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Abstract

Within the �eld of hydraulics there is a growing trend towards the use of computer

based models, which have proven to be an invaluable tool in engineering. A

range of commercial packages is available which encompass di�erent mathematical

models and a variety of solution strategies.

A number of problems can be identi�ed with the software currently available,

and as a result, research continues into developing better numerical techniques

for computational hydraulics. The issues most often addressed by researchers

consider the application of faster and more accurate numerical methods, many

of which were originally developed for gas dynamics problems. There has been a

growing trend in favour of Riemann based methods constructed within the �nite

volume framework. Such methods are noted for their good conservation and shock

capturing capabilities. However, the computational cost of employing theses al-

gorithms can lead to excessively long run times, particularly when higher order

mathematical models are used. This often is as a result of stability constraints

placed upon explicit schemes, which require the smallest possible time step per-

mitted throughout the grid, to be applied globally. One possibility for improving

this situation is to use local time stepping, whereby individual cells are advanced

by their own maximum allowable time steps. To incorporate this concept into

a transient model requires the development of a suitable integration strategy, to

ensure that the solution remains accurate in time. Two such strategies developed

for the Euler equations are considered within this thesis for application to the

Saint Venant equations of open channel ow. Both techniques have been demon-

strated to reduce run times and improve the quality of solutions in the regions

of discontinuities. The investigation considers the the �rst order scheme of Roe,

together with a second order extension constructed using a ux limiter approach.

The e�ects of using an upwind based source term treatment, speci�cally devel-

oped for Roe's scheme, are also considered, and the source term calculations are

incorporated into the LTS framework. Results are presented for a series of steady

state and transient test cases, which illustrate how local time stepping can lead to

reduced run times and improved solution accuracy. The results also highlight the

bene�ts of using an upwind source term treatment, particularly when variations

in the channel geometry occur.



Notation

A cross sectional area, Jacobian matrix of the ux vector

B channel width at the free surface level

C+ forward characteristic

C� backward characteristic

F ux vector

Fi+=12 discrete approximation to the ux at the cell interfaces

Fr Froude number

G ux vector

G Jacobian matrix of the source term vector

H total depth or surface elevation

I1 hydrostatic pressure term

I2 pressure term due to width variations

L left state

P wetted perimeter

Q discharge

R source term vector

Ri discrete approximation to the sources for cell i

R hydraulic radius

Sf friction term due to the bed's roughness

S0 friction term due to the bed's slope

U vector of conserved variables (for homogeneous conservation laws)

Ui discrete solution vector for cell i

a speed of a scalar conservation law

b bed width

c wave celerity

e vector of eigenvalues of the Jacobian matrix

f ux of a scalar conservation law

g acceleration due to gravity

h water depth

m temporal index for LTS2 algorithm

n Manning's n

r argument for ux limiter function

t time
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u velocity component in the x direction

v velocity component in the y direction

x coordinate direction, distance along the channel

y coordinate direction, surface elevation or total depth

z coordinate direction, bed level

� wave strength from Roe's decomposition

�t time step

�x spatial step

�t minimum permissible time step throughout the grid

� depth integration variable

� mesh ratio, wave speed from Roe's decomposition

� Courant or CFL number

� density

� channel width at a given depth

� elevation � acceleration due to gravity (gH), ux limiter
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Chapter 1

Introduction

Computational Fluid Dynamics or CFD is a valuable tool for hydraulic engineers.

Its use enables detailed predictions to be made about what the ow will be for

a particular watercourse under certain conditions, without the need to take �eld

measurements which can be time consuming and expensive. On a global scale,

what happens within rivers and the sea has a fundamental impact on the envi-

ronment and society, and anything which may a�ect the natural balance is of

particular concern. Within the hydraulics community most applications of CFD

focus on assessing the environmental impacts of speci�c projects. The applica-

tions of hydraulics are extremely diverse. Typical applications are studies in-

volving dam break failures, ood alleviation schemes, morphological predictions,

sediment transport and river rehabilitation.

The demand for e�cient and accurate software that can deal with the problems

faced by hydraulic engineers has lead to numerous commercial hydraulics pack-

ages appearing in the marketplace. In the past some of the more sophisticated

software available required the use of powerful computers and long run times, as

a result of the level of complexity involved. However this situation is improv-

ing with advances in computer hardware. In addition several other areas can be

identi�ed where numerical techniques encounter di�culties when applied to open

channel ow problems. Firstly the highly irregular geometries of natural rivers

can lead to problems in producing a computational grid to represent the struc-

ture. The occurrence of mixed regions of ow, for example at hydraulic jumps

where a supercritical to subcritical transition takes place, leads to problems for

some numerical methods resulting in either poor results or failure to produce a
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CHAPTER 1. INTRODUCTION 2

solution. All numerical methods are subject to stability constraints which restrict

the values allowed for the time step for a given grid. For explicit schemes, this

can result in the need to use very small time steps which can be computationally

expensive. Implicit schemes overcome this di�culty but at the expense of more

complex algorithms. To improve this situation, better numerical techniques are

needed for solving the equations which govern open channel ow.

Similar problems to those described above have been encountered in other areas

where CFD is applied. Much of the knowledge that has been gained about the

application of numerical techniques to open channel ow originated from the aero-

nautics industry, where many of the pioneering algorithms were developed. There

are still some ideas left to be exploited from other �elds that have not yet been

considered for channel ow, which may resolve some of the present di�culties.

In terms of improving the `classical' methods which were originally applied to

channel ows, the current trend is towards numerical schemes which base their

solution on solving a series of Riemann problems. Such methods have a number

of desirable properties, most noticeably the ability to predict discontinuities in

the solution due to the presence of ow transitions, and so were chosen as a focal

point for this thesis.

In any modelling situation, the basis for forming a more complex model is to

begin with a simpler concept and to extend the ideas within it to include addi-

tional information. A number of mathematical models exist that are suitable for

modelling open channel ows, ranging from the 1-d Saint Venant equations to

the 3-d Navier-Stokes equations. All are based on the same underlying physics

and the most suitable choice for a particular problem will depend on the actual

problem being considered and the requirements of the solution, in particular what

it is hoped to be achieved from the study. For the purpose of investigating ways

to improve e�ciency and reduce run times, the 1-d Saint Venant equations have

been considered within the thesis, as a means to illustrate the ideas being pre-

sented. Although the Saint Venant equations are relatively simple compared to

more sophisticated models such as the Navier-Stokes equations, they are never-

theless capable of predicting enough information to be of practical use and some

of the popular commercial packages (such as ISIS which is the UK industry stan-

dard) are based on solving the 1-d system. In most instances the type of problems

to which the Saint Venant equations may be applied do not result in exceptional

computer costs and hence there may be limited enthusiasm for considering `faster'

methods for such ows. However it is hoped that the ideas presented herein could
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be extended to more complex systems where reducing run times would be a prac-

tical bene�t and serve to pro�t the end user. From a validation prospective, a

number of standard test cases exist for the Saint Venant equations where ana-

lytical solutions are known for particular problems, and these act as a means of

comparing one numerical method to another. Although such problems tend to be

quite simple and not of practical interest to engineers, they are able to illustrate

where particular methods will perform well or fail, and form an essential part of

the development process.

In an attempt to address some of the existing problems within the computational

hydraulics �eld, the main objective of this project is to develop ways of reducing

computer run times whilst maintaining (or improving upon) the same level of

accuracy as achievable by a particular scheme. An idea which has been successfully

implemented elsewhere is that of local time stepping (LTS), whereby di�erent cells

throughout the domain are advanced to di�erent points in time. This technique is

especially suited to steady state problems where it is not necessary to maintain all

of the cells at the same temporal level. However much less consideration has been

given to the idea of time accurate local time stepping schemes for unsteady ows

as the e�ort involved in ensuring that the cells are integrated in a suitable order

can outweigh the potential bene�ts if not performed e�ectively. Within this thesis,

two such algorithms developed for aeronautics will be presented and applied to a

number of open channel ows problems, which will highlight the bene�ts of using

such a technique. In addition, the bene�ts of employing an upwind based source

term treatment over the conventional pointwise approach will also be investigated.

The thesis now goes on to introduce the 1-d Saint Venant equations and explain

how they may be derived. Chapter 3 consists of an introduction to the solu-

tion methods of di�erential equations, followed by a more in depth look at the

techniques available for conservation laws. Subsequently a review is made of the

application of numerical methods to open channel ow problems, demonstrating

what has been achieved so far. The next chapter then gives more detail on the

Roe Riemann solver and discusses the implementation of boundary conditions and

the construction of the upwind source term treatment. In Chapter 5, the concept

of local time stepping is introduced, together with some extensions of the upwind

source term treatment. This is followed by results for a series of test cases in

Chapter 6. Finally Chapter 7 summarises the project and presents the conclu-

sions of the study, in addition to giving some ideas on how this work might be

extended.



Chapter 2

Mathematical Model

A number of mathematical models are available that have been developed to de-

scribe uid ow, the most general of which are the Navier-Stokes equations used to

predict the behaviour of a viscous compressible uid in three dimensions. In prac-

tice when forming a mathematical model, many assumptions are made to simplify

the problem under consideration, and the most basic equations that will capture

the required phenomena are used. In open channel ow the most commonly used

models fall under the classi�cation of shallow water equations, in which it is as-

sumed that the ow is shallow relative to the dimensions of the problem being

considered. As with all uid ow models, the basis for forming a shallow water

model is to form a continuity equation, corresponding to conservation of mass,

and to apply the laws governing classical physics which leads to an equation of

motion. Depending on the construction, such equations can often be written as

conservation laws representing the conservation of a particular quantity such as

momentum or energy. Additional terms may be incorporated to include other

e�ects such as friction, geometry variation, viscosity etc. and these are referred to

as the source terms which generally correspond to some form of loss or gain from

the system.

In the case of modelling predominantly one-dimensional ows, the Saint Venant

equations are the most commonly used system for solving open channel ow prob-

lems, and these describe the gradually varied ow of an incompressible inviscid

uid. The equations consist of a continuity or mass equation, and an equation

of motion which is formed by applying Newton's Second law of motion along the

channel.
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CHAPTER 2. MATHEMATICAL MODEL 5

A number of fundamental assumptions are inherent within the model and these

can be summarised as

� The ow is one-dimensional such that the velocity is constant over a cross

section and the water level is horizontal

� the vertical component of the acceleration of the uid is negligible so that

the pressure variation with depth is hydrostatic (equivalent to saying that

the streamline curvature is small)

� friction and turbulence can be represented using the same empirical laws

that govern steady state ow (such as Manning's equation)

� the bed slope is small resulting in the cosine of the angle between the bed

level and the horizontal being approximately unity.

A more complex system of equations known as the Boussinesq equations exist

to describe the motion of rapidly varied ows, where the e�ects of the vertical

acceleration are signi�cant and are included by assuming that the magnitude of

the vertical velocity increases linearly from zero at the bed to a maximum value

at the free surface (see [1] for details). By setting the acceleration terms in this

system to zero, the Saint Venant equations are reproduced.

2.1 Derivation of the Saint Venant equations

The Saint Venant equations appear in many forms in the literature and can either

be written as a set of integral or di�erential equations. The following derivation

is taken from a book written by Cunge et al [12] and applies to an arbitrarily

shaped channel such as that shown in Figure 2.1.

Consider a control volume in the (x; t) plane between two cross sections x1 and

x2 and between the times t1 and t2 as shown in Figure 2.2. Let A be the area of a

wetted cross section and u be the uniform cross sectional velocity. Then the mass

ow rate (density�discharge) into the control volume is de�ned as (�uA)x1 and

the rate leaving the region will be (�uA)x2, where � is the uid density. To �nd

the net mass inow in to the control volume, the di�erence of the mass ow rates
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Figure 2.1: Typical cross section [12].
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Figure 2.2: Control volume, section view [12].
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Figure 2.3: Pressure forces, plan view [12].

is integrated between the times t1 and t2, i.e.Z
t2

t1

[(�uA)x1 � (�uA)x2] dt: (2.1)

From conservation of mass, the net inow must be equal to the change in storage

between x1 and x2 over the time interval which is given byZ
x2

x1

[(�A)t2 � (�A)t1] dx: (2.2)

Substituting Q = uA where Q is the discharge and assuming that the density is

constant, equating (2.1) and (2.2) then gives

Z
x2

x1

[(A)t2 � (A)t1] dx+
Z

t2

t1

[(Q)x2 � (Q)x1] dt = 0 (2.3)

which is the integral form of the continuity equation for a channel of arbitrary

cross section.

For the second equation, applying Newton's second law of motion implies that the

change in momentum of the control volume over the time interval must be equal

to the sum of the net inow of momentumwithin the region and the integral with

respect to time of the external forces acting upon it. As momentum is the product

of mass and velocity, and momentum ux is given by the mass ow rate times the

velocity, and is de�ned as

momentum ux = �uA� u = �u2A:
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The net momentum ux is the di�erence between ux entering and leaving the

control volume and so the net inow over the time interval becomes

Mf =
Z

t2

t1

[(�u2A)x1 � (�u2A)x2] dt: (2.4)

At a particular time, the momentum within the control volume will be given byZ
x2

x1

�uA dx

and so the net increase, �M , over the time interval is

�M =
Z

x2

x1

[(�uA)t2 � (�uA)t1] dx: (2.5)

From Figure 2.2 and Figure 2.3, consider the only important external forces act-

ing upon the control volume in the x-direction to be as a result from pressure,

gravity and frictional resistance. The resulting pressure force, Fp1
is given by the

di�erences between the pressure forces F �

p1
and F ��

p1
which act at the boundaries.

By applying the hydrostatic pressure assumption, the pressure force F �

p1
can be

de�ned by

F �

p1
= g

Z
h(x)

0
�[h(x)� �]�(x; �) d�

where � is a depth integration variable, h(x; t) is the water depth, and �(x; �) is

the width of the cross section at a depth � such that �(x; h) = B(x) at the free

surface. Hence the time integral of the net pressure force, Fp1
becomes

Z
t2

t1

Fp1
dt =

Z
t2

t1

(F �

p1
� F ��

p1
) dt = g

Z
t2

t1

[(�I1)x1 � (�I1)x2] dt (2.6)

where for convenience I1 is de�ned as

I1 =
Z

h(x)

0
[h(x)� �]�(x; �) d�:

Consider an in�nitesimal length of channel, dx. The increase in pressure force due

to a change in width is given by the corresponding increase in the wetted area,

d� � d� (for constant depth h0), times the distance of the centroid from the free

surface h(x)� �, i.e.

�g

" 
@�

@x

!
dx � d�

#
h=h0

[h(x)� �]:

To calculate the the total instantaneous force on the control volume, this force is

integrated between � = 0 and � = h(x) for a given cross section, and from x1 to

x2, giving

Fp2
=
Z

x2

x1

�g

Z
h(x)

0
[h(x)� �]

"
@�(x; �)

@x

#
h0

d� dx:
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To �nd the total force over the time interval, Fp2
is integrated between t1 and t2

and can be written as Z
t2

t1

Fp2
dt = g

Z
t2

t1

Z
x2

x1

�I2 dx dt (2.7)

where

I2 =
Z

h(x)

0
(h� �)

"
@�

@x

#
h=h0

d�:

The gravity force, Fg can be found by assuming that the channel slope is small

such that

S0 = �@z
@x

= tan� � sin�

where z is the bed level above some datum. Over the time interval, the total

contribution from the gravity force will beZ
t2

t1

Fg dt =
Z

t2

t1

Z
x2

x1

�gAS0 dx dt: (2.8)

The frictional resistance, Ff is as a result of shear along the channel bed and

banks and can be expressed in terms of the friction slope, Sf (see [11] for details).

The shear force per unit length of channel is then de�ned by �gASf and the time

integral of the friction force then becomesZ
t2

t1

Ff dt =
Z

t2

t1

Z
x2

x1

�gASf dx dt: (2.9)

From conservation of momentum, the change in momentum, �M is equal to the

the sum of the net gain of momentum,Mf and the external forces, thus

�M =Mf +
Z

t2

t1

Fp1
dt+

Z
t2

t1

Fp2
dt+

Z
t2

t1

Fgdt�
Z

t2

t1

Ff dt

Hence from equations (2.4) to (2.9), and by assuming that the density is constant,

this then leads to the standard from of the integral version of the momentum

equationZ
x2

x1

[(uA)t2 � (uA)t1] dx =
Z

t2

t1

[(u2A)x1 � (u2A)x2] dt+ g

Z
t2

t1

[(I1)x1 � (I1)x2] dt

�g
Z

t2

t1

Z
x2

x1

I2 dx dt+ g
Z

t2

t1

Z
x2

x1

A(S0 � Sf) dx dt:

Alternatively, the terms containing A and Q may be rewritten using the relation-

ship Q = uA to giveZ
x2

x1

h
(Q)

t2
� (Q)

t1

i
dx =

Z
t2

t1

" 
Q2

A

!
x1

�
 
Q2

A

!
x2

#
dt+ g

Z
t2

t1

h
(I1)x1 � (I1)x2

i
dt

�g
Z

t2

t1

Z
x2

x1

I2 dx dt+ g

Z
t2

t1

Z
x2

x1

A (S0 � Sf ) dx dt:

(2.10)
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In most instances the di�erential form of the Saint Venant equations are quoted

and these may be obtained from the integral from by assuming that the ow

variables are continuous and di�erentiable and that the distance x2� x1 becomes

in�nitely small. Then by applying Taylor series expansion, A and Q at t2 can be

written as

(A)t2 = (A)t1 +
@A

@t
�t+

@2A

@t2
�t2

2
+ :::

(Q)t2 = (Q)t1 +
@Q

@t
�t+

@2Q

@t2
�t2

2
+ :::

(2.11)

Disregarding the second order and higher terms in (2.11), and taking the limit as

�t and �x vanish to zero leads to the following

lim
t2!t1

Z
x2

x1

[(A)t2 � (A)t1]dx =
Z

x2

x1

Z
t2

t1

@A

@t
dt dx

lim
t2!t1

Z
x2

x1

[(Q)t2 � (Q)t1]dx =
Z

x2

x1

Z
t2

t1

@Q

@t
dt dx

and so the continuity equation may be rewritten as

Z
x2

x1

Z
t2

t1

"
@A

@t
+
@Q

@x

#
dt dx = 0: (2.12)

Applying Taylor series to the other terms in (2.10) gives

(Q2=A)x2 � (Q2A)x1 =
@(Q2=A)

@x
�x+

@2(Q2=A)

@x2
�x2

2
+ :::

(I1)x2 � (I1)x1 =
@I1

@x
�x+

@2I1

@x2
�x2

2
+ :::

(2.13)

By using only the �rst order terms in (2.13) and taking the limit as �x and �t

tend to zero, equation (2.10) can then be written as

Z
x2

x1

Z
t2

t1

"
@Q

@t
+
@(Q2=A)

@x

#
dt dx = �g

Z
x2

x1

Z
t2

t1

"
@I1

@x
� I2 �A(S0 � Sf )

#
dt dx:

(2.14)

As (2.12) and (2.14) must hold for throughout the region, they can be replaced

by the di�erential equations

@A

@t
+
@Q

@x
= 0

@Q

@t
+

@

@x

 
Q2

A
+ gI1

!
= gA(S0 � Sf ) + gI2;

(2.15)
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which together form the di�erential version of the Saint Venant equations. Alter-

natively the momentum equation is sometimes written in the form

@Q

@t
+

@

@x
(uQ) + gA

 
@h

@x
� So

!
+ gASf = 0

and this is referred to as the dynamic equation.

Although the above equations are written for an arbitrarily shape cross section,

the range of conditions over which the equations remain valid is constrained by

the Saint Venant hypothesis, and the assumptions made within the derivation

must be borne in mind when a suitable model for a particular problem is being

sought.

2.2 Alternative formulations

There are other ways of representing the Saint Venant equations which are based

upon the same hypothesis but are expressed in terms of a di�erent set of dependent

variables. Equations (2.15) are known as the divergent form and represent a

system of conservation laws. In general most texts only refer to the equations for

a prismatic rectangular channel for which the I1 term simpli�es to I1 = A2=2b and

I2 is zero. Some of the more commonly used alternatives [12] for general cross

sections are presented as

1. Using Q and h
@h

@t
+

1

B

@Q

@x
= 0

@Q

@t
+

@

@x

 
Q2

A

!
+ gA

@h

@x
+ gA(Sf � So) = 0

2. Using Q and y, where y is the surface elevation (y = h+ z)

@y

@t
+

1

B

@Q

@x
= 0

@Q

@t
+

@

@x

 
Q2

A

!
+ gA

@y

@x
+ gASf = 0
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3. Using u and h

@h

@t
+
A

B

@u

@x
+ u

@h

@x
+
u

B

 
@A

@x

!
h=const

= 0

@u

@t
+ u

@u

@x
+ g

@h

@x
+ g(Sf � So) = 0

(2.16)

4. Using u and y

@y

@t
+
A

B

@u

@x
+ u

 
@y

@x
+ So

!
+
u

B

 
@A

@x

!
y=const

= 0

@u

@t
+ u

@u

@x
+ g

@y

@x
+ gSf = 0:

Depending on the particular problem being considered and the numerical tech-

nique being used, it may be more appropriate to deal with one particular form

of the equations than another. If all the variables are at least once di�erentiable

then all the sets of equations are equivalent. However, only the divergent form

formulated in terms of A and Q may be expressed in conservation form for non-

rectangular channels and consequently may be more conveniently written in vector

form as

Ut + Fx = R (2.17)

where

U = (A;Q)T ; F = (Q;
Q2

A
+ gI1)

T

and

R = (0; gI2 + gA(So � Sf))
T :

Mathematically (2.17) represents a system of conservation laws with source terms

which in this case result from the friction terms and irregularities in the channels

geometry. The vector U is known as the vector of conserved variables, whilst F is

the ux vector and R is the source term vector. To be able to apply a Riemann

based method to any set of equations it is necessary to be able to express the

system in conservation form and so for this reason the divergent form of the Saint

Venant equations will be used throughout this thesis.

For more complex geometries where the ow conditions require a two dimensional

treatment, a more general form of shallow water equations can be used. These
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equations are based on the same hypotheses as the 1-d form with the exception

that the transverse velocity and water level may vary within a cross section.

Generally the 2-d forms are not quoted in text books, however various formulations

are found in scienti�c and engineering journals. One of the more common forms

of the equations encountered within the literature is written as

Ut + Fx +Gy = R

with the vectors de�ned by

U =

0
BB@

�

�u

�v

1
CCA ;F =

0
BB@

�u

�u2 + 1
2
�2

�uv

1
CCA ;G =

0
BB@

�v

�uv

�v2 + 1
2
�2

1
CCA ;R =

0
BB@

0

g�(Sox � Sfx)

g�(Soy � Sfy)

1
CCA :

The term � is de�ned by � = gH where H is the total depth of the uid or

elevation (i.e. H = y = h+ z) and the friction terms are now

Sox = �@z
@x
; Soy = �@z

@y

and

Sfx =
n2u

p
u2 + v2

(�=g)4=3
; Sfy =

n2v
p
u2 + v2

(�=g)4=3
:

Alternatively the system can be written using U = (h; hu; hv)T whereby

F =

0
BB@

hu

hu2 + 1
2
gh2

huv

1
CCA ;G =

0
BB@

hv

huv

hv2 + 1
2
gh2

1
CCA ;R =

0
BB@

0

gh(Sox � Sfx)

gh(Soy � Sfy)

1
CCA

where Sfx and Sfy are given by

Sfx =
n2u

p
u2 + v2

(h)4=3
; Sfy =

n2v
p
u2 + v2

(h)4=3
;

or in terms of the primitive variables with U = (h; u; v)T and

F =

0
BB@

hu

gh + 1
2
u2

uv

1
CCA ;G =

0
BB@

hv

uv

gh+ 1
2
v2

1
CCA ;R =

0
BB@

0

g(Sox � Sfx)

g(Soy � Sfy)

1
CCA

where the friction terms are the same as before.



Chapter 3

Literature Review

This chapter contains an overview of the background information and scienti�c

literature relevant to the thesis. The review is broken down into two sections. The

�rst section deals with solution methods for di�erential equations and introduces

the method of characteristics and some of the fundamental concepts of numerical

methods. A more detailed account of the numerical techniques available for solv-

ing problems based upon conservation laws is then given. In the second section,

the application of numerical methods to open channel ow is considered, outlining

what has been accomplished within the �eld of computational hydraulics. Partic-

ular emphasis is given to work based on using Riemann solvers and an improved

source term treatment, in addition to identifying suitable test cases for the Saint

Venant equations throughout the review.

3.1 Solution techniques for PDE's

In this section a review is made of some of the analytical and numerical methods

available for solving PDE's. However it is important to note that PDE's fall

into several categories and some methods may only be applied to certain types of

equations. The three classi�cations are hyperbolic, elliptic and parabolic. As the

Saint Venant equations fall into the classi�cation of hyperbolic PDE's, the main

focus will be on methods suitable for solving hyperbolic equations.

For a more detailed analysis of PDE theory and numerical solution methods see

Ames [5]. A range of text books discuss the use of numerical methods to solve

14
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general uid ow problems (e.g. [19], [34] and [49]) and Cunge, Holly and Verwey

[12] is a particularly useful text as it focuses on computational river hydraulics as

does Abbott [1].

3.1.1 Analytical methods

Prior to the development of computers and their application to CFD, analytical

techniques had to be used to solve PDE's. However their application to anything

but the most simplest of problems could be quite cumbersome and require exten-

sive hand computation. One particular method suited to solving problems based

on conservation laws is known as the method of characteristics. This technique is

still used today, most commonly as a semi-graphical method and also as a means

to generate alternative di�erential equations. The underlying principles of the

method of characteristics form the basis for many numerical schemes and so a

description of the technique is included here. The following section is based on

material taken from [41] and [61].

The method of characteristics

The method of characteristics can only be applied to hyperbolic PDE's and in-

volves de�ning the characteristics along which disturbances propagate [12]. Char-

acteristics can be thought of as lines in the space-time plane, along which (by

de�nition) certain properties are constant. To illustrate the basis of the method,

consider a �rst order PDE of the form

ut + a(x; t)ux = 0

with the initial data u(x; 0) = u0(x). By the chain rule

du

dt
= ut +

dx

dt
ux (3.1)

and rearrangement gives

ut =
du

dt
� dx

dt
ux:

Substituting the above expression for ut into (3.1) then yields

du

dt
+

 
a(x; t)� dx

dt

!
ux = 0: (3.2)
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x=x x=x1 2

x

t

t=0

Figure 3.1: Characteristics over a �nite domain.

From (3.2) it can be seen that du=dt = 0 along the lines de�ned by dx=dt =

a(x; t), which implies that the solution u is constant along these lines known as

the characteristics. In principle if one can de�ne a set of characteristic lines then it

is possible to know the solution at all times (providing the lines do not intercept)

just from the initial and boundary conditions of the problem. Mathematically

this is equivalent to saying

u(x; t) = u(x�
Z

t

0
a(x; t) dt; 0):

If the method is applied over a �nite region (see Figure 3.1), then it is necessary to

specify the values along any boundary where the characteristics enter the region.

For example in Figure 3.1 boundary data is needed along the line x = x1, however

data is not needed along x = x2 as the characteristics leaving the region already

have values speci�ed on them.

The same principles can be applied to the case

ut + a(u)ux = 0

where if f 0(u) = a(u) then

ut + f(u)x = 0

which is a scalar conservation law. Now the characteristics are given by

dx

dt
= a(u):

If u is constant along the characteristics so too is a and the characteristics are

straight lines, with values determined by the initial conditions. From ODE the-

ory it can be shown that for continuous u the characteristic lines do not cross.

However hyperbolic PDE's admit discontinuous solutions, and for a general non-

linear conservation law with arbitrary initial conditions, the characteristics will
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cross in �nite time and a discontinuity or shock will form. In this instance it is no

longer possible to trace back along the characteristic paths to �nd the solution.

If a discontinuity does form, then if u has constant values either side of the shock

then it is possible to calculate a speed s with which the shock moves by apply-

ing conservation principles over the region (see [41] and [61]). This leads to the

Rankine-Hugoniot jump condition which relates the shock speed to the left and

right values such that

s =
fR � fL

uR � uL

where the subscripts L and R denote the values to the left and the right of the

shock respectively. From the formula the shock position (xs) can be deduced as

s = dxs=dt.

Similarly the theory of characteristics can be extended to linear systems of equa-

tions of the form

Ut +AUx = 0

where U is a vector, A is a constant matrix and F(U) = AU. The system can

then be decoupled by diagonalising A to form a series of scalar equations, each of

which will have its own equation to describe the characteristics. For a system of

order n, the resulting decoupled equations can be rewritten as

(vk)t + �k(vk)x = 0 k = 1; 2; :::; n

where v is de�ned as v = R�1U using R, the matrix of the right eigenvectors of

A, and �k are the eigenvalues. The characteristics are then represented by

dx

dt
= �k:

In terms of the Rankine-Hugoniot relationship, the jump condition becomes

A(UL �UR) = s(UL �UR)

where UL � UR then corresponds to the eigenvectors of A and s relates to the

eigenvalues. In the case where A is a non-constant matrix that depends upon U,

the system is non-linear and so it is not possible to decouple the equations as in

the linear case. However it may still be possible to apply the technique to yield

expressions for the characteristic lines for some simpli�ed problems, though in

general this will not be the case. The Rankine-Hugoniot relationships also hold

for non-linear problems, but again in general it will not be possible to obtain a

closed form for the solution.
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The method of characteristics applied to the Saint Venant equations

So far the application of the method of characteristics to general conservation

laws has been considered. This next section proceeds to derive expressions for

the characteristics of the 1-d Saint Venant equations and also highlights how the

concept of characteristics can be interpreted within the context of open channel

ow. This section is predominantly taken from Cunge et al [12] (see also [32]).

To obtain an expression for the characteristics, the starting point is to decide

which form of the Saint Venant equations to work with. Since all of these forms

given in the previous chapter are equivalent, the choice is arbitrary. However given

that the characteristics are usually written in terms of u, the wave speed, and c,

the celerity, it is logical to select the form most closely based on these variables,

i.e. the form written in terms of u and h (Equation (2.16) from Chapter 2)

@h

@t
+
A

B

@u

@x
+ u

@h

@x
+
u

b

 
@A

@x

!
h=const

= 0

@u

@t
+ u

@u

@x
+ g

@h

@x
+ g(Sf � So) = 0:

(3.3)

Consider the case of a prismatic channel of constant cross section and constant

bottom slope So, then (3.3) becomes

@h

@t
+
A

B

@u

@x
+ u

@h

@x
= 0 (3.4)

and
@u

@t
+ u

@u

@x
+ g

@h

@x
+ g(Sf � So) = 0: (3.5)

If the celerity is de�ned as

c =

�
g
A

B

�1

2

where A = A(h) then di�erentiating c2 with respect to x and t gives

2c
@c

@x
= g

@h

@x
and 2c

@c

@t
= g

@h

@t

where @A=@h = B: Using these expressions to eliminate h, equations (3.4) and

(3.5) then become

2
@c

@t
+ 2u

@c

@x
+ c

@u

@x
= 0 (3.6)

@u

@t
+ 2c

@c

@x
+ u

@u

@x
+ E = 0 (3.7)
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where E = g(Sf�So). By adding and subtracting (3.6) and (3.7) the characteristic
form of the equations are obtained

(
@

@t
+ (u+ c)

@

@x

)
(u+ 2c) + E = 0

(
@

@t
+ (u� c)

@

@x

)
(u� 2c) + E = 0

where the above di�erential operators are in fact total derivatives along the lines

de�ned by dx=dt = u� c (denoted as C+ and C�). Writing these as

D+

Dt
=

@

@t
+ (u+ c)

@

@x
and

D�

Dt
=

@

@t
+ (u� c)

@

@x

then gives
D+

Dt
(u+ 2c) = �E (3.8)

D�

Dt
(u� 2c) = �E: (3.9)

For a at frictionless channel, i.e. one where E = 0 then

u+ 2c = constant = J+

along the C+ characteristic and

u� 2c = constant = J�

along the C� characteristic, where the constants J+ and J� are known as the

Riemann invariants. In cases where So and Sf are not zero it is possible to

integrate equations (3.8) and (3.9) between two points 1 and 2 on the channel to

give

[u+ 2c]21 = g
Z

t2

t1

(So � Sf )dt

and

[u� 2c]21 = g
Z

t2

t1

(So � Sf )dt

where the left hand sides of the equations are now the Riemann quasi-invariants.

For a general non-prismatic channel, it is not possible to derive an equivalent form

of the Riemann invariants.

Returning now to the characteristics it is possible to introduce some useful con-

cepts which will be of importance later on. Three types of uid motion can be

identi�ed, depending on the direction of the two characteristics. In subcritical
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Figure 3.2: Characteristics and ow conditions. (a) Subcritical ow; (b) criti-

cal ow; (c) supercritical ow in a positive direction; (d) supercritical ow in a

negative direction [12].

ow, the two characteristics have opposite signs and c > juj and any point within

the ow (within the subcritical region) is a�ected from both the upstream and

downstream directions. In critical ow, juj = c and one of the characteristic veloc-

ities is zero. For supercritical ow juj > c and the characteristics have the same

sign. These possibilities are shown graphically in Figure 3.2. For both critical

and supercritical ow, the conditions at any point are not inuenced by the ow

anywhere downstream of that point.

Through the characteristic lines it is possible to introduce the ideas of a range of

inuence and a domain of dependence. Consider a disturbance that occurs at some

point Q at time t = 0. This disturbance may be transmitted both upstream and

downstream (depending on the Froude number) and alter the ow conditions at a

later time. The range of inuence of Q is the region over which that disturbance

propagates, and this is bounded by the characteristic lines emerging from Q,

as seen in Figure 3.3(a). Conversely, taking a general point P it is possible to

de�ne a region which inuences the ow at P and this is known as the domain of

dependence. Any disturbance outside of this region will not alter the ow at P .

Again this region is bounded by the characteristics that meet at P .

The ideas behind the method of characteristics can be used to form appropriate
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Figure 3.3: (a) Range of inuence of Q; (b) domain of dependence of P [12].

boundary conditions and to account for the stability of numerical schemes, as is

discussed later on.

3.1.2 An introduction to numerical methods

For most problems of practical interest it is not possible to �nd exact solutions

by using analytical techniques such as the method of characteristics. As as result,

this has lead to the development of numerical methods whereby the continuous

problem, i.e. the governing equations, is transformed into a discrete form which

then results in a series of algebraic equations which can be solved on a computer.

The solution to the discrete problem represents an approximation to the solution of

the continuous problem and various concepts have been developed in an attempt to

quantify how well the calculated numerical solutions compare to the true solutions.

General classi�cation of numerical methods

Many techniques are available for numerical simulation work, and a number of

broad headings exist to describe how each particular method (or scheme) works.

The four most popular types of method for general uid ow problems are

1. Finite Di�erence methods (FDM)

2. Finite Element methods (FEM)

3. Spectral methods

4. Finite Volume methods (FVM).
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There is a certain amount of overlap between these classi�cations and under cer-

tain circumstances a particular scheme may fall into more that one category so

there is no strict de�nition as as to how to identify a method. The following

general descriptions are taken from Hirsch [33] and Versteeg and Malalasekera

[65].

Generally speaking a �nite di�erence method represents the problem through a

series of values at particular points or nodes. Expressions for the unknowns are

derived via replacing the derivative terms in the model equations with truncated

Taylor series expansions. The earliest numerical schemes are based upon �nite dif-

ference construction and are conceptually and intuitively one of the easier methods

to implement. However, fundamentally such techniques require a high degree of

regularity within the mesh and so this limits their application to complex prob-

lems.

