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Abstract

This thesis is structured as follows.

In Chapter 1, we provide background material about the concepts and

techniques which are used in this thesis.

In Chapter 2, we prove results which provide two new criteria for normal

families of meromorphic functions, and which extend a recent result of

Bergweiler and Langley.

In Chapter 3, we extend a theorem of Bergweiler and Langley, and provide

a result regarding the growth of a particular type of meromorphic function

in an unbounded annulus.

In Chapter 4, we extend two value distribution theorems of Langley and

Zheng.

In Chapter 5, we prove normal families and value distribution results in

connection with composite functions.
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Chapter 1

Background material

This chapter is a reference chapter for the concepts and techniques used in

this thesis. We provide subsections on each topic that arises, although we

emphasise that these are restricted to what is necessary for this thesis, and

therefore we provide references for further reading. For brevity, we omit

most proofs, and all unattributed results are standard.

1.1 Analytic and meromorphic functions

Let Ω be a domain in C. A function f is complex differentiable at a point

a ∈ Ω if there is a complex number f ′(a) such that

f ′(a) = lim
z→a

f(z)− f(a)

z − a
= lim

h→0

f(a+ h)− f(a)

h
.

A function f is analytic on Ω if at any point a ∈ Ω, f is complex differ-

entiable on an open set which contains a. A function f is entire if f is

analytic in C.
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Let f be an analytic function on Ω and let a ∈ Ω. Then f has a zero of

multiplicity m ≥ 1 at a, if f(a) = 0 and if there is an analytic function g

on Ω such that f(z) = (z − a)mg(z), where g(a) 6= 0. If m = 1, then a is a

simple zero of f .

We define log+ x as follows

log+ x =

 log x if x ≥ 1,

0 if 0 < x < 1.

= max{0, log x}.

For an entire function f , we define the order of f , denoted ρ(f), by

ρ(f) = lim sup
r→∞

log+ log+M(r, f)

log r
(1.1)

where M(r, f) = max{|f(z)| : |z| = r}.

Theorem 1.1.1 (Pólya, [33]). Suppose that f and g are entire functions

and that f ◦ g has finite order, ρ(f ◦ g) < ∞. Then either f has zero

order, or g is a polynomial. Hence, if f and g are entire functions such

that ρ(f) > 0 and g is a transcendental function, then f ◦ g has infinite

order, ρ(f ◦ g) = ∞.

The following results from function theory use some of the ideas in this

section and provide results which are useful in later chapters. We provide

proofs for completeness.

Theorem 1.1.2. Let f be an entire function of finite order ρ(f) = ρ <∞.

Let g be a polynomial of degree d. Then the order of f ◦ g is at most dρ,

that is, ρ(f ◦ g) ≤ dρ.
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Proof The result is obvious if g is constant, so assume that g is noncon-

stant. Let σ > ρ. Then since ρ(f) = ρ, we have that for w large,

log+ |f(w)| < |w|σ. (1.2)

For z large, since g is a polynomial of degree d we have that |g(z)| ≤ c0|z|d,

for some positive constant c0. Then, by (1.2), we have that

log+ |f(g(z))| < |g(z)|σ < (c0|z|d)σ = c1r
dσ,

where r = |z| and c1 is a positive constant. Then we have that

ρ(f ◦ g) = lim sup
r→∞

log+ log+M(r, f ◦ g)
log r

≤ lim sup
r→∞

log+ c1r
dσ

log r

≤ lim sup
r→∞

log+ c1 + dσ log+ r

log r

= dσ.

Theorem 1.1.3. Let f be an entire function with ρ(f) < ∞. Suppose f

has m zeros in C, counting multiplicities, for some m ∈ N∪ {0}. Then we

can write

f(z) = P1(z)e
P2(z)

where P1 and P2 are polynomials of degree m and n respectively, with m as

above and n ∈ N ∪ {0}.

Proof If m = 0 then set P1(z) = 1. Otherwise, since f has m ≥ 1 zeros

on C, it is clear by factorisation that P1 is a polynomial of degree m, and

that f can be written as P1(z)e
P2(z) for some entire function P2. Then we
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have that for z large, |P1(z)| ≥ c|z|m for some positive constant c. And so,

for r large, we have that

log+M(r, f) = log+M(r, P1e
P2) = log+ max{|P1(z)e

P2(z)| : |z| = r}

= log+ max{|P1(z)||eP2(z)| : |z| = r}

≥ log+ max{c|z|m|eP2(z)| : |z| = r}

= log+(crmmax{|eP2(z)| : |z| = r})

= log+(crmM(r, eP2))

≥ log+M(r, eP2),

since c is a positive constant, m ≥ 1 and r is large. Then we have, whether

or not m = 0, that

ρ(f) = ρ(P1e
P2) = lim sup

r→∞

log+ log+M(r, P1e
P2)

log r
(1.3)

≥ lim sup
r→∞

log+ log+M(r, eP2)

log r

= ρ(eP2).

Suppose now that P2 is a transcendental function. Then since ρ(ez) = 1

we have, by Theorem 1.1.1, that ρ(eP2) = ∞ which, by (1.3), contradicts

the fact that ρ(f) <∞. Therefore P2 is a polynomial.

A function f has an isolated singularity at a point a if f is not defined at

a, but there is some s > 0 such that f is analytic in the punctured disc

{z : 0 < |z − a| < s}. Then f has Laurent expansion at a given by

f(z) =
∞∑

k=−∞

ak(z − a)k.

The function f has a removable singularity at a if all the coefficients of

negative powers are zero; f has a pole at a if all but finitely many of the
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coefficients of negative powers are 0; and f has an essential singularity at

a otherwise.

Thus, a function f has a pole at a if |f(z)| → ∞ as z → a. The residue of

f at a, denoted by Res(f, a), is a−1, the coefficient of the (z− a)−1 term in

the Laurent expansion of f .

A function f is meromorphic on Ω if given any point a ∈ Ω, f is either

analytic at a, or f has a pole at a. A function f is meromorphic at ∞ if

f(1/z) is meromorphic at 0.

Let f be a meromorphic function on Ω and let a ∈ Ω. Then f has a pole

of multiplicity m ≥ 1 at a if 1/f(z) has a zero of multiplicity m at a. If

m = 1, then a is a simple pole of f .

Let f be a meromorphic function and z0 ∈ C. If f(z0) 6= 0,∞ then an

analytic branch of log f(z) may be defined near z0, with derivative

d

dz
log f(z) =

f ′(z)

f(z)

and f ′(z)
f(z)

is called the logarithmic derivative of f . The branch log f(z) may

be continued along any path which avoids zeros and poles of f . Then if z0

and z are not zeros or poles of f , we have that

log f(z) = log f(z0) +

∫ z

z0

f ′(t)

f(t)
dt

for such a path. Since changing the path adds an integer multiple of 2πi,

by the Residue Theorem (Theorem 1.10.5), we get the following identity

f(z) = f(z0) exp

(∫ z

z0

f ′(t)

f(t)
dt

)
. (1.4)

We refer the reader to [1] for further reading.
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1.2 Elementary Nevanlinna theory

Let f be a meromorphic function in |z| ≤ r, for some r > 0. The Nevanlinna

characteristic T (r, f) is defined to be

T (r, f) = m(r, f) +N(r, f), (1.5)

where m(r, f) is the proximity function given by

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ, (1.6)

and N(r, f) is the integrated counting function given by

N(r, f) =

∫ r

0

(n(t, f)− n(0, f))
dt

t
+ n(0, f) log r, (1.7)

where n(r, f) denotes the number of poles of f in |z| ≤ r, counting multi-

plicities.

Theorem 1.2.1. If f is a rational function,

T (r, f) = O(log r) as r →∞,

that is, there exists M > 0 such that T (r, f) ≤M log r as r →∞.

Theorem 1.2.2. If f is transcendental and meromorphic in C, then

T (r, f)/ log r →∞ as r →∞.

Thus, log r = o(T (r, f)) as r →∞ since

log r

T (r, f)
→ 0 as r →∞.
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Theorem 1.2.3. Let f1, . . . , fk be meromorphic functions. Then

m(r,
k∑

j=1

fj(z)) ≤
k∑

j=0

m(r, fj(z)) + log k, (1.8)

m(r,
k∏

j=1

fj(z)) ≤
k∑

j=1

m(r, fj(z)), (1.9)

N(r,
k∑

j=1

fj(z)) ≤
k∑

j=1

N(r, fj(z)), (1.10)

N(r,
k∏

j=1

fj(z)) ≤
k∑

j=1

N(r, fj(z)), (1.11)

T (r,
k∑

j=1

fj(z)) ≤
k∑

j=1

T (r, fj(z)) + log k, (1.12)

T (r,
k∏

j=1

fj(z)) ≤
k∑

j=1

T (r, fj(z)). (1.13)

Theorem 1.2.4 (First fundamental theorem). Let f be meromorphic and

nonconstant in C and let a ∈ C. Then

T (r,
1

f − a
) = T (r, f) +O(1). (1.14)

We deduce that for a = 0,

T (r, 1/f) = T (r, f) +O(1). (1.15)

We use (n.e.) as an abbreviation for “nearly everywhere”, that is, to denote

the phrase “outside a set of finite measure”.

Lemma 1.2.5 (Lemma of the logarithmic derivative). Let f be meromor-

phic and nonconstant in the plane. Then there are positive constants c1

and c2 such that

m(r, f ′/f) ≤ c1 log r + c2 log T (r, f) = O(log rT (r, f)) (n.e.), (1.16)
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as r →∞.

Theorem 1.2.6. Let f be a meromorphic function. Then

T (r, f ′) ≤ T (r, f) +N(r, f) +O(log rT (r, f)) = O(T (r, f)) (n.e.).

(1.17)

Then using (1.13), (1.15) and (1.17),

T (r, f ′/f) ≤ T (r, f ′) + T (r, f) +O(1) = O(T (r, f)) (n.e.). (1.18)

Theorem 1.2.7. Let f be meromorphic and nonconstant on |z| ≤ R. If f

has no poles and 0 < r < R, then

T (R, f) ≤ log+M(R,F ), logM(r, f) ≤
(
R + r

R− r

)
T (R, f).

For a meromorphic function f on C, we define the order of f , ρ(f) to be

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
. (1.19)

We note that by Theorem 1.2.7, we have that T (r, f) and logM(r, f) are

comparable for entire functions. Then we note that for entire functions,

(1.1) and (1.19) are equivalent.

Theorem 1.2.8. If f is a nonconstant and meromorphic function in C,

then

ρ(f (k)) ≤ ρ(f).

For a meromorphic function f and a ∈ C, we define the deficiency of f at

a, δ(a, f) to be

δ(a, f) = lim inf
r→∞

m(r, 1
f−a

)

T (r, f)
,
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and,

δ(∞, f) = lim inf
r→∞

m(r, f)

T (r, f)
.

Finally, following the notation in [22], for f meromorphic in the plane, we

denote by S(r, f) any quantity satisfying

S(r, f) = O(log r + log+ T (r, f)) (1.20)

as r → ∞ outside a set of finite measure, not necessarily the same set at

each occurrence.

We refer the reader to [22] for further reading.

1.3 Nevanlinna theory on an annulus

For r ≥ 0, define an annulus A(r) by

A(r) = {z : r ≤ |z| <∞}. (1.21)

The previous subsection contains material concerning Nevanlinna theory

for functions meromorphic in the plane. This subsection provides a variant

of Nevanlinna theory for functions meromorphic in an annulus. A standard

reference for this variant of Nevanlinna theory is [7], but we outline the

necessary material here.

A point z0 is called a limit point of a set Ω if every neighbourhood of z0

intersects with Ω other than at the point z0 itself.

Let r0 > 0 and let f be a function meromorphic in the annulus A(r0). That

is, we say that a function f is meromorphic in A(r0) if f is meromorphic in
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a domain containing A(r0). Then the poles of f cannot have a limit point

in A(r0). Similarly, for f 6≡ 0, the zeros of f cannot have a limit point in

A(r0). We then have the following representation.

Theorem 1.3.1 (Valiron, [42]). Let r0 > 0 and let f be a nonconstant

meromorphic function in an annulus A(r0), as defined by (1.21). Then

there exist an integer m, a function F meromorphic in C, and a function

φ analytic and non-zero in A(r0) such that

φ(∞) = lim
z→∞

φ(z) = 1

and

f(z) = zmF (z)φ(z)

on A(r0). The zeros and poles of F on C are precisely the zeros and poles

of f on A(r0).

We then define for r ≥ r0,

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ

= m(r, F ) +O(log r).

Next we define

N(r, f) =

∫ r

r0

n(t, f)
dt

t
= N(r, F )

where n(t, f) is the number of poles of f in r0 ≤ |z| ≤ t, counting multi-

plicities.

We define T (r, f) as in (1.5), which gives

T (r, f) = m(r, f) +N(r, f)

= m(r, F ) +N(r, F ) +O(log r)

= T (r, F ) +O(log r). (1.22)
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Also, f(z) = zmF (z)φ(z) gives

f ′(z) = mzm−1F (z)φ(z) + zmF ′(z)φ(z) + zmF (z)φ′(z),

and so we have

f ′(z)

f(z)
=
m

z
+
F ′(z)

F (z)
+
φ′(z)

φ(z)
.

Then by (1.8), (1.16), (1.22) and Theorem 1.2.1, we have that

m(r, f ′/f) ≤ m(r,m/z) +m(r, F ′/F ) +m(r, φ′/φ) + log 3

≤ O(log r) +O(log rT (r, F )) (n.e.)

≤ O(log r + log+ T (r, F )) (n.e.)

≤ O(log r + log+ T (r, f)) (n.e.)

≤ O(log rT (r, f)) (n.e.)

which is the Lemma of the logarithmic derivative (Lemma 1.2.5).

Next, if T (r, f) = O(log r) as r → ∞ then T (r, F ) = O(log r), and so by

Theorem 1.2.1, F is a rational function, and thus limz→∞ f(z) exists.

Finally, we note also that results analogous to those in § 1.2 exist, and

in direct analogy with (1.20), for f meromorphic in A(r0), we denote by

S(r, f) any quantity satisfying

S(r, f) = O(log r + log+ T (r, f)) (1.23)

as r → ∞ outside a set of finite measure, not necessarily the same set at

each occurrence.

We refer the reader to [7] for further reading.
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1.4 The spherical metric

We note first that the spherical metric is also called the chordal metric.

Also, we use the convention C∗ = C∪{∞} to denote the extended complex

plane.

A sequence of functions (fn) converges (spherically) uniformly on compact

subsets of a domain Ω to a function f(z) if, for any compact subset K ⊆ Ω

and ε > 0, there exists a number n0 = n0(K, ε) such that n ≥ n0 implies

|fn(z)− f(z)| < ε, (χ(fn(z), f(z)) < ε) ,

for all z ∈ K.

Given z1, z2 ∈ C the spherical distance, or chordal distance χ(z1, z2) is

χ(z1, z2) =
|z1 − z2|√

1 + |z1|2
√

1 + |z2|2
.

If z2 = ∞, then

χ(z1,∞) =
1√

1 + |z1|2
.

Let f be meromorphic in a domain Ω. If z ∈ Ω is not a pole of f , then the

spherical derivative f#(z) of f at z is

f#(z) =
|f ′(z)|

1 + |f(z)|2
. (1.24)

If a is a pole of f , define

f#(a) = lim
z→a

|f ′(z)|
1 + |f(z)|2

.

We note that f#(z) = (1/f(z))# for all z ∈ C∗.



1.5 Normal families 14

Lemma 1.4.1 ([4]). Let f be a meromorphic function with bounded spher-

ical derivative, that is |f#(z)| ≤ M for some constant M . Then f is of

order at most 2, that is, ρ(f) ≤ 2. Thus, if f is a meromorphic function

with ρ(f) > 2, then f has unbounded spherical derivative.

We refer the reader to [37] for further reading.

1.5 Normal families

A family G of meromorphic (analytic) functions is a normal family on a

domain Ω, if every sequence of functions (fn) in G contains a subsequence

which converges uniformly on compact sub-regions either to a meromorphic

(analytic) limit or identically to ∞, with respect to the spherical metric.

We note that if {f ∈ G} is a normal family, then {1/f : f ∈ G} is a normal

family also.

Example 1.5.1. The family of functions {fn(z) = z
n

: n ∈ N} is a normal

family on C.

Example 1.5.2. The family of functions {fn(z) = nz : n ∈ N} is not

normal on any domain containing the origin. This is because fn(0) = 0,

whereas for z ∈ R+ we have that fn(z) = nz →∞ as n→∞.

The following result is by Pang and Zalcman, and we refer to it as the

Pang-Zalcman lemma.
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Lemma 1.5.3 (Pang-Zalcman lemma). Let G be a family of functions

meromorphic in the unit disc B(0, 1), all of whose zeros have multiplic-

ity at least k, and suppose that there exists A ≥ 1 such that |f (k)(z)| ≤ A

whenever f(z) = 0, f ∈ G. Then if G is not normal, there exist for each

−1 < α ≤ k,

(a) a number 0 < r < 1,

(b) points zn with |zn| < r,

(c) functions fn ∈ G, and

(d) positive numbers ρn → 0,

such that

gn(z) =
fn(zn + ρnz)

ρα
n

→ g(z)

locally uniformly with respect to the spherical metric, where g is a noncon-

stant meromorphic function on C such that g](z) ≤ g](0) = kA+ 1.

As a point of interest, we note that the Pang-Zalcman lemma encompasses

a previous result by Zalcman which is referred to as the Zalcman lemma,

and which can be seen as the case where G is not normal at 0 and where

zn → 0 with α = k = 0. We refer the reader to [30] and [31] for further

reading.

A family of functions G is locally bounded on a domain Ω if, for each z0 ∈

Ω, there is a positive number M = M(z0) and a neighbourhood U of z0

contained in Ω, such that |f(z)| ≤M for all z ∈ U and for all f ∈ G.
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Theorem 1.5.4 (Montel-Vitali theorem). If G is a locally bounded family

of analytic functions on a domain Ω, then G is a normal family in Ω.

Finally, we include the Bloch principle. We note that this is a heuristic

principle, and that counterexamples do exist, see [36]. However, we note

that the Bloch principle is true in most important known cases, and is a

useful tool for detecting criteria for normal families.

Bloch principle A family of meromorphic (analytic) functions which have

a common property P on a domain Ω will in general be a normal family if

P reduces a meromorphic (analytic) function in C to a constant.

We refer the reader to [30], [31] and [37] for further reading.

1.6 Wronskians

Let f1, . . . , fk be meromorphic functions. We define the Wronskian

W (f1, . . . , fk) as follows

W (f1, . . . , fk) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 . . . fk

f ′1 . . . f ′k
...

...

f
(k−1)
1 . . . f

(k−1)
k

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Following the notation in [25], we denote by Wj(f1, . . . , fk), for j =

0, . . . , k − 1, the determinant which is obtained from W (f1, . . . , fk) by re-

placing the row (f
(j)
1 , . . . , f

(j)
k ) by (f

(k)
1 , . . . , f

(k)
k ).
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Lemma 1.6.1. Let f1, . . . , fk be meromorphic functions on a domain Ω.

