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ABSTRACT 

With the increased availability of computers of various sizes, it is becoming more 

common to predict the responses of geotechnical structures using numerical analyses 

which incorporate more realistic models of soil behaviour. The main objective of this 

research is to develop and evaluate a series of unified critical state models. These 

models are then used to solve some typical boundary value problems in geotechnical 

engineering. 

The new models are based on a critical state model called CASM which was formulated 

based on both the state parameter concept and a non associated flow rule. The main 

feature of CASM is that a single set of yield and plastic potential functions is used to 

model the behaviour of clay and sand under both drained and undrained loading 

conditions. 

These models are developed by incorporating a new non-linear elasticity rule, the 

combined hardening concept and the bounding surface plasticity theory. A new non-

linear elasticity rule for clay materials is introduced into CASM, this gives a better 

prediction on the behaviour of soil. The new combined volumetric-deviatoric hardening 

model is named CASM-d and provides a better prediction of the behaviour of lightly 

overconsolidated clays and loose sands. The new bounding surface model is named 

CASM-b and provides a more realistic prediction of soil behaviour inside the state 

boundary surface. The new cyclic bounding surface model is named CASM-c and 

provides a good prediction of soil behaviour under cyclic loading conditions. 

To evaluate their adequacy, CASM and its extensions are implemented into a finite 

element package called CRISP. This program was specifically developed to incorporate 

the critical state type of constitutive models. 

The analyses of a variety of typical geotechnical engineering problems are carried out to 

further check the validity of the new constitutive models. The models prove themselves 

to be very robust and useful tools for solving a wide range of practical geotechnical 

problems under different loading conditions. 
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CHAPTER 1  

INTRODUCTION 

1.1. BACKGROUND AND RESEARCH OBJECTIVES 

When a soil engineer was faced with a design situation involving the prediction of 

movement of soil masses, the traditional approach was to treat it as either a stability or a 

deformation problem and to proceed to seek solutions assuming either rigid plasticity or 

linear elasticity for the soil behaviour. This was due to the fact that the use of more 

realistic soil models would involve very complicated field equations for the stresses and 

deformations. 

However, in the last two decades, due to the availability of large digital computers and 

advances in computational analysis techniques, it has become feasible to perform the 

stress analysis of geotechnical structures involving complex geometries and material 

behaviour. A key element in such an analysis is the development of proper and realistic 

constitutive modelling of the behaviour of soils. 

The classical soil mechanics theory is based on simple elastic-perfectly plastic models. 

The Tresca and Von Mises models are expressed in terms of total stresses and applied to 

the undrained soil behaviour of soils. Using the well known Coulomb failure criterion, 

the Mohr-Coulomb and Drucker-Prager models were developed: these are expressed in 

terms of effective stresses to describe the general behaviour of soils. However, these 

models are restricted in their ability to reproduce real soil behaviour. 



  

The development of critical state constitutive models has provided a major advance in 

the use of plasticity theory in geomechanics. Although the popular Cam-clay models 

prove to be successful in modelling normally consolidated clays, it is well known that 

they cannot predict many important features of the behaviour of sands and 

overconsolidated clays. Modifications to the standard Cam-clay models have been 

proposed over the last three decades, however, one common problem still exists which 

is the ability of any single model to predict the behaviour of both clay and sand 

materials. 

The motivation for a unified description for sands and clays comes not only from the 

qualitative similarity in their macroscopic response, as well as from the recognition that 

there is no clearly defined threshold when a sandy clay switches from behaving like a 

clay to a sand as the particle size distribution changes, but also from the numerical 

advantage of dealing with a single algorithm for problems involving several soil types. 

Furthermore, the standard critical state models all belong to the volumetric hardening 

group of models which means that the hardening parameter is purely a function of the 

volumetric strain, but not the deviatoric strain. However, there is no valid argument to 

support this assumption (Nova and Wood, 1979; Collins and Kelly, 2002; Krenk, 2000). 

Another drawback is that many important features with respect to the cyclic response of 

soil cannot be adequately described by the standard critical state models. The principal 

reason is because the classical concept of a yield surface provides little flexibility in 

describing the change of the plastic modulus with loading direction and implies a purely 

elastic stress range within the yield surface. 

The three main objectives of the research reported in this thesis are: 

1. To incorporate a unified critical state model (CASM) into a finite element 

code. 

2. To extend CASM by incorporating a new non-linear elasticity rule, the 

combined hardening concept and the bounding surface plasticity theory. 

3. To evaluate and apply CASM and its extensions to analyse a variety of 

typical boundary value problems in geotechnical engineering. 
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The unified critical state model CASM (Clay And Sand Model) is derived based on the 

critical state theory and formulated in terms of the state parameter concept (Yu, 1995, 

1998). The main feature of CASM is that a single set of yield and plastic potential 

functions is used to model the behaviour of clay and sand under both drained and 

undrained loading conditions. This strain hardening model requires only seven material 

parameters (two more than the traditional Cam-clay models), all of which have clear 

physical meanings and are relatively simple to determine in routine laboratory or field 

tests. 

To evaluate their adequacy, CASM and its extensions are implemented into a finite 

element package called CRISP. This program was developed at Cambridge University 

and was introduced mainly to incorporate the critical state type of constitutive models. 

The ability of the models to predict the behaviour of clay and sand under both drained 

and undrained loading conditions is demonstrated by comparing of the finite element 

results with the laboratory data. Analyses of a variety of typical geotechnical 

engineering problems are carried out to further check the validity of the new 

constitutive models. 

1.2. STRUCTURE OF PRESENTATION 

Following this introductory chapter, this thesis is divided into eight further distinct 

chapters. The chapters essentially reflect the order in which the research was carried 

out. A brief outline of the contents of each chapter is shown below. 

Chapter 2 reviews the appropriate literature in the field of constitutive modelling of soil. 

This chapter is divided into three parts. The first part describes a brief review of 

constitutive models used to predict soil behaviour. This is followed by a summary of the 

critical state soil mechanics theory. Chapter 2 finishes with a discussion of the methods 

of analysis in geotechnical engineering. A description of the finite element program 

CRISP is also presented in this section. 
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In Chapter 3, the critical state model CASM is thoroughly reviewed. An outline of the 

original work carried out in this thesis is also described in Chapter 3. 

A new non-linear elasticity rule adopted for CASM, which is only applicable to clays, is 

presented in Chapter 4. Succeeding this is a discussion on the incorporation of CASM 

into the finite element code CRISP. This includes formulations of the model in the 

three-dimensional stress space and computer implementation. To conclude the chapter, 

the validation of CASM is presented. 

In Chapter 5, CASM is extended into a new model called CASM-d. This uses the 

combined hardening plasticity concept. After describing the incorporation of CASM-d 

into CRISP, the performance of the new model is investigated and it is finally validated 

with experimental data. 

In Chapter 6, another new model, called CASM-b, is developed from CASM by 

applying the bounding surface plasticity theory. The process of incorporating CASM-b 

into CRISP is illustrated in the second part of Chapter 6. Some simulations of the 

triaxial test using CASM-b concludes this chapter. 

The bounding surface in Chapter 6 is extended further in Chapter 7 to produce CASM-

c. This model can predict the behaviour of soil under cyclic loading conditions. Chapter 

7 also describes how CASM-c is incorporated into CRISP. It ends with the validation of 

CASM-c. 

Chapter 8 deals with the analyses of typical boundary value problems in geotechnical 

engineering. The models detailed in Chapters 3, 4, 6 and 7 are used. This involves the 

analysis of the pressuremeter tests, surface rigid strip and circular footings, horizontal 

strip anchors and unpaved pavements. 

The conclusions drawn from the research project and suggestions for future work are 

outlined in Chapter 9. 

In addition to this, the appendices that contain some data and numerical derivations are 

found at the end of the thesis. 

4 



  

CHAPTER 2  

LITERATURE REVIEW 

2.1. SOIL MODELS IN GEOTECHNICAL ENGINEERING 

2.1.1. Introduction 

Scientific understanding proceeds by way of constructing and analysing models of the 

segments or aspects of reality under study. The purpose of these models is not to give a 

mirror image of reality, but rather to single out and make available for intensive 

investigation those decisive elements. Hence, good models provide the key to 

understanding reality (Wood, 1990). 

The simplest type of model is elastic. The behaviour of an elastic material can be 

described by generalisations of the Hooke's law: 'there is an one-to-one relationship 

between stress and strain'. However, for many materials the overall stress-strain 

response cannot be condensed into such a unique relationship because many states of 

strain can correspond to one state of stress and vice versa. Hence, it is necessary to have 

more sophisticated models to be able to predict real soil behaviour. This has lead to the 

introduction of elastic-perfectly plastic models (e.g. Tresca and Mohr-Coulomb models) 

and then to elastic-plastic critical state models (e.g. Cam-clay models). 

There are three basic sets of equations that most of the numerical techniques must 

satisfy for the solution of load deformation problems of soil masses. They are: 
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� Equilibrium equations: all the forces (body, surface, inertia and stress) 

must be in equilibrium 

� Compatibility equations: relations between strains and displacements 

� Constitutive equations: stress-strain relations of materials 

The first two sets of equations (i.e. Equilibrium and Compatibility) are independent of 

the material. It is the Constitutive equations that express the influence of material on the 

behaviour of the soil. 

There are two trends on the philosophy of constitutive modelling. The first employs 

very simple models with relatively few parameters (often with physical meaning), each 

for a specific application and for specific types of soils such as rocks, sands, normally 

and lightly overconsolidated clays and heavily overconsolidated clays. The second tends 

to use all-embracing models with a relatively large number of parameters (some may 

have no physical meaning). It is the user's task to choose the type of model that is 

suitable for the problem at hand. 

This section presents a brief review of the constitutive models commonly used in 

geotechnical engineering. Based on the fundamental theories, all the models can be 

classified into the following groups: 

� Elastic models 

� Elastic-plastic models 

� Elastic-viscoplastic models 

2.1.2. Elastic models 

These are the simplest of all and yet are still used very widely for traditional 

geotechnical engineering calculations. 

The behaviour of an elastic material can be described by generalisations of the Hooke's 

law: the stresses are uniquely determined by the strains. Elastic constitutive models can 

take many forms: some assume the soil to be isotropic, others assume that it is 

anisotropic, some assume the soil to be linear, others that it is non-linear with 
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parameters dependent on the stress and/or strain level. One essential feature shared by 

all of these models is that all the deformations are recoverable once the load is removed. 

The elastic moduli (Young's modulus E and Poisson's ratio µ) can be either linear or 

non-linear functions of the stresses. For soils, it is more fundamental to use a different 

pair of elastic constants: bulk modulus K and shear modulus G which divide the elastic 

deformation into a volumetric part and a distortional part respectively. The constitutive 

equation which relates increments of stress to increments of strain for elastic models 

takes the following form: 

∆σ = D∆ε      (2.1) 

where: 

 ∆σ = zxyzxyzyx τττσσσ ∆∆∆∆∆∆  

 ∆ε = zxyzxyzyx γγγεεε ∆∆∆∆∆∆  

 D is the elastic stress constitutive matrix 

D is a function of the elastic moduli. For example, in the case of linear isotropic 

elasticity, D can be expressed as the following: 
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In the case of fully anisotropic elasticity, the matrix D will become fully populated with 

36 parameters. However, thermodynamic strain considerations (Love, 1927) imply that 

the matrix D is symmetrical, the total number of independent anisotropic parameters 

therefore reduces to 21. 
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In non-linear elasticity, it is often assumed that the material parameters depend on the 

stress and/or strain level. Most of the non-linear elastic models that are currently in use 

assume isotropic behaviour. 

Even though elastic models are very simple and easy to use, they do not accurately 

predict the behaviour of real soils. Another problem which was pointed out by 

Sathialingam (1991) is that the elastic formulations are not conservative since energy 

may, under certain circumstances, be continuously extracted from the soil sample by 

subjecting it to a simple stress cycle. 

2.1.3. Elastic-plastic models 

In these models, soil behaviour is characterised by the existence of reversible and 

irreversible deformations called elastic and plastic deformations respectively. It is 

observed that for soils there exists a yield surface where the response of the soil changes 

from stiff to less stiff. For stress changes inside a chosen yield surface, the response is 

elastic. As soon as a stress change engages the yield surface, a combination of elastic 

and plastic responses occurs. These models, however, do not include the effects of time. 

There are four basic requirements for an elastic-plastic model to be fully characterised, 

these are: 

� Elastic properties 

� Yield surface 

� Plastic potential 

� Hardening rule 

Each of the requirements listed will be described briefly below: 

Elastic properties: 

The way in which elastic, recoverable deformations of the soil are to be 

described. 
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Yield surface: 

F(σ,k) = 0     (2.2) 

 The boundary in a general stress space of a region within which it is reasonable 

to describe the deformations as elastic and recoverable. This function separates 

purely elastic from elastic-plastic behaviour. 

The yield surface is a function of the stress state σ and state parameter k which 

controls its size. k is also called the hardening/softening parameter. For perfect 

plasticity k is constant. Hence, the yield surface is of a constant size. For 

hardening or softening plasticity, k varies with plastic straining to represent how 

the magnitude of the stress state at yield changes. 

If the hardening or softening is related to the magnitude of the plastic strains, the 

model is known as strain hardening/softening. Alternatively, if it is related to 

the magnitude of plastic work, the model is known as work hardening/softening. 

The value of the yield function F is used to identify the material behaviour. 

Purely elastic behaviour occurs if F(σ,k)<0, and elastic-plastic behaviour occurs 

if F(σ,k)=0. F(σ,k)>0 signifies an impossible situation. 

Plastic potential: 

G(σ,β) = 0     (2.3) 

 The mode of plastic deformation that occurs when the soil is yielding. A plastic 

potential is needed to specify the relative magnitudes of various components of 

plastic deformation. The plastic potentials also form a family of curves in the 

stress space like the yield surface. 

The plastic potential is a function of stress state σ and β which is a vector of 

state parameters. This vector is immaterial and depends on the stress state. 

The plastic potential provides an indication of the relative sizes of the strain 

components. The plastic incremental strain vector at a particular stress state will 
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be normal to the plastic potential surface passing through that point of stress 

state. 

In some cases, for simplicity it is assumed that the plastic potential surface and 

the yield surface are identical, then the material is said to obey the postulate of 

normality or follow a law of associated flow (i.e. the nature of plastic 

deformation, or flow, is associated with the yield surface of the material). If the 

plastic potential surface is different from the yield surface, then the material is 

said to follow a non-associated flow rule. 

Hardening rule: 

 A hardening rule describes the way in which the absolute magnitude of the 

plastic deformation is linked with the changing size of the yield surface. This 

rule prescribes how the state parameter k varies with plastic straining. This 

together with the plastic potential gives the magnitudes of the plastic 

deformations. 

In some models, there are also other requirements needed, such as a requirement about 

the condition under which failure occurs, namely a condition beyond which the stress 

state cannot pass. 

In general, there are two types of elastic-plastic models which will be mentioned in the 

following sections: 

� Elastic-perfectly plastic models 

� Elastic-plastic models 

2.1.3.1.  Elastic-perfectly plastic models 

Examples of models in this category are: Tresca, Von Mises, Mohr-Coulomb and 

Drucker-Prager models. 

Elastic-perfect plasticity or Rigid plasticity implies that the yield surface is fixed in the 

stress space. There is no expansion or contraction of the yield surface; hence the yield 

function only depends upon the stresses and the hardening parameter is a constant. 
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2.1.3.2.  Elastic-plastic models 

They are models in which soil behaviour is characterised by the existence of reversible 

(or elastic) and irreversible (or plastic) deformations. The mathematical theory of 

elastic-plasticity is well established and has been the foundation for the development of 

soil models. Various permutations and combinations of the yield functions, plastic 

potentials and hardening rules give rise to different models. 

One of the major developments of constitutive models in the last 30 years is the 

introduction of models based on the critical state soil mechanics theory. This was 

started by Roscoe and his co-workers at the University of Cambridge in the late 50's 

(Roscoe, Schofield and Wroth, 1958, 1959; Poorooshasb and Roscoe, 1961; Roscoe and 

Poorooshasb, 1963; Roscoe, Schofield and Thurairajah, 1963; Roscoe and Schofield, 

1963; Schofield and Wroth, 1968; Roscoe and Burland, 1968). A full review on critical 

state soil mechanics is presented in section 2.2. 

Other examples of elastic-plastic models are those by Pender (1978), Prevost (1978) and 

Mroz and Pietruszczak (1983). 

2.1.4. Elastic-viscoplastic models 

Elastic-viscoplastic models are the most realistic and logical models for soil mechanics 

problems because time effects on soil behaviour are taken into account rather than those 

due to consolidation. However, the penalty for this is that the models are much more 

complicated and when implemented through computer programs, they are very costly in 

terms of both time and computer memory. 

Most of the elastic-viscoplastic models in the literature could be classified to the 

following three criteria (Kutter and Sathialingam, 1992): 

� The elastic response of the material is either: 

Rate dependent 

Rate independent 
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� Time is incorporated into the constitutive relations either: 

Explicitly 

Indirectly through evolution of internal variables 

� Plastic strains either: 

Occur at all states 

Are zeros in a so-called 'static' region of stress space 

Various models of this type have been developed. Some of them will be listed here: 

Adachi and Okano (1974); Adachi and Oka (1982); Dafalias (1982); Zienkiewick et. al. 

(1975) and Zienkiewick and Humpheson (1977); Nova (1982); Sekiguchi (1984); 

Katona and Mulert (1984); Katona (1984); Sathialingam (1991). 

2.1.5. Other modern approaches 

Apart from the traditional elastic-plastic theory introduced above, there are two other 

approaches which are worth mentioning here. They are the theories of hyperplasticity 

and hypoplasticity. 

Hyperplasticity is an approach to plasticity based on thermomechanical principles and 

was originally suggested by Ziegler (1977, 1983) and later advocated by Houlsby 

(1981), Collins and Houlsby (1997), Houlsby and Purzin (2000) and Purzin and 

Houlsby (2001). The advantage of this approach is that it allows a compact 

development of plasticity theories which are guaranteed to obey thermodynamics 

principles. An important feature of this framework is that it has close links to 

conventional plasticity. Within hyperplasticity, the constitutive behaviour of a 

dissipative material can be completely defined by two potential functions. The first 

function is either the Gibbs free energy or the Helmholtz free energy. The second 

potential is the dissipation function. The interpretation of this framework in terms of 

conventional plasticity theory demonstrates that the classical yield surface, flow and 

hardening rules are all hidden within these two scalar potential functions. 

Hypoplasticity constitutive models, as described by Wu and Kolymbas (1990), 

Kolymbas (1991) and Kolymbas and Wu (1993), originate from a formalism alternative 

to elastoplasticity. Hypoplasticity is a new approach to constitutive modelling of 
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granular media in terms of rational continuum mechanics. It aims to describe the 

inelastic phenomena of granular materials (like cohensionless soils) without using the 

additional notions introduced by elastoplasticity (such as yield surface, plastic potential 

etc.). Hypoplasticity recognises that inelastic deformations may occur from the very 

beginning of the loading process. It does not a priori distinguish between elastic and 

plastic deformations. The outstanding feature of hypoplasticity is its simplicity: not only 

does it avoid the aforementioned additional notions but it also uses a unique equation 

which holds equally for loading and unloading. The distinction between loading and 

unloading is automatically accomplished by the equation itself. 

2.2. CRITICAL STATE THEORY 

2.2.1. Introduction 

The theory of soil behaviour known as 'critical state soil mechanics' was developed from 

the application of the theory of plasticity to soil mechanics. The first critical state 

models were the series of Cam-clay formulations developed at the University of 

Cambridge by Roscoe and his co-workers. The formulation of the original Cam-clay 

model as an elastic-plastic constitutive law was presented by Roscoe and Schofield 

(1963) and Schofield and Wroth (1968). Afterwards, Roscoe and Burland (1968) 

proposed the modified Cam-clay model. 

The theory of critical state soil mechanics has been used widely since then and has 

resulted in the development of many models. The purpose of all of these models is to 

achieve a better agreement between predicted and observed soil behaviour. In this 

section, a brief description of the critical state soil mechanics theory is presented. 

2.2.2. The critical state concept 

Most of the formulations in critical state models have been carried out in the 

conventional triaxial stress space in order to confine attention to the conventional 
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laboratory consolidation and triaxial test conditions. This would also enable a 

preliminary verification of the models. After the verification and validation processes, 

the models are generalised to the three-dimensional stress space. 

The state of a soil sample in the triaxial stress space is fully described by three 

parameters, namely p', q and ν defined as: 

  up rara −
+

=
+

=
3
2

3
'2'' σσσσ  : mean normal effective stress 

  raraq σσσσ −=−= ''   : deviatoric stress 

ν : specific volume, i.e. the volume of soil containing unit volume of 

solid material, ν=1+e 

where  

   σ'a: vertical (axial) effective stress 

   σa: vertical (axial) total stress 

   σ'r: radial effective stress 

   σr: radial total stress 

e: voids ratio 

u: pore water pressure 

These three parameters (p', q and ν) will vary during a triaxial test. The progress of a 

soil sample during a test can be represented by a series of points describing a path in a 

three-dimensional space with axes p', q and ν. Different types of test (drained, 

undrained, compression or extension) will lead to different test paths in this (p',q,ν) 

space. Critical state soil mechanics gives us the set of rules for calculating test paths in 

the (p',q,ν) space: usually two parameters are determined by the type of test and there is 

a simple procedure for determining the third. 

There are also parameters which are soil constants. For example in the cases of original 

Cam-clay and modified Cam-clay, there are five constant parameters, namely M, Γ, κ, λ 

and µ (or G) (where M is the slope of the critical state line in the (p',q) space; Γ, κ, and λ 

are defined in Figure 2.1b; µ is the Poisson's ratio and G is the shear modulus). In other 
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models, there may be more. These constant parameters describe the fundamental 

properties of a particular soil with a given mineralogy. 

Corresponding to the stress parameters p' and q are the strain parameters εp (volumetric 

strain) and εq (deviatoric strain): 

rap εεε 2+=       (2.4) 

( raq εεε −=
3
2 )     (2.5) 

where 

   εa: vertical (axial) strain 

   εr: radial strain 

εp and εq describe the strains from the start of the test. Strain increments are denoted δεp 

and δεq: 

rap δεδεδε 2+=      (2.6) 

( raq δεδεδε −=
3
2 )      (2.7) 

The reason the factor '2/3' appears in the definition of shear strain εq is so that the work 

done by a small increment of straining is equal to both σ'aδεa+2σ'rδεr and p'δεp+qδεp. 

Thus the stress strain parameters correspond to one another in that multiplication leads 

to the correct evaluation of work done in deformation. 

If a soil sample is allowed to change its volume during a shearing test, it will either 

dilate or contract depending on its initial state of density (i.e. initial values of p', q and 

ν). The volumetric yielding process will continue until the soil sample reaches a critical 

void ratio (or specific volume), after which the volume of the soil will remain constant 

during subsequent deformations. This constant volume state is known to as the Critical 

State. Hence, at critical state we have: 
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A soil deforming with a void ratio lower than the critical value at a given stress level 

tends to increase its volume, whereas a soil at a void ratio higher than the critical state 

tends to decrease its volume. 

