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Abstract

Picard’s theorem states that a non-constant function which is meromorphic in
the complex plane C omits at most two values of the extended complex plane
C*. A Picard set for a family of functions F is a subset £ of the plane such
that every transcendental f € F takes every value of C*, with at most two

exceptions, infinitely often in C — F.

If f is transcendental and meromorphic in the plane, then:

(i) [Hayman and others] if N is a positive integer, f f’ takes all finite non-zero

values infinitely often;

(ii) [Hayman] either f takes every finite value infinitely often, or each deriva-

tive f®) takes every finite non-zero value infinitely often.

We can seek analogues of Picard sets ie subsets £ of the plane and an as-
sociated family of functions F, such that (for case (i)) f¥f’ takes all finite

non-zero values infinitely often in C — F, for all f € F. Similarly for case (ii).

In this thesis we improve or extend the results previously known, both for
Picard sets proper and for the analogous cases (i) and (ii) mentioned above,
when the family of functions F consists of meromorphic functions which have

deficient poles (in the sense of Nevanlinna).
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Chapter 1

Introduction

1.1 Background

The classical theorem of Picard states that a non-constant function f which
is meromorphic (ie analytic except for isolated poles) in the complex plane C

may omit at most two values of the extended complex plane C* = C U {oc}.

A standard example is the function f(z) = e*, which omits the values 0, oo,

but takes every other value of C* infinitely often.

Lehto [19] introduced the concept of a Picard set. A subset £ of C is a Pi-
card set for a family F of functions meromorphic in C if every transcendental
f € F takes every value of C*, with at most two exceptions, infinitely often in

C — E. [A function f is transcendental if is not rational ie there do not exist

polynomials P, @ such that f(z) = P(2)/Q(2).]

Thus, for example, the set /£ = {2inm : n € Z} is not a Picard set for the

family of entire functions, because the function f(z) = e* fails to take any of



the three values 0, co, 1 on C — F.

The existence of Picard sets for entire functions and for meromorphic functions
(we shall throughout use "meromorphic” to mean "meromorphic in C” unless
stated otherwise) has been investigated extensively. The position for these two

families has effectively been settled, as follows.

&3]
m=1>

In [24], Toppila proved that a countable set of points £ = {a,,} where the
a,, converge to infinity, is a Picard set for entire functions if there exists ¢ > 0

such that the a,, satisfy

E|an,|

| — Q| > m#m'. (1.1)

log |a,|’

In the same paper he exhibited an example to show that this condition is ef-

fectively best possible.

Baker and Liverpool [4] proved further that if the set £ = {a,,} above satisfies
(1.1), then there exists a sequence of small radii d,,, — 0 such that the countable

union of open discs

UX_ Blam,dm) =Ur_{z: |z —an| <dn} (1.2)

m=1

is a Picard set for entire functions.

For meromorphic functions, Toppila proved in [22] that if £ = {a,} is a

countable set of points converging to infinity, which satisfy

|am|* = O(lam1]).

then £ is a Picard set for the family of meromorphic functions.



He further exhibited an example to show that this condition is essentially best

possible.

In a clear departure from the case for entire functions, Toppila also proved [23]
that no countable union of open discs tending to infinity can be a Picard set

for the family of meromorphic functions.

Although these results settle the two basic cases discussed above, further in-

vestigation into Picard-type sets is possible in the following directions:

(i) we can aim to establish results on Picard sets for other families of functions;

or

(ii) we can consider general theorems which have been established for the value
distribution of meromorphic functions and their derivatives, and aim to estab-
lish analogues of Picard sets in these situations. We shall explain what we

mean by this in Section 1.3.

In Chapter 2 we shall improve a result which has been obtained in direction
(i). Chapters 3, 4 and 5 will be concerned with certain problems in direction
(ii). Section 1.3 sets out in more detail the results we shall be aiming to prove,

but first we need some more background theory.



1.2 Nevanlinna Theory

Underlying all of our investigations will be Nevanlinna theory, which was de-
veloped by R. Nevanlinna in the 1920s. A standard reference is Chapters 1-4
of Hayman’s book [8]. We shall set out in this section the basics of this the-
ory. Everything in this section is drawn from [8] and due to Nevanlinna unless

otherwise indicated.

Let f be a non-constant meromorphic function. For r > 0 we define n(r, f) to
be the number of poles of f in |z| < r, where a pole of multiplicity p is counted
p times. We denote by 7i(r, f) the corresponding quantity where each pole is

counted once only, regardless of multiplicity.

We also define, for a complex number a,

n(r,a, f) =n(r,1/(f —a)), (1.3)

the number of times f takes the value a in |z] < r. (We also sometimes write

n(r, oo, f) for n(r, f).)

Next, we define
"n(t
N(r,f):/ @d@ (1.4)
0 /

the integrated counting function of f (slight modifications are required if f(0) =
oo; these are dealt with in [8] but we shall not discuss them here, as they do

not cause significant problems to the theory).

We define N(r,a, f) analogously, and N(r, f), N(r,a, f) similarly.



We define also

2
mirf) = 5= [ log" "), (15)

the proximity function, which is the average of log™t |f(2)| on |z| = r, where
logt 2 = max(log 7, 0). (1.6)

We define similarly

2w
m(r,a, f) = 217r/0 log™ f(Te?;)—a, do. (1.7)
We set
T(r,f)= N, f)+m(r, f). (1.8)

T(r, f) is called the characteristic function of f. It is strictly increasing in 7.

For a function f analytic on |z| = r, we define

M(r, f) = max|f(2)]. (1.9)

If f is entire, we have

T(r,f) < log* Mr, ) < 7ot

T(R.f), 0<r<R. (1.10)

Note therefore that for meromorphic f, we have T(r, f) — oo as r — oo, since
either f has a pole w, in which case N(r, f) > logr/|w|, or f is entire, in which
case T'(r, f) > % log™t M(%T, f) — oo by Liouville’s theorem and the maximum

modulus principle.

Nevanlinna’s first fundamental theorem states that
N(ra, f)+m(r.a.f) =T(r f)+O(1) (1.11)

for every complex number a.



We next define the (Nevanlinna) deficiency of a value a (finite or infinite) by

(using the first fundamental theorem)
N(r,a, f)

6(a, f) = h;l_l»igfw =1- h?isololp T ) (1.12)

We also sometimes need to consider the Valiron deficiency

Ala, f) = li?isollp% =1- h}ﬂiﬁ%' (1.13)

Nevanlinna’s second fundamental theorem states that the number of values a

in C* for which 6(a, f) > 0 is countable and that

> 8a, f) <2, (1.14)
acC”

[Actually the second fundamental theorem is stronger than this - see [8] section
2.4 - but the above is all we shall need here and so for simplicity we shall refer

to this result as the second fundamental theorem.]

Note that this result contains Picard’s theorem: if a non-constant meromor-
phic function f omits a value a then we have n(r, a, f) = 0 for all r, and hence
N(r,a,f) =0 for all » and so 6(a, f) = 1. The second fundamental theorem

tells us that there cannot be more than two such values.
There are a number of other useful definitions and results, as follows.
Suppose that a meromorphic function f is transcendental. Then we have

T, f)

logr

— 00 (1.15)

as r — oC.



We define the order of a function f, p(f), by

p(f) = limsupw.

1.16
r—00 logr (1.16)

We denote by S(r, f) any term which is O(log(rT(r, f))) as r — oo, either

through all values of r, if the order of f is finite, or outside a set of r of finite

linear measure, if the order of f is infinite.

If f is transcendental then, from (1.15), S(r, f) = o(T(r, f)) as r — oo, outside

the exceptional set (if any).

A useful result is the lemma of the logarithmic derivative, ie the fact that

m(r, ['/f) = S(r. [). (1.17)

1.3 Problems investigated in this thesis

We shall be concerned primarily with establishing analogues of Picard sets for

meromorphic functions f with Nevanlinna deficient poles, ie §(oco, f) > 0.

In [26], Toppila proved that a countable union of open discs B(a,,, d,,) satis-
fying certain conditions on the spacing of the a,, and the size of the d,, forms

a Picard set for the family of meromorphic functions f with deficient poles.

Since 6(c0, f) > 0 for such an f, Nevanlinna’s second fundamental theorem
(1.14) tells us that at most one finite value may be omitted completely by
f. Toppila’s result shows that the pre-image of at most two values may be
contained in a Picard set as given in his theorem. This suggests the question,

if two such values exist, of whether they may both be finite or whether one



must necessarily be the deficient value co.

In this direction, Langley [18] proved that only one finite exceptional value
is possible in this situation, although the spacing condition in his result was
more restrictive than Toppila’s (ie the a,, were required to be further apart in

Langley’s result).

In Chapter 2, we aim to close the gap between these results, by improving
the spacing condition in Langley’s theorem. We obtain (Theorem 5) a spacing
condition and radii of the same form as Toppila’s, although the position is left
open for certain values of constants. We also show (Theorem 6) that the condi-

tions in our result may be relaxed in the case when the points a,, all lie on a ray.

In Chapters 3 and 4 we consider analogues of Picard sets arising from the
following theorem, which is due to Hayman for N > 3 [9], Mues for N = 2
[20], and Bergweiler and Eremenko for N =1 [6]:

Theorem 1 Let f be a transcendental meromorphic function, and let N > 1
be an integer. Then N[’ takes all finite non-zero complex values infinitely

often.

In the same way as for Picard sets proper, we can ask what subsets /¥ of the
plane exist such that, for some family F of transcendental meromorphic func-
tions we can say that for any f € F, the function fV f’ takes all finite non-zero

values infinitely often on C — F.

Anderson, Baker and Clunie [2] proved a result in this direction for entire

functions, and also a result for meromorphic functions with a strong spacing

10



condition and N > 11.

We prove in Chapter 3 results for N > 2 where £ is a countable set of points
(Theorem 28), and where F is a countable union of open discs (Theorem 29),
for certain subsets of the family of transcendental meromorphic functions with

deficient poles.

In the course of this, we prove a number of lemmas (Lemmas 42, 43 and 44)
concerning circumstances in which we can conclude that §(oc, f¥ ') > 0 from

the deficiency of f or f’.

To show that these lemmas are not redundant, we exhibit an example (Section

4.3) to show that it is possible to have §(cc, f) > 0 and &(co, fNf/) = 0.

In Chapter 4, we also consider the case N = 1 and prove a result for a point

set F, for transcendental entire functions (Theorem 54).

In Chapter 5 we consider analogues of Picard sets arising from the following

theorem, which is due to Hayman [8, p60]:

Theorem 2 Let f be a transcendental meromorphic function. Then either f
takes every finite value infinitely often, or each of its derivatives f*, k > 1

takes every finite non-zero value infinitely often.

We ask what subsets F of the plane exist such that, for some family F of
transcendental meromorphic functions we can say that for any f € F, either

f takes all finite values infinitely often on C — E or each of its derivatives f*)

11



takes every finite non-zero value infinitely often on C — F.
Langley proved in [13, p17,57] and [16] results in this direction for:
(i) F a countable union of open discs, for entire functions; and

(ii) £ a countable set of points, for meromorphic functions, with & = 1 fixed,

a strong spacing condition and certain restrictions on the location of the poles

of f.

We prove in Chapter 5 a result (Theorem 72) for this problem for any fixed
k > 1 and a point set F, for the family of transcendental meromorphic func-
tions with 6(oco, f) > 1—1/k. This condition allows us to remove the restriction
on the position of the poles in Langley’s result (ii), and to relax the spacing

condition on the points of £.

1.4 Acknowledgements

I would like to thank my supervisor, Jim Langley, for his encouragement and

expert guidance throughout the course of this work.
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Chapter 2

Picard sets for functions with

deficient poles

2.1 Introduction

We consider the family F of transcendental meromorphic functions f which

have Nevanlinna deficient poles, ie
6(c0, f) > 0.
Toppila [26] has proved the following:
Theorem 3 Let {a,,}>_; be a sequence of complex numbers with
W{i_I’léoam =00, |aq|>e

and, for some 0 < o < 1,

|am]

o ™ At | 2> 7 o 2.1
i = 0l g e 2
for all m # m'. If vadii d,,, are given by

log 1/dp, = (log|a,,|)*™ (2.2)

13



for some 3 > 2, then the set

Lg:UOO

m=1

B(a’nw dm)?

where B(an,,d,) ={z: |2 — an| < dn}, ts a Picard set for F.

Toppila also showed [25] that this result is best possible, in the sense that if
8 < 2« there exists S satisfying (2.1) and (2.2) which is not even a Picard set

for the family of entire functions.

Theorem 3 shows that, for any given f € F, the pre-image of at most two
values of C* may be contained in the set S.

The fact that any such f has deficient poles means that at most one finite value
may be omitted (except for finitely often) in the whole plane, by Nevanlinna’s
second fundamental theorem.

This suggests the question, if two such exceptional values exist for a given
f € F, whether they may both be finite or whether one of those values must

be the deficient value oo.

In this direction, Langley [18] has proved:

Theorem 4 Let {a,,}>_, be a sequence of complex numbers with

m=1

lim a,, =

m—o0
and

| — | > Elag,], m#m' (2.3)

for some 0 < & < 1/2. Then there exists K = K(g) > 0 such that, if radii d,,
are given by

log1/dy, > K(log|anm|)? (2.4)

14



and

S = U, Blam, dm),

m=1

then every f € F takes every finite value, with at most one exception, infinitely

often in C — S.

Note that spacing condition (2.3) on the points a,, is more restrictive in Lan-
gley’s result than in Toppila’s (2.1). We aim to go some way towards closing

the gap between these two results. We shall prove the following:

Theorem 5 Let {a,,}>_, be a sequence of complex numbers with

m=1

lim a,, = o

M—r00

and, for some 0 < a < %L,

|am|
Ay — At | > 7 2.5
| | (log |a’m|)a ( )
for all m # m/. Let radii d,,, = d(|a,,|) be given by
log1/d(r) = (logr)**” (2.6)

for some 3 > 4c, and set

S = U=, Blan, d).

m=1

Then every f € F takes every finite value, with at most one exception, in-

finitely often in C — S.

Note that the tighter constraints on « and J mean that we have not closed

the gap completely between Langley’s result and Toppila’s. It remains open

15



as to whether both the omitted values in Toppila’s result may be finite, when

i§a<1orwhen2a<ﬁ§4a.

Our restrictions on « and § may be relaxed when the a,, lie on a ray. We prove:

Theorem 6 Let {a,,}>_, be a sequence of positive real numbers with

lim a,, = o

M—r00

and, for some 0 < o < %,

a’7n
m — Oy — 2.
|a7n Um | > (log anl)o{ ( 7)
for all m # m/. Let radii d,, = d(a,,) be given by
log1/d(r) = (logr)**” (2.8)

for some 3 > 2«, and set

lg - UOO B(am, dTn)'

m=1

Then every f € F takes every finite value, with at most one exception, in-

finitely often in C — S.

16



2.2 Lemmas needed for the proof of Theorem 5

The following is a modification by Langley [18] of an argument of Toppila.

Lemma 7 Let 0 <t < s <r and assume that
s;>0, & <|bj] —s; <|bj] 55 <s (2.9)
for7=1,....M. Set
Q={z:t<| <T}—U§\11Ej, (2.10)

where F; is the closed disc {z : |z —b;| < s;}. Let u be subharmonic and non-
positive on €1, and continuous on the closure of (1, and let v(z) be the Poisson
integral

1 2T . 2 _ 2
() / —u(re7’9)T7|Z|2d0 (2.11)
0

" or |ret? — 2|

of —u in B(0,r). Then for z in Q) we have

u(z) < —o(z) + C(2)mo(r, —u) < <||i|| _T_: + C'(z)> mo(r, —u), (2.12)
mn which ,
mo(r, —u) = %/0 —u(re'®)do (2.13)
and
C(2) = 1+ t/rlog(r/|z|) 1—|—s/rzlog(2r/|z—bj|) (2.14)

=1 t/r log(r/t) 1—s/r gt log(2r/s;)

We recall the definitions of harmonic and subharmonic functions.

17



A function v : C — R is harmonic if it has continuous second partial deriva-

tives which satisfy the Laplace equation

Vg + Vyy = 0.

In particular, a function which is the real part of an analytic function is har-
monic (consider the Cauchy-Riemann equations). For instance, the function v

in Lemma 7 is harmonic, because

2 .2 i0
Kl <W> (2.15)

|ret? — 2|2 re? —

A continuous function » : C — R is subharmonic if for each zy there exists

rg > 0 such that

1 2T .
u(zp) < 2—/ u(zg +reM)dt, 0<7r <70 (2.16)
0

27

A harmonic function is also subharmonic, with equality in (2.16).

18



We shall also require (eg [8, pl]):

Theorem 8 (Poisson-Jensen formulae) Suppose that g is meromorphic in
2| < R and that g has zeros {x,},/_, and poles {y,})_; in |z| < R. Then if

z=re"? and g(0) # 0, 00, we have (the Poisson-Jensen formula)

| 1 27r1 Rt R? _ 2 ;
oz |9(=)] = 2 /0 og |g(fe )|R2 —2Rr cos(@ — @) +1r? 9
yl/)
1 lo
Nzlog RQ—IZ Z ’RQ—yV

Further, we have (the differentiated Poisson-Jensen formula)

g'(2) [ ” 2Re'?
= — | log|g(Re®)|
o [eslatren 2 ZW
_ Z i',u + 1 yy
p=1 Tp == R2_l W< v=1 A RZ_yVZ

provided there are no zeros or poles of g on |z| =

A useful inequality coming out of the differentiated Poisson-Jensen formula is

(see eg [12, p65]):

Corollary 9 Suppose that g is meromorphic in |z| < R. Then for |z] =r < R

we have

| < (m(R, g) +m(R,1/g))(R%}i)2 +2) (2.17)

! +
|z = ¢
where the sum is over all zeros and poles ¢ of g with |(| < R, repeated according

to multiplicity, and d is the multiplicity of the zero or pole of g at z = 0, if any.

