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Abstract

Inland Antarctic lakes are among the harshest environments in the world for life

to inhabit. Ice cover causes low levels of light and temperature, and prevents

mixing by wind, resulting in low nutrient levels and truncated food chains. Such

ecosystems are widely regarded as sensitive indicators of climate change, and it

is therefore useful to build up a strong physical and biological understanding

of them. In 2003 an automatic probe (Palethorpe et al. 2004) was deployed

on Crooked Lake (68o25’ to 68o40’S, 77o55’ to 78o35’E), an ultra-oligotrophic

freshwater lake in Eastern Antarctica which has been the subject of limnological

studies since 1990. The probe measured several physical parameters in, above,

and below the ice layer at temporal resolutions of up to one measurement every

five minutes.

A physics-based model was developed to simulate the growth and melt of the

lake ice over time, considering all heat and radiation fluxes. Meteorological data

were used as inputs to the model, with ice thickness the main output. The

model fitted Crooked Lake ice thickness well, despite having narrow mechanistic

constraints on parameter values. A number of simpler models were also developed

which provided comparable goodness of fit, and illustrated that air temperature

is the dominant variable in such systems. The issue of optimum complexity was

addressed using model selection criteria, and some criteria selected a simple model

over the physics-based model. However when both were subjected to long-term

model runs with superimposed global warming scenarios, the simple model was

shown to be unstable.

In addition, a 1992-93 biological dataset was analysed. Populations were shown

to exhibit a significant annual cycle, but no significant smaller-scale population

oscillations, suggesting that higher sample rates were required to identify such

phenomena. A prototype procedure was developed using simulated data to inform

field sampling strategies, in the aim of identifying the population dynamics that

are predicted by many plankton models.
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And now there came both mist and snow,

And it grew wondrous cold:

And ice, mast-high, came floating by,

As green as emerald.

- from “The Rime of the Ancient Mariner”

by Samuel Taylor Coleridge
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Chapter 1

Introduction

1.1 Antarctica and climate change

Antarctica has been a site of great scientific interest over the last century. The

continent is not only a place of unrivalled natural beauty but is also uniquely

remote and largely unaffected by direct human impact. Antarctica is the highest,

coldest, windiest and driest (yearly snowfall is only one to three inches) of all

continents, yet paradoxically the immense continental ice sheet holds over 70%

of the world’s freshwater (ASOC 1998). The continent and the changing fields of

sea ice around it provide the majority of the Earth’s cryosphere, defined as the

part of the Earth’s surface that remains perenially frozen or near/below freezing

point, or all forms of frozen water on land or sea (National Research Council

1999). The cryosphere enhances the thermal gradient between the equator and

the poles by increasing the surface albedo, thus further reducing polar net surface

radiation and temperatures. It also has a predominant role in global sea level,

for example the West Antarctic ice sheet is considered highly vulnerable to tem-

perature increases, and could raise sea level by 18 m if it melted. Snow and ice

boundaries appear to be preferred areas for cloud formation, and the extent of

sea ice each year has been linked to global amounts of cyclogenesis (formation of

atmospheric depressions) and the El Nino southern oscillation (Drake 2000). Po-

lar research in recent years has therefore been commonly focussed on increasing

our understanding of how such areas may be affected by, and thus be indicators

of, global climate change.

The response times of the Antarctic ice sheet as a whole to climate change may

be several thousands of years (Drake 2000), and changes are hard to measure, so
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the most striking signs of change are around the edges of the continent. Sea ice

extent has only been accurately measured (via satellite images) since the 1970s,

and shows no significant decline to 2000 (IPCC 2001), although studies of whaling

records suggest an abrupt mid-twentieth-century decline in sea-ice extent (de la

Mare 1997). Glaciers give greater evidence of change, with 87 % of 244 marine

glacier fronts on the Antarctic peninsula seen to be retreating over the past 61

years (Cook et al. 2005).

Antarctic waters support a diverse biota (Shirihai 2002), and the broader effects

of climate change can be inferred from observations of, for example, penguin

migration in relation to sea ice distribution (Trathan et al. 1996). In addition,

human impact on the continent has introduced alien species of both plants and

animals, which flourish in higher temperatures (Frenot et al. 2005). In recent

years the importance of inland lakes has been recognised. These may be covered

with ice the whole year round, yet support plankton in truncated food webs

(Roberts et al. 2000, Laybourn-Parry and Bayliss 1996).

Historic lake ice data are limited, and not particularly useful for assessing cli-

mate effects due to differing protocols for identifying ‘ice on’ and ‘ice off’ dates.

However, 39 records of northern hemisphere lake and river ice showed an average

spring ice break-up 9 days earlier, and autumn freezing 10 days later, than at the

start of records (Magnuson et al. 2000). Larger lakes have the best records, but

are often near human settlements which act as ‘heat islands’ and skew results, so

The Intergovernmental Panel on Climate Change suggests that “care is needed

to select suitable lakes” as indices of climate variability and change (IPCC 2001).

Antarctic lakes are isolated from direct human (and in many cases even animal)

impact, and are therefore ideal candidates to be sensitive indicators of global

change (Vincent et al. 1998, Wharton Jr. et al. 1992).

1.2 The lakes of the Vestfold Hills

The Vestfold Hills (Figure 1.1) lie in Princess Elizabeth Land, Eastern Antarctica

and cover around 400 km2 at 68o25’ to 68o40’S, 77o55’ to 78o35’E. They form

one of the few low-lying, ice-free areas on the coast of Antarctica where the ice

plateau has receded and isostatic uplift of the ocean floor has created an arid,

desert landscape with lakes formed by the trapping of seawater (Henshaw 2001).

Some of the lakes remain saline, while others have been continually flushed with

meltwater from the plateau and the nearby Sorsdal Glacier to become some of
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Figure 1.1: Map of the Vestfold Hills, showing Crooked Lake and Davis station
and, inset, the position on the Antarctic continent (top). Aerial photograph of
Crooked Lake in summer, with red circle indicating the bay in which measure-
ments were taken (bottom).
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the freshest lakes in the world.

The study site for this project is Crooked Lake, which lies in the southeast cor-

ner of the Vestfold Hills, and is one of the largest and deepest freshwater lakes

in Antarctica (Laybourn-Parry et al. 1992). It contains a sparse community

of plankton in some of the most oligotrophic conditions in the world (Bayliss

et al. 1997). The lake receives negligible inputs of carbon and inorganic nutri-

ents from the catchment area, and there are no fish, only a few rotifers and one

cladoceran, Daphniopsis studerii (Laybourn-Parry and Marchant 1992). There-

fore the trophic dynamics are driven by the ‘bottom-up’ forces of inorganic nu-

trient dynamics and primary production, and dominated by the microbial loop

(Laybourn-Parry and Parry 2000). This provides a unique environment to study

the interactions of micro-organisms such as nanoflagellates, bacteria and viruses,

and the lake has been part of several microbiological studies since 1990 (Laybourn-

Parry et al. 1991, Laybourn-Parry et al. 1992, Laybourn-Parry and Marchant

1992, Laybourn-Parry et al. 1995, Bayliss et al. 1997, Laybourn-Parry et al.

2001, Henshaw and Laybourn-Parry 2002, Laybourn-Parry et al. 2004).

The availability of Photosynthetically Active Radiation (PAR) for fixation of car-

bon by phytoplankton is a key factor in the functioning of such an ecosystem. At

such high latitudes the low solar elevations, high reflectance of the ice surface,

and an apparent spectral shift towards the blue end of the spectrum (Howard-

Williams et al. 1998, Campbell and Aarup 1989), can result in very little PAR

reaching the water column. In addition, photosynthesis rates are considerably

reduced by high levels of ultraviolet (UV-B) radiation (Wangberg et al. 1998,

Karentz and Bosch 2001) or low temperatures (Rae and Vincent 1998). Both of

these are common conditions in the Antarctic. Therefore, temporal variation in

the thickness and optical properties of polar lake ice-covers can have profound ef-

fects on the process of photosynthesis in the water column and on carbon cycling

(Fritsen and Priscu, 1999). It is worthwhile to accumulate data and formulate

models of the physical characteristics of such an ecosystem to support under-

standing of biological processes.

Previous studies of Crooked Lake consisted of manual sampling, restricted to

days when travel to the lake was possible in the harsh environmental conditions

of the Antarctic, and were often part of studies comparing several lakes. There

are also limitations on how much equipment and sampled water can be carried in

a helicopter or on a quad bike. Therefore both physical and biological data are

limited to around one or two datapoints per month. Higher temporal resolution

of data is preferable for model formulation.
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Figure 1.2: The automatic measuring device and sensors embedded in the ice on
Crooked Lake, which provided the majority of data used in this thesis.

For this reason, an automatic sensing probe (Figure 1.2) was designed and de-

ployed on Crooked Lake in 2003 as part of a multi-disciplinary research project

(Palethorpe et al. 2004). The system recorded ice thickness as well as PAR,

UV-B and temperature at a range of depths in the water column, and weather

variables at the surface. A satellite telemetry system allowed data of temporal

resolution as high as one datapoint per minute to be accessed at Davis Station

(16 km distant). The data has been utilised in this thesis for the development of

models of the ice layer.

1.3 Ice modelling

There are many reasons why a good understanding of ice is crucial to any as-

sessment of climate change. The melt and freeze of sea ice influences sea-surface

salinity and deep water formation, initiating the global thermohaline circulation

(IPCC 2001). Ice adds great complexity to surface energy and water balance cal-

culations. The albedo of an ice surface is greater than water, and is dependent on

its age, temperature and depth. This provides a potential positive feedback for

climate change, whereby higher temperatures lead to less ice, therefore a lower
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average surface albedo, and less reflection of heat back to space (a potential coun-

terpoint to this is that more areas of open ocean will lead to more evaporation,

forming low clouds that increase overall albedo) (IPCC 2001).

Research into the nature and dynamics of sea ice is far more extensive than into

freshwater lake ice, but many of the basic concepts are transferrable. The main

difference is that the freezing point of seawater is lower than for freshwater, but

this is somewhat compensated for by ocean swell; waves increase the number of

collisions amongst small ice crystals and larger ‘pancake ice’ which form extensive

ice floes (Wadhams 1991).

New ice forms from the bottom of an ice layer, so ice thickness is limited by

the temperature at the bottom. Thin ice grows faster than thick ice because it

doesn’t insulate the water from heat loss so well. Strong winds can also increase

ice cover, by carrying heat away from the surface, or by creating ridges in the ice

which increase drag, producing more areas of open water which lose their heat

faster (Drake 2000).

In some ways lake ice provides a useful analogous system that is simpler to model

than sea ice. Wadhams (1991) defines four major factors that affect sea ice:

oceanic heat flux, wind-driven/thermohaline circulation, waves and atmospheric

temperature. Apart from the latter, each of these factors are considerably less

significant in a lake, and may be negligible. Air temperature is influential on

the other three factors. A well-formulated model of lake ice may therefore be

expected to be more sensitive to air temperature than any other variable. This

may provide a useful ‘control’ model for investigating the responses of sea ice to

atmospheric variables, and if shown to fit sea ice data, would imply that other

phenomena are either negligible or cancel each other out.

In modelling lake ice, it is important to consider the interactions with the sur-

rounding environment, and the boundary surfaces become crucial. Under real-

istic environmental conditions, a lake can be considered a closed system, as it

exchanges energy with its surroundings but no significant amount of mass. The

ice layer, however, is an open system if we consider that it exchanges mass with

the water. The atmosphere can be considered a heat sink for the ice layer, as can

the water if the lake is significantly deep.

Over a large body of water, vertical processes tend to dominate, except in the

vicinity of cracks and leads (Cheng 2002). For a lake such as Crooked Lake,

which has 100% ice cover for the majority of the year, this is particularly true;

horizontal processes may be negligible except during partial break-up of ice in
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summer. The laws of thermodynamics allow realistic parameterisations of all

the heat fluxes that may affect an ice layer, and the resulting growth or melt of

the layer can be calculated by considering the boundary conditions at the air-ice

and ice-water interfaces. Launiainen and Cheng (1998) present a thermodynamic

model for ice-covered water, which according to their assessment of past literature

is the most advanced one-dimensional model formulated to date. Their model is

driven by radiative and conductive heat fluxes, and predicts ice temperature,

ice thickness and air-ice interactions. They found the state of the atmospheric

boundary layer (wind, humidity and temperature) to be the primary controlling

factor in ice growth processes, while solar shortwave radiation becomes impor-

tant in controlling melting in the spring. Their model has been validated with

data from the Baltic Sea and shown to give good agreement with mild-weather

measurements (Cheng et al. 2001). Several other models have been developed for

ice modelling in various environments (Fang et al. 1996, Fang and Stefan 1996,

Bitz and Lipscomb 1999, Peeters et al. 2002). The basic approach, considering

heat-balance equations and atmospheric variables, is common throughout.

Many heat balance models use constants to represent certain physical properties

of the environment. Such an approach is suitable for short-term simulations,

but on longer timescales the physical characteristics of ice, such as aerodynamic

roughness lengths, albedo and attenuation of radiation may be indeterminately

affected by factors such as temperature, salinity, meltwater or snow on the ice

surface, stresses and curvature, air bubbles and radiatively-induced internal melt

structures known as Tyndall figures (Wettlaufer 1999, Henneman and Stefan

1999, McKay et al. 1985, McKay et al. 1994, Vincent et al. 1998). Climate

models incorporating the whole continent also identify the importance of the

roughness lengths for momentum and heat in the stability of the atmosphere and

the resulting surface heat fluxes (Reijmer et al. 2004). The equations relating

atmospheric variables to ice growth may be complicated by circumstances, for

example Andreas and Makshtas (1985) found that wind from the ocean resulted

in heat transfer to sea ice, while wind from the continent took heat away.

It is apparent from a visual inspection of lake ice cover over the course of a

whole year that the physical appearance of an ice layer changes considerably as it

grows and melts. On Crooked Lake, the midwinter ice cover is clear, blue, flat and

smooth, whereas in summer it becomes considerably more opaque, and the surface

becomes rough and broken, with ridges and troughs up to a few centimetres in

height. Therefore it is worthwhile using long-term data to estimate how the values

of such parameters change over a year, and how ice cover is affected.
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1.4 Plankton population modelling

Models of plankton ecosystems are often developed from generic models for any

type of population. The simplest population model consists of the Lotka-Volterra

differential equations, giving rise to predator-prey oscillations which have been

observed in real populations of several animal species (Elton and Nicholson 1942,

Bety et al. 2001, Blomqvist et al. 2002, McLaughlin et al. 2002, Norrdahl

and Korpimaki 2000, Hanski et al. 2001, Norrdahl and Korpimaki 2002, Jensen

and Miller 2001). With specific relevance to this project, Laybourn-Parry et al.

(1991) found a suggestion of a predator-prey oscillation between bacteria and

flagellates in Crooked Lake over January-February 1990. A number of more de-

tailed models (Steele and Henderson 1981, Edwards and Brindley 1999, Gamarra

and Sole 2000, Edwards 2001, Edwards and Bees 2001, Huisman and Weissing

2001, Kendall 2001, Petrovskii and Malchow 2001, Letellier et al. 2002, Mal-

chow et al. 2001) find that populations may settle to steady-state values, adopt

a chaotic state, or, in an intermediate range of parameter values, reach stable

cycles in which the populations can evolve and change (Turchin et al. 2000,

Turchin and Hanski 2001). Oscillations may thus allow populations to exist at

the ‘self-organised critical (SOC) state’ between the unchanging steady state and

pure chaos (Bak 1997, Pascual et al. 2002) and may contribute to biodiversity

(Huisman and Weissing 1999, Figure 1.3). It is believed that the atmosphere and

some populations may exist at the SOC state (Sole et al. 1999), so it is worth

investigating both physical and biological data and model outputs for evidence

of this phenomenon.

Another mechanism by which populations may maintain a far greater degree of

community persistence and stability (McCann et al. 1998) is ‘intraguild preda-

tion’ (Polis and Holt 1992, Holt and Polis 1997, Morin 1999, Hart 2002, Revilla

2002), whereby predators may exploit more than one resource, resulting in food

chains with numerous weak interactions (as opposed to few strong interactions).

However, microbial data is limited, often from short, detailed studies involving

lengthy lab analysis, and typical Antarctica logistics allow sampling at most once

or twice a week. Quantifying the errors involved in sampling and counting plank-

ton is not easy, even when one is not concerned with the differences between

depths or sites on a lake and is interested only in lake populations as a whole.

The volume of water that can be analysed in practice is small. Also it is only

possible to sample at discrete depths (the sample is not continuous with depth),

and usually at only one or two sites (in the horizontal), given the time it takes
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Figure 1.3: Some predictions from the plankton population model of Huisman and
Weissing (1999), calculated by the author. Clockwise from top left: competitive
exclusion of 4 species on 4 resources, oscillations of 4 species on 3 resources,
chaotic dynamics of 5 species on 5 resources, stable oscillations of 3 species on 3
resources.

to drill holes in the ice. Therefore the numbers obtained for any site are just

samples of the true populations, and one must use careful statistical analysis to

make any inferences about the true population.

Biologists often assume that natural variability is so great they need not be con-

cerned about measurement uncertainties (Quinn and Keough 2002), and with

good lab practice these should be low. However it may not be sufficient to

rely solely on the standard error across different replicates. Modelling studies

of count uncertainties have been undertaken for many types of microbial counts

(e.g. Bohmer and Hildebrandt 1998, Niemela 2003), and report common prob-

lems. Unavoidable random sampling errors can be compounded by clustering and

the partly subjective nature of microscope counts, such that a non-homogeneous

distribution should always be expected at microbial counts close to the detection

limit. Models based on short-term ‘noisy’ data may exhibit changes in qualita-

tive behaviour when expanded to longer timescales for the investigation of, for

example, climate change (Fleming et al. 2002). This problem becomes worse as

data gets sparser and noisier, so is an important issue in ecological modelling. It
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may be useful to estimate how much data, and what accuracy of data, is required

to test the population hypotheses in the above models for the case of Antarctic

plankton, and assess if acquiring such data is feasible.

1.5 Modelling philosophy

The main method of thinking in the scientific community since its inception can

broadly be put under the heading of ‘reductionism’. The term stems from a

number of related but contentious philosophical theories which roughly say that

‘the nature of complex things can always be reduced to (explained by) simpler or

more fundamental things’. The computer scientist John Holland, who invented

the ‘genetic algorithm’, puts it like this:

“For the last 400 years science has advanced by reductionism... The idea is that

you could understand the world, all of nature, by examining smaller and smaller

pieces of it. When assembled, the small pieces would explain the whole” (Holland

1999)

The opposite of reductionism is ‘holism’, the concept that all of nature is made up

of organic or unified wholes that are greater than the simple sum of their parts.

This is becoming more common across science in cases where an explanation of a

system’s behaviour is not readily apparent on examining the individual interac-

tions between its constituent parts. Holism is, not surprisingly, popular in many

religions, as it may support the belief in higher powers.

However many real problems cannot be practically solved by either reduction-

ism or holism. One has a limited amount of time for the job in hand, and it

is therefore more common for scientists to employ what the eminent biologist

Richard Dawkins calls ‘hierarchical reductionism’ (Dawkins 1986). For example,

to explain the movement of a spider one need not examine the quantum physics

effects occuring in the atoms of the spider’s legs, but at the same time a scientist

is unlikely to accept the explanation that ‘God made it walk’.

In scientific modelling, a rough working definition of hierarchical reductionism

may be ‘the inclusion of as much detail as reasonably possible’. Development of a

model has to stop at some point, and it is important to identify which aspects of

a model will significantly affect the output to a greater extent than the intrinsic

errors in measurements. Many equations are, by the very nature of research,

selected on a partly subjective basis, since many scientists have taken different
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approaches and calibrated their equations for different datasets. Trying them all

may be a waste of time and effort when the difference between two approaches

may be no more than the error that already exists.

In recent years, therefore, there has been considerable discussion of modelling via

the ‘principle of parsimony’. This is rooted in the famous ‘Occam’s razor’, which

states that “entities are not to be multiplied beyond necessity”. In modelling this

can be translated as a preference for the simplest model that adequately accounts

for the data, and comes into practice when a sufficient model has something added

to it which does not improve its predictive power. For example, when choosing

from a number of models to describe some data, the most complex model will

usually provide the best fit. Such a fit can be misleading because it results from

extraneous properties of the model that have nothing to do with the underlying

processes of interest (Pitt and Myung 2002). If one has several datasets arising

from the same underlying process, the parameter estimates for more complex

models may show large variation across the datasets, rendering their values the-

oretically meaningless. Also a large amount of data may be required to calibrate

and validate large and complex models in the first place (Young 1998).

Occam’s razor cannot account for the fact that there may be several models

which explain the data equally well, while having no relation to one another.

This problem can only be combatted with subjectivity and ‘common sense’, but

a number of techniques have been developed in recent years which mathematically

formalise Occam’s razor and make the task simpler. These include Monte-Carlo

methods to identify key areas of uncertainty in a model (e.g. Hornberger and

Spear 1981), simple criteria that balance a model’s goodness of fit against the

number and accuracy of parameters (e.g. Kadane and Lazar 2004, Myung 2000),

and Bayesian model averaging methods (e.g. Wasserman 2000, Raftery and Zheng

2003).

To date most model selection techniques have been developed in the world of

statistical modelling and cognitive psychology, with few examples of application

to real data. It is worthwhile testing these techniques for some real environ-

mental situations. To what extent can they complement a researcher’s informed

subjectivity?
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1.6 Objectives

The principal objectives of this thesis are:

• To develop both complex mechanistic and simple empirical models of fresh-

water lake ice using suitable parameterisations from the literature and basic

regression techniques.

• To parameterise the models using data collected on Crooked Lake, Antarc-

tica.

• To assess the relative importance of meteorological variables in lake ice

dynamics.

• To spectrally analyse plankton data from Crooked Lake, and assess how

much data is required to identify theoretical phenomena such as population

oscillations.

• To employ a number of new and emerging model selection techniques in

choosing the best models for Crooked Lake ice dynamics, and thus test

their suitability for a real environmental system.

• To predict responses of Crooked Lake to potential climate change.

1.7 Thesis overview

• Chapter 2 outlines the generic modelling and analysis techniques that were

used and developed.

• Chapter 3 describes the development of a physics-based model of fresh-

water lake ice, using selected approaches from the literature.

• Chapter 4 describes the parameterisation, sensitivity analysis and outputs

of the physics-based model developed in Chapter 3, against automatically-

collected data from Crooked Lake.

• Chapter 5 discusses the merits of some simple empirical models of lake

ice and the use of model selection criteria to inform a choice of model for

Crooked Lake.
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• Chapter 6 employs both the physics-based model and a simple empirical

model in long-term model runs subject to air temperature perturbations,

and discusses which is more reliable for predicting future responses to cli-

mate change.

• Chapter 7 describes a modelling assessment of population oscillations in

plankton data from Crooked Lake, and introduces a prototype method for

predicting how much data would be necessary to significantly observe such

behaviour.

• Chapter 8 provides a summary and discussion of the key results, outlining

applications, limitations and potential future work.
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Chapter 2

Methods

2.1 Overview

This chapter outlines the generic modelling and analysis techniques that were used

and developed in this thesis. It describes the software, notation and conventions

employed and defines the quantities involved in model structure. Some basic

statistics and a number of ‘merit functions’ for a model are defined, which form

the first step in analysing a model’s performance with respect to data.

The concept of model optimisation is introduced. An iterative procedure written

by the author to implement the Levenberg-Marquardt method of optimisation for

the given system is fully described. A new method for assessing the importance of

individual model input variables is introduced. This is termed ‘model trimming’

and is intended to inform the development of parsimonious models from complex

models, where some of the input variables or equations may have a negligible

or adverse effect on model behaviour. A number of model selection criteria are

described, which weigh a model’s goodness of fit against it’s complexity, to assess

the generalisability and predictive power of the model.

Note: As this is a modelling-centred thesis, and much of the data used and dis-

cussed was not collected by the author, this chapter does not include any descrip-

tions of fieldwork methods. Where data is introduced later, a brief description of

methods is given and relevant publications are cited.
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2.2 Software

The following software was used for modelling work in this thesis:

• MatLab version 6.1 ( c©1984-2001 The MathWorks Inc.) - a high-performance

computing language based largely on matrix notation, which proved partic-

ularly useful for handling large amounts of data in matrix form. It integrates

computation, visualization, and programming, and thus allowed models to

be run and analysed using interactive scripts.

• ModelMaker 3 ( c©1993-1997 Cherwell Scientific Publishing Ltd.) - a

Windows-based program developed for compartment flow type models. It

is particularly useful for small-scale, one-dimensional real-time models, pro-

viding a number of numerical integration methods and optimisation proce-

dures.

Data was mainly provided in spreadsheet form using Microsoft Excel ( c©1985-

1999 Microsoft Corporation), then edited and converted to ASCII text form for

input to MatLab and ModelMaker.

2.3 Model structure, notation and conventions

Real-time model calculations depend on several quantities from field, lab or mod-

elling studies, which may be used as inputs to mathematical equations or kept

for comparison with model outputs. Each quantity may be known to a different

degree of accuracy, and it is important to identify their roles in model opera-

tion. The classifications and notation of these quantities as used in describing

generic modelling techniques for this thesis are described below, and summarised

in Figure 2.1 as a flowchart.

• Input variables - quantities which may change over time, from recorded

field or lab datasets with associated errors. In cases of data over time,

datapoints are linearly interpolated to give values of the input variable at

times when data were not measured (see Figure 2.2). Notation: xi where

i = 1, 2...nx.

• Constants - quantities which do not change with time (for the purposes of

the model) and are known to a high degree of accuracy from measurements
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Figure 2.1: Flowchart illustrating the conventions and notation used for the quan-
tities involved in model structure for this thesis.

Figure 2.2: Linear interpolation of a dataset to provide an input variable. The
circles are real measurements and crosses are interpolated values of the variable,
allowing a timestep of 1.
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or the literature. For example, the acceleration due to gravity at the earth’s

surface is very close to g =9.8 m s−2. Notation: ci where i = 1, 2...nc.

• Parameters - quantities which do not change over time, but are not known

well, and are therefore adjusted or ‘optimised’ to search for the best model

fit to data. Gaining information on parameter values may often be the main

aim of a modelling exercise. Notation: pi where i = 1, 2...np, or a vector of

parameters p̄.