Then W (f1, . . . , fk) vanishes identically on Ω, if and only if f1, . . . , fk are

linearly dependent on Ω.

Lemma 1.6.2. Let f1, . . . , fk, g be meromorphic functions and c1, . . . , ck

be complex numbers. Then

(a) W (c1f1, . . . , ckfk) = c1 . . . ckW (f1, . . . , fk).

(b) W (f1, . . . , fk, 1) = (−1)kW (f ′1, . . . , f
′
k).

(c) W (gf1, . . . , gfk) = gkW (f1, . . . , fk).

(d) W (f1, . . . , fk) = fk
1W

((
f2

f1

)′
, . . . ,

(
fk

f1

)′)
.

For a function f and functions a0, . . . , ak−1 we define a homogeneous linear

differential operator L by

L(f) = f (k) + ak−1f
(k−1) + . . .+ a0f. (1.25)

The following lemma combines results from [17] and [25].

Lemma 1.6.3. Let k ≥ 1. Let a0, . . . , ak−1 be meromorphic functions in a

domain Ω. Let f1, . . . , fk be linearly independent meromorphic functions in

Ω that satisfy the homogeneous linear differential equation L(w) = 0, where

L is defined by (1.25). Then the aj can be written in the form

aj = −Wj(f1, . . . , fk)

W (f1, . . . , fk)
(1.26)

for j = 0, . . . , k − 1 and, in particular,

ak−1 = −W (f1, . . . , fk)
′

W (f1, . . . , fk)
. (1.27)
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The poles of aj in Ω have multiplicity at most k − j and can only arise

among the poles of f1, . . . , fk and the zeros of W (f1, . . . , fk). Furthermore,

if f is meromorphic in Ω then

W (f1, . . . , fk, f) = W (f1, . . . , fk)L(f). (1.28)

Thus we have that there is a link between the k linearly independent solu-

tions f1, . . . , fk of a differential equation

L(f) = f (k) + ak−1f
(k−1) + . . .+ a0f = 0

and the coefficients a0, . . . , ak−1 of that equation. Thus examination of the

aj leads to results about the fj. This approach was used in [19] by Frank

and Hellerstein.

We refer the reader to [25] for further reading.

1.7 Analytic continuation

Analytic continuation is where we extend a given analytic or meromorphic

function to a larger domain, or where we continue a function along a curve.

Here we use definitions and information from [14] to illustrate this method.

A function element is a pair (f,G) where G is a domain and f is an analytic

function in G. For a given function element (f,G) define the germ of f

at a, denoted [f ]a, to be the collection of all function elements (g,D) such

that a ∈ D and f(z) = g(z) for all z in a neighbourhood of a.

Let γ : [0, 1] → C be a path and suppose that for each t ∈ [0, 1] there is a

function element (ft, Dt) such that



1.7 Analytic continuation 19

(a) γ(t) ∈ Dt;

(b) for each t ∈ [0, 1] there is a δ > 0 such that |s − t| < δ implies

γ(s) ∈ Dt and [fs]γ(s) = [ft]γ(s).

Then we say that (f1, D1) is the analytic continuation of (f0, D0) along the

path γ, or that (f1, D1) is obtained from (f0, D0) by analytic continuation

along γ.

We note that (b) gives

fs(z) = ft(z)

on a neighbourhood of γ(s), whenever |s− t| < δ.

If γ : [0, 1] → C is a path from a to b and {(ft, Dt) : 0 ≤ t ≤ 1} is an analytic

continuation along γ, then the germ [f1]b is the analytic continuation of [f0]a

along γ.

If (f,G) is a function element then the complete analytic function obtained

from (f,G) is the collection C of all germs [g]b for which there is a point a

in G and a path γ from a to b such that [g]b is the analytic continuation of

[f ]a along γ.

A collection of germs C is called a complete analytic function if there is

a function element (f,G) such that C is the complete analytic function

obtained from (f,G).

Let (f,D) be a function element and let G be a domain which contains D.

Then (f,D) admits unrestricted analytic continuation in G if for any path

γ in G with initial point in D there is an analytic continuation of (f,D)

along γ.
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A curve γ : [a, b] → C is rectifiable if

sup

{
n∑

k=1

|γ(xk)− γ(xk+1)| : n ∈ N, a = x0 < x1 < . . . < xn = b

}
<∞.

If γ0, γ1 : [0, 1] → G are two rectifiable curves in G such that γ0(0) =

γ1(0) = a and γ0(1) = γ1(1) = b then γ0 and γ1 are fixed end point homo-

topic if there is a continuous map Γ : I2 → G such that

Γ(s, 0) = γ0(s) Γ(s, 1) = γ1(s)

Γ(0, t) = a Γ(1, t) = b

for 0 ≤ s, t ≤ 1.

Theorem 1.7.1 (Monodromy theorem). Let (f,D) be a function element

and let G be a domain containing D such that (f,D) admits unrestricted

analytic continuation in G. Let a ∈ D, b ∈ G and let γ0 and γ1 be paths

in G from a to b. Let {(ft, Dt) : 0 ≤ t ≤ 1} and {(gt, Dt) : 0 ≤ t ≤ 1} be

analytic continuations of (f,D) along γ0 and γ1 respectively. If γ0 and γ1

are fixed end point homotopic in G then

[f1]b = [g1]b.

Corollary 1.7.2. Let (f,D) be a function element which admits unre-

stricted analytic continuation in a simply connected domain G. Then there

is an analytic function F : G→ C such that F (z) = f(z) for all z ∈ D.

We refer the reader to [14] for further reading.
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1.8 Iteration theory

Let f be a meromorphic function. A point z is called a multiple point of f

if f ′(z) = 0 or if z is a pole of f of multiplicity two or higher.

Let f be a meromorphic function. A point z ∈ C is called a critical point of

f if f fails to be injective in any neighbourhood of z. These critical points

consist of the multiple points of f . The image of a critical point, f(z) = w,

is called a critical value.

Let f be a meromorphic function and let w ∈ C∗ = C∪ {∞}. If f(z) → w

as |z| → ∞ along some continuous path γ, then w is called an asymptotic

value of f and γ is called a path of determination.

Let f be a meromorphic function. We denote by

f 0 = id, f 1 = f, f 2 = f ◦ f, . . . , fn+1 = fn ◦ f = f ◦ fn, . . .

the sequence of iterates of f .

A point z ∈ C is called normal if the sequence (fn) is defined and forms a

normal family in some neighbourhood of z. (See § 1.4).

The Fatou set of f is the set of normal points of f and is denoted by Ff .

The Julia set of f is the complement of the Fatou set of f and is denoted

by

Jf = C∗ \ Ff .

A solution z0 of the equation f(z) = z is called a fixpoint of f and f ′(z0) is

called its multiplier. We say that ∞ is a fixpoint of f , if 0 is a fixpoint of
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1/f(1/z), and we define its multiplier to be the multiplier of the fixpoint 0

of the conjugate z 7→ 1/(f(1/z)).

If z0 is a fixpoint of fp, but not a fixpoint of fn for any n, 0 < n < p, then

α = {z0, f(z0), . . . , f
p−1(z0)}

is called a cycle of length p. Then elements of α are called periodic points.

The multiplier λ = λ(α), is defined to be the multiplier of the fixpoint z0

of fp, λ = (fp)′(z0). By the Chain Rule, we have

(fp)′(z0) =

p−1∏
j=0

f ′(f j(z0)).

Then if f j(z0) 6= ∞ for 0 ≤ j < p, the value of λ depends only on α and

not on the particular periodic point z0.

The cycle α is called

(i) superattracting if |λ| = 0.

(ii) attracting if 0 < |λ| < 1.

(iii) indifferent if |λ| = 1.

(iv) repelling if |λ| > 1.

We also classify periodic points in this way.

Theorem 1.8.1. The Julia set of a function f is the closure of the set of

repelling periodic points of f .

We refer the reader to [5] and [40] for further reading.
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1.9 Univalent functions

A single-valued function f is said to be univalent on a domain Ω if it never

takes the same value twice, that is, if f(z1) 6= f(z2) for z1 and z2 in Ω with

z1 6= z2.

The function f is said to be locally univalent at a point z0 ∈ Ω if it is

univalent in some neighbourhood of z0.

An analytic univalent function f is also called a conformal mapping, and

we say that f maps a domain Ω conformally.

Theorem 1.9.1 (Koebe distortion theorem). Let f be a conformal mapping

in the open unit disc B(0, 1). Then for 0 < r < 1,

1− r

(1 + r)3
|f ′(0)| ≤ max

|z|≤ r
|f ′(z)| ≤ 1 + r

(1− r)3
|f ′(0)|.

We refer the reader to [15] and [34] for further reading.

1.10 Miscellaneous theorems

The following is an alphabetical list of standard theorems from complex

analysis which are used in this thesis. We refer the reader to [1] and [37]

for further reading.

Theorem 1.10.1 (Argument principle (Special case)). Let γ be a circle,

described once counter-clockwise, and f be a meromorphic function on a

domain containing γ and its interior, with no zeros or poles of f on γ.
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Then

1

2πi

∫
γ

f ′(z)

f(z)
dz

is equal to the number of zeros minus the number of poles of f , inside γ,

where the zeros and poles are counted according to multiplicity.

Theorem 1.10.2 (Hurwitz’ theorem (Special case)). Let (fn) be a sequence

of meromorphic functions on a domain Ω which converge spherically uni-

formly on compact subsets to a function f (which may be ≡ ∞). If each

fn 6= 0 on Ω then either f 6= 0 on Ω, i.e. f has no zeros on Ω, or f ≡ 0.

Theorem 1.10.3 (Maximum principle). Let f be an analytic and noncon-

stant function in a region Ω. Then |f(z)| has no maximum in Ω. Further-

more, if Ω is a closed bounded region, then the maximum of |f(z)| is taken

on the boundary of Ω.

Theorem 1.10.4 (Picard’s theorem). Let a, b, c ∈ C∗ be distinct points.

Let f be a meromorphic function which omits a, b, c on C. Then f is con-

stant.

Theorem 1.10.5 (Residue theorem). Let f be analytic in a domain Ω,

apart from isolated singularities zj. Let γ be a cycle in Ω avoiding the zj and

such that n(γ, a) = 0 for all a ∈ C \Ω where n(γ, a) is the winding number

of γ about a. Then there are just finitely many zj for which n(γ, zj) 6= 0,

and ∫
γ

f(z)dz = 2πi
∑

n(γ, zj)Res(f, zj).

Theorem 1.10.6 (Rouché’s theorem). Let Ω be a simply connected domain

containing a simple closed curve Γ and its interior. Let f and g be analytic
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functions on Ω such that |g| strictly dominates |f |, i.e. |g| > |f |, on Γ.

Then g and f + g have the same number of zeros inside Γ.

Theorem 1.10.7 (Taylor’s theorem). Let f be an analytic function on a

domain Ω and let a ∈ Ω. Then

f(z) =
∞∑

k=0

f (k)(a)

k!
(z − a)k

for z near a.

Theorem 1.10.8 (Weierstrass theorem). Let (fn) be a sequence of analytic

functions on a domain Ω which converges uniformly on compact subsets of

Ω to a function f : Ω → C. Then f is analytic in Ω and, for k ∈ N,

the sequence of derivatives (f
(k)
n ) converges uniformly on compact subsets

to f (k).



Chapter 2

Two new criteria for normal

families

In this chapter, we present results which provide two new criteria for normal

families of meromorphic functions.1

Let a0, . . . , ak−1 be analytic functions on a domain Ω. Let F be a family

of meromorphic functions f on Ω such that f 6= 0 and f (k) + ak−1f
(k−1) +

. . .+ a0f 6= 0 on Ω, for all f ∈ F . Then {f ′/f : f ∈ F} is a normal family.

Furthermore, let a0, . . . , ak−1 be meromorphic functions on a domain Ω. Let

F be a family of meromorphic functions f on Ω such that f 6= 0, f ′ 6= 0 and

f (k) + ak−1f
(k−1) + . . .+ a0f 6= 0 on Ω, for all f ∈ F . Then {f ′/f : f ∈ F}

is a normal family. These two new criteria for normal families extend a

recent result of Bergweiler and Langley, [6, Corollary 1.1].

1The results in this chapter have been published by Computational Methods and

Function Theory, see [11].
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2.1 Introduction

A function f is nonvanishing on a domain Ω if it is without zeros there,

that is, if f(z) 6= 0 for all z ∈ Ω.

Example 2.1.1. Let f(z) = e2z+3. Then f(z) 6= 0 on C and also f (k)(z) =

2ke2z+3 6= 0 on C for k ∈ N. That is, f and f (k) are nonvanishing on C.

Since at least as far back as Pólya [32], interest has been shown in deter-

mining meromorphic functions f such that f and f (k) are nonvanishing in

C for k ∈ N. In 1959, Hayman [21] conjectured that the following result

would be true.

Theorem 2.1.2. Let f be a meromorphic function in C and let k ≥ 2 be

an integer. Suppose f and f (k) are nonvanishing in C. Then f has the

form f(z) = eaz+b or f(z) = (az + b)−n where a, b ∈ C, a 6= 0 and n ∈ N.

Hayman [21] proved the k = 2 case for entire functions, and Clunie [13]

proved the general case for entire functions. In 1976, Frank [18] proved the

k ≥ 3 case of Theorem 2.1.2. In 1977, Frank, Hennekemper and Polloczek

[20] considered the case where k ≥ 3 and ff (k) has finitely many zeros. In

1993, Langley [28] proved the k = 2 case of Theorem 2.1.2.

Interest has also been shown in determining meromorphic functions f such

that f and L(f) are nonvanishing on C, where L is defined, as in (1.25),

by

L(f) = f (k) + ak−1f
(k−1) + . . .+ a1f

′ + a0f,

for k ∈ N. Steinmetz [39], following the work of Frank and Hellerstein

[19], proved results for the case where the aj are constants and k ≥ 3.
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Brueggemann [8] proved results for the case where the aj are polynomials,

not all constant. Langley ([26], [27]) proved results for the case where the

aj are rational functions. We prove results for the cases where the aj are

analytic functions and meromorphic functions.

We note that by Theorem 2.1.2, if f is an entire function such that f and

f (k) are nonvanishing on C for some k ≥ 2, then we have that f(z) = eaz+b

and so f ′(z)/f(z) is constant. Then by the Bloch Principle (see § 1.5), we

see that Theorem 2.1.2 may provide a criterion for normal families. This

is in fact the case. Schwick [38] proved this for families of analytic func-

tions, and Bergweiler and Langley [6] proved it for families of meromorphic

functions, their result being stated as follows.

Theorem 2.1.3 (Bergweiler and Langley, [6]). Let k ≥ 2 and let F be a

family of functions that are meromorphic in a domain Ω. Suppose that f

and f (k) are nonvanishing in Ω, for all f ∈ F . Then G = {f ′/f : f ∈ F}

is a normal family in Ω.

We include the following example to show that Theorem 2.1.3 does not

hold for k = 1.

Example 2.1.4. Let F = {fn(z) = 1
enz−1

: n ∈ N}. Then fn(z) and

f ′n(z) = − nenz

(enz−1)2
are nonvanishing in C, for all n ∈ N. However, G =

{f ′n(z)/fn(z) = − nenz/(enz − 1) : n ∈ N} is not a normal family in C

since f ′n(0)/fn(0) = ∞ whereas f ′n(x)/fn(x) → 0 for x ∈ R−, as n→∞.

We first extend Theorem 2.1.3 to the following result.
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Theorem 2.1.5. Let k ≥ 2 and let F be a family of meromorphic functions

in a domain Ω. Let a0, . . . , ak−1 be analytic functions in Ω. For each f ∈ F

define L(f), as in (1.25), by

L(f) = f (k) + ak−1f
(k−1) + . . .+ a1f

′ + a0f.

Suppose that f and L(f) are nonvanishing in Ω for each f ∈ F . Then

G = {f ′/f : f ∈ F} is a normal family in Ω.

The following example shows that Theorem 2.1.5 cannot be extended to

the case where a0, . . . , ak−1 are meromorphic functions, in the k = 2 case.

Example 2.1.6. Let F = {fn(z) = enz/z : n ∈ N}. Set a0(z) = 0 and

a1(z) = 2/z. Then for k = 2, we have

L(fn) = f (2)
n + a1(z)f

′
n(z) + a0(z)f(z) =

n2

z
enz.

Thus for all n ∈ N we have that fn(z) and L(fn) are nonvanishing in C.

However G = {f ′n(z)/fn(z) = (z− 1
n
)/(z. 1

n
) : n ∈ N} is not a normal family

in C, since f ′n(0)/fn(0) = ∞, whereas f ′n( 1
n
)/fn( 1

n
) = 0.

Nevertheless, by including the extra condition that f ′ 6= 0 on Ω, for all

f ∈ F , we can extend Theorem 2.1.5 to the case where a0, . . . , ak−1 are

meromorphic functions. We state the result as follows.

Theorem 2.1.7. Let k ≥ 2 and let F be a family of meromorphic functions

in a domain Ω. Let a0, . . . , ak−1 be meromorphic functions in Ω. For each

f ∈ F define L(f), as in (1.25), by

L(f) = f (k) + ak−1f
(k−1) + . . .+ a1f

′ + a0f.
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Suppose that f , f ′ and L(f) are nonvanishing in Ω for each f ∈ F . Then

G = {f ′/f : f ∈ F} is a normal family on Ω.

The proof of Theorem 2.1.5 depends on Theorem 2.2.5 below, which in turn

depends on several lemmas. For this reason, we provide the preliminaries

of the proof of Theorem 2.1.5 in § 2.2. In § 2.3, we prove Theorem 2.2.5,

and in § 2.4, we provide an example concerning Theorem 2.2.5. In § 2.5,

we provide the main part of the proof of Theorem 2.1.5. In § 2.6, we prove

Theorem 2.1.7.

2.2 Proof of Theorem 2.1.5: preliminaries

We follow a similar method of proof to that used by Bergweiler and Langley

in their proof of Theorem 2.1.3, see [6, Corollary 1.1].

The following assertion is stated in [6], and we provide a proof here for

completeness.

Lemma 2.2.1 (Bergweiler and Langley, [6]). Let F be meromorphic in a

simply connected domain Ω. Then there exists a function f meromorphic

in Ω such that F = f ′/f , if and only if all poles of F are simple with integer

residues. Furthermore, f is nonvanishing on Ω if and only if all residues

of F are negative integers.

Proof Suppose first that F = f ′/f for some function f meromorphic in

Ω. Let a ∈ Ω and suppose that f has a zero at a of order m > 0, or a pole
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at a of order −m > 0. Then near a we have

f(z) = (z − a)mh(z)

for some function h meromorphic near a with h(a) 6= 0,∞. Then we have

that f ′(z) = m(z − a)m−1h(z) + (z − a)mh′(z) and so

F (z) =
f ′(z)

f(z)
=

m

z − a
+
h′(z)

h(z)
.

Then a is a simple pole of F and Res(F, a) = m for some integer m.

Suppose now that F is meromorphic in Ω and that all poles of F in Ω are

simple poles with integer residues. Let E be the set of poles of F in Ω.

Choose z0 ∈ Ω \ E and define f initially on Ω \ E by

f(z) = exp

(∫ z

z0

F (t)dt

)
in which the integration is along any piecewise smooth path from z0 to z

in Ω \ E.