19



We shall also use the following elementary Nevanlinna theory result (see eg [8,

p5]):

Lemma 10 Let h be a non-constant meromorphic function, and let a be a

complex number. Then

|T(r,h) —T(r,h — a)|] <log"|a| +log?2. (2.18)

We also need the following, from [8, p38] and attributed to Borel:

Lemma 11 Suppose that T(r) > 1 is a continuous and increasing function.
Then
T(r+1/T(r)) <2T(r) (2.19)

outside a set of r of linear measure at most 2.

Also, we shall need:

Theorem 12 (Argument Principle) Let f be a meromorphic function. Let
C' be a simple closed curve such that f does not take the values 0, co on C.
Let X be the domain enclosed by C'. If N(f) denotes the number of zeros of f
in X, and P(f) denotes the number of poles of f in X, in both cases counting
rnultiplicities, we have

BN EC)
271 Jo [(2)

= N(f) = P(f).

20



2.3 Proof of Theorem 5

We follow Langley’s method [18].

Let the a,,, d,, and «, G be as in the statement of the theorem. Suppose that

there exists a transcendental meromorphic f which satisfies
6=26(co, f) >0 (2.20)

and which has all but finitely many of its zeros and 1-points in S = U

m=1

B(a’nw dwt) .
[This does not give rise to any loss of generality. If f omits distinct finite values

a and b # 0, we may consider the function %, which omits 0 and 1.]

We shall show that these assumptions lead to a contradiction. This will prove

the theorem.

We set

St
= =1 1/f (2.21)

so that, using Lemma 10 and the first fundamental theorem,
T(r,g) =T(r,1/f)+00) =T(r f)+00),
and also

, N(r1,9) , N(r, f)
6(1,9) =1 —-limsup ——= =1 —limsup ———= = ¢
9 A YY) r—oo (7, f)

and all but finitely many of ¢’s poles and zeros lie in S.

(2.22)

Throughout the proof, ; will denote positive constants.

The strategy of the proof will be as follows:

21



e We find a sequence of annuli B,, — oo which are away from the a,, and

which satisfy certain minimum width conditions (Lemma 13);

e Inside each such annulus, we position three circles (centre 0) not too

close together (Lemma 14);

e We obtain an upper bound for |¢’'/g¢| inside each disc |z| < S, (Lemma

15), (where S, is the radius of the middle circle);

e We use Lemma 7 and the deficiency condition to show that log|g’/g| is

negative away from the a,,, for large enough z (2.55);

e It will follow that ¢ is close to 1 (and hence f is large) away from the

A, for large enough z (Lemma 17);

e We show that, for large m, ¢ has the same number of zeros and poles in

each B(a.,,d,,) (Lemma 18);

e We show that ¢ is still close to 1 (and hence f large) much nearer to

(though still away from) the a,, (Lemma 20);

e These last two facts together will imply that f has at least as many poles

as zeros near each a,,, for m large (Lemma 22);
e This will give a contradiction to é(occ, f) > 0, and complete the proof.
We begin with:
Lemma 13 Choose constants k, [ with
e<k<l<e
There exists a constant ¢ > 0 and a sequence r, — oo with
kr, <rpy <lry, (2.23)

22



such that, for each m,n € N,

clan|
B <am, 7> N B, =0, (2.24)
(log |am[)**
where
Bp={zim — — < || <yt —— (2.25)

(log 7, )% (log 7, )%

We construct the sequence r,, inductively.
Since g has only finitely many zeros and poles outside S, we can choose 7y such

that all the zeros and poles of ¢ outside S lie inside {|z| < ro}. We now use ry

to begin the inductive argument (without requiring that ro satisfy (2.24)).

Suppose we have obtained 7,. It suffices to show that we can construct r,,1

satisfying (2.23), (2.24) and (2.25).

We may assume that all the a,, are large, so that by (2.5) the discs B(a,,, m)

2
7| am |

are disjoint. Fach has area —==—.
‘] 9(105§ |am|)2a

Let
A, ={z:kr, <|z| <lr,}. (2.26)

The area of A, is w(I* — k*)r2.

We therefore see that A,, contains at most
A7) = Coflogr,)® (2.97)

of the a,,.

23



Hence we can find a sub-interval I,, of [kr,,{r,], of length at least

(L —K)r, - Chirn
AMrn) +1 7 (logr,)?’

such that 7, contains none of the |a,|.

Let [G, H] be the middle third of [, and set

G+H
Tn+1: 2 .

Then
Cirn Corngt

H-d> 2.28
~ 3(logr,)?™ — (logruy1)?’ ( )
using (2.26).

But now, noting that

Corptt Chkr,
(log reer ) = (log ko)
Cok_lrn ok an]

[ (loglr,)?> = [ (log|am|)*

H-G

for any a,, € A,, we can choose ¢ with

ok Ch

<
21 2

0<e<

and then (2.24) will hold, using (2.28).

So 1,41 satisfies (2.23), (2.24) and (2.25), and by induction we have constructed

the sequence {r,} as desired. Lemma 13 is proved.
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Lemma 14 Let vy, € be positive constants with /¢ and /e small,

as in Lemma 13. Then for each large n there exist S,, S! with

5
1+——)r,.<S, <1+ ——)r,
(1+ (logrn)Qa)T (1+ (logrn)Qa)T
and
cr
lg/ — lgn 1 T (Yo < n 7”
n + / ( g) Tn + (logrn)Za
such that

T(S;mg) < QT(‘ nag)

771,(; THg//g(g - 1)) < C/VB log(SnT(‘ n?g))

where ¢ 18

(2.29)

(2.30)

(2.31)

(2.32)

With S/ defined as in (2.30), we have that (2.31) holds, by Lemma 11 (noting

that the exceptional set in that result is of finite linear measure and therefore

too small to cover all the intervals in (2.29), so that we can always choose

suitable S, and S/, for large enough n).

For (2.32), we apply the lemma of the logarithmic derivative (1.17) to

/ / /

g 9 9

glg—1) g—-1 g’

The inequality in (2.30) holds, from (2.29) and the fact that

-1 -1 -1 _ T'n
T(S,,9)" < (logS,) " <2(logr,)™ =o <(log7‘n)20’>

for large n. This inequality shows that the circle |z| = S/ lies inside the annu-

lus B,,.

Lemma 14 is proved.
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Lemma 15 There exist positive constants Cg, Cy7 such that, for large n, we

have
19'(2)/9(2)] < CsSaT(Sh, 9)° (2.33)
for all z satisfying
Cr <|z] <8, z¢&Ux_ Blay,1). (2.34)

We fix a large integer . and assume that n is large compared to L. We have,

using (2.29),

S
n t,
T(Sn, g9) 2 N(rn,g)+/ n(tg)dt
> N(rp,9) +n(rn, 9)log(Sa/rn)
N
> N(rn,9) +n(rn, g)log <1 + W>
¥
> T, 2.35
- 2(log7‘n)2°’n(T 9) (2.35)

and so, since by construction there are no poles of ¢ in r, < |z| < S/,

2
n(; ;,9) = (1, 9) < ;(long)ZaT(‘ s 9)-
Arguing similarly for n(S/,1/g), we obtain

(S, 9) +n(Sy,1/9) < Callogra)**T(Sn, g). (2.36)

Now we apply the differentiated Poisson-Jensen formula (Corollary 9) in B(0, S/,)

to get, for |z] < 5,

S/
9(2)/9(:)| < (m(S}.0) 4 (S} 1/0)] 3 +2 30 g + G (287

where the sum is taken over all zeros and poles ¢ of g with |[(| < S/.
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Now from (2.30),

2‘752«19 T(Sn,g)? (2.38)
(‘S(;L . ‘an)Q n B n,f] .

and so we get, by (2.31), (2.36), (2.37) and (2.38),

99| < 32S,T(S. 9)° + 2[0S g) + (S, 1/9)] + Cs

IA

325, T(S,. 9)° + 2C4(log r,)**T(S,, g) + Cs

< C8,T(Sn, 9)° (2.39)

as long as (7 < |z| < S, and |z — a,,| > 1 for all m, using the fact (1.15) that

— 00 (2.40)

as 7 — 00 since ¢ is transcendental. Lemma 15 is proved.

Lemma 16 For large enough n, we have

(S 9/9) > (8/2)T(S,. ). (2.41)

We have

g—1 glg—1)g" (242)

Now (2.22), (2.32) and (2.40) give

m(S. 9/9) > (6/2)T(S,.9) (2.43)

for large enough n. Lemma 16 is proved.
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Lemma 17 Let ey be small and positive, in particular with &1 < ¢/2, where ¢

1s as wn Lemma 13. Then there exists C'15 > 0 such that, for all large n, we

have
log|g(z) — 1| < =C156T (1, 9), (2.44)
for all z satisfying
oo CC:1|a’7n|
Tn—1 S |Z| S Tn, z Q Umle <a,m, W> . (245)

We apply Lemma 7 to the function

u(?) = loglg'(2)/9(2)| = 10g[CsSn41T(Snr1. 9)7] (2.46)

with » = S,11 and t = r,_;, and s = 7,41 and with the B(b;, s;) those discs
Bl(an,, 1) for which ¢t < |a,,| < r. (Recall that L is a fixed large integer and

that n is large compared to L.)

From (2.33) for n 4 1, u is non-positive in ¢t < |z| < r outside the B(a,,, 1). u
is the real part of an analytic function, and so harmonic and therefore subhar-

monic, from the remarks following Lemma 7.

Note that r,_;, < |ap| — 1 < |a,| + 1 < 1,y for all these m, by (2.24), so the

choices of t =7, _;, s = 7,41 in Lemma 7 are permissible.

We take z satisfying

&1 |a’7n|

(2.47)

Tno1 S 2] S 7y |2 — | > (log |a,.])%

for all m. The fact that e; < ¢/2 and (2.24) together ensure that any disc

Bl(an, %) which meets the annulus r,_1 < |z| < 7, actually lies wholly
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inside that annulus.

We then have

|z|—7‘: |z|/r =1 _ 7r,/Sne1— 1
lz|+7  |z|/r+1 7 r,/Snp1 + 1
< Tn/Tny1 — 1 < 1/k—1
T/t +1 T 1/k+1
k-1

=-7<0 2.48
k+1 ! (2.48)
since the function j—:& is increasing on (0, 1).
Further, using (2.29),
1+s/r 2s/r 2 0 _ 3 »
=1+ <14+ —(logr,1)** < —(logr,,1)=. (2.49)
1—s/r 1—s/r v v
Also, 7,41 < [**1r,_; and so the number of a,, between |z| = r,_; and
|2| = rnq1 is at most
(P2 — 1) (logrp_1,)*® (2.50)

(by the same argument used to obtain (2.27), by comparing the area of the
annulus to the combined area of non-intersecting discs around a,, which meet

the annulus).

For each a,, with r,_1 < |a,| < r,, we have, using (2.47),

28n41(log |“m|)2a
IOg[ g1 |a'm. | ]

10g(25n41/]7 = am|)
log(25,,41) - log2S,41

207y, (log 7 —1)%%
IOg[ E1Tn—1 ]

log 25,41
Cs 4+ 2aloglogr, 1

log 25,11

(2.51)
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Also,

1+ 70-1/Sns1 log(Sni1/]2]) - zlog(‘ b1/ Tn—1) < 6logl
1 —7p—p/Sns1 log(Spt1/mn-1) log(kl+1) = Llogk

Therefore, in (2.14) we have, using (2.49), (2.50), (2.51) and (2.52),

(2.52)

0<C(z) = L+ 7n_1/S1 log(Snq1/|?]) 1+s/r Z log(2Sn41/]7 — aml)

1—7r01/Sny1log(Sna1/rnr) 1 —s/r R PP

6logl 3 a2, Cs + 2aloglogr, 4
= (log 7'nt1) 9" * (log 17— 1)
~ Llogk + 'y( 08 Tnt1) (log7-r) log(25,,41)
6logl P2 loglog g
~ Llogk (log Spi1)t—4%
<7/2
for large enough L, n since o < 1/4.
Now (2.48) and (2.53) give that
[zl =7,
EE: +C(2) < —7/2. (2.54)

Also, we have from (2.33) and (2.46),

—u(z) =log|g(2)/d (2)| +10g(CsSn1 T (Sn1,9)%) = log™ |9(2)/d'(2)],

since either log? |g(2)/¢'(2)| = log|g(2)/¢' ()| > 0, in which case the inequal-
ity clearly holds, or else the right hand side is zero, in which case the inequality

still holds, by (2.33).

So, integrating, we obtain

mo(r, —u) > m(r,9/9")

and so this, together with (2.12), (2.46) and (2.54) give

log |g'(2)/9(2)] = 1og(Cs 81T (Snt1.9)°) < = (7/2)m(Sns1, 9/9")

30

log(25,41)

(2.53)



and so, using (1.15) and (2.43),

log|g'(2)/9(2)] < (=7/2)m(Sp11,9/9") +108(CsSni1 T (Sny1,9)*)
S _C‘106T(‘ n+179)
S —C/VloéT(Tn, g) (255)

for n large enough and z as in (2.47).

Now, we choose zy satisfying |zo| = 7, such that g(zp) is so close to 1 that

1
| log g(20)] < eXp(—§5T(ng))-

This is possible, since otherwise

1 1
lg(2) — 1] > §| log g(2)| > eXp(—§5T(m9))

for |z| = r, and then

m(r,, 1/(g—1)) < %5T(ng)

which contradicts (2.22).

For any z as in (2.47) we have

|logg(z)| =

ogg(eo) + [ g'(w)/g(w)dw]

“~0

1
< exp(—58T(rn.9)) + Lz 20) exp|~CrofT (1, )]

by (2.55), where L(z, zg) is the length of a path between zy and z which is
entirely within the region given in (2.47). By considering a path from z to z

which consists of a ray from zy to |z/z|z followed by an arc from this point
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to z, and which is "diverted" round the boundary of any disc B(a E1fan] )

‘Y (102 aWL)Zoz

which it meets, we see, using (2.27), that L(z, zp) need be no greater than

CC:1|a’7n|

=l ct (los - 2()1<Cv -
(log |ap, [)2« u{log(ra))* < Chor

(l - 1)7'”_1 + 7TlTn_1 + 7
and so we obtain, using (2.40),

1
[logg(2)] = exp(=50T(ra, ) + Crarn exp[=Cro6T (ra, )]

< eXp[_CvléLéT(Tn?g)]‘
So ¢g(z) is very close to 1 for large n and for = satisfying (2.47), and so
lg(2) — 1] < expexp[—C146T (11, 9)] — 1 < 2exp[—C148T (11, 9)]

and so

log|g(2) — 1| < =C156T(rn, 9) (2.56)

for n large enough and z as in (2.47). Lemma 17 is proved.

Lemma 18 g has the same number of zeros as poles inside each B(an,,d,),

for large enough m.

We observe from (2.56) that g(z) stays close to 1 as z traverses the circle

C={lz—anl = (1;11“7,7:3'2&}' So log g(z) returns to its original value and we
have
0= 5rillogg(9) = 5= [ o'tw)/g(w)d
= —[logg(2)] = — w)/g(w)dw.
271 59 271 Cg g

We conclude, using the Argument Principle (Theorem 12), that ¢ has the same

number of zeros as poles inside each B(a 1|

T (Log @ )22

), for large enough m. But
all of ¢’s large zeros and poles are inside the smaller discs B(a,,,d,,), and so

Lemma 18 is proved.
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Lemma 19 There exists p > 0 such that
T(r,g) <r’ (2.57)
for all large enough 7.

For large enough 7,

T(r0.9) < Ggmlrons1/(g = 1) < Cud ™ Trn1,9) = 1T(0-1.9)
by (2.56). So, for some large fixed J and n large compared to .J,
T(rn,g) < 77T (r5,9) < eact,
for some constant ¢y > 0. Now,

ry > kr,_1 > ... > k"

SO

n < czlogr,

for a constant Cs, and so
o 1()%47 " .
1 (Tn,g) < CQC 3 C— IS T(-’31 Z2C1 < Tpl

for some p; > 0.

But now, given any large r, we find n such that r,_; <r < r, and then
T(r,g) < T(rn,g) < 7t < (Irpn)™ <177 <o?,

choosing p so that 77" > (7.

Lemma 19 is proved.
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Lemma 20 We have g(z) = 1+ 0(1) as z — oo outside the union of the discs

B(am, V).

We have already shown at (2.56) that this result holds outside the discs

Blan,, %) so it suflices to prove that g(z) =1+ o(1) for

Vi < |z —ay| < Sl (2.58)

(log Ay )2

Fix m large. From Lemma 18, g has the same number (N say) of zeros and
poles in B(a,,d,). We pair off the zeros ¢, and poles &, of ¢ in B(a,,dn),
1 <v <N, and set

so that U is analytic, non-zero in B(a,,, %) For z satisfying (2.58), we

have
| log P(z) Zlog il Zlog 1+ €)
=1 Z_CV =1 Z_C
Nle, - ¢ 2
<2 Y Y| <« IN——— < 8N+/d,,. 2.59
- ; Z— CV dwt - U ( )
If |Z - anL| = (k)eéll%’ then

[logU(2)] < |logg(=)| + [log P(2)| < o(1) + 8N /dy, = o(1) (2.60)

as m — 0o since
N\/d, < OfJay,|P=308lanl ™) = o(1),
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using (2.6) and (2.57). So, by the maximum principle, logU(z) = o(1) inside

Bl(an, (1;135'2&) also. But now, for z satisfying (2.58), we get

from (2.59) and (2.60), and Lemma 20 follows. This shows in particular that
|f(2)] is large for large z outside the B(an, dm).

Next we prove:

Lemma 21 T(r, f) = o((log7)?) as r — co.

We take n large and apply Lemma 7 with

cr
r=r,, t=r, /00 << P70 SZT—Wa u(z) = —log |f(2)]

where ¢ is the constant in Lemma 13, and with the B(b;, s;) those B(anm, Vdn,)

for which t < |an,| < 7.

Then
1+s/r
1—s/r
We have that u(z) < 0 for = outside the B(b;,s;) since f is large there, by

< Chr(logr)*. (2.61)

Lemma 20.