• Intermediate variables - quantities which are calculated from input vari-

ables, constants and parameters during model execution. They may be an

intermediary step in the calculation of the main model output, or a real

physical quantity of interest. Notation: yi where i = 1, 2...ny.

• Model data - a collection of nd datapoints, representing a quantity mea-

sured during the same time period as the input variables, which we are

interested in modelling. Notation: Di where i = 1, 2...nd, or a vector D̄.

• Model output - the calculated quantity which is directly comparable to

the model data, i.e. it is the model-predicted value of Di. If we consider

only the predicted values at times when a datapoint Di was recorded, this

is a vector of size nd. Notation: Mi where i = 1, 2...nd, or a vector M̄(p̄).

It should be noted that there may be more than one ‘model output’ quantity

representing more than one collection of ‘model data’ measurements. For each

finished model the only quantities that are considered ‘adjustable’ are the para-

meters p̄, and so in each case the model output can be expressed as a function of

p̄. If any other aspects of a model are changed, it is considered a new model.

2.4 Integration methods

At the core of most real-time models is a differential equation of the form dM
dt

=

(maths). In most cases such an equation cannot be solved analytically and nu-

merical methods must be employed. This involves replacing the infinitesimal

time dt with a finite timestep ∆t. Several methods of numerical integration are

commonly used and are readily available for easy computation in many software

packages. The most simple is the Euler method, which takes a finite user-defined

timestep and simply calculates the model output based on the values at the pre-

vious timestep. However this method may lead to the propagation of errors if the
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system undergoes large changes in the course of one timestep. The Runge-Kutta

method is among the most popular of more complex methods and can use an

adaptive step size to control accuracy, but takes a considerably longer time to

evaluate a model.

In models with considerable amounts of input data, the timestep of the data

must also be taken into consideration when choosing a method of integration.

It is simple to linearly interpolate data for times when data is unavailable, but

if the model timestep is considerably shorter than the time between datapoints,

one may make incorrect assumptions about the behaviour of the system. Such a

technique may for example lead to the conclusion that a system is more constant

than it really is, since we have calculated the model output by assuming the

input variables either stay constant or change steadily between real datapoints,

while in reality they may exhibit anomalistic behaviour. Therefore if one chooses

a timestep shorter than the available input data provides, one must ensure the

output is only considered valid at the same times as data was recorded.

In this thesis both the Euler and Runge-Kutta methods of integration were used,

but care was taken only to use Euler when it had been shown to give the same

results as Runge-Kutta. This was common when the model timestep was short

enough to avoid large changes in the model output in one timestep.

2.5 Basic model analysis tools

2.5.1 Merit functions

A number of ‘merit functions’ exist for assessing the the performance of a model

with respect to observed data - specifically, the ‘goodness of fit’ of the model.

In this thesis all model analysis functions are used on the assumption that every

datapoint Di lies in a normal probability distribution with mean µi and variance

σ2
i :

P (Di) =
1

σi

√
2π

exp

(
−(Di − µi)

2

2σ2
i

)
(2.1)

Note that Equation 2.1 applies to a single datapoint. The dataset as a whole has

a certain amount of intrinsic variation about its mean, which can be measured

using the ‘weighted total sum of squares’, WSStot, defined as the sum over all
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datapoints of the difference between the datapoint and the mean:

WSStot =
nd∑
i=1

(
Di − µ(Di)

σi

)2

(2.2)

where µ(Di) is the mean of all the data over the time period under consideration.

The difference is ‘weighted’ for each individual datapoint by dividing by the error

on the datapoint, σi; hence for datapoints with lower errors, any variation from

the mean is deemed more important. In a similar way, the amount of variation

from the mean that is explained by a model may be assessed using the ‘model

sum of squares’ merit function:

WSSmod =
nd∑
i=1

(
Mi − µ(Di)

σi

)2

(2.3)

The higher the value of WSSmod, the better the fit of the model. However in

practice the most useful merit function is the ‘weighted residual sum of squares’,

WSSres, which represents the variation that is not explained by the model.

WSSres is more commonly denoted by χ2, and for the purposes of assessing the

performance of a model output vector M̄ which arises from various adjustable

parameters, χ2 is best written as a function of the parameters (p̄):

χ2(p̄) =
nd∑
i=1

(
Di −Mi

σi

)2

(2.4)

The three sums of squares quantities are related according to:

WSStot = WSSmod + χ2 (2.5)

The lower the value of χ2, the better the fit of the model, and therefore it is

often the quantity which is minimised in model optimisation. The value of χ2 is

somewhat meaningless in isolation, so in many studies, the dimensionless quantity

r2 is used. r2 represents the fraction of the intrinsic data variation that is captured

by the model:

r2(p̄) =
WSSmod

WSStot

(2.6)
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A value of r2 = 1 indicates a perfect fit, with the model output predicting all the

datapoints exactly.

It is also useful to consider the true probabilistic nature of the model. This

can be indicated by the maximum likelihood function, which is a measure of the

probability of the model data when we assume the model predictions are true.

For a normal distribution, this is:

ML = P (D|M, σ) =
i=nd∏
i=1

1

σi

√
2π

exp

(
−(Mi −Di)

2

2σ2
i

)

≈ 2π−
nd
2

σn
d

exp

− i=nd∑
i=1

(Mi −Di)
2

2σ2
i

 (2.7)

In practice, with a large amount of data Equation 2.7 may give a vanishingly

small number, and it more useful to consider the ‘log-likelihood’. Noting that the

last term is equivalent to exp
(
−χ2

2

)
, this is expressed as:

ln(ML) = −nd

2
ln 2π − nd ln σ − χ2

2
(2.8)

It should be noted that Equations 2.7 and 2.8 are only valid if we make the

assumption that every individual datapoint has the same standard deviation (σi ≈
σ for all i). However for the purposes of comparing two models, the relative values

of ln(ML) for the two models are more relevant than the absolute values. It was

therefore deemed sufficient to set σ = 1 in the second term of Equation 2.8 for

all calculations.

2.5.2 Model significance

When a reasonable model fit to data has been obtained, it is important to assess

whether the model fit is significant, or has simply arisen by chance. This requires

statistical hypothesis testing, which is common across all scientific disciplines. In

modelling, the most important concept is the ‘degrees of freedom’ of a model,

which refers to the balance of complexity in the model (the number of parame-

ters) with the amount of available information on the real world (the number

of datapoints). There is little justification for using a highly complex model to
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explain only a few observations.

The degrees of freedom of a dataset can be loosely defined as the number of

opportunities the data has to change ‘relative to itself’ - for nd datapoints this is

dftot = nd−1. In a model, the degrees of freedom are the number of opportunities

the model has to change ‘relative to itself’ - for np adjustable parameters the

model degrees of freedom are therefore dfmod = np−1. In model fitting, however,

the residual degrees of freedom are most important in terms of model significance,

and are equal to dfres = dftot− dfmod = nd− np. This is the term usually referred

to when discussing the degrees of freedom of a modelling exercise, and is denoted

by ν. In general, a model must have positive degrees of freedom to have a chance

of being statistically significant. Therefore in this thesis the goodness of fit of

each model is presented in terms of the three quantities χ2, r2 and ν, to represent

the unaccounted variability in the data, the dimensionless goodness of fit, and

the number of ‘free elements’ used in calculating them.

To calculate the probability of the model fit occuring at random, the sum of

squares of the model and the residual must be scaled using the degrees of freedom

to give the ‘mean sum of squares’ for each:

MSmod =
WSSmod

dfmod

(2.9)

MSres =
χ2

ν
(2.10)

The model’s ‘F-ratio’ is a statistic which follows different distributions for different

values of ν (see e.g. Mason et al. 2003), and the higher it is, the more significant

the model fit. It can be calculated as the ratio of the mean sums of squares for

the model to the residual:

F =
MSmod

MSres

=
WSSmod/(np − 1)

χ2/ν
(2.11)

The ModelMaker software provides the F-ratio for any model, and the associated

probability P that the model output arose by chance (e.g. if P is 0.05 or less

then the model is significant to the 95% confidence level). All the model statistics

are commonly displayed in a standard ANOVA table (see e.g. Mooney and Swift

1999).
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The significance of any improvement in model fit may be assessed in a similar way.

In general model fit is improved by the addition of more adjustable parameters,

which reduces the degrees of freedom in the model. The F-ratio for the model im-

provement, and the associated P-value, give information on whether the change is

worthwhile, or the improvement in model fit has arisen by chance. Table 2.1 gives

an example for an imaginary dataset with 100 datapoints and WSStot = 100, and

a model of the data in which the number of parameters has been increased from

3 to 6. The extra parameters account for more of the data variation (WSSmod

is increased by 1), but in this case the improvement is not enough to be deemed

significant to the 95% confidence level, and the improvement may have occurred

by chance.

np df WSS MS F P
Original model 3 2 80 40 200 < 0.001
Improvement +3 +3 1 0.33 1.65 0.183

Residual 94 19 0.20
Total 99 100

Table 2.1: ANOVA table for an imaginary model, where increasing the number
of parameters from 3 to 6 has improved the model fit from χ2 = 20 to χ2 = 19.
The P-value of 0.183 suggests there is an 18% chance that the improvement in
fit happened by chance, so for most purposes the increased complexity may be
deemed to be not worthwhile.

2.6 Optimising model performance

2.6.1 The purpose of optimisation

Model optimisation is the process of searching for a set of model parameters that

provide a good fit to data for a given model. This amounts to minimising the value

of χ2(p̄), for example by following it’s gradient with respect to the parameters p̄.

However, a number of difficulties may arise in this process, as has been found in

the work towards this thesis.

Figure 2.3 shows the simple case of a one-parameter model. If the search for an

optimum value begins at the point marked 1, and is confined to the area between

p = A and p = B, we conclude that the best value for our parameter is at point 2.

However, the shallow slope around point 2 shows that the fit is not considerably

better than anywhere else near to point 2, and there is therefore a large error on

our estimate of p. On searching the whole area between p = A and p = C, we
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Figure 2.3: Residual sum of squares χ2 as a function of an arbitrary parameter
p. Point 2 is a ‘local minimum’, and the shallow well indicates a high error in
using this value. The steep well at point 3 gives a better model fit, and a more
accurate parameter value.

would find that there is a better-fitting value for our parameter at point 3, which

lies in a steep well and is therefore more accurate. For an empirical model, where

goodness of fit and ‘usefulness’ of the model are the primary concerns, such an

approach may be very successful, and the only possible pitfall is in accepting a

‘local minima’ like point 2 without exploring further. However if the parameter

represents a real physical quantity in a model built up from a combination of

established physical equations, some subjectivity is necessary. The value of p at

point 3 may just be a ‘fluke’ of the datasets and equations involved, which is far

away from realistic values of the parameter, for example a pH of 106. In such a

case one may have to accept point 2 as the best value of p to use, so concluding

that the model is not highly sensitive to p, and we can’t, in this instance, learn as

much about the best value of p as we might have hoped. It could also be that the

model structure is such that it would unwise to accept the physical interpretation

of p.

On introducing more parameters, problems are magnified, but goodness of fit

may be improved. A change in a second parameter may cause Figure 2.3 to look

completely different - the minimum may no longer be at point 3. This gives

another dimension of freedom to search for an even better minimum, but at the

same time may introduce more local minima to deceive the searcher. With an

arbitrary number of parameters np, there exists an ‘np-dimensional parameter

space’ within which it is very easy to get lost.
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Optimisation is therefore a non-trivial process, and it would be foolish to blindly

rely on it to provide the best answer. One must have a reasonable initial estimate

of all parameter values, with realistic constraints and good control over the pro-

cedure, to avoid landing at local minima or accepting deceptively good parameter

values which may in fact be physically meaningless.

2.6.2 Levenberg-Marquardt optimisation

The Levenberg-Marquardt method is a standard method of nonlinear least-squares

routines. ModelMaker has a built-in Marquardt algorithm and MatLab has a

command for optimising a specific model in the form of a differential equation.

However the usefulness of each procedure is limited by the application - the com-

plex non-linear models with internal loops that are developed in this thesis are

beyond the scope of ModelMaker, and it was found they could not be expressed

in the required form for the MatLab algorithms without being simplified. Also

different applications require different settings in the optimisation, and where

these settings cannot be changed it is sometimes impossible to tell exactly what

the command may be doing. For the purpose of this thesis a program was written

in MatLab which allowed the manual adjustment of the procedure for the model

in hand, ensuring robust optimisation. The development of this procedure was

based mainly on the description of the Levenberg-Marquardt method given in

Press et al. (2002), and is described below.

Close to the minimum of a successful model, the χ2(p̄) merit function will be

approximated by a quadratic form, and at the true minimum, the gradient ∂χ2

∂pk

will tend to zero for all k = 1...np. The method therefore should follow the second

derivatives of χ2 to points where it will be a constant, suggesting a quadratic

form. This requires the Hessian ‘curvature’ matrix, which is the matrix of second

derivatives of the model fit with respect to it’s parameters. For np parameters,

this is an np × np matrix defined as follows:

αkl =
1

2

∂2χ2

∂pk∂pl

(2.12)

Press et al. (2002) argue that second derivatives of χ2 can be approximated in

practice, and introducing the random measurement error σi enables Equation 2.12

to be approximated using the first derivatives of the model output with respect

to each parameter:
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αkl =
nd∑
i=1

1

σ2
i

(
∂M(xi, p̄)

∂pk

∂M(xi, p̄)

∂pl

)
(2.13)

A vector of the first derivatives of χ2 with respect to the parameters must also

be defined:

βk = −1

2

∂χ2

∂pk

=
N∑

i=1

(
Di −M(xi, p̄)

σ2
i

)
∂M(xi, p̄)

∂pk

(2.14)

The desirable changes in parameters which may lead to a better goodness of fit,

δp̄, can be calculated from the set of linear equations:

np∑
l=1

αklδpl = βk (2.15)

In practice, the changes computed from Equation 2.15 are only useful when we are

already close to the minimum. The Marquardt method introduces a ‘fudge factor’

λ to allow smooth switching between the ‘inverse Hessian’ method represented by

Equation 2.13 and the ‘steepest descent’ method, where αkl is effectively replaced

by a constant. To do this, αkl is replaced by:

α
′

jj = αjj(1 + λ)

α
′

jk = αjk when j 6= k (2.16)

The procedure written for MatLab runs as follows:

1. The user provides initial estimates of each parameter, and upper and lower

constraint values for each parameter. The user also provides values for two

accuracy settings called brake and stopfraction.

2. λ is given an initial value of 0.001.

3. The model is executed with the initial parameter values p̄ and χ2(p̄) is

calculated.

4. The matrices α and β are calculated, finding the necessary derivatives nu-

merically.
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5. The matrix α is changed to α
′
according to Equation 2.16, and the linear

equations (Equation 2.15) are solved for δp̄ using left matrix division.

6. The model is executed with parameter values p̄ + brake ∗ δp̄ and χ2(p̄ +

brake ∗ δp̄) is calculated.

7. If χ2(p̄ + brake ∗ δp̄) ≥ χ2(p̄), λ is increased by a factor of 10, and the

program goes back to step 5.

8. If χ2(p̄ + brake ∗ δp̄) < χ2(p̄), λ is decreased by a factor of 10, the trial

solution is updated (p̄ → p̄+ brake ∗ δp̄) and the program goes back to step

4.

9. The program is stopped when the decrease in χ2 is a negligible amount:

(χ2
old − χ2

new)/χ2
old < stopfraction.

The user-defined setting brake is a stability precaution, limiting the size of para-

meter change for a sensitive model. The smaller the value of brake, the longer the

optimisation will take, but large moves which could force the parameter values

past their constraints become less likely. A default value of brake = 0.1 was used

in this thesis (brake = 1 gives the usual Marquardt procedure). The value of

stopfraction provides a choice of accuracy for the model, which the user may

wish to vary depending on the accuracy of their data. A default value for most

problems is stopfraction = 0.001. For data with a high degree of noise, a small

change in χ2 may be meaningless, representing a ‘flat valley’ of parameter values

which are all equally accurate, and stopfraction should then be set to something

higher.

The procedure was found to provide the same parameter values as the Marquardt

optimisation algorithms in ModelMaker and MatLab, for a number of simple

models. It also proved capable of optimising more complex models with stable

results, and so is the default optimisation procedure used throughout this thesis.

A further application of the above calculations is that the inverse of the matrix α

can be used as an approximation of the covariance matrix of parameter estimates,

Ω(p̄) ≈ α−1(p̄). The standard errors on parameter estimates can be calculated

using the diagonal elements of Ω(p̄):

∆pi =

√
Ωiiχ2

ν
(2.17)
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where ν is the number of degrees of freedom in the model. The errors estimated

in this way are used later in this thesis in conjunction with a standard statistical

t-test (see e.g. Mason et al. 2003) to assess the significance of parameter values.

2.7 Model trimming

A model hoping to reproduce the behaviour of a system via the existing theory

surrounding all the constituent parts of the system in hand may require a large

number of input variables to satisfy the model equations. However, for the pur-

poses of producing a model which is useful, user-friendly and good at predicting

the future, one may have to reduce the model to be more ‘parsimonious’. It is

both important and interesting to identify which aspects of the model (and thus

which parts of the modelled system) are most important in affecting the model

output, and which may be unnecessary components adding nothing but statisti-

cal noise to the model output. A technique termed ‘model trimming’ has been

developed for this thesis to assess the relative importance of input variables.

Over a given time period, we may consider that every individual variable (inter-

polated from a dataset) at a certain time has a value composed of the mean value

of the variable for the whole time period, xµ, plus some variation for that time,

σ(xi):

xi = xµ + σ(xi) (2.18)

The importance of the term σ(xi) can be assessed by introducing a parameter β

to the model, and changing the input variable to x
′
i.

x
′

i = βxi + (1− β)xµ (2.19)

where β is a parameter with a value between 0 and 1. The model is then executed

and goodness of fit calculated for various values of β. If the best fit is found as

β tends towards 1, the variability in xi is clearly important in producing the

model output. However if the better fit is found as β tends to zero, xi may be

adding noise to the model output. An alternative interpretation may be that the

equations involving xi are wrongly formulated or unnecessary for the description

of the system as a whole, having an adverse effect on the goodness of fit. Varying
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β may have little or no effect on the goodness of fit. In this case, the model

may be ‘indifferent’ to xi because the size of the variation in xi is insignificant

compared to other variables, or has been scaled down in the model equations.

This technique is intended for investigating a model based on background scien-

tific theory and equations, with parameters that have been optimised to values

within realistic ranges, producing a reasonably good fit to the model data. Vari-

ables should be tested one by one, and reset to their original state (β = 1) before

testing the next variable. The purpose is to inform the development of simpler,

less computationally intensive models of a system which may in practice be more

useful for predicting the future of a system. However the technique should not be

taken as justification for definitively discarding certain variables or equations, as

it considers only one variable at a time. In complex models with many variables

and parameters, the effects of different variables on the model output may be

closely interlinked, so it may be more definitive to assign parameters β1...βnx to

each variable x1...xnx and optimise them all. However, without prior knowledge

of realistic starting values of the β parameters, this may run the risk of falling

into local minima, at the same time as being computationally very intensive. It

seems more viable to use model trimming to develop simpler models, which can

be compared to the original model, using techniques such as the model selection

criteria described in the next section.

2.8 Model selection

A number of model selection criteria are used throughout this thesis to measure

the relative merits of different modelling approaches. Each of these relies on

some measure of the complexity of the model and some measure of the goodness

of fit, providing a number which will be minimised for the model judged better

by the criteria. Each was calculated on the basis of their descriptions in Myung

(2000), shown in Table 2.2. The code for each calculation was added to the

Levenberg-Marquardt optimisation procedure in MatLab described above.

Each criterion is only valid when calculated for a model in which some acceptable

‘optimum’ parameter values have already been chosen. The first three criteria in

Table 2.2 (AIC, BIC and RMSD) depend only on the number of parameters in

the model in their measure of the model’s complexity. The more advanced MDL

technique takes into account the functional form of the model via the Hessian

matrix of the minus log-likelihood, which is defined as H(p̄) = −∇2
p̄ ln(ML). On
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Criteria Formulation

Akaike Information
Criterion

AIC = −2 ln(ML) + 2np

Bayesian Information
Criterion

BIC = −2 ln(ML) + np ln nd

Root Mean Squared
Deviation

RMSD =
√

χ2

nd−np

Minimum Description
Length

MDL = − ln(ML) + 1
2
ln |H(p̄)|

Information-theoretic
measure of
complexity

ICOMP = − ln(ML) + np

2
ln
(

trace(Ω(p̄))
np

)
− 1

2
ln |Ω(p̄)|

Table 2.2: Model selection criteria, as described in Myung (2000). ln(ML) is the
maximised log-likelihood of the model, np the number of adjustable parameters,
nd the number of datapoints used in fitting the model, χ2 the residual sum of
squared errors, H(p̄) the Hessian matrix of the minus log-likelihood, and Ω(p̄)
the covariance matrix of parameter estimates.

returning to Equation 2.8, it can be seen that the log-likelihood is linear in −χ2,

and so −∇2
p̄ ln(ML) is proportional to ∇2

p̄χ
2. This is equivalent to the matrix

α defined in Equation 2.13. Therefore, for the purposes of providing a number

‘MDL’ for comparison with other models, it is sufficient to replace the matrix

H(p̄) with α(p̄). For the calculation of the final criteria ICOMP, the covariance

matrix Ω(p̄) is often approximated by the inverse of the Hessian, but by the same

arguments as above it is sufficient to define Ω(p̄) = α−1(p̄).

The numbers provided by each criteria are intended to help with the choice of a

so-called ‘true’ model for a given system. However such a choice remains subjec-

tive; no mechanical data analytic procedure for evaluating model fit should ever

replace or override human judgement (Browne 2000); it should merely assist such

judgements. Therefore knowledge of the theoretical background to each model

selection technique is essential. In fact one outcome of this thesis is a discussion

of the relative merits of different model selection criteria, and their suitability for

the particular case of ice modelling.
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2.9 Cross-validation

Cross-validation (CV) is a method of evaluating the predictive validity of a model.

The idea is that a model should be selected on the basis of its ability to capture

the behaviour of unseen or future observations from the same underlying process

(Myung 2000). Data are divided into two non-overlapping samples for model

calibration and validation. Parameters values are estimated using the calibration

sample, and the model then run again for the validation sample. In its simplest

form, the cross validation index CV is calculated as the goodness of fit to the

validation sample when using the calibration sample parameters, for example:

CV = χ2
validation (p̄calibration) (2.20)

The two-sample form of cross-validation can be wasteful because only about half

of the available observations are used to calculate parameters, leading to less

accurate calibrations (Browne 2000), so often large calibration samples and small

validation samples are used. However the results may be erroneous and misleading

in the presence of correlations in the data (Hart and Lee 2005). Autocorrelation

is especially likely in data spread over time, as for many variables the value one

day is to some extent dependent on the previous day; CV results may therefore

be deceptively good. In this thesis it is argued that for real-time models of an

environmental system, a truly accurate cross-validation requires large calibration

and validation samples spread across separate blocks of time designated by the

turnover time of the system, i.e. the length of the longest scale repetitive cycle

which may be expected to affect the system. In most cases this is the annual

cycle of the seasons, so datasets must come from separate years.
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Chapter 3

A physics-based model of lake ice

- Development

3.1 Overview

This chapter gives a full description of the algorithms, parameterisations and

input data involved in the development of a detailed physics-based model of the

ice layer on Crooked Lake, Antarctica. This includes descriptions of some related

experimental fieldwork, a number of short modelling investigations, and careful

discussion of the literature to determine which equations from the literature are

most suitable for the Antarctic climate in general and Crooked Lake in particular.

Figure 3.1: Schematic of the physics-based model, showing the heat and radiation
fluxes affecting the ice layer.
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The fundamental structure is based on the model described in Launiainen and

Cheng (1998), Cheng and Launiainen (1998) and Cheng (2002), although many

parameterisations have been tailored to suit a freshwater Antarctic system (as

opposed to saline Arctic systems in their study). The key processes are the

balance of heat at the ice surface and the ice bottom, and the conduction of heat

through the ice layer (Figure 3.1). According to the definitions of model quantities

given in the Methods chapter, the input variables to the model are a number

of quantities that were measured throughout the year at Crooked Lake and at

Davis station. The heat fluxes are intermediate variables, providing boundary

conditions for heat conservation in the ice layer. The main model output is the

ice thickness. The model also predicts the temperature at the top and bottom

ice surfaces, and at intervals throughout the ice layer.

3.2 Input variables

A number of meteorological data were available to provide the necessary input

variables and driving forces for a thermodynamic model of the ice on Crooked

Lake (Table 3.1). The automatic probe on Crooked Lake measured physical

parameters in the atmosphere, the ice layer and the water column. A number of

data recorded by Australian Bureau of Meteorology staff at Davis station were

also found to be useful.

Details on the automatic probe and methods employed in measuring each of the

variables are in Palethorpe et al. (2004). Data were recorded at five-minute

intervals. Deployment of the probe on Crooked Lake was limited to times of

sufficient ice thickness on the lake: 22:15 on 17 January 2003 until 15:00 on 31

January 2003, and 15:40 on 12 May 2003 until 11:00 on 13 January 2004. However

as some of the equipment developed faults due to the cold or severe weather, and

some sensors were added at later dates, not all of the variables in Table 3.1 were

recorded for the entire period of probe deployment. In particular, the sensors to

measure relative humidity at 1 m and 2 m, wind speed at 1 m and temperature

at 2 m were added by the author and Malcom Foster on 7 December 2003, so

those variables were only measured for around 6 weeks.

All of the variables from Davis station were measured every three hours over the

study period, giving eight datapoints per day at 00:00, 03:00, 06:00, 09:00, 12:00,

15:00, 18:00 and 21:00, with the exception of cloud cover which was not recorded

at 00:00 and 03:00. Unlike the ‘one-off’ data from the Crooked Lake probe, these
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Variable Units Details (CL=Crooked Lake, D=Davis)

Air Temperature K CL - 1 m and 2 m above the ice surface
D - 10 m above MSL

Water Temperature K CL - 3 m and 5 m below the ice surface

IceThickness m CL

Wind Speed m s−1 CL - 1 m and 2 m above the ice surface
D - 10 m above MSL

Wind Direction o CL - 2 m above the ice surface

Relative Humidity % CL - 1 m and 2 m above the ice surface
D - 10 m above MSL

UVB Radiation W m−2 CL - 1 m above and 3 m below the ice surface

Ice Temperature K CL - at 5 cm intervals throughout the ice
layer

PAR W m−2 CL - 1 m above the ice surface (upwelling
and downwelling), and 3 m, 5 m, 10 m, 20 m
below

Air Pressure Pa D - 10 m above sea level

Cloud Cover fraction D

Table 3.1: Data used in formulating the physics-based model of Crooked Lake,
and details on where each was recorded. All were converted to S.I. units. PAR
stands for Photosynthetically Active Radiation, MSL stands for Mean Sea Level.

data are available for the whole year of study, are recorded on a routine basis,

and will continue to be recorded as long as Davis station is manned. A model

formulated on the basis of these data as inputs may therefore be more useful

in the future. However as Davis is 16 km away from the site at Crooked Lake,

correlations were calculated between the two datasets (Table 3.2).