The basis of the �nite element method is to divided the domain into elements

such as triangles or quadrilaterals and to place within each element nodes at

which the numerical solution is determined. The solution at any position is then

represented by a series expansion of the nodal values within the local vicinity

of that position. The nodal contributions are multiplied by basis functions (also

known as shape, interpolation or trial functions) and the particular way in which

the basis functions are de�ned determines the choice of variant of the �nite element

method. Spectral methods can be considered as a subset of the �nite element

method in which the basis functions are de�ned globally as opposed to the more

common approach whereby the basis functions are local and so are zero outside

the neighbourhood of the associated node. The original �nite element method

was developed within the �eld of stress analysis and this is reected within the

construction and nomenclature of the approach.

The �nite volume method is based upon forming a discretisation from an integral

form of the model equations, and entails subdividing the domain into a number of

�nite volumes. Within each volume, the integral relationships are applied locally

and so exact conservation within each cell is achieved. The resulting expressions

for the unknowns often appear similar to �nite di�erence approximations and

depending upon the particular method chosen, may be considered as a special

case of either the �nite di�erence or �nite element techniques. With the emphasis

of most uid modelling problems being based upon conservation principles, the
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�nite volume method has become the more popular approach for general uid ow

problems.

Within the context of open channel ows, earlier worked focussed on the appli-

cation of �nite di�erence schemes and to some extent the �nite element method.

However more recently opinion has swung towards methods based on the �nite

volume construction.

Accuracy, consistency, stability, convergence and well posedness

In order to quantify how well a particular numerical technique performs in gen-

erating a solution to a problem, there are four fundamental criteria that can be

applied to compare and contrast di�erent methods. The four concepts are ac-

curacy, consistency, stability and convergence. In theory these criteria apply to

any form of numerical method though they are most easily formulated for �nite

di�erence schemes. The following is based upon descriptions from [7], [33], [57]

and [65].

Accuracy is a measure of how well the discrete solution represents the exact solu-

tion of the problem. Two quantities exist to measure this { the local or truncation

error, which measures how well the di�erence equations match the di�erential

equations, and the global error which reects the overall error in the solution and

in reality is not possible to �nd unless the exact solution is known. An expression

for the truncation error can be obtained by substituting the known exact solution

of the problem into the discretisation, leaving a remainder which is then a measure

of the error. Alternatively, the exact solution to the discretised problem could be

substituted into the di�erential equation and the remainder obtained. For ex-

ample for a PDE this would lead to an expression of the form � = O(�tq;�xp)

where � is the truncation error and �t and �x and the time and spatial steps

(assuming a regular grid). From this, the method is said to be qth order in time

and pth order in space, and generally this is referred to as the level of accuracy

of the scheme. It is natural to assume that by increasing the grid resolution then

any errors will be reduced and this leads to the de�nition of consistency. Mathe-

matically, for a method to be consistent then the truncation error must decrease

as the step size is reduced, which is the case when q; p � 1, which is equivalent

to saying that as �t;�x tend to zero then the discretised equations should tend
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towards the di�erential equation. For a scheme to be of practical use, it must be

consistent.

Formally if a scheme is said to be stable then any errors in the solution will remain

bounded. In practice if an unstable method is used then the solution will tends

towards in�nity. Most methods have stability limits which place restrictions on

the size of the grid spacings (i.e. �x, �t) that can be used, usually in terms

of a limit on the CFL (Courant-Friedrichs-Lewy) number. Physically a stable

method can be interpreted to be one where the grid points used in the calculation

enclose the characteristic lines or domain of dependence as discussed previously

(see Figure 3.4). A number of methods are available for obtaining expressions

for the stability conditions, and the appropriate choice depends on the actual

problem.

t

x

Characteristic

t∆
∆x

Slope =

Figure 3.4: Stable upwind scheme.

Another requirement is that the numerical scheme should be convergent, which by

de�nition means that the numerical solution should approach the exact solution

as the grid spacing is reduced to zero. This is coupled with the global error. How-

ever it is usually not possible to prove the convergence of a particular scheme to a

speci�c problem. Instead use is made of Lax's Equivalence theorem which states

that for a well posed initial value problem (IVP) and a consistent method, stability

implies convergence, in the case of a linear problem. For non-linear equations, sta-

bility and consistency are necessary but not su�cient conditions for convergence.

These criteria dictate whether a particular numerical scheme is suited to solving

a particular problem. There is another condition, which has to be satis�ed in

order to produce a valid solution and this relates to the actual problem and is the

issue of well posedness. In order to generate a numerical solution, the problem

being considered must be well posed. For this to be the case then the following
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conditions must hold

a) a solution must exist

b) the solution should be unique

c) the solution should depend linearly on the data in some way.

The last condition can be translated to mean that the solution should not be

sensitive to small changes in the initial/boundary data of the problem. If a prob-

lem is not well posed, then a valid numerical solution can not be generated and

any numerical treatment will either fail or produce poor results. One easy way

to produce an ill posed problem is to apply inappropriate boundary conditions,

for example by trying to enforce values of the quantities being modelled on the

characteristics leaving the computational domain. If the initial data is not fully

speci�ed, then this also presents an ill posed problem as there will be no unique

solution.

Grid generation and explicit/implicit formulations

An important factor in applying numerical techniques not yet mentioned here is

the question of grid generation, which is an area of research in its own right. Early

e�orts focussed on using regular grids, whereby all the cells or elements were of

the same size. Although this has advantages in terms of numbering the cells and

forming the discrete equations, for problems requiring a �ne resolution having

small cells everywhere leads to unnecessary computation and is computationally

expensive. In addition, for 2-d and 3-d problems, �tting a regular grid to complex

geometries can often lead to problems. To overcome the di�culties created in

implementing regular grids, attention has moved towards irregular grids where

the cell sizes vary within the domain. Furthermore unstructured (as opposed to

structured) gridding has been introduced, leading to the ability to map any region.

However the resulting meshes generally have no apparent structure and so increase

the level of complexity of generating suitable computer code. The predominant

reason for using irregular gridding is the ability to concentrate the cells in areas

where sharp gradients occur, and so a high level of accuracy can be maintained

throughout the region without the need to use a �ne grid everywhere. If such

a grid is generated at the outset of a problem, it may be that as the simulation

progresses, the initial choice is no longer the most suitable, and so this has led to
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the idea of adaptivity whereby the grid evolves during the simulation, in a manner

determined by the numerical solution.

Another distinction that can be drawn between di�erent methods is whether they

are explicit or implicit. For example, taking the linear advection equation

ut + aux = 0 a = constant

then if the solution is to be advanced to time level n + 1, the spatial derivative

may be approximated either in terms of the known values at time level n or the

unknown quantities at level n + 1. If an approximation for the spatial derivative

is approximated at time level n then that corresponds to an explicit method,

whereas using level n + 1 represents an implicit formulation. Both explicit and

implicit schemes have there relative merits. Explicit methods are generally simpler

in terms of the resulting algebraic equations as implicit schemes usually require

a matrix inversion which is more costly. However most implicit schemes are not

restricted by the CFL stability constraints placed upon the explicit counterparts,

and so allow the use of much larger time steps.

3.1.3 Numerical methods for conservation laws

This work is mainly concerned with modelling conservation laws which may be

expressed either in di�erential or integral form, i.e. for a 1-d system in Cartesian

coordinates

Ut + Fx = R (3.10)

or I
(Udx� Fdt) =

Z


Rd


where the integral form is more general than the di�erential form as it is valid

for discontinuous solutions. In particular, the focus of the study is to investi-

gate ways to improve (in terms of accuracy and reduced run times) the explicit

schemes currently popular within the hydraulics community, which are predomi-

nantly formulated within the �nite di�erence/�nite volume framework and make

use of Riemann based solutions. This section now goes on to identify some of the

desirable/required properties of schemes suitable for solving conservation laws

and discusses the concept of �nite di�erence and �nite volume schemes in more

detail. Some of the `classical' schemes are then introduced together with some

subsequent advances made in their application. A description of the Godunov
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method is made as this formed the starting point of the �nite volume approach

and Riemann based schemes.

Desirable properties of numerical methods for conservation laws

Aside from the requirements of ensuring that any chosen scheme be consistent,

stable and convergent, a number of additional criteria can be de�ned for identi-

fying methods that are suitable for modelling conservation laws. The fact that

most conservation laws are non-linear introduces additional problems not appar-

ent with linear equations and also complicates the mathematical analysis. In

particular non-linear equations often give rise to discontinuous solutions, which in

the case of the Saint Venant equations correspond to bores and hydraulic jumps.

Some techniques experience di�culties in solving discontinuous ows and spurious

oscillations can appear in the numerical solution. There is also the issue of gener-

ating the right solution, as discontinuous solutions correspond to weak solutions

of the di�erential equations, meaning that there may be more than one correct (in

terms of satisfying the di�erential equation) solution. Under such circumstances

additional information is required to isolate the correct result.

There exists certain criteria for assessing if a particular scheme is suited to solving

conservation law problems and these give rise to conservative methods (see [41]).

If a method is conservative then when it is applied to a conservation law (expressed

in conservation form), then the sum of contributions from the discrete representa-

tion of the ux terms should cancel everywhere except at the boundaries. Apart

from ensuring that the discrete system is conservative, then if the solution is dis-

continuous, using a conservative method also means that the numerical solution

will correspond to a weak solution of the equations, and this is the basis of a

theorem by Lax and Wendro�. However this does not guarantee that the scheme

will produce the physically correct weak solution for a given problem. In the case

where more than one weak solution exists, the correct solution is determined via

an entropy condition, so named after its origin in gas dynamics. E�ectively this

condition can be translated in terms of the characteristics mentioned previously,

and says that the characteristics cannot emerge from a physically valid shock.

A strategy which can enable the use of some schemes which cannot resolve dis-

continuities correctly is to use a shock tracking approach. The idea then is to use

the chosen scheme throughout most of the region and to isolate the position of
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any discontinuities, which are then treated separately. Conversely shock capturing

methods are ones in which no account is made of where any discontinuities occur

and the same scheme is employed throughout the domain and any shocks formed

occur at the correct location.

Another concern connected with discontinuous solutions is the generation of os-

cillations in regions containing strong gradients. Such oscillations are a problem

as they can lead to non-physical quantities such as negative depths, and speci�c

criteria have been developed to assess whether or not particular schemes will give

rise to oscillations. Methods which satisfy these conditions are known as Total

Variation Diminishing (TVD) schemes (see [41] for a mathematical analysis).

The manner in which the ux term is discretised can either be described as up-

winded or centralised. The distinction between the two lies in which cells are used

to approximate the ux at a particular point. Upwind methods take account of

the ow direction, and so use values corresponding to the direction from which

the characteristics originate. Central schemes use a symmetric discretisation and

so make no allowances for the characteristic direction. For convective dominated

ows, taking an upwind approach is generally considered to be the better option

as the ow direction is considered.

Finite Di�erence methods

Finite di�erence methods were the �rst technique to be developed for approxi-

mating ordinary di�erential equations, and it is from such applications that the

theories regarding their properties have been generated. This summary is taken

from [33].

Finite di�erence methods are based on performing Taylor series expansions and

substituting the truncated expressions into the di�erential equation. The idea is

to approximate the di�erentials by di�erences in the solution at various points.

By de�nition

ux �
 
@u

@x

!
= lim

�x!0

u(x+�x)� u(x)

�x
:

When �x is small this formula can be used as an approximation for the derivative

of u at x. From Taylor series

u(x+�x) = u(x) + �xux(x) +
�x2

2
uxx(x) + :::
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and so by rearrangement

u(x+�x)� u(x)

�x
= ux(x) +

�x

2
uxx(x) + :::

If �x is small the successive terms in the expansion will decrease and so it is

possible to write

ux(x) =
u(x+�x)� u(x)

�x
+O(�x): (3.11)

From equation (3.11), the leading term of the error in approximating ux by the

right hand side is of order �x and so this represents a �rst order approximation.

It is possible to de�ne other di�erence formula to approximate derivatives and

these may have di�erent orders of accuracy.

The above analysis deals with the continuous solution however the objective is

to calculate u at a set of discrete points on the mesh, and this is the numerical

solution. Let the mesh points be denoted by xi where i = 1; 2; :::; N and the

region has been discretised into N equally sized elements of length �x. Then

the numerical solution, ui can be thought of as point values where ui = u(i�x).

Following this notation, there are three common ways to approximate the �rst

derivative of u with respect to x,

(i) Forward di�erence

(ux)i =
ui+1 � ui

�x
+O(�x)

(ii) Backward di�erence

(ux)i =
ui � ui�1

�x
+O(�x)

(iii) Central di�erence

(ux)i =
ui+1 � ui�1

2�x
+O(�x2):

As can be seen, both the forward and backward di�erences are �rst order approx-

imations whereas the central di�erence is second order, as can be shown by Taylor

series analysis. These formula have di�erent merits and the best choice depends

on the problem being modelled. In the case of ODE's, many other di�erence for-

mula can be derived and standard techniques are available for doing so. However

for PDE's, most schemes are based upon using standard forward, backward and

central di�erence formula.
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Classical �nite di�erence methods for conservation laws

The classical numerical methods used to solve partial di�erential equations are

based upon �nite di�erence construction and can be best illustrated through

means of an example, in this case via the linear advection equation,

ut + (au)x = 0 (3.12)

where f = au and a is constant. This equation is often used as a test problem

to validate methods for modelling transport dominated ows, as the analytical

solution at a time t is given by the translation of the initial data by a distance at.

The general distinctions that can be made between di�erent schemes refer to

the way in which the terms in the di�erential equation are approximated, and

this in turn corresponds to the temporal and spatial levels of the values within

the di�erence equation. The way in which most schemes are described is to say

whether they are explicit or implicit, upwind or centralised, TVD or not, and

to specify the stability constraints and level of accuracy of the method. Some

schemes are only applied to the spatial derivatives (or ux terms) and require a

separate treatment of the temporal derivatives, whilst others combine both the

time and space integrations. The following is mainly taken from [41] and [33]

(see [1], [12] and [66] for the application to shallow water modelling).

One of the simplest schemes to implement for the linear advection equation is the

�rst order upwind scheme. As the name suggest this method is �rst order in space

(and time) and is based on using an upwind di�erence formula. For (3.12) this

scheme can be written as

un+1
i

= un
i
� �

8<
: un

i+1 � un
i

if a < 0

un
i
� un

i�1 if a > 0

where � = a�t=�x and is the Courant number or CFL value. Although this

method has the advantages of being both upwinded and TVD, it is only �rst

order accurate and so heavily smears discontinuous pro�les.

To obtain a scheme with a higher formal order of accuracy, the central di�erence

formula can be used. For example, the Leapfrog scheme uses central di�erencing

for both the time and space derivatives to give

un+1
i

= un�1
i

� �(un
i+1 � un

i�1):
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One of the problems with this method is that the update involves three time

levels which is both cumbersome in terms of memory storage and also in starting

the simulation. In practice, methods involving more that two time levels in the

update are not used to solve time dependent conservation laws problems. If the

time derivative in the Leapfrog method is replaced with the one sided di�erence

ut � un+1
i

� un
i

�t
(3.13)

then the resulting scheme is unstable. If un
i
in (3.13) is replaced by the average

(un
i+1 + un

i�1)=2 then the Lax-Friedrichs scheme is obtained

un+1
i

=
1

2
(un

i+1 + un
i�1)�

1

2
�(un

i+1 � un
i�1)

for which the solution is only �rst order in space and time. By returning to Taylor

series and the expansion for un+1
i

un+1
i

= un
i
� a�tutjni +

a2�t2

2
uttjni +O(�t3); (3.14)

and noting that from the original conservation law

ut = �aux and utt = �a2uxx

the Lax-Wendro� scheme can obtained by replacing the temporal derivatives in

(3.14) with spatial derivatives, which are then substituted for central di�erences

to give

un+1
i

= un
i
� 1

2
�(un

i+1 � un
i�1) +

1

2
�2(un

i+1 � 2un
i
+ un

i�1):

The resulting scheme is second order in both space and time and is prone to

oscillations in areas upstream of regions containing sharp gradients. Another

scheme which is second order in space and time but based upon using a one-sided

di�erence formula in (3.14) is the Warming and Beam (second order upwind)

method. With this method oscillations due to discontinuities occur after the

shocks and the resulting discretisation (for a > 0) is

un+1
i

= un
i
� 1

2
�(3un

i
� 4un

i�1 + un
i�2) +

1

2
�2(un

i
� 2un

i�1 + un
i�2):

By averaging the Lax-Wendro� and Warming and Beam methods, the Fromm

scheme is obtained which is also second order accurate. The resulting scheme still

su�ers from oscillations which occur both in front of and behind any shocks, but

the magnitude of the oscillations is reduced (as compared with the Lax-Wendro�

and Warming and Beam schemes).
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All of the schemes listed so far are explicit. Corresponding implicit versions of

these explicit di�erence methods can be obtained by evaluating the right hand

sides of the update formulas at time level n + 1. However in general a scheme

produced in this way may have very di�erent properties from its explicit counter-

part. As explicit schemes are more practical to implement, most of the popular

�nite di�erence methods are constructed in this manner.

The simplest implicit scheme, known as the Backward Euler scheme can be written

as

un+1
i

= un
i
� 1

2
�(un+1

i+1 � un+1
i�1 )

for the linear advection equation, and is second order in space and �rst order in

time. However this method leads to a tridiagonal matrix system, which may be

easy to solve in the linear case (e.g. by using the Thomas algorithm) but will

require the use of an iterative method for non-linear problems.

Another implicit method is the box scheme,

 
un+1i+1 � un

i+1

2�t
+
un+1
i

� un
i

2�t

!
+ a

 
un+1
i+1 � un+1

i

2�x
+
un
i+1 � un

i

2�x

!
= 0

which is of particular importance to computational hydraulics as it forms the basis

of the Preissmann scheme, which for a homogeneous conservation law is written

as

Un+1
i+1 + Un+1

i

2�t
� Un

i+1 + Un

i

2�t
+
�F n+1

i+1 + (1� �)F n

i+1

�x
� �F n+1

i + (1� �)F n

i

�x
= 0

where 0:5 � � � 1. The Preissmann scheme is the discretisation method used

within the ISIS modelling package (one of the most popular river modelling pack-

ages in the UK). This method is known to experience di�culties in transcritical

regions. However ISIS overcomes this problem by neglecting the non-linear ux

term in the momentum equation whenever the ow is supercritical, resulting in

the smearing of hydraulic jumps.

Extensions of classical methods { TVD schemes and systems of equa-

tions

All the methods introduced so far in this section have been constant coe�cient

schemes as were commonly used before the 1980's. One particular consequence

of using constant coe�cient schemes is Godunov's theorem, which states that it
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is not possible to construct a constant coe�cient scheme that is at least second

order and will not give rise to spurious oscillations. As most conservation laws are

non-linear and admit discontinuous solutions, an e�ort was made to overcome this

di�culty by developing new higher order non-linear schemes which would satisfy

the TVD conditions and so not generate oscillations around shocks. This led to

the generation of high resolution TVD methods. TVD schemes can be subdivided

into two classi�cations [60]

1. Post-processing schemes : These include Flux Corrected Transport (FCT)

and ux limited schemes whereby the solution is obtained by a modi�ed �rst

order scheme.

2. Pre-processing schemes : The data is altered before application of the nu-

merical method. Approaches of this kind include MUSCL, PPM and ENO

schemes.

Within the context of this thesis and open channel ow, the ux limiter approach

is to be considered and so this is now introduced in more detail (following the

description in [60]). One way to view this approach is to consider a low order

TVD method, such as the �rst order upwind scheme, and to add to this a limited

amount of a higher order (non-TVD) scheme. This is done in such a way that

the resulting method is TVD. For example, as seen before the �rst order upwind

scheme for the linear advection equation can be written as

un+1
i

= un
i
� ��un

i�1=2;

assuming that a is positive and using the notation �un
i�1=2 = ui � ui�1. The

Lax-Wendro� scheme, can be rewritten as

un+1
i

= un
i
� ��un

i�1=2 �
1

2
�(1 � �)� (�un

i+1=2) (3.15)

where � (�un
i+1=2) = �un

i+1=2��un
i�1=2, from which the right hand side of (3.15)

can be seen to contain contributions from the �rst order scheme and an additional

term which represents an anti-di�usive ux. The anti-di�usive ux term can then

be limited with a ux limiter, �i, to give

un+1
i

= un
i
� ��un

i�1=2 �
1

2
�(1� �)� (�i�u

n

i+1=2):

A number of limiters have been developed and each is based on a ratio of consec-

utive gradients of the solution, such that

�i = �(ri)
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where

ri =
�un

i�1=2

�un
i+1=2

:

Some of the more commonly used ux limiters (see [59] for further details) are

van Leer : �(r) =
r + jrj
1 + jrj

Roe's Minmod : �(r) = max(0;min(r; 1))

Roe's Superbee �(r) = max(0;min(2r; 1);min(r; 2))

and certain choices reproduce particular schemes, for example

�(r) � 0 - First order upwind

�(r) � 1 - Lax Wendro�

�(r) � r - Warming and Beam.

Although the schemes shown here have been presented within the context of the

linear advection equation, they may be easily extended to linear systems of con-

servation laws. The application to non-linear systems is more complex and can

involve the calculation of a Jacobian matrix. In addition, upwind schemes must

take account of the wave speeds or characteristic directions and so become more

complicated for non-linear problems, as illustrated in the next section.

Returning to symmetric discretisations (see [41] and [33]), the Lax-Friedrichs

scheme for a non-linear system of the form

Ut + F(U)x = 0

can be written as

Un+1
i

=
1

2
(Un

i�1 +Un

i+1)�
�

2
(F(Un

i+1)� F(Un

i�1))

where � = �t=�x. For the Lax-Wendro� scheme, de�ning the Jacobian matrix

as A(U) = F0(U), allows the scheme to be extended in the form

Un+1
i

= Un

i
� �

2
(F(Un

i+1)� F(Un

i�1)) +
�2

2
[Ai+1=2(F(U

n

i+1)� F(Un

i
))

�Ai�1=2(F(U
n

i
)� F(Un

i�1))]
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where Ai�1=2 is the Jacobian evaluated using the values (Un

i
+Un

i�1)=2. However

evaluating the Jacobian is costly and so an equivalent method has been developed

based on a two step procedure, which can be represented by

U
n+1=2
i+1=2 =

1

2
(Un

i
+Un

i+1)�
�

2
(F(Un

i+1)� F(Un

i
))

Un+1
i

= Un

i
� �(F(U

n+1=2
i+1=2 )� F(U

n+1=2
i�1=2 ))

and is known as Richtmyer's scheme. A similar method to this is McCormack's

scheme, which �rst uses a forward di�erence followed by a backward di�erence

U�

i
= Un

i
� �(F(Un

i+1)� F(Un

i
))

Un+1
i

=
1

2
(Un

i
+U�

i
) � �

2
(F(U�

i
)� F(U�

i�1)):

Finite Volume methods

The fundamental di�erence between these methods and FDM's is that in FDM's

the di�erential form of the equations are discretised, whereas for FVM's the dis-

cretisation is performed on an integral formulation of the equations. The resulting

discretisation often resembles those obtained through the use of FDM's, and in

addition the FVM may be thought of as a subdivision of the FEM [33]. The

basis of the �nite volume method is to construct an integral form of the governing

equations which is valid for any arbitrary closed volume. On a Cartesian mesh,

the conservation law can then be represented by

I
(Udx �Fdt) =

Z


Rd
:

The resulting expression is then applied locally within each cell or �nite volume,

ensuring that exact conservation of the conserved variables is maintained.

Within this framework, the discrete values of u are considered to be cell average

values represented by

Un

i
=

1

�x

Z
xi+1=2

xi�1=2

U(x; tn)dx; (3.16)

where xi�1=2 correspond to the cell boundaries. Generally the numerical solution is

considered to be constant within each cell, however some methods assume other

distributions for which the cell average is de�ned by (3.16). By treating the



CHAPTER 3. LITERATURE REVIEW 36

numerical ux function as a time average value of the physical ux function, i.e.

by de�ning the numerical ux as

Fi+1=2 =
1

�t

Z
tn+1

tn

F[U(xi+1=2; t)]dt

the resulting discretisation of the integral formulation of the homogeneous form

of the conservation law can be written as

Un+1
i

= Un

i
+

�t

�x
[Fi�1=2 � Fi+1=2]: (3.17)

which then resembles a �nite di�erence scheme. As with �nite di�erence meth-

ods, the way in which Fi�1=2 is approximated correlates to a particular choice of

numerical scheme. One way to generate the numerical ux is to solve a series of

Riemann problems, and this will be discussed later.

Godunov type schemes and the �nite volume framework

One of the �rst attempts to develop an upwind scheme suitable for solving sys-

tems of conservation laws was by Courant, Isaacson and Rees. The CIR method

was based upon tracing the characteristics from one time level to the next and

employed the characteristic form of the equations. Originally this technique was

considered for the Euler equations, however as the construction was not based

on the conservation form of the equations, the method was not well suited for

solving problems containing discontinuities. Subsequently, in 1959 Godunov pub-

lished a new technique which di�ered from previous schemes in that it assumed

the numerical solution was constant within each cell, instead of considering nodal

values. The basis of the method was to solve a series of Riemann problems be-

tween each of the cell interfaces and this led to an expression for the numerical

ux. The method was explicit and required that the time step was limited in such

a way that neighbouring Riemann problems would not interact. The method is

introduced here because it was the starting point for the Riemann based schemes

with which this project is concerned. This section is taken from [41] and [63].

The �rst stage of the Godunov method is to assign the discrete cell average values

which are represented by the integral relationship

Un

i
=

1

�x

Z
xi+1=2

x�1=2
U(x; tn)dx

where xi�1=2 are the cell boundaries and U(x; tn) is the known solution at time tn

which is constant within each cell. This representation is illustrated in Figure 3.5.



CHAPTER 3. LITERATURE REVIEW 37

i-1 i i+1
x x

x

u

ui-1

u

u

i

n

n

n

i+1

i-1/2 i+1/2

Figure 3.5: Piece-wise constant distribution at time level n [63].

The result is that at each interface, the discrete representation of the data cor-

responds to the initial data of a Riemann problem. Having calculated the exact

solution of the Riemann problem over the time interval [tn; tn+1], the solution at

the next time level is then given by averaging the exact solution of the Riemann

problem over each cell such that

Un+1
i

=
1

�x

Z
xi+1=2

xi�1=2

�Un(x; tn+1)dx (3.18)

where �Un(x; tn+1) is taken to be the exact solution of the Riemann problem at time

tn+1. As �Un represents an exact solution to the conservation law, then applying

the integral form of the conservation law within a particular cell gives

Z
xi+1=2

xi�1=2

�Un(x; tn+1)dx =
Z

xi+1=2

xi�1=2

�Un(x; tn)dx+
Z

tn+1

tn

F( �Un(xi�1=2; t))dt

�
Z

tn+1

tn

F( �Un(xi+1=2; t))dt:

From (3.18) and using �Un(x; tn) � Un

i
then the update for cell i becomes

Un+1
i

= Un

i
� �[F(Un

i
;Un

i+1)� F(Un

i�1;U
n

i
)]

when the numerical ux is de�ned as

F(Un

i
;Un

i+1) =
1

�t

Z
tn+1

tn

F( �Un(xi+1=2; t))dt:

The problem then reduces to determining �Un over the time interval [tn; tn+1] at

the point xi+1=2, which by virtue of the Riemann problem is constant (assuming

that the neighbouring Riemann problems do not interact). Denoting this value as

U�(Un

i
;Un

i+1) then the ux becomes

F(Un

i
;Un

i+1) = F(U�(Un

i
;Un

i+1)) (3.19)
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Figure 3.6: Solution of the Riemann problem [63].

and so the update can then be written as

Un+1
i

= Un

i
� �[F(U�(Un

i
;Un

i+1))� F(U�(Un

i�1;U
n

i
))]:

The Riemann problem and Riemann solvers

Having introduced Godunov's method and obtained the update formula which is

based upon the solution of a Riemann problem, it is now necessary to explain

what a Riemann problem is. The Riemann problem is de�ned as an initial value

problem of the form

Ut + Fx = 0 (3.20)

with the initial conditions

U(x; 0) =

8<
: UL x < x

0

UR x > x
0

where the initial values may be discontinuous across x
0

, and (3.20) may corre-

spond to a scalar conservation law or a system. The solution of the Riemann

problem is problem dependent however the solutions to di�erent Riemann prob-

lems (corresponding to di�erent choices of F) have certain properties in common.

Away from the point x
0

the constant states UL and UR are maintained. These

two regions are linked by `waves', where the number of waves present in the so-

lution is the same as the the number of equations in the conservation law, or the

number of characteristics. In the case of the Saint Venant equation, two waves

exist as illustrated in Figure 3.6. The region between the two waves is referred to

as the star region, and within this section the variables are constant. The type

of waves present depends upon the system being considered, and for the Saint

Venant equations the waves are either bores or depressions. The possible con-

�gurations are shown in Figure 3.7. Except in the case where the left and right
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Figure 3.7: Possible wave con�gurations [63].

velocities are zero, i.e. the dam break problem, there is no direct way to solve the

Riemann problem for the Saint Venant equations. However if the wave structure

is known, then a solution can be found. It is possible to construct exact Riemann

solvers which are based on an iterative procedure, however this process is costly.

The original Godunov method involved �nding the exact solution to the Riemann

problem at each interface. As most of the information obtained from the solution

is redundant within the �nal update, attention has been drawn towards devising

approximate Riemann solvers, which can be used within the Godunov framework.

One possibility for doing this, is to �nd an approximation for U� within the Go-

dunov ux (3.19). Another approach is to replace the function �U(x; t) used to

de�ne the cell average values of Un

i+1, with an approximate solution ~Un(x; t) such

that the discrete solution is evaluated using

Un+1
i

=
1

�x

Z
xi+1=2

xi�1=2

~Un(x; tn+1)dx:

Following the second philosophy, Roe [51] developed an approximate Riemann

solver for the Euler equations, which has subsequently been used within open

channel ow.

3.2 Application of numerical techniques to open

channel ow

Having introduced the ideas and methodologies behind numerical techniques, this

section now goes on to review the application of computational methods to open

channel ow. The purpose of this section is to illustrate the progression of com-

putational hydraulics in recent years and to highlight what has been achieved

within the �eld. In addition, surveying the literature provides a means to identify

suitable test cases for analysing the performance of numerical schemes.
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The review is divided into two subsections. The �rst part covers one-dimensional

studies and details of the various methods are included within the review. The

second subsection is intended to give a global overview of how the original one-

dimensionalmethods have been extended to higher dimensions, particularly within

the �nite volume framework. Most of the technical details are omitted for this

subsection, as the study is predominantly concerned with improving the one-

dimensional methods. However it is necessary to be aware how such techniques

may be extended to problems of practical interest within the hydraulic community.

3.2.1 One-dimensional studies

Fennema and Chaudhry [15] presented a paper introducing three explicit schemes

to the Saint Venant equations, and compared the results for problems containing

shocks with solutions from the implicit Preissmann scheme. The three methods

considered were the McCormack, Lambda and Gabutti schemes, all of which are

formally second order accurate.

The McCormack schemewas applied to the (A;Q) formulation of the Saint Venant

equations and was written as a predictor-corrector scheme in the form

Predictor step

U� = Un

i
� �t

�x
(Fn

i
�Fn

i�1) + �tRn

i

Corrector step

Ûi � �t

�x
(F�

i+1 � F�
i
) + �tR�

i

from which the values at the new time level were given by

Un+1
i

=
1

2
(Un

i
� Ûi):

The Lambda scheme considered the direction of the characteristics and was ap-

plied to a non-conservative form of the equations written as

Vt +BVx + Z = 0; (3.21)

where

V =

0
@ h

u

1
A ; B =

0
@ u d

g u

1
A ; Z

0
@ 0

�g(So � Sf )

1
A
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and d is the hydraulic depth, de�ned as A=B. From (3.21), the following equations

can be obtained,

ht + �+hx +
d

c
(ut + �+ux)� c(So � Sf ) = 0 (3.22)

ht + ��hx � d

c
(ut + ��ux) + c(So � Sf ) = 0 (3.23)

with �+ = u+c and �� = u�c. These equations are valid along the characteristics
de�ned by dx=dt = u� c: Equation (3.21) can also be rewritten as

Ut +B+U+
x
+B�U�

x
+ Z = 0

whereby the matrix B+ is associated with the positive characteristics and con-

versely B� relates to the negative characteristics. The type of di�erence formula

used to approximate the spatial derivatives depends upon the direction of the char-

acteristics. Following addition and subtraction of (3.22) and (3.23), this strategy

leads to

ht +
1

2
(��h�

x
+ �+h+

x
) +

d

2c
(�+u+

x
� ��u�

x
) = 0

ut +
c

2d
(�+h+

x
� ��h�

x
) +

1

2
(�+u+

x
+ ��u�

x
)� g(So � Sf ) = 0:

Using a backward di�erence for the positive values, and a forward di�erence for

the negative contributions, the update is calculated though a predictor-corrector

sequence represented by

Predictor
�V+
x
=

2Vi � 3Vi�1 +Vi�2

�x

�V�

x
=
Vi+1 �Vi

�x

Corrector

V̂+
x
=

�Vi � �Vi�1

�x

V̂�

x
=
�2 �Vi + 3 �Vi+1 � �Vi+2

�x
:

Finally the values at the new level are obtained from

Vn+1
i

=
1

2
(Vn

i
+ V̂i):

The Gabutti scheme is an extension of the Lambda scheme and is based on the

same formulation but uses a di�erent predictor-corrector sequence,
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1) Predictor step

Part a ~V+
x
=
Vi �Vi�1

�x

~V�

x
=
Vi+1 �Vi

�x

Part b �V+
x
=

2Vi � 3Vi�1 +Vi�2

�x

�V�

x
=
�2Vi + 3Vi+1 �Vi+2

�x

2) Corrector step

V̂+
x
=

�Vi � �Vi�1

�x

V̂�

x
=

�Vi+1 � �Vi

�x
:

Following this procedure, the values at the next time level are given by

Vn+1
i

=
1

2
(Vn

i
+ �Vi + V̂i � ~Vi):

The paper showed a number of results for ows containing bores and illustrated

how the explicit schemes gave rise to numerical oscillations around the disconti-

nuity. By the addition of arti�cial viscosity, the oscillations were reduced and the

pro�les became similar to the results produced by the Preissmann scheme. The

paper also showed that although the Preissmann scheme allowed the use of CFL

numbers greater than one, doing so would smear any bores present in the solution

and lead to reduced accuracy. Another point highlighted by the paper was the

computational simplicity of explicit schemes as opposed to implicit methods, and

it was stated that for the schemes tested and the problems considered, the Preiss-

mann scheme required 4-8 times more CPU time on average for the simulations

than the explicit schemes.

In a subsequent article, Fennema and Chaudhry [16] applied the Beam and Warm-

ing scheme and the Gabutti scheme to the Saint Venant equations, and compared

the results obtained for the dam-break problem with solutions from the Preiss-

mann method. The schemes considered incorporated a switching mechanism to

alter between central and upwind di�erencing for subcritical and supercritical

ows. The basis of this mechanism was to split the Jacobian into negative and
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positive parts, such that the equations were written as

Ut +A+U+
x
+A�U�

x
�R = 0

where A+ accounted for the positive eigenvalues and used a backward di�erence,

and A� included the negative eigenvalues and made use of forward di�erencing.