For |z| = r,_1, we have

1+t/rlog 8
+frlogr/|2] _ )
1—t/r logr/t — Tlogr
using the fact that r,/r,—1 < 69/8, and
2r
log ——— < Cisarloglogr (2.63)
|2 — by
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using (2.24) and (2.25) for r,_;. Also,

(2.64)

2r 2r
log —
S;j

=l T

for every j, since [b;| > t.

We calculate the maximum number of a,, in the annulus ¢ < |z| < r. We note

that
1
/ —dzdy = 2 log(r/t) < Ciglogr
t

<Jzl<r |2]?

and, for any m with ¢t < |a,,| <7,

/ U idy > 7| am|? 1
e ol 1227 9(log [am] )22 4lam 2

a
(am. 518 Jamn® )
f f
Cho Cho

~ (loglan,|)?> — (logr)2

and so, since the discs B(a [

s m) are disjoint, the maximum number of

ap, in the annulus ¢ < |z| < r is no more than
Coyo(log )12, (2.65)

So using (2.6), (2.61), (2.62), (2.63), (2.64) and (2.65), Lemma 7 gives, for

|Z| = Tn-1,
8 ’ 1440 loglogr
—log|f(2)| =ulz) < —v(z)+m(r f)[ﬂo*r + Cy (log 7) T
5 5 i)
8 ; 1440 @ loglogr
< —v(2) +m(r, f)[7logr + Cy(logr) W
7
< —o(z) +m(r f)610gT

for large enough n, using the fact that 8 > 4c.
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But v is harmonic in B(0,7), for the reasons given at (2.15), with »(0) =

mo(rn, —u) = m(ry, f), and so integrating round |z| = r,—1 we obtain

—771,(7‘”_1, f) S 771,(7'”, f)[_l +

6logr,
and therefore
m(ra, f) 6 5
— <1 <14 —
m(rn_1, f) ~ + 5logr, — + 4n

for large enough n, and so
3 3
logm(r,, f) < O(1) + 3 logn < O(1) + iloglogrn

using the fact that (2.23) implies that n < logr, < %n for large enough n. So

then, by (2.20),

2

2
T(Trwf) S gnl’(rrwf) S SC/VZB(IOng)B/Z = O((lOng)2).

Now, for any large r, we have r,_; < r < r, for some 7, and then

T(r, f) <T(rs, f) = o((logr,)*) = o((logr,-1)*) = o((logr)?)

since r, < lr,,_1. Lemma 21 is proved.

In particular, we note that Lemma 21 implies that

n(r, f) +n(r,1/f) = o(logr). (2.66)
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Lemma 22 Let 0 < 0 < &1 and let m be large. Then f has at least as many

o|am|

poles as zeros, counting multiplicity, in B(an,, W).

Set

h(z) = f() [](z =207 [z = wa), (2.67)

where the z,, 1 < u < p, are the zeros and the w,, 1 < v < ¢, are the poles

7y

of f in Bla,, ﬁ) Then h is analytic and non-zero in B(a,, ﬁ)

We have

T(lanh) < Tlanl, £) + Tlan J[G — 507 + T(tlan]. T — w.)

,ul v=1

< T(4lanl, f)+T4|am|H — %) +T4|am|H —w,))

=1 v=1

< Tanl, f) + Om2lanl, f) +n(2lanl. 1/ 1)) logla,] = o((log |as|)?)

by Lemma 21 and (2.66).

We apply the Poisson-Jensen formula (Theorem 8) to h in |{| < R = 2|an|.

Since

<1

R? —az

for |z], |a| < R, the contribution from zeros of h is non-positive and so we can

ignore it.

This gives, for z € B(a,,, 1),

2|am| + |an]

log[h(z)] <
2|a7n| - |a’m|

(1 + o(1))(m(2lam|, h) + m(2lam|, 1/h))

2

8| am|* (log |am|) |
2|am|olan|

7T (2|am|, ) + n(2|a,], h)(2aloglog |a,,| + O(1))

— o((log|an])?) (2.68)

F1(2| |, h) (1 + 0(1)) log |

IA
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from the estimate above.

We choose z with Vdp, < |2 — am| < 4/dy, and |2 — w,| > /d,,/q for each v.
Then Lemma 20 and Lemma 21 and (2.67) and (2.68) give

0 < logl|f(z)]
< logl|h(z)| + plog |4/ dp + d| — qlog\/dy /g
< o((loglam|)®) + plog5 +qlogg+ (p — @) log V/dm.  (2.69)

Now —log/dy, = 3(log|a,|)*™ and in particular —log v/dm # o((log |am])?).
Also,

q < n2)aml, f) < W = o(log |an|)
and so
qloggq = o((log|an)?).
Similarly,
P < n(2laml, 1/f) = o(log |an|)
and so

plog5 = o(logan|)?).

Therefore the (p — ¢)log+/d,, term dominates in (2.69) (unless p = ¢) and so

we conclude that p < ¢. Lemma 22 is proved.

Lemma 23 For large n we have
N(rn, 1/f) < (14 0(1))N(rp, [)- (2.70)

By Lemma 20 and the fact that ¢ is transcendental, f has infinitely many

zeros. If m is large and |a,,| < 7, then Lemma 22 shows that to each zero z,,
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of f in B(a,,,d,,) there corresponds a pole w, of f with

Tn

|Zu|

Tn

w, = z,(14+0(1)), log <log + o(1).

[w, |

This gives
N(rn, 1/f) £ N(r, f) + Ologrs) + 0(n(ra, 1/f)) = N(ra, ) + Ollogrn)

and Lemma 23 follows.

But now we can complete the proof of the theorem. Since f is large on |z| = r,,,

by Lemma 20, we have for large n,
T(rn, f) = N(ra,1/f) + O(1) < (1 +0(1))N(rn, f) < (1 = 6/2)T(rn, f)

which is a contradiction. Theorem 5 is proved.

2.4 Proof of Theorem 6

The proof proceeds as for Theorem 5, with the following modifications.

At (2.23) and (2.24), we construct the sequence {r,}> , such that

Crp,

——, krn <7Tpp <Irn. 2.71
(logr,)®’ S T S ( )

lam| = 7nl =

We define the annulus A,, as before and note that it has width (I — k)r,,.
We note that the intervals [a,, — 3(10:%, A + 3(1@;’7*;),1] do not intersect and

therefore 4, can meet at most

A(rp) = Caa(logr,)® (2.72)
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of the B(an,, dn,).

We can therefore find a thinner annulus B,, inside A,, of width at least

1
Cosrp

H—-G> -2
(log ry)*

which does not intersect any of the B(a,,,d,,), and so we can define
Tn1 = (G—I—H)/Q

as before.

We choose S,y and S, ; with obvious modifications.

At (2.47), we take

E10m

1 < 2| <7, — | 2 T 2.73
Tn-1 > |Z| >7 |Z a | (logam)o’ ( )
for all m and some small fixed £ > 0.
(2.49) becomes
1+s/r 3
< —(logrpe1). 2.74
ol < 2oz (2.74)
The number of a,, between |z| = r,_;, and |z] = 7,41 is at most
(I — D (log r_p). (2.75)
At (2.53) we have
C, 3 I Cs + aloglogr,_1
0<C < = + =(log rpy1) " (log rp_p)®
(Z) = I + ’y( ogr +1) (OET L) IOg(Q; n+1)
< Cr Jol* 1 log log 71
- L (log Spqq1)t—2e
< 7/2 (2.76)
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for large enough L, n since oo < 1/2.

The proof proceeds, with obvious modifications (ie replacing (log |a,,|)?® with
(log a,,)* where appropriate), until we reach Lemma 21. Here, we apply

Lemma 7 as before except that we use

er
§=7r—
2(log 7)™
Then
1+s/r
— < C=(logr)“.
1—s/r i7(logr)

We calculate the maximum number of a,, between ¢t and r. We have that

= log(r/t) < Ciglogr.
. T

We also have

x ~ (logay,)®

aWL+3(log am)® dl C/Vlg
>
a

. %m
" 3(log am )™

So the number of a,, between ¢ and r is at most
Can(log )+,

So we get

1420 @ loglogr
(log )7+

(2.77)

—log|f(z)] < —v(z)+m(r, f)] + C (log 1)

7logr
7
6logr

IA

—u(z) +m(r, f)

for large enough n using the fact that g > 2c.

Now the remainder of the proof proceeds as before. Theorem 6 is proved.
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Chapter 3

Analogues of Picard sets for the

problem fo’ =1

3.1 Introduction

Our starting point is the following theorem, which is due to Hayman for N > 3

[9], Mues for N = 2 [20] and Bergweiler/Eremenko for N =1 [6]:

Theorem 24 Let f be a transcendental meromorphic function in the complex
plane C, and let N > 1 be an integer. Then N {' takes all finite non-zero

complex values infinitely often.

The question arises as to what sets £ may be excluded from C such that, for
any transcendental meromorphic f, we have that %’ takes all finite non-zero

values infinitely often on C — F.
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In this direction, Anderson, Baker and Clunie [2] proved the following two

results for a point set £:

Theorem 25 Let ¢ > 1 and let E = {a,} be a sel of complex numbers a,

such that
a’7n+1
a’fﬂ

for all m.
Then, for any non-zero complex b, for integer N > 2 and for f a transcendental

entire function, the equation
&) (2)=b

has infinitely many solutions in C — F.

Theorem 26 Let FF = {a,} be a sel of complex numbers a,, such that a,, —

oo and

| ,
liminf 08 |am 1|

> 0.
m—o0 IOg |a/7n| log log |a’7ﬂ|

Then, for any non-zero complex b, for integer N > 11 and for f a transcen-

dental meromorphic function, the equation
&) (2)=b

has infinitely many solutions in C — F.
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Langley [14] proved the following result where F is a countable union of open

discs:

Theorem 27 Let ¢ > 1 and let {a,,}0 , be a set of complex numbers and

{dn}5°_, be a set of positive numbers such that, for all m,

a’7n+1

>q

a”lﬂ

and
1 ¢4 4+1 8
log — > —/———
o8 dwt q1/4 —1 logq

(10g |am])?.
Let b be any non-zero complex number. Then if f is a transcendental entire

function, and N > 2 is an integer, the equation f™(2)f'(z) = b has infinitely

many solutions outside the union of the discs

Blap,dm) ={z: |z — an| < dn}.

Our aim in this chapter will be as follows.

(i) We shall aim to bridge the gap, to some extent, between the two Ander-
son/Baker/Clunie results for a point set £, by considering the case when f is
meromorphic but has deficient poles. We shall obtain a result (Theorem 28)

which has the same spacing condition as Theorem 25.

(ii) We shall also aim to improve on Langley’s result for discs by allowing f to
be meromorphic with deficient poles. Again, we shall obtain a result (Theo-
rem 29) which has the same spacing condition as Theorem 25 although, as one

might expect, a stronger condition on the deficiency of f than in (i) is required.
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For a point set £/, we shall prove:

Theorem 28 Let ¢ > 1 and let E = {a,,} be a sel of complex numbers a,,
such that
a’7n+1
——1>q

for all m.

Then, for any non-zero complex b, for integer N > 2 and for f a transcendental

meromorphic function, the equation
&) (2)=b

has infinitely many solutions in C — E:

(1) if 6 = 6(o0, f) and A = A(oo, f) satisfy 5(1 + 1/A) > 1;
or

(i) if (1 +1/A) <1 and

1
(N+2)62—(N+4+ﬂ)6+2<0; (3.1)

or
(i) if & = (o0, f1) > 0
or

fiv) if 8(00, IV ') > 0.

Although these alternative hypotheses appear somewhat cumbersome, the es-
sential ingredient used in the proof is the condition (iv). We shall begin by
showing that each of (i)-(iii) implies (iv) and then use this to establish the

result.
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The rather unwieldy quadratic condition in (ii) is satisfied when 6 is greater

3 4
s and sy

than a value A which lies between

If the deficiency is somewhat greater, we can obtain a result for discs. We

prove:

Theorem 29 Let ¢ > 1 and let {a,,}>°_, be a set of complex numbers such

m=1

that
a’7n+1

> 3.2
" q (3.2)

for all m.

Let b be any non-zero complex number and N > 2 be an integer.

Let & satisfy

4
o> . 3.3
N+3 (3:3)
Then there exists p, 0 < p < oo, with the following property.
Suppose that [ is a transcendental meromorphic function with
6(c0, f) > 6. (3.4)
For each m, let d,, be gwen by
log — || (3.5)
og — = |an|”, .
®d,,

and denote by B, the open disc {z: |z — an,| < dn,}, and let 5 = U_, B,,.

Then the equation
&) (2)=b

has infinitely many solutions in C — F.
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In the course of proving these theorems, we establish a number of results
(Lemmas 42, 43 and 44) which concern the circumstances in which we can
conclude that §(oco, f¥ f’) > 0 and which may be of interest in their own right.
In Chapter 4, to show that these lemmas are not redundant, we exhibit an

example to show that there exist meromorphic functions f where
§(c0. f) >0, (oo, fYf) =0. (3.6)

Chapter 4 also considers the case when N = 1.

We begin by defining

F(2) = /(P (37)
so that
F'(2) = f(:)V f(2) (3.8)

3.2 Results required in the proofs

Theorem 30 (Valiron [29]) Suppose that g is a meromorphic function and
that T(r, g) = O((logr)?). Then for any distinct a,b € C*, we have

T(r,g) = (14 o(1)) max{N(r,a,g), N(r,b,g)}.

Theorem 31 (Hayman [10]) Suppose that g is a meromorphic function and
that T(r, g) = O((logr)?). Then

T(r.g) < (2+o0(1)T(r,g").
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Theorem 32 (Toppila [28] - Theorem 7) Let g be a transcendental mero-
morphic function such that

T(2
lim (2r.9)
r—oo T(r, 9)

=1 (3.9)

and § = 6(c0,g) > 0. Let A = A(oo, g).
If6(1+1/A) > 1 then A(0,¢') = 0 and 6(c0, ¢') > 0.
If6(1+1/A) <1 then

1—8(1+1/A) N(r.g)
A / < 1 7 .
(0,9 < -3¢ TP NG )
Note that if
T(r,g) = O((logr)?) (3.10)

holds, then so does (3.9).

Since 1/A > 1, an immediate consequence of Toppila’s theorem is:

Corollary 33 Let g be a meromorphic function satisfying (3.9) and having
§(o00,g) > 1/2.

Then 6(c0,g') > 0.

Toppila [27] gives an example to show that this is sharp ie g satisfying (3.9)
with 6(c0, g) = 1/2 and 6(c0,¢') = 0.
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Theorem 34 (see eg Zalcman’s survey paper [30]) Let h be a meromor-
phic function and N > 2 an integer. Suppose that h™(z)h'(z) does not take
the value 1 for z € Bl(a,1), for some complex number a.

Then h belongs to a family which is normal on B(a, 1) and, in particular, the

spherical derivative

_ (=)
M) = T
satisfies
h#(2) < K

on B(a,1/2), where K is a constant independent of h and a.

Theorem 35 (see [8]: pl11-13) Let f be a meromorphic function. LetTy(r, f),

the Ahlfors-Shimizu characteristicof f, be given by

r t 27
To(r, f) = /0 /0 /0 %f#(pemfd@dpdt. (3.11)

Then
IT(r, f) = To(r, f) = log* | £(0)]| < %log 5

Theorem 36 (Anderson/Clunie [3]) Let g be a meromorphic function with
§(c0, g) > d > 0 and suppose that T(r,g) = O((logr)?).
Then log |g(z)| > dT'(r,g) for dall = outside an e-set (ie a set of discs B(bj,r;)

such that by — oo and 3% | 54 < 00).
. =1 Ty
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Theorem 37 (Milloux’s inequality - see eg [8]: p57 ) Let g be meromor-

phic and non-constant. Let ¢ be a non-constant function of the form

$(2) = Y g (2), (3.12)

i=0

where the c; are complex constants and ¢, #0, k> 1..

Then we have

)= Nl )+ (), (313)

where No(r, 1/4¢") counts only those zeros of ¢/ which are not 1-points of 1.

T(r,g9) < N(r,g) + N(r, é) + N(r

Theorem 38 (Boutroux-Cartan lemma - see eg [11] p366) Let {w;}}_,
be a set of n complex numbers. Let d > 0. Then

n

[z —w;)

i=1

> d" (3.14)

outstde at most n discs in the z-plane of total diameter at most ded.

The following is a simple well-known fact, which we set out as a lemma for
convenience.
Lemma 39 With F as in (3.7),

5(o0, f) = 6(c0, F), Ao, f) = Ao, F). (3.15)

To prove this, we note first that n(r, £/) = (N + 1)n(r, f) for all  and hence
N(r,F)=(N+1)N(r, f) for all r.
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Now, whether or not |f(z)| > 1, we have
(N +1)log" [f(2)] = log* |f(2)™*].
So, using the simple fact (see eg [8, p5]) that
logt ab < log™ a + log™t b,
we see that

(N + L)log® |f| = log*|f*

IA

log* [/ /(N +1)] +log" (N +1)

log™ [f¥*!] +1og™ (1/(N + 1)) +log™ (N + 1)

IA

= (N+1)log" |f] +log* (N + 1),

ie |(N +1)log™ | f| — log™ |F|| is bounded by a constant.

So
m(r,F)=(N+1)m(r,f)+ S0, f), T F)=(N+1)T(rf)+ S [f),

and the result follows. Lemma 39 is proved.

Theorem 40 (Cauchy’s integral formula/estimate for derivatives) Let

f be analytic in a domain D, and
f() <M, {z:]z—a|l<r}CD

for some constant M.

Then
ORL. f(Q)
T = o /p_aw oy

Therefore also
nIM

TTL

/()] <
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Theorem 41 (Rouché’s Theorem) Let f and g be functions meromorphic
i a domain D. Let C' be a simple closed curve in DD and assume that the

wnterior X of C' lies in D. Suppose that
9(2)| < [f(2)| <00, z€C.

Then if N(h) denotes the number of zeros of a meromorphic function h in
X, and P(h) denotes the number of poles of h in X, in both cases counting

rnultiplicities, we have

N(f+9) = P(f+9) = N({f) = P()).