Critical states for a given soil form a unique line in the (p',q,v) space which is referred to 

as the critical state line (CSL) and has the following equations: 

q = Mp'      (2.8) 

ν = Γ – λlnp'      (2.9) 

where Μ, Γ, and λ are soil constants. 

For isotropic stress conditions (i.e. q=0), the plastic compression of a normally 

consolidated soil can be represented by a unique line called the isotropic normal 

compression line (NCL) or reference consolidation line. This can be expressed as: 

'ln pNv λ−=      (2.10) 

where N is the specific volume when p'=1kPa or 1MPa, depending on the chosen units. 

If the soil is unloaded and reloaded, the path in (v,lnp') is quasi-elastic (i.e. hysteretic), 

as shown in Figure 2.1a. However, the behaviour is idealised as perfectly elastic (as 

shown in Figure 2.1b) so that equation of a typical unload-reload line is: 

'ln pvv κκ −=      (2.11) 

where κ is soil constant and vκ is dependent on the stress history of the soil. For this 

reason, unload-reload lines are known as 'κ-lines' and are used in critical state soil 

models such as Cam-clay. 
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Figure 2.1. (a) True unload-reload behaviour and (b) idealised unload-reload behaviour 

of Speswhite kaolin in the (v,lnp') space (Al-Tabbaa, 1987) 

2.2.3. The original Cam-clay model 

The Cam-clay models (original and modified) are essentially based on the following 

assumptions: 

� For convenience, it is assumed that changes in size of the current yield 

surface are related to changes in volume. This permits the compression 

and shearing of clays to be simply brought into a single picture and leads 

to a class of what can be called volumetric hardening models. 

� All the assumptions stated in section 2.1.3 for an elastic-plastic model 

are retained in the original and modified Cam-clay models. 

The original Cam-clay model was developed by Roscoe and Schofield (1963). It is 

assumed that recoverable changes in volume accompany any changes in the mean 

effective stresses p' according to the expression: 
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'
'

vp
pe

p
δκδε =       (2.12) 

This implies a linear relationship between specific volume and the logarithm of mean 

effective stress p' for elastic unloading-reloading. Therefore, the bulk modulus is: 

κδε
δ '' vppK e

p

==      (2.13) 

Recoverable changes in shear strain are given by: 

G
qe

q 3
δδε =       (2.14) 

and G is either assumed to be constant (so µ varies) or determined from K and a 

constant effective Poisson's ratio (µ). 

The original Cam-clay yield surface is derived from the work equation as follows: 

p
q

p
q

p
p Mpqp δεδεδε '' =+     (2.15) 

In equation 2.15, the terms in the left hand side are the energy available for dissipation 

and the terms in the right side follow Taylor's (1948) analysis of the shear box which 

assumes that this dissipated energy is entirely due to friction. Since the direction of the 

strain increment vector ( )p
q

p
p δεδε ,  is assumed to be normal to the yield locus (i.e. the 

yield locus and plastic potential coincide) then: 

'p
q

p
q

p
p

δ
δ

δε
δε

−=       (2.16) 

The corresponding plastic potential in the (q,p') space is given as the following 

expression: 

'
'ln

' p
pM

p
q o==η      (2.17) 
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where p'o is the preconsolidation pressure which is the value of p' when η=0. The curve 

is plotted in Figure 2.2. 

CSL 

 p' 

q 

 p'o  

Figure 2.2. The original Cam-clay model yield surface 

In original Cam-clay, it is assumed that the plastic flow obeys the principle of normality 

or has an associated flow rule: that is the plastic potential and the yield surface coincide. 

This is convenient when implementing the model in finite element calculations because 

the constitutive matrix (Dep) is symmetric if the plastic potential (G) is equal to the yield 

surface (F). The yield surface is therefore: 

'
'ln'

p
pMpq o=      (2.18) 

The yield surface is assumed to expand with a constant shape, and the size of the yield 

surface is assumed to be related to the changes in volume only, according to the 

following equation: 

( )
o

op
p p

p
v '

'δκλδε −
=      (2.19) 

The plastic stress-strain relationship for elastic-plastic models is defined as: 
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After substituting the expressions for the yield and plastic potential surfaces into 

equation 2.20, the elastic and plastic stress-strain responses for the original Cam-clay 

model can be summarised in matrix form as: 
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2.2.4.  The modified Cam-clay model 

The modified Cam-clay model was developed by Roscoe and Burland (1968) as a 

modification of the original Cam-clay model. This model successfully reproduces the 

major deformation characteristics of soft clay and is more widely used for numerical 

predictions than the original Cam-clay model. It has been used effectively in several 

applications, a summary of these applications can be found in Wroth and Houlsby 

(1985). 

One of the main improvements of the modified Cam-clay model from the original Cam-

clay model is the prediction of the coefficient of the earth pressure at rest (Ko,nc) for one-

dimensional normal compression. For one-dimensional normal compression, original 

Cam-clay predicts a zero value for ηo,nc, so it cannot distinguish between isotropic and 

one-dimensional normal compression. Furthermore, the discontinuity of the original 

Cam-clay yield surface at q=0 causes difficulties because the associated flow rule will 

predict an infinite number of possible strain increment vectors for isotropic 
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compression. This causes difficulty in finite element formulation. The modified Cam-

clay model overcomes these problems by adopting an elliptical-shaped yield surface 

(shown in Figure 2.3) which has the following expression: 

( )222 ''' pppMq o −=     (2.23) 

or  22

2

'
'

η+
=

M
M

p
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     (2.24) 
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Figure 2.3. The modified Cam-clay model yield surface 

When the stress states are within the current yield surface, the elastic properties of 

modified Cam-clay are the same as those in the original Cam-clay model (see section 

2.2.3). 

Because of the assumption that the soil obeys the normality condition, the plastic 

potential (G) is the same as the yield surface (F): 

( )[ ] 0'''22 =−−== pppMqFG o    (2.25) 

The flow rule for modified Cam-clay is then calculated by application of the normality 

condition: 
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The yield surface is assumed to expand with a constant shape and its size is controlled 

by the preconsolidation pressure (p'o). The hardening relationship for modified Cam-

clay is the same as that for original Cam-clay: 

( )
o

op
p p

p
v '

'δκλδε −
=      (2.27) 

The elastic and plastic stress-strain responses can be written in matrix form as: 
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2.2.5. Shortcomings of the original and modified Cam-clay models 

The original and modified Cam-clay models are known to be able to predict the 

behaviour of normally and lightly overconsolidated clay reasonably well. However, 

there are several shortcomings which will be discussed briefly in this section. 

1. The original Cam-clay model cannot distinguish between isotropic and one-

dimensional compression (Bolton, 1991). Furthermore, the discontinuity of the 

original Cam-clay yield surface at q=0 causes difficulties because the associated 

flow rule will predict an infinite number of possible strain increment vectors for 

isotropic compression. This causes difficulty in the finite element formulation. 

However, this problem is eliminated with the modified Cam-clay model. 

2. The original and modified Cam-clay models were developed based on the 

assumption that soils are isotropic. It is well known that natural soils are 

anisotropic due to the mode of deposition. Many soils have been deposited over 

areas of large lateral extent and the deformations they have experienced during 

and after deposition have been essentially one-dimensional. 
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3. The original and modified Cam-clay models do not take into account the time 

effect on soil deformation known as creep. 

4. The original and modified Cam-clay models overestimate the failure stresses on 

the 'dry' side (i.e. states to the left of the critical state line). These models predict 

a peak strength in undrained heavily overconsolidated clay which is not usually 

observed in experiments. This is due to the yield surfaces adopted in these 

models. 

5. Another main problem with the original and modified Cam-clay models is their 

poor prediction of shear strains within the yield surface (Wroth and Houlsby, 

1985). This is because either the shear modulus or the Poisson's ratio is assumed 

to be constant. 

6. The original and modified Cam-clay models cannot successfully model the 

behaviour of sand. The main problems lie in the fact that sand does not closely 

obey the principle of normality, and experimental data shows that the critical 

state point does not lie at the top of the yield locus but lies to the left of the peak. 

This implies that undrained tests on normally consolidated sands can exhibit a 

peak value of q before the critical state is approached which cannot be predicted 

by these models. 

7. The modelling of soils under cyclic loading is another deficiency in these 

elastic-plastic models. The essential features of the Cam-clay models are that on 

primary loading large plastic strains occur but on subsequent unload-reload 

cycles within the yield surface only purely elastic strains are produced. This is 

not suitable for modelling the behaviour of soil under cyclic loading because in 

reality, all unload-reload cycles result in the gradual accumulation of permanent 

strain and/or pore pressure and hysteretic behaviour occurs. 

2.2.6. Other critical state models 

In order to achieve better agreement between the predicted and observed soil behaviour, 

a large number of modifications have been proposed to the standard Cam-clay models. 

A brief review on some of the most important modifications may be found in Gens and 

Potts (1988). Zienkiewicz and Naylor (1973) proposed a yield surface for heavily 

overconsolidated clays. Nova and Wood (1978) and Pastor et. al. (1985) developed 
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critical state models for sands. Ohta and Wroth (1976) and Whittle (1993) have models 

for one-dimensionally consolidated soils with an anisotropic yield surface. Three-

dimensional critical state models were proposed in Roscoe and Burland (1968) as well 

as in Zienkiewicz and Pande (1977). 

2.2.7. Kinematic hardening critical state models 

The development of critical state soil mechanics was a major advance in the use of 

plasticity theory in geomechanics. Still, however, some very important aspects of soil 

behaviour, mainly in relation to the cyclic response, cannot be adequately described. 

The principal reason is that the classical concept of a yield surface provides little 

flexibility in describing the change of the plastic modulus with loading direction and 

implies a purely elastic stress range within the yield surface. Therefore, the need for 

new concepts in plasticity theory became a necessity. 

There have been two major developments in this field over the last 35 years, namely the 

concept of multi surface, kinematic hardening plasticity theory introduced by Mroz 

(1967) and Iwan (1967) and the bounding surface plasticity theory introduced by 

Dafalias and Popov (1975) and Dafalias (1975). 

In isotropic hardening models such as Cam-clays, the yield surface expands with the 

plastic deformation so that the size of the elastic region becomes very large. However, 

experimental observations show that truly recoverable elastic behaviour occurs only for 

a very small range of strain, typically 0.001% (Jardin et al., 1984), and high stiffness 

only occurs immediately after a major change in the direction of an effective stress or 

strain path. 

Kinematic hardening models allow this response to be reproduced by including a small 

inner true yield surface which bounds a small truly elastic region. This inner yield 

surface is carried around by the current stress state following a translation rule. 

Moreover, a kinematic hardening model together with the bounding surface model 

described below are the two types of models that are capable of producing some of the 

essential features of soil experiencing cyclic loading. 
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The concept of kinematic hardening or multi surface plasticity was first introduced by 

both Mroz (1967) and Iwan (1967). Mroz uses a single yield surface together with a set 

of hypersurfaces to define the variation of the plastic modulus whereas Iwan uses a set 

of yield surfaces. Essentially their models serve the same purposes. 

This theory was originally applied to metal plasticity and subsequently to soils by 

Prevost (1978) and Mroz, Norris and Zienkiewicz (1978, 1979). More recently, some 

similar soil models have been formulated by Al Tabbaa (1987) (with two surfaces called 

'Bubble' model) and Stallebrass (1990) and Stallebrass and Taylor (1997) (with three 

surfaces called 3SKH model, see Figure 2.4). McDowell and Hau (2003) extended 

Stallebrass and Taylor's work by introducing a new plastic potential to get better 

predictions of the Ko,nc value and shear strain. 

 p' 
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 pc' 

 

History surface Yield surface 
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q
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Figure 2.4. Sketch of the 3-SKH model in the triaxial stress space (Stallebrass, 1990) 
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2.2.8. Bounding surface critical state models 

Since the time of its introduction, the concept of the bounding surface in the stress space 

has been used by many authors in a variety of plasticity constitutive models (e.g. 

Dafalias and Herrmann, 1980; Aboim and Roth, 1982; McVay and Taesiri, 1985; 

Bardet, 1986). The salient features of a bounding surface formulation are that plastic 

deformation may occur for stress states within the yield surface and it is possible to 

have a very flexible variation in the plastic modulus during a loading path. 

The theory can be succinctly summarised as follows: for any given stress state within or 

on the bounding surface, a proper mapping rule associates a corresponding 'image' stress 

point on the surface: a measure of the distance between the actual and image stress 

points is used to specify the plastic modulus at the actual stress state in terms of a 

bounding plastic modulus at the 'image' stress state (Dafalias and Herrmann, 1987a and 

1987b). In other words, the bounding surface plasticity theory assumes that plastic 

deformation is allowed within the state boundary surface. The sketch of a typical 

bounding surface model in the triaxial stress space is shown in Figure 2.5. 

 p' 

 q 

 p'o  p'oj  p'j  p' 

 qj 

 q 

 Bounding surface 
 Loading surface 

 

Figure 2.5. Sketch of a typical bounding surface model in the triaxial stress space 
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2.3. METHODS OF ANALYSIS IN GEOTECHNICAL ENGINEERING 

2.3.1. Introduction 

Three common methods of analysis in geotechnical engineering are presented in this 

section. The most widely used numerical method is described, namely the finite element 

method. Finally, the finite element program CRISP is introduced. 

2.3.2. Methods of analysis in geotechnical engineering 

As pointed out in the previous sections, fundamental considerations assert that for an 

exact theoretical solution the requirements of equilibrium, compatibility and 

constitutive relations together with the boundary conditions must all be satisfied. 

Current methods of analysis in geotechnical engineering categories (according to Potts 

and Zdravkovic, 1999) can be grouped into the following types of analysis:  

� Closed form analysis 

� Simple analysis 

� Numerical analysis 

2.3.2.1.  Closed form analysis 

If for a particular geotechnical structure, it is possible to establish a realistic constitutive 

model for material behaviour, identify the boundary conditions and combine these with 

the equations of equilibrium and compatibility, an exact theoretical solution can be 

obtained. This solution is called a closed form solution. The solution is only exact for 

the idealised problem but it is still approximate for the real problem because 

assumptions have been made in idealising the real physical problem into an equivalent 

mathematical form. 

A closed form solution is the ultimate method of analysis. In this approach, all solution 

requirements are satisfied and the theories of mathematics are used to obtain complete 

analytical expressions defining the full behaviour of the problem. However, as soil is a 
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very complex material which behaves non-linearly when loaded, complete analytical 

solutions are often impossible in real problems. In fact, solutions can only be obtained 

for two very simple classes of problems: 

� Firstly, there are solutions in which the soil is assumed to behave in an 

isotropic linear elastic manner. While these can be useful for providing a 

first estimate of the results, they are of little use for investigating 

stability. Comparison with observed behaviour indicates poor agreement. 

� Secondly, there are solutions for problems which contain sufficient 

geometric symmetries so that the problem reduces to being essentially 

one-dimensional in the sense that one variable is of interest and is a 

function of only one co-ordinate. Expansion of spherical and infinitely 

long cylindrical cavities in an infinite elastic-plastic continuum are 

examples. 

2.3.2.2.  Simple analysis 

In order to get solutions for the more realistic problems, approximations must be 

introduced. One way of doing this is to relax some of the constraints imposed on the 

basic solution requirements. However, mathematics is still used to obtain an 

approximate analytical solution. 

Limit Equilibrium, Stress Field and Limit Analysis (upper bound (or unsafe) and lower 

bound (or safe) methods) fall into the category of simple methods. All methods 

essentially assume the soil is at failure but differ in the manner in which they arrive at a 

solution. 

None of the simple methods satisfy all the basic requirements and therefore do not 

necessarily produce an exact theoretical solution. When applied to geotechnical 

problems, they do not distinguish between different methods of construction, nor 

account for the in-situ stress conditions. The information provided from simple methods 

is on local stability only and separate calculations are required to investigate the overall 

stability. However, because of their simplicity and ease of use, simple methods form the 

main stay of most design approaches and it is likely that they will always play an 
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important role in the design of geotechnical structures. In particular, they are 

appropriate at the early stages of the design process to obtain first estimate of both the 

stability and structural forces. 

2.3.2.3.  Numerical analysis 

Another way to obtain more realistic solutions for geotechnical engineering problems is 

to introduce numerical approximations. In this approach, all requirements of a 

theoretical solution are considered but may only be satisfied in an approximate manner. 

Because of the complexities involved and the non-linearlities in soil behaviour, all 

methods are numerical in nature. 

Their ability to accurately reflect real behaviour of the soil and structure essentially 

depends on: 

� The ability of the constitutive model to represent real soil behaviour 

� The correctness of the boundary conditions imposed 

The most commonly used technique in geotechnical problems is the Finite Element 

Method. This method essentially involves a computer simulation of the history of the 

boundary value problem from the beginning, through construction and in the long term. 

According to Desai (1979), formulation and application of the finite element method are 

considered to consist of the following eight basic steps: 

(i) Discretise and Select Element Configuration 

(ii) Select Approximation Models or Functions 

(iii) Define Strain - Displacement and Stress-Strain (Constitutive) Relations 

(iv) Derive Element Equations 

(v) Assemble Element Equations to Obtain Global Equations and Introduce 

Boundary Conditions 

(vi) Solve for the Primary Unknowns 

(vii) Solve for Derived or Secondary Quantities 

(viii) Interpret the Results 
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2.3.3. SAGE CRISP 

CRISP (CRItical State soil mechanics Program) is a geotechnical finite element 

program incorporating the critical state soil mechanics theory (Britto and Gunn, 1987). 

It was developed by research workers at Cambridge University Engineering Department 

from 1975 onwards and was first released publicly in 1982. SAGE Engineering Ltd has 

added a Microsoft Windows graphical user interface and technical enhancements to the 

latest version to create SAGE CRISP. 

SAGE CRISP operates in either two-dimensional plane strain or axis-symmetry. The 

effective stress principal is an integral part of the finite element analysis engine. Thus, 

SAGE CRISP can perform drained, undrained and fully coupled (Biot) consolidation 

analyses. 

The adequacy of a finite element solution is largely dependent upon the constitutive 

models used. SAGE CRISP incorporates over twenty soil models and three structural 

models. These models have been developed over the course of the past 20 years, during 

which time they have achieved widespread recognition and respect. The soil models 

include linear elastic, elastic-perfectly plastic and critical state soil models. 

The accuracy of a finite element solution is directly related to the type of finite element 

used. SAGE CRISP provides sufficient element types to give accurate solutions to most 

geotechnical problems. One, two and three-dimensional elements are available along 

with an interface element for soil structure interaction analysis. New element types can 

also be added into SAGE CRISP with relatively little effort. 

The small-displacement, small-strain approach is used throughout SAGE CRISP to 

avoid the extra complexity of using the strain and stress tensors which are appropriate to 

large deformations and strains. The program does however, contain the option of 

updating the co-ordinates of nodal points as the analysis proceeds. This is equivalent to 

a first approximation to an updated Lagrangian formulation. Large-strain approach can 

also be used in SAGE CRISP but this solution scheme has yet to be verified. 

SAGE CRISP has three solution schemes to analyse non-linear problems. In the 

incremental or Tangent Stiffness Technique, the user divides the total load acting into a 
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number of small increments and the program applies each of these incremental loads in 

turn. During each increment, the stiffness properties appropriate for the current stress 

levels are used in the calculations. This approach is very easy to implement and is 

numerically stable (compared to other approaches). However, it needs a large number of 

increments to obtain accurate results for complicated problems. The Modified Newton 

Raphson (MNR) Displacement Method and the Modified Tangent Stiffness Method (by 

means of applying an out of balance load in the next increment) use fewer increments 

for the same level of accuracy but take longer to analyse. 

SAGE CRISP is frequently used as a test bed for new constitutive models which can be 

bolted onto the existing finite element code. This is the reason why SAGE CRISP is 

used in this study. 
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CHAPTER 3  

CASM: A UNIFIED MODEL FOR CLAY AND SAND 

3.1. DESCRIPTION OF THE MODEL 

3.1.1. Introduction 

CASM (Clay And Sand Model) was developed by Yu (1995, 1998). This is a simple, 

unified critical state constitutive model for both clay and sand. The main feature of 

CASM is that a single set of yield and plastic potential functions is used to model the 

behaviour of clay and sand under both drained and undrained loading conditions. 

This model uses the state parameter concept and a non-associated flow rule. Yu stated 

that because the state parameter may be determined easily for both clay and sand, it 

might be regarded as a better quantity than the overconsolidation ratio (OCR) for 

describing soil response under various loading conditions. The state parameter (ξ) is a 

function of other basic parameters: 

ξ = ν + λlnp' – Γ     (3.1) 

It is noted that ξ is zero at the critical state, positive on the 'wet' side and negative on the 

'dry' side. All the definitions of the state parameter, the reference state parameter and the 

critical state constants can be found in Figure 3.1. 
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Figure 3.1. State parameter, reference state parameter and critical state constants 

3.1.2. Yield surface 

The yield surface function for CASM can be expressed in terms of the conventional 

triaxial parameters as follows: 
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In equation 3.2, n and r are the two new parameters introduced in CASM. The stress-

state coefficient (n) is a parameter used to specify the shape of the yield surface and r is 

the spacing ratio used to control the intersection point of the critical state line and the 

yield surface. The reference state parameter (ξR) denotes the vertical distance between 

the CSL and the reference consolidation line. 

The shapes of the CASM yield surface with r=3 and different values of n are plotted in 

Figure 3.2 below: 
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Figure 3.2. CASM's yield surface shape 

It is interesting to note that the original Cam-clay model can be recovered exactly from 

CASM by choosing n=1 and r=2.7183. In addition, the 'wet' side of the modified Cam-

clay model can also be matched accurately using CASM by choosing r=2 in conjunction 

with a suitable n value (typically around 1.5-2, dependent on material). 

It should also be noted that the intersection point between the critical state line and the 

yield surface in this model does not necessarily occur at the maximum deviatoric stress 

(as in the original and modified Cam-clay models). This reproduces an important 

feature of the observed yield surface for sand which is the deviatoric stress often reaches 

a local peak before approaching the critical state. 

3.1.3. Plastic potential 

The plastic potential in CASM follows the stress-dilatancy relation of Rowe (1962). 

This flow rule, which was originally developed from minimum energy considerations of 

particle sliding, has met with greatest success in describing the deformation of sands 

and other granular materials. Rowe's stress-dilatancy relation is very similar to the 

original Cam-clay model (see Figure 3.3). Hence, it may also be used to describe the 

experimental stress-dilatancy data for clays. The flow rule can be expressed, for triaxial 

compression, as follow: 
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Therefore by integration, the equation of the plastic potential takes the form: 
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where the size parameter β can be determined easily for any given stress state (p',q) by 

solving the above equation. The plastic flow rule adopted in CASM is non-associated 

because the plastic potential function is not identical to the yield surface. 