The general Beam and Warming scheme was presented in the form"
I+

��t

1 + �

 
@A+

@x
+
@A+

@x

!
n
#
�tU

n+1 = � �t

1 + �

 
@F+

@x
+
@F�

@x

!
n

+
�

1 + �
�tU

n

(3.24)

where I is the identity matrix and �tU
n+1 = Un+1 +Un. Di�erent choices of �

and � corresponded to speci�c schemes. In particular the values in Table 3.1 were

considered in the study.

Scheme � �

Euler implicit (backward Euler) 1 0

Three-point backward 1 1
2

Trapezoidal formula (Crank Nicolson) 1
2

0

Table 3.1: Beam and Warming scheme.

The di�erences in (3.24) were approximated using

@

@x
A+n�tU

n+1
i

=
A+n

i �tU
n+1
i �A+n

i�1�tU
n+1
i�1

�x

@

@x
A�n�tU

n+1
i

=
A�n

i+1�tU
n+1
i+1 �A�n

i �tU
n+1
i

�x
:

(3.25)

or alternatively, by writing the coe�cients of A in (3.25) at time level n + 1,

resulting in the need to use an iterative procedure. Non-conservative di�erence

schemes were used to approximate the ux terms in (3.24), which took the form

F�n
x

= A�n

i

(Un

i+1 �Un

i
)

�x

and

F+n
x

= A+n
i

(Un

i
�Un

i�1)

�x
:

The Gabutti scheme was implemented in the same fashion as in the previous paper

by the authors.
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Results were presented for the Preissmann, Three point backward, Gabutti, Eu-

ler (non-iterative), Euler (iterative) and Trapezoidal schemes, for the dam-break

problem with a reservoir to tailwater depth of 2:1. Arti�cial viscosity had to be

added to the Gabutti scheme to remove the numerical oscillations near the bore.

For this example, the Gabutti scheme gave results comparable to those obtained

for the Preissmann scheme, whilst the implicit schemes were seen to be more di�u-

sive. In this case the ow was subcritical throughout the region. To illustrate how

the methods performed for transcritical ow, solutions for a reservoir to tailwater

depth of 20:1 for the Euler (iterative and non-iterative) and Gabutti schemes were

shown. This illustrated that the Gabutti scheme under predicted the speed of the

bore in addition to over-estimating the depth in the constant region, whilst the

two versions of the Euler scheme only slightly underestimated the shock speed.

When the depth ratio was increased to 250:1, the Euler (non-iterative), Three

point backward and Trapezoidal schemes all gave too slow a shock speed. Fur-

ther analysis comparing the analytic and numerical solutions for a range of depth

values showed the best results from the methods considered were obtained using

the non-iterative Euler scheme (� = 1, � = 0) and that the Gabutti scheme failed

to give a solution for a depth ratio of 50:1 was simulated.

Glaister published a series of articles based on applying the Roe Riemann solver

(see Chapter 4 for details) to shallow water problems, and these represented the

earliest consideration of Riemann solvers in open channel ow. In [27], the equa-

tions for a wide frictionless channel of rectangular cross section were written as

Ut + F = R

using

U =

0
@ �

�u

1
A ; F(U) =

0
B@ �u

�u2 +
�2

2

1
CA and R(U) =

0
@ 0

g�h
0

(x)

1
A

where � represents the depth of the uid above the datum level multiplied by g

and h is the depth of the undisturbed water level, were used. In the case of a at

bed, the resulting �rst order scheme was written as

Un+1
P

�Un

P

�t
+

2X
i=1

~�i~�i~ei

�x
= 0

where the point P corresponded to either the left or right (L or R) state of an

interface, and the update procedure was presented in the form

to add � �t

�x
~�i~�i~ei to UR when ~�i > 0
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or

to add � �t

�x
~�i ~�i~ei to UL when ~�i < 0:

Glaister demonstrated a way to incorporate source terms arising from a smoothly

varying bed within the Roe decomposition. Writing the approximate source term

as

~R =

0
B@ 0

g ~�
�h

�x

1
CA

using ~� =
p
�R�L, then the source term can be projected onto the eigenvectors

by

~R =
1

�x

2X
i=1

~�i ~�i~ei

and so by de�ning ~i = ~�i + ~�i the scheme becomes

to add � �t

�x
~�i~i~ei to UR when ~�i > 0

or

to add � �t

�x
~�i~i~ei to UL when ~�i < 0:

Numerical results were shown for a series of dam-break scenarios, with reservoir to

tailwater depth ratios of 2, 5, 10, 20 and 100. The Superbee ux limiter was used

to generate second order accuracy. In all the cases presented, good agreement

was obtained between the numerical and analytic solutions, though generally the

number of mesh points had to be increased for the higher depth ratios to maintain

the close agreement between the two solutions.

Alcrudo, Garc��a-Navarro and Savir�on [2] extended the application of Roe's scheme

to shallow water ows to include prismatic channels of arbitrary cross section. A

series of solutions were presented and contrasted with those obtained from the

McCormack and Lax-Friedrichs schemes. In particular the examples considered

highlighted the shock capturing ability of Roe's scheme. Solutions for the dam-

break problem with a depth ratio of 100:1 were shown. The McCormack scheme

was used in conjunction with arti�cial viscosity and this enabled a solution to be

produced, however the results were poor and included an unphysical stationary

jump. The Lax-Friedrichs scheme generated a reasonable solution typical of a

�rst order scheme. It was noted that the computation involved in �nding the Roe

solution was almost twice that of the other schemes. A solution for the same dam-

break problem for a trapezoidal channel was shown, for which the Froude number

behind the bore was 7.4. Although no analytical solution was available for this
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problem, the solution appeared reasonable. The two other problems illustrated

in the paper considered the case of one bore propagating over another, and a

situation in which two bores travelling in opposing directions interacted. The

Roe scheme performed well for both of these problems. However, oscillations

were present in the McCormack solutions near the bores, and the Lax-Friedrichs

solutions contained a substantial amount of numerical di�usion.

Garc��a-Navarro and Savir�on [21] applied the McCormack scheme to a variety of

discontinuous ow problems in rectangular channels. The authors presented the

scheme in the form

U
(1)
i

= Un

i
� �t

�x

h
(1 � ")Fn

i+1 � (1� 2")Fn

i
� "Fn

i�1

i
+�tRn

i

Un+1
i

=
1

2

�
Un

i
+U

(1)
i

�
� �t

2�x

h
"F

(1)
i+1 + (1 � 2")F

(1)
i + ("� 1)F

(1)
i�1

i
+
�t

2
R

(1)
i :

By setting " to be either 0 or 1, two di�erent versions of the scheme are obtained,

corresponding to di�erent approximations for the spatial derivatives.

The paper included details of how to apply the method of characteristics to the

boundaries in order to generate appropriate boundary data and also showed how

to incorporate discontinuous ows at the upstream boundary via the shock rela-

tionships,

(AR �AL)V +QL �QR = 0

(QR �QL)V +

 
Q2

A
+
gbh2

2

!
L

�
 
Q2

A
+
gbh2

2

!
R

= 0

where V is the propagation speed of the shock. A description of how to implement

internal weir boundary conditions was also given.

Results were presented for four test problems. The �rst was the uniform motion of

a shock through a smooth rectangular channel. A comparison was made between

the two versions of the scheme together with an adaptive version which alternated

between the two values of ". This example showed the �rst version of the scheme

to be the most satisfactory, with the second producing an oscillatory solution and

the combined scheme gave intermediate results. In all three cases the shock was

resolved over a small number of cells.

The second problem involved the propagation and reection of shock waves in

a channel which was closed at the downstream boundary. Employing the adap-

tive version of the scheme eliminated the numerical oscillations and a reasonable

solution was produced.



CHAPTER 3. LITERATURE REVIEW 47

The third case considered was that of one shock propagating over another to form

a larger shock. The conclusion made from this experiment was that comparisons

made between this scheme and a third order explicit method showed that it was

`not worth going further for this kind of problems'.

The �nal example included the e�ects of source terms and consisted of ow over

a ladder of cascades, which were enforced by use of the internal weir boundary

condition. The steady state numerical solution was shown, which contained small

oscillations due to the presence of the weirs.

Garc��a-Navarro, Alcrudo and Savir�on [22] produced a subsequent paper in which a

TVD variant of the McCormack scheme was introduced. The method was written

in the form

UP

i
= Un

i
� �t

�x
(Fn

i+1 � Fn

i
) + �tRn

i

UC

i
= Un

i
� �t

�x
(FP

i
� FP

i�1) + �tRP

i
:

with the �nal update given by

Un+1
i

=
1

2
(UP

i
+UC

i
):

For the new TVD version of the scheme, the third step was modi�ed to

Un+1
i

=
1

2
(UP

i
+UC

i
) +

�t

�x
(Dn

i+1=2 �Dn

i�1=2);

where Di�1=2 was de�ned as

Dn

i+1=2 =
1

2

2X
k=2

~�k
i+1=2 (

~�k
i+1=2)

�
1 � �t

�x
j~�k

i+1=2j
�h

1 � �(rk
i+1=2)

i
~ek
i+1=2

following the standard notation of Roe (see Chapter 4). The term  represented

an entropy correction for which

 (�) =

8<
: j�j if j�j � �

� if j�j < �

and � was chosen to be a small positive number in the range 0.1 to 0.3. Results

were shown for �ve di�erent test cases. The �rst problem was the ladder of

cascades problem in [21], but with di�erent choices for So and n. Comparing

the TVD and non-TVD versions of the scheme, small oscillations were present in

the non-TVD version which were seen to be removed when the ux limiter was

introduced.
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The second problem considered a ood wave in a sloping trapezoidal channel,

which contained three di�erent sections of constant bed-slope. The initial con-

ditions for the problem were taken to be the steady solutions generated by the

respective schemes when a constant discharge was imposed. The TVD version of

the scheme was deemed to perform much better than the non-TVD version.

The third example considered the steady ow over a bell shaped bump for which

a hydraulic jump occurred. The numerical solution from the TVD scheme was

shown to be in good agreement with the analytical solution, with the jump being

well resolved without any oscillations.

The �nal two examples presented solutions for ow through a converging-diverging

channel, created by a sinusoidal width variation. The �rst case was a steady state

solution containing a hydraulic jump. As with the previous example, the analytic

and TVD numerical solutions compared well. The second example consisted of a

surge wave propagating downstream over still water. At the downstream end, a

weir boundary condition was imposed, which initially resulted in the surge wave

being partially reected in the upstream direction. After the reection, a steady

state was reached in which a jump formed within the contraction. Again the TVD

scheme performed well, however the non-TVD version was unable to predict the

reected wave.

Yang, Hsu and Chang [67] presented results from �ve di�erent numerical methods

for a number of problems. The schemes considered were based on two general

formulations, giving rise to a set of �nite di�erent and �nite element methods

through various parameter values. The schemes selected corresponded to a second

order TVD method, a second order ENO (essentially non oscillatory) and a third

order ENO scheme through the �nite di�erence formulation, and the equivalents

of a second order TVD and a second order ENO methods via a �nite element

approach. For all �ve schemes results were shown for the dam-break problem,

where the upstream to downstream depth was 100:1. All of the methods produced

practically identical results in which the bore was well resolved and no oscillations

were present. The second problem considered involved the head-on collision of

two bore waves. Results from the three �nite di�erence schemes were given and

compared with a solution produced on a �ne mesh. In each case the numerical

solution closely matched the reference solution. The �nite element results were

stated to be very similar to those obtained from the �nite di�erence schemes.

The last example considered the sudden formation of a bore wave, resulting from
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a piston motion at the upstream boundary. Numerical solutions generated from

the second order �nite di�erence ENO scheme were seen to compare well with the

analytic solutions for two di�erent scenarios.

Savic and Holly [54] presented a modi�ed Godunov method for the calculation of

dam-break ows. The scheme considered was formulated as

Un+1
i

= Un

i
� �t

�xi
(F

n+1=2
i+1=2 � F

n+1=2
i+1=2 ) +R

n+1=2
i

where Un

i
represented a spatial average and F

n+1=2
i+1=2 was a time-average of the ux

function over the cell. The basis of the method presented was to evaluate an

appropriate value of U
n+1=2
i+1=2 such that

F
n+1=2
i+1=2 = F(U

n+1=2
i+1=2 ):

The authors proposed an approach whereby shocks were isolated and treated

separately to the rest of the ow via a Riemann problem. In the continuous regions

of ow, two strategies were implemented within the method of characteristics for

calculating U. These were based on using using piecewise parabolic interpolation

(PPM) and piecewise linear interpolation to extract approximations for the ow

variables at the base of the characteristics.

The method was �rst applied to the dam-break problem for a depth ratio of

100:1. Both interpolation versions produced reasonable solutions, however the

linear procedure gave rise to a more substantial amount of numerical di�usion.

The PPM scheme was then used to simulate a dam-break like problem for rough

sloping channel containing a sudden width expansion. The results obtained were

compared with those produced by the Lax-Wendro� and Preissmann schemes and

were found to be very similar. The experiment was repeated using a higher up-

stream to downstream ratio for which the Preissmann scheme could not generate

a solution. A comparison was made with the Lax-Wendro� scheme, and from

the discharge hydro-graph it could be seen that the Lax-Wendro� scheme suf-

fered from oscillations, whereas the pro�le was smooth for the PPM approach.

Finally a sudden width contraction was considered and results shown for both

variants of the Godunov scheme. Again the linear solution was seen to su�er from

more di�usion than the PPM scheme. The average amount of time required per

time step by the di�erent methods were compared, relative to the Godunov linear

scheme. This showed that the PPM version was only slightly more expensive,

whilst the Preissmann scheme required 1.82 times the computational e�ort of the

linear scheme. The Lax-Wendro� scheme was quoted as requiring less than half



CHAPTER 3. LITERATURE REVIEW 50

the expense but for the problems considered, solutions could only be obtained by

using a time step ten times smaller than that used for the Godunov method.

Garc��a-Navarro, Priestley and Alcrudo [24] described an implicit TVD scheme for

modelling water ow in channels and pipes. The method was based upon Roe's

scheme (see Chapter 4) and the general discretisation was written as

Un+1
i

�Un

i

�t
+

1

�x

h
���(F�

n+1

i+1=2) + (1 � �)��(F�
n

i+1=2)
i
= �Rn+1

i
+ (1 � �)Rn

i

where ��(F�
i+1=2) = F�

i+1=2 � F�
i�1=2. The numerical ux followed that in [2] but

without the term associated with the combined space-time discretisation and was

written as

F�
i+1=2 =

1

2
(Fi+1 + Fi)� 1

2

2X
k=1

 k

i+1=2

�
1 � �(rk

i+1=2)
�
~�k
i+1=2~ei+1=2

where  k

i+1=2 was the entropy correction. Here r was taken to be

rk
i+1=2 =

~�k
i+1=2�s�

k

i+1=2�s

~�k
i+1=2�

k

i+1=2

with s = sgn(~�k
i+1=2):

By expressing the Jacobian in its diagonal form, i.e.

~Ai+1=2 = ~Pi+1=2diag(~�
k

i+1=2)
~P�1
i+1=2

where ~P represents the matrix of column eigenvectors of ~A, then the matrix B

can be de�ned as

Bi+1=2 = ~Pi+1=2�i+1=2
~P�1
i+1=2

where �i+1=2 = diag[ k

i+1=2(1� �k
i+1=2)] such that

B =
1

~�2 � ~�1

0
@ d1~�2 � d2~�1 d2 � d1

~�2~�1(d1 � d2) d2~�2 � d1~�1

1
A

where d1;2 are the diagonal elements of �. This enables the numerical ux to be

represented as

F�
i+1=2 =

1

2

�
Fi+1 + Fi �Bi+1�Ui+1=2

�
:

where �Ui+1=2 = Un

i+1�Un

i
. A number of linearisations were introduced into the

implicit part of the scheme to render the resulting algebraic relationships linear

in U. Using a Taylor series expansion, the ux and source terms become

Fn+1
i

= Fn

i
+An

i
�Ui +O(�t2)
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Rn+1
i

= Rn

i
+Gn

i
�Ui +O(�t2)

where the Jacobian of the source term is
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In addition B at the new time level was approximated by

Bn+1
i+1=2 = Bn

i+1=2:

The resulting matrix system can then be written as

AAi�Ui�1 +BBi�Ui +CCi�Ui+1 = DDi

where the coe�cients are 2 � 2 matrices de�ned as

AAi = � ��t

2�x

�
Ai�1 +Bi�1=2

�n

BBi = I� ��tGn

i
+
��t

2�x

�
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�
n

CCi =
��t

2�x

�
Ai+1 �Bi+1=2

�n

DDi = ��t

�x

�
F�
i+1=2 � F�

i�1=2

�n
+�tRn

i
:

The resulting scheme was second order in space and �rst order in time.

A number of results were illustrated for di�erent test problems using a variety

of CFL numbers and � = 1, with the limiting function set to zero. Dam-break

solutions were shown for a depth ratio of 20:1 for CFL values of 0.5, 1, 2 and 4.

All the solutions were reasonable, but numerical di�usion could be observed. A

number of other examples were given to illustrate how the method could be applied

to ow networks via the implementation of suitable internal boundary conditions.

Jha, Akiyama and Ura [36] proposed a modi�cation to the Beam and Warming

scheme based on conservative splitting via an approximate Jacobian matrix, in

an attempt to render the scheme conservative. The general form of the original

method was

Un+1
i

= Un

i
+�t

2
4�

 
@U

@t

!
n+1

+ (1� � � �)

 
@U

@t

!
n

+ �

 
@U

@t

!
n�1

3
5
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where � and � were in the range [0; 1]. Applying the scheme to the general form

of a conservation law gave

Un+1
i

= Un

i
+�t

2
4�

8<
:
 
@F

@x
+R

!
n+1

+

 
@F

@x
+R

!
n
9=
;

+(1 � �)

 
@F

@x
+R

!
n

� �

 
@U

@t

!
n�1

3
5 :

Applying Taylor series expansion to linearize the implicit terms and using the

approximation  
@U

@t

!
n

=
Un+1 �Un

�t

then the scheme can be rewritten as

Un+1
i

= �t

"
�

 
@(AnUn+1)

@x
+ (GnUn+1)

!#
= Un

+�t

2
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@(AnUn)

@x
+GnUn

!
� (1 � �)

 
@F

@x
+R

!n
+ �

 
@U

@t

!n�1
3
5 :

If the split form of the Jacobian matrix is introduced and the following di�erence

formula used
@(A+U)

@x
=
A+

i
Ui �A+

i�1Ui�1

�x

@(A�U)

@x
=
A�

i+1Ui+1 �A�

i
Ui

�x

then the scheme becomes"
I+�t�
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+
@A�

@x
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!n#
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��t
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� �

 
@U

@t
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where the terms contained within the square brackets before U represent opera-

tors.

The modi�cation to the scheme involved rede�ning the approximation to the

derivative of the ux term. Instead of the conventional approximation

@F

@x
= A

@U

@x
= A+ @U

@x
+A�

@U

@x
;

the derivative was replaced with

@F

@x
= ~A

@U

@x
= ~A+

i�1=2

@U

@x
+ ~A�

i+1=2

@U

@x
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where

~Ai�1=2 = ~A(Ui�1=2) = A(Ui;Ui�1)

and use was made of the Roe averages.

Numerical solutions were presented for three problems | the sudden opening of

a gate, the sudden closure of a gate and the dam-break problem, all of which

contained bore waves. Comparisons were made between the original and modi�ed

Euler and Trapezoidal schemes (� = 1; � = 0 and �; � = 0:5). The experiments

clearly demonstrated improvements in the results when supercritical regions were

present in the ow. This was particularly apparent in the high ratio dam-break

case, for which the modi�ed schemes gave much better solutions and accurately

predicted the uid motion.

In a subsequent paper, Jha, Akiyama and Ura [37] applied the �rst order Roe

scheme and various second order constructions to the dam-break problem. The

three second order extensions were based upon a) the Lax-Wendro� numerical ux,

b) the MUSCL (Monotone Upstream-centred Schemes for Conservation Laws)

approach and c) the Modi�ed ux technique. All three employed the use of

ux/slope limiters to attain non-oscillatory solutions.

Using the convention

Un+1
i

= Un

i
� 

�
Fn

i+1=2 � Fn

i+1=2

�
;

where  = �t=�x, the Lax-Wendro� ux is written as

Fi+1=2 =
1

2
(Fi + Fi+1)� A2(Ui+1 �Ui): (3.26)

To render the scheme TVD, a ux limiter is applied to (3.26) and together with

the approximate Jacobian of Roe (see Chapter 4 for details), the resulting ux

function is

Fi+1=2 = 0:5(Fi + Fi+1)� 0:5
2X

k=1

j~�k
i+=12j~�ki+1=2~eki+1=2

+0:5
2X

k=1

�j~�k
i+1=2j[1� (j~�k

i+1=2j)s]~�ki+1=2~eki+1=2:

Setting s = �1 and � = 1 corresponds to Lax-Friedrichs scheme. Using s = 1

together with a ux limiter gives the limited Lax-Wendro� ux. The limiter

chosen was one due to van Albada, which is de�ned by the function

�(r) =
r + r2

1 + r2
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where the argument is taken to be

rk
i+1=2 =

~�
i+1=2�sign(~�k

i+1=2
)

~�k
i+1=2

:

The MUSCL ux was de�ned as

Fi+1=2 = F(UL

i+1=2;U
R

i+1=2)

where the left and right values of U were given by

UR

i+1=2 = Ui+1 � 0:5(�U)i+1=2

UL

i+1=2 = Ui + 0:5(�U)i+1=2

in conjunction with the Minmod slope limiter from which the `bar' values were

(�U)i+1=2 = minmod[(�U)i+1=2; �(�U)i�1=2]

(�U)i+1=2 = minmod[(�U)i+1=2; �(�U)i+3=2]

where

minmod(x; �y) =

 
x

jxj

!
max

(
0;min

 
x;

"
�y

x

jxj

#!)
:

No details were given for �.

The Modi�ed ux approach rede�ned the numerical ux as

Fi�1=2 = 0:5(Fi + Fi�1) + 0:5
2X

k=1

(Ek

i
+ Ek

i�1)~e
k

i+1=2

�0:5
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�k
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8>><
>>:

(Ek
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i
)

~�k
i+1=2

~�k
i+1=2 6= 0

0 otherwise,

with

�(~�k
i+1=2) = 0:5

�
 (~�k

i+1=2) +
�t

�x
(~�k

i+1=2)
2

�
:

The  term represents the entropy correction factor, de�ned here as

 (z) =

8><
>:
z2 + �2

2�
jzj < �

jzj jzj � �:
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The �rst experiment tested the �rst order Roe scheme against the analytical

solution, using a �xed valued of �, and a non-physical vertical drop was clearly

visible in the numerical solution. Roe's scheme (variable �) was then compared

to the Lax-Friedrichs method and the Trapezoidal version of the Modi�ed Beam

and Warming [36] scheme, for which Roe's scheme was seen to produce the better

solution. The second order schemes were then compared, where the van Albada

ux limiter was used in the Lax-Wendro� extension. For a depth ratio of 20:1,

the three methods gave almost identical solutions, however when this ratio was

increased to 200:1, the Modi�ed ux scheme under predicted the speed of the

front. A comparison was then made between the �rst order approach and the

Lax-Wendro� extension for the same depth ratio. The solutions appeared visually

identical. Finally solutions from the �rst order scheme and the MUSCL approach

for a depth ratio of 1000:1 were presented. The Lax-Wendro� and Modi�ed ux

versions were unable to produce a solution for this scenario. Visually there was

no noticeable di�erence in the numerical solutions shown. In conclusion the paper

argued that the �rst order Roe scheme gave much better results than the other

�rst order schemes considered in the study, and that it gave comparable results

to the second order extensions considered at a much lower computational cost.

Jha, Akiyama and Ura [38] carried out further tests on the Modi�ed Beam and

Warming scheme introduced in [36]. The modi�ed versions of the Euler (explicit

and implicit), Crank-Nicolson and Three point backward schemes were considered.

The original and new versions were compared for the dam-break problem for the

depth ratios 100:1 and 1000:1. In both cases the modi�ed schemes gave much

better results, with the explicit Euler method obtaining the best shock resolution

whilst the Three point backward scheme produced the least favourable solution.

The new scheme was also applied to the trapezoidal dam-break introduced in [2],

giving similar behaviour to the rectangular case. Results were also shown for the

shock problem in a frictional sloping trapezoidal channel in [16] and compared

with the McCormack scheme. All of the versions of the modi�ed approach gave

better shock resolution than the McCormack scheme. Numerical solutions from

the Crank-Nicolson variant were shown for two dam-break scenarios in a sloping

rectangular frictional channel for which experimental data was available. In the

�rst example a series of stage hydro-graphs were presented and it was observed

that good agreement was obtained between the numerical and experimental data,

except during the initial stages near the breach. The second case considered a dry

bed dam-break for which the numerical method required a very small downstream

depth to be introduced. Two hydro-graphs were given together with a water level
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pro�le plot and a time evolution of the front location. Again the two solutions

compared well. Further experiments were conducted on the standard dam-break

problem to assess how the choice of Courant number a�ected the solution. Using

the implicit Euler scheme and a depth ratio of 100:1, it was observed that for

values in the range 1 to 2 the results were indistinguishable, however the accuracy

deteriorated for values in excess of 2. The e�ect of friction was also considered by

incorporating non-zero n into the dam-break problem, and what were considered

to be reasonable solutions were obtained.

Jin and Fread [39] presented a paper which combined the Preissmann scheme

with a characteristic based upwind explicit method. The article highlighted the

bene�ts of using the upwind scheme in the case of the dam-break problem and

in other situations where unsteady mixed ows occurred. However from a prac-

tical perspective, the paper took the viewpoint that it was preferred to use the

Preissmann scheme where possible, and so provided evidence that the explicit

and implicit schemes could be combined in such a way (via appropriate inter-

nal boundaries) that the bene�ts of both methods could be encompassed. Results

were given for an actual dam break that had occurred, in which the explicit scheme

was used upstream and the implicit scheme downstream. Reasonable agreement

was obtained between the numerical and measured solutions.

Hicks, Ste�er and Yasmin [35] presented a paper intended to illustrate the va-

lidity of applying 1{d techniques to non 1-d problems. The article considered

the case of a dam-break scenario though a non-prismatic rectangular channel for

which a series of experimental results had been obtained by Bellos et al [10].

The non-prismatic region of the channel consisted of a non-symmetric contract-

ing/diverging length along one bank. The experimental data generated by Bellos

et al included a series of depth measurements taken at �ve points along the chan-

nel at the mid-points of each cross section. Data was produced for a range of

experiments which considered various bed-slopes and depth ratios, including dry

downstream beds. In the paper [35], a comparison was made between solutions

produced by a characteristic based �nite element method and the Preissmann

scheme, with the experimental data. A number of depth ratios over a horizontal

bed were considered. In the �rst example, a depth ratio of 2:1 was used. The

resulting ow was subcritical throughout the region and both schemes gave good

agreement with the measured results. The most noticeable di�erences occurred

at the breach location at the start of the simulation and towards the downstream

boundary later on. The downstream discrepancy resulted from the fact that the
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numerical treatment did not include the reected wave that occurred in the exper-

iment. Results were also included for the ratio 2.5:1. The �nite element method

gave similar results to before, however the Preissmann scheme experienced dif-

�culties in this instance as a supercritical region developed within the channel

contraction. Numerical experiments were also carried out using two non-uniform

grids | one in which the grid spacing varied smoothly and one containing irregular

changes in the distribution. It was noted that the similar results were obtained

using the smoothly varying grid as with the uniform distribution of cells, but

that the irregular grid gave rise to a more di�usive solution for the �nite element

scheme and a more oscillatory solution for the Preissmann scheme. Overall it

was concluded that both methods had accurately predicted the ow for wholly

subcritical simulations.

Meselhe, Sotiropoulos and Holly [43] presented the MESH scheme for open channel

ows. The method formed a two-step predictor-corrector algorithm based on

evaluating the derivatives at the (i+1=2; n+ 1=2) level. The scheme was written

as

Predictor

(�I+ �jAjn
i+1=2 � ��t�Gn

i+1=2)�Ui+1=2 = ���Fn

i+1=2+�t�Rn

i+1=2

�U = Un +�U

Corrector

(�I� �j �Ajn
i+1=2 + ��t�Gn

i+1=2)�Ui+1=2 = ����Fn

i+1=2+�t� �Rn

i+1=2

Un+1 = Un +
1

2
(�U+�U)

where

�Un = Un+1 �Un

�[ ]i+1=2 =
1

2
f[ ]i+1 + [ ]ig

�[ ]i+1=2 = [ ]i+1 � [ ]i

and

� =
�t

�x
:

The discretisation was second order accurate in both space and time and led to a

bidiagonal matrix system. Non-oscillatory solutions could be obtained by adding

arti�cial viscosity.
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Results were shown for three steady state and two time-dependent problems. The

�rst steady problem corresponded to ow over a bump [22] including a hydraulic

jump. The jump appeared at the correct location but was slightly smeared. The

second problem considered a sloping channel with three regions of constant So and

included frictional e�ects. The slopes were such that a hydraulic jump formed

in the central region. From comparison with the analytic solution, the MESH

scheme gave better mass conservation for this problem than for the bump. This

was due to the inclusion of friction which reduced the need for arti�cial viscosity.

The �nal steady state problem looked at ow through a sloping non-prismatic

frictional channel and compared the MESH scheme with results obtained using

Glaister's implementation of the Roe scheme, using an irregular mesh. Both

methods generated similar solutions, though some small oscillations appeared to

be present in the solutions produced by Glaister's scheme.

The �rst time dependent problem considered a sloping rectangular channel which

incorporated a sluice gate at the mid-point. The upstream and downstream

boundary conditions were varied over the initial stages and then maintained at

constant levels, resulting in a steady state ow. The resulting ow was subcrit-

ical and the numerical results of the MESH scheme were compared with those

produced by the Preissmann method. Both techniques gave similar pro�les. The

second unsteady example consisted of transcritical ow over a weir. The weir was

placed in the middle of the channel section and the boundary conditions were

varied over the simulation resulting in a complex ow pattern, which the MESH

scheme was able to predict.

MacDonald et al [42] presented a technique for generating analytic solutions for

non-trivial problems for steady state open channel ows. The method was applica-

ble to a range situations and could include non-prismatic cross sections, varying

bed-slopes and transcritical ows. Four examples were given which considered

prismatic rectangular and trapezoidal channels with non-uniform bed-slopes and

a range of ow types.

Delis and Skeels [13] compared several TVD schemes and applied the methods to

the dam-break problem and two of the test cases from MacDonald et al [42]. The

schemes considered were formulated as

Un+1
i

= Un

i
� �t

�x

h
~Fn

i+1=2 � ~Fn

i�1=2

i
+�t ~Rn

i
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using the ux function

~Fi�1=2 =
1

2

h
Fi + Fi�1 +Pi�1=2Di�1=2

i
;

whereP represented the matrix of right eigenvectors of the Jacobian and the choice

of D corresponded to the di�erent schemes. The source terms, R, were included

by taking the average of ~Ri�1=2 and ~Ri+1=2 where the approximate values were

given by

~Rn

i�1=2 =

0
BB@

0

g ~Ai�1=2So � g ~Ai�1=2~u
2
i�1=2n

2

"
~Ai�1=2

2 ~Ai�1=2=~bi�1=2 +~bi�1=2

#�4=3
3
775

together with

~Ai+1=2 =
q
Ai+1Ai and ~bi+1=2 =

1

2
(bi+1 + bi) :

The four methods considered were a second order symmetric TVD scheme, a

second order upwind TVD scheme (corresponding to the Modi�ed ux approach),

the TVD McCormack scheme and a MUSCL scheme. All of the schemes were

implemented by using the Roe Riemann solver. Denoting the elements of Di+1=2

as dk
i+1=2, the various schemes were written as

(1) Symmetric TVD scheme

(dk
i+1=2)

s = ��t

�x
(~�k

i+1=2)
2Lk

i+1=2 �  (~�k
i+1=2)[~�

k

i+1=2 � Lk

i+1=2] k = 1; 2

where  was de�ned as

 (�) =

8><
>:

j�j j�j � �

�2 + �2

2�
j�j < �

using a varied value of �, and L corresponded to a limiter function represented by

Lk

i+1=2 = minmod(~�k
i�1=2; ~�

k

i+1=2) + minmod(~�k
i+1=2; ~�

k

i+3=2)� ~�k
i+1=2

and

minmod(x; y) = sgn(x)maxf0;min [jxj; y sgn(x)]g:

(2) Upwind TVD scheme

(dk
i+1=2)

u = �(~�k
i+1=2)(L

k

i+1 + Lk

i
)�  (~�k

i+1=2 + k
i+1=2)~�

k

i+1=2; k = 1; 2
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with

�(�) =
1

2

�
 (�)� �t

�x
�2
�

and

k
i+1=2 =

8<
: �(~�k

i+1=2)(L
k

i+1 � Lk

i
)=~�k

i+1=2 ~�k
i+1=2 6= 0

0 ~�k
i+1=2 = 0:

For this scheme the limiter function was de�ned as

Lk

i
= minmod(~�k

i+1=2; ~�
k

i�1=2):

(3) TVD McCormack scheme, written as

U
(1)
i

= Un

i
� �t

�x
(Fn

i+1 � Fn

i
) + (�t)Rn

i

U
(2)
i = Un

i
� �t

�x
(F

(1)
i+1 � F

(1)
i ) + (�t)R

(1)
i

from which

Un+1
i

=
1

2

�
U

(1)
i +U

(2)
i

�
+
1

2
(�Pi+1=2

�Di+1=2 � �Pi�1=2
�Di�1=2)

where the elements of �D are given by

(dk
i+1=2)

PC =  (~�k
i+1=2)

�
1� �t

�x
j~�k

i+1=2j
�
(1 � Lk

i+1=2)~�
k

i+1=2:

In this case the Minmod limiter becomes

Lk

i+1=2 = max(0;min(1; rk
i+1=2)

where

rk
i+1=2 =

~�k
i+1=2�s

~�k
i+1=2

and s = sgn(~�k
i+1=2):

The values �P and �Di+1=2 were evaluated using Un.

(4) MUSCL scheme

UL

i+1=2 = Ui +
1

4

h
(1 �m)�+

i�1=2+ (1 +m)��

i+1=2

i

UR

i+1=2 = Ui+1 � 1

4

h
(1 �m)��

i+3=2+ (1 +m)��

i+1=2

i
where

��

i+1=2 = minmod(�i+1=2U; ��i�1=2U)
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�+
i+1=2 = minmod(�i+1=2U; ��i+3=2U)

and � is a `compression parameter' with a value in the range

1 � � � 3 �m

1 �m

where m determined the spatial order of accuracy and was not set to one. In the

work presented, m was chosen to be 1/3 leading to third order spatial accuracy.

The ux function of the MUSCL scheme was written as

~Fi+1=2 =
1

2

h
F(UR

i+1=2) + F(UL

i+1=2) + P̂i+1=2D̂i+1=2

i
;

together with

d̂k
i+1=2 = � (~�k

i+1=2)�̂
k

i+1=2:

The terms ~�k
i+1=2, P̂i+1=2 and �̂

k

i+1=2 are de�ned using the standard Roe formula

by replacing Ui+1 and Ui with U
R

i+1=2 and U
L

i+1=2.

