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Abstract

Based on a number of experimentally verified physical observations, it is argued that
the standard principles of quantum mechanics should be applied to the Universe as a
whole. Thus, a paradigm is proposed in which the entire Universe is represented by a pure
state wavefunction contained in a factorisable Hilbert space of enormous dimension, and
where this statevector is developed by successive applications of operators that correspond
to unitary rotations and Hermitian tests. Moreover, because by definition the Universe
contains everything, it is argued that these operators must be chosen self-referentially; the
overall dynamics of the system is envisaged to be analogous to a gigantic, self-governing,
quantum computation. The issue of how the Universe could choose these operators with-
out requiring or referring to a fictitious external observer is addressed, and this in turn
rephrases and removes the traditional Measurement Problem inherent in the Copenhagen
interpretation of quantum mechanics.

The processes by which conventional physics might be recovered from this fundamental,
mathematical and global description of reality are particularly investigated. Specifically,
it is demonstrated that by considering the changing properties, separabilities and factori-
sations of both the state and the operators as the Universe proceeds though a sequence of
discrete computations, familiar notions such as classical distinguishability, particle physics,
space, time, special relativity and endo-physical experiments can all begin to emerge from
the proposed picture. A pregeometric vision of cosmology is therefore discussed, with all
of physics ultimately arising from the relationships occurring between the elements of the
underlying mathematical structure. The possible origins of observable physics, including
physical objects positioned at definite locations in an arena of apparently continuous space
and time, are consequently investigated for a Universe that incorporates quantum theory
as a fundamental feature.

Overall, a framework for quantum cosmology is introduced and explored which at-
tempts to account for the existence of time, space, matter and, eventually, everything else

in the Universe, from a physically consistent perspective.

Keywords: Quantum cosmology, Quantum computation, Pregeometry, Emergence, Fac-
torisation and Entanglement, Qubit field theory, Quantum Causal sets, Dis-
crete time, Information Exchange, Subregisters, Endo-physics, Self-Referential

Quantum automata.
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1 Introduction

Time permeates just about every sphere of life. Indeed, human civilisations are dominated
by regularising and synchronising the events in the surrounding World, and it is easy to
argue that without agreeing on a common standard of time, society would be unable to
function in the way that it does.

In fact, time has played a crucial role in all of Mankind’s development. From agri-
cultural dependencies on the cyclicity of the Sun, to the machine timings that structured
the Industrial Revolution; from the variable ‘¢’ present in most of the equations used in
science and engineering, to the parameter vital in rationalising the study of history; from
the timetables essential for efficient national and global travel, to the Time Machines of
literature and imagination; from the rhythms governing the lives of animals and plants,
to the cadences of music and speech; from the measurements necessary for road safety
laws, to the quantity specified with pinpoint accuracy when coordinating extraterrestrial
exploration; time plays a role in everything.

Moreover, human life often appears obsessed with the passage of time. Modern society
frequently revolves around questions such as “When is...?”, “What time did...?”, “How long
until...?” and so on, and the ever present threat of mortality seems to heighten the sense
that time is a precious commodity to be ‘saved’ or ‘made the most of’ wherever possible.
Time is something that employers buy, and the cautious bide. Time is something that
‘waits for no man’, but can appear to ‘fly’, drag’ or ‘stand still’. Time is even something
whose effects medical research attempts to ‘hold back’.

Even primitive Man recognised the importance of the nature of time for his continued
existence. Basic subsistence and the quest for food relied heavily upon an understand-
ing of the temporal durations of the seasons, and many archaeologists now believe that
ancient monuments such as Stongehenge and the Egyptian Pyramids were used partly as
astronomical calendars. Furthermore, the mystical significance often attached to the lunar
cycle, and the magical rituals associated with mid-summer and mid-winter in, amongst
others, druid and pagan cultures, indicate just how important the continual ‘re-birth’ of
time was taken to be in early society. Indeed, over 3000 years ago Greek mythology talked
of Chronos, the personification of time and father to all Olympian gods. In fact, time still
plays crucial roles in the sacred texts of the current major World religions: the Creation
story of the Judaic texts is told to take place over a period of seven days, whilst the Fast-
ern religions featured in the Hindu and Buddhist scriptures describe the eternal, cyclic
nature of existence. Indeed, the act of Creation itself concerns the very origins of time;
the Bible even starts with the words “In the beginning...”.

The actual quantification of time is also something that has proved essential in the



development of society. Its accurate measurement has therefore keenly concerned inventors
and engineers since ancient civilisation, from the historical use of sundials, waterclocks,
hour glasses and candles, through to the mechanical world of clockwork gears and springs,
and finally ending up in the modern age of digital chronographs and precision atomic
clocks. Indeed, the second is considered one of the most important units of science, and
its definition is given as one of the seven base quantities provided in the International
System of physical standards.

In human development, too, are time and temporality important. Some psychologists
believe that young children, for example, have very little temporal awareness, and it is not
until about the age of two before a key stage in their cognitive growth occurs and they can
appreciate the abstract concepts involved in ‘today’, ‘tomorrow’ and ‘yesterday’. Indeed,
even the development of language, a skill that has given humans a unique advantage over
every other organism on Earth and is a central milestone in a child’s progression towards
maturity, is intrinsically linked with temporality, and whole sets of tenses are required in
order for people to express events, ideas and plans that have happened, had happened,

were happening, are happening, and will happen.

Overall, the concepts and measurements of time, rate and duration seem vital in
humans’ understanding, description and control of the reality in which they live.

Despite this, however, still nobody really knows what time actually is.

One ultimate aim of this thesis is to investigate the nature and origin of time in
the physical Universe. In particular, a direction is taken that is based entirely upon
empirical evidence, and is hence fully consistent with the experimentally verified principles
of standard quantum mechanics.

To this end, it actually turns out that in attempting the above goal, a paradigm is
proposed and developed that describes the entire Universe according to quantum princi-
ples. As will become apparent, the vision is of a fully quantum universe free from external
observers, represented by a complex statevector in an enormous, but finite, factorisable
Hilbert space, and developed by the successive applications of quantum operators.

Now, physicists do not of course perceive the Universe to be a single, complex vec-
tor in a Hilbert space. Instead, the Universe generally appears to contain an enormous
number of classically distinct looking objects, consisting of molecules, atoms and, ulti-
mately, elementary particles. Moreover, these objects appear to interact with one another
in particular ways, and appear to exist at unique locations in a background of apparently
continuous and classical space and time. The question immediately faced therefore asks
how all of these features could arise from the proposed quantum state description, and

it is by attempting to address this issue that a possible origin for a variety of physically



observed phenomena, is provided.

So, from the initial aim of describing the possible mechanisms responsible for the
existence of time in physics, a framework is proposed from which every feature of physical
reality is hoped to emerge. Overall, the suggestion is that by adopting a fully quantum
view of the Universe, the origins of time, space, matter and classicity in physics might be
accounted for from a certain fundamental perspective.

Exactly how this could be achieved is the subject of this work.

The structure of this thesis is as follows. In Chapter 2, a number of the different
traditional interpretations of time are introduced. Historical perspectives on the subject,
including the role of time in various scientific disciplines, are briefly mentioned first, and
this is then followed by a discussion of the nature of time in conventional physics.

In Chapter 3, the framework for the paradigm featured throughout this work is intro-
duced, justified and discussed. The Universe is argued to be represented by a quantum
state, and the constraints placed on this by physics are considered; the necessary features
required for its dynamics are then defined. The paradigm was originally proposed in [1],
and was also developed in [2].

In Chapter 4, the issue of obtaining classically distinguishable objects from the perspec-
tive of the fully quantum Universe is discussed. Specifically, the mathematical properties
of factorisable Hilbert spaces and entangled /separable states are investigated; these ideas
will form the basis for much of the work featured in the following chapters. Most of Chap-
ter 4 was developed with G. Jaroszkiewicz, and is strongly similar to the work presented
in [3].

In Chapter 5, the emergence of spatial degrees of freedom from the quantum universe
paradigm is discussed. In particular, it is shown how quantum causal sets may be generated
as the Universe proceeds through a sequence of stages, from considerations of both the
changes in separability of the state, and from the changes in factorisability of the operators
used to develop this state. The possibility of obtaining continuous, classical spacetime
from such a treatment is suggested. As with Chapter 4, this work was developed with G.
Jaroszkiewicz, and is congruent in content to [4].

Chapter 6 is split into two parts. First, a discussion of the development of low di-
mensional bit and qubit systems using CNOT operators is given; the parallels between
computation, quantum computation and the quantum universe paradigm proposed in this
thesis are then drawn. The second part of Chapter 6 addresses the issue of informa-
tion flow in self-contained quantum systems, thereby defining the concepts of information
change and information exchange. The definition of endo-physical measurements is then
given, with the goal being to investigate quantum experiments in the circumstance where

the observer is part of the subject under observation. Such a discussion is mandatory



for the proposed fully quantum paradigm, because physicists are by definition part of the
Universe they attempt to measure. Much of Chapter 6 was developed in collaboration
with G. Jaroszkiewicz, with the second part related to [5]. Chapter 6 is also supported
by Appendix A, in which conventional (exo-physical) classical and quantum computation
are discussed for completeness and comparison.

In Chapter 7, the possible emergence of quantum field theoretic concepts from the
proposed paradigm is discussed; the generation of particle physics in a fully quantum
Universe is hence suggested. Specifically, the Dirac field is investigated, and it is shown
how the corresponding ladder, Hamiltonian, momentum and charge operators used in
traditional collider physics may arise from the conjectured vision. The potential links
between quantum computation, quantum field theory, and the quantum universe paradigm
are thus explored. Much of this research was completed with G. Jaroszkiewicz, and will
feature in a forthcoming article currently being prepared for publication. Chapter 7 is
accompanied by Appendix B, which derives from first principles the conventional (phase
space) Hamiltonian, momentum and charge operators for the relativistic Dirac equation.

Finally, in Chapter 8 the dynamics of developing quantum universes are discussed. On
the basis that its state is developed by applying a quantum operator, and that there is
no external physicist present to choose such an object, the various types of method that
the Universe might employ to select this operator are first classified. Then, some of these
types are investigated more thoroughly, with the aim being to discuss how the actual next
operator used in a universe’s development could depend on its current state. The physical
results and limitations of the suggested ‘self-referential’ mechanisms are duly considered
in turn, with the conclusion drawn that only certain types of method are able to provide
valid dynamics for a universe’s development. Lastly, a particular type of mechanism is
proposed that appears able to automatically examine the current state, and then develop
it according to what it is and what properties it might have; the application of this to the
issue of endo-physical experimentation is discussed. Summarising, in Chapter 8 a number
of algorithms are defined for the development of the quantum universe, and these are
effectively seen as analogous to self-referential versions of the rules used in conventional

physics to govern quantum computations.

A self-contained, developing, fully quantum Universe is thus proposed in the following,
and the possible ways in which time, space, physics and matter could emerge from this

paradigm are demonstrated.



2 History and Background

It is almost impossible to even attempt to provide a complete account of the background
of the study of time. Indeed, time’s ‘ultimate nature’ is a question that has concerned
scientists and philosophers alike for many thousands of years. Moreover, because time
pervades almost every aspect of human nature, it is perhaps not surprising that its study
has drawn from a number of academic disciplines, and that many of these consider its
definition in many different ways.

It is therefore beyond the scope of this thesis to detail every idea from such a wide
range of sources. However, whilst this may be the case, in this chapter a number of the

conventional perspectives on time are briefly introduced.

2.1 Time in Mathematics, Philosophy and Biology

In mathematics, time is generally just the ‘parameter ¢’ that is used simply as a suitable
variable when describing the changes of a developing system. So, from absolute Newtonian
time to proper time in relativity, temporality is normally only employed merely as a
convenient label to distinguish events. In Newton’s Principia Mathematica, for example,
time is barely mentioned apart from as the ¢ in the equations, and is regarded as an almost
ethereal notion without further discussion or justification; to quote: “Absolute time flows
equably, without regard to anything else”.

Time in mathematics is therefore most often used simply as a coordinate reference,
that is, as a linear, real axis stretching from —oo (the past) to 400 (the future) via the
origin (now). Although this idea may be extended to cover imaginary time as well (for
example, in the path integral approach in quantum field theory, where time ¢ is mapped to
i7 in order to prevent divergences [6]), the linearity of the coordinate axis is normally still
preserved. In fact, by reversing this line of thinking, since time is often interpreted as a
linear sequence of moments, which it generally is despite the possibility of some Zeno-type
paradoxes, it is easy to see why it is so frequently linked to the number-line. Indeed, Kant

even thought that time and number were inseparable.

A mathematical construction of continuous time may be built up from some fairly basic,
logical arguments. One particular method is given in [7]; if 7" is a ‘temporal continuum’,
and if p, ¢, and r are ‘instants’ or ‘moments’ defined to be members of this set, then the

following statements are assumed to hold true:

1. Mutual exclusivity: either p and ¢ are simultaneous, or p precedes ¢, or ¢ precedes

p.



2. If ¢ precedes r and p precedes ¢, then p precedes r.
3. T is a dense set; if p precedes r, there exists at least one event g between p and 7.

4. If T contains non-empty subsets 77 and T, where T'= T7 UT5 and all elements of T
precede all elements of Ts, there exists at least one ‘instant’ ¢ for which any instant

preceding t is in 77, but any instant after ¢ is in 7T5.

5. Between any two members of T" there is at least one instant which is a member of
a denumerable subset of T'; the relation between time and the number line is again

drawn.

From a set of axioms such as these, the suggestion is that a mathematical framework
for past, present and future may be derived; a linear temporal parameter may consequently
be generated. The logical framework, however, does not actually begin to describe what

this time might actually be.

The logical approach to time may be argued to have its roots in philosophy. Indeed,
the definition of time has naturally been a subject pertinent to many philosophers, too
numerous to mention, since at least the World of Ancient Greece. Plato, for example,
thought that time could not actually be described by mathematics, because he believed
that only things that exist eternally were real, and time, unlike numbers, is transient. His
student Aristotle, on the other hand, thought that time was just “a measure of motion”.

Historically downstream, William of Alnwick suggested in the Fourteenth century the
idea of a discrete time, referring to an “indivisible of motion”. One hundred and fifty
years later, Leonardo Da Vinci contended that: “an instant has no time. Time is made
of movements of the instant, and instants are the boundaries of time”. Later still,
Immanuel Kant believed that time can neither have a beginning nor be eternal, and that
Mankind’s understanding of what time might be will always, ultimately, be inadequate.

Some of the great Eighteenth and Nineteenth century mathematicians and physicists
also contributed to the philosophical interpretation of time. Hamilton, for example, linked
time with algebra in an analogous way to how space is linked with geometry. Conversely,
Leibniz and Laplace lived in a deterministic world, so effectively ‘removed’ the need for
time because they believed that everything could be determined from initial conditions.

Leibniz and Laplace’s opinions are not reconciled from every modern perspective, par-
ticularly from the current belief that the universe incorporates stochastic quantum laws
and so is not strictly and classically determined. Indeed, Penrose, for example, even argues
that classical determinism is broken by quantum mechanical effects in the brain, and this
has profound implications for discussions of time. This ‘consciousness debate’ is moreover

congruent to the belief of Hobbes, who contended that time is a decay of the Before and



After in the mind. In fact in many ways, this type of interpretation may be summarised
by the words of Einstein: “Objective reality is and does not happen. Only by con-
sciousness does the world come to be as an image in space continuously changing

in time”.

It is by invoking such notions of consciousness that provides a bridge between philo-
sophical discussions of time, and those present in the biological sciences.

Time in biology splits broadly into two categories: on the one hand, there exists the
temporal rhythms of nature; on the other, there is the subjective, conscious experience.

Temporal rhythms are generally governed by the responses to external time stimuli,
and imply that living organisms often appear to possess inbuilt ‘biological clocks’. Such
bio-clocks are often synchronised to well regulated outside ‘cues’: these may be variations
in light intensity, length of daylight, average temperature, lunar cycles, tidal effects, etc.
So, examples include diurnal rhythms (e.g. differences in day/night mental activity),
monthly rhythms (e.g. menstrual cycle), annual rhythms (e.g. in perennial plants), and
so on. As a consequence of these periodic patterns, human beings are often able to get
the false impression that time, ultimately, is cyclic in nature.

‘Conscious time’ is more complicated, partly perhaps because it is uncertain exactly
what consciousness is, and hence partly also because scientists cannot easily ascertain its
existence in other organisms. Moreover, it is also experienced in different ways that are
subject to context; a human’s perception of duration, simultaneity and time elapse are all
highly dependent on the particular individual, her state of mind, her age, her memory,
and the physical stimulus itself, etc.

There is also, of course, clearly a fine line between scientific evaluation of psychological

and neurophysiological time, and the philosophical question of mind itself.

2.2 Time in Physics

Despite the appearance of time in mathematics, philosophy and biology, it is perhaps the
physical sciences that should be most concerned with providing a definition for what time
actually is. After all, time evidently seems to be a physical phenomenon.

In addition to this, it is also noted that time is present in most of the equations of
physics. Indeed, some might argue that it is the purpose of physics to either predict the
future outcome of an experiment from a given set of initial conditions, or to reconstruct
the past from results that exist in the present. The question, then, of what past, present
and future actually are should consequently be taken to be of prime importance. In fact,

given that time is surely one of the most fundamental physical phenomena there is, its



ultimate origin and definition would have to be explained by any law that pertains to be

a Theory of Everything in order for such a suggestion be accepted as truly satisfactory.

So, having mentioned these points, it is perhaps surprising to consider just how little
physicists seem to understand about the true nature of time. Going further, it is perhaps
equally surprising to observe just how seldom this issue is even addressed. In only a few
areas of physics, for example, is time actually viewed as a fundamental quantity, instead
of just as a convenient ‘yardstick’ to measure against or label events. Rarely does physics
really consider what this yardstick might actually be, or what this label might mean.

One possible reason for this lack of definition might be because it does not normally
appear to matter what time actually is, as long as its effects may be accounted for. New-
ton’s laws, for example, are entirely symmetric with respect to a reversal of time: a ball
rolling without friction from A to B and back to A appears exactly equivalent in ‘reverse’;
S0, in this situation time is reduced to a mere coordinate that provides a convenient pa-
rameter useful in defining dynamics. In short, as long as the continuous variable ‘¢’ may
be employed in the equations of motion with accurate results, the issues concerning what
it might actually be are often ignored.

However, not every phenomenon of science is time symmetric. Thus, time might most
interestingly be discussed in situations where its direction does seem to play a distin-
guishing part. As examples, cosmology, particle theory, thermodynamics and quantum
mechanics each contain such asymmetries, and each of these appears to introduce impor-
tant comments regarding the role of time. So, it is these issues that are discussed in turn

now.

The cosmological development of the Universe is intrisically linked to a number of
questions regarding time. Indeed for a start, its evolution as a whole is manifestly time
asymmetric.

Specifically, current thinking is that the Universe began as a Big Bang about 12 billion
years ago, and has been expanding ever since; indeed, most relativistic cosmologists believe
that the Big Bang actually marked the very beginning of time. Now, this scenario has
two implications for the present discussion. The first point concernes the Universe’s fate
and future: either it will stay expanded forever, or else it will collapse back to a Big
Crunch, depending on its density. If the former is true, there is an immediate asymmetry
associated with a finite past but an infinite future, and the question is provoked as to how
and why the Universe actually began. Moreover, given that this question might naturally
be rephrased as “what was it that changed and caused the Universe?”, it is remarked both
that the notion of ‘change’ itself implies a reference to an external time, and that the

concepts of cause and effect rely on a sense of before and after, whereas none of these are



defined at the Big Bang.

Conversely, if the latter situation is true and the Universe will eventually collapse
back on itself, the conclusion may be drawn that either the Big Crunch is different to the
Big Bang, leading to another asymmetry, or that time is somehow reversed during the
contraction phase of the Universe. This second point is immediately undesirable, because
it could imply that entropy might decrease, stars would ‘suck in’ light, particles should
disappear from event horizons, etc.

The remaining implication of an expanding Universe scenario is that the frame of
reference in which it is expanding may be considered to be ‘preferred’. In this case, such a
frame’s time component could then naturally be linked with an absolute or universal time,
and this appears at odds with the generally accepted principles of relativity. Furthermore,
although such a hypothetical frame is often taken in the literature to be the frame in which
the Cosmic Microwave Background Radiation (CMBR) is isotropic, it is still debateable
as to whether this really provides a genuinely preferred frame; it is hence unclear as to

what the consequences of this might mean.

As discussed above, problems concerning time exist on the largest scales of physics.
However, difficulties also arise at some of the smallest scales.

As an example, it is noted that the equations describing elementary particles are
expected to be invariant under the combined operations of Charge conjugation, Parity
reversal and Time reversal (CPT). It appears to be an empirical fact, however, that the
decay of the electrically neutral kaons K° and K° via the weak interaction appears to
violate Charge-Parity (CP) conservation, and so this decay is also expected to violate
time reversal if the overall CPT operation is to remain invariant. There is currently no
satisfactory explanation for this effect, and it is therefore believed by some physicists that

its investigation might shed light on the true nature of time.

Discussions of time, however, are not just limited to the scales of cosmology or fun-
damental particles. In fact, one important area of ‘everyday’ physics that exhibits time
asymmetry occurs in thermodynamics. Indeed, even from the outset, the equations of
thermodynamics do not obviously appear reversible: heat always flows from a hot body
to a cooler one.

Of course, the above observation may be phrased more precisely by stating that the
entropy of a system always increases with time. In other words, a system that is initially
macroscopically heterogeneous becomes microscopically heterogeneous (or, equivalently,
macroscopically homogeneous) over time. Moreover, the converse of this is not in general
true, and this has lead some authors to conject that it is such an effect that defines the

arrow of time. Thus, the ‘direction’ of increasing entropy is consequently taken to define



the ‘direction’ of the increase in time.

Others authors [8], however, contend that classical entropy is, in fact, really reversible
(at least in principle), because its microscopic scale is still governed by deterministic kinetic
theory, and hence time symmetric laws. The argument is then that real irreversibility
only comes from quantum effects, by introducing a random ‘ingredient’ into an observer’s
knowledge of the kinematics. In short, because the particles’ positions and velocities are
ultimately indefinite in the quantum case, the argument is that they can no longer develop
deterministically. An irreversibility is therefore introduced into the dynamics, and it is
this that is eventually taken to provide a direction for the ‘flow’ of time.

So, the suggestion here is that it is quantum mechanics that ultimately provides an

explanation for the origin of asymmetric time.

The above comment introduces perhaps the most important conflict in the history of
the study of time.

Without exaggeration, much of fundamental physics in the Twentieth century was
founded on two great pillars, namely, relativity and quantum mechanics. Each of these
tremendous theories says something profound about the nature of time, and, moreover,
each is ultimately incompatible with the other.

Special and General relativity are based on the notion of coordinate time. In other
words, time is assumed to be a dimension, as real and linear as length, breadth and width.
In fact, the temporal parameter is placed on a completely equal footing to the spatial
coordinates, and this has led to a vision of physics existing in a four dimensional spacetime.
So, in the relativistic approach, spacetime is imagined to be a four dimensional ‘fabric’
which is then curved and distorted by the presence of matter. Moreover, the resulting
‘shape’ of this fabric may be described by a metric, and this is a continuous function of
the temporal and spatial coordinates. Physical objects consequently describe trajectories,
or worldlines, through this background arena of spacetime.

Thus, relativity adopts a ‘Block universe’ perspective: time and space are effectively
equivalent, extended dimensions. It appears, moreover, to just be a ‘biological accident’
that humans appear to perceive a three dimensional space evolving temporally; according
to relativity, each of the temporal and spatial dimensions is just as special as the others,
with metric signatures providing the only difference.

Of course, this interpretation leaves a number of questions unanswered. Why does time
appear to be special for humans? Why can objects move back and forth in space with
complete freedom, but appear unable to travel backwards in time at all? Why can humans
only ‘go forwards’ in time at an apparently fixed rate? Indeed, why can an object not

remain at one position in time, just as it appears able to rest at a single spatial location?
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As an outcome of the association of time with dimension, in the Block universe ap-
proach past, present and future all exist in an equal way. The only distinction between
them, in fact, arises from the point of view of a particular observer: two observers in differ-
ent frames of reference witnessing the same set of events cannot necessarily agree on their
order. Specifically, an event that lies in the future of one observer (or more technically,
in the future lightcone of one observer) could be the present for a second observer, but
could lie in the past (lightcone) of a third observer. Thus, two events that may appear
simultaneous in one frame of reference may be temporally separated in a second

Moreover, this analysis then implies that the relativistic universe is effectively deter-
ministic: any object in such a universe has its future ‘mapped out’, because future events
on its worldline might be in the past of an observer in a different frame of reference. For
any given moment in the Block universe approach, the past exists just as much as the

present does, and a pre-determined future is already ‘out there’ waiting to be discovered.

In quantum mechanics, however, the situation is a little different.

In classical mechanics, on which relativity is based, it is acceptable to observe an object
and expect it to remain unchanged. Thus, two observers can not only measure the same
event, but they can also measure it simultaneously, confident in the knowledge that neither
is affecting or altering it.

In quantum mechanics, however, the same is not true: the act of measurement gen-
erally destroys the state under observation, and replaces it with a new state that is an
eigenvector of whichever operator is used to represent the test. Thus, quantum mechanics
provides another example of a situation in which physics behaves time asymmetrically.
Specifically, although in the absence of observation the evolution of a quantum state is
deterministic and time reversible according to the Schrodinger equation, the state vec-
tor reduction (or ‘collapse’) occurring at the act of measurement is time asymmetric: the
wavefunction discontinuously, randomly and irreversibly ‘jumps’ into one of the eigenstates

of the Hermitian operator used to test the state.

As a consequence of state collapse, quantum theory introduces a problem into the
earlier discussion on relativity. Namely, since by measuring a quantum object its state
is irrevocably changed, this act automatically specifies a definite ‘time of observation’.
Certainly, it could not be observed again in its original state by a second observer after it
has been altered. The temporal order of other events can then be compared to this known
moment, thereby implying a strict causal order.

Herein lies the problem. Consider two spacelike separated observers, Alice, A, and
Bob, B, and consider an ‘object’ initially prepared in a state O (which could, for the sake

of illustration, be imagined to be an entangled state extended across a large region of
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space). Consider also the point of view of Alice, and assume that if she were to measure
O, she would randomly change its state to O,, which is one of the eigenvectors of some
test.

Now consider Bob’s point of view. To start, assume that the event representing the
measurement of the object by Alice is later than the event representing the measurement
of the object by Bob, from the perspective of a particular extended frame of reference (and
as given in the standard literature on relativity). Then, Bob would be able to measure
the state O, a course of action that could cause it to collapse to Op. However, this would
then mean that Alice would be unable to observe the object in its original form O, and
would instead only be able to measure the changed state Oy.

Moreover, and by applying again the usual relativistic arguments, it could be the case
that in a different frame of reference, Alice and Bob are such that the event representing
the measurement of the object by B is later than the event representing the measurement
of the object by A. So, the conclusion would consequently be that Alice is able to measure
the object first, thereby changing its state from O to O,, such that Bob cannot therefore
measure the object in its original form O.

The point is that each of Alice and Bob could believe that the event representing the
measurement of the object by the other observer is in their own personal future, from the
point of view of different frames of reference. Each would therefore believe that they could
measure O, consequently changing it, such that the other observer could only measure the

changed state. Clearly, this reasoning leads to a paradox!.

Now, the above problem would obviously not arise in classical physics. In classical
mechanics, the measurement of the object O by either A or B leaves it in the same
state O, such that the other observer may then also measure it in its original form. In
quantum physics, however, this is no longer the case, because only one of Alice or Bob may
measure the original state; the act of observation destroys the state, thereby enforcing a
strict, absolute and global causal order for the observation events. So, although classical,
relativistic arguments might suggest that neither of the spacelike separated observers can
fundamentally be said to measure a classical object first (because the order of such events
may be different in different frames of reference), such a symmetry is broken when quantum
effects are included. By incorporating quantum theory, a frame independent causal order

must be placed upon the events that represent the measurements of the object by the

'Relativity theory is in fact riddled with potential contradictions, the ‘Grandfather Paradox’ of closed
timelike curves in general relativity being a famous example. Perhaps these difficulties are themselves
sufficient to suggest that relativity does not provide a completely consistent paradigm for physics, and
highlights the general principle that just because something is mathematically possible, it does not make
it physical reality. Introducing ad hoc caveats such as Hawking’s Chronology Protection Theory do little

to avail these conclusions.
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spacelike separated observers, and this appears contrary to the standard principles of
special relativity.

In a Universe containing quantum mechanics, there cannot be a situation in which
in some frames A measures O and B measures O, whilst in others B measures O and
A measures Op; in reality, only one of A or B actually measures O, and this reality
is independent of the choice of frame. A conclusion, then, is that a relativistic, Block
universe approach to physics does not seem immediately compatible with the accepted

principles of quantum measurement.

A second difficulty faced by attempts to reconcile the principles of quantum theory
with those of relativity is that the existence of a ‘concrete’ past, present and future is
disputed in quantum mechanics.

The results of the Kochen-Specker theorem and the violation of the Bell inequality
(discussed in the next chapter), for example, conclusively demonstrate that prior to any
measurement, a quantum object cannot be described as possessing any fixed set of pre-
existing physical characteristics, such as those featuring in theories of classical Hidden
Variables. In physics, a quantum state does not have any pre-existing attributes just
waiting to be discovered by observers.

The point is that if a quantum object does not exist in any definite form prior to an
observation, its present cannot be given any real, concrete, definite existence. In particular,
if the Universe contains quantum objects, which it certainly appears to, it is not possible
to know everything about the moment of the present.

It is consequently difficult to imagine how the future could be granted such a status
either, because it is difficult to accept that the future is somehow ‘more real’ than the
present.

Specifically, then, if Charlie is a quantum object in the Universe, and if the Block
universe approach to physics were to be accepted, he would have to conclude that even
though according to the empirically verified laws of quantum mechanics his present is unde-
fined, unknown and unknowable, his future is somehow fixed, definite and pre-determined.
Clearly, this would be a strange position. Moreover, to accept such a conclusion would
also imply that the result of a measurement on a quantum object is deterministic, and not

the random, probabilistic outcome it is experimentally known to be.

Of course, it is perhaps not surprising that standard relativity runs into difficulties
when attempting to describe a Universe incorporating quantum principles. After all, his-
torically, Einstein’s theory of special relativity pre-dates Schrodinger’s quantum mechanics
by about twenty years.

The theory of relativity is based upon, and generally framed in terms of, the relation-
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ships arising between sets of classical observers as they witness classical events. But, the
overriding lesson learnt from quantum mechanics is that physicists’ notions of observation
must be radically redefined: measurements cannot be performed non-invasively, and sets of
observers cannot observe the same object in the same way. It consequently seems difficult
to believe how any theory based upon classical observation could really be taken to provide
a truly fundamental picture of a quantum reality, and this therefore obviously raises the
question as to whether the results and conclusions of classical relativity should ever be
accepted as completely reliable, at least as far as constraints on the ultimate physics of
the Universe are concerned.

Quantum theory taught physicists that, fundamentally, reality does not quite behave
as they thought it did. So, any theory originating from the pre-quantum era of science
can really only be an incomplete vision of a better, quantum perspective of physics, and

this includes any classical view or comment regarding the nature of time.

A Block universe interpretation of time is unable to account for quantum principles,
because such an approach assumes the presence of an ‘eternal’, pre-existing and fixed
past, present and future. The conclusion, then, is that the standard, Block universe vision
of physics that arises from relativity is fundamentally incompatible with the standard
principles of quantum theory. Consequently, if quantum mechanics cannot support such
notions, it is suggested that a Block universe model is not the correct way to analyse a
Universe that undoubtedly contains quantum objects. This perhaps explains why attempts
at deriving theories of quantum gravity by directly quantising classical general relativity
have predominantly been so unsuccessful.

In quantum theory only the moment of the present can be granted any real existence,
and even this is limited. Thus, instead of adopting a Block universe approach to physics,
quantum theory suggests that a ‘Process’ interpretation of time is required; only ‘Now’
may be given any physical significance.

Moreover, in fact, any attempt to describe time and physics from a point of view that is
compatible with the empirically verified priciples of quantum mechanics must consequently
also assume this interpretation. It is therefore such a perspective that is adopted in this

thesis.
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3 The Quantum Universe

One aim of this thesis is to investigate how the observed physics of the Universe, espe-
cially including the concept of a continuous time parameter, might arise from a certain
fundamental perspective of reality.

The obvious starting point is therefore to specify what this fundamental perspective
might be. In fact, the viewpoint discussed in this thesis will itself be shown to follow
quite naturally from considering a set of observations regarding the actual nature of the
Universe.

To this end, the intention of this chapter is to define, describe and, where necessary,
justify the observations, assumptions, consequences and conjectures present in the follow-

ing work.

3.1 Quantum Mechanics

The first observation is summed up by the following statement:
Quantum Mechanics is a valid theory.

In other words, the argument is that the ‘standard’ quantum theory of Bohr, Heisen-
berg, Schrédinger, Dirac et al is the correct theory to use when describing certain physical,
microscopic systems. Specifically, the implication is that a physical system may indeed be
represented by a complex, linearly superposed statefunction, that this state may undergo
unitary evolution in some sense, and that by measuring the state it is ‘collapsed’ into an
eigenvector of an observable represented by an Hermitian operator.

The evidence cited to justify such a statement is the overwhelmingly universal success
of quantum theory in science. In chemistry and biology, for example, quantum equations
have allowed scientists to confidently model the properties and reactions of many types
of molecule and atom. In high energy physics, the development of quantum field theory
has allowed physicists to accurately predict the characteristics of particles that may not
have existed since the era of the Big Bang. Even in the everyday world, the essential
215t Century technologies behind optical telecommunication and computer science would
not work if it were not for an understanding of the quantum laws governing the laser and

silicon chips.

A mathematical demonstration of the validity of quantum mechanics was provided by
J. S. Bell [9], based on an analysis of the correlations produced in a system similar to that

described in the thought experiment proposed by Einstein, Podolsky and Rosen [11]. A
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number of derivations of Bell’s result are available in the literature; the approach outlined
below roughly follows the treatment given in [12] and [13].

Consider the decay of a spinless, neutral pion into an electron-positron pair 7% — e~ +
eT. Electrons and positrons possess spin components of :t% (denoted by ‘up’ and ‘down’,
or equivalently ‘+” and ‘-’, in some frame), so by conservation of angular momentum, a
spin-up electron is partnered by a spin-down positron, and vice versa. Consider also a
frame of reference F parameterised by Cartesian coordinates (z,y, z). With the aid of a
suitably orientated Stern-Gerlach apparatus, it is possible to measure the component of
angular momentum of either electron or positron in any direction in F.

Bell’s argument is the following. If the system ultimately obeyed classical instead of
quantum mechanics, the assertion would be that after the decay of the pion the electron
and positron would each have definite and independently measurable angular momenta,
pointing in the general directions n and —n respectively. It would also be possible to
non-invasively measure the same particle many times to obtain its component of angular

momentum in any direction.

Consider measuring the spin of such a ‘classical electron’ in three different directions
a, b and ¢, noting that a, b and ¢ need not be perpendicular. If, without loss of generality,
it may be assumed that n is not orthogonal to any of a, b or ¢, the component of n in
each direction will either be +wve or —wve. So, by measuring the electron’s spin first in
the a-direction, then the b-direction, then the c-direction, the overall result will be one
of eight possibilities: {a result, b result, ¢ result} = {+,+,+} or {+,+,—} or {+,—,+}
or {+,—,—}or {—,+,+} or {—,+,—} or {—,—,+} or {—, —, —}. If the orientation of n
is random and may point in any direction, then depending on the choice of a, b and c,
each of these eight results has a certain probability P{+, £, +} of occurring, with total

probability summing to unity.

Consider now a measurement of the electron by a Stern-Gerlach apparatus orientated
along one of the directions a, b or ¢, followed by a measurement of the positron by a second
Stern-Gerlach orientated along a different one of the directions a, b or c. If P.(+a,+b) is
defined as the classical probability that the component of the electron’s spin along a is
found to be 4ve and that the component of the positron’s spin along b is also found to
be +wve, then by conservation of angular momentum P.(+a, +b) is equally defined as the
probability that the component of the electron’s spin along ¢ is +ve but its component if
measured along b would be —ve. Note that this is clearly a classical result, as expected,
because the implication is that two spin components of the electron have been measured

even though it is only disturbed once.
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By considering the eight possibilities given above, P.(+a, +b) is given by the sum
PC(Jer +b) :P{+7*a+}+P{+7*a*}’ (3'1)

which reflects the experimenter’s ignorance of the spin component of the electron (or
positron) in the direction of ¢. Similarly the relations P.(+a, +c¢) = P{+, —, = }4+P{+,+,—}
and P.(+b,+c) = P{+,+,—} + P{—,+, —} are readily obtained.

The results may be summed,

P.(+a,+b) + P.(+b,+¢) = {+,—,+}+{+,—, -} +{++ -} +{-+ -} 3.2
= {+,—,+}+ Pe(+a,+c) + {—,+,—},

such that, since all probabilities are positive, it is possible to produce the classical inequal-
ity
Pe(+a, +b) + Pe(4+b, +¢) = Pe(+a, +c). (3.3)
So, if the system is governed fully by classical mechanics, i.e. if prior to any measure-
ment the electron definitely possesses angular momentum in the direction of n, then any
set of measurements must necessarily satisfy this relation. That is, if the spin components
of the correlated electrons and positrons in a large number of identically prepared systems
are measured along any set of directions a, b and ¢, the classical probabilities evaluated

from the statistics of the results would obey the inequality (3.3).

However, it may be shown that if the electron-positron pair instead obey the laws of
quantum mechanics, the probabilities of obtaining certain results may violate this inequal-
ity.

In quantum theory, a system does not have any pre-existing or definite properties prior
to an observation. Before a measurement, a particle’s component of angular momentum
only has the potential to be either +ve or —ve in some direction, and it is the measurement
itself that forces the system to ‘choose’ one of these states to collapse into. In this sense,
therefore, it may be said that prior to an observation each particle is in both potential spin
states simultaneously, and the system is represented by an entangled state |¢)) described
in obvious notation by the antisymmetric linear superposition

1
Y

where, for example, ||), represents the state of a positron that is spin-down in some

|¥) (IMe® [Dp=[L)e@ [1)p) (3-4)

direction.
Now, a measurement of the spin of either the electron or positron destroys the en-
tanglement. If, for example, the electron is measured and found to be in the state |T),

it can obviously no longer be described as potentially being in the state |])e, and the
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wavefunction of the electron-positron system collapses to |¢1) =|1)e® ||)p. Subsequent
measurements of the spin of the positron in this direction, with its state now prepared as
part of this new state |¢;), must then produce the result ||),.

Alternatively, if the first measurement had instead found the electron to be in the
state |])e, it would imply a collapse of the initial entangled state into the product state
|¢,) = |1)e® |1)p, and later observations of the positron would find it to be spin-up in this

direction, |T)p.

Consider now the quantum probability P(+a, +b), defined analogously to the classical
probability P.(+a,+b). In quantum mechanics, the evaluation of this requires two mea-
surements to be performed on each of a statistical number of identically prepared systems:
firstly the electron’s spin is measured in the direction of @, and secondly the positron’s
spin is then measured in the direction of b. Consequently, this process necessarily involves
a collapse of the initial entangled state |¢)) into a product state |¢) when the electron
is measured, followed by a projection of the ‘positron part’ of this new state |¢) in the
direction of b when the positron is measured. The overall result P(+a,+b) is then given
by the products of the probabilities obtained from these two measurements.

To illustrate how this may be achieved, consider a particular choice of the vectors a
and b. For simplicity, and without loss of generality, ¢ may be chosen to lie in the direction
of the z-axis, and b may be chosen to be a vector in the  — z plane that subtends an angle
Oap to a (or z). When the electron is measured, and its spin component in the direction of
a is found to be either +ve or —ve, the entangled state? 1) collapses into either the state
lat) = |+)e @ |—)p or the state |a_) = |—)e ® |+)p. Clearly, the probability that the spin
of the electron is found to be +wve in the a direction is %, because both the states |a) and
la_) are equally likely, as is evident from the initial entangled state.