The three different flow rules adopted in the original Cam-clay model , the modified 

Cam-clay model and CASM are shown in Figure 3.3. This figure shows the shapes of 

the plastic potentials of the three models which pass through one common stress point 

(p'1,q1). The shape of CASM's plastic potential is very similar to that of the original 

Cam-clay model and like original Cam-clay, CASM's plastic potential has a vertex and 

the flow rule has a discontinuity for η=0. 
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q

Modified cam clay 

CASM's yield surface 

Original cam clay 

CASM (Rowe) 

 p'1 

q1 

 

Figure 3.3. Shapes of different plastic potential surfaces 
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Figure 3.4 graphically presents the directions of the plastic strain increments obtained 

from CASM's flow rule in the (p',q) plane once yielding has occurred. The volumetric 

( )p
pδε  and deviatoric ( )p

qδε  components of a plastic strain increment are also shown in 

this figure. It clearly shows that CASM is a non associated model since the plastic strain 

increments are not perpendicular to the yield surface at the point of yielding. 
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q 

pδε

p
pδε

p
qδε

 

Figure 3.4. Plastic strain increments for CASM 

3.1.4. Elastic behaviour 

The elastic behaviour of this critical state model is the same as in the Cam-clay models 

with the tangent modulus (K) and shear modulus (G) being defined by the following 

expressions (a constant Poisson's ratio (µ) is assumed): 
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3.1.5. Hardening rule and plastic behaviour 

The yield surface size, which is governed by the preconsolidation pressure (p'o), is taken 

as the hardening parameter and is related to the plastic volumetric strain ( )p
pε  by the 

equation: 

( )
p
p

o
o

pp δε
κλ

νδ
−

=
''      (3.7) 

The plastic hardening modulus (H), which is needed for the calculation of the elastic-

plastic stiffness matrix (Dep), can be derived for CASM as follows (the derivation of H 

is described in details in Chapter 4): 
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The elastic and plastic stress-strain responses can be written in matrix form as: 
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3.1.6. Model constants and their identification 

It can be seen that there are a total of 7 model constants required in CASM, all of which 

can be determined in the laboratory. They are µ, κ, λ, Γ, M, r (or ξR) and n. 

� The elastic behaviour is modelled by the Poisson's ratio (µ) and the slope 

of the swell line (κ). Poisson's ratio is typically in the range of 0.15-0.35 

for clays and sands. A typical value of κ for sands is 0.005 and its value 

is generally much larger for clays ranging between 0.01 and 0.06. 

� The critical state line for a soil is fully defined by the constants λ, Γ, and 

M. Measurement of these critical state constants is straightforward for 

clays. However, for sands these measurement prove to be much more 

difficult and special care needs to be exercised when determining them 

using triaxial testing (Been et. al., 1991). 

� The spacing ratio (r) is used to estimate the reference state parameter 

(ξR) which corresponds to the loosest state a soil is likely to reach in 

practice. For the sake of simplicity, the standard Cam-clay models 

assume a single constant spacing ratio for all soil types. In the original 

and modified Cam-clay models, r is fixed at 2.718 and 2.0 respectively. 

Although reasonable for clays, this simplification is found to be less 

successful for sands. In CASM, the assumption of a variable r is adopted. 

Experimental data indicates that for clays, r typically lies in the range of 

1.5-3 and for sands the value of r is generally much larger (Coop and 

Lee, 1993; Crouch et. al., 1994). For most applications, it is satisfactory 

to treat the NCL as the reference consolidation line and therefore the 

measurement of r for clays does not impose any difficulty because the 

NCL can be easily located. In contrast, locating the NCL for sands is 

much more difficult because a test device able to supply very high 

pressure is required. However, if the NCL for a given sand cannot be 

measured, it is acceptable to choose a positive state parameter (typically 

ranging between 0.05 and 0.2) that is unlikely to be encountered in 

practice as the reference state parameter (ξR). 

� The value of the stress-state coefficient (n) is typically between 1.0 and 

5.0. To determine n for a given soil, it is necessary to plot the stress paths 
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from a few triaxial tests (both drained and undrained) on soils of 

different initial conditions in terms of stress ratio (η) against the state 

parameter (ξ). Using the general stress strain relation adopted in CASM, 

experimental state boundary surfaces should be regarded as a straight 

line in the plot of ln[1-(ξ/ξR)] against ln(η/M). The stress-state 

coefficient (n) is the slope of the state boundary surface in this particular 

log-log plot. Details for the derivation of n can be found in Yu (1998). 

3.2. EXTENSIONS OF CASM 

By using the state parameter concept and a non-associated flow rule, a simple unified 

critical state model has been developed. It can be said that for simple monotonic loading 

conditions, CASM has struck the right balance between simplicity and practicality. It 

will be shown in the coming chapters that CASM can capture the overall behaviour of 

clay and sand observed under both drained and undrained loading conditions. In 

particular, the behaviour of heavily overconsolidated clays and dense sands can be 

satisfactorily modelled. This represents a very useful extension of the Cam-clay models 

which is known to be only valid for normally consolidated clays. 

However, some very important aspects of soil behaviour mainly in relation to the cyclic 

response cannot be adequately described by CASM. The principal reason is that the 

classical concept of a yield surface provides little flexibility in describing the change of 

the plastic modulus with loading direction and implies a purely elastic stress range 

within the yield surface. The need for extending CASM therefore becomes a necessity. 

In the next five chapters, the main original contributions of this research will be 

presented. They are summarised below: 

In Chapter 4, a new non-linear elasticity rule, which is only applicable to clays, is 

introduced into CASM so that a better prediction of soil behaviour is achieved. The 

processes of generalising CASM into the three-dimensional stress space, implementing 

CASM into CRISP and validating CASM are also presented. 
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Chapter 5 presents CASM-d which is an extension of CASM using the combined 

hardening theory. It is argued that this model is more realistic than the traditional 

volumetric hardening models because deviatoric stresses are also assumed to give an 

additional contribution to hardening. 

CASM-b, an extension of CASM using the bounding surface plasticity theory, is 

introduced in Chapter 6. The salient features of a bounding surface formulation are that 

plastic deformation may occur for stress states within the yield surface and the 

possibility to have a very flexible variation of the plastic modulus during a loading path. 

This model is more realistic than CASM in terms of predicting behaviour of 

overconsolidated clays and sands. 

CASM-b is extended further in Chapter 7 to give CASM-c, a bounding surface critical 

state model with cyclic loading prediction capability. In this model, by assuming 

different expressions of the hardening modulus for three loading cases (virgin loading, 

unloading and reloading), the cyclic behaviours of soils can be predicted. 

Applications of CASM, CASM-b and CASM-c to some typical boundary value 

problems in geotechnical engineering are presented in Chapter 8. The performances of 

these models are assessed and some useful results are obtained. 
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CHAPTER 4  

FINITE ELEMENT IMPLEMENTATION OF CASM 

4.1. NON-LINEAR ELASTICITY 

The traditional critical state family of models often assumes a non-linear (pressure 

dependent) bulk modulus (K) and either a constant shear modulus (G) or a constant 

Poisson's ratio (µ). 

Typical experimental evidence (e.g. Al-Tabbaa (1987), see Figure 2.1) provides strong 

support for the assumption that the elastic bulk modulus varies linearly with the mean 

effective pressure (K=vp'/κ). 

The question is how the shear behaviour of the soil is to be described in the elastic 

region. In the Cam-clay models and current version of CASM, if a constant value of 

Poisson's ratio is chosen, then the deduced shear modulus will be proportional to p'. 

However, as pointed out by Zytynski et. al. (1978), for highly overconsolidated soils 

this assumption leads to a far too low value of the shear modulus. As a result, the elastic 

strains will be overpredicted and, on failure when strain-softening occurs, the recovery 

in elastic strain due to stress relief will swamp the plastic strains. The alternative of 

assuming a constant shear modulus and allowing the Poisson's ratio to vary will 

sometimes lead to negative values of µ, which is physically unreasonable, and it is also 

generally not in accord with experimental observations. 

Therefore, it is felt that a new expression for the shear modulus should be adopted for 

CASM in order to predict better the behaviour of soil. 
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Atkinson (2000) summarised the work of a number of researchers and stated that for 

very small strain deformation, the shear modulus could be taken in a general form as: 

( )[ ]( ) ml OCRpvfAG '=      (4.1) 

where  

f(v):  some function of the specific volume 

OCR: the overconsolidation ratio defined as p'o/p' where p'o is the 

preconsolidation pressure 

A, l, m:  material parameters 

It should be noted that OCR is defined in terms of the mean effectives stresses. This is 

not the conventional definition which defines the overconsolidation ratio as the 

maximum previous vertical effective stress divided by the current vertical effective 

stress ( )





=

v

v
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' max
σ

σ

 . Only the former definition is used in this thesis. 

If the overconsolidation ratio (OCR) is defined with respect to a normal compression 

line, the state can be defined by only two of v, p' and OCR and the above equation can 

be written as: 
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where p'a is the reference pressure and makes the equation dimensionally consistent. (p'a 

influences the value of A and is normally taken as 1 kPa or as atmospheric pressure). 

In this study, the following function proposed by Houlsby and Wroth (1991) for the 

variation of the shear modulus with the stresses is adopted: 

( ) ( )to
t

nc

t

nc

pp
p
GOCRp

p
GG ''

'
'

'
1−









=








=    (4.3) 

where 
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ncp
G








'

: value of 
 'p



G  when the soil is normally consolidated 

t:  lies between 0 and 1 

OCR: overconsolidation ratio defined as above 

i.e. G is dependent on )  and ( tp −1' ( )top' . In this study, a value of t equal to 0.5 will be 

used for simplicity. 

Houlsby and Wroth (1991) showed that this non-linear rule has the advantage that it 

incorporates the concept of normalisation of clay properties with respect to pressure, 

whilst allowing a realistic variation of the shear modulus with the overconsolidation 

ratio to be described. A second advantage of this formulation is that by combining with 

the expression of the undrained shear strength (Su), the rigidity index (G/Su), which 

plays an important role in many geotechnical engineering analyses, can be expressed as 

a power function of the overconsolidation ratio as follows: 

( Λ−








=







 t

ncuncu

OCR
S
G

S
G )     (4.4) 

where Λ is a factor equal to ( )
λ

κλ −  and λ and κ are the slopes of the isotropic normal 

compression line and unloading-reloading line in the v-lnp' plot respectively. 

Houlsby and Wroth (1991) compared the results obtained from this method with some 

exiting data and they found that the trends of behaviour observed experimentally were 

broadly matched by their formulation. 

It can be seen from equations 4.3 and 4.4 that the new expression of the shear modulus 

is a function of the overconsolidation ratio. As a result, this rule can only be applied to 

clay materials with a low OCR value. This rule does not apply for sands. 

Hence, in this study, the non-linear elastic rule described above will only be used for 

clays when CASM and its extensions are implemented into CRISP. 
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4.2. IMPLEMENTATION OF CASM INTO CRISP 

4.2.1. Introduction 

New constitutive soil models can be implemented into CRISP by using the Material 

Model Interface (MMI). The MMI was originally developed by Dr Andrew Chan 

(Birmingham University, U.K.). The introduction of MMI has made the incorporation 

of new soil models easier. 

There are four important stages in CRISP which call the MMI. These are: 

A. Reading in the material properties (subroutine MSUB1) 

B. Initialising in-situ stresses, yield surface and other initial parameters 

(subroutine MSINSIT) 

C. Assembling the stiffness (subroutine FRONTZ for symmetric stiffness or 

FRONTU for unsymmetrical stiffness) 

D. Evaluating the stresses and updating various parameters (subroutine 

UPOUT) 

Stages C and D are passed through within an incremental/iterative solution, while stages 

A and B are called only at the start of the program run. 

The MMI is represented by subroutine CRSM2D and is called through each of the 

above stages with a flag (ISWDP) which indicates the progress of the program. The 

flags are described as follows: 

ISWDP=1, the program is reading properties (stage A above) 

ISWDP=5, the program is initialising stresses (stage B above) 

ISWDP=3 or 4, the program is assembling stiffness (stage C above) 

ISWDP=2, the program is evaluating stresses (stage D above) 

ISWDP=3 is for symmetric stiffness, ISWDP=4 is for unsymmetrical stiffness which 

would require the special FRONTAL SOLVER in CRISP. 

44 



  

To implement a new model into CRISP, a new code using a FE condition that utilises 

the switches above would need to be written. A model ID for the new model would also 

need to be chosen. 

Basically, the developer will have to write two new SUBROUTINES for each new 

model implemented. These SUBROUTINES will then be linked to the main program to 

finish the implementation process. 

4.2.2. Special considerations with CASM 

It was mentioned in Chapter 3 that CASM uses a non-associated flow rule. Hence, 

unlike the Cam-clay models already installed in CRISP, CASM's plastic potential 

function is not identical to its yield surface function. 

Due to the difference mentioned above, the SOLVER and STIFFNESS MATRIX 

GENERATOR used by CASM are also different from the SOLVER and STIFFNESS 

MATRIX GENERATOR used by the Cam-clay models (unsymmetrical SOLVER and 

STIFFNESS MATRIX GENERATOR have to be used instead of symmetric SOLVER 

and STIFFNESS MATRIX GENERATOR). 

It can be seen from Figure 3.2, when n=1 the shape of CASM's yield surface is similar 

to that of the original Cam-clay model. There is a discontinuity in the yield surface at 

q=0. This discontinuity presents problems both theoretically and numerically. To 

overcome this, it is assumed that when q is very small [ABS(q)<10-5 kPa] CASM's yield 

surface shape will be the same as the yield surface shape obtained from the modified 

Cam-clay model (see Figure 2.3). By making this adjustment, the above problem is 

eliminated. 

4.2.3. Generalisation of CASM in the three-dimensional stress space 

Chapter 3 describes the critical state soil models entirely in relation to the standard 

triaxial test for soils. Thus it is possible to describe the effective stress state of a soil 
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sample by just two stress parameters (p' and q). To extend the models to more general 

two- and three-dimensional stress spaces, some additional assumptions are necessary. 

We replace the previous definitions of p' and q by: 
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Also, another parameter will be needed, namely the Lode angle θ which is defined as: 
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The choice of these parameters is not arbitrary because the above quantities have 

geometric significance in the principal effective stress space. In Figure 4.1, '3p  is a 

measure along the space diagonal (σ'1=σ'2=σ'3) of the current deviatoric plane from the 

origin, q3
2  is the distance from the current stress state to the space diagonal in the 

deviatoric plane and the magnitude of θ defines the orientation of the stress state within 

the deviatoric plane. 
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Figure 4.1. Stress parameters in principal stress space 

In order to perform a non-linear finite element analysis using elastic-plastic models of 

soil behaviour, it is necessary to compute the modulus matrix Dep relating an increment 

of strain to an increment of stress: 

εσ ∆=∆ epD       (4.8) 

Starting from the yield function F(σ,k)=0 and the plastic potential G(σ,β)=0, there is a 

piece of standard manipulation to obtain a formula for Dep (e.g. Potts and Zdravkovic, 

1999): 
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where De is the elastic stiffness matrix (see section 2.1.2) and H is the hardening 

modulus. 
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From the expressions of the yield and plastic potential equations, the terms in the above 

equation are derived as follows: 
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4.2.4. Shapes of yield and plastic potential surfaces in the deviatoric plane 

In numerical analysis, the constitutive models have to be generalised into the three-

dimensional stress space by making some assumptions about the shapes of the yield and 

plastic potential surfaces in the deviatoric plane (surface perpendicular to the line 

σ'1=σ'2=σ'3 in the three-dimensional stress space, see Figure 4.1). The simplest 

generalisation is to assume a circular shape for both surfaces (Roscoe and Burland, 

1968). However, it is well known that a circle does not provide a good representation of 

the failure condition for soils whereas a Mohr-Coulomb type of failure criterion would 

be more appropriate. 

With the three-dimensional definitions of p', q and the new parameter θ introduced in 

the above section, the yield and plastic potential equations become: 

51 



  

r
p
p

pM
qkF o

n

ln
'
'ln

')(
),(










+







=

θ
σ     (4.14) 

( ) ( ) ( ) 






 −
−−







 +
++−=

'
'3ln3

'
'32ln23ln'ln3),(

p
qpM

p
pqMpMG ββσ  (4.15) 

In equation 4.14, the slope of the critical state line (M) is expressed as a function of the 

Lode angle (θ) and determines the shape of the failure surface in the deviatoric plane. In 

this study, the relationship between M and θ which was proposed by Sheng et al. (2000) 

will be used: 

( ) ( )
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where 

'sin3
'sin3

φ
φα

+
−

=  

φ' : friction angle of the soil at critical state 

Mmax: slope of the CSL under triaxial compression (θ =-30°) in the (p',q) plane 

The slope M of the CSL in the plastic potential equation 4.15 is regarded as constant 

when evaluating the derivatives of the plastic potential with respect to the stresses. This 

is to assume that the shape of the plastic potential surface in the deviatoric plane will be 

circular. The use of this assumption is to apply a non-associated flow rule. For a given 

stress state on the yield surface, the value of M in the plastic potential is also determined 

using equation 4.16 so that the plastic potential surface will pass through the current 

stress point. The shapes of the yield and plastic potential surfaces in the deviatoric plane 

can be seen in Figure 4.2. It is noted that the plastic potential plotted is only for the 

cases when the current stress states are defined as M=Mmax (such as triaxial compressive 

loading conditions). 
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potential 
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(Mohr-Coulomb) 
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θ  = +30° 

θ  = +30° 

 

Figure 4.2. Shapes of the yield and plastic potential surfaces in the deviatoric plane 

4.2.5. Justification of the yield surface and plastic potential shapes in the deviatoric 

plane 

It is mentioned above that a circular shape of the yield surface in the deviatoric plane 

does not provide a good representation of the failure condition for soils where a Mohr-

Coulomb type of failure criterion would be more appropriate. This statement is 

validated by a number of authors who did laboratory tests on both sand and clay. 

Some of the experimental data is shown in Figures 4.3 and 4.4. Shibata and Karube 

(1965) did undrained tests on normally consolidated Osaka alluvial clay and they found 

that the failure surface for this clay in the deviatoric plane was curved and 

circumscribed the Mohr-Coulomb hexagon as shown in Figure 4.3. 
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Figure 4.3. Failure surface of Osaka alluvial clay in the deviatoric plane 

 (Shibata and Karube, 1965) 

Figure 4.4 shows the results reported by Lade (1984) on experiments of dense Monterey 

No.0 sand (Figure 4.4a) and normally consolidated remoulded Edgar plastic kaolinite 

(Figure 4.4b). The results are also compared with the Mohr-Coulomb failure surface. It 

can be seen again that using a circular shape for the yield surface in the deviatoric plane 

would greatly overestimate the three-dimensional strengths of both sand and clay 

materials. However, a Mohr-Coulomb criterion would always underestimate the 

strengths. As a result, a criterion lying somewhere between these two criteria will be 

more appropriate. 

 

Mohr-Coulomb failure surfaces

σ'1 

σ'3 σ'2 σ'3 σ'2

σ'1 φ' = 48.5°

φ' = 32.5°

(a) Dense Monterey No. 0 sand 
(b) Normally consolidated 

            remoulded Edgar kaolinite  

Figure 4.4. Failure surfaces of sand and clay in the deviatoric plane (Lade, 1984) 
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Therefore, it has been decided that throughout this study, a similar shape to the Mohr-

Coulomb failure criterion (i.e. Sheng et al. (2000) shape in Figure 4.2) will be adopted 

for the yield surface in the deviatoric plane. 

For the shape of the plastic potential in the deviatoric plane, however, there has been 

little evidence to support one assumption or another. In order to investigate the effect of 

the shape of the plastic potential in the deviatoric plane, undrained analyses of both 

circular (an axis-symmetric problem) and strip (a plane strain problem) surface rigid 

footings were carried out. The footings were loaded to failure. The finite element mesh 

used is shown in Figure 4.5. Fifteen-noded cubic strain triangle elements were used for 

the circular footing and six-noded linear strain triangle elements were used for the strip 

footing. The model parameters chosen are relevant to London clay: 

M=0.888, λ=0.161, κ=0.062, µ=0.3, Γ=2.759, n=2, r=2.718 

 

 

Figure 4.5. Finite element mesh for footing problems 

Two versions of CASM have been implemented into CRISP for this investigation. Both 

versions have the Sheng et al. (2000) shape for the yield surface in the deviatoric plane. 

The shapes of the plastic potentials in the deviatoric plane are different as follows: 
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� In the first version, M varies according to equation 4.16, and δM/δθ is 

also allowed to vary according to equation 4.16 (i.e. the plastic potential 

has the Sheng et al. (2000) shape in Figure 4.2). This version is denoted 

as S in Figure 4.6. 

� In the second version, M varies according to equation 4.16, but δM/δθ is 

assumed to be zero (i.e. circular plastic potential in the deviatoric plane). 

This version is denoted as C in Figure 4.6. 

The results of this investigation are presented in Figure 4.6 where the applied vertical 

load is plotted against the vertical displacement. For a circular footing (axis-symmetric 

problem), the effect of the shape of plastic potential in the deviatoric plane is found to 

be insignificant, see Figure 4.6a. It is shown in Figure 4.6b however, that the shape of 

the plastic potential in the deviatoric plane has a more significant effect for the plane 

strain problem, especially near the failure state. These findings agree with the findings 

of Potts and Gens (1984) who showed that in plane strain problems, the shape of the 

plastic potential in the deviatoric plane has a dominating influence on the predicted 

behaviour especially for drained conditions. However, the answer remains unclear since 

there is no experimental data to support any of the options. Potts and Gens (1984) also 

indicated that it is often necessary to have different shapes of the yield and plastic 

potential surfaces in the deviatoric plane. 
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(a) Circular footing      (b) Strip footing 

Figure 4.6. Effect of the shape of plastic potential on the deviatoric plane 
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Therefore, for the sake of simplicity, a circular shape for the plastic potential in the 

deviatoric plane will be assumed in this study but with the value of M updated with the 

stresses (i.e. M varies according to equation 4.16 but δM/δθ=0 or version C of CASM is 

adopted). Nevertheless, further work is needed to justify this assumption. 

4.3. VALIDATION OF CASM 

Results from triaxial tests have been used in most basic research work on shear strength 

and pore pressure characteristics. Many basic soil parameters can be obtained directly or 

indirectly from the results of triaxial tests. Furthermore, triaxial testing is increasingly 

being used in the solution of practical problems. 

In this section, the performance of CASM will be assessed by predicting the behaviour 

of clay and sand in the triaxial tests. The finite element results will be compared with 

data from a classical series of tests as well as the finite element results obtained from the 

original Cam-clay model. Because the same tests will be analysed again by other 

models, all the triaxial tests simulated in Chapters 4, 5 and 6 are numbered for the ease 

of comparison. There are altogether 11 tests. 