We show first that the value of f(z) does not vary with choice of path.

Let γ1 and γ2 be paths from z0 to z in Ω \ E. Set γ = γ1γ
−1
2 , that is, γ1

followed by γ2 backwards. Then γ is a closed curve and since Ω is a simply

connected domain we have by the Residue Theorem (Theorem 1.10.5) that∫
γ1

F (t)dt−
∫

γ2

F (t)dt =

∫
γ

F (t)dt

= 2πi
∑
α∈E

Res(F, α)n(γ, α)

= 2πim

for some m ∈ Z, where n(γ, α) is the winding number of γ about α.
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Since f(z) = exp
(∫ z

z0
F (t)dt

)
and exp(2πim) = 1 we have that the value

of f(z) does not vary with choice of path. Also we note that f is analytic

and nonvanishing in Ω \ E.

Next we investigate limz→a f(z) for some a ∈ E. Since F is meromorphic on

Ω and all poles of F are simple with integer residues, we have the following

near a,

F (t) = H(t) +
m

t− a

where m is an integer and H is an analytic function near a, and thus

bounded near a. Choose z1 ∈ Ω \ E with z1 near a, but not equal to a.

Then as z → a we have by (1.4) that

f(z) = exp

(∫ z

z0

f ′(t)

f(t)
dt

)
= f(z1) exp

(∫ z

z1

F (t)dt

)
= f(z1) exp

(∫ z

z1

H(t)dt+m log
z − a

z1 − a

)
= f(z1) exp

(∫ z

z1

H(t)dt

)(
z − a

z1 − a

)m

= φ(z)(z − a)m

where φ = f(z1) exp
(∫ z

z1
H(t)dt

)
/(z1 − a)m is an analytic function at a

with φ(a) 6= 0 since f is nonvanishing in Ω \ E. Hence f has a zero or a

pole at a, depending on the sign of m. In particular, f is nonvanishing on

Ω if each m is a negative integer.

Next, following the method used by Bergweiler and Langley in [6], we define

differential polynomials Ψk(F ) for k ∈ N by

Ψ1(F ) = F, Ψk+1(F ) = FΨk(F ) + (Ψk(F ))′. (2.1)
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Here is an example to illustrate this.

Example 2.2.2. Let F (z) = 2/z. Then by (2.1) we have that

Ψ1(F )(z) = F (z) = 2/z,

Ψ2(F )(z) = F 2(z) + F ′(z) = 4/z2 − 2/z2 = 2/z2,

Ψ3(F )(z) = F 3(z) + 3F (z)F ′(z) + F (2)(z) = 8/z3 + 3(2/z)(−2/z2) + 4/z3 = 0.

The link between these operators and nonvanishing derivatives is given by

the following lemma from [6], which can be easily proved by induction.

Lemma 2.2.3 (Bergweiler and Langley, [6]). Let f be meromorphic in a

domain Ω and let F = f ′/f . Then for each k ∈ N we have Ψk(F ) = f (k)/f .

Example 2.2.4. Let F (z) = 2/z as in Example 2.2.2. Then we note that

F = f ′/f where f(z) = z2. Then f ′(z) = 2z, f (2)(z) = 2 and f (3)(z) = 0

and so we have

Ψ1(F )(z) = f ′/f = 2/z,

Ψ2(F )(z) = f (2)/f = 2/z2,

Ψ3(F )(z) = f (3)/f = 0.

Next, let a0, . . . , ak−1 be analytic functions on a domain Ω, and define

differential polynomials Λk(F ) for k ∈ N by

Λk(F ) = Ψk(F ) + ak−1Ψk−1(F ) + . . .+ a1Ψ1(F ) + a0. (2.2)

Finally, we use the following theorem, noting that it is an extension of [6,

Theorem 1.3]. We note also that we use B(a, r) to denote the open disc

B(a, r) = {z : |z − a| < r}.
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Theorem 2.2.5. Let k ≥ 2 and let G be a family of functions meromorphic

in a domain Ω. Let a0, . . . , ak−1 be analytic functions on Ω. For F ∈ G

define Λk(F ), as in (2.2), by

Λk(F ) = Ψk(F ) + ak−1Ψk−1(F ) + . . .+ a1Ψ1(F ) + a0.

Suppose that there exists δ ∈ (0, 1] such that the following conditions hold

for all F ∈ G:

(i) Λk(F ) has no zeros.

(ii) if a is a simple pole of F then |Res(F, a)−j| ≥ δ for j ∈ {0, 1, . . . , k−

1}.

(iii) if c ∈ Ω and R > 0 with B(c, R) ⊂ Ω, if B(c, δR) contains two poles

of F , counting multiplicities, and if B(c, R) \ B(c, δR) contains no

poles of F , then

∣∣∣∣∣∣
∑

a∈B(c,δR)

Res(F, a)− (k − 1)

∣∣∣∣∣∣ ≥ δ.

Then G is a normal family.

We prove this theorem in § 2.3, and provide an example in § 2.4 to show

that Theorem 2.2.5 cannot be extended to the case where a0, . . . , ak−1 are

meromorphic functions.
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2.3 Proof of Theorem 2.2.5

We need several lemmas for the proof of Theorem 2.2.5. The first assertion

in the following lemma is proved in [6], and the second is an extension

which follows immediately.

Lemma 2.3.1 (Bergweiler and Langley, [6]). Let k ≥ 2 be an integer. Let

y be meromorphic in a domain Ω, such that if a is a simple pole of y then

Res(y, a) /∈ {1, . . . , k − 1}. Let n ∈ N be such that n ≤ k. If y has a pole

at a of multiplicity m then Ψn(y) has a pole at a of multiplicity nm, and

Λn(y) has a pole at a of multiplicity nm, where Λn(y) is defined as in (2.2)

by

Λn(y) = Ψn(y) + an−1Ψn−1(y) + . . .+ a1Ψ1(y) + a0

where a0, . . . , an−1 are analytic functions on Ω.

We need the following theorems of Bergweiler and Langley.

Theorem 2.3.2 (Bergweiler and Langley, [6]). Let k ≥ 3 be an integer,

and let F be meromorphic and nonconstant in the plane and satisfy both of

the following conditions:

(i) Ψk(F ) has no zeros.

(ii) if a is a simple pole of F then Res(F, a) /∈ {1, . . . , k − 1}.

Then F has the form

F (z) =
(k − 1)z + α

z2 + βz + γ
, (2.3)



2.3 Proof of Theorem 2.2.5 36

or

F (z) =
1

αz + β
. (2.4)

Here α, β, γ ∈ C with α 6= 0 in (2.4).

Conversely, if F has the form (2.3) or (2.4), and if (ii) holds, then Ψk(F )

has no zeros. If F has the form (2.3) or (2.4), but (ii) does not hold, then

Ψk(F ) ≡ 0.

Theorem 2.3.3 (Bergweiler and Langley, [6]). Let F be meromorphic and

nonconstant in the plane, such that

(i) Ψ2(F ) = F ′ + F 2 has no zeros.

(ii) if a is a simple pole of F , then Res(F, a) 6= 1.

(iii) there exists δ > 0 such that, if a is a simple pole of F , then

|Res(F, a)| ≥ δ.

Then either F has the form (2.3) with k = 2, or the form (2.4).

In the proof of Theorem 2.2.5, we will use the Pang-Zalcman Lemma

(Lemma 1.5.3). In particular, we will apply it to the family of all func-

tions 1/f with f ∈ G, for the case where α = k = 1. We obtain the

following lemma, noting that this approach was also used by Bergweiler

and Langley [6, Lemma 4.2].

Lemma 2.3.4. Let G be a family of functions meromorphic in the unit disc

B(0, 1). Suppose that there exists δ > 0 such that if f ∈ G has a simple

pole a, then |Res(f, a)| ≥ δ. Then if G is not normal, there exist r ∈ (0, 1),
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points zn with |zn| < r, functions Fn ∈ G and positive numbers ρn tending

to zero such that

ρnFn(zn + ρnz) → F (z)

locally uniformly in C, where F is a nonconstant meromorphic function on

C such that F ](z) ≤ F ](0) = 1 + 1/δ for all z ∈ C.

The proof of Theorem 2.2.5 will involve rescaling. We therefore need the

following results, and include the proof for completeness.

Lemma 2.3.5. Let F and g be functions such that

g(z) = ρF (a+ ρz)

where ρ > 0, a ∈ C. Then the following statements are true:

(a) If g has a pole at b, then F has a pole at a + ρb, and

Res(g, b) = Res(F, a+ ρb).

(b) For each j ∈ N, we have

Ψj(g)(z) = ρjΨj(F )(a+ ρz)

where Ψj is defined as in (2.1).

(c) If a0, . . . , ak−1 are analytic functions and

Λk(F ) = Ψk(F ) + ak−1Ψk−1(F ) + . . .+ a0

as defined by (2.2), then

Λk(F )(a+ρz) = ρ−k

[
Ψk(g)(z) +

k−1∑
j=1

aj(a+ ρz)ρk−jΨj(g)(z) + ρka0(a+ ρz)

]
.

(2.5)
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Proof (a) It is evident that g(b) = ∞ implies F (a + ρb) = ∞ also. Let r

be small and positive. Then integrating once counter-clockwise and setting

w = a+ ρz gives

2πiRes(g, b) =

∫
|z−b|=r

g(z)dz

=

∫
|w−(a+ρb)|=ρr

F (w)dw

= 2πiRes(F, a+ ρb)

as required.

(b) We use a proof by induction. For j = 1, we have by (2.1),

Ψ1(g)(z) = g(z) = ρF (a+ ρz) = ρΨ1(F )(a+ ρz).

Now assume that Ψj(g)(z) = ρjΨj(F )(a + ρz) for all 1 ≤ j ≤ n. Then by

(2.1), we have

Ψn+1(g)(z) = g(z)Ψn(g)(z) + (Ψn(g)(z))′

= g(z)[ρnΨn(F )(a+ ρz)] + [ρnΨn(F )(a+ ρz)]′

by the inductive hypothesis. Then since g(z) = ρF (a+ ρz) we have

Ψn+1(g)(z) = ρn+1F (a+ ρz)Ψn(F )(a+ ρz) + ρn(Ψn(F )′(a+ ρz))ρ

= ρn+1[F (a+ ρz)Ψn(F )(a+ ρz) + Ψn(F )′(a+ ρz))]

= ρn+1Ψn+1(F )(a+ ρz).

And so Ψj(g)(z) = ρjΨj(F )(a+ ρz) for all j ∈ N.
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(c) We have by (2.2) and by (b) that

Λk(F )(a+ ρz) = Ψk(F )(a+ ρz) +
k−1∑
j=1

aj(a+ ρz)Ψj(F )(a+ ρz) + a0(a+ ρz)

= ρ−kΨk(g)(z) +
k−1∑
j=1

aj(a+ ρz)ρ−jΨj(g)(z) + a0(a+ ρz)

= ρ−k

[
Ψk(g)(z) +

k−1∑
j=1

aj(a+ ρz)ρk−jΨj(g)(z) + ρka0(a+ ρz)

]

as required.

We proceed to the proof of Theorem 2.2.5. We note that it uses essentially

the same methods as [6, Theorem 1.3].

Proof of Theorem 2.2.5 Since normality is a local property we can as-

sume, without loss of generality, that Ω is a disc, and that a0, . . . , ak−1 are

bounded on Ω since they are analytic functions. Using a linear change of

variables g(z) = ρF (a+ρz), for suitable choice of ρ > 0 and a ∈ C, we may

assume that Ω is the open unit disc B(0, 1) since Lemma 2.3.5 (a) shows

that the residues of g(z) are unaltered, and Lemma 2.3.5 (c) shows that if

Λk(F ) is nonvanishing then Λ̃k(g) is nonvanishing, where the coefficients of

Λ̃k are given by (2.5).

Suppose now that G is not normal. Then by condition (ii) of Theorem

2.2.5, with j = 0, we can apply Lemma 2.3.4. Let r, zn, Fn, ρn and F be

as in Lemma 2.3.4, so that,

gn(z) = ρnFn(zn + ρnz) → F (z)

locally uniformly in C as n→∞.
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Let a be a simple pole of F . Then, by Hurwitz’ Theorem (Theorem 1.10.2),

if n is sufficiently large, gn has a simple pole at an with an → a as n→∞.

By Lemma 2.3.5 (a), zn + ρnan is a simple pole of Fn with Res(Fn, zn +

ρnan) = Res(gn, an). Hence with δ ∈ (0, 1], we deduce from condition

(ii) of Theorem 2.2.5 that |Res(gn, an) − j| ≥ δ for j ∈ {0, 1, . . . , k − 1}.

Then we have that |Res(F, a) − j| ≥ δ for j ∈ {0, 1, . . . , k − 1}, and so

Res(F, a) 6∈ {1, . . . , k − 1}. Then, by Lemma 2.3.1, every pole of F is a

pole of Ψk(F ).

Next, by Lemma 2.3.5 (c), we have that

Λk(Fn)(zn+ρnz) = ρ−k
n

[
Ψk(gn)(z) +

k−1∑
j=1

aj(zn + ρnz)ρ
k−j
n Ψj(gn)(z) + ρk

na0(zn + ρnz)

]
.

By condition (i) of Theorem 2.2.5, this is nonvanishing. Hence,

Λ̃k(gn)(z) = Ψk(gn(z)) +
k−1∑
j=1

aj(zn + ρnz)ρ
k−j
n Ψj(gn(z)) + ρk

na0(zn + ρnz)

is nonvanishing, since ρn is a sequence of positive numbers. We know by

(2.1) that Ψj(gn) is a linear combination of products of gn and its deriva-

tives. Let E be the set of poles of F . Then, by the Weierstrass Theorem

(Theorem 1.10.8), we have that

Λ̃k(gn)(z) → Ψk(F )(z)

as n→∞, locally uniformly on C\E, since ρn → 0 and the aj are bounded.

By Hurwitz’ Theorem (Theorem 1.10.2), either Ψk(F ) ≡ 0 or Ψk(F ) 6= 0

on C \ E. In the latter case, we deduce that Ψk(F ) 6= 0 on C since every

pole of F is a pole of Ψk(F ).
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Case 1. Ψk(F ) ≡ 0.

Since |Res(F, a)− j| ≥ δ for j ∈ {0, 1, . . . , k− 1}, if a is a simple pole of F ,

we deduce that F has no poles, since by Lemma 2.3.1, every pole of F is a

pole of Ψk(F ). Thus F is entire and so is the function f defined by setting

f(z) = exp(
∫ z

0
F (t)dt). Then F = f ′/f and thus f (k)/f = Ψk(F ) ≡ 0 by

Lemma 2.2.3. Hence f is a polynomial. Then, by the way that we have

defined f , we must have that f is constant. Hence F = f ′/f ≡ 0, which is

a contradiction since F is nonconstant.

Case 2. Ψk(F ) 6= 0 on C.

It follows from Theorem 2.3.2 for k ≥ 3 and from Theorem 2.3.3 for k = 2

that F has the form (2.3) or (2.4).

Suppose first that F has the form (2.4). Then 1/|α| = |Res(F,−β/α)| ≥ δ

so that |α| ≤ 1/δ. On the other hand, |α| ≥ |α|/(1+|β|2) = F ](0) = 1+1/δ

by Lemma 2.3.4. This is a contradiction.

Suppose second that F has the form (2.3) but is not of the form (2.4).

Then F has two poles, counting multiplicities. We also observe that if F is

of the form (2.3), then

∑
a∈F−1({∞})

Res(F, a) = k − 1 (2.6)

by the Residue Theorem (Theorem 1.10.5). Next, choose R > 0 such that

these poles are contained in B(0, δR). Since F has no other poles we deduce

from Hurwitz’ theorem (Theorem 1.10.2) that for n sufficiently large, gn has

two poles in B(0, δR), but no poles in B(0, R)\B(0, δR). Thus Fn has two

poles in B(zn, δρnR), but no poles in B(zn, ρnR)\B(zn, δρnR). By Lemma
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2.3.5 (a) and condition (iii) of Theorem 2.2.5, we deduce that∣∣∣∣∣∣
∑

a∈B(0,δR)

Res(gn, a)− (k − 1)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

a∈B(zn,δρnR)

Res(Fn, a)− (k − 1)

∣∣∣∣∣∣ ≥ δ.

But this gives ∣∣∣∣∣∣
∑

a∈B(0,δR)

Res(F, a)− (k − 1)

∣∣∣∣∣∣ ≥ δ,

which contradicts (2.6).

2.4 An example concerning Theorem 2.2.5

We use an example to show that Theorem 2.2.5 cannot be extended to

the case where a0, . . . , ak−1 are meromorphic functions, in the k = 2 case.

Similar counterexamples can be constructed in the general case.

Example 2.4.1. Let k = 2 and let G be the family of meromorphic func-

tions G = {Fn(z) = 1
nz3 : n ∈ N}. Let a0(z) = 0 and a1(z) = 3/z. Then a0

and a1 are meromorphic functions and for Fn ∈ G we have that

Λ2(Fn)(z) = Ψ2(Fn)(z) + a1(z)Ψ1(Fn)(z) + a0(z)

=
1

n2z6
− 3

nz4
+

3

z

1

nz3
=

1

n2z6
.

This is nonvanishing on C, and so condition (i) is satisfied.

Also, each Fn ∈ G has a triple pole at z = 0, and no other poles. Thus

conditions (ii) and (iii) are trivially satisfied. Thus all the conditions of

Theorem 2.2.5 are satisfied except for the analyticity of the aj. However G

is not a normal family since Fn(0) = ∞ while Fn(z) = 1
nz3 → 0 as n→∞

for z ∈ R+. Therefore Theorem 2.2.5 cannot be extended to the case where

a0, . . . , ak−1 are meromorphic functions.
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It is interesting to note here, with regard to Theorem 2.1.7, that although

the Fn in Example 2.4.1 have no zeros, they cannot be written in the form

Fn = f ′n/fn where fn is a nonvanishing meromorphic function.

2.5 Proof of Theorem 2.1.5: main part

Proof First we let F ∈ G. Then F = f ′/f for some meromorphic function

f in F such that f and L(f) are nonvanishing on Ω. By Lemma 2.2.3, we

have that

L(f)/f = f (k)/f + ak−1f
(k−1)/f + . . .+ a1f

′/f + a0 (2.7)

= Ψk(F ) + ak−1Ψk−1(F ) + . . .+ a1Ψ1(F ) + a0

= Λk(F ).

Then since f and L(f) are nonvanishing on Ω for each f ∈ F , we see

that Λk(F ) is nonvanishing also, and so condition (i) of Theorem 2.2.5 is

satisfied.

Next, by Lemma 2.2.1, we have that the poles of F are all simple poles

with negative integers as residues. Then, for δ ∈ (0, 1], if a is a pole of F ,

then for j ∈ {0, 1, . . . , k − 1} we have that

|Res(F, a)− j| ≥ | − 1− 0| = 1 ≥ δ.

Then condition (ii) of Theorem 2.2.5 is satisfied.

