geostatistical methods are superior to other 

interpolator methods for a variety of reasons. Kriging is used when the 

variation of an attribute is so irregular, and the density of sampling is such that 

simple interpolation methods may give unreliable predictions (Burrough and 

McDonnell, 2000). As such is it more flexible than some other methods. 

Kriging also has a number of other advantages. It provides probabilistic 

estimates of the quality of the interpolation; allows predictions for blocks of 
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land greater than the support; allows interpolation of indicator functions and 

can incorporate soft data to guide interpretation (Burrough and McDonnell, 

2000). 

 

2.3 FIELD WORK 

 

2.3.1 Large scale validation of the metal solubility algorithm 

 

2.3.1.1 Preliminary field work 

 

The aim of this section of the project was to conduct a sampling program 

returning to G-BASE sites in order to measure the metal solubility and 

compare this to the predictions made from the solubility algorithm. A trial 

survey revisiting four G-BASE sites was conducted in order to develop the 

methods for the final programme. The four sites were selected to give the 

following combinations of relevant soil properties: high pH and large metal 

concentration (HH); high pH and small metal concentration (HL); low pH and 

small metal concentration (LL) and low pH and large metal concentration 

(LH). ‘High’ values were chosen to be those in the upper quartile range, and 

‘low’ values those in the lower quartile range of pH or soil metal 

concentration. A short-list of sites was created using these criteria. The short-

list was further refined on the basis of land-use. The selected area was 

predominantly (75%) agricultural (arable or pasture) with an even split 

between the two uses. The four sites finally selected (see Table 2.3) were 

chosen for ease of access and the absence of hazards. 

 
Sample 
Number 

Easting Northing OS map 
no. 

Landuse pH 
/Metal 

Location/soil type 

408380 440310 373090 120 pasture HH Footpath behind pub in 
Brimington. Soil 541f 

408588 440750 365320 120 arable LH Bridleway behind school, 
north wingfield. 

402805 447800 394400 111 arable LL Near sunnyside mine. Soil 
541f 

408115 450310 383870 120 pasture HL Todwick (near M1 J31) 
Kiveton Park. Soil 541f 

 

Table 2.3: Trial survey sites 
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A handheld GPS was used to locate the sample sites. Soil was collected using 

the method employed by G-BASE (Rawlins et al., 2003). A soil auger was 

used to take 5 samples from the centre and corners of a 20 m x 20 m square 

sampling ‘support’. The samples were aggregated to yield one bulk sample for 

each site. Aggregated samples were sieved while field moist to remove stones 

and placed in plastic boxes with air holes to prevent anaerobic conditions 

developing. Owing to the fact that it was not possible to dry the soil prior to 

sieving, the largest available sieve was used (approx. 8 mm), and with some 

soils the removal of stones had to be done by hand. 

 

Soil pore water was extracted using centrifugation. Purpose made centrifuge 

tubes made by BGS were used to extract the pore water from the soil (see 

§2.1.4). Initially, extraction of pore water under field conditions was 

attempted. However, it proved difficult to recover sufficient water to carry out 

all the analysis required. Increasing the speed of centrifugation led to leaking 

from the containers, and repeating the centrifugation to recover smaller 

increments of water was too time consuming. It was concluded that water 

would have to be added to the soil and re-equilibrated in order to extract the 

amount of soil solution required.  

 

2.3.1.2 Final large-scale study 

 

It was decided to re-sample 25 G-BASE sites. This figure was a compromise 

between the need for as large a data set as possible and the need to collect and 

process the field soil samples within a restricted period of time.  

 

The first step in choosing the sample locations was to remove global and local 

outliers from the G-BASE data set. Local outliers indicate ‘hotspots’ of metal 

concentration and on the basis of experience with the preliminary study it was 

decided to avoid these to reduce the chance of missing the hotspot and finding 

different results from those recorded by G-BASE. The variogram cloud 

function in S+ was used to identify local outliers, see Figure 2.3. The 

variogram cloud is a plot of the squared differences between pairs verses the 

distances, i.e. a scatterplot of the set of pairs. It is useful for the detection of 
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global outliers and local outliers. Global outliers are measurements that are 

distinctly separate from the main part of the data and are easily spotted by a 

number of methods. They stand out in a variogram cloud because for every 

distance, the squared differences of pairs that were formed with such an outlier 

will be significantly larger than the rest of the cloud. Local outliers are hidden 

in the main bulk of the observed data, but differ markedly from the 

neighbouring values. Local outliers are more difficult to identify than global 

outliers, as they will result in large squared differences for small distances 

close to the origin only (contributing to a high nugget), but will behave 

normally for medium to large distances. (Ploner, 1999). The local outliers for 

Pb, Cu and Zn were identified and removed. 

 

 
Figure 2.3: Variogram cloud for Pb across the Westphalian region. Points at 

the top of the graph represent local outliers.  

 

Any sites that were not pastoral or arable land use were removed as in the 

preliminary study, to keep the samples representative of the area as a whole 

(75% of the area is pastoral or arable). 

 

The remaining samples were ordered by pH and split into 8 groups. These 

were then ordered by metal concentration, and 5 sites selected from each group 
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to represent a range of pH and metal concentration. These 40 sites were 

examined for location and ease of access and 25 sites were selected. A number 

of alternative sites were held in reserve. In the process of sampling a number 

of problems were encountered with access. For example, one land owner 

refused to allow sampling (even after speaking to the BGS), one site had been 

built over, a number of sites were home to very angry bulls and a few appeared 

to have no means of access. One was on the green of the first hole of a golf 

course! The final number of samples collected was 21, even after visiting all 

the reserve sites. Table 2.4 shows the 21 sites visited.  

 
Sample OS sheet GPS easting GPS northing date current landuse G-BASE land use 

2857 SK 46281 91202 15/08/03 Arable Arable 
2860 SK 48128 93361 26/08/03 Recreation  
7012 SK 33679 74523 11/08/03 Pasture Arable 
7020 SK   28/08/03   
7046 SK 34391 75813 12/08/03 Pasture Pasture 
7089 SK 34600 73806 11/08/03 Pasture Pasture 
7100 SK 30538 77314 12/08/03 Pasture Pasture 
7757 SK 38786 56046 16/07/03 Pasture Pasture 
7770 SK 36206 59293 17/07/03 Pasture Pasture 
7772 SK 36825 55176 16/07/03 Arable Pasture 
8149 SK 43930 86509 14/08/03 Pasture Pasture 
8194 SK 43838 88481 14/08/03 Arable Pasture/Recreation
8336 SK 40600 81800 13/08/02 Arable Arable 
8370 SK 38207 81910 13/08/03 Pasture Pasture 
8374 SK 43212 64510 27/08/03 Arable Arable/Pasture 
8448 SK 50786 91599 26/08/03 Arable Arable 
8464 SK 49776 88364 15/08/03 Arable Arable 
8490 SK 51443 84201 27/08/03 Arable Arable 
8722 SK 41142 58602 18/07/03 Pasture/Arable Arable 
8786 SK 40402 59509 18/07/03 Pasture Arable 
8982 SK 37758 52259 15/07/03 Pasture Arable 

 

Table 2.4: List of sites visited. (Sample IDs are G-BASE IDs without the 

location identifying prefix). 

 

2.3.2 Relocating G-BASE sample sites  

 

A major factor in any study requiring temporal monitoring is the reliability 

with which sampling sites can be revisited. Apparent variation in soil 

characteristics can result from spatial errors as well as the passage of time. 

Experience with fieldwork in re-sampling National Soil Inventory (NSI) sites 

suggested that whilst someone familiar with an area can relocate sites 

accurately, others may find it very difficult (DEFRA, 2003). 
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In this project G-BASE sites were revisited using Global Positioning System 

(GPS) technology. The original G-BASE samples were collected during the 

summers of 1994, 1995 and 1996 (Rawlins et al., 2003) and located using OS 

Landranger 1:50,000 scale maps. Grid references were recorded to the nearest 

10 m and extra information on location recorded at the site. The DEFRA study 

found that GPS gave a positioning accuracy of better than ± 2.7 m. Any 

problems in location are therefore most likely to be due to inaccuracies in the 

original grid references. 

 

The original NSI requirement states that “location accurate to 20 m on 

enclosed land and 50 or even 100 m on open land is reasonable”. The DEFRA 

study found that the ability to get as close as possible to the target site varied 

from 3 m in a relatively small grassland field to 77 m on an open heath. The 

overall mean accuracy was 15 m, which meets the original NSI requirement 

(DEFRA).  

 

The question then becomes: does it matter if we are not sampling at the target, 

but at 10 or even 50 m away? The DEFRA study attempts to address this 

question by taking samples at the target point and also sampling at 10 m and 

50 m away from the target. Samples were collected from a depth of 15 cm and 

from the intersects of a 4 m × 4 m grid within a 20 m × 20 m square. The sites 

covered a range of land-uses and soil types. Analysis of the whole data set 

showed significant differences between the target samples and those recovered 

from 10 and 50 m distance for: carbon, available P, available Mg, Pb and Zn 

concentrations. When the sites were examined individually, a greater range of 

parameters where the effect of distance was significant was discovered. The 

uniformity of the land (i.e. rough, varied heath-land is less uniform than a 

managed arable field) had an impact on whether distance has a significant 

effect on the values (DEFRA, 2003). 
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2.3.3 Short scale spatial variation of pH 

 

2.3.3.1 Sampling error estimation  

 

One of the aims of the investigation was to understand the propagation of 

errors in pH sampling. Analysis of the solubility algorithm shows that pH 

contributes the most variance to the metal solubility. This means that it is 

important to understand where errors occur in the process and to minimise 

them if possible. This investigation was looking at possible ways of 

minimising the errors involved in the various stages of sampling. There are 

two main areas requiring investigation, errors caused by field sampling, and 

errors caused by laboratory technique. 

 

In contaminated land investigations it has been shown that it is field sampling, 

rather than chemical analysis, that contributes the largest source of 

measurement error and will therefore limit the measurement uncertainty 

(Ramsey et al., 1997). It is often quoted that an analysis can never be of better 

quality (in terms of understanding how accurate the result is) than the sample 

upon which it is made. However, the means with which to estimate the 

uncertainty introduced by field sampling has been lacking (Ramsey et al., 

1997). 

 

Ramsey’s “single sampler/single protocol” method (Ramsey et al., 1997) for 

estimating sampling and analytical precision is the one most appropriate for 

this survey. This involves taking duplicate samples at some proportion of the 

sampling locations, typically 10%. Duplicates are not taken at exactly the same 

position as the original, but displaced by a distance that represents the 

uncertainty of locating the sample point by the particular surveying technology 

used. This distance will produce differences between sample duplicates caused 

by small scale local variation, which represents variation that may arise 

randomly in locating the sample location. There are three components of 

variation, which can be separated using analysis of variance. Two components 

represent uncertainty; these are the sampling and the analytical variance (s2
samp 

and s2
anal). The third component is the between-location variance due to real 
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variation of the contaminant (e.g. lead) across the sites; this is termed the 

geochemical variance (s2
geochem).  The total variance can then be expressed by: 

 

 S2
total = s2

geochem + s2
samp + s2

anal

 

The sampling uncertainty, s2
samp, will be partly owing to small scale 

geochemical variation within the location and represents the uncertainty of 

returning to the location specified (in this case within a 1 m radius due to the 

care taken in setting up the grid) (Ramsey et al., 1997). In this particular case, 

s2
samp could be generalised to ‘within the area of the sample support’ because 

of the way the duplicate samples were taken. This gives us an idea of the 

variability caused by differences in sampling within the sample support. 

 

The errors at the laboratory stage can be examined by re-testing a reference 

soil at various intervals throughout the procedure. 

 

2.3.3.2 Sample collection 

 

Sampling was carried out on a field that is part of the University Farm at the 

village of Bunny near Keyworth, Nottinghamshire (see Figure 2.4). The grid 

consisted of 200 soil samples at 10 m intervals, see Figure 2.5. It has been 

shown (Webster and Oliver, 2001) that in order to establish a reliable 

variogram, around 150 samples are needed.  
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Figure 2.4: Location of the sample site for the pH survey. National grid 

reference SK 594 303. The field used is highlighted in yellow and bounded by 

Keyworth Lane and Wysall Road on two sides, a boundary with a 

neighbouring field on the west and a wall with woodland beyond on the 

southern side.  

 

Parent material at the site is Mercia Mudstone (Cropwell Bishop formation) 

and the soil association is Dunnington Heath (drift over Permo-Triassic reddish 

mudstone). 
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 190 m (20 points) 

210.24 m 

 

 

 

 

 

 

Sampling was undertaken using a 1 m x 1 m support. A 1 m quadrat was 

placed on the ground at each sample point, and 5 samples of topsoil (down to 

15 cm depth) taken from the corners and centre of the square using a hand 

corer. At 20 randomly selected sites duplicate samples were taken, following 

Ramsey’s method discussed above. At these 20 sites, the samples and 

duplicate samples were sub-sampled to give 4 measurements for each site: 

original sample (2 subsamples - giving 2 analyses) and duplicate sample (2 

subsamples - giving 2 analyses). The random duplicate sites are shown in 

Figure 2.6 and include a random site used as a Quality Control. This sample 

was tested with each batch of pH measurements to provide an estimate of the 

consistency of pH determination after re-calibration, and was tested 29 times. 

The sample was larger than the other samples and well mixed to ensure it was 

homogenous. The samples were selected using the random number analysis 

tool in Microsoft Excel.  

Figure 2.5: Grid layout and numbering system for pH field sampling. 

 

 

90 m (10 points) 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 1 2 3 4   5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C  41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

D 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

E 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

F 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

G 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

H 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

I 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

J 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

      

 = DUPLICATE SITES = QC SAMPLE  

Figure 2.6: Location of random duplicate sites 

.  
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The grid was set up in the field using canes as markers. A 100 m tape was 

used. The diagonals of sections were measured as they were laid out to ensure 

the sections were square. 

 

Self-seal bags were used for the samples, double-labelled clearly with 

permanent marker pen. Approximately 250 g of soil was collected from each 

point 

 

In the lab the soil aggregates were roughly broken up and placed in foil trays to 

dry for 2 days. After the drying time the soils were crushed in the tray, sieved 

to <2 mm and placed in labelled bags ready for pH measurement. 
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3. MAPPING METAL SOLUBILITY AND 

ANALYSIS OF SOLUBILITY ALGORITHM 
 

3.1 INTRODUCTION 

 

An understanding of soil solution metal concentrations is of more value 

to researchers in attempting to predict metal uptake in comparison to 

total metal concentrations in the soil. As well as predicting metal 

solubility at G-BASE sample points, it is an objective of this work to 

use geostatistics to predict solubility between sample locations. The 

objectives of this chapter are to analyse the G-BASE data and to map 

the metal concentrations and metal solubilities across the area.  

 

The chapter starts with an investigation into the G-BASE data and the 

kriging and mapping of the heavy metal and pH data. Metal solubility 

is then calculated and this data is kriged and mapped. The sensitivity of 

the solubility algorithm is investigated to find the greatest source of 

uncertainty. 

 

3.1.1 Introduction to the data 

 

Details of the aims and methods of the G-BASE survey can be found in 

Chapter 1.  For the purposes of this study, G-BASE data from the 

Humber-Trent region was made available. The data set is derived from 

6400 topsoil samples across an area of approximately 3,260 km2 

stretching from Nottingham in the south to York in the north (British 

Geological Survey, In Press). Figure 3.1 shows the extent of the region 

with the parent materials underlying the area. Figure 3.2 shows the Pb, 

Zn and Cu concentrations across the area. Land use data was obtained 

from the CEH land cover map (Fuller et. al., 1994). 
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Figure 3.1: Parent material map of the Humber-Trent region ©BGS. Source: combined maps of bedrock geology (1:625k for England) and drift 

geology (1:625k for England), Institute of Geological Sciences, 1977 & 1979
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Figure 3.2: Topsoil (0-15 cm depth) metal concentrations across the 

Humber-Trent region for a) Cu, b) Pb and c) Zn. Source: British 

Geological Survey, © NERC 2005.  
Maps generated using inverse distance weighted interpolation. The calculations are 
for predictions on a grid of 250m × 250m based on all samples within 1500m. the 
weighting is proportional to the inverse square of the distance. 
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3.1.

he development of the metal solubility algorithm used in this project 

 discussed in Chapter 1. As there was no soil organic carbon data 

vailable, the form of the algorithm based solely on M2+ and pH was 

sed (Equation 3.1, Tye et al, 2003). Table 3.1 shows the parameters 

r Pb, Cu and Zn, and their standard errors. 