For all the triaxial tests simulated by CASM and its extensions in this research, the 

mesh shown in Figure 4.7 is used. Only a quarter of the soil sample is modelled due to 

symmetry. The mesh consists of four fifteen-noded cubic strain triangle elements. The 

fixity conditions and in-situ stresses are also shown in Figure 4.7. 

 

Figure 4.7. Finite element mesh for the triaxial test 
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It should be noted that the Tangent Stiffness Technique is used as the non-linear 

solution scheme throughout this study. All of the tests were stress-controlled. The 

number of increments for each analysis is increased until a stable result is obtained. For 

all the analyses of the triaxial tests, the loading and unloading (in Chapter 7 only) 

processes are divided into 2000 load increments, it was found that this number of 

increments gave stable and satisfied solutions for the problem. 

Because the same model and soil parameters are used, all results of the triaxial tests in 

this chapter are similar to that reported in Yu (1998). The only difference is that Yu 

used a one-element program to get his results while the author of this thesis used the 

finite element program CRISP. 

4.3.1. Drained and undrained behaviour of normally consolidated and 

overconsolidated clays (Tests 1-4) 

To assess the performance of CASM for clay, test data performed on remoulded Weald 

clay at Imperial College, London was used (Bishop and Henkel, 1957). Out of the four 

tests discussed, two were drained and the other two were undrained tests. Under these 

conditions, both normally consolidated (OCR=1) and overconsolidated (OCR=24) 

samples were tested. The material constants used for CASM are as follows: 

M=0.9, λ=0.093, κ=0.025, µ=0.3, Γ=2.06, n=4.5, r=2.718 

It should be noted that the NCL has been used as the reference consolidation line and 

therefore the reference state parameter (ξR) is equal to the initial state parameter of the 

normally consolidated sample. The critical state constants for Weald clay are from Parry 

(1956). 

Figures 4.8-4.11 present comparisons of the model predictions and the measured 

behaviour for both drained and undrained compression of normally and 

overconsolidated Weald clays. For comparison purposes, the equivalent predictions 

from the original Cam-clay model have also been presented. It is found that while Cam-

clay is reasonable for modelling normally consolidated clays, it is not good for 

modelling overconsolidated clays. 
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Figures 4.8-4.11 indicate that the predictions from CASM are consistently better than 

those from Cam-clay for normally and overconsolidated clays under both drained and 

undrained loading conditions. In particular, CASM is found to be able to capture the 

overall behaviour of the overconsolidated clay observed in the laboratory reasonably 

well. 
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Figure 4.8. Test 1: Drained compression of a normally consolidated sample of Weald 

clay 
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Figure 4.9. Test 2: Drained compression of a heavily overconsolidated sample of Weald 

clay 
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Figure 4.10. Test 3: Undrained compression of a normally consolidated sample of 

Weald clay 
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Figure 4.11. Test 4: Undrained compression of a heavily overconsolidated sample of 

Weald clay 

It is noted that one obvious deficiency with CASM is that it tends to under-predict the 

shear strain at peak strength. Also the curves produced by CASM are not as smooth as 

the observed curves. These are due to the fact that, like Cam-clay, CASM does not 

allow any plastic deformation to develop within the state boundary surface. 

4.3.2. Drained behaviour of loose, medium and dense sands (Tests 5-7) 

To check the performance of CASM for sand, test data reported by Been et al (1991) 

and Jefferies (1993) on a predominantly quartz sand with a trace of silt known as Erksak 

330/0.7 was used. Three tests were selected for comparison with CASM. These tests are 

on the densest sample D667 (with an initial void ratio of 0.59 at the initial cell pressure 

of 130 kPa), the medium dense sample D662 (with an initial void ratio of 0.677 at the 

initial cell pressure of 60 kPa) and the loosest sample D684 (with an initial void ratio of 
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0.82 at the initial cell pressure of 200 kPa). The material constants used in the CASM 

predictions are as follows: 

M=1.2, λ=0.0135, κ=0.005, µ=0.3, Γ=1.8167, n=4.0, r=6792.0 

Observations show that the critical deviatoric stress for sands is much lower than the 

peak deviatoric stress. Therefore, the value of r in this analysis was chosen to be very 

big to be able to predict this behaviour (r=p'o/p'x, where p'o and p'x are the 

preconsolidation pressure and the critical mean effective stress respectively, see also 

Figure 3.1). 

In order to allow for the prediction of sand behaviour from its loosest to its densest 

state, the reference state parameter (ξR) is assumed to be equal to the initial state 

parameter of the loosest sample D684. The critical state constants for Erksak sand are 

from Been et al. (1991) and Jefferies (1993) and because the accurate elastic constants 

are not known for Erksak sand, some typical values are used in the prediction. 

Figures 4.12-4.14 present comparisons of the predictions and the measured behaviour 

for tests on the samples D667, D662 and D684. It is clear from these figures that overall 

CASM is quite satisfactory for predicting the measured behaviour of dense, medium 

and loose sands. 
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Figure 4.12. Test 5: Drained compression of a dense sample of Erksak 330/0.7 sand 
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Figure 4.13. Test 6: Drained compression of a medium sample of Erksak 330/0.7 sand 
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Figure 4.14. Test 7: Drained compression of a loose sample of Erksak 330/0.7 sand 

4.3.3. Undrained behaviour of very loose sand (Tests 8-11) 

The term 'very loose' is used here to describe sand in a state which is much looser than 

its critical state. It is well known that very loose sands can collapse and strain-soften 

during monotonic undrained loading and ultimately reach a critical state. During 

monotonic undrained loading loose sand reaches a peak resistance and then rapidly 

softens to a steady state. This is a condition necessary for liquefaction to occur. Most 

existing critical state models are unable to model this behaviour. 

To demonstrate the ability of CASM to model undrained behaviour of very loose sand, 

test data obtained by Sasitharan et. al. (1994) on Ottawa sand was used. Four tests have 

been selected for comparison with CASM. These tests were on the samples with initial 

void ratio of 0.793 and 0.804. Different initial mean effective stresses were used. The 

material constants used in the CASM predictions are as follows: 

M=1.19, λ=0.0168, κ=0.005, µ=0.3, Γ=2.06, n=3, ξR=ξo 
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The critical state constants for Ottawa sand are from Sasitharan et. al. (1994). Again the 

accurate elastic constants are not known for this sand and some typical values have to 

be adopted. When CASM is used to model the undrained behaviour of a very loose 

sand, the reference state parameter (ξR) can be assumed to be equal to the initial state 

parameter (ξo) of each sample. It is shown below that this assumption proves to be very 

satisfactory for predicting undrained behaviour of very loose sands. 

Figures 4.15-4.18 are comparisons of the CASM predictions and the measured 

behaviour for undrained tests on the four very loose samples. It is evident from these 

figures that CASM can be satisfactorily used to predict the measured behaviour of 

undrained tests on very loose sands. In particular, CASM predicts that the peak strength 

is developed at a very small axial strain. Afterwards the response shows a marked strain 

softening with increasing axial strain before approaching the critical state. 

0

50

100

150

200

250

0 1 2 3 4 5

q (kPa) 

ε1 (%) 

•  measured 

 

0

50

100

150

200

250

0 100 200 300 400 500

q (kPa) 

 p' (kPa)  

Figure 4.15. Test 8: Undrained compression of a very loose Ottawa sand (eo=0.793, 

p'o=475 kPa) 
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Figure 4.16. Test 9: Undrained compression of a very loose Ottawa sand (eo=0.793, 

p'o=350 kPa) 
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Figure 4.17. Test 10: Undrained compression of a very loose Ottawa sand (eo=0.804, 

p'o=350 kPa) 
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Figure 4.18. Test 11: Undrained compression of a very loose Ottawa sand (eo=0.804, 

p'o=550 kPa) 
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It should be noted however that the critical state soil mechanics models used here can 

only be applied when the principles of continuum mechanics hold; CASM therefore 

cannot model the formation of shear bands and the deformation within shear bands 

often observed in soils. Figures 4.15-4.18 only show the finite element results obtained 

when the tests were displacement-controlled. 

4.4. SUMMARY 

In this chapter, a new non-linear elastic rule proposed by Houlsby and Wroth (1991) for 

clays has been adopted for CASM. The processes of generalising CASM into three-

dimensional stress space and implementing it into CRISP have also been presented. The 

shapes of the yield and plastic potential surfaces in the deviatoric plane have been 

chosen. Experimental data and numerical simulations have been used to justify the 

choices made. CASM has been validated by simulating triaxial tests for a number of 

materials under different loading conditions. CASM's finite element results have been 

compared with data from a classical series of tests as well as the finite element results 

obtained from the original Cam-clay model. It has been found that the predictions from 

CASM were consistently better than those from Cam-clay for normally and 

overconsolidated clays under both drained and undrained loading conditions. In 

particular, CASM has been found to be able to capture reasonably well the overall 

behaviour of the overconsolidated clay and sand observed in the laboratory. It has 

proven itself to be a useful extension of the Cam-clay models. 

However, some deficiencies of CASM have been pointed out. CASM tends to under-

predict the shear strain at peak strength. The curves produced by CASM for 

overconsolidated soils are not as smooth as the observed curves. This deficiency is due 

to the fact that, like Cam-clay, CASM does not allow any plastic deformation to 

develop within the state boundary surface. This drawback will be dealt with in Chapter 

6. 
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CHAPTER 5  

CASM-d: A NEW COMBINED VOLUMETRIC-DEVIATORIC 

HARDENING MODEL 

5.1. INTRODUCTION 

In the standard critical state soil mechanics theory, hardening is obtained from the 

volume changes alone (and hence, the name volumetric hardening). Therefore, 

hardening stops and unlimited plastic deformation can take place once the critical state 

of zero incremental dilation has been reached (Krenk, 2000). However, a more realistic 

model would assume that the work done by the deviatoric stresses gave an additional 

contribution to the hardening. 

A combined deviatoric and density hardening model was first introduced by Nova and 

Wood (1979). They used the following expression for the relation of the incremental 

preconsolidation pressure (δp'o) and the incremental strains ( , ): p
pδε p

qδε

( ) (
p

q
p
p

o
o D

p
p δεδε

κλ
δ ×+

−
=

'
' )     (5.1) 

where D is a new non-dimensional parameter which is positive during hardening 

process and suddenly becomes zero at the start of softening. 

More recently, by using the techniques of thermomechanics, Collins and Kelly (2002) 

came up with the following expression: 
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( ) ( )eqDpp p
po δδε

κλ
δ ××+×

−
= '1'    (5.2) 

where again D is a non-dimensional weight parameter and δe is the change in void ratio. 

5.2. CASM-d, DESCRIPTION OF THE MODEL 

5.2.1. Yield surface, plastic potential and elastic parameters 

The yield surface, plastic potential and elastic properties of the new model are exactly 

the same as the original CASM model. Details are described in Chapters 3 and 4. 

5.2.2. Assumption on the new hardening rule 

In this study, the following assumption has been made: 
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In equations 5.3 and 5.4, α is the new model parameter which controls the contribution 

of the incremental plastic deviatoric strain ( )p
qδε  to the rate of change of the hardening 

parameter (p'o). When α is zero, CASM-d is identical to CASM. 

It should be noted that this assumption does not satisfy the critical state condition. In 

fact, the critical state condition will never be met by this model. By the definition of the 

critical state, δp'o has to be zero. However, this cannot happen because δp'o is now 

dependent upon  and this quantity is non-zero. p
qδε
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5.2.3. Hardening modulus 

The dilatancy rule is obtained from the plastic potential as follows (Rowe, 1962): 
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(5.4) & (5.5): 
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Calculating the hardening modulus, H: 
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(5.8) & (5.9): 

( )
( )

( ) '9
2391''

p
G

M
MMpp o

o ∂
∂

Λ×







−
−+

×+
−

=
η

ηα
κλ

νδ   (5.10) 









−

−
−

+
+

×=
∂
∂

qp
M

pq
M

p
G

'3
3

'32
233

'      (5.11) 

(5.10) & (5.11): 
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(5.7), (5.12) & (5.13): 
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Hence, the elastic and plastic stress-strain responses of CASM-d can be written in 

matrix form as: 
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5.2.4. Incorporation of CASM-d into CRISP 

CASM-d has been generalised into the three-dimensional stress space and then 

implemented into CRISP, the procedure are similar to those described in Chapter 4. The 

only part of the source code which needed to be modified from the original CASM was 

the calculation of the hardening modulus where equation 4.13 was replaced by equation 

5.15. 

5.3. ANALYSIS OF TRIAXIAL TESTS USING CASM-d 

Once again, the triaxial test was used to assess the performance of CASM-d. The tests 

described in Chapter 4 were repeated. All the test conditions and assumptions were 

retained. Four different values of the new parameter α were used for each test and the 

results are shown below. CASM can be recovered from CASM-d when α is set to zero. 

Hence, a direct comparison with the original model can be made. 

5.3.1. Drained and undrained behaviour of normally consolidated and 

overconsolidated clays (Tests 1-4) 

M=0.9, λ=0.093, κ=0.025, µ=0.3, Γ=2.06, n=4.5, r=2.714 

Figures 5.1-5.4 present the results from CASM-d on normally consolidated and heavily 

overconsolidated clays in which the deviatoric stress (q) and excess pore pressure (∆u) 

are plotted against the axial strain (ε1). 

It can be seen that the new parameter α has a profound effect on the stress-strain 

prediction from the new model. CASM-d is a very flexible tool for predicting soil 

behaviours. 
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Figure 5.1. Test 1: Drained compression of a normally consolidated sample of Weald 

clay 
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Figure 5.2. Test 2: Drained compression of a heavily overconsolidated sample of Weald 

clay 
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Figure 5.3. Test 3: Undrained compression of a normally consolidated sample of Weald 

clay 

75 



  

0

100

200

300

400

0 5 10 15 20

α = 1 

α = 0.5 

α = 0 

α = 0.1 

q (kPa) 

ε1 (%)  

-160

-120

-80

-40

0

40

0 5 10 15 20

α = 1 

α = 0.5 

α = 0 
α = 0.1 

ε1 (%) 

∆u kPa) 

 

Figure 5.4. Test 4: Undrained compression of a heavily overconsolidated sample of 

Weald clay 

However, as mentioned above, one major drawback of this type of models is that the 

critical states are not reached even at large strains. This is evident from Figures 5.1-5.4 

where the shear stress, volumetric strain and excess pore water pressure have not 

reached a flat maximum after 20% axial strain, while the samples compress 

substantially as the tests proceed. One way of avoiding this problem is to assume that α 

is a function of the strain level, i.e. α decays to zero as the strain level increases. 

5.3.2. Drained behaviour of loose, medium and dense sands (Tests 5-7) 

M=1.2, λ=0.0135, κ=0.005, µ=0.3, Γ=1.8167, n=4.0, r=6792.0 
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Figures 5.5-5.7 present the analysis results of Erksak sand obtained using CASM-d. The 

stress ratio (η=q/p') and volumetric strain (εp) are plotted against the deviatoric strain 

(εq). 

Figures 5.5 and 5.6 show that unlike clay, α has little impact on the prediction of 

drained dense sands. Combined hardening models give slightly higher values of the 

stress ratios (η) and volumetric strains (εp) in the (η,εq) and (εp,εq) curves respectively. 

For drained prediction of loose sand (see Figure 5.7), the new model predicts a higher 

value of stress ratio but a lower absolute value of volumetric strain as the value of α 

increases. For higher values of α, the volumetric strain reaches a flat maximum. This 

fact, which CASM fails to predict, is well supported by experimental data. 
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Figure 5.5. Test 5: Drained compression of a dense sample of Erksak 330/0.7 sand 
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Figure 5.6. Test 6: Drained compression of a medium sample of Erksak 330/0.7 sand 
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Figure 5.7. Test 7: Drained compression of a loose sample of Erksak 330/0.7 sand 

 

5.3.3. Undrained behaviour of very loose sand (Tests 8-11) 

M=1.19, λ=0.0168, κ=0.005, µ=0.3, Γ=2.06, n=3, ξR=ξo 

Analyses of undrained loose Ottawa sand using CASM-d are shown in Figures 5.8-5.11. 

In these figures, the shear stress–axial strain curves (q,ε1) and the stress paths (q,p') are 

plotted. In a similar fashion to the previous tests, the new model makes a big difference 

when predicting the behaviour of loose sands. 
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Figure 5.8. Test 8: Undrained compression of a very loose Ottawa sand (eo=0.793, 

p'o=475 kPa) 
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Figure 5.9. Test 9: Undrained compression of a very loose Ottawa sand (eo=0.793, 

p'o=350 kPa) 
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Figure 5.10. Test 10: Undrained compression of a very loose Ottawa sand (eo=0.804, 

p'o=350 kPa) 
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Figure 5.11. Test 11: Undrained compression of a very loose Ottawa sand (eo=0.805, 

p'o=550 kPa) 

It can be seen in Figures 5.3 and 5.8-5.11 that when α is positive, undrained tests of 

normally overconsolidated clay and very loose sands exhibit a marked a peak in their 

(q,ε1) curves. Thereafter, q decreases and finally it starts increasing again at the end of 

the test. This is a very important behaviour of undrained soils which was first reported 

by Bishop and Henkel (1957). Figure 5.12 shows the data produced by Bishop and 

Henkel (1957) and other authors (Hyodo et. al., 1994; Coop, 1990) who have also 

observed this behaviour in sands. 

82 



  

    

 

    

(a) Undrained test of loose Brasted sand       (b) Undrained stress paths of loose

 (Bishop and Henkel, 1957)              Dogs Bay sand (Coop, 1990) 

 

(c) Undrained stress paths and stress-strain curves of loose Toyoura sand 

 (Hyodo et. al., 1994) 

Figure 5.12. Data from undrained triaxial tests on loose sands 
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5.4. SUMMARY 

In summary, an extension of CASM has been presented in this chapter by assuming that 

the work done by the deviatoric stresses also gives an additional contribution to 

hardening. Only one more parameter (α) is introduced. The new model, called CASM-

d, can be reduced to the original model CASM by setting the new parameter equal to 

zero. 

The new model has been generalised into the three-dimensional stress space and then 

successfully implemented into CRISP. The same set of classical triaxial tests used in 

Chapter 4 has been used to validate and assess the performance of CASM-d. It has been 

found that the deviatoric contribution to the soil hardening made a profound difference 

on the performance of the new model. In particular, one very important behavioural 

aspect of normally consolidated clays and loose sands can be predicted by CASM-d. 

This is the reappearance of hardening behaviour once the material has softened. 

Experimental data has been used to verify this feature of soil behaviour. 

However, one drawback of the new model has been indicated. The critical state is not 

reached in this model even at a very high level of strain. This is because the size of the 

yield surface (p'o) keeps increasing as the soil reaches its failure state. In this model, δp'o 

is also dependent upon the incremental plastic deviatoric strain ( )p
qδε  and this quantity 

is not zero at critical state. Therefore, some modification should be done so that the 

value of α decays to zero as the critical state is reached. 
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CHAPTER 6  

CASM-b: A NEW BOUNDING SURFACE MODEL 

6.1. INTRODUCTION 

The development of critical state soil mechanics was a major advance in the use of 

plasticity theory in geomechanics. Still however, some very important aspects of soil 

behaviour, mainly in relation to the cyclic response, cannot be adequately described. 

The principal reason is that the classical concept of a yield surface provides little 

flexibility when describing the change of the plastic modulus with loading direction and 

implies a purely elastic stress range within the yield surface. This results in 

overestimating the soil's stiffness and a lack of smooth transition from elastic to plastic 

behaviour of the soil (see Figures 4.9, 4.11, 4.12 and 4.13). 

The need for new concepts in plasticity theory therefore became a necessity. There have 

been two major developments in this field over the last 35 years, namely the concept of 

multi-surface, kinematic hardening plasticity theory introduced by Mroz (1967) and 

Iwan (1967) and bounding surface plasticity theory introduced by Dafalias and Popov 

(1975) and Dafalias (1975). 

The salient features of a bounding surface formulation are that plastic deformation may 

occur for stress states within the yield surface and it is possible to have a very flexible 

variation of the plastic modulus during a loading path. 

In this chapter, CASM is extended into a bounding surface radial mapping plasticity 

model called CASM-b. The mathematical formulations of the model are presented first. 
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After which, the numerical implementation of CASM-b into CRISP is given. Finally, 

the new model is validated by analysing the same triaxial tests which were used in 

Chapters 4 and 5. A direct comparison is made between the results obtained using 

CASM-b and the original model CASM. 

6.2. CASM-b, DESCRIPTION OF THE MODEL 

6.2.1. Bounding surface 

The bounding surface for CASM-b is the same as the yield surface of CASM and can be 

expressed in terms of the conventional triaxial variables as: 
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=     (6.1) 

where p'oj is the size of the bounding surface in the (p',q) plane. 

6.2.2. Plastic potential 

The plastic potential adopted in CASM-b is the same as that used in CASM and follows 

the stress-dilatancy relation of Rowe (1962): 
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6.2.3. Elastic parameters 

The elastic part of this critical state model is the same as in CASM. Details of this can 

be found in Chapters 3 and 4. 
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6.2.4. Mapping rule 

To define an image point on the bounding surface in a simple way, radial mapping is 

used. It is shown in Figure 6.1 that any stress state is associated with an image stress 

point. This is the intersection of the bounding surface with the straight line passing 

through the origin and the current stress state. 

 q

 p'oj  p'j p'o  p'

 qj

bounding 
surface

image 
stress point 

currents 
stress point 

 

Figure 6.1. The mapping rule in CASM-b 

It is assumed that the hardening modulus at the current stress point (H) is related to the 

hardening modulus at its corresponding image point (Hj) as well as to the ratio of 

distances from these two stress points to the origin. 

6.2.5. Hardening modulus 

The calculation of the hardening modulus (H) is the main new feature in CASM-b. Its 

derivation is presented in this section. 

6.2.5.1.  Hardening modulus at image point (Hj) 

Assuming that the size of the bounding surface (p'oj) is affected by the plastic 

volumetric strain ( )p
pε  in the usual way: 
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The consistency condition of the bounding surface requires 

0'
'

'
'

=
∂
∂

+
∂
∂

+
∂
∂

oj
oj

jj p
p
Fq

q
Fp

p
F δδδ     (6.4) 

Since 
rpp

F

ojoj ln'
1

'
−

=
∂
∂  we have: 

0
'

ln'
1'

'
=

−
−

∂
∂

+
∂
∂ p

p
oj

oj
jj

p
rp

q
q
Fp

p
F δε

κλ
ν

δδ    (6.5) 

0
ln
1'

'
=

−
−

∂
∂

+
∂
∂ p

pjj r
q

q
Fp

p
F δε

κλ
νδδ    (6.6) 

The flow rule for CASM-b can be expressed as follows (Hill, 1950): 
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It is assumed that the stress increments at the stress point (δp',δq) and the image point 

(δp'j,δqj) give the same plastic strain increment. This assumption which was also used 

by Dafalias and Herrmann (1980) and Bardet (1986) is equivalent to: 
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Substituting equation 6.9 into equation 6.6, we obtain: 
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6.2.5.2.  Hardening modulus at the stress point (H) 

Due to the similarity in shape of the surfaces shown in Figure 6.1, the image stresses 

(p'j,qj) can be calculated from the current stresses (p',q) as follows: 
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A specific feature of the bounding surface theory is that the hardening modulus (H) is 

not only dependent on the location of the image point but also is a function of the 

distance from the stress point to the bounding surface with the following requirements: 

+∞=H  if 0=γ      (6.15a) 

jHH =  if 1=γ      (6.15b) 
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The restrictions imposed by equation 6.15 ensure that the behaviour is almost elastic far 

from the bounding surface and that the stress point and bounding surface will move 

together when the current stress state lies on the bounding surface. The following form 

of calculating the hardening modulus has been proposed: 

( )
γ
γ m

j p
hHH −

+=
1

'
     (6.16) 

where h and m are two new material constants introduced in CASM-b. The term 






'p
h  

represents the dependence of H on the current stress level and the material type, while 

the second term ( )





 −
γ

γ m1  represents the mapping rule to satisfy the restrictions stated 

in equation 6.15. 