3.3 Some preliminary results regarding (oo, fV f’)

We shall prove three lemmas concerning circumstances under which we can

conclude that §(co, F') > 0.

Lemma 42 If § = §(co, f) > 2= then §(co, F') > 0.

N
We have
T F) < T(rF)+T(rF/F)
< T(r F)+T(r, f/f)+0(1)
— T F) 4+ T /) + O(1)
< T, F)+ N, f)+ N 1/f)+ S, f)
and
N f) < NLHN(T, F)< ;V_flT(r, F)+S(r. F)
NG 1/f) € g N0 1 F) £ =T F) + (1)



SO0 we get

N—-14+6
/ —_—
T(r, F') > Nl T(r,F)+ S(r, F). (3.16)
Also
N(r,F')= N(r,F)+ N(r, F)
N+2
—N(r, F
< G ANOLF)
N+2
< 1-8T(r. F S(r, F
< (1= 8)T( F) + 50 F)
and so
] N(r, F") (N +2)(1-9)
1 < 1 1
ST F) S N—148 (317)

3

as long as 6 > 5.

Lemma 42 is proved.

Lemma 43 Let A = A(oo, f). Suppose that T(r, f) = O((logr)?) and that
(1) 6(1+1/A) > 1; or
(1)) 6(1+1/A) <1 and

1
(N+2)62—(N+4+ﬂ)6+2<0. (3.18)

Then (o0, F') > 0.

Recall first that A is as defined at (1.13) ie

A = A(oo, f) = limsup %

Note that the condition (3.18) in (ii) holds when

N+4+i—\/N2+%+4iz
2N +4

1>6>

= A(N,A) >0,
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since the other root of the quadratic on the left-hand side of (3.18) is easily
seen to be greater than 1.

By observing that

1 N 1 N+4 1 4
Ntd4+— -4 =N+ —4+—=N+—--+-—)— —
(N+d+55 -4 tAatia =Wt A

we see that

N+4 1
N4+d4+—)—4 N2 4
(¥ rat ) —a<y Ty

and so that

4
A(N, A i
(N, )<2N+4

On the other hand, note that the first condition of (ii) requires

The left-hand side of (3.18) is, for § > 0, an increasing function of A and so

the set of 6 > 0 satisfying (3.18) is contained in the corresponding set with the
choice

Therefore, putting A = ﬁ in (3.18), we see that A > x, where z, is the zero
between 0 and 1 of the quadratic

1—=x 7 3
(N+2)2* — (N+4+ o Jx4+2= (N+2).r2—(N+§).r+§.
But then z¢ = ﬁ and so we conclude that
3 4
<A<
2N +4 — 2N 414



For the proof of the lemma, note that in either (i) or (ii) we have § > 0.
Then, using Theorem 30, we have T'(r, f) = (14 o(1))N(r,1/f) and so, using

Theorem 31, we have

T(r,F') > N(r,1/F)+0(1)

NN(r,1/f)+ N(r,1/f) + O(1)

Z NT(T7f) + (1 - A(()? f/))T(T7 f/) - S(T7 f)
> (N4 = A0 ) = o(D)T( ).

We also have
N F')<(N+2)N@, [) S (N+2)(1 = 8T (0, f) + S0, f)
and so

N(rF) _ _(N+2)(1-9)
T(r,F') = N+1—2A(0,f)

(1+o(1)). (3.19)

We now use Theorem 32.

In case (i), the result is immediate by taking g = F (since 6(oo, f) = (o0, F')
and A(oo, f) = Ao, F) from Lemma 39).

In case (ii), taking ¢ = f, we have

1-8(1+1/A)

A0, f) < -

(3.20)
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using the fact that ]]\\;((7:’]{,)) < 1. So then, combining (3.19) and (3.20), £’ has

deficient poles as long as ¢ satisfies
9 1
(N+2)5—(N+4+ﬂ)5+2<0.

Lemma 43 is proved.

Lemma 44 Let g be a meromorphic function of finite order, such that

T
lim sup T((:gg’)) < 0. (3.21)

. Tt ; ) 1 N+1 v _ N
For a posttive integer N set G = 779 1 s0 that G' = ¢V¢'.
Then
6(00,9') < 6(00,G") < 8(00, g). (3.22)

Since ¢ is of finite order, we have that

m(r,g'/g) = S(r,g) = o(T(r,g))

as 7 — oo through all values of r, with no exceptional set (recalling (1.17) and

the comment preceding it).

We shall use a number of times the elementary inequality

a < a—+c
at+b " at+b+te

for a,b,c¢ > 0.
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We have

m(r, G') < (N + Dm(r,g) + m(r,g'/9)

T(r,G') = (N+Dm(r,g) +m(r,g/9) + (N + 1)N(r,9) + N(r, g)
m(r,g) + S(r,9)
T(r,9) + 55N g) + 5(r,9)
m(r, g)
T(r,g)

(14 0(1))

and so
8(c0,G") < 6(c0, g).

Using (3.21), we have that

S(T7 9) S(T7 9) T(T7 9)
T(r.g) T(rg)T(rg)

as r — oo.
Also,
(N + Dym(r, ) < mi(r, ") + Nm(r, //g)
and so
m(r,G") > (N + 1)m(r,¢") — S(r, 9).

So then

N (N + DN(g)

T(r,G) = (N+1)N(,g¢)+ (N +1m(r,g)— S(rg)

N(r, )
T(T7 g/) + S(T7 g/)

and so we have

8(00, g') < 8(00, &)

Lemma 44 is proved.
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Corollary 45 Let g be as in Lemma 44. If 6(cc,g’) > 0, then 6(co,g) > 0
and §(oc0, G") > 0.

Remark: Note that if T'(r,g) = O((logr)?), then Theorem 31 shows that ¢
satisfies the conditions of Lemma 44 and therefore the result of that lemma

and the corollary hold for any such g.

3.4 Proof of Theorem 28

Recall that we set F' = ﬁfN“ so that F' = fNf’. By considering f/bo,

N+1
bO

where = b, we may suppose without loss of generality that b = 1.

We suppose (for a contradiction) that all the 1-points of £ are at the points a,.

By Milloux’s inequality (Theorem 37) with ¢ = F’, we have

T(r, F) < Nr, F) 4 N(r, |/ F) 4 N(r, =) = Nolr, 1/F") + 5(r, F) (3.23)

F—

where Ny(r, 1/F") counts only those zeros of F” which are not 1-points of £”.

Now

NG F) = N0, f) £ N ) = 5 N F) £ = T0, F) + 50, F)

since 6(o0, f) = 6(o0, F) (Lemma 39). Similarly

N(r1/F) < Nl _N(r1/F) < T(r, F) + O(1).

N+1

Also
N(r,1/F)— No(r,1/F") = 2N(r,1/F) — Ny(r,1/F")
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where Ni(r,1/F") counts only the zeros of F” which are not zeros of F or

1-points of F’, since F' has no simple zeros.

Putting all this together, (3.23) becomes

N—-2+56
N+1

T(r, F) <N<T, -

! 1> — J(r, F") + S(r, F) (3.24)

where J(r, F"') is a non-negative term relating to the zeros of F”.

Next, we note that, since all the 1-points of F” are at the a,,, and since m =

O(log|an,|), we have

and therefore

and so (3.24) gives T(r, F') < O((log)?) provided N > 2 or § > 0.

Note next, that
T(r, F' —1)=T(r, F')+ S(r,F) <2T(r, F) + S(r, F) < O((log7)?)

also in this case.

We shall now show that F” has deficient poles in each of the cases (i)-(iv).

Case (iv) is immediate. Cases (i) and (ii) follow from Lemma 43, the fact that

6 > 0 necessarily in either case, and the remark above that 6 > 0 implies that

T(r.f) < O((logr)?).
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For N > 2, Case (iii) follows from the fact that T'(r, f) < O((log)?), from the

remark above, together with Lemma 44.

For Case (iii) and N = 2, we shall first have to show that T'(r, f) < O((logr)?)

anyway, which will prove the assertion.

We choose a sequence r,, — oo such that

U> 12 >V s 1, mrm, £1/f) = o(T(m, )

m

for all m, where U,V are constants, and such that the circles |z| = r,, do not

meet the discs B(a,, €|a,|), where e > 0 is small, fixed.

We claim that

& = liminf 7(rm, J)

m—oo T(T’NTJ f)

For, if not, then there is a subsequence of the r,, through which m(r,, f) =

(T (rm; [))-

For these m, using the fact that §(co, f') > 0,

> 0.

T(rm, f) = (14+0oM)INFm, f) < (1 +o())N(rm, 1) < (14 o(1))T(rm, )
< om(rm, [1) < em(rm, f) +m0(rm, ] )] = o(T(rm, f))

(for some ¢ > 0), which is a contradiction. So 5> 0 as claimed.

But now, at (3.24), we have

1

N—2+46
Fr—1

T Wl?F N my
Nl (rm, F) < <T

> — I (T, F") + S (7, F)

and therefore T(r,,, f) = O((log7,)?).
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But now, for any r, we have r,, < r < r,,,1 for some m, and then

T(r, f) T(rmy1, [) < c1(logrmy1)? < ai(logUry,)?

IA

< o(logrm)® < e(logr)?
and so T(r, f) = O((logr)?) as required, and now Lemma 44 gives us that £’

has deficient poles.

In Case (iv), we can repeat the previous argument, using F” instead of f’, to

show that T'(r, f) = O((log7)?) necessarily in this case also.

So we have in all Cases (i)-(iv) that §(co, F') > 0 and T(r, f) = O((logr)?),
and therefore also that T'(r, F’) = O((logr)?). Hence also, by Lemma 44, we

have 6(co, f) > 0 in all cases.

Now, by Theorem 36, we have that
! 1 ! !
log |F"(2) — 1] > 58(c0, F)T(|2], £)
as |z| — oo outside an e-set round the a,,. In particular |F’'(z) — 1] > 10, say,

for |z| sufficiently large outside such a set.

So, by Rouché’s theorem, F’ has the same number of zeros and 1-points,
k, > 1, say, inside each disc B(an,la,|), for every m > M for some suf-

ficiently large M, and for some small fixed £ > 0.

Fix m > M. Since the only 1-point of £ inside B(a,,, ¢|a.,|) is at a,,, we have

that the multiplicity of the zero of F' — 1 at a,, is k,,.
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The number of loops v, each beginning and ending at a,,, such that |F'| =1

on each v, is therefore k,,.

By considering instead (if necessary) loops v on which |F'(z) —n| =1 —mn, for
some small > 0, we can ensure that the &, loops v do not intersect (except

at an,).

Together, the loops v enclose a bounded open subset .J of the plane. We de-
fine D = J — U, so that D is the union of a number of open components D,

within each of which we have either |F' —n| <1—nor [F' —n|>1—n.

Further, the number of D; is k,,.

We claim that each D; must contain either a pole or a zero of F’. For, suppose
not. Then F” is analytic and non-zero inside D; and |F' — 5| = 1 — 5 on the
boundary of D;, and so by the maximum and minimum modulus principles,

| F'—n| = 1—nin the whole of D; and so £ is constant, which is a contradiction.

Let p be the number of poles of f, ¢ the number of zeros of f and s the
number of zeros of fin D, in each case counting multiplicity. Let p, ¢, s be
the corresponding quantities ignoring multiplicity.

Then we have

Ng+s=k,

since all zeros of F' in B(an,,€|a,|) are inside D. Also,
km <P+q+53
using the fact that each D; must contain either a zero or pole of F”.
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So

and so we obtain
(N-1)g<Ng—G+s—-35<p<p

This holds for all large m and so, since all large zeros of f are contained within

a Blan,lay|), we have that

T(r.f) < (Ho(D)N(r1/) < (1o(1)) 5 N 148 1) < (1o(1) TG, f)

which is a contradiction, since 6 > 0. Theorem 28 is proved.

3.5 Proof of Theorem 29

Our method is a modification of that used in [14] and [15].

Suppose that f is transcendental and meromorphic in the plane and satisfies

(3.4), where ¢ satisfies (3.3). By considering the function %f), where b) ! = b,

we may without loss of generality set 6 = 1. Recall that we defined

F(2) = /) (3.25)
so that
Fi(z) = Y ()] (2). (3.26)

As in the proof of Theorem 28, our starting point is Milloux’s inequality (The-

orem 37). We have

T(r,F) < N(r,F)+N(r,1/F)+N(r

1 1
) g 1) —N(r,1/F")+S(r, F). (3.27)
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Now

NQJU:NOJUSNQJ%=N%7N0j3§;liTmFy%%nR
(3.28)
since 6(o0, f) = 6(o0, F). Similarly
'NOyUF)g]V+1NOyUF)§ZV+1Tw3Fy+OO) (3.29)
Also
N(r,1/F)— N(r,1/F") = 2N(r,1/F) — Ny(r, 1/ F"), (3.30)

where Ni(r, 1/F") counts only the zeros of F” which are not zeros of £, since

F has no zeros of multiplicity less than N + 1.

Using (3.28),(3.29) and (3.30), (3.27) becomes
N—-2+4+56 1

1
N1 T(T,F)<N(T,ﬁ)—N1(T,ﬁ)+S(T,F) (331)

We note that the restriction on ¢ in (3.3) implies that
(N+2)(1-6) = N+2—-(N+3)6+6
4
< N4+2—-(N+3)——=+9¢
+ (V+ )N—I— 3 *
= N—-2+4%¢
and so
(N +2)(1-9)
N—-2+4+56

Therefore, we may choose constants k, (Q with

<1. (3.32)

N +3

1<k< <3, 1<Q<qg”® 3.33
N —I— 2 ? Q q ? ( )
both sufficiently close to 1 that
log Q (N+2)(1-9)
1 k 3.34
( +log(q1/2/Q)) N—-2+56 (3:34)
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3.5.1 f has finite order

This subsection is the work of Jim Langley. We show that if there exists a

counter-example f to Theorem 29, then it must have finite order.

Proposition 46 Let g, N, 6 and {a,,} be as in the statement of Theorem 29.
Then there exists p, 0 < p < oo, such that if f is meromorphic in the plane
and satisfies

6(c0, f) > 0, (3.35)

and all but finitely many solutions of

() (x) =1

lre in

U Blam,, 1),

m=1

then the order p(f) of [ satisfies

p(f) < p. (3.36)

In this section, we use C'; to denote positive constants.

We use the notation C'(«, R) to denote the circle {z : |z — «| = R}.

Lemma 47 There exists C1 > 0 with the following property. Let g be mero-
morphic in |z| < 1, with T(1,9) < T < oo and g(0) # co. Then there exists
r* €[5, 3] with

log|g(z)] < CAT
for |z| = r*, and also

3
H(Z,g) S C/vlT. (337)
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The last part is immediate, since we have

4
log —
(%3

(.0) < N(1g) < T

For the first part, let wy,. .., w, be the poles of g in |z| < %, repeated according

to multiplicity, with n = n(%, g) < CyT from the part just proved. We set

Sy —w,
h(z) = J 3.38
SRES) | Fere (3.35)
so that h is analytic in |z| < 2.
For |z| < 2, we have |h(z)| < |g(z)], since
L—wpe|* = [z —wi|* = (1—wz)(1—w;z) — (v — w;)(2 — wy)
= 1 w2 — |2 — fuwy]®
= (1= 21 = |wy]*)
> 0
and so
Z— Wy
— | < 1.
1 —w;z
Now, for |z| < % we have, using the Poisson-Jensen formula,
3
log ()] < C5T(%, )
3
= C‘gﬂl(z, h)
3
< C/'3771’(Z79)
3
S ,/'3T(Z,g) S C/'gT. (339)

We use the Boutroux-Cartan lemma (Theorem 38), with d = (64¢)~!. We get

n

LG - wl > (o) (3.40)

i=1
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1

15> and therefore we can find

outside at most n discs of diameter at most

1 5

™ € (5, 5) such that the circle C'(0,7*) does not intersect any of these discs.

So, on |z| = r* we have from (3.37), (3.38), (3.39) and (3.40) that

loglg(z)] < log|h(z)] + nlog(6de) + »  log|1 — w;z|
Jj=1
< 5T + n(log6de 4+ log 2)

< GJT

as required, and so Lemma 47 is proved.

Next, we suppose that ¢ is a function meromorphic in |z| < 2R, for some

R > 1, with ¢™(2)¢'(2) # 1 there, and g(0) # co. We set
h(z) = R™YWNH g(R2) (3.41)
so that
WY () (2) = g™ (R2)g (R2) # 1

in B(0,2).
Thus h belongs to a family of functions which is normal on B(0,2) (Theorem

34) and so

!

_ ()]
W (2) = T T < 6

on |z| < 1, where (5 is independent of h.

Thus the Ahlfors-Shimizu characteristic To(r, k) of h satisfies (using (3.11))
To(r,h) < Cs, 0<7 <1,
and therefore, for such r, by Theorem 35,

T(r,h) < Cr +log" [9(0)],
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where C'; is independent of g and h.

Now we can apply Lemma 47 to . We obtain r* € [£, 3] such that

log|h(2)] < Cs+ Colog™ [g(0)],  |2] ="
and so, from the definition of h at (3.41),

log|g(2)] < Cs + Cologt |g(0)| + Crolog R, |z] = 7*R. (3.42)
Also, the last part of Lemma 47 gives us that
3 3 1 1 +

H(ZR? g9) = 7L(Z7 h) < Cy + Cialog™ [g(0)]. (3.43)
Now let f be as in the statement of Proposition 46. Assume without loss of
generality that a; is large.
Lemma 48 There exists a path v — oo with

log* log™ /()] = Olog |<), = € 7. (3.44)

We construct a simple path v — oo which consists of

(i) the segments
argz = arga, + 1, q"%|an | < 2] < ¢"ay

and

(ii) arcs of the circles C'(0, ¢'/?|a,|).
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Then « lies in |z| > e, since |ay| is assumed large. Also, v does not meet any

of the discs B(an,,1) and so fN(2)f/(z) # 1 on or near 7.

We fix a small positive o, and choose zy € v with f(z) # oo. We choose

points z, € v and radii 7(z,),
. 3
olzn| < 7(2) < §0|zn|, (3.45)

inductively as follows.