Finally, if B(c, δR) contains two poles of F , say a1 and a2 with a1 6= a2,

then we have that Res(F, a1) and Res(F, a2) are negative integers, and since
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k is an integer with k ≥ 2, we have that∣∣∣∣∣∣
∑

a∈B(c,δR)

Res(F, a)− (k − 1)

∣∣∣∣∣∣ ≥ | − 1− 1− (2− 1)| = 3 > δ.

Then condition (iii) of Theorem 2.2.5 is satisfied.

Therefore, by Theorem 2.2.5, we have that G is a normal family.

2.6 Proof of Theorem 2.1.7

Proof Let {αj : j ∈ J} be the set of poles of a0, . . . , ak−1 in Ω. By

Theorem 2.1.5, the result is true in the case where a0, . . . , ak−1 are analytic

functions, and so it is sufficient to prove that G is normal at the αj, for

j ∈ J .

Suppose there exists αj such that G is not normal at αj. Choose δ > 0

such that the punctured disc Ωj = {z : 0 < |z − αj| < δ} is contained

in Ω, and such that Ωj does not contain any poles of a0, . . . , ak−1. Then

we have that there exists a sequence (Fn) in G, where Fn = f ′n/fn for

some fn ∈ F , such that (f ′n/fn) has no subsequence that converges locally

uniformly on Ωj ∪ {αj}. However, since a0, . . . , ak−1 are analytic in Ωj,

we have by Theorem 2.1.5 that G is normal on Ωj. Then there exists a

subsequence of (f ′n/fn), denoted (f ′n/fn) without loss of generality, which

converges uniformly on compact sub-regions of Ωj, either to a meromorphic

limit φ, or identically to ∞. Then there are two cases.

Case 1. (f ′n/fn) converges uniformly to a meromorphic limit φ on compact

sub-regions of Ωj.
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We note first that for n ∈ N, since fn 6= 0 on Ω, the poles of f ′n/fn can only

arise at poles of f ′n, and therefore only at poles of fn. We note that for the

remainder of this proof, we refer to the poles of f ′n/fn only as the poles of

fn. We note also that f ′n/fn has no zeros on Ω since f ′n 6= 0 there.

Let Γ be a circular contour in Ωj which goes once anti-clockwise around αj

and which does not pass through any poles of φ. Since φ is a meromorphic

limit, Γ lies in the interior of a closed annulus A on which φ has no poles.

Further, since (f ′n/fn) converges uniformly to φ on compact sub-regions of

Ωj, we have that there exists n0 ∈ N such that fn has no poles on A for

n ≥ n0.

Let ΩΓ be the domain enclosed by Γ. By the Argument principle (Theorem

1.10.1), and since each fn has no zeros in Ω, we have that for each n ∈ N,∫
Γ

(
f ′n
fn

)
(z)dz = −2πiqn (2.8)

where qn is the number of poles of fn in ΩΓ, counting multiplicities. Then

since,

lim
n→∞

∫
Γ

(
f ′n
fn

)
(z)dz =

∫
Γ

φ(z)dz = λ

for some λ ∈ C, we have that there exists n1 ∈ N such that n1 ≥ n0 and

such that
∫

Γ
(f ′n/fn)(z)dz is constant for n ≥ n1. Then by (2.8), we must

have that for n ≥ n1, the fn have the same number of poles, say q, in ΩΓ.

We list the poles by γn,1, . . . , γn,q repeating according to multiplicity. Then

we can write for n ≥ n1,(
f ′n
fn

)
(z) =

q∑
l=1

(
− 1

z − γn,l

)
+ ψn(z), (2.9)

where ψn is an analytic function on ΩΓ ∪ A.
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Next, we show that the ψn are uniformly bounded on ΩΓ. We note first

that γn,1, . . . , γn,q are not in the closed annulus A, and so |φ(z)| ≤ C1 and

|z−γn,l| ≥ c1 for some positive constants C1 and c1, for z ∈ Γ. Since (f ′n/fn)

converges uniformly to φ on Γ, there exists n2 ∈ N such that n2 ≥ n1 and

such that, on Γ, |(f ′n/fn)(z)| ≤ C1 + 1 for n ≥ n2. Since |z − γn,l| ≥ c1, we

have that
∣∣∣∑q

l=1

(
− 1

z−γn,l

)∣∣∣ ≤ q/c1. Then we have that, on Γ,

|ψn(z)| ≤
∣∣∣∣(f ′nfn

)
(z)

∣∣∣∣+
∣∣∣∣∣

q∑
l=1

(
− 1

z − γn,l

)∣∣∣∣∣ ≤ C1 + 1 + q/c1,

for n ≥ n2. Therefore the ψn are uniformly bounded on Γ. By the maximum

principle (Theorem 1.10.3), the ψn are uniformly bounded on ΩΓ.

Choose a subsequence of (γn,l), denoted (γn,l) without loss of generality,

such that γn,l → γl as n → ∞ for l = 1, . . . , q. Then there are two

subcases, depending on whether some of γ1, . . . , γq are equal to αj.

Case 1.1. Some of γ1, . . . , γq are equal to αj.

Rearrange γ1, . . . , γq so that γ1, . . . , γp are equal to αj and γp+1, . . . , γq are

not equal to αj, for some p ∈ {1, . . . , q}. Then by (2.9), we have for n ≥ n2,(
f ′n
fn

)
(z) =

p∑
l=1

(
− 1

z − γn,l

)
+

q∑
l=p+1

(
− 1

z − γn,l

)
+ ψn(z). (2.10)

Next, since γn,p+1, . . . , γn,q tend to γp+1, . . . , γq as n→∞, and γp+1, . . . , γq

are not equal to αj, we can choose δ1 > 0 such thatB(αj, 3δ1) is contained in

ΩΓ\A and does not contain γp+1, . . . , γq. Then there exists n3 ∈ N such that

n3 ≥ n2 and such that, for n ≥ n3 and z ∈ B(αj, δ1), we have |z−γn,l| ≥ δ1

for l = p + 1, . . . , q. Then for each n ≥ n3, we have
∣∣∣∑q

l=p+1

(
− 1

z−γn,l

)∣∣∣ ≤
(q − p)/δ1 and so

∑q
l=p+1

(
− 1

z−γn,l

)
is uniformly bounded and analytic in

B(αj, δ1). Then since the ψn are uniformly bounded on ΩΓ, there exists a
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large positive constant M such that for n ≥ n3,∣∣∣∣∣
q∑

l=p+1

(
− 1

z − γn,l

)
+ ψn(z)

∣∣∣∣∣ ≤M (2.11)

on B(αj, δ1).

Now choose δ2 > 0 such that δ2/δ1 is small, and consider the circle

S(αj, δ2) = {z : |z − αj| = δ2}. We have that γn,1, . . . , γn,p each tend

to αj as n→∞, and so each
∣∣∣− 1

z−γn,l

∣∣∣ is large on S(αj, δ2) for l = 1, . . . , p.

Then, in particular, we have that∣∣∣∣∣
p∑

l=1

− 1

z − γn,l

∣∣∣∣∣→
∣∣∣∣∣

p∑
l=1

− 1

z − γl

∣∣∣∣∣ =

∣∣∣∣− p

z − αj

∣∣∣∣ =
p

δ2
> 2M,

as n→∞, for a suitable choice of δ2.

Then by (2.10) and (2.11), there exists n4 ∈ N such that n4 ≥ n3 and such

that f ′n/fn is large on S(αj, δ2) for n ≥ n4, and thus fn/f
′
n is small on

S(αj, δ2) for n ≥ n4. Next, we know that each fn/f
′
n is analytic in Ω since

f ′n 6= 0 on Ω. Then for n ≥ n4, by the maximum principle (Theorem 1.10.3)

and since fn/f
′
n is small on S(αj, δ2), each fn/f

′
n is small on B(αj, δ2). Then

(fn/f
′
n) is a uniformly bounded sequence of analytic functions on B(αj, δ2),

and by the Montel-Vitali theorem (Theorem 1.5.4), we have that (fn/f
′
n)

is normal on B(αj, δ2). Therefore (f ′n/fn) is normal on B(αj, δ2), and thus,

in particular, (f ′n/fn) is normal at αj. This is a contradiction.

Case 1.2. αj 6= γl for all l = 1, . . . , q.

Then we can choose δ3 > 0 such that B(αj, 3δ3) is contained in ΩΓ \A, and

does not contain γ1, . . . , γq. Then there exists n5 ∈ N such that n5 ≥ n3

and such that, for n ≥ n5 and z ∈ B(αj, δ3), we have |z − γn,l| ≥ δ3

for l = 1, . . . , q. Then
∣∣∣∑q

l=1−
1

z−γn,l

∣∣∣ ≤ q
δ3

, and since
∑q

l=1

(
− 1

zn−γn,l

)
is
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uniformly bounded and analytic in B(αj, δ3) and since the ψn are uniformly

bounded on ΩΓ, we have that (2.11) holds with p = 0, on B(αj, δ3).

Therefore, (f ′n/fn) is a uniformly bounded sequence of analytic functions

on B(αj, δ3). Then by the Montel-Vitali theorem (Theorem 1.5.4), we have

that (f ′n/fn) is normal on B(αj, δ3), and thus, in particular, (f ′n/fn) is

normal at αj. This is a contradiction.

Case 2. (f ′n/fn) converges identically to ∞ on Ωj.

Then we have that (fn/f
′
n) converges identically to 0 on Ωj. We note

that for each n, we have that fn/f
′
n is analytic in Ωj ∪ {αj} since f ′n 6= 0

on Ω. Then by the maximum principle (Theorem 1.10.3), we have that

((fn/f
′
n)(αj)) converges to 0, and so (f ′n/fn) converges identically to ∞ on

Ωj∪{αj}. Therefore (f ′n/fn) is normal on Ωj∪{αj}. This is a contradiction.

Therefore G is a normal family.



Chapter 3

Extending a theorem of

Bergweiler and Langley

In this chapter, we extend some results of Bergweiler and Langley [6].1

We consider the differential operator Λk defined by

Λk(F ) = Ψk(F ) + ak−1Ψk−1(F ) + . . .+ a1Ψ1(F ) + a0,

where a0, . . . , ak−1 are analytic functions of restricted growth and Ψk(F ) is

defined by (2.1). We suppose that k ≥ 3, that F is a meromorphic function

on an annulus A(r0), and that Λk(F ) has all its zeros on a set E such that

E has no limit point in A(r0). We suppose also that all simple poles a of

F in A(r0) \ E have Res(F, a) /∈ {1, . . . , k − 1}. We then deduce that F is

a function of restricted growth in the Nevanlinna sense. We show also that

this result does not hold for a0, . . . , ak−1 meromorphic functions.

1The results in this chapter have been published by Computational Methods and

Function Theory, see [9].
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3.1 Introduction

In the proof of Theorem 2.2.5, Bergweiler and Langley use Theorem 2.3.2,

which we restate here for convenience, and we recall that Ψk(F ) is defined,

as in (2.1), by

Ψ1(F ) = F, Ψk+1(F ) = FΨk(F ) + (Ψk(F ))′.

Theorem 3.1.1 (Bergweiler and Langley, [6]). Let k ≥ 3 be an integer,

and let F be a meromorphic and nonconstant function in the plane that

satisfies both of the following conditions:

(i) Ψk(F ) is nonvanishing.

(ii) if a is a simple pole of F then Res(F, a) /∈ {1, . . . , k − 1}.

Then F has the form

F (z) =
(k − 1)z + α

z2 + βz + γ
, (3.1)

or

F (z) =
1

αz + β
. (3.2)

Here α, β, γ ∈ C with α 6= 0 in (3.2).

Conversely, if F has the form (3.1) or (3.2), and if (ii) holds, then Ψk(F )

is nonvanishing. If F has the form (3.1) or (3.2), but (ii) does not hold,

then Ψk(F ) ≡ 0.

We note that this theorem implies that F is a rational function, and hence

by Theorem 1.2.1,

T (r, F ) = O(log r) as r →∞.
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Defining an annulus A(r0), as in (1.21), by

A(r0) = {z : r0 ≤ |z| <∞}

we extend Theorem 3.1.1 in two ways.

First, we let F be meromorphic and nonconstant on A(r0), by which we

mean that F is meromorphic in a domain containing A(r0).

Second, we weaken condition (i) as follows. We let a0, . . . , ak−1 be analytic

functions on A(r0) of restricted growth as z →∞, such that

aj(z) = O(|z|(λ−1)(k−j)) as z →∞, (3.3)

for some fixed λ ≥ 0. Define Λk(F ), as in (2.2), by

Λk(F ) = Ψk(F ) + ak−1Ψk−1(F ) + . . .+ a1Ψ1(F ) + a0.

We then assume for condition (i) that Λk(F ) = 0 only on a set E such that

E has no limit point in the annulus A(r0). This implies that Λk(F ) = 0

only on a countable set E.

The new conclusion is that F is a function of restricted growth in the

Nevanlinna sense. We state the extended theorem as follows, recalling

from (1.20) that we denote by S(r, F ) any quantity satisfying

S(r, F ) = O(log r + log+ T (r, F )),

as r → ∞ outside a set of finite measure, not necessarily the same set at

each occurrence. We also refer the reader to § 1.3 for background material

concerning Nevanlinna theory in an annulus.
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Theorem 3.1.2. Let k ≥ 3 be an integer and let F be meromorphic and

nonconstant in an annulus A(r0), as defined by (1.21). Suppose a0, . . . , ak−1

are analytic functions on A(r0) of restricted growth, as in (3.3), that is, such

that

aj(z) = O(|z|(λ−1)(k−j)) as z →∞,

for some fixed λ ≥ 0. Let f1, . . . , fk be solutions of L(w) = 0 where L is

defined, as in (1.25), by

L(f) = f (k) + ak−1f
(k−1) + . . .+ a0f,

in A(r0) \ R−. Let Λk(F ) be defined as in (2.2) by

Λk(F ) = Ψk(F ) + ak−1Ψk−1(F ) + . . .+ a1Ψ1(F ) + a0.

Suppose there exists a set E, such that E has no limit point in A(r0), and

such that Λk(F ) has all its zeros in E. Suppose further that all simple poles

a of F in A(r0) \ E have Res(F, a) /∈ {1, . . . , k − 1}. Set

NE(r) =

∫ r

r0

nE(t)

t
dt

where nE(t) is the number of points in E ∩ {z : r0 ≤ |z| ≤ t}.

Then either:

(i) T (r, F ) ≤ cNE(r) + S(r, F ), as r →∞,

where c is a constant depending only on k,

or

(ii) F is a rational function of the fj and their derivatives, in which case

T (r, F ) = O(rλ + log r), as r →∞.
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We note that when λ = 0, it follows from (ii) that limz→∞ F (z) exists.

Theorem 3.1.2 is deduced from several lemmas, including Lemma 3.2.3,

which is in turn deduced from several lemmas. For this reason, we first

provide the preliminaries of the proof of Theorem 3.1.2 in § 3.2. In § 3.3,

we prove Lemma 3.2.3. In § 3.4, we prove the main part of Theorem 3.1.2.

In § 3.5, we state some corollaries of Theorem 3.1.2. Finally, in § 3.6 we

provide an example showing that Theorem 3.1.2 cannot be extended to the

case where a0, . . . , ak−1 are meromorphic functions.

3.2 Proof of Theorem 3.1.2: Preliminaries

Suppose that k, F , A(r0) and a0, . . . , ak−1 are as in the statement of Theo-

rem 3.1.2. We may define linearly independent analytic solutions f1, . . . , fk

of (1.25) in A(r0) \R−. These fj are analytic in A(r0) \R−, and since the

aj are analytic in A(r0), the fj admit unrestricted analytic continuation in

A(r0), and so they satisfy the following lemma.

Lemma 3.2.1 (Langley, [27]). Suppose that k ≥ 1 and that a0, . . . , ak−1

are analytic in an annulus A(r0), as defined by (1.21), such that as in (3.3),

for some λ ≥ 0,

aj(z) = O(|z|(λ−1)(k−j)) as z →∞.

Let fj(z) be a solution of L(w) = 0, where L is defined by (1.25), in a

sectorial region

S = {z : |z| > r0, α < arg z < α+ 2π},
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where α is real. Then as z →∞ in S,

log+ |fj(z)| = O(|z|λ + log |z|). (3.4)

By Lemma 3.2.1, we have that log+ |fj(z)| = O(|z|λ+log |z|) for j = 1, . . . , k

and thus the continuations satisfy log+ log+ |fj(z)| = O(log |z|) for |z| > r0,

| arg z| < 2π. Then we have that f1, . . . , fk also satisfy the conditions of

the following lemma.

Lemma 3.2.2 (Frank and Langley, [17]). Suppose that f1, . . . , fk each ad-

mit unrestricted analytic continuation in an annulus A(r0), as defined by

(1.21), and satisfy log+ log+ |fj(z)| = O(log |z|) for z in a sectorial region

S = {z : |z| > r0, | arg z| < 2π}. Suppose that F is meromorphic in

A(r0). Suppose further that, for some non-negative integer M , each of the

functions h1, . . . , hk on S is a polynomial in the f
(m)
j , F (m), 1 ≤ j ≤ k,

0 ≤ m ≤ M . Suppose finally that h1, . . . , hk are linearly independent solu-

tions in S of an equation

w(k) +
k−1∑
j=0

Bjw
(j) = 0

in which the Bj are meromorphic in A(r0). Then we have, for j = 0, . . . , k−

1,

m(r, Bj) = S(r, F ).

Choose a simply connected domain Ω ⊆ A(r0), on which F has no poles

and Λk(F ) has no zeros. Define functions f , g, and h in Ω by

f ′/f = F Λk(F ) = g−k, h = −Fg. (3.5)
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Then f , g and h are analytic in Ω since F has no poles and Λk(F ) has no

zeros there.

We next need the following lemma, which is similar to [6, Lemma 2.3], but

uses a different method of proof. We refer the reader to § 1.6 and § 1.7 for

background material about Wronskians and analytic continuation.

Lemma 3.2.3. Define functions wj and hj, for j = 1, . . . , k, on Ω by

wj(z) = f ′j(z)g(z) + fj(z)h(z), hj(z) = −f ′j(z) + fj(z)F (z). (3.6)

Then the wj form a fundamental solution set on Ω of the differential equa-

tion

w(k) +
k−1∑
j=0

Ajw
(j) = 0, (3.7)

in which the Aj are meromorphic functions on A(r0) with

T (r, Aj) ≤ cNE(r) + S(r, F ), as r →∞, (3.8)

for j = 0, . . . , k − 1, where c is a constant depending only on k.

3.3 Proof of Lemma 3.2.3

The following summarises some results from Nevanlinna theory which are

used in Lemma 3.2.3. We provide a proof for completeness. For background

material about Nevanlinna theory in an annulus, we refer the reader to § 1.3.

We also recall that we use (n.e.) as an abbreviation for “nearly everywhere”,

that is, to denote the phrase “outside a set of finite measure”.
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Lemma 3.3.1. Let p ∈ N and let Ω be a simply connected domain in the

annulus A(r0), as defined by (1.21). Suppose that w is meromorphic in Ω

such that W = wp is meromorphic in A(r0). Then w(k)/w is meromorphic

in A(r0), for each k ∈ N, with poles of multiplicity at most k. Further, we

have

T (r, w(k)/w) = O(T (r,W )) (n.e.),

and

m(r, w(k)/w) = S(r,W ) (n.e.),

as r →∞.