The methods were �rst applied to the idealized dam-break problem. For a reservoir

to tailwater depth ratio of 20:1, all the methods accurately predicted the ow. A

comparison of the results obtained when the ratio was increased to 200:1 was then

made and contrasted with the �rst order Roe scheme. The symmetric scheme gave

the largest deviation from the analytical solution with the Roe, Modi�ed Flux and

MUSCL schemes giving similar solutions. The McCormack scheme appeared to

give the best shock location. When the ratio was further increased to 1000:1, the

McCormack scheme gave an oscillatory solution and again the symmetric scheme

gave the least favorable position for the shock. The Roe, MUSCL and Modi�ed

ux approaches gave comparable solutions with the third order MUSCL scheme

producing the best solution.

The application of the techniques to more complex problems was then considered

through two examples taken from [42]. The �rst case considered had subcritical

boundary conditions and contained a central supercritical region. The second case

considered a situation where the ow was supercritical at both boundaries which

were connected by a subcritical region. In both cases Roe's scheme was seen to

clip the jump, whilst the symmetric scheme performed much better around the

jumps but gave less favourable results in the smooth regions. McCormack's scheme

overestimated the jump height for both problems. The MUSCL and Modi�ed ux

approaches gave similar solutions but had to be run at lower CFL numbers. In

conclusion, each method had its relative merits depending on the problem being

considered. It was stated that the treatment of the source terms used had given

better results than the pointwise implementation.
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3.2.2 Two-dimensional studies

Fennema and Chaudhry [17] applied the Beam and Warming scheme used in [16] to

the two-dimensional shallow water equations. Using an approximate factorization,

the 2-d problem was re-expressed as two 1-d problems, such that the two co-

ordinate directions were considered in turn. The method was applied to the 2-d

partial dam-break problem. The e�ects of friction and bed-slope were included

in the study together with various boundary conditions, though the paper only

presented results for a at frictionless channel. The Euler implicit, Trapezoidal

and Three-point backward versions of the scheme were applied to the depth ratio

2:1 and it was stated that the three schemes gave identical results. It was noted

that for this problem, the McCormack scheme would fail for a depth ratio of 4:1

or more, and that Gabbutti's scheme would generate negative depths if this was

increased to 5:1. For the Beam and Warming scheme, numerical solutions could

be obtained for ratios up to 1000:1, and solutions were provided for the 500:1 case.

Overall the results were seen not to contain any oscillations and it was observed

that the bore was spread over more cells than would be the case with an explicit

scheme.

In a subsequent paper, Fennema and Chaudhry [18] considered the McCormack

and Gabutti explicit schemes for 2-d ows. The methods were applied to the

same partial dam-break problem considered in [17] and results were shown for

the depth ratio 2:1. Arti�cial dissipation had to be added to both schemes to

remove the non-physical oscillations, and in comparison with the implicit results

presented previously, the bore could be seen to be more sharply resolved. A

visual comparison was made between the two schemes by comparing the transverse

depth pro�les along three x co-ordinate lines, together with the depth values at

two points during the simulation. Overall the two schemes were deemed to give

`comparable' solutions. A comparison was also made with the Beam and Warming

scheme via a longitudinal depth plot. Similarities could be observed between the

solutions in addition to the smearing e�ect of the implicit scheme. The ow of

a ood wave through a channel contraction was also considered, using a similar

geometry to the dam-break scenario in which the width of the dam was increased.

The time-evolving depth pro�les at two points within the channel were shown

along with transverse pro�les along three y-values.

Glaister [28] applied the method introduced in [27] to the (�; �u; �w) formula-

tion of the two-dimensional shallow water equations. The 2-d equations were
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re-expressed as two 1-d equations using the technique of operator splitting to

which the approximate Riemann solver could be applied. Numerical solutions

were presented for the two-dimensional radial dam-break problem which consists

of a cylindrical bore followed by a depression. Results at a number of di�erent

times produced using the Minmod limiter were shown, and reasonable solutions

were obtained.

Toro [62] presented several Riemann solvers within the context of shallow wa-

ter ows, and considered their application through the Weighted Average Flux

(WAF) method to a series of 1-d and 2-d problems. The paper illustrated how

to determine the exact solution of the Riemann problem for the 1-d Saint Venant

equations, which led to the development of Toro's Exact Riemann solver, the two-

rarefaction (TR) approximate Riemann solver and the Two-shock approximate

Riemann solver. The paper also considered the approximate Riemann solvers of

Roe and Harten, Lax and van Leer (HLL). The WAF method was constructed by

considering the solution of a Riemann problem at the cell interfaces (centered at

x = 0) which on an irregular grid led to a numerical ux of the form

Fi+1=2 =
1

1
2
�xi

Z 0

�
1

2
�xi

F(U�)dx +
1

1
2
�xi+1

Z 1

2
�xi+1

0
F(U�)dx (3.27)

where U� is the solution to the Riemann problem at time t = �t=2. By assuming

that waves in the solution of the Riemann problem are single rays, then equation

(3.27) can be replaced by

Fi+1=2 =
N+1X
k=1

WkF
k

i+1=2

where N is the number of waves present and the coe�cients W k are weights

de�ned by

W k =
1

2
(�k � �k�1) with �0 = �1 and �N+1 = 1:

The weights are all positive and are such that the sum over k is equal to unity.

Following these de�nitions, the ux can be re-expressed as

Fi+1=2 =
1

2
(Fi + Fi+1)� 1

2

NX
k=1

�k�F
k

i+1=2

with

�Fk

i+1=2 = Fk+1
i+1=2 � Fk

i+1=2:
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Alternatively an average state, �Vi+1=2 can be de�ned by

�Vi+1=2 =
1

2

�
V n

i
+ V n

i+1

�
� 1

2

NX
k=1

�k�V
k

i+1=2

from which the numerical ux becomes

Fi+1=2 = F( �Vi+1=2):

The resulting scheme is second order and so can produce non-physical oscilla-

tions, but a corresponding TVD method can be constructed by applying a ux

limiter. Using standard splitting techniques the method can be extended to higher

dimensional systems of conservation laws.

The �rst problem considered was the idealized 1-d dam-break test case. Using the

exact Riemann solver, solutions were presented using the TVD and non-TVD ver-

sions of the WAF method and the Godunov method. As expected the TVD WAF

scheme gave the best solution, as oscillations occurred within the non-TVD ver-

sion, and the Godunov method slightly smeared the shock in addition to including

a non-entropy satisfying jump. Using the same limiter function, solutions were

also presented using the approximate TS, TR and Roe Riemann solvers. These

results were almost identical to those obtained using the exact Riemann solver.

The second problem to be investigated was a 1-d ow over a non-uniform bed,

which consisted of two at sections at di�erent heights connected by a region of

uniform gradient. Plots at several di�erent times were presented using the exact

solver with a limiter. Though no exact solution was available for comparison, the

numerical solution appeared well behaved and satisfactory. Finally the method

was applied to the circular dam break problem in [28] using the TVD version

together with TR solver, and again reasonable results were obtained.

Yang and Hsu [68] extended the second order ENO scheme considered in [67] to

two-dimensional ows, using an operator splitting approach. The paper consid-

ered examples of ows containing bore di�raction. The �rst problem investigated

the case of a bore wave impinging on a cylinder, and was analogous to an aero-

nautics test case. The solutions produced were in line with those seen in gas

dynamics. The method was also applied to to the case of a bore travelling along

a contracting/expanding channel and reasonable solutions were obtained.

Alcrudo and Garc��a-Navarro [3] considered a high-order Godunov-type scheme

constructed within the �nite volume framework. The method was based on the

MUSCL approach and included the use of slope limiters. The scheme was �rst
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introduced in one-dimension and then extended to two-dimensions. It was noted

that within the �nite volume approach, there was no need for the grid to be

rectangular or to contain regular cells. Numerical results were presented for three

test problems. The �rst was referred to as an oblique hydraulic jump for which an

analytical solution was available. The channel geometry consisted of a converging

wall, which in conjunction with certain initial conditions would induce a hydraulic

jump at a particular angle. A grid containing rectangular cells was chosen and

values close to the exact solution were generated. Next the 2-d dam-break was

considered where the depth ratio was chosen to be 2:1. A reasonable solution was

produced which did not contain any oscillations. Finally the method was applied

to the circular dam-break in [28]. It was noted that this particular problem was

radially symmetric and so solutions were obtained using grids generated from

both polar and Cartesian co-ordinates. The two solutions contained noticeable

di�erences | the rectangular grid produced a squaring e�ect in the velocity �eld

plots, in addition to some peculiarities in the depth contours. This e�ect was also

evident in the 3-d depth pro�le. In contrast the solution obtained from circular

gird was perfectly symmetric.

Nuji�c [46] investigated two schemes for shallow water ow and considered the

issue of non-uniform beds. Both methods were written as a predictor-corrector

sequence with di�ering expressions for the numerical ux. The �rst scheme was

based upon the Lax-Friedrichs approach, with the ux expressed as

Fi+1=2 = F+
i+1=2 + F�

i+1=2

where

F+
i+1=2 = F+

i
+ 0:5�F+

i

F�
i+1=2 = F�

i+1 � 0:5�F�
i+1

and

F+
i
= 0:5(Fi + �Ui); F�

i
= 0:5(Fi � �Ui):

The � term was a coe�cient satisfying

� � maxj�ij

over all of the cells. Alternatively, � could be de�ned locally over the cells in the

computational stencil. The � functions were de�ned as

�F+
i
= minmod(F+

i+1 � F+
i
;F+

i
�F+

i�1)
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�F�
i�1 = minmod(F�

i+1 � F�
i
;F�

i+2 � F�
i+1)

using

minmod(a; b) =

8>><
>>:
a if jaj < jbj and ab > 0

b if jbj < jaj and ab > 0

0 if ab � 0:

The second method took the ux

Fi+1=2 = 0:5[FR + FL � jAi+1=2j(UR �UL)]

and re-wrote it as

Fi+1=2 = 0:5[FR + FL � �(UR �UL)]

where

UL = Ui + 0:5�Ui

and

UR = Ui+1 � 0:5�Ui+1

following the same de�nitions for � and the � values as before.

The two methods were �rst applied to the 1-d dam-break problem for a depth

ratio of 100:1. The results contained no oscillations and the jumps were correctly

predicted. The �rst scheme was then applied to a 2-d dam-break problem and

compared with some experimental data, and the MUSCL scheme in [3]. Both

numerical methods captured the predominant ow features visible in the exper-

imental data. An example was then given to illustrate the need to treat source

terms in an appropriate manner, and it was suggested that the continuity equa-

tion should be written in terms of H (H = h+ z). Also it was proposed that the

I1 term in the momentum equation should be removed from the ux function and

discretised in the same way as the source terms, e.g. through central di�erencing.

This new treatment was applied to the same steady state variable bed problem

using the �rst scheme, and an improved solution was obtained.

Fraccarollo and Toro [20] compared numerical results generated by the WAF

scheme with experimental data obtained from a dam-break like problem. The

HLL Riemann solver was used together with a ux limiter to produce the numer-

ical data. The comparison between the experimental and computational results

highlighted certain di�erences, particularly near the dam location. However over-

all the numerical approach was seen to predict the predominant ow features.
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Ambrosi [4] applied the Roe Riemann solver within the MUSCL and �nite volume

construction to a number of test problems. The �rst example considered the

1-d dam-break problem when the downstream bed was dry. In comparison with

the exact solution, reasonable agreement was obtained with the most prominent

di�erences occurring in the region of the wet/dry interface. The standard 1-d

dam-break was also considered and reasonable results were generated. Finally the

method was applied to the 2-d dam-break and produced typical results.

Garc��a-Navarro, Hubbard and Priestley [25] considered the application of a gen-

uine multidimensional upwind technique to shallow water ows. The method

was based on approximating the solution at the vertices of triangular cells and

di�ered from the standard �nite volume approach. The oblique hydraulic jump

test problem was used to test the method on a variety of grids. The �rst was

a structured triangular grid and the method was seen to generate a satisfactory

solution. The solution from a �nite volume TVD scheme on a quadrilateral grid

(42�7) was then compared with the results obtained using the new method on an

adaptive triangular grid with 96 cells. The new scheme was seen to give a better

solution and required half the CPU time of the �nite volume scheme. Numerical

solutions were also generated for the dam-break experiments reported in [10] for a

converging/diverging channel. A comparison was made between the multidimen-

sional upwind method and the �nite volume technique for the at bed case and a

sloping bed. Overall the two methods gave very similar solutions which correlated

to the experimental data.

Zhao, Shen, Lai and Tabois III [72] compared three di�erent approaches all based

on using approximate Riemann solutions within the �nite volume method. In

particular the paper focussed on problems containing hydraulic jumps. The three

methods tested were the ux vector splitting approach of Steger and Warming, the

ux di�erence splitting method of Roe and the Osher scheme. The �rst problem

to be considered was the 1-d dam-break. The solutions were obtained on a �xed

grid using a �xed time step. By comparing the shock speed and height, and the

velocity and water depth at the dam location, the Osher scheme gave the best

results with the FVS producing the worst results, though the di�erences were

only marginal. The second problem considered an advancing surge wave. The

three methods gave very similar solutions, and the ratio of CPU run times for the

FVS, FDS and Osher method were recorded as 1:1.18:1.04. Next the methods

were applied to the two-dimensional dam-break problem and results comparable

to those published elsewhere were obtained. Finally solutions were generated for
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the oblique jump problem using a rectangular mesh. It was stated that there were

no signi�cant di�erences between the numerical solutions of the three methods,

though the Roe scheme required a time step ten times smaller than the other

two methods. A sensitivity analysis of how the di�erent methods were a�ected

by size of time steps, non-uniform grids and non-uniform beds was conducted.

In summary, the paper concluded that all three methods produced very similar

numerical solutions, though formally the Osher scheme was the most accurate

and the FVS scheme the least accurate. In run time comparisons the FVS had

required the least CPU time, whilst the FDS scheme had needed the most. From

changes in �t and �x it was observed that the FVS scheme was the most stable

and that the FDS scheme was the most sensitive to changes, though for changes

in the bed-elevation the opposite was true.

Anastasiou and Chan [6] considered the application of a �nite volume scheme

based on unstructured triangular grids and the Roe ux. Both the inviscid and

viscous form of the two-dimensional shallow water equations were considered.

Results were shown for the standard 2-d dam break, the circular dam break and

the oblique hydraulic jump problems. All of the solutions were as expected. Two

examples including the e�ects of viscosity were also considered | ow over a

backward step and jet ow through a circular reservoir. The solutions produced

were stated to be in line with those given elsewhere. Finally an example from

meteorology was considered, in which the convective nature of the scheme is tested,

by imposing �xed velocities. Results were shown for the convection of a square

pro�le and a cone, using both the Superbee and Minmod limiters. This example

highlighted the di�erent nature of the two limiters, as less di�usion was apparent

in the solutions obtained using the Superbee limiter.

Sleigh, Berzins, Gaskell and Wright [56] applied an unstructured �nite volume

method based on the Roe Riemann solver to a number of shallow water test

problems. The resulting SPRINT2D suite encompassed a variety of methods to

perform the time integration and included procedures to control the temporal and

spatial errors. Within the paper a number of issues were considered, including

wetting/drying e�ects and the treatment of boundary conditions. Various results

were presented to illustrate the potential of the package including the 2-d dam-

break problem and results for the experiments conducted by Bellos et al. The

solutions presented were in line with those seen elsewhere.
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Molls and Molls [45] presented a new approach for solving 2-d ows, based on the

integral form of the equations in which the space and time discretisations were

combined. This new method did not require the addition of arti�cial viscosity

or ux limiters, and no directional bias was contained within the discrete for-

mulation. Results from the scheme were compared with the Lax-Wendro� and

McCormack methods for the 1-d dam-break problem. The new scheme produced

the best solution and gave comparable results to those from an upwind TVD

scheme. The second example considered was that of a 1-d hydraulic jump and

the numerical solutions from two di�erent grids were compared with experimental

results. Reasonable agreement between the results was observed. Using operator

splitting, the 1-d approach was extended to the 2-d oblique hydraulic jump and a

satisfactory solution was generated.

Mingham and Causon [44] used a �nite volumemethod that incorporated the HLL

Riemann solver and followed the MUSCL approach. Results were presented for a

range of problems. The �rst was the 1-d dam-break problem and it was observed

that varying the choice of slope limiter only produced a marginal di�erence. The

circular 2-d dam-break was also considered on both a Cartesian and a polar mesh.

The results highlighted the mesh dependency of the solution, as also seen in [3].

Variants of the oblique hydraulic jump scenario were also considered for a range

of ow conditions, in addition to the 2-d dam break. All the solutions presented

were reasonable and were in line with expectations.



Chapter 4

Roe Riemann solver

In this chapter, the approximate Riemann solver developed by Roe for the Euler

equations is presented, together with details of the application of the method

to open channel ow. Information is also given on the implementation of the

boundary conditions, as well as an upwind source term treatment speci�cally

constructed for use with Roe's scheme and the Saint Venant equations.

4.1 Roe construction

The information presented in this section is summarised from [34], [41] and [63].

The basis of Roe's method is to construct ~U(x; t) in the relationship

Un+1
i

=
1

�x

Z
xi+1=2

xi�1=2

~Un(x; tn+1)dx;

by employing a local linearisation and solving a constant coe�cient system of

linear conservation laws, with the corresponding ux ~F(U) = ~AU. In terms of

the Riemann problem, the matrix ~A must depend upon UL and UR and the

modi�ed conservation law is represented by

Ut + ~A(UL;UR)Ux = 0: (4.1)

Equation (4.1) is solved exactly, and this corresponds to replacing the original

Riemann problem with an approximate Riemann problem. The solution obtained

is then an approximate solution to the original conservation law. Using the local

70
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linearisation allows the theory of constant coe�cient linear systems to be extended

to non-linear problems. The di�culty in extending the linear theory lies in deter-

mining an approximate Jacobian, ~A. Roe began by de�ning a series of properties

which any suitable choice of ~A(UL;UR) would need to satisfy. Collectively, these

criteria were termed `Property U' and and were interpreted by LeVeque [41] to

say that the following conditions should apply

1. ~A(UL;UR)(UR �UL) = F(UR)� F(UL)

2. ~A(UL;UR) is diagonalizable with real eigenvalues

3. ~A(UL;UR)! F
0

(U) smoothly as UL;UR ! U

The �rst condition ensures that if UL and UR are connected by a single shock,

then the approximate Riemann solution reproduces the exact solution and the

Rankine-Hugoniot relationship is satis�ed. The second condition ensures that

(4.1) is both hyperbolic and soluble. Finally the third requirement means that

the solution will behave reasonably for smooth solutions. Although an obvious

choice of some form of average such as ~A = (AL+AR)=2 or ~A = A((UL+UR)=2)

might satisfy the second and third conditions, in general such an average will not

meet the �rst condition. Roe demonstrated how to construct a matrix for the

Euler equations that would satisfy Property U. The linear theory is extended to

non-linear systems by constructing a matrix ~A for which

~A�U = �F

where �(:) = (:)R � (:)L, (i.e. condition 1.). This is equivalent to �nding the

approximate values (denoted by~) that satisfy

�U =
X

~�k~ek (4.2)

and

�F =
X

~�k ~�k~ek (4.3)

where ~�k corresponds to the strength of the kth wave in the Riemann solution

travelling with speed ~�k, and ~ek represent the right eigenvectors of the matrix
~A with associated eigenvalues also de�ned by ~�k. Having generated the approxi-

mated quantities, the ux at the cell interface can be de�ned as

Fi+1=2(UL;UR) =
1

2
(FL + FR)� 1

2

X
~�kj~�kj~ek: (4.4)
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4.2 Roe's scheme applied to the Saint Venant

equations

Glaister [29] derived de�nitions for the approximate values for the 1-d Saint Venant

equations. Following the Roe-Pike approach [52], and using the de�nitions

U =

0
@ A

Q

1
A and F =

0
@ Q

Q2=A + gI1

1
A ;

the exact Jacobian, Â, for the homogeneous Saint Venant equations is de�ned as

Â =
@F

@U
=

0
@ 0 1

c2 � u2 2u

1
A

with corresponding eigenvalues and eigenvectors

�1 = u+ c and �2 = u� c

e1 =

0
@ 1

u+ c

1
A and e2 =

0
@ 1

u� c

1
A :

From this, the approximate Jacobian, ~A is deemed to have eigenvalues and eigen-

values of the form

~�1;2 = ~u� ~c and ~e1;2 =

0
@ 1

~u� ~c

1
A :

The Roe construction is then based on determining the approximate quantities ~u

and ~c which satisfy all of the constraints. In addition, expressions for ~�1;2 must

be found. From (4.2) the following relationships are obtained

�A = ~�1 + ~�2

�Q = ~�1(~u+ ~c) + ~�2(~u+ ~c):

From which, ~�1 and ~�2 are given by

~�1 =
(~c� ~u)�A+�Q

2~c

~�2 =
(~c+ ~u)�A��Q

2~c
:

To obtain expressions of ~u and ~c, (4.3) is expanded to give

�Q = (~u+ ~c)~�1 + (~u� ~c)~�2
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as before, and

�(Q2=A + gI1) = (~u+ ~c)2~�1 + (~u� ~c)2~�2:

Substituting for ~�1 and ~�2 and rearranging then gives

�(Q2=A) + ~u2�A = ~c2�A��gI1: (4.5)

To �nd ~u and ~c, both sides of (4.5) are set to zero and expanded, resulting in the

square root averages of Roe,

~u =

p
ALuL +

p
ARuRp

AL +
p
AR

~c2 =

8><
>:
g
I1R � I1L
AR �AL

if AR �AL 6= 0

(cL + cR)
2 if AL = AR

:

Expressed in the form of (4.4), Roe's ux is conservative and TVD which are both

desirable properties of schemes suited to solving conservation laws. However, this

formulation is only �rst order in space and time. In addition, under certain

circumstances, the scheme can lead to entropy violating solutions. Fortunately a

number of `entropy �xes' have been devised which rectify this problem, and these

are based upon modifying the j~�j term in (4.4). The two most popular approaches

are based on re-evaluating j~�j using the formula ([30] and [69])

j~�j =
8<
: j~�j j~�j � "

" j~�j < "

or

j~�j =
8><
>:

j~�j j~�j � "
~�2 + "2

"
j~�j < "

where " is a small positive number and can be generated using

" = max(0; ~�(UL; UR)� �(UL); �(UR)� ~�(UL; UR)):

There are two ways to adapt Roe's scheme which result in a method that is

formally second order in both space and time. One way is to use a MUSCL

approach in which the data used within the Riemann solver (i.e. UL and UR) is

modi�ed and the update is performed in two stages using a predictor corrector

type algorithm. The second approach can be considered as an extension to the

Lax-Wendro� scheme and involves the use of ux limiters. The second approach

is the one favoured here, and the following extract is taken from [2].
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For a system of conservation laws, the Lax-Wendro� ux can be written as

F�
i+1=2 =

1

2
(Fi + Fi+1)� 1

2
Â2
i+1=2(Ui+1 �Ui)

where the Jacobian matrix, Âi+1=2 is based upon some average quantity such as

Âi+1=2 = Â

 
Ui+1 +Ui

2

!
:

An equivalent representation of the Lax-Wendro� ux written in terms of the Roe

scheme is then

F�
i+1=2 =

1

2
(Fi+1 + Fi)� 1

2

2X
k=1

~�kj~�kj~ek + 1

2

2X
k=1

~�kj~�kj
�
1 � �t

�x
j~�kj

�
~ek: (4.6)

In this form (4.6) is written as a �rst order scheme with a correction, resulting in a

second order scheme. However to obtain a TVD version of the ux, the correction

term must be limited and this can be done via a ux limiter, giving

F�
i+1=2 =

1

2
(Fi+1 + Fi)� 1

2

2X
k=1

~�kj~�kj~ek + 1

2

2X
k=1

�(rk)~�kj~�kj
�
1 � �t

�x
j~�kj

�
~ek

or

F�
i+1=2 =

1

2
(Fi+1 + Fi)� 1

2

2X
k=1

�
1 � �(rk)

�
1 � �t

�x
j~�kj

��
~�kj~�kj~ek:

The argument of the limiter function is then

ri+1=2 =
~�i+1=2�s

~�i+1=2
where s = sgn(~�i+1=2):

Several other Riemann solvers have been developed, the most popular of which

are due to Osher ([14] and [47]) and Harten, Lax and van Leer [31]. However

within the hydraulics community, the Riemann solver of Roe has been the most

widely accepted and this has been applied to a variety of situations. Toro has

developed several Riemann solvers for use speci�cally within the weighted average

ux (WAF) scheme (see [63] for details of the WAF scheme and a number of

Riemann solvers), detailed in the previous chapter.

4.3 Boundary conditions

In discussion so far only homogeneous conservation laws have been considered in

isolation from any boundary or source term treatment. Both of these areas are

an important consideration in any numerical technique and are now discussed in

this section.
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4.3.1 Application of the method of characteristics to the

boundaries

The question of what to do at the computational boundaries of a problem brings

the theory of characteristics back into focus. As mentioned previously, any char-

acteristics which enter the domain should already have values prescribed upon

them. As a result it is necessary to provide this information in some manner, or

else the problem is not well posed. At the downstream boundary, any charac-

teristics leaving the domain should contain information of the ow variables via

the numerical solution. The result is that for any boundary, the number of pieces

of information which must be speci�ed relates to the number of characteristics

entering/leaving that region.

Consider the upstream boundary. If the ow is subcritical, then the C+ character-

istic points into the computational domain, whereas the C� characteristic leaves

the region. The result is that one of the ow variables (typically Q) must be spec-

i�ed, from which a value of A can be generated from characteristic theory. If the

ow is supercritical, then both characteristics enter the region at the upstream

boundary, and so values for A and Q must be speci�ed. For the downstream

boundary, subcritical ow requires the speci�cation of one variable (usually A) as

in the upstream case. If the ow is supercritical then both characteristics should

propagate information from the upstream direction downstream. Imposing any

values in this case would over specify the problem and represent a contradiction

in the mathematical theory. This situation is dealt with by considering a trans-

missive boundary in which dummy cells are created that mirror the values of the

ow variables from the upstream direction. Conversely, a wall boundary maybe

imposed whereby the ow cannot continue downstream and is reected back in

the upstream direction. Transmissive boundary conditions may also be applied

at the upstream boundary. Garc��a-Navarro and Savir�on [21] gave details how to

apply the theory of characteristics to the boundary conditions of open channel

ow problems for McCormack's method, as outline below.

The Saint Venant equations for a prismatic channel written in characteristic form

are

@Q

@t
+ (u� c)

@Q

@x
+ (�u� c)

"
@A

@t
+ (u� c)

@A

@x

#
= gA(So � Sf ): (4.7)

Consider the upstream boundary and the C� characteristic as shown in Figure 4.1(a).
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Figure 4.1: Boundary value calculation [21].

An estimate of the position xR is obtained from

xR = xM � (u� c)n1�t:

Assuming that x1 < xR < x2 then values for Q and A at point R are found by

using linear interpolation

QR = Qn

2 � (Qn

2 �Qn

1)
(x2 � xR)

�x

AR = An

2 � (An

2 �An

1)
(x2 � xR)

�x
:

From (4.7), the points M and R are connected by

QM �QR + (�u� c)R(AM �AR) = �t[gA(So � Sf)]R

from which, QM and AM are

QM = QR + (u+ c)R(AM �AR) + �t[(gA(So = Sf )]R

AM =
QM �QR ��t[(ga(So � Sf)]R

u+ c
+AR:

To obtain a more accurate estimate for either QM or AM , this procedure can be

used within an iteration. A new value for xR can be obtained from

xR = xM � �t

2
[(u� c)M + (u� c)R]:

New estimates for QR and AR are then found using the same interpolations as

before, and the resulting expression based upon the characteristic equation is then

QM�QR+
(AM �AR)

2
[(�u�c)R+(�u�c)M ] = �t

2
[(gA(So�Sf ))R+(gA(So�Sf ))M ]
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from which

QM = QR+
(AM �AR)

2
[(u+c)R+(u+c)M ]+

�t

2
[(gA(So�Sf))R+(gA(So�Sf))M ]

and

AM =
2QM � 2QR ��t[(gA(So� Sf ))R + (gA(So � Sf ))M ]

[(u+ c)R + (u+ c)M ]
+AR:

The process can be repeated until convergence is obtained. Similarly, applying

the same technique to the downstream boundary (see Figure 4.1(b))

xL = xP � (u+ c)n
N
�t

and so

QL = Qn

N
� (Qn

N
�Qn

N�1)(xN � xL) (4.8)

AL = An

N
� (An

N
�An

N�1)(xN � xL): (4.9)

The relationship obtained from the characteristic equation is

QP �QL + (�u+ c)L(AP �AL) = �t[gA(So� Sf )]L

giving

QP = QL + (u� c)L(AP �AL) + �t[gA(So � Sf )]L

and

AP =
QP �QL ��t[gA(So � Sf )]L

(u� c)L
+AL:

As before the process may be repeated using

xL = xP � �t

2
[(u+ c)L + (u+ c)P ];

and using the interpolated values for AL and QL then gives

QP �QL+
AP �AL

2
[(�u+c)L+(�u+c)P ] = �t

2
[(gA(So�Sf )L+(gA(So�Sf )P ]:

Finally the new iterative values are

QP = QL� AP �AL

2
[(u� c)L + (u� c)P ] + �t

2
[(gA(So� Sf )L + (gA(So� Sf )P ]:

and

AP =
2QP � 2QL ��t[(gA(So � Sf )L + (gA(So � Sf )P ]

[(u� c)L + (u� c)P ]
+AL:

Thus given either A or Q at a particular boundary where the ow is subcritical,

then the other may be found by considering the characteristics.
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4.3.2 Reective and transmissive boundaries

Reective boundary conditions [62] are intended to represented the ow impinging

upon a �xed surface, such as a wall or where a channel has been closed at the

downstream end. The conditions are implemented by creating dummy cells at the

end of the reach, for which the the values A and Q are given by

AN+1 = AN QN+1 = �QN

and

AN+2 = AN�1 QN+2 = �QN�1:

If the �rst order scheme is used, then only the �rst dummy cell, N + 1 is needed.

A similar strategy is used to construct transmissive boundaries [62]. The idea of

transmissive boundaries is in e�ect to consider the boundaries to be at in�nity,

such that they do not a�ect the local behaviour of the ow. If the ow is su-

percritical at the downstream boundary, then transmissive boundary conditions

can also be employed to account for the characteristics leaving the domain. The

values for the dummy cells at the downstream end are de�ned as

AN+1 = AN QN+1 = QN

and

AN+2 = AN�1 QN+2 = QN�1;

with a similar construction for the values at the upstream boundary.

4.3.3 Weir boundary condition

The weir boundary condition may be implemented at the downstream end of

the reach to simulate the presence of a weir. The following treatment is for a

sharp-crested weir [55].

The ow variables for a sharp-crested weir are connected through the relationship

u =
2

3
Cd

q
(2gH) (4.10)

where Cd is a coe�cient of discharge (taken to be 0.6) and H is the depth of the

uid above the level of the weir. Applying the method of characteristics to the

weir, then for the C+ characteristic which arrives at the weir, the relationship

u0 + 2c0 = u1 + 2c1 (4.11)
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can be applied, where `0' corresponds to a point just upstream of the weir, and `1'

denotes the values at the weir. From (4.10) and (4.11) and using gH = c2�ghwier,
then

f(c1) = u0 + 2c0 � 2

3
Cd

q
2(c21 � ghweir)� 2c1 (4.12)

where hweir corresponds to the height of the weir. From Equation (4.12), the

Newton-Raphson technique can be used to �nd a value for c1 and subsequently

u1. The values needed for the for the point where the characteristic emanates just

upstream of the weir can estimated using the relationships (4.8) and (4.9).

4.4 Source terms

Within �nite di�erence and �nite volume schemes, the simplest way to incorporate

source terms into a numerical method is to add on a pointwise approximation for

each cell. The resulting scheme is then written as

Un+1
i

= Un

i
� �t

�x
(F�

i+1=2 � F�
i�1=2) + �tRn

i
:

where Rn

i
= R(Un

i
). This implementation has proved satisfactory in many sit-

uations. However for ows in which the source terms play a signi�cant role,

this treatment can be inadequate and an upwind approach may be more suitable

[53]. This situation was highlighted for the Saint Venant equations in a paper by

Berm�udez and V�azquez [8], who then proposed a way to include the source terms

via an upwinded discretisation. The paper considered non-uniform beds for which

So was not constant, and showed how to construct a source term treatment that

would not perturb an equilibrium solution. The analysis was performed on the

equations written in terms of h and u for a prismatic rectangular channel, using

the vectors

U =

0
@ h

hu

1
A ; F(U) =

0
B@ q

q2

h
+
1

2
gh2

1
CA and G(x;U) =

0
@ 0

ghH 0(x)

1
A

where H represents the distance between the bed and a datum level and q is

the discharge per unit width (q = Q=b). This form of the equations is directly

obtainable from the (A;Q) divergent formulation.

The basis of the construction for the source term is as follows | the approxima-

tion to the source term, Rn

i
is considered as a cell average value satisfying the
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relationship

Rn

i
=

1

�x

Z
xi+1=2

xi�1=2

R(x;U)dx:

Following the way in which numerical ux functions are de�ned, a numerical

source function, R, is generated which depends on the local variables such that

Rn

i
= R(xi�1; xi; xi+1;Un

i�1;U
n

i
;Un

i+1)

and can be written as the sum of left and right contributions to give

R(x; y; z;X; Y; Z) = RL(x; y;X; Y ) +RR(y; z; Y; Z):

The de�nitions of RL and RR depend on the numerical scheme being used and

can generally be represented as

RL(x; y;X; Y ) =
1

2
[I + jQ(X;Y )jQ�1(X;Y )] ~R(x; y;X; Y )

and

RR(y; z; Y; Z) =
1

2
[I + jQ(Y;Z)jQ�1(Y;Z)] ~R(y; z; Y; Z)

for schemes where the ux function is de�ned as

F�(X;Y ) =
F(X) + F(Y )

2
� 1

2
jQ(X;Y )j(Y �X)

such as Roe's scheme where Q corresponds to the Jacobian, and ~R is some ap-

proximation to R. Using the de�nitions of Glaister [27], i.e.

Q(UL;UR) = A( ~U) =

0
@ 0 1

~c2 � ~u2 2~u

1
A

where

UL =

0
@ hL

hLuL

1
A ; UR =

0
@ hR

hRuR

1
A ; ~U =

0
@ ~h

~h~u

1
A

~c =

vuutg
 
hL + hR

2

!