    3.1 

 Pb Zn Cu 

2 Metal solubility algorithm 

 

T

is

a

u

fo

 
++ −+= 2

10
2 log McbpHapM

 

a -2.44 ± 0.77 -1.859 ± 0.65 -2.766 ± 0.92
b 1.531 ± 0.08 0.913 ± 0.07 1.255 ± 0.08
c 0.979 ± 0.20 0.628 ± 0.18 1.253 ± 0.30

 
Table 3.1: Parameter values and standard errors for the solubility 

lgorithm (Equation 3.1). 

.2 SELECTION OF STUDY AREA 

.2.1 troduction 

reliminary attempts at modelling the variograms for metal 

oncentration over the entire Humber-Trent region produced 

nsatisfactory results with very high nugget values.  This is 

nsurprising, as the primary control on trace-metal contents of 

ndisturbed soil in temperate regions such as the United Kingdom is 

pically the geochemical composition of the soil parent material (the 

edrock geology or quaternary deposit from which it is formed) 

awlins et al, 2002). In the Humber-Trent region the parent material 

erably across the Humber-Trent 

 east, and several 

a

 

3

 

3 In

 

P

c

u

u

u

ty

b

(R

was found to account for between 14 and 47% of the variance of 13 

different elements (Rawlins et al, 2003). As can be seen in Figure 3.1, 

the parent material varies consid

region, including lithologies ranging from carboniferous limestone and 

coal measures in the west to cretaceous chalk in the
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types f unconsolidated, quaternaryo  deposit. By focusing on a smaller 

rea with a single parent material the data is more likely to belong to a 

large areas of land and to 

odel each area separately for kriging. 

 

 smaller study area is not only useful for the geostatistical accuracy of 

predictions that can be achieved, but lso more amenable to field 

work.  

n in soil metal concentration and soil pH as 

ossible. It was also necessary to ensure that the resulting metal 

n limits of the analytical 

ethod available (ICP-MS). 

hile parent material is the primary influence on trace-metal 

 

a

single population and therefore a more descriptive variogram could 

hopefully be achieved. Webster (2000) in a previous work, found that 

variograms for different classes of soil on the Jurassic outcrops of 

central England differed substantially from one to another, and advised 

people to be aware that this may occur over 

m

A

is a

 

For the purposes of validating the algorithm, the study area needs to 

represent as much variatio

p

solubilities would be above the detectio

m

 

W

concentration in soil, metal concentration is not the only influence on 

solubility. Organic carbon and pH are major factors in metal solubility. 

Land use in particular can have a significant impact on factors such as 

pH and organic carbon content (Clark and Harper, 2000). The land use 

data showed that over the Humber-Trent region 90% of the land was 

arable (tilled) land, with the majority of the rest being either meadow 

or suburban. The small amount of woodland was not clustered in one 

area, but scattered around. When choosing sample sites for the field 

work only arable and pasture was considered, in order to minimise 

sources of variation. 
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3.2.1.1 pH data 

 

In analysing soils from the Humber-Trent region, the BGS determined 

pH only on the sub-soil samples. However, the metal solubility 

algorithm has been developed using top-soil pH values. There is not 

always a direct correlation between top-soil and sub-soil pH levels, so 

it may not be valid to use sub-soil pH to predict metal solubilities in 

top-soil. In order to test this, pH data from the National Soil Inventory 

SI) was used to compare top-soil with sub-soil pH values.  

id square (G-BASE). A random area of the Humber-Trent was 

hosen for the exercise, which contained 35 NSI sample points. The G-

 mean kriging variance was 0.424. The 

omparison between the two data sets is shown in Figure 3.4. The 

(N

 

The NSI is at a resolution of a 5km grid square rather than every other 

1km gr

c

BASE sub-soil pH data were kriged to the location of the NSI data 

points to enable a comparison of sub-soil and top-soil pH values. The 

G-BASE data were kriged to the NSI data as it was felt that this would 

be more accurate than interpolating the sparser data of the NSI to the 

denser data of G-BASE. The

c

correlation was poor (r2 = 0.1). Therefore pH determinations were 

undertaken on the G-BASE archived top-soil samples.  
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as predicted. The sub-soil pH values had to be used as this was the 

nly data available at the time. G-BASE measure pH in 0.01M CaCl2, 

ut the algorithm has been calibrated using pH measured in water. The 

pH of the same soil measured in water is usually about 0.5 pH units 

higher than when measured in CaCl2 (Rowell, 1995), so 0.5 pH units 

were added to the G-BASE values before using the algorithm. 

 

The result of previous research shows that the average difference (on a 

log scale) between pZn (solution) and pZn2+ (activity) is 0.49 (Scott 

Young, Personal Communication), so: 

 

 
Figure 3.3: Relationship between NSI top-soil pH measurements and 

G-BASE sub-soil pH measurements kriged to NSI locations (n = 35). 

 

 
3.2.1.2 Concentration of Zinc in solution 

 
Metal concentration was an important consideration when choosing the 

study area. The intention was to measure soil solution concentrations in 

the field work and it was important that these were detectable by the 

measurement techniques available. In order to estimate which areas 

would yield measurable metal solubilities, Zn concentration in solution

     3.2 

2× mean krig
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where [Znsol] is the solution concentration of Zn in all chemical forms, 

in µmol L-1 (ppb). 

 

The Humber-Trent region was divided up into areas based on parent

material. Six areas contained enough sample points in a contiguous unit

to be used for the geostatistical analysis. The six areas were: the Chalk 

Group, Lower Coal Measures Formation, Middle Coal Measures 

Formation, Lacustrine Deposits, Sherwood Sandstone Group, and the 

Mercia Mudstone Group. A seventh area combining both Middle and 

Upper Coal Measures (Westphalian) was also selected as it covered an

re 

estphalian 

tion of samples predicted to 

ave detectable Zn in solution. The Westphalian area has slightly lower 

 

 

 

 

area with a wide range of pH and metal concentrations. Zn solution 

estimates were estimated using Equation 3.2 for each area and these a

shown in Table 3.2. The Lower Coal Measures and the W

area were those with the highest propor

h

detection levels than the Lower Coal Measures but the Westphalian 

area was nevertheless chosen as it is a contiguous area for mapping. 

Figure 3.4 shows the Westphalian region and the G-BASE sample 

locations included in it. 
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Data ethod detectable 
Measurement 
m

% samples 

LCM ICP-MS 87.91
  ICP-AES 73.95
MCM ICP-MS 65.60
  ICP-AES 51.20
LDE ICP-MS 24.63
  ICP-AES 13.43
SSG ICP-MS 49.73
  ICP-AES 33.16
CK ICP-MS 0.00
  ICP-AES 0.00
MMG ICP-MS 27.65
  ICP-AES 15.67
West ICP-MS 83.92
 ICP-AES 70.85

 

Table 3.2: Percentage of samples with Zn in solution predicted to be 

above the detection limits of the ICP-MS and ICP-AES using equation 

3.2 with the data corrections described in the text. 

 

 

 

 

 

 

CK = Chalk Group,  
LCM = Lower Coal Measures Form
MCM = Middle Coal Measures Form
LDE = Lacustrine Deposits,  
SSG = Sherwood Sandstone Grou
MMG = Mercia Mudstone Group 
West = Westphalian 

ation  
ation  

p  
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Figure 3.4: Sample locations in the Westphalian region chosen for 

rther investigation overlying the parent material. Westphalian region 

 over the coal measures. 

.3 MAPPING 

.3.1 Variograms 

he method of analysing data to plot variograms is described in §2.2. 

3.3.1.1 Total zinc concentration 

 

The total Zn concentration data has a minimum of 10 mg kg-1, a 

maximum of 289 mg kg-1 and mean of 111.5 mg kg-1. Although the 

distribution was somewhat skewed (skew = 1.0) this is within the limits 

of skewness for which most geostatisticians consider data 

fu

is

 

3

 

3

 

T

 

 



Chapter 3  53 

transformation unnecessary. A regression analysis involving fitting 

linear and quadratic functions to the spatial co-ordinates showed that 

the percentage of variance accounted for is 6.4%, suggesting that there 

is a minimal trend present. The data was also checked for anisotropy. 

The model fitted to the variogram is a double spherical model, which 

accounted for 95.4% of the variance (Figure 3.5 and Table 3.3). 

 

 
Figure 3.5: Isotropic semivariances (symbols) of total Zn 

double-spherical model fitted through them 

. 

arameter Value 

concentrations and a 

(line)

 

P
Range1 3014 
Range 11516 2
Sill1 676.2 
Sill2 494.6 
Nugget 488.2 
 

Table 3.3: Parameters of the double spherical variogram model fitted 

to the total Zn concentration data. 
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3.3.1.2 Total copper concentration 

 

The total Cu concentration data has a minimum of 4.0 mg kg-1, 

maximum of 161 mg kg-1 and a mean of 33.6 mg kg-1. The data is 

positively skewed, with a skewness coefficient of 2.82. Therefore the 

data required a logarithmic transformation prior to plotting the 

ariogram. By applying a logarithmic transformation the skewness was 

reduced to 0.37. A regression analysis involving fitting linear and 

quadratic functions to the spatial co-ordinates to check for trend 

showed that the percentage of variance accounted for is 10%. The 

model with the best fit for the variogram was the exponential model, 

which accounted for 97.6% of the variance (Figure 3.6 and Table 3.4). 

 

v

 
 

Figure 3.6: opic semivariances (symbols) of total Cu 

oncentrations and an exponential model fitted through them (line). 

 Isotr

c

Data has been log transformed. 
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Parameter Value 
Range 8166 
Sill 0.339 
Nugget 0.025 
 

Table 3.4: Parameters of the exponential variogram model fitted to the 

total Cu concentration data. 

 

3.3.1.3 Total lead concentration 

 

The total Pb concentration data has a minimum of 21 mg kg-1, a 

maximum of 245 mg kg-1 and a mean of 97.2 mg kg-1. Although the 

distribution was somewhat skewed (skew = 1.08) this is within the 

limits of skewness for which most geostatisticians consider data 

transformation unnecessary. A regression analysis involving fitting 

linear and quadratic functions to the spatial co-ordinates to check for 

trend showed that the percentage of variance accounted for is 27%, 

suggesting a regional trend in the data (co-ordinates are resolved to an 

origin for the purpose of estimating trend). The presence of such a 

long-range trend implies that the assumptions of the random function 

model no longer hold. Raw semi-variances will be biased estimates; so 

the variogram used to describe the random variation is that of the 

residuals after trend removal. It is possible to krige with the presence of 

trend using the method of universal kriging. However, by removing the 

trend and working with the residuals it is possible to use ordinary 

kriging as with the other metals. The trend equation is shown in 

Equation 3.3, x and y are the spatial co-ordinates of each sample point. 

Parameters are calculated using regression analysis. 

 

1029.0()101.0(00088.00090.07.199)( 72726 −−− ×+×−×++−=
       3.3 

e to create a data set of residuals. The 

ariogram is then estimated from the residual data. The resulting 

xyyxyxxu )1045.0()
 

 

The value of the trend component is calculated at each point and 

subtracted from the original valu

v
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variogram an meters are shown in Figure 3.7 and Table 3.5 

vely. latively large nugget is because the variogram is 

 on iduals rather than the original data. The optimum 

ounted for 94.1% of the variance. 

d para

respecti The re

modelled the res

model (an exponential function) acc

 

 
Figure 3.7: Isotropic semivariances (symbols) of total Pb 

concentrations and an exponential model fitted through them (line). 

Data has had the trend removed. 

 

Parameter Value 
Range 3908 
Sill 852.9 
Nugget 953.5 
Table 3.5: Parameters for the total Pb variogram. 

.3.1.4 pH 

 

3

 

The archived G-BASE top-soil samples were measured for pH (see 

§2.1.1.3); the data has a minimum of 3.2 and a maximum of 7.92 pH 
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units. The mean is 6.09 and the data is not significantly skewed (-

0.672). A regression analysis of the spatial co-ordinates fitting both 

linear and quadratic functions to the pH data found a trend of 15.4%. 

An exponential model was fitted, with the optimum authorised model 

arameters shown in Table 3.6. The variance accounted for is 96.3%. 

 

Parameter Value 

p

Range 23812 
Sill 0.481 
Nugget 0.678 
 

Table 3.6: Parameters for exponential variogram of pH 

 

 

 
 

 

Figure 3.8: Isotropic semivariances (symbols) of soil pH values and an 

exponential model fitted through them (line). Parameters shown in 

Table 3.6. 
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3.3.2 Kriging and Mapping 

 

In order to create maps of the G-BASE data, the variograms are used to 

krige the data. This produces estimates of the data in the areas where 

there are no samples and therefore produces a more detailed map than 

apping the raw data. The details of kriging are in Chapter 2. Kriged 

trations are shown in Figures 3.9 and 3.10 

vely. 

 was modelled using the residuals after removal of 

ates of the residuals were made on a regular grid and added 

 component calculated for each location on the grid. This is 

then mapped (Figure 3.10). Figure 3.11 is the map of kriged soil pH 

estimates. 
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Cu and Zn concen
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The Pb variogram

the trend, so the kriging procedure is more complicated. For the Pb 

data, estim

to the trend
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entration (log transformed mg kg-1). Figure 3.9: Map of kriged Cu conc
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igure 3.10: Map of kriged Zn concentration (mg kg-1). F
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Figure 3.11: Map of kriged Pb concentration (mg kg-1). 
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Figure 3.12: Map of kriged soil pH. 
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The maps for Zn (3.10) and Cu (3.9) show a similar distribution of 

metal concentration, with high and low spots in the same place. Pb 

(3.11) however, shows a very different distribution. There is a clear 

east-west trend, which was also revealed by the analysis. Some of the 

trend can be seen in the map of pH (3.12), with mainly lower values in 

the west and higher values in the east. You would usually expect Pb to 

have a similar distribution to Zn as the two elements often occur 

together and are mined together. 

 

3.3.3 Estimation uncertainty 

 

One of the benefits of geostatistics is that the kriging procedure returns 

a quantity referred to as the kriging variance at each kriged location. 

The square root of this quantity is the kriging error, providing a 

measure of the uncertainty in the actual estimate. More precisely, on 

95% of occasions the actual sample value will be within the kriged 

value, plus or minus twice the kriging error estimate. Figure 3.13 is a 

map of the kriging variances of the pH map (Figure 3.12). The 

variances are highest at the corners of the map, where there are fewer 

samples used in the interpolation. 
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Figure 3.13: Kriging variances for soil pH. 

 

The variances of pH and Zn are produced automatically by the kriging 

procedure. In the case of Pb, as the kriged estimates are based on the 

residuals, the kriging variances do not reflect the uncertainty on the 

actual data due to the presence of trend. However, it is possible to 

estimate uncertainty using the mean squared error from cross 

validation. This method removes a single point from the data set and 

uses the remaining points to estimate the value at the point that has 

been removed. This gives a variance for each original point, rather than 

for each of the kriged points, but serves to provide an estimate of the 

errors involved in the kriged predictions. Cross validation is also 

carried out for Cu, as the data is log-transformed and the back-

transform procedure cannot be applied to the variances. Figure 3.14 

shows graphs of the error as a percentage of the estimates for Zn and 
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pH. As the error estimates for Zn and pH are produced by the ordinary 

kriging procedure there are 6720 data points based on the kriging grid. 

Figure 3.15 shows the comparable graphs for Pb and Cu. These 

estimates were produced by cross validation so have the same number 

of points as the original data set. Zn, Pb and pH show a higher 

percentage error where the estimate is lower. The trend is stronger in 

Zn and pH. Cu shows no real trend in the distribution. The mean 

percentage errors were 29.14% for Pb, 11.1% for Cu, 19.68% for Zn 

and 15% for pH.  
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Figure 3.14: Kriging error as a percentage of the kriging estimate for 

a) Zn and b) pH. 
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Figure 3.15: Cross Validation error as a percentage of the kriging 

estimate for a) Pb and b) Cu. 
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3.4 MAPPING METAL SOLUBILITY 

 

3.4.1 Modelling the variograms 

 

Solubility was calculated for Pb, Cu and Zn using the algorithm in 

Equation 3.1 for each G-BASE sampling location, and the variograms 

modelled. There are 405 samples in the chosen area.  