The correlations are good. Given the especially good air temperature correlation,

which is the most important variable governing ice growth and melt, the benefits

of parameterising the model with Davis data inputs were deemed to outweigh

any intuitive reasons against it. Therefore the Davis data is used throughout this

thesis except where otherwise stated.
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Variable Correlation Coefficient Number of datapoints
Air temperature 0.981 2041

Relative humidity 0.798 387
Wind speed 0.799 1938

Table 3.2: Correlations between the three variables that were measured at both
Davis station and Crooked Lake, with the number of 3-hour datapoints used in
calculating them.

3.3 Initial calculations

Several intermediate variables relating to the atmosphere, ice and water were

calculated during the model execution. Equations were carefully selected on the

basis of their suitability for application in the Antarctic, and this section gives a

thorough discussion of this process.

3.3.1 Humidity

The available data for Crooked Lake included relative humidity (RH), the ratio

of the amount of water vapour in the air to the amount of water vapour the air

can hold at saturation point. However this quantity is not particularly useful in

physical calculations, and a number of other quantities related to moisture were

calculated.

Saturation vapour pressure es is the pressure that water vapour molecules would

exert if air were saturated at a given temperature (Ahrens 1994). It was calculated

in units of Pa from air temperature Ta in K using a form of the empirical Tetens

(1930) equation:

es = 610.8 exp

(
17.27(Ta − 273.15)

237.3 + (Ta − 273.15)

)
(3.1)

Actual vapour pressure, which is the actual pressure in Pa exerted by water vapour

molecules, was found using the relative humidity data:

ea = es
RH

100
(3.2)

Specific humidity in kg kg−1, which is the ratio of the mass of water vapour in

an air parcel to the total mass of the parcel, was calculated using an empirical
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formula incorporating the air pressure pa in Pa (see e.g. Gill 1982):

qa =
0.622ea

pa − 0.378ea

(3.3)

3.3.2 Air density

Air density ρa is related to both temperature Ta and pressure pa. The ideal gas

law relates these quantities as follows:

paVa = naRgTa (3.4)

where Va is the volume of an air parcel, na is the number of moles in the parcel

and Rg is the universal gas constant (8.31 J mol−1 K−1). This can be rewritten

for density ρa as:

ρa =
paMa

RgTa

(3.5)

since ρa = Mana

Va
, where Ma is the average molar mass of air (0.029 kg mol−1).

The assumption of an ideal gas is commonly used in meteorology as being an

accurate parameterisation for the atmosphere. However in the Antarctic, where

the world’s most extreme temperatures occur, the error in taking this approach

may be higher, and so a comparison of the ideal and non-ideal gas approaches

was made. For a non-ideal gas corrections must be made to the pressure and

volume quantities to account for intermolecular interactions. The most common

parameterisation used for this is the Van der Waal’s equation of state:

(
pa + a

(
na

Va

)2
)

(Va − nab) = naRgTa (3.6)

where a and b are constants particular to a given gas. For air a = 0.1358 J m3

mol−2 and b = 3.64× 10−5 m3 mol−1. Equation 3.6 was rewritten and solved for

density ρa using an iterative solving command in MatLab.

The extremes of pressure and temperature measured for Crooked Lake in 2003

were 95630 Pa and 101480 Pa, 232 K and 283 K respectively. ρa was calculated

for an ideal and a non-ideal gas at these extremes (Table 3.3).
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Pressure Temperature Density (ideal gas) Density (non-ideal gas)
Pa K kg m−3 kg m−3

95500 232 1.437 1.439
95500 283 1.178 1.179
101500 232 1.527 1.530
101500 283 1.252 1.253

Table 3.3: Air density calculated using the ideal gas law and the non-ideal Van der
Waal’s equation of state, for every combination of the extreme values of pressure
and temperature at Crooked Lake, 2003.

At each combination of the extreme values shown in Table 3.3, the air density

calculated under the ideal gas assumption gives a change of less than 0.2 % with

respect to the more accurate value calculated by the Van der Waal’s equation.

Therefore for the ease of calculation, Equation 3.5 was deemed sufficient for the

calculation of air density throughout this thesis.

3.3.3 Atmospheric stability

For modelling the interactions of a surface with the atmosphere, it is useful to

have a measure of atmospheric stability close to the surface. Stability refers to

the balance between laminar flow (straight) and turbulent flow (where air swirls

in small loops called eddies). A parameter used in fluid dynamics to assess flow

stability close to a surface is the Bulk Richardson number Rz, which is calculated

using:

Rz =
zag(Ta − Ts)
1
2
(Ta + Ts)V 2

(3.7)

where za is the height of measurement of air temperature (1 m), g is the accel-

eration due to gravity (9.8 m s−2), V is wind speed, Ta is air temperature and

Ts is surface temperature. This is an approximation of the gradient Richardson

number, a dimensionless ratio related to the buoyant production or consumption

of turbulence divided by the shear production of turbulence. When the Richard-

son number is above a critical value Rc the surface layer will tend to be stable,

with laminar air flow, while a Richardson number below Rc means the layer is

dynamically unstable and likely to become or remain turbulent. This value is

usually taken as Rc = 0.25, although values may vary depending on the envi-

ronment in question. Some ice layers such as those at sea have sizeable bumps

and ridges that increase surface roughness, however the isolated freshwater ice
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on Crooked Lake is very smooth and glass-like for the majority of the year, so

will not readily induce turbulence, and thus the atmospheric surface layer may

remain stable down to relatively very low values of Rz. Launiainen and Cheng

(1998) adopt Rc = 0 for ice, which was used for initial model runs. The effects

of varying Rc are investigated in Chapter 4.

3.3.4 Ice albedo

Ice reflectivity, or albedo, is one of the key factors governing the behaviour of

an ice system, as well as being a key optical parameter for climatological studies

(Perovich 2003). Many ice models use constant values of albedo for short-term

simulations, but over the course of a year it may be useful to allow some temporal

variability. Albedo depends on both surface properties and the sun’s altitude, and

a wide range of values have therefore been reported for snow and ice. Models exist

to predict albedo from air temperature, solar radiation and snowfall data (e.g.

Henneman and Stefan 1999). For this study, an attempt was made to implement

albedo as a dynamic input variable, informed by measured values of upwelling

and downwelling radiation.

A downward-facing PAR sensor was added to the Crooked Lake probe on 13

May 2003 (by Malcom Foster, at the author’s request). It was hoped that ice

albedo could then be calculated from the ratio of upward to downward PAR.

However the results of taking this approach were highly variable. The sensor was

supported on an arm protruding sideways from the probe, and the bulk of the

probe occasionally cast a shadow over the area of ice directly below it. Also,

snowdrifts and blizzard-tails built up against the sides of the probe on several

occasions, such that the ice around the probe had a disproportionate amount of

snow cover in comparison to the rest of the lake. In winter, the low light levels

made albedo more difficult to quantify, especially on cloudy or hazy days of diffuse

light, where the upwelling PAR was measured to be greater than downwelling.

However despite these uncertainties some estimates were made of daily albedo

values by considering only a 3-hour period straddling midday (10:30 to 13:30),

when the sun was at it’s highest point. This provided 37 5-minute datapoints

of upwelling and downwelling PAR for each day. The average of these was used

to calculate the albedo for that day. For the period 13 May 2003 to 12 January

2004, albedo was calculated for 220 days in total, shown in Figure 3.2.

The mean albedo was 0.43, with a standard deviation of 0.17. This value is similar

to that found by Henneman and Stefan (1999) who measured (and predicted via
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Figure 3.2: Daily values of albedo of Crooked Lake calculated from measurements
of upwelling and downwelling PAR. The mean of 37 5-minute measurements be-
tween 10:30 and 13:30 were used.

models) albedos of 0.3 to 0.55 for freshwater ice on a lake in Minnesota, USA.

There is large variability in measured values, and the method of measurement is

simplistic (true albedo should represent a higher wavelength band than the PAR

band, 400-700 nm). However there is sufficient spread of data across the year to

provide an albedo input variable for the model.

3.3.5 Attenuation of radiation

According to Beer’s Law for the transmission of radiation through a medium,

the fraction of light absorbed by each equal-sized layer of the medium is the

same. This gives an exponential dependence on depth z below the surface of the

medium:

Q(z) = (1− α)Q0 exp(−κz) (3.8)

where Q(z) is the flux density of radiation at depth z, Q0 is the power of down-

welling radiation at the surface of the medium, α is the albedo of the surface
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Figure 3.3: Exponential attenuation of radiation in ice with extinction coefficient
κi and water with extinction coefficient κw.

and κ is the extinction coefficient of the medium in m−1. In a lake system, ice

and liquid water have different values of extinction coefficients, κi and κw (Figure

3.3).

The PAR measurements on Crooked Lake were used as an approximation for total

radiation flux density Q(z). As with the albedo calculations, only measurements

in the 3-hour period 10:30 to 13:30 were used. To estimate values of κi for use in

a model, Equation 3.8 was first rewritten for the lake water as:

ln PAR(z) = −κwz + c (3.9)

where c is a constant. This implies that a plot of ln PAR(z) against z will give

a straight line of gradient −κw. The four measured underwater values of PAR

could therefore provide an estimate of κw.

The PAR sensor at the surface measured only cosine-corrected downwelling radi-

ation from the upper hemisphere of view, while the underwater sensors were of

a bulb type which measured total scalar PAR (PAR from all directions around

the sensor). This is important for biologists who need to consider all directions

because of the random orientation of phytoplankton cells. The ratio of scalar

irradiance to downwelling irradiance in a water column (E0

Ed
) increases with the

ratio of scattering to absorption coefficients (i.e. the more scattering that occurs,

the higher the upwelling irradiance component). Kirk (1986) reports values of
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Figure 3.4: Calculated extinction coefficient κw of water in Crooked Lake.

E0

Ed
of up to 1.2 for clear oceanic waters, increasing to 1.4-1.8 for some inland or

coastal waters and 2.0-2.5 for very turbid waters. In Crooked Lake, the absence

of fish or marine mammals results in very clear, clean water; in addition the ice

layer inhibits extensive turbulent mixing by the wind, preventing the dispersion

of sediment from the lake bed. Considering also the absence of salt, the lake

can be deemed to have less scattering than even the clearest oceanic waters, and

hence a value of E0

Ed
= 1.1 was adopted.

Calculated values of κw across the year are shown in Figure 3.4. The highest

values of almost 0.2 m−1 were calculated for the first probe deployment in January

2003. This was a time when there was open water ‘moating’ around the lake

edges, which may have allowed some wind-induced mixing of sediment, causing

higher κw. When the probe was redeployed in May 2003, κw was around 0.1,

and the general trend thereafter was approximately a linear increase with time,

reaching 0.16 m−1 in January 2004. A possible explanation for this is in terms

of the spectral properties of the ice. In clear ice the attenuation of red light is

greater than that of blue (hence the ice appeared blue in winter). Therefore the

light reaching the water column would have a higher proportion of blue light than

the light at the surface (Wharton Jr. et al. 1992). Clear water also attenuates

blue light slightly less than red, so the measurements of radiation in the water

column indicate less attenuation than if the light had a more uniform spectrum.
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Figure 3.5: Calculated extinction coefficient κi of ice on Crooked Lake.

As ice ages, and particularly as it begins to melt, it whitens and opacifies, so the

transmitted light spectrum is more uniform. With more red light in the spectrum

the measured attenuation coefficient is higher.

The straight line represented by Equation 3.9 was extended to find the down-

welling radiation at the bottom of the ice layer, which is at a depth determined

by the ice thickness Hi:

PAR(Hi) = exp(−κwHi + c) (3.10)

The extinction coefficient for ice κi was found using PAR(Hi) and the surface

measurements PAR(0):

κi =
ln((1− α)PAR(0))− ln PAR(Hi)

Hi

(3.11)

where α is the ice albedo. With the values of albedo calculated in the previous

section, the average value of the extinction coefficient over the year was found

to be κi = 0.27 m−1 (Figure 3.5). Apart from some high peaks (which may

correspond to periods of snow) κi was around 0.1 m−1, but showed a slight increase
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to around 0.4 m−1 in the summer period, December 2003 to January 2004. This

was the period over which the ice had begun to rot, and became more opaque.

As with albedo, there is sufficient spread of data across the year to provide an

input variable for the model.

Some measurements find that the extinction coefficient for thermal radiation is in

fact large near the ice surface and decreases by more than an order of magnitude

below the top 0.1 m of ice, where only visible light remains (Grenfell and Maykut

1977). This is accounted for in the model of Launiainen and Cheng (1998), and

is an important consideration for accurate calculations of in-ice temperatures.

However the model development in this thesis is mostly concerned with accurate

predictions of ice thickness. Making the assumption that the extinction coefficient

is constant with depth (or effectively a mean value of the top 0.1 m and the rest of

the layer) will not significantly affect the ice thickness prediction. Therefore the

model investigations in this thesis were undertaken with an extinction coefficient

which was constant with depth.

Note: As can be seen in Figures 3.2 and 3.5, the input variables α and κi have no

measured values in the periods when ice was too thin to support the sensing probe

(31 January to 12 May 2003). However this is also the case for the ice thickness

data which is used to fit the model, so the effects of using linearly interpolated

values for α and κi (also water temperature Tw) in these periods are assumed to

be negligible (i.e. those days on which the model output is fitted to data have

‘real’ values of all input variables).

3.3.6 Micrometeorological parameters

Sensors were added to the Crooked Lake probe by the author on 7 December

2003 to provide measurements of wind speed, relative humidity and temperature

at two heights, and logged data until 13 January 2004. Having such profiles allows

estimations of the roughness lengths for momentum, heat and water vapour on the

Crooked Lake ice. These are important micrometeorological quantities involved

in the transfer of latent and sensible heat to and from the ice layer.

In addition, a wind profile mast (Figure 3.6) was deployed on the ice on Crooked

Lake on 7, 9 and 12 December 2004, to provide some more accurate calculations

of the aerodynamic roughness length. This consisted of six cup anemometers

mounted at heights of 0.26, 0.43, 0.67, 0.98, 1.42 and 1.87 m, with a counting

box built by the University of Nottingham. On each occasion the equipment was
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Figure 3.6: Wind profile mast on Crooked Lake. Anemometers were arranged
pointing in the prevailing wind direction, with datalogging equipment and the
supporting mast downwind.

deployed for two periods of 40 minutes either side of midday, and the number of

revolutions of the anemometer vanes were converted to the average wind speeds

over the period for each height. The mast was deployed in a position close to the

Crooked Lake probe site, with over 500 m upwind ‘pitch’ of flat ice to the edge

of the lake. It was therefore representative of the main internal area of lake ice

cover, away from hills and the lake edge which may induce localised roughness

variation.

The aerodynamic roughness length, z0, is the characteristic length scale defined

for a surface as the height at which wind speed becomes zero. For an area with

large obstacles such as trees, vegetation or buildings, z0 may be up to the order

of tens of meters, whereas for a flat smooth surface like ice it may be expected

to be less than 1 millimetre. Assuming near-neutral stability in Monin-Obukhov

similarity theory (see e.g. Denby and Snellen 2001, Handorf et al. 1998, Andreas

2002), z0 is related to the average wind speed V (z) at height z and the friction

velocity u∗, (a fundamental velocity scale in the atmospheric surface layer which

remains constant with height) by:

V (z) =
u∗
k

ln
(

z

z0

)
(3.12)
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Figure 3.7: Logarithmic profiles of wind speed in the atmospheric surface layer
above Crooked Lake, measured over two 40-minute periods either side of midday
on 7, 9 and 12 December 2003.

Date z0 (m) u∗ (m s−1)
07/12/2003 0.000535 0.505
09/12/2003 0.001386 0.331
12/12/2003 0.008819 0.152

Table 3.4: Calculated values of aerodynamic roughness length z0 and friction
velocity u∗ for Crooked Lake.

where k is the von Karman constant. Therefore with measurements of V at

several heights plotted in a co-ordinate system which is logarithmic in z, the data

should lie on a straight line with a gradient of u∗
k

, which intersects the V = 0 axis

at ln z0 (Andreas 1996). This was done for the three measurement days (Figure

3.7), and z0 and u∗ were calculated (Table 3.4).

With the assumption of near-neutral stability, the wind profiles all fitted a straight

line with r2 values of 0.94, 0.96 and 0.99 for the three respective days. This is

plausible for a surface such as Crooked Lake, as the absence of nearby obstacles

and smoothness of the surface would not be expected to cause instability in

air flow. In addition, the Antarctic summer environment of 24-hour daylight

means that the diurnal variations in solar radiation and temperature are relatively

insignificant. As a result of this and the high surface albedo of ice, there may
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Figure 3.8: Photographs of Crooked Lake ice cover, December 2004.

be very little variation in surface heating, thermals and buoyancy with time, the

usual factors which could cause large differences in turbulence between different

times of day.

The calculated values of z0 increase by an order of magnitude over the week in

which the three measurements were taken. This was a period in which average

daily air temperature rose from around -2 oC to 7 oC, and the ice thickness

dropped by 12 cm. The surface became visibly rougher, whiter and more opaque

during this time, as shown in Figure 3.8.

In addition to the aerodynamic roughness length, two length scales must be de-

fined for transfer of heat and water vapour - the roughness lengths for temperature

(zT ) and humidity (zQ). In neutral stability conditions they are related to their

respective vertical profiles as follows:

T (z) = Ts +
t∗
k

ln
(

z

zT

)
(3.13)

q(z) = qs +
q∗
k

ln

(
z

zq

)
(3.14)

where t∗ and q∗ are fundamental temperature and velocity scales analogous to

the friction velocity u∗, and Ts and qs are the surface values of temperature and

specific humidity.

The measurements of wind speed, temperature and humidity at two heights (Fig-

ure 3.9) were less successful in predicting these roughness lengths, as the differ-

ences between values at the two heights were negligible (in the case of tempera-

ture) or were alternately positive and negative, undermining the assumptions.
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Figure 3.9: Measurements of wind speed, air temperature and specific humidity
at two heights above Crooked Lake (24-hour means).

It was therefore not possible to calculate roughness lengths directly from the data

for individual days, apart from the three days of accurate estimates of z0 using

the wind profile mast. However taking mean values for wind speeds in Figure 3.9

allowed a calculation of the average aerodynamic roughness length as z0 = 0.006

m, which is within the range of values measured in Table 3.4. In the model, each

roughness length was set to a constant value based on measurements or calculated

from empirical formulae from the literature.

3.3.7 Other ice characteristics

A number of other physical values relating to the ice layer are necessary for the

model, and may vary over time along with the albedo, extinction coefficient and

roughness lengths. Ice density ρi, specific heat capacity ci and thermal conduc-

tivity ki are strictly speaking dependent on ice structure and the physical en-

vironment, and this is usually approximated with functions of temperature and

salinity of the ice (e.g. Maykut and Untersteiner 1971). However as this depen-

dence tends to be linear in the salinity s, which in the case of Crooked Lake is

negligible, constant values can be used to a high degree of accuracy (see List of

Symbols for values).

The enthalpy of vaporization of water Rl is required for calculations involving
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phase changes at the ice surface. When the ice surface temperature Ts is at or

above freezing point Tf , the surface must hold an infinitesimal layer of liquid

water, and thus Rl represents the latent heat of vaporization, i.e. the heat lost

or gained by the air when liquid water changes into vapor or vice versa. However

when Ts is below Tf , Rl represents the latent heat of sublimation, i.e. the heat

lost or gained by air when ice changes directly to water vapor or vice versa (i.e.

the sum of the heat quantities required to melt water then turn it to vapour).

The two quantities differ by around 335000 J kg−1, and are expressed as:

Rl = 2500000− 2375(Ts − Tf ) for Ts ≥ Tf (3.15)

Rl = 2500000− 2375(Ts − Tf ) + 335000 for Ts < Tf (3.16)

3.4 Heat and radiation fluxes

This section describes the model parameterisations of heat and radiation fluxes

between the atmosphere, water and ice on Crooked Lake. These are important

intermediate variables for use in predicting the ice thickness and ice temperature.

As in the previous section, equations were carefully selected on the basis of their

suitability for application to the Antarctic.

3.4.1 Solar shortwave radiation

Shortwave (SW) radiation is usually defined as the band of wavelengths at 400-

4000 nm. It leaves the sun and enters the Earth’s atmosphere where it is

absorbed, scattered and transmitted by ozone, oxygen, carbon dioxide, water

vapour, aerosols and clouds in the troposphere. Clouds reflect some incident

shortwave back to space but may also contribute a substantial amount to the

downward flux at surfaces with high albedos, due to multiple reflections between

the surface and the cloud base (Key et al. 1996) (Figure 3.10).

A number of methods were available for estimating this important flux. The

Crooked Lake probe provided measurements of PAR (400-700 nm). The SW

radiation can be calculated from PAR by integrating Planck’s equation for photon

energy (E = hpc
λ

) across the wavelength bands:

47



Figure 3.10: Multiple reflections of solar radiation between surface and cloud
base.

Qs =

∫ 4000nm
400nm

hpc
λ

dλ∫ 700nm
400nm

hpc
λ

dλ
× PAR ≈ 1.475× PAR (3.17)

where λ is wavelength, c is the speed of light and hp is the Planck constant.

However as PAR data was not collected for the entire year, and for the benefit of

future predictions, it is useful to find an accurate, generalisable parameterisation

of the atmospheric shortwave radiation at this particular Antarctic site. The

amount of radiation striking the top of the atmosphere can be expressed as a

fraction of the solar constant S, which is not strictly a constant but represents

the average flux of solar radiation striking a plane normal to the earth-sun line,

and has a value of approximately 1367 W m−2. The downwelling shortwave at

the top of the atmosphere normal to the Earth’s surface is:

Qt = S cos Z (3.18)

where the zenith angle Z is calculated from the latitude φ, solar declination δ

and hour angle HA by: cos Z = sin φ sin δ + cos φ cos δ cos HA. The hour angle

depends on solar time ht, HA = 15o × (12− ht) and declination depends on the

Julian day J , δ = 23.45o × sin
(

2π(J+284)
365.24

)
. 15o is the angle of rotation of the

Earth in 1 hour and 23.45o is the inclination angle between the Earth’s rotational

axis and it’s orbital plane (Figure 3.11). For these formulae, latitudes for the

Southern Hemisphere must be expressed as negative, giving -68.6o for Crooked

Lake. In addition, when the sun is over the horizon the cosine will be negative -

48



Figure 3.11: The zenith angle for a Southern Hemisphere observer at noon (hour
angle HA = 0).

the equation does not account for the fact that the Earth is not transparent, and

hence any values calculated for Qs which are less than zero are set to zero.

The reduction of this ‘top of atmosphere’ radiation on reaching the surface is

somewhat more difficult to parameterise, due to the high variability of atmospheric

phenomena that may affect scattering, absorption and transmission. The surface

fluxes are therefore a highly complex function of many variables in the entire

air column, and would require a radiative transfer model and extensive verti-

cal distributions of temperature and moisture to calculate. Instead a number of

equations have been developed to approximate the atmospheric attenuation for

general use, calculating the flux from a number of common meteorological sur-

face measurements. Simpler forms for the solar radiation from a clear sky include

that of Lumb (1964), who used data from the mid-Atlantic, and Bennett (1982).

Zillman (1972) developed a slightly more complex formula using data from the

Indian Ocean, which was modified for high-latitude (Arctic) use by Shine (1984).

It includes the saturation vapour pressure ea and is used in the Baltic Sea ice

model of Launiainen and Cheng (1998). However it must be noted that all the

equations (Table 3.5) are calibrated for the specific sites at which their authors

worked, for example the constants of 0.61 and 0.2 for the mid-Atlantic used in

the Lumb (1964) equation were re-calculated by Moritz (1978) to be 0.47 and

0.47, respectively, for a site in Canada.

Cloud cover considerably affects the surface shortwave and corrections have to

be made to the above parameterisations to derive the true downwelling SW at

the surface, Qs. Some studies include a cloud cover factor C which takes values
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Reference Equation

Lumb (1964) SWclear = S cos Z(0.61 + 0.2 cos Z)

Bennett (1982) SWclear = 0.72S cos Z

Shine (1984) SWclear = S cos2 Z
(cos Z+1)ea×10−5+1.2 cos Z+0.0455

Table 3.5: Parameterisations of ‘clear sky’ shortwave radiation fluxes from the
literature.

References Calibrated form r2 fit

Lumb (1964), Qs = (1− 0.48C)S cos Z(0.33 + 0.43 cos Z) 0.862
Moritz (1978)

Bennett (1982) Qs = (1− 0.49C)0.57S cos Z 0.847

Zillman (1972), Qs = (1− 0.48C) S cos2 Z
(cos Z+7.05)ea×10−5+1.69 cos Z+0.02

0.853

Shine (1984)

Table 3.6: Shortwave radiation models calibrated for Crooked Lake data.

between 0 and 1, and for the Crooked Lake case the cloud cover data from Davis

can be used as an approximation for the cloud cover at the site. The most

common method is to include the cloud fraction and a coefficient, as used by

Bennett (1982) and Launiainen and Cheng (1998):

Qs = SWclear(1− 0.52C) (3.19)

where the coefficient value of 0.52 can be adjusted for each site. A polynomial

form in C can also be used, for example Qs = SWclear(1 − xC − yC2 − zC3) to

account for the fact that as surface-measured cloud cover increases, the amount

of low cloud, which reduces radiation the most, is increased disproportionately,

such that the reduction of radiation increases slowly at first, then more rapidly

with increasing cloud cover. A more complicated method was used by Shine

(1984), involving the surface albedo, solar zenith angle and cloud optical depth

to account for multiple reflections between the surface and the cloud base (as in

Figure 3.10). They consider two terms for the SW, from the clear and cloudy

portions of the sky: Qs = (1− C)SWclear + (C)SWcloudy.