Proof We use a proof by induction. Let the inductive hypothesis be as

stated above, and we consider the case k = 1. Then W ′ = (wp)′ = pwp−1w′

and so we have

w′

w
=

W ′

pwp−1w
=
W ′

pW
. (3.9)

SinceW is meromorphic inA(r0), we have thatW ′ is meromorphic inA(r0)

and thus w′/w is meromorphic in A(r0). Also, by (3.9), w′/w has poles of

multiplicity at most 1.

Now, by (1.18), we have that T (r, w′/w) = T (r,W ′/pW ) = O(T (r,W )),

(n.e) and by (1.16) and (3.9),

m(r, w′/w) = m(r,W ′/pW ) ≤ O(log rT (r,W )) = S(r,W ) (n.e.), (3.10)

as r →∞. And so, case k = 1 is proved.

Now let k ≥ 2 and assume the inductive hypothesis holds for k − 1. We

have (
w(k−1)

w

)′
=
w(k)

w
− w(k−1)

w

w′

w
,
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and so,

w(k)

w
=

(
w(k−1)

w

)′
+
w(k−1)

w

w′

w
. (3.11)

Now by the inductive hypothesis, w(k−1)/w is meromorphic in A(r0), and

so (w(k−1)/w)′ is also. Then the right-hand side of (3.11) is meromorphic

in A(r0), and thus w(k)/w is meromorphic in A(r0).

Now consider the poles of w(k)/w. By the inductive hypothesis, we have

that w(k−1)/w has poles of multiplicity at most k − 1, and hence
(

w(k−1)

w

)′
and w(k−1)

w
w′

w
have poles of multiplicity at most k. Thus w(k)/w has poles

of multiplicity at most k.

Next, by (1.12), (1.13), (1.17), (3.11) and the inductive hypothesis, we have

T (r,
w(k)

w
) ≤ T (r,

(
w(k−1)

w

)′
) + T (r,

w(k−1)

w
) + T (r,

w′

w
) + log 2

= O(T (r,
w(k−1)

w
)) +O(T (r,W )) (n.e.)

= O(T (r,W )) (n.e.). (3.12)

Finally, by (1.8), (1.9), (3.10), (3.11), (3.12) and the inductive hypothesis,

m(r,
w(k)

w
) ≤ m(r,

(
w(k−1)

w

)′
) +m(r,

w(k−1)

w
) +m(r,

w′

w
) + log 2

≤ 2m(r,
w(k−1)

w
) +O(log rT (r,

w(k−1)

w
)) +m(r,

w′

w
) + log 2 (n.e.)

= O(log rT (r,W )) = S(r,W ) (n.e.),

as r → ∞. And so, this case satisfies the inductive hypothesis. Thus the

inductive hypothesis is satisfied for all k ∈ N.

We now prove Lemma 3.2.3.
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Proof of Lemma 3.2.3 We divide this proof into a number of steps.

Step 1. The wj form a fundamental solution set on Ω of the differential

equation (3.7), and Ak−1 = ak−1.

We note first that wj = fg(fj/f)′ on Ω by (3.5), and by (1.28) and Lemma

1.6.2 we have that

W (w1, . . . , wk) = W (fg(f1/f)′, . . . , fg(fk/f)′) (3.13)

= fkgkW ((f1/f)′, . . . , (fk/f)′)

= fkgk(−1)kW (f1/f, . . . , fk/f, 1)

= f−1gk(−1)kW (f1, . . . , fk, f)

= f−1gk(−1)kL(f)W (f1, . . . , fk).

Then since gk = (Λk(F ))−1 by (3.5) and since L(f)/f = Λk(F ) by (2.7),

we have from (3.13) that

W (w1, . . . , wk) = (−1)kW (f1, . . . , fk). (3.14)

By Lemma 1.6.1, the right-hand side is not identically zero, since the fj

form a linearly independent solution set of (1.25). Thus, again by Lemma

1.6.1, the wj form a linearly independent solution set for the differential

equation (3.7). Also, by (1.27), we have that

Ak−1 = −W (w1, . . . , wk)
′

W (w1, . . . , wk)
= −(−1)kW (f1, . . . , fk)

′

(−1)kW (f1, . . . , fk)
= ak−1. (3.15)

Step 2. The hj are linearly independent solutions of the differential equa-

tion

w(k) +
k−1∑
j=0

Bjw
(j) = 0, (3.16)
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in which the Bj are meromorphic in A(r0) \ R−.

We have by Lemma 1.6.2, (3.5) and (3.6) that wj = −hjg, and so by (3.5)

we have that

W (w1, . . . , wk) = W (−h1g, . . . ,−hkg)

= (−1)kgkW (h1, . . . , hk)

= (−1)kΛk(F )−1W (h1, . . . , hk).

Then by (3.14), we have that

W (h1, . . . , hk) = Λk(F )W (f1, . . . , fk).

The right-hand side is not identically zero on Ω since Λk(F ) 6= 0 on Ω and

since the fj form a linearly independent solution set of (1.25) on A(r0)\R−.

Thus, by Lemma 1.6.1, the hj form a linearly independent solution set of

the differential equation (3.16) on Ω. By (3.6), we have hj = −f ′j +fjF and

thus the hj are meromorphic on A(r0) \R− since the fj are analytic there,

and F is meromorphic in A(r0). Hence the coefficients Bj are meromorphic

in A(r0) \ R−.

Step 3. The Bj extend to be meromorphic in A(r0).

Let γ be a path in A(r0) that encloses the origin. Continue the fj along

γ, starting and ending at a point z0 say. Then since the fj are analytic in

A(r0)\R−, and the aj are analytic in A(r0), we have that each fj continues

analytically to f̃j, a linear combination of f1, . . . , fk near z0. We also have

that F is meromorphic in A(r0), and thus since hj = −f ′j + fjF , each hj

continues analytically to h̃j, a linear combination of h1, . . . , hk near z0.
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We claim that h̃1, . . . , h̃k are linearly independent. Suppose not. Then there

exist non-zero constants c1, . . . , ck such that c1h̃1 + . . .+ ckh̃k ≡ 0 near z0.

Then, continuing backwards along γ we have that c1h1 + . . . + ckhk ≡ 0

near z0. This is a contradiction since h1, . . . , hk are linearly independent.

Thus h̃1, . . . , h̃k are linearly independent and form a fundamental solution

set to an equation

w(k) +
k−1∑
j=0

B̃jw
(j) = 0 (3.17)

near z0. The B̃j are meromorphic near z0 since h̃1, . . . , h̃k are.

Since h̃1, . . . , h̃k are linear combinations of h1, . . . , hk near z0, they also

solve (3.16) near z0. We then must have that B̃j = Bj near z0 for j =

0, . . . , k − 1 since otherwise we could subtract (3.17) from (3.16) to get a

differential equation of order at most k − 1, with k linearly independent

solutions h̃1, . . . , h̃k near z0. Therefore the Bj are unchanged by analytic

continuations around γ and so extend to be meromorphic in A(r0).

Step 4. The Bj have poles of multiplicity at most k − j on A(r0).

By Step 3 the Bj are meromorphic in A(r0). Furthermore, (3.16) has k

linearly independent meromorphic solutions on a neighbourhood of each

point of A(r0), namely h1, . . . , hk. Hence by Lemma 1.6.3, the Bj have

poles of multiplicity at most k − j on A(r0).

Step 5. Estimate for m(r, Bj).

We recall by (3.6) that hj = −f ′j + fjF , and note that all the conditions of

Lemma 3.2.2 are satisfied. Then, by Lemma 3.2.2, we have that

m(r, Bj) = S(r, F ) (3.18)
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for j = 0, . . . , k − 1.

Step 6. Estimate for m(r, Aj).

First we express Aj in terms of Bj and g(p)/g. We recall that the wj solve

the differential equation

w(k) +
k−1∑
j=0

Ajw
(j) = 0

in Ω. Then since wj = −hjg and since (−hjg)
(n) = −

∑n
p=0

(
n
p

)
h

(p)
j g(n−p),

we have

−
k∑

p=0

(
k

p

)
h

(p)
j g(k−p) −

k−1∑
q=0

Aq

q∑
p=0

(
q

p

)
h

(p)
j g(q−p) = 0. (3.19)

We recall that Ω does not contain poles of F , and so also does not contain

poles of Λk(F ). Then since Λk(F ) = g−k, we have that Ω also does not

contain zeros of g. Then we can divide (3.19) by −g to get

k∑
p=0

(
k

p

)
h

(p)
j

g(k−p)

g
+

k−1∑
q=0

Aq

q∑
p=0

(
q

p

)
h

(p)
j

g(q−p)

g
= 0.

Since the hj solve the differential equation

w(k) +
k−1∑
j=0

Bjw
(j) = 0

we can compare coefficients and find that, for example,

Bk−1 =

(
k

k − 1

)
g′

g
+ Ak−1

Bk−2 =

(
k

k − 2

)
g′′

g
+

(
k − 1

k − 2

)
g′

g
Ak−1 + Ak−2.

In general, for j = 0, . . . , k − 1, we have that

Bj =

(
k

j

)
g(k−j)

g
+

k−1∑
q=j

Aq

(
q

j

)
g(q−j)

g
.
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Then for j = 0, . . . , k − 1, we have that

Aj = Bj −
(
k

j

)
g(k−j)

g
−

k−1∑
q=j+1

Aq

(
q

j

)
g(q−j)

g
, (3.20)

which is initialised by

Ak−1 = Bk−1 −
(

k

k − 1

)
g′

g
.

We now note that by Lemma 3.3.1 for all p ∈ N, we have that g(p)/g is

meromorphic in A(r0) and m(r, g(p)/g) = S(r, F ). Thus we have, by (1.8),

(1.9), (3.18) and (3.20), that each Aj is meromorphic in A(r0) and

m(r, Aj) = S(r, F )

for j = 0, . . . , k − 1.

Step 7. Estimate for N(r, Aj).

We show first that the poles of Aj can only arise on E, the set containing

all points where Λk(F ) = 0.

We know by Lemma 1.6.3, that the poles of Aj can only arise among the

zeros of the continuations of W (w1, . . . , wk) and the poles of the continu-

ations of w1, . . . , wk. By (3.15), ak−1 = −W (w1, . . . , wk)
′/W (w1, . . . , wk)

and since ak−1 is analytic in A(r0), we have that W (w1, . . . , wk) continues

without zeros. Thus the poles of Aj can only arise among the poles of the

continuations of w1, . . . , wk. Then, since by (3.5) and (3.6) we have that

wj = (f ′j − fjF )/(Λk(F ))1/k, and since the fj are analytic, then the poles

of Aj can only arise at poles of F and zeros of Λk(F ).

Now let z0 ∈ A(r0) \ E and suppose that a pole of Aj arises at z0. Since

Λk(F ) 6= 0 on A(r0)\E we must have that z0 is a pole of F , of multiplicity
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m say, and if m = 1 then Res(F, z0) 6∈ {1, . . . , k − 1} since F satisfies

the hypotheses of Theorem 3.1.2. Then by Lemma 2.3.1, Λk(F ) has a

pole at z0 of multiplicity mk, and so since g−k = Λk(F ), we have that

g can be analytically continued to a neighbourhood of z0 and has a zero

of multiplicity m there. Thus h = −Fg can be analytically continued to

z0 and since the fj can be continued analytically in A(r0), we have that

wj = f ′jg + fjh can be analytically continued to z0. We therefore deduce

that the Aj are analytic at z0. This contradicts our hypothesis, and so the

poles of Aj can only arise in E.

We recall from Step 4 that the poles of Bj have multiplicity at most k−j on

A(r0). We note also by Lemma 3.3.1, that g(p)/g have poles of multiplicity

at most p there. Thus we have by (3.20) that the poles of Aj must have

multiplicity at most c where c is a constant depending only on k. Therefore

we have, for j = 0, . . . , k − 1,

N(r, Aj) ≤ cNE(r),

where NE is as defined in the statement of Theorem 3.1.2.

Step 8. Conclusion.

We have since T (r, Aj) = N(r, Aj) +m(r, Aj) that

T (r, Aj) ≤ cNE(r) + S(r, F ), as r →∞,

for j = 0, . . . , k − 1, where c is a constant depending only on k.



3.4 Proof of Theorem 3.1.2: Main Part 64

3.4 Proof of Theorem 3.1.2: Main Part

There are two final lemmas needed for the proof of Theorem 3.1.2.

Lemma 3.4.1 (Frank and Langley, [17]). Let k ≥ 1 be an integer, and

let f1, . . . , fk, G,H and a0, . . . , ak−1 and A0, . . . , Ak−1 be meromorphic in

a domain Ω. Suppose that f1, . . . , fk are linearly independent solutions

in Ω of L(w) = 0, where L is defined as in (1.25). Then the functions

f ′1g+ f1h, . . . , f
′
kg+ fkh are solutions in Ω of the equation (3.7) if and only

if, setting Ak = 1 and A−1 = a−1 = 0 and, for 0 ≤ q ≤ k,

Mk,q(w) =
k∑

m=q

(
m

q

)
Amw

(m−q), Mk,−1(w) = 0,

we have, for 0 ≤ q ≤ k − 1,

Mk,q(h)−aqh = −Mk,q−1(g)+aqMk,k−1(g)− (aqak−1−a′q −aq−1)g. (3.21)

The following lemma is proved in [17] for a0, . . . , ak−1 rational functions,

and F meromorphic in the plane. The proof extends without modification

to the case where a0, . . . , ak−1 are analytic functions and F is meromorphic

in A(r0). This gives the following lemma.

Lemma 3.4.2 (Frank and Langley, [17]). Let λ ≥ 0 and k ≥ 2, and let

a0, . . . , ak−1 be analytic functions of restricted growth, as in (3.3), satis-

fying aj(z) = O(|z|(λ−1)(k−j)) as z → ∞. Suppose that F is meromor-

phic in the annulus A(r0), as defined by (1.21), and has in some domain

Ω a representation as a rational function in solutions fj of the equation

L(w) = 0 and their derivatives, where L is defined by (1.25). If λ > 0

then T (r, F ) = O(rλ) as r → ∞. If λ = 0 then T (r, F ) = O(log r) and

limz→∞ F (z) exists.
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We are now in a position to complete the proof of Theorem 3.1.2. We note

that we use methods found in [17, Theorem 3].

Proof of Theorem 3.1.2 We apply Lemma 3.4.1 to equation (3.7) and

to g and h in Ω. The k equations (3.21) can be written in the form

Tq(g) = Sq(h) =

k−q∑
j=0

cj,qh
(j), 0 ≤ q ≤ k − 1, (3.22)

in which Tq and Sq are homogeneous linear differential operators with coef-

ficients λν which are rational functions in the aj, Aj and their derivatives.

Then by Lemma 3.2.3, we have that

T (r, λν) ≤ cNE(r) + S(r, F ), as r →∞, (3.23)

where c is a constant depending only on k.

We have in particular that q = k − 1 gives

Mk,k−1(h)−ak−1h = −Mk,k−2(g)+ak−1Mk,k−1(g)−(ak−1ak−1−a′k−1−ak−2)g.

Then since

Mk,k−1(h) = Ak−1h+ kh′,

Mk,k−1(g) = Ak−1g + kg′,

Mk,k−2(g) = Ak−2g + (k − 1)Ak−1g
′ + k(k − 1)g′′/2,

we have that

Ak−1h+ kh′ − ak−1h = −Ak−2g − (k − 1)Ak−1g
′ − k(k − 1)g′′/2 + ak−1Ak−1g +

+ kak−1g
′ − (ak−1ak−1 − a′k−1 − ak−2)g
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which gives

h′ = U(g) = −(k − 1)g′′/2 + ak−1g
′/k + (a′k−1 + ak−2 − Ak−2)g/k (3.24)

since ak−1 = Ak−1 on Ω by (3.15). We note that we can then write (3.22)

in the form

Tq(g) = c0,qh+

k−q∑
j=1

cj,q
dj−1

dzj−1
(U(g)). (3.25)

We distinguish two cases here.

Case 1. We assume that the coefficient of h in at least one Sq in (3.22) is

not identically zero.

Let ν be the largest integer, 0 ≤ ν ≤ k − 1, such that c0,ν 6≡ 0. Then since

h = −Fg by (3.5), equations (3.22) and (3.25) give

h = −Fg = (c0,ν)
−1

(
Tν(g)−

k−ν∑
j=1

cj,ν
dj−1

dzj−1
(U(g))

)
= V (g). (3.26)

Then by (3.22), (3.24) and (3.26) we have that g solves the system of

equations

U(g) =
d

dz
(V (g)), Sq(V (g)) = Tq(g), 0 ≤ q ≤ k − 2. (3.27)

Here we distinguish two sub-cases.

Case 1.1. We assume that the solution space of (3.27) has dimension 1.

That is, we have that every common solution of the equations (3.27) is a

constant multiple of g. Then (3.23) and a standard reduction procedure,

see [24, p.126], give a first order equation

p1g
′ + p0g = 0, p1 6≡ 0,
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where the pj are rational functions in the λν and their derivatives. It follows

by (3.23) that

T (r, g′/g) ≤ cNE(r) + S(r, F ), as r →∞,

where c is a constant depending only on k. Hence, since F = −h/g and

using (3.23) and (3.26),

T (r, F ) ≤ cNE(r) + S(r, F ), as r →∞.

Hence we have conclusion (i) of the theorem.

Case 1.2. We assume that there is a solution G for the system (3.27) such

that G/g is nonconstant.

In particular, we note that this will be the case if the system (3.27) is

trivial. Define H by H = V (G). Then, by (3.27),

H ′ = U(G), Sq(H) = Tq(G), 0 ≤ q ≤ k − 2.

In particular, the equations (3.22) hold with g and h replaced by G and

H respectively. And so, by Lemma 3.4.1, the functions fjH + f ′jG are

solutions of (3.7) and thus are linear combinations of w1, . . . , wk. Hence,

there are solutions gj of L(f) = 0 where L is defined by (1.25), such that

fjH + f ′jG− gjh− g′jg = 0, 1 ≤ j ≤ k. (3.28)

We regard the equations in (3.28) as a system of k equations in H, G, h,

g, over the field F of functions meromorphic in Ω, with coefficients fj, f
′
j,

gj, g
′
j.