 

3.4.1.1 Lead solubility 

 

The minimum Pb solubility is 2.94 × 10-13 mmol l-1 and the maximum 

.69 × 10-8 mmol l-1, with a mean value of 1.15 × 10-9 mmol l-1

regression analysis involving fitting linear and quadratic functions to 

the spatial co-ordinates showed that the percentage of variance 

accounted for is 5.4%, suggesting that there is a minimal trend present. 

The data is skewed (5.2), so the data is log-transformed. The data was 

also checked for anisotropy. The model fitted to the variogram is a 

spherical model with a fit (percentage variance accounted for by the 

model) of 95.5%. Figure 3.16 shows the variogram of Pb solubility and 

Table 3.7 shows the parameters. 

 

Parameter Value 

 

. A is 2

Range 18402 
Sill 3.485 
Nugget 4.803 
 

Table 3.7: Parameters for Pb solubility variogram 
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Figure 3.16: Isotropic semivariances (symbols) of Pb solubility and a 

spherical model fitted through them (line). 

   

3.4.1.2 Zinc solubility 

 

The minimum lubility is 2.54 × 10-7 mmol l-1 and the maximum is 

10-4 m , with a mean value of 2.17 × 10-5 mmol l-1. A 

n an involving fitting linear and quadratic functions to 

e spatial coordinates showed that the percentage of variance 

s a minimal trend 

resent. The skewness of the data is 3.86, so the data is log-

transformed using the natural logarithm. The data was also checked for 

anisotropy. The model fitted to the variogram is a linear model with a 

fit (percentage variance accounted for by the model) of 96.1%. Figure 

3.17 shows the variogram of Zn solubility. 

 

 

 Zn so

2.84 × mol l-1

regressio alysis 

th

accounted for is 13.5%, suggesting that there i

p
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Figure 3.17: Isotropic semivariances (symbols) of Zn solubility and a 

ear model fitted through them (line). The model has a gradient of 

t value of 1.913. 

 

odel with a fit (percentage 

ariance accounted for by the model) of 96.4%. Figure 3.18 shows the 

ariogram of Zn solubility. 

lin

3.85 × 105 and a nugge

  

3.4.1.3 Copper solubility 

 

The minimum Cu solubility is 8.54 × 10-12 mmol l-1 and the maximum 

is 8.48 × 10-7 mmol l-1, with a mean value of 2.30 × 10-8 mmol l-1. A 

regression analysis involving fitting linear and quadratic functions to 

the spatial coordinates showed that the percentage of variance 

accounted for is 1.0%, suggesting that there is minimal trend present. 

The skewness of the data is 6.42, so the data is log-transformed using 

the natural logarithm. The data was also checked for anisotropy. The 

model fitted to the variogram is a linear m

v

v
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Figure 3.18: Isotropic semivariances (symbols) of Cu solubility and a 

linear model fitted through them (line). The model has a gradient of 

1.10 × 10-4 and a nugget value of 4.2964. 

ng of solubility 

 

3.4.1.2 Kriging and mappi

 

Figures 3.19, 3.20 and 3.21 show maps of metal solubility for Pb, Cu 

and Zn. All three metal solubilities required a log transformation before 

modelling the variogram and kriging, so the backtransform procedure 

does not produce any kriging variances. In order to estimate the error, a 

cross validation was undertaken for each metal. This produces kriged 

estimates for each G-BASE point and calculates the error by 

subtracting the estimate from the original value at each point. The error 

is then calculated as a percentage with respect to the kriging estimate 

and the mean values are shown in Table 3.8. 
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Metal 
Solubility 

% error 

Pb 2+ 188.2
Zn 2+ 153.2
Cu 2+ 417.5
 

Table 3.8: Mean percentage error for metal solubilities calculated 

from cross validation kriging with respect to original G-BASE data. 

 

The uncertainties on all three metals are very large, and this brings into 

question the value of the maps that can be created. It also raises the 

question of the accuracy of the point predictions before kriging. Figure 

3.19 shows graphs of the error as a percentage of the estimate in the 

same way as for the metal concentration in Figure 3.14 and 3.15. The 

graphs are dominated by extreme percentage errors in a few cases.  
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Figure 3.19: Graphs of error as a percentage of the kriging estimate as 

a result of cross validation for a) Zn solubility, b) Cu solubility and c) 

Pb solubility. 

 

 

0
500

0.E+00 2.E-05 4.E-05 6.E-05 8.E-05 1.E-04 1.E-04

er
r 1000

1500
2000
2500

000

Estimate of Zn2+

or
 

3000
3500
4

at
e

as
 %

 e
st

im

0

5000

0.00E+00 5.00E-08 1.00E-07 1.50E-07 2.00E-07

Estimate of Cu2+

e

10000

15000

20000

25000

rro
r a

s 
%

 e
st

im
at

e

0

2000

4000

6000

8000

10000

12000

14000

0.E+00 1.E-09 2.E-09 3.E-09 4.E-09 5.E-09 6.E-09 7.E-09

Estimate of Pb2+

er
ro

r a
s 

%
 o

f e
st

im
at

e

c) Lead 

a) Zinc 

b) Copper 

 



Chapter 3  74 

 

 
Figure 3.20: Kriged predicted Zn solubility values (mmol l-1). 
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Figure 3.21: Kriged predicted Cu solubility values (mmol l-1). 
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Figure 3.22: Kriged predicted Pb solubility values (mmol l ). -1

 

Lead solubility (Figure 3.22) shows the opposite pattern to lead 

concentration (Figure 3.11) concentration. This could be due to the 

strong influence of pH on the lead solubility algorithm (see Figure 

3.23). 
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3

 

.4.2 Uncertainty analysis of metal solubility algorithm 

 

As the uncertainty on the solubility kriged values are so high, an 

investigation into the uncertainty from the solubility algorithm was 

undertaken. 

 

Most practical problems involving elements of uncertainty are too 

complex to solve analytically. There are simply too many combinations 

of input values to calculate every possible result. Monte Carlo 

Simulation is an iterative process using a random number generator to 

select a value for each iteration. For each variable the possible values 

are defined by a probability distribution, from which the value to be 

used each time is selected.  

 

Crystal Ball is a model simulation programme used in conjunction with 

Excel. It allows the user to specify the distribution of each model 

parameter. Using Monte Carlo Simulation, Crystal Ball displays results 

in a forecast chart showing the entire range of possible outcomes and 

their probability. 

 

The forecast chart is invaluable for risk analysis and assessing the 

certainty of a particular event occurring. The tool which is most 

valuable in this case however, is the sensitivity chart. The overall 

sensitivity of a forecast to an assumption is a combination of two 

factors – the model sensitivity and of the forecast to the assumption 

and the assumption’s uncertainty. Crystal Ball calculates sensitivity by 

computing rank correlation coefficients between every assumption and 

every forecast while the simulation is running. Correlation coefficients

ions and 

recasts change together. If an assumption and a forecast have a high 

e variance of the target forecast. 

provide a meaningful measure of the degree to which assumpt

fo

correlation coefficient, it means that the assumption has a significant 

impact on the forecast (both through its uncertainty and the model 

sensitivity). Crystal Ball can also calculate the sensitivities as a 

percentage of the contribution to th
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This is an approximation calculated by squaring the rank correlation 

oefficients and normalising to 100%. It is these Contribution to 

he Westphalian region will provide a sensitivity chart for 

ach metal indicating which parameter is the most influential on the 

n, and a normal distribution was used. 

c

Variance values that are most useful in this case. Running simulations 

of the solubility algorithm using probability distributions modelled on 

the data for t

e

prediction. 

 

Tables 3.9, 3.10 and 3.11 show the model parameters used in Crystal 

Ball to carry out the uncertainty analysis. The metal and pH 

distributions were fit to the Westphalian data. The algorithm 

parameters a, b and c are shown in Table 3.1. The standard error was 

used as the standard deviatio
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Assumption Distribution Parameters 

Pb (mg kg-1) Lognormal Mean = 21.00, Standard Deviation = 29.14 

 
pH Weibull Location = 1.59, Scale = 5.81, Shape = 5.56 

 
A Normal Mean = -2.44, Standard Deviation = 0.77 

 
b  Normal Mean = 1.53, Standard Deviation = 0.08 

 
c   Normal Mean = 0.98, Standard Deviation = 0.20 

 

 

Table 3.9: Details of model parameters used in Crystal Ball for Pb 
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Assumption Distribution Parameters 

Zn (mg kg-1) Lognormal Mean = 118.70, Standard Deviation = 54.80 

 
pH Weibull Location = 1.59, Scale = 5.81, Shape = 5.56 

 
a  Normal Mean = -2.44, Standard Deviation = 0.77 

 
b  Normal Mean = 1.53, Standard Deviation = 0.08 

 
c  Normal Mean = 0.98, Standard Deviation = 0.20 

 

 

Table 3.10: Details of model parameters used in Crystal Ball for Zn 
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Assumption Distribution Parameters 

Cu  

(mg kg-1) 

Lognormal Mean = 118.70, Standard Deviation = 54.80 

 
pH Weibull Location = 1.59, Scale = 5.81, Shape = 5.56 

 
a  Normal Mean = -2.44, Standard Deviation = 0.77 

 
b  Normal Mean = 1.53, Standard Deviation = 0.08 

 
c  Normal Mean = 0.98, Standard Deviation = 0.20 

 

Table 3.11: Details of model parameters used in Crystal Ball for Cu 
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3.4.2.2 Results ll

 

 

 
Figure 3.23: Percentage contribution to Variance for the metal 

solubility algorithm parameters for a) Cu, b) Zn and c) Pb. 

of Crystal Ba  analysis 
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The sensitivity charts for each metal are shown in Figure 3.23. In all 

cases pH is the greatest contributor to the variance in all three metals. 

htly different from Cu and Zn in that the parameters a, b and c 

(Equation 3.1) are not as influential. pH has a greater percentage of the 

variance, and the metal is the third highest contributor to variance, 

whereas with Cu and Zn metal is the forth. So for all cases metal 

concentration makes a small contribution to the variance. Parameters a, 

b and c represent the model uncertainty and so are intrinsic. From these 

results it appears that effort should be made to ensure uncertainty in pH 

measurement is kept to a mi tainty at this early 

stage will be magnified by the contribution to the variance of the model 

predictions that pH makes. 

3.5 CONCLUSIONS 

 

Variograms of the total metal concentrations for the Humber-Trent 

region capture very large proportions of the spatially correlated 

variance; the variogram for Zn captures the greatest correlated variance 

(75%), Cu has a higher nugget of 40%. The nugget for the Pb 

variogram is higher, at 60%,  being modelled 

on the residuals. When the data is kriged for mapping the errors as a 

tage of the estimate are between 11 and 30%. Pb had the highest 

error percentage, at 29.4%, which could be due to the presence of trend 

in the data which has to be removed before kriging. This adds an extra 

stage to the process and therefore more opportunities to introduce error. 

The errors are also calculated in a different way (cross validation) to 

Zn and Cu as the kriging process for Pb does not produce a kriging 

variance. Zn and Cu concentration maps show similar low and high 

concentration spots, whereas Pb shows diff nt distribution, with a 

marked east-west trend. This could be due to Pb mining and smelting 

Pb is slig

nimum, as any uncer

 

but this is mainly due to

percen

 a ere

in the area (see §3.6 and Figure 3.24). 
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Figure 3.24: Map of Pb concentration showing location of Pb rakes 

and the location of the Darley Dale smelter. 

 

The pH variogram does not capture as large a proportion of the 

spatially correlated variance as the total metals; the nugget is 70% of 

the sill. This shows that the G-BASE sampling scale misses much of 

the short-scale variation (this prompts the investigation in Chapter 5). 

The mean kriging error for mapping is 15%. 

 

The variograms for metal solubility showed much larger nuggets than 

those for the total concentrations. All three metals needed a log 

transformation because the distributions were skewed. The errors after 

kriging range from 55% for Cu to 292% for Zn. These errors seem too 

high for the data to be considered useful. 
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Analysis by Crystal Ball showed that pH is the greatest contributor to 

uncertainty in all three metals. The G-BASE sampling scale has been 

shown above to miss much of the short-scale variation in pH. The 

sensitivity of the model combined with the uncertainty of the G-BASE 

pH values means that pH is the crucial element when trying to predict 

metal solubility from this data, and is the main contributor to the high 

percentage errors in kriging the solubility predictions. pH probably 

requires sampling on a finer scale than metals do, perhaps down to a 

field scale.   

 

3.6 INFLUENCE OF HISTORIC CONTAMINATION ON 

LEAD CONCENTRATION AND SUGGESTIONS FOR 

FURTHER WORK 

 

As already discussed, the strong trend present in the Pb concentrations 

differs from Cu and Zn. One reason for this could be contamination 

from the Pb mining and smelting industry that has been present in the

 (National grid reference: 

K 258 621). Emissions of Pb from the smelter could be the source of 

rtaken by Sheffield City 

olytechnic (Wild and Eastwood, 1992) in North East Derbyshire, 

or allotments of 500 mg kg-1. 

 study of Pb levels in tree bark around the Darley Dale smelter in 

2001 (Bellis et al., 2001) also found extremely high Pb concentrations 

in the area. The concentration of Pb found in the tree bark varied from 

 

region for hundreds of years. Of particular interest is the Darley Dale 

smelter, located to the west of the study area

S

Pb forming a strong regional trend.  

 

The Darley Dale smelter has a long history of non-ferrous metal 

smelting, and between the wars was one of the largest smelters in 

England. In 1981 a soil survey was unde

P

covering the area studied in this thesis. This survey discovered that 

25% of the area had values of Pb classed as “anomalously high” (based 

on a “natural” background concentration of Pb of 30-250 mg kg-1 in 

NE Derbyshire) with 10% of the values falling above the Department 

of the Environment’s 1983 trigger value f

A
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100 mg kg-1 to over 25 000 mg kg-1, compared to “typical” 

concentrations of 30-100 mg kg-1 Pb recorded in South Yorkshire. 

 
The trend present in the other major trace elements was calculated in 

order to see if this trend was isolated to Pb. A significant trend was 

only found in Mo, but when the trend surface was mapped it did not 

show the same distribution as that seen in Pb. It is therefore thought 

that the most likely source of the Pb trend is the transport and 

deposition of Pb in dust from the Peak District, more specifically that 

ssociated with the processing of mined ore at the Darley Dale smelter. 

ividual soil samples along one or more transects 

om the south and west of the area (close to the possible source) 

a

 

One way to investigate the source further would be to undertake Pb 

isotope analysis on ind

fr

towards the north and east (in the direction of the prevailing wind). 

This would determine whether the Pb isotope signatures were 

consistent with a Pb source in the Peak District. 
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4 LARGE SCALE FIELD WORK 
 

4.1 INTRODUCTION 

 

Chapter 3 represented an attempt to predict metal solubility in topsoil from an 

area of the Humber-Trent region using data from G-BASE, measured pH 

values and a metal solubility algorithm (Tye et al, 2003). Large uncertainties 

occurred when the solubility predictions were kriged to produce maps. In order 

to examine the accuracy of the metal solubility algorithm without the added 

uncertainties involved with kriging, a field work programme was designed. 

This involved returning to original G-BASE locations and taking new samples 

in order to obtain a direct measure of the metal solubilities as well as top soil 

pH and total metal concentration. This produced three values for metal 

solubility – direct measurement from the soil pore water, prediction from 

newly measured pH and total metal concentration, and prediction from original 

G-BASE data. These can then be compared to assess the accuracy of the 

algorithm. A preliminary study was undertaken on four sites (see Table 2.3) in 

order to refine the sampling and extraction methods, followed by a larger study 

of 21 further sites (see Table 2.4).  

 

4.1.1 Materials and Methods 

 

The methods used in this chapter are described in detail in Chapter 2. The 

analytical methods are described in §2.1 and the field work methods in §2.3. 

Section 2.3.1.1 describes the preliminary study of four sites, and includes the 

method of selection of these sites and the methods used for sample collection 

and pore water extraction. 

 

The process of site selection for the final survey involved the removal of 

global and local outliers of original G-BASE metal concentration values and 

analysis of the G-BASE data to ensure a range of pH and metal concentrations, 

(described in detail in §2.3.1.2). Table 2.4 shows the site locations where 

samples were collected. The problems encountered with relocating sample 
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sites which were not originally recorded using GPS technology are described 

in §2.3.2. The results of the preliminary survey, which are presented below, 

illustrate the problems described in §2.3.2. 