Key et al. (1996) tested some of the above methods, using data from field sites in
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Figure 3.12: Calculated and observed surface shortwave radiation striking
Crooked Lake for 6 days of 2003, using an equation of the form suggested by
Lumb (1964). Goodness of fit for the whole year’s data was r2 = 0.862.

Canada and Alaska, and found the Shine (1984) equations to be best at estimating

the shortwave flux. Given the extensive SW data available from the Crooked Lake

PAR measurements, a similar test was possible. The forms of Shine (1984), Lumb

(1964) and Bennett (1982) were generalised by replacing site-specific constants

with adjustable parameters. For cloud cover a simple polynomial in the cloud

fraction C was used, adding higher order terms to give a number of different

equations. Each equation was calculated in ModelMaker using meteorological

data as inputs. The parameters were adjusted using the Levenberg-Marquardt

procedure to fit the Crooked Lake SW data (Table 3.6).

It was found that the addition of higher order terms in the cloud cover term gave

a negligible increase in the goodness of fit of the models. The Zillman/Shine form

tended to produce large discontinuities at certain values of the vapour pressure

ea, and the form of Lumb (1964) was found to provide the best fit to the Crooked

Lake data (Figure 3.12). It is therefore used in models in this thesis.
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3.4.2 Longwave radiation

Upwelling longwave (LW) radiation from a surface (Qb) is well approximated by

the Stefan-Boltzmann Law:

Qb = εiσsT
4
s (3.20)

where Ts is the temperature of the ice-air interface surface, σs is the Stefan-

Boltzmann constant (5.67×10−8 W m−2 K−4) and εi is the dimensionless surface

emissivity which for ice takes values throughout the literature of 0.96-0.99 (An-

dreas and Makshtas 1985, Cheng 2002, Peres and DaCamara 2004).

The downwelling LW radiation from the atmosphere (Qd) takes the same form

as Equation 3.20, but emissivity ε takes a complex form due to atmospheric vari-

ations of clouds, temperature, particles, water vapour and contaminants. An

accurate calculation of atmospheric LW can be determined from an appropriate

radiative transfer model, however this requires data on temperature and humidity

up to around 30km height. Since the work of Brunt (1932), a number of differ-

ent empirical functional forms have been used throughout the literature, with ε

replaced by an ‘effective emissivity’ ε∗ calculated from atmospheric variables:

Qd = ε∗(C, Ta, ea)σsT
4
a (3.21)

As with the shortwave radiation equations described in the previous section,

several methods have been proposed for parameterising the effective longwave

emissivity of the atmosphere. The intrinsically strong correlations between cloud

cover C, air temperature Ta and vapour pressure ea result in a three-way feedback,

and therefore many of the formulae in the literature consider only one or two

of these variables. Studies have looked in detail at the benefits of the various

functional forms that have emerged over the years, comparing them to data from

high-latitude sites (e.g. Makshtas et al. 1999, Key et al. 1996). This involves

in many cases the use of complex radiative transfer models, and would require

extensive measurements of longwave radiation, both of which are unavailable for

Crooked Lake. It is therefore not possible to conduct a site-specific calibration of

equation coefficients as was done for the shortwave equations. Instead a number

of functional forms (Table 3.7) were compared on the basis of the praise they have

received in the literature regarding their suitability for high-latitude (especially

Antarctic) applications.
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References Equation

Guest (1998), Qd = (1 + 0.26C)(σsT
4
a − 85.6)

Jacobs (1978)

Efimova (1961), Qd = (1 + 0.26C)σsT
4
a (0.746 + 0.0066ea)

Jacobs (1978)

Prata (1996), Qd = (1 + 0.26C)σsT
4
a (1− (1 + 46.5ea

Ta
) exp(−

√
1.2 + 139.5ea

Ta
))

Jacobs (1978)

Zillman (1972) Qd = σsT
4
a (9.2× 10−6T 2

a ) + 0.96σsT
4
a (1− 9.2× 10−6T 2

a )C

König-Langlo σsT
4
a (0.765 + 0.22C3)

and Augstein
(1994)

Maykut and Qd = σsT
4
a (0.7855(1 + 0.2232C2.75))

Church (1973)

Table 3.7: Parameterisations of longwave radiation from the literature.

The first three entries in Table 3.7 are described as ‘clear sky’ equations by the

authors, with a correction for cloud Qd = Qd(clear) × (1 + 0.26C) as suggested

by Jacobs (1978). These combinations were chosen by Launianen and Cheng

(1998) for their model of ice cover in the Baltic Sea. Unlike the case of solar

shortwave radiation, the presence of cloud increases the atmospheric longwave.

The lower three lines of Table 3.7 are ‘all-sky’ equations which account for cloud

cover intrinsically in their functional form. Where one of the three atmospheric

variables (Ta, ea, C) is not present in the equations, the authors have indirectly

accounted for that variability in their choice of coefficients and the correlations

between variables.

To examine the relative merits of each equation in Table 3.7, each was applied

to every 3-hour step over the entire year of 2003, using meteorological data from

Davis as inputs for the calculations. The standard deviation across the estimates

was highest in winter, when it reached as high as 13.3 % of the mean, and lowest

in the summer (Figure 3.13).

Given the reasonable agreement between the six equations, and the lack of other

information on which to base a decision, the selection of a method was subjective.

In an attempt to introduce some objectivity, the following quantity was calculated

for each equation, to assess which gave the best trade-off across the six options:
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Figure 3.13: Monthly averages of longwave radiation as calculated from the mean
of all six equations in Table 3.7. The dotted lines represent the standard deviation
of monthly averages across all six methods.

D =
|Qd(2003)− µ(Qd)|

µ(Qd)
× 100% (3.22)

where Qd(2003) is the mean longwave radiation for 2003 as calculated by the

relevant equation and µ(Qd) is the mean value of Qd(2003) across all six equations.

D therefore represents the difference between the equation result and the mean

for all six equations, as a percentage. Table 3.8 gives the value of D for each of

the equations in Table 3.7.

A discussion of the relative merits of the equations as tested by other researchers

is also necessary for an informed choice. Makshtas et al. (1999), using data from

both the Russian North Pole and Ice Station Weddell in the Antarctic, found that

the König-Langlo method was best out of a number of equations at handling the

total cloud amount and longwave flux, and at reproducing the seasonal variability

of sea-ice thickness in a 1D thermodynamic model. Meanwhile the combined

parameterisations of Efimova (1961) and Jacobs (1978) were preferred by Key et

al. (1996) for data from two Arctic sites in the Northwest Territories, Canada

and Barrow, Alaska. They found that the Zillman (1972) form performed poorly,

but they did not test the König-Langlo method. Both Makstas et al. and Key
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References Site of testing D (%)

Guest (1998), Weddell Sea, Antarctica 5.67
Jacobs (1978)

Efimova (1961), Various Russian stations, Arctic 4.15
Jacobs (1978)

Prata (1996), 13 sites across world 4.20
Jacobs (1978)

Zillman (1972) Southern Ocean 2.01

König-Langlo Georg von Neumayer, Antarctic 1.81
and Augstein (1994) and Ny Alesund, Arctic

Maykut and Barrow, Alaska 1.89
Church (1973)

Table 3.8: Known information on the longwave parameterisations from Table 3.7,
for informing the choice between them. D is the difference between the equation
result for all of 2003 and the mean for all six equations, as a percentage of the
mean.

et al. found that the Maykut and Church (1973) method gave only ‘moderately

accurate’ results.

Guest (1998) suggests that different forms are required between the Antarctic and

the Arctic because of the greater amount of anthropogenic and natural particulate

and aerosol contamination in the Northern Hemisphere. He suggests his equation

as a simple method for the Antarctic, since it provided a better fit to his Weddell

Sea data than a number of more complex forms from other authors. However

Launiainen and Cheng (1998) suggest that the formula by Prata (1996) is based

on the best arguments, taking into account an integration of the precipitable water

in the air column to include the possibility of an atmospheric inversion. Prata

tested his equation using measurements from a wide range of sites across the

Arctic, North America, West Africa, the Middle East, Australia and Antarctica,

so his form may be one of the most generalisable for applications across the world.

However the König-Langlo method gives the best trade-off between the six equa-

tions according to Table 3.8. Therefore given that it is also of a relatively simple

form for numerical computation, and has been specifically developed and vali-

dated for Antarctic applications, it is chosen as the method for calculation of

longwave radiation fluxes throughout this thesis, except where otherwise stated.
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3.4.3 Sensible and latent heat

The fluxes of sensible and latent heat can be discussed together as they rely on

the same basic theory and atmospheric conditions. Both are dependent on scalar

transfer coefficients which in turn are derived from the parameterisation of a

number of surface-atmosphere interactions. The calculations used are mostly the

same as those chosen by Launianen and Cheng (1998). The approach is rooted in

Monin-Obukhov Similarity Theory, a full discussion of which is beyond the scope

of this thesis, but a summary is given here.

The transfer of sensible heat Qh between the air and the ice layer is dominated

by the temperature difference between the air (measured at height za) and the

ice layer, (Ta − Ts), according to:

Qh = ρacaCH(Ta − Ts)V (3.23)

where V is the wind speed, ρa and ca are the density and specific heat capacity

of air, and CH is the bulk transfer coefficient for sensible heat.

Analagously, the transfer of latent heat between the air and the ice layer is dom-

inated by the difference in specific humidity between the air and the ice layer,

(qa − qs).

Ql = ρaRlCE(qa − qs)V (3.24)

where CE is the bulk transfer coefficient for latent heat and Rl is the enthalpy of

vaporization of water. At the ice surface, where water can be assumed to exist

near triple point conditions, the air is assumed to be saturated, and hence qs is

calculated from Equation 3.3 with saturation vapour pressure es in place of actual

vapour pressure ea.

Parkinson and Washington (1979) approximate the heat transfer coefficients as

constant values, with CH = CE = 1.75×10−3 for their models of sea ice. However

the coefficients are strictly dependent on both the roughness of the surface in

question and the stability of the atmospheric surface layer.

A drag coefficient CD is also necessary due to the inclusion of wind speed in

Equations 3.23 and 3.24. The three coefficients are calculated from:
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CD =
k2(

ln
(

za

z0

)
−ΨM(ζ)

)2 (3.25)

CH =
k2(

ln
(

za

z0

)
−ΨM(ζ)

) (
ln
(

za

zT

)
−ΨH(ζ)

) (3.26)

CE =
k2(

ln
(

za

z0

)
−ΨM(ζ)

) (
ln
(

za

zq

)
−ΨE(ζ)

) (3.27)

where k is the von Karman constant, za is the height of measurements and z0,

zT and zq are the roughness lengths for momentum, temperature and humidity

respectively. ΨM , ΨH and ΨE are stability corrections which are expressed as

functions of ζ, the non-dimensional Monin-Obukhov parameter which quantifies

stability effects.

Under neutral stratification, the drag coefficient CD takes a value CDN . This

can be related to the geometrical surface roughness ξ by an empirical function

found by Banke et al. (1980) for sea ice in the Arctic. ξ is defined as the

r.m.s surface roughness, and was acquired by measuring surface elevation at 1m

intervals upwind of their instruments. Their result was:

CDN = 1.1× 10−3 + 7.2ξ (3.28)

where ξ is in metres. This may not be completely accurate for a freshwater lake

in the Antarctic, however the related theory gives a chance to replace the three

inaccurately known roughness lengths z0, zT and zq with one adjustable parameter

ξ, which may not strictly give the true geometric roughness, but given the linear

form of Equation 3.28, works well as a ‘fitting parameter’ for the model. ξ was

given an initial value of 0.1 m on advice from Cheng (2004).

z0 can be calculated from CDN by setting ΨM(ζ) = 0 in Equation 3.25 to represent

neutral stability, and rewriting:

ln z0 = ln za − kC
− 1

2
DN (3.29)

zT and zq depend on the roughness Reynolds number Re, a quantity proportional

to the ratio of inertial to viscous forces in a fluid, which is used in momentum,

heat, and mass transfer calculations to account for dynamic similarity. It can be
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calculated using:

Re =
z0C

1
2
DNV

γ
(3.30)

where γ is the kinematic viscosity of the fluid, taken as a function of air temper-

ature:

γ = 0.9065× 10−7Ta − 112.7× 10−7 (3.31)

Andreas (1986) performed a second-order polynomial modelling exercise in which

he found the following relationships between zT , zq and Re, z0 for ice and snow:

ln zT = ln z0 + a0 + a1 ln Re + a2(ln Re)
2 (3.32)

ln zq = ln z0 + b0 + b1 ln Re + b2(ln Re)
2 (3.33)

where the a and b coefficients take values that depend on Re, covering three ranges

which Andreas defined to cover the ‘smooth’, ‘transition’ and ‘rough’ dynamic

regimes. His values are adopted in this thesis (Table 3.9).

Coefficient Re ≤ 0.135 0.135 < Re < 2.5 2.5 ≤ Re ≤ 1000
a0 1.250 0.149 0.317
a1 0 -0.550 -0.565
a2 0 0 -0.183
b0 1.610 0.351 0.396
b1 0 -0.628 -0.512
b2 0 0 -0.180

Table 3.9: Values of the coefficients for Equations 3.32 and 3.33 as applied to
snow and ice, from Andreas (1986). The three ranges of Re represent ‘smooth’,
‘transition’ and ‘rough’ dynamic regimes in the surface layer.

The Ψ and ζ functions in Equations 3.25, 3.26 and 3.27 are empirical and must be

found by experiment. An assessment of the relative merit of different functional

forms is beyond the scope of this thesis, and so the forms chosen by Launiainen

and Cheng (1998) for Arctic sea ice are deemed to be a good approximation for

Crooked Lake. For unstable stratification (when Rz < Rc, see Section 3.2), these

are:
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ζ =


(
ln
(

za

z0

))2

ln
(

za

zT

) − 0.55

Rz

ΨM = 2 ln

1 + (1− 19.3ζ)
1
4

2

+ ln

1 + (1− 19.3ζ)
1
2

2

− 2 arctan(1− 19.3ζ)
1
4 +

π

2

ΨH = ΨE = 2 ln

1 + (1− 12ζ)
1
2

2

 (3.34)

and for stable stratification (Rz ≥ Rc),

ζ =
(
1.89 ln

(
za

z0

)
+ 44.2

)
R2

z +
(
1.18 ln

(
za

z0

)
Rz − 1.5 ln

(
z0

zT

)
− 1.37

)
Rz

ΨM = ΨH = ΨE = −10.7− 0.7ζ − 0.75(ζ − 14.3) exp(−0.35ζ) (3.35)

This provides all the necessary equations for calculating sensible and latent heat

fluxes from Equations 3.23 and 3.24.

3.4.4 Conductive heat fluxes

Internal conductive heat fluxes in the ice layer are incorporated in the main

numerical solution of the heat conservation equation (Section 3.5). However when

considering the surface heat balances at the top and bottom of the ice it is

important to include the limiting value of the conductive flux at the boundary.

This depends on the limiting gradient of ice temperature at the surface and the

thermal conductivity of ice ki according to:

Fi = −ki

(
∂Ti

∂z

)
sfc

(3.36)

Fb = ki

(
∂Ti

∂z

)
bot

(3.37)

for the top and bottom of the ice layer respectively. The signs are different because

of the convention used throughout this thesis whereby direction of positive heat

flux is towards the ice layer.
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The derivatives in Equations 3.37 and 3.37 were calculated numerically by an

approximation considering the top and bottom of N defined layers of ice. This

requires the internal ice temperatures next to the surfaces:

Fi = −ki
Ti(1)− Ts

h
(3.38)

Fb = ki
Tf − Ti(N − 1)

h
(3.39)

3.4.5 Sensible heat from water

The water in Crooked Lake, provides a heat sink for the ice, and changes in

water temperature Tw as a result of changes in the ice layer can be ignored

as negligible. However the temperature difference between water and ice will

contribute a sensible heat flux Fw to the ice layer. This may be approximated by

a formula analogous to the transfer of sensible heat at the top of the ice (Equation

3.23):

Fw = ρwcwCHW (Tw − Tf )W (3.40)

where ρw and cw are the density and specific heat capacity of water, W is the cur-

rent velocity and CHW is the dimensionless heat exchange coefficient (analogous

to CH for the atmosphere). Launianen and Cheng (1998) argue that a proper

determination of Fw may require coupling to a larger scale mixed-layer oceanic

model. However underneath ice, which inhibits mixing of water by the wind, the

stratification of water is very stable. In an isolated system like Crooked Lake this

is particularly true, with most movement resulting from convection in the water

column, so the value of current flow W will be very small indeed.

Launiainen and Cheng claim that a small constant value of Fw ≈ 5 W m−2

is sufficient for the Baltic Sea. However given that the Crooked Lake probe

provided extensive data on water temperature, this thesis investigates the benefit

of introducing an adjustable parameter kw to approximate the heat transfer as:

Fw = kw(Tw − Tf ) (3.41)

An initial estimate of kw is required. Holland and Jenkins (1999) use a value
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of CHW = 1.5 × 10−3 for sea ice which is sufficient as an estimate for fresh ice.

An estimate for the current velocity would be of the order of 10−3 m s−1. Hence

the product kw ≈ ρwcwCHW W ≈ 1000 × 4190 × 1.5 × 10−3 × O(10−3) gives an

estimate on the order of kw ≈ 10 W m−2 K−1.

3.5 Modelling of the ice layer

This section describes the main body of calculation involved in the physics-based

model, which predicts the ice temperature and ice thickness on Crooked Lake.

3.5.1 Heat conservation in the ice layer

The one-dimensional heat conservation equation used for the ice layer is an ap-

proximation of that used by Launiainen and Cheng (1998). It utilises the partial

derivatives of the ice temperature Ti with respect to time t and depth z:

ρici
∂Ti(z, t)

∂t
= − ∂

∂z

(
−ki

∂Ti(z, t)

∂z
+ I(z, t)

)
(3.42)

where the downwards direction is positive, the product ρici represents the volu-

metric heat capacity of ice, and I(z, t) is an internal heat source term, equivalent

to the fraction of the downwelling radiation flux that has penetrated to depth z.

The only flux that penetrates substantially to any depth is the solar shortwave Qs

(the other fluxes are defined only at boundaries), and hence it can be considered

the only flux that contributes to this term. Qs is reduced to I by reflection off the

ice surface according to the albedo, α, and by an exponential decay with depth

according to the extinction coefficient, κi (as described in Equation 3.8).

I(z, t) = (1− α)Qs exp(−κiz) (3.43)

Equation 3.42 must be solved by an iterative numerical interpolation scheme. On

evaluating the derivative of Equation 3.43 with respect to depth, Equation 3.42

can be rewritten:

ρici
∂Ti(z, t)

∂t
=

∂

∂z

(
ki

∂Ti(z, t)

∂z

)
+ κi(1− α)Qs exp(−κiz) (3.44)
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Figure 3.14: The numerical interpolation scheme for heat conservation in the
ice layer. The temperature Tm+1

j at the point marked in blue depends on the
temperatures at all the points marked in red. The scheme is solved using the
Crank-Nicholson form with boundaries defined by the known surface temperature
Ts and ice bottom temperature Tf . The vertical grid size h = Hi

N
changes with

ice thickness Hi.

The ice layer of thickness Hi must be divided into N equal-sized layers, where each

layer has thickness h = Hi

N
. So the jth layer is at depth zj = jh, (j = 0, 1, 2...N).

The maximum number of layers used was N = 100. Similarly, for the model

timestep ∆t, the mth timestep is at time tm = m∆t, (m = 0, 1, 2...). As a result

of this approach the thickness of the internal layers changes on each timestep in

proportion with the ice thickness (Figure 3.14).

Equation 3.44 can then be solved for an arbitrary ice layer by integrating it over

the intervals [zj− 1
2
, zj+ 1

2
] and [tm, tm+1]. For simplicity, the subscript i for ice is

dropped in the following calculations and the notation Tm
j , for the ice temperature

at timestep m in layer j, is adopted.

The first term of Equation 3.44 becomes:

∫ z
j+1

2

z
j− 1

2

∫ tm+1

tm
ρc

∂T

∂t
dzdt ≈ hρc(Tm+1

j − Tm
j ) (3.45)

The second term of Equation 3.44 must be rewritten by defining a function

X(z, t) = ∂T
∂z

. The value of this derivative at a depth of (e.g.) zj+ 1
2

can be
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approximated by the central difference method as:

Xm
j+ 1

2
≈

Tm
j+1 − Tm

j

h
(3.46)

so the integral of the second term of Equation 3.44 is:

∫ z
j+1

2

z
j− 1

2

∫ tm+1

tm
k
∂X

∂z
dzdt = k

∫ tm+1

tm
(Xm

j+ 1
2
−Xm

j− 1
2
)dt

≈
(

k∆t

2
(Xm+1

j+ 1
2

+ Xm
j+ 1

2
)− k∆t

2
(Xm+1

j− 1
2

+ Xm
j− 1

2
)

)
(3.47)

where the time integration is an approximation which is sufficient provided the

timestep is short. Expanding all the X terms according to Equation 3.46 and

rearranging gives:

k∆t

2h
(Tm+1

j+1 − 2Tm+1
j + Tm

j+1 − 2Tm
j + Tm+1

j−1 + Tm
j−1) (3.48)

The integral of the third term of Equation 3.44 is approximated by:

∫ z
j+1

2

z
j− 1

2

∫ tm+1

tm
κ(1− α)Qs exp(−κz)dzdt ≈ h∆tκ(1− α)Qs exp(−κzj) (3.49)

Rearranging all the terms, the iterative scheme representing Equation 3.44 can

be rewritten for an arbitrary layer j at time tm+1 and time tm:

Tm+1
j − Tm

j =
k∆t

2ρch2

(
Tm+1

j+1 − 2Tm+1
j + Tm

j+1 − 2Tm
j + Tm+1

j−1 + Tm
j−1

)
+

k∆t

2ρch2

(
2h2

k
κ(1− α)Qs exp(−κjh)

)
(3.50)

Equation 3.50 includes terms depending on both the known temperatures at the

previous time tm and the unknown values at time tm+1. It also depends on the

temperatures of the neigbouring ice layers at depths zj−1 and zj+1. It must there-

fore be written in the Crank-Nicholson form and solved by Gaussian elimination,
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as described in Smith (1985). This requires known boundary conditions at the

top and bottom of the ice layer.

The top boundary condition is the surface temperature Ts(t), which is calculated

at every timestep by considering the balance of heat fluxes (see later). The bottom

boundary condition occurs where the ice is in contact with the lake water, so can

be assumed to stay constant at the freezing point of water, Tf = 273.15 K. Putting

everything known on the right hand side, and everything unknown on the left,

the Crank-Nicholson form is:

Tm+1
0 = Ts(tm+1)

+b1T
m+1
1 − c1T

m+1
2 = d1

−a2T
m+1
1 + b2T

m+1
2 − c2T

m+1
3 = d2

... = ...

−ajT
m+1
j−1 + bjT

m+1
j − cjT

m+1
j+1 = dj

... = ...

−aN−1T
m+1
N−2 + bN−1T

m+1
N−1 = dN−1

Tm+1
N = Tf (3.51)

where the a’s, b’s, c’s and d’s are all known quantities. Defining a constant

C = k∆t
2ρch2 , Equation 3.50 can be written with known quantities on the right and

unknowns on the left:

−CTm+1
j−1 + (2C + 1)Tm+1

j − CTm+1
j+1

= CTm
j−1 + (1− 2C)Tm

j + CTm
j+1 + 2Ch2

k
κ(1− α)Qs exp(−κjh) (3.52)

On comparing Equations 3.51 and 3.52, the required constants are:

aj = C

bj = 2C + 1

cj = C (3.53)
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for all j where j = 1...N − 1. The values of dj are:

d1 = CTs(tm+1) + CTs(tm) + (1− 2C)Tm
1

+CTm
2 +

2Ch2

k
κ(1− α)Qs exp(−κh)

dj = CTm
j−1 + (1− 2C)Tm

j + CTm
j+1

+
2Ch2

k
κ(1− α)Qs exp(−κjh)

dN−1 = 2CTf + CTm
N−2 + (1− 2C)Tm

N−1

+
2Ch2

k
κ(1− α)Qs exp(−κh(N − 1)) (3.54)

where the second equation applies to j = 2...N − 2. Continuing to follow the

notation of Smith (1985), we define two variables A and S:

A1 = b1

Ai = bi −
ai

Ai−1

ci−1 (3.55)

S1 = d1

Si = di +
ai

Ai−1

Si−1 (3.56)

where i = 2, 3...N − 1. The ice temperature at each internal layer in the ice for

the new time tm+1 can be calculated using:

Tm+1
N−1 =

SN−1

AN−1

Tm+1
j =

1

Aj

(Sj + cjTj+1) (3.57)

where the calculations for the second equation must be done in reverse order,

j = N − 2, N − 1...2, 1. For a full proof of the Gaussian elimination technique see

Smith (1985).
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3.5.2 Calculation of ice surface temperature

The air-ice interface temperature Ts is important for the calculation of the surface

heat balance, the physical phase transitions and as a boundary condition in the

solution of the heat conservation equation. To calculate, it is considered to be the

temperature which will cause the sum of fluxes at the ice surface to be zero. Some

of the parameterised fluxes depend on Ts while some do not, but it is possible to

write the equation to be solved as:

F (Ts) = 0 (3.58)

where F (Ts) represents the sum of all the surface fluxes, as a function of Ts. An

iterative Newton-Raphson method is used for the solution of Equation 3.58. An

initial guess of Ts(n = 0) must be made, in each case it is set equal to the air

temperature Ta at the current timestep. Thereon the succeeding step n + 1 is

calculated according to:

Ts(n + 1) = Ts(n)− F (Ts(n))

F ′(Ts(n))
(3.59)

where F ′(Ts), the derivative term with respect to Ts, was calculated numerically.

Equation 3.59 was calculated repeatedly until the point where |Ts(n + 1)− Ts(n)| <
0.001. This condition was deemed to give sufficient accuracy (to the third decimal

point in Ts).

3.5.3 Calculation of ice thickness change

The change in ice thickness Hi is proportional to the balance of fluxes at the

top and bottom of the ice layer. In each case the positive direction is taken as

downwards at the top of the ice and upwards at the bottom of the ice:

dHi(sfc)

dt
= − 1

ρiLf

∑
(Surface Fluxes) (3.60)

dHi(bot)

dt
= − 1

ρiLf

∑
(Bottom Fluxes) (3.61)
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where ρi is ice density and Lf is the latent heat of freezing for water. The total

change in ice thickness is found by adding together Equations 3.60 and 3.61.