Assuming that z, ..., z, have been chosen, apply (3.42) with g(z) = f(z—2z,),

R =20]|z,| and 7 = r*R to obtain that

log|f(z)] < Cs+4 Colog™ |f(zn)] + Crolog 20|z,

< Cis(loglzn| +1og™ [f(z)]), |2 — 2 =7(z).  (3.46)

Here we use the fact that log|z| > 1 on 7.

Now we follow the path v from z, towards oo, until the first point of intersec-

tion with the circle C'(z,,#(z,)), which we designate 2, 1.
Claim 1:
The circles C'(zn, 7(2,)) and C(zp11, #(Zny1)) have non-empty intersection.

This is true since 2,41 € C'(z,, 7(z,)) and (3.45) gives

. 3
T(Zn—i—l) < §U|Zn+1|
3 3
S 50'(1 + §U)|Zn|

< 20|z,| < 27(z,),
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since o was chosen to be small.
Claim 2:

We have lim,,_.o, z, = oo and
n = O(log |z,]) (3.47)

as z, — o0.

Since 7(z,) > olz,| and z,41 lies on C/(z,,7(2,)), the number of z, on any

C'(0,q"?|a,,|) is uniformly bounded. So there exists a fixed j such that
|Zn+j| > (1 + U)|Zn|

for all n. So then

2] > (L4 0) T |2ng| — o0

as n — oo. Further,

. — n
n < np + j(log(1+0)) " 'log H = O(log |z,|).

Claim 3:

We have

log |f(2)] < (n+ 1O log 2| + O log™ | f(20)], |2 — 2a] = #(z0). (3.48)

This follows by induction on 7, using (3.46) and |z,| > |z,—1].
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From Claim 1 we see that the union U of the circles C'(z,,7(z,)) is connected,
and from Claim 2, z, — oco. We may therefore choose a simple path 7 — oo

lying in U.

Claim 4:

We have

log |f(2)] < 2|, ze4.

This follows at once from (3.47) and (3.48). This proves Lemma 48.

Lemma 49 Let 7 be a small positive constant. Then for
q"an] <7 < g7 Plapu|
with m large, there exists a simple closed curve v, lying in
(I—7)r <|z| < (A 47)r
with winding number 1 about 0, such that
log|f(2)] < ||, = € (3.49)

For the proof, we proceed as in Lemma 48, with modifications.
Assume that o is positive, but small compared to 7. Choose zy € ' N C(0, r).
We then construct the sequence z,, 7#(z,) as in the proof of Lemma 48, so that

(3.45) and (3.46) hold, but this time with 2,41 chosen so that
Zpa1 € C(0, 1) N C(2, 7(20)).

72



It is evident that (3.48) continues to hold, and at most C'4 iterations (where
C'1¢ depends only on o) are required in order that C/(0,7) lie in the union of
the closed discs |2 — z,| < 7(z,).

Since Claim 1 continues to hold, and z; lies on 4/, we obtain «, as a union of

arcs of the circles C'(z,, 7(z,)), and (3.49).

Lemma 50 Lei

¢ *an] < R < S < g V4 anq).

The number of poles of f in R < |z| < S is at most S€, for some fizred C' > 0.

To prove this, we choose £ with R < |£| < S which lies on a «, (recall that ~,

1/8

are defined for all r with ¢'/%|a,,| < r < ¢~V®|am41| for some m).

Then
log|f(£)] < [€]7.

Using (3.43) with g(z) = f(z — &), we obtain that the number of poles of f

inside the disc, centre &, radius min(27(¢[, (¢*/* — 1)]ay,|), is at most
Chi + Cralogh | f(€)] < €97 < 5.

But since we can cover the annulus R < |z| < S with at most O(S?) such
discs, we obtain that the total number of poles of f in the annulus is no more
than S8, as required.

Lemma 50 is proved.

We are now in a position to show that f has finite order.

We take R with ¢"/?|a,| < R < ¢7'/?|a,41|. Let

Fl = ’yq—l/sR, FQ = ’yql/sR.
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Let

m

h(z) = () [ (= = wy) (3.50)

=1
where the w; are the poles of f between I'y and I's. So h is analytic between
those curves.
On the T';, using (3.49),

log |f(2)| < R®». (3.51)

So, using (3.50), (3.51) and Lemma 50,
log |h(2)| < R +mCylog R < RE™

on the I';, and therefore between the I'; also, by the maximum modulus theo-

rern.

By the Boutroux-Cartan lemma (Theorem 38) with d = 1, we have that
I —w)l>1
=1

outside at most m discs of total diameter at most 4e.
So we may choose R' € (R, R + 5e) such that C(0, R') meets none of these

discs and for |z| = R’ we have
log|f(z)| < log|h(z)| < RCz1 < R/Cm‘

Here we use the fact that C'(0, R') separates I'y from T's, since 7 was chosen

small.

But now, since 6(oco, f) > 0, we have

2 2
T(Rlaf) < 5771/(R/,f) < SR/Cﬂ < Rlczz‘
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But now

T(Raf) < T(R/,f) < R/Cﬂ < Rcz3‘

So the desired result holds for R satisfying ¢/2|a,| < |2| < ¢~ V?|an41|. Sup-

pose that r satisfies ¢~'/2|a,,| < |2| < ¢"/?|a,|. Then
T(r, ) < T(¢|an]. ) < (q"2[an)™ < (g2 [an) ™ < v

This is the required result - equation (3.36) holds. Proposition 46 is proved.

3.5.2 Main part of the proof of Theorem 29

Assume now that ¢, 6, {a,} are as in the statement of the theorem, and that p
is as in Proposition 46. Let the {d,} and {B,} be as given in the statement of
the theorem, using this p. Suppose that f is transcendental and meromorphic

in the plane, and satisfies (3.4), and define F" as in (3.7).

Suppose that all but finitely many solutions of £/(z) = 1 are in the B,. We

shall aim for a contradiction, which will prove the theorem.

Denote by p, the number of 1-points of F’ in B,, and by ¢, the number of
zeros of F” in |z — a,| < 1 which are not zeros of F' (in each case counting
multiplicity). Set

Vp = Pp — L. (3.52)

Let vy, be the number of poles of F’ (counting multiplicity) in the annulus

An = {5Q7 an| < |2 < Qlanl}, (3.53)
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where @) is as chosen at (3.33).

Choose R, with
¢?lan| < R, < Q7 Manyy|. (3.54)

Since all the large 1-points of F” are in the B,,, we have from (3.31), for a fixed

mo and large 7, that

N—-2+6 & R, &
o T(R. F) < Ollog Ry) + mzm omlog 7+ o(mzm (P + tm)-

(3.55)
Note that we may assume that v,, > 0 for all m > my, by deleting from the

right hand side of the inequality those m for which this is not the case. We set

kg3 Rn
N(R,) = > vnlog (3.56)

|
m=mg

Now,

- 1 1
2 o < ollan + 1) < N(Roy———)(log B/ (Jaa| + 1))

m=mo Fr—1 F
1 % g/ _,
S N(Bu gr)(loz=57) ™ < (24 ()T (Be, F)(loz=57)
and similarly
- 1/2 1/2
Yt < N(Ro, 1/F")(log qQ )~! < (4 + 0o(1))T(R,, F)(log qQ )

m=mg

for large enough n, and so

n

o( Y (Pm +tm)) = o(T(R,, F)) = S(R,, F).

m=nig

Here we use the fact that f has finite order.
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Thus, (3.55) becomes, using (3.56),

N—-2+4+9¢

TR F) < (1 o)V (R,). (3.57)

Next, with &k as in (3.33), let

Jn={m:mo <m < n;v, > kynt, Jo={m:mo<m < v, < kynt
(3.58)

Then we have (with obvious notation)
N(R,) = Ny, (R,) + Ny, (Ry). (3.59)

Now suppose that m € J/. If w is a pole of F’ in A,,, it will contribute

log R,/ |w| = log R,/ |am| + log |a,|/|w] (3.60)
to N(R,, F'). But (3.53) gives Q7! < |“m| < @ and so |log |“m| < log @ and
we have, using (3.56), (3.58) and (3.60),

N];(Rn) S k Z Ym 105|
< KIN(R, F') +n(Qlay|, £7)log Q]
log
< k14 B9 N(R,, Y
log 9
= EN(R,, F") (3.61)

say.

Now, for any 7,

N, F') = N(r, F) + N(r. F) < N(T,F)+NL+1N(T,F)

(N +2)(1—-06)+0(1)
N+1

IA

T(r, F) (3.62)
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and therefore, from (3.57), (3.61) and (3.62), we have

N(Rn) - NJW,(RTL) = N.L’L(Rn) < ];:N(RH,F/)
(N +2)(1—96)+0(1)

< k N1 T(R,, F)
(N +2)(1—6)+o0(1)
<k N-—-2+6 N(F)

(using the fact that logr = o(T(r, F')) since F' is transcendental), and so

(V421 - 8) +o(1)
N-2+¢

N(R,) <1 17Ny, (R,), (3.63)

where the coefficient on the right hand side is positive, for sufficiently large n,

from (3.34).

Now, using (3.57) again, we have

T(R,, F) < <% + 0(1)> N(R,)

-2
N+1 (N +2)(1=8) +o(1),_,
S Nogagl Tt N-ax5 1 V)
< A6, N)Ny,(R,), (3.64)

say, for n sufficiently large, where A = A(é, N) is a positive constant.

Now, let
J={m:m >mo;vm > kyn} =0 J,. (3.65)

n=mqo* "

The fact that F is transcendental, together with (3.64), implies that v,, > 0
for infinitely many m € J. So then, whether or not the v, are bounded above,

there exists my € J and infinitely many M € J such that

vy = max{v,, :m € Jym; <m < M}. (3.66)
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For such M, and Ry defined as in (3.54), we have from (3.56) and (3.64),

Ry
|aq |

T(RM,F) < )\N]M(RM) < AMoy IOg

But

lam| > glayga| > ... > ¥ ay

and so

M < (1+o(1))(logq) ™" log |ay|

and so we have
T(Ruy, F) < )\(logq)_lvM(l + 0(1))(logR]\4)2

and

T(Ry, F' — 1) < 2\(log ¢) tou (1 + o(1))(log Ras)?.

In particular, this is true for Ry = ¢'/2|ay|, by (3.54), so that
T(q"|aml|, F' = 1) < Xow(log|am])?,

for some constant X' > 0, when M satisfies (3.66).

Recall that, since M € J, we have by (3.52) and (3.58),

P = v+t > kyu.

The main part of the proof is contained in:
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Lemma 51 Fux a large positive constant Ky. Suppose that M s a large posi-

tive integer, that

pm > kym (3.71)
and
T(¢"*an]|, F' — 1) < Kipa(log|aa|)®. (3.72)
Then there exists Wiy with
—k —1
T|GM|" <logWiy < T|QM|p (3.73)
such that
F'(z)=1+40(1), |z—aum|=Wuy. (3.74)

If, in addition, M € J, then we have also

k
= —ty < —. 3.75
UM = PM M E—1 ( )

Let Ky and M be as given in the statement of the lemma. Let z{,...,z,, be

PM

the 1-points of F” in By and wy, ..., w,,, be the poles of F” in Ay;. We set

P(z) = H(Z =), HG) =[G —w), h(z)=[F(z) - 1]P(z)"TI(2)

(3.76)

so that A is analytic and non-zero in Aj,.

We apply the Poisson-Jensen formula (Theorem 8) to A in the disc B(0, 7))
for r3r = Qlay|. We get
72— (2

ru(¢ — 2)

ru + 2]

log |h(2)]|| <
g [h(2)|| < T4

(3.77)

[m(ru, h) +m(ru, 1/h)] + Zlog
¢

where the sum is over all zeros and poles ¢ of h in |z] < ry, using the fact

that
ru(¢—2)

_ < 1.
T2, — (2
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Since all the ¢ lie in B(0, Q7 *|ay]), we have
1P >1, )] >1, [z =7,
and so m(ry, 1/P) = m(ry, 1/11) = 0, and therefore
m(ra, h)+m(ra, 1/h) <m(ry, F'=1)+m(ry, 1/ (F'=1))+m(ra, P)+m(ra, 10).
(3.78)
Now, using (3.71),
m(ra, P) +m(ry 1) < (pu + yur) log 2ray < (14 1/k)parlog2ry. (3.79)

Also, for z satisfying |z — ap| < 4, since h has no zeros or poles in Ay, we

have for every zero or pole ( of h that

¢ —aul = (1 - Q7")|ay

and so

r2, —(z < 2r2, < 30
ru(C—2)| 7 ru((1 = Q ay| —4) ~ 1-Q71
say, and so we deduce that from (3.77), (3.78), (3.79) and (3.80), for |z —au| <

= ¢, (3.80)

4, that

|log |h(2)|| < 22T (rar, F'=1)+(14+1/k)parlog 2ra]+(log e1) (n(rar, b) + n(rar, 1/h))
(3.81)

for a suitable constant c¢;.

But, recalling from (3.33) that
1<Q<q
we have

n(ra, h) + n(ru, 1/R)

IA

n(ry, F' — 1) +n(ry, 1/(F' — 1))
(log¢*®*)™ (N(¢"|ay . F' = 1) + N(¢"*|ay], 1/ (F' = 1)))

(20108 ¢**) ™" + O())T(q"*|ar|, F' — 1) (3.82)

IA

IA
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and so, from (3.71), (3.72), (3.81) and (3.82), we deduce that
[log|h(2)]| < capm(loglanl)®, |2 —an| < 4 (3.83)

for some positive constant c3 = c3(6, N).

We note next that

IA

Ym 7L(q1/4|a’M|7 F/)

IA

(N +2)n(g"*|au, f)
(N +2)(logq"*)"'N(¢"*|au. f)
(N +2)(logq"*)™ (1 — 6/2)T(¢"*|aul, f)

IN A

o(lan|?)
1
dur

= o(log—) (3.84)

by (3.5) and (3.36).

Let the interval [, be given by

—k —1
I = [T|aM|p7T|a’M|p]7 (385)

in which % is as in (3.33), and consider the set
Sy =4{z:log|z—ay| € Iy}

We note that
BM ﬂ lgM — @,

since

—k
logdy = —[am|” < T|G/M|p
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by (3.5), using k£ < 3 from (3.33).
Also, Sy C Ay
So Si contains at most yys poles of F’, and so there exists a sub-interval

I, = [, B] C Iy of length at least

(k—1) |aml|®
Ly = 3.86
= (3.56)
such that
Sy =1z:log|z —au| € Iy} (3.87)
contains no poles of F’.
We define Uy, Vi by
logUy =, logVy =0 (3.88)

so that £ has no poles in

Uu < |z —au| < V.

Set
U V

Wy = %. (3.89)

We observe that, by (3.5), (3.33), (3.85) and (3.88),
4 4
logdy = —|ay|? < 30 = glogUM = long\‘f'
and so
dM = O(UM), (3.90)

since Uy — 0 as M — oo.

Also, using (3.5), (3.84), (3.86) and (3.88),

Vi
Uum

log =f—a>Ly—
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as M — oo, and so

Unu = o(Var). (3.91)

So
Wy — (% +o(1))Var. (3.92)

Thus, by (3.85), (3.88) and (3.92),

1 1 1
W = (2- 0(1))V—M = (2—o(1)) exp(—log Vi) 2 exp(; |anl?) 2 |am|".
(3.93)
Note in particular that
-1
log Wi < Z|aM|” — —00 (3.94)
as M — .
Now, by (3.76),
P’ — 1 1 — 1
— = Re —). 3.95
P(Z) Zz—zi T |z —ay] 6(21——Zj_“M) (3.95)
j=1 ’ =1 zZ—aps
For |z — ay| = Wy, we have, using (3.89) and (3.90),
lz; —am| _ dum
: < =o(1 3.96
Sl < oy (3.96)
Thus, using the fact that
1
Re(——)>1- "
1—u 1 — Ju|
for |u| < 1, we have from (3.95) and (3.96),
P/
) 2 %(1 —o(1), |z —au|=W. (3.97)
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Also we have, for |z — apy| = Wy, since the annulus S}, defined at (3.87)

contains no poles of F’,

Yrr 1

2ym (14 o(1))ym

g
— < < - . (3.98
_;|z—wl|_VM—UM W ( )

()

Yrr 1

=1

by (3.89), (3.91) and (3.92), and so we obtain, using (3.71), (3.97) and (3.98),

’ig(z) > (1— 0(1))% >k —o(1) (3.99)
and so
110 1 P
()] < (¢ +0(1) |5 (2) (3.100)

when |2 — ay| = Wyy.
For such z, we also have, from (3.83), (3.93) and (3.97), and using Cauchy’s

estimate for derivatives (Theorem 40), that

< capar(log lan])? = o(22L) = of ). (3.101)

Wiy

h/
7;(2)

So, from (3.33), (3.100) and (3.101) we have, for |z — ap| = W)y,

H/ h/ P/
ﬁ(z) + ﬁ(z) < ?(z) : (3.102)
Now, by (3.76),
F'()TI(z) = P(2)h(z) <i8 + Z ((j)) - i((j))> (3.103)

and so, by Rouché’s Theorem (Theorem 41), the number of zeros minus the
number of poles of F”II inside the circle |z — ap| = Wiy equals the number of

zeros minus the number of poles of P’ there, using (3.102) and the fact that h
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is analytic and non-zero inside the annulus Ay,.

The zeros of P’ lie in the convex hull of the set of zeros of P (see eg [1, p29]),
and so in By;. Thus, P’ has py; — 1 zeros and no poles inside C'(ay, Wyy).
Next, IT has no poles, and by (3.76) all its zeros are poles of F' —1 and therefore
poles of F"TI. Hence F" has at least py — 1 zeros in |z — ap| < Wy

We recall that ¢, is the number of zeros of F” in B(a,,, 1) which are not zeros
of F. But every zero of F'is a zero of F" and F”, since N +1 > 3, and we

deduce that

where s3; denotes the number of zeros of F in |z — ap| < Wy

However, for |z —ay| = Wy, using (3.71), (3.76), (3.83), (3.89), (3.90), (3.92)
and (3.94),

log |[F'(z) = 1| = log|P(2)| +log|h(z)| — log|TI()|
Vi — Uy
2
= pu(log Wi + o(1)) — yu(log War + 0(1)) + capu(log anr)?