For later convenience, note that |+) may alternatively be written in the matrix form

((1)), whilst |—) may be written as ((1))

The operator S@ab representing the subsequent measurement of the positron by the
Stern-Gerlach apparatus orientated along the direction b, i.e. at an angle 6, to the z-
axis, is given by

S@ab =5, cos By, + Sy sin Oy (3.5)

where S, = %h&z, S, = %h&x and &, and &, are the Pauli spin matrices in the z and x

directions with matrix representations

1 0 01
G, = and 0, = . (3.6)
0 -1 10

ZWhere no confusion is likely to occur, the notation for vectors, such as 1, and quantum states, such

as [¢), will be used interchangeably throughout this thesis, i.e. 1 < [¢).
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So, S’gab is given by

N h 0, inf,
Gy =1 ( cosfy,  sinfgy, ) 7 (37)

2\ sinf, —cosOy

cos(6s/2)
sin(0q4p/2)

and |[b_) = (_Czé?ge‘:}g)) respectively. The eigenstate |b,) is parallel to b, i.e. has a +wve

component in the direction of b, whereas |b_) is anti-parallel with a —ve component.

which has eigenvalues +%/2 and —k/2 corresponding to eigenvectors |by) = (

The overall process may now be summarised. An initial entangled state ¢ is collapsed
into either the state |a4) or the state |a—) when the spin of the electron is measured in
the direction a. If the electron’s spin component is found to be 4wve, corresponding to
the state |a4), then the subsequent measurement of the positron will leave the electron-
positron system in either the state |+). ® |by) or the state |+). ® |b—). Alternatively, if
the electron’s spin component is found to be —wve, corresponding to the state |a_), then
after the measurement of the positron the electron-positron system will be in either of the
states |—)e ® |bs) or |—)e @ [b_).

With the above in mind, it is possible to rewrite P(+4a,+b) as the probability of
obtaining the state |a4) when the electron is measured, given that before this measurement
the system is in an entangled state of the form ), multiplied by the probability of obtaining

the state |b4) when the positron is subsequently measured, given that its state before this

2 = sin? <9;b> (3.8)

which leads to an overall probability P(+a, +b) = 1 sin?(0,,/2).
By a similar argument, it can be shown that P(+a, +¢) = % sin?(0,./2) and P(+b, +c) =

second measurement is now |—),. This latter probability is

0132 = |tcostun/2), sn/2) (')

%sinQ(Gbc /2), where 6, is the angle between a and ¢, and 6. is the angle between b and
c.

Now, if quantum theory is really a disguised version of classical mechanics, the proba-
bilities derived from treating the electron-positron system according to quantum principles
should obey the same constraints (3.3) as those derived from a classical treatment of the

system. However, whilst the classical inequality (3.3) holds, the relation

.2 ab -2 be .2 ac
—_— > —_— 9
S1n < )—l—sm < > S ( > (3 )

formed by substituting the above quantum probabilities into (3.3) generally does not. For
example, if a, b and ¢ lie in a plane with 0., = 7/3, 0. = 7/3 and 0,. = 27/3, then (3.9)

becomes i + i > %, which is clearly false. So, for quantum systems
P(+a,+b) + P(+b, +c) # P(+a,+c¢) (3.10)
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Thus, it may be argued that quantum and classical mechanics are fundamentally in-
equivalent in that they predict different results. The constraints placed by classical me-
chanics on a system, calculated by scientists as relationships between sets of probabilities
of obtaining particular sets of results, are not present if the system is instead governed by

quantum theory.

Importantly, it has also been empirically shown that such violations of the classical
Bell inequalities occur in physics. Experiments with entangled pairs of photons [14] have
yielded results that agree with quantum mechanics to better than 1%, but violate the Bell
predictions of classical mechanics by 35%.

Summarising, the work of [9] and [14] has demonstrated that quantum theory is not
equivalent to classical mechanics, but that physics obeys quantum principles. From such
an viewpoint, all theories that suggest that quantum mechanics is simply a disguised
theory of classical probability are ruled out, as are any theories pertaining to classical
Hidden Variables. Such mechanisms will not be discussed further in this work.

The conclusion of this sub-section is that in order to describe certain physical, micro-
scopic systems, it is quantum mechanics, and not classical, that is the correct and valid

theory to use.

3.2 Quantum Cosmology

The second observation regarding the empirical nature of the Universe is the following:
There is no ‘Heisenberg Cut’ in physics.

There is no rigid dividing line that segregates the quantum experiment being observed
with the scientist doing the observing. There is equally no dividing line setting a scale
beyond which quantum mechanics is no longer valid. Whilst most physicists readily accept
that every microscopic sub-system in the Universe obeys the rules of quantum mechanics,
there has never been demonstrated a definite macroscopic size or scale where quantum
laws cease to be the correct theory of dynamics in favour of more fundamental classical
laws.

As an example of this, it has even been shown that huge macroscopic objects such as
quasars can give rise to observable quantum effects [15]. If on the line of sight between
a distant quasar and the Earth is some sort of massive body, such as a galaxy, the grav-
itational lensing of the quasar’s light induced by this body may give rise to interference
patterns analogous to those arising in a Young’s double-slit type device. Even if the quasar

is sufficiently distant and dim such that a telescope on Earth only registers one photon
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at a time, the interference fringes still arise, implying that the entire Earth-body-quasar

system is behaving like a huge quantum ‘Which-path’ experiment.

So, if the Universe that physicists observe appears to be an enormous collection of
microscopic sub-systems, i.e. is composed of protons, electrons etc., and if each of these
microscopic sub-systems obeys quantum mechanics, and if there is no Heisenberg Cut
directly separating these sub-systems from each other or the observer, and if the size
of a system does not fundamentally affect whether it runs according to quantum laws,
the conclusion drawn is that the entire Universe is itself a giant quantum system. The
conjecture, therefore, is that the principles of quantum mechanics may be applied to the

Universe as a whole3.

If this conjecture is true, it should then be possible to write down a unique quantum
wavefunction W for the Universe that describes its large scale properties and evolution as
a whole (c.f. [16][17][18][19]). This quantum state must be complicated enough to not
only model a vast, intricate and expanding cosmos, but also to describe a universe that
appears to be comprised of an enormous number of microscopic quantum sub-systems.
Further, it must also allow physical observers, who believe themselves to be isolated clas-
sical states that are inside the Universe they are trying to understand, to experience and
measure an apparently classical reality. Classical physics must therefore be a emergent
phenomenon which is somehow borne from the quantum theory as an approximation on
certain, presumably macroscopic, scales. The true quantum nature of reality should al-
ways be present, but will only demonstrate itself in complicated experiments designed
to investigate very refined circumstances. Any formulation of the wavefunction of the
Universe must somehow take account of this.

Further, every large scale characteristic of the Universe, and every physical property of
every sub-system it contains, must be accounted for in any formulation of W. If the wave-
function of the Universe describes everything, then space, time, energy, particle physics,
and even semi-classical human observers must all emerge somehow from considerations of

the properties of this quantum state.

It is therefore a job for physicists to attempt to discover what the Universe’s state-
function might be like. Now, whilst this task may appear overwhelmingly daunting, by
extending the principles of standard quantum mechanics, a number of inferences can be

drawn about the nature of a fully quantum universe.

3 As an aside, note that there is also no known evidence for what could analogously be called a “Heisen-
berg Time” in astronomy: many cosmologists conjecture that just after the Big Bang the entire Universe
should be represented by a quantum state, but no explanation is generally given as to exactly when the
Universe should then stop being treated according to quantum principles.

The assertion proposed here is that it should not.
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Firstly like all states in conventional quantum theory, the wavefunction ¥ must be a
vector in a Hilbert space H.

Secondly, given that by definition there is only one Universe, there can be no classical
confusion as to which state it is in. Thus ¥ cannot be a mixed state of a classical en-
semble of Universes, because such a concept is obviously contradictory. Consequently the
wavefunction ¥ must always be a pure state.

Thirdly, the Hilbert space ‘H containing the statevector representing the Universe must
be of truly enormous dimension. One justification here is that classical physics has been
ascribed to be an emergent approximation to quantum physics on certain scales, and the
physical classical Universe seems to possess an almost uncountable number of degrees of
freedom.

In fact, as a naive lowest estimate of this dimension, consider the suggestion of many
authors that there exists a certain minimum unit of spatial separation beyond which
it is meaningless to discuss notions of classical distance. This resolutional limit is often
assumed to be of the order of the Planck length, Ip = \/W ~ 1073% metres, and marks
the boundary of where space is assumed to no longer behave classically and continuously.
Thus, given an empty universe of age 7y = 15 x 10Y years expanding spherically at the
speed of light, ¢, the current number, n, of Planck volumes in the physical universe is
given by

_ %W(CTg)3 ~ 10184
(lp)

Now, if with each of these minimum spatial volumes is associated just a single two-

(3.11)

dimensional degree of freedom, then the total number of accessible classical states for

2101, So, even in the simplest quantum model, the state vector

210184

the universe is clearly
representing the universe must have a dimension of at least if the classical degrees of
freedom are expected to emerge somehow from a more fundamental quantum description.

Whilst the dimension of the Hilbert space H must be huge, it is still assumed in this
work to be finite. This assumption is based, in part, from a desire to free the dynamics
from some of the problems inherent in infinite dimensional models of physics. In quantum
field theory, for example, the ultraviolet and infrared divergences occur specifically because
the momentum space is unbounded. In addition, this infinite dimensional theory presents
conceptual difficulties when confronted with the underlying physics: a scientist performing
a calculation in quantum field theory should perhaps ask exactly what the notion of a
particle of, say, infinite momentum may mean in a physical universe of bounded size and
energy. This strongly echoes the ideas of Feynman [20], who questioned the validity of
any infinite theory contained in a Universe of finite volume.

From this point of view, it therefore makes sense to remedy the problem at the outset

by limiting the size of the Hilbert space to a finite dimension. Realistically, this should
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not prove to be a problem so long as it is still sufficiently large such that every possible

physically observed phenomena may be accounted for.

The fourth inference that may be drawn from an extension of the standard principles
of quantum mechanics for the state of the Universe concerns its dynamics.

In the Schrodinger picture of conventional quantum theory, a given statevector ¢ may
be developed in two different types of way. The first way is evolution by an unitary
operator 4, which may be thought of as a length preserving ‘rotation’ of the vector in its
Hilbert space, i.e. ¥ — ¢’ =@ for |1)| = |¢'| = 1. The second way is by state reduction,
in which the wavefunction is ‘tested’ in some sense by an Hermitian operator 6. The initial
state then ‘collapses’ or ‘jumps’ to a new state, which is one of the eigenstates of 6.

In fact, in the conventional, semi-classical treatment of the Universe, a physical sub-
system described by quantum mechanics often develops through a series of evolutions
and state reductions. Consider, for instance, a possible “day in the life” of a single elec-
tron. A free electron may be created and subsequently allowed to evolve according to the
Schrodinger equation. The electron may propagate as a wave, until a later time when it
is measured by some sort of apparatus and observer. As an example, if the apparatus
involves a Stern-Gerlach device, the measurement process will lead to a collapse of the
electron’s wavefunction into one of the spin eigenstates associated with the Stern-Gerlach’s
orientation. Whichever of these two eigenstates the electron collapses into is then taken
to represent the new state of the electron. The measurement is hence equivalent to a
preparation of an electron in either a spin-up or spin-down state, in a particular direction.

The electron, now in a definite spin eigenstate, may then be allowed to evolve for
another length of time until a further measurement occurs. As an example, the scientist
controlling the experiment may decide that this second measurement also involves a Stern-
Gerlach apparatus. Of course, if this second apparatus is orientated in the same direction
as the first, the result will certainly leave the electron in the same eigenstate as before.
In this case, the second measurement is equivalent to a null test on the electron because
the state is left unchanged and no new information has been extracted from the system.
Alternatively however, if the second apparatus is instead orientated at some angle to the
first, then when the electron is measured it will collapse into a different spin eigenstate,
with a probability dependent on the relative angle between the axes of the two Stern-
Gerlach devices.

Summarising, then, in this example a state representing a free electron has evolved,
before collapsing to a state with a definite spin component, which has then itself been
evolved, before collapsing into another state with a different spin component. Obviously,
the electron may then subsequently go on to be involved in any number of further tests.

Or course, the development of a single electron state may appear to be a particularly
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specialised or contrived example. However in the real Universe, this sort of sequence goes
on all the time. As an illustration, it should be recalled that whenever somebody switches
on a light-bulb they are effectively starting a long chain of quantum processes, the outcome
of which is the preparation of an ensemble of quantum states that propagate until their
eventual measurement by the person’s eye. In fact, this measurement itself usually goes

on to cause many different subsequent chains.

The above process may consequently be generalised: a quantum system initially pre-
pared by a physicist in a state 1,, may proceed through a series of evolutions i, and
tests Op+1, for n =0,1,2, ... . The unitary operators i, that evolve the state are generally
governed by the Schrédinger equation and may be of the form 4, = e‘iﬁ”t, where H,,
is the Hamiltonian and ¢ is a continuous time parameter as measured by the observer.
The exact forms of the Hermitian operators 6,41 are chosen by the physicist depending
on what she hopes to investigate, for instance in the above example by which particular
component of spin is of interest. The system thus develops through a series of distinct
steps: a state 1,, may be evolved into a state 1,, — 1 = 1), which is tested by an
operator 0,41, and therefore collapses into the next state v, ,; which is one of the eigen-
states of 0,1 1. This new state 1),, , ; may then be evolved by the operator 1 to the state
Uit — Yoy = lnt1¥,41, which is then tested by an operator 6,2, thereby collapsing

it into the next state 1),,, 5 which is one of the eigenstates of 0,,+2. And so on.

Any quantum experiment necessarily involves the concepts of state preparation, evo-
lution, and measurement. However it is only the state reductions that are physically
observed, and so it is only these collapses that can, in any real sense, be given a physical
significance. This is in agreement with the conclusions of the Kochen-Specker theorem
[21] (see also [22] for a review) and the results of Bell, which both demonstrate that before
a quantum state is measured it cannot be said to have any physical attributes, such as a
definite position or momentum. The observed properties of a state do not have pre-existing
values waiting to be discovered, rather it is the actual measurement procedure and the
collapse of the state that allows physicists to discuss them. This stance was summed up by
Wheeler [15]: “No elementary phenomenon is a phenomenon until it is a registered

(observed) phenomenon”.

The collapse of the wavefunction necessarily involves an element of change, which in
turn implies an extraction of information about the state. This, after all, is the purpose of
experimentation. Certainly, for example, the measurement of a system does not decrease
the physicist’s knowledge of it, and it is only by performing a null test on the state of

the type described earlier that the physicist’s knowledge remains the same. An important
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point to gain from the above example is therefore that the electron’s development may, in
some sense, be parameterised in terms of information extraction.

Two conclusions may be drawn from this. Firstly, because state reduction is manifestly
a discrete process, the information is similarly extracted in discrete manner. It is this fact
that justifies the subscript n on the state v,, (and hence on the operators 4, and 6,+1),
because it is possible to directly associate the state 1, with the result of the n'* collapse.

Secondly, it is noted that the ‘direction’ of state reduction and information extraction
is equivalent to the observed ‘direction’ of time in physics. This follows immediately
from the logic that the state 1, _;, resulting from the (n — 1) test represented by the
operator 0,_1, must certainly have existed after the state ¢,,_, but prior to the state v,,
Consequently, the sub-script n may also be seen as a type of discrete temporal label. Thus
from the point of view of the state, time is a marker of the process of state reduction
associated with information extraction. This point will be discussed to a great extent

later.

By extending the standard principles of quantum theory to the Universe as a whole,
the dynamics of the quantum universe are assumed to closely follow the above analogy of
the dynamics of the developing electron. One important difference, however, is that any
choice of test and any measurement of the Universe’s state must be made by the Universe
itself, and not by some external physicist. This is a consequence of the fact that if, by
definition, the Universe does indeed contain everything, the conclusion is that there can
be nothing ‘outside’. Thus, if it is ‘closed’ in this way there can be no notion of any sort of
external observer engaged in the process of evolving or measuring its state. The Universe

must hence be the perfect example of a self-developing system.

As in the case of the electron sub-system, the development of the state W of the
Universe is a discrete process due to the discontinuous nature of the collapse mechanism.
It is permissible, therefore, to label the state immediately after the n'” collapse as the nt”
state W,,. Further, it is the ability to label the state in this way that will be shown to be
the origin of time in the quantum Universe. For now, however, it is noted that time is
ultimately a discrete phenomenon in a universe running on quantum principles, providing
perhaps a natural starting point for future theories of quantised gravity.

The quantum dynamics of the Universe is the way its state changes from ¥,, — ¥, 1 —
VUytro — V43 — ... Moreover, and as with the above electron example, the mechanism
governing this dynamics is, at least in principle, fairly simple.

First, note that for the sake of clarity, it is possible to imagine describing the system
from the hypothetical point of view of an observer outside of the Universe, watching the

state change. Although such a point of view is fundamentally unphysical, it is adopted for
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convenience, and justified by the condition that the external observer does not interact
with the Universe’s state in any way. Thus, such a privileged witness is allowed to observe
the Universe in a completely non-invasive way.

At the n'" stage of the Universe’s development, its state may be represented by the
unique vector ¥,,. This wavefunction may then be evolved with some sort of unitary oper-
ator ﬁn, ie. U, - ¥ = ﬁn‘lln, before being ‘tested’ by an Hermitian operator ﬁ]nﬂ. The
‘testing’ process is irreversible and the state W/, collapses into one of the eigenstates ®, 11
of i:n+1. In fact in general, the operator f]nﬂ will possess D orthonormal eigenvectors,
labelled @ 4 for i = 1,..., D, where D is the dimension of the Hilbert space H of ¥y,
Vn. From this it follows that i]n+1, and indeed U, may both be represented by D x D
matrices for all n.

The relationship between CIDZ 41 and f]nﬂ obeys the usual eigenvector equation, viz.,
Snr1®p g = NPy, (3.12)

where A is the eigenvalue of the i*" eigenvector &% 41 of DINIRE
Further, given a state W/, the probability P(¥,+1 = ®£+1|‘I/;L) that the next state
W, +1 will be a particular eigenvector @% 41 of 2714_1 is determined in the usual way as the

square of the modulus of the probability amplitude, i.e.

. . 2
P(Wi1 = @, W,) = (@]9 (3.13)

n

The forms of the operators Un and inﬂ are discussed later.

The result @fl 41 of the test ﬁ:n_l,_l is now associated with the preparation of a new state
W, +1, which is subsequently evolved by an operator Un_l’_]_ to the state ¥/, 1= Un_l’_]_ Ui,
before being tested by an operator f]n+2 and collapsing to one of its D orthonormal
eigenvectors @HZ, 1=1,..,D. And so on.

Summarising, the Universe runs as an automatic process of state preparation, evolution
and collapse. To this end, the Universe is envisaged to be a completely self-contained

quantum automaton.

As noted earlier, if the Universe contains everything, there can be no notion of any
sort of external observer engaged in the process of developing or measuring its state. At
first glance, therefore, this may appear at odds with the traditional quantum mechanical
tenets of state preparation and testing, and this has prompted some authors to criticise
the possibility of a completely quantum universe. In fact, there are three obvious points
that need addressing in any attempt to treat the Universe as a closed quantum system.

Firstly, if there are no external observers, then, as argued by Fink and Leschke [23],
how can the Universe be measured? In what sense, therefore, can it be described as a

quantum system?
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Secondly, and again from [23], if there is only one Universe and it only ‘runs’ once,
what is the meaning of statistically derived probabilities of the form (3.13)7 In particular,
by definition a description of the Universe’s state must involve a description of everything
contained within it. Moreover, any measurement of the state of the Universe by some sort
of detection apparatus necessarily changes the detector’s state. But, since this apparatus
is part of the Universe, such a measurement immediately implies that the state of the Uni-
verse is itself changed during this procedure. It is consequently impossible to measure the
same state of the Universe twice. So, from the point of view that quantum mechanics deals
with the probability distributions of the results of repeated measurements of observables
(either the same state measured a number of times, or a number of identical states each
measured once) the argument of Fink and Leschke is that the rules of quantum mechanics
are not applicable to the universe as a whole.

It is also noted that in conventional quantum theory, states evolve according to the
time dependent Schrodinger equation. Thirdly, then, if there are no external parameters
such as time, how does the Universe evolve as a quantum state?

These points will be discussed briefly here, though their explanations will become
clearer throughout the course of this work, and particularly in Chapter 8. In general,
the lesson learnt is that care is needed when directly applying the quantum mechanics of
states in the laboratory to the special case where the state in question is the state of the

entire Universe.

The standard principles of quantum mechanics were discovered by physicists based on
laboratory observations of relatively tiny sub-systems of the universe, for example from
the photoelectric effect induced in a small lump of metal, or the measurement of the spin
of a single electron. The typical approach to an experiment involving quantum principles
is to draw a dividing line between the observer and the observed: the scientist produces
an isolated quantum state, allows it to evolve, and then chooses an Hermitian operator
with which to test it. Whilst this is manifestly a semi-classical construction, it is normally
a fairly accurate analysis because the scientist is sufficiently large such that classical
mechanics provides a good approximation, and it is not always difficult in practice to
produce a quantum state that s effectively isolated from the rest of the universe.

However, any semi-classical treatment can only ever be just an approximation to a
reality that is fully quantum in nature. After all, recall that the quantum state under
investigation can be arbitrarily large. From this point of view it is in principle possible
to segregate the universe into two parts: the observer sub-system, and the sub-system
comprising everything else. Given that it is possible to treat the ‘everything else’ sub-
system as a quantum state, it seems unreasonable to expect that the Universe is really a

semi-classical product of an enormous quantum sub-system containing everything apart
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from a single classical observer.

Be that as it may, such an approach of an observer standing outside of the experiment
being observed could be described as exo-physical. It is from this context that the usual
rules of quantum mechanics were determined, including in particular those contributing

to the conventional ‘Measurement Problem’.

However, what this approach does not take into account is the fact that the physicists
performing the experiments are themselves an integral part of the Universe they are trying
to analyse. From this perspective, a laboratory experiment is actually equivalent to one
part of the Universe measuring another part. Consequently, whether the true nature of
the Universe is fundamentally quantum, classical or anything else, it must be an example
of a system that is able to examine itself. This is therefore an endo-physical perspective,
in which the observer is part of the system being observed.

The point is that what a physicist may conventionally believe to be an exo-physical
measurement of a quantum sub-system of the Universe by an apparently external semi-
classical observer, should perhaps really be viewed as an endo-physical measurement of
one part of the Universe appearing to observe another part of itself. Thus, such a self-
referential quantum system may not necessarily be restricted to quantum dynamics relying
on external observers, because the dependence of the standard laws of quantum mechanics
on external observers was only ever derived from the potentially incomplete viewpoint of
exo-physical analyses of physical phenomena. These laws may therefore not be directly
applicable to the Universe as whole. If the dynamics of the state should instead be
described from an endo-physical point of view, the Universe must be a quantum system
that relies on internal observations; there is hence neither a need nor a place for an external
observer to measure and collapse the state.

Of course exactly how a quantum universe observed from the inside by endo-physical
observers may give rise to internal Measurement problem type phenomena, such as emer-
gent semi-classical physicists believing they are observing an external quantum reality, is
a difficult question to be addressed. In fact, the endo-physical measurement problem is
discussed more fully in Chapter 6, whilst in Chapter 8 some simple toy-models are given
that describe how a simple endo-physical dynamics may be achieved.

For now, however, note that in answer to the criticism of a fully quantum universe
given in [23], an analogy is drawn with the argument of Godel [24] (see also [25][26]) that
it is impossible to determine whether a given set of mathematical rules is self-consistent
using just those rules alone. Whilst this may be the case, it does not imply that the rules
themselves are wrong, merely that it is problematical to demonstrate their validity from
the ‘inside’.

Overall, if the Universe must be described by quantum principles, yet cannot support
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any external observers, the conclusion must be that it is somehow able to prepare, evolve
and test itself. Further, these measurements are made by different sub-systems inside the
Universe, and indicate a relative change between them. This point will be discussed in

due course.

Fink and Leschke’s second argument is philosophically identical to asking about the
meaning of the probability of obtaining a particular random result from a set of possibilities
if an experiment is only ever performed once.

Consider as an example a classical coin toss experiment, noting that similar restrictions
apply to any other physical situation, from atomic decays to measuring the spin of an
electron. Ignoring the possibility of the coin landing on its edge, it may be generally
accepted that the probability of getting a ‘heads’ result is equal to the probability of getting
‘tails’, that is % This probability, however, only arises from a mathematical abstraction.
To actually be empirically sure of the probability either requires the same coin to be tossed
an infinite number of times, or an infinite number of coins to be tossed once. Of course,
this in unphysical. In the first instance, it would take an infinite length of time to get the
result. Additionally, each flip would undergo slightly alternative conditions, from different
initial forces, to miniscule air currents, or even the possibility of being deflected slightly by
a stray photon. It is even debateable as to what condition the coin would be in after it had
been struck a million times. In the second instance, it could not be ensured that all the
coins were identical or flipped under the same conditions. Equally, an infinite number of
coins would require an infinite space and would possess an infinite mass, and so, according
to general relativity, would curve infinite space infinitely.

Nevertheless, such an incomplete knowledge does not prevent a probability measure
being placed on any result. Instead, the probability is defined relative to obtaining a
particular result from a certain number of given conditions. It may be asked, for example,
what the probability is of obtaining a head, given that there are two potential outcomes and
that the system is not biased towards either one of them. In this sense, the probability is
defined as % The corresponding unphysical situation is consequently imagined implicitly,
by assuming that if an infinite number of coins were tossed under identical conditions,
then %Of them would come up heads. If, however, a coin is only ever flipped once and
gives a heads result, it is not immediately concluded that the result was deterministic, and
that probability may not be used.

The same is true in quantum cosmology. In the case of the Universe represented by
the state W,, the probability is defined relative to the set of D potential future states
Vo = <I>il+1, for ¢ = 1,..., D, that are the D normed eigenvectors of the operator f),hq.
Again, it is possible to devise hypothetical situations in which if an infinite number of

identical universes in the state W,, were measured, then a fraction |(®/ +1/¥5)[? of them
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would give the particular result @% 41, but this is just an attempt to attach empiricism onto
a mathematical definition. Probability in the Universe is synonymous with potentiality;
the fact that only one of these eigenstates is actually realised as the next state W,
does not mean that the universe proceeds deterministically, any more than if the spin
component of just one electron is measured and found to be ‘up’ it implies that the
electron must be described using classical hidden variables. Indeed if the Universe is not a
random, quantum system, the question would remain as to how it could therefore evolve

deterministically given that the component quantum sub-systems of which it is comprised

are clearly stochastic.

As will be expanded upon in the following chapters (particularly in Chapters 5 and 8),
continuous time is taken to be a phenomenon that emerges in a fully quantum universe
as its state proceeds through a long series of evolutions and collapses. Physical space,
and the momenta and energies etc. of particular sub-systems, will also be shown to
originate from considerations of the properties of this state W, which is assumed to obey
the laws of conventional quantum dynamics. However, whilst conventional quantum states
in the laboratory evolve according to the continuous time Schrédinger equation in a way
dependent upon their Hamiltonians, if the Universe is taken to possess no intrinsic concepts
such as time or energy, exactly what role the Schrodinger equation plays in its evolution
becomes an important question.

In response to this third criticism of quantum cosmology, it should be recalled that
the n'" state W¥,, of the Universe as discussed so far is simply defined as nothing but a
vector in a Hilbert space H. Its development is consequently only meaningful in terms of
mathematical mappings of this vector, for example by norm preserving ‘rotations’ due to
unitary evolutions, or by discontinuous jumps into another vector in H that is one of the
eigenstates of an Hermitian operator. Care must be taken, therefore, not to attach to this
state too many of the notions normally associated with emergent physical concepts, such
as direct questions of how ‘spatially long’ this vector might be or how much ‘mass’ it has.
In fact, exactly how the state could ultimately give rise to physics is a central theme of
this thesis.

Recalling the discussion of exo-physics given above, it should be remembered that
the Schrodinger equation is something scientists have discovered that appears to describe
the evolution of physical quantum sub-systems. However, physical phenomena tend only
to be witnessed by observers in the emergent, semi-classical regime. Consequently, the
Schrédinger equation has only been defined as an emergent construct used to describe other
emergent phenomena evolving in emergent time, namely, physical states in the laboratory.

So, since the continuous time Schrédinger equation was discovered in the emergent

limit, it cannot automatically be expected to describe the fundamental, pre-emergent
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dynamics of the state W,,; its emergent definition does not necessarily imply that it has to
be held as a fundamental law that describes the development of the Universe as a whole. In
fact, the only constraint placed on whatever laws are chosen to evolve V¥, is that they must
correctly reproduce every physically observed phenomenon in the semi-classical limit. The
laws of emergent physics may themselves emerge from more fundamental laws governing
the mathematical transformations of the state.

So, the state ¥,, of the Universe described in this work is ‘quantum’ in the sense that it
is a vector in a Hilbert space, and is subject to unitary transformation and to wavefunction

collapse by Hermitian operators. This will be elaborated upon throughout the following.

3.3 The Stages Paradigm

The stages paradigm was proposed in [1] in an attempt to draw together the observations
and conclusions of the previous two sub-sections into a mathematical framework that de-
scribes the properties and dynamical evolution of a fully quantum universe. The proposal
represents a certain minimum number of parameters required to describe the development
of the quantum Universe, and follows from the fact that a specification of the state ¥,

alone cannot fully define its dynamics.

To illustrate the idea, an analogy is drawn as before with the conventional, semi-
classical treatment of the single electron experiment introduced in the previous sub-section.
A full description of such an experiment necessarily contains a number of features. Firstly
there is the quantum state of the electron itself, represented by a vector ¢ in a Hilbert
space. Secondly, with the experiment is associated some sort of ‘information content’. This
information may, for example, include details of the Hamiltonian of the free electron, the
choice of the experiment to be performed on the state (e.g. the possible orientations of the
Stern-Gerlach apparatus), or even a memory of where the particular state came from or
how it was prepared. Lastly a set of rules are required in order to describe exactly how the
system develops, for example how the Schrodinger equation may govern the propagation
of the electron as a wave, or a statement of how the inhomogeneous magnetic field of
the Stern-Gerlach apparatus will perturb the Hamiltonian according to the spin of the
electron. The rules are hence equivalent to the laws of physics relevant to the current
situation.

As the experiment develops it progresses through a number of distinct stages. The
initial stage, for example, might be defined as the one containing the newly created free
electron. The next stage, then, might be defined as the period in which the electron

has been measured by the first Stern-Gerlach apparatus, but has not yet encountered the
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second. Finally, in the third stage of the experiment’s development the electron has passed
through the second apparatus also. In such a picture it is the measurement of the state of
the electron that marks the end of one stage and the beginning of the next; each collapse
of a state in one stage is equivalent to the preparation of the state for the next stage. This
is another manifestation of the principle that only when information is actually extracted
from a state can it be given any real, physical significance.

Each stage of the experiment’s development is clearly associated with its own unique
state, an information content and a set of rules describing the system. Moreover, some or
all of these will change as the system progresses from one stage to the next. For instance,
the state of the newly created electron in the first stage is clearly different from the state
representing the electron in the third stage, because in the latter case the electron has
been prepared in a particular spin eigenstate. Similarly the information regarding the
actual choice of the next test is different from the first stage to the second, because the
orientations of the Stern-Gerlach apparatuses are not the same. Equally, any information
regarding the previous test is different from the first stage to the second, because the
states in the first and second stages are prepared in different ways. Thus, each stage of
the experiment’s development may be said to be completely parameterised by the current
state, information and rules of the system, and changes in these, when the wavefunction

collapses, define the development of the system from one stage to the next.

By extending the above argument, the conjecture is that the Universe also progresses
through a series of distinct stages, with the divide between one stage and the next occurring
as the Universe’s state collapses due to its self-measurement. Given that the state in each
stage is necessarily different from the state contained in the previous stage, it is permissible
to extend the label n defining the n* state ¥,, to the stage itself. It is hence possible to
define the n'"* stage Q,, by

Q, =QY,, I,, R,) (3.14)

that is, each stage is a function of the current state, ¥,,, Information content, I,,, and the

Rules R,,. These are explained in turn.

As described previously, the wavefunction V,, is a pure state represented by a complex
vector in a Hilbert space of enormous, but finite, dimension D. From the dynamics of this
state is expected to emerge classical physics and all of the features in the physical Universe
associated with this, including for example time, space, and particle physics. The state
W, is assumed to represent the product of the sub-states of every quantum sub-system
contained in the Universe (as will be expanded upon in Chapter 4). Thus a change of
just one of these sub-states, for example a tiny part representing a physicist measuring a

tinier part representing an electron, implies a change in the overall state of the Universe.
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Consequently, the change of just one sub-state constitutes a progression of the Universe
from one stage to the next, even though nearly all of the other sub-systems might appear
unaffected by the jump.

In practice, it is expected that very many sub-states might change as the real Universe
jumps from the state ¥,, to the state ¥, 11 # ¥, corresponding to very many physical
sub-systems appearing to simultaneously observe other physical sub-systems. In general,

one, some, or all of the sub-systems might change as the stage develops from 2, to ,41.

I,, contains the necessary information required for the state’s development. Specifically,
I, could incorporate a set of A unitary operators {ﬁﬁ :a=1,...,A}, one of which might
be chosen to ‘rotate’ the state ¥,,, and also a set of B potential Hermitian operators
{OZ : b = 1,..., B} that represent the different possible ways that ¥, could be tested;
one of the set {OZ} which will hence become ﬁ:n_i_l. Equivalently, then, because with each
of the OZ is associated a basis set of D orthonormal eigenvectors, I,, also defines the
set of possible next states W, ;. Paraphrasing, if only one of the B operators may be
selected, and because each of these has D eigenstates due to the dimensionality of ¥,,, the
Information content I,, dictates that the next state W, will be one of a set of (B x D)
members, though there may be a great deal of degeneracy in this set because some (but
not all) of the eigenstates of O; might be the same as some of the eigenstates of 0l Of
course, until one of the operators OA; is chosen to be 2n+1, and until the state reduction
actually occurs, it is completely unknowable as to which of this set the subsequent state
U, 11 will be.

It is further possible that I, may also include information about the properties of pre-
vious stages. It might, for example, contain a record of what the previous state ¥,,_; was
like; or possibly the two previous states ¥,,_; and ¥,,_o, or even the states ¥,,_1, ..., ¥V,,_,
for some large x. Likewise, some sort of list might be present in I, that details the chain
of operators, Un_y and f}nﬂ_z for y,z > 1, that were used as the Universe progressed
through the chain of stages. In this sense, the current Information I, may be seen as a
form of memory of earlier stages, and might be used to track correlations from one stage
to the next. An analogy here is with the human memory, in which the current ‘state’ of
the brain often includes a recollection of its past ‘states’, or with a computer that is able
to store information about past steps of a calculation for later use.

Information about the past may be used in the dynamics to enforce constraints on fu-
ture states of the Universe. It might, for example, influence which of the set of B operators
{Og} is actually selected to be the next test in—i—l‘ Of course, this type of development
is really no different from how an experiment is often conducted in the laboratory: given
that a physicist knows that she has just tested a sample with X and Y and obtained

a certain state 1y, she may decide that it must next be investigated with Z, thereby
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selecting just one test out of a number of possibilities.

Using the past to influence how the present could develop into one of a set of possible
futures has the potential to introduce an element of order into the dynamics of the Uni-
verse. As an illustration, imagine a universe that chooses a particular operator f]nﬂ =0
to test its state W,, for the sole reason that 07, has eigenstates ‘similar’, in some sense, to
the previous operator ﬁn that prepared W,,. This would perhaps ensure that ¥, ; resem-
bles V¥,, to some extent, and if the process continued it might lead to a situation in which
features of the universe appeared to persist from one stage to the next. If physical states
did indeed develop in this manner, with the present incorporating information about the
past, the mechanism might be speculated to be a root of why the real Universe appears
to look so similar over certain scales.

Generalising the above, it is possible to re-parameterise the n'* stage of the Universe
as (3.15), wherea=1,...., A, b=1,...,B, and x,y,z > 0.

( ., {09}, {08}, ({0 1,y W o} {Un 1, s Uny ) )

Q, =0 R R
{EnJrl*la cey ETH*l*Z}}]? R,

(3.15)

The Rules R,, are the laws dictating the dynamics obeyed by the Universe. The Rules
specify that, given a state V¥,,, it will be evolved with an operator U, and tested with a
particular operator ﬁ:n_i_l. Equivalently the Rules are used to select, to act on ¥,,, one of
the A possible unitary operators Ug, a=1,..., A, and one of the B possible Hermitian
operators Oz, b=1,..., B, out of the set of all possible operators contained by I,,.

Exactly how a particular operator is selected, i.e. what mechanism the Rules use to
determine which member of the A or B possibilities is chosen, remains a difficult question
for the future. Indeed whether this choice is deterministic, or itself the result of some
random quantum process, is an important issue to be addressed. It is even possible that
the Rules make reference to additional factors included in the Information I,,, such that
perhaps the presence of a particular ¥,,_,., Un_ s Or f)n“_t in I, might lead to the selection
of a particular Uf{ or i)nﬂ. This possibility will be addressed many times throughout this
work, and especially in Chapter 8, and may be necessary to account for many of the
features present in the physically observed Universe.

In fact, it is also conceivable that the Rules R,,_1 used to choose the operator i)n are
not the same as the Rules R,, used to choose the operator in+1. In other words, the Rules
themselves may be subject to dynamical development according to some higher order set
of “Rules of the Rules” [27], and in this case such an additional ‘Meta-Rule’ would also
need to be incorporated into the definition (3.15) of a stage. In Chapter 8 an attempt has

been made to find simple Rules that reproduce certain required features of dynamics.
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All of physics is expected to emerge from the fundamental quantum picture of the
Universe described in this Chapter. It is reasonable to assume, therefore, that the Rules
R, at each stage must be very carefully refined in order to produce a classical looking
Universe that appears to run according to ordered and well defined laws of physics. The
Rules must ensure that every phenomenon that physicists experience on the emergent
scale is accounted for from the fundamental quantum level as the Universe jumps from one
stage to the next. For example, if from a particular state ¥,, appears to emerge a physical
Universe of enormous spatial size that appears to be describable by 3 + 1 dimensional
general relativity and appears to contain very many distinct protons, electrons, neutrons
etc. that have clumped together in huge lumps resembling galaxies, stars and planets,
and if further, on one of these planets, plants, animals, and humans have appeared and
evolved, and that some of these humans have constructed giant buildings and complicated
machinery in order to measure the Universe they believe they exist in as semi-classical
observers, then it is reasonable to hope that from the next state W, 1 all of these features
will also emerge, instead of, say, something totally different or even just complete disorder.
Since it seems to be an observational fact that the physical Universe appears to change very
little from one stage to the next (it will be shown in Chapter 4 that this is itself perhaps
unexpected), it may be conjectured that the Rules, and consequently the dynamics, must
be very finely tuned in order to choose an operator 2n+1 with an eigenvector so similar to
U,,. In a quantum universe approximated by continuous and emergent classical laws there
must be some sort of underlying ‘similarity theorem’ that ensures that W, is not too

different from W,,.

The standard laws of physics discovered in the laboratory are also presumably emergent
from the Rules R, describing the dynamics of the Universe. As an example, consider a
stage of the Universe in which, at one instant, it appears that from an emergent, classical
and large scale point of view, part of the state ¥,, may be considered to describe two
electron sub-systems. Further assume that, from this emergent, classical and large scale
point of view, scientists have defined a measure of distance and observed that the two
electrons are in close proximity?. Whatever the dynamics may be that actually govern the
Universe on the fundamental level, they might be expected to ensure that from the next
state W, 11 would emerge a picture in which the two electrons appear slightly farther away
from each other, again from the classical and large scale point of view of a scientist inside
the Universe. Continuing, in the state ¥,,;2 following this the two electrons might be even
farther apart. Thus, by observing the way in which the state of the Universe appears to
change from one stage to the next, emergent physicists are able to derive emergent laws

to describe emergent phenomena, such as “Like charges repel”.

4The emergence of space and the emergence of particles are investigated in Chapters 5 and 7 respectively.