~h =
q
hLhR

~u =

p
hLuL +

p
hRuRp

hL +
p
hR

and

~R(x; y;ULUR) =

0
BB@

0
p
hLhR

 
H(y)�H(x)

y � x

!
1
CCA
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Berm�udez and V�azquez introduced the concept of Property C, whereby a given

scheme would satisfy Property C if in the case of stationary ow (zero discharge),

there was an exact balance between the discrete components of the ux and the

source terms. They showed that Roe's scheme would satisfy Property C approxi-

mately, within O(�x2). It was also shown that by using a di�erent de�nition of

~R,

~R(x; y;ULUR) =

0
BB@

0

g

 
hL + hR

2

! 
H(y)�H(x)

y � x

!
1
CCA

then Property C would be satis�ed exactly, ensuring that an equilibrium solution

would not be perturbed. From the analysis, the resulting expression for the source

term when Q = 0 everywhere is

Rn

i
=

0
BBBBBBBB@

�1

2

8<
:
vuutg

 
hn
i
+ hn

i+1

2

!
(H(xi+1)�H(xi))

�x
�
vuutg

 
hn
i�1 + hn

i

2

!
(H(xi)�H(xi�1))

�x

9=
;

1

2

(
g

 
hn
i�1 + hn

i

2

!
(H(xi)�H(xi�1))

�x
+ g

 
hn
i
+ hn

i+1

2

!
(H(xi+1)�H(xi))

�x

)

1
CCCCCCCCA
:

Following on from [8], Garc��a-Navarro and V�azquez-Cend�on [26] described how to

adapt this upwind approach to rectangular non-prismatic channels. The starting

point was to verify the choice of de�nition for ~c. As I1 and I2 are de�ned by

I1 =
Z

h(x;t)

0
(h � �)�(x; �)d�

and

I2 =
Z

h(x;t)

0
(h� �)

@�(x; �)

@x
d�

where

�(x; �) =
@A(x; �)

@�
;

then following Leibnitz's rule

@I1

@x
= I2 +A

@h

@x
: (4.13)

From the Roe decomposition, the jumps in I1 and A are connected by

g�I1 = ~c2�A (4.14)

which led to the de�nition

~ci+1=2 =

8>>><
>>>:

1

2
(ci + ci+1) if Ai = Ai+1s
g
�I1

�A
otherwise:
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From (4.13), the jump in I1 can be represented by

�I1 = I2�x+A�h; (4.15)

and as
@A

@x
=
@A

@h

@h

@x
+
@A

@b

@b

@x
= b

@h

@x
+ h

@b

@x

for a rectangular channel, then

�A = b�h+ h�b

from which

�h =
�A

b
� h

�b

b

and so (4.15) becomes

�I1 = I2�x+
A

b
h�A: (4.16)

From (4.16) it can be seen that from the expansion, �I1 is connected to �A

though only one term. Using this information in (4.14) by replacing �I1 with

Ah�A=b then gives

g
A

b
�A = ~c2

from which the new de�nition of ~c is obtained

~ci+1=2 =

vuutg

2

"�
A

b

�
i

+

�
A

b

�
i+1

#
:

The upwind source term discretisation introduced in [8] is re-expressed as

Rn

i
�x =

1

�x

�
�x

2
( L)i�1=2 +

�x

2
( R)i+1=2

�

for a uniform mesh, where

 L = ~�

0
@ s1 � s2

~�1(1 + s1)� ~�2(1 + s2)

1
A

 R = ~�

0
@ s2 � s1

~�1(1� s1) � ~�2(1 � s2)

1
A

and ~� is de�ned as

~� = g
�x

2~c

 
� ~Azx � ~A ~Sf +

~A2

2~b2
bx

!

and s1 and s2 correspond to the signs of ~�1 and ~�2.
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The paper considers the case of a non-prismatic rectangular channel such that

@b

@x
= bx 6= 0 and I2 =

gA2

2b2
bx:

In this case they show that from

�U =

0
@ �A

�Q

1
A

then

A�U =

0
BB@

�Q 
g
A

b
� Q2

A2

!
�A+ 2

Q

A
�Q

1
CCA ;

and

�F =

0
BB@

�Q

�

 
Q2

A

!
+
g

2
�

 
A2

b

!
1
CCA =

0
BB@

�Q 
g
A

b
� Q2

A2

!
�A+ 2

Q

A
�Q� gA2

2b2
�b

1
CCA

from which

�F 6= A�U:

Instead the relationship

�F = A�U+V

holds, where

V =

0
B@ 0

�gA
2

2b2
�b

1
CA :

The term V can be moved to the left hand side of the system and be treated as

an additional source term giving

R̂ = R+V =

0
B@ 0

gA2

b2
bx + gA(So � Sf )

1
CA

leading to the new de�nition of ~�

~� = g
�x

2~c

 
� ~Azx � ~A~Sf +

~A2

~b2
bx

!

or

~� =
g

2~c

 
� ~A�z ��x ~A ~Sf +

~A2

~b2
�b

!
(4.17)
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The paper then considers the situation at equilibrium for which

Un+1
i

= Un

i

and the discharge is zero everywhere. In order for the solution not to be perturbed

from the equilibrium state then

�t

�x
(F�

i+1=2 �F�
i�1=2) =

�t

�x

�
1

2
( L)i�1=2 +

1

2
( R)i+1=2

�
(4.18)

must hold. The corresponding left and right sides of (4.18) in this situation are

LHS =
�t

2�x

0
BB@
�(~c�A)i+1=2+ (~c�A)i�1=2 

gA2

2b

!
i+1

�
 
gA2

2b

!
i�1

1
CCA

and

RHS =
�t

�x

0
@ �~�i+1=2+ ~�i�1=2

(~c~�)i+1=2 + (~c~�)i�1=2

1
A :

Using the new de�nition of ~c and the averages

~h =
1

2
(hi+1 + hi); ~b =

1

2
(bi+1 + bi) and ~A = ~h~b

together with

�z = zi+1 � zi and �b = bi+1 � bi

and (4.17) for ~�, it can be shown that the top lines of the LHS and RHS balance

and so equilibrium is achieved. Analysis of the bottom line gives

RHS = LHS +
g

4
(hi�1hi(bi � bi�1) + hihi+1(bi+1 � bi)):

Thus in order to maintain equilibrium, the numerical ux is modi�ed to

F�
i�1=2 =

1

2
(Fi�1 + Fi +Vi�1=2)� 1

2

X
k

(j~�kj~�k~ek)i�1=2

F�
i+1=2 =

1

2
(Fi + Fi+1 �Vi+1=2)�

1

2

X
k

(j~�kj~�k~ek)i+1=2

where

Vi�1=2 =

0
B@ 0

�hi�1hi
2

(bi � bi�1)

1
CA and Vi+1=2 =

0
B@ 0

�hihi+1
2

(bi+1 � bi)

1
CA :

This approach has subsequently been extended to the 2-d shallow water equations

and applied to coastal ows by Berm�udez et al [9].
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Local time stepping

By analysing the scienti�c literature a number of trends can be identi�ed within

the progress of computational hydraulics, and these have followed the advances in

computer capability and developments within gas dynamics. Within the research

community, attention has moved from the classical Lax-Wendro� and McCor-

mack schemes towards their TVD variants, and techniques originally developed

using the �nite di�erence framework have been extended as �nite volume meth-

ods. Despite this progress, there are still a number of areas which give rise to

di�culties. In particular this thesis is concerned with �nding ways to apply the

reliable methods which have become available at a reduced computational cost,

leading to shorter run times. Although in the case of one-dimensional problems,

most simulations do not lead to prohibitively long run times, this problem is fre-

quently experienced in two-dimensional situations. Implicit methods can reduce

this e�ect, but the bene�ts produced by being able to use a larger time step are of-

ten counteracted by the increased complexity of the resulting algorithm. Another

feature inherent with implicit schemes is the increased smearing e�ect visible in

discontinuities. In some situations this may be of little consequence. Indeed this

is an accepted feature of ISIS (though the origins are somewhat di�erent), and is

a necessity if the Preissmann scheme is to be applied to transcritical ows.

In investigating ways in which to improve the methods currently used in com-

putational hydraulics, one option is to return to the �eld of aeronautics and see

what possibilities are available. One technique which as yet does not appear to

have been widely considered for unsteady channel ows, is local time stepping

(LTS). The strategy behind local time stepping, is to advance individual cells in

85
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time, using each cell's permitted time step rather than the global minimum value.

The di�culty with this approach lies in ensuring that the correct integration pro-

cedure is followed, and if an e�cient means of doing so cannot be devised, then

the advantages of such a technique disappear. As this is not a consideration for

steady ows, local time stepping is commonly used to accelerate the convergence

of solutions in steady state problems.

The main bene�t in employing a local time stepping approach, is the resulting

reduction in computer run time of the simulation, in comparison to when global

time stepping is used. In addition, using such a method may also result in an

improved numerical solution, particularly when the ow conditions vary abruptly

(as is the case with hydraulic jumps). In the context of open channel ow, one

dimensional simulations do not generally require excessive run times, and rapid

spatial transients can be modelled satisfactory using higher order TVD schemes.

However, two dimensional simulations often do require excessive computing time,

and the use of local time stepping may go some way to reduce this problem.

With a view to investigating the potential bene�ts of applying local time stepping

to higher dimensional problems, the application of local time stepping to one

dimensional ows is now considered. The justi�cation in assessing the impact of

local time stepping to the one dimensional case is that generally new procedures

are �rst evaluated for simpler/lower order problems, before being extended to more

complex situations. In this way, it is generally easier to develop an understanding

of the issues involved in employing a new technique. In addition, standard test

cases are usually available for one-dimensional problems, in which a method's

performance may be assessed against a standardised result. This is particularly

true of open channel hydraulics, where most of the accepted test problems are for

one-dimensional ows.

Two procedures for applying local time stepping to time dependent ows are

outlined here. These strategies were originally demonstrated to be successful for

the Euler equations and are subsequently developed here for the Saint Venant

equations of open channel ow.

5.1 Local time stepping using a `frozen ux' (LTS1)

Zhang, Tre�panier, Reggio and Camarero ([70] and [71]) presented a technique for

local time stepping which was based upon a frozen ux approach. This strategy
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was implemented within the Roe Riemann solver and applied to 1-d and 2-d test

cases for the Euler equations. From the examples presented, a number of features

of the LTS procedure were identi�ed

(1) Implementing the LTS strategy on a uniform grid gave little reduction in

computer run times

(2) Implementing the LTS strategy on an irregular grid could give signi�cant

CPU savings

(3) The resolution of shocks was improved by using an LTS scheme.

The di�erences observed between uniform and non-uniform grids were as a result

of the fact that the LTS procedure was only implemented for cells which had time

steps greater than twice the global minimum value. As a consequence of this, if

the ow was such that most cells were updated using global time stepping (GTS),

then the e�ciency of the approach was reduced. This e�ect was illustrated on

a series of irregular grids which contained a region of uniform cells, connected

to a non-uniform region. In order to examine the e�ciency of the LTS method,

a series of run time measurements were made and contrasted to those using the

GTS approach. A variety of grids were considered, in which the ratio of the largest

cell lengths to the uniform cell widths was varied. Results were generated for the

shock tube problem, as shown in Table 5.1.

Scheme Grid Grid Total CPU SQRT CPU

order points ratio GTS/LTS GTS/LTS

1 141 3.35 1.72 1.92

1 221 5.82 2.02 2.74

1 301 12.57 2.25 3.23

2 221 5.82 2.20 3.24

Table 5.1: Comparison of LTS and GTS run times [70].

The LTS procedure was also implemented within a second order scheme. From the

table it can be seen that as the grid ratio was increased, then the e�ciency gain of

the LTS method to the GTS procedure increased accordingly. In addition, when a

more complex ux function was used (corresponding to the second order scheme),



CHAPTER 5. LOCAL TIME STEPPING 88

the LTS strategy was observed to give a greater run time saving than when the

�rst order scheme was used. As the timings given in Table 5.1 include additional

overheads which might prevent a true comparison of the GTS and LTS approaches,

the CPU times required to perform the square root calculations were measured. As

square roots were only evaluated as part of the ux calculation, this ratio should

reect the e�ciency gain of the LTS technique without the cost of the additional

computation necessary to implement the technique. It was also observed that

the LTS results gave much sharper resolution of the moving shock, and closer

agreement was obtained between the numerical and analytical solutions in the

region of the rarefaction wave and contact discontinuity. This was a consequence

of allowing individual cells to be advanced by their local CFL condition and hence

resulted in a reduction of the local truncation error.

The method was extended to a two-dimensional problem on an unstructured tri-

angular mesh. For this example, the LTS approach proved to be 2.2 times faster

than using global time stepping and again better shock resolution was obtained.

A steady example was also considered for the viscous Navier-Stokes equations. In

this case it was noted that a converged solution was produced 4.5 times faster using

the LTS method. The increased performance of the procedure was attributed to

the fact that the Navier-Stokes ux calculation was more complex than that of

the Euler equations.

5.1.1 Implementation of the LTS1 strategy

The LTS procedure was outlined in the papers ([70], [71]) for a one-dimensional

conservation law, for which the update from one time level to the next for a

particular cell i was written as

Un+1
i

= Un

i
� �t

�xi

�
Fn

i+1=2 � Fn

i�1=2

�
:

In terms of the stability criteria, instead of using the same value of �t throughout

the grid, each cell can be updated by a local time step �ti. Denoting �t as the

global minimum time step, such that �t = mini(�ti), then for each cell there will

be some integer value of k which satis�es

k�t � �ti � (k + 1)�t:

This allows the solution Un

i
to be advanced though a series of updates, using the

ux values Fn

i�1=2, which satisfy the stability requirements of the chosen method.
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The update sequence is then given by

U
n+j
i

= Un

i
� j�t

�xi

�
Fn

i+1=2 � Fn

i�1=2

�

or

U
n+j
i

= Un

i
� �t

�xi

jX
l=1

�
Fn

i+1=2 � Fn

i�1=2

�
(5.1)

where j = 1; 2; :::; k. Note that the index j represents a series of local time steps.

When j reaches the value of k, one global time step has been completed. Following

this notation, the corresponding GTS procedure whereby the ux functions are

re-evaluated at every local time step can be represented as

U
n+j
i = U

n+j�1
i � �t

�xi

�
F
n+j�1
i+1=2 � F

n+j�1
i�1=2

�

or

U
n+j
i = Un

i
� �t

�xi

jX
l=1

�
Fn+l
i+1=2 � Fn+l

i�1=2

�
: (5.2)

In the case where k = 1, these two forms are equivalent. The update procedures

(5.1) and (5.2) are similar apart from the fact that for the LTS version, the ux

values are frozen at time level n. As calculating the ux generally corresponds

to the most computationally expensive part of the time integration, using this

approach should prove more e�cient.

Following this strategy, individual cells are divided into two groups | those that

require the use of global time stepping (G1), and those to which the LTS proce-

dure may be applied (G2). The selection is based upon the values of �ti and is

formulated as
G1 if �ti � 2�t;

G2 if �ti > 2�t:

At the start of the simulation, all the values of U and F are known, and the values

of �ti can be found, leading to a value of �t. All of the cells are then advanced by

�t | the global minimum time step. To reach the next level, the ux values for

all of the G1 cells must be recalculated, whilst the G2 cells can be updated using

the previously calculated ux functions. The cell interface which connects regions

of G1 and G2 cells, is included in the G1 region. In addition, the local time step

distribution needs to be re-evaluated so that fast propagating information from

neighbouring cells reaches the appropriate cells at the correct moment in time.

This is achieved by limiting the local time steps of any cells which would otherwise
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Figure 5.1: Local time step re-evaluation for LTS1 ([70], [71]).

not receive the correct information. This is achieved by setting the new local time

step of the G2 cells to be

�tn+1
i

= minf(�tn
i
� �t);�t�

i
g

where the � value denotes the time at which any information from neighbouring

cells will reach cell i. This is illustrated in Figure 5.1 for the cells O, P and Q

(which are not necessarily adjacent). The fast propagating information from cell

O (at time n) will reach P before the ux values of P are due to be re-calculated.

Thus in order to ensure that the information reaches P at the correct time, the

time step of P is re-evaluated on the basis of �t�
P
. In the case ofQ, the information

from O will not reach Q until after the ux values are due to be updated, and so

no limiting is necessary.

This procedure is repeated until the maximum allowable time step (maxi(�ti)) is

reached, and this represents the end of the local time stepping cycle. The process

is then repeated from the beginning and continues until the end of the simulation.

Note that the formulas (5.1) and (5.2) (as presented in the original papers ([70] &

[71])) serve as a means to illustrate the local time stepping concept, and consider

the case where �t is constant throughout the global time step. In practise, �tmust

be evaluated for every local time step.
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5.2 Local time stepping using full time integra-

tion (LTS2)

Kleb, Batina and Williams [40] presented a local time stepping technique for the

Euler and Navier-Stokes equations on unstructured meshes. Unlike the previous

method, this algorithm was based on updating the individual cells to a level near

that allowed by the CFL limit. Linear interpolation was then used at the interface

regions to extract information at the correct time level where necessary.

The method was demonstrated through two examples, the shock tube problem and

the ow over an aerofoil. Results for the shock tube problem were presented on two

grids containing a random distribution of cells. The �rst grid contained 100 cells,

and the observed ratio of run times between the GTS and LTS approaches was 6.2.

This ratio increased to 8.4 when the number of grid points was increased to 200.

From the results shown, the LTS and GTS solutions appeared indistinguishable.

The Euler equations were also used to calculated the ow over an aerofoil. Several

di�erent grids were considered giving run time ratios between 3 and 9. Another

aerofoil problem was also considered and solved using the Navier-Stokes equations.

This example was a steady state problem, and the LTS approach proved to be

between 6 and 7 times faster than global time stepping.

5.2.1 Implementation of the LTS2 strategy

To initiate the local time stepping procedure, the local time step values, �ti,

are calculated and the corresponding minimum value, �t is found. Each cell is

then assigned a value of mi which corresponds to the local time step's power of 2

multiple of �t, calculated from

mi = int

"
log(�ti=�t)

log(2)

#
:

This relationship is such that

2mi � �ti

�t
< 2mi+1:

Following this assignment, the local time steps are re-evaluated in terms of power

of two multiples of the minimum time step. This is accomplished by de�ning the
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Figure 5.2: Integration sequence for LTS2.

new values as

�t
0

i
= �t 2mi :

The basis of the integration procedure is to form a series of `passes' over the mesh

and to update particular cells to their permitted point in time. On each pass,

cells with a particular m-value will be integrated. On pass 0, all of the cells are

updated by their respective time steps. On subsequent passes, those cells for which

2m is an integer multiple of the pass number, are integrated. This is illustrated

in Figure 5.2 for the values m = 0; 1; 2. The sequence is shown and the numbers

for each update correspond to the pass number at which the update takes place.

As can be seen, cells for which m = 0 are always updated. If the cells which have

a particular m value are to be integrated, then any cells having a lower value of

m will also be updated.

The total number of passes which take place over a global time step, depends on

the maximumvalue of m. Let mmax = maxi(mi), then if Ptotal is the total number

passes, then

Ptotal = 2mmax

where the pass number takes the values Pnumber = 0; 1; :::; 2mmax�1. In Figure 5.2,

mmax is 2, and a total of 4 passes are made.

Note that within this algorithm, the value of �t is the same throughout a single

global time step.

The time step distribution presented was previously considered by Pervaiz and

Baron [48] who applied local time stepping to chemically reactive ows. However,
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Pervaiz and Baron followed a di�erent integration procedure for updating the

cells. In addition, the time step distribution was such that no cell had a time step

that was greater than four times that of the neighbouring cells.

5.3 Additional considerations of using local time

stepping

Both of the LTS strategies presented were applied to non-uniform grids and were

implemented in conjunction with upwind techniques. The construction in both

cases was such that the LTS strategy could be incorporated into other two time

level methods. For the purpose of comparing the two approaches, it is necessary

to base the formulations on the same numerical method. Given the popularity

of Riemann based methods, the Roe scheme was chosen to analyse the relative

merits of the two LTS algorithms. Another advantage of choosing Roe's scheme

was that by using ux limiters, a comparison could also be made between the �rst

order method and the second order extensions. In addition the upwind source

term treatments proposed by Berm�udez and V�azquez [8] and extended by Garc��a-

Navarro and V�azquez-Cend�on [26], could also be considered within the LTS strat-

egy. From the point of view of incorporating these ideas into solving problems

governed by the Saint Venant equations, a number of issues must be addressed |

1) In the �rst LTS procedure, which G2 cells require special treatment due to the

interaction of neighbouring G1 cells, and is this dependent on the choice of

numerical scheme?

2) In the second LTS approach, is it necessary to limit the individual time steps

to be at most four times that of the neighbouring cells (as suggested by

Pervaiz and Baron [48]) Also, should the m values be subject to a upper

limit?

3) Does using a second order scheme introduce any additional di�culties for either

LTS procedure?

4) Can the source terms be incorporated into the LTS strategy?

It would seem natural to suppose that the time step limiting treatment needed

for the �rst LTS method, would somehow depend upon the computational stencil
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and perhaps on the local ow conditions. From the point of view of reducing

computational costs, it would be bene�cial to be able to include the source term

e�ects within the LTS approach. In particular, for the frozen ux method, it

would seem appropriate to have a frozen source term, which is only calculated

when the ux is updated.

5.3.1 Application and development of the LTS1 procedure

In the description given by Zhang et al of the frozen ux local time stepping ap-

proach, it was suggested that at the location of the boundary between the G1/G2

regions, the ux at the interface should be treated as though it were contained

within the G1 region. It was also proposed that that the local time step dis-

tribution be re-assigned after each local time step, to account for information

propagating from other cells, such that the ux values at the interfaces captured

the appropriate information at the right point in time. The precise mechanism

for addressing both of the issues raised requires further investigation, in order

to establish an appropriate algorithm for implementing the strategy. An under-

standing of the procedure is particularly important if the LTS approach is to be

incorporated into a higher order scheme.

The details presented by Zhang et al suggest that given a G2 cell which is adjacent

to a G1 cell, it is su�cient to treat the interface to be contained within the G1

region. In terms of implementing the LTS procedure, theG1 cells can be identi�ed,

along with the uxes bordering the G1 cells, and these are then updated. If the

mechanism for updating the ux values at the interfaces is implemented in this

way, then the G1/G2 interface should not require any further special treatment

(disregarding the issue of limiting the time steps). Another interpretation would

be to treat any G2 cells which border G1 regions, as G1 cells (with the exception

of the treating the next interface along as a G1/G2 interface). The issue of how

to treat the boundary must also be addressed in conjunction with the time step

limiting idea. In practise, it would only be necessary to consider the e�ects of G1

cells on any G2 cells which are in the `local vicinity' of the G1 cells. Moreover, it

would seem logical to deem the local vicinity of a cell to be viewed as neighbouring

cells which may be inuenced via the computational stencil of the chosen scheme.

In terms of the �rst order Roe scheme, this would then translate to only limiting

the time steps of G2 cells which are directly adjacent to G1 cells.
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To evaluate the relative performances of di�erent strategies for handling theG1/G2

boundaries, a test case is required. The dam break problem would appear to be

a suitable test problem, particularly as an exact solution can be determined, and

the presence of a travelling bore wave will test the shock capturing ability of the

method. In addition, as there are no source terms, the LTS procedure can be

evaluated independently of any source term treatment.

The dam break scenario considered for the comparison was generated from the

initial conditions

h(x) =

8<
: hl x < 0

hr x > 0

where hl > hr and the water was still everywhere. A 1km reach of channel which

was centered at x = 0 was used, and the channel had a uniform rectangular cross

section with a bottom width of 1m. The particular choice of channel length/width

and values for hl and hr is arbitrary, as whatever values are considered, the same

behaviour is produced but over di�erent time scales. However to generate a su-

percritical region, then a certain ratio of hl:hr must be exceeded.

Using the values hl = 100m and hr = 1m, the exact solution at time t = 10 seconds

is shown in Figure 5.3. A comparison of the solutions obtained from the LTS1

and GTS procedures, gave identical results on a range of regular grids. This

was as a result of the fact that on the regular grids tested, there were no G2

cells. In addition, the overheads in implementing the LTS strategy meant that

the LTS approach proved to be more computational expensive than using global

time stepping. Subsequently, an irregular grid, was considered. The construction

was such that a central region of uniform cells was connected to two outer regions

of uniform cells, through two connecting regions, in which the cells lengths varied

by a constant ratio. The grid was generated by specifying the total number of

cells and a value n. The outermost cells were then n times the cell length of the

innermost cells, and the resulting grid was symmetric about the centre point of

the reach. For the initial investigation of the LTS strategy, 161 cells were used

and n was set to 8. A mathematical description of how this grid was generated

can be found in Appendix C (irregular grid A). A series of experiments were con-

ducted to investigate the options of how to treat the G1/G2 interface, based on

various interpretations of the ideas presented by Zhang et al. The best results

were obtained when the G2 cells on the interface were treated as G1 cells, such

that the ux on either boundary of the G2 cell is updated. In addition, it was

found bene�cial to limit the new time step of the interface G2 cell to the value



CHAPTER 5. LOCAL TIME STEPPING 96

of the adjacent G1 cell. The results in Figure 5.4 show a comparison of the LTS

solution with the GTS scheme, together with the analytic solution.

In Figures 5.5 and 5.6, the bore and depression waves are shown in more detail.

As can be seen there is a noticeable increase in accuracy of the solution, when

the LTS approach is used. This reects the fact that the solutions are generated

using the local CFL numbers.

The solution presented in Figure 5.4 was obtained using the �rst order Roe scheme.

The most noticeable improvement gained from using the LTS procedure, is the

increased resolution of the bore. Typically, ux limiters would be used in conjunc-

tion with Roe's scheme to increase the accuracy of the solution. Figure 5.7 shows

a comparison between the �rst order LTS and GTS results with those obtained

using the GTS ux function with the Superbee limiter for the bore region.

As can be seen, the LTS approach gives a shock resolution comparable to that of

the higher order scheme. A natural extension is to consider using the LTS strategy

in a higher order scheme. Zhang et al concluded that the run time e�ciencies of

using the LTS procedure were greater when applied to a second order scheme, as

the ux functions were more complex.

If the ux function de�ned as

Fi+1=2 =
1

2
(Fi + Fi+1)� 1

2

2X
k=1

~�k
i+1=2j~�ki+1=2j~eki+1=2 +

1

2

2X
k=1

�(rk
i+1=2)~�

k

i+1=2j~�j
�
1 � �t

�x
j~�k

i+1=2j
�
~ek
i+1=2

is to be used in conjunction with the LTS algorithm, then the question arises

what is the appropriate value of �t to use in the ux function? Given that the

ux Fi+1=2 is used to update the cells i and i+ 1, one possibility would be to use

a value based on the local time steps �ti and �ti+1. Various options could be

considered, but the most logical would be to use the minimum value of the two

local time steps, as this would correspond to the point up until which the ux

function must be re-evaluated. The other question which arises is whether or not

the time step limiting strategy used for the �rst order scheme, is su�cient for the

second order scheme. Figure 5.8 shows the solutions obtained using the Superbee

ux limiter in the LTS and GTS schemes.

As can be seen, the improvements visible with the �rst order scheme are less

marked in the second order version. In addition, there is a slight oscillation in
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the LTS results near the bore, suggesting that a more complex time step limiting

procedure is necessary. Further investigation revealed that the oscillation could

be removed by introducing an additional interface cell such that at the G1=G2

interface, the two G2 cells nearest the boundary become G1 cells. The time steps

of the new G1 cells are then limited by the minimum value of any original G1 cells

which are contained within the stencil of the modi�ed cells. The results obtained

following this procedure are shown in Figure 5.9. The �rst order scheme was also

tested with the more complex time step limiting strategy, as shown in Figure 5.10.

There is little di�erence between the two time step limiting procedures when

applied to the �rst order scheme. Closer inspection reveals that when only the

direct neighbours are considered in the limiting procedure there is a marginal

improvement in the solution near the bore. This is a consequence of the fact that

widening the region which is used to restrict the time steps can result in a more

severe condition being imposed on the G2 cell.
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Figure 5.3: Analytic solution of the dam-break problem.
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Figure 5.4: Comparison of LTS1 and GTS results.
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Figure 5.5: Comparison of LTS1 and GTS results | the depression.
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Figure 5.6: Comparison of LTS1 and GTS results | the bore.
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Figure 5.7: Comparison of LTS1 and GTS results with a second order GTS solu-

tion.
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Figure 5.8: Comparison of LTS1 and GTS results with a second order GTS solu-

tion.
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Figure 5.9: Comparison of LTS1 and GTS results with a second GTS solution.
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5.3.2 Application and development of the LTS2 procedure

In the procedure presented by Kleb et al, no mention was made of any additional

restrictions which would need to be applied to the time step distribution, other

than those based on the local stability conditions. However, in the description

given by Pervaiz and Baron [48], it was suggested that an upper limit be set for

the m values, and that no time step should be greater than four times that of its

neighbours. The need to limit the maximumm value was described as necessary

to ensure that ow features, such as jumps etc., would be correctly propagated,

and the problem was referred to as `temporal sti�ness'. No suggestion was made

as to how to select an appropriate limit, and in the examples given by Pervaiz

and Baron, a �xed value was used throughout each simulation.

The suggestion made by Pervaiz and Baron that the time step of any individual

cell should be no more than four times that of its neighbours, relates to the way in

which regions of varying time steps should be connected. Given a region containing

cells with a particularm value which bounds a region of cells with a di�ering value,

some strategy must be developed to form an interface between the two regions,

such that information is correctly propagated within the numerical simulation.

The need for such an interface was demonstrated with the LTS1 procedure of

Zhang et al in the previous section, whereby treating the boundary G2 cells as G1

cells and limiting the time step ensured that information from the G1 cells was

transmitted to the G2 cells at the correct point in time. To investigate this issue

further, the dam-break problem was again considered. Initially, a maximum m

value of 1 was imposed and various options were considered for interfacing the

0/1 regions.

If no form of interface treatment was applied, then the solution in the vicinity of

the bore (corresponding to the interface region), developed a spike in the depth

pro�le which subsequently caused the program to crash. Following this, the e�ects

of marking the bounding m = 1 cells at the interface as m = 0 cells was inves-

tigated. The number of cells to be marked was altered and the e�ects observed.

Figure 5.12 shows a comparison of the results obtained, and Figure 5.13 shows

the bore region in more detail.

As can be seen from the �gures, if only one interface cell is used then the position

of the is bore incorrectly predicted. In the case where two, three and four interface

cells are used, the solution pro�les are all very similar and accurately predict the
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Figure 5.11: Construction of the interface region.

bore. However only slight improvement is obtained over the GTS solution.

Figure 5.14 shows the solutions obtained when the Superbee ux limiter was used

in conjunction with the local time stepping. The same trends observed with the

�rst order results are also present in the solutions obtained from the second order

scheme.

For an insight into how the development of an interface strategy should progress,

consider a regular grid consisting of a series of cells of length �x. Consider the

cell on this grid which gives rise to the global minimum time step, �t. Assuming

a CFL number of 1, then in time �t, the information from that cell will propagate

into the adjacent cell and can be considered to have travelled a distance �x. In the

subsequent time interval, the information from this cell will have then travelled a

total distance of 2�x. Following this analogy, a path can be drawn to show how

the information from this cell is transmitted to other cells. Mathematically this

is described by

total distance travelled = number of time steps��x:

In relation to the local time stepping procedure, given a cell which has a m value

of 1 and borders a cell for which m = 0, it would appear necessary to then treat

that cell as an m = 0 cell, to ensure that the information from the `0' region is

correctly transmitted. This argument can be further extended to say a region

of cells which have an m value of 2 and border m = 0 cells. The �rst `2' cell

must be marked as a `0' cell, and the next two `2' cells are then marked as `1'

cells, as illustrated in Figure 5.11, where m� corresponds to the modi�ed levels.

Following this analysis, a general procedure for connecting the interface region

can be outlined as follows
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Given a region of cells with m = m1 connected to a region of cells with m = m2

(where m1 < m2), then if n is de�ned as the di�erence between m1 and m2 such

that n = m2�m1, then the number of cells which should be marked and deemed

as the interface region is given by 2n�1. In the case where n = 1, this corresponds

to one cell, and is three cells when n = 2. Furthermore, the number of m2 cells

which should become m1 cells is given by 20 = 1, the number of m2 cells which

should becomem1+1 cells is given by 2
1 = 2, the number of cells to becomem1+2

cells is 22 = 4 and so on. Implementing this algorithm on a regular grid would

then ensure that information propagating from one cell to another is transmitted

at the correct time.

Although the above procedure is satisfactory for regular grids, it can only be used

as a guide to suggest a means to construct the interface region when irregular

grids are considered. A number of tests were conducted to illustrate how this

algorithm would perform on the irregular grid considered previously for the LTS1

strategy. Using the �rst order Roe scheme, the results shown in Figure 5.15 were

obtained, where the number of cells used to construct the 0/1 and 1/2 interfaces

were varied. As can be seen, when one cell was used for the 0/1 region and two

cells for the 1/2 area, the solution failed to predict the correct location of the

bore. The remaining LTS solutions all compare favourably with the GTS results,

and the corresponding improvement is more marked than when only one level of

temporal embedding was permitted (Figure 5.13).

Figure 5.16 shows the solutions generated when the second order Roe scheme is

used, and the same trends are evident in the solution pro�les. For both the �rst

and second order results, it can be seen that there is no appreciable di�erence be-

tween the 2/2 and 2/4 solutions and also for the 4/4 and 4/8 case. To investigate

this further, some intermediate strategies for the interface regions were tested, and

the �rst and second order results are shown in Figures 5.17 and 5.18 respectively.

The most noticeable feature of the results shown is that solutions which have the

same number of 0/1 interface cells ( i.e. 3/2 and 3/4 or 4/2 and 4/4) appear

identical, whereas the solutions generated using the same overall number of inter-

face cells (2/4 and 4/2) are appreciably di�erent. However, these di�erences are

marginal in terms of comparing the LTS results with the analytic solution and in

that sense all of the results are satisfactory.

The results listed so far were generated using up to two levels of temporal em-

bedding (i.e. by using maximumm values of 2 or less). Further validation of the
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second LTS procedure would require using higher maximum m values. However

in the case of the dam-break problem, this is not possible due to the onset of

numerical instability. In implementing this local time stepping approach, it is

necessary that the ow conditions are such that the local time step of individual

cells do not signi�cantly decrease over a single global time step. This ensures that

the stability conditions are satis�ed throughout the global time step. However,

should the case occur where the ow in a particular cell would correspond to a

permitted time step which is less than the local time step value being used for the

cell over the interval, then the local stability conditions will be violated and an

unstable numerical solution will be generated. This e�ect shall subsequently be

referred to as temporal sti�ness (however its nature is di�erent to the temporal

sti�ness reported by Pervaiz and Baron [48]). This situation is very evident in the

dam-break problem, as during the initial stages the region near the breach (x = 0)

is subject to rapid variations in ow conditions (which often leads to discussions

of the validity of applying the Saint Venant equations to such ows) which results

in signi�cant variations in the local time distribution. A number of strategies

were considered as ways to reduce this e�ect, based on limiting the occasions

when local time stepping was used, increasing the interface region, and also only

allowing cells which had permissible time steps that were increasing, to belong to

non-zero temporal levels. In the tests performed, no strategy outperformed the

results shown in terms of solution accuracy and reduced run times.
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Figure 5.12: Comparison of GTS and LTS2 results with varying number of inter-

face cells.
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Figure 5.13: Comparison of GTS and LTS2 results with varying number of inter-

face cells.
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Figure 5.14: Comparison of GTS and LTS2 results with varying number of inter-

face cells and using Superbee.
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Figure 5.15: Comparison of GTS and LTS2 results with varying number of inter-

face cells.
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Figure 5.16: Comparison of GTS and LTS2 results with varying number of inter-

face cells and Superbee.
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Figure 5.17: Comparison of GTS and LTS2 results with varying number of inter-

face cells.
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Figure 5.18: Comparison of GTS and LTS2 results with varying number of inter-
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5.3.3 Run Times

The main objective in implementing the LTS strategies was to reduce the computer

run times of the corresponding global time stepping schemes. Using a pro�ling

package, the run times for the results shown were measured. Table 5.2 shows the

values for the global time stepping approach and the �rst LTS procedure, whilst

Table 5.3 lists the results for the second LTS procedure. In addition, the number

of ux evaluations made per run was also recorded (though in di�erent runs to the

run time measurements), to access the impact of using an LTS approach without

the implementation costs.

Method Run time E�. gain No. of ux E�. gain

Time stepping Order (s) (%) calculations (%)

GTS 1st 0.05601 | 36320 |

LTS1 1st 0.05456 2.6 20332 44.0

GTS 2nd 0.09190 | 37392 |

LTS1 2nd 0.08621 6.2 21917 41.4

Table 5.2: Comparison of run times for the GTS and LTS1 schemes.