< pulog(dy + W) + eapu(log|an|)? — yur log

< pul(L = 1/k)log Wis + 0(1) + e3(log lau])?)

< 0. (3.105)
In fact, (3.94) implies that
log|F'(2) — 1| = —o0, |z—au|=Wu (3.106)

as M — oo, so (3.74) holds.
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By (3.105), the value of w = F’(2) stays in the disc |w — 1| < 1 as z traverses
the circle C'(ay, War). So we can define a continuous branch of logw on a
domain containing the image of that circle in the w-plane. So we have

JR = O

(anwM) F/(Z)

and so, by the argument principle (Theorem 12), F” has the same number of

zeros as poles in |z — ay| < Wy Therefore
Sm < Yu- (3.107)
Now suppose in addition that M € J. Then, by (3.58) and (3.65),
vy > kyag- (3.108)
But now, from (3.52), (3.104), (3.107) and (3.108), we have
vy =puw —tuw <syt+1<yuw+1l<oy/k+1 (3.109)

and so

(3.110)

which is (3.75). Lemma 51 is proved.

Lemma 52 We have
T(r,F) = O((logr)?), T(r,F' —1)=0((logr)?) (3.111)
as r — oo.

Suppose that M is large and satisfies (3.66). Then M satisfies the hypotheses
of Lemma 51. For, (3.71) holds from (3.70), and (3.72) holds from (3.69) and
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(3.70).

Therefore (3.73), (3.74) and (3.75) hold for M, and in particular

_ K
v E—
M™> 1

But now, from the definition of M at (3.66), we conclude that

- k
/U’fn
k—1

for all large m € J.

Therefore, from (3.56), (3.59) and (3.64) we have

k R
T(R,,F A—— Y log—= + O(log R,
( ) < k_ln; Oé’|a,m|+ (log R,,)
< (mh— +0(1)log R, (3.112)

for all sufficiently large n and R, satisfying ¢'/?|a,| << R, < Q| apq1].

But
lan| > qlan_1] > ... > "7 an,|

and so

-1 |an|

n < mo+ (logq)™ log
|G|
and therefore
T(Rn, F) < cs5(log R,)” (3.113)

for some constant c; = ¢5(6, N), for all sufficiently large n and for R, within

the given range.
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But for r sufficiently large but outside this range, there exists n such that
Q7 Man| < 7 < ¢'7ay
and then

T(r, F) < T(¢"*|anl, F) < es(log(q™*|an]))?

< cg(loglan))? < cr(log(Qan)? < cr(logr)*  (3.114)

for suitable positive constants cg, 7. Also,
T(r,F' —1)=T(r, F')+0(1) <2T(r, F) + O(1) = O((logr)?).

and so Lemma 52 is proved.

From (3.3) and Lemma 42, we have é(co, F') > 0.
Therefore, since T(r, I’ —1) = O((logr)?), we may apply the Anderson/Clunie

theorem (Theorem 36) to F” — 1. We obtain that

|F'(2) — 1] > 10 (3.115)

say, for |z| sufficiently large and z outside U°; B(an, €|a,|), for a small fixed
e > 0.

So, by Rouché’s Theorem, F” has the same number of 1-points as zeros (count-
ing multiplicities) inside each B(a,,¢|a,|), for large enough n.

For large enough n, we have B(a,,d,) C B(an,€|ax,]).

We fix p with

N+3 1
TS e (3.116)
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which is possible by (3.3).

Let &, denote the number of zeros of f in B(ay,, ¢|a,|) and 7,, denote the number
of poles of f in A,, counting multiplicities in each case. Here A, is as defined
n (3.53). Recalling that F' = ff’ and that %, denotes the number of poles
of F/ in A,, we note that

Yn < (N +2)7,. (3.117)

We claim that there exist infinitely many n such that
& > Uy, (3.118)

For, if not, then since a zero of f is a zero of F’, we have that all large zeros
of f lie inside the B(ay,,¢la,|) and then, using Valiron’s result (Theorem 30),

1/2

for r = ¢'/?|a,,|, m large, we get

T(.f) = (1+o())N(r1/f)
— (1401 an +o(1))

(logr)

< pu(l+o(1) O(logr)
< p(l+o(1))(N(r 7f)+0(low))

< p(l=6+0(1)T(r. f)

< T(r, ),

by (3.116), which is a contradiction.

We take a large n which satisfies (3.118). Then, from the remark following
(3.115), the number of zeros of F’ in B(a,,¢la,|) is p, and we have

N +3

> N&E, > Nur, > n > kyn
Pn > N§ HUTn 2 fo—Yn N+2y Y

N +2
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by (3.33), (3.116) and (3.117), and so n satisfies (3.71). By Lemma 52, (3.72)
is satisfied and so we can apply Lemma 51 to conclude, using (3.90) and (3.94),
that

F'(z)=140(1), |z—a,|=W,, d,=0W,), W,=o0(1). (3.119)

Consider the set
X ={z € Blay,ela,|) : |F'(z)| < 1}. (3.120)

The boundary 9X consists of finitely many Jordan curves 4;, not necessarily
disjoint, but each containing a 1-point of F’ and so meeting B,,. Every zero of

F'in B(an,¢€las|) lies inside at least one #;.

We delete any 4; for which there exists a 7' with

¥5 C Ay Uant (Fy).

We are left with finitely many 4;, which we relabel ;.

Set
L = Bla,, W,) U U;int(y;).

L is connected, since every v; meets B,,, which is contained in B(a,, W,,).

The external boundary of L consists of finitely many arcs I'; of level curves
|F'| =1, each lying in

W, <z —a,| < elan|,
and finitely many arcs of C'(a,, W,) (we adjust W,, slightly, if necessary, to

ensure that no ; meets C'(a,, W,,) infinitely often).
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We obtain finitely many domains D);, each bounded by a I'; and an arc of

g

C'(an, W,), such that every zero of F’ in
W, < |z —a,| < ¢la,]

lies in one of the D;.

As we traverse that part of the boundary of D; which is I';, we do not pass
through any 1-point of £ (since all 1-points of F” lie in B,,), and so arg F'(z)
cannot change by more than 27.

As we pass along the remaining portion of the boundary of D; (where |z—a,| =
W,,), we have log |F'(z) — 1| < 0 by (3.74) and so arg F'(z) cannot change by
more than 7.

So as we traverse the whole boundary of D; once, arg F'(z) cannot change by
more than 37, ie it must change by £27 or 0.

So, by the argument principle,
Z; <Y +1 (3.121)

where Z; denotes the number of zeros of £” in D;, and 3; the number of poles

of F" in D;.

Now let z; denote the number of zeros and o; the number of poles of f in D;
respectively.

Then we have, using (3.26) and (3.121),

N+3
N O'j.

1 1 1
%<2 S N(Ej +1) < N((N+ 2)o;+1) < (3.122)

[The last inequality appears to require o; > 0. But if o; = 0 then we have

z; < 1/N and hence z; = 0, and so (3.122) still holds.]
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So

d < N;Vr ; > o (3.123)
J

J
Furthermore, we know from the remark preceding (3.107) that £” has the same
number of zeros as poles in |z — a,| < W,,, and so the zeros Z and poles 3 of
f in that region are related by

<N—|—2
- N

Z 5. (3.124)

Therefore, combining (3.123) and (3.124), the number of zeros of f in B(a,, |a,|)

is no greater than % times the number of poles of f in that disc, and we
have
N +3
n < - 3.125
b <oy (3.125)

But now, using (3.116), (3.118) and (3.125), we have

N
n>n27n> ns
En > T, ,UN+3§ 3

which is a contradiction. Theorem 29 is proved.
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Chapter 4

Further results for the problem

fo/:1

4.1 Introduction

In this chapter we continue our investigations of the problem ff’ = 1 begun

in Chapter 3. We shall present two results, as follows.

First, we shall consider the problem of finding analogues of Picard sets for
ff =1, ie when N = 1. In contrast to the results of Chapter 3, we shall

obtain a result for entire functions only (Theorem 54).

Second, we shall refer back to the lemmas of Section 3.3 regarding the circum-
stances in which the deficiency of f or f’ at the poles enables us to conclude
that 6(co, F') > 0. In order to show that these results are not redundant, we
give an example (Section 4.3) to show that it is possible to have a function f

which is transcendental meromorphic, with
§(c0. f) >0, (o0, 1) =0, (4.1)
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for N any positive integer.

4.2 N =1, [ entire

Anderson, Baker and Clunie have proved [2] the following:
Theorem 53 Let FF = {a,}>_, be a set of complex numbers such that
|a’7n+1|

liminf

>c>0 (4.2)
mM—00 |a7n| log |a’7n|

for a constant c.

If f is a transcendental entire function, then f'(z)f(z) takes every finite com-
plex value, except possibly zero, infinitely often in C — F.
In this section we improve the spacing condition on the a,,. We shall prove:

Theorem 54 Suppose that ¢ > 0. Let E = {an}oe_, be a set of complex

numbers such that a,, — oo and
| — Q| > Elap,|, m#m'. (4.3)

If f is a transcendental entire function, then f'(z)f(z) takes every finite com-

plex value, except possibly zero, infinitely often in C — F.
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4.2.1 Results required in the proof

Theorem 55 (see eg [21] section 3.55) Let T be a simple closed level curve

of an entire function f. Then I' encloses one more zero of f than of f.

Theorem 56 (Barry [5]) Let g be a transcendental entire function. Let

m(r) = min{|g()] : [z = 7}, M(r) = M(r, g) = max{|g(=)] : [2| = 7}.

(4.4)
Suppose that M (r) satisfies
log M
lim sup og M(r) <o, (4.5)
r—oo (logr)?
for some constant o > 0.
Then the set of r for which
M) | ep(—(2 — 8)6-1x%0) (4.6)
M(r) ’

has lower logarithmic density at least 1 — 6.

Lemma 57 (Anderson/Baker/Clunie [2]) Let f be an entire function. Then

T(r,f)=0 (W <r, ﬁ» (4.7)

as r — oo outside a set of r of finite linear measure.
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4.2.2 Proof of Theorem 54

Our proof is a refinement of the method of [2], with the key new ingredient

coming from [5].
Suppose that the set F is as stated in the theorem, satisfying the condition
(4.3) for some £ > 0. We may arrange that the a,, are numbered in order of

non-decreasing modulus.

Let f be a transcendental entire function. We set

F(z) = 1) (4.8)
so that
Fi(2) = f'(2)f(2). (4.9)

We suppose that all but finitely many of the zeros of F'(z) — 1 lie in £ and
will aim for a contradiction, which will prove the theorem. We may without
loss of generality suppose that F’(a,,) = 1 for all m, since we may discard any

a., Tor which this is not the case.

Throughout the proof, C; will denote positive constants.

First, we establish an upper bound for the number of a,, in B(0,r).

Lemma 58 The number n(r) of a,, with |a,,| < r satisfies

n(r) < Cie™*logr. (4.10)
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Note first that the discs B(ap,, $€]a,|) do not intersect. Each such disc has
area

7

& am|*
9

For any 7, the annulus /2 < |z| < r has area
3
Zr?
4
and so can contain at most
C/'2€_2
of the a,,, using the fact that |a,,| > r/2 for any such.

By considering the annuli r/2 < |z] < r, /4 < |z| < r/2, ..., we may conclude

that the number of a,, in B(0,r) is at most
C‘g + QC/'QE_Z, (411)

where (5 is the number of a,, in B(0,1) and « is an integer with 1/2 < r/2% <

1.
We have
logr
<1 4.12
“ + log 2 ( )
Combining with (4.11) gives the required result. Lemma 58 is proved.
Lemma 59 We have
T(r, f) = O((logr)*) (4.13)

outside an exceptional set of finite Lebesque measure.

We establish an estimate for N (T, ﬁ)
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Suppose that

Then

i=1
lan| ... |ai]
< nlogr
< Ce?(logr)?,

using Lemma 58.

Now the result follows from Lemma 57. Lemma 59 is proved.

Lemma 60 The slow growth of f implies that the exceptional set in Lemima

59 does not occur, ie (4.13) holds for all large r.

Suppose not, ie

T(r, f) < C(logr)? (4.14)

for some constant (', outside an unbounded set S of r of finite Lebesgue mea-

sure.

Take a large r € S. We can find 6 € (1,7) such that r ¢ S. Then
T(r,f) < T(0r,f) < Clog0r)* < 4C(logr)*

and so (4.14) holds for all  after all. Lemma 60 is proved.

Using (1.10), we conclude from Lemma 60 that there exists a constant o > 0

such that

log M(r, f) < o(logr)?. (4.15)
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Since T'(r, f) = O((logr)?), and hence also T'(r, ') = O((logr)?) and T'(r, F') =
O((logr)?), we may apply the Anderson/Clunie theorem (Theorem 36).

Lemma 61 Let ey be a positive constant, smnall compared to e. For sufficiently

large r, the disc B(am,¢e1|am|) contains one more zero of f than of f.

We use the argument of Section 6 of [2].
By Theorem 36, there exists an epsilon-set, centred on the a,,, outside which
F" is large. By increasing the radii of this epsilon-set, we may ensure that f,

f" are both large also outside the set.

Let A be a disc of the epsilon-set which contains at least one zero of f and
which is sufficiently remote that |f(z)%| > 6|z| on the boundary JA. This
occurs for all sufficiently remote A, using the Anderson/Clunie theorem and

the fact that f is transcendental.

Suppose that A contains k zeros of f. Then it contains 2k zeros of f2, and so

2k zeros of f(z)? — 2z, by Rouché’s theorem.

The radius p of A is small, certainly p < |a,|/8. So for any X which satisfies
9 21
—|m| < A< — 'm |y
o] o]

and any z € A, we have

2|z < A < 3|z
For such A, the components of
A= {z: |f(2)2 =22 < A}
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which meet A lie in the interior of A, since for z € A, |f(2)?| < 2|z]+ X < 5[2|.

We choose a A satisfying the conditions above, but also such that the level set
OA = {z:|f(2)* — 27| = A}

does not contain a,,. Note that the choice of A ensures that all zeros of f in

A lie in A.

Since a,, is the only point in A at which

1d
S =22 = () (z) -1 =0,

0A consists of finitely many disjoint simple closed loops. On each loop,
2|z] < A = |f(2)? — 22| and so by Rouché’s theorem, the loop contains the

same number of zeros of f2 as of f? — 2z. Furthermore, this number of zeros

must be positive.

By Theorem 55, each such loop contains one fewer zero of ff’ — 1 than of

f? — 22 (and therefore of f?).

But a,, is the only point in A at which ff’ — 1 takes the value 0. Since each
loop must contain an even number of zeros of f2, and hence at least 1 zero of
ff'—1, there can only be one loop. This loop contains all 2k zeros of f? in A

since, from the remark above, all such zeros lie in A.

So ff’—1 has 2k — 1 zeros in A, and hence in A, since all such zeros are at

Q-

By Rouché’s theorem, ff’ also has 2k — 1 zeros in A. But now since f has k

zeros in A, f" must have k — 1 zeros in A. So A contains one more zero of f
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than of f’.

Since all large zeros of f, f’ lie in the epsilon-set, and since the sets B(a,, £1]|an|)
contain the discs of any epsilon-set, for sufficiently large m, Lemma 61 is

proved.

Lemma 62 There exist €1 > 0 and Cy > 0 such that the set S of r which

satisfy (using the notation of Theorem 56)

m(r)
M(r)

and which are such that |z| = r does not meet any B(am,e1|an|), has lower

> (4 (4.16)

logarithmic density at least 1/4.

Given any &1 > 0, the logarithmic density of the set of r such that the circle

|z| = r meets at least one of the B(a,, e1]a,|) is at most

1 1
n(r) log k! < Che?log + 61, (4.17)
logr " 1—¢ l—e

using Lemma 58.

By choosing ¢; sufficiently small, we can ensure that this density is at most
1/2, say.
We apply Theorem 56 with ¢ = f and 6 = 1/4, o as in (4.15), and we set

Cy = exp(—(2 — §)6 '7%0).

We conclude, using (4.17), that the set S of » which satisfy (4.16) and are such

that |z] = r does not meet any B(a,,,e1|a,|) has lower logarithmic density at
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least 1/4. Lemma 62 is proved.

Lemma 63 For any positive A we have, for 8 > 0 and all sufficiently large r,

9

M(r+06,f) ZM(T,f)(l—I—; (4.18)

Since f is transcendental, we have

log M(r, f)

— 00
logr

as 7 — oo, from (1.10) and (1.15).

Further, we have that log M(r, f) is a convex function of logr (ie the curve
of the graph of log M(r, f) against logr between any two points lies below a

straight line joining those two points of the graph) - see eg [21] section 5.32.

We conclude that
dlog M(r, f) .

dlogr

as r — oC.

Given positive A we deduce that, for all sufficiently large » and g > 0,

IOgM(T—I-/B,f) —IOgM(T,f)
log(r + 8) —logr

> A.

Rearranging, we obtain (4.18). Lemma 63 is proved.

We choose 5 > 0 which is small compared to ;.

We choose A so large that

E9

(1+ AC, > 1. (4.19)

1—62
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Recall from Lemma 62 that the set S of » which satisfy (4.16) and which are
such that |z| = r does not meet any B(am, €1|a,|) has lower logarithmic den-

sity at least 1/4.

We choose large r, R € S which satisfy, for at least one m,

r<l|am| < R (4.20)
and which also satisfy
1 1
m(r) < M(r) < im(R) < aM(R) (4.21)

This is possible since M(p) — oo as p — oo, together with the fact from (4.16)

that
m(R)
M(R)

m(r)

M(r)

> (y,

> (Y. (422)

Lemma 64 Given 5, A, v, R as chosen above at (4.19), (4.20) and (4.21),

we have

n(R,1/f) —n(r,1/f) =n(R,1/f) —n(r,1/f). (4.23)

We consider a level curve T, of |f(2)| = M (r(1 —e2), f) which passes through
a point zo on |z| = r(1 —&3). Since e9 was chosen small compared to £, there
are no zeros of f or f'in r(1 —ey) < |z| < r (recalling that f, f’ are large

outside an epsilon-set contained within the union of the B(an, c1|an|)).