 

4.2 RESULTS  

 

4.2.1 Results of Preliminary Field Work 

 

The metal concentrations in the four test soils, measured by acid digestion and 

flame atomic absorption spectrometry (FAAS) (§2.1.3), were in some cases 

significantly different from the original G-BASE values, which were 

determined by XRF (§2.1.6). In order to determine whether the difference in 

values was owing to the measurement technique or a failure to relocate the 

original sample location, both the G-BASE samples and the new samples were 

analysed by XRF. The results are shown in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4  89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lead

0

200

400

600

800

1000

2805 8115 8380 8588

sample

pp
m

XRF GBASE

XRF GBASE rpt

FAAS

XRF NEW

  GBASEXRF

  GBASE2
XRF

  NEWAAS

  NEWXRF

Copper

0

20

40

60

80

100

2805 8115 8380 8588

sample

Zinc

0
50

100
150
200
250
300

2805 8115 8380 8588

sample

pp
m

XRF GBASE

XRF GBASE rpt

FAAS

XRF NEW

  GBASEXRF

  GBASE2
XRF

  NEWAAS

  NEWXRF

m
g 

kg
-1

m
g 

kg
-1

XRF GBASE

XRF GBASE rpt

FAAS

XRF NEW

  GBASEXRF

  GBASE2
XRF

  NEWAAS

  NEWXRF

pp
m

m
g 

kg
-1

Figure 4.1: Pb, Zn and Cu concentrations at the four test survey sites showing 

G-BASE results and new sample results. ‘GBASEXRF’ are the original GBASE 

values, ‘GBASE2
XRF’ are the archived G-BASE soils re-analysed by XRF, 

‘NEWAAS’ are the new soil samples measured by aqua regia digest and FAAS, 

and ‘NEWXRF’ are the new soils measured by XRF. 
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The results suggest that the measurement techniques are quite consistent. The 

mean change from GBASEXRF
( )ii  to GBASE2

XRF is 12%, which shows that the 

measurement by XRF is consistent between the same samples following a 

period of storage. The mean change from NEWAAS to NEWXRF is 22%. The 

difference shown between these two methods is to be expected because of 

incomplete extraction of metals by aqua regia digest. Research on industrial 

soils found that for Cu, Pb and Zn the concentrations estimated with XRF were 

similar to the results obtained when aqua regia digests were analysed with ICP-

AES (which produced the same results in the study as FAAS) (Anderson et al, 

1998). The model has been calibrated on ‘labile’ and total metal measured by 

aqua regia digest, so despite the difference to original G-BASE measurement 

methods it is still the best method to use for testing the model.  

 

GBASE2
XRF was compared to NEWXRF to highlight any difference between the 

original values and those measured on returning to the site. Using these two 

values minimises both differences in analysis techniques (both use XRF) and 

instrument differences (the XRF analysis for GBASE2
XRF and NEWXRF was 

carried out at the same time). The mean change from NEWXRF to GBASE2
XRF 

for all metals is 170%. The large difference between G-BASE samples and 

new samples is most obvious at site 8588, where the difference between 

measurements is 1438%. It is probable that the original G-BASE survey point 

was over an isolated hotspot of Pb (with elevated levels of Zn and Cu as well), 

and that on re-locating the site with GPS the hot spot was missed. This sort of 

phenomenon is supported by the DEFRA (1993) findings that pre-GPS grid 

references are hard to relocate. The accuracy of relocation was found to be 

highly dependent on the size of the field and availability of landmarks, but 

varied between 3 and 77 m. In areas with a history of mining and mine spoil, 

which could be the case here, contamination can be very localised, and so a 

difference of a few tens of metres could potentially have a large effect on the 

value of soil metal concentration measured. 

                                                 
ii GBASEXRF refers to the original GBASE data which was analysed at the time of collection 
by XRF; GBASE2

XRF refers to the G-BASE archive soil samples that were re-analysed by 
XRF; NEWAAS refers to the samples taken as part of the preliminary survey and analysed by 
FAAS; NEWXRF refers to the new samples analysed by XRF. 
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As a result of the preliminary survey, it was decided to try and minimise the 

‘hot spot’ effect on the larger field study by removing G-BASE sites that were 

‘local’ outliers (i.e. significantly different in concentration to their neighbours) 

from consideration of re-sampling.  

 

The variogram cloud is a diagnostic tool that can be used to identify potential 

outliers or trends, and to assess variability with distance. Here it was used to 

remove ‘local’ outliers from the selected region in order to avoid localised 

hotspots that might prove difficult to re-locate. This exercise revealed that site 

8588 was indeed a local outlier for Pb, and that 8380 was a local outlier for Cu. 

When the values of Pb and Cu concentrations, at sites 8588 and 8380 

respectively, were removed, the mean difference in metal concentration 

between sampling occasions falls to 44% (from 170%) for all metals bulked 

together. 

 

4.2.2 Re-sampling of G-BASE survey sites 

 

4.2.2.1 Total soil concentrations 

 

The comparison between the concentrations of metal in topsoil at the 21 sites 

re-sampled (measured by aqua regia digest and FAAS, see §2.1.3) and the 

original G-BASE values (measured by XRF) is illustrated in Figure 4.2. The 

results are shown as the percentage change from G-BASE to new values. 

Figure 4.2 is dominated by the large difference in Pb concentration at site 

408982. Figure 4.3 has this site removed in order to see more clearly the 

differences in the other samples. Pb shows the largest difference between the 

sites, and there are many sites where the differences show that the original G-

BASE site may not have been accurately re-sampled. If a difference of up to 

20% is taken as an acceptable measurement variance, 20 of the 21 sites appear 

to have been ‘missed’ for at least one metal. The preliminary study showed 

that a small percentage of the difference could be owing to a difference in 

measurement technique, but that the majority is likely to be due to errors in re-

location. The majority of concentrations measured are lower in the new 
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samples than the original G-BASE samples. This could be partly due to 

incomplete extraction of the metals by acid digestion. 
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Figure 4.2: Graph showing the percentage change from G-BASE values (XRF) 

to new sample values (aqua regia digest and FAAS).  

 

-60

-40

-20

0

20

40

60

80

100

40
28

57

40
28

60

40
70

12

40
70

20

40
70

46

40
70

89

40
71

00

40
77

57

40
77

70

40
77

72

40
81

49

40
81

94

40
83

36

40
83

70

40
83

74

40
84

48

40
84

64

40
84

90

40
87

22

40
87

86

Sample number

C
ha

ng
e 

fro
m

 G
-B

A
S

E
 to

 n
ew

 (%
)

Copper Zinc Lead
 

Figure 4.3: Graph showing the percentage change from G-BASE values (XRF) 

to new sample values (aqua regia digest and FAAS) with sample 408982 

removed in order to show the detail of the other sample sites. 
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Figure 4.4 shows scatter plots of soil metal concentrations measured in the 

original G-BASE survey plotted against the new survey values. The R-squared 

values for all three metals are low: 0.11 for Pb, 0.30 for Zn and 0.44 for Cu. 

The sample with the most obvious difference in Figure 4.2 is highlighted and is 

an obvious outlier for Pb and Zn. When this point is removed the R-squared 

values increase to 0.68 for Pb, 0.37 for Zn and 0.54 for Cu. There also appears 

to be a systematic difference, with all best-fit lines lying below the 1:1 lines. 

This is likely to be due to the inefficient extraction of metals by the aqua regia 

digest for the new samples. 
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Figure 4.4: Scatter plots of soil metal concentrations (mg kg-1) from the 

original G-BASE survey against equivalent values obtained in the new survey. 
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4.2.2.2 Prediction of zinc solubility 

 

Owing to time constraints, only the solubility of Zn is studied here. Zinc is also 

the most interesting of the three metals as there are two methods of predicting 

solubility, using total or radio-labile Zn concentration. 

 

The primary reason for re-sampling the G-BASE sites was to assess the metal 

solubility algorithm used in Chapter 3. Metal concentrations in the pore water 

were measured, and the speciation model WHAM was used to calculate the 

solubility of Zn (see §2.1.5.1). Thus measured results for –log10[M2+] (p(M2+)) 

can be compared to the results obtained from the algorithm (Equation 4.1 and 

Table 4.1). 

 

 

( ) ( ) ( )( )
n

ILogcpHbaZnLog
pZn 10102 ×+×++

=+    4.1 

 

where Zn is in mol kg-1 C 

 

 

Parameters Model 
description n a b c 
ModelTot 0.969 -3.26 0.977 -1.16 
ModelLab 0.855 -2.20 0.757 -0.638 

 

Table 4.1: Parameters for the two versions of the model used to predict 

p(Zn2+)  by Equation 4.1 using total (ModelTot) or radio-labile (ModelLab) Zn 

concentration. When using the labile model, the Zn concentration is multiplied 

by the percentage of Zn assumed to be labile. 
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Comparison of total and labile models 

 

Figure 4.5 shows values of modelled p(Zn2+) against measured data. Two 

versions of the solubility model have been used for each sample point with 

either total Zn (ModelTot) concentration or radio-labile Zn (ModelLab) as a 

determinant of Zn2+ solubility. The two sets of parameters are shown in Table 

4.1. A labilityiii of 48.7% was assumed for ModelLab. This value was obtained 

from the average measure of percentage radio-lability for all the samples used 

in the development of the model. If more time had been available the samples 

used in this study would have been measured for lability. ModelLab gives a 

better match to the measured values, with an R-squared value of 0.44, as 

opposed to 0.39 for ModelTot. The average difference between the modelled 

data and the measured data is 5% for ModelLab, and 13% for ModelTot. The 

average absolute difference in p(Zn2+) between modelled and measured data is 

0.42 for ModelLab and 0.88 for ModelTot. 

 

 

 

 

 

                                                 
iii The term 'labile' is applied here to the chemically-reactive pool of metal in soil.  This does 
not discriminate between electrostatically or chemically adsorbed metal ions, but is an 
operationally defined term which identifies the pool of metal in the solid phase able to respond 
to changes in solution activity of the metal ion within the time of measurement (Nakhone and 
Young, 1993). 
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Figure 4.5: Modelled free ion activity for Zn (pZn2+) against measured values 

(chemical analysis plus WHAM speciation). Two versions of the solubility 

model have been used with either total Zn concentration or radio-labile Zn 

(assuming a lability of 48.7%) as a determinant of Zn2+ solubility.  

 

Figure 4.6 shows the results from the survey alongside the original data set 

used to parameterise the models using ModelTot (Tye et al, 2003). Figure 4.7 

shows the same information for p(Zn2+) modelled with ModelLab, using the 

average percentage lability measured for the soils used for the original model 

parameterisation. It is difficult to predict where one would expect the current 

data set to lie in relation to the original solubility model in Figures 4.5 and 4.6.  

The model based on total Zn concentration (ModelTot) is likely to produce the 

greatest error in prediction because, unlike its ‘labile’ counterpart (ModelLab), 

it is more prone to variability arising from differences in the chemical form of 

Zn in soil (Figure 4.5).  It is reasonable to expect that the model based on labile 
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Zn accounts for these differences to some extent.  The original data set of Tye 

et al included a wide range of soil metal sources, including soils spiked with 

recently added metal salts and soils with a long history of exposure from 

relatively insoluble metal sources such as minespoil. Thus it is not surprising 

that ModelTot shows the poorest fit, both to the original G-BASE data set and 

the new re-sample points.  
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Figure 4.6: Original data set used for the parameterisation of ModelTot with 

re-sampled G-BASE locations included. 
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Comparison of prediction using re-sampled data and original G-BASE 

data 

 

The new samples are among the smallest (Zn2+) values of the combined data 

set (largest p(Zn2+)). This is to be expected given that they originate from 

uncontaminated agricultural soils – rather than the freshly spiked soils and 

contaminated sites which dominate the original model data set.  On the other 

hand, it is interesting to note that the measured values of Zn2+ activity in the 

new samples are greater than would be predicted by the model; p(Zn2+) values 

are to the left of the 1:1 line in Figure 4.5. This may be because of the nature of 

the soils in the original data set which dominate the low end of the range of 

p(Zn2+) values and which therefore influenced the model parameterisation at 

low values of p(Zn2+). These included calcareous clay soils in which Zn had 

become highly fixed, urban soils with a variety of Zn-rich artefacts (paint, 

metallic particles etc) and minespoil soils with residual Zn sulphide and 

carbonate deposits.  In all cases these soils would produce a large apparent Kd 

value (i.e. relatively low solubility). By contrast, the Zn in the arable soils 

sampled in this study, although present at low concentrations and therefore 

likely to be adsorbed strongly, nevertheless appears to be more soluble. 
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Figure 4.7: Original data set used for the parameterisation of ModelLab with 

re-sampled G-BASE locations included. 

 

When ModelLab is used (Figure 4.7), the new samples lie closer to the 1:1 line 

than in Figure 4.6. They still lie mainly to the left of the line, showing that 

ModelLab also under-estimates Zn2+ activity, although to a lesser extent than 

ModelTot. As with ModelTot this is likely to be owing to the different nature of 

the new samples to the soils used in the original data set. The under-estimation 

of both versions of the model could perhaps be improved by expanding the 

parameterisation data set to include arable soil samples. Using ModelLab brings 

the new samples closer to the 1:1 line than using ModelTot; it also brings the 

new samples closer to the original data set. The new samples move further 

using ModelLab than the original data set does. This has the effect of 

minimising the differences between the highly polluted soils in the original 

data set and the arable soils in the new samples. 
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The original aim of this thesis was to investigate whether metal solubility can 

be predicted from a data set such as G-BASE and subsequently mapped. 

Chapter 3 showed how the kriging process introduces unacceptable levels of 

uncertainty to the data. However, it might still be useful to use large data sets 

such as G-BASE to make point-predictions of solubility. In this chapter we 

have discussed the re-sampling of some G-BASE sites and measured the free 

ion activity of Zn (pZn2+) in the soil solution using chemical analysis and 

WHAM speciation. The solubility model ModelLab has been used to predict 

p(Zn2+) at the same locations using the pH and total soil Zn concentration 

measured by the re-sampling. The original values recorded in G-BASE are also 

available, and we can use ModelLab to predict p(Zn2+) from this data as well. 

Figure 4.8 shows Figure 4.7 with the addition of pZn2+ predicted from the 

original G-BASE data but compared to re-sampled measurements.  
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Figure 4.8: Original data set used for the parameterisation of ModelLab with 

Zn2+ predictions at re-sampled and original G-BASE locations included. 

 

 

The average difference between the modelled G-BASE data and measured Zn 

solubility at re-sampled G-BASE locations is 8%. The average difference 

between modelled and measured Zn solubility at re-sampled locations is 6%, 

which suggests that using G-BASE to predict metal solubility, even though the 

samples cannot be said to be at exactly the same location, gives a good 

prediction. Figure 4.9 compares the difference between G-BASE prediction 

and measurement of ‘new’ samples with the difference between the ‘new’ 

prediction and measurement. Where the model predicts lower zinc solubility 

than the measurement the difference is negative. The graph shows that the G-
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BASE prediction was often lower than the measurement, whereas the “new” 

predictions are usually higher than the measurement. 
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Figure 4.9: Difference between measured and predicted p(Zn2+) values using 

two sources of data for predictions. 

 

Analysis of how the algorithm depends on metal concentration and pH 

 

Figure 4.10 is a surface plot of p(Zn2+) predicted by ModelLab as pH and Zn 

concentration varies. Zn concentration goes up to 1000 mg kg-1, going higher 

obscures changes at lower concentrations. The plot demonstrates how p(Zn2+) 

is affected by concentrations more commonly found in agricultural soils. It 

shows that at high concentrations p(Zn2+) is most influenced by pH, with small 

changes in concentration not influencing p(Zn2+) very much. However, at low 

concentrations, Zn seems to be much more important in predicting p(Zn2+). 
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 Figure 4.10: Surface plot of p(Zn2+) with increasing Zn concentration and pH. 

 

 

4.3 CONCLUSIONS 

 

The preliminary field work showed that there are considerable difficulties in 

re-locating sample sites. The effect of this on metal concentration was seen 

again in the final field work, with Pb showing the largest average difference in 

concentration between original G-BASE and new samples (see Figure 4.3). 