35



Conversely, by studying these emergent laws of physics governing the physically ob-
served Universe, it might be able to place certain constraints of the actual Rules R,

governing the development of the underlying state from stage to stage.

With the above considerations in mind, it is possible to speculate now on the necessary
sequence of events that might define the dynamical development of the Universe. Consider
a fully quantum Universe, completely specified at the n‘"* step of its development by a
stage Qp, = Q(V,, I,, R,). The Information content, I,,, contains a set of possible unitary
operators, {Ug :a = 1,.., A}, and a set of possible Hermitian operators, {OAfL b =
1,..., B}, each of which is associated with a basis set of D orthonormal eigenvectors, CIDZ’_]L
for k=1,..., D, as well perhaps as some sort of ‘record’ of previous stages.

According to the specific Rules R, governing the Universe, and possibly making ref-
erence to the current Information I,, one of the operators ﬁfl is chosen to act on the
wavefunction, and the state undergoes unitary evolution. This evolution is effectively a
rotation of the D dimensional vector ¥, in its Hilbert space H, viz. ¥, — W = Ui,
Note however that depending on the dynamics, the chosen operator 0,’@ may be equal to

the identity operation I such that
U, >V, =U0, =10, =10,. (3.16)

Next the Rules select, from the set {OZ} defined in I,,, one of the Hermitian operators;
say, OA% This is equivalent to the Universe choosing a test to perform on its state. The state
consequently collapses into one of the eigenvectors of i]n-l—l = O%, effectively preparing
the next state ¥, ;. The probability that the new state ¥, ; will be the particular I*

eigenstate @i[il of ¥p41 is given by P(¥, 41 = (IJ;EHPI/;L) = |<@ﬂ+1’\1’%>’2

Details about the particular choice of operators ﬁfl and f]nﬂ = 0 may then be
included in the new Information content I,,1, which may also provide a record of the
previous state ¥,,. In fact, some of the ‘old’ Information content I,, may also be subsumed
into the new I, y1. This inclusion may be whole, I,, C I,,41, partial I,, NI, 11 # I,,, or even
not at all I, N I,41 = 0, where in the last instance the new stage could be said to contain
no knowledge whatsoever of its ‘history’.

In fact, the cases in which 1,41 does not completely encompass I, necessarily imply an
irreversible loss of information. Evidently, the ‘direction’ of the loss of information as the
Universe develops from one stage to the next is the same as the ‘direction’ of time in the
model, because both are based on the ‘direction’ of the state collapsing, i.e. from V¥, to
¥, +1. It is noted, moreover, that the idea of an irreversible loss of information is strongly
analogous to the notion of an increasing entropy, and in this case it is recalled that the

‘direction’ of increasing entropy (which is equivalent to the ‘direction’ of the irreversible
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increase in disorder of a system as it evolves) defines the arrow of time in thermodynamics.
From these viewpoints, the direction of time in the Universe is seen as identical to the
direction of increasing ignorance of exactly how the Universe came to have the state it
has.

A second point about partial inclusions of information is the fact that no observer in the
present can ever be sure of just how complete or reliable their information is regarding what
past stages might have been like. Since past states can only ever be reconstructed based
on whatever information about them has survived into the present, if this information
survival is incomplete then the reconstruction of the past can, at best, only be partial.
This conclusion reinforces the idea that physicists can only ever be truly certain of the
current stage of the universe. As is consistent with the idea of Process time, only the

present can be given any real existence.

The new information content I, will contain a new set of possible operators {Ug;l},
{OAZI_H}, where @' = 1,..., A" and &/ = 1, ..., B’. The actual members of these sets may be
based somehow upon the random choice of the new state W, 11, or on parts of previous
operators or states, and will go on to provide the dynamics for the next stage. This
next stage is clearly parameterised as Qp+1 = Q(Vy11, Int1, Rnt1), where the Rules Ry, 41
governing the Universe may also have changed, R, +1 # R,, according to any Rules of the
Rules.

Overall, the Universe has developed in a discrete quantum manner from one stage
Q, to the next ,41. This process is expected to continue indefinitely in a completely
self-contained and automatic way. All of physics, including the dynamics of microscopic
and macroscopic sub-systems evolving against a backdrop of continuous space and time
in an apparently classical looking Universe, is expected to emerge from the dynamics of
this self-referentially developing series of stages.

Exactly how this might occur will form the basis of the remaining chapters of this

work.
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4 Classicity from Quantum

Given that the physical Universe appears to look like an enormous collection of semi-
classical sub-systems, yet the conclusion of the previous chapter is that it is fundamentally
quantum in nature, an immediate question to be addressed is: how does apparent classical
physics emerge from the fully quantum reality? If the Universe is described by a complex
statevector W, what properties of this state might give rise to semi-classical looking degrees
of freedom?

In an attempt to understand this issue, it is beneficial to reverse part of the question and
define what is meant by classicity. To this end, it is observed that classicity is in some sense
synonymous with distinguishability; if a set of objects {A, B, C'} are described as classical,
it implies that it is possible to make distinctions between them. These distinctions may, for
example, be in terms of an observer’s ability to determine that the objects have different
physical properties or that they are positioned at different spatial locations.

If A, B and C can be distinguished, it follows that they may each be assumed to
possess an isolated existence, and may be discussed independently of one another. From
this viewpoint, classicity is therefore a way of expressing the observation that this object
with these qualities is here, whereas that object with those properties is there. Certainly
this is a criterion met by all macroscopic semi-classical states in physics, where for example
a particular large scale apparatus is always assumed to be separate from the quantum state

it is measuring, and does always have an independent existence and a well defined position.

As a consequence of the above, a state in classical mechanics representing a set of
classical objects can always be separated into the distinct sub-states of which it is com-
prised. The same is not true in quantum theory, because the phenomenon of entanglement
represents a breakdown of this ability to separate a system into independent and distinct
physical sub-systems. When two (or more) quantum states become entangled they can no
longer be given any independent existence, and instead it is only by taking the entire state
as a whole that the system can be given any physical significance. The EPR experiment
[11] provides a famous example of this.

It is, however, an important fact that a class of states exist in quantum mechanics that
are not entangled. Separable states (to be defined below) represent situations in which it
is permissible to segregate the quantum state into a set of sub-states. Further, because
it is possible to develop and measure the factor sub-states of these vectors independently
of each other, such sub-states may be distinguished. Thus, separable states in quantum
mechanics allow physicists to discuss their constituent parts, because the factors of a

separable state possess a degree of individuality. Since this is one of the requirements for
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classicity, the conjecture is that it is separable states that provide a necessary starting

point for the emergence of semi-classical degrees of freedom.

As a simple illustration, consider two Hilbert spaces Hy and H,,. Consider also a third
Hilbert space H4,) formed by taking the tensor product of Hy and Hy, ie. Higy =
Hy ® Hy. This third vector space H4,) may be described as factorisable, with the sub-
spaces Hy and H,, being its factors.

Now define two states v, and v,

W’a)(ﬁ@ = |¢1>¢ ® |902><p (4.1)
[Vp)oe = 10106 @ 92)e +1P2)s @ l01)e,

where ¢, and 1, are vectors in the product space Higy), i.e. g, ¥y, € Higy), but ¢; € Hy
and p; € H, for ¢,5 = 1,2.

Clearly, the state v, is separable into a product of factors, one of which, ¢, is in
the Hilbert space Hy and the other, ¢, is in H,. However, if it is assumed that ¢, is
not a linear multiple of ¢,, and similarly that ¢, is not a linear multiple of ¢, no such
separation is possible for the entangled state 1.

Now, if a quantum system is prepared in the separable state 1), it is possible to measure
one factor of it whilst leaving the other factor unchanged. The state ¢, may, for instance,
be tested by an operator O which has an eigenstate of the form |x)4 ® |s),, Where |x)4 €
Hy, such that the factor |p,), € H, appears unaffected by this measurement. In other
words, a physicist may ‘ask a question’ about the sub-state ¢; in the factor space H,
without necessarily changing every part of the state 1,. It is, for example, permissible to
determine whether the component of ¢, in the Hilbert space H, is indeed ¢, without
destroying v,. In fact, because it is separable, it is generally possible to determine the
component of ¢, in the Hilbert space Hy, without in any way affecting the component of
1, in the Hilbert space H.,.

However, the same is not true for the entangled state v,. Any attempt to measure the
component of 1, in either of the factor Hilbert spaces Hy or Hy destroys the entanglement,
and irreversibly collapses the wavefunction of the system into a different state, i.e. into a
product form.

This difference between ¢, and 1, may be rephrased in terms of the role of information.
For the entangled state v, it is possible to learn something about the component of
the vector in H, by performing a measurement on the component of the vector in Hy.
However, if during the measurement the entangled state 1, collapses into the product
state 1, no new information is gained about the factor state ¢, in ‘H, by performing a

subsequent measurement on ¢, in Hgy. In fact this will always remain the case, with the
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two factors leading independent existences, unless the dynamics conspire in such a way as

to re-entangle the system.

The testing of the EPR state of the electron-positron system of Section 3.1 provides
a physical example of these principles. The initial entangled state |¢)) = %(\ﬂe@ |1)p—
|1)e® |1)p) of equation (3.4) is destroyed by a measurement of the spin of the electron,
and, depending on the result of this, the system after collapse may be represented by one
of two possible product states [T)e® [])p or |])e® |T)p-

Each factor of these product states consequently represents either an isolated electron
or an isolated positron, with a known component of spin. Any subsequent measurement
of the spin of either the electron or positron in this direction leaves this new product
state unaltered (as this is simply a null test), but additionally, any further measurement
in any direction involving just the positron (by using, say, an operator of the form S‘gab =
S, cos Oap + S, sin 04p defined previously) will not affect the state of the electron, and vice
versa. Unlike the initial entangled state, the product state represents a system comprising

of an electron and a positron that are isolated and independent from each other.

The conclusion of the above discussion is that a quantum state separable into a product
of factors is in some sense equivalent to a system comprising of a number of distinct semi-
classical sub-systems. Because it is possible to examine just one of these factors without
affecting the rest of the state, these sub-states appear isolated and distinguished from each
other, and can be discussed as separate from the rest of the system, exactly as required
for a semi-classical description of physics to begin to emerge.

The reciprocal of this should also be true. Every sub-system that appears isolated and
distinct from the others may be associated with one of the factors of the state representing
the entire quantum system.

Further, by extending this argument to the case of a fully quantum Universe described
by a wavefunction W¥,,, the conjecture is that every individual, semi-classical sub-system

within it is represented by a unique factor of this state.

Exactly how this may be achieved is a difficult question, and it is noted that the
above statement may contain an element of idealisation. Being a factor of a state only
guarantees that the sub-system it represents may be granted a degree of individuality.
The individual factors still represent sub-systems governed by the laws and constraints
of quantum mechanics, as is obvious, for example, for the single electron and positron
factors of the earlier EPR product states, |1)e® |])p and ||)e® |1)p, which must of course
be treated quantum mechanically. This, after all, is the origin of the lack of a Heisenberg

Cut in the Universe.
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The method for achieving ‘real’ classicity, in the traditional sense of the word, in large
macroscopic sub-systems of the Universe is part of the difficult question of emergence to
be addressed in the future. It is here that statistical theories such as decoherence may
play a part, as will be discussed in Section 4.3.

Suffice to say, however, that even semi-classical, macroscopic sub-systems must need to
be associated with factor sub-states of the Universe’s wavefunction. The alternative, that
they are actually entangled with their surroundings, would imply that they cannot be given
any sense of individuality, and this would lead to the absurd and unsupported suggestion
that conventional semi-classical systems are actually entangled with each other, contrary
to empirical evidence. A classically distinct and isolated sub-system must be represented
by a factor of the Universe’s state, but if the state of the Universe can be separated it
does not automatically imply that every factor may be treated according to the laws of
classical mechanics, even as an approximation. Separability is a necessary condition for
classicity to arise, in that it implies distinguishability, but it is unclear at this stage as to

whether it is also sufficient.

It is possible that one or some of the factor sub-states may themselves be entangled
within their own Hilbert sub-spaces. For example, consider a ‘toy-universe’ initially in
the state U = |Z°) that contains nothing but a single Z° boson. Also, assume that the
dynamics selects a particular operator, ‘21, to test Wy, thereby causing the universe to
jump to the state ¥; = |7°) ® |7%) representing a pion/anti-pion pair. Such a dynamics is
analogous to a particle physics experiment in which the high energy boson spontaneously
decays into a neutral pion and anti-pion.

If the pion itself then goes on to decay to an entangled electron/positron pair (i.e.
an EPR-like state), the state of the universe, ¥q, after this decay may be given by Wy =
170 @ 1), where |7%) represents the sub-state of the anti-pion, and |t/ the sub-state of the
entangled electron and positron (3.4). Clearly, the overall state Wy is a separable product
of two factors, one of which is entangled.

The current example shows how the separability of the state representing a simple
system changes as it develops. In fact, if subsequently an operator 33 is selected that
is equivalent to a measurement of the spin component of the electron (in a particular
direction), and if the result is that it is found to be spin ‘up’, the next state, ¥s, will be of
the product form W3 = |7°)® [1)e® |]),. Note that the dimensions of the Hilbert spaces
of the states ¥g, U1, Uy and ¥3 must be the same, and that for example the sub-state 1)
of Wy is in the same factor Hilbert space as the product of the sub-states |1).® |]), in
W3. In this universe, it is evident that the separability of the system changes during the

transition from Vs to W3; this will be an important feature in the following.
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It is now possible to reinterpret the idea of a physical experiment from the point of view
of a universe described fully by quantum mechanics. Recall that the standard semi-classical
treatment of physics is to segregate the system into the subject under investigation, the
various bits of apparatus, the physicist conducting the experiment, and everything else
in the Universe (the ‘Environment’). Indeed, it does not seem possible to perform an
experiment on a quantum subject if it cannot be isolated from everything else.

This semi-classical approach can be incorporated into the quantum picture of the
Universe by assuming that each of these semi-classical and distinct parts may now be
represented by separate factors of the state W of the Universe. This is inevitable from the
viewpoint asserted in this thesis: if they are classically distinct, it follows that they cannot

be entangled with each other. Hence, the state may be written as
V) =[¢) ® |4) ®|0) ® |R) (4.2)

where [1)) represents the sub-state of the subject under investigation, |A) the sub-state of
the apparatus, |O) the sub-state of the observer, and |R) is the sub-state representing the
rest of the Universe.

Of course, |R) will itself be a product of an enormous number of sub-states, some of
which may themselves be entangled. However, for the sake of studying the tiny sub-state
of interest, i.e. |¢), the conventional procedure is then to ignore all of the factors of ¥ that
do not contribute to the running of the experiment and focus attention on changes in [¢).
This is really an exo-physical approach, where the physicist falsely believes himself to be
excluded from the Universe being measured, and is therefore potentially misleading, but
it is a natural procedure borne from the physicists subjective experience of the ‘outside’
world. The ‘real’ situation of endo-physical measurements will be addressed in Section
6.2, and also briefly in Section 4.3.3.

As with the pion experiment described above, the separability of the state representing
the Universe may change as it develops through a series of stages. Moreover, it is these
changes in separability that are ultimately responsible for the generation of certain classical
effects in the Universe, for example the emergence of continuous space. This will be
expanded upon in the following chapters, but it is remarked here that even in the simplest
quantum model hypothesised earlier, in which the Universe is represented by a state in

210184, the number of ways in which this state

a Hilbert space of dimension greater than
may be separated into a product of factors, some of which may or may not be entangled

themselves within their factor sub-spaces, is enormous.

Summarising, the separability of a state allows a classical distinction to be made be-
tween its constituent factors. The conjecture, then, is that classicity in a fully quantum

Universe emerges somehow from considerations of the separability of its state W. In ad-
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dition, if separability is required for classicity, and since it is an observational fact that
the Universe appears to be comprised of a vast number of classically distinct sub-systems,
the conclusion must be that the current state of the Universe is highly separable. It is

therefore a task to investigate how this might have occurred.

4.1 Factorisation and Entanglement

When is an arbitrary state ¥ in a Hilbert space H separable? What rules determine
whether a given vector ¥ can be written as a product of factor sub-states?

Before answering these questions, it must first be noted that the concept of a separable
state necessarily implies the existence of a factorisable Hilbert space. By definition, the
property that a state ¥ € H is separable in the form ¥ = ¢; ® ¢y, for example, where
¢y € H1 and ¢, € Ha, explicitly requires that H can be factorised in the form H = Hjg) =
H1 ® Ha. It is therefore a natural starting point for any discussion of the separability and
entanglement properties of vectors to define what is meant by the factorisability of their
vector spaces.

A Hilbert space H(¥ = H of dimension d is factorisable into N factors if it can be

written in the tensor product form
HD =1 o1 g . @ H g .. @ HI (4.3)

where Hgd") for a = 1,..., N is called the a'” factor Hilbert space and is of dimension d,.
Clearly, d = dyds...dy. Such a factorisation represents a particular ‘split’ of the Hilbert
space H(% into N given factors.

For convenience and clarity, note that here and elsewhere a Hilbert space H(® factoris-

able into N factors in the form of (4.3) can be written using the square bracket notation

(d) — /()
R =Himy@)@)..v)

(d)

= Hp193. N

=H o (4.4)

Note also that, in general, Hilbert spaces may be referred to as ‘factorisable’, whereas
the states they contain may be referred to as ‘separable’. A Hilbert space could also be
described as ‘separable’, but in conventional texts on vector spaces this name is taken to
imply that a countable basis can be found for it; any vector in a separable Hilbert space

may be written as a discrete sum of basis vectors.

It is possible now to define the factorisability, ¢, of H(¥ written in the form (4.3) as
¢ = N/d, that is, the ratio between the number of factors and the overall dimension of
the vector space. Consequently, the case in which d; € P Vi, where P is the set of prime

numbers, represents the maximum factorisability of H(® for a given d; such a split will be
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called a ‘fundamental’ or ‘natural’ factorisation, and the factor Hilbert spaces will be
called ‘elementary’. Obviously, for a Hilbert space of even dimension, the factorisability
¢ is clearly maximised if the dimension of each factor space is two, in which instance ¢ is
given by ¢ = N/2V.

Two dimensional Hilbert spaces are of great interest to many authors, partly because
they are the simplest, and partly because of an analogy with computational physics. An
orthonormal basis set for a Hilbert space H®) may be given by {|0),[1)}, for (i|5) = d;;
with 4,7 = 0,1, and these two vectors may be likened to any set of ‘opposite’ states in
elementary binary logic: |0) may for example represent ‘off’, ‘no’, ‘left-polarised’, ‘spin-
down’, or ‘false’, whereas |1) may represent the reverse, i.e. ‘on’, ‘yes’, ‘right-polarised’,
‘spin-up’ or ‘true’. It is this analogy to classical ‘bit’ logic that earns the quantum space
H? the title of a qubit Hilbert space, and a vector in this space may be called a qubit

state. Qubit states will be discussed a number of times throughout this thesis.

It is important to note that the left-right ordering of the factor Hilbert spaces is
not taken to be significant in this work. Specifically, this implies that the factorisation
(di)

(4.3) is invariant to any permutation i — j; of its factors H, "/, such that for example
HD =HP o HP = HP o HP.

Similarly, the same is taken to hold true for the states contained within these Hilbert
spaces; for example, if ¢, € 'ng) and ¢, € Hg), the product state ¥ = ¢, @4 € H§2)®'H§2)

is defined as equivalent to the re-ordered state ¥/ = p, ® ¢; € Héz) ® ’H?).

If the dimension of a Hilbert space is large, but not prime, the number of different
ways in which it can be factorised might also be large.

For example, consider a four dimensional Hilbert space H®; the only non-trivial fac-
torisation of H® splits the Hilbert space into a product of two sub-spaces, i.e. H® =
H?) ®H§2), where as above the sub-script is a convenient label and the super-script denotes
dimension. Such a split may be called a bi-partite factorisation.

Alternatively consider an eight dimensional Hilbert space H®); this space may poten-
tially be split into a tri-partite factorisation of three two-dimensional Hilbert spaces, or
a bi-partite factorisation of one two-dimensional Hilbert space and one four-dimensional
Hilbert space.

Obviously for higher dimensional cases such as H(2%, the number of ways in which the
Hilbert space might be factorisable in this simple manner is even greater, schematically
because 24 =2x 12 =2x2x6=2%x2%x2%x3=2%x4x3=3%x8=4x6. In fact, as will
be shown in Chapter 5, the actual number of ways of splitting a Hilbert spaces is much
more complicated than this elementary ‘dimensional’ argument suggests. There are, for

example, a number of different ways of factorising a 24 dimensional Hilbert space into a
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product of a two dimensional factor and a twelve dimensional factor.

In a similar vein, the vectors contained in these Hilbert spaces will also possess different
degrees of separability. An arbitrary vector ¥ in H*¥, for example, is either separable in
the form ¥ = ¢; ® ¢,, where ¢, € ng) and @,y € H§2), or not, in which case it is said to
be entangled relative to the factorisation H(*) = 7‘(52) ® H§2). Similarly, for the case of an
arbitrary vector ® in H(®, the state might either be separable into three factors, or into two
factors, or into one giant entangled ‘factor’. In the case in which ® can only be separated
into two factors relative to a tri-partite factorisation of H(®), H®) = H( ) ® Hg ) ® 7‘[(2)
is clear that the state is the product of two sub-states, one of which is entangled. Again,
arbitrary states in higher dimensional Hilbert spaces might potentially be separable into
products of many sub-states of differing dimension; this will be discussed more thoroughly

in Chapter 5.

Although a Hilbert space HD =H might potentially be split into the N-partite fac-
torisation of equation (4.3), it is only whether a state is separable relative to a particular
bi-partite split that is of most interest. Indeed, without loss of generality, only the separa-
tions of vectors relative to bi-partite factorisations need be investigated, and so in reality,
only the possible rules governing this need be sought. This conclusion follows because it
is a feature of Hilbert space mathematics that when a state is separable into a product
of vectors in different factor Hilbert spaces, the factor sub-states are effectively indepen-
dent. It can then be implicitly assumed that any method used to determine whether a
given state W is separable into two sub-states may be applied again to determine whether
one of these sub-states is itself separable into a product of two sub-sub-states, because
the only difference between the two cases is that the vectors investigated are of different
dimensions.

In other words, any method used to separate the d dimensional vector ¥ into a product
1 ® py of a di dimensional vector, ¢;, and a ds dimensional vector, ¢y, where d = d;da,
is effectively the same as that used to separate a d; dimensional vector ¢; into a product
¢ = a1, ® By, of a dy, dimensional vector, ay,, and a dj, dimensional vector, 3;,, where

LB gy, e Ht and W™ = 1) = H{B @ H{.

So, a given state ¥ may be separated into a product of N factors by a process of first
separating it into two factors, followed by independently separating each of these factors
into two factors, followed then by independently separating each of these four factors into
two factors, and so on until each of the individual factors can no longer be separated.
Assuming it is known whether it is possible to separate a given vector into a product of
two factors, then by repeated iteration the separation of the overall state into IV sub-states

can be found.
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As an example, consider the tri-partite factorisation of the eight-dimensional Hilbert
space H[(f.).g] = 'H?) ®H§2) ®H§2), and also a state ® in H(® that is known to be separable

into three factors, i.e. can be written in the form ® = ¢; ® vy ® 15, where ¢, € HEZ),

Yy € H§2) and ¢35 € H:(f). It follows that ® must also be separable into two factors,

D = ¢ ®(py@Y3) (4.5)
= ¢1 @ Xa3

where x93 = (5 ® 103) is an element of HE;% = H§2) ® H:(f).

This argument can be reversed. In order to show that ® is separable into three factors,
it is only necessary to first show that @ is separable into two factors, ¢ and xs3, relative
to the bi-partite factorisation of the Hilbert space H(®) = ng) ® H[(;l?)’], and then to show
that ¢; is not separable whilst x93 may be written as a product of two factors, ¢4 and 13,
relative to the bi-partite factorisation of the Hilbert sub-space H(*) = ng) ® H:(S2). It is
at this point that the procedure would terminate, because the factors ¢, and 13 cannot
further be separated; the state ® can be separated into a product of no more that three
factors.

Of course, in this illustration ¢;, ¢, and 15 cannot be separated further because they
are contained in two-dimensional Hilbert spaces, but in principle the above method could
be used even if they were entangled sub-states of arbitrary dimension. As an example, if
it could be found that a different vector ® in H®) is separable as @ = ¢} @ xbs, with
P € ng) and x53 € H[(;l?))], but that x53 is entangled relative to H[(;L:,Z] = HgQ) ® H:(f), this
result would be sufficient to prove that ®' cannot be separated into three factors relative

to this split.

As an aside, note that analogously to the fundamental splitting of the Hilbert space
described earlier, a fundamental separation of a state ¥ in H(@ may be defined as that
which contains the maximum number of factors relative to a given factorisation of the
Hilbert space. For example, the state ® in H®) = ng) ® H§2) ® H:(f) written in the form
D = P ® py @ Y3, where ¢ € HgQ), Py € Hg) and ¢35 € ng), is clearly fundamentally
separated, whereas the same state written as ® = ¢; ® xg3, Where x93 is an element of
Hg?))} = ng) ® HéQ), is not. Conversely, the state ® written in the form ® = ¢} ® xbs
defined above is fundamentally separated relative to this factorisation of H®.

The conclusion of the above few paragraphs is that it is only necessary to investigate
whether or not a given state ¥ € H(@ is separable into a product ¥ = P ® g of two
sub-states ¢; € 'Hgdl) and ¢, € Hng), relative to some bi-partite factorisation H(4 =
Hgdl) ® Hng) of the d-dimensional Hilbert space. A test is hence sought to determine
whether an arbitrary state can be separated into two factors, relative to such a bi-partite

split.

46



Consider a Hilbert space H = H@ of dimension d that is factorisable into the bi-
partite split H(® = 'Hgdl) ® ’Hng), where d, is dimension of the a* factor Hilbert space,
a =1,2,and d = dids. It is a standard theorem of vector spaces [22] that a Hilbert space
of dimension D is spanned by a set of D orthonormal basis vectors. Thus, a basis set B,

for the Hilbert space Hgd“) may be given by
Bo={li)a:i=0,1,....(dg — 1), a=1,2}, (4.6)

where (i|j) = d;;. Moreover, it follows from (4.6) that an orthonormal basis set B = B2

for the product Hilbert space H(® is given by
B={lin @j)aii =01, (di — 1), j= 0,1, (ds — 1)} (4.7)

So, any vector ¥ in H is composed of a complex linear superposition of the members

=3 1de " Cylin ® )2 (4.8)

where the Cj; € C form a dy X dy complex coefficient matrix.

Depending on the set of values of Cj; for i =0,1,...,(di — 1) and j =0,1,...,(d2 — 1),
the state ¥ will be either separable or entangled relative to the factorisation H(® =
Hgdl) ® Héd2). For example, if C;; = 1 for i = j = 0, but C;; = 0 otherwise, then
|¥) = |0)1 ® |0)2, which is clearly separable.

In fact:

of this set, viz.

Theorem 4.1 A state |¥) € H@ is separable relative to the factorisable Hilbert

space basis B iff its coefficient matriz satisfies the ‘microsingularity’ condition
CijCri = CiyCl; (4.9)
for all0 < i,k,<(dy —1) and 0 < j,1,< (d2 — 1).

The proof of (4.9) is given below, noting that a similar result is provided by Albeverio
et al [28] based on the idea of ‘concurrency’.

Proof. = If Cj;Cy = CyC; and |¥) = 001 579201 Cjli)y @ [)o

Suppose, without loss of generality, C\, # 0 for some u,v. Then multiplying (4.8) by

this gives
di1—1 —da—1
CUU‘\I/> = Zl 22 Cquz]| 1®‘]> (410)

di1—1 —da—1

= D iis 2y CusCinlid @ i
di—1 . da—1 .

= Zi:() Civ|2>1®zj:0 Cujli)e

and the state is separable.
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< If | W) is separable relative to H(@ = Hgdl) ® Hng) :

di—1 d2—1
W= (X0 i) e (S0 b)) L abec @
di—1

d2—1 . .
= 20 ijo aibjli)y © |5)2

So a;b; = Cj; from (4.8). It follows that

CijCr = a;bjarb; = a;bjarb; = C;Cl; (4.12)
]
As an example, the two qubit state © € Hﬁ% given by
O = al0)1 @ [0)2 + 810)1 @ [1)2 +v[1)1 @ |0)2 + 6[1)1 @ [1)2 (4.13)

with «, 3,7,6 € C and orthonormal basis set B, = {|i)q : @ = 0,1} for Hff) and a = 1,2,

can be written as a separable state of the form
© = (al0)1 +b|1)1) @ (c[0)2 + d|1)2) (4.14)

for a,b,c,d € C if, and only if, ad = 5.

Note that the separability of a state ¥ in ‘H = Hgdl) ® H§d2) is independent of the
choice of basis for the individual factor spaces Hgdl) and Hng). For example, if H((zd”) has
a basis By = {]i)q : 1 =0,1,...,(dg — 1)} for a = 1,2, the separability of ¥ is invariant to
any relabelling ¢ — j; of the individual elements |i),. Similarly, ¥ will not be affected
by any ‘rotation’ of the members of this basis set by local unitary operators ,, i.e.

|i>a - |i/>a = aama-

In general, for a state W to be separable relative to the bi-partite factorisation of the
Hilbert space H(® = Hgdl) ®H§d2), the number N, of microsingularity equalities that need
to be satisfied is given by

N, = %[dl(dl — 1)da(dy — 1)] (4.15)

or N, ~ d2/4 for d = didy > 1. In addition, the set of separable states is a set of measure
zero relative to the set of all possible states; the set of separable states effectively form a
hypersurface in the hypervolume representing every set of values of Cj;.

It might be surprising, therefore, that there is any separability in the Universe at all.
From the earlier ‘minimum guess’ that the dimensionality of the Hilbert space of the state

210184

W, of the Universe is greater than , the number of microsingularity conditions that

(2x10184-2)

are required to ensure that ¥, is not entangled is at least 2 . It might therefore

be expected that if a vector is chosen at random from a Hilbert space of dimension 210184,
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the probability that it is separable, relative to a given bi-partite factorisation of the Hilbert
space, is zero. From this argument, the probability that the statevector representing the
Universe is separable might also be expected to be approximately zero. Further, if the
Universe jumps through a series of states ¥,,_; — ¥,, — ¥, as it develops, it might
be expected that the Universe should almost always proceed from one entangled state to
the next.

This, however, does not appear to be what is actually observed in the physical Universe.
If separability is a necessary prerequisite for classicity, and given that the Universe does
seem to look like a giant collection of classical objects, the state of the Universe must
be highly separable. Given that it appears overwhelmingly likely that a quantum state

chosen at random from the set of states of dimension 210"*

is entangled, the question
must remain as to how there can ever be any classicity in a Universe running according
to quantum principles.

So in response to this, the conclusion must therefore be that the operator 3, used
to prepare the state ¥,, must be very carefully constrained in order to ensure that its
eigenvectors are almost universally separable. Equally, the Rules R,, themselves must be
very finely tuned to arrange that an operator in+1 with highly separable eigenvectors is
selected to form the basis for the next state W, 1. Quite plainly, the operators that the
Universe chooses to test itself must force ¥,, to jump from one highly separable state to
the next. This is analogous to the conclusion presented at the end of Section 3.3, in which

Rules are discussed that guarantee that the state ¥, appears so similar to ¥,,, and is a

point that will be returned to many times throughout this thesis.

An important feature of the present discussion is that states that are separable relative
to a particular factorisation of a Hilbert space may be entangled relative to a different one.
Consider, for example, a Hilbert space H(® that is the product of three qubit sub-spaces,
that is H® = H(}), = HY @ 1Y @ 1P

Now define a bi-partite split of H®) of the form H[(i)] = H%) ® H:(f), where H(:) =
H[(f%] = H§2)®H§2), with a suitable basis set Bz given by Bas = {|ij)a®|k)s : ,5,k = 0,1}
for |ij)a € Hff) and |k)3 € H:(f). Consider also a state ® € H®) defined as (4.16) for

a,b,c,d,a, 0 € C.
& = (al00)4 + bJO1) 4 + c|10) 4 + d[11) 4) & (a0} + G]1)s) (4.16)

where for convenience here and in the following, the product state |i); ® |j)2 has been

abbreviated by omitting the tensor symbol and writing
)1 @ |7)2 = li)1ld)2 = [25)12 = lij)- (4.17)

Note that because in this contracted form the sub-script denoting the factor Hilbert

space is dropped, the left-right ordering of the products must be preserved, i.e. |ij) # |ji).
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According to equation (4.8), ® is equivalently specified by the coefficient matrix Cj;

given by
& [10) 10,
|00) , | aax | af3
|01), | ba | bS8 Table 4.1
|10) 4, | ca | cf8
111) , | da | df8

where the first column and first row represent the basis vectors for the bi-partite factorisa-
tion H®) = Hff) ® H:(f), and the remaining values represent the coefficients of their tensor
products (1% column @ 1% row). Obviously ® is separable relative to this factorisation,

and the coefficient matrix clearly obeys the microsingularity condition.

(8 _
[1B]

H§2) ® Hg), where Hg) = HE;% = 'HéQ) ® H§2). Such a factorisation is spanned by an
orthonormal basis Byp given by Big = {|i)1 ® |jk)B : 4,j,k = 0,1}, where |i); € ng) and
k)p € MYy .

Now, by expanding (4.16), the vector ® may equally be written as

Consider now a different bi-partite factorisation of the Hilbert space defined as ‘H

o = aOé‘O>1 ® ’0)2 & |0>3 + aﬂ‘0>1 ® ’0)2 & |1>3 (4.18)
+ba|0)1 @ [1)2 ® [0)3 + ... +dB[1)1 @ [1)2 @ [1)3
= aa|0>1 & ’00>B + aﬂ|0>1 & ’01>B + ba|0>1 & |10>B + ...+ dﬁ|1>1 ® ‘11>B

with the coefficient matrix

® [100)p | 01)p | [10)p | 11)p
|0), | acx af ba b3 Table 4.2
1), | ca cB do ag

which clearly might not satisfy each of the six microsingularity equalities. Evidently,
although the state ® is separable relative to the first factorisation of H®), i.e. H®) = Hfi)y,}’
it is entangled relative to the second factorisation of H(®), i.e. H(®) = H[(i)g].

This result highlights the conclusion that it is simply not enough to say that a particular
state is separable, but that it must be qualified by the statement that it is separable
relative to a given factorisation of the Hilbert space. More precisely, if a state ¥ € H may
be written in the form ¥ = ¢ ® ¢, where ¢ € H; and ¢ € Hs for H = H1 ® Ho, then it
may be said that ¥ is separable relative to (Hi,Hz). Alternatively, if ¥ is not separable

in this way, it is said that ¥ is entangled relative to (H1, Hz).

The above result has an important consequence. If any state is only separable relative

to a given factorisation of the Hilbert space, then the assertion that the Universe’s state is
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highly separable, because the Universe appears classical, is only meaningful given a certain
factorisation of the Hilbert space H containing the Universe’s state.

In order to discuss consistent physics, it might therefore be suggested that a preferred
split for H exists, and that the Universe’s state may only be described as separable,
entangled, or a separable product of entangled factor sub-states, relative to this preferred
factorisation. As a conjecture, the fundamental factorisation of H, in which each factor
sub-space is of prime dimension, might perhaps be a possible candidate for such a preferred

split, but such a ‘natural’ assumption requires a great deal of future work.

4.2 Basis Sets and Operators

Whilst much of the discussion in this section has involved the properties of the states, it
is important to remember that the operators themselves also play a necessary part in the
dynamics. After all, it is the Hermitian operators used to test the state that provide, as
their eigenvectors, the basis set of next possible states.

Recall that every operator 2n+1 acting in a d dimensional Hilbert space H = H(4
and ‘testing’ a state ¥, (or ¥/ = UW,, where U is unitary) is associated with a basis
set B = {|#;) : i = 1,..,d} of d orthonormal eigenvectors®. Further, as the Universe
develops, its state jumps from W, to ¥,,1, and this effectively involves a process of
randomly selecting one of these d orthonormal eigenvectors to be the next state W, 41,
with the probability that a particular eigenstate |¢;) is chosen given by the usual Born
rle | (30,2,

Now, each member |¢;) of B could be either entangled or separable, relative to some
bi-partite factorisation of H = Hgdl) ® Hédz). In fact, the overall basis set 28 may contain
p entangled states, and consequently ¢ = d — p separable members; such a set could hence
be labelled a type (p, ¢) basis. A basis set of type (0, d) may therefore be called completely
separable, whereas a type (d,0) may be described as a completely entangled basis. All

other types may be called partially separable, or equivalently, partially entangled.

As an extension to the above, note that it would be necessary to introduce a third
parameter, r, in order to describe basis sets that may contain states that are separable
relative to a tri-partite factorisation of the Hilbert space, H = 'Hgdl) ® HédQ) ® Héd3) for
d = didads. These sets would be described as a (p,r,q) type, because they contain p

5Note that throughout this work, the calligraphic symbol B will be used to denote the particular basis
set of a Hilbert space represented by {|0),|1),]2),...} (i.e. the ‘natural’ basis set), whereas the fraktur
symbol B will denote basis sets of orthonormal eigenvectors {|¢,), {|¢5), {|#3), ...} of operators. This is
really just a convenience, since a basis set of eigenstates is also a basis set for the Hilbert space, and vice

versa.
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entangled members, ¢ members that are separable into three factors, and r members that
can be separated into just two factors, one of which a entangled relative to two of the
factor Hilbert spaces.

Equivalently, a label (p,7,q) clearly indicates that the set incorporates p states that
are separable into a product of one factors (totally entangled vectors), r states that are
separable into a product of two factors (the partially entangled vectors), and ¢ states
that are separable into a product of three factors (the fundamentally separated vectors).
Obviously, the extension generalises in a natural way, such that basis sets discussed relative

to an N-partite factorisation require N parameters.

It is interesting to note that not every type of (p, q) basis set exists.

Consider a four dimensional Hilbert space factorisable into a product of two qubit
factor sub-spaces, that is H*) = H§2) ® HéQ). Let By, = {|i)q : © = 0,1} for a = 1,2 be
an orthonormal basis set for the factor Hilbert space ’H((IQ), and turn attention to finding
orthonormal basis sets spanning the total Hilbert space H®%).

Firstly, it is possible to find basis sets of vectors that are completely separable relative
to the given bi-partite factorisation of H(¥). An example of such a type (0,4) basis is B (0,4)5
defined as

%(0,4) :{‘00>7 ‘01>7 ‘10>7 ‘11>}7 (4.19)

with <kl‘2]> = 6ik5jl and ’7,]> = ’Z)l (=) ‘j)g for i,5 =0,1.
Using the same notation, it is also possible to find type (2,2) basis sets for H®. One

example, B, o), may be defined as

1 1
V2 V2

Similarly, it is possible to find an example, B3 1), of a type (3,1) basis,

B o) = {|oo>, 1y, L (o) + 10)), = (jon) - \1o>>}. (4.20)

00), L [11) + 5(j01) + [10)).
B3y = V2 2 : 4.21
SV ) - Lo + 110)), (o) — [10)) 2

and an example, B4 g), of a completely entangled, type (4,0) basis,

75(100) +111)), —5(]00) —[11)),
(101) +110)), —5(l01) — [10))

S
S

%(470) == 1 (422)

5

S

However, despite the existence of type (0,4), (2,2), (3,1), and (4,0) basis sets, no
example of a type (1, 3) basis set can be found. This leads to the following;:

Theorem 4.2 No type (1,3) basis set exists for a four dimensional Hilbert space,

relative to the factorisation of HY into a product of two qubit sub-spaces.
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Proof. Let 7y, 1y, and 73 be three orthonormal vectors in H® that are separable
relative to the factorisation H(®) = ’ng) ® HgQ). Each vector n;, ¢ = 1,2, 3, is of the form
n; = ¢; ® @;, where ¢; € H?) and ¢; € HéQ).

From the condition that |n;| =1,

(il @ (ps]) (13) @ [p3)) = (@ilds) (pilep;) >0 (4.23)

= None of the factors ¢, or ¢; can be zero for ¢ = 1,2, 3.