104



By the maximum modulus principle, T', cannot enter the disc |z] < (1 — &3).

Also, we have, from Lemma 63, (4.19) and (4.22),

m(r) > CyM(r)

> CyM(r(1—e2))(1 + N ?@)A

> M(r(l —e9))
and so we conclude that ', cannot pass into |z| > r either.

So T, lies wholly in the annulus r(1 — &) < |z| < . Further (by changing e,

very slightly, if necessary) we can ensure that T', is a simple closed curve.

So the number of zeros of f inside T, is

n(r,1/f) = n((1 = &2)r, 1/ ).
Applying the same argument to f/, we conclude that the number of zeros of

f/inside T, is n(r, 1/f).

By Theorem 55, we conclude that there is one more zero of f than of f’ inside

I',, and so
n(r,1/f) —n(r,1/f) = 1. (4.24)

We may repeat the above argument for R instead of r to obtain I'p which

encloses one more zero of f than of f’, and so

(R f) —n(R1/f) = 1. (4.25)

Rearranging (4.24) and (4.25) gives (4.23). Lemma 64 is proved.

105



So the annulus r < |z]| < R contains equal numbers of zeros of f and f’.

But this region contains at least one a,,, from (4.20), and since all large zeros
of f and f’ are contained in the B(a,,,e1|a,,|) and each such disc contains one
more zero of f than of f/, by Lemma 61, we have obtained a contradiction.

Theorem 54 is proved.

4.3 An example of transcendental meromor-
phic f with §(oco, f) > 0, 6(co, f¥f') =0

In order to show that the results of Section 3.3 are not redundant, we exhibit an
example to show that it is possible to have a function f which is transcendental

meromorphic, with
§(c0. f) >0, (o0, 1) =0, (4.26)

for N a positive integer.

We choose sequences 7, Sg, ag, bg, 1y, and constants L, e, 3, v as follows:

T1:100, a():bozl

L=36N? ~=3=4N, == (18N*)!

o
h B
RN

-
o~
o
I
h
o
~~ ~~ ~~ ~~ ~~ ~~ ~~
=~
[~
o)
~— ~— ~— ~— ~— ~— ~—

ap = Qg7 4.31
Sk = Thq1 4.32
bk = bk_lSZk_l_nk 4.33



We set

h(z) = apz™ (4.34)

9(z) = bz, (4.35)

Ne—NEg—1
- <Tik> : (4.36)

Note that, for |z| = r,

apz™k

ak_lznk—l
using (4.31).
In particular, for v, > 2|z|, we get

1
lag2"*| < §|ak_1z"’“‘—1| (4.37)

and we deduce that both sums (4.34) and (4.35) converge.

We estimate h(z) for 1 < r = |2| < rg1. Then 7442 > 2|z| and so, using

(4.31) and (4.37),

tp
E apZ

< 2lagy 2™

= 2ap 7"

nE—"nL .
= 2apryy, T

. r N1k

Similarly, r—1 < |2]/2 and so (4.36) gives
1
lap—12"71 < §|a’pznp| (4.39)

for p < k — 1, so that

E Ttp
a,pz

p<k

< 2lag_ 2™

= 2ap_r"Ft

L ) Np—TNg—1

. (4.40)

= 2apr"* <
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We obtain, therefore, that for r, <r <7,y and |z] =7,

h(z) = apr™ (1 + &k(2)),

where

6(2)] < 2((ZEymmir 4 (e < 4

Similarly, for s, <r < spyq and |z] =7,

9(2) = ber"™ (1 + G (2)),

where

Sk \n—np_1 .
G2 < 2ACEyH 4 (-

Note that since e, = 2, we have

2 2
Tk'<Tk§Sk<Tk+1<Tk-+1§5k-+1<....

Lemma 65 We have, for large k,

log M(r, h) <mnglogr, 1 <7r <7k,

log M(r,g9) <nglogr, sp <r < Spqq.

JrETIR) < 4,

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

We prove only the first inequality. By (4.41) and (4.42), for rp <7 < rg41, k

large,

|h(2)| < Bagr™ < 7",

The result follows. Lemma 65 is proved.
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Lemma 66 We have, as r — oo,
T(r.h) +T(r.g) = O((logr)*)

and

T(r,h) ~logM(r,h), T(r,g) ~log M(r,g).

Suppose 7, <7 < rgyq. From (4.29),

logr
logr >logry > Llogry_,1 > ... > LF 5T

and so, from (4.30),

So, using (4.46),

T(r,h) <log M(r,h) < nglogr = O((logr)2).

(4.49) is proved. But now (4.50) follows from (1.10).

Lemma 66 is proved.

Lemma 67 We have, for large k,

L—-1 a
5T ng log si < log i

— <
bp — L—1

1y log Sg.

For the right hand inequality, we have, from (4.31) and (4.33),

ag Aje—1 Sk
log— = log + (ng — np_1) log —
by br—1 ( ) Tk
= ) X
= 0(1) + Z(nj — 7Lj_1) log T_7
j=1 J
k
< an log s;
J=1
< Ny log sg.
> 71 L 108 Sk
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For the left hand inequality, we first note that

and so
1/2
e < sk/
and therefore
Sk
Tk

So then, using (4.30), (4.31) and (4.33),

Ne—NEg—1
@ Ok (S_k>
by, br—1 \ 7%

> ak—lsnk(l—l/L)/Z‘

1/2

> 8"

br—1

This shows that ag /b, — 0o as k — oo, and gives (4.54).

Lemma 67 is proved.

Now we set

_ =)
f(Z) - g(z)

Lemma 68 We have
6(c0, f) > 0.

From (4.34) we have
h(nk)(()) = nk!ak.

Also, Cauchy’s integral formula (Theorem 40) gives

h(nk)(o) _ ;L_k' h(2)
i

dz

an"’l '

|2|=r
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and so we have

7tk
100
ag”r =
k 27T’/||TZ”"+1 ’

< T”k2 (r, h)
= o o yhetl

= M(r h).

Now, for s <7 < rpy1 we have, by (4.43), (4.44) and (4.62),

Therefore

M(T7 g) S 5ka”k

log M(r, g) + log% <log5+log M(r, h).
k

Thus (4.32), (4.46), (4.50) and (4.54) give

m(r, f)

Since

by (4.46), we deduce

v AV A AV Y

v

m(r, h) —m(r, g)

T(r,h) —log M(r, g)

(1 0(1))105M(T h) —log M(r, )
(1—o(1))lo b —o(T(r,9))

k
L—1
7 nylog sy — o(T'(r, 9))

(1—o() "t

L—1
< 57 €T 0(1)> ng log 7.

eng logr —o(T(r, g))

T(T7 f) = O(nk 10gT)7

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)



as 7 — oo through s <7 < rpyq.

Suppose now that rp, < r < si. Then

) = o(T(r,9))

br_
M(r,g) < 5b_qr™1 < 5kl 17‘”]"_1_”]"M(T, h)
ay
using the same analysis as in (4.63). So
br_
log M(7, g) <log5+ log Aol (ng — ng—1)logr +log M(r, h)
ag
and this time we have
m(r,f) > (1—0(1))((ng —nx_1)logr + log bak
k-1
1
> (1—o(1))(1— Z)nk logr,
and (4.67) follows, as r — oo through r; < r < sg.
Lemma 68 is proved.
Now suppose that z is such that
2/(9N 1 1/(4N
Tk-i(1 ' = sp<r=|z < Tkﬁ = Tk-/f—(l g
From (4.41), (4.43) and (4.58) we have
ap 1+ &(2) g §e(2) — (2
(o LG o 60 = Gle)
where £ (2) and (;(z) are analytic.
So
Flz) = & (& (2) = Gr(=)) (L + Gr(2)) + (Cel2) — &r(2))Gk(2)

br (1+ k(=)
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For = as above, from (4.42),

€ (2)]

<

<

<

Tk _ r _
20— T ”k-—l_l_ N1 Tk
(%) Loy
1/
2((&)%-%-1 + (Tk‘f'l )1 TR
sf Tk4+1
2(52(5—1)(%—%—1) _I_Tk__’(_ll_l/V)(”qul_”k-))' (4‘73)

Now, using sx = 7541, (k41 — 1) = L(ng —np—1) and (8 — 1) < L(1 —1/7),

we conclude that the first term dominates and therefore that

16n(2)| < dsy, O H e (4.74)

Similarly, for the same z, by (4.44),

|G (2)]

<

<

<

S T
2((776)nk-—nk-—1+(Sk+1)nk~+1—nk~)
1/
Sk Mg —Tl_ Tk' I\npi1—ng
2((5_ﬁ) e 1_|_(Sk+ ) k41 k)
k +1

Q(S;(ﬁ—l)(nk—nk—ﬂ + Tk_—’(_ll_l/V)(”kJrl—nk))

452(5—1)(%—”1@-—1)‘ (4‘75)

Using the fact that & and (i are analytic, and the Cauchy inequality, we

conclude from (4.74) and (4.75) that

fors£—|—1<|z|<7‘

/vy
k41

61(2)] < ds;, P (4.76)
(G ()] < 4s PR (4.77)
1.

Recall from (4.54) that for large k,

T log sy (4.78)



For s) +1 < |2] < T;ﬁ — 1, we have, from (4.71), (4.74), (4.75) and (4.78),

log|f(2)] < ;—7mlogsy + O(1). (4.79)

Also, from (4.72), (4.74), (4.75), (4.76), (4.77) and (4.78),

ni log s, + log 32 + log 452(5_1)("’“_”’“—1)

log|f'(z)] <

L—1
< 00+ (72— (8- 1)~ Pmlogse. (480)
So, from (4.79) and (4.80),
log |fY(2)f ()] = Nlog|f(z)| +log|f ()]
< NL — log s, + O(1) + (% —(B—-1)(1— %))nk log si,
= O)+ ((N+ 1)% —(B-1)(1 - %))nk log s, (4.81)
< 0 (4.82)

since § = 4N.

So, for infinitely many circles r = ||, we have log | f™(2)f/(2)| < 0 and so

771,(7‘, fo/) _

W — 0. (4-83)
We conclude that

§(co, fN Y =0. (4.84)

The function f has the required property.
Remark:
In the above example, we chose the constants L, e, 8, v, « with a view to

making the calculations relatively straightforward to follow, and to prove sim-

ply that an example exists with §(co, f) > 0, §(co, fNf/) = 0.

114



By choosing carefully alternative values for these constants, an example of the
above form can be constructed with §(co, f) = ¢, for any ¢ € (0, ﬁ)
This compares interestingly with our result (Lemma 42) that §(co, f) > Ni%
implies that &(co, fNf/) > 0.
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Chapter 5

Analogues of Picard sets for the

problem f =0, f(k) =1

5.1 Introduction

In this chapter we shall consider analogues of Picard sets for the following

problem, which is a result of Hayman [8, p60]:

Theorem 69 Suppose that f(z) is a function transcendental and meromor-
phic in the plane. Then either f assumes every finite value infinitely often in
the plane, or each of its derivatives f®) k > 1, assumes every finite non-zero

value infinitely often in the plane.

We ask what sets // exist such that this result continues to hold on C — £,
either for all transcendental meromorphic f or for some subset of such func-
tions.

In this direction, Langley has proved the following two results.
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For entire functions, we have [16]:

Theorem 70 Given ¢ > 0, there exists K(g) > 0, depending only on e, such

that if the sequence {a,}>2 , converges to infinity with
@y, — am| > €lay|
for all n # m, while d,, satisfies

1
logd— > K(2)(log |a,|)?,
then for any polynomials co(2), ..., ap(z) (with k > 1 and ax(z) # 0) and any

transcendental entire function f(z) such that

k

Y(z) =Y ()9 (2)

i=0

is non-constant, either f(z) has infinitely many zeros outside
E =10U>,B(a,,d,)
o1 (z) has infinitely many 1-points outside F.

Langley also exhibits an example to show that the spacing condition on the

a,, is best possible.

For meromorphic functions, we have [13, p57]:

Theorem 71 Suppose that F = {a,,}55_, satisfies

| ,
liminf 08 |1

> 0.
m—o0 IOg |a/7n| log log |a’7ﬂ|

Suppose that a,b are finite, with b # 0, and that f is meromorphic such that,
in C—F, f has only finitely many poles and a-points, and f' has only finitely

many b-points. Then f is rational.
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Langley also showed that this theorem does not hold if the point set £ is re-

placed by any countable set of open discs tending to co.

We shall aim to improve Langley’s result for meromorphic functions by remov-
ing the restriction on the position of the poles, and by improving the spacing
of the points a,,, although our result will be more restricted in the sense that
it will only apply to functions which have Nevanlinna deficient poles. We shall

also prove a result for higher derivatives of f. We prove:

Theorem 72 Let k > 1 be an integer. Let a and b # 0 be complex numnbers.
Suppose that 6, v satisfy

1>6>1—1/k, (5.1)
! >
V> TR ) 2 1. (5.2)

Let F = {a,,}>%_, be a set of points with |ai| > e and

|a’m+1| > |a’m|y (5'3)

for all m.

If f is a transcendental meromorphic function, with

5(00, ) > 6, (5.4)
then either f(z) = a infinitely often, or f%*)(2) = b infinitely often, for » €
C-F.

fz)=a

,—» We Imay assume that a = 0,

Note that, by considering the function
b=1.
Also, (5.1) gives

0<k(l—6)<1, 0<1—k(1—68) <1. (5.5)
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5.2 Results required in the proof

Lemma 73 (Barry [5]) Suppose that g, h are positive non-decreasing real

functions and suppose that

[ 0§ < [ (5.6)

for all large r.
Let A > 1 and let S ={r > 1;h(r) > Ag(r)}.
Then the set S has upper logarithmic density no greater than 1/A, e

dr

r

< 1/A,

§— 00

lim sup(log s)~* / xs(r)
1

where xg 18 the characteristic function of the set S.

Lemma 74 (Langley [17]) Let n(t) be non-decreasing, integer-valued and
continuous from the right such that n(1) = 0 and n(t) = o(logt) as t — oo.
Set
h(r) = / tdn(t).
1
If 1 is a positive constant, then the set F(u) = {r > 1; h(r) > pr} has upper

logarithmnic density 0.

Lemma 75 (Miles/Rossi - see [17]) Let m(t) be non-decreasing, integer-
valued and continuous from the right, with m(1) = 0 and m(t) = O(t) as
t — oco. Let M > 3 be a constant. Then there exists a set FEy; of lower

logarithmic density at least 1 —3/M, ie

/Tx(t)/td,t > (1—-3/M +o(1))logr

as r — oo, with x(t) the characteristic function of Fyy, such that, for r € Fy

and t > 7, we have m(t)/m(r) < (t/r)*M.
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5.3 Lemmas required in the proof

We shall require the following slight modification of a lemma of Langley ([17,

Lemma 2)):

Lemma 76 Let [ be transcendental and meromorphic in the plane with T'(r, f) =
o((log7)?). Let T be a small positive constant. Then there is a set W of up-
per logarithmic density at most T such that, for r & W, there exist non-zero

b(r) € C and \(r) — oo as r — oo such that
() = BN (1 o),
for r/A(r) < |z| < rA(r).

We prove Lemma 76 using the same method as in [17].

We write f(z) = U(z)F(z) where U is a rational function and F(0) = 1 and F
has no zeros or poles in |z| < 1. We choose a small g > 0 and apply Lemma 74
with n(t) = n(t, F) + n(t,1/F) = O(T(t?, f)/logt) = o(logt). We also apply
Lemma 75 with M > 3/7 and m(t) = 2" — 1. We obtain that, for r outside

a set W of upper logarithmic density at most 7, we have

h(r) = /; tdn(t) < ur (5.7)

and, for t > r,

n(t) —n(r) < Milog(t/r), (5.8)

for My = 4M/log2 + 1.
Since n(t) is integer-valued, (5.7) implies that f has no zeros or poles in

ur < |zl <r, forr g W.

Now suppose that

r@g W, < < e (5.9)
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We write F'(2) = f1(2)/fo(2) where the f; are entire and

o0

fi(2) =T - /2,0,

Jj=1
where the z; are the zeros of f in |z| > 1, counting multiplicities. For = as in

(5.9) we have

fi(z) = O T (1) [T =2/ 2) [T = 2/2)),

1
where [[, denotes the product over all z; with |z;| < r, and [, denotes the
product over the remaining z;. With ), defined analogously to [],, we have,

using (5.7),

I —a/2) =1 < exp(Y fay/=1) —

< exp(hfr)/|z]) =1 < exp(ur/|z]) -

<exp(u'/*) — 1.
Further, (5.8) gives
Wt 1/F) = nlr, 1) < My log(t/7)
for ¢ > r, and we have
L0/ =10 < el [ Gantea) -
= oxplel [ ult.1/) =l 1/ 1)) =
< expels [ logtt/riat/?) -

= exp(|z|Mi/r) — 1 < exp(Mp'*) — 1.

Now if e > 0 is given, we may choose p small enough that we obtain

fi(z) = [ (=1/2) =m0 (14 (=)

1
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with |£(2)| < e for z satisfying (5.9).

Estimating fs in the same way gives the result. Lemma 76 is proved.

5.4 Proof of Theorem 72

We suppose that there exist f and F satisfying the hypotheses, such that
f(2) = 0 only finitely often outside 7 and f%*)(z) = 1 only finitely often out-

side 2. We shall aim for a contradiction, which will prove the theorem.

By Chen’s improvement [7] to the inequality known as Hayman’s alternative,
we have

T(r, f) < 24+ NP1/ ) + (2 + DN ﬁ) +5( f),  (5.10)

where N (r,1/f) is the same as N(r,1/f) except that zeros of multiplicity

greater than 7 are counted 7 times only.