Next, we note that the rank of the coefficient matrix is ≤ 3, since there is

a non-trivial solution for the system. We claim that the rank is precisely



3.4 Proof of Theorem 3.1.2: Main Part 68

3. Suppose not. Then there are functions φm ∈ F, with 1 ≤ m ≤ 3, not

all identically zero, and functions ψm ∈ F, with 1 ≤ m ≤ 3, again not all

identically zero, such that

φ1f
′
j + φ2fj = φ3gj, ψ1f

′
j + ψ2fj = ψ3g

′
j,

for 1 ≤ j ≤ k. Since we know that W (f1, . . . , fk) 6≡ 0, neither φ3 nor ψ3

can be identically zero. We may assume therefore that φ3 ≡ ψ3 ≡ 1. Thus

φ1f
′′
j + f ′j(φ

′
1 + φ2 − ψ1) + fj(φ

′
2 − ψ2) = 0,

for 1 ≤ j ≤ k. Again, since W (f1, . . . , fk) 6≡ 0, we must have

φ1 ≡ φ′1 + φ2 − ψ1 ≡ φ′2 − ψ2 ≡ 0,

which gives gj = φ2fj. Then, by Lemma 1.6.2,

W (g1, . . . , gk) = W (φ2f1, . . . , φ2fk) = (φ2)
kW (f1, . . . , fk). (3.29)

Since g1, . . . , gk and f1, . . . , fk are solution sets of L(f) = 0 where L is

defined as in (1.25), we have by (1.27) that

W (g1, . . . , gk)
′

W (g1, . . . , gk)
= −ak−1 =

W (f1, . . . , fk)
′

W (f1, . . . , fk)
. (3.30)

However, by (3.29), we have that

W (g1, . . . , gk)
′

W (g1, . . . , gk)
=

((φ2)
kW (f1, . . . , fk))

′

(φ2)kW (f1, . . . , fk)

=
((φ2)

k)′W (f1, . . . , fk) + (φ2)
kW (f1, . . . , fk)

′

(φ2)kW (f1, . . . , fk)

=
((φ2)

k)′

(φ2)k
+
W (f1, . . . , fk)

′

W (f1, . . . , fk)
.

Then, by (3.30), we have that ((φ2)k)′

(φ2)k = 0, and so φ2 must be constant.
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Now by (3.28), for 1 ≤ j ≤ k, we have that

fj(H − φ2h) + f ′j(G− φ2g) = 0,

and since W (f1, . . . , fk) 6≡ 0 we must have H = φ2h and G = φ2g. This

contradicts the assumption that G/g is non-constant. Hence the rank of

the system (3.28) is precisely 3.

We can then solve for −F = h/g as a quotient of determinants in fj, f
′
j,

gj, g
′
j. Thus F is a rational function of the fj and their derivatives. Then

by Lemma 3.4.2, we have that

T (r, F ) = O(rλ + log r), as r →∞,

and so we have conclusion (ii) of the theorem.

Case 2. We assume that c0,q ≡ 0 for 0 ≤ q ≤ k − 1 in (3.22).

We then have that the equations (3.22) are satisfied when g and h are

replaced by 0 and 1 respectively, and thus so are the equations (3.21).

Then, by Lemma 3.4.1, the fj are solutions of (3.7). Thus the equations

L(f) = 0 and (3.7) are the same, where L is defined by (1.25), and for

1 ≤ q ≤ k we may write

fjh+ f ′jg = gj, (3.31)

in which each gj is a solution of L(f) = 0. Then since f1 and f2 are linearly

independent, we have f1f
′
2 − f ′1f2 6≡ 0 and so

F = −h/g = (f ′1g2 − f ′2g1)/(f1g2 − f2g1),

which gives F as a quotient of determinants in fj, f
′
j, gj, g

′
j. Then by

Lemma 3.4.2 we have that

T (r, F ) = O(rλ + log r), as r →∞,
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and so we have conclusion (ii) of the theorem.

3.5 Corollaries of Theorem 3.1.2

The following corollaries are deduced directly from Theorem 3.1.2.

Corollary 3.5.1. Let k ≥ 3 be an integer and let F be meromorphic and

nonconstant in an annulus A(r0), as defined by (1.21). Suppose there exists

a set E, such that E has no limit point in A(r0), and such that Ψk(F ) has

all its zeros in E. Suppose further that all simple poles a of F , such that

a /∈ E, have Res(F, a) /∈ {1, . . . , k − 1}. Then either:

(i) T (r, F ) ≤ cNE(r) +O(log r + log+ T (r, F )) (n.e.),

where c is a constant depending only on k,

or

(ii) limz→∞ F (z) exists.

Corollary 3.5.2. Let k ≥ 3 be an integer, and let F be meromorphic and

nonconstant in an annulus A(r0), as defined by (1.21). Suppose F satisfies

both of the following conditions:

(i) Ψk(F ) is nonvanishing.

(ii) if a is a simple pole of F then Res(F, a) /∈ {1, . . . , k − 1}.

Then limz→∞ F (z) exists.
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Corollary 3.5.3. Let k ≥ 3 be an integer, and let F be meromorphic in C

and satisfy both of the following conditions:

(i) Ψk(F ) has finitely many zeros.

(ii) for all but finitely many simple poles of F , we have Res(F, a) /∈

{1, . . . , k − 1}.

Then F is a rational function.

3.6 An example concerning Theorem 3.1.2

The following example shows that Theorem 3.1.2 cannot be extended to

the case where a0, . . . ak−1 are meromorphic functions.

Example 3.6.1. Let k ≥ 3 and let F = f ′/f where f is a meromorphic

function which is nonvanishing. Define a0, . . . , ak−1 by

aj =

 −f (k)

f
if j = 0 ,

f
f (j) if j = 1, . . . , k − 1 .

Then a0, . . . , ak−1 are meromorphic functions and we have, using Lemma

2.2.3, that

Λk(F ) = Ψk(F ) + ak−1Ψk−1(F ) + . . .+ a1Ψ1(F ) + a0

=
f (k)

f
+

f

f (k−1)

f (k−1)

f
+ . . .+

f

f ′
f ′

f
− f (k)

f

= k − 1.

Thus Λk(F ) is nonvanishing and so the set E of points where Λk(F ) = 0 is

such that E = ∅. And so, all the hypotheses of Theorem 3.1.2 are satisfied



3.6 An example concerning Theorem 3.1.2 72

except for the analyticity and growth of the aj. However, since f may

be any nonvanishing meromorphic function, no conclusions may be drawn

about the growth of F .



Chapter 4

Extending two theorems of

Langley and Zheng

In this chapter, we prove results which extend some results of Langley and

Zheng.1

We extend two theorems on fixpoints of f(z) by Langley and Zheng [29] to

the consideration of points where f(z) = Q(z) for some rational function Q

such that Q(∞) = ∞. In addition, we extend the class of functions f from

transcendental entire functions to meromorphic functions with relatively

few poles.

1The results in this chapter have been published by Resultate der Mathematik, see

[10].
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4.1 Introduction

Let B denote the class of functions f meromorphic in the plane, for which

the set of finite singular values of the inverse function f−1 is bounded, that

is, the class of all meromorphic functions f whose set of finite asymptotic

and critical values is bounded. This class B has been considered extensively

in iteration theory, see [3], [16], [29]. We refer the reader to § 1.8 for

background material on iteration theory.

Example 4.1.1. Let f(z) = 1
z

+ ez. Then f ′(z) = − 1
z2 + ez. If z is a

critical point of f we have f ′(z) = 0 and so ez = 1
z2 which gives the critical

value f(z) = 1
z

+ 1
z2 . Since 1

z
+ 1

z2 → 0 as z → ∞, we see that the set of

critical values of f is bounded. Also, 0 is the only finite asymptotic value

of f . Therefore, f ∈ B.

In [29], Langley and Zheng prove the following theorem, for transcendental

entire functions in the class B.

Theorem 4.1.2 (Langley and Zheng, [29]). Let 0 < α < 1. There is a

positive constant c, depending only on α, such that if f is a transcendental

entire function in the class B, then there are infinitely many fixpoints z

satisfying

f(z) = z, |f ′(z)| > c logM(α|z|, f). (4.1)

We recall that M(α|z|, f) = max{|f(w)| : |w| = α|z|}. Then for z large,

we have that c logM(α|z|, f) > 1 and so |f ′(z)| > 1, which gives that the

fixpoint z in Theorem 4.1.2 is a repelling fixpoint, see § 1.8. Then Theorem
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4.1.2 is of interest since by Theorem 1.8.1, the Julia set of f is the closure

of the set of repelling periodic points of f .

Let f be a transcendental function and Q be any rational function. We

define a Q-point of f to be a solution z0 of the equation f(z) = Q(z).

We extend Theorem 4.1.2 in two ways. First, we extend the result to

transcendental meromorphic functions f in B such that δ(∞, f) > 0, see

§ 1.2. Since

δ(∞, f) = lim inf
r→∞

m(r, f)

T (r, f)
= lim inf

r→∞

m(r, f)

m(r, f) +N(r, f)
,

we have that these functions f are meromorphic functions with relatively

few poles. Second, we extend (4.1) to Q-points, in particular, to where f(z)

is equal to a rational function Q(z) such that Q(∞) = ∞. We state the

extended theorem as follows.

Theorem 4.1.3. Let 0 < α < 1. There is a positive constant c, depending

only on α, such that if f is a transcendental meromorphic function in the

class B with δ(∞, f) > 0, and Q is a rational function with a pole of

multiplicity p ≥ 1 at ∞, then there are infinitely many Q-points z satisfying

f(z) = Q(z), |f ′(z)| > c δ(∞, f)
|Q(z)|
|z|

T (α|z|, f). (4.2)

In [29], Langley and Zheng also prove the following theorem.

Theorem 4.1.4 (Langley and Zheng, [29]). Let f be a meromorphic func-

tion in the class B, with order ∞ ≥ ρ(f) > µ > 0. Then f has infinitely

many fixpoints z with

f(z) = z, |f ′(z)| > |z|µ/2.
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This result is of interest since it relates the multipliers of fixpoints of f to

the order of f . We extend this theorem in a similar way to Theorem 4.1.2

in that we extend it to Q-points, that is, the case where f(z) = Q(z) where

Q is a rational function such that Q(∞) = ∞. We state the extended

theorem as follows.

Theorem 4.1.5. Let f be a meromorphic function in the class B, with

order ∞ ≥ ρ(f) > µ > 0. Let Q be a rational function with a pole of

multiplicity p ≥ 1 at ∞. Then f has infinitely many Q-points z with

f(z) = Q(z), |f ′(z)| > |z|µ/2+p−1.

In § 4.2, we prove a lemma which is used in the proof of Theorem 4.1.3 and

Theorem 4.1.5. In § 4.3 and § 4.4 we prove Theorem 4.1.3 and Theorem

4.1.5 respectively.

4.2 A useful lemma

The following lemma is used in the proof of Theorem 4.1.3 and Theorem

4.1.5. We note that it is an extension of [29, Lemma 1], and we will provide

the proof for completeness. We note that B(a, r) denotes the open disc

given by B(a, r) = {z : |z − a| < r}. Also, we refer the reader to § 1.9 for

background material about univalent functions and the Koebe distortion

theorem (Theorem 1.9.1).

Lemma 4.2.1. Suppose that f is a transcendental meromorphic function

in the class B. Let Q be a rational function such that Q(∞) = ∞. Define
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a function G by

G(z) = f(z)/Q(z), G′(z)/G(z) = f ′(z)/f(z)−Q′(z)/Q(z). (4.3)

Suppose that δ is a positive constant. Then there exists a positive constant

ε such that the following is true. If |z1| is large and |G(z1)− 1| < 1
4
ε, then

z1 lies in a component C of the set {z : |G(z)−G(z1)| < 1
2
ε}, such that C

is contained in B(z1, δ|z1|). Define a function H by

H(z) =
2

ε
(G(z)−G(z1)). (4.4)

Then C is mapped conformally onto B(0, 1) by H. Furthermore,

|Q(z)G′(z)| is large on C, and given any z0 ∈ C such that |G(z0)−G(z1)| <
1
4
ε, we have that

1

12
|G′(z1)| ≤ |G′(z0)| ≤

27

4
|G′(z1)|. (4.5)

We need the following lemma.

Lemma 4.2.2 (Eremenko, Lyubich and Bergweiler, [3], [5], [16], [35]).

Suppose that f is a transcendental meromorphic function in the class B.

Then there are positive constants R, S and c such that

|zf ′(z)/f(z)| ≥ c log+ |f(z)/R|

for |z| > S and |f(z)| > S. Here, R and S depend on f , and c does not.

Proof of Lemma 4.2.1 First we choose a sufficiently large positive R1

and a small positive constant ε such that |G(z) − 1| > ε on |z| = R1.

Suppose that |z| > R1, |f(z)| > R1 and that |G(z)− 1| < ε. Then we have
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that |G(z)| > 1
2
, and so by (4.3), |f(z)| > 1

2
|Q(z)|. Then by Lemma 4.2.2

and the fact that Q(∞) = ∞, there is a positive constant R such that

|zf ′(z)/f(z)| ≥ c1 log+ |f(z)/R| > c2 log |Q(z)|, (4.6)

where ci denotes a positive constant which does not depend on R1 or ε.

For such z, since R1 is sufficiently large, we have by (4.3) that

|zG′(z)/G(z)| = |zf ′(z)/f(z)−zQ′(z)/Q(z)| ≥ |zf ′(z)/f(z)|−|zQ′(z)/Q(z)|.

(4.7)

We recall that |G(z)−1| < ε and so |G(z)| is close to 1, and sinceQ(∞) = ∞

and z is large, we have that |zQ′(z)/Q(z)| = O(1) as z → ∞. Then by

(4.6) and (4.7) we have that

|zG′(z)| > R2 = c3 log |Q(R1)|. (4.8)

Then since Q(∞) = ∞ and |z| > R1 with R1 sufficiently large, we have

that |Q(z)| ≥ c4|z| and so,

|Q(z)G′(z)| > R3 = c5R2. (4.9)

Suppose now that δ is a positive constant and that z1 is as in the statement

of the lemma, with |z1| > 2R1. That is, |G(z1) − 1| < 1
4
ε, and so z1 lies

in a component C of the set {z : |G(z) − G(z1)| < 1
2
ε}. Let H be defined

as in the statement of the lemma, that is, H(z) = 2
ε
(G(z)−G(z1)). Then

H(z1) = 0 and |H ′(z1)| = 2
ε
|G′(z1)| > 2R2/ε|z1| by (4.8), and so H ′(z1) 6= 0.

Then H is a conformal mapping in a neighbourhood of z1.

Next define

h(w) =
∞∑

k=0

αkw
k, α0 = z1, (4.10)
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to be that branch of the inverse function H−1 which maps 0 to z1, and let r1

be the radius of convergence of the series. Then, by a standard compactness

argument, there is some w∗ with w∗ = r1e
iθ∗ , for some real θ∗, such that h

has no analytic continuation to a neighbourhood of w∗. Thus the image of

the path w = teiθ∗ , 0 ≤ t < r1, under h must, as t→ r1, either tend to ∞

or to a multiple point z∗ of H, with H(z∗) = w∗.

Set r2 = min{r1, 1}. Let γ be the path γ(t) = teiθ∗ , 0 ≤ t < r2. For

|z| = R1, we have that

|H(z)| = 2

ε
|G(z)−G(z1)| ≥

2

ε
(|G(z)− 1| − |G(z1)− 1|) > 2

ε
(ε− 1

4
ε) =

3

2
,

and since h(0) = z1 we must have that the image path h(γ) lies in

|z| > R1. Now H(h(w)) = w, which by differentiation gives (H(h(w)))′ =

H ′(z)h′(w) = 1 where z = h(w). Then,

h(w)/h′(w) = zH ′(z) =
2

ε
zG′(z) (4.11)

and this is large on γ by (4.8). Then for w on γ we have by (4.8) and (4.11)

that

log |h(w)/z1| ≤
∫ |w|

0

|h′(seiθ∗)/h(seiθ∗)|ds

≤ ε

2

|w|
infz∈h(γ) |zG′(z)|

≤ ε

2R2

.

Then if ε was chosen small enough, the path h(γ) lies in B(z1, δ|z1|), and

replacing θ∗ by any θ ∈ [0, 2π] we see that h(B(0, r2)) ⊆ B(z1, δ|z1|).

On the path h(γ) we have

|G(z)− 1| ≤ |G(z)−G(z1)|+ |G(z1)− 1| < 1

2
ε+

1

4
ε =

3

4
ε,



4.3 Proof of Theorem 4.1.3 80

and, using (4.8), we have that |H ′(z)| = 2
ε
|G′(z)| ≥ 2R2/ε|z|. In particular,

we have that h(γ) is bounded and does not tend to a critical point of H.

Since r2 = min{r1, 1}, we must then have that r1 ≥ 1. Thus, C is contained

in B(z1, δ|z1|) and is mapped conformally onto B(0, 1) by H. Furthermore,

by (4.9), |Q(z)G′(z)| is large on C.

Next, let z0 ∈ C such that |G(z0)−G(z1)| < 1
4
ε. Then |H(z0)| = 2

ε
|G(z0)−

G(z1)| < 1
2
. Then since h is univalent on B(0, 1), there exists some w0 ∈

B(0, 1), such that h(w0) = z0. Further, |w0| < 1
2
, and so by the Koebe

distortion theorem (Theorem 1.9.1) we have,

4

27
|h′(0)| ≤ |h′(w0)| ≤ 12|h′(0)|. (4.12)

Then since H ′(z)h′(w) = 1 we have h′(w) = 1/H ′(z) for w ∈ B(0, 1), and

in particular, h′(0) = 1/H ′(z1) and h′(w0) = 1/H ′(z0). Also, by (4.11),

H ′(z) = 2
ε
G′(z), and so by (4.12) we have

1

12
|G′(z1)| ≤ |G′(z0)| ≤

27

4
|G′(z1)|.

4.3 Proof of Theorem 4.1.3

We need the following theorem, where f#(z) = |f ′(z)|
1+|f(z)|2 is the spherical

derivative of f .

Theorem 4.3.1 (Toppila and Winkler, [41]). Let f be a transcendental

meromorphic function of order λ such that δ(∞, f) > 0. Then

lim sup
z→∞, z∈E(f)

|z|f ](z)

T (|z|, f)
≥ A0δ(∞, f)(1 + λ)

where E(f) = {z : |f(z)| = 1} and A0 is a positive absolute constant.
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We now prove Theorem 4.1.3.

Proof of Theorem 4.1.3 Let 0 < α < 1 and let R be a large positive

constant. Let δ and ε be as in Lemma 4.2.1, with 1
1+δ

> α. Define functions

G and f1 by

G(z) =
f(z)

Q(z)
= 1 +

εf1(z)

16
. (4.13)

Then f1(z) = 16
ε
( f(z)

Q(z)
−1) = c1

f(z)
Q(z)

−c2 where cj denotes a positive constant

not depending on R. Then since f is a transcendental meromorphic func-

tion and since Q is a rational function, we have that f1 is a transcendental

meromorphic function.

Further, since Q is a rational function and f1 is a transcendental function,

we have by Theorem 1.2.1 and Theorem 1.2.2 that δ(∞, f1) > 0 since

f(z) = (c3f1(z) + c4)Q(z) and by Theorem 1.2.3, we have

0 < δ(∞, f) = δ(∞, (c3f1 + c4)Q)

= lim inf
r→∞

m(r, (c3f1 + c4)Q)

T (r, (c3f1 + c4)Q)

≤ lim inf
r→∞

m(r, c3f1 + c4) +m(r,Q) +O(1)

T (r, c3f1 + c4)− T (r,Q)−O(1)

= lim inf
r→∞

m(r, f1) +O(log r) +O(1)

T (r, f1)−O(log r)−O(1)

= δ(∞, f1).