Moreover, mutual orthogonality, (n;|n;) = 0 for i # j, gives

(D102) (p1la) = 0 (4.24)
(D1]@s5)(p1lps) = 0
(D2l P3){(alps) = 0.

For brevity, the product (¢;|¢;) shall be defined A;j, and the product (¢;[p;) = Bij,
for 1 < i < j < 3. For the above equalities A;;B;; = 0 to hold, A;; and/or B;; must be
Zero.

It is firstly evident that not all three of the A;; can be zero. If this were the case, i.e.
A12 = A13 = A23 = 0, then

Az =0 == ($1]|¢9) =0, (4.25)

which would imply, since ¢; # 0 for ¢ = 1,2,3, and since ¢; € ng) and 'HgQ) is two

dimensional, that ¢; and ¢, form an orthogonal basis for ’H?). In this case, therefore,

b3 = ady + bo, (4.26)
where a,b € C and
la]® + |b* = 1. (4.27)
Then,
A13 =0 — <¢1|¢3> =0 — a=0 (428)
A23 - 0 — <¢2|(b3> == 0 — b - O

But (4.28) with (4.26) contradicts ¢; # 0, leading to the conclusion that not all Ajg, A13
and As3 can be zero. Similarly, not all three B;; may be zero.

One way of satisfying the mutual orthogonality conditions, (n;|n;) = 0 for i # j, is to
assume Ajs = A13 = Bsg = 0 and Asg # 0, though by symmetry any other combination
for i < j and (k # 9)&(l # j) of two A;; and one By being zero, or two B;; and one Ay,

would also work.
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As before, (4.25) may be used to deduce that ¢3 = ad; + bps, such that ¢; and ¢,
form an orthogonal basis for Hf). From the condition A3 = 0, it is clear that a = 0, and
so because Ag3 # 0 the conclusion is that b # 0.

Similarly to (4.25), the condition Bs3z = 0 with ¢; € HgZ) implies that o and ¢5 form

an orthogonal basis for ng). Hence

1 = cpy + dps (4.29)

for ¢,d € C and |¢|* + |d|? = 1. Collecting these results gives

m = ¢1® (cpy+des) (4.30)
Ny = ¢3¢y
N3y = boy ® 3.

which are clearly mutually orthogonal, as required.

Consider now a fourth non-zero vector , € H®. Given that ¢; and ¢, form an
orthogonal basis for ng), and ¢, and ¢4 form an orthogonal basis for HéQ), this new

vector may be written as

Ny = ag; ® Py + P @ g+ YPg @ g + dPy @ p3, (4.31)

with a, 3,7,6 € C and |o* 4 |B]* + |7[*+6|* = 1. Now, if ;, 15, 113, and 1, are to form an

orthonormal, type (1,3) basis for H@W | then because 11, Ny and n3 are clearly separable,

n, must be entangled relative to the bi-partite factorisation H(*) = H?) ® HgQ). So, from

the microsingularity condition (4.9) given earlier, the condition

ad # By (4.32)

must therefore hold for n,. However, from orthogonality

0 = ~v=0 (4.33)

<772’774>
(nslng) = 0 = b6=0,

but since b # 0, the last equality implies ¢ is zero. So,
ad =Py =0, (4.34)
which is inconsistent with (4.9). Hence, 7, cannot be entangled. m

Thus, if three mutually orthogonal vectors in H*) are separable relative to the factori-
sation H*) = HgQ) ® HgQ), then a fourth orthogonal vector must also be separable. There
can be no type (1,3) basis set for H(*),
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It is interesting as to whether such a theorem can be extended to bases in higher
dimensional Hilbert spaces. Whilst no proof has been demonstrated, no type (1,5) basis
set has been found that spans the six dimensional Hilbert space H(®) factorised as H(®) =
Hf’) ® HgZ). If it is actually the case that no such basis set does exist, it may lead to a
conjecture that in a d = djds dimensional Hilbert space there is no type (1,d— 1) basis set
relative to any bi-partite factorisation H(® = Hgdl) ® HédQ). This in addition also provokes
the question as to which, if any, types of basis sets (p,r,q) are forbidden relative to a
tri-partite factorisation of a d dimensional Hilbert space. Consequently, which types are

allowed in an N-partite split of H(®?

The theorem described above also holds an interesting implication for physics. As
discussed previously, every Hermitian operator, i, in a four dimensional Hilbert space
H® is associated with a spectrum of four orthonormal eigenvectors. Further, these four
eigenstates effectively form one possible orthonormal basis set for H%). So, since each basis
set may be labelled as type (p, ¢q) relative to the fundamental factorisation of the Hilbert
space HY) = ng) & Héz), reciprocality implies that the operators themselves may also
adopt this label. It is hence possible to discuss a type (p,q) Hermitian operator, 2(1741)’
based on the separability of its eigenstates relative to this factorisation.

The conclusion of the above work is therefore that there exists no type (1, 3) Hermitian
operator acting on a two qubit system. There is no observable that may be represented by
an operator possessing one entangled and three separable eigenstates, relative to HW =
HP @ H?.

What makes this result particularly important regards the earlier problem of separa-
bility in the Universe. Even in a two qubit system, the number of separable states form
a set of measure zero in comparison to the number of all possible states. So, as was re-
marked in the previous sub-section, the fact that separability does seem to be a common
feature of physically observed quantum states is ascribed to be due to a careful choice of
the operators that act upon the system. The point that can be learnt from the present
discussion is that mathematics itself appears to enforce certain constraints on the way in
which a system develops. For example, if a hypothetical mini-universe is imagined with
a state U, existing in a Hilbert space of four dimensions, it is certain that its next state
U, +1 will not be one of the eigenstates of a type (1,3) operator. Mathematics ensures
that such universes can only ever be developed with 2(074), 2(2’2), 2(3’1) or 53(4’0) type
Hermitian operators.

Whilst two qubit universes are of, course, trivial compared to a state of dimension
greater than 210184, the result highlights the assertion that the mathematics of operators
places important restrictions on the development of the state. It may readily be speculated,

then, on what other constraints might naturally be enforced by the operators, especially as
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the dimensionality of the Hilbert space increases. Specifically, similar such constraints may
ensure that the possibility of obtaining a highly separable state for the Universe is actually
much more likely than might be expected. Apparent classicity may be an unavoidable and
inevitable feature in a fully quantum Universe because of tight limitations fixed on its

dynamics by mathematics.

4.3 Decoherence

Exactly how quantum mechanics gives way to the classical reality that scientists observe
and measure has been one of the great problems of physics since the earliest days of the
theory. In essence, the difficulty has been in explaining why states on the macroscopic
‘everyday’ scale never appear to exhibit the properties associated with quantum states.
For example, large semi-classical states in the laboratory always seem to have well de-
fined spatial locations, and are never found entangled with one other or existing in linear
superpositions.

Although a number of schemes have been proposed to account for this phenomenon,
by far the current most popular ‘explanation’ is the theory of decoherence. Since the
purpose of this chapter has been to investigate some of the necessary conditions required
for apparent classicity to begin to emerge from a fully quantum description of the Universe,

no such study would therefore be complete without a discussion of this conventional theory.

4.3.1 The Theory of Decoherence

The main thrust of decoherence theory is that a quantum state is driven to classicality by
continual interactions with its environment (see [29] [30][31], amongst others).

As an example, consider a quantum subject in the laboratory that is represented by
the state ¢ in a two dimensional Hilbert space H,, spanned by an arbitrary orthonormal
basis By, = {| |),| 1)}. For illustration, it may be imagined that v represents the state of
a single electron, whereas B, represents the set of possible outcomes of a measurement of
the electron’s spin component in a particular direction.

Consider also the laboratory detection apparatus used to measure the electron. This is
also described by a unique quantum state, and may in this simple example be represented
by a vector ® in the two-dimensional Hilbert space He spanned by an orthonormal basis
By = {|9)),1®))}.

Now, in order for the apparatus to behave as a detector of 1, its state ® must somehow

be correlated with the spin states of the electron. To this end, the basis B may be chosen
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such that if the detector is found to be in the state |®), it is taken be imply that the
electron is in a spin down state, whereas if it is found to be in the state |®1) then the
electron is assumed to be spin up. In such a system, the basis vectors |®|) and |®;) are
defined as ‘pointer states’, and are ultimately hoped to give rise to the classical results of

the measurements, i.e. what the physicist actually sees.

Let the detector initially be in the ‘ground’ state |®). If it is to work correctly, it may
be assumed that an encounter with a spin up electron induces a transition in the detector
from the state |®|) to the state |®1), whereas a spin down electron leaves the apparatus’
state unaffected. In other words, if the electron is initially in one of the eigenstates | |) or

| 1), the overall system evolves according to either (4.35) or (4.36),

L)ele)—[l)e|e) (4.35)
T )®2) —[1)©[P). (4.36)

Such a process implicitly assumes that there is some sort of coupling between the
electron and detector. This generates an interaction term in the Hamiltonian governing
the system’s dynamics, which leads to a unitary and deterministic evolution of the overall
state into one of the products | |) ® [®]) or | T) ® |®1), depending on the state of the
electron.

Now, the above mechanism provides the correct basis for the classically expected results
if the electron is initially in one of the spin eigenstates | |) or | 7). A problem arises,
however, if the initial electron state is in a linear superposition of the form ¢» = «| |)+0| 1),
where o, 3 € C and |a)? + |8]* = 1. From (4.35) and (4.36), the electron-detector system

is then evolved into the state

(@ D+BIM) @2 —all)@[®)+5]1) ©[Pr), (4.37)

which is clearly an entangled linear superposition of two orthogonal electron-detector
product states. But, such an entangled state is undesirable if it is hoped that the simple
two-level apparatus may be extended to represent a classical detector, because classical
objects are never seen in linear superpositions. So, if decoherence is to be an answer to
the question of how classicity emerges from quantum theory, it must provide a mechanism

for removing the entanglement of (4.37).

The method proposed in decoherence theory incorporates an extension of the above
‘von Neumann chain’ of correlated systems to an inclusion of the environment as well,
which is also assumed to be a quantum state. Consider two particular states of the
environment |=|) and |=¢) contained in an enormous Hilbert space Hz. These two vectors

are taken to be the result of an interaction between the pointer states of the detector with
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its surroundings; that is, if the detector is in the state |®|) then the environment will be
in the state |Z|), whereas if the detector is in the state |®1) then the environment will be
in the state |Z4).

With this condition in place, then if the environment is initially in some ground state
|Z0), it is assumed that the detector-environment system is evolved into one of the following

two correlations

®)) ®[|Z0) — [®])®IF]) (4.38)
|®1) ® [Z0) — @) @ [Zq).

Overall, then, an initial electron-detector-environment system ¥; = ¢ ® ®| ® 2y, where

Y = (a| [)+ 5] 1)), will develop into a final entangled state ¥, such that

Vi) = [¢) @ ®)) @ [Z0) — al |) ©[®)) ®

E)+BIN @) @) = [¥y).  (4.39)

If the experiment is repeated identically a large number of times, or alternatively if
a large number of hypothetical identical universes are simultaneously developed in the
same way, the ensemble of final states could be described in terms of the density matrix
p defined as p = |Wf)(Wy|. Clearly, then,

_ ool i@ @)@ o ENEN+oB DT o R)@@E)E] 0

T B L@ [D1)(@ [ @ |E)(E |+ 876 THT | @ |21 )(D1| ® [E4)(Eq]

The central argument of the decoherence theorists is that if the environment is suffi-
ciently large and possesses a large number of energy eigenstates, and if it is never carefully
prepared or probed, then it may be ignored. In this case, it is possible to trace over all the
states of the environment to obtain the reduced density matrix, p,, of the electron-detector

system of interest. Specifically,
ps =Trzlo] = > (E,[pIZ,) (4.41)
gl

where the index v implies a sum over every possible normalised state of the environment,
including of course |Zo), |Z|) and |=}).
The result of (4.41) may be split into a sum p, = p,; + p,q of ‘diagonal’ elements, p,,
given by
pa=a"al )(11® @)@ + 58] 1){1 | @ |1)(%] (4.42)

and ‘off-diagonal’ elements, p,,, of the form
Poa = | 1)1 1®1®))(®1] @ ([Z)) + ... (4.43)
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In this case, the diagonal elements are equivalent to the states predicted by classical
mechanics, whereas the off-diagonal elements represent the quantum coherences. Evi-
dently, the environment has no effect on the diagonal elements, but does influence the
off-diagonal terms.

However, if the environmental states are assumed to be orthonormal, (Z;|Z;) = 6,
for all ¢ and j, then the off-diagonal elements clearly become zero. The resulting reduced
density matrix, p, = p4, takes the form of a classical ensemble of states, with no quantum
entanglement.

Overall, then, the superposed electron state ©» = («| |) + 5| 1)) has been unitarily
driven to one of its classically observed basis states | |) or | T) by an interaction with its
environment, and which of these two states is now actually observed is simply a matter of
classical probability. That is, when an observation is eventually made there is a probability
of a2 that the electron is already in the state | |), and a probability of (% that the electron
is already in the state | T). Compare this with the pre-decoherence case ¢ = (a] |)+ 5] 1)),
in which there is a probability of o that the electron might subsequently be found in
the state | |) if it is tested by some operator B with orthonormal basis By = {| |),| 1)},
and a probability of 32 that the electron might similarly be found in the state | 1), but is

really in neither of these states until the actual observation is made.

4.3.2 Problems with Decoherence

It is difficult to predict exactly how the theory of decoherence may fit with the paradigm
proposed in this thesis. As is evident from the brief summary given above, decoherence
is assumed to be a macroscopic phenomenon that would only arise from a consideration
of the interactions and dynamics of an overall system of very large dimension. In this
sense, decoherence may be viewed as an emergent theory that might therefore potentially
be used to describe how classical physics arises as an approximation to quantum theory
in the large scale limit of systems with very many degrees of freedom. From this point
of view, the ideas of decoherence may well play an important part in the discussion of a

quantum system represented by a state of dimension greater that 2107,

On the other hand, it is still difficult to see how decoherence theory could be applied
directly to the Universe as a whole. The main point of decoherence is that a (usually
microscopic) quantum system is evolved into a classical looking system by continual inter-
actions with its external surroundings. No similar argument can be applied, however, to
the case in which the quantum state in question is the Universe itself, because by definition
the Universe is not contained in any sort of ‘background’. In essence, there is no external

environment with which the state of the Universe is able to decohere.
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This observation leads, perhaps, to one of three conclusions: either ? decoherence
is a valid theory to describe states inside the Universe, but not the overall state of the
Universe itself; ) the individual sub-systems of the Universe decohere each other, such
that the overall state of the Universe is driven to classicity; or “) decoherence is not really
a fundamental theory of physics. The first of these conclusions seems a little paradoxical,
and leaves the question as to where the ‘line’ can be drawn that specifies the validity of
decoherence. The third conclusion is quite negative, though still, of course, possibly true.
The remaining possibility is more interesting, and might presumably lead to a situation of
the type in which quantum sub-state A is acting as the environment for quantum sub-state
B, whereas the quantum sub-state B is acting as the environment for quantum sub-state
C, but perhaps quantum sub-state C' is acting as the environment for quantum sub-state
A. Such a picture would immediately be in keeping with the assumed self-referential nature
of the Universe, but a great deal of further investigation is required in order to discover

how, or indeed if, such a hypothetical mechanism might work.

One problem that still exists in decoherence theory is the issue of probability. Using
the electron experiment described earlier as an example, the mathematics of decoherence
still provides no explanation of how one of the basis states | |) or | T) actually gets selected,
and therefore why a particular one of these two is actually observed in the laboratory.

During decoherence, the interplay between an initial quantum state and its environ-
ment gives rise to a well specified interaction term in the Hamiltonian. The system then
undergoes unitary evolution according to the Schrodinger equation, which forces the state
into a classical looking state. The Schrodinger equation, however, is a deterministic for-
mula, and as such the drive of the state from quantum to classical must also be deter-
ministic. Whilst this not only gives philosophical problems, such as the possibility of a
Laplacian style ‘clockwork’ Universe, it also raises the question as to how the state can
deterministically evolve to only one out of a set of possibilities. Indeed, as remarked by
Erich Joos, one of the proponents of decoherence, “Decoherence can not explain quan-
tum probabilities without (a) introducing a novel definition of observer systems in
quantum mechanical terms (this is usually done tacitly in classical terms), and (b)
postulating the required probability measure (according to the Hilbert space norm)”.

The probability measure is normally introduced into conventional quantum mechanics
by the state reduction process. According to this postulate, then at the point of mea-
surement of a quantum system, the wavefunction discontinuously jumps into one of the
eigenstates of the Hermitian operator representing the observation. Moreover, it is this
process that abruptly selects, irreversibly and probabilistically, the next state of the sys-
tem out of a set of possibilities. Decoherence, however, contains no such mechanism, so

a question must remain as to how similar selections can be made if the system is always
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constrained to evolve reversibly, unitarily, and deterministically.

To give an illustration, in quantum mechanics the famous paradox of Schrédinger’s
Cat [32] relies on which of a set of possibilities a quantum state develops into. Adapting
the earlier electron example to Schrodinger’s thought experiment, it might be the case
that if the electron is in the spin down state, then a gun is fired and the Cat in the sealed
box is killed. If conversely the electron develops into the spin up state, then a gun is not
fired and the Cat is spared.

In the conventional Copenhagen interpretation of quantum mechanics, until an ob-
servation collapses the quantum wavefunction, the state of the system is in an entangled
superposition of products of a spin-down electron and a fired gun with a spin-up electron
and an un-fired gun. Consequently, and taking the conclusion to absurdity, it might then
be argued that the Cat is simultaneously both dead and alive. So, the question has there-
fore always been: at what point along the chain is the observation made? If the state
reduction relies on a human observation, is the conclusion to be accepted that the Cat is
able to keep one paw in both life and death until physicists decide to look inside the box?

In decoherence theory, the linear superposition is destroyed by the environment, so
the electron’s spin state is definitely either up or down, with the inevitable consequences.
As such, the corresponding reduced density matrix for the electron-gun-Cat system only
reflects an external observer’s classical ignorance as to what has already happened. Para-
phrasing, the ‘decision’ has already been made by the Universe as to what has gone on
in the box, but until the physicist investigates, only classical probabilities of obtaining
certain results can be discussed. This is obviously like tossing a coin: the coin definitely
lands either heads or tails, but until it is uncovered it is not known which of these two
possibilities has occurred.

But, in decoherence theory the question remains: how does the Universe decide whether
or not the electron evolves to a spin-up or a spin-down state? How does the Universe decide

if the Cat lives?

The lack of randomness is not the only problem caused by a removal of the state
reduction postulate from quantum mechanics. Assuming the principle of cause and effect
is to be believed, any physical state in the universe is the result of some earlier process.
If further it is accepted that every system in the Universe is fundamentally quantum in
nature, then every physical quantum state in the Universe must therefore be the result of
some earlier quantum process.

However, if these quantum processes appear to ensure that quantum interferences are
eradicated, as the decoherence paradigm suggests, it is unclear as to how any coherent

quantum state might be produced in the first place. In other words, if quantum systems
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are only able to develop through a process of unitary evolution, and if these evolutions
effectively remove quantum coherences and superpositions, what unitary process in the
decoherence paradigm can give rise to entangled states? Specifically, in the example
described above, how is it ever possible to create an initially superposed state of the form
¥ = (al |)+ B| 1)) using only processes constrained to destroy such features?

Presumably the conclusion to be drawn is that either decoherence theory requires an
additional mechanism in order to produce such superpositions and entanglements, or else
it must be asserted that every such quantum state currently in existence has come from
some sort of ‘partial decohering’ of an earlier state that was even more entangled and
superposed. In this latter case, not only would it be necessary to specify how this partial
decohering might work, but also the question would remain as to why, if the Universe has
been continuously and smoothly evolving for a period of about 15 billion years, are there
any quantum effects left in the current epoch at all?

Of course, if the state reduction postulate is included into the formalism, this problem
is not encountered because the preparation of a superposed or entangled quantum state
is simply seen as the outcome of a quantum test. Moreover, because these outcomes are
associated with the eigenstates of Hermitian operators, they are not constrained to be the
result of a continuous unitary process. Thus with the introduction of Hermitian operators
and state reduction into the dynamics, it is possible to generate superposed entangled
states, and these can then go on to be developed in subsequent ways, for example to
collapse and consequently cause or prevent guns from firing.

As discussed previously, such a viewpoint forms the basis of the paradigm proposed in
this thesis, in which the test ¥, simultaneously collapses the ‘old’ state of the Universe
W,,_1 to prepare and produce the ‘new’ state W,. In this proposal, the state of the Uni-
verse develops through a long chain consisting of a state reduction, followed by evolution,

followed by a state reduction, and so on.

In addition to these theoretical difficulties, recent experiments reviewed in [33] seem
to indicate that discontinuous wavefunction jumps are an observed feature of physical
quantum systems. If these investigations prove conclusive, it is natural to wonder as to
how such an empirical result might be reconciled by a theory of decoherence based on

continuous, unitary evolution.

4.3.3 Schrodinger’s Cat’s Stages

As a final comment to complete this discussion, it might briefly be mentioned as to how
the paradigm proposed in this work views the Schrodinger’s Cat paradox, noting that a

fuller and more technical account is evident from Chapter 6.
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In the schematic picture given here, an initial state V¥,, is imagined that is separable

into a huge number of factors. Simplifying this, however, ¥,, may be written in the form
U, = [¢) @ |Gu) @ |Ch) @ |R) (4.44)

where [¢)) € Hy represents the superposed electron state ¢ = («f |) + 6] 1)), with
|Gy) € Hg the un-fired gun, |C}) € He the living Cat, and |R) € Hp the rest of the
Universe.
Obviously, ¥, is a vector in the total Hilbert space Hy = Hy ® Hg ® He @ Hg.
The next test in—‘,-l acting on ¥,, has a basis set of orthonormal eigenvectors. If two

of these eigenvectors are ¢ and ©, defined by

o = |Gy e|C)3|R) (4.45)
= D elG,)e|C)|R)

then the next state of the Universe ¥, .1 may be either ® or O, with relative probabilities
(W1 = B[W2 = [(7 1)) and |1 = O]W,)* = (1 [19)]° respectively.

Now, assume that U, ,; = ®. Moreover, assume also that under this circumstance,
the Rules governing the Universe conspire such that the subsequent states W, 1; will
‘resemble’ W, 11 for a large but finite number J of further evolutions ﬁn+1+j and tests
in+1+j, for J > 0 and 0 < 5 < J. That is, assume that these subsequent tests in+1+j for
1 < j < J have eigenstates that are separable in the form ®,414; = | 1) ®|G,)®|C])®|R'),
where [¢') € Hy, |G),) € He,|C]) € He and |R') € Hp represent, for example, living cats
and un-fired guns that have changed slightly in their own Hilbert spaces as the Universe
has developed.

The point is that during these J developments the electron, the gun, the Cat and
the rest of the Universe have not interacted with each other in any way. Specifically, the

electron has not interacted with the gun, and so the Cat lives.

Alternatively, consider the case where ¥, = O, and assume that the Rules now
conspire so that subsequent states W, 414m—1 resemble ¥, for 1 < m < J, but that at
time (n—+147mm) a test £, 14m is chosen which has eigenstates of the form O, 1 1m = | |
) @ |Gy) ®|C]) @ |R'), where |Gf) € H¢ represents the state of the fired gun, |C}) € He
the living Cat that has evolved slightly and independently since its earlier state |C;), and
|R’) € Hp the rest of the Universe which has also undergone many developments during
the m preceding evolutions and tests.

Moreover, if the experiment is sound, it is further assumed that this eigenstate ©, 14
occurs with very high probability. In this case, it is further assumed that an even later

time (n 4+ 1+ m + p), the Rules conspire to choose a test f)n+1+m+p, for 1 < p <« J, that
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has an eigenstate of the form Oy t14m+p = | |) ® |G%) ® |Cy) ® |[R"), where |G) € Hg
represents the state of the gun that has changed slightly since it was fired, |Cy) € H¢ the
Cat that has now been shot dead, and |R”) € Hp the rest of the Universe which has also
developed further in the p evolutions and tests since it was represented by the state |R').
As before, assuming the experiment is consistent and the gun well aimed, it is accepted

that the eigenstate ®,, 114, Will also occur with a very high probability.

Thus, the two possible outcomes for the initial collapse of the electron sub-state from
|) to | T) or | |) lead to two different ‘histories’ for the Universe’s development. In neither,

however, is there any ambiguity in the fate of the Cat.

Obviously, the example given here is described only (highly) schematically. In reality
cats and guns are complicated macroscopic states that will undergo a series of ‘inter-
nal’ transitions as the Universe develops, and will interact with their surroundings in a
multitude of different physical ways. Indeed, it is a fundamental philosophical question
regarding the nature of persistence to ask what it means to describe an object that is
undergoing tiny changes from moment to moment as ‘the same cat’. In fact, some of the
ideas of decoherence theory may contribute an important part to this particular discussion.

In principle, however, the main point from the above treatment of the Schrodinger’s
Cat paradox should be evident. The conjecture is that the Universe automatically and
self-referentially selects an operator 2n+1 to test itself, and it is this self-measurement that
collapses the electron sub-state into one of its basis vectors | |) or | 1), without the need
for a conscious observer.

Perhaps it is this combination of self-referential testing with discontinuous state re-
duction, and maybe even macroscopic decoherence effects, that might save the Cat’s life

and give it a classical identity.
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5 A Quantum Origin of Space

As discussed at the beginning of the previous chapter, one qualification for the presence
of classicity follows from the observation that “this object with these qualities is here,
whereas that object with those properties is there”. Whilst the main of the last chapter
focused on the issue of when it is possible to specify ‘this’ or ‘that’ object, it did not
examine how the properties of the complex vector representing the Universe might give

rise to the spacetime concepts of ‘here’ and ‘there’. This question is addressed now.

5.1 Background

When attempting to develop theories to account for the presence of space, time and matter
in the Universe, physicists often adopt one of two opposing viewpoints. These methods
may be described as either bottom-up or top-down, and reflect the basic difference be-
tween reductionist and holistic physics. This difference is itself perhaps predictable in a
Universe containing remarkably successful principles such as quantum field theory, which
exhibits both local and global features.

Many of the bottom-up approaches proceed generally from the assertion that, at its
most basic level, the Universe can be represented by a vast collection of discrete events
existing in some sort of mathematical space. Time and space are introduced as arising
from the relations between these events, such that (classical) reality as we understand it
emerges on a macroscopic scale due to the complex connections between these fundamen-
tal, microscopic entities. Wheeler was one of the earliest proponents of this idea [34], by
envisaging a Universe full of a pre-geometric “dust” from which spatial degrees of freedom
emerge. These ‘ultimate’ notions of pre-geometry have been developed more recently by
Stuckey [35].

On the other hand, many of quantum cosmology’s top-down approaches hold that the
entire Universe should be treated as a single system. Top-down theorists often seek to
write down a unique state description for the Universe, before evolving it according to a
given set of laws or conditions. From this point of view, the apparent classical reality that
physicists perceive is just an approximation to that part of the Universe under investigation

whenever a fully quantum mechanical description can be neglected.

A selection of some of the contemporary bottom-up and top-down approaches are
reviewed below in Sub-sections 5.1.1 and 5.1.2. Throughout the rest of this chapter it
will then be shown how some of the general points of these two approaches might be

reconciled as being different aspects of the same theory. That is, in the paradigm proposed
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in this thesis, the discrete events postulated on the microscopic pre-geometric scale may
be associated somehow with the factor sub-states of the single state representing the
completely quantum Universe. Thus, such a viewpoint may be labelled a type of ‘top-
down pregeometry’. It will be argued that it is from the dynamics of these changing
sub-states that familial relations may arise, and that these relations could be seen as the

origin of spatial degrees of freedom in the appropriate limit.

5.1.1 Bottom-Up Approaches

One of the bottom-up theories of the Universe is the Causal Set Hypothesis [36]-[40], which
states that (quoting [38]): “..spacetime, ultimately, is discrete and ... its underlying
structure is that of a locally finite, partially ordered set (a causal set)”. In this
model it is postulated that classical, discrete “events” are generated at random, though
it is made clear that they are not embedded into any sort of physical background space.
Spacetime may then be recovered as an emergent consequence of the ordering that results
from imposing certain logical relations between the members of these sets of events.

Overall, actual physical space in this paradigm manifestly consists of a causal set (or
“causet”) of points which yield a metric structure in the continuum limit [37]. Additionally
it may be shown that the dimension of this spacetime can be a scale dependent quantity,
making the model equally compatible with notions of four dimensional general relativ-
ity and higher dimensional Kaluza-Klein theories, including modern string and m-brane
physics. The exact details of classical causal set theory are elaborated upon in Section
5.2.

A related idea is that of Cellular Networks (CN) [41][42], which argues that, on the
microscopic scale, the geometry of space may be represented by a mesh of primordial cells
or ‘nodes’ interacting with each other via a series of interconnecting ‘bonds’. These nodes
are assumed to contain physical information by way of internal state structures. The bonds
themselves may be in one of a number of ‘bond states’, allowing the strength and types
of interaction to be controlled. The evolution of the Cellular Network is similar to that
of a cellular automaton in that the Universe proceeds as a giant machine, but differs in
the respect that the number and type of bonds in the network may change with time. For
example, one change might be that two cells unconnected in one instance may be joined
by a certain type of bond in the next. The vision is of a self-organising topology that
is ever changing and depends on the physics of the situation being modelled. As before,

metric structures are recovered as a continuum concept.
Zizzi [43][44] continues the machine principle of Cellular Networks with the analogy
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that the Universe behaves in a way similar to computational information theory, in what
she defines as a “Quantum Growing Network” (QGN). The state of the Universe is pos-
tulated to be a tensor product of a vast number of elementary, two-dimensional quantum
degrees of freedom (qubits) which are connected and processed by a set of quantum logic
gates. Further, as time goes by, the number of qubits increases, and hence so does the
dimensionality of the Universe’s Hilbert space. Overall, Zizzi argues that the Quantum
Growing Network system forms a ‘proto-spacetime’ which may give rise to physical space-

time in a manner similar to Requardt’s.

In the Spin Network (or ‘Spinnet’) approach proposed by Penrose [45], spacetime is
generated from the relations between combinations of fundamental “units”, where each
unit may be likened to an elementary particle that possesses no characteristics apart
from total angular momentum. The units may interact with one other, and a system
of interacting units may be represented by a graph. Each edge of the graph denotes a
unit coming into or arising from an interaction, whereas the vertices are the interactions
themselves. Penrose restricts his analysis to tri-valent graphs, which may be thought of as
describing two units joining to form a third or one unit splitting into two. Note, however,
that because there is no ‘direction’ inherent to the graphs, each is assumed to represent all
of the allowed interactions between the three units. The only constraint imposed is that
the vertices conserve angular momentum, such that whichever particles are chosen to be
the ones ‘entering’ the interaction, the sum of their angular momenta must equal the sum
of angular momenta of the remaining units (see [46] for a review).

Given a large number of units, a large number of graphs may be obtained. Further,
if one of the edges of one graph has the same value of angular momentum as the edge
of another graph, they may be joined and the two graphs connected. By continuing
this process, it is possible to create a network of graphs where lines represent angular
momentum carrying particles and vertices represent their interactions. Penrose shows
how an emergent geometry may arise by considering this network of relations.

Markopoulou and Smolin [47] investigated the causal evolution of such spin networks
by combining the Causal Set approach of chains of events with the Spin Network notion
of geometry. Given the set of edges and vertices comprising a spin network, rules are
suggested for generating a new set from their particular relations. In fact, a number
of possible new networks may be produced by exploiting the fact that each graph may
represent a number of possible interactions. If the rules are repeated a series of times, a
chain of networks may be created with a definite causal structure existing between them.
By considering, in the manner of Causal Sets, the sums over histories of these chains
of spinnets, Markopoulou et al were able to generate amplitudes of transmission from

an initial to a final topology. The model leads to the production of a series of timelike
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surfaces, analogous to an evolving spacetime.

5.1.2 Top-Down Approaches

One search for a top-down model of the Universe has been the search for a consistent
theory of quantum cosmology. On the basis that the large scale structure of the Universe
is described by general relativity, some cosmologists [16] have attempted to canonically
quantise the solutions of the Einstein field equations. Given canonical variables, the La-
grangian and action functional can be defined, and quantum fields can be introduced;
overall a quantum state function ¥ of the Universe is generated. This method of quan-
tum cosmology involves an investigation of the evolution of the Universe’s wavefunction
according to the Wheeler-deWitt equation, but is associated with the notorious “Problem
of Time”.

Hartle and Hawking [17] progressed quantum cosmology by adding appropriate con-
straint conditions to the dynamics, such that the Universe could appear to be ‘created
from nothing’ by a manner analogous to a quantum fluctuation or tunnelling process.
Further developments have also been made [48][49] by adding inflationary terms to the
Lagrangian in order to account for the observed isotropy, homogeneity and flatness of the
Cosmos in the current epoch. These approaches again assert that the Universe is described

by a single quantum state.

Given that the Universe is observed currently to be expanding, many cosmologists
extrapolate back to conclude that it must have begun from a spacetime singularity. This,
however, causes problems in relativity theory because regions of very high curvature require
a theory of quantum gravity, and the search for a consistent model of this has proved
elusive. So, a proposed alternative to the inevitable Big Bang singularity has been the
Ekpyrotic Universe model [50].

The approach begins with the hypothesis that every point in our four dimensional
Universe is mapped to a point on part of a hypersurface called a “D-Brane”, which may
be thought of as a ‘thin wall’ or membrane existing in part of a higher dimensional reality.
This D-brane, containing the entirety of our Universe, is separated by some sort of ‘Bulk’
volume from a second D-brane which may itself contain a second, ‘hidden’ universe.

Time had no beginning in the Ekpyrotic Universe model. In an era that conventional
cosmologists may refer to as pre-Big Bang, i.e. at times greater than ~ 15 billion years
ago, our 4-dimensional universe within its D-brane was cold and empty. It is postulated
that at some time during this period, a light (compared to the two D-branes) ‘bulk-brane’

peeled away from the D-brane containing the hidden universe, and travelled across the
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bulk volume towards our D-brane. When they collided, it is proposed that the bulk-brane’s
kinetic energy was transferred into heat and excitations of the various force and matter
fields contained within our D-brane. This marked the start of what appeared to be a hot
big bang in our Universe, which proceeded to expand and evolve in the way understood
by standard astronomy.

The Ekpyrotic model hopes to provide a mechanism for generating the observed
isotropy, flatness and homogeneity of the universe, without appealing to any artificial
inflation fields, and without containing an initial singularity. Additionally, it may in-
clude an explanation for why gravity is weaker than the other three fundamental forces.
Brane (and string) theory, however, is still a long way from being generally or empirically

accepted, and is itself riddled with unanswered or unaddressed questions.

5.2 Classical Causal Sets

As mentioned above, a number of authors have introduced the possibility that continuous
spacetime might emerge from a consideration of the relationships between the members
of a causal set. In this paradigm, the Universe is envisaged to consist ultimately of an
enormous number of ‘events’, where each event is assumed to be a separate, discrete,
mathematical object of some sort.

By definition [36], a causal set (or “causet”) C is a locally finite, partially ordered
set (or “poset”) of objects C = {z,vy,...}. Each member of a partially ordered set either
shares, or does not share, a unique binary relationship with every other member of the set.
Denoting this relationship by the symbol <, which may be seen as a type of comparison,
two members x and y of a poset are hence connected as x < y or y < x, or else x and y
are said to be incomparable.

The relationship < consequently introduces an order between the members of the set,
and this is made consistent by ensuring that it is transitive (T) and asymmetric (A). In
addition, it is conventionally assumed that < is also irreflexive (I). So, for z,y, z € C the

following constraints are imposed:

(T) - r<yandy<z=2x<2 (5.1)
(A) r<y=yAz
I - xAx

A poset may be described as locally finite if, between any two members x and y, where
x < y, there are a finite number of events a, b, ¢, ... such that x < a < b < ... < y. In other
words, only a limited number of events “mediate” [51] between the event x and the event

y. A causal set is defined to be such a locally finite, partially ordered set.
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One method of generating a causal set is via a process of ‘sequential growth’ [38]. At
each step of the growth process a new element is created at random, and the causal set
is developed by considering the relations between this new event and those already in
existence. Specifically, the new event y may either be related to each of the other events
x as x <y, or else x and y are said to be unrelated. Thus the ordering of the events in
the causal set is as defined by the symbol <, and it is by a succession of these orderings,
i.e. the growth of the causet, that is ultimately ascribed to constitute the passage of time.

The relation x < y is hence interpreted as the statement: “y is to the future of z".
As a consequence of this interpretation, the asymmetric condition may now be seen as a
removal of the possibility that the causet will contain anything resembling closed time-like
curves.

The above association highlights the similarity between the relations < in causal set
theory, and the idea of lightcones in relativity. In a causal set C, the set of elements
yi, related to an event x by the relation = < y;, represent the causal future of x. This
relationship is analogous to the volume Vx contained within the future lightcone of a
point X in a theory of continuous spacetime, examples of which being general and special
relativity. Conversely, an event z € C that is incomparable to  may be said to be causally
disconnected from x, and this is similar to the set of points outside of the lightcone of X.
In classical physics, events outside of this region Vx are not affected by changes inside the
lightcone, for example at X, and are hence causally independent. This places an important
physical constraint on the members of C, since continuous spacetime is eventually hoped
to emerge from a causal set description.

Of course, similar associations exist for points in the past lightcone of X, and the

objects y; in C related to x by y; < x.

A causal set may be represented by a Hasse diagram. Further, the set of causal sets
that may be constructed from a growing number of events can be represented by a Hasse
diagram of Hasse diagrams.

In each Hasse diagram, the events are shown as spots and the relations as solid lines
or links between the events; emergent time runs from bottom to top, and the direction of
the growth process from one causal set to the next is consequently denoted by the arrowed
lines. A typical such set of diagrams is given in Figure 5.1, which contains the set of
causets of less that four elements (and features as part of Fig. 1 in [38]), where each large
circle represents an individual Hasse diagram, and hence a particular causal set.

In the example in hand, the initial causal set has just one event, as shown in the lowest
of the large circles. The next event to be born may or may not share a temporal relation
with the first; that is, it may either lie to the future of the first, or not. Thus, one of two

possible causal sets may be created, as shown by the two Hasse diagrams represented by
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Figure 5.1: The Hasse diagram of Hasse diagrams featuring those Causal Sets containing

up to three members.

the large circles labelled A (temporal relation) and B (no temporal relation). The third
event to be produced may share a temporal relation with all, some, or none of the previous
events, leading to the generation of five possible causal sets, and hence five possible Hasse
diagrams. Figure 5.1 hence represents the sets of possible causets at three successive times.

The process may obviously be extended indefinitely to create increasingly longer causets
of events, and these may be represented by a growing number of Hasse diagrams of in-

creasing complexity.

With the above in mind, it is possible to introduce familial concepts into the se-
quentially growing causal set. Consider as an example a causal set C,with n mem-
bers, C, = {a1,as,...,a,}. Consider also a second causal set C,4+1with n + 1 members,
Coy1 = {a1,a0,...,an,ani 1}, ‘grown’ from C, by adding the (n + 1)"* member a, 1. If
an+1 18 not in the past of any of the elements a;, for ¢ = 1,...,n, then it is said to be a
“maximal element”. In this case, the causet C,41 may be called a “child” of C,, which in
turn may be named its “parent”.

In general, a particular causet C,11 grown from C, could have a number of different
topologies, because there are often very many ways of adding a maximal element a1
to C, such that it is to the future of none, one, some or all of the n elements already
in existence. Paraphrasing, there are a number of different Hasse diagrams that may be
drawn by adding just one maximal element to C,,, depending on ‘where’ it is added. The
members of this set of possible causal sets are hence called “siblings” of one another,
because they are all children of a common parent. Such sets of parents and children may
be called “families”.

This concept can be extended in the obvious way to include, for example, definitions
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of grandchildren and great-grandchildren etc. As a simple illustration of these ideas, the
causal sets labelled A and B in Figure 5.1 are clearly siblings, because they are children of
the initial parent causet containing just one member. Similarly, the causal set C is one of
the three children of B, and therefore also one of the grandchildren of the original (single

member) causet.