We set

where here we only include terms in the summation if either f(a,) = 0 or

f%(a,,) = 1. From (5.10), we have
T(r, f) < (2k+11)Ng(r)+ S(r, f). (5.11)

If |a,| <7 < |a,y1]|, we have, since |ai| > e,

n

r

N, < log
A P PR DO T

< nlogr. (5.12)

But

7> an] > |an” > 0> ag|” (5.13)
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and so

loglogr > (n —1)logv + loglog|ai| > (n — 1) logwv. (5.14)

So
Ng(r) = O(logrloglogr) = 0((logr)2) (5.15)

and (5.11) becomes

T(r,f) < (2k 4+ 11)Ng(r) + S(r, f) = o((logr)?). (5.16)

Since f has deficient poles and T(r, f) = o((log7r)?), we now deduce from

Theorem 30 that
T(r,f)=(1+0(1)N(r,1/f). (5.17)

Lemma 77 We can choose positive constants c;, 1 < 3 <8, with the following

properties:

l—1/k<c<ea<é (5.18)

1—01 Cg — Cy4

5.19

1—02 1—04 ( )
1—c g — C

L2 5 (5.20)
1—02 1—|—CG

. (5.21)

c c .

3 7S ¥ e

Cg < Cg (522)
V<l —k(1-8) "<l <l-ecn<l-cg<l<

l4+es<l4eg<l4eg<vl—k(1-90)<w (5.23)
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From (5.2), we can choose ¢; so that
1<v(l—c)? <v(l—k(1-8)>~

So then

1 v(1—cp)?
T—k(1—8) ~1—k(1—28)

<v(l—ec) <v(l—k(1-29))
and we can choose cg such that

m<1+CS<y(1—c7)<y(1—k(1—5)).

Furthermore, (5.24) implies that

v(l—cy)—1 1
S - >0
v(l —cr) v(l—cr)

and so we can choose 1+ ¢g in (5.25) so close to v(1 — ¢;) that

1 —1
1—|—CS 1—|—CS

So the right hand inequality of (5.21) holds.

From (5.24) and (5.25) we have necessarily

cr > k(1 —96)
1 k(1—6)

>m_1:m2k(1_5)'

Cg

For any ¢, co which satisfy (5.18) we have

l—¢, 1-6
>
1—02 1/]{3

= k(1— &)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

and so (by taking ¢; as close to § and ¢ as close to 1 — 1/k as necessary), we

can choose ¢, ¢ which satisfy (5.18) and also (using (5.27)),

1—01

k(1 —16) <

< 7.
1—02
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Next, we can choose c3, ¢g so that

1—01
<cg < 5.30
1—02 “3 cr ( )
1—c c c
Lo 5 << ——, (5.31)
1—02 1—|—CG 1—|—CS

using (5.26) and (5.29). The left hand inequality of (5.21) holds, and (5.22)
holds.
Now, using (5.30) and (5.31), we choose

Cy < C3, C5<Cg (532)

positive but so small that

1—01 Cg — Cy

< Cy
1—02 1—04

1—¢ g — C
< 56 5
1—02 1+CG

< 7.

So (5.19) and (5.20) hold.

Note that, necessarily, from (5.5), (5.22), (5.25), (5.30) and (5.32) we have
that (5.23) holds.

Lemma 77 is proved.

Returning to the proof of the theorem, we set

A = {2 a7 < |2] < |an|"T ) (5.33)
Note that, for any m,
|a’m|1+68 < |a’m|y(1_67) < |a’m+1|1_677
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using (5.3) and (5.25). So the A,, do not intersect.

We denote by p,, the number of zeros of f at a,, and by y,, the number of

poles of f in A,,.

Lemma 78 There exist infinitely many m such that

1

Ym < Epnl- (534)

Suppose the lemma does not hold. Then for all sufficiently large r we have,

from (5.17) and (5.33) (using w; to denote poles of f),

T(r,f) = (1+o0(1))N(r1/f)

= (1+o(1 Z Pm log (log )
|a'm.|<7‘

< (14oW)k ) Ym (log7)

|a'm.|<7‘
= (1+o(1)k Y Z log, —I—log|| ||)+0(1 7)

|a'm.|<7‘ wy EAm '7 Am
< (L+o(EN(r )+ (L+0(1)k D ymeslog|an| + O(logr)

|a'm.|<7‘
< k(1=640(1)T(r, f)+ (14 o Z YmCs 10g |-
lam|<T
If we can show that, for some § > 0,
kes Y ymloglan| < (1— k(1 —6) = &)T(r. f) (5.35)

|a'm.|<7‘

for a suitable sequence of » — oo, then we will have a contradiction, which

will prove the lemma.
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Set 7, = |a,|”. By (5.2) and (5.3),
Janl < 7 < Janss

and so

1—6+0(1)

< nllan] ', £) < (log — ™ "'N(r,, f) < T(rn, f).
3%l 1) o i) N ) € T
So

k(1 —6+0(1))cs
kCS Z Ym IOg |a’m| S v—1— Ca T(Tna f)
|a'm.|<7"n,
By (5.35), we need to show that
Cs
E(1—-0)| —+ 1] < 1.
( ) <y —1—cg + >

From (5.25) we have 1 4+ ¢g < v(1 — k(1 —§)), and so

k(1 — 6) <L+1> _ k-2t

v—1—cs v—1—cs
v—1
< k(l_é)r@_é)
o ov—1
B v
< 1

as required. Lemma 78 is proved.
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Lemma 79 Lei

> 1, (5.36)

from (5.18).
Then the set

S={r>1:nlr,f)>1—c)n(r,1/f)}

has upper logarithmic density at most 1/A.

We use Lemma 73 with
h(t) =n(l, f), 9(t) = (1 —ci)n(t,1/f).

By (5.4), (5.17) and (5.18), we have

/1 W = N

t

for all large 7, so the hypothesis (5.6) of Lemma 73 is satisfied.

Now Lemma 73 gives the required result immediately. Lemma 79 is proved.
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Lemma 80 For m large, there exist R, and S|

m?’

|1_C47 |am|1+65 < S;n < |a’m|1+c6 < |a’m+1|7

(5.37)

lame1| < |am|"™ < R, < |am

such that, for i = 1,...,k, we have that |f(2)| and |f9(2)| are large on
|z| = R.,, |z| = S.,, and

6)(» o
ff(,i)) = HZ.]-(l)M ()M (|2))=1) ... (M(|z))=j+1), 2] = Rl,.|2| = S,
(5.38)
i which
M@y =n(r,1/f) —n(r, f), M(R,,) — oo, M(S,,) — oc. (5.39)

We have, by (5.19),

om0 gt g — 1—c
37 Ca 1

(log(Jan|*~)) " / dt _

[ |18 t 1— Cyq 1-— Co

/A

So for sufficiently large m, the set S in Lemma 79 cannot contain the whole
interval (|a,,|'=%, |a,,['7). A similar argument, using (5.20), shows that S
cannot contain the whole of the interval (]a,, |, |a,,|'T°). Hence there exist

R,,, S,,, with
lam| ™ < Ry < |am|' ™, |am|' T < Sp < |am|' 1, (5.40)
such that
(B, ) < (1= co)n(Boy, 1/ ), 1S, f) < (1 = c2)n(Sm, 1/f). - (5.41)
Note that, by (5.3) and (5.23),
lanl' ™ > lam-il, a7 <]

and so

|a’7n—1| < Rnl < |a’7n| < ‘gnt < |a’7n+1|-
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We take 7 > 0 very small and apply Lemma 76 to obtain R/ , S/ which fall

17 m

outside the exceptional set W and satisfy
RIS <R, <R, S:e<S <5, (5.42)

for some small € > 7.

We fix a small ¢ > 0 and obtain, for R, (1 —u) < |z| < R,(1 + u), that
f(2) = b(RL,) 7 Fmt/ D=nlBu) (1 4 o(1)). (5.43)
Note that (5.41) gives
W(Byy ) S (B, [) < (1= ) B, 1/f) = (1 = o)l Ry, 1/ ). (5.44)

The inequality (5.44), together with (5.17), shows that M(R! ) — oo in (5.39).

Further, (5.43) shows that, for
2| =7 e (R, (1 — ), R, (1 + 1)),
we have, writing M(r, f) = max{|f(2)| : |z]| = r},

log|f(2)] > logM(r, f)—o(1)
> m(r, f)—o(1)
> (6—o())T(r, f), (5.45)

so that f(z) is large for such z.

An estimate analogous to (5.43) holds for
‘g;rt(l - lu) < |Z| < ‘g;rt(l + lu)7

and hence f(z) is large on this region also, by the same argument.
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Fix small positive

Lk

(k+ 1)V

For m sufficiently large we can rewrite (5.43) as

7 <

f(2) = 0(R,)M(1+¢(2), R, (1—p) <]zl <R, (1+p) (5.46)
where we write

M = M(R,) = n(R},, 1/f) - n(R,

"’

f)— o

from (5.44), and
[C(=)] <. (5.47)

For j =1,...,k, we have

92y =bM(M —1) ... (M —j+ 1)z (1 +C(2) + 3 m¢()2 +

: o
et M(M—1>...<M—j+1>C('”(Z)Zj) )
R (1= o) < [o] < Ro(1 + 1) (5.43)

Using Cauchy’s estimate (Theorem 40), we have that, for 1 < ¢ <7,

gy
|<(q)(z)| < (iR )7 2| = R.,.

So the sum of the terms in ¢ and its derivatives in the bracketed term in (5.48)

has modulus which is O(y), and (5.38) follows for |z| = R.,. A similar argu-

ment applies for |z| = 57 .

Since |f(2)| is large on |z| = R., |2| = S’ , then (5.38) implies that |1 (2)| is

m?

large there also.

Lemma 80 is proved.
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Lemma 81 For all sufficiently large m satisfying (5.34), we have f*(a,,) #
0, while a,, is a zero of f of multiplicity no greater than k, f has no poles in

A, and
n(r, [) < (1=c)n(r,1/f), 7€ (lan]' =7, Jan ). (5.49)

Suppose that m is large and satisfies (5.34). From (5.34), we must have p,, > 1
and so f(a,) = 0. Suppose that the zero has multiplicity greater than &, so

that £ (a,) = 0. We consider the annulus
D, ={z:R,, <|z| <S5}

which contains a,,.

Since | f)(2)| is large on the boundary of D,,, by Lemma 80, Rouché’s Theo-
rem shows that £ must have the same number of zeros and 1-points in D,,.
So f® has at least one 1-point in D,,. But all 1-points of f*) are at the a,,, and
so f*®(a,,) =1, by (5.37), contradicting our assumption that % (a,,) = 0.

So £ (a,,) # 0 and the zero of f at a,, has multiplicity no greater than k.

So p,, < k and at (5.34) we have

1
7n<_7n§1
Y k:p

and so we conclude that y,, = 0 i.e. there are no poles of f in A,,.

Moreover, recalling (5.33), this implies that n(r, f) < (1 — e)n(r, 1/ f) holds
either for all r € (|a,,|'™, |a,,|) or for no such r. But since (5.30) and (5.36)

give
1 |@m | dt/t _ log |a,m| — log |am|1—c7

log |am| Jiq,1-er log |am|

=C7 > 1/A,
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we conclude from Lemma 79 that n(r, f) < (1 — e)n(r,1/f) holds for all

7 € (|am'™7, |a,]). Similarly,

1 /lam|1+08 1og |am|1+68 - IOg |a’m| _ Cs > 1/A7
|

_ dt/t = =
log |a,|1*e / log |a, |t ¢ 14 cg

a'ml

using (5.31) and (5.36), and so n(r, f) < (1 — c)n(r,1/f) holds for all r €

(laml, |am]+e).

But now also,

n(|anl, [) < nllan| +1, f) < (1 = ex)nl|an| + 1, 1/f) = (1 — co)nl|anl, 1/f)

Lemma 81 is proved.

For large m satisfying (5.34) we have, from Lemma 81,

M(lan]) = nllanl. 1/) = nllanl. f) = conllanl 1/) > 0. (550)

Lemma 82 Let K be a large positive constant. Given €1 > 0, we have, for all

sufficiently large m satisfying (5.34),
pwl

! M
J;((ZZ)) =(1+ T(Z))j + T = Q| [{_k|am| < 7] < [{k|a’m|7 (5.51)

where M = M(K~*|a,,|) is large and positive and
()] <ex,

and where we recall that p,, denotes the number of zeros of f at a,,.
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We have, from (5.23), (5.40) and (5.42),
|am| T < R, < am| < Shy < |am|'t®
and so, using (5.33) and Lemma 81 we have
M(r) = M(K *la.)(1+0(1)), R, <r<S,.

The function

=57 (i - )

is analytic on R < |z| < S! . and satisfies

#(z) =1+ o(1)

on the boundary, by (5.37) and (5.38) with 7 = 1. Hence (5.51) follows from

the maximum principle. Lemma 82 is proved.
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Lemma 83 Let ¢ be fized, 0 < & < 4=%*+1),

Suppose that h is a function analytic in the region

|am]

K an| < |2] < KFlan|, |2 — an| > S (5.52)
with
h(z) M
=—(1 5.53
b = ) (5.53)
in that region, where M = M (|a,|) = n(lan|, 1/f) — nllan|, f), and
|71 (2)] <e.
Then, for 7 =1,...,k we have
RUN(z) M
=—(1 j 5.54
iy = o () (5.54)
for
L . ||
K o) < ol < K], |2 =l > 5220 (555)
where
() < 7.
If, in addition, h is analytic in the whole of the region
K7 an| < |2| < K¥|an], (5.56)
and satisfies (5.53) there, then (5.54) holds in
K77 ] < 2| < K* 1 ay,|. (5.57)

We prove the first part. The proof is by induction on j. When 7 = 1, the
assertion is simply a reiteration of the hypotheses of the lemma, so there is

nothing to prove.
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Now suppose that the result holds for 7 — 1. We have

R (2) d ROV (2) ROV (2) K (2)

) 2wk T TR we)

(5.58)

Using the inductive hypothesis,

h(j_l)(Z) ) = M T 1(z M (2)) = M oz
WD) he) o LT n) = 4 e() (5:59)

z
in the region

|
9k—j+27

K72 %|ay| < 2] < K*2an), |2 — am| > (5.60)

where
|o(2)] < [m—1(2)] + 2 (2)] < 2(4) %
For z in the region (5.60),

| | <2——.
h(z) |2

Using Cauchy’s estimate,

A M
d= h(z) S

where p is the distance from z to the boundary of the region (5.60).

For = satisfying (5.55), we have

anl _ lanl | o _lan]
P Qk—j+1l  Qk—j+270 ™ k—j+2

p > min{ K'=17F|a,, |- K= *a,,|, K*7*%|a,,| K= |a,,|

and so, for such z,

d hU=1(z) A1 k-2 e
e R e R P

7 (5.61)

using the fact that M — oo as m — oc.
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So, for m large enough, from (5.58), (5.59) and (5.61), for z satisfying (5.55),

R (2) B M (s
h(Z) - Zj (1+ .7( ))

with

[mi(2)] < 47 e

as required. The proof of the second part is identical. Lemma 83 is proved.

Lemma 84 For m large and satisfying (5.34), we have

= (14 7(2)) (5.62)

for

(5.63)
where

1
< —.
()l < 5

We apply Lemma 83, using h = f. By Lemma 81, f is analytic in the region

(5.52). In that region, by Lemma 82, we have

(= M m
f():(l—I-T(z))——I— P
f() Z Z—apy
But also, from (5.52) and Lemma 81,
m 2p, 2%k M
p P _ oM
A I [ I (U ||

and so the hypothesis at (5.53) is satisfied.

The result follows. Lemma 84 is proved.
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Lemma 85 For large m satisfying (5.34), we have f%*(a,,) = 1.

We recall from (5.34) that p,, > 0 and so f(a,,) = 0.

By Lemma 84 and Rouché’s theorem, f*)/f has the same number of (zeros
minus poles) in |2 — a,| < |an|/2 as does ]ZW—: ie zero. But f(k)/f has p,, poles
in |z — an| < lam|/2, all at a,, (recalling from Lemma 81 that F%(a,) # 0
and that f has no poles in A,,).

So £/ f has py, zeros inside |z — ap,| < |am|/2. These must be zeros of &,
But now, using the fact that |f%*)| is large on |2| = R/, and |z| = S/, from
Lemma 80, we can apply Rouché’s theorem to f%* to conclude that f*) must

have a l-point in R/ < |z| < S. But this must be at a,,, ie f*(a,,) = 1.

Lemma 85 is proved.

We are now in a position to obtain a contradiction, which will prove the the-

oremnl.

We take a large m which satisfies (5.34). From Lemma 85, we have

flan) =0, fP(a,) =1 (5.64)

We set
F(2) = (= = am)™i(2) (5.65)

where [ is analytic, non-zero in A,,, using Lemma 81 again.
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We have
log |1(2)] = 10g |7(2)] = pm10g | = @] > dT(jan|'~", ) = O(log |anl)

for z on the boundary of A,,, using the Anderson/Clunie theorem (Theorem

36), and so, for any positive integer C', we have
log |I(2)] > C'log |#| (5.66)

for such z, provided m is large enough, using the fact that f is transcenden-
tal. By the maximum modulus principle, (5.66) holds for all =z in A, and, in

particular, |{(a.,)| is large.

In the case p,, = k£ we have
F®(z) = KU(z) + Bo(2)

where By is analytic in A,, and By(a,,) = 0. But now we have a contradiction

immediately in this case, since |l(a,,)| is large from the remark following (5.66),

but % (a,,) =1 from (5.64).
So we may suppose that p,, < k.

We apply Lemma 83 using A = [. Since [ has no zero at or near a,,, we use
the second part of the lemma to obtain that

l(k_p'm) (Z) Mk_p'm

I(z)  zk—pm

(14 Tap), K72 Han,| < 2] < K2 a,,).
Together with (5.66), this implies that

1
|l(k_p'm.) (Z)| > 5A]\4k_p'm. Z|C—k+p'm. (567)
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in that region.

But, from (5.65),

o+ B (5.69)

where B is analytic in A,, and B(a,,) = 0.

MO

But now we have a contradiction since [(*=7n)(z) is large from (5.67), but also

% (a,) =1 from (5.64).

Theorem 72 is proved.
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