From the �rst table, it can be seen that using the frozen ux local time stepping

approach lead to a slight reduction in computer run times over the GTS versions

of Roe's scheme, and that the improvement was more marked with the second

order method. In terms of the number of ux calculations made, it can be seen

that implementing the LTS procedure resulted in a signi�cant reduction of ux

calculations. The improvement is slightly higher for the �rst order scheme, which

is as expected due to the additional interface cells employed within the second

order scheme.

The run time measurements for the second LTS procedure showed that for the

dam-break problem, the �rst order method was generally only more e�cient when

two levels of temporal embedding were used (with the exception being when only

one interface cell was implemented). In addition, increasing the interface region

reduced the e�ciency of the approach, as would be expected. In comparing the

ux evaluation measurements, the e�ciency gains between corresponding variants

of the �rst and second orders are very similar. In this instance the same interface

strategy was used for both the �rst and second order scheme, unlike the case for

the �rst LTS approach.
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Level of Number of Run time E�. gain Number of E�. gain

embedding interface cells (s) (%) ux calculations (%)

1 1 0.05542 1.1 25345 30.2

2 0.05610 -0.1 25784 29.0

3 0.05644 -0.8 26007 28.4

4 0.05687 -1.5 26223 27.8

2 1/2 0.04583 18.2 21713 40.2

2/2 0.04679 16.5 22297 38.6

2/4 0.04684 16.4 22331 38.5

3/2 0.04752 15.2 22731 37.4

3/4 0.04757 15.1 22769 37.3

4/2 0.04830 13.8 23171 36.2

4/4 0.04841 13.6 23209 36.1

4/8 0.04858 13.3 23285 35.9

Table 5.3: Run times for the LTS2 procedure using the �rst order scheme.

Level of Number of Run time E�. gain Number of E�. gain

embedding interface cells (s) (%) ux calculations (%)

1 1 0.08513 7.4 26086 30.2

2 0.08643 6.0 26531 29.0

3 0.08709 5.2 26769 28.4

4 0.08782 4.4 26996 27.8

2 1/2 0.07313 20.4 22128 40.8

2/2 0.07534 18.0 22867 38.8

2/4 0.07545 17.9 22896 38.8

3/2 0.07619 17.1 23140 38.1

3/4 0.07630 17.0 23170 38.0

4/2 0.07801 15.1 23730 36.5

4/4 0.07823 14.9 23777 36.4

4/8 0.07850 14.6 23845 36.2

Table 5.4: Run times for the LTS2 procedure using the second order scheme.
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In all the results it is apparent that the LTS methods lead to a greater e�ciency

gain when the ux limited version of the Roe scheme is used. This can be ac-

counted for by the increased computational cost of the ux calculations for the

second order scheme over the �rst order version. This results in the overheads in

implementing the LTS strategies becoming less signi�cant relative to the ux cal-

culations. The implementation costs also account for the cases where the second

LTS procedure required a longer run time than the GTS approach. The e�ciency

gains calculated by measuring the number of ux calculations performed high-

light the bene�ts of using an LTS procedure. However the substantial di�erences

between these values and those obtained from the run time measurements, show

that the implementation costs have an appreciable signi�cance in this example.

It may also be noted that the e�ciency gains reported in the original papers

have not been achieved for this particular case, and the overall improvements ob-

served have only been marginal. On this issue a number of points can be made -

�rstly the results presented have not included any source term calculations, and

in subsequent examples, the source term treatment will be incorporated into the

LTS strategy resulting in more signi�cant e�ciency gains; secondly, as this is a

relatively simple problem which requires only a short run time, the CPU time

required by the procedures in the program which do not form part of the time

integration procedure (initialisation etc.) will account for a signi�cant proportion

of the measured run time. In addition, the time step distribution of the cells is

dependent upon the particular grid used for the simulation. The observation that

the second order results showed a marked di�erence in e�ciency gains over the

corresponding �rst order solutions also suggests the second point to be true. In

summary, both LTS procedures must be applied to more complex problems in

order for a more complete evaluation to take place.

Returning to the �rst three questions raised in section 5.3

1) In the �rst LTS procedure, which G2 cells require special treatment due to the

interaction of neighbouring G1 cells, and is this dependent on the choice of

numerical scheme?

2) In the second LTS approach, is it necessary to limit the individual time steps

to be at most four times that of the neighbouring cells (as suggested by

Pervaiz and Baron [48]) Also, should the m values be subject to a upper

limit?
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3) Does using a second order scheme introduce any additional di�culties for either

LTS procedure?

The responses from the investigations conducted so far are

1) For the LTS1 scheme, those G2 cells which are contained within the computa-

tional stencil of the G1 cell on the G1=G2 interface, are treated as G1 cells.

In addition the time steps of those cells are limited to the values of any true

G1 cells contained within the modi�ed cells stencil.

2) The proposed method for interfacing regions of varying m-values within the

LTS2 scheme, is to be based on an analogy with the propagation of informa-

tion on a regular grid. Following this approach, the time steps of individual

cells will be no more that twice that of their neighbours. In addition, the

necessity of imposing a maximumm-value was illustrated by the dam-break

problem. From the preliminary results, the method to be adopted for de-

veloping the interface regions is to be based on re-assigning the m-values

following a 4,2,4,8,16,... pattern. This strategy proved to be successful for

the dam-break problem, though it requires validation for a larger range of

problems.

3) The solutions produced by both LTS schemes were marginally improved when

a ux limiter was used, and this introduced no additional problems providing

that the interface region was treated appropriately.

The other question which needs to be addressed is the treatment of the bound-

ary conditions within the LTS strategies. Given the possibilities as to how the

boundaries maybe incorporated, such as the method of characteristics, the sim-

plest option for the LTS1 method is to treat the boundary cells as G1 cells. For

the second LTS procedure, no special treatment of the boundary cells should be

necessary. These strategies were satisfactory for the dam-break problem and will

be more throughly tested by the problems considered in the next chapter.
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Figure 5.19: Irregular grid construction.

5.4 Inclusion of source terms in the LTS proce-

dures

In applying the LTS procedures to the dam-break problem, the issue of how

to treat the source terms was not a consideration. As noted in the previous

chapter, the customary way of incorporating source terms into many numerical

schemes, is to use a pointwise approach. However in some situations, this produces

unsatisfactory results. More recently interest has grown in constructing upwind

source term treatments for shallow water ows. The results presented in the

previous chapter are now considered for use in conjunction with the local time

stepping approach.

5.4.1 Upwind source term treatment on an irregular mesh

The upwind source term treatment originally proposed in [8] was constructed for

a uniform grid, on the basis that exact conservation between the ux and source

terms was obtained for the zero discharge case. Following this approach, the e�ect

of implementing the upwind source term treatment on an irregular grid will now

be considered.

Consider a one-dimensional irregular grid, such as the one in Figure 5.19. The

discrete representation of the Saint Venant equations then becomes

Un+1
i

= Un

i
� �t

�xi

�
Fn

i+1=2 � Fn

i�1=2

�
+�tRn

i

where, following the approach of Berm�udez and V�azquez, Rn

i
is an approximation

to
1

�xi

Z
ci

R(x;U)dx
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and the integration is performed over the cell,Ci, de�ned by the region [xi�1=2; xi+1=2].

In the original paper, the source term was de�ned as

Rn

i
= RL(xi�1; xi;Ui�1;Ui) +RR(xi; xi+1;Ui;Ui+1)

where

RL =
1

2

�
I+ j ~Aj ~A�1

�
~R (5.3)

RR =
1

2

�
I� j ~Aj ~A�1

�
~R (5.4)

and ~R was an approximation average to the source term, which for the Saint

Venant equations in a smooth rectangular channel become

~Rn

i
(xL; xR) =

0
BB@

0

�g
 
(AL +AR)

2

!
z(xL)� z(xR)

xR � xL

1
CCA :

In the steady state/zero discharge case where Un+1
i

= Un

i
and Q � 0, then for

equilibrium to be obtained the ux and source terms must balance such that

�t

�xi

�
Fn

i+1=2 � Fn

i�1=2

�
= �tRn

i
(5.5)

where substituting for the ux function gives

�t

2�xi

0
BB@

(~c�A)i�1=2� (~c�A)i+1=2 
gA2

2b

!
i+1

�
 
gA2

2b

!
i�1

1
CCA = �tRn

i
;

using

~c =

vuutg
 
hL + hR

2

!

to de�ne the average celerity. By imposing the equilibrium conditions then, the

left and right source term contributions are found to be

RL =
1

2

0
@ 1 1=~c

~c 1

1
A ~R

RR =
1

2

0
@ 1 �1=~c
�~c 1

1
A ~R

and if the source term is speci�ed as before, then the resulting expression is

Rn

i
=

0
BBBBBBBB@

�1

2
b

8<
:
vuutg

 
hn
i
+ hn

i+1

2

!
(h(xi+1)� h(xi))

xi+1 � xi
�
vuutg

 
hn
i�1 + hn

i

2

!
(h(xi)� h(xi�1))

xi � xi�1

9=
;

1

2
b

(
g

 
hn
i�1 + hn

i

2

!
(h(xi)� h(xi�1))

xi � xi�1
+ g

 
hn
i
+ hn

i+1

2

!
(h(xi+1)� h(xi))

xi+1 � xi

)

1
CCCCCCCCA
;
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once the relationship �z + �h = 0 has been imposed. In the case of a regular

grid, where �xi is a constant, then it can be shown that the given de�nitions of

the ux and source functions balance, such that (5.5) is satis�ed and equilibrium

is maintained. However, if �xi is not constant, then in general the ux and source

terms do not match and so the equilibrium is violated.

To enforce equilibrium, one possibility is to use the de�nitions of RL and RR

provided by (5.3) and (5.4) together with weight functions, such that

Rn

i
=
�
WL

i�1=2RL

i�1=2 +WR

i+1=2RR

i+1=2

�
:

Enforcing (5.5) to be true, leads to the de�nitions

WL

i�1=2 =
xi � xi�1

�xi
and WR

i+1=2 =
xi+1 � xi

�xi
:

This choice of weights will also maintain the equilibrium conditions if the ex-

tensions proposed by Garc��a-Navarro and V�azquez-Cend�on [26] for non-prismatic

rectangular channels are used. This formulation is based upon an intuitive ap-

proach of ensuring that Property C is maintained. A more mathematical treat-

ment was recently published by V�azquez-Cend�on [64] and corroborated this for-

mulation. The article also considered the application of the upwind source term

treatment to a variety of 1-d test cases, demonstrating further justi�cation for

using an upwind approach.

To illustrate the bene�ts of the upwind source term treatment, an extreme test

case presented by Garc��a-Navarro and V�azquez-Cend�on [26] is considered. The

problem consists of stationary ow through a channel with variable bed slope

and locally rectangular cross sections. The geometry of the channel is shown in

Figures 5.20 and 5.21. If a �xed water level of 12m is imposed at the downstream

boundary, then in the zero discharge case, the surface elevation should be 12m

throughout the channel. By choosing the equilibrium solution to be the initial

conditions for the simulation, then it is possible to assess the performance of a

particular method by whether the initial solution is perturbed.

Using a pointwise source term treatment, the elevation and discharge pro�les

shown in Figures 5.22 and 5.23 are obtained. The solutions shown were produced

after 200s. For comparison, the solutions generated on a �ne regular grid are also

shown, and Figures 5.24 and 5.25 show an enlargement of the plots. As can be

seen the solutions from the various schemes show signi�cant deviations from the

exact solution. Although re�ning the grid reduces this problem, the deviations
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Time stepping Source term Run time E�. gain No. of ux E�. gain

scheme treatment (s) (%) calculations (%)

Global Pointwise 0.2274 | 134400 |

LTS1 0.2096 7.8 79441 40.9

LTS2 (2 time levels) 0.2184 4.0 94636 30.0

LTS2 (4 time levels) 0.1867 17.9 83128 38.1

LTS2 (8 time levels) 0.1816 20.1 82521 38.6

Global Upwind 0.2208 | 106400 |

LTS1 0.2015 8.7 69162 35.0

LTS2 (2 time levels) 0.2104 4.7 79176 25.6

LTS2 (4 time levels) 0.1867 15.4 71706 32.6

LTS2 (8 time levels) 0.1867 15.4 71706 32.6

Table 5.5: Run times comparison for the rectangular channel.

are still apparent. If the solution is allowed to evolve further, then a satisfactory

converged solution cannot be obtained. In contrast the solutions produced by the

upwind source term treatment are shown in Figures 5.26 and 5.27, from which it

is apparent that the initial solution is not perturbed.

The run times for the results shown were measured and are given in Table 5.5.

The percentage run time e�ciency gains of the two LTS procedures over the GTS

scheme are greater than those observed with the dam break problem. However,

there is a reduction in the ux computation e�ciency gains. The �rst point

illustrates how the overheads in implementing the LTS strategies have become

less signi�cant in contrast to the overall calculations. The fact that there is a

percentage increase in the number of ux calculations being performed suggests

that the proportion of cells which are being advanced by the minimum time step

has increased. This would be in keeping with the highly irregular geometry being

considered. It may also be observed that the ow conditions and choice of grid

permit only four time levels to be used, as observed by the fact that the run

times measurements are the same when four and eight time levels are used for the

upwind source term results.
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Figure 5.20: Bed level for irregular geometry test case [26].
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Figure 5.21: Width variation for irregular geometry test case [26].
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Figure 5.22: Elevation with pointwise source terms.
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Figure 5.23: Discharge with pointwise source terms.
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Figure 5.26: Elevation with upwind source terms.
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Figure 5.27: Discharge with upwind source terms.
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5.4.2 Upwind source term treatment for prismatic trape-

zoidal channels

Both Berm�udez and V�azquez [8] and Garc��a-Navarro and V�azquez-Cend�on [26]

consider the application of the upwind source term treatment to rectangular chan-

nels. A natural extension would be to consider the application of the method to

trapezoidal cross sections and to see if the same construction leads to a treatment

that satis�es the conservation principle.

Consider the case of a smooth prismatic trapezoidal channel discretised by a reg-

ular grid. In the steady state/zero discharge situation, the ux function becomes

�t

2�x

0
@ �(~c�A)i+1=2+ (~c�A)i�1=2

(gI1)i+1 � (gI1)i�1

1
A

where

I1 =
bh2

2
+
zh3

3
for a trapezoidal channel, and the source term remains the same as for the rect-

angular case. Given that c and A di�er for rectangular and trapezoidal cross

sections, the question is then what are the appropriate choices for ~c and ~A. Fol-

lowing the procedure of Garc��a-Navarro and V�azquez-Cend�on [26] and starting

from
@I1

@x
= I2 +A

@h

@x
and

g�I1 = ~c2�A (5.6)

(from the Roe decomposition), then the change in I1 can be represented by

�I1 = I2�x+A�h: (5.7)

As A = h(b+ zh) then
@A

@x
=
@A

@h

@h

@x
+
@A

@b

@b

@x
;

from which
@A

@x
= (b+ 2zh)

@h

@x
+ h

@b

@x

and

�A = (b+ 2zh)�h+ h�b:

Thus substituting for �h in (5.7) gives

�I1 = I2�x+A

 
�A� h�b

b+ 2zh

!
: (5.8)
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From (5.8) it can be seen that the jump in �I1 is linked to the jump in A through

one term. In the original paper, this factor was used as the basis to rede�ne the

average celerity. In this instance, substituting for the jump value of I1 in (5.6)

leads to the relationship

g
A

b+ 2zh
= ~c2:

For a rectangular channel, this resulted in the celerity being de�ned as

~ci+1=2 =

vuutg

2

 �
A

b

�
i

+

�
A

b

�
i+1

!

which given that A = hb and that ~h was de�ned as (hi + hi+1)=2, could also be

written as

~ci+1=2 =

r
g

2
(hi + hi+1) =

q
g~h:

By analogy, given that the celerity is usually de�ned in terms of A and B (B =

b+ 2zh), then the average value can be represented by

~ci+1=2 =

vuut
g
~A

~B
: (5.9)

The most obvious choices for ~A and ~B are

~A = ~h(b+ z~h) and ~B = b+ 2z~h

using the same de�nition for ~h as before. Following this process, the equilibrium

condition then requires the following relationships to be satis�ed

�t

2�x

h
(~c�A)i�1=2 � (~c�A)i+1=2

i
=

�t

2�x

"
g ~A

~c
(hi � hi�1)� g ~A

~c
(hi+1 � hi)

#

(5.10)
�t

2�x
[(gI1)i+1 � (gI1)i�1] =

�t

2�x

h
g ~A(hi � hi�1) + g ~A(hi+1 � hi)

i
: (5.11)

From (5.10), if ~c is de�ned using (5.9) then by considering the �rst term, equilib-

rium will be achieved if

~c�A =
1

~c
g ~A(hi � hi�1)

from which substituting for ~c and �A givesvuut
g
~A

~B
(hi � hi�1) [b+ z(hi + hi�1)] =

vuut ~B

g ~A
~A (hi � hi�1) :

resulting in the de�nition of ~B

~B = b+ z(hi + hi�1) = b+ 2z~h:
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Note that this choice is independent of the de�nition of ~A.

Having established the criteria for (5.10) to be satis�ed, it is necessary to see if

the speci�ed averages will also lead to satisfy Property C in (5.11). However,

following through the analysis, it is found that the left and right hand sides of

(5.11) do not match, as

LHS =
�t

2�x

(
g

"
b

2

�
h2
i+1 � h2

i�1

�
+
z

3

�
h3
i+1 � h3

i�1

�#)
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from which the di�erence between the two sides is

LHS�RHS =
�t

2�x

�
g

�
1

12
z
�
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2
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i
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i�1hi
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which maybe more concisely written as

LHS �RHS =
�t

2�x

gz

12

h
(hi+1 � hi)

3 + (hi � hi�1)
3
i
: (5.12)

Thus to satisfy the equilibrium requirements, a correction term can be added

based on (5.12), which will ensure that Property C is established. If an irregular

grid is used, the same corrections can be applied and will satisfy the equilibrium

criteria.

To validate this approach, the bed-level used in the test problem described by

Garc��a-Navarro and V�azquez-Cend�on [26] was used within a prismatic trape-

zoidal channel with a wall-slope of unity. The results produced by using a point-

wise source term treatment are shown in Figures 5.28 and 5.29, and enlarged in

Figures 5.30 and 5.31. As with the non-prismatic rectangular case, the equilibrium

solution is perturbed. The deviation from the expected water level is less marked

than for the rectangular case, due to the constant channel width. The solutions

obtained using the upwind source terms are shown in Figures 5.32 and 5.33, where

it can be seen that the equilibrium solution is maintained.

The run time measurements for the problem are given in Table 5.6. For both the

pointwise and upwind source term treatments, the e�ciency gains obtained are

slightly less than for the previous example. As before, the second LTS procedure

was found to be less e�cient than global time stepping when only two time levels

were used. In this instance the pointwise source term treatment led to a shorter
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Time stepping Source term Run time E�. gain No. of ux E�. gain

scheme treatment (s) (%) calculations (%)

Global Pointwise 0.1756 | 97920 |

LTS1 0.1686 4.0 64346 34.3

LTS2 (2 time levels) 0.1753 0.2 72897 25.6

LTS2 (4 time levels) 0.1549 11.8 66063 32.5

LTS2 (8 time levels) 0.1549 11.8 66063 32.5

Global Upwind 0.2114 | 97280 |

LTS1 0.1947 7.9 63862 34.4

LTS2 (2 time levels) 0.2023 4.3 72434 25.5

LTS2 (4 time levels) 0.1796 15.0 65488 32.7

LTS2 (8 time levels) 0.1796 15.0 65488 32.7

Table 5.6: Run times comparison for the trapezoidal channel.

run time for all of the time stepping procedures, over the upwind approach. This

is to be expected due to the increase level of computation necessary to compute

the upwinded values. This factor also contributes to the slightly better e�ciency

gains observed when the LTS procedures are combined with the upwind source

term treatment. It may be noted that for this problem the ow conditions only

permitted four time levels to be used within the LTS2 method.
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Figure 5.28: Elevation with pointwise source terms.
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Figure 5.29: Discharge with pointwise source terms.
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Figure 5.32: Elevation with upwind source terms.
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5.5 Summary of development

The development of the two LTS approaches within this chapter has highlighted

a number of points that will be investigated in more detail in the next chapter

� Using an LTS procedure has the potential to reduce computer run times

� LTS methods can lead to increased local accuracy, noticeably in the region

of bores

� Source term calculation may also be includedwithin the LTS strategy (though

this has only been illustrated for a steady state problem).

From the two cases considered, the second LTS procedure was seen to lead to

faster run times than the �rst procedure, only when four or more time levels were

used. However the number of ux calculations performed was higher, due to the

much larger interface region employed. For both approaches the e�ciency gains

were higher when the complexity of the calculations was increased, as illustrated

with the second order results and also by the presence of source terms.

In the examples considered in this chapter, the upwind source term treatment

(together with the proposed extensions for irregular grids and trapezoidal cross

sections), was seen not to perturb the given equilibrium solutions, and produced

more satisfactory results than when the pointwise treatment was used.



Chapter 6

Test cases and results

From the available literature, a number of test cases have been identi�ed and are

now considered for comparing the global and local time stepping strategies for

a range of problems. Though most test cases are in general too simple to be of

practical interest, they nevertheless provide an invaluable means to compare and

contrast the performance of di�erent numerical methods with benchmark solu-

tions. The range of problems for which analytic solutions are available is some-

what limited and is generally restricted to only 1-d steady state problems. Though

the LTS approaches being considered here are intended for transient calculations,

they may equally be applied to steady state situations.

6.1 Steady state test cases

Garc��a-Navarro, Alcrudo and Savir�on [22], considered the case of the ow over a

bump for a prismatic rectangular channel (S1). The channel is 1m wide and has a

bed which forms a bell-shaped curve. At the upstream boundary a constant head

of 10m is imposed, whilst at the downstream end, a depth of 6m is maintained.

This causes the upstream subcritical ow to reach critical conditions over the

bump and subsequently become supercritical. A hydraulic jump then forms to

connect the ow with the subcritical downstream region.

By solving a cubic equation for the depth pro�le (resulting from the application of

Bernoulli's/constant head equation) either side of the jump, and by applying the

jump relations to connect the two regions, an analytic solution to this problem

132



CHAPTER 6. TEST CASES AND RESULTS 133

can be found (see Appendix A for details).

In the same paper the steady ow through a converging/diverging channel is also

considered (S2). The channel consists of a series of rectangular cross sections

which contain a sinusoidal width contraction/expansion together with a at bed.

The width of the channel decreases from 5m down to the critical width (3.587m

in the example given) which induces a critical ow, leading to the formation of

a supercritical region and a hydraulic jump. The initial conditions given in the

paper are a depth pro�le of 2m, together with a �xed upstream discharge of

20m3s�1. A weir boundary condition is imposed at the downstream end of the

reach. Applying a similar strategy to before, an analytic solution can also be

generated for this example.

This problem can be adapted to create a wholly subcritical ow by increasing the

width of the channel at the contraction (S3). In this example, the channel width

reduces to 4.5m at the narrowest point. The initial and boundary conditions are

set to the values given in the original example.

MacDonald et al [42] proposed a means to generate problems with analytic solu-

tions for a range of conditions and geometries. Speci�cally, four test cases were

presented for both rectangular and trapezoidal rough prismatic channels with

non-uniform beds.

The �rst problem (S4) is for a 1km long rectangular channel of width 10m and

steady discharge of 20m3s�1. The Manning roughness coe�cient for the channel

is 0.03 and a downstream depth of 0:748409m is imposed. The bed slope for the

problem is represented by

So(x) =

"
1 � 4

gĥ(x)3

#
ĥ
0

(x) + 0:36
[2ĥ(x) + 10]4=3

[10ĥ(x)]10=3

where ĥ(x) represents the analytic depth pro�le and is given by

ĥ(x) =

 
4

g
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�
x
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� 1
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�2#
:

The second problem (S5) is also for a 1km long rectangular channel of width 10m

and discharge of 20m3s�1. The conditions are such that the ow is subcritical at
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inow and supercritical at outow with critical conditions being attained at the

midpoint of the reach. A value of 0.02 is set for the Manning coe�cient and the

bed slope is de�ned by

So(x) =

"
1 � 4

gĥ(x)3

#
ĥ
0

(x) + 0:16
[2ĥ(x) + 10]4=3

[10ĥ(x)]10=3

together with the depth function
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The third problem (S6) presented is for a 5km trapezoidal channel for which the

surface level width, B, is de�ned by B = 10+4h, and the wetted perimeter, P , by

P = 10+2h
p
5 (corresponding to a wall slope of z = 2). Again the discharge is set

at 20m3s�1 and the ow is subcritical throughout the channel. The downstream

depth is speci�ed as 1:125m and the Manning coe�cient is 0.03. The bed slope

function is de�ned by

So(x) =

(
1� 400[10 + 4ĥ(x)]

g[10 + 2ĥ(x)]3

)
ĥ
0

(x) + 0:36
[10 + 2ĥ(x)

p
5]4=3

[10 + 2ĥ(x)]10=3ĥ(x)10=3

together with

ĥ(x) =
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�
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�
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ĥ
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�

2000
cos

�
�x

500

�
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The �nal example (S7) considered in the paper is for a 1km trapezoidal channel

(B = 10 + 2h and P = 10 + 2h
p
2 (implying z = 1)) with a discharge of 20m3s�1

and a downstream depth of 1:349963m. The conditions are such that the upstream
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subcritical ow becomes supercritical, leading to the formation of a hydraulic jump

at a point two thirds along the distance of the channel. In this case, Manning's n

is set to 0.02, and the bed slope is given by

So(x) =

(
1� 400[10 + 2ĥ(x)]

g[10 + ĥ(x)]3ĥ(x)3

)
ĥ
0

(x) + 0:16
[10 + 2ĥ(x)

p
2]4=3

[10 + ĥ(x)]10=3ĥ(x)10=3
:

and
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where a1 = �0:111051, a2 = 0:026876 and a3 = �0:217567.

6.2 Transient/Unsteady test cases

As discussed in the previous chapter, the dam-break problem (U1) is one of the

most popular unsteady test cases for 1-d open channel ows. The exact solution

for the given depths hl and hr was originally determined by Stoker [58], and can

be found using the procedure given by Glaister [29] as outlined in the Appendix B.

In this section a depth ratio of 100:1 for the water upstream and downstream of

the dam is again considered.

Yang et al [67] considered the case of the unsteady head-on collision of two bore

waves generated by two dam-break scenarios (U2). The initial conditions are

given as

u(x; 0) = 0
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and

h(x; 0) =

8>><
>>:

100 0 � x < 0:4

1 0:4 � x < 0:6

10 0:6 � x < 1:

The channel has a rectangular cross section which is taken to be of width 1m.

Transmissive boundary conditions are imposed at both ends of the channel.

Alcrudo, Garc��a-Navarro, and Savir�on [2] considered the head-on collision and

interaction of two bores in a trapezoidal channel (U3). The channel is of length

1km and 1m wide at the base with a wall slope of unity. The initial conditions

given are

Q(x; 0) =

8>><
>>:

100 �500 � x < �400
10 �400 � x < 0

0 0 � x < 500

h(x; 0) =

8>><
>>:

3:6 �500 � x < �400
2:0 �400 � x < 0

2:6 0 � x < 500:

A reective boundary condition is imposed downstream which causes the surge

wave to be reected back upstream once it has reached the boundary.

Toro [62] presented a test case for ow over an elevated bed in a rectangular

channel of length 30m (U4). The bed level is set by

z(x) =

8>><
>>:

0 0 � x < 10

0:1x� 1 10 � x < 20

1 20 � x � 30:

and the initial elevation (uid depth + bed level) by

H(x; 0) =

8<
: 4 0 � 0 < 5

2 5 � x � 30:

Transmissive boundary conditions are employed for this problem.

Savic and Holly [54] looked at a series of dam-break like problems, the most

complex of which involved sloping channels and non-prismatic cross-sections. The

�rst of these problems to be considered here (U5) is for a 100km long rectangular

channel of slope 0.1% and Manning roughness coe�cient 0.04. The channel width

increases from 50m to 250m over a single cell located at 55km. For both problems,

the method of characteristics is used to determine the ow at the boundaries,
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with a discharge of 0m3s�1 speci�ed at the upstream end, and a �xed depth of

1m imposed downstream.

The second problem (U6) is similar to the previous case, except that the channel

width decreases from 50m to 10m at the same point as before. In both instances

the initial conditions are still water with an elevation of 100m for the �rst 50km,

and a depth of 1m downstream of the dam.

6.3 Results

To evaluate and contrast the global and local time stepping strategies, solutions

to each of the problems presented in the previous section have been generated. To

illustrate how the performance of the various approaches varies with the grid on

which the solution is obtained, a range of grids have been considered. The basis of

construction for the grids used is outlined in Appendix C (irregular grid B), and

follows the notion of a central region of �ne equally sized cells of length d, which

are connected to the outermost cells of length nd at the channel boundaries. The

intermediate regions consist of cells whose length varies by a uniform ratio. In

the examples shown, the central region contains three cells of equal size, and the

value of n is varied between 1 (regular grid) and 128. In the discussion to follow,

references made to the n grid correspond to this ratio.

The e�ects of choosing either a pointwise or upwind source term treatment are

also considered. For the examples in which source terms are involved, solutions are

presented using both the upwind and the pointwise treatments. Solutions are also

shown for when the pointwise approach is applied together with the Superbee

ux limiter [59]. In the cases where no source terms are present, solutions are

generated using the �rst and second order (ux limited) versions of Roe's scheme.

In the following sections, a representative range of pro�les are shown, which fo-

cus on the particular regions of interest in each case, using the di�erent numerical

approaches. A representative sample of the run time and ux count data measure-

ments is also given, and the complete set of tables can be found in Appendix D.

In all of the steady state simulations, the initial discharge was set to zero in every

cell except at the upstream boundary, with the exception of S1, where a value

of zero was used everywhere. The initial elevations (depth + bed level) were set

using the prescribed downstream boundary condition, or analytical value where
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available. For S2 and S3 where a weir boundary condition is imposed, the depth

was set to 2m throughout the channel. For the problems U1, U2 and U3 which

do not include any source terms, the run time measurements given were obtained

with the source term calculations removed.

6.3.1 Steady state results

For the �rst steady state test case, S1, there is little appreciable di�erence between

the elevation plots produced by the various time stepping procedures and source

term treatments. In all cases, there is good agreement between the numerical and

analytical solutions, and the hydraulic jump is well captured. Figure 6.1 shows

the solution obtained on the 4 grid using the upwind source term treatment. The

elevation of the point which lies on the jump line varies slightly between the

di�ering grids and source terms. However in all cases, the results from the two

local time stepping approaches coincide with the global time stepping solutions.

As this problem is steady state, the discharge should be constant throughout

the channel. Figures 6.2 and 6.3 are more interesting than the elevation plots, as

they highlight the noticeable variations in the discharge values that occur. The

solutions produced using the �rst order scheme with the pointwise source term

treatment show the greatest variation from the constant value, particularly in

the region just before the contraction. Using a ux limiter reduces the devia-

tion, and the upwind results maintain an almost constant value except at the

jump point. Di�erences between the GTS results and those produced using the

two LTS schemes with the pointwise source terms and Superbee ux limiter, are

particularly apparent. In this instance the values obtained using the global time

stepping are comparable to those using the various time stepping strategies to-

gether with the upwind source term treatment. Note that all of the results show

a spike at the location of the hydraulic jump.

The results from the run time and ux count measurements show several trends as

illustrated by Table 6.1. In general, for the same grid and time stepping procedure,

the run times measured using the upwind source term treatments are slower than

using the pointwise calculations, but are faster than using the pointwise approach

together with a ux limiter. The e�ciency gains calculated using the run time

values for LTS1 lie in the range of -14.17 to 32.87 percent. For LTS2, the range

is -21.20 to 49.49 percent. The negative values corresponding to lower values of



CHAPTER 6. TEST CASES AND RESULTS 139

n and the e�ciency gain increases with n. In addition, as n increases then so too

does the level of temporal embedding that can be used with the LTS2 strategy,

corresponding to higher values of m. The changes in e�ciency gains between

successive grids in which the maximum m level has changed, is generally more

appreciable than when m remains the same. In the case of the pointwise and

pointwise plus Superbee results, the limit between the 64 and 128 grids actually

decreases (due to numerical instability, resulting in the need to enforce a maximum

m value to overcome temporal sti�ness), as can be observed by the e�ciency gains.

Another observation is that for the LTS1 algorithm, the e�ciency gains given from

the run time measurements for the pointwise results, are generally less than the

upwind and pointwise plus Superbee values, which are more comparable.

In comparing the two LTS methodologies, the LTS1 approach is generally faster

when only one temporal level is permitted by the LTS2 method, but the LTS2

approach leads to noticeably higher e�ciency gains when a maximum value of

m = 3 (the highest of all the results) can be used. One point to note is that the

loss in e�ciency of the LTS1 algorithm on the regular grid is less than in the case

of the 2 grid. This is because the algorithm incorporates a check to see if whether

the maximum local time step is at least twice the minimum value. If not then it

does not proceed any further with the local time stepping update. Similar checks

are included in the LTS2 procedures for when the maximum value of m is zero.

The ux count measurements show very similar trends to those evident from the

run time values. The e�ciency gains recorded are higher, as the implementation

costs of the algorithms are not taken into account. One noticeable feature is that

generally the ux count e�ciencies of the two LTS approaches are more similar

on the same grid than the run time e�ciencies are. In addition, the di�erences

between the run time and ux count e�ciencies for the LTS2 algorithm are typi-

cally less than for the LTS1 method. This suggests that the implementation costs

within the LTS1 procedures are more signi�cant than for the LTS2 routines. An-

other e�ect that can be observed is that for the LTS1 results, the ux count on the

regular grid for the upwind results, and the 1 and 2 grids for the pointwise source

term treatments, are slightly higher than when global time stepping is used.

For the second steady state case, S2, in which the channel contracts and then

expands, the depth pro�les obtained are very similar in character to those in

the previous example. Figure 6.4 shows the solutions on the 128 grid when the

pointwise source terms are used together with Superbee. One point of interest in
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this particular plot is that the value located on the jump line produced by the

GTS method, di�ers from the value obtained from the LTS schemes. The discharge

pro�les for the two grids are shown in Figures 6.5 and 6.6. The deviations from

the expected value show the same traits as for S1, although the magnitude is

generally less. The run time and ux count data is again similar. However slightly

higher e�ciency gains using the LTS2 approach can be noted in the upwind and

pointwise source term treatment values, as a maximumm value of 5 could be used

on the higher ratio grids.

Figure 6.7 shows the solution obtained for the S3 problem when the pointwise

source terms are used on the 4 grid. On this scale no di�erences can be observed

between the solutions produced using the di�erent time stepping procedures and

source terms. Figures 6.8 to 6.13 show the depth values obtained using the var-

ious treatments in the vicinity of the channel contraction. As can be seen in

Figures 6.8 and 6.9, the solutions obtained on the 4 and 128 grids using the up-

wind source terms show close agreement with the analytical depth values. In

the case of the pointwise treatment, Figures 6.10 and 6.11 show a deviation be-

tween the analytic and predicted values, which is more signi�cant on the 128

grid. Applying a ux limiter eliminates this problem, as can be observed in

Figures 6.12 and 6.13 where Superbee has been used. In these plots it is apparent

that the LTS results again match the GTS solutions.