The crux of causal set theory is that (to quote [36]): “...a classical space-time’s
causal structure comes very close to determining its entire geometry”. Thus, in the
large scale limit of very many events the causal sets are hoped to yield the properties of
continuous spacetimes. To this end, metrics, distances and dimension should all be ready
features of the topology.

It is an important feature of causal sets that the events are not taken to be embedded
in any sort of physical background space. The objects themselves exist in nothing but
a mathematical manifold, and it is only by taking account of the network of relations
between a large number of such events that the actual geometry of the manifold, and
hence the spatial relations familiar to physics, begins to emerge.

The basic methodology employed to generate space from these very large causal sets is
to use the causal order of the set to determine the topology of the manifold into which it is
embedded. This is converse to the standard procedure employed in continuous geometry
in which the properties of the manifold and metric are used to determine the lightcones

of the spacetime, and from these the causal order of events may in turn be inferred.

Concepts such as timelike geodesics and distances may be introduced into the analysis
of causal sets by considering the length of paths between events [37].

Consider first a ‘chain’, E, of events in a causal set, i.e. an ordered group of elements
E = {p,q,...} in C in which every two elements of F are somehow related by < . By analogy
with special relativity, a chain evidently possesses the causal structure of a spacetime
manifold: each event r € FE is either to the past or future of every other event s € F.
Moreover, it is possible to define the ‘path length’ of a given chain between two events x
and y in terms of the number of links in the chain separating these two elements.

Of course depending on the topology of C there may be a number of different possible
chains ‘linking’ any two events x and y, for x,y € C.

However, from this observation it is possible to define a ‘mazimal chain’ M, where M
C C, as a subset of elements M = {ay,ag, ..., an} contained in C such that a; < a;4+1, for
1 <47 <m—1, and where there is no other element b € C for which a; < b < a;+1. Clearly,
M specifies a unique path of events between a; and a,,, and this is extremal in C. Thus,
it is immediately possible to define the path length of a maximal chain a1 < a2 < ... < am,

in terms of the number of links between a; and a,,. In this case, the path length of M is
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clearly given by m — 1.

It is from this discussion of path lengths that a notion of timelike ‘distance’ can arise.
Given any two comparable events x < ... < y in a causal set, the timelike distance d(x,y)
may be defined as the maximum length of path between them, i.e. the ‘longest route’
allowed by the topology of the causet to get from z to y.

A number of issues arise from this definition. Firstly, it implies that (timelike) distance
is, at root, manifestly a counting process. As observed by [36], this is in accordance with
Riemann’s suggestion regarding the measurement of spatial size.

Secondly, the connection between distance and extremal chains is analogous to the use
of geodesics as extremal path lengths in relativity; recall that in continuum mechanics a
geodesic is defined as the extremal length between two points, and the distance between
them is that length. The proposed mechanism makes use of the maximal number of objects
causally separating two events, and as such the extremal distances defined in this way are
associated with geodesics in continuous spacetime.

Thirdly, Brightwell et al [37] remark that the above definition of distance satisfies a
relationship similar to the conventional ‘Triangle Inequality’. For example, consider three
events z,y,z € C such that < y < z. If the distance d(z, z) is given by the path length
of the maximal chain between z and z, then by definition this distance cannot be shorter
than the path length between x and z via any other possible chain. Specifically, if an
alternative route is via y, then this conclusion implies that d(x, z) > d(x,y) +d(y, z), with
the equality holding only when y is part of the maximal chain.

Note, however, that such a relationship differs from the standard triangle inequality of
distances, given in obvious notation in the form D(X,Y)+ D(Y, Z) > D(X, Z). Moreover,
it is also unclear how the above theorists would balance this ‘reversed’ result with the
conventional case, an issue made especially pertinent by the fact that the standard version
is generally taken as a pre-requisite for a metric to exist. The physical basis behind such a
reversed inequality relationship needs therefore to be fully defined by the authors if it is to
be used to generate metric-like structures, and careful physical and mathematical consid-
erations are first required in order to generate relativistic spacetimes from the underlying

classical causal set ideas.

The above definition of timelike distances applies to when quantifying the separation
between comparable events, i.e. between those events x and y in C for which z < ... < y.
For incomparable events, on the other hand, no such timelike definition is possible, be-
cause incomparable events instead share the characteristics typically exhibited by spacelike
separated objects in conventional physics.

However, by exploiting this similarity between the incomparable events of causal set
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theory and the causally disconnected features of spacelike separated points in continuous
spacetime, it is possible to introduce an analogous definition of spacelike distances into the
causal set description. Following the lead of [37], it is argued that a method of measuring
spatial distances using light beams and clocks should be employed, in which the distance
between two objects is determined by sending a light signal from one of these to the other
and measuring the time elapsed before it is returned.

Consider a timelike geodesic GG in C, where G is defined as a1 < a2 < ... < a,,. From
the earlier discussion, GG is a maximal chain. Consider also another element = € C that is
not in G. If a is the highest member of GG that is below z, then there is no other element
a; in G for which ag < a; < ... < z. Similarly, if a; is the lowest member of G that is above
x, then there is no other element a; in G for which < ... < a; < a;. Then, the spacelike
distance d(z, G) between x and G may be defined as d(x, G) = d(a, a;)/2.

Overall, then, a measure of spacelike separation between members in C is recovered by
considering the topology of the temporal relations over the causal set, analogous to how

lightcone structures may be used in special relativity to determine spatial distances.

With the above definitions of timelike and spacelike distances in place, it is possible to
begin a discussion on concepts of velocity [37]. Specifically, such velocities have meaning
in terms of the ratios between average spatial distances encountered in given lengths of
temporal duration. Since these spatial distances intrinsically involve concepts of geodesics
and basic lightcone structure, it is here that embryonic ideas of special relativity are
expected to emerge from causal set theory.

Also, once a measure of distance has been introduced into the model, it is possible to
discuss concepts of ‘volume’ and ‘area’. To this end, the (hyper)volume of the emergent
spacetime may be defined in terms of numbers of events, where a certain quantity of events
may specify a certain volume. As with the definition of a distance in terms of path lengths,
volume is also seen here simply as a counting process. This is perhaps to be expected,
since measurements of distances are in many ways nothing but measurements of the ‘size’
of a one dimensional volume.

Continuing this logic, the dimension, d, of the causal set may consequently be obtained
in a similar way by considering average lengths of path, [, in a given volume, v. It may
hence be possible to introduce relational rules of the form v ~ ¢, in keeping with ideas
of Hausdorff dimension [52]. It is from arguments of this type that the inhomogeneous
topology of causal sets may allow different physical dimensions to emerge at different

locations and on different physical scales.

Whilst the classical causal set hypothesis summarised above is a promising approach to
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the origin of space, a number of unresolved questions, problems and conceptual difficulties
arise if it is assumed to provide a complete and consistent description of the observed

Universe. These will be expressed in turn.

The first of these questions regards the physical basis behind the model: what actually
are the postulated events that comprise the causal set? Are they to be taken as some sort
of ‘pregeometric particle’, analogous to the momentum carrying “units” peculiar to spin
networks? If this is the case, would it be possible to physically observe them, for example
in a futuristic accelerator-detector experiment? Alternatively, if they are simply just
mathematical objects, by what process is a physical Universe comprising of fundamental
fields and forces expected to emerge?

On a related issue, what exactly is the physical mechanism that is responsible for the
events’ creation? How do these events, be they physical objects or mathematical abstracts,
suddenly come into existence? Do they appear from nothing, or are they removed from
some sort of giant ‘reservoir’ of pre-existing events before they are added to the causal set
representing the Universe? If this latter supposition is correct then where is this reservoir,
what is its physical basis, and what is it like? If not, and instead events just constantly
appear at random, then what does this imply for physics in the Universe? Specifically,
if the events are hoped to be the correct ‘building-blocks’ for a Universe that possesses
certain physical properties and characteristics, is it to be accepted that, for example, the
total energy or momentum of the Universe is increasing as more building blocks are added?
If this is not the case, then a paradoxical situation occurs in which principles such as the
conservation of energy, which appears fundamental for the Universe as a whole, cannot be
held as fundamental for the objects representing the Universe’s ultimate description.

Also, is there a physical interpretation for the apparent external time parameter used

to govern when events are created?

A second problem with the classical causal sets produced is that they are not quantum.
This is obviously not ideal if they are to form the ultimate description of a physical
Universe that does contain quantum theory as a fundamental ingredient. However, the
objection here is not that the model has simply not yet been extended to the case where,
for example, the events are quantum variables instead of classical objects. Rather, as it
stands the classical causal set description goes against some of the principles present at
the very heart of quantum theory.

As an illustration of why this is so, consider three particular events x,y, z € C related
by < y < z. This relational statement seems to imply that the events z, y and z each
possess an existence independent of each other and of everything else in the causal set. In

other words, in classical causal sets every event is granted just as much physical significance
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as every other; in C the events x,y, z all exist to exactly the same extent. Once created
an event exists forever, such that for example z is always in the future of y ‘for all time’,
and z is always in the past of y. Indeed, in order for two events to be directly compared
as y < z, it must presumably be accepted that both y and z exist, at least in some sense.
The binary comparisons < are therefore taken to relate pre-existing relationships between
the events in the causet, and as such are assumed to reflect pre-existing attributes of the
objects.

Such a viewpoint is manifestly a classical ‘Block Universe’ approach. This is perhaps
why classical causal sets are expected to generate continuous spacetime general relativity
so successfully in the emergent limit, because relativity’s overall vision is of a Universe
existing in a 3+ 1 dimensional arena in which the temporal parameter is given an equally
‘eternal’ dimensional footing as the other three.

However, as suggested in Section 2.2, it may be partly because conventional general
relativity relies on Block Universe models of physics that is preventing its unification with
quantum theory.

According to the conclusions of the Kochen-Specker theorem, the results of the work
of Bell discussed in Chapter 3, and the view of Bohr that the quantum analogues of
classical values (such as position and momentum) do not possess any reality independent
of observation, then it is the Process time approach that is necessary for a consistent
description of quantum mechanics. Assuming, then, that quantum theory is a foundational
feature of the Universe, if the event z exists in the past of the event y, and the event z
exists in the future of the event y, then x, y and z cannot be given equivalent existence.
Only one of these, i.e. the ‘present’ event, can have any physical existence, and even this
does not exist in the sense traditionally assumed by classical physics.

In quantum theory, only the present can be known with any degree of certainty. It is not
possible to discuss the future, because no such concept physically exists, but only potential
futures in terms of conditional probabilities. Similarly, the past only has significance in
terms of what observers in the present can recall about where they came from.

It is unclear how this conclusion may be incorporated into a classical causal set de-

scription of physics relying on the equivalence of the existence of x, y and z across time.

A further criticism of causal sets (from the point of view of quantum theory) comes
from an interpretation of what the Hasse diagrams actually represent. In the growth
process from a parent Hasse diagram to one of its child causets, a new event may be
incorporated that is to the future of two (or more) incomparable events. The problem
associated with this is that without any sort of external agent building the causet, how
does this event ‘know’ that it is to the future of these incomparable events, given that

no information can be exchanged between them? Without a god-like observer, how are
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the temporal relations < decided? Since time is a phenomenon expected to emerge from
the model, what is the mechanism for deciding how one event is related to another, so
that time can indeed emerge? Indeed, given that the whole point of causal set theory is
that the events are not embedded in any sort of physical background spacetime, how is
any locational memory contained in the dynamics at all? In the diagram labelled C' in
Figure 5.1, for example, it is not clear how the event created last ‘knows’ which way it is
related to the other two: if the first and second events exist independently of one another,
how can they communicate in such a way to ‘inform’ the third of its temporal position?
Is it necessary to postulate some sort of external source of information, so far ignored in
classical causal set theory, that stores the location of each of the events?

On a related note, since the addition of a maximal element to a parent causet may give
rise to very many possible child sets, how is it that just one of these new causets actually

gets selected to form the basis for the single reality experienced by the Universe?

Overall, it is argued that the ideas of classical causal sets provide a good starting point
for a discussion of the emergence of space. They do, however, lack a firm physical basis,
and it is unclear how they could be ‘quantised,” at least directly.

But, as will be shown in the remainder of this chapter, it is possible to naturally gen-
erate structures resembling causal sets from the fully quantum description of the Universe
proposed in this thesis. Moreover, the ‘objects’ forming these structures will be shown
to have identifiable physical grounding, and so the quantum causal sets introduced in the
following are not restricted by the problems inherent in their classical counterparts. Thus,
they are ascribed to potentially address the issue of how continuous space and time may
emerge in a fully quantum universe.

Further, it will be shown that many of the Hasse diagrams generated in classical causal
set theory may also be recreated in the proposed quantum model. However, whilst it may
be mathematically possible to produce any configuration of elements in a classical Hasse
diagram, it is argued that not all types are permissible in physics. So, in the proposed
model only those parts of the Hasse diagrams that are allowed by quantum mechanics,

and are hence physically meaningful, are generated.

5.3 Splits and Partitions

In classical causal set theory, continuous spacetime is generated from the relations be-
tween collections of classical objects. Since the intention is now to investigate how similar
relations might arise from a quantum perspective, an obvious starting point is to examine
how the classical objects of the classical theory might have analogues existing as features

of the quantum paradigm.
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As discussed in Chapter 4, classicity is associated with separability of the quantum
state U, representing the Universe. In a state that is separable relative to a given fac-
torisation of the total Hilbert space, each factor sub-state may be considered classically
isolated from every other sub-state, in the sense that a measurement of a factor sub-state
contained in one particular factor Hilbert space does not necessarily affect any of the other
factor sub-states contained in other factor Hilbert spaces. This is unlike the case of entan-
gled states, because their individual components cannot be measured without destroying
the entire state. Therefore, as concluded previously, factor sub-states may consequently
be given a form of classical identity.

It is asserted, then, that it is the factors of separable states that may be associated with
the classical ‘events’ of conventional causal set theory, and it is hence from the relations
between these factors that physical spacetime might be generated. The alternative, that
continuous space instead emerges from considerations of entangled states, is contrary to
what would be expected based on empirical observations: entangled states in quantum
theory exhibit characteristics of spatial non-locality. Physical space is in many ways a
classical construct, as expected from the observation that this object is here, relative to
that object there.

Thus, the conjecture that will be discussed in the following is how structures analogous
to those occurring in classical causal sets might arise naturally by considering the way in
which the state of the Universe changes its separability as it develops through a series of

stages, i.e. from ¥, to ¥, 11 to ¥, o ... and so on.

Since classical causal set theory operates in the regime of large numbers of events, and
that in the proposed paradigm these classical events are assumed to be analogous to the
factors of the overall quantum state, it is expected that quantum causal sets will require
highly separable states in order to yield a picture of continuous spacetime. It is therefore
necessary to go beyond the simple bi- and tri-partite factorisations of the total Hilbert
space discussed previously, and generalise to the case in which large numbers of factors
may be present. So, before a full discussion of quantum causal sets can properly begin, it
is necessary to introduce a precise notation in order to describe highly separable states in

highly factorisable Hilbert spaces.

As before, the situation of interest contains a state ¥ in a Hilbert space H of finite
dimension. In anticipation of a discussion of quantum computation in subsequent chapters
of this work, it is alternatively possible to call such a Hilbert space a ‘quantum register’.
Factor Hilbert sub-spaces of H may hence be labelled ‘subregisters’.

If H = H[y..ny is defined as a Hilbert space that may be written as a product of N

78



subregisters, then H; ) is clearly given by the tensor product
Hi.n=Hi@H:@H3 ® ... @ Hn (5.2)

where H; is called the i*" factor Hilbert space or quantum subregister, and 1 <7 < N. By
choice, the notation H[; ] will generally be used to imply the Hilbert space’s fundamental
factorisation, that is, each factor Hilbert space H; is an ‘elementary subregister’ of prime
dimension, d;. This choice will henceforth be assumed from now on, unless stated otherwise.

Note that in order for H to contain the state ¥,, representing the Universe, its dimen-
sion d must be huge. The number of factors N may therefore be in principle very large,
with the condition that d = [[Y, d;.

As before, it is remarked that the ordering of the factor spaces is not important in
the above use of the tensor product symbol. The mathematics is invariant to any rear-
rangement of the individual subregisters, such that for example H; ® Hy = Ho @ H; ete.
Indeed, if this were not the case the problem would arise that there are no obvious physi-
cal criteria for suggesting why some factors spaces should either be placed ‘further away’
than others from a particular subregister, or be given any special position in the tensor
product ordering. In other words, in the factorisable register H[;. 3 = H1 ® Ha ® Hs it is
meaningless to say that H; is ‘nearer’ to Ha than it is to H3 simply because of the way the
tensor product is written; H|; 3 may equally well be expanded as H; 3 = H1 ® Hs ® Ho.
The factor Hilbert spaces are just vector spaces, and should therefore not be thought of
as embedded in any sort of physical background space with any pre-existing distance or
locational relationships.

As before, this property is taken to hold for the states in the Hilbert spaces as well,
and is an important feature of their non-locality. After all, a state such as ® in H 3 =
H1®H2®@H3 may be separable in the form ® = ¢, ®¢;3, where ¢y € Ha with @3 € Hj =
Hi ® Hs, but ¢;3 might be entangled relative to Hj3. In other words, the entanglements

can ‘stretch across’ factor Hilbert spaces.

In general, factorisable Hilbert spaces H(; . ] in quantum mechanics may contain states
that are completely separable, completely entangled, or a separable product of factors, at
least one of which is entangled relative to the fundamental split of the overall Hilbert space
into its elementary subregisters. It is therefore convenient to define a notation in order to
describe what ‘type’ of fundamental separation an arbitrary state in H; n may have.

Consider first a Hilbert space Hj;9 factorisable into two subregisters, H[19) = H1 @ Ha.
By axiom, the overall space H| 5 defines the total set of vectors contained in H; ® Ha.

The separation Hiz, then, is defined as the subset of states contained in H[j that

are separable relative to Hjjg) = H1 ® Ha. That is,
Hiz ={|¢)1 @ [@)2 1 [¢)1 € Hi, [p)2 € Ha} (5.3)
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Note that as mentioned in Chapter 4, the subset His is a set of measure zero relative
to the set H[yg.

For obvious reasons, Hio may be labelled a ‘rank-2’ separation, and this definition may
be extended in a natural way. Specifically, the rank-k separation H;,;,..;, is defined as the
subset of vectors contained in the Hilbert space H;,4,..4,] = Hi; ® Hiy ® ... ® H;, that are

separable into k factors, i.e.

Hivig.i, = {1¥1)is @ [¥2)iy @ . @ [Wp)iy + [Va)ia € Hiy , 1 < a <k} (5.4)

For convenience, it is also possible to allow the zero vector 0 to be a member of H;,4,. i, ,

because this vector can always be written in the form
0:02‘1 ®0i2 ®...®Oik, (5.5)

where 0;, is the zero vector in H;,. Note, however, that since any vector multiplied by

zero is zero, then although 0 could at first glance also appear entangled, for example
0=(x;; ®0;, ®...®0;;) + (0;; ® x4, ® ... ®0;,) + ... (5.6)
where x; € H;,, it could always be rewritten in the form

where C' is a constant, so is in fact separable. In other words, the zero vector never
contributes to entanglements in a non-trivial way.

From the above discussion of separations, the convention is adopted from now on that
lower indices on Hilbert spaces denote the subset of H containing separable states, i.e.
the separations, whereas lower indices within square brackets on Hilbert spaces denote, as
before, the overall set of states, i.e. the tensor product of subregisters.

This leaves free the use of upper indices for a discussion of the entanglements, which
may be defined in terms of the complements of the separations. For example, in the
simplest case in which the Hilbert space H|9) is factorisable into two subregisters, Hjo =
H1 ® Ha, the rank-2 entanglement H'? is defined as the subset of vectors in Hj12) that are
entangled relative to this split. Moreover, since every state in H[;9) is either separable into
two factors or else completely entangled, H'? contains all the states that are not separable,
and so may be defined as

H12 = H[lg} - Hl? (5'8)

such that Hyyg = Hiz UH'2. By definition, Hio N H2 = 0.
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Before the above ideas can be generalised to higher order entanglements it is necessary
to introduce the concept of separation product. Consider a Hilbert space H|;. ) factoris-
able in the form Hj; n] = Ha ® Hp; clearly, if N > 2 then this bi-partite factorisation is
not fundamental and the dimension of at least one of H, or Hp is not prime. If H/ and
H; are arbitrary subsets of H, and H; respectively, then the separation product H;, e H}
is defined as the subset of states in H[;. nj that may be written as a product of factors,

one of which is contained in H,, and the other in H;. Thus, H,, e H; defines the subset
Ho o Hy = {l0)a @ 10)s 1 [9)a € Ho € Ha , @) € Hy C Ha} (5.9)

It is clear that the separation His described previously is just a simple case of this,
i.e. H12 = Hl L] Hg.

The separation product is associative, commutative and cumulative, i.e.

(H; o Hj) oeH;, = H;e (Hj o Hy) (5.10)
(HioHj)oH, = (H;joH;)eH,
(HioH;) o Hy = Hij o Hy = Hiji.

The definition of separation product can be used to specify subsets of the total Hilbert
space that contain a product of factors, one or more of which is entangled. As an example,
the separation product H% e H;, labels the subset of Hiijx) containing states that are a

product of two factors, one of which is entangled relative to H; ® H;. Specifically,
H7 ey ={|0) @ o) : 9) € HY | |) € My} (5.11)

This definition can be extended to higher orders in the obvious way, such that for

example H" o H;, @ H;  H™"P identifies the subset of states in Hiijkimnp) separable as
H7 o My 0 Hye H™™ = {|6) @ |p) ® [x) @ |v)} (5.12)

where |¢) € HY | |¢) € Hy, |x) € H; and |[¢) € H™P. Note that the indices of the
entanglements are also commutative, such that for example H™"P = H™"™ as expected
from the property of a tensor product Hilbert space that its subregisters are not in any
definite or particular order.

Of course, the associativity of the entanglements follows directly from the associativity

of the separation product, for example if H% = Hx etc., then
(H® e H) 0 HY = (Hx o Hy) e Hy = Hx o (Hy  Hy) = H® o (H4 0 1),  (5.13)

Similar illustrations can be used to demonstrate the commutivity of the entanglements.
To simplify complicated expressions such as H" e H; e H; ¢ H™™, a single symbol

sz:lmnp may be employed where the use of sub-scripts and super-scripts indicates the

81



separations and entanglements. This symbol can itself be further simplified by making
use of the cumulative property of the separation, i.e. H, @ Hy = Hyet = Hap-

Note, however, that no such cumulativity property directly exists for the entangle-
ments. By way of an illustration of this, consider the observation that a state ® in an
entanglement such as H*°? cannot, by definition, be separated into a product of entangled
states of the form 6 ® 7, where  is in the entanglement H% and 7 is in the entanglement
H: a vector that is separable into a product of two entangled factors is not the same as a
vector that is separable into one giant entangled state. In other words, H®c? #£ 1% o ¢
(= H*ed) | even though Haped = Havecd = Hap ® Heq = Ha ® Hp @ He © Hy.

Overall, separation products such as H" e H;, @ H; ¢ H™"P may consequently be written

in a number of alternative ways; for example

H o Hy o Hy o H™ = HJ o H™P o H, 0 Hy =H] o H} ™" (5.14)
— H.Z:jol o HMP — H;;]:lmnp

_ ijemnp ijmnp
- Hkl 7& Hkl :

It is now possible to define rank-k entanglements in terms of their complements. Start-
ing with the rank-3 entanglement in the total Hilbert space Hj23 = H1 ® Ha ® Hs, it is
immediately noted that H!23 is not simply given by H!?3 = H[123) — Hi23. Rather the sets
of states that are separable into a product of two factors, one of which is entangled, must

also be included. Thus, H'?? is given by
H'? = Hpjgg — Hizs UHT UHS UHS (5.15)
Similarly, the rank-4 entanglement H'234 in H1234) is equal to

HP = Hpyggn — Hizsa UHSS UK UHE UHM UHE UHE (5.16)

UH%34 U H%34 U Hé24 U Hi23 U H12034 U H13024 U H14.23.

Rank-k entanglements can clearly be defined in similar ways, though their expressions
rapidly become more complicated as k increases.

Equations such as (5.15) and (5.16) can be rearranged such that the overall register is
decomposed into a union of disjoint separations and entanglements, for example H[j93) =
Hizs U HP UHE UHL2 U H. Making use of the language familiar to set theory, such
a decomposition of a Hilbert space H;. n) may be called its ‘lattice of partitions’ with
each subset being called a ‘partition’. In general, each partition is a separation product of
separations and entanglements of various ranks, with the condition that the total number
of indices equals the overall number of subregisters. In addition each subscript index,
and each group of superscript indices, specifies one ‘block’ of the partition, such that for

example the partition H23*56 contains four blocks, denoted by ‘1’, ‘23’, ‘4’ and ‘56’. The
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union of all partitions of H;  nj may equivalently be called the ‘(natural) partitioning’ of

the Hilbert space.

It is important to realise that none of the partitions in H|;. nj are vector spaces them-
selves. This conclusion follows from two reasons. Firstly, the zero vector has been defined
to be a member of the separation H; .y, so only this partition could potentially be a vector
space. Secondly none of the partitions are closed under arbitrary transformations of the
vectors they contain. Given a vector X contained in one partition, it is always possible to
add a second vector z to X such that the new vector Y = X + z is contained in a different
partition. Similarly it is possible to find unitary transformations U that ‘rotate’ X into
the vector Z = UX, where Z is also a member of a different partition from X. Of course,

all four vectors z, X, Y and Z are members of H|;__ nj, which is a vector space.

The use of upper and lower indices on the symbol H to denote subsets of H[; )
containing various separations and entanglements can be extended to the vectors contained

Zj mnp

within these partitions. For example, the vector ®; is taken to be a member of the

zj emnp

partition H’ , and implies that ® can be separated into four factors of the form

T = |¢)7 @ |k @ )1 ® @) (5.17)

where |¢)7 € HY, |¢/) € Hy, |¢"); € H; and |¢")™™P € H™P. Obviously @”'mnp € Hii..p)
and CIJZJI"MP € HZJ *MP hecause H” P C Hy )

Care is needed when applying this notation, however, because sub-scripts used in this
thesis, and elsewhere, are often context dependent. For example W15 might denote a state
in the separation Hjg, or an arbitrary state in H|j9], or even the state in the twelfth stage
Q12 defined as Q19 = Q(¥19, 12, R12). The same goes for super-scripts, where the notation
®'2 might perhaps alternatively label a vector in the entanglement 72, an arbitrary state
® in a twelve dimensional Hilbert space H[1 N> OF maybe even one out of E possible

eigenvectors ®% of some Hermitian operator O for 1 < a < FE where E > 12.

For any given vector ¥ € H|; i, it is possible to determine which partition it is in
by a repeated application of the microsingularity test (4.9) introduced in Section 4.1. For
example, to show that a state © € Hj; 3 is completely entangled, i.e. can be written
in the form ©'23 in the partition 7?3, it must be confirmed that © is not in Hia3, H7>,
H33 or HA%. This is turn can be proved by demonstrating that © is not separable relative
to any of the three bi-partite factorisations of the total Hilbert space, i.e. Hi ® Hpag),
H2 @ H13) and Hs ® H[1g), because if this is true it also immediately follows that © is not
separable relative to the tri-partite factorisation H; ® Hs ® Hs.

From earlier discussions, any state © € H|;. 3 can be expanded in the form

di—1 do—1 d3—1
Zl 22 23 Cijrli)1 @ |7)2 @ k)3 (5.18)
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where the Hilbert space H, of dimension d, is spanned by the orthonormal basis B, =
{Ib)a : 0 < b < dy — 1} for a = 1,2,3 and the Cjj, € C are complex coefficients. The
microsingularity condition can now be used to determine the separability of © relative to
each of the three bi-partite factorisations of H; 3.

For example, to confirm whether © is separable relative to H; ® H[3], equation (5.18)
should be rewritten as

di1—1 (dgdg)fl .
0= Zi:[) Zz:O Kig|i)1 ® |7)23 (5.19)

where Baz = {[7)23 : 0 < x < (dad3 — 1)} forms an orthonormal basis for Hjag), with for
example [0)23 = [0)2 @ |0)3, [1)23 = [0)2 @ [1)3, ..., up to |dad3 — 1)23 = [d2 — 1)2 ® [d3 — 1)3.
The general term |z)23 in this basis may be given by |x)23 = |7)2®|k)s when j is the integer
part of the quotient z/(d3) and k is the remainder. The coefficients Kj, are obtained from
Cijk in the same way, such that for example Kj; is equivalent to Cjo1.

Now, if Kz K. = Kz Ky, for all 0 < i,y < (di — 1) and 0 < z,z < (dad3 — 1), then
U is separable relative to Hi ® Hgz). If this is not the case, © is entangled relative to
Hi1 ® H3], and if the same method shows that © is also entangled relative to Ha ® H3
and H3 ® H|yg}, it can be concluded that © € H123.

Similar procedures can be employed to determine which particular partition of the
lattice of H[y. n) any given vector ¥ € H;  nj is in, though the corresponding number of

microsingularity tests that need to be performed increases greatly with V.

The state ®°""" € H7*™ in (5.17) is an example of a vector that is a separable
product of factors, two of which are entangled relative to the fundamental splitting of the
overall Hilbert space Hj;  p) into its seven subregisters. In general, however, if an arbitrary
state contained within a Hilbert space H[ n] is chosen at random, there are very many
ways in which it might potentially be separated into F' factors, where 1 < F' < N, because
there are in general many different partitions comprising of F' blocks. For example, the
state @;’”Im'jm in H;..

manner from @g'mnp .

.p] 1s also separated into four factors, but in a completely different

Of course, if F' = 1 then the state is completely entangled, whereas if F' = N it is
completely separable, but for all other values of F' the state is separated into a product
of factors, at least one of which is entangled. Further, the number of ways in which
an arbitrary state may potentially be separated into F' factors increases rapidly as the
number, NV, of subregisters in the fundamental factorisation of the Hilbert space increases.

For example, in a Hilbert space H;j of prime dimension, which is therefore fundamen-
tally split into just one subregister, every state can obviously only be separated into one

factor. States in a Hilbert space Hjo that is fundamentally split into two subregisters
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H19) = H1 ® Ha, however, are either entangled relative to this split, or else they are sepa-
rable into two factors; it can be said that there are two possible ‘types’ of state separations
in Hypg).-

In a Hilbert space H[123) fundamentally split into three subregisters Hjo3 = H1 @ Ha ®
‘Hs, though, a state is either completely entangled relative to this split, or it is completely
separable into three factors, or else it is separable into one of the forms a; ® B3, A2 ® pi13
or ¢3 ® 19, where a1 € Hi, A2 € Ho and ¢3 € H3, with B,3, 113 and ¢, being sub-states
that are entangled relative to Ha ® Hs, H1 ® H3 and H; ® Hy respectively. Given an
arbitrary state in Hjjp3), there are clearly five different types of way in which it might
be separable relative to H[j23: one of these types will have one factor, three types will
have two factors, and one will have three factors. Equivalently, every state in Hjjo3 is
in one of the five partitions that comprise the partitioning of the total Hilbert space,
Hpos) = Hizs UHT UHG UHE? UK.

In fact, it can be shown that in Hilbert spaces H|; 4 fundamentally split into four
subregisters, there are 15 different types of way in which a given state might possibly be
separated, whereas Hilbert spaces of the form H[; 5 allow the possibility of 52 different
types of separation. This number grows to 203 for Hj;_ g).

Generally, if hy is defined as the number of ways in which an arbitrary state in H;. v
might possibly be separated, then this number is given by the iterative formula

N-1
hy = Z C{Nﬁlh(N_l)_i (5.20)

i=0
where C}' is the combination function, Cf = a!/[(a—b)!b!], and the initial condition hg = 1
follows from the assumption that there is only one way of separating a state contained

in zero Hilbert spaces®

. The above relation also specifies the number, hy, of partitions
comprising the lattice of H[;._ ), as expected from the fact that every state in H[y. ) is
in exactly one of the Hilbert space’s partitions, and that it is always possible to find an
example of a state in H[; ) that is a member of a given partition.

Equation (5.20) effectively generates the list of Bell numbers used in combinatorics to
number the set of partitions of a set of size IV, and is equivalently given by Dobinski’s

formula (see [53] for an illustration of these points).

An intuitive proof of (5.20) is given from the following. Consider a factorisable Hilbert
space H[;.. n). Every state in Hj;  nj will be associated with its own fundamental separa-
tion, i.e. a way or writing the state into the maximum possible number of factors relative

to H[y...n], because each state is in one, and only one, partition of H; _ nj.

SCompare the generally accepted result 0! = 1. If this argument appears ad hoc, hy may equally be

defined as hy =1 + Zf\’:BQ C’fvflhm,l),i without loss of generality.
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Now assume that every state in Hj;  nj is fundamentally separable into one of hy
possible types, where hy is not yet known and the relation (5.20) is not assumed. For
example, it was shown earlier that every vector in H|; 3 is fundamentally separable into
one out of five possible types.

Clearly, this number hp of possible types is given by the sum of the number of ways
that vectors in H[;. n) might be separable into just one factor, plus the number of ways
that vectors might be separable into just two factors, plus the number of ways that vectors
might be separable into just three factors, plus..., plus the number of ways that vectors
might be separable into just N factors. Thus, hy is also the total number of possible
partitions in the lattice of Hj; i, or equivalently the total number of types of vector that
exist in Hyy. N

Of course, there is only one type of way in which vectors in H[; ) may be fundamen-
tally separated into one factor, and only one type of way in which vectors in H;. n] may
be fundamentally separated into N factors.

Because H;.. nj is of fixed dimension, every vector it contains must have a component
in every subregister H; of H[. nj, for 1 <4 < N. Therefore, every vector in H[;_ ) must
consequently have a component in the subregister H;, and this component will be in one
of the F' factors of the overall state (whatever F' may be). Further, whichever sub-state
of the overall product it is in, the component in H; will either be in a factor of the state
on its own, or entangled with a component from just one other subregister, or entangled
with the components from two other subregisters, or..., or entangled with the components
from each of the N — 1 other subregisters (in which case F' = 1).

In other words, a given state ® in Hj; ) might be fundamentally separable as

or
®=X"® Y. (i—1)(i+1)..N] (5.22)

or
® = X" ® Yo, (i-1)(i1)...G-1)(G+1)...N] (5.23)

or... ete., for 1 <,j,k,... <N and i #j # k # ... . Here X1 € Hy, but Yo n] € Hpz..n]
is any vector (completely entangled, completely separable, or a separable product of en-
tangled factors) in Hpp . Similarly XU e Hl and X' ¢ HY but Y. (i—1)(i+1)..N] €
Hp..i-1)@+1)..8] and Yo i-1)(i41)..G-1)(+1)..N] € Hp..(i-1)(i+1)..(j-1)(j+1)...N] are arbi-
trary vectors that also may or may not be separable.

The summation proceeds as follows.

If the component in H; of a state is in a factor sub-state on its own, i.e. is not entangled

with anything, there are (N — 1) components of the state left ‘free’, corresponding to the
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remaining (N — 1) subregisters Ha, Hs, ..., Hx. This remaining part of the state is a vector
in H. N7, and so by assumption this may be separated into one of hy_1 different ways.
So, there are hy_1 different ways in which states in H[; ) might be separated in the
form X3 ® Yo np-

Now, there are precisely C’{V 1= (N — 1) ways of selecting just one component of a
vector in My np, i.e. (N — 1) ways of choosing just one of the components in one of the
remaining (N — 1) factor spaces H; for 2 < ¢ < N. There are hence (N — 1) different
types of factor of the form X' for states in Hi1..n), such that the component in H;
is entangled with the component in H;. Further, each of these ways leaves a remaining
vector in Ho (i—1)(i41)...n], With (N — 2) “free’ components, and this vector may itself be
separated into one of hy_o different ways. So, overall there are (N — 1)hy_o different
ways of separating states in H[;_ ) in the form Xl g Yio. .(i-1)(i+1)...N]-

Continuing, there are Cév ~1 ways of selecting two components of a vector in Hp..N]s
such that one is in the subregister H; and the other is in the subregister H;, for 2 <
i,j < N and i # j. There are hence Cév ~1 different types of factor of the form X1
for states in ;. nj, such that the component in H; is entangled with just two of the
other components. This leaves a remaining vector in Hyg (;—1)(i+1)...(j—1)(j+1)..N]> Which
has (IV — 3) free components, and this could be separable in one of hy_3 different ways.
So overall there are C’év ~Ihy_s different ways of separating states in Hi1..v) in the form
Xl g Yio..(i=1)(i+1)...i—1) (j+1)...N]-

This analysis can be continued. In general, there are CY~! ways of selecting x compo-
nents of a vector in H[y. np, such that the aih component is in the aih subregister H,,, for
0<z<(N-1),whilst 2 <a, < Nand b=1,2,...,x, with, of course, no two components
being in the same subregister. There are hence CY ! different types of factor of the form
Xlteraz--az gych that the component in H; is entangled with z of the other components.
This leaves a remaining vector which has (N — 1 — x) ‘free’ components, and this vector
will be separable in one of hy_1_, different ways. So, there are Cfcv “thy_1_, different

ways of separating states in Hj; ) into a product of factors, one of which is Xlaraz..az

Overall, the total number hy of ways in which arbitrary vectors in H[;  n; might
potentially be separated into a product of factors is given by the exhaustive sum of the
number of ways in which vectors in H; ) might be separated such that their component
in Hy is in a factor sub-state on its own, added to the number of ways in which vectors
in Hj;. ] might be separated such that there is a factor containing the component in
‘Hientangled with a component from one other subregister, added to the number of ways
in which vectors in H[;. n] might be separated such that there is a factor containing the
component in Hientangled with the components from two other subregisters, and so on

to the addition of the number of ways in which vectors in H[; ] might be separated such
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that there is a factor containing the component in Hjentangled with the components from
every other subregister.

From the above, this gives
hy = hy_1+ (N — l)hN_Q + Cév_lh]v_g + ...+ C:{:V_lh]v_l_x + ...+ C]]\\fl:lth—N (5.24)

where the last term is equal to unity because there is only one way of separating a state
into one entangled factor.

Clearly, then, it follows that hpy is given by (5.20).

As discussed earlier, the first few values for hy are hg = 1, by = 1, ho = 2, hg = 5,
hy = 15, hs = 52, hg = 203, such that hy evidently grows quickly for even relatively low
values of N. Indeed, note that even for a five qubit system, the number of ways its state
may be separable is greater than the dimension of its Hilbert space: a five qubit Hilbert

(32)
space H[1...5]

For the case in which N is of the order 10'8%, the value of hy is expected to be truly

of 32 dimensions contains hs = 52 partitions.

enormous. So, for a Universe represented by a state of dimension greater than 210184, the
number of partitions contained in the lattice of its Hilbert space H;. jg1s4] is clearly very
large. This should consequently provide an incredibly rich structure, with a tremendous
number of different ways in which the state of the Universe might potentially separate.

As will be shown, this provides a wide scope for the Universe’s dynamics.

5.4 Probability Amplitudes and Quantum Causal Sets

Now that a notation has been introduced to cope with large dimensional Hilbert spaces,
it is possible to examine how a causal set structure might arise from a fully quantum
description of physics.

From the discussion that the Universe may always be represented by a state ¥, in a
Hilbert space ‘H of enormous dimension, and from the outcome of the previous section that
any vector in a given Hilbert space is always contained within one, and only one, of the
partitions of this space, the conclusion must be that the Universe’s state is always in one
of the partitions of H. The state W¥,, is separable in a specific way, and is always a product
of between 1 and N factors, where N is the number of subregisters in the fundamental
factorisation of H.

As the wavefunction of the Universe develops from one state ¥, to the next ¥, 1,
its pattern of separability might change. That is, if the state ¥,, may be fundamentally
separated into a product of F,, factors, 1 < F,, < N, the state ¥, .1 may be separable into

F,+1 factors, where F), is not necessarily equal to F, 1. In fact, even if F,, = F, 41 the
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states ¥,, and ¥, may have completely different patterns of separability, since there are
in general many different partitions comprising of F' blocks. It is this changing pattern
of separability that will be shown to be the origin of family structures in the quantum

universe, and hence the beginning of a discussion of quantum causal sets.