It should be noted that equation 6.16 is only used to calculate the hardening modulus 

when the soil is being loaded; for unloading, purely elastic behaviour is still assumed. 

A sensitivity study has been carried out to check the influences of the two new 

parameters (h and m) on the variation of the hardening modulus (H). Figures 6.2 and 6.3 

show the results of this study. It can be seen that with the values of γ (=p'o/p'oj, see 

Figure 6.1) between 0.6 and 1, the values of h and m have no effect on H. This means 

the soil is assumed to behave as if the stress point is on the bounding surface (H/Hj=1). 

For values of γ smaller than 0.6, it is found that m has a much more influential role than 

h in terms of varying the value of H. Other forms of equation 6.16 should be 

investigated in future studies. 
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Figure 6.2. Variations of H with respect to h (m=2) 

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

 

H/Hj 

h = 50 

m=1 

m=1.5 m=2 

m=2.5 

γ = p'o/p'oj  

Figure 6.3. Variations of H with respect to m (h=50) 

6.2.6. Incorporation of CASM-b into CRISP 

Again CASM-b has been generalised into the three-dimensional stress space and then 

successfully implemented into CRISP. The procedures are similar to those described in 

Chapter 4. Similar to CASM-d which was in Chapter 5, the only part of the source code 

which needed to be modified was the calculation of the new hardening modulus where 

equations 6.14 and 6.16 were used instead of equation 4.13. 
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6.3. VALIDATION OF CASM-b 

In this section, the performance of CASM-b is assessed by predicting the behaviour of 

clay and sand in the triaxial tests. These are the same tests which were used in Chapters 

4 and 5. Only results for overconsolidated samples are presented here because CASM-b 

gives the same results as CASM if the soil is normally consolidated. As a result, only 

tests 2, 4, 5 and 6 were simulated by CASM-b. 

6.3.1. Drained and undrained behaviour of heavily overconsolidated clays (Tests 2, 4) 

M=0.9, λ=0.093, κ=0.025, µ=0.3, Γ=2.06, n=4.5, r=2.714, h=5.0, m=1.5 

Figures 6.4 and 6.5 present the comparisons of CASM-b and CASM on heavily 

overconsolidated clays in which the deviatoric stress (q) and excess pore pressure (∆u) 

are plotted against the axial strain (ε1). The experimental data is also shown (as dots) to 

compare the performance of both models. 

It can be seen from Figures 6.4 and 6.5 that CASM-b can predict behaviour of clay 

under both drained and undrained loading conditions very well when compared to 

experimental data. Moreover, it gives more realistic predictions than those predicted by 

CASM and other traditional elastic-plastic models. This is achieved because the soil 

behaviour does not suddenly change from elastic to plastic when using CASM-b. 
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Figure 6.4. Test 2: Drained compression of a heavily overconsolidated sample of Weald 

clay 
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Figure 6.5. Test 4: Undrained compression of a heavily overconsolidated sample of 

Weald clay 
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6.3.2. Drained behaviour of medium and dense sands (Tests 5, 6) 

M=1.2, λ=0.0135, κ=0.005, µ=0.3, Γ=1.8167, n=4.0, r=6792, h=10, m=2 

Figures 6.6 and 6.7 present comparisons of the predictions and the measured behaviour 

for tests on the samples D667 and D662 respectively. The stress ratio (η=q/p') and 

volumetric strain (εp) are plotted against the deviatoric strain (εq). Again, the test data is 

presented as dots in these figures. 
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Figure 6.6. Test 5: Drained compression of a dense sample of Erksak 330/0.7 sand 
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Figure 6.7. Test 6: Drained compression of a medium sample of Erksak 330/0.7 sand 

It is shown in Figures 6.6 and 6.7 that CASM-b gives very similar results to CASM. 

Overall, both models are quite satisfactory for predicting the measured behaviour of 

sand. 

6.4. SUMMARY 

In summary, a new model called CASM-b which is based on the bounding surface 

plasticity theory has been developed from the original model CASM. Two new 

parameters (h and m) are introduced in the new model compared with CASM. These 

two parameters are used to provide a very flexible way of calculating the hardening 

modulus inside the bounding surface. A sensitivity study of the new parameters has 

been carried out to see the influence of these two parameters on the new model's 

performance. The new features of this model only apply when analysing 

overconsolidated materials. CASM-b will give the same results as CASM when the soil 

is normally consolidated. 
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The new model has been generalised into the three-dimensional stress space and 

successfully implemented into CRISP. Simulations of triaxial tests on overconsolidated 

clay and sand have been carried out to validate and assess the performance of the new 

model. It has been found that CASM-b gave better predictions than those predicted by 

CASM and other traditional elastic-plastic models. This is due to the fact that there is 

not a sudden change from elastic to plastic behaviour when modelling a soil using 

CASM-b. In other words, CASM-b can smooth the stress-strain curves to give more 

realistic predictions of soil behaviour. 

It should be noted that the bounding surface formulation could also be used to 

distinguish between compacted and overconsolidated sands, such that at low stress 

levels, a compacted sand gives more volumetric strain. This can be done by choosing a 

suitable loading surface and by choosing a suitable value of m (see equation 6.16). This 

can then be used to generate the right sort of volumetric strain as a function of p' for a 

sand which is being isotropically normally consolidated from a low stress level to states 

on the linear normal consolidation line in the v-lnp' space. 
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CHAPTER 7  

CASM-c: A NEW CYCLIC BOUNDING SURFACE MODEL 

7.1. INTRODUCTION 

The essential features of the Cam-clay models and CASM are that on a primary loading 

large plastic strains occur, but on subsequent unload-reload cycles within the yield 

surface only purely elastic strains are produced. This is not suitable for modelling the 

behaviour of soil under cyclic loading because in reality, all unload-reload cycles result 

in the gradual accumulation of permanent strain and pore pressure (if the soil is 

undrained) and hysteresis takes place. 

 

Figure 7.1. Response of clay to undrained cyclic loading according to conventional 

critical state models: (a) effective stress path, (b) stress:strain response and (c) pore 

pressure:strain response (Wood, 1990) 
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As an illustration, the response of soil to undrained cyclic loading, according to the 

conventional critical state models, is shown in Figure 7.1 (in page 97), whereas the 

observed typical response of real soil undergoing cyclic loading is shown in Figure 7.2. 

 

Figure 7.2. Typical response observed in undrained cyclic loading of clay: (a) effective 

stress path, (b) stress:strain response and (c) pore pressure:strain response (Wood, 1990) 

Having models with cyclic loading prediction capability is very advantageous and 

essential for solving practical geotechnical problems for example, analysis of pavements 

or structures under earthquake, wind, snow or wave loading conditions. Various models 

such as the bounding surface model developed by Dafalias and Herrmann (1980), the 

'Bubble' model by Al-Tabbaa (1987) and the three surface kinematic hardening (3SKH) 

model by Stallebrass (1990) can produce some of the essential features of soil under 

cyclic loading. The 'Bubble' and 3SKH models have been proven to model clay 

behaviour closely. Based on the bounding surface theory, McVay and Taesiri (1985) 

and Aboim and Roth (1982) proposed cyclic models which modelled the behaviour of 

sand closely. 

In this chapter, the bounding surface model CASM-b which was developed in Chapter 6 

is further extended. By having additional assumptions upon those in CASM-b for the 

calculations of the hardening modulus under different loading conditions, the new 
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model is able to produce some of the essential characteristics of soil under cyclic 

loading conditions. This new model is named CASM-c 

Because it is developed from the original CASM and CASM-b models, all the superior 

features possessed by these models (described in previous chapters) are retained in 

CASM-c. These include the ability to predict the behaviour of clay and sand materials 

under both drained and undrained loading conditions. The ability to accurately predict 

the behaviour of heavily overconsolidated clay and sand remains a big advantage of this 

new unified cyclic model over existing models in the literature. 

7.2. CASM-c, DESCRIPTION OF THE MODEL 

7.2.1. Bounding surface, elastic parameters, plastic potential and mapping rule 

All the assumptions about the bounding surface, elastic parameters, plastic potential and 

mapping rule presented in Chapter 6 for CASM-b are retained in CAM-c. 

7.2.2. Hardening modulus 

The assumptions made for calculating the hardening modulus are the new profound 

features of CASM-c. Loading is divided into three types, namely virgin loading, 

unloading and reloading. The first loading condition (virgin loading) is no different to 

that used in CASM-b. In a traditional elastic-plastic model, unloading and reloading are 

treated as one in terms of calculating the hardening modulus. However, in CASM-c they 

are considered as two different processes. This enables a gradual accumulation of 

permanent strain and/or pore pressure in unload-reload cycles and the hysteretic 

behaviour can be reproduced. The calculations of the hardening modulus are presented 

in the next three sections. 
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7.2.2.1.  Hardening modulus for virgin loading 

In a manner identical to that described in Chapter 6, the hardening modulus for the 

virgin (or first) loading is calculated based on the normal bounding surface plasticity 

theory. For completeness purposes, it is briefly presented here, see Chapter 6 for more 

detailed information. 
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It should be noted that all the stresses at the image stress point are denoted with a 

subscript j in the expressions above. 

7.2.2.2.  Hardening modulus for unloading 

For unloading, the following expression for the hardening modulud used by McVay and 

Taesiri (1985) is adopted: 
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where γ is defined in 7.2.2.1 and HU is a new unloading hardening parameter. Equation 

7.2 ensures that: 
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The unloading behaviour can be summarised as follows: 

� When the current stress point is on the bounding surface (γ=1), unloading 

starts, the behaviour is elastic and H=∞. 

� As the stress point moves away from the bounding surface (0<γ<1), the soil 

becomes less stiff, the behaviour is elastic-plastic and H decreases. 

� When the stress point is very far away from the bounding surface (γ reaches 

0), H decreases toward its limit HU. 

7.2.2.3.  Hardening modulus for reloading 

For reloading, the hardening modulus is defined as: 

( kp
qRj HHH ε
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γ

+×






 −
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where again the definitions of γ and Hj are the same as in 7.2.2.1,  is the plastic 

deviatoric strain, H

p
qε

R is a new reloading hardening parameter and k is another new 

parameter which controls the rate at which shakedown occurs. We will see the effect 

each new parameter has on the performance of the model in section 7.3.1. Equation 7.3 

ensures the following: 
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The reloading process is the reverse of the unloading process and can be summarised as 

follows: 
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� When the stress point is very far away from the bounding surface (γ≈0), the 

behaviour is near elastic, H=∞. 

� As the stress point move toward the bounding surface (0<γ<1), the soil 

becomes less stiff, the behaviour is elastic-plastic and H decreases. 

� When the stress point reaches the bounding surface (γ=1), the soil behaves 

exactly the same as the normal bounding surface model, H=Hj. 

7.2.3. New parameters 

There are three additional parameters introduced in CASM-c compared with the 

bounding surface model (CASM-b) in Chapter 6. They are HU, HR and k. The roles and 

units of each of the parameters are listed in Table 7.1 below: 

Parameter Role Unit 

HU controls unloading ( )stress
1  

HR controls reloading ( )stress
1  

k controls the rate at which shakedown occurs none 

Table 7.1. New parameters introduced in CASM-c 

The two parameters HU and HR are believed to be functions of the resilient hardening 

modulus (Hresilient) whose definition is shown in Figure 7.3. 

Hresilient 

1 

Strain 

Stress 
 

 

Figure 7.3. Typical stress-strain curve of soil under repeated loading 
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HU and HR control the slope of the stress-strain curve for unloading and reloading 

loading conditions respectively. The higher the values of these parameters, the stiffer 

the soil will be. In other words, the higher the values of HU and HR, the straighter the 

stress-strain curve will become. The effects of these parameters on the performance of 

the new model will be shown in sections 7.3.1 and 7.3.2 when parametric studies are 

carried out. 

It is well known that shakedown is an intrinsic property of soil and is exhibited under 

repeated loading conditions. The basic assumption is that below a certain load (termed 

the 'shakedown load') the structure will eventually shakedown, i.e. the ultimate response 

will be purely elastic (reversible) or there is no more accumulation of plastic strain. If 

the applied load is higher than the shakedown load, the structure will fail in the sense 

that the structural response is always plastic (irreversible) however many times the load 

is applied. The new parameter k has the role of controlling the shakedown behaviour of 

the soil in this model. 

It is believed that k is dependent upon a number of factors, they include the type of 

materials, the stress history as well as the current stress level of the soil. The manner of 

this parameter needs to be examined more carefully in future studies. Figure 7.4 shows 

the relationship between the permanent deformation (or strain level) and the number of 

cycles of loading for different values of k. The figure can be explained as follows: 

� When k>0, the reloading hardening modulus (H) increases with the strain 

level. This means that the soil gets stiffer as the level of strain increases, 

shakedown behaviour occurs and the deformation gets to a flat maximum as 

the number of cycles increases. 

� When k=0, H does not increase or decrease with the strain level, the soil 

does not shake down and deformation increases with the number of cycles. 

� When k<0, H decreases with the strain level and the soil becomes softer as 

the strain level increases. As a result, the deformation increases with the 

number of cycles and the rate of increase grows with the strain. 
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Figure 7.4. Effect of new parameter k on performance of CASM-c 

7.2.4. Incorporation of CASM-c into CRISP 

Again, CASM-c has been generalised into the three-dimensional stress space and then 

successfully implemented into CRISP. The procedures are similar to those described in 

Chapter 4. Similar to CASM-d (in Chapter 5) and CASM-b (in Chapter 6), the only part 

of the source code which needed to be modified was the calculation of the new 

hardening modulus where equations 7.1, 7.2 and 7.3 were used instead of equation 4.13. 

A new variable (flag variable) was also needed to distinguish between different loading 

conditions based on the state of the current stress point. In this study, the stress reversal 

convention was used to recognise a change in the loading direction. 

7.3. APPLICATION OF CASM-c TO THE TRIAXIAL TEST 

7.3.1. Effects of the three new parameters on the performance of CASM-c 

To investigate the effect of the three new parameters (HU, HR and k) on the performance 

of the new model, a simple hypothetical drained cyclic triaxial test was analysed. The 

soil sample was assumed to be normally consolidated with an isotropic initial stress of 
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207 kPa (p'i=p'o=207 kPa). The cell pressure was kept constant at 207 kPa while a 

deviatoric stress of 200 kPa was loaded and then unloaded back to 0 kPa (one way 

cyclic loading). Four load cycles were applied. 

The following soil parameters relevant to Weald clay were used: 

M=0.9, λ=0.093, κ=0.025, µ=0.3, Γ=2.06, n=4.5, r=2.714 

Two out of the three new parameters were kept constant in each of the following three 

sections. The third parameter was varied so that its effect on the model's performance 

could be seen. The ranges over which the new parameters vary were chosen so that they 

would clearly affect the performance of the model for this particular soil. Sections 

7.3.1.1-7.3.1.3 show the results of this parametric analysis. 

7.3.1.1.  Effect of HU (HR=0.02, k=20) 

Firstly, Figures 7.5-7.8 show the effect HU has on the performance of the new model. 

This parameter is only used when the soil is being unloaded. The smaller the value of 

HU, the more strain (both deviatoric and volumetric) the model will recover upon 

unloading. In other words, the bigger the value of HU, the more permanent strains the 

model will produce. This can be explained as follows: a smaller value of HU leads to the 

soil being softer during unloading and hence, larger amounts of strains are recovered. 
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Figure 7.5. HU=0.1 
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Figure 7.6. HU=0.15 

 

0

50

100

150

200

0 5 10 15 20

 

εq (%) 

q 

 

200

220

240

260

280

0 5 10 15 20
ε p  (%)

p '

 

Figure 7.7. HU=0.2 
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Figure 7.8. HU=0.25 
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7.3.1.2.  Effect of HR (HU=0.15, k=20) 

Secondly, the effect of the new parameter HR is investigated. Similar to HU in the above 

section, HR has the same effect but only when the soil is being reloaded. It can be seen 

in Figures 7.9-7.12 that permanent strains (both deviatoric and volumetric) increase as 

the value of HR decreases. This is because a smaller value of HR causes the soil to be 

softer during reloading and strains increase as a result. 
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Figure 7.9. HR=0.005 
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Figure 7.10. HR=0.01 
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Figure 7.11. HR=0.02 
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Figure 7.12. HR=0.05 

 

7.3.1.3.  Effect of k (HU=0.15, HR=0.02) 

Finally, k is the parameter that controls the rate at which shakedown behaviour of the 

soil occurs. Figures 7.13-7.15 show the results where positive values of k were assumed. 

It can be seen that a bigger value of k will make the soil shakedown faster. This can be 

easily explained by looking at equation 7.3: a bigger value of k will make the soil 

become harder during reloading. Also, the soil becomes harder faster if the plastic 

deviatoric strain is bigger. As a result of all of these, less strain and shakedown 

behaviour occurs. 
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Figure 7.13. k=15 
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Figure 7.14. k=20 
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Figure 7.15. k=30 
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Figure 7.16 shows the results when k=-10. As expected, when a negative value of k is 

used the permanent strains accumulated in each cycle increase with the number of 

cycles. This behaviour often occurs when the applied load exceeds the 'shakedown load' 

of the material. 
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Figure 7.16. k=-10 

It should be remembered that k depends upon many factors, its value is expected to be 

very much different from one soil to another as well as from one analysis to another. A 

more comprehensive investigation of this parameter is needed in future studies. 

7.3.2. Comparison with experimental data 

After examining the behaviour of the new model, the next logical step is to validate it 

by comparing the finite element results with some experimental data available in the 

literature. And it is carried out in this section. 

Three sets of data are chosen to validate the model: 

� Firstly, results from drained cyclic tests on Speswhite kaolin performed by 

Al Tabbaa (1987) are used. 

� The second set of data is reported by Li and Meissner (2002) on testing of 

an undrained clay. 

� Finally, tests conducted by Tasuoka (1972) and Tasuoka and Ishihara (1974) 

on loose drained Fuji river sand are compared with the results predicted by 

CASM-c. 
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7.3.2.1.  Drained clay under one way cyclic loading 

Figure 7.17a shows the results of cyclic tests on normally consolidated Speswhite kaolin 

conducted by Al Tabbaa (1987) where the stress ratio (η=q/p') is plotted against the 

deviatoric (εq) and volumetric (εp) strains. The soil was isotropically consolidated to 

p'=300 kPa and then loaded cyclically between a stress ratio (η) of 0 and 0.34 at a 

constant cell pressure. The critical state parameters for this soil were taken from Hau 

(2003). The value of κ for kaolin reported in the literature varies from one author to 

another, a typical value of κ=0.03 was chosen by the author in this study. Other 

parameters were also chosen by the author: 

M=0.86, λ=0.19, κ=0.03, µ=0.3, Γ=3.056, n=2.0, r=2.718, h=5.0, m=1.0, HU=0.15, 

HR=0.5, k=30 

The simulation of this test by CASM-c is shown in Figure 7.17b. It can be seen that 

CASM-c overestimates the deviatoric strain and yet underestimates the volumetric 

strain in this case. This is due to the flow rule used in CASM. It means that for this 

particular clay, the Rowe's stress-dilatancy relation is not applicable. Instead, a bigger 

ratio of incremental plastic volumetric strain to incremental plastic deviatoric strain 
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ε  should be used. However, it shows that the overall behaviour of the soil 

under cyclic loading can be reproduced by CASM-c. 
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(a) Data (Al Tabbaa, 1987) 
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(b) Simulation by CASM-c 

Figure 7.17. Drained one way cyclic loading of Speswhite kaolin 

7.3.2.2.  Undrained clay under one and two way cyclic loading 

CASM-c was also used to simulate the test results of a commercially available clay. The 

tests were performed by Li and Meissner (2002). They reported the results of triaxial 

tests for soil samples under cyclic loading conditions which were isotropically 

reconsolidated with OCR=1 and 5.1. All tests were stress-controlled. Both one way and 

two way cyclic loading tests were carried out. The initial conditions can be found in the 

captions of Figures 7.18-7.21. The critical state parameters for this clay were also 

reported by Li and Meissner (2002), other parameters for the model were typical values 

chosen by the author. All the parameters are listed below: 

M=0.772, λ=0.173, κ=0.034, µ=0.3, Γ=2.06, n=2.0, r=2.718, h=5.0, m=1.0, HU=0.3, 

HR=0.1, k varies 

It should be noted that k is dependent upon many factors including the stress history. 

That is why the value of k varies from one analysis to another. For each of the analyses 

presented in this section, the value of the parameter k will be shown in the figure 

caption. This also applies in section 7.3.2.2. 

Figures 7.18 and 7.19 show the experimental data (Figures 7.18a and 7.19a) and 

simulation results (Figures 7.18b and 7.19b) for the case of one way cyclic loading with 

OCR=1 and 5.1 respectively. In these figures, the excess pore water pressure (∆u) and 

deviatoric stress (q) are plotted against the number of cycles and deviatoric strain (εq) 
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respectively. These figures show that CASM-c can quantitatively predict the behaviour 

of undrained clay subjected to one way cyclic loading conditions. 

  

(a) Data (Li and Meissner, 2002) 
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(b) Simulation by CASM-c 

Figure 7.18. Undrained one way cyclic loading of normally consolidated clay, k=10 
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(a) Data (Li and Meissner, 2002)   (b) Simulation by CASM-c 

Figure 7.19. Undrained one way cyclic loading of overconsolidated clay, k=12 
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Figures 7.20 and 7.21 show the experimental data (Figures 7.20a and 7.21a) and the 

simulation results (Figures 7.20b and 7.21b) for the case of two way cyclic loading with 

OCR=1 and 5.1 respectively. Again it can be seen that CASM-c produces satisfactory 

results when compared with observational data. 