3.5.4 Periods of ice break-up

A number of complex factors come into play in the period of summer ice break-

up, such as the effects of wind-induced mixing when open areas of water appear.

Such factors are somewhat stochastic and difficult to model, and were found to

be unnecessary for modelling the 2003 ice thickness, which did not go to zero.

Therefore they are not considered in this chapter; instead they are indirectly

assumed to cancel one another out. The model contained code which ensured that

if the calculated ice thickness went to zero or below it was reset to a minimum

value of 0.001 m.

The implications of such an approach with regard to model predictions are dis-

cussed further in Chapter 6.

3.6 Running the model

3.6.1 Initial conditions

The model was started at a given time with known values of the input variables

from the data, but it was necessary to choose initial values for the ‘unknowns’ in

the model, in order to calculate the first values of the heat and radiation fluxes.

The values assigned for time t = 0 were:

• Ice surface temperature - Ts(0) was set equal to the initial air temper-

ature Ta(0).

• Ice internal temperature - Ti(0, j) for the internal layers j = 1, 2...N−1

was set as linear between the top (Ts) and bottom (Tf ) temperatures of the

ice layer.

• Ice thickness - Hi(0) was set to the first measured ice thickness value from

the data.

With iterative calculations of ice temperatures, initial values do not significantly

affect the model output, and after the first timestep they reach accurate values,
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so do not require a ‘spin-up’ period. However for the main model output, only

the changes in ice thickness are calculated iteratively. Setting Hi(0) equal to the

data assumes that the first datapoint is completely accurate, with no component

of noise. This is unlikely, so such an approach may cause a consistent error to

propagate through the model output. This approach was used in model develop-

ment, but on fitting the model to data, it is more accurate to allow Hi(0) to be

an adjustable parameter.

3.6.2 Model integration

The main differential equation to be solved is the heat conservation equation

(Equation 3.42). Its solution has been explained, but the choice of timestep ∆t

requires some consideration with regard to integration over time.

The Crooked Lake probe data was measured at intervals of 5 minutes, but the

Davis meteorological data was only taken every 3 hours. Some initial model runs

were undertaken using the 5-minute data, but as explained in Section 3.2 it was

deemed preferrable to parameterise the model with the Davis data, so the benefit

or dangers of using a 3-hour timestep were considered. During the deployment

of the Crooked Lake probe, the mean change in ice thickness over each 3-hour

period was less than 10−3 m. This is less than 0.1 % of the mean ice thickness over

the year, and at the minimum scale of accuracy of the measurements (3 decimal

points), so evaluating the model directly from the previous values is unlikely to

propagate errors over three hours. Also on considering the timescales of changes in

the atmospheric variables that affect the ice layer, such as seasonal changes (many

months) or shifts in weather patterns (3 days or more), the shortest significant

change is the diurnal cycle. A 3-hour timestep gives 8 steps in the space of a day

so adequately illustrates any day-to-night effects.

This notion was supported when the model was evaluated using firstly the Euler

method with a 3-hour timestep, then the Runge-Kutta method, where data was

linearly interpolated to allow the method to choose intermediate timesteps. No

difference was found between the model outputs from the two methods, so for

ease and speed of calculation the Euler method was adopted.
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Figure 3.15: Flowchart summarising the solution method of the physics-based
model of Crooked Lake.

3.7 Summary

This chapter has outlined the processes involved in developing and running a

real-time thermodynamic model of the ice on Crooked Lake, Antarctica. It has

included the initial calculations of important variables from field data, the ap-

proach employed when choosing between different equations from the literature,

and the solution methods that were implemented. Figure 3.15 summarises the

model, and Table 3.10 classifies all the quantities in the model according to the

definitions in Chapter 2. All scalar quantities have been estimated in the model

development based on values from the literature - those quantities known to high

degree of accuracy have been named as ‘constants’, while those quantities known

to a lesser degree of accuracy are named ‘parameters’ and the effects of adjusting

them are investigated later. This includes the number of layers N defined in

the ice temperature calculation, which does not strictly represent a real physical

quantity but is treated in a similar way. It also includes the initial value given to

the ice thickness (Hi(0)) - an unusual measure for a model of this sort.

The model has been developed using the working definition of ‘hierarchical re-

ductionism’ described in Chapter 1. It may be said that the model includes as

much detail as could reasonably be expected in a full description of the processes
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Definition Quantities

Input variables Ta Tw RH V C pa α κ

Constants Rg Ma za g Tf ρi ci ki εi Lf S σ ca π

Parameters Rc N ξ kw Hi(0)

Intermediate variables es ea qs qa Ts Ti ρa Rl I Z CH CD CE CDN Qs Qb

Qd Qh Ql Fi Fb Fw z0 zT zq ΨM ΨH ΨE Re γ Rz h

Model output Hi

Dimensions z t

Table 3.10: Quantities used in the physics-based model defined according to the
categories outlined in Chapter 2.

affecting the ice layer on Crooked Lake. The model does not stray beyond the

necessary fields of solid state thermodynamics (for the ice) or fluid dynamics

(for the atmosphere and water), but includes nearly all the applicable physical

theory from within those fields. Some aspects are not explicitly parameterised,

for example the appearance of leads (cracks) in the ice or areas of open water,

but these are later indirectly accounted for by allowing certain parameters (e.g.

surface roughness) to vary over the course of the year. In other words, it is close

to being as complex a model as even the most hardened reductionist could ar-

gue for without being over-pedantic. Chapters 5 and 6 examine the benefits and

disadvantages of this reductionist approach when compared to more holistic or

parsimonious models.
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Chapter 4

A physics-based model of lake ice

- Analysis

4.1 Overview

This chapter outlines the parameterisation and statistical analysis of the physics-

based model described in Chapter 3. The model is close to being entirely mecha-

nistic, as all the quantities involved have been estimated or modelled using values

and equations from established literature. Excessive parameterisation has been

avoided, in that no arbitrary equations have been invented for adjusting to fit

data without physical meaning. The analyses in this chapter are kept within strict

constraints, so that the procedures will not lead to any unrealistic parameter val-

ues. This distinguishes the model from empirical models where parameters can

be adjusted without limit to improve the fit; such approaches are concerned with

the ‘usefulness’ of a model over the physical insight gained, and are examined in

the next chapter.

The accuracy of the model was assessed by varying the number of finite layers used

in the numerical solution of the heat conservation equation for the ice layer, and

weighing up any changes in model fit against the time taken for calculations. The

sensitivity to parameters was assessed by individually varying them over realistic

ranges and calculating the goodness of fit, as well as using Levenberg-Marquardt

optimisation. This led to information on which parameters were most important

in producing the model output, and which could be set to constant values. The

importance of individual input variables was assessed using the ‘model trimming’

technique described in Chapter 2.
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4.2 Initial model runs

Five model parameters were defined in Table 3.10, which were chosen because they

were not known to a high degree of accuracy. Estimates for these were discussed

in the Chapter 3, and the initial values are given in Table 4.1. Each is also given

an upper and lower constraint value for optimisation, which are both physically

realistic. The constraint for the initial ice thickness value Hi(0) was set to be

0.01 m either side of the starting value indicated by the data, corresponding to

an estimate of the measurement error on the data. The number of layers N used

in the internal ice temperature calculations was constrained between 3 (giving

simply an ice surface temperature Ts, internal ice temperature Ti and ice bottom

temperature Tf ), and 200 (giving a layer size of less than 1cm for the whole year).

The other parameter constraints were chosen to represent what may be expected

as the extreme physical values from numerical estimates and manual observation

of the system. In Chapter 3, kw was estimated to be on the order of 10 W m−2

K−1, so was constrained to values between 5 and 20. ξ was constrained to values

between 0.001 m (for smooth, flat ice) and 0.2m (for rough, broken ice or ice

with scattered snow cover). Rc was kept between -1 and 1 to represent a range

of atmospheric stability regimes that may be induced by the surface.

Parameter Units Initial value Lower constraint Upper constraint
kw W m−2 K−1 10 5 20
ξ m 0.1 0.001 0.2
Rc (unitless) 0 -1 1

Hi(0) m Di(0) Di(0)− 0.01 Di(0) + 0.01
N (unitless) 10 3 200

Table 4.1: Initial values of parameters for model analysis, and the upper and
lower constraints on each. Di(0) corresponds to the first measured value of ice
thickness for the time period.

With the initial parameter values, the model was successfully run to completion

(Figure 4.1). The goodness of fit (χ2 = 150.3, r2 = 0.08, ν = 2009) was low,

but the general shape of the data was reproduced, with what appeared to be a

consistent offset, so it was decided that model analysis would continue using the

equations in the current form.

Several model runs over much shorter timescales were undertaken during the

development of this model, but will not be reported in this thesis. Instead the

analysis concentrates on finding a model which covers the whole year’s measured

ice thickness from 17 January 2003 to 12 January 2004, as plotted in Figure 4.1.

This is so that the model will not be specific to one particular time of year and
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Figure 4.1: Ice thickness calculated in the first run of the physics model (solid
line), plotted with the data (crosses). All parameters were estimated from the
literature, not fitted to the data.

will be as generalisable as possible, to predict the future of the ecosystem as a

whole.

4.3 Optimisation

The Levenberg-Marquardt optimisation procedure was used to find better-fitting

parameter values (Table 4.2). The goodness of fit to the data improved (χ2 = 17,

r2 = 0.89, ν = 2005). The calibrated values for the three parameters ξ, Rc and

Hi(0) were at the extreme values set by their constraint ranges.

The t-value for each parameter estimate in Table 4.2 applies to the test of whether

or not the parameter value is significantly different from the initial values given in

Table 4.1. For the null hypothesis H0 : pi(new) = pi(old) versus H1 : pi(new) 6=
pi(old), the t-statistic is simply calculated as the ratio of the difference to the

standard error: t = pi(new)−pi(old)
σ(Pi(new))

. A two-tailed 5 % significance test with ‘infinite’

degrees of freedom requires a value for the t-variate with magnitude of at least

1.96 (the model has ν = N − np − 1 = 2009− 4 − 1 = 2004 degrees of freedom,

which is effectively infinite for a t-test). Therefore one cannot say with 95 %
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Parameter Optimised value Standard error t-statistic
kw 17.30 0.34 21.47
ξ 0.001 0.12 -0.83
Rc 1 2.31× 104 4.33× 10−5

Hi(0) Di(0)− 0.01 0.023 -0.43

Table 4.2: Estimated values for the parameters in Table 4.1, the standard errors
estimated for each from the Hessian matrix of parameter estimates, and the t-
statistics which test the null hypothesis that the values are no different from the
initial values in Table 4.1.

certainty that the new values of ξ, Rc or Hi(0) are statistically different from

the initial estimates. This is also evident from the standard errors, with Rc in

particular showing a huge error, suggesting that Rc was having very little effect

on the model output. This was investigated further using sensitivity analysis in

the next section.

4.4 Sensitivity analysis

Each parameter was varied over the ranges defined in Table 4.1, while keeping

all other parameters at the values attained in the first optimisation (Table 4.2).

The calculated χ2 values were plotted against the parameters (Figure 4.2).

Each of the graphs in Figure 4.2 were plotted on the same y-axis scale. It was

immediately seen that kw was the most important parameter in terms of the

goodness of fit. Altering the initial ice thickness Hi(0) gave a slightly better fit at

values lower than the first data point. This may suggest the model is sensitive to

initial conditions, and the ice thickness data at the start of the model run, in mid

summer 2003, may be affected by phenomena that are not accounted for in the

model. However the size of this change is small, and for the rest of the models

in this thesis it is sufficient to take the initial value of ice thickness directly from

the data.

Altering the parameters ξ and Rc also produced no significant change in χ2. Such

flat graphs demonstrate that the model fit is not affected by changes in either

of these parameters. As demonstrated in section 4.3, attempts to calibrate them

within the specified ranges led to high standard errors in the parameter estimates.

In the case of Rc any changes in χ2 are negligible and it is acceptable to use the

value Rc = 0, as suggested in Launianen and Cheng (1998).

The size of the constraint range over which kw was varied was, in absolute terms,
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Figure 4.2: Residual sum of squares χ2 versus parameter values across the ranges
defined in Table 4.1 for, clockwise from top left: kw, ξ, Hi(0), Rc. Vertical dashed
lines mark the parameter values found in optimisation.

significantly larger than the ranges of the other parameters. To give a better idea

of the changes in χ2 with respect to the numerical size of the parameter, the local

gradients of χ2 with respect to each parameter (∂χ2

∂pi
) at the optimised values were

calculated. The local gradient approximation for model sensitivity (∂M
∂pi

) was also

calculated, taking M as the mean value of ice thickness calculated for the year

(Table 4.3).

In absolute terms, the rates of change of χ2 and M with respect to ξ are greater

than that for kw. This implies that in an empirical model, where ξ is not bound by

such a strict belief in the physical theory and is instead an arbitrary parameter for

model-fitting, the optimisation procedure would have the freedom to find better-

fitting values, and ξ may become more important (at higher or lower values than

the current range allows). For example, a value of ξ = 100 may give a much

better goodness of fit, but would no longer have any meaning in terms of surface

aerodynamics (a flat surface like ice would never have a geometric roughness

length as high as 100 m). In this chapter, where the model is developed using

only ‘textbook’ equations and definitions, the parameter ranges are kept within

the ‘known rules’. Therefore using the information from Figure 4.2, ξ and Rc are
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Parameter pi Value ∂χ2

∂pi

∂M
∂pi

kw 18.0 0.23 -0.026
ξ 0.001 4.10 -0.075
Rc 0 0.14 -0.006

Table 4.3: Rates of change of the residual sum of squares χ2 with parameters,
and rates of change of the model output M (defined as mean ice thickness) with
parameters, calculated at the optimised values.

set as constants, using the values in Table 4.3. The model has been reduced to

having only one adjustable parameter, kw.

4.5 Model accuracy

The number of layers defined during the solution of the heat conservation equation

in the ice layer (N) is not strictly an adjustable parameter under some definitions,

but rather an accuracy setting for the model. Also, the larger the value of N , the

longer the model may take to run. A suitable value of N was required before either

accepting an inaccurate model or taking a long time running a computationally

intensive model.

The model was executed for a number of values of N between 3 and 200, and the

goodness of fit calculated (Figure 4.3). The time taken for model execution on a

Windows 2000 PC was also noted, taking care to have no other programs open

which may have used computer resources.

The model execution time increased approximately linearly with N . The good-

ness of fit was, unexpectedly, best at low values of N (χ2 was lower), before

levelling off at higher values of N . This may be caused by ‘numerical dispersion’,

whereby dispersion across a distance in a numerical solution to a differential equa-

tion increases with the size of finite layers used. This phenomenon is useful for

modelling systems where dispersion occurs, such as trace chemicals in soil (e.g.

Smith and Elder 1999), but has not been chosen for that purpose in this thesis.

A solution with low N is further from the true solution to the differential equa-

tion in question (Equation 3.42), and does not provide much information on the

internal temperature structure of the ice. It was decided that a value of N = 50,

with a runtime of around 1 minute, would be used for all the forthcoming model

analysis. For a typical ice layer between 1 and 2 metres thick this corresponds to

a layer size between 2 and 4 cm.
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Figure 4.3: Residual sum of squares and model execution time for the physics
model with the initial parameter estimates given in Table 4.1, calculated for vari-
ous values of N , the number of layers defined in the ice temperature calculations.

4.6 Model results

The input variables, intermediate variables and output of the model, with the

‘optimum’ parameter values found above, are presented in Figures 4.4 to 4.12.

Every calculated variable remained within values that may be expected from the

literature.

Figure 4.4 shows all the input variables to the model plotted over the whole year

of 2003. Ta, pa, RH, V and C come from data measured at Davis station. Tw,

α and κ were measured on the Crooked Lake probe and are linearly interpolated

over the times when no data were recorded (1 February to 15 May 2003). Diurnal

variations were apparent in the air temperature, and to a small extent in the water

temperature, while all other variables showed variation over longer timescales

pertaining to changes in weather. Figure 4.5 shows the specific humidity in the air

(qa) and on the ice surface (qs), which determine the latent heat flux between the

ice and the air, and were calculated from air temperature and relative humidity.

Figure 4.6 shows the daily mean values of all the calculated heat and radiation

fluxes at the top of the ice layer (diurnal variation is removed for neatness of
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Figure 4.4: Input variables to the physics-based model: air temperature Ta, water
temperature Tw, air pressure pa, relative humidity RH, wind speed V , cloud cover
fraction C, ice albedo α and ice extinction coefficient κ.
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Figure 4.12: Ice thickness on Crooked Lake as calculated in the physics-based
model for 2003 with optimised parameters, against time (above) and against
data with a 1:1 line (below).
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plotting). All the fluxes decreased in magnitude in the winter. Similarly Figure

4.7 shows the fluxes at the bottom of the ice layer. The conductive heat flux away

from the ice increased in magnitude in the winter, providing the main factor for

the growth of the ice layer. This is confirmed in Figure 4.8, which shows the daily

change in ice thickness at the top and bottom of the ice layer for each day of 2003.

The vast majority of changes in ice thickness happened at the bottom of the ice

layer. Such a result is expected given that there is more water, the raw material

for ice formation, below the ice than above. Also the latent heat of sublimation

of ice that is required to melt (and ‘remove’) ice at the surface is much greater

than the latent heat of fusion required below. The surface fluxes are key variables

in calculating the profile of temperature in the ice layer, which in turn affects the

melt and growth of ice at the bottom. Figure 4.9 shows the total balance of fluxes

towards the ice layer at the top (Qb +Qd +Qh +Ql +Fi +(1−α)Qs) and bottom

(Fb + Fw) surfaces of the ice. Diurnal variation was more apparent at the top

surface.

Figure 4.10 shows the calculated temperature profile in the ice over the year. The

temperature stayed close to freezing point Tf through the whole ice layer in the

summer, when the air temperature was often above freezing; also temperatures

greater than freezing point were calculated for the centre of the ice layer for

January 2004. In winter, when the surface temperature fell well below freezing

point, the calculated ice temperature decreased slightly with depth in the first

5cm or so before increasing towards the bottom of the ice, which remained at

freezing point. A comparison with ice temperature measurements made by Foster

during the study period is shown in Figure 4.11, for three dates covering the

winter ice growth phase (1 June 2003), the period of maximum ice thickness (1

September 2003) and the summer ice melt phase (1 January 2004). The data was

best reproduced in September 2003. The model underestimated the temperature

near the top of the ice in June 2003 by just over 1 K, while in January 2004 the

temperature ‘inversion’ in the centre of the ice layer was overestimated by around

2 K. For this reason (the model was predicting ice temperatures above freezing

point), a condition was built into the model that set a maximum ice temperature

of Tf , such that any excess heat would contribute to melting at the ice surfaces.

Figure 4.12 shows the ice thickness output of the physics model plotted against

time and against the data. The model consistently overestimated the speed of

ice thickness growth at the start of the winter (around day 150), and underes-

timated the ice thickness reached towards the end of winter (around day 300),

suggesting that certain changes in the ice system between summer and winter

were unaccounted for.
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4.7 Importance of variables

The importance of the input variables in the model was assessed using the ‘model

trimming’ technique explained in Chapter 2. The variable being examined was

changed using values of β =0,0.1,...0.9,1 (Figure 4.13).

The air temperature (Ta) and water temperature (Tw) variables both showed a

very steep increase in χ2 when β was reduced towards zero, and so were clearly

very influential on the model output. The ice extinction coefficient (κ) exhibited

similar behaviour but with a shallower slope, suggesting that the inclusion of it’s

variation was worthwhile but less crucial than Ta or Tw. The relative humidity

(RH), cloud cover (C) and wind speed (V ) variables showed even shallower slopes.

The reduction in χ2 on adding their variability (setting β to 1 instead of 0) was

less than 5 % in each case.

Removing the variation in air pressure (pa) appeared to have no effect on the

model fit, suggesting that the model output was somewhat ‘indifferent’ to this

variable. The albedo (α) gave the best fit when it’s variation was completely

removed (β set to 0), giving a decrease in χ2 of 10 %. This suggested that the

variation in α was having an adverse effect on the model output, simply adding

noise to the model output.

The above results show that the goodness of fit may be improved by the removal

of some of the variability in the model variables. Setting each βi to the values

that provided the lowest χ2, the model was run again. The goodness of fit was

improved (χ2 = 16, r2 = 0.90, ν = 2009). However for the remainder of this

chapter the variables are returned to their original input state (βi = 1 for all xi),

as to use anything else would be outwith the existing physical theory which has

been followed for the development of this physics model. The results are used

later in this thesis to inform the development of empirical models of ice dynamics

on Crooked Lake.

An analysis of the parameterised heat fluxes was also undertaken. The importance

of each flux was analysed one by one in a simpler way than above. In each case

the flux equation was removed altogether so the flux was zero, and the resulting

goodness of fit was calculated (Table 4.4).

All the fluxes caused a decrease in the goodness of fit of the model when removed.

In particular the longwave radiation (Qd and Qb), the conductive heat at the ice

bottom (Fb) and the sensible heat from the water (Fw) were crucial to the model.
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Flux set to zero χ2 r2

(None) 17.80 0.89
Qs 28.08 0.83
Qd 358.71 -1.19
Qb 2.02× 105 -1236.60
Qh 30.01 0.82
Ql 73.25 0.55
Fi 27.65 0.83
Fb 3.51× 103 -20.47
Fw 845.77 -4.18

Table 4.4: Response of the model fit (χ2 and r2) when heat and radiation fluxes
were individually set to zero.

4.8 Summary

This chapter has outlined the analysis and optimisation of a physics-based model

of Crooked Lake ice dynamics. The procedures were kept within strict physical

limits so as to avoid straying outside the existing physical and thermodynamic

theory applied. The model was optimised with respect to measured ice thickness

data, and a model fit of χ2 = 16, r2 = 0.90, ν = 2008 was achieved.

The optimisation and sensitivity analysis showed that the model was most sensi-

tive to the parameter kw, which is an approximation of the conductivity of water

and governs the transfer of sensible heat to and from the bottom of the ice layer.

With the physical constraints imposed, the model was reduced such that kw was

the only adjustable parameter, reflecting the importance of water temperature in

ice dynamics. This was reconfirmed in a ‘model-trimming’ analysis which showed

that the variability in water temperature Tw was, along with the air temperature

Ta, considerably more important than the other variables in producing a good

fit to the data. This suggests that there may be good correlations between these

variables and the ice thickness, and it is worthwhile developing empirical models

based on only these variables.

The adjustment of kw removes much of the mechanistic nature of the model,

and mirrors an empirical approach. This situation arose because kw could only

be estimated from the literature in the first place, and the optimised value of

kw = 17.3 for Crooked Lake may have to be readjusted for other lakes. This

reflects the complex nature of such a system - it is impossible to be entirely

mechanistic when processes such as the turbulent heat flux in water are so difficult

to quantify. The model nonetheless captures the key processes involved in ice

growth and melt, and all the calculated quantities are of realistic magnitudes.
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The next chapter uses the ‘clues’ revealed in this chapter to develop empirical

models of the Crooked Lake ice layer, with parameters that are not constrained,

such that optimisation procedures may find better-fitting models. The benefits

and disadvantages of such models compared with the physics-based model are

discussed and analysed.
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Chapter 5

Empirical models of lake ice

5.1 Overview

Chapters 3 and 4 described a model of the ice layer on Crooked Lake that is

restricted by a belief in reductionism, incorporating appropriate existing physical

theories. In this chapter, several simple empirical models are developed, based on

correlations between datasets. These include linear regression models, continuous

models consisting of linear differential equations, and ‘semi-mechanistic’ models

incorporating some physical realism.

The empirical models are assessed using ANOVA tests to assess the significance

of added complexity. A number of model selection criteria are calculated for the

empirical models and the physics-based model, and the results are used to discuss

the reliability of such selection formulae as a scientific tool compared to informed

subjectivity on the part of the researcher.

5.2 Data correlations

The correlation coefficients between the ice thickness datapoints over 2003 (at 3-

hour intervals) and the input variables for the same times were calculated (Table

5.1). The correlation coefficients are low. However, correlations are to be expected

between meteorological data, given the underlying diurnal and seasonal cycles,

and changing weather patterns which affect all variables. Also, with such a large

amount of available data (2009 ice thickness datapoints, or 2920 per year for

other variables), the degrees of freedom of a correlation are effectively infinite,
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r Tw Ta RH pa C V α κ Hi

Tw 1 - - - - - - - -
Ta 0.83 1 - - - - - - -
RH -0.05 -0.01 1 - - - - - -
pa 0.12 0.08 -0.01 1 - - - - -
C -0.08 0.07 0.35 -0.10 1 - - - -
V 0.12 0.31 0.02 -0.10 0.12 1 - - -
α -0.07 -0.14 0.19 -0.03 0.08 -0.07 1 - -
κ -0.31 -0.34 0.22 0.08 0.09 -0.15 0.46 1 -
Hi -0.09 0.01 -0.16 -0.37 0.00 -0.05 -0.29 -0.39 1

Table 5.1: Correlation coefficients (r) between variables used in the physics-based
model. Any correlation of magnitude 0.05 or greater is statistically significant due
to the large number of datapoints involved.

and a Student’s t-test can show that the correlation coefficient is significant to

very low values. The following t-statistic was used to to test the null hypothesis

H0 : r = 0 versus H1 : r 6= 0 (Mason et al. 2003):

t =
r(nd − 2)

1
2

(1− r2)
1
2

(5.1)

where nd is the number of datapoints and r is the correlation coefficient. For a

two-tailed 5 % significance test with infinite degrees of freedom, the critical value

of the t-variate is 1.96. With nd = 2009 and t = 1.96, a value of r = 0.044 is a

correlation of the required significance i.e. there is only a 5 % probability that

a correlation of r = 0.044 could arise at random. Therefore any correlation in

Table 5.1 with a magnitude of 0.05 or greater is statistically significant.

The highest correlation was between air temperature and water temperature.

This is a reassuring indication that the state of the atmosphere is the main driving

force in determining the properties of the lake, and other sources of influence such

as geothermal heat may be discounted. Also, air temperature is the main variable

that is predicted by climate models in considering climate change effects, and will

be measured far more frequently in future than the water temperature. Therefore

empirical models based only on atmospheric conditions may be plausible when

predicting the future physical environment of the ecosystem.