As conjectured at the start of Section 5.3, the individual factors of the state of the
Universe may be analogous to the events of classical causal set theory. For example, the
growth of the events in classical causets satisfies ‘internal temporality’, in the sense that
every new event is born either to the future of, or unrelated to, every other event; no event
is created to the past of already existing events. The same is true in the present model,
because the next potential state W, 11 is an outcome (i.e. one of the eigenvectors) of a
test on the ‘current’ state ¥,,, and so any factor of W, cannot in any way be thought of
as in the past of any of the factors of W,,.

It is important to reiterate, however, that the quantum and classical models are not
completely congruent. For example, as has been discussed previously the relation x < y <
z between three classical events has no direct equivalent in the quantum theory. After
all, consider three consecutive states ¥,,_1, ¥,, and ¥,,41: whilst ¥,,;; may indeed be one
of the possible outcomes of a test on W¥,, (which is itself one of the outcomes of a test on
U,,_1), the successive states ¥,,_1, ¥,, and ¥,,;1 cannot be granted equivalent degrees of
existence according to the Kochen-Specker theorem, and so cannot be directly compared.

Compared to the current state ¥,, only potential future states ¥, 11 can be discussed.

One similarity that does still occur between the classical and quantum cases is the
notion of ‘links’, which are defined as being irreducible relations. In the classical theory
described in Section 5.2, for example, two events x and y are linked if x < y and there is
no other event z such that x < 2z < y, or if y < x and there is no other event 2’ such that
y < 2z < x. Analogously, in the proposed quantum scenario the states ¥,,_; and ¥,, could
immediately be described as ‘linked’, because by definition there is no intermediate state
between them.

A further similarity arises from the classical causal set concepts of families: related
notions are also present in the quantum case, based, in fact, on the factorisability of the
probability amplitude. To demonstrate this, consider the inner product (V,,1; = ®|¥,,)
between the current state ¥,, and one of the next potential states ¥,,,; = ®, where ® is
one of the eigenvectors of some operator inﬂ. The states ¥,, and ¥,,41 are each contained
within particular partitions of the total Hilbert space H[;. nj, where as before H[;. np is
assumed factorisable into N subregisters. Now, because the factors of one state can only
take inner products with factors of another state if they lie in the same factor space of some

split of the total Hilbert space (where these factor spaces are not necessarily elementary),
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then, depending on the details of the partitions containing ¥, and W, 11, the probability
amplitude may be separable into a number, r, of factors.

Paraphrasing, if ¢ € Hy) is a factor of ¥,, € H;. nj, where Hjy) is one of the factors
of some split of H;. ) and need not be of prime dimension, and if ¢ € Hy is a factor
of Wy, 4+1, where Hg is one of the factors of some split of H[;. ) and also need not be of
prime dimension, then (¢[1) will contribute a factor to the overall probability amplitude
(V1| W) iff Hiy) = Hig)-

This leads to the definition of a ‘family’: ¥ and ¢, in successive states ¥,, and ¥, 11
respectively, constitute a family if (¢|v) is a factor of (Uy,41|¥,,) and if (p|y)) cannot itself
be factorised further.

The above observation can be generalised, such that ¢ might be a product of A factors,
Y =19, QYyR®...Q01 4, and ¢ might be a product of B factors, ¢ = ¢ @¢y®...Q ¢z, where
A is not necessarily equal to B. In this case, the definition of the family encompasses the

factors of which ¢ and ¢ are a product.

Suppose now that the state of the Universe W,, € H|;._nj is separable into k factors,
Le. Uy =1, @Yy, ® ... ® 1Y, , where the individual factors ¢, , for 1 < i < k, may,
or may not, themselves be entangled relative to the fundamental factorisation of H[;. -
Each factor ¢, is in its own factor Hilbert space H,,], and this may itself be a product
of elementary subregisters with the condition that H{; n) = Hia,) @ H[ey] ® ... @ H|g,]. For
simplicity, it may also be assumed that the factor sub-states are normalised within their
own factor Hilbert spaces, i.e. (¢, [¢¥,,) = 1.

Consider now the next test of the Universe, f?n+1. This test has d orthonormal eigenvec-
tors, where d is the dimension of the Hilbert space Hj; ). Of course, if each elementary
subregister of H; ] is a qubit sub-space then clearly d = 2N If ® is one of these d
eigenvectors, then the conditional probability P(¥,+; = ®|¥,, 2n+1) that the next state
W,,+1 of the Universe is @, given a test 2n+17 is given by the usual Born probability rule
(@]w,)P

Suppose that @ is separable into [ factors, i.e. ® = ¢ ® ¢y, @ ... ® ¢, each of which
is also contained in its own factor Hilbert space Hpp,), for 1 < j <[, with H§:1 QHp,) =
Hii..v) and (gbbj |¢)bj) = 1. Now, depending on the particular partitions of H[;_y) in which
W, and Wy, 41 are members, that is, depending on how the various Hilbert spaces H|,,; and
Hpp,) ‘overlap’ with one another, the probability amplitude (®|¥,) may be separable into

a product of factors. In other words,
PV, . =®|V,, S,1)=PP..P (5.25)

where the overall probability is factorisable into r factors Ps, for 1 < s < r, and each factor

can be interpreted as a conditional transition probability within a particular family.
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Assuming that (5.25) represents the ‘fundamental factorisation’ of the probability
PV, = <I>|\I'n,§]n+1), then r represents the maximum number of factors associated
with the transition amplitude, and is constrained by r < min(k,l). Thus, in this case
there are r families involved in the transition of the state from ¥,, to ¥,,,; = ®. Further,
because each factor of the transition amplitude involves a distinct portion of the overall
set of quantum subregisters comprising the total Hilbert space, the complete set of factors
Py specifies a particular r-partite split of H; -

Summarising, then, leads to the following definition. For the quantum transition from
the state ¥y, to a potential state W, 11, both of which are vectors in a Hilbert space Hj;. n
factorisable into at least two subregisters, N > 2, the number of families involved is defined
as equal to the number of factors in the fundamental factorisation of the probability
amplitude (¥,,11|¥,), as determined from which particular partitions of H1...n7 the states

¥, and ¥, are in.

Analogous to classical causal sets, once a family has been identified it is possible to
define concepts such as parents, children and siblings. Specifically, in a given family
transition (¢, |1,,), where 9, is a factor of U, and ¢, is a factor of W, 11, the sub-state
th,, may be called the ‘parent’ of qbbj, which is in turn its ‘child’. Further, if 1, is itself
a product of X factors, ¥, = Qg | ® gy 5 @ .. @ gy and if ¢bj is a product of Y
factors ¢, = ﬂbj_l ® ﬂbj_2 ®...® ﬂbti’ then each factor ag, , for 1 <z < X is a parent
of each factor §,  for 1 <y <Y, which are its children or ‘offspring’. Similarly, every
factor Bbj ) is a sibling of every other factor ﬂbj L for 1 <y,2 <Y and y # 2, because
they share a parent. Note, however, that the fact that the (’s are siblings does not imply
that the a’s must also be siblings. Which, if any, of the factors of v, are siblings of each
other depends entirely on the factorisation of the transition amplitude (¥,,|¥,,_1), as will

be discussed shortly.

First, however, consider as an illustration of these ideas a Hilbert space H{; g factoris-
able into eight elementary subregisters, H;. g = H1®... ® Hs. Consider also the ‘current’

state U,, € H[;. g and one of the potential next states W,11, defined as ¥, = @‘{22'78

and W, 41 = ®33207® respectively. Clearly, ¥, is in the partition H{55°"®, whereas ¥, 11 €
H232678 and the states may be written in the forms
[Tn) = O135°7° =101) ®[02) ®[03) ® [0%°) ® |OT%) (5.26)
W) = OET — [0) @ [02) @ |04) @ |05) © |[07%)

in obvious notation. Note that here, and in the following, the usual Hilbert space subscripts

on the ket factors have been omitted to avoid potentially confusing clashes in the products
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of amplitudes; specifically, then, it is implicitly assumed that
6%%) = 10%) 456 € Hsg) (5.27)

and |®1) € H;, etc.
Therefore, the transition amplitude (¥,,41|¥,,) takes the form (®232578|©1535°7), which

is fundamentally factorised as

(@TE10135°) = (D1]01)(97O23) (41°|©007F) (5.28)
= (®1]61) (2*|(|02) @ |O3))
x((®4] ® (@3] ® (2°7°))(|0%°) ® [©7)).

So, the probability P = [(¥,, 41 = @337\, = ©135°™8)|2 can be fundamentally
factorised in the form P = P; PPy where Py = |(®1]01)|*, Py = |(#%|623)|” and P; =
‘(@%8|@456'78>|2. Further, it is evident that ¥,, = ©135°™ has k = 5 factors, ¥, 41 =
238678 has | = 5 factors, and the probability P has r = 3 factors, which clearly satisfies
the relation r < min(k,1).

Moreover, in this transition, O is the (single) parent of ®;, which has no siblings. The
factor ®*? also has no siblings, and is the child of its parents, namely ©5 and ©3. Lastly,
the factors ©%° and ©"® are the parents of ®4, ®5, and ®7®, which are siblings of one

another.

Just as the sets of events generated in classical causal sets can be depicted by Hasse
diagrams, so too can the family structures produced by the quantum transitions also be
represented pictorially. The convention adopted is that every possible factor state present
in a transition amplitude is drawn as a large circle, whilst each factor of the relevant r-
partite split of the Hilbert space is denoted by a small circle. These two types of circle are
labelled in the obvious way, with, for example, a small circle labelled as [isy...b] denoting
the factor Hy,. ) of the total Hilbert space.

The ‘time’ parameter, n, is assigned to run upwards in the diagrams, such that the large
circles representing the ket vectors of the transition amplitude are below the large circles
that represent the bra vectors. In addition, the large circles are linked to the small circles
in a way that depends on how their factor states are contained in the factor Hilbert spaces
of the r-partite split. Specifically, with links drawn as arrows the convention becomes
that those arrows pointing towards the bottom of a small circle run from a set of parent
factor states, whilst those arrows coming from the top of this small circle point to their
corresponding set of children.

With these conventions adopted, the transition from the state ¥,, = ©135*™ to the

state W, = 232578 can be depicted by the diagram shown in Figure 5.2.
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Figure 5.2: The family structures present in the transition amplitude from ¥,, = ©355°78

— 23678

In general, familial relations will be generated by every transition amplitude, and so
as the state of the Universe develops through many transitions, ¥,, — ¥,,11 — ¥, 19 — ...
an extended network of families will begin to emerge. In addition, definitions of grand-
parents, grandchildren, cousins etc. will become apparent, as will identifications of great-
grandparents, great-great-grandparents, and so on. For example, if A is factor of ¥,,, B
is factor of ¥,,,1 and C is factor of ¥, o, and if A is a parent of B and B is a parent
of C, then A is necessarily a grandparent of C. Further, as the state develops, individual
families may merge with other families, or may even remain isolated from all others over
a large number of jumps.

Exactly what happens will depend on the specific dynamics that govern the system,

as will be discussed later.

The existence of familial relations extending through a number of transitions gives
rise to causal set relationships, with the associated concepts of lightcones and volume
measures. To demonstrate this observation, consider as an illustrative example a model
universe represented by a state in a Hilbert space fundamentally factorised into six quan-

tum subregisters, H[;. ¢. Consider also a possible sequence in the universe’s development,

in which five successive states ¥g, ¥y, ..., ¥4 have the following form
\II(] — QO123456 ’ \1]1 — 1!}%30456 ’ \1]2 — 9%%035 (529)
\1,3 — 774112.356 : \114 — X12.34.56'

Note the inevitable notational clash here: in this example, subscripts on the capital
Greek letters (e.g. ¥,) will denote temporal ordering, whereas subscipts on lower case

Greek letters will denote separable factors.
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With the probability amplitudes given in the usual way, for example
(W = G203 Wy = G23056) = (9 ) (631937234156 (5.30)

etc., the above sequence of states can be represented by the diagram given in Figure 5.3.

Figure 5.3: One possible network of families produced as a toy-universe develops over five

jumps.

The universe of this example begins in an initial entangled state ¥y = 123456 Since it
is argued throughout this thesis that separability is a necessary prerequisite for classicity,
then at time n = 0 the universe cannot be given any classical attributes. In fact from

entangled states of the form Wy = (123456

, no notions of internal observers, apparatus, or
systems under investigation will be able to emerge. Further, since it has also been argued

that the appearance of space relies on the existence of classicity, then an initial entangled
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state cannot contain any sort of spatial relationships.

Separability, and hence the possibility of classicity, occurs in the next state ¥; =
1,/}%3'456, which may be written as a product of three factors. Of course, it is still not possible
to define measures of distance at this stage, that is to say that the factor [¢;) is so many
units away from the factor |@Z)456>7 because these factors are nothing but ‘pregeometric
vectors’ in a Hilbert space, whereas physical space is a phenomenon that is only expected
to emerge by considerations of the relationships between large numbers of such factors over
very many transitions. Likewise, there is no immediately obvious definition of volume on
this pregeometric level. However, as with classical causal sets, embryonic notions of volume
may be estimated by a process of counting; for the quantum causal sets proposed here,
measurements of volume are expected to relate somehow to the number of factors present
in the current state of the universe. As a first approach, it is assumed that more separable

states will generate greater emergent volumes than less separable states, but it is still

unclear at this stage of research exactly how such a programme should proceed.

During the transition from Wy = 33456 to ¥, = 9%'35, the factor containing the
component of the state in the Hilbert space H; does not change relative to the partition
structure of the total Hilbert space. In other words, although the state jumps from one
partition of Hj; ¢ to another during the transition, both Wy and Wy have a factor in the
same block, i.e. H;. Consequently the component of the state in the factor Hilbert space
Hy changes with no ‘interaction’ with any other component in Hjp ¢, and this may be
physically interpreted as the universe appearing to split into two distinct sub-universes,
neither of which influences the other. Although highly speculative, this may be the sort of
mechanism required to describe the behaviour of black holes in a fully quantum universe
of very many subregisters, in which an entire region of emergent spacetime appears cut
off from everything else.

A further point can be made if #; happens to be the same as ;. In this case, that
factor would appear to have been ‘frozen’ in time, whilst the rest of the universe evolved
around it. Such a freezing is a result of a local null test, defined in general as an operator
On+1 with eigenvectors of the form ® = a, ® v, testing the separable state ©,, = a, ® 3,
where ®,0,, € Hu, @ € Hq), By, 7 € Hpp) and H{g; and Hp) need not be fundamentally
factorised. Local null tests are often observed in physics, for example when a spin—%particle
prepared via the spin-up channel of a Stern-Gerlach apparatus is passed through an iden-
tically orientated Stern-Gerlach device; as discussed in Chapters 3 and 6, in this type of
situation no new information is acquired about the state by repeating such a test.

Note that global null tests could also be a feature of the dynamics, defined in general
as an operator OA;Z_H with an eigenvector © testing the state ¥,, = ©. Such a global null

test leaves the entire state unchanged, and is therefore not physically ‘noticeable’.
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The appearance of local null tests, i.e. the persistence of some factors of the state over
a sequence of jumps, has a number of consequences for the quantum causal sets. Firstly
it introduces a concept of endo-time into the dynamics, that is, the property that over
a series of transitions, different factors of the state will ‘experience’ different durations,
where time is defined in terms of change. In other words, whilst one factor could change
a times as the state U,, develops to W, 1,,, a different factor may change b times, where
m > a, b. Consequently this endo-time is non-integrable, because the number of physically
significant jumps that one particular factor experiences as the Universe develops from the
state W, to the state ¥, 1,, depends on the chain of intermediate states ¥,,11, ¥y, 19, ...,
W, +m—1. This will be expanded upon in Chapter 8, but for now note that endo-time is a
‘route dependent’ concept, analogous to the use of proper time in relativity. Further, since
isolated, classical-looking observers will ultimately be associated with different groups of
factors of the Universe’s state, the possibility that these factors may experience different
durations of time might account for one of the origins of different inertial frames of reference
in emergent relativity, in which different observers witness different passages of time.

Unlike the physically unobserved (and therefore fictitious) exo-time parameter, n,
endo-time is not necessarily absolute. There is no reason to assume that any one fac-
tor has any more claim to be experiencing the ‘real’ time than any other. For example if,
again, 61 =1, in Figure 5.3 then ¢; could in principle be regarded as simultaneous with
624, 635, and 6, or instead simultaneous with 1?* and %%, Thus, the occurrence of local
null tests also provides a basis for an eventual discussion of different planes of simultaneity

in emergent relativity.

Once a notion of endo-time has been introduced it is possible to discuss timelike dis-
tances in a manner analogous to classical causal sets. Generally speaking, the timelike
distance between a factor and one of its ‘ancestors’ is related to the number of intermediate
factors in its family structure. For example, the factors %% and 6 may be described as
separated by one ‘time step’ or one ‘tick’ of the ‘Universe’s quantum clock’ ( or ‘g-tick’

[54]), whereas the factors (!23456

and g are separated by two. Likewise, the factors
and n'? are also separated by two time steps, because there is one intermediate factor ;.
However, if again it was the case that 8; = 10, due to a local null test, then in this instance
the factors 1; and n'? would instead be described as separated by only one g-tick as there
are now no physically distinguishable intermediate factors.

As before, this highlights the fact that endo-time is a concept that depends on a
particular endo-observer’s route: if §; = 9; then the timelike distance between 123456
and y3* is three from the point of view of an observer ‘following’ the ; path, but is four
from the point of view of an observer associated with the alternative paths via 624, 63° or

f6.
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A naive concept of lightcone structure can also be gathered from the above example
represented by Figure 5.3. Consider as an illustration the factor 8, of the state W and the
factor 3% of the state W3. If these factors were simply associated with classical events,
i.e. taken to just be the ‘objects’ of the classical causal set theory described in Section
5.2, they would be described as incomparable. That is, there would be no relation of the

356 356

form < linking the events 6; and 1% as 6; < n3°6. The conclusion is that % is out of

the lightcone of 0, and is hence not in its causal future, and so any change in 6; could
not be expected to influence the event 73,

This type of lightcone structure is also potentially present in the quantum causal sets
introduced here. It might be possible, for instance, to discuss whether counterfactual
changes in the factors of one state affect particular factors of later states, simply by a
consideration of how the state of Universe changes from being in one partition to the
next as it develops. For example, in the current toy-universe model it appears that a

356>

counterfactual change in the factor |01) of ¥y will not affect the factor |n°°°) in U3 because

they are in completely different blocks of the partition. In other words, because |6;) is

356) 356 invariant. So, by

not a parent of [°°°), a change in |f;) may be expected to leave |n
considering how counterfactual changes in one factor of the universe’s state might influence
factors in subsequent states, an embryonic concept analogous to lightcone structure is
introduced at the pregeometric level. Moreover, once such a notion is established, it
is possible to discuss features such as geodesics and spacelike distance, and ultimately

therefore also emergent spacetime, exactly as in the case of classical causal sets.

Note, however, that this line of thinking may be missing an essential point. In a fully
quantum universe with no external observers, the development of the state ¥,, is achieved
by Hermitian operators of the form in+1 chosen self-referentially by the Universe itself,
as discussed further in Chapter 8. In other words, there is expected to be some sort of
feedback mechanism in which the current stage somehow affects which test f]n“ is used
next. This immediately leads to a serious problem for the counterfactual argument given
above, because any change in just one factor of a state W, might lead to a completely
different next test f];b 41, and this may have a completely different set of eigenvectors.

In the case of the example at hand, the state Wo with the factor #; is assumed to give
rise (somehow) to the selection of an operator 323 which has an eigenvector W3 that has a
factor 136, If this selection of 33 does not depend on ¥o, then the above simple description
of lightcone structure in terms of counterfactual changes is appropriate. However if instead
the choice of 35 does indeed depend on Vs, then changing Ws may affect $3. So in this
case, if the state Wy instead had a factor 6}, the next test chosen by the universe might
be ﬁ]g, and this alternative operator might have a completely different set of eigenvectors,

with perhaps none of them possessing 73°¢ as a factor. In fact, even a small change from
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01 to 0} in Uy might lead to a next state W3 that is completely entangled.

Clearly then, in a self-referential Universe developed according to a choice of operator
based upon the current state, an additional mechanism must be involved in order to
ensure that the emergent lightcone structure and Einstein locality observed in physics is

generated. This mechanism will be shown to involve the operators themselves.

5.5 Factorisation and Entanglement of Operators

The previous section showed where a discussion of causal set structure might begin to
emerge from a changing quantum state description of the Universe. What has not been
addressed, however, is how such patterns could arise in the first place, that is, how and
why the separability of the state can change from one jump to the next.

Since any state is an eigenvector of an Hermitian quantum operator, it is these tests
that must ultimately be responsible for the way in which the Universe might develop over
a series of collapses. Specifically in fact, the set of eigenvectors belonging to the operator
that is chosen to test the Universe will determine how separable the next potential state
will be. For example, if the rules governing the dynamics dictate that, for all n, an operator
in+1 is chosen that has only entangled eigenvectors, then the state ¥,, 1 of the Universe
will always be entangled and there is no chance that the type of causal set structure
described in the previous section will ever arise. For this reason, the types of possible
Hermitian operator used to develop the Universe must consequently also be examined.

Up until now, only the separation and entanglement properties of the states have
been investigated. In this section, however, it will be demonstrated that the operators
themselves may also be separable or entangled. Further, these properties will be shown to
also generate structures analogous to those of causal sets, and this will have far reaching

consequences for the states.

The set of Hermitian operators H(H(?)) of order D is a D?-dimensional, real vector
space [55]. In general then, every Hermitian operator O e H(HP)) acting on a state in
a D dimensional Hilbert space H(P) can be constructed from linear combinations of the
D? independent elements that span this real vector space [22]. These D? fundamental
‘building blocks’ will be called a skeleton set, S, of operators, and are the operators’
equivalent in H(H(P)) of the set B of basis vectors used to construct arbitrary states in
HD).

Specifically, if S = {&)‘ :A=0,1,..,(D?>—1)} is defined as the skeleton set of operators

for a D dimensional Hilbert space H(P), then any Hermitian operator O acting upon states
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in H®) may be written in the form

D2—1
O =apd’ +a16' + ... + aD2,16D2_1 = Z axe? (5.31)
A=0

where a) is a real parameter.

Consider as an illustration a single qubit quantum register, i.e. a two-dimensional
Hilbert space Hf) = H, labelled by the subscript A, with the superscript ‘(2)’ that
indicates dimension being now implicitly assumed and hence dropped. Any Hermitian
operator 6 € H(H4) acting on a single qubit state in H 4 is composed of a linear sum of
the 22 = 4 members of the skeleton set Sy of H(H4), defined as Sy = {6 : p=0,1,2,3},
where the {6%}} may be associated with the three Pauli spin operators and the identity
operator I= (3?4, as may be readily verified.

So, the skeleton operators in S4 are taken to obey the algebraic relations

= (5”(3'% + ieijkaljx (532)

where 4,5,k = 1,2,3, but ¢ = v/—1 when it is not used as an index. Here and below, the
Einstein summation convention is assumed over lower case Latin and Greek indices, and

the Levi-Civita tensor is defined in the usual way:

0 fori=j,korj=k
€jk = 4 +1 forijk, kij, or jki . (5.33)
1 for ikj, jik, or kji

A more compact way of writing the relations (5.32) is
GGy = e (5.34)

where p,v,w = 0,1,2,3 and the coefficients CL" are given by

cv% = c0=y5,, (5.35)
Céj = 6ij 5 C]ij:ieijk.

It is possible to obtain a matrix form for the operators 6/;. Consider an orthonormal
basis set B4 of vectors spanning H 4, defined as B4 = {|0)4,|1)4}. A representation of the
operators ¢%; in this basis may be given by
1
6= Y [0yl (nl, (5.36)

=0

m,n
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where m,n = 0,1 and [04](m41)(n+1) is the value in the (m + 1)™ row of the (n + 1)
column of a 2 x 2 matrix [o/y]. As might be expected, one possible such set of matrices

may be defined in the standard way of Pauli:

0% = (; (1)) , [amz(f ;) (5.37)
N a1 0
%) = ( 0) - (O 1>,

which clearly satisfy (5.34).

In addition, it can further be shown that the skeleton set of operators S4 = {6’} } may
be associated with the identity (u = 0) and the generators (u =i = 1,2, 3) of the group
SU(2). Consequently, any special unitary operator U acting on H4 may be written in the

form

. 3
U = exp [z > uuai] (5.38)
n=0

where the u, € R are real parameters.

The above arguments can be extended to Hilbert spaces factorisable into more than
one qubit subregister. Consider a Hilbert space Hj; ] formed from the tensor product
of N qubit factor spaces, Hp. ny = H1 ® H2 @ ... ® Hy. An orthonormal basis B, for
the a' factor space H, (= 2 as before) may be defined as B, = {|0)4,|1)s}, where
a{n|m)q = dpmp for myn =0, 1.

The skeleton set Sy for the total Hilbert space H[;. nj can be generated by taking the

tensor products of the skeleton operators of the individual qubit spaces, i.e.
Sy={6"®6?®.. @6 1 pu,=0,1,2,3fora=1,2,..,N}, (5.39)

which is clearly a set containing 4" = (2V)2 = D2 members.

Note that for convenience the skeleton set Sy may also be rewritten as Sy = {[7717“ e
n=0,1,..,(4Y — 1)}, with the first member 6 y =6 ®6%®..® &% etc.

The set Sy forms a basis for the real vector space H(H;;  nj) of Hermitian operators
in Hy;.. ). Any operator A€ H(H1...n)) can be written as a linear sum” of the members
of Sy

3 3 3
A = D> 0 Ayttt @65 @ @Y (5.40)
u1=0p2=0  pyN=0

= Ap.0(67® 63 ® ... ®6%) + A10..0(61 ® 659 .. ©Y) + ...
ot Agz 3(61 R ® ... ®EY)

"For explicitness, the Einstein summation convention has been replaced in this expression by the ‘sum’

signs.
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where the coefficients A, ..., are all real, as required for Hermicity.

Consider now a second operator B e H(H...np), such that it is possible to in turn
define a third operator X as the multiplicative product X = AB. Assuming again that
the Einstein convention is adopted on repeated Greek indices, A and B may be written as
A=Ay 50065 @.. @68 and B = Byjyy. oy0) @652 @ ... @653 for 0 < p, <3
and 0 <wvg <3 with r,s =1,2,...,N.

So, the product X is given by

A

— ~H1 ~H2 sHN 5U1 5U2 FUN
X = (Appyuy01' ®05° @ ... @6\ )(Bujvg.oy07' ®05° ®..00y) (5.41)
~H1 5H2 SHUNY(AV1 5U2 FUN
AMIMQ.../LNB’L}lUQ...UN(Ul ®0-2 ®®UN )(Ul ®O'2 ®®O'N )
_ H1V1 o V2 HNUN ~wi AW2 AWN
= Aupy.unyBoivs..oyCur Cus ~ . Cuy 707" ®05°® .00y

from (5.34). The coefficients A, p,. .y Boivs...on DILCE22 .CLNYN are just products of

real parameters, so this last line may be rewritten in the form

X = Xirwn. wn 0 @652 @ ... @65 (5.42)
where X w0y € R for wy = 0,1,2,3 and ¢t = 1,2,..., N. The product operator X is
a linear sum of the members of Sy with real coefficients, and so is clearly a member of
H(H[lm N}). The set H(H[lm N}) is hence confirmed closed under the multiplication rule, as

expected for a vector space, and is an algebra over the real number field.

Consider again the Hermitian operator A € H(H|y...ny) defined as A= AH1M2---NN&T1 ®

. &’X,N . Depending on the actual values of the coefficients A4, .. this operator

BINT
may, or may not, factorise relative to the skeleton set associated with some particular
split of the total Hilbert space H;. nj. For instance, if Hj; ) can be factorised into the
bi-partite split H;. n] = Hy ® Hw, where Hy and Hy need not be of prime dimension,
it may be the case that A can be written in the form A = V @ W, where V is an Hermitian
operator acting in the factor sub-space Hy and W is an Hermitian operator acting in the
factor sub-space Hyy.

As an example, in the factorisable two qubit Hilbert space Hjjo) = Hi1 ® Ha, the
space of Hermitian operators H(H[12]) is spanned by the skeleton set S12 defined as S19 =
{64" ® 652+ py, gy = 0,1,2,3}. Clearly then, an Hermitian operator F e H(H[19)) of the
form

Jo ;3&% © 6} + 52 ®62) (5.43)
is entangled, whereas an Hermitian operator F' € H(H19)) of the form
F=3®ds) -6t 0ol = (369 - 63) @ 6} (5.44)
is factorisable relative to Sio in H[lg] =H1 ® Ho.
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Whether or not an arbitrary Hermitian operator O in H(H[lm N}) is factorisable in the
form O = Y ® Z, relative to the skeleton set of a particular bi-partite split of the total
Hilbert space H1..n) = Hy ® Hz, may be determined in a manner that is similar to the
microsingularity test given in Chapter 4 used to discover whether an arbitrary state in

Hi1...v) 1s separable relative to Hjy n) = Hy ® Hz.

Theorem 5.1 An arbitrary Hermitian operator Oe H(H[l...N]) is factorisable in the
form O =Y ® Z, relative to the skeleton set Sy, = {65 ® 62} of a particular bi-
partite split of the total Hilbert space Hp. Ny = Hy ® Hz such that Y € H(Hy) and
7 € H(Hy) if, for O = Capds @67,

CopCys = Ca(;Cw (5.45)

for all values of the indices a,y =0,...,(Dy —1) and 3,6 =0, ...,(Dz — 1), where Cyp

is a real coefficient, 65 is a skeleton operator for H(Hy), &g is a skeleton operator

for H(Hz), and Dy and Dy are the dimensions of H(Hy) and H(Hz) respectively.
This may be shown as follows:

Proof. = Suppose that the coefficients of the operator O = Copdy @ &g satisfy the
microsingularity condition (5.45), and without loss of generality assume that O is not
the zero operator. This implies that at least one coefficient C,3 must be non-zero for
a=0,..,(Dy —1)and §=0,...,(Dz — 1). Further, since any C,s is just a real number,
the product 0750 is just a scalar multiple of 0, so

O = Chpos 55 (5.46)
Cs0 = C5Cap% @65
= CasCypoy © &g
= (Casd%) @ (Cy6y).
Clearly, then, O is factorisable with respect to Sy z.
—1If0¢e H(Hj;...n) factorises relative to Sy 7z then

O = (ya0%) ® (256%) (5.47)

where y, and zg are real parameters. So

O = y,2,0% ® 4. (5.48)

Taking Co3 = ya 23, and similarly Cys = y25, the microsingularity condition (5.45) is

clearly satisfied because
CMCW; = YaZBYy 28 = YaZsYnyZ3 = Cm;CW. (5.49)
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Just as the states can be described as existing in certain entanglements or separations
of the Hilbert space, the operators testing them can also be placed into similar such sets.
Thus, the ‘partition structure’ of the operators may also be discussed. Again, the use of
upper and lower indices may be adopted in the obvious way, and the symbol “e” may
be used to denote separable products. For example, in this notation the operator Af;“def
acting on states in Hy, s is assumed fundamentally factorisable into three sub-operators

of the form
OZcodef _ Aa®Abc®Adef (55())

where A, acts on states in H,, A" is an entangled sub-operator acting in Hj,), and Adef
Abcede f

is an entangled sub-operator relative to the skeleton set of H4.s. Moreover, Og is a
member of the set H(H|,.. f )2C'def of Hermitian operators in Hy,, s that are fundamentally

factorisable into three factors relative to the skeleton set of the split H, 5 = Hy @ H[p @
Hia...1-

Whilst Hermitian operators may be factorisable or entangled, it should be noted that
not every type of entangled or factorisable operator is necessarily Hermitian. This is an
important point, since it is only Hermitian operators that are responsible for physically
realisable observables, and only the eigenvectors of Hermitian operators that make up the
physically realisable states.

Moreover, it should further be noted that not every type of Hermitian operator can
validly be used to test the quantum state of the Universe. This follows because with every
Hermitian operator is associated a set of eigenvalues, each of which implies a corresponding
eigenvector. However, if two (or more) of these eigenvalues are the same, their eigenvectors
are not uniquely determined. This is a standard result of linear algebra [56].

In the paradigm proposed in this thesis, the quantum state of the Universe ¥,, in its
D dimensional Hilbert space is developed by collapsing into one of the eigenvectors of an
Hermitian operator 5)n+1. In this mechanism, the operator 2n+1 is assumed to uniquely
provide a complete, orthonormal set of D eigenvectors, ®, 41 for @ = 1,2,...,D, which
effectively produces a preferred basis for the next set of potential states Wy, 1. It is therefore
necessary that this set of eigenvectors has members that are not only distinguishable, but
are also well defined and specific.

This conclusion is partly because if two eigenvectors have the same eigenvalue they
cannot be distinguished by any sort of measuring apparatus, since it is generally the
eigenvalues that are actually recorded (c.f. energy eigenvalues in conventional laboratory
physics). So, since the jump from the state ¥,, to the next state ¥,, 1 has been ascribed to

be parameterised in terms of information acquisition, any such uncertainty as to what state
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this information implies would cause problems for an interpretation of how the Universe
is developing.

Additionally, if the eigenvectors of 2n+1 are not uniquely specified, problems arise
involving the identification of the members of the set of potential next states. This, in

turn, could lead to an ambiguity regarding what (pure) state the Universe is actually in.

As a very simple illustration of the importance of these ideas, consider a universe
consisting of just a single qutrit, i.e. one represented by a state in a three dimensional
Hilbert space H(® spanned by the orthonormal basis B®) = {]i) : i = 0,1,2}. Consider

also an operator of the form P = [0)(0|, denoted in this representation by the matrix

Y

Il
o O =
o o O

0
0 (5.51)
0

It can readily be shown that the states ©1 = |0), O2 = %(|1> + 12)), and ©3 =
%(|1> —|2)) are three orthonormal eigenvectors of P, with eigenvalues y; = 1, pip = 0 and
ps = 0 respectively, because they satisfy PO; = 1,0, and (©;|0;) = d;; for i,j = 1,2, 3.
These states therefore form an orthonormal basis B®) for P. But it can also be shown
that there is no uniqueness in this construction of B®), because any other set of states
|0}, («|1) + B]2)), and (B*|1) — a*|2)) for any other values of «, 5 € C also comprise an
orthogonal basis set BB of eigenstates. There is hence an inherent ‘ambiguity’ in the
eigenvectors of P, making it an example of the type of Hermitian operator that cannot
be used in the development of the state of the universe. In order to develop the universe

from the state ¥,, to ¥,,+1, a unique basis set B,,+1 must be specified.

A suggestion at this point might be to introduce additional ansatz into the dynamics
in order to overcome the above types of problem. In conventional quantum mechan-
ics, for example, operators with degenerate eigenvalues (and hence continuous spectra of
eigenstates) may be dealt with by an inclusion of Liiders’ generalised projection postulate
[57][31], and additional procedures may be employed to select a unique preferred basis set
of eigenstates from the infinite set of possibilities possessed by the degenerate operator.
For instance, it may be suggested that upon testing, the system selects a basis containing
the eigenvector that is ‘nearest’ to the initial state. Paraphrasing such a possibility: if a
quantum object represented by the state v is tested by the degenerate operator 6, then
according to this ‘selection mechanism’ it may be taken to collapse to a member of a basis
set of eigenstates of 6 that contains the particular eigenvector ¢ for which the value of
[{plh)|? is greatest.

Now, it is not clear at this stage exactly how such suggestions could affect, or be

incorporated into, the dynamics proposed in this thesis for the developing quantum uni-
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verse. For a start, Liiders’ postulate was originally phrased in terms of density matrices,
whereas such an approach is not the direct focus of this thesis on the grounds that en-
semble descriptions of the Universe are considered unphysical, as discussed in Chapter 3.
Moreover, Liiders’ idea of generalised projections was also developed from an exo-physical
perspective for quantum systems in the laboratory, and it is not always obvious whether
any such concepts may be directly applicable to the case where the state describes the
entire universe.

As for the above ‘selection mechanism’, it is not immediately clear how the other
members of the required orthogonal basis set of vectors may be self-referentially selected
during the procedure; recall that in a D > 2 dimensional Hilbert space, there are an
infinite number of (D — 1) mutually orthogonal vectors that are also orthogonal to any
given state ¢. Additionally, it could be expected that there is a high propensity for such a
mechanism to result in null tests on the universe, and these are not ascribed to play a role
in the dynamics of the proposed paradigm. Elaborating on this last point, the ‘nearest’
eigenstate could be the same as the initial state, and this would potentially lead to trivial
dynamics. As an example of this possibility, if a single qutrit toy-universe is initially in a
state ¥ = (a|1)+/3|2)), the suggested mechanism could imply that the degenerate operator
P described in (5.51) could leave the universe in the same state ¢ = (a]1) + 3]2)).

Two more technical points concerning incorporating the above suggestions into the
quantum universe dynamics are also appropriate. Firstly, even if additional mechanisms
are postulated in conventional quantum mechanics that select a unique basis set from
a continuous spectra of possibilities, they do not necessarily have a place in the work
described here. After all, in the paradigm proposed in this thesis it is the orthogonal basis
sets that have prime importance in the quantum developments, and not the equivalence
class of operators that they imply. In other words, and by reversing the overall argument,
since by definition the dynamics governing the transition from state ¥, to ¥, requires
the specification of a unique basis set 8,11 (3 ¥,11), which then in turn implies the
specification of an equivalence class of Hermitian operators, the question of what happens
if the eigenvalues of the operator ﬁ:n+1 are degenerate does not automatically arise. By
definition, the operator f]nﬂ is not being used to generate a unique basis set B,,1; the
unique orthonormal basis set 28,1 is instead used to imply the operator inﬂ.

Secondly, if the dynamics were to dictate that the current state ¥, is used to select a
particular basis set B,,+1 from the degenerate operator f]nﬂ (which is identical to arguing:
“if the dynamics were to dictate that the current state ¥,, is used to select a particular
basis set B,,41 from the infinite set of possible basis sets of eigenstates of the degenerate
operator in+1”), then the question would remain: “why does the dynamics bother to

define the infinite set in the first place if only one member 98,1 is deterministically
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picked?”. What is the point in defining a degenerate operator, and hence an infinite
number of possible basis sets, if additional constraints are then required to select just one
of these bases?” Why not instead just define a particular unique basis set 9,11, and then

consider the equivalence class of operators that this implies?

Overall, whilst none of the above issues explicitly forbid the use of generalised mea-
surements within the framework aimed at in this work, it is equally evident that their
inclusion into the quantum universe dynamics would require careful attention. Thus, the
question of how or whether the tests of the universe may be allowed to possess degenerate
eigenvalues is left as an area of investigation for the future, and the overall constraint of
only accepting non-degenerate operators f]nH is enforced for simplicity by definition to

avoid possible such considerations.

Summarising, in the paradigm proposed here, the orthonormal basis set 8,41 must
be uniquely specified if it is to be used in the development of the state ¥,, of the universe.
Thus, the D eigenvectors <I>f1+1, 1 =1,...,D, of an operator in+1 that form 9,1 must
also be uniquely specified. To ensure this, the constraint is therefore assumed that only
operators inﬂ with D non-degenerate and real eigenvalues may be used to test the
universe.

This conclusion leads to a definition of three different types of Hermitian operator,

useful in the following:

i) A Degenerate operator is an Hermitian operator with at least two identical eigen-

values;

ii) A Weak operator is an Hermitian operator which is either degenerate, or at least

one of its eigenvalues is zero;

iii) A Strong operator is an Hermitian operator which is not weak, i.e. all of its eigen-

values are different and none are zero.

It immediately follows that projection operators are weak, as is evident from, for
example, (5.51).

The necessary distinction between Strong and Weak operators will become apparent
when tensor products of operators are considered; it will be shown later that products of
weak operators are in general insufficient to determine a preferred basis for the developing
state, whereas products of strong operators may be used. Products of strong operators

may thus be associated with the physical tests of the state of the Universe.