 

In predicting Zn2+, ModelLab gives better predictions than ModelTot, with the 

average difference between modelled and measured data 5% for ModelLab and 

13% for ModelTot. 

 

When plotted with the original model parameterisation data set, the new 

samples are at the lowest Zn2+ (highest p(Zn2+)) end due to the nature of the 
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original data set being based on contaminated soils. The under-estimation of 

both ModelLab and ModelTot is probably owing to the model being strongly 

influenced by the parameterisation at the opposite end of the scale of p(Zn2+). 

 

Despite the re-sampled soils being essentially separate locations to the original 

G-BASE samples, the difference between new measured Zn2+ and predictions 

made using G-BASE is only 2% greater than when predictions are made using 

new samples (8% difference between measured and G-BASE predictions and 

6% difference between measured and new predictions). This suggests that they 

can be considered to be the same location for the purposes of predicting Zn2+ 

despite re-location difficulties. 

 

 

 

 

 



Chapter 5  106 

5. SHORT-SCALE pH INVESTIGATION 

 

5.1 INTRODUCTION 

 

This chapter investigates the short-scale spatial variability of pH. This 

investigation was triggered by the results of the investigation of the G-BASE 

data in Chapters 3 and 4 which showed pH contributed most to the uncertainty 

of the solubility algorithm and also varies on a smaller spatial scale than the 

metal data.  

 

The objectives of the chapter are to present a review of the spatial variability of 

soil pH, which is in §5.1.2, and the influence of pH on metal solubility, §5.1.3. 

Section 5.2 presents the results of the pH variability investigation, including 

the variogram and pH map of the field. An inter-laboratory trial was conducted 

to investigate the variability in pH due to other operators, locations and 

methodologies. Section 5.3 uses the idea of ‘sampling uncertainty’ (Ramsey 

1998) to improve the variogram by taking into account other information about 

the data. Section 5.4 presents the results of other field-scale studies of pH for 

comparison, and section 5.5 uses the data to simulate G-BASE sampling and 

wheat uptake of metals. The laboratory methods used are fully described in 

§2.1. 

 

5.1.1 Background 

 

Soil pH is relevant to this study for a number of reasons. Metal solubility 

shows considerable dependence upon pH (Tye et al 2003). Consequently, 

uncertainty in the measurement of pH is transferred to the prediction of metal 

solubility, although the concentration of metal ions in soil pore water also 

depends upon other factors, such as the quantity of metal in the soil.  The 

geostatistical analysis of the G-BASE data in Chapter 3 suggests that pH is 

more spatially variable than the total soil metal concentrations of Cu, Zn and 

Pb. The large nugget variance of the pH variogram (accounting for 60% of the 

sill variance) in comparison with the metal variograms (50% of the sill 
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variance for Pb and Cu; 30% for Zn) indicates that a large part of the pH 

variability may be missed by sampling at the resolution adopted by the G-

BASE project (one sample approximately every 2.5 km2 of land area).  

 

The spatial variability of soil pH is affected by many factors; management 

practices alone may cause pH to change by over one unit between individual 

fields (Scott Young, Personal Communication). The proportion of arable soils 

in England and Wales with pH less than 6.0 decreased from 10% in 1969-73 to 

4% in 1990-93, reflecting the better targeting of lime inputs in recent years 

(Webb et al., 2001). Although liming has become more accurate, underlying 

variations in soil characteristics within a field will still lead to pH variation 

across a field unit. 

 

5.1.2 Causes of spatial variability of pH 

 

The factors that affect soil pH may operate over a wide range of spatial scales. 

For example, at the smallest scale plant roots take up NH4
+ ions and release H+ 

ions, resulting in a lower pH in the rhizosphere than in the bulk soil a few 

millimetres away. At intermediate distances there are many influences on soil 

pH. Mineral and organic matter application such as fertiliser addition or uneven 

atmospheric deposition can lead to significant changes in pH over distances of 

several metres. Differences in biomass production, deposition of animal urine 

patches, changes in soil texture and drainage patterns can also cause variation 

in pH over similar distances. Over larger distances (> 1 km) changes in 

topography, parent material (Rawlins et al., 2003) and land use are likely to be 

the greatest influence on soil pH.  

 

Some of the processes likely to operate within a single land management unit 

(i.e. a field) are discussed below. 

 

5.1.2.1 Urine Patches 

 

On grazing land urine patches can represent a locally high input of nitrogen 

(300 – 500 kg ha-1), most of which is urea (Shand et al., 2002). Rapid 
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hydrolysis of urea results in an increase in soil solution pH. Shand et al. (2002) 

found that synthetic sheep urine applied to a natural field soil caused an 

increase of 1 pH unit within 7 days of application. After this time the pH 

slowly returned to its original level over 28 days as nitrification and plant 

uptake of NH4
+ reversed the increase in pH caused by urea hydrolysis. In the 

experiment the synthetic urine was applied over an area of 4 metres by 1 metre, 

roughly reflecting the scale of urine patches that might be found in the field. 

 

5.1.2.2 Ammonium fertiliser application 

 

On arable land, the application of fertiliser may be the most important 

influence on soil pH. The likely change in soil pH following the application of 

an ammonium fertiliser can be estimated from consideration of the nitrification 

reaction and soil pH buffer power (Table 5.1; Rowell, 1994).  

 

Equation 5.1 estimates the change in soil pH (∆pH) resulting from an 

application of NH4-N fertiliser (a, kg N ha-1) to a soil with a buffer capacity (b, 

t CaCO3 ha-1 yr-1). The N application (a) is converted to an input of acid (mol 

H+ ha-1), assuming 2 H+ ions released per molecule of ammonium nitrified. The 

buffer capacity (b) is converted to an equivalent value expressed in mol H+ ha-1 

pH-1 (note: molecular weight of CaCO3 = 100). 

 
Soil Texture Buffer Capacity (t CaCO3 ha-1 pH-1) 

Light 6 

Medium 7 

Heavy 8 

Organic 10 

Peat 16 

 

Table 5.1: Buffer capacities for different soil textures (Rowell, 1994) 
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For reference, the average nitrogen application on tillage crops in 2000 was 

149 kg ha-1 (DEFRA, 2001), although in practice at least half of this would be 

as nitrate. The use of nitrogen fertiliser has changed dramatically over the 

years, doubling between 1969 and 1983, and then half of this increase had been 

lost by 1993 (Skinner et al., 1998). 

 

Using Equation 5.1 and the average nitrogen fertiliser application in 2000, the 

variation in soil pH can be estimated (Figure 5.1). If an application of 150 kg 

ha-1 is heterogeneously applied such that at a small scale some areas receive no 

N, whereas others receive 300 kg N ha-1, the maximum difference in pH that 

could be expected would be 0.35 pH units on a light soil. 

 

 
Figure 5.1: Expected shift in soil pH from different applications of ammonium 

fertiliser on five soil textures, calculated using equation 5.1. Typical 

application of nitrogen fertiliser in 2000 was 149 kg ha-1 (DEFRA, 2001). 
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5.1.2.3 Liming 

 

The application of lime to arable land is a management strategy that is intended 

to have an influence on soil pH. Lime is normally applied in order to increase 

soil pH to 6.5 – the optimum pH for most crops. Fields are usually managed as 

complete units, with (nominally) uniform application rates of fertiliser or lime 

across the whole field. Any natural underlying variation will therefore remain, 

albeit at an adjusted average pH level. However, the method of application may 

not be uniform, creating further variation. As with nitrogen fertiliser use, 

agricultural lime consumption has changed over time. Lime use peaked after 

the Second World War in the period 1956 to 1963 with approximately 6.5 

million tonnes annually. Consumption has declined since, with 4.2 million 

tonnes applied in 1969 and 2.9 million tonnes in 1993 (Skinner et al., 1998). 

The proportion of arable soils with pH <6.0 decreased from 10% in 1969-73 to 

4%in 1990-93, reflecting the better targeting of lime inputs (Webb et al., 2001). 

 

The largest pH variation across a field would occur where the land has been 

both limed and fertilised. If the applications are patchy, one area could have 

received just lime, raising the pH, while an adjacent patch receiving only 

fertiliser would have a lower pH. Figure 5.2 illustrates the resulting difference 

in local pH for a medium textured soil and different initial soil pH values. The 

difference could be very large for soils of initially low pH. The lime treatment 

is intended to achieve pH 6.5 and the acidifying effect of nitrification is 

calculated from Equation 5.1. Calculations assume a 200 kg N ha-1. 
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Figure 5.2: Difference in pH between a limed patch and a fertilised patch 

((NH4)2SO4) on a medium textured soil for different initial soil pH values. 

 

5.1.2.4 Time 

 

Soil pH can change over time, depending on land use and management 

practice. Agricultural soils used for crops are artificially managed to maintain 

an optimal pH level. Applications of lime are typically at intervals of a few 

years and therefore soil pH levels will fluctuate between applications. 

Applications of fertiliser usually occur annually. The Representative Soil 

Sampling Scheme (RSSS) was carried out by the Ministry of Agriculture, 

Fisheries and Food (MAFF) and the Agricultural Development and Advisory 

Service (ADAS) between 1969 and 1993. During this time the pH of 

permanent grassland has declined in a linear manner from just over 5.7 to 5.4 

(Skinner et al., 1998). Under arable and ley-arable cropping there have been no 

significant changes in this period (Skinner and Todd, 1998), probably due to 

management practices. 

 

Over the longer term changes in soil pH can occur even without additions of 

lime or fertiliser. The extent to which pH will change depends on the land use 

and on previous treatments. Rothamsted Research (Harpenden, U.K.) has 

conducted long term studies on soil pH (Blake et al., 1999). Two plots are on 
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very old (> 300 years) permanent grassland cut for hay, which is the landuse  

most similar to the arable field studied in this thesis. One (3a) has been 

unfertilised and limed, and the other (3d) has been unfertilised and unlimed. 

The pH of 3a has increased from the estimated value in 1856, but has 

fluctuated in response to the applications of lime as would be expected. The pH 

of 3d has fallen by 1 pH unit over the duration of the experiment indicating that 

natural processes can also influence soil pH, but might be masked by 

management. 

 

5.1.2.5 Drainage 

 

Soil pH is greatly influenced by the drainage conditions of the soil. When an 

aerobic soil is submerged, its pH decreases during the first few days, reaches a 

minimum and then increases asymptotically to a fairly stable value of 6.7 to 7.2 

in a few weeks (Ponnamperuma, 1972). This results in the pH of waterlogged 

soils with a higher aerobic pH (> 7) falling due to the build-up of carbonic acid.  

By contrast, the pH of soils with a lower aerobic pH will rise due to reduction 

reactions which consume H+ ions (Ponnamperuma, 1972). For example the 

reduction half-reaction of Fe(OH)3:  

 

Fe(OH)3 + 3H+ + e-  Fe2+ + 3H2O. 

 

Figure 5.3 shows schematically how the pH of a soil changes over time once 

waterlogged. The principle applies to all submerged soils, although the pH 

range of the equilibrium point can change slightly. Marsh soils have a larger 

range than most, from 5.0 to 7.0 (Ponnamperuma, 1972). The overall effect is 

that saturated soils have a smaller range of pH values than their aerobic 

counterparts. Patchy anaerobism would cause patchiness in pH across a field; 

pH would vary due to distance from field drains for example. In trying to 

measure this effect, the influence of sample processing should also be 

considered, as soil is usually dried before testing. 
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Figure 5.3: Schematic change in soil pH over time when waterlogged, pH on 

the y-axis and time on the x-axis. Red lines show the typical equilibrium range. 

 

5.1.3 Influence of pH on metal solubility 

 

Factors which affect the spatial variability of pH are also likely to influence 

variation in metal solubility. The amount of metal that is in a mobile and 

possibly bioavailable form can be described using a simple distribution 

coefficient (Kd) as discussed in §1.2. This approach is used in a large number 

of environmental fate models. However, it is widely recognised that single Kd 

coefficients are not appropriate to represent metal solubility because they vary 

with factors such as pH, organic matter content and total metal. The metal 

solubility algorithm used in this study is a simple ‘semi-empirical’ equation.  

However, it effectively (i) identifies soil humus as the principal adsorption 

surface for the free ion (M2+), (ii) allows for progressive weakening in sorption 

strength with increased site occupancy through a power term on (M2+), and (iii) 

aggregates the various effects of pH (changes in surface potential and H+ 

competition). Such models represent a significant improvement over the use of 

fixed Kd values, taking into account many more factors than Kd. As was found 

in chapter 3, most of the observed variability in solubility prediction depends 

primarily on soil pH, followed by total soil metal content. 
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Sauvé et al (1998) give an example of the influence of pH. They found that the 

pH-dependent solubility of Pb varied from 3.6 µg Pb L-1 at neutral pH to 10400 

µg Pb L-1 under strongly acidic conditions. In order to estimate the influence of 

pH on metal solubility in this thesis, the algorithms used in this study and the 

average soil metal contents from the field work described in chapter 4 were 

used. Increasing the pH from 5 to 7.5 decreases free ion activity of Pb2+, Zn2+ 

and Cu2+ to less than 1% of their respective values at pH 5 when calculated 

using the algorithm from this study and an average total metal concentration. 

 

Using average metal concentrations from field work in chapter 4 and the metal 

solubility algorithms used in this study we can estimate the change in metal 

solubility. An example ‘in-field’ pH variance of one unit (see Figure 5.2) from 

5.5 to 6.5 pH units provides a change that could be expected in the study 

region. The increase in solubility from pH 6.5 to pH 5.5 amounted to 94.4% for 

Cu, 87.8% for Zn and 97.1% for Pb. 

 

The objective of the field work in this chapter was to quantify the different 

sources of variation which arise when an operator takes a soil sample from a 

location and measures pH in order to predict metal solubility - and hence metal 

uptake by plants - in that region. The expected sources of variation can be 

divided into natural spatial variation (as outlined above), experimental artefacts 

caused by primary sampling and those introduced by the laboratory methods. A 

secondary, and more subjective, aim was to investigate at what resolution pH 

data is needed in order to produce metal solubility predictions that are useful 

for the end-user. It is clear from chapter 3 that the G-BASE sampling scale 

misses much of the spatial variability of pH, and therefore variability of metal 

solubility. However, the benefits of sampling pH at a smaller scale may be 

difficult to quantify. Sampling at a smaller scale is more expensive, both in 

terms of time and resources. When undertaking a survey it is important to 

clearly define the aims of the survey in terms of the accuracy of predictions in 

order to decide on the right scale of sampling. The ideal would be to balance 

the needs of the survey with the increasing cost of sampling at greater intensity 

to find the optimum sampling frequency.   
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5.1.5 Location of field study 

 

The study of local (in-field) variability of pH was carried out in an arable field 

under ‘organic’ management, on the University Farm at Bunny, near 

Keyworth, Nottinghamshire (Figure 2.6).  

 

A 200 m × 100 m grid was established with samples taken at 10 m intervals. 

During sampling the soil was extremely wet and it was noticeable that drainage 

conditions varied across the field, with some areas waterlogged. Sampling 

methods are described in §2.3.3. The soil was clay and samples were taken 

from 15 cm deep. 

 

5.2 RESULTS AND DISCUSSION 

 

5.2.1 pH electrode selection 

 

An experiment was undertaken to select the best electrode for the study (see § 

2.1.1.4). There were two aims to the experiment: 

• to determine whether the suspension effect is significant when using a 

standard method for determining the pH of soil aqueous slurries. 

• to select the most appropriate electrode in order to minimise 

uncertainty in the soil pH measurements for the field survey.  

 

Figures 5.4 and 5.5 show the change in recorded pH with time for two soils: Q 

(Pwelliperian) and U (Evesham) from archived control soils used in a previous 

study (Tye et al. 2003, see § 2.1.1.4). Each graph shows the variation in pH for 

the supernatant and the suspended slurry for each soil sample. Most readings 

were stable after 10 to 12 minutes, except for the medium-flow electrode in the 

case of soil Q, which required over 20 minutes to reach an apparent 

equilibrium. The same electrode reached an apparent equilibrium within ten 

minutes for soil U.  