Other correlations that were significantly different from zero include a positive

correlation between relative humidity and cloud cover and a negative correlation

between wind speed and pressure, both relating to the warmer, windier nature of

atmospheric depressions. Some conclusions on the nature of the ice layer could

93



Figure 5.1: Ice thickness calculated by a linear regression model with a 3-hour
timestep using 3-hour input variables (solid line) and monthly-averaged (dashed
line), plotted with the data (crosses). The fit is poor because the data is not
discrete on a timestep of 3 hours.

also be made - both the ice albedo α and extinction coefficient κ were negatively

correlated with ice thickness. With the exception of sporadic periods of snow,

both tended to be higher when the ice was thinner, as the rotting ice was rougher,

whiter and more opaque.

5.3 Linear regression models

The simplest type of empirical model is a multiple linear regression model, where

the model output is expressed as a linear sum of the input variables. Using the

8 input variables as in the physics model, this may be expressed as:

Hi = p1Tw + p2Ta + p3RH + p4pa + p5C + p6V + p7α + p8κ + p9 (5.2)

where p1 to p9 are adjustable parameters. Using a 3-hour timestep with all the

available input data, Equation 5.2 was optimised in ModelMaker, and parameter

values were found which gave χ2 = 7111, r2 = 0.31, ν = 2000 (Figure 5.1).
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Despite the poor fit, the F-ratio was high (P < 0.001). However, as Figure 5.1

shows, the model output bore little relation to the data, and the high F-ratio was

simply a result of the large number of datapoints involved.

Such a poor result may be expected for a system like Crooked Lake; the ice

thickness, unlike the atmospheric input variables, changes very little if at all in

the space of 3 hours, and does not respond significantly to the small scale diurnal

cycle (24 hours) or weather patterns (a few days) that affect the other variables.

On the scale of ice thickness changes, such small-scale variations become noise.

To account for this, the input data was artificially smoothed by taking monthly

means and linearly interpolating. The results of optimising the model with these

input variables is also plotted in Figure 5.1. The model fit was improved to

χ2 = 510, r2 = 0.95, ν = 2000. However, such an approach is somewhat artificial,

and the unexpected increase in modelled ice thickness after January (when in

reality no ice thickness measurements were taken as the ice was too thin) suggests

that the fit is very specific to this dataset, and nothing generic may be learned

from the parameter values. Also, a true multiple linear regression should relate

datasets of the same size, meaning that the monthly means of ice thickness should

also be taken. On doing this the ice thickness dataset only provided 9 datapoints

for the year (no data was recorded in the months February to April), meaning

the model had zero degrees of freedom and hence any fit would be statistically

meaningless.

Therefore it can be concluded that a linear regression model relating all or any

of the input variables to the ice thickness data cannot be formulated with the

data available. The ice layer is a continuous system, in that the ice thickness

on any particular day is highly dependent on the ice thickness the previous day

(therefore in the physics model the calculation of the change in ice thickness

over a given timestep involves the ice thickness itself). On a larger timescale, the

system may become closer to a discrete system than a continuous one. The above

analysis has suggested that a month is not long enough for this to be the case, but

on the scale of one datapoint per year the data may be approximately discrete.

The annual cycle of seasons is (for most intents and purposes) the longest-scale

variation imposed on a natural system, and over the years Crooked Lake has

been observed, the ice either completely melts towards the end of summer, or

becomes very thin and broken up. So the system practically starts from scratch

each year (i.e. the system turnover time is approximately a year), and given long

term data the yearly average ice thickness could be modelled by linear regression

with atmospheric variables. Such an exercise would require large amounts of data

beyond the scope of this thesis.
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5.4 Continuous models

The simplest continuous model for predicting the model output with the given

input variables is a linear differential equation, which is highly analagous to the

linear regression model (Equation 5.2), but with the linear sum producing the

change in ice thickness for each timestep. For this thesis, such models are termed

‘linear continuous’ models. Providing one adjustable parameter for each of the

8 input variables, the following model of ice thickness was formulated in Model-

Maker:

dHi

dt
= p1Tw + p2Ta + p3RH + p4pa + p5C + p6V + p7α + p8κ + p9 (5.3)

where p1 to p9 are adjustable parameters. The nine parameters were all given

an initial value of 1, and optimised using the Levenberg-Marquardt procedure

(Table 5.2). A goodness of fit of χ2 = 118.33, r2 = 0.99, ν = 2000 was achieved.

Parameter Variable Value Standard error t-statistic
p1 Tw −5.62× 10−3 6.89× 10−4 -8.15
p2 Ta −6.52× 10−4 6.10× 10−5 -10.67
p3 RH 3.29× 10−4 4.10× 10−5 8.02
p4 pa 1.37× 10−6 4.87× 10−7 2.80
p5 C 4.95× 10−3 2.79× 10−3 1.77
p6 V −2.98× 10−4 1.27× 10−4 -2.35
p7 α 1.18× 10−2 3.31× 10−3 3.56
p8 κ −9.78× 10−3 3.03× 10−3 -3.23
p9 (none) 1.55 0.17 1.33

Table 5.2: Estimated parameter values for a linear differential equation model
with the same eight input variables as the physics-based model (Equation 5.3).
The t-value is calculated as the ratio of the parameter value to the standard error.

The t-value for each parameter estimate in Table 5.2 relates to the test of whether

or not the parameter value is significantly different from zero. For the null hy-

pothesis H0 : pi = 0 versus H1 : pi 6= 0, the t-statistic is simply calculated as the

ratio of the parameter value to the standard error. As in the previous section, a

two-tailed 5 % significance test with ‘infinite’ degrees of freedom requires a value

for the t-variate with magnitude of at least 1.96. Therefore one can say with 95

% certainty that all of the parameter values in Table 5.2 are statistically different

from zero except for p5 and p9. This may reflect the strong correlations between

variables that were found in the previous section; if variables are well correlated

then they may all have similar effects on the output, and the effect of each is

‘shared out’, resulting in small parameter values.
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However, such t-statistics based on the standard error are somewhat difficult to

interpret. The standard error on parameters is calculated on the basis of the

curvature matrix - the greater the curvature of the model fit with respect to the

parameter (∂2χ2

∂p2
i

), the steeper the parabola in which the parameter value lies, and

hence the lower the standard error. But such an assumption does not account for

the possibility that the parameter value is in a steep parabolic well in an area of

high terrain in parameter space, i.e. a local minima.

In addition, the values of some parameters may not accurately reflect the impor-

tance of their associated variable, given the relative sizes of numbers involved.

For example, the air pressure pa was measured in Pascals, so took numerical val-

ues around 100000 (corresponding to 1000 mb) with a standard deviation for the

whole year of only around 1 % of the mean, while the cloud cover took values

between 0 and 1, and had a standard deviation up to 50 % of it’s mean. There-

fore the parameter p4 (which multiplies the air pressure in Equation 5.3) may

be artificially small relative to p5 (which multiplies the cloud cover), because of

the difference in scales when each variable is expressed in S.I. units. Such a scale

is not representative of the extent to which variables may interact - it is only

defined by scientists for practical purposes. For example, a change of 10 mb may

seem a small fraction of an air pressure of around 1000 mb (only 1 % change) but

in reality it could mean the difference between settled or stormy weather. A 1 %

change in cloud cover is far less significant.

For these reasons, the model was run again using normalised data for each vari-

able, with a mean of zero and standard deviation of 1 across the whole time

period. Each variable xi was replaced with x
′
i:

x
′

i =
xi − µ(xi)

σ(xi)
(5.4)

where µ(xi) and σ(xi) are respectively the mean and standard deviation of all

the values of xi across the modelled time period. The parameters were calibrated

(Table 5.3) and the same goodness of fit as above was acquired (χ2 = 118.33,

r2 = 0.99, ν = 2000).

Unlike in Table 5.2 the parameter values in Table 5.3 can be compared on the

basis of their magnitudes to infer the importance of the corresponding input

variables. The 3 highest magnitude parameters were p1, p2 and p3, which were

also among the most significant parameters according to the t-statistics. A com-

parison of the parameter values to the t-statistics for parameters p1 to p8 from
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Parameter Variable Value Standard error t-statistic
p1 Tw −3.74× 10−3 4.59× 10−4 -8.15
p2 Ta −5.49× 10−3 5.14× 10−4 -10.68
p3 RH 4.91× 10−3 6.13× 10−4 8.01
p4 pa 1.35× 10−3 4.80× 10−4 2.81
p5 C 1.57× 10−3 8.88× 10−4 1.77
p6 V −2.50× 10−3 1.07× 10−3 -2.34
p7 α 1.70× 10−3 4.78× 10−4 3.56
p8 κ −2.50× 10−3 7.74× 10−4 -3.23
p9 (none) 5.62× 10−4 3.04× 10−5 18.43

Table 5.3: Estimated parameter values for a linear differential equation model
with the eight input variables as in Table 5.2, but with all input variables nor-
malised.

Table 5.3 demonstrated a linear relationship with r2 = 0.96. The results there-

fore give a reassuring sign that the t-statistic as calculated is a good indicator of

the importance of parameters. So, given that the t-statistics were the same in

the models with normalised and unnormalised variables, the rest of the empirical

models in this thesis go back to using the un-normalised input variables. The

normalised approach has not in this case produced any difference in the parame-

ter significances, but in other cases may be a worthwhile exercise to investigate

the possibility of local minima, given that in an optimisation procedure with

normalised data some potential bias is removed.

5.5 Simplifying continuous models

The t-statistics in Tables 5.2 and 5.3 indicate that the variables Tw, Ta and RH

are considerably more important than the other parameters. This suggests that a

model based on these three variables alone may reproduce the data. However, the

variables Tw, α and κ were measured specifically at Crooked Lake, and will not be

regularly measured in the future, so a model based on changes in them may not

be generally applicable. In addition, it has been shown that these variables are to

a large extent determined by atmospheric variables - particularly well illustrated

with the high correlation between air and water temperatures.

Therefore the continuous model of Equation 5.3 was reduced to a model using

only atmospheric variables:

dHi

dt
= p2Ta + p3RH + p4pa + p5C + p6V + p9 (5.5)
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Parameter Variable Value Standard error t-statistic
p2 Ta −1.07× 10−3 1.39× 10−5 -76.98
p3 RH 1.23× 10−4 2.86× 10−5 4.30
p4 pa 7.38× 10−7 2.95× 10−7 2.50
p5 C −2.59× 10−3 2.31× 10−3 -1.12
p6 V 4.31× 10−6 1.10× 10−4 3.92× 10−3

p9 (none) 0.203 0.0294 6.90

Table 5.4: Estimated parameter values for a linear continuous model using only
atmospheric variables (Equation 5.5).

np df WSS MS F P
Original Model 6 5 12274 2455 40917 < 0.001
Improvement +3 +3 86 29 483.33 < 0.001

Residual 2000 118 0.06
Total 2008 12478

Table 5.5: ANOVA table comparing the models from Equations 5.5 and 5.3.
The ‘improvement’ refers to the addition of 3 parameters to Equation 5.5 to get
Equation 5.3.

The above model was fitted to the data and acquired a fit of χ2 = 204.17, r2 =

0.98, ν = 2003 with the parameter values shown in Table 5.4.

An ANOVA test was used to assess the significance of the improvement in fit on

including the 3 other variables (Tw, α and κ), and is shown in Table 5.5. This is

calculated in the same way as in Table 2.1, where the original model is now that

of Equation 5.5 and the improvement relates to the addition of the three other

variables to give Equation 5.3.

The low P-value for the improvement in Table 5.5 indicates that the improve-

ment is statistically significant. However, this is an illustration of the dangers of

uncritically accepting such a test at high sample numbers. The F-ratio is heavily

weighted by the sample size, nd, so in the case of so many datapoints (nd = 2009)

models which provide only a small improvement in fit may still be deemed signif-

icant. However, the number of datapoints is artificially high in this instance for

such a test, given that the ice thickness changes so slowly, especially on a timestep

of 3 hours; the datapoints are not independent. Also, as Figure 5.2 shows, the

error on the ice thickness means that for models which already provide a good

fit (e.g. r2 > 0.95), a small increase in fit simply adjusts the model closer to the

sample means of the datapoints. The F-value for the improvement in Table 5.5

is high, but only around 1 % of the F-value for the unimproved model. So for a

situation of less data, the change in fit would quickly become insignificant.
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Figure 5.2: Predicted ice thickness from a linear continuous model using only 6
parameters (Equation 5.5) and using 9 parameters (Equation 5.3). The data is
plotted with 10 % error bars. The large number of datapoints makes the models
significantly different according to the ANOVA test, but for practical purposes
the fit is no different.

For these reasons, and for the issue of practicality, models based only on at-

mospheric variables are sufficient for modelling Crooked Lake. The rest of this

chapter presents a number of simple models based only on these variables. With

hindsight, an ARIMA model approach with Box-Jenkins differencing of the data

may have been a worthwhile exercise to determine the ‘true’ number of degrees of

freedom provided by the data. However the above analysis, although somewhat

‘ad-hoc’, shows that with careful judgement and subjectivity specific to the job

in hand, the same conclusions can be reached by simpler means.

Given the low t-statistics in Table 5.4, the variables C and V were omitted, and

every combination of the variables Ta, RH and pa was calculated. It was found

that the inclusion of Ta was essential for acquiring a fit of r2 = 0.9 or over, and

so the models in Table 5.6 were chosen for model selection later in this chapter.
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Name Formulae

LC 1 dHi

dt
= p1Ta + p2

LC 2 dHi

dt
= p1Ta + p2RH + p3

LC 3 dHi

dt
= p1Ta + p2pa + p3

LC 4 dHi

dt
= p1Ta + p2RH + p3pa + p4

Table 5.6: ‘Linear continuous’ models of the ice layer, selected on the basis of
having a fit r2 > 0.9. Ta, pa and RH are input variables and all other terms are
adjustable parameters.

5.6 Simplified physics models

A number of models based around the linear models in the previous section were

formulated which may be considered ‘semi-mechanistic’, as they mirror a number

of concepts from the physics-based model, or concur with some intuitive notions

on how the ice layer may behave. These were chosen in an ad-hoc fashion, with

models accepted for the next stage of analysis if their goodness of fit was r2 > 0.9.

The simplest such model is a linear differential equation in the air temperature

Ta, written as:

dHi

dt
= cg(Tf − Ta) (5.6)

where cg is an adjustable growth parameter and Tf is an adjustable ‘threshold

air temperature’ parameter, above which the ice will melt, below which it will

grow in proportion to the difference Tf − Ta. The equation is comparable to

the parameterisation of sensible heat flux at the ice surface in the physics model

(Equation 3.23), but is applied in a very different way. When optimised, the

goodness of fit was χ2 = 412.7, r2 = 0.97, ν = 2007. The parameters took values

of Tf = 262.9 K, cg = 1×10−3 m K−1 day−1. Therefore the threshold temperature

for such an equation is, surprisingly, 10.2 K lower than the melting point of water.

This can be explained by considering how the model is defined - the value is very

close to the mean air temperature for the year (263 K), so accounts for the

intuitive notion that over the whole annual cycle the ice approximately grows the

same amount as it melts.
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Name Formulae

SM 1 dHi

dt
= cg(Tf − Ta)

SM 2 dHi

dt
= cg(Tf − Ta) for Ta ≤ Tf

dHi

dt
= cm(Tf − Ta) for Ta > Tf

SM 3 dHi

dt
= cg(Tf − Ta)V

SM 4 dHi

dt
= cg(Tf − Ta)V for Ta ≤ Tf

dHi

dt
= cm(Tf − Ta)V for Ta > Tf

SM 5 dHi

dt
= cg1(Tf − Ta) + cg2(qf − qa)

SM 6 dHi

dt
= cg1(Tf − Ta) + cg2(qf − qa)

where cg1 → cm1 for Ta ≥ Tf

and cg2 → cm2 for qa ≤ qf

SM 7 dHi

dt
= cg1(Tf − Ta)V + cg2(qf − qa)V

SM 8 dHi

dt
= cg1(Tf − Ta)V + cg2(qf − qa)V
where cg1 → cm1 for Ta ≥ Tf

and cg2 → cm2 for qa ≤ qf

Table 5.7: ‘Semi-mechanistic’ models based on intuitive physics concepts about
the ice layer. Ta, qa and V are input variables and all other terms are adjustable
parameters.

More complexity can be added by assuming different rates of change of ice thick-

ness when the ice melts and grows:

dHi

dt
= cg(Tf − Ta) for Ta ≤ Tf

dHi

dt
= cm(Tf − Ta) for Ta > Tf (5.7)

where cm is a third parameter for the rate of melting, and cg now relates only to

growth rate, such that the equation is now conditional.

Further complexity was added by considering the effect of the gradient in humidity

at the ice surface, analogous to the latent heat flux in the physics model (Equation

3.24). The specific humidity of the air qa was calculated from Ta, RH and pa as in

Equations 3.1 to 3.3. This allowed a number of similar models to be formulated,
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considering a critical humidity qf which affects whether ice will grow or melt. This

approach is distinct from the linear models in that the variables are combined in

a non-linear way to calculate qa. Introducing some conditionality as above allows

even more choice of model. Eight models in total were formulated which provided

fits of r2 > 0.9, and are summarised in Table 5.7.

5.7 Model selection results

There is no limit to the potential models that could be formulated using the

inputs available. However, as has been illustrated, changes in goodness of fit on

adding complexity can easily be ruled out as insignificant. For the exercise of

selecting models, the analysis is limited to the 8 ‘semi-mechanistic’ equations in

Table 5.7, the 4 ‘linear continuous’ models from Table 5.6, and the physics model

from Chapters 3 and 4. This gives a spread of levels of complexity.

Model selection criteria (MSCs) were calculated for each of the models (Table

5.8). For simplicity of calculation the data was given a default error of 1, so that

the models were essentially fitted in a least squares fashion, and the magnitude

of numbers involved was kept lower.

A difficulty arose when assessing what constituted an adjustable parameter in

the physics model. As discussed in Chapter 4, most quantities were chosen to

within strict ranges consistent with theory. Figure 4.2 shows that, with the ranges

imposed, the only parameter which significantly affected the goodness of fit was

kw. The other parameters can feasibly be set to any value in the range and treated

as ‘constants’. Therefore for the purposes of MSCs the physics model is deemed

a one-parameter model with 8 inputs.

5.8 Model selection discussion

The results in Table 5.8 illustrate a number of interesting points about the models,

and the application of MSCs in general.

The model LC 4 provided the best fit to data. It was also selected by the RMSD

criteria. However it can be seen that the values for RMSD directly follow the

goodness of fit values. This reflects a problem with the criteria for large datasets:

the term nd − np accounts for complexity in the equation (RMSD =
√

χ2

nd−np
),
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and if nd is much greater than np, any change in np becomes negligible. The

goodness of fit (χ2) value in the numerator becomes the crucial factor, so RMSD

is of little theoretical use.

The models SM 1 and LC 1 gave equally the lowest values of all models for the AIC

and BIC criteria. These are essentially the same model expressed in a different

form, and the selection reflects their remarkably good fit despite having only two

parameters and one input variable. However on comparing the two models it is

interesting to note that the numbers for MDL and ICOMP are different: both

select SM 1 over LC 1. Given that these are the only criteria that take into

account not only the number of parameters but also the functional form of the

models, such a result suggests that SM 1 has more stable parameter values, and

therefore is more generalisable. This is a small victory for the semi-mechanistic

approach: applying a little bit of realism by considering a threshold temperature

for ice melt/growth appears to suit the situation more accurately than simply

using a linear sum of the input variables, even if the fit to data is unchanged.

The lowest MDL value was calculated for SM 5. This is the simplest of models

SM 5 to SM 8, which all have terms approximating both temperature and water

vapour gradients at the ice surface. SM 5 does not use the variable V , so the

wind speed data may have been adding undesirable noise to the model - in fact

SM 5 also has a better fit than SM 7 despite having one less input variable. SM

8, which uses both V and separate growth/melt conditions, has the best fit of all

the semi-mechanistic models. However the selection of SM 5 by MDL indicates

that this may be a case of over-fitting, and the simpler model is more reliable.

The physics model provided the lowest goodness of fit of all the models. This

was due to the restrictions that were imposed on it to keep all parameters within

realistic theoretical limits; it was not fitted to the data as freely as the simpler

models. However the ICOMP criteria selected the physics model, and it was the

‘second choice’ of the MDL criteria.

The idea behind MDL is that any regularity in data can be used to compress the

data, thus describing it with fewer symbols than are required to describe the data

literally (Grünwald 2000). In selection this amounts to minimising the stochastic

complexity of the dataset with respect to the model, which in algorithmic coding

theory is defined as the shortest code length of the dataset obtainable when

the encoding is done with the help of that model (Rissanen 1996). ICOMP,

meanwhile, is defined as an entropic measure of statistical dependence between

parameter estimates (Myung, 2000). Selection by this criteria may therefore
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suggest that the physics model provides stable parameter values, such that the

rate of change of the output with respect to each parameter is very small. This

means that on fitting the model to other datasets the standard deviation of

parameter values across the datasets will be small.

Therefore the inclusion of several input datasets in the physics model appears

to be useful for identifying any regularities in the ice thickness data that would

be important in predicting future behaviour - the output of the physically-based

model is a much smoother curve than SM 1 (Figure 5.3) - i.e. the physics model

captures the general long-term sinusoidal behaviour of the ice layer without being

affected by short-term variability, which on the scale of a year is essentially noise.

A more simple explanation for this is that using more input variables leads to

noise from their datasets cancelling out, whereas in SM 1 the noise on the air

temperature carries through to the output.

However, there are serious flaws in making conclusions for the physics model from

the MSC values. The key factors considered in the MSCs, such as the Hessian

matrix, are related to parameters and how stable they are. So to draw conclusions

the parameters must be crucial quantities in the model as a whole. The only

parameter adjusted in the physics model is kw, which although influential on

model fit is only used in the calculation of one of the eight heat fluxes affecting the

ice layer in the model. For an MSC assessment of the performance of the model

as whole, more quantities may have to be treated as adjustable parameters, for

example all eight of the heat fluxes. Nonetheless the physics model was selected by

ICOMP, despite having the lowest goodness of fit. ICOMP is the most extensive

of the criteria in terms of the model aspects it considers, and the most successful

criteria tested by Myung (2000). This is a reassuring sign that for at least one

parameter, the inclusion of all the known physics is worthwhile.

All the other models have a number of parameters np equal to or greater than

the number of input variables nx, and are represented by one short differential

equation, so the parameters are hugely influential on the model output, and

the MSC values can be trusted more directly. Choosing the best model is still

somewhat subjective, but a number of arguments point to SM 1 as the most

useful. It was selected by AIC and BIC, and was the ‘second choice’ of ICOMP

after the physics model. It also relies on air temperature Ta alone, which is, as

argued above, the most important variable in the linear continuous models. Any

terms in the other variables are statistically far less significant (as shown by the

t-statistics in Table 5.4), so models LC 2 to LC 4 can be ruled out. For the semi-

mechanistic models, the fit was improved by adding terms in the specific humidity

106



F
ig

u
re

5.
3:

Ic
e

th
ic

k
n
es

s
ca

lc
u
la

te
d

b
y

th
e

p
h
y
si

cs
-b

as
ed

m
o
d
el

(s
ol

id
li
n
e)

an
d

b
y

m
o
d
el

S
M

1
(d

as
h
ed

li
n
e)

,
w

it
h

th
e

d
at

a
(c

ro
ss

es
).

T
h
e

p
h
y
si

cs
-b

as
ed

m
o
d
el

h
as

lo
w

er
go

o
d
n
es

s
of

fi
t

d
u
e

to
th

e
‘r

ea
li
st

ic
’
co

n
st

ra
in

ts
on

al
l
q
u
an

ti
ti

es
,
b
u
t

a
sm

o
ot

h
er

li
n
e

b
ec

au
se

th
e

n
oi

se
fr

om
8

in
p
u
t

va
ri

ab
le

s
ca

n
ce

ls
ou

t.

107



qa, and MDL selected model SM 5. However, qa is partly calculated from Ta, and

the two variables have a correlation of r = 0.86. The small improvement in fit

thus stems from a more complex function in Ta, and may cause the over-fitting.

5.9 Summary

In this chapter a number of empirical models of lake ice were developed and

analysed using data from Crooked Lake. Some were discarded on the basis of

ANOVA tests, and others were tested using model selection criteria. A discussion

referring to these results indicated an informed preference for a simple ‘semi-

mechanistic’ model and the physics-based model from Chapters 3 and 4 as the

best two candidates for further analysis.

Several methods exist for selecting models, and this section has looked at only a

few of the most simple ones. However it has highlighted a number of complicating

factors that arise: when using a large dataset some of the criteria become less

useful, and when testing a highly mechanistic model based on physical theories

it is difficult to attain a concrete definition of what is and isn’t an adjustable

parameter. It has illustrated that subjectivity is still required for selecting a

model of such a system.
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Chapter 6

Climate change responses

6.1 Overview

Antarctic lakes may be sensitive indicators of climate change (Vincent et al.

1998, Wharton Jr. et al. 1992). In this chapter it is argued that a modelling

investigation of climate change effects on an ice layer amounts to an assessment

of long-term model responses to changes in air temperature. The physics-based

model from Chapter 3 is adapted to run with air temperature as the only input

variable. Climate averages from 1957-2003 data are used as a ‘baseline’ for long-

term model runs with imposed perturbations on air temperature. The predicted

ice responses in both the physics-based model and a simple empirical model are

contrasted.

6.2 Models based on temperature alone

Excess concentrations of greenhouse gases in the atmosphere lead to an increased

amount of infrared radiation at the surface, and ‘climate change’ is defined as a

change in all the long-term weather phenomena as a whole at the surface. Air

temperature Ta is just one of the variables involved in such a change, but is

influential on all other variables. Therefore in climate change scenarios, the air

temperature is the most commonly considered variable, relating to the ubiquitous

term ‘global warming’.

As was illustrated in Chapter 4, Ta is the most important variable in the physics-

based model of lake ice (Figure 4.13). The other variables deemed important by
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Figure 6.1: Linear regression of 2003 water temperature and air temperature.

the ‘model trimming’ technique were water temperature Tw and the ice extinction

coefficient κ, and these had the highest correlation to Ta (Table 5.1). Chapter 5

highlighted a similar dominance of air temperature in simple empirical models.

Climate change scenarios for other variables are less common, and more uncertain,

than temperature scenarios.