  

(a) Data (Li and Meissner, 2002) 
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(b) Simulation by CASM-c 

Figure 7.20. Undrained two way cyclic loading of normally consolidated clay, k=15 
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(a) Data (Li and Meissner, 2002)  (b) Simulation by CASM-c 

Figure 7.21. Undrained two way cyclic loading of overconsolidated clay, k=18 

7.3.2.3.  Drained sand under one and two way cyclic loading 

In this section, CASM-c is used to simulate the triaxial tests on Fuji river sand 

conducted by Tasuoka (1972) and Tasuoka and Ishihara (1974). This set of classical 

tests has been used by many researchers (e.g. Ishihara et. al., 1975; Wood, 1982; Bardet, 

1986) when making a research review or validating their constitutive models. Only 

results of tests on loose drained sand were used in this study. 

The material tested was the sand secured from the Fuji river bed. All the tests were done 

by changing the axial load while keeping the cell pressure constant throughout. The 

initial conditions are shown in the captions of Figures 7.22 and 7.23. The critical state 

parameters for this sand were taken from Bardet (1986), other parameters for the model 

were typical values chosen by the author. All the parameters are listed below: 

M=1.5, λ=0.12, κ=0.01, µ=0.3, Γ=1.467, n=4.5, r=10.0, h=5.0, m=1.0, HU=0.4, 

HR=0.3, k varies 

Figure 7.22 shows the experimental data (Figure 7.22a) and simulation results (Figure 

7.22b) of drained one way cyclic loading of loose Fuji river sand where volumetric and 

shear strains are plotted against the stress ratio (η=q/p'). The volumetric and shear 

strains in Figure 7.22 are defined as v=(εa+2εr) and ε=(εa–εr) respectively (εa and εr 

denote the axial and radial components of strain developed in the triaxial sample). 
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(a) Data (Wood, 1982; after Tasuoka, 1972) 

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0

Stress ratio (q /p ')

Sh
ea

r s
tra

in
 ε

 (%
)

0

0.5

1

1.5

0.0 0.5 1.0 1.5 2.0

Stress ratio (q /p ')

V
ol

um
et

ric
 st

ra
in

  v
 (%

)

 

(b) Simulation by CASM-c 

Figure 7.22. Drained one way cyclic loading of loose Fuji river sand, k=10 (eo=0.723, 

σ'r=0.5 kg/cm2)  
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Figure 7.23 shows the experimental data (Figure 7.23a) and simulation results (Figure 

7.23b) of the drained two way cyclic loading of loose Fuji river sand. Again, volumetric 

and deviatoric strains are plotted against the stress ratio (η=q/p'). The volumetric strain 

(εv) in this case is the same as v in Figure 7.22, while the deviatoric strain is defined as 

εq=2(εa–εr)/3. Figures 7.22 and 7.23 show that CASM-c can also satisfactorily predict 

the behaviour of sand under cyclic loading conditions. 
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(b) Simulation by CASM-c 

Figure 7.23. Drained two way cyclic loading of loose Fuji river sand, k=15 (eo=0.74, 

σ'r=2.0 kg/cm2) 
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7.4. SUMMARY 

In summary, an extension of the bounding surface model presented in Chapter 6 has 

been described in this chapter. The important new feature of this new model, called 

CASM-c, is its ability to model the behaviour of soil under cyclic loading conditions. 

For static loading conditions, CASM-c gives the same results as CASM-b. There are 

three new parameters (compared to CASM-b) introduced in the new model, they are 

used to control the unloading behaviour, the reloading behaviour and the shakedown 

behaviour of the soil. A parametric study of the three new parameters has been carried 

out. It has been found that CASM-c was very flexible in predicting soil behaviour. 

The new model has been generalised into the three-dimensional stress space and then 

successfully implemented into CRISP. Three sets of cyclic triaxial tests have been used 

to compare the simulation results predicted by CASM-c. The tests have been chosen so 

that CASM-c could be validated and its performance could be assessed by a variety of 

materials under different cyclic loading conditions. In the first test, it has been found 

that CASM-c overestimated the deviatoric strain and underestimated the volumetric 

strain. This is believed to be caused by the flow rule used. A different stress-dilatancy 

relation for that particular clay would be more appropriate. In the other two tests, it has 

been found that CASM-c could satisfactorily predict the overall behaviour of both clay 

and sand under a variety of cyclic loading conditions. 
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CHAPTER 8  

APPLICATIONS 

8.1. INTRODUCTION 

After describing and validating CASM and its extensions in Chapters 3, 4, 5 ,6 and 7, 

some of their applications are presented in this chapter. However, only CASM, CASM-

b and CASM-c are used in the analyses. CASM-d is not used in this chapter because it 

is the author's opinion that this model needs further modifications (i.e. the conditions for 

the critical state to be reached) before it can be used to solve practical problems. 

A number of typical geotechnical engineering problems are examined. The first problem 

is the analysis of a pressuremeter test in undrained clay where the effects of both the 

stress history and the pressuremeter's two-dimensional geometry are investigated. The 

behaviour of surface rigid strip and circular footings in undrained clay and drained sand 

are simulated next. After the footings, analyses on behaviour of horizontal strip anchors 

in undrained clay and drained sand are presented. The effect of the stress history on the 

behaviour of both the footings and anchors is closely examined. Finally, CASM-c is 

used to model the behaviour of a hypothetical pavement. The pavement consists of a 

layer of drained sand on top of a layer of drained clay. This is used to illustrate the 

ability of CASM-c to predict the behaviour of both clay and sand under cyclic loading 

conditions. All the results are presented as design charts whenever possible to enable 

the direct hand calculation of the soil's bearing capacity in these problems. 
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In order to achieve equilibrium, CRISP requires that all the free surfaces in the mesh are 

applied with surcharges which are equal to the isotropic initial stress (p'i). This 

condition was satisfied for all the analyses in this thesis. 

Some assumptions have been made in this chapter. The soils used are assumed to be 

homogeneous, isotropic and weightless (γ=0). The overconsolidation ratio (OCR) in this 

thesis is defined in terms of the mean effective stresses, i.e. if the soil is isotropically 

normally consolidated to a mean effective stress of p'=p'o and then isotropically 

unloaded and allowed to swell to p'=p'i, the OCR is defined as the ratio of these two 

mean effective stresses: 

i

o

p
pOCR

'
'

=       (8.1) 

It should be reminded that this is not the conventional definition of the 

overconsolidation ratio (OCRconventional) which is defined as the maximum previous 

vertical effective stress divided by the current vertical effective stress. 

To start a simulation with an overconsolidated sample of clay, CRISP only requires the 

input of an initial isotropic stress (p'i) and a preconsolidation pressure (p'o). Hence, an 

initial specific volume (vo) was assumed for the clay, after that p'i and p'o were 

calculated from equation 8.1 together with the following expression (which can be 

easily obtained using the critical state soil mechanics theory): 
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A similar procedure was used to obtain the initial stresses of a sample of sand with an 

initial state parameter ξo. But in this case, p'i and p'o are linked with ξo by the following 

expressions (this can also be easily obtained using critical state soil mechanics): 
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For analyses involving undrained clays, an important quantity which is assumed to be 

constant is the theoretical undrained shear strength and it is named Su in this thesis. This 

quantity is often used to normalise with the bearing capacity so that the effect of the 

stress history on the behaviour of the clays can be seen. The calculation of Su using the 

soil's parameters and initial conditions is presented next in this section. 

A soil with a specific volume v will end on the critical state line at a mean effective 

stress p'f and deviatoric stress qf when tested under undrained triaxial compression. 

From the Mohr circle of effective stresses at failure, Su is calculated as: 
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Under triaxial loading conditions, by calculating v as a function of p'o and OCR, the 

theoretical undrained shear strength of the soil (Su) can be linked to the consolidation 

history by the following expression: 
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Again, the Tangent Stiffness Technique is used as the non-linear solution scheme 

throughout Chapter 8. The number of increments for each analysis in this chapter varies 

depending on the problems. For each problem, a sensitivity study of the number of 

increments was carried out. After deciding the size and the density of the finite element 

mesh, a small number of increments was chosen to simulate the problem, the number of 

increments was then increased until stable results were obtained. 

For simplicity, only two soils were used in all the analyses presented in this chapter. 

They are London clay and Ticino sand. The critical state constants for these materials 

were taken from Yu (1998) and Been and Jefferies (1985) respectively. Other model 

constants were chosen by the author and they are shown in Table 8.1. 
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 M λ κ µ Γ n r h m HU HR k 

London clay 0.89 0.161 0.062 0.3 2.759 2.0 2.718 5.0 1, 2 0.15 0.05 5.0 

Ticino sand 1.3 0.04 0.01 0.3 1.986 2.0 4.0 30.0 3.0 0.5 0.1 20.0

Table 8.1. Model constants for soils used in Chapter 8 

8.2. ANALYSES OF THE PRESSUREMETER TEST USING CASM 

In this section, simulations of the pressuremeter test (see Figure 8.1) are carried out 

using the finite element method. Two problems are analysed. The first one investigates 

the effect of the stress history on the undrained shear strength of London clay assuming 

that the pressuremeter has a length to diameter ratio (L/D) of infinity. Two methods of 

interpretation are used to obtain the undrained shear strength. The second problem looks 

at the two-dimensional geometry effects on self-boring pressuremeter tests in undrained 

clay. Both CASM and the modified Cam-clay model are employed in this problem. 
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Figure 8.1. Self-boring pressuremeter 
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8.2.1. OCR effect in pressuremeter test 

8.2.1.1.  Introduction to the problem 

Since their development, self-boring pressuremeters have gained wide acceptance as a 

valuable site investigation tool (Wroth, 1984; Mair and Wood, 1987; Clarke, 1995; Yu, 

2000). The ability of the self-boring pressuremeter to be inserted into the soil with only 

minor disturbance makes it a very useful in-situ testing device. Once inserted into the 

soil, the cylindrical membrane of the pressuremeter is inflated and the 

pressure/displacement response is measured. In order to derive the soil properties, the 

measured pressure-displacement response of the soil has to be analysed. 

Gibson and Anderson (1961) were able to derive the following simple equation for 

determining the undrained shear strength: 







 ∆+=

V
VSu lnlimψψ      (8.7) 

where ψ is the pressuremeter pressure, ψlim is the pressuremeter limit pressure, Su is the 

undrained shear strength of the clay and ( )V
V∆  is the volumetric strain which for small 

strains is equal to two times the cavity strain (ε). 

From this expression, the plastic part of the pressuremeter loading curve is a straight 

line when the test results are plotted in a log scale as the total cavity pressure ψ against 

the volumetric strain ( )V
V∆  (see Figure 8.2). Their cavity expansion solution shows 

that the slope of this straight line is equal to the undrained shear strength of the soil. 
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Figure 8.2. Pressuremeter loading curve in a perfectly plastic Tresca soil 

Using cavity expansion theory, Houlsby and Withers (1988) developed a theoretical 

interpretation method for deriving soil properties from a cone pressuremeter test in 

undrained clays. For the case of a cylindrical cavity, the unloading pressure-

displacement curve is defined as: 

( )[ ] 













−−+−=

G
SS u

u lnln12 maxlim εεψψ    (8.8) 

where ψ is the pressuremeter pressure, ψlim is the expansion limit pressure, ε is the 

cavity strain, (ε)max is the maximum cavity strain at the start of the unloading phase, Su 

is the undrained shear strength of the soil and G is the shear modulus. 

The large strain unloading solution of Houlsby and Withers (1988) defined by equation 

8.8 is summarised in Figure 8.3. This shows that the plastic unloading slope in the plot 

of ψ against -ln[(ε)max-ε] is controlled by the soil strength. The slope of the 

pressuremeter unloading curve in such a plot is in fact twice the undrained shear 

strength of the soil (Su). From this figure, it is also possible to estimate the shear 

modulus and the initial horizontal stress. 
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Figure 8.3. Graphical method using unloading curve (Houlsby and Withers, 1988) 

CASM was used to analyse the pressuremeter test in undrained London clay with 

different initial state conditions. Both methods mentioned above were used to obtained 

the undrained shear strength of the clay. 

The finite element mesh used for the pressuremeter analysis is shown in Figure 8.4. 

Fifteen-noded cubic strain triangle elements were used. In the analyses, a finite outer 

radius was set to be 100 times the radius of the cavity. A sensitivity study suggested that 

this outer radius was sufficiently large for simulating the behaviour of a cavity 

expansion in an infinite clay soil for the soil constants used in the calculations. In the 

next sections, finite element analyses of the pressuremeter test using both loading and 

unloading methods mentioned above are presented. 

ao  

aexternal = 100 × ao 

ψ 

 

Figure 8.4. Finite element mesh for pressuremeter analysis 
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8.2.1.2.  Pressuremeter analysis using Gibson and Anderson's method 

Analyses of the pressuremeter test were carried out to find the undrained shear strength 

of London clay with different consolidation histories using Gibson and Anderson's 

method. All the tests in this section and in 8.2.1.3 were stress-controlled. 

Figure 8.5 shows the computed pressuremeter curves for different stress histories in the 

range of cavity expansion from 0% to 15% of the initial inner radius (ao). It should be 

noted that the analyses were conducted at different initial stresses and void ratios for 

different stress histories. This is due to the fact that the preconsolidation pressure (p'o) 

was assumed to be the same for all the tests. 
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Figure 8.5. Load displacement curves with different stress histories 

The interpretation procedure of Gibson and Anderson (1961) was used to derive the 

undrained shear strength (SG) from pressuremeter curves in the cavity strain range 

between 5% and 15% (Figure 8.6). It is noted that only the plastic part of the 

pressuremeter curve is presented in Figure 8.6. The pressuremeter pressure (i.e. cavity 

pressure) has been normalised by the theoretical triaxial undrained shear strength (Su) of 

the soil so that all the curves can fit into one single figure. For the calculation of 

undrained shear strength, the non-normalised pressuremeter pressure versus volumetric 

strain curve was used. 
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Figure 8.6. Plastic portion of loading curves for different stress histories 

The variation of the ratio of SG to the theoretical triaxial undrained shear strengths (Su) 

with the value of overconsolidation ratio is presented in Figure 8.7. It can be seen from 

Figure 8.7 that for normally consolidated and lightly overconsolidated clays the derived 

pressuremeter undrained shear strength (SG) is very close to the theoretical undrained 

shear strength (Su). However, for heavily overconsolidated clays, the shear strength 

derived from the pressuremeter curves is significantly less than the triaxial value with 

the difference increasing with the value of overconsolidation ratio (OCR). 
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Figure 8.7. Ratio of pressuremeter strength (obtained from Gibson and Anderson's 

method) to triaxial strength versus OCR 
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8.2.1.3.  Pressuremeter analysis using Houlsby and Withers's method 

Analyses were also carried out to estimate the undrained shear strength of London clay 

using the method of interpretation proposed by Houlsby and Withers (1988). The 

expansion and contraction phases of the test were modelled as the expansion and 

contraction of a cylindrical cavity with initial radius of ao. Different strain levels were 

tried for the expansion phase and it was found that as long as the cavity strain is large 

enough (ε >30%), the results obtained were not significantly different. In this study, the 

cylindrical cavity was expanded to a logarithmic strain (ε) of approximately 55% before 

unloading. 

Undrained London clay with different consolidation histories (OCR=1 to 20) was again 

tested. The results for the case with OCR=1 are shown in Figures 8.8 and 8.9. 
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Figure 8.8. Pressuremeter expansion-contraction curve (OCR=1) 
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Figure 8.9. Pressuremeter expansion-contraction curve on logarithmic plot (OCR=1) 
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The undrained shear strength of London clay was derived by interpreting the procedure 

of Houlsby and Withers's (1988). The variation of the ratio of the pressuremeter 

undrained shear strength obtained from this method (SH) to the theoretical triaxial 

undrained shear strength (Su) with the value of overconsolidation ratio is presented in 

Figure 8.10. It can be seen that the results are very similar to those given by Gibson and 

Anderson's interpretation procedure. For normally consolidated and lightly 

overconsolidated clays, SH is slightly higher than Su. However, for heavily 

overconsolidated clays, SH is significantly less than Su with the differences increasing 

with the value of the overconsolidation ratio. 
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Figure 8.10. Ratio of pressuremeter strength (obtained from Houlsby and Withers's 

method) to triaxial strength versus OCR 

8.2.1.4.  Comments on the two methods 

A comparison of the results obtained from the two different methods is plotted in Figure 

8.11. Even though the undrained shear strength was obtained by two totally different 

methods (by the means of the expansion curve in Gibson and Anderson (1961) and the 

expansion-contraction curve in Houlsby and Withers (1988)), the trends are very 

similar. They also closely agree with the analytical results obtained by Yu and Collins 

(1998) who used a slightly different critical state model. 

In general, the undrained shear strength SG predicted by Gibson and Anderson's 

procedure is slightly lower than the strength SH obtained from Houlsby and Withers's 

procedure. The ratio SG/Su does not change significantly with OCR values greater than 

6, whereas SH/Su decreases gradually with increasing values of OCR. 
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Figure 8.11. Comparison of Gibson and Anderson and Houlsby and Withers's methods 

The one factor which is clear from these results is that the undrained shear strength is 

very much dependent upon the consolidation history of the soil. The strength obtained 

from these methods can be up to 50% less than the theoretical triaxial undrained shear 

strength for clay with the overconsolidation ratio of 20. 

8.2.2. Analysis of pressuremeter geometry effects 

8.2.2.1.  Introduction to the problem 

It was described earlier that one of the usual interpretation methods for the 

pressuremeter test is based on the analysis proposed by Gibson and Anderson (1961) for 

undrained clays. Gibson and Anderson assumed (in effect) that the expansion of 

pressuremeters of a finite length can be simulated as that of an infinitely long 

pressuremeter (i.e. infinitely long cylindrical cavity expansion). This assumption 

enabled them to bypass the complexities involved in the two-dimensional expansion of 

a finite cylindrical cavity. 

The work of Gibson and Anderson was a significant advance in the analysis of 

pressuremeter tests. It allowed the pressuremeter to be used to obtain fundamental soil 

properties rather than purely serve as a basis for developing empirical design methods 

for various soil foundations. 
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For pressuremeters with a large length to diameter ratio (L/D), the expansion will take 

place under conditions approximating axial symmetry and plane strain in the vertical 

direction. Under such circumstances, the expansion curve would closely match that for 

the expansion of an infinitely long pressuremeter. In this case the analysis of Gibson 

and Anderson (1961) would lead to an accurate estimation of undrained shear strength. 

However, values of the undrained shear strength calculated using the Gibson and 

Anderson method have often been found to be considerably higher than those measured 

from other in-situ or laboratory tests (Wroth, 1984; Mair and Wood 1987). The 

influence of the two-dimensional pressuremeter geometry has been widely established 

as a possible explanation for these discrepancies. Some commercial pressuremeters 

have an L/D value of about 4 or 6 and therefore the pressuremeter geometry effects 

could be very significant. 

An ideal way of studying the effect of two-dimensional pressuremeter geometry is to 

perform finite element analyses. Using the finite element analysis, the pressuremeter 

tests can be simulated as the expansion of a finite length pressuremeter membrane. A 

two-dimensional finite element mesh can be used to perform such calculations and the 

results can then be compared with those for an one-dimensional cylindrical cavity 

expansion (which would simulate the expansion of an infinitely long pressuremeter). In 

this way, a numerical simulation of finite length pressuremeter tests can be compared to 

a simulation of infinitely long pressuremeter tests for which the analysis of Gibson and 

Anderson (1961) strictly applies. 

Studies of pressuremeter geometry effects in clay using axis-symmetric finite element 

formulations have been carried out by Yu (1990), Yeung and Carter (1990), and 

Houlsby and Carter (1993) among others. In the study conducted by Yu (1990), the soil 

was idealised as elastic-perfectly plastic deforming under constant volume conditions 

and obeying the Von Mises criterion. The initial stress state for each test was isotropic. 

The study considered three length to diameter ratios of 4, 6 and 8. The undrained shear 

strength was determined from strain ranges of 2-5% and 2-10% using the least squares 

method. Calibration calculations were also conducted using an infinitely long 

pressuremeter to account for possible numerical errors. The comparison between the 

calculated undrained shear strengths and the value obtained with an infinite L/D showed 
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a significant overestimation of the undrained shear strength due to the finite values of 

L/D. Yu also found that the finite length effects increased with the soil rigidity index 

(defined as the ratio of the shear modulus to the undrained shear strength, G/Su). For the 

study by Houlsby and Carter (1993), the soil was idealised as elastic-perfectly plastic 

and adopted the Tresca criterion. The study considered L/D values of 4, 6 and 10 and 

the results were also standardised using an equivalent test with an infinite L/D. The 

undrained shear strength was estimated from the strain range of 2-5% using a line of 

best fit. Houlsby and Carter found that for a length to diameter ratio of 6 and rigidity 

indices between 200 and 500, the derived strengths were about 25-43% higher than the 

actual shear strength of the soil. 

In almost all the existing numerical studies of pressuremeter geometry effects, the soil 

has been modelled as an elastic-perfectly plastic material. This theory assumes that after 

the soil in a region around the pressuremeter reaches the yield point, it behaves 

plastically and has a constant shear strength value. Soils do not behave exactly as 

elastic-perfectly plastic materials but can undergo strain hardening or softening. Strain 

hardening or softening of the soil after yield could influence the response of the soil to 

pressuremeter geometry effects. Critical state soil models are capable of taking into 

account strain hardening/softening and the variable soil shear resistance. This means 

that critical state models are capable of accounting for the stress history effects and are 

therefore more accurate for use in modelling overconsolidated soils. For this reason, 

such models would be more appropriate for studying the pressuremeter geometry effects 

than elastic-perfectly plastic soil models, especially for clays with a high OCR. 

In this section, results of a comprehensive numerical study into pressuremeter geometry 

effects using critical state soil models are presented. Finite element analysis has been 

used to obtain finite length corrections for self-boring pressuremeter tests in undrained 

London clay. An effective stress formulation was employed because it is appropriate 

with critical state soil models. The usual total stress analysis was not used because it is 

not suitable when the strength of the soil is variable, nor is it appropriate for highly 

overconsolidated soils (Yu and Collins, 1998). 
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8.2.2.2.  Finite element analysis of pressuremeter geometry effects 

The finite element method was used to simulate the self-boring pressuremeter tests in 

clay. This is to simulate the axis-symmetric expansion of a finite length pressuremeter 

membrane in an undrained clay. The analysis was based on an effective stress 

formulation and was conducted for soils with several different overconsolidation ratios 

(OCR). Two critical state soil models were used to describe soil behaviour. All the 

analyses in this section were stress-controlled. 