The discharge comparisons are shown in Figures 6.14 and 6.15. As with the previ-

ous two examples, the solutions produced using the upwind source term treatments

reproduce the steady state value. The pointwise solutions show the greatest de-

viation, which is reduced by the introduction of the Superbee ux limiter. With

the upwind and pointwise results, it can be seen that the GTS and LTS solutions

all coincide. In Figure 6.14, di�erences between the di�erent time stepping pro-

cedures used in conjunction with the pointwise source term treatment are clearly

visible, with the GTS results falling closer to the expected value.

The e�ciencies gains measured for the LTS1 results range from -13.11 to 29.76

percent for the run time values, and between -0.62 to 67.63 percent for the ux

count measurements. For the LTS2 method, the measured e�ciency gains range

from -22.84 to 54.20 percent, and from 0 to 65.30 percent for the run time and ux

count measurements respectively. Comparison of the LTS1 and LTS2 e�ciency

gains again shows that there is closer agreement between the ux count e�ciencies

than there is between the run time values.
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The complete solution obtained for S4 on the 128 grid with the upwind source

terms is shown in Figure 6.16. The elevation plots over the entire channel length

show no variation between the di�erent treatments. Figures 6.17 to 6.19 show the

depth pro�les over the range [400:600] for the 128 grid. As before, the upwind re-

sults match the analytic solution, whilst there is a discrepancy with the pointwise

results, which is reduced by using a ux limiter. In this instance it can be seen

that the GTS and LTS results are identical, except in the pointwise and Super-

bee results. In this example, the two LTS approaches produce slightly di�erent

solutions to those obtained using global time stepping.

The discharge plots for this example are shown in Figures 6.20 and 6.21 and ap-

pear quite similar in character to the discharge pro�les of example S3. The trends

visible in the recorded run time and ux count data are also the same as seen in

the previous examples.

The solution produced to problem S5 using the pointwise source term treatment

with Superbee on the 4 grid is shown in Figure 6.22. An inspection of all of the

depth pro�les showed no appreciable di�erences in the quality of the solutions

produced. The discharge values are shown in Figures 6.23 and 6.24. Again it can

be observed that only the upwind results exactly match the prescribed discharge

value, with the pointwise source term (no limiter) results showing the largest error,

though reaching a constant value towards the downstream end of the channel.

The di�erences between the GTS and LTS results for the pointwise plus Superbee

solutions are clearly visible, and on the 128 grid, the GTS solution is constant

throughout almost all of the channel. Inspection of the run time and ux count

data shows the same trends as evident in the examples considered so far.

Example S6 considers the ow over a rippled channel bed, as can be seen in

Figure 6.25, which shows the solution using the pointwise source terms on the

128 grid. The depth pro�le over the complete range of the channel are shown

in Figures 6.26 to 6.31. This particular example shows the most signi�cant de-

viations from the analytical solution out of the examples considered, due to the

nature of the bed level variation. As with the other cases considered, the upwind

results are best, though the 128 grid results do show some discrepancies. The

pointwise and pointwise plus Superbee solutions show the magnitudes of both the

crests and troughs to be under predicted, with the Superbee results appearing

slightly better than the �rst order solutions. Note that the solutions presented

were those obtained once convergence had been achieved. The discharge plots
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for this example are shown in Figures 6.32 and 6.33. The typical behaviour seen

previously is again observed. In this instance the upwind results on the 128 grid

show a slight drop in the discharge values at the non-boundary cells. The e�ciency

gains recorded take on similar values as before, with the same trends recurring.

An example of the elevation results obtained for the �nal steady state problem,

S7, is given in Figure 6.34 which shows the upwind solutions on the 4 grid. The

elevation plots are again all quite similar. For this test case, the largest deviation

between the analytical and predicted depths occurs just before the hydraulic jump,

as is illustrated in Figures 6.35 to 6.37. Here the upwind results exactly match the

analytical solution, whilst the pointwise approach over predicts the values. Using

Superbee with the pointwise source terms reduces the error. Figures 6.38 and 6.39

show the discharge predictions. As with the S1 and S2 results, a spike appears at

the location of the hydraulic jump in all of the results. However in this problem,

only the upwind solutions show the discharge returning to the correct value. The

tabulated results again follow the same trends as the previous examples.
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Figure 6.1: Elevation pro�le for S1 on 4 grid with upwind source terms.
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Figure 6.2: Discharge pro�les for S1 on 4 grid.
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Figure 6.3: Discharge pro�les for S1 on 128 grid.
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Figure 6.5: Discharge pro�les for S2 on 4 grid.
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Figure 6.6: Discharge pro�les for S2 on 128 grid.
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Figure 6.7: Depth pro�le for S3 on 4 grid with pointwise source terms.
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Figure 6.8: Depth pro�le for S3 on 4 grid with upwind source terms.
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Figure 6.9: Depth pro�le for S3 on 128 grid with upwind source terms.
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Figure 6.10: Depth pro�le for S3 on 4 grid with pointwise source terms.
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Figure 6.11: Depth pro�le for S3 on 128 grid with pointwise source terms.
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Figure 6.12: Depth pro�le for S3 on 4 grid with pointwise source terms and

Superbee.
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Figure 6.13: Depth pro�le for S3 on 128 grid with pointwise source terms and

Superbee.
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Figure 6.14: Discharge pro�les for S3 on 4 grid.
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Figure 6.15: Discharge pro�les for S3 on 128 grid.
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Figure 6.16: Elevation pro�le for S4 on 128 grid with upwind source terms.
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Figure 6.17: Depth pro�le for S4 on 128 grid with upwind source terms.
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Figure 6.18: Depth pro�le for S4 on 128 grid with pointwise source terms.
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Figure 6.19: Depth pro�le for S4 on 128 grid with pointwise source terms and

Superbee.
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Figure 6.20: Discharge pro�les for S4 on 4 grid.
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Figure 6.21: Discharge pro�les for S4 on 128 grid.
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Figure 6.22: Elevation pro�le for S5 on 128 grid with pointwise source terms and

Superbee.
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Figure 6.23: Discharge pro�les for S5 on 4 grid.
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Figure 6.24: Discharge pro�les for S5 on 128 grid.
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Figure 6.25: Elevation pro�le for S6 on 128 grid with pointwise source terms.
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Figure 6.26: Depth pro�le for S6 on 4 grid with upwind source terms.
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Figure 6.27: Depth pro�le for S6 on 128 grid with upwind source terms.
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Figure 6.28: Depth pro�le for S6 on 4 grid with pointwise source terms.
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Figure 6.29: Depth pro�le for S6 on 128 grid with pointwise source terms.
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Figure 6.30: Depth pro�le for S6 on 4 grid with pointwise source terms and

Superbee.
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Figure 6.31: Depth pro�le for S6 on 128 grid with pointwise source terms and

Superbee.
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Figure 6.32: Discharge pro�les for S6 on 4 grid.
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Figure 6.33: Discharge pro�les for S6 on 128 grid.
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Figure 6.34: Elevation pro�le for S7 on 4 grid with upwind source terms.
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Figure 6.35: Depth pro�le for S7 on 128 grid with upwind source terms.
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Figure 6.36: Depth pro�le for S7 on 128 grid with pointwise source terms.
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Figure 6.37: Depth pro�le for S7 on 128 grid with pointwise source terms and

Superbee.
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Figure 6.38: Discharge pro�les for S7 on 4 grid.
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Figure 6.39: Discharge pro�les for S7 on 128 grid.
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6.3.2 Transient/Unsteady results

The �rst transient test case to be considered is the dam-break problem (U1). As

there are no source terms involved in the calculations, the results using the �rst

and second order versions of Roe's schemewith the various time stepping strategies

can be compared. Figures 6.40 and 6.41 show the depth pro�les obtained using

the �rst order methods. It can be seen that there is some distinction between the

results, particularly in the region of the bore and the beginning of the depression.

Figures 6.42 and 6.43 show the �rst 200m of the channel on a larger scale. On

the 4 grid, it can be seen that both the LTS approaches come slightly closer

to predicting the correct depth value in the region where the depression meets

the uniform state. Further on, there is a section where the GTS and LTS2 results

almost agree, whilst the LTS1 values show more deviation from the analytic value.

Towards the end of the region highlighted, the di�erences between the results

becomes less noticeable. On the 128 grid, there is a marked improvement on the

GTS results when the LTS1 algorithm is applied, with the LTS2 approach forming

an intermediate solution. Figures 6.44 and 6.45 focus on the bore region, where

in the previous chapter, the solution was seen to be improved by the use of local

time stepping. On the 4 grid, the LTS1 and LTS2 results are comparable, with

the LTS1 appearing slightly better due to a more uniform value in the constant

region. There is a slight improvement in the resolution of the bore visible in the

LTS results. The 128 grid pro�les show the GTS and LTS2 results to be very

similar, whilst the LTS1 solution captures the discontinuity much more sharply.

Figures 6.46 and 6.47 show the complete solution when the Superbee ux limiter

is used. These �gures suggest that the di�erences apparent before are now less no-

ticeable. Figures 6.48 and 6.49 show the region at the beginning of the depression.

In general a much closer agreement to the analytical solution is seen than with

the �rst order results. On the 4 grid, the LTS2 results represent the best solution,

with the GTS method producing only slightly di�erent values. However the LTS1

results show a signi�cant amount of di�usion and are only a slight improvement

on the �rst order values. On the 128 grid, the GTS and LTS2 results are almost

identical, and the LTS1 results are again quite di�usive. The solution pro�les in

the bore region are given in Figures 6.50 and 6.51. The distinction between the

GTS and LTS results is less marked than with the �rst order solutions, and little

improvement in the quality of the solution is seen in this case by using either of

the LTS strategies. In fact both LTS solutions on the 4 grid show less agreement

with the analytical solution than the GTS results. On the 128 grid the LTS1
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results are overall slightly better.

The run time and ux count measurements are given in Table 6.2. The increase in

computational cost of applying the ux limiter is immediately apparent from the

higher run time values. For the regular grid (and the 2 grid for LTS1) , it can be

seen that the run times for the LTS strategies exceed the GTS values, though there

is a reduction in the number of ux calculations performed. As was apparent with

the steady state measurements, the e�ciency improvement observed increases

with the largest to smallest cell grid ratio. For the LTS1 approach, the run time

e�ciency gains for the second order results, are generally higher than for the �rst

order values. However the ux count e�ciencies are much more comparable. The

LTS2 values (both run time and ux count) are generally similar for the �rst and

second order schemes on the same grid. As noted before, the run time e�ciency

gains of the LTS2 approach are signi�cantly higher than for the LTS1 strategy.

However the ux count e�ciencies are slightly higher for LTS1. In this example,

the range of e�ciencies seen for the LTS2 results, are quite similar to the steady

state values. The same is true for the second order LTS1 measurements, but the

�rst order run time e�ciencies are generally lower than those seen before.

The complete solutions for U2 are shown in Figures 6.52 to 6.55. As no analytic

solution is available for this problem, a reference solution produced on a �ne

regular grid is included in the plots. The behaviour for the �rst section of the

channel is quite similar to that seen for the dam-break problem. The region of

most interest in this case is focussed on in Figures 6.56 to 6.59. The �rst order

LTS results on the 4 grid are slightly better than those produced using global

time stepping. On the 128 grid, the LTS1 results show the closest match to

the reference solution, with the GTS and LTS2 values appearing quite similar.

The downstream discontinuity is captured more sharply than the upstream one

by the LTS1 method. The second order results show much better resolution of

the discontinuities and closer agreement to the reference solution. The GTS and

LTS2 results appear much smoother than those produced by the LTS1 strategy

and overall the GTS results are marginally the best. The trends evident in the

run time and ux count data are the same as for the previous example, though

the maximum e�ciency gains for LTS2 are slightly less, as only a maximum of

four temporal levels (m =2) are permitted.

Figures 6.60 to 6.63 show the solution pro�les over the entire range for U3. Again

a reference solution is included in the plots for comparison. The upstream and
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downstream discontinuities are shown in greater detail in Figures 6.64 to 6.71.

The �rst order results in the region of the �rst discontinuity on the 4 grid appear

very similar, whilst there is a greater distinction between the values on the 128

grid, where the LTS1 depth predictions generally lie closest to the reference values.

On the 4 grid, applying the Superbee ux limiter improves the quality of all of

the solutions, which are again very similar. However on the 128 grid both LTS

algorithms experience di�culty in producing a smooth pro�le in the region to

the right of the discontinuity. Looking at the downstream discontinuity, on the

4 grid the LTS1 results show the best shock resolution, with the LTS2 algorithm

producing a slightly sharper pro�le than global time stepping. The GTS and

LTS2 results on the 128 grid are very similar, and again the LTS1 approach is

seen to resolve the discontinuity in fewer cells. The results in Figure 6.70 in which

the ux limiter is used on the 4 grid, are all very similar, with the LTS1 values

appearing to be not quite constant in the region upstream of the shock. The e�ect

is more apparent on the 128 grid, and does not appear to a�ict the LTS2 solution.

The e�ciency measurements show the same trends as the previous two examples,

with the additional feature of a drop in all of the e�ciency values between the

1 and 2 grids (see Table 6.3). This was observed for the run time e�ciencies for

the steady state problems, but not for the ux count values. However it should

be noted that the ux count e�ciencies all remain positive.

Example U4 has a non-uniform bed and so includes the e�ects of source terms.

Figures 6.72 to 6.75 show the complete pro�les using the upwind and pointwise

plus Superbee treatments on the 4 and 128 grids. For this problem the upwind and

pointwise results are indistinguishable. The bore region is shown in more detail

in Figures 6.76 to 6.79. The �rst order upwind LTS1 results on both the 4 and

128 grids capture the shock more sharply than the other methods, with the LTS2

values being slightly better than the GTS results. However when the ux limiter

is used in conjunction with the pointwise source terms (note the source terms

are zero in this section of the channel), the LTS1 results show some anomalous

behaviour. On the 128 grid this can also be observed in the central region of the

channel in Figure 6.75. In terms of shock resolution, the results from the di�erent

time stepping approaches are all comparable. The measured data again shows

the drop in e�ciencies between the 1 and 2 grid, together with the other trends

previously observed. The e�ciency gains are quite similar to those recorded with

the steady state examples, and maximum level utilised by the LTS2 algorithm is

5, which is more in line with the steady results than with the unsteady problems

that do not contain source terms.
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The complete solutions obtained for problem U5 using the various techniques are

shown in Figures 6.80 to 6.85. The reference solution on each plot corresponds to

the results produced using the same source term treatment as the results illus-

trated, together with global time stepping on a �ne regular grid. These �gures

show a contrast in the reference solutions, with only the upwind solutions ap-

pearing similar to the pro�le presented by Savic and Holly [54]. This example

represents an extreme test case in the sense of the sudden channel contraction

which is implemented over one cell at 55km, corresponding to where the point-

wise and pointwise plus Superbee results experience di�culty. By extending the

region over which the contraction takes place, more sensible solution pro�les are

produced, and the geometry becomes more in line with the Saint Venant hypoth-

esis. However it is interesting to see how the upwind source term treatment is

able to cope with these conditions, with the solutions generated from the the dif-

fering time stepping methods appearing quite similar. In producing these results

it became apparent that the LTS1 algorithm needed some modi�cation in order

to obtain stable solutions, and this resulted in the need to limit the number of

local time steps which could be performed over a global time step. The limits

applied are noted in the recorded data in Table 6.4 and generally increase with

the grid ratio. This approach was found to be the most successful and extending

the interface region was found not to eliminate the problem. Looking at the up-

wind results, drops in the limit and maximum levels (and subsequently reduced

e�ciencies) can be seen for both LTS algorithms, though the gains do remain

positive.

In example U6, the channel contraction is replaced by an expansion, with the

result that all of the source term methods produce viable solutions. Over the

complete range the pro�les appear similar, and the upwind results on the two

grids are shown in Figures 6.86 and 6.87. The region a�ected by the contraction is

highlighted in Figures 6.88 to 6.93 and again the reference solution tallies with the

methods used to generate the results illustrated. In comparing the solutions, it can

be seen the pointwise results show a greater deviation from the reference solution

than do the upwind values. Introducing the ux limiter brings the pointwise values

closer to the reference line, as well as sharpening the pro�le. In this example the

application of the LTS procedures does not appear to increase the accuracy of the

solution, though this is di�cult to judge in the absence of an analytical solution.

For some cells in the 65 to 70 km region, the LTS results di�er slightly from the

GTS values. The LTS1 method again requires a limit to be placed on the number

of local time steps per global cycle, with the limit tending to be higher for the
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upwind results. The decrease in the limit and level apparent in the previous

example for the higher ratio grids, is not present in this case. The general trends

evident so far in the tabulated data for in all of the problems are again visible in

this example.
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Figure 6.40: Depth pro�le for U1 on 4 grid using the 1st order schemes.
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Figure 6.41: Depth pro�le for U1 on 128 grid using the 1st order schemes.
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Figure 6.42: Depth pro�le for U1 on 4 grid using the 1st order schemes.
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Figure 6.43: Depth pro�le for U1 on 128 grid using the 1st order schemes.
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Figure 6.44: Depth pro�le for U1 on 4 grid using the 1st order schemes.
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Figure 6.45: Depth pro�le for U1 on 128 grid using the 1st order schemes
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Figure 6.46: Depth pro�le for U1 on 4 grid using the 2nd order schemes.
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Figure 6.47: Depth pro�le for U1 on 128 grid using the 2nd order schemes.
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Figure 6.48: Depth pro�le for U1 on 4 grid using the 2nd order schemes.
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Figure 6.49: Depth pro�le for U1 on 128 grid using the 2nd order schemes.
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Figure 6.50: Depth pro�le for U1 on 4 grid using the 2nd order schemes.
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Figure 6.51: Depth pro�le for U1 on 128 grid using the 2nd order schemes.
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Figure 6.52: Depth pro�le for U2 on 4 grid using the 1st order schemes.
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Figure 6.53: Depth pro�le for U2 on 128 grid using the 1st order schemes.
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Figure 6.54: Depth pro�le for U2 on 4 grid using the 2nd order schemes.
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Figure 6.55: Depth pro�le for U2 on 128 grid using the 2nd order schemes.



CHAPTER 6. TEST CASES AND RESULTS 180

10

15

20

25

30

35

40

45

50

0.55 0.6 0.65 0.7 0.75 0.8

D
e
p
th

 (
m

)

Position (m)

Reference
GTS

LTS1
LTS2

Figure 6.56: Depth pro�le for U2 on 4 grid using the 1st order schemes.
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Figure 6.57: Depth pro�le for U2 on 128 grid using the 1st order schemes.
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Figure 6.58: Depth pro�le for U2 on 4 grid using the 2nd order schemes.
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Figure 6.59: Depth pro�le for U2 on 128 grid using the 2nd order schemes.
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Figure 6.60: Depth pro�le for U3 on 4 grid using the 1st order schemes.
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Figure 6.61: Depth pro�le for U3 on 128 grid using the 1st order schemes.
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Figure 6.62: Depth pro�le for U3 on 4 grid using the 2nd order schemes.
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Figure 6.63: Depth pro�le for U3 on 128 grid using the 2nd order schemes.
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Figure 6.64: Depth pro�le for U3 on 4 grid using the 1st order schemes.
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Figure 6.65: Depth pro�le for U3 on 128 grid using the 1st order schemes.
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Figure 6.66: Depth pro�le for U3 on 4 grid using the 2nd order schemes.
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Figure 6.67: Depth pro�le for U3 on 128 grid using the 2nd order schemes.
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Figure 6.68: Depth pro�le for U3 on 4 grid using the 1st order schemes.
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Figure 6.69: Depth pro�le for U3 on 128 grid using the 1st order schemes.
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Figure 6.70: Depth pro�le for U3 on 4 grid using the 2nd order schemes.
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Figure 6.71: Depth pro�le for U3 on 128 grid using the 2nd order schemes.
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Figure 6.72: Depth pro�le for U4 on 4 grid with upwind source terms.
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Figure 6.73: Depth pro�le for U4 on 128 grid with upwind source terms.
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Figure 6.74: Depth pro�le for U4 on 4 grid with pointwise source terms and

Superbee.
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Figure 6.75: Depth pro�le for U4 on 128 grid with pointwise source terms and

Superbee.
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Figure 6.76: Depth pro�le for U4 on 4 grid with upwind source terms.
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Figure 6.77: Depth pro�le for U4 on 128 grid with upwind source terms.
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Figure 6.78: Depth pro�le for U4 on 4 grid with pointwise source terms and

Superbee.
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Figure 6.79: Depth pro�le for U4 on 128 grid with pointwise source terms and

Superbee.
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Figure 6.80: Elevation for U5 on 4 grid with upwind source terms.
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Figure 6.81: Elevation for U5 on 128 grid with upwind source terms.
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Figure 6.82: Elevation for U5 on 4 grid with pointwise source terms.
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Figure 6.83: Elevation for U5 on 128 grid with pointwise source terms.
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Figure 6.84: Elevation for U5 on 4 grid with pointwise source terms and Superbee.
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Figure 6.85: Elevation for U5 on 128 grid with pointwise source terms and Super-

bee.
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Table 6.4: Results table for U5.
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Figure 6.86: Elevation for U6 on 4 grid with upwind source terms.

0

20

40

60

80

100

120

140

0 20000 40000 60000 80000 100000

E
le

va
tio

n
 (

m
)

Position (m)

Bed level
Reference

GTS
LTS1
LTS2

Figure 6.87: Elevation for U6 on 128 grid with upwind source terms.



CHAPTER 6. TEST CASES AND RESULTS 198

0

5

10

15

20

25

30

35

40

45

50

50000 55000 60000 65000 70000

D
e
p
th

 (
m

)

Position (m)

Reference
GTS

LTS1
LTS2

Figure 6.88: Depth pro�le for U6 on 4 grid with upwind source terms.
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Figure 6.89: Depth pro�le for U6 on 128 grid with upwind source terms.
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Figure 6.90: Depth pro�le for U6 on 4 grid with pointwise source terms.
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Figure 6.91: Depth pro�le for U6 on 128 grid with pointwise source terms.
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Figure 6.92: Depth pro�le for U6 on 4 grid with pointwise source terms and

Superbee.
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Figure 6.93: Depth pro�le for U6 on 128 grid with pointwise source terms and

Superbee.
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6.4 Summary of results

The test cases considered have highlighted a number of trends. In terms of the

source term treatment, in the examples where the source terms play a more dom-

inant role, the bene�ts of using an upwind based treatment over a pointwise

approach are apparent. For the steady state problems, only the upwind approach

generated the constant discharge throughout the channel, with the appearance

of a spike at the location of hydraulic jumps. The pointwise source term results

showed the greatest deviation from the exact value, and the application of a ux

limiter reduced the discrepancy. For both the upwind and pointwise results, the

GTS and LTS discharge values were the same. However, when the ux limiter

was used in conjunction with the pointwise treatment, the GTS and LTS results

di�ered, with the GTS results appearing slightly better. In terms of the depth

pro�les, then in the regions where there was a high degree of curvature in the

solution, the upwind results showed the closest agreement to the analytical solu-

tion. Using a ux limiter was again seen to improve the pointwise values, though

they were still not as good as the upwind results. For the transient problems,

the source terms had the most signi�cant e�ect in example U5, where only the

upwind treatment produced a reasonable solution. The other test case in which

the source terms were dominant was example U6. Here the di�erence between

the reference and various time stepping solutions was greatest for the pointwise

results, particularly in the region of the wave advancing downstream. The run

times were also a�ected by the source term treatments, as the upwind calculations

were more computationally expensive than the pointwise approach. The upwind

run times were however less than the pointwise and Superbee values.

The bene�ts of using local time stepping have also been seen. For the steady state

problems considered, applying the LTS techniques did not result in a change of

accuracy of the solution, as the GTS and LTS depth results were virtually identical

for nearly all of the problems. However, a reduction in both the run time and the

number of ux calculations performed was seen, with the improvement generally

increasing with the grid ratio n. In contrasting the two LTS strategies, the run

time e�ciencies for the LTS1 procedure were generally lower than for the LTS2

approach, though the ux count gains tended to be quite similar. This reected

the fact that the LTS1 algorithm updates all of the cells at every local time step

using the frozen ux. In this manner, the need to have a series of temporal levels

(as with the LTS2 algorithm) is eliminated. Typically, the LTS2 procedure led
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to the fastest run times when the maximum level became either 2 or 3, resulting

in either 4 or 8 temporal levels per global time step. For the �rst order results,

the LTS1 and LTS2 procedures tended to produce similar results on the 4 grid,

which in examples U1 to U4 generally led to sharper solution pro�les. On the

128 grid, the LTS1 results tended to show the best shock resolution, with the GTS

and LTS2 pro�les appearing quite similar. Overall the improvements observed in

using local time stepping increased with the grid ratio.

The bene�ts of using local time stepping in conjunction with a ux limiter were

less apparent, as generally the solution pro�les were quite similar. However the run

times and number of ux calculations were reduced. In some instances, using local

stepping within the second order scheme deteriorated the results (most noticeably

for the LTS1 procedure) though this tended to a�ect only isolated points. If

the number of local time steps per global cycle is restricted (as in examples U5

and U6), this problem can sometimes be reduced. However this can also lead

to the solution deteriorating in other parts of the channel. A number of other

problems were also experienced, such as the temporal sti�ness e�ect with the

LTS2 procedure (which restricted the maximum value of m that could be used

on stability grounds), and the need to specify a limit on the number of local time

steps for LTS1 in examplesU5 and U6. This problem was overcome by enforcing

a maximum number of local time steps per global cycle as suggested by Pervaiz

and Baron [48], though the origins of the di�culties experienced were di�erent.

In addition, the run time measurements showed that it was not always bene�cial

to use local time stepping, particularly for the lower grid ratios as the run times

tended to exceed the GTS values.



Chapter 7

Conclusions

7.1 Discussion

The objective of this thesis was to investigate ways in which the software cur-

rently available to hydraulic engineers might be improved. More speci�cally, the

intention was to focus on techniques which could lead to reduced run times and

improved solution accuracy. Recent trends within the �eld of computational hy-

draulics research have tended towards �nite volume techniques and the use of

Riemann based solvers. For this reason, the Roe Riemann solver was chosen as

a focal point for the investigation. As much of the pioneering development for

the methods used within the hydraulics environment was conducted within the

�eld of aeronautics, attention was drawn towards any ideas which as yet remained

unexploited by the hydraulics community. To this end the application of time

accurate local time stepping to open channel ow has been considered.

The use of local time stepping in steady state problems in CFD is a widely accepted

practise. However its application to transient problems has received much less

attention due to the additional complexity of ensuring a time accurate solution.

The strategies presented by Zhang et al ([70], [71]) and Kleb and Batina [40]

were particularly appealing for this project, as both were constructed within the

�nite volume framework, and developed for the Euler equations. The availability

of suitable test cases and the need to develop the techniques presented for open

channel ows, suggested that the investigation should be conducted on the 1-d

Saint Venant equations, with the view that ideas could be extended to higher

order systems, where there is a greater need to develop faster algorithms. The

203
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e�ects of incorporating the source terms within the LTS framework were also

investigated, together with a comparison between the results obtained by using a

pointwise approach and an upwind implementation proposed by Garc��a-Navarro

and V�azquez-Cend�on [26], speci�cally constructed for the �rst order Roe scheme.

In applying the LTS procedures, strategies were developed for the construction of

the interface regions within the respective algorithms, and the second order Roe

scheme (via the Superbee ux limiter) was incorporated into the LTS framework.

Following the work of Garc��a-Navarro and V�azquez-Cend�on, the upwind source

term treatment was extended to trapezoidal channels, and the application to ir-

regular grids was considered. From the test cases identi�ed from the literature,

results were shown for a number of problems, which represented a range of con-

ditions and included the e�ects of varying beds, friction and changes in channel

cross section.

In the cases considered, a number of general trends were observed which can be

used to assess the relative merits of utilising local time stepping and an upwind

source term treatment. For the steady state problems, applying LTS did little

to a�ect the quality of the solutions, and the depth and discharge pro�les were

generally more dependent upon the source term treatment and the order of the

scheme used. It was observed that only the upwind source term results were

able to consistently reproduce a uniform value for the steady state discharge. In

addition, improvements in the depth pro�les were seen for some of the test cases.

This was most noticeable in regions of curvature in the depth pro�le. Di�erences

between the GTS and LTS results for the time dependent problems were apparent.

For the �rst order results, the LTS solutions tended to improve the resolution of

the discontinuities. On the 4 grid, the two LTS procedures were comparable,

whereas on the 128 grid, the LTS1 procedure tended to give the best solutions,

with the GTS and LTS2 results appearing similar. One explanation for why the

LTS2 procedure tended to give more favourable results on the 4 grid could lie in

the temporal sti�ness e�ect which restricted the maximum number of temporal

levels that could be used. As consequence of this, the number of local time steps

that can be applied is limited which may also restrict the solution improvement

attainable. With the exception of examples U5 and U6, this was not a problem

experienced with the LTS1 algorithm, which showed the most signi�cant solution

improvements at the higher grid ratios in the coarser regions. The second order

results generally showed no solution improvement when local time stepping was

used, and in some instances caused the solution to deteriorate, particularly for the
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LTS1 results. It is suspected that this is connected to the value of �t used in the

limited second order component of Roe's scheme. The original testing suggested

that selecting the minimumvalue of the corresponding left and right cells gave the

best performance. However in light of these results, further testing is necessary.

The run time and ux count measurements typically showed the LTS algorithms

to be more e�cient than global time stepping and illustrated a correlation between

the grid ratio, and the bene�ts of using local time stepping. In essence, it became

more desirable to use local time stepping, as this ratio increased. This data also

highlighted that the LTS1 su�ered from the need to update every cell at every

time step, reducing the run time e�ciency gain, even though the ux count values

were similar to the LTS2 procedure. However the LTS2 run times were generally

higher than the LTS1 values when only two time levels were permitted, though

this also tended to coincide with the grids for which both procedures were slower

than using global time stepping.

A number points must be made to put the work conducted within the thesis into

perspective. Firstly, the local time stepping procedures presented were applied to

the 1-d Saint Venant equations, and generally the computational cost involved in

solving this system is not regarded as excessive. The problems considered were

not representative of the sort of situations which engineers encounter, and did not

reect the irregular geometries typical of most rivers. In terms of the increased

solution accuracy reported, it can be argued that the improvements seen would

not be of signi�cant consequence in a more realistic situation, particularly given

the uncertainties which are normally involved in any simulation process.

It must also be pointed out that within the research community the use of second

order schemes is now considered the norm, and it would be seen as unusual to

implement a �rst order method on an irregular grid. With this in mind, there

is an obvious need to investigate the LTS strategies further, as the solutions ob-

tained when the algorithms were applied to the second order Roe scheme showed

a number of anomalies. There is also the issue of the limiting strategy needed

for the LTS1 procedure in examples U5 and U6 and the necessity of specifying a

maximum level for the LTS2 algorithm.

In terms of what the thesis set out to achieve, the main conclusion to be drawn

from this work is that time accurate local time stepping can successfully be applied

to both steady and transient open channel ow problems. Moreover, local time

stepping can lead to reduced computer run times and increased solution accuracy,
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most noticeably in the vicinity of discontinuities. In addition, the source term

calculations can be included within the LTS structure, and the bene�ts of using

an upwind biased treatment have been observed. One possibility which may go

some way to alleviate the temporal sti�ness problem is to consider implementing

local time stepping within an implicit framework, as the limits needed for both

LTS procedures were related to the onset of numerical instability. It could be said

that combing an LTS approach with an implicit method would seem pointless, as

implicit schemes permit the use of arbitrarily large time steps. However, solution

accuracy must also be considered when selecting the time steps and so this tends to

restrict the CFL numbers used. In addition, implicit methods tend to su�er from

numerical di�usion in the region of discontinuities. As the use of LTS has been

seen to improve this situation in an explicit method, it could also be bene�cial to

apply the technique to implicit schemes.

To render the application of local time stepping to be a consideration for commer-

cial software, a number of issues would need to receive further consideration. It

would be necessary to develop a strategy which enabled the restrictive limits on

the LTS algorithms to be predetermined, as mentioned previously. In addition,

further validation of the interface procedures would also be required, as it is likely

that a more complex strategy would be necessary for more realistic situations,

especially for the LTS1 method. The overheads entailed in implementing the LTS

routines must also be considered, as it is apparent that local time stepping will

not always be bene�cial. As with all techniques, there may be ways of reducing

these costs, making the concept of LTS more attractive.

One �nal point to be made is that throughout this thesis, the application of

local time stepping has been considered on a �xed irregular grid. Any further

development should consider the issue of spatial adaptivity, and investigate the

relative merits of combining temporal and spatial grid adaptation.

Although a number of areas have been identi�ed for further investigation, the

issues which need to be addressed are not insurmountable. It is hoped that this

thesis conveys the potential gains of employing local time stepping, which could

be extended beyond the scope of this project and be of bene�t to the hydraulic

community.
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7.2 Possibilities for further work

With the points mentioned in mind, a number of possibilities for extending the

application of local time stepping can be identi�ed. In expanding the work con-

ducted as part of this thesis, further work could include

� Application of the ideas developed to higher order systems, such as the 2-d

shallow water equations

� An investigation into the bene�ts of employing LTS within implicit numer-

ical schemes

� Extension of the project to include irregular geometries

� Implementation of local time stepping in conjunction with spatial grid adap-

tivity

� Further investigation of the interface procedures and development of strate-

gies for predicting the maximumnumber of local time steps per global cycle.

Another possibility which could be investigated is to consider applying LTS to

non-TVD schemes such as McCormack's scheme. Although this would not render

such methods as TVD, it might go some way to minimizing the oscillations which

occur in regions of strong gradients, due to the ability of the approach to utilise

time steps close to the stability limit throughout the channel.
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Appendix A

Analytic solutions of steady

problems

Analytic solutions for steady state Saint Venant problems which contain no energy

losses, i.e. no friction terms, can be found by using the Bernoulli equation. The

Bernoulli equation is based upon conservation of energy (or head) and for open

channel ow is written as

h+
u2

2g
+ z = H

whereH is the total head. If the total head is known at a particular point along the

channel, then providing that the steady state discharge is known, the depth pro�le

throughout the channel can be determined via the solution of a cubic equation,

assuming that no energy losses occur. For a rectangular channel where h = A=b,

the resulting cubic expression is

h3 + h2(z �H) +
Q2

2b2g
= 0:

This can be solved at each point by using the formula for �nding solutions to

cubic equations [50]. For a general cubic polynomial of the form

x3 + a1x
2 + a2x+ a3 = 0;

the values R and S are de�ned by

S =
a21 � 3a2

9

and

R =
2a31 � 9a1a2 + 27a3

54
:
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The number of real roots to the equation is dependent upon the value of S3�R2.

If this value is greater than or equal to zero, then there are three real roots to the

equation. If this value is less than zero, there is only one real root.

In relation to Bernoulli's equation, then the value of h found from the general

formula should be real. In the case of there being three real roots, the appropriate

value must be chosen. In this instance there will be one non-physically acceptable

negative root, and two positive roots. The correct choice of positive root depends

upon the local ow conditions. If the ow is subcritical, then the maximum of the

two values is the appropriate one, else it is the minimum of the two. Assuming

that the ow is subcritical at the upstream boundary, then it will remain so along

the channel unless the width becomes less than or equal to the critical width.

When the Froude number is unity, the critical depth is given by

hc =

 
Q

bc
p
g

!2=3

and substituting this into Bernoulli's theorem then gives the critical width as

bc =
Qp
g

�
2

3
(H � z)

��3=2
:

Should the ow reach supercritical conditions, then it will remain supercritical

unless a subcritical downstream boundary condition is speci�ed. This will neces-

sitate the formation of a hydraulic jump, across which there will be an energy

loss and the Bernoulli equation can no longer be applied. However, the head

downstream of the jump will also be constant and so Bernoulli's equation can

be applied locally to both the sections upstream and downstream of the jump,

providing that the two head values are known.