Therefore for the purposes of predicting climate change effects on the Crooked

Lake system, models based on temperature alone were selected. The simple

‘semi-mechanistic’ empirical model SM 1 was chosen because of it’s performance

as measured by model selection criteria (Table 5.8). In addition, the physics-

based model was adapted to run with only air temperature as an input. Each of

the input variables was expressed as a linear function of Ta, fitting a straight line

in a linear regression:

xi = mTa + c (6.1)

where m and c are the gradient and offset of the straight line, respectively, which

were fitted for each variable (Table 6.1). It was found that using higher order

terms in Ta gave a negligible improvement in fit.
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Variable m c r2

RH -0.0140 61.9486 0.0027
pa 9.3936 96308.6029 0.0149
V 0.1576 -35.4256 0.0904
C 0.0025 0.0241 0.0044
Tw 0.0658 256.8331 0.6987
α -0.0023 1.0762 0.0199
κ -0.0103 2.9697 0.1426

Table 6.1: Gradients m and offsets c for straight line regression between air
temperature Ta and other variables used in the physics model for 2003, and the
associated r2 values.

The r2 values in Table 6.1 are small, reflecting the low correlations in Table 5.1.

However the second most ‘important’ variable Tw gave the strongest fit (Figure

6.1), and the goodness of fit of the resulting ‘Ta only’ model to the 2003 ice

thickness data was χ2 = 42.98, r2 = 0.74, ν = 2008 (compared to χ2 = 16,

r2 = 0.90, ν = 2008 with all variables present).

6.3 Historic data

Climate history data collected by the Australian Bureau of Meteorology at Davis

station from 1957 to 2003 allows a comparison of the year 2003 to the previous

45 years (Figure 6.2). The variables all show clear variation with the annual

cycle, which is more apparent because a large amount of noise is removed when

monthly means are taken. They therefore provide more accurate linear regressions

for expressing the variables RH and V in terms of Ta (Table 6.2). The 2003 data

follows the historic data fairly closely, particularly air temperature and the daily

hours of sunshine, suggesting that 2003 was quite typical of the past 45 years.

Exceptions were a slightly lower then average relative humidity from August to

November, and considerable noise on the wind speed data. On the whole one

could tentatively make the conclusion that 2003 was a typical year for the area.

However we cannot necessarily assume that the state of ice on Crooked Lake was

also close to the average, as it is to some extent dependent on previous years, for

which there is no substantial data.

The historic air temperature data was examined for any sign of long-term tem-

perature change at Davis. A full 12 months of data were available for 40 of the 46

years from 1957 to 2003. These were used to calculate 40 annual mean temper-

atures over the period. A straight line was fitted to the data (Figure 6.3). This
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Figure 6.2: Monthly means for 2003 (solid lines), and averaged over the period
1957-2003 (dotted lines) for, clockwise from top left: air temperature, relative
humidity, daily sunshine hours and wind speed.

Variable m c r2

RH -0.518 196.34 0.903
V 0.301 -59.22 0.663

Table 6.2: Gradients m, offsets c and the associated r2 values for straight line
regressions of relative humidity RH and wind speed V with air temperature Ta,
based on monthly means for 1957-2003.

revealed a small average annual warming of 0.0083 K per year, but the correlation

was of low statistical significance (P = 0.22).

Previous ice thickness data for Crooked Lake is sporadic. The most extensive

limnological studies of Crooked Lake were undertaken in 1993 (Laybourn-Parry

and Bayliss 1996) and in 1999 (Henshaw 2001). In both studies, visits were made

to the lake on average once every two weeks, and ice thickness data was measured

manually using ruled poles. The available monthly means of these datasets are

plotted with the 2003 data in Figure 6.4. The 2003 ice thickness was generally

lower than in the two earlier years. Across all three years the mean ice thickness

was 1.49 m.
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Figure 6.3: Annual mean air temperatures at Davis station, 1957 to 2003.

6.4 Cross-validation

In chapters 3 to 5, both the physics model and SM 1 were fitted to high-resolution

data from the 2003 probe deployment and performed well under model selection

criteria. However the most directly informative test of parameter estimates is

a cross-validation with other datasets - i.e. if the parameter values fit several

known past datasets, then model predictions may be expected to be a reasonable

representation of future datasets. This was attempted with the high-resolution

data, by fitting each model to data from the first half of the year, then running

them for the second half of the year. However the results are not reported as this

led to parameter values specific to ice growth, which did not fit the second half of

the year when ice was melting, so were not as useful as ‘compromising’ parameters

calculated for the whole year. Also, removing a one-datapoint validation sample

from the series, (as described in Browne, 2000) was not worthwhile given the

autocorrelation in the data (ice thickness is highly dependent on previous ice

thickness, especially on a timestep of 3 hours).

Therefore it seems that for a system such as Crooked Lake with a one-year

‘turnover time’, a cross-validation requires more than one dataset, each of which

provides good coverage of a year or more. This was made possible by the ice
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Figure 6.4: Crooked Lake monthly mean ice thickness (top) as measured by
Bayliss in 1993, Henshaw in 1999 and the 2003 data, and the corresponding
monthly mean air temperatures measured at Davis station (bottom).
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Figure 6.5: Cross-validation outputs of the physics-based model and SM 1 for
1993 (top) and 1999 (bottom). Parameter values were estimated using the high-
resolution 2003 data.
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thickness data for 1993 and 1999.

The monthly mean air temperature data from Davis station (Figure 6.4) was

linearly interpolated to provide temperature inputs for the models. Using the

parameters estimated for 2003, both models were fitted to the monthly mean ice

thickness data for 1993 and 1999, by adjusting only the initial ice thickness Hi(0)

at the start of each year (Figure 6.5, Table 6.3).

Model Year χ2 r2 ν
Physics 1993 0.304 0.90 9
Physics 1999 1.405 0.46 10
Physics 2003 0.175 0.78 7
SM 1 1993 0.358 0.88 9
SM 1 1999 0.420 0.84 10
SM 1 2003 0.035 0.96 7

Table 6.3: Cross-validation goodness of fit of the physics-based model and SM 1
to monthly mean ice thickness for 1993, 1999 and 2003, with parameter values
estimated for the high-resolution 2003 data.

The physics-based model provided a slightly better fit to the 1993 data than SM

1, while SM 1 had a much better fit to the 1999 data. So considering both years

together, the definition of CV in equation 2.20 would select SM 1 over the physics

model. However, given that the data is for two extra years only, which amounts

to only two true samples on the ‘discrete’ turnover scale of the system, neither

model should be ruled out. The fit for both models is comparable to or even

better than the fit to the 2003 data, thus providing more statistical justification

for the employment of such models in predicting the future.

6.5 Smoothing input variables

The short-term behaviour of a system may be significantly different from long-

term trends, and for long-term studies one may feel inclined to ignore short-term

variation as noise. For example, the shapes of the monthly mean graphs in Figure

6.2 compared to the fine-scale graphs in Figure 4.4 illustrate the dominance of the

annual cycle. However, the variables are here used to predict another variable,

ice thickness, which is a continuous variable affected by it’s past state. The

graphs also show that the size of day-to-day variations can be significantly large

deviations from the annual trend, so an investigation was made into whether

short-term variation has an effect on long-term behaviour, before discarding it.
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Figure 6.6: Air temperature data for 2003 (dotted line), with a best fit sine curve
representing the annual cycle (solid line).

To remove noise and isolate the annual signal for each variable xi, a cosinusoidal

curve of period 365 days was fitted to the data:

xi = A cos

(
2π(J + φ)

365

)
+ C (6.2)

where J is the Julian Day and A, φ and C are adjustable parameters. The

parameter values for curves fitted to the 2003 Ta data (Figure 6.6), the 2003 ice

thickness data and the monthly means for 1957-2003 are shown in Table 6.4.

Ta 1957-2003 Ta 2003 Hi 2003
A 9.239 10.527 0.530
φ 354.938 353.066 83.535
C 263.322 263.384 1.199
r2 0.93 0.76 0.97

Table 6.4: Amplitude A, phase φ, offset C and the r2 value of 365-day cosine
curves fitted to the monthly mean air temperatures for 1957-2003, the 2003 air
temperature and the 2003 ice thickness.

The r2 fit was lowest for the 2003 air temperature, because it includes day-to-day

noise. The parameter values were very similar to those for the 1957-2003 monthly

means. The phase difference between the air temperature and ice thickness in
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Figure 6.7: Best fit sine curves for 2003 air temperature (solid line) and ice
thickness (dotted line). The ice thickness lags the air temperature by around
270o.

2003 was 269.5 days, close to three quarters of a year (Figure 6.7), i.e. the ice

thickness signal lagged behind the temperature signal by approximately 270o.

This was also true for the 1993 and 1999 datasets (not reported), and is the

reason for the good fit of Model SM 1. The rate of change of a cosine curve is an

inverted sine curve, and a cosine curve lags behind a sine curve by 270o, so the

analogy is:

dHi

dt
∝ −Ta versus

d cos(J)

dt
∝ − sin(J) (6.3)

where with air temperature proportional to a sine curve, the ice thickness is

proportional to a cosine curve. This result may, however, be unique to the 2003

dataset, and the phase difference might be affected in years of different mean

temperature.

The 2003 ‘Ta only’ physics model was run again with Ta calculated from Equation

6.2. The fit was slightly improved from χ2 = 42.98, r2 = 0.74, ν = 2009 to

χ2 = 39.74, r2 = 0.76, ν = 2009. Therefore the removal of day-to-day noise

has only a small positive effect. However it provides a clearer picture, more

appropriate for long-term investigations, and implies that the the annual cycle in
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temperature was the only significant factor on the scale of a year. For predicting

the future of the ecosystem relative to the recorded period, the historic ‘smoothed’

mean data was considered a suitable ‘baseline’ for investigating superimposed

effects of climate change.

6.6 Finding a steady state model

While atmospheric variables for Davis station, and hence approximations for

Crooked Lake, are available for a 45 year period, records of ice thickness on

Crooked Lake are limited to 1993, 1999 and the more accurate data from 2003

(this study). However, the 5-minute data collected by the remote-sensing probe is

of an unprecedentedly high temporal resolution, and when reduced to a timestep

of 3 hours to relate directly to the meteorological data, the parameterisation of

models may be deemed highly accurate. For this reason a ‘temporally reduc-

tionist’ approach can be applied; if the model accurately reproduces over 2000

datapoints over the scale of a year, where each is calculated from the previous

timestep, then it must be somewhat generalisable to longer scales. This is rein-

forced by the fact that the models effectively treat the system as continuous. In

reality the system may be treated as discrete on the timescale of a year, as the

ice breaks up and disperses in summer, but it is in any case rare for the lake to be

100 % ice free. The complex processes that occur in the summer are dealt with

by assuming that the physical properties of ice and water do not differ enough to

have a significant effect, and that the other factors that come into play in sum-

mer, such as wind-induced mixing when open areas of water appear, have enough

randomness to ‘cancel themselves out’. In other words, the system is modelled as

if it were a controlled laboratory experiment, with no other phenomena consistent

enough to have lasting effects. This approach is given merit by Figure 5.3, where

both the simple model SM 1 and the physics model were initialised with data

from January 2003, and ‘bridge the summer gap’ to very closely reproduce the

next datapoints that were recorded in May.

Some aspects of the models are specific to the year 2003. Below is a discussion

of the adjustments that were made to SM 1 and the physics model to apply to

a general situation. Each model was adapted to a state where the calculated ice

thickness followed the same trend every year, i.e. the ice thickness was the same

every successive January 1st. This gave ‘steady state’ models, which predict the

ice thickness response if the atmosphere remains in it’s mean state every year.

Such models represent the ‘average state’ of the lake over the past 45 years.
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Figure 6.8: Air temperature (solid line) repeated from the monthly means for
1957-2003, and calculated ice thickness (dotted line) for 10 simulated years in a
steady state version of model SM 1.

6.6.1 Model SM 1

The simple semi-mechanistic model SM 1 was generated by the equation:

dHi

dt
= cg(Tf − Ta) (6.4)

The right hand side of the equation is not affected by Hi. In other words, the

change in ice thickness is not dependent on the ice thickness. For a steady state,

the mean value of dHi

dt
over time should be zero. Therefore it can immediately be

inferred that for a steady state over a certain period of time, the parameter Tf

must be equal to the mean value of the air temperature Ta over the same time

period. The value of Tf found when the model was optimised for the 2003 data

in Chapter 5 was indeed close to the mean of Ta. Therefore Tf is very specific to

circumstances, providing a threshold with a value that ensures ice melts as much

as it grows.

However this need not necessarily rule out SM 1 when searching for a generalisable

model. The parameter values found in Chapter 5 apply to a year that had
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Figure 6.9: Air temperature (solid line) repeated from the monthly means for
1957-2003, and calculated ice thickness (dotted line) for 10 years, simulated by
the physics-based model. Initial ice thickness was 2m, and the model predicted
a steady state with maximum 1.55m, minimum 0.58m within two years.

a mean temperature (263.0 K) close to the running mean for the period since

1957 (263.4 K). Also the calibrated value for the parameter cg, which determines

the fine scale day-to-day response of the ice to air temperature changes, can be

taken as generalisable given the extremely good fit to the data. Therefore to

acquire a steady state model the only parameter to adjust was Tf . The mean air

temperature data was repeated year-on-year for 10 complete years. The initial

value of ice thickness was set equal to the mean January ice thickness across the

3 past datasets from 1993, 1999 and 2003 (= 1.3 m). The steady state model

was found at Tf = mean(Ta) = 263.4 K (Figure 6.8). The maximum calculated

ice thickness each year was 1.78m, minimum 0.69m. This illustrates that the

long-term ice thickness is completely determined by the initial ice thickness, and

the model is therefore completely continuous.

6.6.2 Physics-based model

The physics-based model has no freely adjustable parameters, as it is restricted

to existing mechanistic theories about the system. For a steady state version
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of the model, the interpolated historic monthly mean air temperature data was

used as the input variable (as above), and the initial value of ice thickness was

adjusted. It was found that the model evolved to a state independent of the

initial conditions (Figure 6.9). For example, with initial ice thickness of 0.5 m

and 2 m the same state was reached after 2 years of model run time. The steady

state gave a maximum ice thickness of 1.55 m on 3 October and a minimum of

0.58 m on 6 March each year, both figures slightly lower than that suggested by

SM 1.

Therefore for a steady state repeated temperature signal, the physics-based model

is stable. The fact that the ice thickness is intrinsic to the calculation of the change

in ice thickness provides the stabilising factor; for any given air temperature there

is a corresponding ice thickness which provides the situation at which the total

balance of heat fluxes at the top and bottom of the ice layer is zero.

6.7 Implementing climate change scenarios

The main difference between the physics model and SM 1 is that the investigation

of global warming effects using the physics model comes down to an assessment

of the long-term responses of the models to changes in the steady state air tem-

perature, whereas for SM 1 the initial conditions must be very well defined for

runs into the future.

According to climate sensitivity estimates and the implemented socio-economic

scenarios, global climate models predict that global average temperature will

increase by somewhere between 1.4 and 5.8 K over the period 1990-2100 (IPCC

2001). This in turn will affect other atmospheric parameters in ways that are

hard to quantify. However some key predicted changes were approximated by

varying the input signals to the model and observing model responses.

The simplest way to impose the above global warming trend on a model is to

assume a linear increase over time. This was added to the input air temperature

variable for Model SM 1. A conditional command was added to the model to

ensure that the minimum calculated ice thickness was 0m (i.e. any negative

calculated values were set to zero). It was run for a period of 100 years, with

superimposed linear trends corresponding to several different values of the ‘global

warming per century’.

The stable-state nature of the physics model allowed a different approach. When
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the mean temperature was changed, the model reached a new equilibrium state.

Therefore the average response to a new average temperature was found with

the input temperature expressed as a cosine curve. The temperature signal was

altered by amounts between -15 and +25 K from the 1957-2003 mean (corre-

sponding to mean temperatures of 248.33 to 288.33 K), run for 10 years to a

steady state as in Figure 6.9, and the maximum, minimum and mean predicted

ice thicknesses in the 10th year were noted. In addition the lengths of predicted

periods of no ice were noted.

Changes in intraseasonal variation and extreme weather events due to climate

change are poorly understood as they involve the interaction of several global

atmospheric cycles (IPCC 2001). However some areas of the world may begin to

experience colder winters at the same time as warmer summers. Such a change

was approximated by altering the amplitude of the sinusoidal annual temperature

signal while keeping the annual mean value the same, thus representing changes

in the summer-winter difference.

Precipitation is also predicted to increase in high latitudes in winter (IPCC 2001).

The effects on Crooked Lake are hard to quantify, but more snow may lead to

an increase in the albedo of the ice surface. This was investigated by varying the

albedo input.

6.8 Results

The 100-year outputs from SM 1 and the physics-based model with superimposed

warming of 0, +1, +3 and +5 K per century were plotted against time (Figures

6.10 and Figure 6.11). With non-zero warming the predicted annual mean ice

thickness from SM 1 decreased rapidly to begin with, then more slowly and

approximately linearly with time. These transition points occurred in years 21,

12 and 9 for +1, +3 and +5 K respectively and corresponded to the first year in

which the calculated ice thickness went to zero in summer. For the physics model

the ice thickness decrease was more steady, and approximately linear.

The figures illustrate differences between the two models. SM 1 is a completely

continuous model, so any decrease in ice thickness one year propagates directly

to the next, and the decrease is stopped only by the built-in condition that ice

thickness cannot be less than zero. Thereafter the ice only grows in periods when

the air temperature is lower than the threshold parameter Tf , and such periods
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Figure 6.10: Annual mean ice thickness predicted by SM 1 (top) and the physics-
based model (bottom) for model runs of 100 years, with superimposed linear
temperature increases of 0, 1, 3 and 5 K per century.
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Figure 6.11: A comparison of long-term responses of SM 1 (top) and the physics
model (bottom). Both were run for 100 years with a superimposed linear increase
of 1 K per century on the temperature signal, and the predicted ice thickness
trends are plotted.
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become smaller as temperature increases.

The physics model is also continuous, however a degree of discreteness to the year

in hand is indirectly introduced because any change in ice thickness is dependent

on the ice thickness itself. The model automatically tends towards a stable state

corresponding to the imposed temperature state, which (for a simple increasing

temperature signal with no other interannual variation) is an annual oscillation

steadily decreasing in amplitude. The physics model thus has the required sta-

bility for long-term predictions. It accounts far more successfully than SM 1 for

summer periods when ice partly breaks up and the overall behaviour of the lake

changes (which has not been explicitly modelled in this thesis). Model SM 1 can

in fact be ruled out as useful for long-term predictions.

The physics-based model was therefore used for all further investigations. Firstly

the mean temperature was changed and the model was run to a steady state cor-

responding to the new temperatures (Figure 6.12). The steady state ice thickness

appeared to increase exponentially with decreasing mean temperature, and the

amplitude of the annual oscillation (difference between maximum and minimum

ice thickness) decreased. On increasing mean temperature, periods of no ice first

occured at +5 K, where 35 days per year of no ice cover were predicted (annual

minimum ice thickness was zero). The predicted number of days of no ice cover

then increased approximately linearly with temperature until +23 K, where no

ice was present at any point in the year.

The effects of other perturbations to input signals are shown in Figure 6.13. On

increasing the amplitude of the sinusoidal temperature signal, the steady states

of the model predicted larger amplitude annual oscillations in ice thickness, in

an approximately linear response. The oscillation was big enough to produce

periods of no ice at 6 K beyond the 1957-2003 extremes. The mean ice thickness

also increased slightly with the amplitude of the temperature signal, despite the

mean temperature remaining the same. This implies that the formulation of the

model is slightly in favour of growth over melting, i.e. the model responds more

significantly to abnormally low temperatures than to abnormally high ones.

On increasing ice albedo from 0.13 to 0.93 (corresponding to deviations of -0.3 to

+0.5 on the 2003 mean value of 0.43), the predicted mean annual ice thickness

increased from 1.03 to 1.27 m. This is to be expected: an increased albedo

reduces the penetration of solar shortwave radiation, reducing temperatures in

the ice layer and encouraging ice growth.
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Figure 6.12: Mean (solid line) and maximum/minimum (dotted lines) ice thick-
ness for the steady state of the physics model reached when the annual mean of
the air temperature signal was deviated from the 1957-2003 average (top), and
the corresponding number of days per year with no ice cover (bottom).
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Figure 6.13: Ice thickness response of the physics model to changes in the ampli-
tude of the input temperature signal (top) and changes in the ice albedo (bottom).
This approximates the effects of changing interseasonal variability and changing
precipitation, respectively. In both graphs the solid line is the annual mean at
the steady state, and the dotted lines are the maximum and minimum values.
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6.9 Summary

A physics-based model of lake ice has been shown to perform well with air temper-

ature as the only input variable. Steady states were found for both the physics-

based model and a simple empirical model, with a ‘baseline’ provided by climate

averages for 1957-2003. On introducing temperature perturbations, the physics

model was found to be considerably more stable in the long-term than the simple

model. The simple model fitted data successfully and highlights an interesting

simple relationship between ice thickness and air temperature on the scale of a

year, but is meaningless in the long-term.

The physics-based model predicted an approximately exponential decay in annual

mean ice thickness with increased annual mean air temperature. Completely ice

free summer periods were predicted at +5 K above the 1957-2003 averages, and

no ice at any point in the year at +23 K and above.

Both an increase in amplitude of the annual temperature signal and an increase

in ice surface albedo produced small increases in annual mean ice thickness. This

suggests that some postulated global warming ‘side effects’, namely more extreme

weather events, increased intraseasonal variability and increased precipitation

(IPCC 2001), may provide small negative feedbacks on warming effects at a local

level. However such changes are poorly understood, and the impacts are in any

case far less significant than an air temperature increase.
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Chapter 7

Biological modelling

7.1 Overview

The physical environment on and above Crooked Lake as modelled in Chapters

3 to 6 influences the biological organisms in the water below. Changes in the ice

layer affect the temperature, radiation, and wind-induced mixing of the water,

which are all important for the growth and primary production of the plankton.

The responses of such organisms to physical changes have been measured in lab

experiments, and the general response of a whole ecosystem to large-scale anom-

alies such as climate change can be postulated. However, the variability in any

biological system is large, and aquatic food chains involve highly complex inter-

actions between different types of plankton and chemical resources, which are

poorly understood. In addition, the amount of data available to verify models

tends to be low.

In this chapter, the usefulness of biological data as an indicator of temporal

change is assessed, to determine the potential benefits of adding further sensors

to a device such as the Crooked Lake probe. To represent temporal change

in the system, generic population dynamics models, typified by predator-prey

type interactions, are investigated. A biological dataset from 1992-93 is analysed

to assess whether the biomasses of carbon-based organisms display significant

oscillations of wavelength one year or less, such as those predicted by plankton

population models. Each modelling assessment is based on 24 datapoints over a

year, so in terms of model analysis techniques it presents a marked contrast to

the physical modelling in Chapters 3 to 6, where the temporal resolution was as

high as several measurements per day.
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In contrast, a theoretical modelling experiment was developed, which poses the

question: “If we believe the system does behave according to a certain model, how

much data would we need to identify it?”. This was assessed for a simple sine wave

model. A large number of ‘simulated datasets’ were created for model fitting, and

the standard deviations in model parameters were plotted as a function of the

sample rate and sample error. The procedure provides a prototype tool analogous

to a power analysis for scientists who believe they may observe a certain type of

behaviour in a system, and need to estimate how much data they should collect.

7.2 Analysis of past data

The longest continuous limnological study of Crooked Lake to date was under-

taken in the years 1992 to 1993 by Laybourn-Parry et al. (1995). This produced

data that covered an entire year for the numbers and biomasses of bacteria,

phototrophic nanoflagellates (PNAN), heterotrophic nanoflagellates (HNAN) and

ciliates, as well as the concentrations of dissolved organic carbon (DOC) and in-

organic nutrients. Each was sampled at depths of 0, 2, 5, 10, 15, 20, 30 and 40

m on 24 dates in total, giving an average of two datapoints per month with the

first on 21 December 1992 and the last on 29 November 1993. Only one repli-

cate was counted for each depth, but for considering changes over time this gives

an 8-point sample for calculating the average concentration in the whole water

column.

For the investigation of predator-prey type oscillations in Crooked Lake, the cy-

cling of carbon is the most important factor, so only the measurements of plankton

and DOC are considered here. HNAN consume bacteria, while ciliates may feed

on all smaller plankton, and all types of plankton are believed to exploit the DOC

pool as a resource to some extent (Laybourn-Parry and Parry 2000). Therefore

as the abundance of one type of plankton increases, another may be decreasing.

Considering only the DOC and plankton biomass measurements (all in µg l−1)

allows direct investigation of temporal changes in the carbon distribution.

A discrete Fourier transform was used to obtain a spectrum of frequencies in

the data. This required an evenly spaced time series, and given the sporadic

sampling dates this was approximated by calculating a mean value for each of

the 12 months. For a sampling interval ∆t the maximum frequency that can be

observed is given by the Nyquist critical frequency, fc = 1
2∆t

, so for monthly data

fc = 0.5 month−1. This corresponds to a wavelength of around 60 days. The
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Figure 7.1: Discrete Fourier Transform spectra of plankton and DOC in Crooked
Lake, based on 12 monthly datapoints extrapolated from the work of Bayliss in
1992-93. H(Fn) is scaled down to fit all on the same graph.

discrete Fourier transform was approximated by:

H(fn) ≈ ∆t
nd−1∑
k=0

hk exp

(
2πikn

nd

)
(7.1)

where hk represents the kth datapoint in the time series and nd is the total

number of datapoints (nd = 12). H(fn) was calculated for the discrete frequencies

fn = n
nd∆t

, where n = 0, 1, ..., nd

2
. The values of H(fn) were scaled by dividing

by H(0), to allow plotting on the same graph (Figure 7.1). H(fn) represents the

strength of the ‘signal’ at frequency fn. This is highest at fn = 0, corresponding

to the null signal, and tails off at higher frequencies. There are small peaks in

the DOC, HNAN and PNAN spectra at 0.33 month−1 (wavelength of 3 months),

which corresponds to a population oscillation of comparable size to the oscillations

of 50-100 days calculated in the plankton models of Edwards and Brindley (1999)

or Huisman and Weissing (1999). However, a Fourier transform with such a small

amount of data is far from conclusive, and there is a high probability that any

signals are just a result of the error variation in the data.