Note that for an operator 3, satisfying the eigenvector equation (i}n+1 — Nl )| =0,

with eigenvalue \; € R, ¢ = 1,..., D and the identity I , the actual, absolute values of \;
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are not important. What is important is the basis set of eigenvectors they represent,
and, specifically for the case of strong operators, that these eigenvectors are all different.
Indeed, given an arbitrary operator O with eigenvalues {a, b, c, ...}, it is possible to find a
second arbitrary operator O’ with eigenvalues {K'a,k'b,K'c,...}, where k' € R is a real, non-
zero constant, that has the same spectrum of eigenvectors as 0. Moreover, the alternative
operator O” defined as O” = O + k"I also has the same eigenvectors as O, even though
its eigenvalues {(a + k"), (b + k"), (c+ k"), ...} are ‘shifted’ from those of O by a constant
amount k”.

Conversely, note that two different strong operators may have the same set of eigen-
values but different eigenvectors, the Pauli matrices being a good example.

Of course, these principles are familiar to many physics experiments, where, for exam-
ple, energy and momentum eigenvalues often only have relative significance. Moreover,
the three operators O, O' and O” would be physically indistinct, in the sense that if the
Universe collapsed to a particular state ¥, that was one of the members of this set of
eigenvectors, an observer would be unable to determine whether it was O, O' or O” that
was used to test U,,.

Summarising, although their actual values are unimportant, it is necessary that the
members of the set of eigenvalues are all different if distinctions are to be made between

the members of the corresponding set of eigenstates.

In addition to the ideas of ‘weak’ and ‘strong’ operators, a further definition useful
in the following is the ‘pairwise-product’. Consider a set X = {z1,x2, ...,z } with M
members, and the set Y = {y1,2,...,yn} with N members. The pairwise-product XY
of the sets X and Y is defined as the set of all the products XY = {z;y; : i = 1,..., M,
j=1,..,N}. Clearly, XY is a set containing M x N members.

As an extension, the pairwise tensor product of two sets can similarly be defined in

an obvious way.

Return now to the issue of the separability of operators. Consider a Hilbert space H{i9]
factorisable into two subspaces, H[19) = H1 ® H2, where H; and H; are of dimensions d;
and dy respectively, which need not be prime. Consider also the Hermitian operators A €
H(H1) and B’g € H(Hs), such that the product operator 012 = fll ® B’g is a factorisable
member of H(H19)), i-e. Oy € H(H19))12- In addition, let the set of eigenvalues V4 of Ay
be V4 = {a1,a9,...,aq4, } and the set of eigenvalues Vi of By be Vg = {b1,b2, ..., b4, }.

The set of eigenvalues V4 p of the product operator O12 is given by the pairwise-product
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Vap = VaVp of the sets of eigenvalues of the operators A; and Bs. So, Vap is

Vap = A{ai,a2,...,aq, }{b1,b2, ..., b4, } (5.52)
= {aib1,a1by, ..., a1bg,, azbi, agbs, ..., aq, by, }

= {aibj 1= 1, ...,d1 y j = 1, ...,dg}.
Then, the following conclusions hold:

Theorem 5.2 If either of Ay or By is weak, then the product O12 has a degenerate

set of eigenvalues, and is hence also weak.

Proof. Without loss of generality, let A; be weak. Then, at least one member a, of
V4 is zero, or else two members a, and a, are equal.

If a, is zero, then the d2 members of Vap of the form a.b; for j = 1,...,dy are also
zero. Hence, O12 has ds degenerate eigenvalues, and is consequently a weak operator.

Alternatively, if a; = ay then azb; = ayb; for all j = 1, ..., d2, which means that Vap

contains do sets of degenerate ‘pairs’. Hence, O12 is weak. m

The above theorem is logically equivalent to the statement: only if Ay and B are
both strong might the operator 012 = A1®E2 be strong. Alternatively, if 012 = A1®B2
is strong, then Ay and Bs must both be strong.

However:

Theorem 5.3 If fll and Bg are both strong, then the product 012 may be either

weak or strong, depending on the actual eigenvalues of Ay and B,.
Proof. The proof is obvious. Whether or not the members of
Vap = {a1b1,a1ba, ..., a1ba,, azby, agbs, ..., ag, ba, } (5.53)

are degenerate (noting that none can be zero if Ay and B, are strong) clearly depends on

the specific values of each of a1, as,...,aq, and by,ba,...,04,. B

For example, let di = dz = 2 in order to consider a Hilbert space H|jo factorisable
into two qubit subregisters, H[j9) = H1 ® Ha, and the skeleton set of operators S12 =
{64 @ 65 : py, g = 0,1,2,3} where 61 and 642 are analogous to the Pauli operators.
Then:

1. Consider also an operator 6 defined as 6 = 1 ® &3. The skeleton operator 1 is
a strong Hermitian operator, with eigenvalues +1 and —1; similarly, the skeleton
operator &5 is also a strong Hermitian operator, and also has eigenvalues +1 and —1.
Thus, the four eigenvalues of the product operator 6 are the products: (1) x (1) =1,
(I)x(=1)=—-1,(-1)x (1) = =1 and (—1) x (—1) = 1. So, 0 clearly has degenerate

eigenvalues, and is hence a weak operator that is the product of strong operators.
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2. Consider instead the Hermitian operator F' defined as F' = (369 —63) ® 63 in (5.44).
The strong Hermitian operator (369 — %) has eigenvalues of 2 and 4, whereas the
strong Hermitian operator 5’% has eigenvalues of +1 and —1, so the four eigenvalues
of the product operator F are: (2) x (1) = 2, (2) x (=1) = —2, (4) x (1) = 4 and
(4) x (—1) = —4. Clearly, F' has non-degenerate and non-zero eigenvalues, and is

hence a strong operator that is the product of strong operators.

Note that the result of ‘1.” generalises to higher dimensional cases: every element of
the skeleton set (5.39) associated with an n-qubit register is weak for n > 1. The members

of n-qubit skeleton sets are Hermitian, but have degenerate eigenvalues.

For clarity, the conclusions of the above two theorems have been summed up below.
If W and S denote weak and strong operators respectively, the following truth table is
generated where the first row denotes the ‘status’ of fll, the first column denotes the
status of By operator, and the remaining values denote the status of the resulting product

operator 012 = fll ® Bg:

- A, isW | A;isS
ByisW | W W Table 5.1
ByisS | W Sor W ?

The results of the previous two theorems extend to operators that are the products of
more than two factors. The generalisation of the first theorem implies that if an operator
OAL“M is a product of M factor operators OAL“M = 01 ® 02 ® ...0p, then every factor o;
must be strong if Ol M is strong. This follows because operators of the type Ol M can
always arbitrarily be rewritten as a product of just two factors: the factor representing a
particular 6; and the factor containing every other operator 6; for 1 < j < M and j # 7.
So, if any of the 6; are weak, the pair-wise product of the eigenvalues of these two factors
contains either degeneracy or zeroes, and hence Ol M must also be weak.

Likewise, the extension of the second of the above theorems follows naturally, since
the spectrum of eigenvalues of an operator will always depend on the set of the products

of the eigenvalues of its factors.
Attention is now turned to the eigenstates of the operators themselves:
Theorem 5.4 All the eigenstates of a strong, factorisable operator are separable.

Proof. Without loss of generality, consider a strong operator O12 factorisable into two
factor operators, 012 = Al ® Bg. From the earlier theorem, the factors Al and 32 must

also both be strong operators.
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As before, let the eigenvalues of A be {a1,as,...,aq4, }. Each eigenvalue a; corresponds
to a particular normalised eigenvector |a;)1, such that the overall set of eigenvectors for
i1 =1,...,d; forms an orthogonal basis set 251 of states spanning the d; dimensional factor
Hilbert space Hi, i.e. B1 = {Jai)1:1=1,...,d1}.

Similarly, if the eigenvalues of By are {b1,b2, ..., b4, }, then each eigenvalue b; cor-
responds to a particular normalised eigenvector |bj)2, and this set of eigenvectors for
j =1,...,dy forms an orthogonal basis set 82 of states spanning the ds dimensional factor
Hilbert space Ha, i.e. Bo = {|bj)2:j =1,...,da}.

Consider now the pairwise (tensor) product of B, and By defined as the set {]a;)1 ®
bj)e :i=1,...,dy j =1,...,d2}. Clearly, this set has d;dz members.

Now consider one of the members ¢ of this set, ¢ = |az)1 ® |by)2. Evidently, ¢ is
separable, and is a member of the partition ¢ € Hi2 = (H1 @ Ha) C H[19. Moreover, 9 is

an eigenstate of 019 because:

Ot = Oz(lag)1 ® |by)2) (5.54)
= [A1® ByJ(Jaz) @ [by)2)
= [Aiaz)] ® [Balby)2]
= Gglaz)1 @ by|by)o = ogylac)s @ |by)2

where o0y, = azb, € RT.

Similarly, every other member of the set {|a;)1 ® |bj)2 :i=1,...,d1 j =1,...,da} is an
eigenstate of O12, and is also a member of the separation His.

However, because Olg is a strong operator acting on states in a djds dimensional Hilbert
space, it has precisely dids independent eigenstates. Since there are dids independent
cigenstates of O1q in the set {|a;)1 ® |bj)a i =1,...,d; j = 1,...,da}, this set must be an
exhaustive, orthonormal basis 815 for 012.

Hence, every eigenstate of the strong, factorisable operator O12 is separable.

The proof extends to strong, separable operators of higher degrees of factorisation in

the obvious way. m

In the context of the proposed paradigm that only strong (Hermitian) operators are
used in the development of the Universe’s state, the above theorem can be rephrased as:
separable tests only have separable outcomes.

An important consequence of this is that entangled states cannot be the outcome
of separable operators. Paraphrasing: entangled states can only be the outcome of
entangled operators.The converse, however, is not true: entangled operators can have
entangled eigenstates, but they can also have separable eigenstates.

So, overall the ‘Golden Rule’ is that:
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No operator can have more factors than any of its eigenstates,

but an eigenstate can have more factors than its operator.

As illustrations of these ideas, consider again a two qubit toy-universe, represented by
a state in a four dimensional Hilbert space Hﬁ% = H?) & HéQ) spanned by the vector
basis Bia = {|i)1 ® |j)2 = |ij) : i,j = 0,1}, with the usual skeleton set S1o = {6 ® 652 :
fy, g = 0,1,2,3} for the operators in H(H[(g]). The operator

F=36)-6)®a) (5.55)

is factorisable, and has four separable eigenstates: %(\01)4—]00)), L (|01)—]00)), 2= (]11)+
|10)), and %(Hl) —]10)). Conversely, the operator

S
S

|
E = 5(3&} ® 63+ 61 63) (5.56)

is entangled and has four entangled eigenstates: % (J11) +100)), 2= (]11)—]00)), == (]10)+
|01)) and %(\10) — |01)). However, the operator

S
S

M=61R64+61063+(6V263)/2+ (63 269)/2 (5.57)

is also entangled but has a mixture of separable |00), |11) and entangled % (|01) +{10)),
%(|01> —|10)) eigenstates.

It is interesting to note here that although a set of eigenstates may look relatively
‘simple’, the operator they come from may still be a non-trivial combination of skeleton
operators. This observation is perhaps a reminder of how much more complicated the
set of skeleton operators is compared to the set of states; recall that a Hilbert space
HP) of dimension D is spanned by a basis set of D independent vectors, whereas the
corresponding space of Hermitian operators H(’H(D)) is parameterised by a skeleton set
containing D? members. In the present case, although operators in two qubit Hilbert
spaces H[(g} only have four eigenstates, they will nevertheless comprise of linear sums of
up to sixteen basis operators. It is perhaps not surprising, then, that the structure of the

operators is considerably ‘richer’ than that of the corresponding sets of eigenstates.

Just as the factors of the states can be represented pictorially in ways analogous to the
Hasse diagrams of classical causal set theory, the operators of which they are outcomes
can too. In the chosen convention, emergent time is taken to run upwards again, and every
factor of an operator will be denoted by a square; so, an operator associated with & factors
may be represented by k squares in a row. Arrows pointing into a square come from the
group of factor states that are tested by the factor operator it represents, whereas arrows

leaving a square point to the set of outcome factor states of this factor operator.
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As an example, a graphical representation of the theorem that ‘separable tests only
have separable outcomes’ is given in Figure 5.4. Figure 5.4a shows a separable operator
Or2 producing an entangled outcome ', which is a forbidden process. In Figure 5.4b,
however, an entangled operator 02 is producing a separable outcome 15, whilst in Figure
5.4c an entangled operator 0" is producing an entangled outcome ¥'2, and these processes

are allowed.

a) b) )

Figure 5.4: Pictorial representation of the relationship between operators and factor states.
The process described in Figure a) is forbidden, whereas those of Figures b) and c) are

allowed.

The ideas and theorems of this section place important mathematical constraints on
the operators used in the development of the Universe. In a fully quantum Universe rep-
resented by a unique state ¥,,, which is an eigenstate of an operator $,, in an enormous
and fundamentally factorised Hilbert space H;. i, if ¥y, is a separable product of factor
sub-states, some of which may themselves be entangled relative to H[;. nj, then the conclu-
sion must be that the individual factors of the operator 3, associated with the entangled
factors of ¥,, cannot themselves be factorised any further within the factor Hilbert spaces
containing these entangled factor states. This result will lead to important consequences

for the generation of quantum causal sets, as discussed in the next section.

5.6 Einstein Locality and Quantum Causal Sets

Section 5.4 indicated where relationships analogous to those of classical causal set theory
may arise from a consideration of the changes in separability of the quantum state of the
Universe. So, given that Section 5.5 showed that the operators responsible for developing
the Universe’s state may also exhibit properties of entanglement and separability, it might

therefore be expected that these operators will also generate causal set structures. This
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implies the existence of two different types of causal set in a fully quantum picture of
the Universe, and these may in turn lead to different results in the large scale limit when
considering aspects of emergent physical spacetime. This discussion will be the focus of

the present section.

Before elaborating on this point, however, it should be stressed that any parallels
between tests and states should not necessarily be assumed too automatically. After all,
vectors and operators are mathematically very different. For example, the states are
members of D-dimensional, complex Hilbert spaces H(P), whereas the corresponding tests
that act upon them exist in D?-dimensional, real vector spaces H(H(P)). Similarly, a bra
state |¥) may be represented by a column vector with D elements, whilst the operators
may be represented by self-adjoint D x D square matrices.

A further difference is evident from an examination of the product structure of the
vector spaces. For two states ¥, ® € HP), it is possible to define an inner product of
the form (®|¥) € C, which is interpreted in the proposed paradigm as the probability
amplitude for the Universe to develop from the state ¥ to the state ®. Conversely, no such
inner product is defined for two operators A B e H(H(D )), and there is hence no analogous
physical interpretation. However, it is possible to define a third operator C e H(HP)) as
the product C = AB, even though this type of transformation has no equivalent in the

space of states. Indeed for vectors, the product W& is meaningless.

There are also more obvious differences between vectors and operators regarding what
they physically represent in quantum theory. The vectors represent the states of actual
quantum systems, and so every phenomenon that is associated with wavefunctions in
the laboratory has also to be applicable for the vectors. Thus, the vectors may be ex-
pected to exist in complex linear superpositions, and may appear to exhibit non-local and
non-classical correlations that are at odds with emergent views of relativity and general
covariance.

On the other hand, the operators are assigned to represent the observables of quantum
theory, and these tend to have classical analogues that obey Einstein locality and causality:
tests separated by spacelike distances do not affect one another. In fact, the canonical
quantisation procedure successfully employed in conventional quantum mechanics is a
process by which classical variables are directly replaced with their quantum operator
counterparts. It should not, then, perhaps be too surprising that the resultant quantum
operators therefore appear to obey classical laws of dynamics. An example here is that
operators associated with emergent observables separated by spacelike distances tend to
commute.

This point is very much the stance of Peres: quantum mechanics as such does not
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strictly have to satisfy covariance in every respect, but its physical observables do [58].

A physical illustration of this type of argument is evident in quantum field theory.
Local observables such a energy and momentum density operators satisfy microscopic
causality, because their commutators vanish at spacelike intervals, but the local quantum
fields out of which they are constructed need not commute at such separations [59]. In
other words, Einstein locality must always hold for the physical observables, but it need
not for the quantum states themselves. Of course, this may in turn be because the states
are never directly ‘experienced’ per se, whereas it was only ever by experiencing physical
observables that the (emergent) theory of relativity was discovered.

The differences highlighted above between states and operators should manifest them-
selves in the type of causal sets they produce. Specifically, whatever type of structure
arises from the state’s causal set may be expected to exhibit characteristics of non-locality,
whereas whatever type of structure arises from the operator’s causal set might conversely
be expected to obey Einstein locality. Indeed, if this were not the case it would be neces-
sary to explain how these features of empirical physics otherwise emerge in the observed

Universe if they are not present on the underlying pregeometric level.

As discussed a number of times so far in this work, the dynamics proposed for the Uni-
(D)
[1..N]

eigenvectors ®%, i = 1,..., D, of an Hermitian operator in+1 € H(H[(ID)N}) Further, the
conditional probability P(¥, 1 = ®/|¥,,, in+1) that the next state ¥, ; will be the it

verse is that its state ¥,, € H is developed by collapsing into one of the D orthonormal

eigenvector of f]n+1, given that the Universe is initially in a state ¥, and is tested with

an operator f]nﬂ, is determined by the usual rule of Born:
. ~ . 2
P(Wny1 = @' |Wy, Sppr) = (D[ T,)] " (5.58)

The above probability of the Universe collapsing from a state ¥,, to one of the eigen-
states ®¢ of an operator ﬁ]nﬂ may be associated with the concept of entropy. Recall that
the Shannon entropy, S, attached to a particular probability distribution {p1,p2,...,par}

is given by
M
=-> prlnp, (5:59)
r=1
and is a reflection of a physicist’s ignorance of the result prior to a test that has M
outcomes of weighted probability [22].

So, the Shannon entropy associated with the Universe jumping into one out of a set

of D possible outcomes ®' of a given test 3,1, each with probability P! = PV, =
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&' W, 8, 11), is given by
D . .
S = =) PP (5.60)
=1

D

= =Y [@w) o (@)

i=1

Note that this is a classical entropy result, as expected because state reduction pro-
cesses do not permit quantum interference terms.

Equation (5.58) provides the correct probability for obtaining a particular next state
U,.1 = ® as the result of a particular test in_t'_l, and equation (5.60) looks at the
corresponding entropy associated with the set of potential outcomes of this measurement.
What these relations do not do, however, is provide an answer as to why the test in+1
was ever used in the first place; they say nothing about the Universe’s actual selection
of this particular operator. This is perhaps unsettling, because without specifying which
operator 3,41 is chosen to test the Universe, the probability amplitude (¥, = ®|¥,,) is
meaningless. Without specifying inﬂ it is quite possible that a different operator EAJ;L 11
could be used, and this alternative test may not even have ®' as an eigenstate. In this
case it would then be pointless to ask about the relative probability of the next state W, 41
being ®°.

Although the issue is discussed to some extent in Chapter 8, at present there is no
known mechanism for understanding how or why the Universe selects a particular operator
f?nH to test itself, a point that is summed up by the statement: ‘Only some of the rules
[of the Universe] are currently understood; we can calculate answers to quantum
questions, but we do not know why those questions have been asked in the first
place’ [1]. It is asserted, then, that any measure of the entropy associated with the
Universe developing through a series of states should take this additional ignorance into
account.

To this end, recall the conjecture of Chapter 3 that the Universe may be completely
parameterised by a unique stage €2,, defined as Q,, = Q(¥,,, I,, R,). Moreover, recall that
the current ‘information content’ I,, was taken to contain the set of possible operators
{OZ : b =1,..., B} that might each provide a basis for the next potential state ¥,,1 of
the Universe in the next stage €,11. Then, 2n+1 will be one of B possibilities, which
may be labelled f)g (= O%). If it may be assumed that there exists a certain probability
Pb = P(0O%|Q,) that a particular operator Of is chosen by the Universe at time n + 1
to be i]nJrl, then Zle P® = 1, noting that possibly B = 1 if the operators are selected
deterministically.

Thus, if the Universe is initially in the stage €,, the probability P®?) that it will be

tested by an operator 2n+1 = 22 1= OAZ and will then subsequently jump from the state
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U,, to a particular state ¥, 1 = ®%?, which is referred to as the i*" eigenvector of the

operator i]’;L 41, is given by
. . ~ . 2
Pt — pbpi — p(st, |0, (<<1>va|%>} (5.61)

where 327 ‘(@b’il\lfn)‘Q =1 as expected.
Further, the Shannon entropy that may be associated with this jump is given by

B D
S = 33" Pl ptd (5.62)
b=1 i=1
B D
= _ZZP<ZZ+1’Q7I) (@ n+1|\Ij >
b=1 i=1
. 4 2
X A P(Sh 1 100) + In (@0 [0,)| }
B A~
= —ZP(EZH‘Q )In P(X n+1|Q )
b=1
B D : : 2
=3 P12 D (@00 In (@8 w,)|
b=1 i=1
= g +ZP b 11)8
B
where St = — bz:lP( n+1|Q YIn P(S b +1€,) is the entropy associated with the selection

of the test, S = — Z (@YW, ‘ In [(®%|W,, >| is the entropy associated with the collapse

from the state ¥, to one of the set of possible eigenvectors of this test, and the superscript
(1) is used to denote that SV is defined over one jump. Thus, the entropy (5.62) reflects
the ignorance associated with how the Universe might develop from the current stage €2,
to a potential stage ,41.

It is possible to extend these ideas to gain an appreciation of the entropy associ-
ated with the Universe prior to it developing over a series of jumps. Define P, butt

bnyin
P Z’f:fmb"ﬂ") as the probability that an operator Enﬁf will be chosen froin a)set
{En"jf : bpt1 = 1,..., Bpg1} of B,y possibilities, given that the Universe is currently
in the stage Qbiin = {\I/Z”’i”, Ll;”’i", Rf{“i"} where the superscript (by, i,) implies, for ex-
ample, that the state \Ilzn’i" is one of the D outcomes \Ill,’{“i” = @brin for § =1,..., D, of
one of B,, possible tests i?fl" contained in the previous stage Qi"_’ll

Similarly, the variable
in = bn+1,in n+1,%n n,tn bn
P(Zb;;n) = Py, et = @bnttind 1| gt Zn—:ll) (5.63)

— bnt1yint 2
(@ [¥n)
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is defined as the probability that the outcome of this chosen test Eb"“ is \Ilf[f:f’l"“ =

POnt1sint1

Overall then,

bn ? in bn bn7 n bn 7'" J— bn 7'n b’ﬂ7 n bn
P((bn;i)l +1) _ P(En_:‘ll | Q0 )P(\Iln_:ll Intl _ Hbnt1rint1 | @hni En—:f) (5.64)
is defined as the probability that, given an initial stage Qb , the next test will be Zfﬁ:f

and the resulting next state will be the eigenvector \Iin"jf’l"“ POnt1iintl of Zn’ff
Since all the probabilities are classical due to the nature of the state reduction process,
it is possible to define chains of jumps in terms of products of probabilities. Thus,
(bn+1,in+1)(bnt2,in+2) -, (Ontmyintm) _ p(bnt1int1) p(bnt2,int2) (brtmsintm)
(bnyin)y(bn+l7in+1)a~--u(bn+m7177;n+n71) - P(bnﬂn) P(bn+1,in+l) (bn+m717in+m71) (565)
is defined as the probability that the Universe will jump from the state W, bsin. — @bnsin to
the state \I/n’ff’Z"“ Pbrt1int1 yig the test En’ff, and that this new state will jump to the

b b . brtm—1yinsm—
state \I/n’i’;’l”” = Pbn+2:in+2 yig the test 377, and so on until the state ¥ 7Fm-1intm=1 —

n+2° n+m—1
Pbr+m—tiintm-1 finally jumps to the state \Ilnrjgl””“m Pbrtmsintm via the test Zn'jrﬁ;z

Using this notation, the entropy S() given in (5.62) may be rewritten as S(1) =

Bnt1 Ezn+1 1 (b"“’l”“)l plontiint) Similarly, the entropy S® over two jumps

bn+1 1 bnﬂn) (b’ﬂvln)
may be given by

n n D
5(2) = - an:ll 1 Zzn+1 1 an:; 1 Zin+2:1 (5-66)
(bn+171n+1) ( n+2azn+2) (bn+177:n+1) (bn+27in+2)
[P(bnzzn) P(bn-&-lﬂn-‘rl) {ln(P(bnv'Ln) P(bn+17in+1) )}j|

such that overall, the m jump entropy S may hence be defined as

(m) _ _ Bt D Bny2 D Brim
S - bny1=1 Zin+l_1 an+2—1 Zin+2=1 an+m—1 2n+m—1 (5'67)
i (bnt1,int1) pbnt2sing2)  plbntmintm)
(bn/bn) (bn+1azn+1) (bn+mflvin+mfl)

| {mpgr ) ) pprtien)

(bnﬂn) (bn+177/n+1 (bn+m7111n+m71)

_ Bn+1 n—+m D
- an+1=12in+1—1 an+m—1 Intm=1

P( nrrllmbnﬂn) ‘<(bbn+17in+1|\ljbn7in>|2 X ..
X PRy ) [ (@tmdn (gt
In P(0n4t Qb
+1n| @bn+lyln+l‘\Ijbnyln>‘ 4o
X
o I P(S Ol e
+1n | q)bn+m,zn+m ’\pbn+m—17ln+m—1 > }2

Since there is at present no way of knowing how large B,, actually is, or how its value

changes with n, the number of potential next states may be literally gigantic. Moreover,
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the scope of possible ‘futures’ for the Universe will clearly increase rapidly over even a
relatively small number of jumps, especially when it is considered how large the dimension
D of the Hilbert space is likely to be, and hence how large the set of orthogonal eigenstates
is for each operator.

It is therefore obvious that the number of possible causal sets that may be produced
over a chain of jumps is also gigantic. This point is analogous to the Hasse diagram of
Hasse diagrams presented in [38] that are generated by examining the collection of possible
classical causal sets that can be grown by adding one new event to an existing set. In fact,
over the m jumps from W2 to \I/ZT;,L"’“‘”” in the above case, there will in principle be

a whole ‘tree’ of M different possible causets produced, where
M < D™ X (Bp41 X Bpya X Bpig X ... X Bpim). (5.68)

Note that the inequality reflects the fact that there may be some degeneracy in this

set of M members, because two operators Enﬁfj and Znﬁr; for bpig,Cnie = 1, ..., Bpis

and 1 < x < m may have y eigenvectors in common, 0 < y < D.

Although the probabilities Zg*ﬁ*; ) for particular state transitions from ¥, to
Pbnta+1sintatl given a specific operator Sibntett ave evaluated by the Born rule P/o+! =

. n+z+1 (bn+asinta)
‘(@b"ﬂ'“”"”“ \\I/nﬂ,)‘ as mentioned earlier there is no similar rule known for specifying

the probabilities P "tf*; ) = P(X n’jj;ﬁ Qn’faf ’Z"”) of choosing this particular operator
EZT;H from a set of Bj4,4+1 possibilities.

Of course this selection could actually be deterministic, so there is in fact no choice,
and this would give rise to a semi-clockwork Universe in which quantum state reduction
provides the only randomness. In such a Universe it would always be possible to predict,
with certainty, in advance which test the Universe will choose to test itself with x stages
into the future, assuming that this deterministic rule is known.

Alternatively perhaps, in a Universe free of external observers the choice of next test
may depend somehow on the current state that the Universe is in. As will be discussed
in Chapter 8, the way in which such self-referential Universes might be developed after x
jumps may not be knowable until it has developed through the x —1 preceding stages. This
is possibly how (at least some of) the dynamics of the physical Universe works, because
human scientists, themselves just groups of factors of the state of the Universe, do appear
to be able to exert some sort of influence on how this state they exist as part of actually
gets tested, because they do seem able to prod and probe those factors that represent their
surroundings.

However, even if the physical Universe does develop according to a type of self-
referential mechanism, exactly how its next operator might be controlled by the current

state is still unknown.
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It is here that an appeal is made to empirical physics. Since it appears to be the case
that the Universe is highly classical, and hence highly separable, whichever method is
used by the Universe to select its next test seems to be constrained to choose an operator
that possesses a highly separable set of eigenvectors. Since current thinking also indicates
that the Universe has, on average, changed very slowly over the last 10 or so billion years,
however the Universe actually selects its next operator must ensure that the test chosen has
an outcome that it almost identical to the present state. In addition, given that it seems
an experimentally verified fact that physical observables in the Universe are constrained
by Einstein locality, it can also be assumed that whatever mechanism the Universe uses
to select the next operator to test itself with, the physically observed outcomes of this
operator must also obey the principles of relativity.

Rephrasing this last point, since the operators are expected to correspond to physical
observables in the emergent limit, their results must eventually correspond to the outcomes
of their classical counterparts. Similarly, and reversing this line of thinking, if physicists are
able to quantise particular classical variables to get the quantum operator equivalents, the
resulting quantum operators may still ultimately be expected to obey some of the classical
laws. For example, if classical variables are always forced to obey Einstein locality, and if
these variables can be directly quantised to produce operators that yield accurate physical
results, it may be fair to assume that, in general, quantum operators in the Universe are
also forced to obey Einstein locality. So, their observed outcomes will not permit features
such as superluminal communication. In other words, if observed physics is limited by
Einstein locality, the operators representing these observables may be too.

Thus, however the Universe selects its quantum operators, the choice made will ulti-
mately be expected to give the results familiar to classical experiments. Moreover, since
Einstein locality is an important fact of classical physics, this feature must therefore some-
how be reflected by the operators. So, one way to guarantee this condition would be to
argue that only those operators that are constrained by relativistic relationships are al-
lowed to be chosen. In other words, any operator selected by the Universe must have a
set of factor operators that do not violate classical causal laws.

If the above conjectures are correct, they might then suggest that the causal set struc-
tures generated by the changing operators create a pattern of Einstein locality, in terms
of their arrangements of factorisation and entanglement. Further, since the conclusion
of the previous section was that separable operators can only have separable outcomes,
this pattern of operators would in turn produce an arrangement of factor states that also
frequently share relationships obeying Einstein locality. And, since it is the states that
actually constitute physical reality, the observed relativity in the physical Universe may

hence be seen to be a consequence of a causal set formed from operators constrained to
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obey Einstein locality. Only under certain specially contrived circumstances, such as those
occurring in EPR experiments, would the true quantum non-locality of the states become

apparent.

It is quite possible that the Universe could choose a series of operators to test itself with
that produces a causal set structure that changes very little from one stage to the next.
Indeed, all sorts of patterns of separations and entanglements could be present in the set,
with many different types of local or global relationships appearing to emerge over a chain
of jumps, and even the possibility of particular groups or families of factors existing semi-
permanently. Such a series of patterns is analogous to those produced in automata such
as Conway’s “Game of Life” [60], and could ultimately be responsible for all the observed
features of the physical Universe, including, for example, apparent persistence, space,
dimension, particle physics, and even semi-classical looking endo-observers who are made
up of groups of factors seeming to persist in a nearly unchanged way over very many jumps.
Of course, underlying all of this structure would still be the counting procedures used to
estimate the number of jumps (giving rise to an emergent local temporal parameter) and
estimations of familial relationships (which give rise to emergent spatial relationships).

As an example, consider a classical cellular automaton in which the values in the
individual cells depend somehow on ‘nextdoor neighbour’ interactions. Such a dynamics
may give rise to zones of causal influence, in which cells outside of this zone are unable
to influence cells inside it, and vice versa. It is possible that the operators testing the
Universe could also adopt a dynamics that depends on the interaction with ‘neighbours’,
analogous to such classical cellular automata, where neighbouring factors are defined in
terms of the familial relationships formed by the outcome states. For example, one way
of defining two factors of the operator as neighbours might be if their respective outcome
factor eigenstates share a ‘parent’ factor state. Omitting the exact details, the overall point
is that if the patterns of separations produced by the operator’s causal set are somehow
forced to look, to some extent, like a type of cellular automaton whose cells’ values change
according to nextdoor neighbour interactions, the effect might be a case in which the
resulting states will possess patterns of separability that incorporate these causal zones.
Further, such zones may strongly resemble the lightcone structures of relativity, and might

produce a set of observed outcomes that are fully consistent with Einstein causality.

The overall conclusion of this section is that there are two different types of causal set
present in a fully quantum Universe. The first is generated by the changing separability of
the operators used to test the Universe. Whilst it is not known how this set is produced,
it does seem to give rise to observables that respect Einstein locality and everything this

entails, such as a maximum speed for the propagation of physical signals.

120



The second causal set is generated by the changing separability of the state. This set
incorporates all of the features associated with quantum states in conventional physics, and
can, for example, support the non-local correlations and apparently superluminal trans-
mission of information familiar in EPR type experiments. In fact, since such correlations
do not respect Einstein locality, it might be taken as a further indication that there is
an underlying quantum and pregeometric structure lurking beneath the classical and con-
tinuous Lorentzian spacetime manifold. However, the observation that most of empirical
science appears to follow classical physics does seem to indicate that it is only under rare
and special circumstances that the true ‘quantum’ nature of the states becomes blatantly
apparent. Indeed, scientists generally have to try very hard in order to prepare a factor
of the Universe’s state that is entangled, for instance, and even harder to keep it that
way. The repeated efforts of computer scientists to build a working quantum computer is
a good example of this.

The conclusion, then, is that since the states are ultimately the outcome of the oper-
ators, and since in a self-referential Universe the choice of operator may depend somehow
on the current state, there must be a very careful interplay between the two different

causal sets in order to produce the type of Universe that physicists actually observe.

5.7 Physical Examples

The objective of this chapter has been to investigate the types of mechanism inherent
in a quantum Universe that may ultimately be responsible for the existence of spatial
relationships. Whilst there is still a very long way to go before the details are understood
of exactly how the deep and intricate theory of General Relativity could emerge from the
fully quantum picture, it is still possible to schematically describe how the current line of
thinking might fit into a number of physical situations. To this end, in this final section a
number of physically motivated examples are discussed in terms of the connections between

the states representing them and the operators used in their development.

5.7.1 The Quantum Big Bang

The physical Universe is very large. However, given that it also currently appears to be

expanding, the conventional conclusion is that it was once very much smaller than it is

8

today. In fact, by observing the acceleration of its increase in volume®, cosmologists have

8Depending upon different particular models and metrics used to describe the large scale structure of

the Cosmos.
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extrapolated backwards in time and concluded that the Universe must once have had no
size at all [61]. Further, by measuring the light emitted from far off clusters of stars in
order to determine when they were formed [62], astronomers have managed to establish
that the Universe had no size at a time between about 10 and 20 billion years ago. This is
the traditional Big Bang scenario, and is often taken to imply the very beginning of time,
physics, existence and reality.

In the paradigm proposed in this work, physical space is a marker of separability of the
Universe’s state. Thus, the observations of the above Standard Model of cosmology may be
interpreted here as a wavefunction that is today highly separable, but was considerably less
so in the past. Moreover, if there was a time at which the Universe could be attributed with
no physical size, there could then have been no spatial relationships existing, and hence

by the presented arguments its state must consequently have been completely entangled.

Classical general relativistic cosmology asserts that time must have began at the Big
Bang, because without space there is no spacetime and hence no time. However this is not
a necessary conclusion of the present work, and in the Stages paradigm it is conjectured
that time had no beginning. After all, physical time is seen as an emergent phenomenon
appearing as a complex vector jumps from one state to the next in its enormous Hilbert
space (as elaborated upon further in Chapter 8). It is hence quite possible that the state
and the Hilbert space can be conjectured as existing eternally, assuming such a phrase
can be used to describe something existing ‘outside’ of physical time, removing from
the dynamics the uncomfortable view of conventional physics that the Universe suddenly

appeared out of nothing and ‘no-when’.

During an era that might be referred to as pre-Big Bang (i.e. beyond the time cos-
mologists have extrapolated a zero size Universe), the Universe’s state would have been
completely entangled, from the point of view of the proposed paradigm. In fact its state
may have remained entangled for a large number of jumps, during which period no clas-
sical structures, including space, could have emerged. From an alternative perspective,
whichever operators were used to develop the Universe through this chain of entangled
states must themselves have been completely entangled, because separable operators can-
not have entangled outcomes.

Consider, however, a case in which the Universe (somehow) eventually chooses an
operator to test itself that has separable outcomes, and further that the Universe ends up
jumping into one of these separable states. This may at first glance appear unlikely, given
the discussion of Chapter 4 that separable states form a set of measure zero relative to
the set of all states, but is not impossible in a Universe that may have already remained

entangled for a ‘near-infinite’ number of jumps. Besides this, since it is an empirical fact
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that the Universe is large, classical looking and separable, it can be concluded that at
some point it must have stopped being entangled.

After this collapse to a separable state, the Rules governing the way the operators are
chosen may have selected another operator that is also separable, and the Universe would
then have jumped to another separable state. In fact, this new state could have even more
factors than the previous one. If this procedure is repeated a number of times, a situation
might arise in which the state of the Universe is monotonically becoming more separable
as it develops, and this could eventually give rise to the observed expansion of continuous
space. Overall, the selection of a series of separable operators drives the Universe to
develop through a series of separable states, and hence to the possible emergence of spatial
relationships.

The initial jump from a fully entangled state to a separable one could now be called
the ‘Quantum Big Bang’, and this may ultimately be what physicists are really extrapo-
lating back to when then examine the Universe’s past and conclude that it once had no
spatial size. However, unlike the Standard Model scenario, the presented description of
the Universe’s development has the desirable feature that there is no initial singularity at
the Quantum Big Bang, and so is not associated with any of the accompanying problems
of quantum gravity. In fact, this line of thinking once again reinforces the idea that simply
quantising space and gravity is the wrong direction to proceed. Rather, the proposal is
that space should perhaps be seen as something that is meaningless without quantum

relations.

In addition to the removal of the singularity problem, the suggested dynamics for the
development of the Universe may also provide an origin for the observed homogeneity
and isotropy of the Universe. Just after the Quantum Big Bang, the individual factors of
the Universe’s state could still be highly entangled within their respective factor Hilbert
spaces, which may themselves be of enormous dimension. Since entangled states exhibit
the properties of non-local correlations, when the entangled factor states eventually develop
into separable products of factor states (that are themselves contained in the factor Hilbert
spaces of the larger factor Hilbert space containing the entangled factor state), these new
factors may end up having similar ‘properties’, even though they may now appear to
be large, emergent spatial distances apart. In other words, the non-local correlations of
entangled factors just after the Quantum Big Bang may potentially help to solve the

Horizon problem of cosmology.

Note that it is, in fact, entirely possible that before the chain of entangled states present
in the pre-Big Bang era, there could have been whole cycles of expansion (i.e. increas-

ing separability) and contraction (i.e. decreasing separability) back to a ‘Quantum Big
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Crunch’ of renewed total entanglement. Indeed, there could also have been any number of
‘false starts’ in which the Universe chose a series of separable operators, before suddenly
choosing an entangled operator and jumping back to a completely entangled state. How-
ever, if no information regarding these has survived into the present era, perhaps because
no information can be encoded as relations between factors when a state is fully entangled,
there is no way of knowing about them. A return to full entanglement represents a return
to no familial relationships within the state, and since these are what might ultimately
constitute physical phenomena, all that scientists can ever look at is what has happened

since the last Quantum Big Bang.

Consider as an example of these ideas a universe represented by a state ¥,, contained
within a Hilbert space H[;.. n) of dimension D = 22" consisting of a vast number N = 2M
of qubit subregisters, where M € Z*. With H1..n) is associated, in the usual way, a
basis set By n] of orthonormal vectors and a skeleton set Sy of operators. Further, for
all n the state U,, is one of the D eigenstates of some Hermitian operator f]n, where
2n € H(H[l..N])-

By defining n = 1 as the Quantum Big Bang, then, if the above discussion is true,
states W, for n < 1 are fully entangled relative to Bj; ], and are hence the results of
operators that are fully entangled. Conversely, states W, for n > 1 are separable into a
number of factors.

Now, suppose that the Rules of the universe dictate that for 0 < n < M — 1 the

operator i]n+1 has twice as many factors as S according to the scheme:

S = A2 (5.69)
531 _ Al...2M_1 ®1;1(21”—1+1)...21‘4
22 _ Al...2M_2 ®A(2M—2+1)...2x2M—2

®A(2><2M—2+1)...3><2M—2 ® A(3x2M—2+1)...2M

Sy = Al®A®A3®..@ Ay

where, for example, A1~2""" is an Hermitian operator in H(H[lmN])l'“QM_l such that
e H(H[lmN])(1'"2M*1)°((2M71+1)'"2M) C H(H[..ny)- Further, any eigenstate of Al-2M
is in Hy om-1), and duly contributes at least one factor to the next state Uy.