Let λ be the order of f1, and let E(f1) = {z : |f1(z)| = 1}. Then by

Theorem 4.3.1, we have that

lim sup
z→∞, z∈E(f1)

|z|f ]
1(z)

T (|z|, f1)
≥ A0δ(∞, f1)(1 + λ),
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where A0 is a positive absolute constant. We note that for z ∈ E(f1) we

have that f ]
1(z) =

|f ′1(z)|
1+|f1(z)|2 =

|f ′1(z)|
2

. Then we have

lim sup
z→∞, z∈E(f1)

|z||f ′1(z)|
T (|z|, f1)

> d1 = A0δ(∞, f1),

and so there exists a sequence (ζn) in E(f1), ζn →∞ as n→∞, such that

|ζn||f ′1(ζn)|
T (|ζn|, f1)

> d1.

Thus we can choose z1 in E(f1) arbitrarily large, and in particular such

that |z1| > R, with

|z1||f ′1(z1)| > d1T (|z1|, f1). (4.14)

Next, since f(z) = (c3f1(z) + c4)Q(z) we have that

T (|z1|, f) = T (|z1|, (c3f1 + c4)Q)

≤ T (|z1|, c3f1 + c4) + T (|z1|, Q)

≤ T (|z1|, f1) +O(log |z1|),

and so, if R is large enough,

T (|z1|, f1) ≥ T (|z1|, f)−O(log |z1|) >
1

2
T (|z1|, f), (4.15)

since f is a transcendental function. Then since |G′(z)| = ε
16
|f ′1(z)|, we

have by (4.14) and (4.15) that

|G′(z1)| >
ε

16

d1

|z1|
T (|z1|, f1) >

d2

|z1|
T (|z1|, f), (4.16)

where d2 = ε
32
d1.

We recall that G(z) = 1 + εf1(z)
16

, and thus since z1 ∈ E(f1), we have that

|G(z1)−1| = ε
16
< ε

4
. Then by Lemma 4.2.1, z1 lies in a component C of the
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set {z : |G(z)−G(z1)| < 1
2
ε} such that C is contained in B(z1, δ|z1|). Also,

by Lemma 4.2.1, C is mapped conformally onto B(0, 1) by the function

H(z) = 2
ε
(G(z) − G(z1)). Then we can choose a point z2 in C such that

G(z2) = 1 and |G(z2)−G(z1)| < 1
4
ε. Furthermore, we have by (4.5) that,

1

12
|G′(z1)| ≤ |G′(z2)| ≤

27

4
|G′(z1)|,

and so by (4.16) we have

|G′(z2)| >
d3

|z1|
T (|z1|, f), (4.17)

where d3 = d2

12
. Then since we have by (4.3) that,

z2
f ′(z2)

f(z2)
= z2

G′(z2)

G(z2)
+ z2

Q′(z2)

Q(z2)
,

and since f(z2) = Q(z2) and G(z2) = 1, we have that∣∣∣∣z2
f ′(z2)

Q(z2)

∣∣∣∣ ≥ |z2G
′(z2)| −

∣∣∣∣z2
Q′(z2)

Q(z2)

∣∣∣∣ . (4.18)

Now since Q is a rational function with a pole of multiplicity p ≥ 1 at ∞,

we have that
∣∣∣zQ′(z)

Q(z)

∣∣∣ = O(1) as z → ∞. Since z2 ∈ B(z1, δ|z1|), we have

that |z1| ≤ |z1−z2|+ |z2| ≤ δ|z1|+ |z2|, which gives that
∣∣∣ z2

z1

∣∣∣ ≥ 1−δ. Then,

since 1
1+δ

> α, we also have that |z1| ≥ 1
1+δ

|z2| > α|z2|, and so by (4.17)

and (4.18), we have that∣∣∣∣z2
f ′(z2)

Q(z2)

∣∣∣∣ ≥ |z2G
′(z2)| −O(1)

≥ 1

2

∣∣∣∣z2

z1

∣∣∣∣ d3T (|z1|, f)

≥ 1− δ

2
d3T (|z1|, f)

≥ 1− δ

2
d3T (α|z2|, f).
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Then since d3 = ε
384
A0δ(∞, f) and A0 is an absolute constant, we have that

|f ′(z2)| > cδ(∞, f)
|Q(z2)|
|z2|

T (α|z2|, f).

where c is a positive constant depending only on α.

4.4 Proof of Theorem 4.1.5

We need the following theorem.

Theorem 4.4.1 (Langley and Zheng, [29]). Let f be a transcendental mero-

morphic function in the class B. If Q is a rational function with a pole of

multiplicity p ≥ 1 at ∞, then

m(r,
1

f −Q
) = O(log rT (r, f)) (4.19)

as r →∞ outside a set of finite measure.

We note that the Nevanlinna counting function N(r, 1
f−z

) counts the poles

of 1
f−z

, that is, the fixpoints of f . In [29], the following implication of

Theorem 4.4.1 is noted, namely, that N(r, 1
f−z

) cannot satisfy N(r, 1
f−z

) =

o(T (r, f)) as r → ∞. We extend this to a rational function Q such that

Q(∞) = ∞ and state the result as a corollary. We provide a proof for

completeness.

Corollary 4.4.2. Let f and Q be as in the statement of Theorem 4.1.5.

Then the Nevanlinna counting function N(r, 1
f−Q

), of points where f(z) =

Q(z), cannot satisfy N(r, 1
f−Q

) = o(T (r, f)) as r → ∞. Also, for σ > 0,

we may choose arbitrarily large r such that there are at least 2rσ Q-points

zj, such that f(zj) = Q(zj), in the annulus 1
2
r ≤ |z| ≤ r.
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Proof Since Q is a rational function, we have by (1.12) and Theorem 1.2.1,

that

T (r, f −Q) ≤ T (r, f) + T (r,Q) +O(1) = T (r, f) +O(log r) +O(1),

and also that

T (r, f) = T (r, f−Q+Q) ≤ T (r, f−Q)+T (r,Q)+O(1) = T (r, f−Q)+O(log r)+O(1).

Then we have that

|T (r, f)− T (r, f −Q)| ≤ O(log r) +O(1). (4.20)

Next, by (1.15), T (r, 1
f−Q

) = T (r, f −Q)+O(1) and so (4.20) gives us that

|T (r, f)− T (r,
1

f −Q
)−O(1)| ≤ O(log r) +O(1). (4.21)

Then since T (r, 1
f−Q

) = N(r, 1
f−Q

) +m(r, 1
f−Q

), we have that

|T (r, f)−T (r,
1

f −Q
)−O(1)| ≥ |T (r, f)−N(r,

1

f −Q
)|−|m(r,

1

f −Q
)+O(1)|.

We may assume by (4.19) that m(r, 1
f−Q

) = O(log rT (r, f)) as r → ∞,

with r 6∈ E, for some set E of finite measure. Then by (4.21) and Theorem

4.4.1 we have

|T (r, f)−N(r,
1

f −Q
)| ≤ O(log r) +O(1) + |m(r,

1

f −Q
) +O(1)|

= O(log r) +O(1) +O(log rT (r, f)), r 6∈ E.

Then since f is a transcendental function, we have that N(r, 1
f−Q

) cannot

satisfy N(r, 1
f−Q

) = o(T (r, f)) as r →∞.

Next we show that all large zj such that f(zj) = Q(zj) are simple zeros

of f − Q. Let z0 be large and suppose f(z0) = Q(z0). Then since f and
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Q satisfy the hypotheses of Lemma 4.2.1 and Lemma 4.2.2, we have as in

(4.6) that

|z0f
′(z0)/f(z0)| > R1 = c log |Q(z0)|, (4.22)

where c is a positive constant. Also, since Q is a rational function with

a pole of multiplicity p ≥ 1 at ∞, we have that
∣∣∣Q′(z0)

Q(z0)

∣∣∣ ≤ p
|z0|(1 + o(1)).

Then, by (4.22) and since f(z0) = Q(z0), we have that

|f ′(z0)| >
R1

|z0|
|Q(z0)| ≥

p

|z0|
(1 + o(1))|Q(z0)| ≥ |Q′(z0)|,

since we can choose z0 so large that p/R1 is very small. Then this gives

that f ′(z0)−Q′(z0) 6= 0 and so z0 is a simple zero of f −Q.

Suppose now that r0 ≥ 0 is such that for r ≥ r0, there are less than 2rσ

points zj, such that f(zj) = Q(zj), in r
2
≤ |z| ≤ r. Then for m ∈ N we

have that

n

(
2mr0,

1

f −Q

)
< n

(
r0,

1

f −Q

)
+2
[
(2mr0)

σ + (2m−1r0)
σ + . . .+ (2r0)

σ
]
.

(4.23)

Let r be large, with, in particular, r > r0. Then there exists m ∈ N such

that 2m−1r0 ≤ r < 2mr0. Then by (4.23) we have

n

(
r,

1

f −Q

)
≤ n

(
2mr0,

1

f −Q

)
< n

(
r0,

1

f −Q

)
+ 2

[
(2mr0)

σ + (2m−1r0)
σ + . . .+ (2r0)

σ
]

= c1 + 2rσ
0

[
2σ(2σm − 1)

2σ − 1

]
≤ c1 + c2r

σ,

where c1 = n(r0,
1

f−Q
) and c2 is a positive constant. Then we have

N(r, 1
f−Q

) = O(rσ).
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Next, by (4.19), we may choose r ≤ r1 ≤ 2r such that m(r1,
1

f−Q
) =

O(log r1T (r1, f)). Then

T (r1,
1

f −Q
) = N(r1,

1

f −Q
) +m(r1,

1

f −Q
)

= O(rσ
1 ) +O(log r1T (r1, f)),

and so,

T (r,
1

f −Q
) ≤ T (r1,

1

f −Q
) = O(rσ).

Therefore we have that T (r, f) = O(rσ), and thus,

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
≤ σ.

This is a contradiction since ρ(f) > σ. Therefore, we may choose arbitrarily

large r such that there are at least 2rσ points zj such that f(zj) = Q(zj)

in the annulus 1
2
r ≤ |z| ≤ r.

We now prove Theorem 4.1.5.

Proof of Theorem 4.1.5 Let f and Q be as in the statement of Theorem

4.1.5. Choose σ with ρ(f) > σ > µ. Since ρ(f) > 0, we have that f is a

transcendental function, and so by Corollary 4.4.2, we can choose arbitrarily

large r such that f has at least 2rσ points zj such that f(zj) = Q(zj) in

the annulus 1
2
r ≤ |z| ≤ r.

Suppose δ is a small positive constant. Let G(z) = f(z)/Q(z) be as defined

in Lemma 4.2.1. Then for each zj we have that G(zj) = 1. Then by Lemma

4.2.1, we have that to each zj there corresponds a component Cj of the set

{z : |G(z) − 1| < 1
2
ε}, and that each Cj is contained in B(zj, δ|zj|). Then
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choosing δ small enough gives that each Cj lies in the annulus 1
4
r ≤ |z| ≤ 2r.

These Cj are disjoint simple islands since, by Lemma 4.2.1, they are each

mapped conformally onto B(0, 1) by the function Hj(z) = 2
ε
(G(z)−G(zj)).

Let hj : B(0, 1) → Cj be the inverse function of Hj. Then hj is a univalent

function on B(0,1) and by the Koebe distortion theorem (Theorem 1.9.1)

we have that for 0 < r0 < 1,

c1|h′j(0)| ≤ max
|w|≤r0

|h′j(w)| ≤ c2|h′j(0)|,

where c1 and c2 are positive constants, depending only on r0.

In particular, choose r0 = 1
2

and let Ĉj = hj(B(0, 1
2
)). Then |h′j(w)| ≥

c1|h′j(0)| for |w| ≤ 1
2
. Then since h′j(w) = 1/H ′

j(z) where z = hj(w), and

in particular since h′j(0) = 1/H ′
j(zj) = ε/2G′(zj) we have that

|h′j(w)| ≥ c3/|G′(zj)|, for |w| ≤ 1

2
, (4.24)

where, from here on, ci denotes a positive constant which does not depend

on r or σ.

Next, since the area of the annulus 1
4
r ≤ |z| ≤ 2r is c4r

2, and since there

are at least 2rσ disjoint components Ĉj in the annulus, we have that at

least rσ of these Ĉj have area at most c5r
2−σ. Then, for these zj, we have

zj
f ′(zj)

f(zj)
= zj

G′(zj)

G(zj)
+ zj

Q′(zj)

Q(zj)
,

and since f(zj) = Q(zj) and G(zj) = 1, we have that∣∣∣∣zj
f ′(zj)

Q(zj)

∣∣∣∣ ≥ |zjG
′(zj)| −

∣∣∣∣zj
Q′(zj)

Q(zj)

∣∣∣∣ . (4.25)
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Now since Q is a rational function with a pole of multiplicity p ≥ 1 at ∞,

we have that
∣∣∣zQ′(z)

Q(z)

∣∣∣ = O(1) as z →∞. Therefore, (4.25) gives that∣∣∣∣zj
f ′(zj)

Q(zj)

∣∣∣∣ ≥ |zjG
′(zj)| −O(1). (4.26)

Now by [34, p.4] and (4.24) we have that

area of Ĉj =

∫ ∫
B(0, 1

2
)

|h′(w)|2du dv ≥ c3/|G′(zj)|2.

And so, since the area of Ĉj is at most c5r
2−σ we have that 1/|G′(zj)|2 ≤

c5r
2−σ, which gives |G′(zj)| ≥ c6r

σ/2−1. Then by (4.26) and since r ≥ |zj|,

and zj is large, and p ≥ 1, we have∣∣∣∣zj
f ′(zj)

Q(zj)

∣∣∣∣ ≥ c7r
σ/2 −O(1)

≥ c8|zj|σ/2.

Then since |Q(zj)| > c9|zj|p, we have that

|f ′(zj)| > c10|zj|σ/2+p−1

≥ |zj|µ/2+p−1.



Chapter 5

Some results in connection

with composite functions

In this chapter, we prove a result concerning normal families in connection

with composite functions. We also prove several results concerning the

value distribution of composite functions.1

Let k ∈ N and let f be a transcendental entire function f with ρ(f) < 1/k.

First, we prove a normal families result, namely, the family of analytic

functions g such that (f ◦ g)(k)(z) +
∑k−1

j=0 aj(z)(f ◦ g)(j)(z) 6= a(z) in a

domain Ω, where a0, . . . , ak−1, a are analytic functions in Ω, is a normal

family. Second, we prove several value distribution results for (f ◦ g)(k),

where f and k are as above, and g is a nonconstant entire function, and for

(f ◦ g)(k) −Q, where f and k are as above, and g and Q are polynomials,

g nonconstant.

1The results in this chapter have been accepted for publication by Journal of Math-

ematical Analysis and Applications, see [12].
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5.1 Introduction

In [23], Hinchliffe proves the following result which provides a criterion for

normal families in connection with composite functions.

Theorem 5.1.1 (Hinchliffe, [23]). Let f be a transcendental meromorphic

function in the plane, and let Ω be a domain in C. If C∗ \ f(C) = ∅, {∞}

or {α, β}, where α and β are two distinct values in C∗ = C ∪ {∞}, then

the family

G = {g : g is analytic in Ω, f ◦ g has no fixpoints in Ω}

is a normal family in Ω.

We note that this criterion is that (f ◦g)(z) 6= z in Ω, or that (f ◦g)(0)(z)−

a(z) is nonvanishing in Ω, where a(z) ≡ z, for g ∈ G. Theorem 5.1.1 then

motivates the idea of a criterion for normal families in connection with

composite functions involving (f ◦ g)(k)(z) 6= 0, for k ∈ N. This idea is

reinforced by the following theorem and corollary by Langley and Zheng.

We provide a proof of the corollary for completeness.

Theorem 5.1.2 (Langley and Zheng, [29]). Let k ∈ N. Suppose that f

and g are transcendental entire functions of finite order. Suppose also that

N(r, 1/(f ◦ g)(k)) = O(T (r, g)) (n.e.) . (5.1)

Then

T (r, f) 6= o(r1/k) as r →∞ .
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Corollary 5.1.3. Let k ∈ N. Suppose that f is a transcendental entire

function such that ρ(f) < 1/k. Suppose that g is an entire function of

finite order such that

(f ◦ g)(k)(z) 6= 0

on C. Then g is a polynomial.

Proof Since

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
<

1

k

we know that for some ε > 0 and r0 we have,

log+ T (r, f)

log r
<

1

k
− ε, r ≥ r0,

which gives that T (r, f) = o(r1/k) as r →∞.

Next, since (f ◦g)(k)(z) 6= 0 on C, we have that N(r, 1/(f ◦g)(k)) = 0. Then

since (5.1) is trivially satisfied, we must have that g is not a transcendental

function. Since g is entire, g is a polynomial.

We note that the example f(z) = ez shows that Corollary 5.1.3 can-

not be strengthened to ρ(f) ≤ 1/k, since ρ(f) = 1 and (f ◦ g)′(z) =

f ′(g(z)).g′(z) = eg(z).g′(z) which is nonvanishing for many entire functions

of finite order, for example g(z) = ez.

Thus, given a transcendental function f with ρ(f) < 1/k for some k ∈ N,

the Bloch Principle (see § 1.5), Theorem 5.1.1 and Corollary 5.1.3 motivate

the question whether the family G of analytic functions g in a domain Ω,

such that (f ◦ g)(k)(z) 6= 0 in Ω, or more generally, (f ◦ g)(k)(z) 6= Q(z) for

some analytic function Q, is a normal family. This is true, and is a special

case of the following result.
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Theorem 5.1.4. Let k ∈ N. Let f be a transcendental entire function with

ρ(f) < 1/k. Let a0, . . . , ak−1, a be analytic functions in a domain Ω. Then

G = {g : g is analytic in Ω, (f ◦ g)(k)(z) +
k−1∑
j=0

aj(z)(f ◦ g)(j)(z) 6= a(z) in Ω}

is a normal family in Ω.

In the proof of Theorem 5.1.4, we use the following theorem, which is an

interesting value distribution result in its own right.

Theorem 5.1.5. Let k be an integer, k ≥ 2. Let f be a transcendental

entire function with ρ(f) < 1/k. Let g and Q be polynomials, with g

nonconstant. Then

(f ◦ g)(k) −Q

has infinitely many zeros.

We note that in Theorem 5.1.5, the k = 1 case is omitted. This is due

to the fact that we apply a theorem of cos πρ type (Theorem 5.2.3), and

must have ρ(f) < 1/2 in order to do so. However, if Q ≡ 0, we can prove

Theorem 5.1.5 for k = 1 for the extended case where g is a nonconstant

entire function. We state the result as follows.

Theorem 5.1.6. Let f be a transcendental entire function with ρ(f) < 1.

Let g be a nonconstant entire function. Then (f ◦ g)′ has infinitely many

zeros.

We note that the example f(z) = ez and g(z) = z shows that Theorem 5.1.6

cannot be strengthened to ρ(f) ≤ 1/k, since ρ(f) = 1 and (f ◦ g)′(z) = ez

which is nonvanishing in C.
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From Theorem 5.1.5 and Theorem 5.1.6, we prove the following corollary

which strengthens Corollary 5.1.3 and which is used in the proof of Theorem

5.1.4.

Corollary 5.1.7. Let k ∈ N. Suppose that f is a transcendental entire

function such that ρ(f) < 1/k. Suppose that g is an entire function of

finite order such that

(f ◦ g)(k)(z) 6= 0

on C. Then g is constant.