To connect the two regions, the Conjugate Depths or Belanger equation is used.

This relates the ow conditions immediately before and after the jump via the

equation

h2 =
h1

2

�q
1 + 8F 2

r1
� 1

�
(A.1)

where 1 denotes the conditions upstream of the jump and 2 is for the downstream

section. By applying Bernoulli's equation throughout the channel using both the

upstream and downstream heads, Equation (A.1) can then be used to determine

the position of the jump. Given the depths calculated upstream, together with

the conjugate depth values, the point at which the conjugate depth matches the

downstream depth value corresponds to the location of the hydraulic jump.
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This process enables analytical solutions to be found to a range of idealised prob-

lems where no friction terms are present. However it does require a knowledge of

the total head value throughout the channel, which in the case of ows containing

hydraulic jumps, means that either the head, or both the discharge and depth

must be known at two points either side of the jump.



Appendix B

Exact solution to the dam-break

problem

The analytic solution detailed in this appendix was presented by Glaister [29].

The problem is speci�ed by the upstream depth, h1, and the downstream depth

h0, where it is assumed that h1 > h0. A third region exists over which the variables

are constant, and this lies behind the bore where the depth and velocity are h2

and u2 respectively.

The �rst stage of the procedure is to determine the speed of propagation, S, of

the bore as it travels downstream. This is found from the positive root of the

equation

u2 + 2
q
�2 � 2

q
�1 = 0 (B.1)

where � = gh (as the bed is at) and

�2 =
1

2

 s
1 +

8S2

�0
� 1

!
�0

u2 = S +
�0

4S

 
1 +

s
1 +

8S2

�0

!
:

Substituting the expressions for �2 and u2 into (B.1) then gives a formula for S,

which may be written as

S � �0

4S

 
1 +

s
1 +

8S2

�0

!
+

 
2

s
1 +

8S2

�0
� 2

!1=2q
�0 � 2

q
�1 = 0: (B.2)
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Once S has been calculated the exact solution is given by

� = �1

u = 0

9=
; x � �p�0 t0

� =
1

9

�
2
q
�1 � x

t0

�2

u =
2

3

�q
�1 +

x

t0

�

9>>>>>=
>>>>>;

�p�1t0 < x � (u2 �
p
�2)t0

� = �2

u = u2

9=
; (u2 �

p
�2)t0 < x � St0

� = �0

u = 0

9=
; St0 < x

where t0 is the evaluation time.

One possible way to obtain a value of S from Equation (B.2) is to use an iterative

procedure such as the Newton-Raphson method, whereby subsequent iterations

are given by

Sk+1 = Sk � F (Sk)

F 0(Sk)
;

where the function F (S) is de�ne as

F (S) = S � �0

4S
(1 + d) + (2�0d � 2)1=2 � 2

q
�1 = 0

if d =

s
1 +

8S2

�0
, and the derivative is

F 0(s) = 1 +
�0

4S2
(1 + d) � 2

d
+
8S

d

1

(2�0(d � 1))
1=2
:

The procedure is repeated until two successive iterations produce the same value

of S to within some tolerance.



Appendix C

Irregular grid generation

Consider an irregular grid of the form shown in Figure C.1 , whereby for a par-

ticular cell i, the cell centre is denoted by xi and the corresponding interfaces are

xi�1=2 and xi+1=2.

The position of the interface between cells i� 1 and i, is then de�ned by

xi�1=2 =
1

2
(xi�1 + xi) ;

and the corresponding right hand interface for cell i is

xi+1=2 =
1

2
(xi + xi+1) :

If the cell length is de�ned as the distance between the cell interfaces, then

�xi = xi+1=2 � xi�1=2 =
1

2
(xi+1 � xi�1) :

x x
x x i+1/2

x

x

x

i-1

i-1/2

i+1i

i

i∆

∆

2

Figure C.1: An irregular grid.
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C.1 Construction of irregular grid A

Consider the situation of an irregular grid which is symmetric about the centre of

the reach being modelled. Considering only the �rst half of the grid, then let the

innermost cells be of a �xed length d, and those at the outer region (upstream

boundary) be of length nd, where n is an integer. These two regions are then

connected through a series of cells whose length varies uniformly by a factor f .

Let there be a cells of length nd, b cells of varying length and c cells of length d

(not including the central cell). The grid is constructed such that it is symmetric

about the centre most cell which is of length d. It is assumed that the total

number of cells (numcell) is odd, and that the cell centres of the �rst and last

cells correspond to the up and downstream boundary positions.

Following this approach it is possible to build an irregular grid by calculating the

positions of the cell centres. The interface coordinates x3=2; x5=2; :::; xnumcell�1=2
are then found from the cell centre positions and the corresponding cell lengths

can be calculated.

From the position of the �rst cell centre (the upstream boundary), the position

of the next cell centre is given by

x2 = x1 + nd:

The next centre will then be given by

x3 = x2 + nd

and so

xm = xm�1 + nd: (C.1)

In total this relationship is applied a times, such that the �nal position to be

found from the formula is xa+1. The distance between adjacent cells centres then

begins to contract by the factor f . The position of cell centre xa+2 is given by

xa+2 = xa+1 + f b�1d;

followed by

xa+3 = xa+2 + f b�2d;

such that

xa+m = xa+m�1 + f b�m�1: (C.2)
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a cells b cells c cells 

(c+1)d(f +f )d
2

(an)d

2 3 4 5 6 8 91 7

Figure C.2: Irregular grid A.

This series progresses up until the (a+ b)th cell for which

xa+b = xa+b�1 + fd:

The following positions, i.e. xa+b+1 up to xa+b+c, are then all a distance d apart,

and the (a+ b+ c+1)th cell is then the central cell of the reach. These positions

are calculated from

xi+1 = xi + d: (C.3)

This mirror image of this process is then applied to de�ne the cells from the central

region to the downstream boundary.

This procedure is illustrated in Figure C.2 which shows the upstream portion of

the grid, in the case where a = 2, b = 3 and c = 4. The total number of grid cells

is numcell=2(a+ b+ c) + 1=19 and the factor f has a value of 2.

In terms of calculating the various parameters, within the algorithm, the relation-

ship (C.1) is applied a times, (C.2) is used b� 1 = b0 times, and (C.3) is applied

c times. From this, the cell lengths and the reach length are related by

length

2
= d

0
@na+ b

0X
k=1

fk + c0

1
A ; (C.4)

where c0 = c+ 1. The summation is fact a geometric series for which

b
0X

k=1

fk =
f(1 � f b

0

)

1� f

and f , n and b are connected through the relationship

f b
0

= n

such that given n and b, then f maybe calculated from

f = n1=b
0

:
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If the grid is speci�ed by the number of cells, numcell, and the factor n, then it

remains to determine a, b, c and d from (C.4) and the relationship

a+ b+ c =
numcell� 1

2
:

As there are four unknowns, and two equations, two of the values must be speci�ed.

If b is chosen, and a and c are connected through

c = (n� 1)a;

then the system is completely speci�ed from which

a =
1

n

 
numcell� 1

2
� b

!
; (C.5)

c = (n� 1)a;

d =
length

2
�
na0 +

P
b0

k=1 f
k + c0

� :
Due to the fact that a, b and c are integer values, numcell and b must be chosen

so that equation (C.5) is satis�ed. This is ensured if numcell is odd and selected

to be an integer multiple of n, and by de�ning b to also be a multiple of n, such

as by a relationship like

b = int
numcell

scaling factor
� n:

This information then enables the grid positions to be calculated.

This construction permits certain information to be obtained about the properties

of the grid. For instance, it is possible to determine the number of cells whose

length is greater that say twice the value of d. From Figure C.2, it can be seen

that going from right to left, the length of the �rst stretched cell l1 is given by

l1 =
1

2
(f0d + f1d);

and for the second

l2 =
1

2
(f1d + f2d) etc.

such that

lj =
1

2
(f j�1d + f jd):

From this it is then possible to determine the value of j which corresponds to a

cell length greater than 2d, from

lj > 2d
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l=3

(l+1)d nd(f +f)dnd
2 2

(f+f  )d

Figure C.3: Irregular grid B.

i.e.
1

2
(f j�1 + f j) > 2

f j�1 + f j > 4

f j�1(1 + f) > 4

f j�1 >
4

1 + f
:

Taking logs then gives

log(f j�1) > log

 
4

1 + f

!

(j � 1) log(f) > log

 
4

1 + f

!

and so

j >
log(4=(1 + f))

log(f)
+ 1: (C.6)

The total number of cells on the grid which have a length greater than 2d is then

2(a+ (b� (j � 1)).

C.2 Construction of irregular grid B

The strategy presented may be further simpli�ed by removing the choice of the

number of outer cells of width nd i.e. a, and the number of variable width cells,

b. Following a similar procedure, consider an irregular symmetric grid which has

numcell cells. Let there be l central cells of width d, and the outermost cells at the

boundaries are of width nd. The intermediate cells vary by a continuous factor

f in width. If both numcell and l are chosen to be odd values, then a grid will

appear similar to Figure C.3.

From this construction, there will be a total number numcell� l � 2 of variable

width cells. In terms of calculating the positions of the cell centres, this translates
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to there being 2k cells whose centres are positioned at varying lengths, where

2k = numcell� l � 4

and

fk�1d = nd:

In this case the total length is then

length =

 
2n+ 2

k�1X
i=1

f i + l + 1

!
d

such that

d =
length

2
�
n + f(1�fk)

1�f
+ l+1

2

�
:

As before, it is possible to �nd the number of cells of length 2d or more by applying

(C.6) which is found to be numcell� l� 2(j � 1):



Appendix D

Run time and ux count data

The following Appendix presents tables containing the measured run time and

ux count data for the test cases considered in Chapter 6.
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S1 1 1.424 679360 1.442 -1.26 685123 -0.85 1 1.671 -17.35 677152 0.33
2 1.477 704320 1.603 -8.53 702427 0.27 1 1.723 -16.66 700214 0.58
4 2.190 1046240 2.171 0.87 857548 18.04 2 2.225 -1.60 864175 17.40
8 3.391 1622560 3.084 9.05 1006994 37.94 3 2.765 18.46 1055743 34.93
16 5.443 2607840 4.518 16.99 1309886 49.77 3 3.677 32.45 1399209 46.35
32 9.005 4319680 7.009 22.17 1860207 56.94 3 5.347 40.62 1994032 53.84
64 15.28 7337120 11.33 25.85 2769639 62.25 3 8.760 42.67 3037868 58.60
128 26.47 12724480 18.78 29.05 4234467 66.72 3 13.37 49.49 4840618 61.96

1 1.165 678720 1.184 -1.63 684511 -0.85 1 1.412 -21.20 676570 0.32
2 1.209 704320 1.345 -11.25 705639 -0.19 1 1.449 -19.85 700315 0.57
4 1.792 1045600 1.822 -1.67 842636 19.41 2 1.881 -4.97 860935 17.66
8 2.772 1620800 2.631 5.09 1030873 36.40 2 2.340 15.58 1052790 35.05
16 4.446 2603840 3.910 12.06 1333548 48.79 3 3.108 30.09 1395140 46.42
32 7.350 4310880 6.120 16.73 1874322 56.52 3 4.535 38.30 1986883 53.91
64 12.46 7318720 9.953 20.12 2826385 61.38 4 6.647 46.65 2910229 60.24
128 21.58 12686400 16.61 23.03 4180629 67.05 3 11.41 47.13 4826376 61.96

1 1.833 697820 1.854 -1.15 691158 0.95 1 2.123 -15.82 695626 0.31
2 1.898 722256 2.167 -14.17 711701 1.46 1 2.274 -19.81 714059 1.13
4 2.817 1072724 2.861 -1.56 888688 17.16 1 2.908 -3.23 884429 17.55
8 4.364 1663452 4.034 7.56 1045753 37.13 2 3.673 15.83 1076922 35.26
16 7.012 2673200 5.862 16.40 1437722 46.22 3 4.945 29.48 1424475 46.71
32 11.61 4427344 9.001 22.47 2081536 52.98 3 7.131 38.58 2029572 54.16
64 19.68 7518252 14.19 27.90 3086498 58.95 3 10.99 44.16 3103275 58.72
128 34.20 13035048 22.96 32.87 4712482 63.85 2 20.47 40.15 5787442 55.60
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S2 1 6.610 3231592 6.704 -1.42 3251663 -0.62 1 7.844 -18.67 3231592 0.00
2 8.930 4389987 9.183 -2.83 4077700 7.11 1 9.900 -10.86 3970104 9.56
4 13.43 6567673 12.65 5.81 4726208 37.91 2 12.56 6.48 4946217 24.69
8 20.88 10211103 18.19 12.88 5978343 41.45 3 16.20 22.41 6303111 38.27
16 33.60 16429084 27.62 17.80 8125196 50.54 4 22.10 34.23 8524573 48.11
32 55.68 27224778 47.71 14.31 11446829 57.95 5 31.70 43.07 12104170 55.54
64 94.58 46248538 69.23 26.80 16894541 63.47 5 48.01 49.24 18051001 60.97
128 164.0 80200218 114.9 29.94 25916129 67.69 5 75.40 54.02 27926776 65.18

1 5.383 3231753 5.475 -1.71 3251825 -0.62 1 6.617 -22.92 3231753 0.00
2 7.320 4395139 7.631 -4.25 4110095 6.49 1 8.353 -14.11 3974415 9.57
4 10.95 6572825 10.65 2.74 4723538 28.14 2 10.57 3.47 4932490 24.96
8 17.01 10216094 15.56 8.52 5926806 41.99 3 13.67 19.64 6306438 38.27
16 27.36 16434075 23.83 12.90 8041678 51.07 4 18.64 31.87 8515534 48.18
32 45.34 27229286 37.28 17.78 11641034 57.25 5 26.80 40.89 12106321 55.54
64 77.01 46252402 60.84 21.00 16979938 63.29 5 40.70 47.15 18052532 60.97
128 133.5 80202955 101.7 23.82 26165925 67.38 5 64.10 51.99 27927579 65.18

1 8.482 3293776 8.574 -1.08 3273531 0.61 1 9.910 -16.84 3295908 -0.06
2 11.56 4472608 12.13 -4.93 4052896 9.38 1 13.03 -12.72 4038675 9.70
4 17.31 6690872 16.54 4.45 4871563 27.19 2 16.82 2.83 5018530 24.99
8 26.91 10402356 23.75 11.74 6370402 38.76 3 21.96 18.39 6395023 38.52
16 43.29 16735708 35.96 16.93 8848538 47.13 4 30.08 30.52 8649506 48.32
32 71.67 27731744 55.11 23.11 12727692 54.10 3 44.17 38.37 12600541 54.56
64 121.9 47108180 86.82 28.78 18975118 59.72 3 68.00 44.22 19428857 58.76
128 211.3 81690204 140.5 33.51 29104890 64.37 3 110.4 47.75 31016872 62.03
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S3 1 2.262 1104299 2.293 -1.37 1111157 -0.62 1 2.684 -18.66 1104299 0.00
2 3.229 1576673 3.504 -8.52 1545389 1.98 1 3.809 -17.96 1556987 1.25
4 4.832 2359455 4.636 4.06 1773140 24.85 1 4.732 2.07 1822559 22.76
8 7.515 3670317 6.678 11.14 2194336 40.21 2 5.999 20.17 2295846 37.45
16 12.10 5908378 9.885 18.31 2901871 50.89 3 8.045 33.51 3062513 48.17
32 20.05 9796045 15.49 22.74 4213391 56.99 4 11.56 42.34 4382877 55.26
64 34.09 16651908 25.00 26.66 6085913 63.45 5 17.30 49.25 6503136 60.95
128 59.17 28907228 41.56 29.76 9356573 67.63 5 27.10 54.20 10031472 65.30

1 1.843 1104299 1.873 -1.63 1111157 -0.62 1 2.264 -22.84 1104299 0.00
2 2.630 1576673 2.893 -10.00 1547095 1.88 1 3.197 -21.56 1556870 1.26
4 3.935 2359455 3.893 1.07 1767528 25.09 1 4.015 -2.03 1817422 22.97
8 6.120 3670156 5.697 6.91 2194481 40.21 2 5.089 16.85 2295718 37.45
16 9.851 5908217 8.543 13.28 2916077 50.64 3 6.818 30.79 3062809 48.16
32 16.33 9795401 13.50 17.33 4192686 57.20 4 9.782 40.10 4379987 55.29
64 27.76 16650942 21.96 20.89 6224055 62.62 5 14.66 47.19 6502773 60.95
128 48.18 28905296 36.76 23.70 9503328 67.12 5 23.05 52.16 10031141 65.30

1 2.914 1126024 2.944 -1.03 1118997 0.62 1 3.403 -16.78 1126024 0.00
2 4.158 1606872 4.703 -13.11 1574382 2.02 1 5.040 -21.21 1581978 1.55
4 6.221 2404896 6.093 2.06 1786935 25.70 1 6.141 1.29 1859707 22.67
8 9.677 3741168 8.771 9.36 2307286 38.33 2 7.961 17.73 2347593 37.25
16 15.58 6022408 12.92 17.07 3215800 46.60 3 10.83 30.49 3141478 47.84
32 25.83 9985140 20.02 22.49 4613097 53.80 3 16.00 38.06 4609988 53.83
64 43.89 16971868 31.59 28.02 6997136 58.77 5 23.57 46.30 6714712 60.44
128 72.60 29463584 51.06 29.67 10559625 64.16 3 39.84 45.12 11316881 61.59
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S4 1 0.3904 189440 0.3952 -1.23 191806 -1.25 1 0.4632 -18.65 189440 0.00
2 0.5220 253600 0.6083 -16.53 256113 -0.99 1 0.6183 -18.45 252790 0.32
4 0.7805 379680 0.7319 6.23 288488 24.02 2 0.7704 1.29 296870 21.81
8 1.214 590880 1.066 12.19 354860 39.94 3 0.9803 19.25 374795 36.57
16 1.952 951200 1.607 17.67 470699 50.52 4 1.320 32.38 503004 47.12
32 3.235 1576800 2.516 22.23 670265 57.49 4 1.881 41.85 712902 54.79
64 5.496 2679520 4.051 26.29 988315 63.12 5 2.805 48.96 1053839 60.67
128 9.531 4647680 6.711 29.59 1513623 67.43 5 4.390 53.94 1626728 65.00

1 0.3184 189440 0.3232 -1.51 207682 -9.63 1 0.3913 -22.90 189440 0.00
2 0.4254 253440 0.5017 -17.94 256758 -1.31 1 0.5217 -22.64 252651 0.31
4 0.6360 379520 0.6146 3.36 308158 18.80 2 0.6559 -3.13 297811 21.53
8 0.9884 590560 0.9100 7.93 356475 39.64 3 0.8311 15.91 374592 36.57
16 1.590 950560 1.385 12.89 473309 50.21 4 1.114 29.94 500609 47.34
32 2.634 1575520 2.190 16.86 674697 57.18 4 1.592 39.56 712261 54.79
64 4.473 2676960 3.555 20.52 996594 62.77 5 2.376 46.88 1052914 60.67
128 7.756 4642560 5.931 23.53 1528499 67.08 5 3.733 51.87 1624899 65.00

1 0.5037 194176 0.5085 -0.95 208968 -7.62 1 0.5881 -16.76 194176 0.00
2 0.6738 259940 0.8184 -21.46 257696 0.86 1 0.7881 -16.96 258959 0.38
4 1.008 389172 0.9470 6.05 295098 24.17 1 1.004 0.40 304171 21.84
8 4.566 605324 1.390 69.56 381589 36.96 2 1.303 71.46 383892 36.58
16 2.520 974324 2.085 17.26 532910 45.30 3 1.772 29.68 513984 47.25
32 4.175 1614908 3.266 21.77 768869 52.39 4 2.552 38.87 733220 54.60
64 7.092 2743720 5.120 27.81 1127130 58.92 5 3.818 46.16 1087421 60.37
128 12.30 4758296 8.254 32.89 1721519 63.82 5 5.959 51.55 1684710 64.59
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S5 1 0.7197 353395 0.7305 -1.50 355450 -0.58 1 0.8545 -18.73 353275 0.03
2 0.9732 478170 1.071 -10.05 478949 -0.16 1 1.158 -18.99 476076 0.44
4 1.455 715484 1.413 2.89 552810 22.74 1 1.441 0.96 558117 21.99
8 2.263 1113154 2.023 10.61 687996 38.19 2 1.830 19.13 701825 36.95
16 3.641 1761930 2.977 18.24 892462 49.35 3 2.457 32.52 937507 46.79
32 6.035 2970450 4.636 23.18 1271691 57.19 4 3.492 42.14 1323562 55.44
64 10.25 5047350 7.483 27.00 1859702 63.15 5 5.249 48.79 1974137 60.89
128 17.78 8754697 12.42 30.15 2841871 67.54 5 8.224 53.75 3046890 65.20

1 0.5857 353356 0.5965 -1.84 355613 -0.64 1 0.7206 -23.03 353442 -0.02
2 0.7918 478331 0.8827 -11.48 473485 1.01 1 0.9712 -22.66 476205 0.44
4 1.184 715645 1.185 -0.08 557384 22.11 1 1.224 -3.38 558289 21.99
8 1.840 1113315 1.723 6.36 680719 38.86 2 1.552 15.65 702020 36.94
16 2.961 1792252 2.569 13.24 916638 48.86 3 2.082 29.69 937758 47.68
32 4.907 2971094 4.034 17.79 1292159 56.51 4 2.959 39.70 1323834 55.44
64 8.337 5048799 6.567 21.23 1848888 63.38 5 4.450 46.62 1974709 60.89
128 14.46 8757756 10.97 24.14 2853145 67.42 5 6.993 51.64 3048001 65.20

1 0.9286 360144 0.9394 -1.16 357811 0.65 1 1.085 -16.84 360019 0.03
2 1.256 487244 1.443 -14.89 482257 1.02 1 1.535 -22.21 482253 1.02
4 1.878 729144 1.865 0.69 554119 24.00 1 1.873 0.27 567269 22.20
8 2.920 1134060 2.661 8.87 698291 38.43 2 2.428 16.85 712469 37.18
16 4.698 1825156 3.886 17.28 965930 47.08 3 3.303 29.69 951673 47.86
32 7.785 3025308 5.989 23.07 1393474 53.94 4 4.728 39.27 1344798 55.55
64 13.23 5140580 9.451 28.56 2065216 59.83 5 7.132 46.09 2008203 60.93
128 22.94 8916024 15.22 33.65 3154242 64.62 5 11.13 51.48 3106055 65.16
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S6 1 0.3822 176800 0.3867 -1.18 179008 -1.25 1 0.4555 -19.18 176800 0.00
2 0.5281 244640 0.5828 -10.36 246873 -0.91 1 0.6320 -19.67 244623 0.01
4 0.7878 365440 0.7691 2.37 276682 24.29 1 0.7815 0.80 285710 21.82
8 1.224 568160 1.108 9.48 351594 38.12 2 0.9941 18.78 360625 36.53
16 1.967 913760 1.631 17.08 456638 50.03 3 1.334 32.18 480914 47.37
32 3.255 1512960 2.548 21.72 638795 57.78 4 1.902 41.57 681729 54.94
64 5.522 2567200 4.124 25.32 941868 63.31 5 2.846 48.46 1012718 60.55
128 9.559 4444960 6.862 28.21 1445057 67.49 5 4.442 53.53 1558186 64.94

1 0.3124 175360 0.3169 -1.44 178360 -1.71 1 0.3852 -23.30 175360 0.00
2 0.4272 240160 0.4850 -13.53 244869 -1.96 1 0.5266 -23.27 240004 0.06
4 0.6365 358400 0.6131 3.68 276265 22.92 1 0.6580 -3.38 280637 21.70
8 0.9871 556480 0.9137 7.44 352756 36.61 2 0.8323 15.68 352620 36.63
16 1.585 894080 1.389 12.37 458347 48.74 3 1.117 29.53 470800 47.34
32 2.621 1479520 2.199 16.10 641631 56.63 4 1.592 39.26 667181 54.91
64 4.446 2510400 3.574 19.61 952172 62.07 5 2.384 46.38 990784 60.53
128 7.701 4349600 5.992 22.19 1469130 66.22 5 3.733 51.53 1526175 64.91

1 0.4849 180072 0.4893 -0.91 179791 0.16 1 0.5684 -17.22 180072 0.00
2 0.6666 247804 0.7747 -16.22 247720 0.03 1 0.7824 -17.37 247764 0.02
4 0.9942 369984 0.9353 5.92 297243 19.66 1 0.9947 -0.05 289752 21.69
8 1.543 574492 1.377 10.76 379599 33.92 2 1.287 16.59 364427 36.57
16 2.476 922500 2.067 16.52 512883 44.40 3 1.745 29.52 485935 47.32
32 4.092 1525200 3.209 21.58 734553 51.84 4 2.505 38.78 689868 54.77
64 6.912 2576768 5.055 26.87 1095166 57.50 5 3.752 45.72 1025233 60.21
128 11.96 4458668 8.154 31.82 1663170 62.70 5 5.830 51.25 1581675 64.53
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S7 1 0.9062 420160 0.9181 -1.31 425410 -1.25 1 1.080 -19.18 420160 0.00
2 1.286 596640 1.349 -4.90 570706 4.35 1 1.470 -14.31 563149 5.61
4 1.925 893440 1.821 5.40 636386 28.77 2 1.793 6.86 664103 25.67
8 2.993 1389920 2.632 12.06 805244 42.07 3 2.336 21.95 859911 38.13
16 4.816 2237120 4.011 16.72 1089584 51.30 4 3.194 33.68 1162924 48.02
32 7.981 3708000 6.253 21.65 1555873 58.04 4 4.623 42.07 1658962 55.26
64 13.56 6300160 10.13 25.29 2308480 63.36 5 6.938 48.83 2468494 60.82
128 23.51 10926400 16.89 28.16 3545447 67.55 5 10.88 53.72 3814586 65.09

1 0.7467 420320 0.759 -1.62 425734 -1.29 1 0.9211 -23.36 420320 0.00
2 1.060 597120 1.129 -6.51 568138 4.85 1 1.249 -17.83 563432 5.64
4 1.586 894240 1.550 2.27 640256 28.40 2 1.530 3.53 664965 25.64
8 2.467 1391360 2.275 7.78 802010 42.36 3 1.992 19.25 860366 38.16
16 3.970 2239840 3.498 11.89 1098863 50.94 4 2.728 31.28 1164501 48.01
32 6.581 3713280 5.509 16.29 1566016 57.83 4 3.960 39.83 1661581 55.25
64 11.18 6310400 9.005 19.45 2325609 63.15 5 5.948 46.80 2472750 60.81
128 19.40 10946720 15.09 22.22 3578167 67.31 5 9.349 51.81 3821832 65.09

1 1.159 430992 1.171 -1.04 428529 0.57 1 1.359 -17.26 430992 0.00
2 1.645 611884 1.780 -8.21 568020 7.17 1 1.922 -16.84 574603 6.09
4 2.462 916104 2.357 4.26 649325 29.12 2 2.374 3.57 678522 25.93
8 3.830 1425160 3.339 12.82 870094 38.95 2 3.118 18.59 879731 38.27
16 6.165 2293868 5.144 16.56 1218059 46.90 3 4.284 30.51 1187750 48.22
32 10.22 3802176 7.989 21.83 1720541 54.75 4 6.188 39.45 1692330 55.49
64 17.36 6460452 12.56 27.65 2558560 60.40 5 9.316 46.34 2517681 61.03
128 30.11 11204972 20.38 32.31 3914549 65.06 5 14.55 51.68 3895084 65.24
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U1 1 0.02141 13120 0.02274 -6.21 9666 26.33 2 0.02164 -1.07 10390 20.81
2 0.02653 16480 0.02729 -2.86 10949 33.56 2 0.02563 3.39 12158 26.23
4 0.03874 24640 0.03829 1.16 14734 40.20 2 0.03456 10.79 16390 33.48
8 0.05838 37760 0.05533 5.22 19679 47.88 3 0.04521 22.56 21750 42.40
16 0.09333 61120 0.08486 9.08 27714 54.66 2 0.07086 24.08 32770 46.38
32 0.1529 100960 0.1342 12.23 40537 59.85 2 0.1096 28.32 50127 50.35
64 0.2580 171200 0.2204 14.57 61809 63.90 3 0.1518 41.16 70354 58.91
128 0.4450 296160 0.3694 16.99 95521 67.75 3 0.2459 44.74 112606 61.98

1 0.03479 13776 0.03687 -5.98 9998 27.42 2 0.03604 -3.59 10926 20.69
2 0.04320 17220 0.04372 -1.20 11615 32.55 2 0.04136 4.26 12437 27.78
4 0.06264 25256 0.06024 3.83 15632 38.11 2 0.05562 11.21 16720 33.80
8 0.09561 38868 0.08661 9.41 21522 44.63 2 0.07701 19.45 23059 40.67
16 0.1533 62648 0.1284 16.24 29982 52.14 2 0.1126 26.55 33531 46.48
32 0.2527 103648 0.1986 21.41 44144 57.41 2 0.1731 31.50 51360 50.45
64 0.4276 175644 0.3181 25.61 67228 61.72 2 0.2774 35.13 82019 53.30
128 0.7401 304226 0.5232 29.31 105180 65.43 3 0.3975 46.29 115557 62.02
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U2 1 0.02039 13122 0.02080 -2.01 9102 30.64 2 0.01988 2.50 9552 27.21
2 0.02738 17982 0.02641 3.54 11006 38.79 2 0.02416 11.76 11313 37.09
4 0.03889 26082 0.03636 6.51 13840 46.94 2 0.03225 17.07 15117 42.04
8 0.05661 38556 0.05139 9.22 18392 52.30 2 0.04486 20.76 21096 45.28
16 0.08562 58968 0.07556 11.75 24592 58.30 2 0.06467 24.47 30291 48.63
32 0.1335 92664 0.1145 14.23 36381 60.74 2 0.09669 27.57 44966 51.47
64 0.2180 152118 0.1821 16.47 52835 65.27 2 0.1518 30.37 70228 53.83
128 0.3637 254664 0.2973 18.26 82375 67.65 2 0.2456 32.47 112775 55.72

1 0.03391 13776 0.03840 -13.24 9443 31.45 2 0.03287 3.07 9987 27.50
2 0.04518 18532 0.04207 6.88 12087 34.78 2 0.03904 13.59 11694 36.90
4 0.06491 26896 0.05761 11.25 15076 43.95 2 0.05223 19.53 15685 41.68
8 0.09514 39688 0.08090 14.97 20475 48.41 2 0.07267 23.62 21853 44.94
16 0.1452 60844 0.1170 19.42 28340 53.42 2 0.1045 28.03 31354 48.47
32 0.2280 95776 0.1739 23.73 39223 59.05 2 0.1554 31.84 46501 51.45
64 0.3753 157932 0.2736 27.10 59316 62.44 2 0.2447 34.80 73117 53.70
128 0.6333 266664 0.4381 30.82 90575 66.03 2 0.3961 37.45 118108 55.71
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U3 1 0.04141 25760 0.04012 3.12 19014 26.19 1 0.04351 -5.07 19203 25.45
2 0.04620 28819 0.04738 -2.55 23371 18.90 2 0.04920 -6.49 22958 20.34
4 0.05884 37030 0.06050 -2.82 27896 24.67 3 0.05768 1.97 27227 26.47
8 0.08364 53130 0.08229 1.61 34156 35.71 3 0.07223 13.64 33514 36.92
16 0.1305 83559 0.1219 6.59 43973 47.37 3 0.09811 24.82 44782 46.41
32 0.2123 136689 0.1903 10.36 61626 54.92 3 0.1420 33.11 63700 53.40
64 0.3551 229425 0.3059 13.86 87931 61.67 3 0.2163 39.09 95553 58.35
128 0.6239 403949 0.5191 16.80 133882 66.86 3 0.3517 43.63 153161 62.08

1 0.06612 26240 0.06139 7.15 19219 26.76 1 0.06534 1.18 19564 25.44
2 0.07444 29520 0.07549 -1.41 24566 16.78 2 0.07854 -5.51 23451 20.56
4 0.09527 37884 0.09723 -2.06 28432 24.95 2 0.09471 0.59 28148 25.70
8 0.1360 54284 0.1297 4.63 35667 34.30 3 0.1184 12.94 34560 36.33
16 0.2128 85280 0.1873 11.98 46057 45.99 3 0.1588 25.38 45868 46.21
32 0.3470 139400 0.2840 18.16 66367 52.39 3 0.2289 34.03 65831 52.78
64 0.5802 233372 0.4417 23.87 96259 58.75 3 0.3437 40.76 98275 57.89
128 1.017 409508 0.7304 28.18 149326 63.54 3 0.5557 45.36 158217 61.36
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U4 1 0.05456 26244 0.05344 2.05 21864 16.69 1 0.05698 -4.44 21973 16.27
2 0.06768 32724 0.06830 -0.92 28743 12.17 2 0.07128 -5.32 28094 14.15
4 0.09342 45522 0.08993 3.74 34034 25.24 3 0.08586 8.09 33561 26.28
8 0.1413 69336 0.1240 12.24 41179 40.61 4 0.1099 22.22 42419 38.82
16 0.2228 109836 0.1824 18.13 55259 49.69 3 0.1520 31.78 57431 47.71
32 0.3669 181440 0.2814 23.30 76907 57.61 4 0.2153 41.32 81073 55.32
64 0.6244 309420 0.4534 27.39 112278 63.71 4 0.3266 47.69 121436 60.75
128 1.082 536868 0.7510 30.59 171938 67.97 5 0.5018 53.62 185444 65.46

1 0.04459 26244 0.04471 -0.27 21864 16.69 1 0.04843 -8.61 21995 16.19
2 0.05524 32724 0.05714 -3.44 28523 12.84 2 0.05986 -8.36 27967 14.54
4 0.07613 45522 0.07596 0.22 33744 25.87 3 0.07242 4.87 33569 26.26
8 0.1150 69336 0.1061 7.74 41967 39.47 4 0.09297 19.16 42408 38.84
16 0.1813 109998 0.1574 13.18 54857 50.13 3 0.1288 28.96 57348 47.86
32 0.2982 181602 0.2451 17.81 77016 57.59 4 0.1827 38.73 81134 55.32
64 0.5073 309744 0.3978 21.58 114526 63.03 4 0.2777 45.26 121522 60.77
128 0.8790 537516 0.6632 24.55 171986 68.00 5 0.4264 51.49 185419 65.50

1 0.06932 26568 0.06933 -0.01 22130 16.70 1 0.07363 -6.22 22279 16.14
2 0.08663 33292 0.09061 -4.59 29193 12.31 1 0.09469 -9.30 28872 13.28
4 0.11980 46248 0.1203 -0.42 34556 25.28 2 0.1161 3.09 34443 25.53
8 0.1813 70356 0.1650 8.99 43621 38.00 3 0.1494 17.60 43466 38.22
16 0.2870 111684 0.2401 16.34 59213 46.98 3 0.2094 27.04 59021 47.15
32 0.4709 183680 0.3648 22.53 85650 53.37 3 0.2968 36.97 85231 53.60
64 0.7993 312420 0.5773 27.77 128760 58.79 3 0.4582 42.67 130912 58.10
128 1.384 541200 0.9372 32.28 194551 64.05 4 0.6932 49.91 196096 63.77
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Table D.12: Results table for U5.
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Table D.13: Results table for U6.