Since separable operators only have separable outcomes, it is certain that ¥, will have
at least two factors, whereas ¥y cannot have less than four factors, and W3 must have at
least eight factors, and so on up to ¥jy; which is separable into M factors. So, whatever
the operators f]nﬂ actually are, the resulting state W, 41 of this universe may be expected

to have more factors than the previous state ¥,,, for 0 < n < M — 1; certainly, if M > 1

124



it may be the case that ‘on average’ the number of factors of the state ¥,, could possibly
increase roughly monotonically with 0 < n < M.

Moreover, since separability has already been shown to be a necessary prerequisite
for spatial relationships, this type of development with deterministically chosen operators

may provide a basic starting point for a discussion on the expansion of space.

As a simple illustration of this last point, consider the case where M = 2, such that
N =4, D = 16, and the Hilbert space is denoted by H;. 4). The operators for n =0, 1,2
are then of the form: ﬁ]o = 1211'“4, ﬁ]l =A% g 12134, and 22 = 1211 ® /Alg ® 1213 ® A4.
A corresponding set of states in the development of this universe could therefore be
\IIO — S01234 , \Ill — 912034 = 912 ® 034 (570)
Vo = Yo =91 @Yy @931y
where 234 ¢ H1234 912034 (= 912 @ 931) c 12934 and 4193, € Hizze. In this case,

the changing separability of the state would consequently lead to the type of causal set

structure illustrated in Figure 5.5.

Figure 5.5: Causal set structure for the state of an expanding universe of four qubits.

As discussed previously in Section 5.4, such a universe with a deterministic choice of

operator readily permits a discussion of embryonic lightcone structure, and so ultimately
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also concepts of distance and metrics. In this sense, the states 13 and ¢, are ‘outside’ of

the causal future of 0'? because a counterfactual change in 0'2 will not influence either P

or ¥y.

Note that of the above scheme is not, of course, the only mechanism that could be used
to model an expanding universe. There could instead be a type of ‘feedback’ mechanism,
in which the choice of next operator is influenced by how separable or entangled the
current state of the universe is. Alternatively, there could be a mechanism in which, for
a finite series of jumps, an operator i]nH is selected that has exponentially many more
factors than the previous test $,,. This latter type of process could cause the state W, 41
to have exponentially more factors than the state ¥,,, and this could lead to a period of
rapid expansion analogous to the era of inflation postulated [48] in the Standard Model of

cosmology.

5.7.2 EPR Paradoxes

As discussed in Chapter 3 the non-local consequences of quantum entanglement appear
to cause problems for the theory of relativity, because the latter places physics in a back-
ground ‘arena’ of classical and continuous spacetime. For example, recall the EPR ex-
periment featured earlier involving an entangled electron and positron. If the electron
is measured first and found to be in a spin-up state then the positron will consequently
be found to be in a spin-down state, and vice versa. Further, the standard priciples of
quantum mechanics (as verified by, amongst others, the Bell inequality) argue that before
the first measurement both the electron and positron may be thought of as existing in
both spin states simultaneously. Relativity’s problem with this can then be summed up
by the question: if the electron detector is x metres away from the positron detector, and
if the positron’s spin is measured t seconds after the electron’s spin is measured, then how
can any physical signal ‘inform’ the second particle that, say, the electron has been found
in a spin up state such that the positron must consequently be found to be spin down, if
x/t > ¢ where c is the velocity of light? In other words, the measurement of a particle
at one location appears to be influenced by a measurement of a particle at a different
location, even though these two events are not in causal contact.

In fact, by setting up the system so that > 1 and ¢t < 1 it has been experimentally
shown [63] that if the correlations were arranged by a signal travelling physically from
one particle to the other, this signal would require a velocity of at least 10%c, and this
conclusion appears to be contradict special relativity which asserts that nothing can travel

faster than the speed of light.
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However, in the paradigm proposed in this work the EPR paradox is not a problem
at all. From the presented viewpoint there is no background space over which correla-
tions have to cross, and the measurement of the electron and positron are only spacelike
separated from an emergent point of view. From the point of view of the proposed fully
quantum approach, the entangled electron-postitron state, the two detectors, the physi-
cists and everything else are just associated with factors of the state representing the
Universe, and so it is not correct to say that when the positron is measured it is fun-
damentally x metres away from where the electron was measured. On the pregeometric
quantum level the electron and positron are nothing but factors of a vector in a Hilbert

space, and physical spatial relationships are meaningless here.

As a schematic illustration of how an EPR type experiment might proceed in a fully
quantum Universe, consider the following chain of stages in the state’s development. Note
first, however, that as with the Schrédinger’s cat discussion of Section 4.3.3 the example
below is really just a highly simplified overview; in reality detectors (and the physicists
observing them) are incredibly complicated sets of factors, constantly undergoing many
different types of internal developments and interactions with their surroundings.

Let a particular split of the Hilbert space H of the Universe be of the form
H=He®H, ® Hp @ Hp ® Hy (5.71)

where H. represents the factor Hilbert space of an electron, H, represents the factor
Hilbert space of a positron, H g represents the factor Hilbert space of an electron detector,
‘Hp represents the factor Hilbert space of a positron detector, and Hy represents the
factor Hilbert space containing everything else in the Universe. Note that none of these
five factor Hilbert spaces need be of prime dimension.

Consider now an operator 3, factorisable in the form:

in:Aep(@AE@Ap@AU (5.72)
where, for example, A% € H(H), with the entanglement H® C M), and S, €
H(H)GEPPU. Obviously, this separable operator 3, will have separable eigenstates. So,

assume that the resulting next state of the Universe turns out to be of the form:
Uy, =[)? @ |D)g®|D)p @ |R)u (5.73)

where |)? € H?, |D)g € Hg, |D)p € Hp and |R) € Hy, and hence ¥,, € H¥p,, C H,
etc.

In a Universe represented by a state ¥, the factor |¢)? may be interpreted as the
initial entangled electron-positron sub-state, with |D)g the initial state of the electron

detector and |D)p the initial state of the positron detector. Of course, some of these
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factor states may also be separable relative to a more fundamental split of their respective
factor Hilbert spaces, and some of the factors of the operators may also be factorised
further. Indeed, the factor |R)y representing the combined sub-states of everything else
in the Universe is presumably separable into very many factors in order to account for all
of these other parts, but for clarity this issue is ignored here.

Overall, the operator ﬁ]n and the subsequent collapse into the state ¥,, are equivalent
to the preparation of a Universe containing an entangled electron-positron pair.

Assume now that the Rules governing the Universe conspire in such as way as to choose

an operator f)n“ to test W,, with, defined as
in—i—l = Ap@)AEe ®AP®AU, (5.74)
and further that this test collapses the Universe into the state W, 11 defined as

i1 = | 1)p®|u)?® @ |D)p @ |R)y. (5.75)

Now, in ¥, the factor \u)Ee is interpreted as an entangled sub-state between a spin-
up electron and an electron detector. Similarly, | |), may be interpreted as a factor of the
Universe representing a spin-down positron. Note however that the positron detector is
still in its initial condition |D)p: the factor operator Ap of f]nﬂ is effectively behaving
as a local null test in Hp because it was also a factor of 3,. The factor |R')y € Hy is
interpreted as the part of the Universe that has nothing to do with the electron-positron-
detector system developing in its own way, and is again ignored.

Suppose further that the Rules now conspire to choose an operator f]nJrg of the form
Yoo = AP @ APP @ Ay (5.76)

and that the Universe subsequently collapses to the state ¥,, o defined as
Vpt2 = [u)® @ [d)7 © |R"). (5.77)

In this case, \d>P P might be interpreted as a correlated sub-state between a spin-down
positron and a positron detector.

The sequence of states W, V,11 and ¥, o offers a schematic picture of how a fully
quantum Universe might view an EPR type experiment involving the preparation of an
initial entangled electron-positron pair, through to the measurement of the electron, and
then followed by the measurement of the positron, noting that the issue of the actual
relationship between entanglement, changes of partition and endophysical measurements
will be addressed properly in the next chapter.

In the emergent limit, |D) g is taken to represent that part of the Universe associated

with an electron detector. Moreover, in this limit the factor AEe of the operator f)nﬂ is
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associated with the ‘interaction’ between the electron detector and the component of the
entangled electron-positron pair in the electron’s Hilbert space H.. The factor AFe ig hence
the pregeometric equivalent of a detector physically testing the spin of the electron, and
is therefore analogous to one of the ‘usual’ Hermitian operators familiar to conventional
physics experiments in which an isolated semi-classical apparatus measures an isolated
system described by quantum mechanics. The difference between the current work and
that of familiar physics is that these single, isolated experiments of conventional physics
are taken in the larger context of the whole Universe being developed at once, instead of
just a tiny part of it. As has been discussed previously, this difference arises from the
acknowledgement that because the Universe is everything, any change in one part of it,
no matter how small, necessarily implies a change in the state of the whole.

The sub-state |u)¢ may be seen as the outcome of this test A%, and would ultimately
correspond in the emergent limit to the physical result of the interaction between an
entangled electron and a detector. Thus, the factor |u)¥¢ is taken to be the result of this
measurement, and in this case represents the situation in which the detector finds the
electron to be spin up.

By the argument of Section 3.1, any measurement of the entangled electron automat-
ically collapses the state of the positron, in this instance into a spin down factor | |),.
Consequently, then, the overall development of the state from ... ® | |), ® |D)p @ ... to
...®|d)PP ® ... could be interpreted in the emergent limit as a semi-classical detector mea-
suring the positron’s spin with a test AFP to give the result |d)"?. Thus, the detector duly

finds the positron to be spin down.

Of course, many other tests f]nJrg could have been selected by the Universe to develop
W, 11, just as semi-classical scientists appear able to choose many alternative ways of
measuring a quantum sub-system. For example, a particular factor BFPP of an alternative
operator XA]% 19 could represent the spin of the positron being measured along a completely
different axis, or it could even imply a test being performed that may have nothing to
do with spin at all. However, an important constraint is that if the Universe is in the
state W, 41, and if it tests itself with an operator i]n+2 containing a factor APP that, in
the emergent limit, measures the component of spin of the positron in the same emergent
direction as the component of spin of the electron was measured in, only those states
W, 1o containing a factor representing a spin-down positron result will have a non-zero

probability of occurring.

Now consider the familial relationships present in the causal sets produced from the
network of earlier states W,_,,, for m = 1,2,..., and relating to what is going on in

the rest of the Universe. The result might be that in the emergent limit one factor
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|D) g (corresponding to the factor operator A p) of the state ¥,, representing the electron
detector seems to be located at one point in emergent space, whilst another factor |D)p
that represents the positron detector (and corresponding to the factor operator A P) seems
to be located at another point in emergent space. Moreover, the subsequent factors ]u)Ee
and |d)FP may also appear to have definite locations in the emergent limit.

The point is that in this emergent limit, it might therefore appear that the results of
the measurements of the electron and positron are correlated across emergent spacelike
distances, apparently defying relativity. However, this conflict is resolved by noting that
it is only a problem on the emergent scale: on the ‘true’ quantum level such locational de-
scriptions are meaningless, and so theories of emergent physics such as Lorentz covariance
cannot be applied there. In this quantum picture the entire experiment is seen as nothing
but a change in the separability of the vector representing the state of the Universe as it
jumps from being in one partition to another. There are hence no contradictions to su-
perluminality conditions because velocity is not defined on this pregeometric level. From

this point of view there is no paradox in EPR.

5.7.3 Superluminal Correlation

The following simple example illustrates how even a small difference between two consec-

utive operators can lead to large consequences for the resulting two consecutive states.
Consider a Hilbert space Hj;. on] factorisable into 2N qubit subregisters. Consider

further the n'® operator f)n, which happens to be factorisable into two entangled sub-

operators, 3, = AN g E(N+1)"'2N, where AN ¢ H(H[L“N})l“w and BWV+D-2N ¢

H(H[(N+1).__2N])(N+1)...2N‘

Suppose also that the particular eigenstate of f]n that becomes the next state ¥, is
of the form ¥, = ¢V @ w(NH)“'QN, such that clearly W, € H{1-No(N+1)-2N) with
PN e HYN and w(NH)'“QN e HIN+D-2N  Eyidently, each factor is entangled relative
to its factor subspace, that is, each is entangled relative to half of the overall quantum
register.

Now consider the next operator ﬁlnﬂ, and suppose that the rules governing the
universe dictate that this is also a product of entangled operators, but of the form
i]nﬂ = O1-(N+1) g DN+2)..2N Roughly speaking, in this type of development it may
be envisaged that the (N + 1) qubit has ‘gone over’ from one factor of the operator )
to the other in the selection of f]nﬂ; the factor A has ‘gained’ a qubit from the factor
B as they ‘became’ C and D respectively. So overall the way the operators 3, and ﬁlnﬂ
factorise only differs by one qubit, and if N > 1 it may therefore be said that 3, and

A

Yn+1 appear highly similar from this factorisation point of view.
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However, given operators 3, and f)n“ of this form, then by the discussion of Section
5.4 for any eigenstate © of 3,41 the probability amplitude (V41 = O©]¥,) may not
factorise. Thus, the conclusion is that by making what appears to be a very small change
from the perspective of the operators, the family structure of the state’s causal set could
be destroyed. Moreover, for a Universe with a very large number of quantum subregisters,
although this one qubit change in the operators may appear almost insignificant, it could
end up having far reaching consequences across the entire state. Indeed, since family
structure will ultimately account for the presence of spatial relationships, even small, local
changes in the operator structure could give rise to an emergent situation that appeared to
support superluminal correlations. This again highlights one of the important differences
between states and operators: even by making a small change in the operator structure
that might appear consistent with Einstein locality and emergent theories of relativity,
enormous changes in the factors of the state could result which might eventually lead to

an apparent violation of these principles.

5.7.4 Persistence

As is readily apparent from observing the nature of the Universe, some physical objects
appear to persist over time. A single atom, for example, is often assumed to be identical
from one instant to the next if it is not interacting with anything, and even macroscopic
states such as humans tend to believe that they continue to be the ‘same’ person for a
number of years.

Because time in the proposed paradigm is a concept that is expected to emerge as the
state of the Universe develops through a series of stages, the existence of persistence is
therefore equivalent to the observation that some features of the state appear to ‘survive’
relatively unchanged from one jump to the next. Moreover, because it is generally classical
objects that are observed to possess this property of longevity, the concept of persistence
may be seen as evidence that particular factors of the Universe’s can sometimes remain
approximately unaltered as it develops.

Now, the appearance of classical features in the Universe has previously been shown
to be a result of the separability of its state. The observation that there is any persistence
at all may therefore seem surprising. After all, when arguments of microsingularity are
taken into account, as well as the fact that separable states are contained in sets of measure
zero, it appears apparently ‘inevitable’ that the Universe should jump from one completely
entangled state to another.

However as has been discussed a number of times in this work, the assertion that the

state jumps from one highly separable vector ¥,, to the next ¥,,;; is ascribed to be due to
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the Rules that govern the Universe’s dynamics very carefully selecting the operators S,
and i]n+1. Further to this, since persistence is clearly a ready feature of empirical science,
it is possible to argue that the Rules may also be confined to only choose those operators

that have outcomes that are similar, in some sense, to the current state.

One way of achieving this result is to consider the earlier conclusion that the separa-
bility of a state may be dictated by the factorisability of the operator of which it is an
eigenvector.

Consider a Universe represented by a state in a Hilbert space Hj; ] Further, assume
that the Rules conspire in such a way that the n'® Hermitian operator S, € H(H[lm N})

used to develop the Universe is of the form

Sp= Ay @Ay ® ... ® Ag, (5.78)
where A, € H(H,,)) and Hj,, need not be of prime dimension. By the conclusion of
Section 5.5, whatever eigenvector of f)n becomes the next state ¥,, will therefore have at

least k factors. So, ¥,, will be of the form

v, = ¢a1 ® 7/1a2 ®. & ¢ak (579)

where ¢, € Hj,,), noting that ¢, may itself be a product of factors, some of which may
be entangled relative to the fundamental factorisation of H, .

Consider now the next test of the Universe 2n+1, and assume that the Rules dictate
that it is also factorisable into k£ sub-operators. Further, assume that the Rules also specify
that each of the k sub-operators of ﬁ:n—‘,-l acts in the same factor Hilbert space as one of
the k individual factors of f]n In other words, inﬂ is constrained to possess the same

sort of ‘partition structure’ as in, and may hence be of the form:
Sni1 =B, ® Byy @ ... ® By, (5.80)

where Bai € H('H[ai]). Now, as before any eigenvector of ﬁ:n_t,_l must also have no less than
k factors, so whatever the next state W, of the Universe actually is, it clearly has to be

of the form

Unt1 =g, ® Pg, @ ... @ @, (5.81)

where ¢,, € H|,,), noting that ¢, may also be a product of (possibly entangled) factors.

The point is that in this type of development, the state W, has a very similar
structure to the previous state W, in terms of which partitions of H[;  n) they are members
of. Consequently, the factor 1, of ¥, may be thought of as developing into the factor
¢q; of Upy1 without ‘interacting” with any of the other factors. Thus, this could be an

embryonic form of ‘semi-persistence’ of the sub-state in the factor Hilbert space H|,,).
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Moreover, because each sub-state v, could actually be a group of factors itself, this
mechanism allows the possibility for macroscopic sets of sub-states to survive relatively
unchanged from one jump to the next. Although of course clearly only a schematic model
here, the persistence and apparently isolated nature of semi-classical objects such as appa-
ratus, laboratories and physicists, each of which is associated with large groups of factors,
may ultimately be a consequence of the relationships between factorisable operators and

separable states.

A more definite form of persistence would be evident if the Rules instead selected the

alternative operator f]’n 11, defined as

i1 = Bay ®Boy ® .. ® By, ® Ay, @ By, ® ... ® By, (5.82)
Any next state ¥ | resulting from an eigenvector of > 11 is of the form

1 = Bay ® Py @ . @by, @Yy, ® Py, @ o ® Py, (5.83)

which clearly has a factor waj € Hia,]- So, the factor in Hj, ) of both ¥, and U is @ba],,
such that the sub-operator Ay, of X, is acting as a local null test. Thus, the factor
1/)aj has clearly remained unchanged in the development of the Universe from ¥, to ¥/ _ ;.
From the point of view of the other factors ¢, of ¥; _;, the factor waj can therefore be
said to have persisted during this jump.

Of course, by carefully choosing the subsequent operators 5)n+2, i)n+3, i]n+4, ... the
rules could readily ensure that particular factors persist over many more developments of

the state.

5.7.5 Position and Dimension

In this final example it will be shown how positional relationships might be encoded in
terms of factorisation and entanglement. Additionally, it will also be shown that such
relations may also afford a natural inclusion of the properties of dimension. A simple
illustration of these ideas will first be given, followed then by a generalisation to more

complicated examples.

Consider a cubic lattice in three spatial dimensions. In fact for simplicity consider the
smallest such lattice, that is, a single cube formed from only eight points, where one point
is on each of the eight corners of the cube. Clearly, each ‘edge’ of the cube implies the
minimum separation between two adjacent sites, and may be associated with a length of

1 unit.
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Now, in order to discuss positional relationships within the cube it is necessary to
define a suitable set of axes. This can be achieved by arbitrarily selecting any one of
the corner sites to be an ‘origin’, and then using the direction of the three corners that
are adjacent to this origin to specify a set of three orthogonal, Cartesian axes. One such
choice is illustrated in Figure 5.6, where it is now possible to label the positions of the
sites according to this set of axes; for example the origin site is denoted (0,0, 0), whereas

the site furthest (i.e. /3 units) from the origin is (1,1, 1).

(1,113

(1,000

(DT et

(0,0, (0,017

Figure 5.6: The cubic lattice formed from eight points, with the corners labelled according

to a set of orthogonal axes through the origin (0,0, 0).

It is possible to label each of the corners with a unique integer a, where a = 0,1,...,7.
One way of achieving would be to take the coordinates (z,y,z) of the corner as the
coefficients in a series expansion of the powers of two, such that a may be given by the
rule

a=z(2°) + y(2') + 2(2%). (5.84)

For example, the corner positioned at (0,0, 0) corresponds to a = 0, whereas the corner
(0,1,0) may be denoted by a = 2, whilst (1,1,1) corresponds to a = 7 etc. Indeed, by
relabelling the a'” site as b, where b = a + 1 such that 1 < b < 8, the eight sites can be

numbered cardinally according to their positions on the lattice.
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Consider now a model universe represented by a state in a Hilbert space H|;. . ], and an
Hermitian operator 6,, € H(H{;. n]) used to develop this state. Suppose that 6, is chosen
according to the rule that it can be fundamentally factorised into eight sub-operators.
Suppose further that the rules dictate that each factor of 6, is itself entangled relative
to the skeleton sets of ¢ subregisters, where 1 < ¢ < 8, and that no two factors of 6,
may be entangled relative to the same number of subregisters. Thus, one of the factor
operators acts on states in just one quantum subregister, whereas another factor of 6, is
an entangled operator acting on states contained in the space of two subregisters, and so
on, up to the eighth factor that is an entangled operator acting upon states contained in
the space of eight subregisters. Evidently, the total number of subregisters N in H[;_ n
is given by N =1+ 2+ ... + 8 = 36, and one possible such operator 6,, may be defined as

6, = A, @ A% @ A6 @ AT-(10) g 4(1)-(15) g 4(16)-.(21) @ 4(22)-(28) ) 4(29)--(36) (5.85)

where A7 € H(Hy;_ ;)™ C H(H};_;) and H_j C Hp -

It is hence possible to assign a unique number ¢ with each of the factors of 6,, in terms
of the number of subregisters over which it is entangled. Moreover, since the discussion of
the previous paragraph showed that it is also possible to associate positions on a lattice
with numbers, the individual factors of 6,, can conversely each be associated with a sort
of ‘position’. In other words, the factor A; of 6, may be labelled by the number ¢ = 1 and
so may, in some sense, be associated with the position (0,0, 0). Similarly the factor A156
corresponds to the number ¢ = 3 and so may be denoted as (0, 1,0), whereas A(29).-.(36)

may be denoted by the number ¢ = 8 and may hence be associated with (1,1,1).

Further, any eigenvector of 6,, must be separable into at least eight factors, and so these
outcomes would therefore also follow the pattern of spatial positioning affiliated with the
operator. Hence whichever eigenvector the universe collapses into, the factors of this next
state 1,, must share some of the ‘locational information’ of the factors of the operator 6,
In other words, whatever factor a € Hy; ;) of the next state ¢, = ... ® @ ® ... is the result
of a factor A*J of 6,,, the location of A% on the lattice can also be used to describe the
corresponding position of the factor a of the state.

Summarising, although the underlying structure is just a single cube, the rules selecting
the operator o0,, imply that its factors, and those of its eigenvectors, may be discussed in
terms of the position of the lattice’s sites. Number and position are interchangeable, and

according to the rules, so are factor and number.

In order to generalise these ideas, consider a (very large) prime number p and a positive
integer d. By analogy with the base p = 2 expansion of a given above, the p-adic expansion

[64] of any non-negative integer P < p? to base p is given by

P =ig(p°) +i1(p') +ia(p®) + - + ig—1 (07) (5.86)
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where i; € Z* is a non-negative integer that is less that p, and the subscript j identifies
which power of p a particular i is a coefficient of. Thus, any integer 0 < P < (p? — 1)
can be uniquely specified by a series of coefficients i;, for j = 0,1,...,(d — 1), and a prime
number p.

Consider now a d-dimensional lattice of points, where this lattice may be imagined to
be a d-dimensional ‘cube’ with edges of ‘length’ (p — 1) units. As before, by picking one
corner of the lattice as the origin (0,0, ...,0), the position of each site can be associated
with a specific number between 0 and (p? — 1). For example, the origin (0,0, ...,0) may be
associated with the number zero, whereas the number (pd — 1) is related to the position
(p—1,p—1,...,p—1), and so on. So by continuing the analogy of the single cube example
of earlier, every integer P in the appropriate range may be thought of as mapped to a
unique site on a lattice with coordinates (i, 1, ..., 74—1). As before, these numbers may be

granted cardinality by relabelling them as P’ = 1,2,...,p% defined as P’ = P + 1.

Now consider a universe represented by a state in H[;. yj, and a particular Hermitian
operator O, € H(Hpy...n) factorisable as before into a product of p? sub-operators. As-
suming again the rules are such that each factor sub-operator of O, is entangled relative
to the skeleton sets associated with between one and p? subregisters, and that no two
factors of O,, are entangled relative to the same number of subregisters, one possible form
of O, is given by

Op=A @ A2 @ A% @ .. @ AM-N, (5.87)

Clearly, the total number N of subregisters required for such a prescription is given by

the arithmetic progression

N = 14+2+43+...+p% (5.88)
= " +1)/2

and because the ‘last’ factor AM--N of O, is entangled relative to p¢ subregisters, M is
given by M = p?(p? —1)/2. So, O, € H(H[l'”pd(pdﬂ)/m)%3.456"".(M"'N) C H(H1...n), with
AM-N ¢ H(H) @0 =D/2)--0 e D)/2) gpe,

As before, by assigning each factor of O, a unique number according to how many
subregisters it is entangled relative to, and by associating each of these numbers with a
coordinate, the factors of O, may be associated with ‘positions’ in a lattice. Thus, the
factor A, may be assigned the number 1 and so may be associated with the coordinate
(0,0,...,0), whereas the factor A2 may similarly be associated with (1,0,...,0), whilst
A456 may be associated? with (2,0, ...,0), and so on, until AM--N g may be associated

with (p—1,p—1,...,p—1).

9 Assuming p > 3. Otherwise, say if p = 2, A*5® will be associated with (0,1,0,...,0) etc.
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Likewise, the eigenstates of O,, will also share the separability properties of this opera-
tor, and so their factors may similarly also be considered in terms of these simple positional

relationships.

It is easy to see how dynamics may be incorporated into this type of model. As
long as the rules governing what type of operators are allowed remain the same, the
lattice structure associated with the operators’ factors will be preserved. For instance, the
dynamics may permit permutations of the form r — s, in the structure of the operators,
where 7, s label different subregisters, and this is equivalent to exchanging the subregisters
over which a factor of the operator is entangled relative to. For example, if the permutation

was such that the next operator On+1 is of the form
On+1 =B® BWA2) o B(ME)14) o BR(A)G)(2T) o (5.89)

the result might be a set of eigenvectors whose factors are completely different from those

of the previous state, but are all still constrained by the same type of lattice structure.

It is important to reiterate that the lattice formed from the operator’s factors does
not exist in any sort of background space. The positional relationships, and hence the
corresponding measure of dimension, are simply a consequence of the way the operator
O, factorises in terms of the skeleton set of basis operators spanning the subregisters of the
total Hilbert space, and this is itself just a result of whatever rules dictate the dynamics.
As always throughout this work, physical space is not seen as absolute but as a marker of
distinction between objects in an underlying mathematical structure.

So as a final remark it should be noted that the present discussion of position should
not be taken too rigidly. As has been a central conclusion of this chapter, the relationships
between the pregeometric quantum register and the eventual emergence of physical space
is a subtle one that requires a great deal of future work before it is completely understood.
Indeed, even in the above example it is observed that a given number P may potentially
be expanded in many different ways, because many different bases p could be chosen, and
this would lead to a set of alternative lattices of different dimensions.

Of course, whether or not this last comment has any physical meaning is an important
question to be faced, and might perhaps imply that either: the current example is too
‘naive’ to describe proper physics; or that it is missing an important constraint that forces
every lattice in the ‘real’ Universe to be three dimensional; or even that it might possibly
allow the occurrence of multi-dimensional ideas such as Kaluza-Klein and string theory.
What is clear, however, is that in a fully quantum Universe with no external observers,
the Universe must somehow organise itself in such a way so that internal, semi-classical

observers are able to experience a reality with near-continuous spatial relationships. In
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such a Universe, the underlying quantum structure must somehow be responsible for

sophisticated theories such as relativity and four dimensional spacetime to emerge.
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6 Quantum Registers as Quantum Computers

In the previous chapter, it was discussed how spatial degrees of freedom might begin to
emerge if the causal set structure of operators obeys relationships analogous to those of
a classical cellular automaton. Moreover, starting from the premise that there are no
external observers dictating its development, a central theme of this thesis is that the
Universe is acting as a giant, self-regulating quantum automaton. From these viewpoints,
the development of its state is envisaged to be like an enormous quantum calculation,
such that overall the Universe may be thought of as behaving like an enormous quantum

computer. This conjecture is discussed now.

The present chapter is split into two parts. In Section 6.1 it is shown how simple
quantum computational methods may be applied to a system consisting of a finite number
of Hilbert space subregisters. Since in the proposed paradigm a state is considered that
exists in a large, but finite, number of such quantum subregisters, it is argued that these
principles are equally applicable to the case where the system is the Universe itself.

Because computation is often seen as synonymous with data manipulation, in Section
6.2 the role of information change and exchange is defined for quantum systems. It is then
discussed how endo-physical scientists might obtain ‘answers’ for the Universe’s quantum

calculation, and how these answers might be interpreted.

6.1 Computing with CNOT

In this section it will be demonstrated how operators can be used to perform compu-
tations in simple quantum systems of qubits. Specifically, in fact, the example of the
Controlled-NOT (or CNOT) operator will be examined. It must be noted, however, that
such computations are not just simply mathematical exercises; instead, they will be com-
pared with the actual, physical results of classical computations, namely by a formulation
of the Bell inequality. Some of the implications of this comparison will then be discussed.

Overall, the work described here will serve as a preparation for the following chapter in
which it will be shown how, by treating the state with quantum computational methods,
particle field theoretic concepts may arise in a fully quantum Universe.

Before quantum computational principles can be applied to a system of quantum sub-
registers, though, it is useful to review some of the ideas of classical computation. Specif-
ically, it will be beneficial to illustrate how the classical analogue of the quantum CNOT

operator, namely the CNOT logic gate, may be employed in classical computation. This
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issue is hence addressed first, noting that a more thorough background description of both

classical and quantum computation is provided in Appendix A.

6.1.1 Classical Computation

Broadly speaking, conventional classical computation involves processing the ‘values’ con-
tained at a sequence of ‘sites’, where each site will definitely take one, and only one, value
from a finite set of possibilities. In fact in general, classical computation can actually be
achieved by a particular manipulation of a finite set of bits, each of which is in one of two
possible states. The workings of modern, digital microelectronic computers are an exam-
ple of this. Moreover, because of their binary property, conventional logic may be applied
to these bits, and their states may consequently be labelled ‘true’ or ‘false’, or perhaps
‘on’ or ‘off’, or even ‘0’ or ‘1’. Equally, the processing of these bits may be accomplished
by the use of binary logic gates.

Classical computations generally involve three parts: there is the specification of the
Input, usually given in the form of a string of bits of which each has a particular value;
there is the computation itself, which involves the processing of these bits according to a
particular set of gates in a certain order; and there is the Output, which is the result of
the computation, and is also usually given in terms of a string of bit values.

Any sequence of 0’s and 1’s, and consequently any string of bits, denotes a unique
binary number. So from this perspective, a classical computation involving the transfor-
mation of an input series of bit values into an output sequence may be interpreted as a
calculation being performed on an initial number to generate an ‘answer’. This answer is
also a number, and may itself go on to be processed in subsequent computations.

Note how this could easily be seen as analogous to the quantum Universe, in which an
initial state ¥,, is developed into the next state W, by some particular combination of

unitary and Hermitian operators.

Just as the particular choice of quantum operators dictates the way the Universe is
developed, it is the transformations that determine how a certain sequence of bits is
processed in a computation. It is consequently the particular choice of logic gates that
define which particular classical computation is performed on the input. As with operators
in quantum mechanics, a number of different types of operation are also possible here.

As an illustration, consider a classical system consisting of just two bits X and Y. Each
bit may take one of two values, such that X may have the value x and Y may have the
value y, where =,y = 0,1. Thus the state S of the system may be denoted by the pair

S = (z,y), and this will clearly be one of four distinct possibilities.
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A local operation may be defined as any operation that acts on the bits individually
and independently, with no reference to the values of any of the other bits. Examples in

the two bit system are the operations U and V, defined as

U(x,y) = (x@xay):(()?y) (6'1)
Vie,y) = (z,ya1)

where the symbol @ denotes addition modulo two, i.e.
060=0 , 0l=1 , 190=1 , 161=0. (6.2)

Conversely, a global operation is one that acts on the whole state S of the system.
In these operations, the way one of the two bits is processed depends on the value of the
other bit.

In fact, note that for all systems with more than one bit it is generally possible to
consider non-local operations, that is, those which act on two or more bits. In such
operations, the way a particular bit is developed may be affected by the value of at least
one other bit. Of course, clearly in a two bit system every non-local operation is also global,
but for systems of more than two bits the global operations are just special, extreme cases

of non-local operations.

An example of such a global operation acting on the two bit system X and Y is the
CNOT logic gate, C, defined as

C(z,y) = (z,2 D y). (6.3)

For obvious reasons from (6.3), in the above use of CNOT it is possible to describe X
as the ‘donor’ bit and Y as the ‘acceptor’ bit.

The above gate may be thought of as a type of ‘question and answer’ operation.
Processing a state S = (x,y) with C' may be viewed as equivalent to asking a question of
the value x of the bit X, and registering the answer with a response in the value y of the
bit Y.

The CNOT computation is reversible. That is, in this case there exists an inverse
operation C~! defined as

C Nz, x ®y) = (2,y) (6.4)

such that C~1C(x,y) = (z,y); in fact, clearly C = C~!. Analogous to the gate C, the
inverse operation C~! may then be interpreted as the statement: “given a particular result,
what was the question of which it is an answer?”. In this case, the answer is (z,z @ y)

and the question is (z,y).
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Note that the inverse gate C~! is different from the ‘conjugate’ operation C defined as

Cla,y) = (D y,y) (6.5)

which reverses the role of acceptor and donor.

From this last gate Citis possible to build a ‘transpose gate’ CT that swaps the values
of the bits X and Y, i.e. CT(x,y) = (y, ). With the above descriptions of C' and C' this
can be achieved by writing C7 as CT = cccC.

The two bit CNOT gate is a global operation when acting on a system containing just
two bits, but merely a non-local operation for an N bit system if N > 2. Specifically,
given a string of N bits Z, Za, ..., Zx in the state S = (z1, 22, ..., 2n ), where z, = 0,1 for
a=1,2,..N, the CNOT gate C(; ;) may be defined as

C(i,j)(zla Ry weey By eees Zj—15 5 Bjt1y +ens ZN) = (217 B2y ooy Biy ooey Zjm15 %0 D Zjy Zjqly ooy ZN)'
(6.6)

This last definition will be useful later.

6.1.2 Quantum Computation

A classical computation involving operations performed on a classical state has immediate
parallels with the way operators in quantum mechanics act on quantum states. This latter
process may therefore naturally be called a quantum computation. Furthermore, a classical
computation involving operations performed on a series of bits is itself analogous to the way
operators in quantum mechanics can act on products of qubits. Indeed, just as a classical
bit is defined as some sort of ‘entity’ that can take one of two possible values, a qubit is
defined relative to a basis comprising of two different (orthogonal) states. However, whilst
classical bits are restricted to always have one value or the other, the states of quantum

bits can exist as complex linear superpositions of their basis vectors.

(2)

Consider a two dimensional (qubit) Hilbert space, Hf , where the super-script may
again be assumed and hence dropped, and the sub-script denotes that this space belongs
to the a’ qubit, in preparation for the later discussion of many qubit systems. Assume
also that H,, is spanned by the orthonormal basis set B, defined as B, = {|0)4,|1)s}, where
a(tj)a = 645 for 4,5 = 0,1, and note that these elements may be represented by column
vectors of the form |0), = ((l])a and |1), = (?)a.

Define now the projection operators ]53 and Aal acting on the a!”* space as

Ac? = [0)aal0] Aa} = [Daa(l (6.7)
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and the ‘transition’ operators Qa and QL as
Qa=10)aa(l] , Qf =[1)aa(0]: (6.8)

The application of these four operators to a qubit may be interpreted in particular ways.
For example, the projection operator I:’(g may be thought of as equivalent to the question:
“is the a!™ qubit in the state |0)?"; a similar question is appropriate for ]—C’a1 The transition
operators Q and QT are analogous to the ladder operators of field theory: Qa may be
thought of as an operator which, when applied to a qubit in Hilbert space H,, ‘annihilates’
the state |1) and ‘replaces’ it with a state |0). Conversely, @} may be considered as an
operator that ‘destroys’ |0) and ‘creates’ |1). These connections are explored in Chapter

7.

Every operator acting on states in the qubit Hilbert space H, can be built from complex
sums of the four operators ]58, ]36}7 Qa and QIL So, if A, is an arbitrary operator acting

in 'H, it may be written
Ag = LB + AZP) + A3Qa + 430 (6.9)

where Al A2 A3 A% € C, or alternatively A, = (AL A2 A3 A}) for brevity. Similarly,
the Hermitian conjugate operator A* may be given by A* = (AL* A2* A%+ A3*)

As an example, the identity and Pauli operators, 6% for p = 0,1,2,3, can be defined

as
65 = PI+ Pl 61=Qu+Q) (6.10)
Go = —i(Qu—-QY) , 6=P)-P,

or equally
&0 = (1,1,0,0) , 6, =(0,0,1,1) (6.11)
oo = (0,0,—i,i) , 6% =(1,-1,0,0)

and these clearly satisfy the ‘standard’ algebra (5.32), and the representation (5.37), as
given in Chapter 5.

It is possible to define products of operators in the above notation. As an illustra-
tion, consider two operators A, and B, defined as A, = (AL, A2 A3 A) and B, =
(B!, B2, B3, BY). The product A,B, is then given by

AaBo = ([AL By + ALB,, [ALB] + ALBJ) [ABY + ASBL), [AGB, + A,Bg)). (6.12)
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The product algebra of the operators in (6.7) and (6.8) is summarised in Table 6.1.
Specifically, the product XY is read as the member X of the first column multiplied by
the member Y of the first row; for example, P°Q = (), whereas QP° = 0.

_|po[pr]q |af

PO PY 0 |Q |0

Pl o [P0 |QF Table 6.1
Q |0 |Q |0 |P°

Q+ Q+ 0 Pllo

The results of the products of these operators also comment on the role of information
in quantum processes. The idempotency of the projection products, POPO — PO and
PPt = Pl for example, may be interpreted as the observation that once a ‘question’ has
been asked of a quantum system, no new information can be extracted by asking the same
question again. This reflects the deeper principle of quantum mechanics that once a state
has collapsed into one of the eigenvectors of a particular operator, testing the system a
second time with the same operator reproduces the same result.

On the other hand, note that the transition operators Qa and QZ obey the fermionic
algebra in the sense that their squares vanish, (Qq)? = (Q%)? = 0. As with their association
with quantum field operators, this property will be useful in Chapter 7. For now, however,
note that any operator A that satisfies the rule (A)pJrl = 0 may be called a ‘parafermionic
operator of order p’, following the language of [65] and [66], where p € Z* is the lowest
integer required for this rule to be true. Thus, Qa and QJ; may be labelled parafermions

of order 1.

It is important to note that the construction of Table 6.1 does not rely on any use of
group theory. The sixteen entries in the table come directly from the logic induced by
taking the inner products of the basis vectors from which the four individual operators
Jf’g, ]5(11, Q. and QIL are defined. Conversely, in fact, the rotational symmetry of the
SU(2) group can be shown to be preserved as a natural feature of the underlying qubit
perspective.

To demonstrate this, define the ‘Transformation’ operators T;j acting on the space
H, as TV = |1)aa(j|, where i,j = 0,1. Clearly, T is one of four possible operators
corresponding to the two projection and two transition operators defined above in (6.7)
and (6.8). That is,

° = P) , I =Q, (6.13)
0 = @l . T} =P
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So, Table 6.1 can be summarised for i, j, k,I = 0,1 by the relation
THATH = §,, T (6.14)

Consider now a unitary operator U(6) defined as
A 3 .
U@)=cxp | i) _6;6) (6.15)
j=1

where 8 = (61,62,03), 6; € R and the 63 are generators of the group SU(2). The set of
operators U(