 

In both soils the ‘slow-flow’ electrode was quicker to respond to the pH of the 

soil after insertion into the slurry or supernatant. The ‘slow-flow’ electrode also 
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gave the least difference in pH between the supernatant and the slurry. This is 

most clearly illustrated by the results for soil U. The difference between the 

slurry and supernatant was up to 0.2 pH units with the ‘fast-flow’ electrode, 

and 0.05 with the ‘medium-flow’ electrode, but the ‘slow-flow’ electrode 

produced almost identical readings for the slurry and supernatant. Thus the 

‘slow-flow’ electrode was selected for the pH measurements as it showed a 

minimal difference between suspended slurry and supernatant readings and 

also achieved pH equilibrium most rapidly. 
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Figure 5.4: Chart reader results for soil Q. Each electrode (‘slow-flow’, 

‘medium-flow’ and ‘fast-flow’) was tested twice, with the sub-samples labelled 

as ‘a’ and ‘b’. Each of the above graphs shows the supernatant measurement 

and slurry measurement on a single sub-sample of soil (see §2.1.1.4). 
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Figure 5.5: Chart-reader graphs for soil U. Each electrode (‘slow-flow’, 

‘medium-flow’ and ‘fast-flow’) was tested twice, with the sub-samples labelled 

as ‘a’ and ‘b’. Each of the above graphs shows the supernatant measurement 

and slurry measurement on a single sub-sample of soil (see §2.1.1.4). 
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5.2.2 Results of field sampling 

 

The soil survey at Bunny resulted in a total of 289 top soil pH values, presented 

as a histogram in Figure 5.6. The distribution appears to be approximately 

normal. The mean value was 7.07 with a standard deviation of 0.303. The 

standard error of the 20 duplicate samples was 0.03, which is the same order of 

magnitude as the resolution of the pH meter’s display (0.01). The central two 

thirds of the results fell within a range of 0.6 pH units, which is both two times 

the standard deviation and comparable with the variation across a field that 

would be expected from influences such as management variation. 

 

Figure 5.7 is a box-and-whisker comparison of the results from the whole data 

set compared to the results from the quality control sample (see §2.3.3.2), 

which was tested 29 times. On these schematic plots, the whiskers extend only 

to the most extreme values within the inner “fences”, which are at a distance of 

1.5 times the interquartile range beyond the quartiles. Outliers are plotted with 

green crosses. “Far” outliers (red crosses) lie beyond the outer fences, which 

are at a distance of three times the interquartile range beyond the quartiles. The 

diagram shows one clear outlier, which was removed before statistical analysis. 

 

The mean pH of the control values was 6.90, with a standard error of 0.0105 

and a standard deviation of 0.0558, which is equal to the resolution of the 

recording device (0.01). 
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Soil pH distribution
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Figure 5.6: Histogram of 289 soil pH values at Bunny 

 

 

 
Figure 5.7: Box-and-whisker diagram showing the variation in recorded pH 

for the whole data set and for the control soil from the Bunny study site. 
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Figure 5.8 shows the distribution of the pH values spatially over the area 

sampled within the field. There appear to be some patches of similar pH levels 

in one area, but no real trend.  

 

 
Figure 5.8: Spatial distribution of soil pH values across the study field at 

Bunny. 

 

In order to analyse the spatial variation in more detail a variogram of the field 

was modelled. This was done using Genstat®, in a similar way to the 

variograms of the G-BASE data in chapter 3. A regression analysis involving 

fitting linear and quadratic functions to the data showed that the percentage of 

variance accounted for by these functions was 11.4%. This supports the visual 

observation that there was no obvious trend in the distribution of values.  

 

5.3 SAMPLING UNCERTAINTY AND IMPROVING THE 

VARIOGRAM 

 

5.3.1 Measurement Uncertainty 

 

Measurement uncertainty is an important concept in science and includes not 

only uncertainty arising from chemical analysis but from the sampling 

procedure as well. In the case of environmental and geochemical 

investigations, primary sampling is often the greatest source of uncertainty 

(Ramsey, 1998). Consideration of lab-based procedures alone will potentially 

result in an underestimation of the uncertainty involved. Thus, during the 
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survey at Bunny, additional samples were taken at randomly selected sites 

across the field in order to estimate the sampling uncertainty. The method is 

based on Ramsey (1998) and described in §2.3.3.1.  

 

The terminology used when discussing uncertainty is important. Measurement 

uncertainty has been defined informally as ‘the interval around the result of a 

measurement that contains the true value with a high probability’. This is 

different from the error, which is ‘the result of a measurement minus the true 

value of the measurand’ and contains both a random and systematic 

component. Bias is ‘the difference between the expectation of the test result 

and an accepted reference value’ (Ramsey, 1998).  

 

As discussed in §2.2.3.1 the approach used to determine sampling uncertainty 

requires a single sampler applying a single protocol. This is the most 

straightforward method for estimation of sampling uncertainty; a different 

approach is needed where different protocols or workers are used. In this case 

we had a small team of samplers but under the direction of a single person who 

was present at every sampling event. Duplicate chemical analyses were made 

on both sample duplicates in a balanced design (see Figure 5.9). 

 

 

Sample 1 Sample 2 

Analysis 1 Analysis 2 Analysis 3 

B3 

Analysis 4 

Location B3 
 

 
B3 Dup  

 

 

 B3 a B3 b B3 Dup b B3 Dup a 

Figure 5.9: Balanced design for duplicate sampling, including example sample 

labels. 

 

An important aspect in estimating the sampling uncertainty concerns the 

sampling protocol for the duplicate samples. In this case the grid was carefully 

measured out so the duplicate samples were taken by rotating the quadrat 

through 45º while still centred on the same spot, as shown in Figure 5.10. 
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Sample Duplicate 

 

Figure 5.10: Orientation of sample and duplicate sample for sampling 

uncertainty analysis. The X marks are the locations of the 5 sub-samples taken 

within the 1 m square sampling support and aggregated to form a single 

sample. 

 

5.3.2 Results of the Uncertainty Analysis 

 

The principle behind measurement uncertainty is described in more detail in 

§2.3.3.1. The three components of the variability (sampling, analysis and 

geochemical) can be separated using classical analysis of variance. However, 

classical ANOVA is strongly affected by outliers, and Ramsey (1998) has 

described a programme to carry out a robust analysis of variance 

(ROBCOOP4, which is available from the JAAS website: 

http://www.rsc.org/jaas). The program also calculates the classical ANOVA as 

a comparison. The results are shown in Table 5.2. 
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Classical ANOVA Mean = 7.01  

 Geochemical Sampling analysis 

Sums of Squares 6.73  0.113 0.0759 

Sigma Values 0.295     0.043     0.044 

Percent Variance 95.8      2.07      2.09 

Sigma total 0.301 

    

Robust ANOVA Mean = 7.01  

 Geochemical Sampling analysis 

Sigma Values 0.335     0.045     0.042 

Percent Variance 96.8     1.71      1.52 

Sigma total 0.341 

 

Table 5.2: Output of ROBCOOP4 programme showing classical and robust 

ANOVA results. 

 

For the data from Bunny, the results of the classical and robust ANOVAs are 

very similar. The data do not have any obvious outliers, possibly due to 

samples being collected over a relatively small area and the fact that the field 

has uniform management and may have been homogenised due to ploughing. 

The data is also not excessively skewed (with a skewness of 0.23). It was 

decided, therefore, to use the classical ANOVA results. 

 

Sampling variance (s2
samp) and analytical variance (s2

anal) can be classed as 

measurement uncertainty. The third component is geochemical variance 

(s2
geochem) and is the between-location variance due to real variation of the 

analyte across the target. The three components can be summed to give the 

total variance, which is the same as the standard deviation of all the 

measurements. 

 

The measurement uncertainty (u) can be estimated from the combination of the 

sampling and analytical variance: 

 

 u = smeas = √(s2
samp + s2

anal) 
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For this data, the total variance of the survey was 0.301 pH units, of which 

96%  (0.295 pH units) was due to geochemical uncertainty, 2% (0.043 pH 

units) is due to sampling uncertainty and 2% (0.044 pH units) due to analytical 

uncertainty. The measurement uncertainty was 0.295 pH units. 

 

Ramsey (1998) suggests a fitness-for-purpose criterion to help decide whether 

or not a method can be improved. First the sampling variance should not 

contribute more than 4% to the total variance (2% in this case). Secondly, the 

analytical variance should not exceed 20% of the measurement uncertainty, if 

the measurement component is not to be limited by the analytical component 

(50% in this case). Finally the measurement variance should contribute less 

than 20% to the total variance if the measurements are to give a clear 

representation of the true variation of the analyte across the sampling target. In 

this case the measurement variance contributed 4.16% to the total, which is 

well below the recommended threshold. 

 

The only aspect of the above analysis that would benefit from any 

improvement is the analytical variation. The method used was intended to 

minimise variation as much as possible. It appears that the analytical variance 

is therefore close to the point at which significantly more effort would be 

required to reduce the variance. 

 

5.3.3 The Variogram 

 

The variogram is modelled in the same way as those in Chapter 3, but in this 

situation we have extra information from the uncertainty analysis that can be 

included to refine the variogram. The nugget variance represents the 

unresolved error due to analytical error and natural variation at spatial scales 

less than the smallest sampling interval. This equates to the analytical variance, 

which is calculated by squaring the analysis sigma value from the ANOVA 

(0.044). This gives a nugget value of 1.94 × 10-3. The duplicate variance can be 

calculated from the sampling sigma value squared plus the analysis sigma 

value squared (0.0432 + 0.0442) which equals 3.87 × 10-3. This has a spatial 

component – the distance that the duplicate sample was from the original 

 



Chapter 5  126 

location. In this case we have plotted it on the variogram at 1 m as this is the 

maximum separation distance between the duplicate samples (see Figure 5.15). 

 

GenStat® does not have the facility to input a chosen nugget value, but by 

setting the data up in Excel, and using the optimisation tool ‘Solver’ to find the 

optimum sill and range, the variogram in Figure 5.11 was created.  
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Nugget = 0.00194 
Sill = 0.10 
Range = 34.9 

Figure 5.11: Improved variogram of pH at Bunny. Spherical model, with a 

fitted nugget and the semivariance at 1m added. 

 

 
5.4 INTER-LABORATORY TRIAL 

 

In order to further examine the errors introduced at the laboratory stage of a 

sampling campaign, samples of the quality control sample (5H) were sent to 11 

laboratories within the U.K. to be measured using their own standard 

procedures. The only stipulation was that the same ratio of soil to deionised 

water be used (1:2.5) to suspend the soil for pH assay. The reason for this 

approach was that the solid:solution ratio and the suspending solution 

employed are usually the only pieces of information offered in ‘Materials and 
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methods’ sections of scientific papers.  The methods used by individual 

laboratories, and their results, are shown in Table 5.3 and Figure 5.12.  

 

Laboratory result shake 
time stand time electrode 

position 
stabilising 

time standards? 

A 
6.86 15 mins 2 and 24 hrs* 

settling 
suspension until stable no 

B 
6.90 mix 20 mins 

settling 
suspension 5 mins no 

C 6.76 mix ? Slurry until stable 4 
D 6.48 1 mix 14 mins Slurry until stable 1 
E 7.08 1 min 15 mins Slurry until stable 2 
F 6.80 5 min 2 hrs Slurry until stable no 
G 6.80 mix 30 mins Slurry until stable no 
H 6.61 15 mins 0 Slurry 60s no 
I 6.92 stirred 0 Supernatant until stable buffer check 
J 6.75 mix (X2) 60 mins Slurry 30s no 

K 
7.02 30 mins 30 mins Slurry until stable 

no - many 
repeat tests 

L 
6.90 1 hr 0 

settling 
suspension 6mins 

no - many 
repeat tests 

 

Table 5.3: pH value of soil 5H determined in the inter-laboratory trial with 

differences in methodology shown. The 12 participating institutions (in 

alphabetical order) were: BGS (British Geological Survey) ‘U-block’, BGS ‘E-

block’, CEH (Centre of Hydrology and Hydrology), The University of 

Edinburgh, The University of Glasgow, IGER (Institute of Grassland and 

Environmental Research), Lancaster University, The University of Newcastle, 

Rothamsted Research Station, NSRI (National Soil Resources Institute), The 

University of Reading and The University of Nottingham (the results from the 

‘control’ soil). 
*The result for this soil was obtained by averaging two measurements taken from the same 

suspension 22 hours apart. 
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Figure 5.12: pH value of soil 5H determined in the inter-laboratory trial 

including the mean result. 

 

The institutions are labelled with letters for confidentiality, but the result from 

our measurement of the control soil is labelled ‘L’. In our laboratory, 29 

measurements were made, with one outlier removed, leaving the average of 28 

measurements as pH 6.90. Table 5.4 compares the statistics of the inter- and 

intra-lab data. The average of the inter-lab data was slightly lower than the 

intra-lab results, and the range, standard error, and standard deviation were 

higher. The intra-lab mean was within 1.6 standard errors of the mean of the 

inter-lab trial results suggesting that the method used for the Bunny survey (§ 

2.1.1.5) was successful in achieving a reliable pH measurement. 

 
Data Mean Standard Error Standard Deviation Range 

Inter-lab 6.82 0.05 0.17 0.60 

Intra-lab 6.90 0.01 0.06 0.25 

Table 5.4: Comparison of statistics for the inter- and intra-lab data. 

 

Figure 5.13 is a histogram of the results of the inter and intra-lab data together 

and illustrates the greater variation in the inter-lab data suggested by the larger 

range and standard deviation. It seems reasonable to expect results from a 

number of laboratories to be more variable than results from a single 

institution. The intra-lab results were produced by just two operators, and 
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although the results were measured over a period of a few weeks, they were 

carried out on the same equipment in the same location. Differences in method, 

temperature, or CO2 pressure at different locations could give rise to systematic 

errors, contributing to the higher variation in the inter-lab results. There was no 

obvious link between the results and any of the operational variables listed in 

Table 5.3. In particular there was no link between the values obtained and 

equilibration time. The most likely cause of variation is the different electrodes 

used by different institutions. The results in §5.2.1 show a variation in results 

from using different electrodes from the same manufacturer. The comparison 

suggests that the method used at Nottingham minimised as much variation as 

possible. 
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Figure 5.13: Histograms of data from the inter- and intra- laboratory trials. 
 

 
 
5.5 COMPARISON WITH OTHER FIELD STUDIES 

 

Two other field studies of pH, carried out on a similar sample grid were found 

in the literature. Silva et al (2003) studied a field in Portugal, and Vieira and 

Gonzalez (2003) studied a field in São Paulo State, Brazil. The majority of 

other soil pH studies appear to have been carried out on a larger scale. Vieira 

and Gonzalez used the same 10 m grid as the Bunny study, but collected only 

81 samples. Silva et al used a 6 m grid and collected 192 samples. All three 
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studies found the spherical model to be the best fit for the variogram. The 

parameters for the fitted models are shown in Table 5.5, and the three 

variograms are compared in Figure 5.14. 

 

 Variogram Range Sill Nugget Interval 

Vieira 41.9 m 0.1 0.08 10 m 

Silva 18.6 m 0.018 0.002 6 m 

Bunny 34.9 m 0.10 0.002 10 m 

 

 

 

 

Table 5.5: Model parameters of the three variograms – all using the spherical 

model. 
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Figure 5.14: pH variograms for Bunny (this study), Portugal (Silva) and Brazil 

(Vieira). All variograms use the spherical model.   

 

It is very difficult to compare the properties of soils of different types in 

different locations because of the heterogeneous nature of soil. The different 

variances are related not only to different natural properties, but also differing 

land management practices. However, it is quite interesting to note that the 
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parameters are reasonably similar. The larger nugget in the Vieira case 

indicates a greater amount of unresolved error, showing that samples at a 

smaller lag distance as in the Silva case and at Bunny resolve more of the 

variance at short (<10 m) spatial scales. 

 

Another field study of pH was reported by Webster and Oliver (2001), where a 

field survey of pH was carried out at Broom’s Barn Farm. Samples were taken 

on a 1 m grid; the variogram is shown in Figure 5.15. The range was 272 m, 

the sill 0.382 and the nugget was zero. 