To gain insight into how significant any existing oscillations may be, the system
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was modelled using a simplified form of spectral analysis, with two superimposed

cosine oscillations dependent on time alone - one with a fixed period of 365 days

to represent the seasonal cycle, and another with an adjustable period parameter

representing the population oscillation. The model had 6 parameters in total to

model the 24 datapoints and was formulated as follows:

Biomass = A1 cos

(
2π(t + φ1)

365

)
+ A2 cos

(
2π(t + φ2)

T2

)
+ C (7.2)

where t is the time in days, A1 and φ1 are respectively the amplitude and phase of

the seasonal cycle, A2, φ2 and T2 are respectively the amplitude, phase and period

of the population oscillation, and C is an offset parameter. The model was first

run with A2 set to zero, representing the annual oscillation alone. Then A2 was

given a non-zero value, with T2 given an initial value of 80 days to approximately

represent the oscillations suggested in the Fourier spectra. The significance of

adding the new oscillation was assessed using the ANOVA test as described in

Chapter 2. As an example, the model output for ciliates is plotted with the data

in Figure 7.2, and it’s ANOVA assessment is in Table 7.1. Table 7.2 summarises

the results for all the series.

np df WSS MS F P
Annual cycle 3 2 0.22 0.11 25.04 < 0.001
+ oscillation +3 +3 0.02 0.007 1.75 0.193

Residual 18 0.07 0.004
Total 23 0.31

Table 7.1: ANOVA table assessing the model from Equation 7.2 with only an
annual cycle, and the improvement in fit on adding a superimposed population
oscillation.

The values of P (annual) in Table 7.2 are very low for all the measurements

except the bacteria, therefore there is a significant sinusoidal annual cycle in

all the quantities except bacteria. The phase φ1 for the DOC indicates that it

was almost completely out of phase with the plankton populations, as may be

expected - the DOC pool is higher in winter because there is less light for growth

and reproduction in the food web, and hence less uptake of DOC by organisms and

higher contribution to the DOC from dead organisms. The phase φ1 for bacteria

indicates that the annual cycle peaks slightly ahead of the HNAN, suggesting a

predator-prey type time-lag on the scale of a year.

The estimated periods of the population oscillations (T2) were all between 80

and 90 days. However the values of P (oscillation) are all higher than the usual
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Figure 7.2: Superimposed sine waves model (Equation 7.2) optimised for ciliate
biomass data (crosses), with only the annual cycle (dotted line), and with an
added population oscillation (solid line). Goodness of fit of the solid line is
χ2 = 0.07, r2 = 0.77, ν = 18.

maximum significance level desired in a statistical test (0.05). Therefore the

analysis gives no confidence that oscillations on scales of less than a year are

occurring. Also the results of optimisation appeared to be sensitive to initial

conditions and produced some different values of T2 when the procedure was

started with values other than T2 = 80 days. Therefore it seems that when

the average time between measurements (around 15 days) is high relative to the

period of oscillation, there may be several local minima relating to oscillations of

different sizes.

In conclusion, considerably more data, and more accurate data, would be re-

quired to demonstrate the existence of population oscillations in Crooked Lake.

Moreover, the balance of requirements between a higher sampling rate and more

accurate data is a point which needs careful consideration.
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Bacteria PNAN HNAN Ciliates DOC
A1 1.36 0.98 0.53 0.014 448.50
φ1 19.39 -14.05 -15.18 48.36 -156.55
A2 1.72 0.23 0.21 0.004 349.49
φ2 17.80 36.56 42.56 19.86 23.78
T2 83.04 80.13 84.43 89.56 87.05
C 5.16 0.81 0.60 0.026 714.86

r2(annual) 0.13 0.72 0.52 0.71 0.31
r2(both) 0.37 0.76 0.60 0.77 0.49

P (annual) 0.688 < 0.001 < 0.001 < 0.001 0.006
P (both) 0.031 < 0.001 0.002 < 0.001 0.010

P (oscillation) 0.112 0.420 0.328 0.193 0.141

Table 7.2: Estimated parameters found when using Equation 7.2 to model the
1992-93 plankton biomass measurements in Crooked Lake, the r2 fit without and
with the superimposed population oscillation, and the P values corresponding to
the annual cycle, both cycles and the oscillation as an ‘improvement’.

7.3 Identifying oscillations in simulated data

A modelling procedure was developed to estimate how much data may be needed

to verify the existence of oscillations in a plankton population. This simulates the

hypothetical situation where the behaviour of the observed system is dominated

by an underlying ‘true model’, with a certain amount of random variation super-

imposed. The question is then focussed on what sample rate may be required to

produce sufficient data for the underlying model to ‘shine through the noise’, and

be adequately identified through parameter estimates.

The procedure considers an arbitrary population P with an underlying sinusoidal

oscillation of amplitude A, period T , phase φ and offset (mean value) C:

Pmodel = A cos

(
2π(t + φ)

T

)
+ C (7.3)

It was not considered necessary to simulate the annual oscillation as in Equa-

tion 7.2. Equation 7.3 was used to create ‘simulated datasets’, using the initial

parameter values shown in Table 7.3. Firstly a value of P for every day of an

arbitrary year (0,1...365) was calculated. The data was generated by defining

an experimental sample rate and taking the value of the model at each discrete

time when samples were made. For example, to represent a sample rate of once

a week, every seventh value was extracted. Random variation was superimposed

to approximate more realistic data.
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Figure 7.3: Simulated data (crosses) created from the underlying model (solid
line) using a sample rate of one sample every 14 days and added random variation
with a standard deviation of σr = 0.2.

Parameter Initial value
A 0.5
T 40
φ 20
C 1

Table 7.3: Initial parameter values used for all simulations involving Equation
7.3.

The first method used to add realistic variation to the simulated datasets was to

add a normally distributed random number to each datapoint, with a mean of

zero and standard deviation σr (Figure 7.3). To do this the randn function in

MatLab was used, such that Psimulated = Pmodel +σr×randn. This represents the

random variability that may be expected in a natural system, and the random

nature of a sample mean versus the true population mean. MatLab code was

used to run the following procedure:

1. Choose a standard deviation σr to try.

2. Choose a ‘time between sample’ value to try (ts, corresponding to sample

frequency fs = 1/ts).
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3. Run the model (Equation 7.3) to get a value of Pmodel for every day of an

arbitrary year.

4. Extract every tsth model value and add random variation (dictated by σr)

to get simulated dataset.

5. Estimate the model parameters for the simulated dataset using Levenberg-

Marquardt optimisation.

6. Repeat steps 3 to 5 many times (Between 100 and 500 repeats were used).

7. Calculate the standard deviations of the parameter values across all the

simulated datasets.

8. Go back to 2 and repeat all for another value of ts.

Given that the period of the underlying oscillation was 40 days, the maximum

value of ts that could be used was 19 (to stay below the Nyquist frequency where

ts = 20). The procedure was run for ts = 1, 2...19, and three different values of

σr (Figure 7.4).

The mean values of all the parameters over the 500 simulated datasets were equal

or very close to the initial values used in generating the datasets, irrespective of

the sampling rate (Table 7.3). The coefficient of variation (standard deviation ex-

pressed as a percentage of the initial parameter value) of each parameter increased

as the time between samples increased (sample frequency decreased), following

approximately exponential curves. It also increased with σr. The amplitude pa-

rameter A had the highest standard deviation across the 500 simulated datasets.

This is connected to the way in which the random variation was added on; A

determines the vertical height of the oscillation, and hence is the parameter that

compensates most for ‘vertical’ changes in the population. The period parameter

T had the lowest standard deviation, because it related to the ‘horizontal’ size of

the oscillation, to which no random variation was added.

In general the standard deviations of parameters were low. Even at the lowest

sample rate of 1/19 day−1 and with σr = 0.3, the highest standard deviation (on

A) was less than 20 %. In this case σr = 0.3 approximately represents the highest

end of sample standard deviation which occurs in plankton sampling, which may

be reduced further by taking more replicates. One may tentatively conclude at

this point that in a system dominated by one strong underlying signal with only

random noise added, sampling frequency can be reduced to just below the Nyquist
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Figure 7.5: Addition of non-random variation to an oscillating model, for creating
simulated data with an underlying oscillatory trend. Normalised temperature
data from Crooked Lake in 2003 was used as an example of a non-random signal.

frequency of an oscillation and still detect such an oscillation to a high degree of

statistical significance.

However the result is rather false, as it assumes that the oscillation is the only

significant signal present in the population dynamics. Random noise can effec-

tively cancel out over several datapoints. In reality some smaller, non-random

but unquantifiable signals may be present, and the analysis may have difficulty

identifying out the underlying signal when it is one of many. For example, the

atmosphere provides many signals that affect the population, and although some

simple relationships can be postulated (e.g. greater light and temperature in-

crease photosynthesis and growth rates), they are poorly quantified (e.g. growth

is limited by other factors such as nutrients).

Atmospheric signals are dominated by the annual cycle, with shorter-scale changes

related to shifting weather patterns. For the investigation in hand, the variations

in air temperature recorded at Davis station were used as an example of the sort

of non-random signal that may be superimposed on population data and obscure

an underlying oscillation. Daily temperature data for 2003 was used. The annual

cycle was removed from the temperature data by subtracting the best fit annual

sine curve (of period 365 days), and the data was normalised. This provided a
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non-random signal Ta with mean zero, which was added to the simulated data

(Figure 7.5):

Psimulated = Pmodel + σr × randn + Ta (7.4)

The exercise was repeated using Equation 7.4 with the same three values of σr

as above (Figure 7.6). The standard deviations on all the parameters increased

at all sampling frequencies, and was again highest for A and φ. The period T

again had a standard deviation of less than 5 %. The plots were considerably less

smooth than in Figure 7.4, implying that the addition of a non-random signal

added more variation in the responses to changing sampling frequency. Increasing

the number of repeats from 500 would show the response more accurately, but

would be more computationally expensive.

In practice there is unlikely be such a consistent underlying oscillation as has been

simulated above. The optimisation procedure has very biased initial conditions,

given by the parameters which generated the data in the first place. There is

also no random variation added in the ‘horizontal’ of the signal, which results in

the low standard deviations on the period parameter. The period of a population

oscillation may be variable as a result of external factors, and may be affected by

atmospheric signals. There is also the issue of success; several factors can hinder

work in the Antarctic such as extreme weather, logistics and lack of ice cover for

travel, so it may not always be feasible to reach the study site on the day planned.

Improvements on the usefulness of such a technique would require the simulation

of more realistic data. This could involve more superimposed non-random signals,

and the addition of stochastic elements to both the day on which sampling can

be made and the period of the underlying population oscillation.

7.4 Summary

A Fourier analysis and ANOVA tests were used to assess the significance of oscilla-

tions in plankton populations in Crooked Lake, using data from 24 sample dates

in 1992-93 on bacteria, heterotrophic nanoflagellates, phototrophic nanoflagel-

lates, ciliates and dissolved organic carbon. Oscillation models were successfully

fitted to the datasets, but the statistical significance was too low to prove the ex-

istence of oscillations of wavelength less than one year. However all the measured
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quantities except bacteria exhibited a significant 365-day oscillation in line with

the annual cycle.

A prototype technique has been developed to assist in the development of sam-

pling strategies when the aim is to identify an underlying model behaviour. For

the specific case of a sine wave model, several datasets were generated from a

model with a given sample rate, with both random and non-random variation

superimposed. On fitting the original model for each dataset, model parameters

were found to have significant values at low sample rates, just greater than the

Nyquist frequency of the underlying oscillation. However the technique has sev-

eral flaws, and generation of truly realistic data for such a purpose would require

a greater quantity of relevant real data from the field, for an assessment of its

statistical characteristics. In addition, models of different systems may have dif-

ferent relative responses to data sample rate and data error. It may be more

worthwhile to rely on the simple philosophy that one should always collect as

much data, and as accurate data, as possible. That said, with a truly plausi-

ble model, especially one that has been verified using data from similar systems,

the procedure could provide a good picture of the accuracy of parameter esti-

mates one may expect. The experimenter could overcompensate where possible

to account for unpredictable natural variability.

For Antarctic plankton, complex population dynamics models have not been ver-

ified due to the lack of data; research into these systems is still at a relatively

early stage and progress is slow due to the logisitics of working in such an envi-

ronment. Hence most studies thus far have been building up a general catalogue

of the organisms present across large areas like the Vestfold Hills, rather than

rigorously analysing any one system. The 1992-93 data in particular highlights

the fact that for population modelling purposes it may be informative to conduct

an intensive study of one aspect of a system as well as spreading time across

several. For example, on a device such as the Crooked Lake probe, the addition

of a fluorimeter to estimate chlorophyll content in the water on high temporal

resolution would give a better indication of whether such models can be applied

to Antarctic microbial systems.

This chapter has highlighted a number of important differences between physical

and biological systems, in particular with regard to long-term climate change pre-

dictions. Physical data is generally better understood and exhibits less complex

natural variability than biological data. In the previous chapters, it was shown

that the responses of ice to changes in temperature are both fast and significant,

and thus the good fit to the 2003 data may be taken as justification that the
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model will be at least approximately applicable in future years. However the

climate is only one of many factors which may affect an individual organism or a

food chain over the course of a year, particularly in a system which is so limited in

terms of light and nutrients. Therefore data from one day in the field cannot be

taken as a generic sample with regard to climate change, and to establish strong

correlations between atmospheric and biological quantities the system would have

to be studied over a far longer time period. For this purpose, the temporal coher-

ence supplied by a sampling strategy similar to that in 1992-93 may be enough to

allow ‘averaging-out’ of any unpredictable shorter scale changes, but may provide

only one accurate datapoint per year.

143



Chapter 8

General discussion

8.1 Overview

This chapter provides a summary of the main findings in this project, the lim-

itations of the work, and how it can be related to similar present and future

work.

8.2 Main findings and achievements

This thesis has described the development, analysis and comparison of data and

models related to an Antarctic freshwater lake ecosystem. It has also provided

a forum for testing and developing some new and emerging model assessment

techniques.

A Levenberg-Marquardt optimisation procedure was developed for MatLab, and

was used successfully throughout the project. Unlike some existing optimisation

software tools, it can be applied to models of any given complexity or linearity,

and allows the user to change certain accuracy settings, so may be of use to

mathematically literate scientists who wish to monitor exactly how their para-

meter search is carried out. In addition, the procedure calculates five common

model selection criteria.

A technique termed ‘model trimming’ has been introduced, which is intended for

assessing the relative importance of input variables in a complex model. It has

proven useful for identifying variables that introduce ‘more noise than signal’ to
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a model, and thus for informing the development of parsimonious models.

A physics-based model of freshwater lake ice has been developed using data from

an automatic probe on Crooked Lake, Antarctica. The large amounts of data

allowed considerable detail to be included, such as variations in ice albedo and

the radiation extinction coefficient, which are often assumed to be constants. All

parameters were kept within constraints concordant with well-established physical

laws and empirical relationships. The model was fitted to ice thickness data, and

an analysis revealed that air and water temperature were the most important

driving input variables.

Several empirical models were also developed by considering simple relation-

ships between input and output variables. On comparing these to the physics-

based model, some model selection criteria ‘chose’ the empirical models while the

ICOMP criteria ‘chose’ the physics-based model. However, the large amount of

data and the more mechanistic nature of the physics-based model were shown

to reduce the usefulness of these techniques. It may be that only models with

completely free adjustable parameters should be meaningfully compared using

model selection criteria.

A danger of accepting parsimonious models was highlighted when running long-

term simulations. A simple empirical model was shown to be unstable in its

response to a long-term temperature signal, whereas the physics-based model

adopted a steady state independent of initial conditions. This is the most acute

example of a failure of model selection criteria - they did not point out the

problems with the simple model, but a long-term model run and mathematical

common sense did.

The physics-based model predicted summer periods of no ice at +5 K above

the 1957-2003 mean temperatures, and no ice at all at +23 K. It also exhibited

small positive responses of ice thickness to increased air temperature signal am-

plitude (representing increased interseasonal variability) and increased ice albedo

(representing increased precipitation).

To complement the physical description of Crooked Lake, an investigation was

made into the potential of biological data from the area to be an effective indicator

of climate change. To gain insight into what sort of changes could be observed in

such a simple system, the common phenomena of predator-prey oscillations was

considered. Some plankton biomass data collected at Crooked Lake in 1992-93

were analysed and shown to exhibit no significant oscillations, suggesting that

more data is required to identify such phenomena. This is in stark contrast to
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the ice modelling situation where vast amounts of data were available, and high-

lights a common difference in temporal resolution between physical and biological

datasets which is generally unavoidable due to the logistics of data collection. For

these reasons a procedure was developed using simulated data to develop sam-

pling strategies which could identify an expected underlying behaviour. However

the technique relies on a strong belief in the model, and given the limitations

and uncertainties on plankton data for the area, no conclusions can be made.

In reality the limiting factors of nutrients, light and temperature may suppress

growth and species interactions, such that any existing dynamics on scales of less

than a year are below the detection limit.

8.3 Limitations

The temperature data collected at Crooked Lake is very specific to one year in

the lake’s history, and will not be collected on a regular basis. For these reasons

the models in Chapters 3 to 6 were developed using meteorological data from

Davis station, which have been measured on a regular basis since 1957, and will

be as long as the station exists. However for most of the analyses the models

were fitted to the ice thickness data from 2003, which although of high temporal

resolution is still only representative of one year. The successful cross-validation

with 1993 and 1999 data improves the generalisability of the physics model, but

does not remove the possiblility that the model could fail to reproduce data from

a less typical year.

Lake ice is difficult to define as either a discrete or continuous system. One

may define a discrete ‘turnover time’ of a year as the longest cycle affecting the

system, but ice thickness is certainly dependent on the value the previous day and

(unless the ice has melted completely in summer) the previous year. The physics

model solves this problem to some extent by including the ice thickness value

in the calculation of ice thickness change, thereby adjusting itself to whatever

new temperature state is imposed. A successful linear relationship between mean

annual air temperature and ice thickness may prove the system is discrete on the

scale of a year, but would require many years of data to verify it.

It has been shown that it is impossible to be entirely ‘mechanistic’ in modelling

such a system. The physics model is only mechanistic in the sense that no equa-

tions were ‘made up from scratch’ - all were reproduced from existing theories

and literature. However many of those concepts arose from empirical studies
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themselves. In addition, the model was ‘tweaked’ to fit the data by adjusting the

parameter kw - it is highly unlikely that a model of a natural system will fit data

without some degree of adjustment. It seems likely that the best possible model

has not been discovered in this thesis, and may have complexity somewhere be-

tween the physics model and the simple models - for example, a model using the

same ice layer solution of the physics model, but with all the heat flux calculations

replaced with a simple equation in one input variable, air temperature.

However, the physics-based model in this thesis provides a good description of the

response of lake ice to meteorological variables, at least at values close to those

in 2003. If adapted the model may provide insight into larger scale responses

of, for example, sea ice or continental ice sheets, but would require far more

information to rule out extreme events; ice sheets may respond to climate change

in a non-linear way, for example there may be thresholds which, once crossed,

lead to unstable behaviour, sudden growth or collapse (Sugden 1991).

Finally, it is difficult to make any judgement on links between the physical and

biological components of the Crooked Lake ecosystem without considerably more

data collection and modelling work. Climate change effects on the water column

can be inferred from lake ice models - lake water temperature will increase in

proportion to air temperature, while radiation levels and wind-induced mixing

will be greater due to reduction in ice cover. There may be little or no response

of the organisms to increased light or temperatures if the main limiting factor is

nutrients, but in a shallow lake, increased mixing may slightly increase nutrient

concentrations by disturbing the lake bed. Whether any resulting change will

be noticeable is difficult to answer - Stonehouse (1991) suggests that despite

their relative simplicity, polar ecosystems are remarkably complex, and the air

temperatures recorded by climatologists often bear only a superficial relationship

to the microclimates experienced by organisms.

8.4 Ongoing and future work

There is considerable potential for current and future work to expand on the work

presented in this thesis. This could involve further analysis of the Crooked Lake

probe data or generalisation of models for use in other situations. For example,

the effects of changing physical properties of ice such as roughness, albedo and

opacity across the year have been mentioned, but could be further investigated in

terms of their significance on larger scales, e.g. sea ice or continental ice sheets.
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Figure 8.1: Effective conductivity kw of water in Crooked Lake in 2003, calculated
by Foster (2005, unpublished) using Equation 8.1. kw was relatively constant with
time up until October 1st (vertical dotted line), suggesting that the growing ice
layer could be modelled using only the conductive fluxes at the ice bottom.

An analysis not reported in this thesis showed that imposing annual sinusoidal

variation in these three physical parameters in place of constant values improved

the goodness of fit to ice thickness data from χ2 = 16, r2 = 0.90, ν = 2005 to

χ2 = 8, r2 = 0.95, ν = 2002 (Reid and Crout 2004).

The ice temperature data recorded by the Crooked Lake probe were acquired

using thermistors separated by 5 cm on a profiling stick reaching from the air

above the ice to the water below. This data has not been thoroughly investigated

in this thesis, but can provide further insights into the physics of the ice layer.

Current work by Foster (2005, unpublished) related to this project uses the data

to calculate temperature gradients close to the ice-water boundary. This allows

the ice layer to be modelled using only the conductive fluxes at the ice bottom:

dHi

dt
=

1

ρiLf

(
ki

dTi

dz
− kw

dTw

dz

)
(8.1)

where kw is an ‘effective conductivity’ of water, i.e. the water is treated like a

solid and sensible heat transfer due to fluid motion is not explicitly modelled.
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This is analogous to Equation 3.61, but is a model in its own right with ice and

water temperatures as the only input variables. Such an approach is consistent

with Figure 4.8, which shows that the majority of melt and growth occurs at the

ice bottom (using the ice temperature data effectively skips a stage in the physics

model, such that surface fluxes need not be considered). On differentiating the

ice thickness data to find dHi

dt
, Equation 8.1 can be solved to give values of kw

across 2003 (Figure 8.1). For the period from May to September (winter), kw was

relatively constant with a mean value of 0.86 W m−1 K−1, which is of the same

magnitude as values given in the literature (around 0.6 W m−1 K−1). This implies

that with a constant value of kw, Equation 8.1 could be an accurate model of the

ice layer for the winter period; indeed using a value of kw = 0.6 the model fitted

the winter ice thickness data with r2 = 0.8. However, from October onwards the

values of kw become erratic, so the increased solar shortwave radiation or sensible

heat from the water may be taking effect and the model loses its usefulness.

In terms of responses to climate change such a model is not useful without finding

a quantitative link between ice temperature and air temperature, as is provided

in the physics-based model in this thesis. However, it highlights an issue that

should be taken into consideration when developing future equipment - a tem-

perature measuring stick such as the one deployed may be all that is required

for monitoring the state of an ice layer. As shown in this thesis, the effects of

other atmospheric variables are considerably less significant than temperature. If

carefully positioned a temperature profiling stick can measure air, ice and water

temperatures, and ice thickness can be estimated by identifying discontinuities

in the temperature profile at the top and bottom ice surfaces. In addition, ther-

mistors are very inexpensive compared to other sensors, so it may be practical

and affordable to have several measurement sites scattered across a lake, with

wireless connection to a datalogger on dry land. This would allow observation of

any existing horizontal variability in the ice.

With unlimited funds, other useful additions to an automatic probe would include

micrometeorological sensors to directly measure sensible and latent heat flux, and

profiles of humidity, temperature and wind speed on a fine scale near the surface,

to build up a detailed picture of atmosphere-surface interactions. A fluorimeter in

the water could provide regular measurements of chlorophyll concentrations and

hence an indication of the primary productivity in the water column, allowing

direct assessment of relationships between the physics and biology of the lake.
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8.5 Final remarks

One of the most important observations in this thesis is that air temperature is

the dominant variable in the dynamics of Antarctic lake ice, and therefore such

ecosystems may be noticeably affected by global warming. Climate change is

one of the greatest scientific and sociological challenges of the 21st century, and

although this thesis has concentrated on a specific effect rather than causes, it is

connected to some related ethical issues.

For example, with current data the only conclusion that can be made about

the biological ecosystem in Crooked Lake is that it will change somehow with

changing climate (whether or not we can identify the change), and that may

be enough reason for concern. Warmer temperatures and less ice cover will be

generally preferential for organisms in the Antarctic to flourish. However this

may not be advantageous for the world as a whole. McKibben (1989) somewhat

dramatically defines climate change as “the end of nature”, or at least the end of

“the thing that has, at least in modern times, defined nature for us - its separation

from human society”. If we are even slightly altering the life cycle of a bacteria

in Antarctica, he may be right.

Working in Antarctica presents its own moral dilemmas. Are the results one

may obtain worth the inevitable human impact of going there and setting up a

research base? It is difficult for a scientist to avoid hypocrisy on this issue, but

the spirit of exploration is an inevitable human trait. In the long term it could

be argued that any direct human impact will be very small compared to climate

change. The aesthetic quality of Antarctica can be cited as another reason why

we shouldn’t alter it, but in the anthropocentric worldview there may be no point

in such beauty if no-one goes there to observe it.

Since the concept of climate change first arose, the most significant question has

been over the amount that can be attributed to human activity. The issue of

identifying significant change in the face of natural variability is highly complex.

Scientists are faced with a dilemma whereby they must present their work with

adequate statistics, which can be easily misinterpreted by policymakers and the

public to under-represent the scale of the problem. The concept of modelling

exemplifies this problem, if (as in this thesis) scientists must always confess that

theirs is only one of several possible explanations. It is rare to find a model that

is so convincing it becomes part of any ‘standard model’. Sir Martin Rees, the

current Astronomer Royal, claims that Newton (arguably one of the scientific

world’s first great ‘modellers’) was lucky to find, in planetary orbits, one of the
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few aspects of nature that is highly predictable (Rees 2001). He therefore warns

against scientific ‘triumphalism’, wherein one may exaggerate how much we can

ever really understand of nature’s intricacies. Modern tools such as model se-

lection criteria are attempts to introduce objective quantities that measure the

limitations of our knowledge, and it could be argued that failure to use proper

model tests is akin to failing to use replicates in scientific fieldwork (Stapleton

2004).

With model testing now focussing on the best choice between several explana-

tions, one may conclude that any hopes of stumbling across a ‘true model’ of

nature have been all but abandoned. George Box’s famous claim that “All mod-

els are wrong, but some are useful” is a good maxim. The idea of being ‘close

enough for all practical purposes’ may at least satisfy some engineers, but if it

seems disheartening to some of the more idealistic scientists among us, it may be

necessary to turn to the wisdom of a poet for inspiration:

All nature is but art, unknown to thee;

All chance, direction, which thou canst not see.

- from “An Essay on Man” (1733-34)

by Alexander Pope
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