The finite element mesh was made up of fifteen-noded triangular elements. Due to 

symmetry, only half of the soil mass needed to be modelled. The radius of the 

pressuremeter was set to one unit and the length of the mesh in both the radial and axial 

(i.e. vertical) directions was 200 units. The size of the mesh domain (in both radial and 

vertical directions) was set to be sufficiently large so that the outside boundaries would 

have little influence on the numerical results. The mesh was designed so that the density 

of the elements was greatest in regions where high stresses were expected. This allows 

for the greater accuracy of a fine mesh where it is needed, whilst keeping the number of 

elements to a manageable size. Figure 8.12 shows a schematic diagram of a typical 

mesh to illustrate this. Following the work of Yu (1990) and Houlsby and Carter (1993), 

the pressuremeter was modelled as rigid and extending to infinity above and below the 

membrane. This achieves the desired effect of preventing inward movement at the 

pressuremeter boundary. The centre of the pressuremeter membrane was situated at the 

left hand corner of the mesh. At the inner radius of the mesh, the eight elements at the 

centre were all of the same size. This allowed the same mesh to be used to obtain the 

four different length to diameter ratios. The four length to diameter ratios of 20, 15, 10 

and 5 were achieved by using 8, 6, 4 and 2 elements to model the soil adjacent to the 

pressuremeter membrane respectively. One-dimensional cylindrical cavity expansions 

were used to model pressuremeter tests with an infinite length to diameter ratio. 
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Figure 8.12. Schematic diagram of the finite element mesh (L/D=20) 

The two critical state models used in the study were modified Cam-clay and CASM 

with n=2.0 and r=2.718. 

All the pressuremeter analyses were performed in two steps, the first step set up an 

initial stress state and the second performed the loading analysis. For each model, a 

constant preconsolidation pressure was used. Different overconsolidation ratios were 

achieved by starting the test at different initial stresses. During the loading stage, the 

pressure was applied uniformly to the elements representing the soil adjacent to the 

membrane. The maximum value of the applied pressure was chosen so that the final 

cavity strain at the centre of the membrane was always greater than 10%. The values of 

the OCR used were 1.0, 2.0, 2.718, 5.0, 10.0, 15.0 and 20.0. 

8.2.2.3.  Results and discussion 

Because the soil is modelled by the critical state theory, the section of the pressuremeter 

curve after yield is, in general, not necessarily linear (Yu and Collins, 1998). For this 

reason it is usual to determine the slope from a fixed section of the curve using least 

squares or a line of best fit. Yu (1990) for instance used the section of the curve 

corresponding to the strain ranges of 2-5% and 2-10%. For this study three different 

strain ranges of 2-5%, 3-10% and 5-10% were used to determine the undrained shear 
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strength of the clay. This would demonstrate any possible effect on the results the strain 

range (over which the pressure-expansion curve is fitted) had (Yu, 1990; Houlsby and 

Carter, 1993). It is noted that all the strains mentioned in this section are volumetric 

strains. 

For each soil model used, 35 sets of analyses were performed. Figure 8.13 shows a 

comparison of the pressuremeter results obtained for different length to diameter ratios 

where the strain range is taken as 2-5%. As expected, the pressuremeter curves, which 

are plotted in terms of the pressuremeter pressure (ψ) against the cavity strain (ε), show 

an increase in stiffness with a decrease in the length to diameter ratio. 
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Figure 8.13. Pressuremeter curves with different L/D ratios, OCR=1, CASM 

Figure 8.14 shows another comparison of the same analyses, this time with the 

pressuremeter curves plotted on a semi-log scale. 
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Figure 8.14. Pressuremeter curves (semi-log scale) with different L/D ratios, OCR=1, 

CASM 

The results of the analyses for the cases which use strain range of 2-5% are shown in 

Tables 8.2 and 8.3. The values listed in these tables are the slopes from the graphs of 

pressure against ln(2ε). Following the analysis of Gibson and Anderson (1961), this is 

the value generally taken as the undrained shear strength. 

OCR L/D=5 L/D=10 L/D=15 L/D=20 L/D=∞ 

1 57.2 52.5 51.6 51.3 49 

2 45.9 43.4 42.8 42.5 41 

2.718 40.2 38.3 37.85 37.6 36.7 

5 29.6 28.55 28.2 28 27.6 

10 19.3 18.85 18.63 18.5 18.3 

15 15 14.8 14.65 14.5 14.45 

20 12.8 12.7 12.6 12.5 12.5 

Table 8.2. Undrained shear strength (kPa) deduced from numerical results using CASM 

(2-5%) 
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OCR L/D=5 L/D=10 L/D=15 L/D=20 L/D=∞ 

1 74.6 70.1 69.2 66.7 62 

2 60 57.3 56.5 55.8 53 

2.718 57.1 55.3 54.7 54.2 52 

5 44 43.2 42.9 42.6 41.5 

10 26.5 26.2 25.9 25.8 25.5 

15 18.4 18.1 18 17.9 17.8 

20 15.2 15.03 14.98 14.9 14.9 

Table 8.3. Undrained shear strength (kPa) deduced from numerical result using 

modified Cam-clay (2-5%) 

To account for the pressuremeter geometry effects, correction factors were calculated 

for each of the finite length pressuremeter results. The correction factors were 

calculated as the ratio of the slope derived from infinitely long pressuremeters to that 

from finite length pressuremeters with various L/D values (e.g.  for L/D of 5). 

The correction factors can then be used to correct for pressuremeter geometry effects in 

field tests. The slope calculated from a field test can be multiplied by the appropriate 

correction factor to give the slope that would have been measured if the pressuremeter 

were infinitely long. The analysis of Gibson and Anderson (1961) applies for an infinite 

L/D, the slope being equal to the undrained shear strength. The correction factors for the 

2-5% case are shown in Tables 8.4 and 8.5. 

5/ umum SS ∞

OCR 5/ umum SS ∞  10/ umum SS ∞  15/ umum SS ∞  20/ umum SS ∞  

1 0.8567 0.9333 0.9496 0.9552 

2 0.8932 0.9447 0.958 0.9647 

2.718 0.913 0.9582 0.9696 0.9761 

5 0.9324 0.9667 0.9787 0.9857 

10 0.9482 0.9708 0.9823 0.9892 

15 0.9633 0.9764 0.9863 0.9966 

20 0.9766 0.9843 0.9921 1 

Table 8.4.  for CASM (2-5%) DL
umum SS //∞
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OCR 5/ umum SS ∞  10/ umum SS ∞  15/ umum SS ∞  20/ umum SS ∞  

1 0.8311 0.8845 0.896 0.9295 

2 0.8833 0.925 0.9381 0.9498 

2.718 0.9107 0.9403 0.9506 0.9594 

5 0.9432 0.9606 0.968 0.9742 

10 0.9623 0.975 0.9838 0.9884 

15 0.9674 0.984 0.988 0.992 

20 0.9803 0.9914 0.9947 1 

Table 8.5.  for modified Cam-clay (2-5%) DL
umum SS //∞

All the results are also shown graphically in Figures 8.15-8.26 where the correction 

factors are plotted against the diameter to length ratio (i.e. D/L) and the OCR value. The 

results show that the overestimation of the soil strength due to the pressuremeter 

geometry effect is most significant when the L/D ratio is small. The results also indicate 

that the overestimation of strength decreases when the soil becomes more 

overconsolidated. The largest overestimation of strength in this study was for an L/D 

ratio of 5 and an overconsolidation ratio of 1 (using the modified Cam-clay model). In 

this case, the overestimation of the strength was roughly 17%. The effect of the 

overconsolidation ratio on the results decreased significantly as L/D increased and 

eventually the overestimation of strength became negligible. For an L/D=20, the 

greatest overestimation of strength was less than 7% (for the case of the modified Cam-

clay model). 

From Figures 8.15-8.26, it can be seen that the strain range over which the 

pressuremeter curve is fitted has an influence on the derivation of undrained shear 

strength. The overestimation of undrained shear strength is smallest when the strain 

range is 5-10% and largest when the strain range is 2-5%. 

A comparison with earlier studies using elastic-perfectly plastic soil models shows that 

the effective stress analysis with critical state models predicts smaller geometry effects. 

This indicates that the effects of variable soil shear resistance and effective stress 

analysis are significant when we consider pressuremeter geometry effects in clay. 
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Even though the undrained shear strengths obtained with modified Cam-clay are higher 

than those obtained with CASM (Tables 8.2 and 8.3), no significant difference in the 

correction factors was found between the two critical state soil models. This suggests 

that the L/D effects are not very sensitive to the choice of critical state models. 

However, as shown clearly by Yu and Collins (1998), the actual value of the undrained 

shear strength deduced from the pressuremeter curve was very sensitive to the choice of 

plasticity models used to represent the soil behaviour. 
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Figure 8.15. Plot of  vs. D/L ratio for CASM (2-5%) DL
umum SS //∞

DL
um

um

S
S

/

∞

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1 6 11 16 21

OCR 

L / D = ∞ 

L / D = 5 

L / D = 10 

L / D = 15 
L / D = 20 

 

Figure 8.16. Plot of  vs. OCR value for CASM (2-5%) DL
umum SS //∞
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Figure 8.17. Plot of  vs. D/L ratio for CASM (3-10%) DL
umum SS //∞
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Figure 8.18. Plot of  vs. OCR value for CASM (3-10%) DL
umum SS //∞
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Figure 8.19. Plot of  vs. D/L ratio for CASM (5-10%) DL
umum SS //∞
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Figure 8.20. Plot of  vs. OCR value for CASM (5-10%) DL
umum SS //∞
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Figure 8.21. Plot of  vs. D/L ratio for modified Cam-clay (2-5%) DL
umum SS //∞
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Figure 8.22. Plot of  vs. OCR value for modified Cam-clay (2-5%) DL
umum SS //∞

142 



  

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.04 0.09 0.14 0.19 0.24

DL
um

um

S
S

/

∞

 

D / L  

OCR = 20 
OCR = 15 

OCR = 10 

OCR = 5 

OCR = 2.718 
OCR = 2 

OCR = 1 

 

Figure 8.23. Plot of  vs. D/L ratio for modified Cam-clay (3-10%) DL
umum SS //∞
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Figure 8.24. Plot of  vs. OCR value for modified Cam-clay (3-10%) DL
umum SS //∞
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Figure 8.25. Plot of  vs. D/L ratio for modified Cam-clay (5-10%) DL
umum SS //∞
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Figure 8.26. Plot of  vs. OCR value for modified Cam-clay (5-10%) DL
umum SS //∞

144 



  

8.3. ANALYSIS OF RIGID SURFACE STRIP FOOTINGS USING CASM AND 

CASM-b 

8.3.1. Introduction to the problem 

Strip or continuous footing has a length significantly greater than its width. It is 

generally used to support a series of columns or a wall. This is a typical plane strain 

problem and one of two special cases of a general three-dimensional state of strain 

which has a practical importance in soil mechanics (the other type is the axis-symmetric 

problem). In plane strain problem, the deformation in the longitudinal direction is 

considered to be zero. 

The strip footing problem is analysed in this section. The behaviour of the strip footing 

on undrained London clay and on drained Ticino sand was investigated using CASM. 

Soils with different overconsolidation ratios (London clay) and initial state parameters 

(Ticino sand) were modelled to see the effect stress history had upon the behaviour of a 

strip footing. CASM-b was also used to analyse the strip footing on undrained London 

clay. The analyses were displacement-controlled, the applied vertical load was 

calculated from the nodal reaction forces. 

8.3.2. Strip footing on undrained London clay using CASM 

Analyses were carried out with an OCR equal to 1, 2, 2.7, 4, 6, 8, 10, 15 and 20. The 

finite element mesh used consisted of six-noded linear strain triangle elements. This is 

shown in Figure 8.27. There is a vertical plane of symmetry through the centre of the 

footing hence, the finite element analysis only needs to consider half of the problem. 
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   Applied vertical displacement along foundation width 

 

Figure 8.27. Finite element mesh for the strip footing analysis 

The bearing capacity of a vertically loaded footing on undrained clay can be expressed 

as: 

oucu
u SNq

A
Q σ+==     (8.9) 

where Qu is the maximum vertical load that can be applied to the footing, A is its area, 

Nc is the bearing capacity factor, Su is the undrained shear strength of the soil under 

triaxial loading conditions and σo is the initial stress. 

Firstly, the finite element results obtained from CASM were compared with results 

obtained from the Tresca model. The initial stresses were chosen so that the soil was 

overconsolidated with an OCR of 2.718 at the beginning of the test. The stress path is 

shown in Figure 8.28. By starting the test at this point, the soil will fail as soon as it 

reaches the yield surface because that is the point where it meets the critical state 

condition (stress path meets the critical state line). This means that with this initial stress 

condition, CASM will basically behave like an elastic perfectly plastic model. 

146 



  






= 718.2

'' o
i

pp 

 q 

 p'o 

Initial 
stress

 p' 

CSL 

n = 2 
r = 2.718

 

Figure 8.28. Stress path for loading of a strip footing (OCR=2.718) 

The results for these analyses are shown in Figure 8.29 where qv is the average applied 

vertical pressure. It can be seen from Figure 8.29 that the solutions from CASM and the 

Tresca model agree very well with each other. Plasticity theory indicates that, for a strip 

footing resting on an undrained clay with a constant strength, the bearing capacity factor 

should be Nc=2+π=5.14. This is shown as the analytical solution in Figure 8.29. As 

expected, the finite element solutions for both CASM and the Tresca model slightly 

overestimate the analytical results by giving the limit load factors of 5.21 and 5.31 

respectively. This overestimation is known to be caused by the excessive kinematical 

constraints on the finite element mesh imposed by the incompressibility condition in an 

undrained analysis (Sloan and Randolph, 1982). 
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Figure 8.29. Comparison of CASM with the Tresca model for a strip footing 
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The load displacement curves for two cases (OCR=2 and OCR=20) are shown in Figure 

8.30. It was found that the collapse load was far from being mobilised for heavily 

overconsolidated clay when the displacement was at 15% of the footing width. 
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Figure 8.30. Load displacement curves for a strip footing (OCR=2 and OCR=20) 

Figure 8.31 presents the summary of the analyses where the mobilised bearing capacity 

factor Nc
mob ( )





 −=

u

ou
S

q σ  is plotted against the overconsolidation ratio. It should be 

noted that the values of Nc
mob shown in Figure 8.31 were the values taken when the 

vertical displacement was 15% of the footing width. For very high OCR values, Nc
mob 

may not yet have reached its maximum (i.e. reached a constant value). The value of 

15% was chosen just for the comparison of Nc
mob at various OCR values. It is clear from 

Figure 8.31 that the behaviour of a strip footing is dependent upon the stress history (i.e. 

OCR value) of the soil. 
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Figure 8.31. Dependence of mobilised Nc
mob on OCR value for a strip footing 
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8.3.3. Strip footing on undrained London clay using CASM-b 

The bounding surface model CASM-b has also been used to simulate the behaviour of 

the strip footing on undrained London clay. The new parameter h was set equal to 5 

while two values of m (m=1 and m=2) have been used to see the effect of this new 

parameter on the numerical results. The results obtained from CASM are also shown for 

comparison purposes. 

Figure 8.32 shows the relationship between the overconsolidation ratio and the 

normalised bearing capacity factor (Nc
mob). For normally consolidated soil (OCR=1), 

CASM-b gave exactly the same results as CASM because no modification has been 

made in CASM-b that alters the behaviour once the stress point lies on the bounding 

surface. For overconsolidated clay, it can be seen that CASM-b gave a more 

conservative bearing capacity than CASM. This is expected because the stiffness of the 

soil before reaching the bounding surface used by CASM-b is lower than that predicted 

by CASM. Figure 8.32 can be used as a design chart for the hand calculation of the 

bearing capacity of a strip footing on undrained London clay having different stress 

histories. 
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Figure 8.32. Dependence of mobilised Nc
mob on OCR value for a strip footing using 

CASM-b 
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8.3.4. Strip footing on drained Ticino sand using CASM 

Yu (1998) stated that the state parameter could be regarded as a better quantity than the 

OCR for describing soil response under various loading conditions, especially for sand. 

Work on dense and loose sands by Been and Jefferies (1985) and Sladen et al. (1985) 

also suggested that the state parameter could be confidently used to describe much of 

the behaviour of granular materials over a wide range of stresses and densities. 

Therefore, it is expected that the state parameter for sand will play a similar role as the 

overconsolidation ratio for clay. Analyses have been carried out with Ticino sand 

having initial state parameters (ξo) of 0.02, 0.0, -0.02, -0.04, -0.06 and -0.08. 

The load displacement curves for different initial state parameters are plotted in Figure 

8.33 where the pressure is normalised by the initial stress. Again the analyses were 

carried out until the vertical displacement reached 15% of the footing width. It can be 

seen that limit pressures are not mobilised for very dense sands (ξ=-0.06 and ξ=-0.08 in 

Figure 8.33). 
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Figure 8.33. Load displacement curves of a strip footing on sand 
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8.4. ANALYSIS OF RIGID SURFACE CIRCULAR FOOTINGS USING CASM 

8.4.1. Introduction to the problem 

A circular footing is generally an individual foundation designed to carry a single 

column load although there are occasions when it supports two or three columns. This is 

a typical axis-symmetric problem (i.e. the strain in the circumferential direction is zero). 

In this section, CASM is again used to investigate the behaviour of a circular footing on 

undrained London clay and drained Ticino sand. Soils with different overconsolidation 

ratios (London clay) and initial state parameters (Ticino sand) were modelled to see the 

effect stress history has upon the behaviour of circular footings. Again, the analyses 

were displacement-controlled with the applied vertical load obtained from the nodal 

reaction forces. 

8.4.2. Circular footing on undrained London clay using CASM 

The same analysis was repeated for a surface circular footing. The mesh shown in 

Figure 8.27 was used again however, the previous elements were replaced with fifteen-

noded cubic strain triangle elements. The results are shown in Figures 8.34-8.36. The 

behaviour of a circular footing is very similar to that of a strip footing. As expected, the 

mobilised bearing capacity factor of a circular footing was slightly higher than that of a 

strip footing. 

As shown in Figure 8.34, the comparison between CASM and Tresca results shows a 

very good agreement. Once again, the finite element results slightly overestimate the 

analytical solution (Nc=5.69) by calculating the mobilised bearing capacities of 5.83 and 

5.92 respectively. 
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Figure 8.34. Comparison of CASM with the Tresca model for a circular footing 

The load displacement curves for two specific cases (OCR=2 and OCR=20) are shown 

in Figure 8.35. Again, it was found that the collapse load was far from being mobilised 

for heavily overconsolidated clay when the displacement was equal to 15% of the 

footing width. 
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Figure 8.35. Load displacement curves for a circular footing (OCR=2 and OCR=20) 

Figure 8.36 presents the summary of the analyses for a circular footing. It is evident 

from Figure 8.36 that the bearing capacity of a circular footing is also dependent upon 

the stress history of the soil. 
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Figure 8.36. Dependence of mobilised Nc on OCR value for a circular footing 

8.4.3. Circular footing on drained Ticino sand using CASM 

Analyses have also been carried out using Ticino sand having initial state parameters of 

0.02, 0.0, -0.02, -0.04, -0.06 and -0.08. The load displacement curves for different initial 

state parameters are plotted in Figure 8.37 where the pressure is normalised by the 

initial stress. Again the analyses were carried out until the vertical displacement reached 

15% of the footing width and it can be seen that limit pressures were not mobilised for 

very dense sands at this displacement (ξ=-0.04, ξ=-0.06 and ξ=-0.08 in Figure 8.37). 

The behaviour of a circular footing in sand is very similar to that of a strip footing. 
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Figure 8.37. Load displacement curves of a circular footing on sand 
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8.5. ANALYSIS OF HORIZONTAL STRIP ANCHORS USING CASM 

8.5.1. Introduction to the problem 

Anchor plates are generally used in the design and construction of structures requiring 

uplift resistance. These include transmission towers, bridges, tension roofs and 

submerged pipelines. During the last 30 years, much experimental and theoretical work 

on the ultimate pullout capacity of anchor plates has been published. An overview of the 

topic can be found in Das (1990). 

The prediction of anchor plate behaviour is usually restricted to either the limiting 

conditions of elastic displacement (e.g. Fox, 1948; Rowe and Booker, 1979) or the 

ultimate capacity (e.g. Meyerhof and Adams, 1968; Vesic, 1971). Rowe and Davis 

(1982a, 1982b) presented a rigorous numerical study to determine the pullout capacity 

of anchors in both clay and sand. These were obtained by assuming that the soil can be 

modelled by the Mohr-Coulomb failure criterion. A study of the lower and upper bound 

limit analysis of strip anchors in both homogeneous and inhomogeneous clays has also 

been presented by Merifield et al (2001).This study utilised a rigid perfectly-plastic soil 

model obeying the Tresca yield criterion. 

In this section, a finite element study of horizontal anchors subject to uplift forces is 

presented. This study makes use of CASM. The effects of the depth to width ratio of the 

anchor and the stress history of the soil are considered. In the drained analysis with 

Ticino sand, the finite element calculations of the anchor behaviour using the Mohr-

Coulomb plasticity model were also carried out for comparison purposes. All analyses 

were displacement-controlled and the applied vertical load was calculated from the 

nodal reaction forces. 

A general layout of the anchor problem is shown in Figure 8.38. The ultimate pullout 

capacity (Qu) of an anchor can be expressed as a function of the following factors: 

),,,( ouu OCRSB
HfQ σ=     (8.10) 
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where H is the depth of embedment measured from the surface of the ground to the 

bottom of the anchor plate, B is the width of the anchor plate, Su is the undrained shear 

strength of the soil (in the case of undrained analysis), OCR represents the stress history 

of the soil and σo is the isotropic initial stresses. 

 

B

H

qu

Qu = quB

 

Figure 8.38. Layout of horizontal strip anchor 

For simplicity, the anchor was assumed to be thin and perfectly rigid. The analysis 

assumed a plane strain condition (i.e. the anchor was considered to be an infinite strip). 

The finite element mesh (which consists of six-noded linear strain triangle elements) 

and its associated boundary conditions are shown in Figure 8.39. 
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Figure 8.39. Finite element mesh for the horizontal anchor problem (H/B=10) 
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8.5.2. Horizontal strip anchors in undrained London clay using CASM 

The average applied pressure (qu) required to cause undrained failure of an anchor in a 

saturated clay can be expressed in the following form: 

oucu SNq σ+=      (8.11) 

where Su is the undrained shear strength of the clay, σo is the initial stress and Nc is the 

breakout factor which should depend on the embedment ratio and OCR. 

Finite element analyses were carried out to solve the anchor problem with different 

embedment ratios (H/B=1 to 12) and stress histories (OCR=1 to 20). Figures 8.40 and 

8.41 present the finite element results obtained from these analyses. 

Figure 8.40 shows the load displacement curves for the cases with H/B=6 and OCR=2 

(qv is the applied average vertical pressure). It is clear that with a vertical displacement 

of 30% of the anchor width, the limit load is not reached in some cases such as those 

with heavily overconsolidated soils (Figure 8.40a) and those with deeper anchors 

(Figure 8.40b). 
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Figure 8.40. Load displacement curves for strip anchors 

Figure 8.41 summarises the breakout factor (Nc) as a function of the embedment ratios 

and OCR values. It should be noted that the value of Nc in this figure is calculated when 

the vertical displacement is 30% of the anchor width. Again, it can be seen that for 
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heavily overconsolidated clays (Figure 8.41a) and deeper anchors (Figure 8.41b) critical 

states are reached after larger displacements. The results are presented in charts so that 

they may be used directly in hand calculations for estimating the failure load of 

undrained strip anchors. 
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Figure 8.41. Dependence of breakout factor on embedment ratio (a) and OCR (b) 

It is evident from Figure 8.41 that the limit load of horizontal strip anchors is not only 

dependent on the embedment ratio but also on the stress history of the soil (i.e. the 

OCR). 