 

The Broom’s Barn data has been plotted on a separate graph to the other 

examples as the range is much larger in this case. Broom’s Barn shows how 

different soil type, land management and sample interval can have a dramatic 

effect on the resulting variogram. The three variograms in Figure 5.15 are 

reasonably similar given their different geographical locations, whereas the 

Broom’s Barn variogram has a much larger range. 
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Figure 5.15: Variogram of pH at Broom’s Barn Farm. The points are the 

experimental semivariances, and the solid line is the best fitting exponential 

model; the parameters of which are shown in Table 5.6 (Webster and Oliver 

2001). 
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5.6 SIMULATION EXPERIMENTS 

 

5.6.1 Simulation of G-BASE sampling protocol 

 

The survey at Bunny was conducted on a sample support of 1 m at 10 m 

intervals across the field. The G-BASE sample support is 20 m, at a resolution 

of one sample every 1-2 kilometre squared of land surface, so a maximum of 

one sample in a field is obtained. The aim of sampling using the G-BASE 

protocol (based on five bulked samples – the outcome being that the variance is 

reduced) is to obtain an average value for the area, averaging out any “hot 

spots” of anomalously high or low values. Using the 10 m grid of the Bunny 

survey, it is easy to simulate taking a G-BASE sample in the field at Bunny, 

using the standard 20 m sampling support. Multiple alternative G-BASE values 

were simulated by repeatedly averaging the pH value from the four corners and 

the centre of a 20 m square superimposed on the 10 m Bunny data (see Figure 

5.16). 

 

 

Bunny Sample point 

G-BASE sample point 

 

 

 

 

Figure 5.16: diagram showing a simulated G-BASE sample using the Bunny 

survey. The red circles of the G-BASE samples together constitute the sample 

support used under G-BASE and give a single aggregated sample.  

 

The template for the G-BASE simulation can then be moved across the entire 

field, and in this way all possible G-BASE sampling simulations are calculated. 

Figure 5.17 shows a histogram of the Bunny data and the G-BASE simulation 

data for the field. Table 5.6 shows the statistical analysis of this exercise. 
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Figure 5.17: Histogram of pH values for Bunny data and repeatedly simulated 

G-BASE sampling. 

 

Bunny 
data 

G-BASE 
simulation

Mean 7.11 7.09
Standard Error 0.02 0.02
Standard Deviation 0.31 0.21
Range 1.65 1.03

 

Table 5.6: Summary statistics for the Bunny data and simulated G-BASE data. 

 

The averaging process imposed by the G-BASE sampling protocol results in 

the high and low values being lost. The range is reduced from 1.65 to 1.03 pH 

units. The mean value is also reduced slightly, indicating that some outliers 

may exist in the original data. This experiment shows that the G-BASE 

sampling protocol serves its purpose in achieving a representative sample of 

the area by bulking samples from a large (20 m) support, as the distributions 

are very similar. However, it also shows that for situations where the pH is an 

important factor, the G-BASE protocol will miss much of the short scale 
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spatial variation and the high and low values are removed by bulking the 

samples. Ninety per cent of the G-BASE simulated values fall within the mean 

± 1 standard deviation of the mean of field values. The mean of the absolute 

difference between each G-BASE simulation and the mean value of the 

measurements for the whole field was 0.169 pH units. This means that, on 

average, a G-BASE simulation picked at random will be within 0.2 pH units of 

the “real” field mean. 

 

5.6.2 Simulation of wheat uptake of zinc and cadmium 

 

The amount of Zn and Cd that could be taken up into wheat can be predicted 

using a similar algorithm to the solubility algorithm. The approach used here is 

a development of that used by Hough et al (2003) and applied to a large wheat 

grain data set by Morales Scott et al as part of ongoing research in the School 

of Biosciences at the University of Nottingham. Cd is used because wheat 

uptake algorithms for Pb and Cu had not yet been obtained. The wheat uptake 

of Cd and Zn was simulated using Equation 5.2 and measured pH values, 

estimated organic carbon content and the maximum permissible concentrations 

of Cd and Zn in soil after application of sewage sludge to agricultural land 

(MAFF, 1998). The sludge limits were used because increasing amounts of 

sewage sludge is being disposed of by application to arable land (see §1.1). 

The appropriate parameters are shown in Table 5.7. Figures 5.18 and 5.19 

show histograms for simulated Cd and Zn uptake by wheat for the site at 

Bunny, and Table 5.8 shows the summary statistics. 
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 a b c Msoil

Zn 1.168 0.121 0.343 200 mg/kg 

Cd 0.284 0.341 0.532 3 mg/kg 

 

Table 5.7: Parameters for the wheat uptake algorithm (Equation 5.2). a, b and 

c are constants. 
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Figure 5.18: Histogram of wheat grain Cd content at Bunny using the sludge 

soil application limit for Cd. Values calculated for the Bunny data set and for 

the simulated G-BASE samples are shown. 
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Figure 5.19: Histogram of wheat grain Zn content at Bunny using the sludge 

soil application limit for Zn. Values calculated for the Bunny data set and for 

the simulated G-BASE samples are shown. 

 
 Cd concentration 
in wheat grain 
(mg kg-1) from 
Bunny data set 

Cd concentration 
in wheat grain 
(mg kg-1) from G-
BASE data set 

Zn concentration 
in wheat grain 
(mg kg-1) from 
Bunny data set 

Zn concentration 
in wheat grain 
(mg kg-1) from G-
BASE data set 

Mean 0.086 0.087 41.84 42.07
Standard Error 0.002 0.001 0.26 0.20
Standard Deviation 0.022 0.014 3.67 2.39
Range 0.121 0.069 19.63 11.94
Minimum 0.046 0.056 36.18 33.67
Maximum 0.167 0.125 48.12 52.29
 

Table 5.8: Summary statistics for modelled Cd and Zn uptake by wheat. 

 

There are no specific regulations on the maximum concentrations of Zn 

permitted in food. However, in 1953 the Food Standards Committee set a 

guideline for the UK of 50 mg kg-1 in foods (Expert group on Vitamins and 

Minerals, 2002). Only two of the 200 sample points create a value above 50 mg 

kg-1 in this situation, and the mean Zn concentration in the wheat grains was 42 

mg kg-1, which is below the guideline.  

 

The Food Standards Agency set a maximum of 0.24 mg kg-1 of Cd in wheat 

(dry weight basis). All of the sample points yield lower values than this, with 
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the average across the field being 0.086 mg kg-1. The distribution is skewed 

towards the lower values of Cd in grain. This suggests that if the field at Bunny 

was used for sludge disposal, any wheat grown there would be fit for 

consumption. 

 

The mean simulated uptake for the field could be calculated in two ways. First 

is to calculate the uptake at each sample point across the field and calculate the 

mean. Second is to use the mean pH for the field and calculate a single uptake 

value. The difference in these approaches is insignificant, with the second 

approach producing a lower value for Zn and Cd uptake, being 97% of the first 

approach for Cd and 99.6% for Zn. 

 

As with pH, wheat uptake based on G-BASE simulations produced a smaller 

range for both Zn and Cd than wheat uptake from the full Bunny data set. 

 

5.6.3 Simulated metal solubility at Bunny 

 

The metal solubility algorithms (§3.1.2) were used with estimated metal 

concentrations to simulate the variation in metal solubility across the field site 

at Bunny. Concentrations used were 200 mg Zn kg-1 (maximum permissible 

concentration in soil after application of sewage sludge, MAFF, 1998), 112 mg 

Pb kg-1 and 34 mg Cu kg-1 (typical values from Westphalian sub-set of G-

BASE). Figures 5.20, 5.21 and 5.22 show the distribution of metal solubility 

values for the entire data set and for the simulated G-BASE samples described 

in §5.6.1. Table 5.9 shows the statistics for each metal. 
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Figure 5.20: Estimated free (Pb2+) ion activity at the Bunny field site derived 

from the full topsoil pH data set and simulated G-BASE sample values. 
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Figure 5.21: Estimated free (Cu2+) ion activity at the Bunny field site derived 

from the full topsoil pH data set and simulated G-BASE sample values. 
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Figure 5.22: Estimated free (Zn2+) ion activity at the Bunny field site derived 

from the full topsoil pH data set and simulated G-BASE sample values. 

 

 
Pb Field Simulated G-BASE Using mean pH 
Mean 2.51 × 10-7 2.63 × 10-7 1.37 × 10-7

Standard Deviation 3.53 × 10-7 2.12 × 10-7  
Skew 4.28 1.87  
Range 3.12 × 10-6 1.04 × 10-6  
 
Cu Field Simulated G-BASE Using mean pH 
Mean 0.00013 0.00013 8.64 × 10-5

Standard Deviation 0.00013 8.06 × 10-5  
Skew 3.08 1.47  
Range 0.0010 0.00038  
 

 

 
 

 

Zn Field Simulated G-BASE Using mean pH 
Mean 0.00045 0.00047 0.00038 
Standard Deviation 0.00029 0.00019  
Skew 1.87 0.99  
Range 0.00196 0.0009  

Table 5.9: Pb, Cu and Zn free metal ion activity using an estimated metal 

concentration across the field for the full Bunny data set (Field) and at 

simulated G-BASE points. The value obtained by using the mean pH value is 

also shown. 
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As with the simulated G-BASE pH values, the G-BASE solubility values have 

a smaller range, smaller skewness but similar mean value. Interestingly, using 

the mean pH value across the field gives a lower mean free metal ion activity 

for all three metals. 

 

5.7 CHAPTER SUMMARY 

 

The survey at Bunny was carried out because variograms of the Westphalian 

region based on G-BASE data suggests that the scale of the G-BASE project 

‘misses’ much of the spatial variability. Analysis of the solubility algorithm 

also shows that pH contributes the greatest amount of uncertainty to 

predictions. 

 

The literature shows that spatial variation of pH is caused by many factors over 

a range of scales. At a field-scale the most important processes that might be 

causing variation are urine patches, fertiliser, lime application and drainage. 

All these factors also lead to variation in free metal ion activity in the pore 

water. 

 

220 soil samples were collected, resulting in 289 pH values. Variation in 

measurements across the field was comparable with variation that could be 

expected from management practices. Quality control measurements showed a 

standard deviation equal to the resolution of the recording device, indicating 

accurate, consistent measurements. Spatial distribution of pH across the field 

showed no real trend. 

 

Measurement uncertainty analysis was used to assess the field and laboratory 

methods. The only area outside the parameters recommended by Ramsey 

(1998) was analytical variance. This was an area which I worked hard to 

minimise, testing the electrodes and the technique before-hand and being as 

consistent with the method as possible. The inter-laboratory trial supports the 

view that variation was indeed minimised as much as possible. The intra-

laboratory mean was within 1.6 standard errors of mean of the inter-laboratory 

trial.  
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Results from the analysis of measurement uncertainty were incorporated into 

the variogram, using the analytical variance as the nugget and the duplicate 

variance at a 1 m lag interval (being the maximum distance of separation 

between samples and their duplicates). 

 

Three other field studies of pH were compared. Two were sampled on a similar 

grid to Bunny (10 m) with one on a 10 m grid and one on a 6 m grid. A third 

was taken on a 1 m grid. The two on similar grids were surprisingly similar to 

the variogram at Bunny, considering the variations in soil types, land use and 

management that potentially exist. The study on a 1 m grid showed a very 

different range – 272 m, compared to 18 to 42 m for the Bunny site and the 

other published variograms.  

 

Previous work in the thesis was conducted on G-BASE data, and G-BASE 

samples can be simulated from the 10 m × 10 m Bunny sampling grid. All 

potential G-BASE simulations were calculated across the field and showed that 

the mean and range of values were reduced – indicating that outliers are 

‘smoothed’ by using the G-BASE protocol. On average the absolute difference 

between each G-BASE simulation and the mean original value was 0.169 pH 

units showing that, on average, a random G-BASE simulation picked to 

represent the field will be similar to the mean for the entire field. This 

illustrates that the G-BASE procedure gives an accurate estimation of the mean 

for a given field even though the scale of the G-BASE survey might miss the 

small-scale variation within fields. 

 

Wheat uptake of Zn and Cd were estimated for both the original full Bunny 

data set and simulated G-BASE values. Results suggest that if the field was 

used for sludge disposal, wheat grown would be safe for consumption at 

topsoil metal concentrations equivalent to the sludge regulations limits. As 

with pH, the wheat uptake estimations from simulated G-BASE values had a 

smaller range than the original values. The mean of the G-BASE simulations 

are slightly higher than the mean of all the samples, see Table 5.10. Metal 

solubility for Pb, Cu and Zn showed the same patterns as wheat uptake and pH. 
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 Cd Zn 
Full Bunny Data set 0.086 41.8 
G-BASE  simulation mean 0.087 42.1 
 
Table 5.10 Mean wheat grain concentrations of Cd and Zn from the full Bunny 

data set and the simulated G-BASE samples. 
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6. CONCLUSIONS 
 

6.1 THESIS SUMMARY 

 

The preliminary investigation of the G-BASE data in the Humber-Trent region 

found that variograms of total soil metal concentrations (Pb, Zn, Cu) based 

over distinct soil parent materials had different properties in terms of the range 

of autocorrelation and sill variance. This is similar to the findings of Webster 

(2000) who showed that variograms for different classes of soil on the Jurassic 

outcrops of central England differed substantially. This suggests that more 

accurate estimates of soil properties can be obtained from geostatistical 

analysis on samples from a single parent material. Hence a subset of the soil 

data from the Humber-Trent region over a single parent material was chosen 

and for this study the raw data (pH and Pb, Cu and Zn concentration) was 

kriged. The particular area chosen was selected because it was predicted that 

metal concentrations in the soil solution would be detectable in the region. The 

uncertainty on the kriged results for Pb, Cu and Zn was reasonable (mean 

values were 29% for Pb, 11% for Cu, 20% for Zn), as was the uncertainty on 

pH estimates (mean of 15%). The kriging and mapping of Pb revealed a strong 

spatial trend in Pb concentration with high values in the west and lower values 

in the east. This is possibly owing to historical lead mining and smelting in the 

Peak District which is to the west of the area studied. When the metal 

solubility algorithm was applied to the G-BASE data and kriged, the 

uncertainty on the metal solubility predictions were extremely high (mean 

values were 188% for Pb, 417% for Cu and 153% for Zn). A Monte Carlo 

analysis showed that pH contributes the greatest amount of uncertainty in the 

algorithm, and it is also the parameter with the highest nugget value in the 

variogram indicating that the sampling resolution might not have captured a 

large part of the short-scale spatial variation.  

 

Given the high uncertainty on the kriged solubility predictions, G-BASE 

sample sites were re-sampled in order to test the solubility algorithm on in situ 

soil solutions. The metal concentration results showed that it is extremely 
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difficult to re-sample points that were located using triangulation. In future this 

should become less of a problem owing to the increased use of GPS which 

increases the accuracy of the recorded location in soil geochemical surveys. 

The prediction of Zn solubility at the re-sampled G-BASE site was 

investigated. A lability of 48% was assumed (the average lability of the 

original model data-set). Zinc solubility was measured at the sample sites and 

also predicted using the model. The algorithm predictions match well with the 

measured solubility, with an average difference of 6%. Although the new and 

original G-BASE locations are essentially separate sites owing to the 

uncertainty of relocation, using G-BASE data to predict p(Zn2+) only increases 

the average difference between prediction and measurement to 8%. These 

values are accurate and show that for point data the algorithm provides 

effective predictions of metal solubility. It is the spatial interpolation of the 

data that causes uncertainty rather than the model or the raw data set..  

 

It is interesting to note that the difference in solubility predictions using the 

new sample sites and G-BASE data are very similar despite essentially being 

separate sites. This suggests that using a single solubility value for an area 

might be more feasible than the spatial variability of pH would suggest.  

 

The field-scale study of the spatial variability of soil pH showed that pH is the 

most spatially variable parameter of the solubility algorithm and is potentially 

influenced by many factors (urine patches, ammonium fertiliser application, 

liming, time and drainage – see §5.1.2). The variogram of soil pH across a 

single field showed that there is spatial variability even at a small scale 

(metres). This suggests that more information on the pH spatial distribution 

might be helpful when mapping metal solubility. An uncertainty analysis 

showed that even under the well controlled conditions of the sampling 

programme, the analytical variance of pH accounted for 50% of the 

measurement uncertainty. Ramsey (1997) suggests that for a method to be fit-

for-purpose this should be less than 20%. This shows that the analysis of soil 

pH is a major factor in solubility prediction uncertainty. An inter-laboratory 

trial was also conducted and showed greater variation than the results recorded 

at Nottingham, which is to be expected. The Nottingham results were very 
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close to the average of the inter-laboratory trial, suggesting that the results 

from the Nottingham laboratory were reliable. 