Finally, we note that Theorem 5.1.5 and Theorem 5.1.6 have the following

corollaries.

Corollary 5.1.8. Let k be an integer, k ≥ 2. Let f be a transcendental

entire function with ρ(f) < 1/k. Let α ∈ C. Then for every nonconstant

entire function g,

(f ◦ g)(k) − α

has infinitely many zeros.

Again, although the k = 1 case is omitted in Corollary 5.1.8, we can prove

the k = 1 case when g is a transcendental entire function. We state the

result as follows.

Corollary 5.1.9. Let f be a transcendental entire function with ρ(f) < 1.

Let α ∈ C. Then for every transcendental entire function g,

(f ◦ g)′ − α

has infinitely many zeros.
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Since the proof of Theorem 5.1.4 depends on Theorem 5.1.5, Theorem 5.1.6

and Corollary 5.1.7, we prove these results in § 5.2, § 5.3 and § 5.4 respec-

tively. We then prove Theorem 5.1.4 in § 5.5. Finally, we prove Corollary

5.1.8 and Corollary 5.1.9 in § 5.6.

5.2 Proof of Theorem 5.1.5

The following lemma is a version of Taylor’s theorem (Theorem 1.10.7) and

is easily proved by induction.

Lemma 5.2.1. If f is an entire function and a ∈ C, then for k ∈ N we

have

f(z) = f(a)+(z−a)f ′(a)+. . .+(z − a)k−1

(k − 1)!
f (k−1)(a)+

∫ z

a

(z − t)k−1

(k − 1)!
f (k)(t)dt.

We also need the following lemma. We include the proof here for complete-

ness.

Lemma 5.2.2. Let k ∈ N. Let P1 and P2 be polynomials of degree m and

n respectively, with m ∈ N∪{0} and n ∈ N. Then we can choose a straight

line Γ from 0 to ∞ such that

I =

∣∣∣∣∫ z

0

(z − t)k−1

(k − 1)!
P1(t)e

P2(t)dt

∣∣∣∣ ≤ c|z|k+m,

as z →∞ along Γ, for some positive constant c.

Proof Since P2 is a polynomial of degree n we can write

P2(t) = bnt
n + bn−1t

n−1 + . . .+ b1t+ b0,
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where b0, . . . , bn ∈ C. Then the behaviour of P2 is dominated by the leading

term bnt
n. Setting t = reiθ, we have that bnt

n = bnr
neinθ and so we have

that

|ebntn| = |ebnrneinθ | = eRe(bnrneinθ) = e(α cos(nθ)+β sin(nθ))rn

for some α, β ∈ R, not both 0.

Choose θ such that α cos(nθ) + β sin(nθ) = −d < 0. Let Γ be the straight

line z = reiθ, for 0 ≤ r <∞. Then for t on Γ between 0 and z we have

|eP2(t)| = eRe(bnrneinθ+bn−1rn−1ei(n−1)θ+...+b0)

= e−drn+O(rn−1)

→ 0

as r → ∞, for fixed θ as above. Thus, we have that |eP2(t)| ≤ c0 for some

positive constant c0.

Also, since P1 has degree m, we have that for t on Γ between 0 and z,

|P1(t)| ≤ c1(1 + |t|m) for some positive constant c1. Thus we have that

I ≤
∫ z

0

|z − t|k−1

(k − 1)!
|P1(t)|

∣∣eP2(t)
∣∣ |dt|

≤ c0c1|z|k−1

(k − 1)!

∫ z

0

(1 + |t|m)|dt|

≤ c2|z|k+m

as z →∞ on Γ, for some positive constant c2, since |z − t| ≤ |z| for t on Γ

between 0 and z.

Finally, we need a theorem of cosπρ type, as follows. We refer the reader

to [2] for further reading.
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Theorem 5.2.3 ([2]). Let f be a nonconstant entire function with ρ(f) =

ρ < 1/2. For r > 0, define A(r) and B(r) as follows

A(r) = inf{log |f(z)| : |z| = r}

B(r) = sup{log |f(z)| : |z| = r} .

If ρ < α < 1/2, then

log dens{r : A(r) > (cosπα)B(r)} ≥ 1− ρ/α

where if E is a subset of (1,+∞) the lower logarithmic density of E is

defined by

log dens(E) = lim inf
r→∞

(∫ r

1

χ(t)dt/t

)
/ log r

where χ(t) is the characteristic function of E.

We now prove Theorem 5.1.5.

Proof of Theorem 5.1.5 We use a proof by contradiction.

Suppose that (f ◦ g)(k) −Q has m zeros in C, for some m ∈ N∪ {0}. Then

by Theorem 1.1.2, since f is an entire function with ρ(f) < ∞, and since

g is a polynomial, we have that ρ(f ◦ g) <∞. Then, by Theorem 1.2.8, we

have that ρ((f ◦ g)(k)) <∞ also, and since Q is a polynomial, we have that

ρ((f ◦ g)(k) −Q) <∞ also. Then by Theorem 1.1.3, we can write

(f ◦ g)(k)(z)−Q(z) = P1(z)e
P2(z)

for some polynomials P1 and P2 of degree m and n respectively, with m as
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above and n ∈ N. Then, by Lemma 5.2.1, we have for a = 0 that

(f ◦ g)(z) = (f ◦ g)(0) + z(f ◦ g)′(0) + . . .+
zk−1

(k − 1)!
(f ◦ g)(k−1)(0) +

+

∫ z

0

(z − t)k−1

(k − 1)!
(f ◦ g)k(t)dt

= Qk−1(z) +

∫ z

0

(z − t)k−1

(k − 1)!
(Q(t) + P1(t)e

P2(t))dt,

where Qk−1 is a polynomial of degree at most k − 1. Then

|(f◦g)(z)| ≤ |Qk−1(z)|+
∣∣∣∣∫ z

0

(z − t)k−1

(k − 1)!
Q(t)dt

∣∣∣∣+∣∣∣∣∫ z

0

(z − t)k−1

(k − 1)!
P1(t)e

P2(t)dt

∣∣∣∣ .
(5.2)

For the remainder of this proof, we use cj to denote positive constants.

Since Qk−1 is a polynomial of degree at most k − 1, we have that

|Qk−1(z)| ≤ c1|z|k−1, (5.3)

as z →∞.

Since Q is a polynomial of degree q say, q ≥ 0, we have that |Q(t)| ≤ c2|t|q

as t → ∞ on the straight line Γ between 0 and z. Then we have that

integrating along the straight line Γ between 0 and z,∣∣∣∣∫ z

0

(z − t)k−1

(k − 1)!
Q(t)dt

∣∣∣∣ ≤ c2|z|k−1

(k − 1)!

∫ z

0

O(|t|q)dt ≤ c3|z|k+q, (5.4)

as z →∞, since |z − t| ≤ |z| for t on the straight line Γ between 0 and z.

In particular, by Lemma 5.2.2, we can choose a straight line path Γ from 0

to ∞ such that ∣∣∣∣∫ z

0

(z − t)k−1

(k − 1)!
P1(t)e

P2(t)dt

∣∣∣∣ ≤ c4|z|k+m
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as z →∞ along Γ. Then by (5.2), (5.3) and (5.4), we have that

|(f ◦ g)(z)| ≤ c5|z|k+q+m

as z →∞ along Γ. Then we have that

log |(f ◦ g)(z)| ≤ c6 log |z| (5.5)

as z →∞ along Γ.

Since ρ(f) = ρ < 1/2, we can apply Theorem 5.2.3 to f . For r > 0, define

A(r) = inf{log |f(z)| : |z| = r}

B(r) = sup{log |f(z)| : |z| = r}.

Then for ρ < α < 1/2 we have

log dens{r : A(r) > (cosπα)B(r)} ≥ 1− ρ/α. (5.6)

Next, since g is a polynomial and is nonconstant, we have that |g(z)| ≥ c7|z|

as z →∞. Then we have that

log |z| ≤ c8 log |g(z)|

as z →∞. Then by (5.5), we have that

log |f(g(z))| = log |(f ◦ g)(z)| ≤ c6 log |z| ≤ c9 log |g(z)| (5.7)

as z → ∞ along Γ. Now choose R large such that R ∈ {r : A(r) >

(cosπα)B(r)}. Choose w such that |w| = R and w = g(z) for some z on

Γ. Then by (5.7), we have that

(cosπα)B(R) < A(R) ≤ log |f(w)| ≤ c9 logR.

This is a contradiction since f is a transcendental function, which implies

by Theorem 1.2.2 that B(R)/ logR→ +∞ as R→∞.
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5.3 Proof of Theorem 5.1.6

We need the following lemma from Nevanlinna theory.

Lemma 5.3.1. If f is a transcendental entire function with ρ(f) < 1, then

f ′ has infinitely many zeros.

Proof of Theorem 5.1.6 Since g is a nonconstant entire function, we

have by Picard’s Theorem (Theorem 1.10.4) that g omits at most one value

in C. Since f is a transcendental entire function with ρ(f) < 1, we have by

Lemma 5.3.1 that f ′ has infinitely many zeros. Then since g omits at most

one of these zeros, we have that f ′(g(z)) has infinitely many zeros. There-

fore, since (f ◦ g)′(z) = f ′(g(z)).g′(z), we have that (f ◦ g)′ has infinitely

many zeros.

5.4 Proof of Corollary 5.1.7

Proof of Corollary 5.1.7 By Corollary 5.1.3, we have that g is a poly-

nomial. However, by Theorem 5.1.6 for k = 1 and by Theorem 5.1.5 for

k ≥ 2, if g is a nonconstant polynomial then (f ◦ g)(k) has infinitely many

zeros. Therefore g is constant.

5.5 Proof of Theorem 5.1.4

First we state, and prove for completeness, the following result, which is a

version of Hurwitz’ theorem (Theorem 1.10.2).
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Lemma 5.5.1. Let (fn) be a sequence of analytic functions on a domain

D, which converge spherically uniformly on compact subsets to a function

f : D → C. Let (sn) be a sequence of analytic functions tending uniformly

to 0 on some disc B(α, δ) = {z : |z − α| < δ} ⊆ D, for some δ > 0. If

f 6≡ 0 and f(α) = 0, then for large n, we have fn(z) = sn(z) for some z

near α.

Proof Choose r > 0 small, with r < δ, and consider the circle S(α, r) =

{z : |z − α| = r}. Since f 6≡ 0 and f(α) = 0, there exists c > 0 such that

|f(z)| > c on S(α, r). Then since sn(z) → 0 on B(α, δ) and fn(z) → f(z)

as n → ∞, there exists n0 ∈ N such that |fn(z) − f(z) − sn(z)| < |f(z)|

on S(α, r) for n ≥ n0. Then by Rouché’s theorem (Theorem 1.10.6), f and

f + fn − f − sn = fn − sn have the same number of zeros inside S(α, r).

Then, since f(α) = 0, there exists z ∈ B(α, r) such that fn(z) = sn(z).

Next, we note that Lemma 5.5.1 has the following corollary, which we

will use in the proof of Theorem 5.1.4. Again, we provide a proof for

completeness.

Corollary 5.5.2. Let k ∈ N. Let Ω be the open unit disc B(0, 1). Let a be

an analytic function on Ω. Let (fn) be a sequence of analytic functions on

Ω, such that fn(z) 6= a(z) on Ω. Let (zn) be a sequence of points tending

to z0 ∈ Ω, and let (ρn) be a positive sequence tending to 0. Suppose g is an

entire function such that

lim
n→∞

ρk
nfn(zn + ρnz) = g(z)

locally uniformly on C. Then either g ≡ 0 on C, or g(z) 6= 0 on C.
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Proof Suppose there exists α ∈ C such that g(α) = 0. If g ≡ 0, then

we are done. Otherwise, we note that zn + ρnz ∈ Ω for n large, and

that (ρk
nfn(zn + ρnz)) is a sequence of analytic functions which converge

to g locally uniformly on C. We note also that since a is analytic, and

therefore bounded near z0, and since (ρk
n) is a sequence tending to 0, then(

ρk
na(zn + ρnz)

)
is a sequence of functions tending to 0, for n large, on

B(α, δ), for some δ > 0. Then by Lemma 5.5.1, we obtain ρk
nfn(zn +ρnz) =

ρk
na(zn + ρnz) for n large, for some z near α. Since (ρk

n) is a positive

sequence, we therefore have that fn(zn + ρnz) = a(zn + ρnz), which is a

contradiction since zn + ρnz ∈ Ω for n large.

We now prove Theorem 5.1.4.

Proof of Theorem 5.1.4 Since normality is a local property, we can as-

sume, without loss of generality, that Ω is a disc and a0, . . . , ak−1, a are

bounded on Ω. Using a linear change of variables h(z) = g(α + βz), and

the fact that (f ◦ h)(j)(z) = βj(f ◦ g)(j)(α + βz), for a suitable choice of

α, β ∈ C, we may assume that Ω is the open unit disc B(0, 1). Suppose

that G is not normal on Ω.

Since G is a family of analytic functions, we can apply the Pang-Zalcman

Lemma (Lemma 1.5.3) taking α = k = 0. Then there exist r ∈ (0, 1), points

zn with |zn| < r, a sequence of functions (gn) in G, a positive sequence ρn

tending to 0 and a nonconstant entire function g such that

hn(z) = gn(zn + ρnz) → g(z) (5.8)

locally uniformly on C, with respect to the spherical metric, with g](z) ≤ 1.
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Then since g has bounded spherical derivative, we have by Lemma 1.4.1

that g is a function of finite order.

Next, since f is an entire function, we have that

(f ◦ hn)(z) → (f ◦ g)(z),

locally uniformly on C. Then by the Weierstrass theorem (Theorem 1.10.8),

for j ∈ N,

(f ◦ hn)(j)(z) = ρj
n(f ◦ gn)(j)(zn + ρnz) → (f ◦ g)(j)(z), (5.9)

locally uniformly on C. However, since each gn ∈ G, we have that for

zn + ρnz ∈ Ω,

Fn(z) = (f◦gn)(k)(zn+ρnz)+
k−1∑
j=0

aj(zn+ρnz)(f◦gn)(j)(zn+ρnz) 6= a(zn+ρnz).

Then we have that

ρk
nFn(z) = ρk

n(f ◦ gn)(k)(zn + ρnz) +
k−1∑
j=0

ρk−j
n aj(zn + ρnz)ρ

j
n(f ◦ gn)(j)(zn + ρnz)

6= ρk
na(zn + ρnz).

Next, since ρk−j
n → 0 for j = 0, . . . , k − 1, and since the aj are assumed

bounded on Ω, we have by (5.9) that

lim
n→∞

ρk
nFn(z) = (f ◦ g)(k)(z)

locally uniformly on C. However, we can write Fn(z) = Gn(zn + ρnz)

where Gn(z) 6= a(z) on Ω, and so we have by Corollary 5.5.2, that either

(f ◦ g)(k)(z) ≡ 0 on C, or (f ◦ g)(k)(z) 6= 0 on C.

Case 1: (f ◦ g)(k)(z) ≡ 0 on C.

Then integrating this equation k − 1 times, we have that (f ◦ g)′(z) =
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Pk−2(z), where Pk−2 is a polynomial of degree at most k−2. Since Pk−2 has

at most k− 2 zeros, counting multiplicities, (f ◦ g)′(z) = f ′(g(z)).g′(z) has

also. However, f is a transcendental entire function and ρ(f) < 1, and so by

Lemma 5.3.1, we have that f ′ has infinitely many zeros on C. Then since g

is a nonconstant entire function, we must have that g omits infinitely many

zeros of f ′ on C, which is a contradiction by Picard’s theorem (Theorem

1.10.4).

Case 2: (f ◦ g)(k)(z) 6= 0 on C.

Suppose first that k = 1. Then by Theorem 5.1.6, we have that (f ◦ g)′ has

infinitely many zeros on C and so we have a contradiction.

Suppose second that k ≥ 2. Then since f is a transcendental entire function

with ρ(f) < 1/k and g is a nonconstant entire function of finite order, we

have by Corollary 5.1.7 that (f ◦ g)(k) has at least one zero in C. Therefore

we have a contradiction.

Therefore G is a normal family.

5.6 Proof of Corollary 5.1.8 and Corollary

5.1.9

Proof of Corollary 5.1.8 Suppose that (f ◦ g)(k) − α has finitely many

zeros.

Suppose first that g is a function of finite order. If g is a polynomial, then we

have a contradiction by Theorem 5.1.5. If g is a transcendental function,

then since N(r, 1/((f ◦ g)(k) − α)) = O(log r) = o(T (r, g)) by (1.7) and
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Theorem 1.2.2, and since T (r, f) = o(r1/k), then we have a contradiction

by Theorem 5.1.2.

Suppose second that g is a function of infinite order. Then by Lemma 1.4.1,

we have that g has unbounded spherical derivative. That is, we can choose

a sequence of points (αn) tending to ∞, such that g](αn) →∞ as n→∞.

Then the family of functions {gn(z) = g(αn + z) : n ∈ N} is not a normal

family on the open unit disc B(0, 1). Then by Theorem 5.1.4 we have a

contradiction.

Proof of Corollary 5.1.9 Suppose that (f ◦ g)′ − α has finitely many

zeros. If g is a function of finite order, then by the argument in Corollary

5.1.8, we have that g is a polynomial. This is a contradiction since g is

a transcendental function. If g is a function of infinite order, then by the

argument in Corollary 5.1.8, we have a contradiction by Theorem 5.1.4.
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Nullstellen meromorpher Funktionen und deren Ableitungen. Math.

Ann., 225(2):145–154, 1977.

[21] W. K. Hayman. Picard values of meromorphic functions and their

derivatives. Ann. of Math. (2), 70:9–42, 1959.

[22] W. K. Hayman. Meromorphic functions. Oxford Mathematical Mono-

graphs. Clarendon Press, Oxford, 1964.

[23] J. D. Hinchliffe. Normality and fixpoints of analytic functions. Proc.

Roy. Soc. Edinburgh Sect. A, 133(6):1335–1339, 2003.

[24] E. L. Ince. Ordinary differential equations. Dover Publications, New

York, 1944.



BIBLIOGRAPHY 109

[25] Ilpo Laine. Nevanlinna theory and complex differential equations, vol-

ume 15 of de Gruyter Studies in Mathematics. Walter de Gruyter &

Co., Berlin, 1993.

[26] J. K. Langley. The Tsuji characteristic and zeros of linear differential

polynomials. Analysis, 9(3):269–282, 1989.

[27] J. K. Langley. An application of the Tsuji characteristic. J. Fac. Sci.

Univ. Tokyo Sect. IA Math., 38(2):299–318, 1991.

[28] J. K. Langley. Proof of a conjecture of Hayman concerning f and f ′′.

J. London Math. Soc. (2), 48(3):500–514, 1993.

[29] J. K. Langley and J. H. Zheng. On the fixpoints, multipliers and value

distribution of certain classes of meromorphic functions. Ann. Acad.

Sci. Fenn. Math., 23(1):133–150, 1998.

[30] Xuecheng Pang. Shared values and normal families. Analysis (Mu-

nich), 22(2):175–182, 2002.

[31] Xuecheng Pang and Lawrence Zalcman. Normal families and shared

values. Bull. London Math. Soc., 32(3):325–331, 2000.
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