8.5.3. Horizontal strip anchors in drained Ticino sand using CASM 

The procedure described in the previous section is repeated here for sand. However, the 

initial state parameter (ξo) was used instead of the overconsolidation ratio (OCR). 

It has been mentioned earlier that the state parameter can be regarded as a better 

quantity than the overconsolidation ratio for describing soil response under various 

loading conditions, especially for sands. Analyses have been carried out with Ticino 

sand having initial state parameters (ξo) of 0.02, 0.0, -0.02, -0.04, -0.06 and -0.08. 

Firstly, the anchor behaviour was analysed using the Mohr-Coulomb model. A 

sensitivity study has shown that varying the value of the dilation angle did not affect the 

anchor collapse load. Hence, only the results obtained using a fully associated flow rule 
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are presented here (where the angle of friction φ = angle of dilation ψ = 30°). The 

anchor capacity factor as a function of the embedment ratio is plotted in Figure 8.42. 

The cavity expansion solution by Yu (2000) is also shown for comparison. It can be 

seen that the finite element results are slightly lower than the results obtained from 

cavity expansion theory, this is as expected because the cavity expansion results are 

known to be very similar to the upper bound solutions (Yu, 2000). 
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Figure 8.42. Capacity factor vs. embedment ratio, Mohr-Coulomb model 

Finite element analysis of behaviour of anchors in Ticino sand using CASM was also 

carried out. The results are shown in Figures 8.43 and 8.44. 

Figure 8.43 presents the load displacement curves for the cases with H/B=1 (Figure 

8.43a) and ξo=-0.02 (Figure 8.43b) respectively. It should be noted that the results 

shown in Figure 8.43a were obtained by assuming that the soil samples had different 

initial stresses due to different initial state parameters. Unlike clay, anchors buried in 

sand collapse at smaller deformations. However, the results still show that for deep 

anchors and dense sands, it would require a relatively larger deformation to reach the 

collapse loads than that required for shallow anchors and loose sands. 

158 



  

0

50000

100000

150000

200000

0 1 2 3 4 5 6 7
Vertical displacement / anchor width (%)

 

qu 

ξo = -0.04
ξo = -0.02

ξo =  0.0

ξo =  0.02
H/B = 1 

 

0

200000

400000

600000

0 1 2 3 4 5 6 7

Vertical displacement / Anchor width (%)

 

qu 

H/B = 1

H/B = 3

H/B = 6
ξo = -0.02 

 

(a)      (b) 

Figure 8.43. Load displacement curves for sands, CASM 

A summary of all the results for anchors in sand is shown in Figure 8.44. The limit load 

is plotted as a function of the embedment ratio (Figure 8.44a) and the initial state 

parameter (Figure 8.44b). The limit load (qu) is normalised by the initial stress (pi). For 

a given value of ξo, the capacity factor (Nq=qu/pi) increases linearly with the embedment 

ratio (H/B) and Nq also increases as the sand increases in density. Again, Figure 8.44 

can be used directly in hand calculations to estimate the failure load of horizontal 

anchors in sand. 
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Figure 8.44. Capacity factor vs. embedment ratio and initial state parameter using 

CASM 
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8.6. PAVEMENT ANALYSIS USING CASM-c 

8.6.1. Introduction to the problem 

The purpose of a pavement is to support loads induced by traffic and to distribute these 

loads safely to the foundation. In this section, CASM-c is used to model the behaviour 

of an unpaved pavement. This hypothetical pavement has two different layers of 

material: a layer of drained Ticino sand on top of a 1200 mm layer of drained London 

clay. This is another typical geotechnical engineering problem, analysing this problem 

demonstrates the ability of CASM-c to model the behaviour of both clay and sand under 

cyclic loading conditions. 

Consider a wheel with a load of 600 kPa and a width of 150 mm was cyclically loaded 

500 times. The sand was assumed to be dense with the initial state parameter ξo=-0.02, 

while the clay was assumed to be heavily overconsolidated with an OCR=10. 

Three different sand layer thicknesses of 300 mm, 400 mm and 500 mm were modelled. 

The layout of the problem and the finite element mesh for the 300 mm case are shown 

in Figures 8.45 and 8.46 respectively. The mesh consisted of fifteen-noded cubic strain 

triangle elements and this problem was considered to be axis-symmetric. A sensitivity 

study of the size of the finite element mesh was carried out and it was found that the 

dimensions shown in Figure 8.46 kept the number of elements to a manageable size 

whilst also giving stable results. 
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Ticino sand, ξo = - 0.02 

London clay, OCR = 10 

300 mm 

1200 mm 

150 mm
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Figure 8.45. Layout of the pavement problem with 300 mm of sand 

 

1500 mm 

750 mm

 

Figure 8.46. Finite element mesh for the pavement problem with 300 mm of sand 

It is noted that the new parameter m was set equal to 2.0 for London clay in these 

analyses. The values of all other parameters are shown in Table 8.1. The three analyses 

carried out were stress-controlled. 
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8.6.2. Analysis of two layers pavement using CASM-c 

Figure 8.47 summarises all the results of the analysis of the two layered pavement 

problem where the vertical permanent deformation is plotted against the number of 

cycles of loading. It can be seen that the permanent deformation is a function of the 

thickness of the granular layer. The thicker the layer of sand is, the less deformation will 

occur. 
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Figure 8.47. Vertical deformation versus number of cycles for two layers pavement 

8.7. SUMMARY 

Some applications of CASM, CASM-b and CASM-c have been presented in this 

chapter. A variety of typical boundary value problems have been analysed and it has 

been shown that CASM and its extensions can satisfactorily model all the problems 

encountered. They have proven themselves to be very robust and useful tools for 

solving a wide range of practical geotechnical problems under different loading 

conditions. The following conclusions can be made: 

The analysis of the infinite length to diameter ratio (L/D=∞) pressuremeter has been 

carried out using CASM. The results have shown that the conventional total stress 
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analysis, which uses elastic perfectly plastic models, tends to overestimate the mobilised 

undrained shear strength of overconsolidated clays. The overestimation increases with 

the value of the overconsolidation ratio (OCR). It is therefore essential to adopt an 

effective stress analysis with a realistic soil model for solving undrained problems 

involving overconsolidated clays. 

The effect of the geometry on the interpretation of the pressuremeter test has been 

investigated using CASM. The conventional methods of pressuremeter analysis do not 

take into account the effect of the two-dimensional pressuremeter geometry and as a 

result, the undrained shear strength values derived from field tests can be significantly 

higher than the true value. The results have been presented as correction factors so that 

they may be directly applied to field test results to account for the geometry effects. It 

has been shown that the overconsolidation ratio has a significant effect on the 

overestimation of shear strength caused by neglecting the actual pressuremeter 

geometry. The strain range over which the shear strength is deduced also has some 

effects on the correction factors. A comparison of the results of this study with those of 

earlier studies using total stress analysis with perfectly plastic models has suggested that 

the overestimation predicted by critical state models was generally not as large as that 

predicted by elastic-perfectly plastic soil models. This is particularly true for heavily 

overconsolidated clays where OCR values are high. 

The analyses of surface rigid strip and circular footings resting upon undrained London 

clay and drained Ticino sand with different stress histories have been carried out using 

CASM and CASM-b. The results obtained from using an elastic perfectly plastic model 

for undrained clay have been shown to be only a special case of the results obtained 

from critical state models which use an effective stress approach. Strip and circular 

footings have been found to behave very similarly. However, the bearing capacity of a 

circular footing is slightly higher than that of a strip footing. The load displacement 

curves show that at a vertical displacement of 15% of the footing width (or diameter), 

the ultimate strength of the soil has not mobilised for heavily overconsolidated clays 

and dense sands. It has been also found that the bearing capacity of the footings was 

markedly dependent upon the stress history of the soil. CASM-b has given a more 

conservative bearing capacity for the strip footing because the soil is assumed to be 

softer inside the bounding surface in this model. 
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The problem of horizontal strip anchors in undrained London clay and drained Ticino 

sand has been analysed. It has been found that deep anchors and heavily 

overconsolidated soils required a relatively larger deformation in order to reach the 

collapse loads when compared to shallow anchors and lightly overconsolidated soils. It 

has also been found that the limit load of anchors was a function of both the stress 

history of the soil as well as the embedment ratio (H/D). 

CASM-c has been used to model the behaviour of a hypothetical pavement. The 

pavement consists of a layer of drained Ticino sand on top of a layer of drained London 

clay. The ability of CASM-c to predict the behaviour of both clay and sand under cyclic 

loading conditions has been illustrated. Three different thicknesses of the sand layer 

have been simulated. Permanent deformation of the pavement has been found to be a 

function of the thickness of the sand layer. The thicker the sand layer is, the less 

permanent deformation will occur. 

All the results in this chapter have been presented as design charts whenever possible so 

that they can be used in hand calculation designs. However, it should be noted that the 

main purpose of the analyses in this chapter is to illustrate the prediction capabilities of 

CASM and its extensions. Hence, more rigorous numerical analyses and comparisons 

with experimental data are needed before the results can be incorporated into any design 

guide. 
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CHAPTER 9  

CONCLUSIONS AND RECOMMENDATIONS 

9.1. SUMMARY AND CONCLUSIONS 

The work described in this thesis has three objectives: 

1. To incorporate a unified critical state model (CASM) into a finite element 

code. 

2. To extend CASM by incorporating a new non-linear elasticity rule, the 

combined hardening concept and the bounding surface plasticity theory. 

3. To evaluate and apply CASM and its extensions to analyse a variety of 

typical boundary value problems in geotechnical engineering. 

In the following sections, the conclusions that can be drawn from this research are 

summarised to demonstrate how these objectives were achieved. 

9.1.1. Finite element implementation of CASM into CRISP 

To evaluate its adequacy, CASM had to be implemented into a finite element code. A 

finite element package called CRISP (CRitical State soil mechanics Program) was 

chosen. This program was introduced mainly to incorporate the critical state type of 

constitutive models. 
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In Chapter 4, the process of incorporating CASM into CRISP was described. This 

included the formulation of the model in the three-dimensional stress space, computer 

implementation and verification of the model. The shapes of the yield and plastic 

potential surfaces in the deviatoric plane were chosen and justified using experimental 

and numerical evidence. 

CASM was validated by comparing its finite element results with a series of classical 

triaxial test results and also the finite element results obtained from the original Cam-

clay model. It was found that the predictions by CASM were consistently better than 

those from Cam-clay for normally and overconsolidated clays under both drained and 

undrained loading conditions. In particular, CASM has been found to be able to capture 

reasonably well the overall behaviour of overconsolidated clay and sand observed in the 

laboratory. 

9.1.2. New non-linear elasticity rule 

Also in Chapter 4, a new non-linear elastic rule used for clay materials proposed by 

Houlsby and Wroth (1991) was adopted for CASM and its extensions. This new rule 

provides a realistic variation of the shear modulus with pressure and the 

overconsolidation ratio. A second advantage is that the rigidity index (G/Su), which 

plays an important role in many geotechnical engineering analyses, can be expressed as 

a power function of the overconsolidation ratio. 

9.1.3. New combined volumetric-deviatoric hardening model, CASM-d 

In Chapter 5, a new combined volumetric-deviatoric hardening model called CASM-d 

was proposed. The new model assumes that the work of the deviatoric stresses also 

gives an additional contribution to hardening. A new parameter (α) was introduced and 

the new model can be reduced to the original CASM by setting α equal to zero. 

CASM-d was generalised into the three-dimensional stress space and then successfully 

implemented into CRISP. Its performance when analysing the triaxial tests was shown 

by its comparisons with results obtained from the original model CASM and 
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observational data. It was found that the deviatoric contribution from hardening made a 

profound difference on the performance of the new model. In particular, one very 

important behaviour of normally consolidated clays and loose sands can be predicted by 

CASM-d. This is the reappearance of the hardening behaviour once the material has 

softened. Experimental data was used to confirm this feature of soil behaviour. 

9.1.4. New bounding surface model, CASM-b 

In Chapter 6, a new model called CASM-b was proposed. It is formulated based on the 

bounding surface plasticity theory. Two new parameters (h and m) are introduced in the 

new model. A sensitivity study of the new parameters was carried out. The new features 

of this model only apply when analysing overconsolidated materials, CASM-b will give 

the same results as CASM when the soil is normally consolidated. 

The generalisation into the three-dimensional stress space and the implementation of 

CASM-b into CRISP were presented. The derivation of the hardening modulus was 

described in detail because this is the most important new feature of CASM-b. 

Simulations of the triaxial tests on overconsolidated clays and sands were carried out to 

validate and assess the performance of CASM-b. It was found that CASM-b gave better 

predictions than those predicted by CASM and other traditional elastic-plastic models 

when the stress state of the soil is inside the bounding surface. This was achieved due to 

the fact that there was not a sudden change from the elastic to plastic behaviour of the 

soil in CASM-b. In other words, CASM-b could smooth the stress-strain curves to give 

more realistic predictions of soil behaviour. 

9.1.5. New cyclic bounding surface model, CASM-c 

In Chapter 7, a new cyclic bounding surface model called CASM-c was proposed. The 

bounding surface model in Chapter 6 was extended further to give CASM-c. The new 

important feature of CASM-c is its ability to model soil behaviour under cyclic loading 

conditions. For static loading conditions, CASM-c gives the same results as CASM-b. 

When compared to CASM-b, there are three extra parameters (HU, HU and k) introduced 

in this new model, these are used to control the unloading behaviour, the reloading 
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behaviour and the shakedown behaviour of the soil. A parametric study of the three new 

parameters was carried out. It was found that CASM-b was very flexible in predicting 

the behaviour of soil. 

The new model was generalised into the three-dimensional stress space and then 

successfully implemented into CRISP. Three sets of cyclic triaxial tests were used to 

compare with the simulation results predicted by CASM-c. The tests were chosen so 

that CASM-c could be validated and its performance could be assessed by a variety of 

materials under different cyclic loading conditions. It was found that CASM-c could 

satisfactorily predict the overall behaviour of both clay and sand under different cyclic 

loading conditions. 

9.1.6. Applications of CASM, CASM-b and CASM-c to boundary value problems 

In Chapter 8, some applications of CASM, CASM-b and CASM-c were presented. A 

variety of problems were analysed, namely the analysis of the pressuremeter test, 

surface rigid strip and circular footings, horizontal strip anchors and a pavement under 

cyclic loading. It was shown that CASM and its extensions can satisfactorily model all 

the practical problems encountered. They proved themselves to be very robust and 

useful tools for solving a wide range of practical geotechnical problems under different 

loading conditions. 

By using the effective stress analysis approach, the effect of stress history on the 

behaviour of soils under both drained and undrained loading conditions was 

investigated with deep interest. It was found that the stress history of the soil had a 

significant effect on the computed solutions of all the problems analysed. Such an effect 

cannot be easily taken into account using a total stress formulation analysis. 

 

 

 

168 



  

9.2. RECOMMENDATIONS FOR FUTURE WORK 

The numerical examples presented in this study have demonstrated the very good 

predictive capabilities of CASM and its extensions for various aspects of soil behaviour. 

However, detailed parametric, laboratory and field studies are still required before the 

general validity of these models can be fully established. 

9.2.1. Further modifications 

CASM-d in Chapter 5 needs to be modified so that the critical state can be reached. One 

way of doing this is to make an assumption about the dependence of the new parameter 

α upon the state of the soil. By assuming that α decays towards zero as the stress ratio 

approaches the M value, the size of the yield surface will stop increasing at failure and 

therefore a critical state for the soil could be reached. The following expression of the 

hardening law could be used to overcome this problem (Liu, 2004): 
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In Chapter 6, new relationships between the hardening modulus at the current stress 

point inside the bounding surface (H) and the hardening modulus at its image stress 

point on the bounding surface (Hj) should be studied more carefully. The currently used 

relationship needs two new parameters in order to function, this could be reduced to 

one. A new good relationship will help the predictive capability of the model inside the 

bounding surface significantly. 

A few modifications could be done to improve the cyclic model (CASM-c) in Chapter 

7. The model currently needs three new parameters (HU, HR and k). Future studies 

should be focused on reducing this to two or one parameter. The theoretical derivations 

of these new parameters should be also obtained. At the moment, the new parameters 

are chosen arbitrarily to fit the triaxial observational data and then the chosen 

parameters are implemented into the finite element program to solve boundary value 

problems. Efforts should be made to understand the nature of these parameters so that 

they may be directly measured in the laboratory or correlated to other measurable 
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parameters. Finally, other improved definitions of the hardening modulus for different 

load cases could be studied based on the constraints set out by the bounding surface 

plasticity theory. 

9.2.2. New flow rules 

It is shown in section 7.3.2.1 that the current flow rule which follows the stress-

dilatancy relation by Rowe (1962) does not accurately predict the behaviour of all types 

of materials (Speswhite kaolin in this case). Hence, it is felt that for CASM, new more 

flexible flow rules are needed. Yu (2003) has proposed a new simple stress-dilatancy 

relation: 
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where n is the familiar CASM parameter and c is a quantity which can be analytically 

derived from other basic parameters. 

It is interesting to note that the original Cam-clay flow rule can be reduced from this 

new flow rule by having n=1 and c=1 and also the modified Cam-clay flow rule can be 

obtained by substituting n=2 and c=2 into equation 9.2. By integrating equation 9.2 we 

will obtain the following new expression for the plastic potential: 
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The next steps are to generalise equation 9.3 into the three-dimensional stress space and 

then implement it into a finite element program. It is believed that these new flow rules 

will significantly improve the performance of CASM due to its generality and 

flexibility. 
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9.2.3. Incorporation of the kinematic hardening plasticity theory into CASM 

It was mentioned in the literature review that bounding surface theory is only one of two 

major developments in the field of constitutive modelling over the last 35 years. The 

other is the kinematic hardening plasticity theory or multi-surface theory which was 

first introduced by Mroz (1967) and Iwan (1967). This concept is much more 

complicated than the bounding surface concept both mathematically and numerically. 

However, some very important behaviours of soils can only be reproduced by this type 

of models; for example, the capability to model both anisotropy and the effect of the 

stress history of the soil. 

Some initial work has been done to incorporate the kinematic hardening concept into 

CASM. The new model, called CASM-k, has been proposed and generalised into the 

three-dimensional stress space. The formulations for this new model can be found in 

Appendix B. However, due to the constraint of time and some numerical difficulties 

encountered, CASM-k has not been validated. Therefore, work on this model should be 

carried out in future studies. 
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APPENDIX A. MATERIAL CONSTANTS 

The following table lists the model constants of all the soils used for analyses in this 

thesis. The soils are very common and their properties and behaviour are readily 

available in the literature. Critical state constants for these soils are adopted from the 

literature. Other constants for use in CASM and its extensions are typical values chosen 

by the author. 

 M λ κ µ Γ n r h m HU HR k 

London clay 0.89 0.161 0.062 0.3 2.759 2.0 2.718 5.0 varies 0.15 0.05 5.0 

Weald clay 0.9 0.093 0.025 0.3 2.06 4.5 2.718 5.0 1.5 N/A N/A N/A 

Speswhite 
kaolin clay 

0.86 0.19 0.03 0.3 3.056 2.0 2.718 5.0 1.0 0.15 0.5 30 

Li&Meissner 
clay 

0.772 0.173 0.034 0.3 2.06 2.0 2.718 5.0 1.0 0.3 0.1 varies

Ticino sand 1.3 0.04 0.01 0.3 1.986 2.0 4.0 30.0 3.0 0.5 0.1 20.0 

Erksak sand 1.2 0.0135 0.005 0.3 1.8167 4.0 6792 10.0 2.0 N/A N/A N/A 

Ottawa sand 1.19 0.0168 0.005 0.3 2.06 3.0 varies N/A N/A N/A N/A N/A 

Fuji river 
sand 

1.5 0.12 0.01 0.3 1.467 4.5 10.0 5.0 1.0 0.4 0.3 varies

Table A.1. Material constants 
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APPENDIX B. PROPOSED TRIAXIAL FORMULATIONS FOR CASM-k 

B.1. Bounding surface 
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where: 

S (≤ 1) Size ratio between the yield surface and the bounding surface at 

initial stress. When S is equal to 1, CASM is recovered. 

Yield
Surface

Bounding
Surface

 pα 

 qα 

 po 

 

Figure B.1. Bounding surface and yield surface of CASM-k 
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B.3. Plastic potential 

( ) ( ) ( ) 






 −
−−







 +
++−=

'
'3ln3

'
'32ln23ln'ln3),(

p
qpM

p
pqMpMG ββσ  (B.4) 

 

B.4. Elastic properties 

Inside the yield surface, the material is assumed to be the same as the standard Cam-

clay models. 

B.5. Translation rules 

The translation of the yield surface is assumed to be separated into two components. 

The first part is associated with change in stress state which necessitates an alteration in 

the position of the yield surface in order to ensure that the stress point still lies on the 

yield surface. The second is associated with the simultaneous change in geometry of the 

yield and bounding surfaces. 

δ   

C  (p,q)   

D  (p j ,q j )   

 

Figure B.2. Translation rules of CASM-k 

The yield surface moves such that it translates within the bounding surface, following 

the rule that guarantees the yield and bounding surface can touch at a common tangent, 

but never intersect. This rule states the yield surface should move along a vector β, 
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which joins the current stress state, C(p,q) to its conjugate point on the bounding 

surface, D(pj,qj). Both points C and D have the same direction of the outward normal. 
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where A is a scalar quantity to be determined once the full expression for the translation 

rule is obtained. 

We have 

( ) ( )qpqp jj ,',' −=β      (B.6) 

Because the points C and D have the same outward normal, the lines from these points 

to the origins (0,0) and (p'α,qα), respectively, have the same slopes. Hence, from 

geometry: 
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−
−

−
−

=
q

S
qq

p
S
pp

α

α

β
'''

     (B.8) 

Hence, 

















−
−

−
−

×=








q
S
qq

p
S
pp

A
q
p

α

α

α

α

δ
δ '''

'
    (B.9) 

The second part of the translation of the yield surface represents the entire translation 

when the yield and bounding surfaces are in contact at the current stress point. In this 

case vector β is equal to zero. The translation of (p'α,qα) by an amount (δp'α,δqα) is 

related to the expansion of the bounding surface δqo as the following expression: 
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Hence, the full expression for the translation rule become: 
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Consistency condition states that: 
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B.6. Hardening rules 
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where: 

h The new material constant (similar to CASM-b) 

δ The distance between the current stress point and the conjugate point 

(|CD| in Figure B.2). 

m A new material constant for CASM-k 

B.7. First derivatives of yield surfaces 
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