 

Chapter 3 showed that the main influence on metal solubility is pH. Chapter 5 

showed that pH is the most spatially variable parameter in the prediction of 

metal solubility. It therefore seems reasonable to assume that solubility would 

vary as pH varies across an area and that it would therefore be spatially 

variable. However, the findings from chapter 4 seem to indicate that solubility 

might not be as spatially variable as chapter 3 would suggest. In summary, 

Zn2+ was measured in soil by returning to selected G-BASE locations. Zn2+ 

was then predicted both from the resampled G-BASE sites and the historical 

G-BASE samples. The new sample cannot be said to be at the same location 

owing to difficulties in relocation. The difference between measured values 

and new predictions is 6%, and the difference between measured values and 

the historical G-BASE site predictions is 8%, suggesting that a single 

prediction of solubility for a field might be more appropriate than previously 

thought. 

 

The field study also showed that the G-BASE sampling protocol achieves its 

aim of collecting a representative sample of the field. There is little difference 

between using average values for a field to predict the amount taken up by 

wheat and predicting wheat uptake at points before averaging. As grain is 

bulked at harvest this means either approach would be valid. However, for 

discreet crops such as cabbage or carrots, uptake at points will be more 

important as hotspots will not be diluted by mixing. 

 

6.2 THESIS CONCLUSIONS 

 

Although the solubility algorithm is fairly accurate, kriging the data to predict 

solubility at a smaller scale introduces large errors (mean values were 188% 

for Pb, 417% for Cu and 153% for Zn). This thesis has established that this 

uncertainty arises from a number of sources. Firstly the algorithm itself 

introduces uncertainty, with the parameter for pH introducing the most 

(percentage contribution to the variance for pH was 75% for Pb, 54% for Zn 
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and 49% for Cu, see §3.4.2.2). Secondly uncertainty is introduced in the 

‘sampling error’ owing to small scale geochemical variation and the 

uncertainty of returning to the location specified (Ramsey et al., 1997). A third 

source is ‘measurement error’ in the laboratory, specifically methods used to 

measure pH and metal concentration. The pH field study showed that for pH 

this was 50%, when the suggested maximum for fitness-for-purpose is 20%. 

This is despite tight control over sampling and analysis. The final source of 

error arises from kriging the data to estimate values at locations between 

existing data points to give values at shorter intervals of separation.  

 

The pH field study demonstrated that for the purposes of estimating the 

amount of metal that could be taken up by food crops, a single solubility value 

for the field would be appropriate for grain crops as these are bulked at harvest 

so any hot spots would be averaged out. A different approach might be needed 

for discrete crops. From this research, solubility prediction at points is good, 

but interpolation of that data introduces high errors of between 153 and 417%. 

This level of uncertainty means it is difficult to have confidence in the 

predictions, which limits their usefulness. In ideal circumstances the points in a 

geochemical survey will be located in the fields where a prediction of 

solubility is required, and the algorithm can be applied. Where points are not 

ideally located further sampling might be required. 

 

6.3 SUGGESTIONS FOR FURTHER WORK 

 

It would be interesting to investigate the uncertainties on solubility predictions 

made by kriging the raw data to a finer grid before applying the algorithm (as 

opposed to applying the algorithm at G-BASE points and then kriging the 

solubility predictions). The decision was made to krige after predicting 

solubility as it was assumed that kriging once would introduce less uncertainty 

than kriging twice. However, owing to the high uncertainties created using this 

method it would be worthwhile to investigate an alternative way of predicting 

solubility at a finer scale. 
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The trend in the lead concentration could be investigated to determine the 

origins. It is an interesting finding as no other metals exhibit the same regional 

trend. Lead isotope analyses of the soil samples could be used to determine if 

the lead was derived from the mining industry in the peak district. 

 

A field study measuring both Zn2+ in soil solution and pH in more detail across 

an area would provide more insight into the ideal level at which predictions of 

solubility should be made and the correlation between pH and solubility. A 

compromise between resolution and uncertainty will have to be made. 

 

Measurement of Zn lability in the soil samples taken for the large-scale field 

work would allow a more accurate prediction of Zn solubility. The algorithm 

and WHAM could also be applied to Pb and Cu to examine whether these 

metals show the same tendencies as Zn. 
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APPENDIX I 
 
Example program for creation of a variogram using GenStat® 
 
job 'Analysis of Zn data' 
 
variate  xx, yy, zn 
 
" Open file of data " 
" All data are assumed to be in this file " 
open 'WEST_zn.txt'; channel=2 
 
" Now read the numeric data " 
read [channel=2; setnvalues=y; skip=*]  \ 
       xx, yy, k 
 
" Descriptive statistics " 
describe [select=nval,mean,median,skew,var,sd] k 
 
" This section carries out a trend surface analysis" 
calc xmin=min(xx) 
calc ymin=min(yy) 
 
calc x=xx-xmin 
calc y=yy-ymin 
 
calc xy=x*y 
calc x2=x*x 
calc y2=y*y 
model k;\ 
residuals=r; fittedvalues=f 
terms x,y,x2,xy,y2,k 
fit x,y,x2,y2,xy 
 
"Use this section to remove trend if necessary" 
"calc k=k-f 
describe [select=nval,mean,median,skew,var,sd] k" 
 
dgraph y=r;x=x 
dgraph y=r;x=y 
 
scalar  zbar, zsd, zvar 
 
VARIATE    [VALUES=0] Angles 
&          [VALUES=180] Segments 
 
    calc zz=k 
    calc zbar = mean(zz) 
    calc zvar = var(zz) 
    calc zsd = sqrt(zvar) 
    print zbar, zvar, zsd 
 
" This section forms the experimental variogram. Step and Xmax can be 
altered to improve fit" 
 
    FVARIOGRAM [PRINT=statistics; Y=yy; X=xx; STEP=1800;  
XMAX=18000; \ 
           DIRECTIONS=Angles; SEGMENTS=Segments] \ 
           zz; VARIOGRAM=zzk; COUNTS=zcounts; DISTANCES=Midpoints 
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    variate Vgram [#Angles],Lag [#Angles}, Count [#Angles} 
    Calculate  Vgram [ ] = zzk$  [*; 1] 
    &                   Lag [ ]  = Midpoints$ [*; 1] 
    &                    Count [ ] = zcounts$ [*;1] 
    print  Lag [0], Vgram[0], Count [0]  
 
    calc bot=0.0 
    axes 1; ylower=bot; xlower=0 
    pen 1...4; colour=1; symbol=1...4 
device 1 
graph [nrows=15;ncolumns=40;ylower=bot] Vgram[ ]; Lag[ ]  
dgraph Vgram [ ]; Lag [ ]; Pen=1 
 
"the for-loop fits models to the data and produces a measure of fit for each" 
 
FOR Mod='SPHERICAL' ,'EXPONENTIAL', 'DOUBLESPHERICAL'  
  MVARIOGRAM [MODEL=#Mod; PRINT=model,summary,estimates; \ 
     WEIGHTING=cbyvar; WINDOW=1; TITLE=Mod; XUPPER=25000] \ 
             zzk; COUNTS=zcounts; DISTANCES=Midpoints 
ENDFOR 
 
stop 
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APPENDIX II 
 
GenStat® output from file shown in Appendix I 
 
 
13  job 'Analysis of Zn data' 
  14   
  15  variate  xx, yy, zn 
  16   
  17  " Open file of data " 
  18  " All data are assumed to be in this file " 
  19  open 'WEST_zn.txt'; channel=2 
  20   
  21  " Now read the numeric data " 
  22  read [channel=2; setnvalues=y; skip=*]  \ 
  23         xx, yy, k 
  
    Identifier   Minimum      Mean   Maximum    Values   Missing 
            xx    423810    440542    453180       405         0 
            yy    345210    376136    400350       405         0 
             k     10.00     111.5     289.0       405         0 
  
  24   
  25  " Descriptive statistics " 
  26  describe [select=nval,mean,median,skew,var,sd] k 
  
  
 Summary statistics for k 
  
            Number of values = 405 
                        Mean = 111.5 
                      Median = 106.0 
          Standard deviation = 40.1 
                    Variance = 1607.7 
                    Skewness = 1.0 
  27   
  28  " This section carries out a trend surface analysis" 
  29  calc xmin=min(xx) 
  30  calc ymin=min(yy) 
  31   
  32  calc x=xx-xmin 
  33  calc y=yy-ymin 
  34   
  35  calc xy=x*y 
  36  calc x2=x*x 
  37  calc y2=y*y 
  38  model k;\ 
  39  residuals=r; fittedvalues=f 
  40  terms x,y,x2,xy,y2,k 
  41  fit x,y,x2,y2,xy 
  
41.............................................................. 
  
  
***** Regression Analysis ***** 
  
 Response variate: k 
     Fitted terms: Constant, x, y, x2, y2, xy 
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*** Summary of analysis *** 
  
              d.f.         s.s.         m.s.      v.r. 
Regression       5       48877.        9775.      6.49 
Residual       399      600628.        1505. 
Total          404      649505.        1608. 
  
Percentage variance accounted for 6.4 
Standard error of observations is estimated to be 38.8 
* MESSAGE: The following units have large standardized 
residuals: 
         Unit     Response    Residual 
            1        289.0        4.70 
            2        257.0        3.55 
            3        255.0        3.47 
            4        253.0        3.45 
            5        246.0        3.70 
            6        230.0        4.00 
            7        229.0        3.74 
* MESSAGE: The error variance does not appear to be constant: 
           large responses are less variable than small 
responses 
* MESSAGE: The following units have high leverage: 
         Unit     Response    Leverage 
            6        230.0       0.056 
           24        187.0       0.065 
          184        109.0       0.049 
          194        107.0       0.046 
          251         99.0       0.046 
          287         93.0       0.162 
          374         68.0       0.051 
          402         18.0       0.062 
          405         10.0       0.046 
  
  
*** Estimates of parameters *** 
  
                  estimate         s.e.    t(399) 
Constant               3.8         24.5      0.15 
x                  0.01069      0.00203      5.26 
y                 0.001025     0.000766      1.34 
x2               -2.32E-07     5.38E-08     -4.31 
y2                5.18E-09     8.58E-09      0.60 
xy               -7.17E-08     2.50E-08     -2.87 
  
  42   
  43  "Use this section to remove trend if necessary" 
  44  "calc k=k-f 
 -45  describe [select=nval,mean,median,skew,var,sd] k" 
  46   
  47  dgraph y=r;x=x 
  48  dgraph y=r;x=y 
  49   
  50  scalar  zbar, zsd, zvar 
  51   
  52  VARIATE    [VALUES=0] Angles 
  53  &          [VALUES=180] Segments 
  54   
  55      calc zz=k 
  56      calc zbar = mean(zz) 
  57      calc zvar = var(zz) 
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  58      calc zsd = sqrt(zvar) 
  59      print zbar, zvar, zsd 
  
        zbar        zvar         zsd 
       111.5        1608       40.10 
  
  60   
  61  " This section forms the experimental variogram. Step and 
Xmax can be altered to improve fit" 
  62   
  63      FVARIOGRAM [PRINT=statistics; Y=yy; X=xx; STEP=1800;  
XMAX=18000; \ 
  64             DIRECTIONS=Angles; SEGMENTS=Segments] \ 
  65             zz; VARIOGRAM=zzk; COUNTS=zcounts; 
DISTANCES=Midpoints 
  
Variogram of                                   zz 
  
General mean                               111.484 
General variance                         1607.6860 
  
Based on 405 observations 
Maximum lag 18000 and step length 1800.00 
  
  66   
  67      variate Vgram [#Angles],Lag [#Angles}, Count [#Angles} 
  68      Calculate  Vgram [ ] = zzk$  [*; 1] 
  69      &                   Lag [ ]  = Midpoints$ [*; 1] 
  70      &                    Count [ ] = zcounts$ [*;1] 
  71      print  Lag [0], Vgram[0], Count [0] 
  
      Lag[0]    Vgram[0]    Count[0] 
        1359        1002         682 
        2792        1335        2192 
        4540        1469        3229 
        6317        1486        4164 
        8119        1614        4633 
        9916        1668        4816 
       11699        1681        4904 
       13490        1652        4880 
       15306        1648        4747 
       17099        1641        4497 
  
  72   
  73      calc bot=0.0 
  74      axes 1; ylower=bot; xlower=0 
  75      pen 1...4; colour=1; symbol=1...4 
  76  device 1 
  77  graph [nrows=15;ncolumns=40;ylower=bot] Vgram[ ]; Lag[ ] 
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             - 
             I 
             I                    *  * 
      1600.0 I                *          *   *  * 
             I         *   * 
             I      * 
             I 
             I   * 
             I 
       800.0 I 
             I 
             I 
             I 
             I 
             I 
         0.0 I 
             -+---------+---------+---------+---------+ 
            0.0    5000.0   10000.0   15000.0   20000.0 
  
                        Vgram[0]  v. Lag[0] using symbol * 
  
  78  dgraph Vgram [ ]; Lag [ ]; Pen=1 
  79   
  80  "the for-loop fits models to the data and produces a 
measure of fit for each" 
  81   
  82  FOR Mod='SPHERICAL' ,'EXPONENTIAL', 'DOUBLESPHERICAL' 
  83    MVARIOGRAM [MODEL=#Mod; PRINT=model,summary,estimates; \ 
  84       WEIGHTING=cbyvar; WINDOW=1; TITLE=Mod; XUPPER=25000] 
\ 
  85               zzk; COUNTS=zcounts; DISTANCES=Midpoints 
  86  ENDFOR 
  
***** Variogram model: spherical ***** 
  
y = c0 + c*(1.5*x/a-0.5*(x/a)**3)  for x.lt.a 
y = c0 + c                         for x.ge.a 
  
  
***** Nonlinear regression analysis ***** 
  
 Response variate: y 
   Weight variate: rwt 
Nonlinear parameters: a 
  Model calculations: spherical 
  
  
*** Summary of analysis *** 
  
              d.f.         s.s.         m.s.      v.r. 
Regression       2      435615.      217808.     42.06 
Residual         7       36246.        5178. 
Total            9      471861.       52429. 
  
Percentage variance accounted for 90.1 
Standard error of observations is estimated to be 72.0 
  
  
*** Estimates of parameters *** 
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                  estimate         s.e. 
a                   10197.        1195. 
* Linear 
c                    638.5         84.2 
Constant            1017.6         84.6 
  
  
***** Variogram model: exponential ***** 
  
y = c0 + c*(1-EXP(-x/a)) 
  
  
***** Nonlinear regression analysis ***** 
  
 Response variate: y 
   Weight variate: rwt 
Nonlinear parameters: a 
  Model calculations: negex1 
  
  
*** Summary of analysis *** 
  
              d.f.         s.s.         m.s.      v.r. 
Regression       2      445124.      222562.     58.27 
Residual         7       26737.        3820. 
Total            9      471861.       52429. 
  
Percentage variance accounted for 92.7 
Standard error of observations is estimated to be 61.8 
  
  
*** Estimates of parameters *** 
  
                  estimate         s.e. 
a                    2881.         534. 
* Linear 
c                     993.         158. 
Constant              672.         167. 
  
  
***** Variogram model: double spherical ***** 
  
y = c0 + c1*(1.5*x/a1-0.5*(x/a1)**3) 
       + c2*(1.5*x/a2-0.5*(x/a2)**3)          for x.le.a1 
y = c0 + c1 + c2*(1.5*x/a2-0.5*(x/a2)**3)     for a1<x<a2 
y = c0 + c1 + c2                              for x.ge.a2 
  
  
***** Nonlinear regression analysis ***** 
  
 Response variate: y 
   Weight variate: rwt 
Nonlinear parameters: a1, a2 
  Model calculations: doubspherical[1], doubspherical[2] 
  
  
*** Summary of analysis *** 
  
              d.f.         s.s.         m.s.      v.r. 
Regression       4      459933.      114983.     48.20 
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Residual         5       11928.        2386. 
Total            9      471861.       52429. 
  
Percentage variance accounted for 95.4 
Standard error of observations is estimated to be 48.8 
  
  
*** Estimates of parameters *** 
  
                  estimate         s.e. 
a1                   3014.        1669. 
a2                  11516.        1513. 
* Linear 
c1                    676.         415. 
c2                    495.         114. 
Constant              488.         484. 
  
  87   
  88  stop 
  
******** End of Analysis of Zn data. Current data space: 1 
block, peak usage 33% 
 at line 86. 
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